

genever benning

You can read this book online at craftinginterpreters.com.

The source code is available at craftinginterpreters.com/repo.

Copyright © 2021 by Robert Nystrom. All rights reserved.

The book was lovingly typeset by the author in Skolar Latin, Skolar Sans, and
Source Code Pro. Illustrations were hand-drawn and lettered by the author
using Pigma Micron pens.

ISBN 978-0-9905829-3-9

http://craftinginterpreters.com
http://craftinginterpreters.com/repo

To Ginny, I miss your stupid face.

Part I. WELCOME 1

Chapter 1: Introduction 3
1.1 Why Learn This Stuff? . 4
1.2 How the Book Is Organized . 5
1.3 The First Interpreter . 7
1.4 The Second Interpreter . 8
CHALLENGES .9
DESIGN NOTE: WHAT’S IN A NAME? . 10

Chapter 2: a Map of the territory 11
2.1 The Parts of a Language . 12
2.2 Shortcuts and Alternate Routes . 17
2.3 Compilers and Interpreters . 18
2.4 Our Journey . 20
CHALLENGES . 20

Chapter 3: The Lox Language 21
3.1 Hello, Lox . 22
3.2 A High-Level Language . 22
3.3 Data Types . 23
3.4 Expressions . 24
3.5 Statements . 26
3.6 Variables . 26
3.7 Control Flow . 27
3.8 Functions . 27
3.9 Classes . 29
3.10 The Standard Library . 34
CHALLENGES . 34
DESIGN NOTE: EXPRESSIONS AND STATEMENTS 35

Part II. a trEE-WaLK INtErPrEtEr 37

Chapter 4: Scanning 39
4.1 The Interpreter Framework . 39
4.2 Lexemes and Tokens . 43
4.3 Regular Languages and Expressions 45
4.4 The Scanner Class . 45
4.5 Recognizing Lexemes . 47
4.6 Longer Lexemes . 49
4.7 Reserved Words and Identifiers . 53
CHALLENGES . 55
DESIGN NOTE: IMPLICIT SEMICOLONS . 56

Chapter 5: representing Code 59
5.1 Context-Free Grammars . 60
5.2 Implementing Syntax Trees . 65
5.3 Working with Trees . 69
5.4 A (Not Very) Pretty Printer . 74
CHALLENGES . 77

Chapter 6: Parsing Expressions 79
6.1 Ambiguity and the Parsing Game . 80
6.2 Recursive Descent Parsing . 84
6.3 Syntax Errors. 89
6.4 Wiring up the Parser . 93
CHALLENGES . 94
DESIGN NOTE: LOGIC VERSUS HISTORY . 95

Chapter 7: Evaluating Expressions 97
7.1 Representing Values . 98
7.2 Evaluating Expressions . 99
7.3 Runtime Errors .103
7.4 Hooking Up the Interpreter .106
CHALLENGES . 109
DESIGN NOTE: STATIC AND DYNAMIC TYPING 110

table of Contents

vi

Chapter 8: Statements and State 111
8.1 Statements .112
8.2 Global Variables .116
8.3 Environments .120
8.4 Assignment .123
8.5 Scope .126
CHALLENGES . 133
DESIGN NOTE: IMPLICIT VARIABLE DECLARATION 134

Chapter 9: Control Flow 137
9.1 Turing Machines (Briefly) .138
9.2 Conditional Execution .139
9.3 Logical Operators .141
9.4 While Loops .143
9.5 For Loops .144
CHALLENGES . 149
DESIGN NOTE: SPOONFULS OF SYNTACTIC SUGAR 150

Chapter 10: Functions 151
10.1 Function Calls .151
10.2 Native Functions .157
10.3 Function Declarations .158
10.4 Function Objects .160
10.5 Return Statements .163
10.6 Local Functions and Closures .167
CHALLENGES . 170

Chapter 11: resolving and Binding 171
11.1 Static Scope .172
11.2 Semantic Analysis .176
11.3 A Resolver Class .177
11.4 Interpreting Resolved Variables .186
11.5 Resolution Errors .189
CHALLENGES . 191

Chapter 12: Classes 193
12.1 OOP and Classes .194
12.2 Class Declarations .194
12.3 Creating Instances .197
12.4 Properties on Instances .199
12.5 Methods on Classes. .203
12.6 This .207
12.7 Constructors and Initializers .213
CHALLENGES . 217
DESIGN NOTE: PROTOTYPES AND POWER 218

Chapter 13: Inheritance 221
13.1 Superclasses and Subclasses .222
13.2 Inheriting Methods .225
13.3 Calling Superclass Methods .225
13.4 Conclusion .233
CHALLENGES . 234

Part III. a BYtECODE VIrtUaL MaCHINE 237

Chapter 14: Chunks of Bytecode 239
14.1 Bytecode? .240
14.2 Getting Started .243
14.3 Chunks of Instructions .244
14.4 Disassembling Chunks .249
14.5 Constants .252
14.6 Line Information .257
CHALLENGES . 260
DESIGN NOTE: TEST YOUR LANGUAGE . 262

Chapter 15: a Virtual Machine 265
15.1 An Instruction Execution Machine266
15.2 A Value Stack Manipulator .271
15.3 An Arithmetic Calculator .277
CHALLENGES . 282
DESIGN NOTE: REGISTER-BASED BYTECODE 283

Chapter 16: Scanning on Demand 285
16.1 Spinning Up the Interpreter .286
16.2 A Token at a Time .291
16.3 A Lexical Grammar for Lox .294
16.4 Identifiers and Keywords .299
CHALLENGES . 304

Chapter 17: Compiling Expressions 305
17.1 Single-Pass Compilation .307
17.2 Parsing Tokens .308
17.3 Emitting Bytecode .311
17.4 Parsing Prefix Expressions .312
17.5 Parsing Infix Expressions .317
17.6 A Pratt Parser .318
17.7 Dumping Chunks .323
CHALLENGES . 324
DESIGN NOTE: IT’S JUST PARSING . 325

Chapter 18: types of Values 327
18.1 Tagged Unions .327
18.2 Lox Values and C Values .329
18.3 Dynamically Typed Numbers .330
18.4 Two New Types .333
CHALLENGES . 340

Chapter 19: Strings 341
19.1 Values and Objects .342
19.2 Struct Inheritance .343
19.3 Strings .346
19.4 Operations on Strings .348
19.5 Freeing Objects .352
CHALLENGES . 355
DESIGN NOTE: STRING ENCODING . 356

vii

Chapter 20: Hash tables 359
20.1 An Array of Buckets .360
20.2 Collision Resolution .362
20.3 Hash Functions .365
20.4 Building a Hash Table .365
20.5 String Interning .377
CHALLENGES . 380

Chapter 21: Global Variables 381
21.1 Statements .382
21.2 Variable Declarations .387
21.3 Reading Variables .390
21.4 Assignment .392
CHALLENGES . 397

Chapter 22: Local Variables 399
22.1 Representing Local Variables .400
22.2 Block Statements .402
22.3 Declaring Local Variables .403
22.4 Using Locals .407
CHALLENGES . 412

Chapter 23: Jumping Back and Forth 413
23.1 If Statements .414
23.2 Logical Operators. .420
23.3 While Statements .422
23.4 For Statements .424
CHALLENGES . 428
DESIGN NOTE: CONSIDERING GOTO HARMFUL 429

Chapter 24: Calls and Functions 433
24.1 Function Objects .434
24.2 Compiling to Function Objects .436
24.3 Call Frames .439
24.4 Function Declarations .446
24.5 Function Calls .449
24.6 Return Statements .457
24.7 Native Functions .458
CHALLENGES . 462

Chapter 25: Closures 463
25.1 Closure Objects .464
25.2 Upvalues .470
25.3 Upvalue Objects .479
25.4 Closed Upvalues .484
CHALLENGES . 493
DESIGN NOTE: CLOSING OVER THE LOOP VARIABLE 494

Chapter 26: Garbage Collection 499
26.1 Reachability .500
26.2 Mark-Sweep Garbage Collection .502
26.3 Marking the Roots .505

26.4 Tracing Object References .509
26.5 Sweeping Unused Objects .514
26.6 When to Collect .517
26.7 Garbage Collection Bugs .521
CHALLENGES . 524
DESIGN NOTE: GENERATIONAL COLLECTORS 525

Chapter 27: Classes and Instances 527
27.1 Class Objects .528
27.2 Class Declarations .529
27.3 Instances of Classes .531
27.4 Get and Set Expressions .535
CHALLENGES . 539

Chapter 28: Methods and Initializers 541
28.1 Method Declarations .542
28.2 Method References .546
28.3 This .551
28.4 Instance Initializers .555
28.5 Optimized Invocations .559
CHALLENGES . 564
DESIGN NOTE: NOVELTY BUDGET . 565

Chapter 29: Superclasses 567
29.1 Inheriting Methods .567
29.2 Storing Superclasses .571
29.3 Super Calls .574
29.4 A Complete Virtual Machine .579
CHALLENGES . 580

Chapter 30: Optimization 583
30.1 Measuring Performance .584
30.2 Faster Hash Table Probing .585
30.3 NaN Boxing .590
30.4 Where to Next .601
CHALLENGES . 603

BaCKMattEr 605

appendix I 605
A1.1 Syntax Grammar .605
A1.2 Lexical Grammar .607

appendix II 609
A2.1 Expressions .609
A2.2 Statements .614

Index 619

What’s in a Name? . 10
Expressions and Statements . 35
Implicit Semicolons . 56
Logic Versus History . 95
Static and Dynamic Typing .110
Implicit Variable Declaration .134
Spoonfuls of Syntactic Sugar .150
Prototypes and Power .218
Test Your Language .262
Register-Based Bytecode .283
It’s Just Parsing .325
String Encoding .356
Considering Goto Harmful .429
Closing Over the Loop Variable .494
Generational Collectors .525
Novelty Budget .565

Design Notes

acknowledgements

When the first copy of “Game Programming Patterns” sold, I guess I had the
right to call myself an author. But it took time to feel comfortable with that label.
Thank you to everyone who bought copies of my first book, and to the publishers
and translators who brought it to other languages. You gave me the confidence
to believe I could tackle a project of this scope. Well, that, and massively under-
estimating what I was getting myself into, but that’s on me.

A fear particular to technical writing is getting stuff wrong. Tests and static
analysis only get you so far. Once the code and prose is in ink on paper, there’s
no fixing it. I am deeply grateful to the many people who filed issues and pull
requests on the open source repo for the book. Special thanks go to cm1776, who
filed 145 tactfully worded issues pointing out hundreds of code errors, typos, and
unclear sentences. The book is more accurate and readable because of you all.

I’m grateful to my copy editor Kari Somerton who braved a heap of computer
science jargon and an unfamilar workflow in order to fix my many grammar
errors and stylistic inconsistencies.

When the pandemic turned everyone’s life upside down, a number of people
reached out to tell me that my book provided a helpful distraction. This book that
I spent six years writing forms a chapter in my own life’s story and I’m grateful to
the readers who contacted me and made that chapter more meaningful.

Finally, the deepest thanks go to my wife Megan and my daughters Lily and
Gretchen. You patiently endured the time I had to sink into the book, and my
stress while writing it. There’s no one I’d rather be stuck at home with.

Welcome PART I

This may be the beginning of a grand adventure. Programming languages en-
compass a huge space to explore and play in. Plenty of room for your own cre-
ations to share with others or just enjoy yourself. Brilliant computer scientists
and software engineers have spent entire careers traversing this land without
ever reaching the end. If this book is your first entry into the country, welcome.

The pages of this book give you a guided tour through some of the world of
languages. But before we strap on our hiking boots and venture out, we should
familiarize ourselves with the territory. The chapters in this part introduce you
to the basic concepts used by programming languages and how those concepts
are organized.

We will also get acquainted with Lox, the language we’ll spend the rest of the
book implementing (twice).

Welcome 1Introduction

“Fairy tales are more than true: not because they tell us that dragons
exist, but because they tell us that dragons can be beaten.”

— G.K. Chesterton by way of Neil Gaiman, Coraline

I’m really excited we’re going on this journey together. This is a book on imple-
menting interpreters for programming languages. It’s also a book on how to
design a language worth implementing. It’s the book I wish I’d had when I first
started getting into languages, and it’s the book I’ve been writing in my head for
nearly a decade.

In these pages, we will walk step-by-step through two complete interpreters
for a full-featured language. I assume this is your first foray into languages, so
I’ll cover each concept and line of code you need to build a complete, usable, fast
language implementation.

In order to cram two full implementations inside one book without it turning
into a doorstop, this text is lighter on theory than others. As we build each piece
of the system, I will introduce the history and concepts behind it. I’ll try to get
you familiar with the lingo so that if you ever find yourself at a cocktail party full
of PL (programming language) researchers, you’ll fit in.

To my friends and family, sorry I’ve been
so absentminded!

Strangely enough, a situation I have found
myself in multiple times. You wouldn’t
believe how much some of them can
drink.

4 cHAPTeR 1 : InTRoducTIon

But we’re mostly going to spend our brain juice getting the language up and
running. This is not to say theory isn’t important. Being able to reason precisely
and formally about syntax and semantics is a vital skill when working on a lan-
guage. But, personally, I learn best by doing. It’s hard for me to wade through
paragraphs full of abstract concepts and really absorb them. But if I’ve coded
something, run it, and debugged it, then I get it.

That’s my goal for you. I want you to come away with a solid intuition of how a
real language lives and breathes. My hope is that when you read other, more the-
oretical books later, the concepts there will firmly stick in your mind, adhered to
this tangible substrate.

1.1 Why Learn This Stuff?
Every introduction to every compiler book seems to have this section. I don’t
know what it is about programming languages that causes such existential
doubt. I don’t think ornithology books worry about justifying their existence.
They assume the reader loves birds and start teaching.

But programming languages are a little different. I suppose it is true that the
odds of any of us creating a broadly successful, general-purpose programming
language are slim. The designers of the world’s widely used languages could fit
in a Volkswagen bus, even without putting the pop-top camper up. If joining that
elite group was the only reason to learn languages, it would be hard to justify.
Fortunately, it isn’t.

1.1.1 Little languages are everywhere

For every successful general-purpose language, there are a thousand successful
niche ones. We used to call them “little languages”, but inflation in the jargon
economy led to the name “domain-specific languages”. These are pidgins tai-
lor-built to a specific task. Think application scripting languages, template en-
gines, markup formats, and configuration files.

Almost every large software project needs a handful of these. When you can,
it’s good to reuse an existing one instead of rolling your own. Once you factor in
documentation, debuggers, editor support, syntax highlighting, and all of the
other trappings, doing it yourself becomes a tall order.

But there’s still a good chance you’ll find yourself needing to whip up a parser
or other tool when there isn’t an existing library that fits your needs. Even when
you are reusing some existing implementation, you’ll inevitably end up needing
to debug and maintain it and poke around in its guts.

Static type systems in particular require
rigorous formal reasoning. Hacking on a
type system has the same feel as proving
a theorem in mathematics.

It turns out this is no coincidence. In
the early half of last century, Haskell
Curry and William Alvin Howard showed
that they are two sides of the same coin:
the Curry-Howard isomorphism.

A random selection of some little
languages you might run into.

1.1 WHy leARn THIs sTuff? 5

1.1.2 Languages are great exercise

Long distance runners sometimes train with weights strapped to their ankles or
at high altitudes where the atmosphere is thin. When they later unburden them-
selves, the new relative ease of light limbs and oxygen-rich air enables them to
run farther and faster.

Implementing a language is a real test of programming skill. The code is
complex and performance critical. You must master recursion, dynamic arrays,
trees, graphs, and hash tables. You probably use hash tables at least in your
day-to-day programming, but do you really understand them? Well, after we’ve
crafted our own from scratch, I guarantee you will.

While I intend to show you that an interpreter isn’t as daunting as you might
believe, implementing one well is still a challenge. Rise to it, and you’ll come
away a stronger programmer, and smarter about how you use data structures
and algorithms in your day job.

1.1.3 One more reason

This last reason is hard for me to admit, because it’s so close to my heart. Ever
since I learned to program as a kid, I felt there was something magical about
languages. When I first tapped out BASIC programs one key at a time I couldn’t
conceive how BASIC itself was made.

Later, the mixture of awe and terror on my college friends’ faces when talking
about their compilers class was enough to convince me language hackers were
a different breed of human—some sort of wizards granted privileged access to
arcane arts.

It’s a charming image, but it has a darker side. I didn’t feel like a wizard, so I
was left thinking I lacked some inborn quality necessary to join the cabal. Though
I’ve been fascinated by languages ever since I doodled made-up keywords in my
school notebook, it took me decades to muster the courage to try to really learn
them. That “magical” quality, that sense of exclusivity, excluded me.

When I did finally start cobbling together my own little interpreters, I quickly
learned that, of course, there is no magic at all. It’s just code, and the people who
hack on languages are just people.

There are a few techniques you don’t often encounter outside of languages,
and some parts are a little difficult. But not more difficult than other obstacles
you’ve overcome. My hope is that if you’ve felt intimidated by languages and this
book helps you overcome that fear, maybe I’ll leave you just a tiny bit braver than
you were before.

And, who knows, maybe you will make the next great language. Someone has
to.

1.2 How the Book Is Organized
This book is broken into three parts. You’re reading the first one now. It’s a couple
of chapters to get you oriented, teach you some of the lingo that language hack-
ers use, and introduce you to Lox, the language we’ll be implementing.

Each of the other two parts builds one complete Lox interpreter. Within
those parts, each chapter is structured the same way. The chapter takes a single

Its practitioners don’t hesitate to play up
this image. Two of the seminal texts on
programming languages feature a dragon
and a wizard on their covers.

 ⇾ craftinginterpreters.com/dragon
 ⇾ craftinginterpreters.com/wizard

http://craftinginterpreters.com/dragon
http://craftinginterpreters.com/wizard

6 cHAPTeR 1 : InTRoducTIon

language feature, teaches you the concepts behind it, and walks you through an
implementation.

It took a good bit of trial and error on my part, but I managed to carve up the
two interpreters into chapter-sized chunks that build on the previous chapters
but require nothing from later ones. From the very first chapter, you’ll have
a working program you can run and play with. With each passing chapter, it
grows increasingly full-featured until you eventually have a complete language.

Aside from copious, scintillating English prose, chapters have a few other
delightful facets:

1.2.1 The code

We’re about crafting interpreters, so this book contains real code. Every single
line of code needed is included, and each snippet tells you where to insert it in
your ever-growing implementation.

Many other language books and language implementations use tools like
Lex and Yacc, so-called compiler-compilers, that automatically generate some
of the source files for an implementation from some higher-level description.
There are pros and cons to tools like those, and strong opinions—some might say
religious convictions—on both sides.

We will abstain from using them here. I want to ensure there are no dark
corners where magic and confusion can hide, so we’ll write everything by hand.
As you’ll see, it’s not as bad as it sounds, and it means you really will understand
each line of code and how both interpreters work.

A book has different constraints from the “real world” and so the coding style
here might not always reflect the best way to write maintainable production
software. If I seem a little cavalier about, say, omitting private or declaring
a global variable, understand I do so to keep the code easier on your eyes. The
pages here aren’t as wide as your IDE and every character counts.

Also, the code doesn’t have many comments. That’s because each handful of
lines is surrounded by several paragraphs of honest-to-God prose explaining it.
When you write a book to accompany your program, you are welcome to omit
comments too. Otherwise, you should probably use // a little more than I do.

While the book contains every line of code and teaches what each means, it
does not describe the machinery needed to compile and run the interpreter. I
assume you can slap together a makefile or a project in your IDE of choice in
order to get the code to run. Those kinds of instructions get out of date quickly,
and I want this book to age like XO brandy, not backyard hooch.

1.2.2 Snippets

Since the book contains literally every line of code needed for the implemen-
tations, the snippets are quite precise. Also, because I try to keep the program
in a runnable state even when major features are missing, sometimes we add
temporary code that gets replaced in later snippets.

A snippet with all the bells and whistles looks like this:

 default:
 Lox.error(line, “Unexpected character.”);
 break;

Yacc is a tool that takes in a grammar file
and produces a source file for a compiler,
so it’s sort of like a “compiler” that
outputs a compiler, which is where we get
the term “compiler-compiler”.

Yacc wasn’t the first of its ilk, which
is why it’s named “Yacc”—Yet Another
Compiler-Compiler. A later similar tool is
Bison, named as a pun on the pronuncia-
tion of Yacc like “yak”.

If you find all of these little self-references
and puns charming and fun, you’ll fit right
in here. If not, well, maybe the language
nerd sense of humor is an acquired taste.

lox/scanner.java
in scanToken()

replace 1 line

1.2.1 THe code 7

In the center, you have the new code to add. It may have a few faded out lines
above or below to show where it goes in the existing surrounding code. There is
also a little blurb telling you in which file and where to place the snippet. If that
blurb says “replace _ lines”, there is some existing code between the faded lines
that you need to remove and replace with the new snippet.

1.2.3 Asides

Asides contain biographical sketches, historical background, references to re-
lated topics, and suggestions of other areas to explore. There’s nothing that you
need to know in them to understand later parts of the book, so you can skip them
if you want. I won’t judge you, but I might be a little sad.

1.2.4 Challenges

Each chapter ends with a few exercises. Unlike textbook problem sets, which
tend to review material you already covered, these are to help you learn more
than what’s in the chapter. They force you to step off the guided path and explore
on your own. They will make you research other languages, figure out how to
implement features, or otherwise get you out of your comfort zone.

Vanquish the challenges and you’ll come away with a broader understanding
and possibly a few bumps and scrapes. Or skip them if you want to stay inside
the comfy confines of the tour bus. It’s your book.

1.2.5 Design notes

Most “programming language” books are strictly programming language im-
plementation books. They rarely discuss how one might happen to design the
language being implemented. Implementation is fun because it is so precisely
defined. We programmers seem to have an affinity for things that are black and
white, ones and zeroes.

Personally, I think the world needs only so many implementations of
FORTRAN 77. At some point, you find yourself designing a new language. Once
you start playing that game, then the softer, human side of the equation becomes
paramount. Things like which features are easy to learn, how to balance innova-
tion and familiarity, what syntax is more readable and to whom.

All of that stuff profoundly affects the success of your new language. I want
your language to succeed, so in some chapters I end with a “design note”, a little
essay on some corner of the human aspect of programming languages. I’m no
expert on this—I don’t know if anyone really is—so take these with a large pinch
of salt. That should make them tastier food for thought, which is my main aim.

1.3 The First Interpreter
We’ll write our first interpreter, jlox, in Java. The focus is on concepts. We’ll write
the simplest, cleanest code we can to correctly implement the semantics of the
language. This will get us comfortable with the basic techniques and also hone

Well, some asides do, at least. Most of
them are just dumb jokes and amateurish
drawings.

A word of warning: the challenges
often ask you to make changes to the
interpreter you’re building. You’ll want to
implement those in a copy of your code.
The later chapters assume your interpreter
is in a pristine (“unchallenged”?) state.

I know a lot of language hackers whose
careers are based on this. You slide a
language spec under their door, wait a few
months, and code and benchmark results
come out.

Hopefully your new language doesn’t
hardcode assumptions about the width of
a punched card into its grammar.

The book uses Java and C, but readers
have ported the code to many other
languages. If the languages I picked aren’t
your bag, take a look at those:

 ⇾ craftinginterpreters.com/ports

http://craftinginterpreters.com/ports

8 cHAPTeR 1 : InTRoducTIon

our understanding of exactly how the language is supposed to behave.
Java is a great language for this. It’s high level enough that we don’t get over-

whelmed by fiddly implementation details, but it’s still pretty explicit. Unlike
in scripting languages, there tends to be less complex machinery hiding under
the hood, and you’ve got static types to see what data structures you’re working
with.

I also chose Java specifically because it is an object-oriented language. That
paradigm swept the programming world in the ’90s and is now the dominant
way of thinking for millions of programmers. Odds are good you’re already used
to organizing code into classes and methods, so we’ll keep you in that comfort
zone.

While academic language folks sometimes look down on object-oriented
languages, the reality is that they are widely used even for language work. GCC
and LLVM are written in C++, as are most JavaScript virtual machines. Object-
oriented languages are ubiquitous, and the tools and compilers for a language
are often written in the same language.

And, finally, Java is hugely popular. That means there’s a good chance you
already know it, so there’s less for you to learn to get going in the book. If you
aren’t that familiar with Java, don’t freak out. I try to stick to a fairly minimal
subset of it. I use the diamond operator from Java 7 to make things a little more
terse, but that’s about it as far as “advanced” features go. If you know another
object-oriented language, like C# or C++, you can muddle through.

By the end of part II, we’ll have a simple, readable implementation. It’s not
very fast, but it’s correct. However, we are only able to accomplish that by build-
ing on the Java virtual machine’s own runtime facilities. We want to learn how
Java itself implements those things.

1.4 The Second Interpreter
So in the next part, we start all over again, but this time in C. C is the perfect
language for understanding how an implementation really works, all the way
down to the bytes in memory and the code flowing through the CPU.

A big reason that we’re using C is so I can show you things C is particularly
good at, but that does mean you’ll need to be pretty comfortable with it. You don’t
have to be the reincarnation of Dennis Ritchie, but you shouldn’t be spooked by
pointers either.

If you aren’t there yet, pick up an introductory book on C and chew through
it, then come back here when you’re done. In return, you’ll come away from this
book an even stronger C programmer. That’s useful given how many language
implementations are written in C: Lua, CPython, and Ruby’s MRI, to name a few.

In our C interpreter, clox, we are forced to implement for ourselves all the
things Java gave us for free. We’ll write our own dynamic array and hash table.
We’ll decide how objects are represented in memory, and build a garbage collec-
tor to reclaim them.

Our Java implementation was focused on being correct. Now that we have
that down, we’ll turn to also being fast. Our C interpreter will contain a compiler
that translates Lox to an efficient bytecode representation (don’t worry, I’ll get
into what that means soon), which it then executes. This is the same technique
used by implementations of Lua, Python, Ruby, PHP, and many other successful
languages.

A compiler reads files in one language,
translates them, and outputs files in
another language. You can implement a
compiler in any language, including the
same language it compiles, a process
called self-hosting.

You can’t compile your compiler using
itself yet, but if you have another compiler
for your language written in some other
language, you use that one to compile
your compiler once. Now you can use the
compiled version of your own compiler
to compile future versions of itself, and
you can discard the original one compiled
from the other compiler. This is called
bootstrapping, from the image of pulling
yourself up by your own bootstraps.

I pronounce the name like “sea-locks”, but
you can say it “clocks” or even “cloch”,
where you pronounce the “x” like the
Greeks do if it makes you happy.

Did you think this was just an interpreter
book? It’s a compiler book as well. Two for
the price of one!

1.4 THe second InTeRPReTeR 9

We’ll even try our hand at benchmarking and optimization. By the end, we’ll
have a robust, accurate, fast interpreter for our language, able to keep up with
other professional caliber implementations out there. Not bad for one book and
a few thousand lines of code.

CHaLLENGES

1. There are at least six domain-specific languages used in the little system I cob-
bled together to write and publish this book. What are they?

2. Get a “Hello, world!” program written and running in Java. Set up whatever
makefiles or IDE projects you need to get it working. If you have a debugger, get
comfortable with it and step through your program as it runs.

3. Do the same thing for C. To get some practice with pointers, define a doubly
linked list of heap-allocated strings. Write functions to insert, find, and delete
items from it. Test them.

The repository for the book is here:
 ⇾ craftinginterpreters.com/repo

http://craftinginterpreters.com/repo

10 cHAPTeR 1 : InTRoducTIon

DESIGN NOtE: WHat’S IN a NaME?

One of the hardest challenges in writing this book was coming up with a name for
the language it implements. I went through pages of candidates before I found one
that worked. As you’ll discover on the first day you start building your own language,
naming is deviously hard. A good name satisfies a few criteria:

1. It isn’t in use. You can run into all sorts of trouble, legal and social, if you inadver-
tently step on someone else’s name.

2. It’s easy to pronounce. If things go well, hordes of people will be saying and writ-
ing your language’s name. Anything longer than a couple of syllables or a handful of
letters will annoy them to no end.

3. It’s distinct enough to search for. People will Google your language’s name to
learn about it, so you want a word that’s rare enough that most results point to
your docs. Though, with the amount of AI search engines are packing today, that’s
less of an issue. Still, you won’t be doing your users any favors if you name your
language “for”.

4. It doesn’t have negative connotations across a number of cultures. This is hard
to be on guard for, but it’s worth considering. The designer of Nimrod ended up
renaming his language to “Nim” because too many people remember that Bugs
Bunny used “Nimrod” as an insult. (Bugs was using it ironically.)

If your potential name makes it through that gauntlet, keep it. Don’t get hung up on
trying to find an appellation that captures the quintessence of your language. If the
names of the world’s other successful languages teach us anything, it’s that the name
doesn’t matter much. All you need is a reasonably unique token.

Welcome 2a Map of the territory

“You must have a map, no matter how rough. Otherwise you wander
all over the place. In The Lord of the Rings I never made anyone go
farther than he could on a given day.”

— J. R. R. Tolkien

We don’t want to wander all over the place, so before we set off, let’s scan the
territory charted by previous language implementers. It will help us understand
where we are going and the alternate routes others have taken.

First, let me establish a shorthand. Much of this book is about a language’s
implementation, which is distinct from the language itself in some sort of Platonic
ideal form. Things like “stack”, “bytecode”, and “recursive descent”, are nuts and
bolts one particular implementation might use. From the user’s perspective, as
long as the resulting contraption faithfully follows the language’s specification,
it’s all implementation detail.

We’re going to spend a lot of time on those details, so if I have to write “lan-
guage implementation” every single time I mention them, I’ll wear my fingers off.
Instead, I’ll use “language” to refer to either a language or an implementation of
it, or both, unless the distinction matters.

12 cHAPTeR 2 : A mAP of THe TeRRIToRy

2.1 The Parts of a Language
Engineers have been building programming languages since the Dark Ages of
computing. As soon as we could talk to computers, we discovered doing so was
too hard, and we enlisted their help. I find it fascinating that even though today’s
machines are literally a million times faster and have orders of magnitude more
storage, the way we build programming languages is virtually unchanged.

Though the area explored by language designers is vast, the trails they’ve
carved through it are few. Not every language takes the exact same path—some
take a shortcut or two—but otherwise they are reassuringly similar, from Rear
Admiral Grace Hopper’s first COBOL compiler all the way to some hot, new,
transpile-to-JavaScript language whose “documentation” consists entirely of a
single, poorly edited README in a Git repository somewhere.

I visualize the network of paths an implementation may choose as climbing a
mountain. You start off at the bottom with the program as raw source text, liter-
ally just a string of characters. Each phase analyzes the program and transforms
it to some higher-level representation where the semantics—what the author
wants the computer to do—become more apparent.

Eventually we reach the peak. We have a bird’s-eye view of the user’s program
and can see what their code means. We begin our descent down the other side of
the mountain. We transform this highest-level representation down to succes-
sively lower-level forms to get closer and closer to something we know how to
make the CPU actually execute.

Let’s trace through each of those trails and points of interest. Our journey begins
on the left with the bare text of the user’s source code:

There are certainly dead ends, sad
little cul-de-sacs of CS papers with zero
citations and now-forgotten optimizations
that only made sense when memory was
measured in individual bytes.

2.1 THe PARTs of A lAnguAge 13

2.1.1 Scanning

The first step is scanning, also known as lexing, or (if you’re trying to impress
someone) lexical analysis. They all mean pretty much the same thing. I like
“lexing” because it sounds like something an evil supervillain would do, but I’ll
use “scanning” because it seems to be marginally more commonplace.

A scanner (or lexer) takes in the linear stream of characters and chunks
them together into a series of something more akin to “words”. In programming
languages, each of these words is called a token. Some tokens are single char-
acters, like (and ,. Others may be several characters long, like numbers (123),
string literals ("hi!"), and identifiers (min).

Some characters in a source file don’t actually mean anything. Whitespace is
often insignificant, and comments, by definition, are ignored by the language.
The scanner usually discards these, leaving a clean sequence of meaningful to-
kens.

2.1.2 Parsing

The next step is parsing. This is where our syntax gets a grammar—the ability
to compose larger expressions and statements out of smaller parts. Did you ever
diagram sentences in English class? If so, you’ve done what a parser does, except
that English has thousands and thousands of “keywords” and an overflowing
cornucopia of ambiguity. Programming languages are much simpler.

A parser takes the flat sequence of tokens and builds a tree structure that
mirrors the nested nature of the grammar. These trees have a couple of different
names—parse tree or abstract syntax tree—depending on how close to the
bare syntactic structure of the source language they are. In practice, language
hackers usually call them syntax trees, ASTs, or often just trees.

Parsing has a long, rich history in computer science that is closely tied to the
artificial intelligence community. Many of the techniques used today to parse
programming languages were originally conceived to parse human languages by
AI researchers who were trying to get computers to talk to us.

It turns out human languages were too messy for the rigid grammars those
parsers could handle, but they were a perfect fit for the simpler artificial gram-
mars of programming languages. Alas, we flawed humans still manage to use
those simple grammars incorrectly, so the parser’s job also includes letting us
know when we do by reporting syntax errors.

“Lexical” comes from the Greek root “lex”,
meaning “word”.

14 cHAPTeR 2 : A mAP of THe TeRRIToRy

2.1.3 Static analysis

The first two stages are pretty similar across all implementations. Now, the in-
dividual characteristics of each language start coming into play. At this point,
we know the syntactic structure of the code—things like which expressions are
nested in which—but we don’t know much more than that.

In an expression like a + b, we know we are adding a and b, but we don’t
know what those names refer to. Are they local variables? Global? Where are
they defined?

The first bit of analysis that most languages do is called binding or resolu-
tion. For each identifier, we find out where that name is defined and wire the
two together. This is where scope comes into play—the region of source code
where a certain name can be used to refer to a certain declaration.

If the language is statically typed, this is when we type check. Once we know
where a and b are declared, we can also figure out their types. Then if those
types don’t support being added to each other, we report a type error.

Take a deep breath. We have attained the summit of the mountain and a
sweeping view of the user’s program. All this semantic insight that is visible to
us from analysis needs to be stored somewhere. There are a few places we can
squirrel it away:

• Often, it gets stored right back as attributes on the syntax tree itself—extra
fields in the nodes that aren’t initialized during parsing but get filled in later.

• Other times, we may store data in a lookup table off to the side. Typically, the
keys to this table are identifiers—names of variables and declarations. In that
case, we call it a symbol table and the values it associates with each key tell
us what that identifier refers to.

• The most powerful bookkeeping tool is to transform the tree into an entirely
new data structure that more directly expresses the semantics of the code.
That’s the next section.

Everything up to this point is considered the front end of the implementation.
You might guess everything after this is the back end, but no. Back in the days
of yore when “front end” and “back end” were coined, compilers were much
simpler. Later researchers invented new phases to stuff between the two halves.
Rather than discard the old terms, William Wulf and company lumped those
new phases into the charming but spatially paradoxical name middle end.

2.1.4 Intermediate representations

You can think of the compiler as a pipeline where each stage’s job is to organize
the data representing the user’s code in a way that makes the next stage simpler
to implement. The front end of the pipeline is specific to the source language
the program is written in. The back end is concerned with the final architecture
where the program will run.

In the middle, the code may be stored in some intermediate representation
(IR) that isn’t tightly tied to either the source or destination forms (hence “in-
termediate”). Instead, the IR acts as an interface between these two languages.

This lets you support multiple source languages and target platforms with

The language we’ll build in this book is
dynamically typed, so it will do its type
checking later, at runtime.

There are a few established styles of IRs
out there. Hit your search engine of choice
and look for “control flow graph”, “static
single-assignment”, “continuation-passing
style”, and “three-address code”.

2.1.3 sTATIc AnAlysIs 15

less effort. Say you want to implement Pascal, C, and Fortran compilers, and
you want to target x86, ARM, and, I dunno, SPARC. Normally, that means you’re
signing up to write nine full compilers: Pascal→x86, C→ARM, and every other
combination.

A shared intermediate representation reduces that dramatically. You write
one front end for each source language that produces the IR. Then one back end
for each target architecture. Now you can mix and match those to get every com-
bination.

There’s another big reason we might want to transform the code into a form
that makes the semantics more apparent . . .

2.1.5 Optimization

Once we understand what the user’s program means, we are free to swap it out
with a different program that has the same semantics but implements them more
efficiently—we can optimize it.

A simple example is constant folding: if some expression always evaluates
to the exact same value, we can do the evaluation at compile time and replace the
code for the expression with its result. If the user typed in this:

pennyArea = 3.14159 * (0.75 / 2) * (0.75 / 2);

we could do all of that arithmetic in the compiler and change the code to:

pennyArea = 0.4417860938;

Optimization is a huge part of the programming language business. Many lan-
guage hackers spend their entire careers here, squeezing every drop of perfor-
mance they can out of their compilers to get their benchmarks a fraction of a
percent faster. It can become a sort of obsession.

We’re mostly going to hop over that rathole in this book. Many successful
languages have surprisingly few compile-time optimizations. For example, Lua
and CPython generate relatively unoptimized code, and focus most of their per-
formance effort on the runtime.

2.1.6 Code generation

We have applied all of the optimizations we can think of to the user’s program.
The last step is converting it to a form the machine can actually run. In other
words, generating code (or code gen), where “code” here usually refers to the
kind of primitive assembly-like instructions a CPU runs and not the kind of
“source code” a human might want to read.

Finally, we are in the back end, descending the other side of the mountain.
From here on out, our representation of the code becomes more and more
primitive, like evolution run in reverse, as we get closer to something our sim-
ple-minded machine can understand.

We have a decision to make. Do we generate instructions for a real CPU or a
virtual one? If we generate real machine code, we get an executable that the OS
can load directly onto the chip. Native code is lightning fast, but generating it is a
lot of work. Today’s architectures have piles of instructions, complex pipelines,

If you’ve ever wondered how GCC
supports so many crazy languages and
architectures, like Modula-3 on Motorola
68k, now you know. Language front ends
target one of a handful of IRs, mainly
GIMPLE and RTL. Target back ends like
the one for 68k then take those IRs and
produce native code.

If you can’t resist poking your foot into
that hole, some keywords to get you
started are “constant propagation”,
“common subexpression elimination”,
“loop invariant code motion”, “global
value numbering”, “strength reduction”,
“scalar replacement of aggregates”, “dead
code elimination”, and “loop unrolling”.

16 cHAPTeR 2 : A mAP of THe TeRRIToRy

and enough historical baggage to fill a 747’s luggage bay.
Speaking the chip’s language also means your compiler is tied to a specific

architecture. If your compiler targets x86 machine code, it’s not going to run on
an ARM device. All the way back in the ’60s, during the Cambrian explosion of
computer architectures, that lack of portability was a real obstacle.

To get around that, hackers like Martin Richards and Niklaus Wirth, of BCPL
and Pascal fame, respectively, made their compilers produce virtual machine
code. Instead of instructions for some real chip, they produced code for a hypo-
thetical, idealized machine. Wirth called this p-code for portable, but today, we
generally call it bytecode because each instruction is often a single byte long.

These synthetic instructions are designed to map a little more closely to the
language’s semantics, and not be so tied to the peculiarities of any one computer
architecture and its accumulated historical cruft. You can think of it like a dense,
binary encoding of the language’s low-level operations.

2.1.7 Virtual machine

If your compiler produces bytecode, your work isn’t over once that’s done. Since
there is no chip that speaks that bytecode, it’s your job to translate. Again, you
have two options. You can write a little mini-compiler for each target architec-
ture that converts the bytecode to native code for that machine. You still have to
do work for each chip you support, but this last stage is pretty simple and you get
to reuse the rest of the compiler pipeline across all of the machines you support.
You’re basically using your bytecode as an intermediate representation.

Or you can write a virtual machine (VM), a program that emulates a hypo-
thetical chip supporting your virtual architecture at runtime. Running bytecode
in a VM is slower than translating it to native code ahead of time because every
instruction must be simulated at runtime each time it executes. In return, you
get simplicity and portability. Implement your VM in, say, C, and you can run
your language on any platform that has a C compiler. This is how the second
interpreter we build in this book works.

2.1.8 Runtime

We have finally hammered the user’s program into a form that we can execute.
The last step is running it. If we compiled it to machine code, we simply tell the
operating system to load the executable and off it goes. If we compiled it to byte-
code, we need to start up the VM and load the program into that.

In both cases, for all but the basest of low-level languages, we usually need
some services that our language provides while the program is running. For
example, if the language automatically manages memory, we need a garbage
collector going in order to reclaim unused bits. If our language supports “in-
stance of ” tests so you can see what kind of object you have, then we need some
representation to keep track of the type of each object during execution.

All of this stuff is going at runtime, so it’s called, appropriately, the runtime.
In a fully compiled language, the code implementing the runtime gets inserted
directly into the resulting executable. In, say, Go, each compiled application
has its own copy of Go’s runtime directly embedded in it. If the language is run
inside an interpreter or VM, then the runtime lives there. This is how most im-
plementations of languages like Java, Python, and JavaScript work.

For example, the AAD (“ASCII Adjust
AX Before Division”) instruction lets
you perform division, which sounds
useful. Except that instruction takes,
as operands, two binary-coded decimal
digits packed into a single 16-bit register.
When was the last time you needed BCD
on a 16-bit machine?

The basic principle here is that the
farther down the pipeline you push the
architecture-specific work, the more of
the earlier phases you can share across
architectures.

There is a tension, though. Many
optimizations, like register allocation and
instruction selection, work best when
they know the strengths and capabilities
of a specific chip. Figuring out which parts
of your compiler can be shared and which
should be target-specific is an art.

The term “virtual machine” also refers to
a different kind of abstraction. A system
virtual machine emulates an entire
hardware platform and operating system
in software. This is how you can play
Windows games on your Linux machine,
and how cloud providers give customers
the user experience of controlling
their own “server” without needing to
physically allocate separate computers for
each user.

The kind of VMs we’ll talk about in this
book are language virtual machines or
process virtual machines if you want to
be unambiguous.

2.1.7 VIRTuAl mAcHIne 17

2.2 Shortcuts and alternate routes
That’s the long path covering every possible phase you might implement. Many
languages do walk the entire route, but there are a few shortcuts and alternate
paths.

2.2.1 Single-pass compilers

Some simple compilers interleave parsing, analysis, and code generation so that
they produce output code directly in the parser, without ever allocating any
syntax trees or other IRs. These single-pass compilers restrict the design of the
language. You have no intermediate data structures to store global information
about the program, and you don’t revisit any previously parsed part of the code.
That means as soon as you see some expression, you need to know enough to
correctly compile it.

Pascal and C were designed around this limitation. At the time, memory was
so precious that a compiler might not even be able to hold an entire source file in
memory, much less the whole program. This is why Pascal’s grammar requires
type declarations to appear first in a block. It’s why in C you can’t call a function
above the code that defines it unless you have an explicit forward declaration
that tells the compiler what it needs to know to generate code for a call to the
later function.

2.2.2 Tree-walk interpreters

Some programming languages begin executing code right after parsing it to an
AST (with maybe a bit of static analysis applied). To run the program, the inter-
preter traverses the syntax tree one branch and leaf at a time, evaluating each
node as it goes.

This implementation style is common for student projects and little languag-
es, but is not widely used for general-purpose languages since it tends to be slow.
Some people use “interpreter” to mean only these kinds of implementations, but
others define that word more generally, so I’ll use the inarguably explicit tree-
walk interpreter to refer to these. Our first interpreter rolls this way.

2.2.3 Transpilers

Writing a complete back end for a language can be a lot of work. If you have some
existing generic IR to target, you could bolt your front end onto that. Otherwise,
it seems like you’re stuck. But what if you treated some other source language as
if it were an intermediate representation?

You write a front end for your language. Then, in the back end, instead of
doing all the work to lower the semantics to some primitive target language, you
produce a string of valid source code for some other language that’s about as high
level as yours. Then, you use the existing compilation tools for that language as
your escape route off the mountain and down to something you can execute.

They used to call this a source-to-source compiler or a transcompiler. After
the rise of languages that compile to JavaScript in order to run in the browser,
they’ve affected the hipster sobriquet transpiler.

Syntax-directed translation is a
structured technique for building these
all-at-once compilers. You associate an
action with each piece of the grammar,
usually one that generates output code.
Then, whenever the parser matches that
chunk of syntax, it executes the action,
building up the target code one rule at
a time.

A notable exception is early versions of
Ruby, which were tree walkers. At 1.9,
the canonical implementation of Ruby
switched from the original MRI (Matz’s
Ruby Interpreter) to Koichi Sasada’s
YARV (Yet Another Ruby VM). YARV is a
bytecode virtual machine.

The first transcompiler, XLT86, translated
8080 assembly into 8086 assembly. That
might seem straightforward, but keep in
mind the 8080 was an 8-bit chip and the
8086 a 16-bit chip that could use each
register as a pair of 8-bit ones. XLT86 did
data flow analysis to track register usage
in the source program and then efficiently
map it to the register set of the 8086.

18 cHAPTeR 2 : A mAP of THe TeRRIToRy

While the first transcompiler translated one assembly language to another,
today, most transpilers work on higher-level languages. After the viral spread of
UNIX to machines various and sundry, there began a long tradition of compilers
that produced C as their output language. C compilers were available every-
where UNIX was and produced efficient code, so targeting C was a good way to
get your language running on a lot of architectures.

Web browsers are the “machines” of today, and their “machine code” is
JavaScript, so these days it seems almost every language out there has a compiler
that targets JS since that’s the main way to get your code running in a browser.

The front end—scanner and parser—of a transpiler looks like other compil-
ers. Then, if the source language is only a simple syntactic skin over the target
language, it may skip analysis entirely and go straight to outputting the analo-
gous syntax in the destination language.

If the two languages are more semantically different, you’ll see more of the
typical phases of a full compiler including analysis and possibly even optimiza-
tion. Then, when it comes to code generation, instead of outputting some binary
language like machine code, you produce a string of grammatically correct
source (well, destination) code in the target language.

Either way, you then run that resulting code through the output language’s
existing compilation pipeline, and you’re good to go.

2.2.4 Just-in-time compilation

This last one is less a shortcut and more a dangerous alpine scramble best re-
served for experts. The fastest way to execute code is by compiling it to machine
code, but you might not know what architecture your end user’s machine sup-
ports. What to do?

You can do the same thing that the HotSpot Java Virtual Machine (JVM),
Microsoft’s Common Language Runtime (CLR), and most JavaScript interpreters
do. On the end user’s machine, when the program is loaded—either from source
in the case of JS, or platform-independent bytecode for the JVM and CLR—you
compile it to native code for the architecture their computer supports. Naturally
enough, this is called just-in-time compilation. Most hackers just say “JIT”,
pronounced like it rhymes with “fit”.

The most sophisticated JITs insert profiling hooks into the generated code to
see which regions are most performance critical and what kind of data is flowing
through them. Then, over time, they will automatically recompile those hotspots
with more advanced optimizations.

2.3 Compilers and Interpreters
Now that I’ve stuffed your head with a dictionary’s worth of programming lan-
guage jargon, we can finally address a question that’s plagued coders since time
immemorial: What’s the difference between a compiler and an interpreter?

It turns out this is like asking the difference between a fruit and a vegetable.
That seems like a binary either-or choice, but actually “fruit” is a botanical term
and “vegetable” is culinary. One does not strictly imply the negation of the other.

JS used to be the only way to execute code
in a browser. Thanks to WebAssembly,
compilers now have a second, lower-level
language they can target that runs on
the web.

This is, of course, exactly where the
HotSpot JVM gets its name.

XLT86 was written by Gary Kildall, a
tragic hero of computer science if there
ever was one. One of the first people to
recognize the promise of microcomputers,
he created PL/M and CP/M, the first
high-level language and OS for them.

He was a sea captain, business owner,
licensed pilot, and motorcyclist. A TV host
with the Kris Kristofferson-esque look
sported by dashing bearded dudes in the
’80s. He took on Bill Gates and, like many,
lost, before meeting his end in a biker bar
under mysterious circumstances. He died
too young, but sure as hell lived before
he did.

2.2.4 JusT-In-TIme comPIlATIon 19

There are fruits that aren’t vegetables (apples) and vegetables that aren’t fruits
(carrots), but also edible plants that are both fruits and vegetables, like tomatoes.

So, back to languages:

• Compiling is an implementation technique that involves translating a source
language to some other—usually lower-level—form. When you generate
bytecode or machine code, you are compiling. When you transpile to another
high-level language, you are compiling too.

• When we say a language implementation “is a compiler”, we mean it trans-
lates source code to some other form but doesn’t execute it. The user has to
take the resulting output and run it themselves.

• Conversely, when we say an implementation “is an interpreter”, we mean
it takes in source code and executes it immediately. It runs programs “from
source”.

Like apples and oranges, some implementations are clearly compilers and not
interpreters. GCC and Clang take your C code and compile it to machine code. An
end user runs that executable directly and may never even know which tool was
used to compile it. So those are compilers for C.

In older versions of Matz’s canonical implementation of Ruby, the user ran
Ruby from source. The implementation parsed it and executed it directly by
traversing the syntax tree. No other translation occurred, either internally or in
any user-visible form. So this was definitely an interpreter for Ruby.

But what of CPython? When you run your Python program using it, the code
is parsed and converted to an internal bytecode format, which is then executed
inside the VM. From the user’s perspective, this is clearly an interpreter—they
run their program from source. But if you look under CPython’s scaly skin, you’ll
see that there is definitely some compiling going on.

The answer is that it is both. CPython is an interpreter, and it has a compiler.
In practice, most scripting languages work this way, as you can see:

Peanuts (which are not even nuts) and
cereals like wheat are actually fruit, but
I got this drawing wrong. What can I say,
I’m a software engineer, not a botanist.
I should probably erase the little peanut
guy, but he’s so cute that I can’t bear to.

Now pine nuts, on the other hand, are
plant-based foods that are neither fruits
nor vegetables. At least as far as I can tell.

The Go tool is even more of a horticul-
tural curiosity. If you run go build, it
compiles your Go source code to machine
code and stops. If you type go run, it
does that, then immediately executes the
generated executable.

So go is a compiler (you can use it as
a tool to compile code without running
it), is an interpreter (you can invoke it to
immediately run a program from source),
and also has a compiler (when you use
it as an interpreter, it is still compiling
internally).

20 cHAPTeR 2 : A mAP of THe TeRRIToRy

That overlapping region in the center is where our second interpreter lives too,
since it internally compiles to bytecode. So while this book is nominally about
interpreters, we’ll cover some compilation too.

2.4 Our Journey
That’s a lot to take in all at once. Don’t worry. This isn’t the chapter where you’re
expected to understand all of these pieces and parts. I just want you to know that
they are out there and roughly how they fit together.

This map should serve you well as you explore the territory beyond the guid-
ed path we take in this book. I want to leave you yearning to strike out on your
own and wander all over that mountain.

But, for now, it’s time for our own journey to begin. Tighten your bootlaces,
cinch up your pack, and come along. From here on out, all you need to focus on
is the path in front of you.

CHaLLENGES

1. Pick an open source implementation of a language you like. Download the
source code and poke around in it. Try to find the code that implements the
scanner and parser. Are they handwritten, or generated using tools like Lex and
Yacc? (.l or .y files usually imply the latter.)

2. Just-in-time compilation tends to be the fastest way to implement dynamically
typed languages, but not all of them use it. What reasons are there to not JIT?

3. Most Lisp implementations that compile to C also contain an interpreter that
lets them execute Lisp code on the fly as well. Why?

Henceforth, I promise to tone down the
whole mountain metaphor thing.

Welcome 3The Lox Language

“What nicer thing can you do for somebody than make them
breakfast?”

— Anthony Bourdain

We’ll spend the rest of this book illuminating every dark and sundry corner of
the Lox language, but it seems cruel to have you immediately start grinding out
code for the interpreter without at least a glimpse of what we’re going to end up
with.

At the same time, I don’t want to drag you through reams of language lawyer-
ing and specification-ese before you get to touch your text editor. So this will be
a gentle, friendly introduction to Lox. It will leave out a lot of details and edge
cases. We’ve got plenty of time for those later.

A tutorial isn’t very fun if you can’t try the
code out yourself. Alas, you don’t have
a Lox interpreter yet, since you haven’t
built one!

Fear not. You can use mine:
 ⇾ craftinginterpreters.com/repo

http://craftinginterpreters.com/repo

22 cHAPTeR 3 : THe lox lAnguAge

3.1 Hello, Lox
Here’s your very first taste of Lox:

// Your first Lox program!
print "Hello, world!";

As that // line comment and the trailing semicolon imply, Lox’s syntax is a
member of the C family. (There are no parentheses around the string because
print is a built-in statement, and not a library function.)

Now, I won’t claim that C has a great syntax. If we wanted something elegant,
we’d probably mimic Pascal or Smalltalk. If we wanted to go full Scandinavian-
furniture-minimalism, we’d do a Scheme. Those all have their virtues.

What C-like syntax has instead is something you’ll often find more valuable
in a language: familiarity. I know you are already comfortable with that style
because the two languages we’ll be using to implement Lox—Java and C—also
inherit it. Using a similar syntax for Lox gives you one less thing to learn.

3.2 a High-Level Language
While this book ended up bigger than I was hoping, it’s still not big enough to fit
a huge language like Java in it. In order to fit two complete implementations of
Lox in these pages, Lox itself has to be pretty compact.

When I think of languages that are small but useful, what comes to mind
are high-level “scripting” languages like JavaScript, Scheme, and Lua. Of those
three, Lox looks most like JavaScript, mainly because most C-syntax languages
do. As we’ll learn later, Lox’s approach to scoping hews closely to Scheme. The
C flavor of Lox we’ll build in Part III is heavily indebted to Lua’s clean, efficient
implementation.

Lox shares two other aspects with those three languages:

3.2.1 Dynamic typing

Lox is dynamically typed. Variables can store values of any type, and a single
variable can even store values of different types at different times. If you try to
perform an operation on values of the wrong type—say, dividing a number by a
string—then the error is detected and reported at runtime.

There are plenty of reasons to like static types, but they don’t outweigh the
pragmatic reasons to pick dynamic types for Lox. A static type system is a ton
of work to learn and implement. Skipping it gives you a simpler language and a
shorter book. We’ll get our interpreter up and executing bits of code sooner if we
defer our type checking to runtime.

3.2.2 Automatic memory management

High-level languages exist to eliminate error-prone, low-level drudgery, and
what could be more tedious than manually managing the allocation and freeing
of storage? No one rises and greets the morning sun with, “I can’t wait to figure

Your first taste of Lox, the language, that
is. I don’t know if you’ve ever had the
cured, cold-smoked salmon before. If not,
give it a try too.

I’m surely biased, but I think Lox’s syntax
is pretty clean. C’s most egregious gram-
mar problems are around types. Dennis
Ritchie had this idea called “declaration
reflects use”, where variable declarations
mirror the operations you would have to
perform on the variable to get to a value
of the base type. Clever idea, but I don’t
think it worked out great in practice.

Lox doesn’t have static types, so we
avoid that.

Now that JavaScript has taken over the
world and is used to build ginormous
applications, it’s hard to think of it as a
“little scripting language”. But Brendan
Eich hacked the first JS interpreter into
Netscape Navigator in ten days to make
buttons animate on web pages. JavaScript
has grown up since then, but it was once a
cute little language.

Because Eich slapped JS together
with roughly the same raw materials and
time as an episode of MacGyver, it has
some weird semantic corners where the
duct tape and paper clips show through.
Things like variable hoisting, dynamically
bound this, holes in arrays, and implicit
conversions.

I had the luxury of taking my time on
Lox, so it should be a little cleaner.

After all, the two languages we’ll be using
to implement Lox are both statically typed.

3.1 Hello, lox 23

out the correct place to call free() for every byte of memory I allocate today!”
There are two main techniques for managing memory: reference counting

and tracing garbage collection (usually just called garbage collection or GC).
Ref counters are much simpler to implement—I think that’s why Perl, PHP, and
Python all started out using them. But, over time, the limitations of ref counting
become too troublesome. All of those languages eventually ended up adding a
full tracing GC, or at least enough of one to clean up object cycles.

Tracing garbage collection has a fearsome reputation. It is a little harrowing
working at the level of raw memory. Debugging a GC can sometimes leave you
seeing hex dumps in your dreams. But, remember, this book is about dispelling
magic and slaying those monsters, so we are going to write our own garbage
collector. I think you’ll find the algorithm is quite simple and a lot of fun to im-
plement.

3.3 Data types
In Lox’s little universe, the atoms that make up all matter are the built-in data
types. There are only a few:

• Booleans. You can’t code without logic and you can’t logic without Boolean
values. “True” and “false”, the yin and yang of software. Unlike some ancient
languages that repurpose an existing type to represent truth and falsehood,
Lox has a dedicated Boolean type. We may be roughing it on this expedition,
but we aren’t savages.

There are two Boolean values, obviously, and a literal for each one.

true; // Not false.
false; // Not *not* false.

• Numbers. Lox has only one kind of number: double-precision floating point.
Since floating-point numbers can also represent a wide range of integers,
that covers a lot of territory, while keeping things simple.

Full-featured languages have lots of syntax for numbers—hexadecimal,
scientific notation, octal, all sorts of fun stuff. We’ll settle for basic integer
and decimal literals.

1234; // An integer.
12.34; // A decimal number.

• Strings. We’ve already seen one string literal in the first example. Like most
languages, they are enclosed in double quotes.

"I am a string";
""; // The empty string.
"123"; // This is a string, not a number.

As we’ll see when we get to implementing them, there is quite a lot of com-
plexity hiding in that innocuous sequence of characters.

• Nil. There’s one last built-in value who’s never invited to the party but always

In practice, ref counting and tracing are
more ends of a continuum than opposing
sides. Most ref counting systems end
up doing some tracing to handle cycles,
and the write barriers of a generational
collector look a bit like retain calls if you
squint.

For lots more on this, look up a paper
called “A Unified Theory of Garbage
Collection”.

Boolean variables are the only data
type in Lox named after a person,
George Boole, which is why “Boolean”
is capitalized. He died in 1864, nearly a
century before digital computers turned
his algebra into electricity. I wonder what
he’d think to see his name all over billions
of lines of Java code.

Even that word “character” is a trickster.
Is it ASCII? Unicode? A code point or a
“grapheme cluster”? Fixed-length or
variable-length encoding?

24 cHAPTeR 3 : THe lox lAnguAge

seems to show up. It represents “no value”. It’s called “null” in many other
languages. In Lox we spell it nil. (When we get to implementing it, that will
help distinguish when we’re talking about Lox’s nil versus Java or C’s null.)

There are good arguments for not having a null value in a language since
null pointer errors are the scourge of our industry. If we were doing a stat-
ically typed language, it would be worth trying to ban it. In a dynamically
typed one, though, eliminating it is often more annoying than having it.

3.4 Expressions
If built-in data types and their literals are atoms, then expressions must be the
molecules. Most of these will be familiar.

3.4.1 Arithmetic

Lox features the basic arithmetic operators you know and love from C and other
languages:

add + me;
subtract - me;
multiply * me;
divide / me;

The subexpressions on either side of the operator are operands. Because there
are two of them, these are called binary operators. (It has nothing to do with the
ones-and-zeroes use of “binary”.) Because the operator is fixed in the middle of
the operands, these are also called infix operators (as opposed to prefix opera-
tors where the operator comes before the operands, and postfix where it comes
after).

One arithmetic operator is actually both an infix and a prefix one. The - oper-
ator can also be used to negate a number.

-negateMe;

All of these operators work on numbers, and it’s an error to pass any other types
to them. The exception is the + operator—you can also pass it two strings to con-
catenate them.

3.4.2 Comparison and equality

Moving along, we have a few more operators that always return a Boolean re-
sult. We can compare numbers (and only numbers), using Ye Olde Comparison
Operators.

less < than;
lessThan <= orEqual;
greater > than;
greaterThan >= orEqual;

There are some operators that have more
than two operands and the operators
are interleaved between them. The only
one in wide usage is the “conditional” or
“ternary” operator of C and friends:

cond ? thenArm : elseArm;

Some call these mixfix operators. A
few languages let you define your own
operators and control how they are
positioned—their “fixity”.

3.4 exPRessIons 25

We can test two values of any kind for equality or inequality.

1 == 2; // false.
"cat" != "dog"; // true.

Even different types.

314 == "pi"; // false.

Values of different types are never equivalent.

123 == "123"; // false.

I’m generally against implicit conversions.

3.4.3 Logical operators

The not operator, a prefix !, returns false if its operand is true, and vice versa.

!true; // false.
!false; // true.

The other two logical operators really are control flow constructs in the guise
of expressions. An and expression determines if two values are both true. It
returns the left operand if it’s false, or the right operand otherwise.

true and false; // false.
true and true; // true.

And an or expression determines if either of two values (or both) are true. It
returns the left operand if it is true and the right operand otherwise.

false or false; // false.
true or false; // true.

The reason and and or are like control flow structures is that they short-circuit.
Not only does and return the left operand if it is false, it doesn’t even evaluate the
right one in that case. Conversely (contrapositively?), if the left operand of an or
is true, the right is skipped.

3.4.4 Precedence and grouping

All of these operators have the same precedence and associativity that you’d
expect coming from C. (When we get to parsing, we’ll get way more precise
about that.) In cases where the precedence isn’t what you want, you can use ()
to group stuff.

var average = (min + max) / 2;

Since they aren’t very technically interesting, I’ve cut the remainder of the typ-

I used and and or for these instead of
&& and || because Lox doesn’t use &
and | for bitwise operators. It felt weird
to introduce the double-character forms
without the single-character ones.

I also kind of like using words for
these since they are really control flow
structures and not simple operators.

26 cHAPTeR 3 : THe lox lAnguAge

ical operator menagerie out of our little language. No bitwise, shift, modulo, or
conditional operators. I’m not grading you, but you will get bonus points in my
heart if you augment your own implementation of Lox with them.

Those are the expression forms (except for a couple related to specific fea-
tures that we’ll get to later), so let’s move up a level.

3.5 Statements
Now we’re at statements. Where an expression’s main job is to produce a value,
a statement’s job is to produce an effect. Since, by definition, statements don’t
evaluate to a value, to be useful they have to otherwise change the world in some
way—usually modifying some state, reading input, or producing output.

You’ve seen a couple of kinds of statements already. The first one was:

print "Hello, world!";

A print statement evaluates a single expression and displays the result to the
user. You’ve also seen some statements like:

"some expression";

An expression followed by a semicolon (;) promotes the expression to state-
ment-hood. This is called (imaginatively enough), an expression statement.

If you want to pack a series of statements where a single one is expected, you
can wrap them up in a block.

{
 print "One statement.";
 print "Two statements.";
}

Blocks also affect scoping, which leads us to the next section . . .

3.6 Variables
You declare variables using var statements. If you omit the initializer, the vari-
able’s value defaults to nil.

var imAVariable = "here is my value";
var iAmNil;

Once declared, you can, naturally, access and assign a variable using its name.

var breakfast = "bagels";
print breakfast; // "bagels".
breakfast = "beignets";
print breakfast; // "beignets".

Baking print into the language instead
of just making it a core library function
is a hack. But it’s a useful hack for us: it
means our in-progress interpreter can
start producing output before we’ve
implemented all of the machinery
required to define functions, look them up
by name, and call them.

This is one of those cases where not
having nil and forcing every variable
to be initialized to some value would be
more annoying than dealing with nil
itself.

Can you tell that I tend to work on this
book in the morning before I’ve had
anything to eat?

3.5 sTATemenTs 27

I won’t get into the rules for variable scope here, because we’re going to spend a
surprising amount of time in later chapters mapping every square inch of the
rules. In most cases, it works like you would expect coming from C or Java.

3.7 Control Flow
It’s hard to write useful programs if you can’t skip some code or execute some
more than once. That means control flow. In addition to the logical operators we
already covered, Lox lifts three statements straight from C.

An if statement executes one of two statements based on some condition.

if (condition) {
 print "yes";
} else {
 print "no";
}

A while loop executes the body repeatedly as long as the condition expression
evaluates to true.

var a = 1;
while (a < 10) {
 print a;
 a = a + 1;
}

Finally, we have for loops.

for (var a = 1; a < 10; a = a + 1) {
 print a;
}

This loop does the same thing as the previous while loop. Most modern languag-
es also have some sort of for-in or foreach loop for explicitly iterating over
various sequence types. In a real language, that’s nicer than the crude C-style
for loop we got here. Lox keeps it basic.

3.8 Functions
A function call expression looks the same as it does in C.

makeBreakfast(bacon, eggs, toast);

You can also call a function without passing anything to it.

makeBreakfast();

Unlike in, say, Ruby, the parentheses are mandatory in this case. If you leave

We already have and and or for
branching, and we could use recursion
to repeat code, so that’s theoretically
sufficient. It would be pretty awkward to
program that way in an imperative-styled
language, though.

Scheme, on the other hand, has no
built-in looping constructs. It does rely
on recursion for repetition. Smalltalk has
no built-in branching constructs, and
relies on dynamic dispatch for selectively
executing code.

I left do while loops out of Lox
because they aren’t that common and
wouldn’t teach you anything that you
won’t already learn from while. Go
ahead and add it to your implementation
if it makes you happy. It’s your party.

This is a concession I made because of
how the implementation is split across
chapters. A for-in loop needs some
sort of dynamic dispatch in the iterator
protocol to handle different kinds of
sequences, but we don’t get that until
after we’re done with control flow. We
could circle back and add for-in loops
later, but I didn’t think doing so would
teach you anything super interesting.

28 cHAPTeR 3 : THe lox lAnguAge

them off, the name doesn’t call the function, it just refers to it.
A language isn’t very fun if you can’t define your own functions. In Lox, you

do that with fun.

fun printSum(a, b) {
 print a + b;
}

Now’s a good time to clarify some terminology. Some people throw around
“parameter” and “argument” like they are interchangeable and, to many, they
are. We’re going to spend a lot of time splitting the finest of downy hairs around
semantics, so let’s sharpen our words. From here on out:

• An argument is an actual value you pass to a function when you call it. So
a function call has an argument list. Sometimes you hear actual parameter
used for these.

• A parameter is a variable that holds the value of the argument inside the
body of the function. Thus, a function declaration has a parameter list. Others
call these formal parameters or simply formals.

The body of a function is always a block. Inside it, you can return a value using a
return statement.

fun returnSum(a, b) {
 return a + b;
}

If execution reaches the end of the block without hitting a return, it implicitly
returns nil.

3.8.1 Closures

Functions are first class in Lox, which just means they are real values that you can
get a reference to, store in variables, pass around, etc. This works:

fun addPair(a, b) {
 return a + b;
}

fun identity(a) {
 return a;
}

print identity(addPair)(1, 2); // Prints "3".

Since function declarations are statements, you can declare local functions in-
side another function.

I’ve seen languages that use fn, fun,
func, and function. I’m still hoping
to discover a funct, functi, or
functio somewhere.

Speaking of terminology, some statically
typed languages like C make a distinction
between declaring a function and defining
it. A declaration binds the function’s type
to its name so that calls can be type-
checked but does not provide a body. A
definition declares the function and also
fills in the body so that the function can
be compiled.

Since Lox is dynamically typed, this
distinction isn’t meaningful. A function
declaration fully specifies the function
including its body.

See, I told you nil would sneak in when
we weren’t looking.

3.8.1 closuRes 29

fun outerFunction() {
 fun localFunction() {
 print "I'm local!";
 }

 localFunction();
}

If you combine local functions, first-class functions, and block scope, you run
into this interesting situation:

fun returnFunction() {
 var outside = "outside";

 fun inner() {
 print outside;
 }

 return inner;
}

var fn = returnFunction();
fn();

Here, inner() accesses a local variable declared outside of its body in the sur-
rounding function. Is this kosher? Now that lots of languages have borrowed this
feature from Lisp, you probably know the answer is yes.

For that to work, inner() has to “hold on” to references to any surrounding
variables that it uses so that they stay around even after the outer function has
returned. We call functions that do this closures. These days, the term is often
used for any first-class function, though it’s sort of a misnomer if the function
doesn’t happen to close over any variables.

As you can imagine, implementing these adds some complexity because we
can no longer assume variable scope works strictly like a stack where local vari-
ables evaporate the moment the function returns. We’re going to have a fun time
learning how to make these work correctly and efficiently.

3.9 Classes
Since Lox has dynamic typing, lexical (roughly, “block”) scope, and closures, it’s
about halfway to being a functional language. But as you’ll see, it’s also about
halfway to being an object-oriented language. Both paradigms have a lot going
for them, so I thought it was worth covering some of each.

Since classes have come under fire for not living up to their hype, let me first
explain why I put them into Lox and this book. There are really two questions:

3.9.1 Why might any language want to be object oriented?

Now that object-oriented languages like Java have sold out and only play arena

Peter J. Landin coined the term “closure”.
Yes, he invented damn near half the terms
in programming languages. Most of them
came out of one incredible paper, “The
Next 700 Programming Languages”.

In order to implement these kind of
functions, you need to create a data struc-
ture that bundles together the function’s
code and the surrounding variables it
needs. He called this a “closure” because
it closes over and holds on to the variables
it needs.

30 cHAPTeR 3 : THe lox lAnguAge

shows, it’s not cool to like them anymore. Why would anyone make a new lan-
guage with objects? Isn’t that like releasing music on 8-track?

It is true that the “all inheritance all the time” binge of the ’90s produced
some monstrous class hierarchies, but object-oriented programming (OOP)
is still pretty rad. Billions of lines of successful code have been written in OOP
languages, shipping millions of apps to happy users. Likely a majority of work-
ing programmers today are using an object-oriented language. They can’t all be
that wrong.

In particular, for a dynamically typed language, objects are pretty handy. We
need some way of defining compound data types to bundle blobs of stuff together.

If we can also hang methods off of those, then we avoid the need to prefix all
of our functions with the name of the data type they operate on to avoid colliding
with similar functions for different types. In, say, Racket, you end up having to
name your functions like hash-copy (to copy a hash table) and vector-copy
(to copy a vector) so that they don’t step on each other. Methods are scoped to the
object, so that problem goes away.

3.9.2 Why is Lox object oriented?

I could claim objects are groovy but still out of scope for the book. Most program-
ming language books, especially ones that try to implement a whole language,
leave objects out. To me, that means the topic isn’t well covered. With such a
widespread paradigm, that omission makes me sad.

Given how many of us spend all day using OOP languages, it seems like the
world could use a little documentation on how to make one. As you’ll see, it turns
out to be pretty interesting. Not as hard as you might fear, but not as simple as
you might presume, either.

3.9.3 Classes or prototypes

When it comes to objects, there are actually two approaches to them, classes
and prototypes. Classes came first, and are more common thanks to C++, Java,
C#, and friends. Prototypes were a virtually forgotten offshoot until JavaScript
accidentally took over the world.

In class-based languages, there are two core concepts: instances and classes.
Instances store the state for each object and have a reference to the instance’s
class. Classes contain the methods and inheritance chain. To call a method on an
instance, there is always a level of indirection. You look up the instance’s class
and then you find the method there:

In a statically typed language like C++,
method lookup typically happens at
compile time based on the static type of
the instance, giving you static dispatch.
In contrast, dynamic dispatch looks up
the class of the actual instance object
at runtime. This is how virtual methods
in statically typed languages and all
methods in a dynamically typed language
like Lox work.

3.9.2 WHy Is lox obJecT oRIenTed? 31

Prototype-based languages merge these two concepts. There are only ob-
jects—no classes—and each individual object may contain state and methods.
Objects can directly inherit from each other (or “delegate to” in prototypal lingo):

This means that in some ways prototypal languages are more fundamental than
classes. They are really neat to implement because they’re so simple. Also, they
can express lots of unusual patterns that classes steer you away from.

But I’ve looked at a lot of code written in prototypal languages—including
some of my own devising. Do you know what people generally do with all of the
power and flexibility of prototypes? . . . They use them to reinvent classes.

I don’t know why that is, but people naturally seem to prefer a class-based
(Classic? Classy?) style. Prototypes are simpler in the language, but they seem to
accomplish that only by pushing the complexity onto the user. So, for Lox, we’ll
save our users the trouble and bake classes right in.

3.9.4 Classes in Lox

Enough rationale, let’s see what we actually have. Classes encompass a constel-
lation of features in most languages. For Lox, I’ve selected what I think are the
brightest stars. You declare a class and its methods like so:

class Breakfast {
 cook() {
 print "Eggs a-fryin'!";
 }

 serve(who) {
 print "Enjoy your breakfast, " + who + ".";
 }
}

In practice the line between class-based
and prototype-based languages blurs.
JavaScript’s “constructor function” notion
pushes you pretty hard towards defining
class-like objects. Meanwhile, class-based
Ruby is perfectly happy to let you attach
methods to individual instances.

Larry Wall, Perl’s inventor/prophet
calls this the “waterbed theory”. Some
complexity is essential and cannot be
eliminated. If you push it down in one
place, it swells up in another.

Prototypal languages don’t so much
eliminate the complexity of classes as they
do make the user take that complexity by
building their own class-like metapro-
gramming libraries.

32 cHAPTeR 3 : THe lox lAnguAge

The body of a class contains its methods. They look like function declarations but
without the fun keyword. When the class declaration is executed, Lox creates a
class object and stores that in a variable named after the class. Just like functions,
classes are first class in Lox.

// Store it in variables.
var someVariable = Breakfast;

// Pass it to functions.
someFunction(Breakfast);

Next, we need a way to create instances. We could add some sort of new key-
word, but to keep things simple, in Lox the class itself is a factory function for
instances. Call a class like a function, and it produces a new instance of itself.

var breakfast = Breakfast();
print breakfast; // "Breakfast instance".

3.9.5 Instantiation and initialization

Classes that only have behavior aren’t super useful. The idea behind object-ori-
ented programming is encapsulating behavior and state together. To do that,
you need fields. Lox, like other dynamically typed languages, lets you freely add
properties onto objects.

breakfast.meat = "sausage";
breakfast.bread = "sourdough";

Assigning to a field creates it if it doesn’t already exist.
If you want to access a field or method on the current object from within a

method, you use good old this.

class Breakfast {
 serve(who) {
 print "Enjoy your " + this.meat + " and " +
 this.bread + ", " + who + ".";
 }

 // ...
}

Part of encapsulating data within an object is ensuring the object is in a valid
state when it’s created. To do that, you can define an initializer. If your class has
a method named init(), it is called automatically when the object is construct-
ed. Any parameters passed to the class are forwarded to its initializer.

They are still just as fun, though.

3.9.5 InsTAnTIATIon And InITIAlIzATIon 33

class Breakfast {
 init(meat, bread) {
 this.meat = meat;
 this.bread = bread;
 }

 // ...
}

var baconAndToast = Breakfast("bacon", "toast");
baconAndToast.serve("Dear Reader");
// "Enjoy your bacon and toast, Dear Reader."

3.9.6 Inheritance

Every object-oriented language lets you not only define methods, but reuse them
across multiple classes or objects. For that, Lox supports single inheritance.
When you declare a class, you can specify a class that it inherits from using a
less-than (<) operator.

class Brunch < Breakfast {
 drink() {
 print "How about a Bloody Mary?";
 }
}

Here, Brunch is the derived class or subclass, and Breakfast is the base class
or superclass.

Every method defined in the superclass is also available to its subclasses.

var benedict = Brunch("ham", "English muffin");
benedict.serve("Noble Reader");

Even the init() method gets inherited. In practice, the subclass usually wants
to define its own init() method too. But the original one also needs to be called
so that the superclass can maintain its state. We need some way to call a method
on our own instance without hitting our own methods.

As in Java, you use super for that.

class Brunch < Breakfast {
 init(meat, bread, drink) {
 super.init(meat, bread);
 this.drink = drink;
 }
}

Why the < operator? I didn’t feel like in-
troducing a new keyword like extends.
Lox doesn’t use : for anything else so I
didn’t want to reserve that either. Instead,
I took a page from Ruby and used <.

If you know any type theory, you’ll
notice it’s not a totally arbitrary choice.
Every instance of a subclass is an instance
of its superclass too, but there may be
instances of the superclass that are not
instances of the subclass. That means, in
the universe of objects, the set of subclass
objects is smaller than the superclass’s
set, though type nerds usually use <: for
that relation.

Lox is different from C++, Java, and C#,
which do not inherit constructors, but
similar to Smalltalk and Ruby, which do.

34 cHAPTeR 3 : THe lox lAnguAge

That’s about it for object orientation. I tried to keep the feature set minimal. The
structure of the book did force one compromise. Lox is not a pure object-orient-
ed language. In a true OOP language every object is an instance of a class, even
primitive values like numbers and Booleans.

Because we don’t implement classes until well after we start working with
the built-in types, that would have been hard. So values of primitive types aren’t
real objects in the sense of being instances of classes. They don’t have methods
or properties. If I were trying to make Lox a real language for real users, I would
fix that.

3.10 The Standard Library
We’re almost done. That’s the whole language, so all that’s left is the “core” or
“standard” library—the set of functionality that is implemented directly in the
interpreter and that all user-defined behavior is built on top of.

This is the saddest part of Lox. Its standard library goes beyond minimalism
and veers close to outright nihilism. For the sample code in the book, we only
need to demonstrate that code is running and doing what it’s supposed to do. For
that, we already have the built-in print statement.

Later, when we start optimizing, we’ll write some benchmarks and see how
long it takes to execute code. That means we need to track time, so we’ll define
one built-in function, clock(), that returns the number of seconds since the
program started.

And . . . that’s it. I know, right? It’s embarrassing.
If you wanted to turn Lox into an actual useful language, the very first thing

you should do is flesh this out. String manipulation, trigonometric functions,
file I/O, networking, heck, even reading input from the user would help. But we
don’t need any of that for this book, and adding it wouldn’t teach you anything
interesting, so I’ve left it out.

Don’t worry, we’ll have plenty of exciting stuff in the language itself to keep
us busy.

CHaLLENGES

1. Write some sample Lox programs and run them (you can use the implementa-
tions of Lox in my repository). Try to come up with edge case behavior I didn’t
specify here. Does it do what you expect? Why or why not?

2. This informal introduction leaves a lot unspecified. List several open questions
you have about the language’s syntax and semantics. What do you think the
answers should be?

3. Lox is a pretty tiny language. What features do you think it is missing that would
make it annoying to use for real programs? (Aside from the standard library, of
course.)

3.10 THe sTAndARd lIbRARy 35

DESIGN NOtE: EXPrESSIONS aND StatEMENtS

Lox has both expressions and statements. Some languages omit the latter. Instead,
they treat declarations and control flow constructs as expressions too. These “every-
thing is an expression” languages tend to have functional pedigrees and include most
Lisps, SML, Haskell, Ruby, and CoffeeScript.

To do that, for each “statement-like” construct in the language, you need to decide
what value it evaluates to. Some of those are easy:

• An if expression evaluates to the result of whichever branch is chosen. Likewise, a
switch or other multi-way branch evaluates to whichever case is picked.

• A variable declaration evaluates to the value of the variable.

• A block evaluates to the result of the last expression in the sequence.

Some get a little stranger. What should a loop evaluate to? A while loop in CoffeeScript
evaluates to an array containing each element that the body evaluated to. That can be
handy, or a waste of memory if you don’t need the array.

You also have to decide how these statement-like expressions compose with other
expressions—you have to fit them into the grammar’s precedence table. For example,
Ruby allows:

puts 1 + if true then 2 else 3 end + 4

Is this what you’d expect? Is it what your users expect? How does this affect how you
design the syntax for your “statements”? Note that Ruby has an explicit end to tell
when the if expression is complete. Without it, the + 4 would likely be parsed as
part of the else clause.

Turning every statement into an expression forces you to answer a few hairy ques-
tions like that. In return, you eliminate some redundancy. C has both blocks for se-
quencing statements, and the comma operator for sequencing expressions. It has both
the if statement and the ?: conditional operator. If everything was an expression in
C, you could unify each of those.

Languages that do away with statements usually also feature implicit returns—a
function automatically returns whatever value its body evaluates to without need for
some explicit return syntax. For small functions and methods, this is really handy. In
fact, many languages that do have statements have added syntax like => to be able to
define functions whose body is the result of evaluating a single expression.

But making all functions work that way can be a little strange. If you aren’t careful,
your function will leak a return value even if you only intend it to produce a side effect.
In practice, though, users of these languages don’t find it to be a problem.

For Lox, I gave it statements for prosaic reasons. I picked a C-like syntax for famil-
iarity’s sake, and trying to take the existing C statement syntax and interpret it like
expressions gets weird pretty fast.

a tree-Walk Interpreter PART II

With this part, we begin jlox, the first of our two interpreters. Programming
languages are a huge topic with piles of concepts and terminology to cram into
your brain all at once. Programming language theory requires a level of mental
rigor that you probably haven’t had to summon since your last calculus final.
(Fortunately there isn’t too much theory in this book.)

Implementing an interpreter uses a few architectural tricks and design pat-
terns uncommon in other kinds of applications, so we’ll be getting used to the
engineering side of things too. Given all of that, we’ll keep the code we have to
write as simple and plain as possible.

In less than two thousand lines of clean Java code, we’ll build a complete in-
terpreter for Lox that implements every single feature of the language, exactly
as we’ve specified. The first few chapters work front-to-back through the phases
of the interpreter—scanning, parsing, and evaluating code. After that, we add
language features one at a time, growing a simple calculator into a full-fledged
scripting language.

A TRee-WAlk InTeRPReTeR 4Scanning

“Take big bites. Anything worth doing is worth overdoing.”

— Robert A. Heinlein, Time Enough for Love

The first step in any compiler or interpreter is scanning. The scanner takes in
raw source code as a series of characters and groups it into a series of chunks we
call tokens. These are the meaningful “words” and “punctuation” that make up
the language’s grammar.

Scanning is a good starting point for us too because the code isn’t very hard—
pretty much a switch statement with delusions of grandeur. It will help us
warm up before we tackle some of the more interesting material later. By the
end of this chapter, we’ll have a full-featured, fast scanner that can take any
string of Lox source code and produce the tokens that we’ll feed into the parser
in the next chapter.

4.1 The Interpreter Framework
Since this is our first real chapter, before we get to actually scanning some code
we need to sketch out the basic shape of our interpreter, jlox. Everything starts
with a class in Java.

This task has been variously called
“scanning” and “lexing” (short for “lexical
analysis”) over the years. Way back when
computers were as big as Winnebagos but
had less memory than your watch, some
people used “scanner” only to refer to
the piece of code that dealt with reading
raw source code characters from disk and
buffering them in memory. Then “lexing”
was the subsequent phase that did useful
stuff with the characters.

These days, reading a source file into
memory is trivial, so it’s rarely a distinct
phase in the compiler. Because of that, the
two terms are basically interchangeable.

40 cHAPTeR 4 : scAnnIng

package com.craftinginterpreters.lox;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;

public class Lox {
 public static void main(String[] args) throws IOException {
 if (args.length > 1) {
 System.out.println("Usage: jlox [script]");
 System.exit(64);
 } else if (args.length == 1) {
 runFile(args[0]);
 } else {
 runPrompt();
 }
 }
}

Stick that in a text file, and go get your IDE or Makefile or whatever set up. I’ll be
right here when you’re ready. Good? OK!

Lox is a scripting language, which means it executes directly from source.
Our interpreter supports two ways of running code. If you start jlox from the
command line and give it a path to a file, it reads the file and executes it.

 private static void runFile(String path) throws IOException {
 byte[] bytes = Files.readAllBytes(Paths.get(path));
 run(new String(bytes, Charset.defaultCharset()));
 }

If you want a more intimate conversation with your interpreter, you can also
run it interactively. Fire up jlox without any arguments, and it drops you into a
prompt where you can enter and execute code one line at a time.

 private static void runPrompt() throws IOException {
 InputStreamReader input = new InputStreamReader(System.in);
 BufferedReader reader = new BufferedReader(input);

 for (;;) {
 System.out.print("> ");
 String line = reader.readLine();
 if (line == null) break;
 run(line);
 }
 }

The readLine() function, as the name so helpfully implies, reads a line of input
from the user on the command line and returns the result. To kill an interactive

lox/lox.java
create new file

For exit codes, I’m using the conventions
defined in the UNIX “sysexits.h” header.
It’s the closest thing to a standard I could
find.

lox/lox.java
add after main()

lox/lox.java
add after runFile()

An interactive prompt is also called a
“REPL” (pronounced like “rebel” but with a
“p”). The name comes from Lisp where im-
plementing one is as simple as wrapping a
loop around a few built-in functions:

(print (eval (read)))

Working outwards from the most nested
call, you Read a line of input, Evaluate it,
Print the result, then Loop and do it all
over again.

4.1.1 eRRoR HAndlIng 41

command-line app, you usually type Control-D. Doing so signals an “end-of-file”
condition to the program. When that happens readLine() returns null, so we
check for that to exit the loop.

Both the prompt and the file runner are thin wrappers around this core func-
tion:

 private static void run(String source) {
 Scanner scanner = new Scanner(source);
 List<Token> tokens = scanner.scanTokens();

 // For now, just print the tokens.
 for (Token token : tokens) {
 System.out.println(token);
 }
 }

It’s not super useful yet since we haven’t written the interpreter, but baby steps,
you know? Right now, it prints out the tokens our forthcoming scanner will emit
so that we can see if we’re making progress.

4.1.1 Error handling

While we’re setting things up, another key piece of infrastructure is error han-
dling. Textbooks sometimes gloss over this because it’s more a practical matter
than a formal computer science-y problem. But if you care about making a lan-
guage that’s actually usable, then handling errors gracefully is vital.

The tools our language provides for dealing with errors make up a large por-
tion of its user interface. When the user’s code is working, they aren’t thinking
about our language at all—their headspace is all about their program. It’s usually
only when things go wrong that they notice our implementation.

When that happens, it’s up to us to give the user all the information they need
to understand what went wrong and guide them gently back to where they are
trying to go. Doing that well means thinking about error handling all through
the implementation of our interpreter, starting now.

 static void error(int line, String message) {
 report(line, "", message);
 }

 private static void report(int line, String where,
 String message) {
 System.err.println(
 "[line " + line + "] Error" + where + ": " + message);
 hadError = true;
 }

This error() function and its report() helper tells the user some syntax er-
ror occurred on a given line. That is really the bare minimum to be able to claim
you even have error reporting.

lox/lox.java
add after runPrompt()

Having said all that, for this interpreter,
what we’ll build is pretty bare bones. I’d
love to talk about interactive debuggers,
static analyzers, and other fun stuff, but
there’s only so much ink in the pen.

lox/lox.java
add after run()

42 cHAPTeR 4 : scAnnIng

Imagine if you accidentally left a dangling comma in some function call and the
interpreter printed out:

Error: Unexpected "," somewhere in your code. Good luck finding it!

That’s not very helpful. We need to at least point them to the right line. Even
better would be the beginning and end column so they know where in the line.
Even better than that is to show the user the offending line, like:

Error: Unexpected "," in argument list.

 15 | function(first, second,);
 ^-- Here.

I’d love to implement something like that in this book but the honest truth is that
it’s a lot of grungy string manipulation code. Very useful for users, but not super
fun to read in a book and not very technically interesting. So we’ll stick with just
a line number. In your own interpreters, please do as I say and not as I do.

The primary reason we’re sticking this error reporting function in the main
Lox class is because of that hadError field. It’s defined here:

public class Lox {
 static boolean hadError = false;

We’ll use this to ensure we don’t try to execute code that has a known error. Also,
it lets us exit with a non-zero exit code like a good command line citizen should.

 run(new String(bytes, Charset.defaultCharset()));

 // Indicate an error in the exit code.
 if (hadError) System.exit(65);
 }

We need to reset this flag in the interactive loop. If the user makes a mistake, it
shouldn’t kill their entire session.

 run(line);
 hadError = false;
 }

The other reason I pulled the error reporting out here instead of stuffing it into
the scanner and other phases where the error might occur is to remind you that
it’s good engineering practice to separate the code that generates the errors from
the code that reports them.

Various phases of the front end will detect errors, but it’s not really their job
to know how to present that to a user. In a full-featured language implemen-
tation, you will likely have multiple ways errors get displayed: on stderr, in an
IDE’s error window, logged to a file, etc. You don’t want that code smeared all
over your scanner and parser.

Ideally, we would have an actual abstraction, some kind of “ErrorReporter”
interface that gets passed to the scanner and parser so that we can swap out dif-
ferent reporting strategies. For our simple interpreter here, I didn’t do that, but I

lox/lox.java
in class Lox

lox/lox.java
in runFile()

lox/lox.java
in runPrompt()

I had exactly that when I first implement-
ed jlox. I ended up tearing it out because
it felt over-engineered for the minimal
interpreter in this book.

4.2 lexemes And Tokens 43

did at least move the code for error reporting into a different class.
With some rudimentary error handling in place, our application shell is

ready. Once we have a Scanner class with a scanTokens() method, we can start
running it. Before we get to that, let’s get more precise about what tokens are.

4.2 Lexemes and tokens
Here’s a line of Lox code:

var language = "lox";

Here, var is the keyword for declaring a variable. That three-character sequence
“v-a-r” means something. But if we yank three letters out of the middle of
language, like “g-u-a”, those don’t mean anything on their own.

That’s what lexical analysis is about. Our job is to scan through the list of char-
acters and group them together into the smallest sequences that still represent
something. Each of these blobs of characters is called a lexeme. In that example
line of code, the lexemes are:

The lexemes are only the raw substrings of the source code. However, in the
process of grouping character sequences into lexemes, we also stumble upon
some other useful information. When we take the lexeme and bundle it together
with that other data, the result is a token. It includes useful stuff like:

4.2.1 Token type

Keywords are part of the shape of the language’s grammar, so the parser often
has code like, “If the next token is while then do . . . ” That means the parser
wants to know not just that it has a lexeme for some identifier, but that it has a
reserved word, and which keyword it is.

The parser could categorize tokens from the raw lexeme by comparing the
strings, but that’s slow and kind of ugly. Instead, at the point that we recognize a
lexeme, we also remember which kind of lexeme it represents. We have a differ-
ent type for each keyword, operator, bit of punctuation, and literal type.

package com.craftinginterpreters.lox;

enum TokenType {
 // Single-character tokens.
 LEFT_PAREN, RIGHT_PAREN, LEFT_BRACE, RIGHT_BRACE,
 COMMA, DOT, MINUS, PLUS, SEMICOLON, SLASH, STAR,

 // One or two character tokens.
 BANG, BANG_EQUAL, EQUAL, EQUAL_EQUAL,
 GREATER, GREATER_EQUAL, LESS, LESS_EQUAL,

After all, string comparison ends up
looking at individual characters, and isn’t
that the scanner’s job?

lox/TokenType.java
create new file

continued on next page . . .

44 cHAPTeR 4 : scAnnIng

 // Literals.
 IDENTIFIER, STRING, NUMBER,

 // Keywords.
 AND, CLASS, ELSE, FALSE, FUN, FOR, IF, NIL, OR,
 PRINT, RETURN, SUPER, THIS, TRUE, VAR, WHILE,

 EOF
}

4.2.2 Literal value

There are lexemes for literal values—numbers and strings and the like. Since the
scanner has to walk each character in the literal to correctly identify it, it can
also convert that textual representation of a value to the living runtime object
that will be used by the interpreter later.

4.2.3 Location information

Back when I was preaching the gospel about error handling, we saw that we need
to tell users where errors occurred. Tracking that starts here. In our simple in-
terpreter, we note only which line the token appears on, but more sophisticated
implementations include the column and length too.

We take all of this data and wrap it in a class.

package com.craftinginterpreters.lox;

class Token {
 final TokenType type;
 final String lexeme;
 final Object literal;
 final int line;

 Token(TokenType type, String lexeme, Object literal, int line) {
 this.type = type;
 this.lexeme = lexeme;
 this.literal = literal;
 this.line = line;
 }

 public String toString() {
 return type + " " + lexeme + " " + literal;
 }
}

Now we have an object with enough structure to be useful for all of the later
phases of the interpreter.

lox/Token.java
create new file

Some token implementations store the
location as two numbers: the offset from
the beginning of the source file to the
beginning of the lexeme, and the length
of the lexeme. The scanner needs to know
these anyway, so there’s no overhead to
calculate them.

An offset can be converted to line
and column positions later by looking
back at the source file and counting the
preceding newlines. That sounds slow,
and it is. However, you need to do it only
when you need to actually display a line
and column to the user. Most tokens never
appear in an error message. For those, the
less time you spend calculating position
information ahead of time, the better.

. . . from previous page

4.2.2 lITeRAl VAlue 45

4.3 regular Languages and Expressions
Now that we know what we’re trying to produce, let’s, well, produce it. The core
of the scanner is a loop. Starting at the first character of the source code, the
scanner figures out what lexeme the character belongs to, and consumes it and
any following characters that are part of that lexeme. When the scanner reaches
the end of that lexeme, it emits a token.

Then it loops back and does it again, starting from the very next character
in the source code. It keeps doing that, eating characters and occasionally, uh,
excreting tokens, until it reaches the end of the input.

The part of the loop where we look at a handful of characters to figure out which
kind of lexeme it “matches” may sound familiar. If you know regular expres-
sions, you might consider defining a regex for each kind of lexeme and using
those to match characters. For example, Lox has the same rules as C for identifi-
ers (variable names and the like). This regex matches one:

[a-zA-Z_][a-zA-Z_0-9]*

If you did think of regular expressions, your intuition is a deep one. The rules
that determine how a particular language groups characters into lexemes are
called its lexical grammar. In Lox, as in most programming languages, the rules
of that grammar are simple enough for the language to be classified a regular
language. That’s the same “regular” as in regular expressions.

You very precisely can recognize all of the different lexemes for Lox using
regexes if you want to, and there’s a pile of interesting theory underlying why
that is and what it means. Tools like Lex or Flex are designed expressly to let
you do this—throw a handful of regexes at them, and they give you a complete
scanner back.

Since our goal is to understand how a scanner does what it does, we won’t be
delegating that task. We’re about handcrafted goods.

4.4 The Scanner Class
Without further ado, let’s make ourselves a scanner.

It pains me to gloss over the theory so
much, especially when it’s as interesting
as I think the Chomsky hierarchy and
finite-state machines are. But the honest
truth is other books cover this better than
I could. Compilers: Principles, Techniques,
and Tools (universally known as “the
dragon book”) is the canonical reference.

Lex was created by Mike Lesk and Eric
Schmidt. Yes, the same Eric Schmidt who
was executive chairman of Google. I’m
not saying programming languages are a
surefire path to wealth and fame, but we
can count at least one mega billionaire
among us.

Lexical analygator.

46 cHAPTeR 4 : scAnnIng

package com.craftinginterpreters.lox;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import static com.craftinginterpreters.lox.TokenType.*;

class Scanner {
 private final String source;
 private final List<Token> tokens = new ArrayList<>();

 Scanner(String source) {
 this.source = source;
 }
}

We store the raw source code as a simple string, and we have a list ready to fill
with tokens we’re going to generate. The aforementioned loop that does that
looks like this:

 List<Token> scanTokens() {
 while (!isAtEnd()) {
 // We are at the beginning of the next lexeme.
 start = current;
 scanToken();
 }

 tokens.add(new Token(EOF, "", null, line));
 return tokens;
 }

The scanner works its way through the source code, adding tokens until it runs
out of characters. Then it appends one final “end of file” token. That isn’t strictly
needed, but it makes our parser a little cleaner.

This loop depends on a couple of fields to keep track of where the scanner is
in the source code.

 private final List<Token> tokens = new ArrayList<>();
 private int start = 0;
 private int current = 0;
 private int line = 1;

 Scanner(String source) {

The start and current fields are offsets that index into the string. The start
field points to the first character in the lexeme being scanned, and current
points at the character currently being considered. The line field tracks what
source line current is on so we can produce tokens that know their location.

lox/scanner.java
create new file

I know static imports are considered bad
style by some, but they save me from
having to sprinkle TokenType. all
over the scanner and parser. Forgive me,
but every character counts in a book.

lox/scanner.java
add after Scanner()

lox/scanner.java
in class Scanner

4.5 RecognIzIng lexemes 47

Then we have one little helper function that tells us if we’ve consumed all the
characters.

 private boolean isAtEnd() {
 return current >= source.length();
 }

4.5 recognizing Lexemes
In each turn of the loop, we scan a single token. This is the real heart of the
scanner. We’ll start simple. Imagine if every lexeme were only a single character
long. All you would need to do is consume the next character and pick a token
type for it. Several lexemes are only a single character in Lox, so let’s start with
those.

 private void scanToken() {
 char c = advance();
 switch (c) {
 case '(': addToken(LEFT_PAREN); break;
 case ')': addToken(RIGHT_PAREN); break;
 case '{': addToken(LEFT_BRACE); break;
 case '}': addToken(RIGHT_BRACE); break;
 case ',': addToken(COMMA); break;
 case '.': addToken(DOT); break;
 case '-': addToken(MINUS); break;
 case '+': addToken(PLUS); break;
 case ';': addToken(SEMICOLON); break;
 case '*': addToken(STAR); break;
 }
 }

Again, we need a couple of helper methods.

 private char advance() {
 return source.charAt(current++);
 }

 private void addToken(TokenType type) {
 addToken(type, null);
 }

 private void addToken(TokenType type, Object literal) {
 String text = source.substring(start, current);
 tokens.add(new Token(type, text, literal, line));
 }

The advance() method consumes the next character in the source file and
returns it. Where advance() is for input, addToken() is for output. It grabs
the text of the current lexeme and creates a new token for it. We’ll use the other
overload to handle tokens with literal values soon.

lox/scanner.java
add after scanTokens()

lox/scanner.java
add after scanTokens()

Wondering why / isn’t in here? Don’t
worry, we’ll get to it.

lox/scanner.java
add after isAtEnd()

48 cHAPTeR 4 : scAnnIng

4.5.1 Lexical errors

Before we get too far in, let’s take a moment to think about errors at the lexical
level. What happens if a user throws a source file containing some characters
Lox doesn’t use, like @#^, at our interpreter? Right now, those characters get
silently discarded. They aren’t used by the Lox language, but that doesn’t mean
the interpreter can pretend they aren’t there. Instead, we report an error.

 case '*': addToken(STAR); break;

 default:
 Lox.error(line, "Unexpected character.");
 break;
 }

Note that the erroneous character is still consumed by the earlier call to
advance(). That’s important so that we don’t get stuck in an infinite loop.

Note also that we keep scanning. There may be other errors later in the pro-
gram. It gives our users a better experience if we detect as many of those as
possible in one go. Otherwise, they see one tiny error and fix it, only to have the
next error appear, and so on. Syntax error Whac-A-Mole is no fun.

(Don’t worry. Since hadError gets set, we’ll never try to execute any of the
code, even though we keep going and scan the rest of it.)

4.5.2 Operators

We have single-character lexemes working, but that doesn’t cover all of Lox’s
operators. What about !? It’s a single character, right? Sometimes, yes, but if the
very next character is an equals sign, then we should instead create a != lexeme.
Note that the ! and = are not two independent operators. You can’t write ! =
in Lox and have it behave like an inequality operator. That’s why we need to scan
!= as a single lexeme. Likewise, <, >, and = can all be followed by = to create the
other equality and comparison operators.

For all of these, we need to look at the second character.

 case '*': addToken(STAR); break;
 case '!':
 addToken(match('=') ? BANG_EQUAL : BANG);
 break;
 case '=':
 addToken(match('=') ? EQUAL_EQUAL : EQUAL);
 break;
 case '<':
 addToken(match('=') ? LESS_EQUAL : LESS);
 break;
 case '>':
 addToken(match('=') ? GREATER_EQUAL : GREATER);
 break;

 default:

lox/scanner.java
in scanToken()

The code reports each invalid character
separately, so this shotguns the user with
a blast of errors if they accidentally paste
a big blob of weird text. Coalescing a run
of invalid characters into a single error
would give a nicer user experience.

lox/scanner.java
in scanToken()

4.5.1 lexIcAl eRRoRs 49

Those cases use this new method:

 private boolean match(char expected) {
 if (isAtEnd()) return false;
 if (source.charAt(current) != expected) return false;

 current++;
 return true;
 }

It’s like a conditional advance(). We only consume the current character if it’s
what we’re looking for.

Using match(), we recognize these lexemes in two stages. When we reach,
for example, !, we jump to its switch case. That means we know the lexeme
starts with !. Then we look at the next character to determine if we’re on a != or
merely a !.

4.6 Longer Lexemes
We’re still missing one operator: / for division. That character needs a little spe-
cial handling because comments begin with a slash too.

 break;
 case '/':
 if (match('/')) {
 // A comment goes until the end of the line.
 while (peek() != '\n' && !isAtEnd()) advance();
 } else {
 addToken(SLASH);
 }
 break;

 default:

This is similar to the other two-character operators, except that when we find
a second /, we don’t end the token yet. Instead, we keep consuming characters
until we reach the end of the line.

This is our general strategy for handling longer lexemes. After we detect the
beginning of one, we shunt over to some lexeme-specific code that keeps eating
characters until it sees the end.

We’ve got another helper:

 private char peek() {
 if (isAtEnd()) return '\0';
 return source.charAt(current);
 }

It’s sort of like advance(), but doesn’t consume the character. This is called
lookahead. Since it only looks at the current unconsumed character, we have
one character of lookahead. The smaller this number is, generally, the faster the

lox/scanner.java
add after scanToken()

lox/scanner.java
in scanToken()

lox/scanner.java
add after match()

50 cHAPTeR 4 : scAnnIng

scanner runs. The rules of the lexical grammar dictate how much lookahead we
need. Fortunately, most languages in wide use peek only one or two characters
ahead.

Comments are lexemes, but they aren’t meaningful, and the parser doesn’t
want to deal with them. So when we reach the end of the comment, we don’t call
addToken(). When we loop back around to start the next lexeme, start gets
reset and the comment’s lexeme disappears in a puff of smoke.

While we’re at it, now’s a good time to skip over those other meaningless char-
acters: newlines and whitespace.

 break;

 case ' ':
 case '\r':
 case '\t':
 // Ignore whitespace.
 break;

 case '\n':
 line++;
 break;

 default:
 Lox.error(line, "Unexpected character.");

When encountering whitespace, we simply go back to the beginning of the scan
loop. That starts a new lexeme after the whitespace character. For newlines, we
do the same thing, but we also increment the line counter. (This is why we used
peek() to find the newline ending a comment instead of match(). We want
that newline to get us here so we can update line.)

Our scanner is getting smarter. It can handle fairly free-form code like:

// this is a comment
(()){} // grouping stuff
!*+-/=<> <= == // operators

4.6.1 String literals

Now that we’re comfortable with longer lexemes, we’re ready to tackle literals.
We’ll do strings first, since they always begin with a specific character, ".

 break;

 case '"': string(); break;

 default:

Technically, match() is doing
lookahead too. advance() and
peek() are the fundamental operators
and match() combines them.

lox/scanner.java
in scanToken()

lox/scanner.java
in scanToken()

4.6.1 sTRIng lITeRAls 51

That calls:

 private void string() {
 while (peek() != '"' && !isAtEnd()) {
 if (peek() == '\n') line++;
 advance();
 }

 if (isAtEnd()) {
 Lox.error(line, "Unterminated string.");
 return;
 }

 advance(); // The closing ".

 // Trim the surrounding quotes.
 String value = source.substring(start + 1, current - 1);
 addToken(STRING, value);
 }

Like with comments, we consume characters until we hit the " that ends the
string. We also gracefully handle running out of input before the string is closed
and report an error for that.

For no particular reason, Lox supports multi-line strings. There are pros and
cons to that, but prohibiting them was a little more complex than allowing them,
so I left them in. That does mean we also need to update line when we hit a
newline inside a string.

Finally, the last interesting bit is that when we create the token, we also pro-
duce the actual string value that will be used later by the interpreter. Here, that
conversion only requires a substring() to strip off the surrounding quotes. If
Lox supported escape sequences like \n, we’d unescape those here.

4.6.2 Number literals

All numbers in Lox are floating point at runtime, but both integer and decimal
literals are supported. A number literal is a series of digits optionally followed by
a . and one or more trailing digits.

1234
12.34

We don’t allow a leading or trailing decimal point, so these are both invalid:

.1234
1234.

We could easily support the former, but I left it out to keep things simple. The lat-
ter gets weird if we ever want to allow methods on numbers like 123.sqrt().

To recognize the beginning of a number lexeme, we look for any digit. It’s
kind of tedious to add cases for every decimal digit, so we’ll stuff it in the default
case instead.

lox/scanner.java
add after scanToken()

Since we look only for a digit to start
a number, that means -123 is not a
number literal. Instead, -123, is an
expression that applies - to the number
literal 123. In practice, the result is the
same, though it has one interesting edge
case if we were to add method calls on
numbers. Consider:

print -123.abs();

This prints -123 because negation has
lower precedence than method calls. We
could fix that by making - part of the
number literal. But then consider:

var n = 123;
print -n.abs();

This still produces -123, so now the
language seems inconsistent. No matter
what you do, some case ends up weird.

52 cHAPTeR 4 : scAnnIng

 default:
 if (isDigit(c)) {
 number();
 } else {
 Lox.error(line, "Unexpected character.");
 }
 break;

This relies on this little utility:

 private boolean isDigit(char c) {
 return c >= '0' && c <= '9';
 }

Once we know we are in a number, we branch to a separate method to consume
the rest of the literal, like we do with strings.

 private void number() {
 while (isDigit(peek())) advance();

 // Look for a fractional part.
 if (peek() == '.' && isDigit(peekNext())) {
 // Consume the "."
 advance();

 while (isDigit(peek())) advance();
 }

 addToken(NUMBER,
 Double.parseDouble(source.substring(start, current)));
 }

We consume as many digits as we find for the integer part of the literal. Then we
look for a fractional part, which is a decimal point (.) followed by at least one
digit. If we do have a fractional part, again, we consume as many digits as we
can find.

Looking past the decimal point requires a second character of lookahead since
we don’t want to consume the . until we’re sure there is a digit after it. So we add:

 private char peekNext() {
 if (current + 1 >= source.length()) return '\0';
 return source.charAt(current + 1);
 }

Finally, we convert the lexeme to its numeric value. Our interpreter uses Java’s
Double type to represent numbers, so we produce a value of that type. We’re
using Java’s own parsing method to convert the lexeme to a real Java double. We
could implement that ourselves, but, honestly, unless you’re trying to cram for
an upcoming programming interview, it’s not worth your time.

The remaining literals are Booleans and nil, but we handle those as key-
words, which gets us to . . .

lox/scanner.java
in scanToken()

replace 1 line

lox/scanner.java
add after peek()

lox/scanner.java
add after scanToken()

The Java standard library provides
Character.isDigit(), which
seems like a good fit. Alas, that method
allows things like Devanagari digits,
full-width numbers, and other funny stuff
we don’t want.

lox/scanner.java
add after peek()

I could have made peek() take a
parameter for the number of characters
ahead to look instead of defining two
functions, but that would allow arbitrarily
far lookahead. Providing these two
functions makes it clearer to a reader of
the code that our scanner looks ahead at
most two characters.

4.7 ReseRVed WoRds And IdenTIfIeRs 53

4.7 reserved Words and Identifiers
Our scanner is almost done. The only remaining pieces of the lexical grammar
to implement are identifiers and their close cousins, the reserved words. You
might think we could match keywords like or in the same way we handle multi-
ple-character operators like <=.

case 'o':
 if (match('r')) {
 addToken(OR);
 }
 break;

Consider what would happen if a user named a variable orchid. The scanner
would see the first two letters, or, and immediately emit an or keyword token.
This gets us to an important principle called maximal munch. When two lexical
grammar rules can both match a chunk of code that the scanner is looking at,
whichever one matches the most characters wins.

That rule states that if we can match orchid as an identifier and or as a key-
word, then the former wins. This is also why we tacitly assumed, previously, that
<= should be scanned as a single <= token and not < followed by =.

Maximal munch means we can’t easily detect a reserved word until we’ve
reached the end of what might instead be an identifier. After all, a reserved word
is an identifier, it’s just one that has been claimed by the language for its own use.
That’s where the term reserved word comes from.

So we begin by assuming any lexeme starting with a letter or underscore is
an identifier.

 default:
 if (isDigit(c)) {
 number();
 } else if (isAlpha(c)) {
 identifier();
 } else {
 Lox.error(line, "Unexpected character.");
 }

The rest of the code lives over here:

 private void identifier() {
 while (isAlphaNumeric(peek())) advance();

 addToken(IDENTIFIER);
 }

We define that in terms of this helper:

 private boolean isAlpha(char c) {
 return (c >= 'a' && c <= 'z') ||
 (c >= 'A' && c <= 'Z') ||
 c == '_';
 }

Consider this nasty bit of C code:

---a;

Is it valid? That depends on how the
scanner splits the lexemes. What if the
scanner sees it like this:

- --a;

Then it could be parsed. But that would
require the scanner to know about the
grammatical structure of the surrounding
code, which entangles things more than
we want. Instead, the maximal munch rule
says that it is always scanned like:

-- -a;

It scans it that way even though doing so
leads to a syntax error later in the parser.

lox/scanner.java
in scanToken()

lox/scanner.java
add after scanToken()

lox/scanner.java
add after peekNext()

54 cHAPTeR 4 : scAnnIng

And this one:

 private boolean isAlphaNumeric(char c) {
 return isAlpha(c) || isDigit(c);
 }

That gets identifiers working. To handle keywords, we see if the identifier’s
lexeme is one of the reserved words. If so, we use a token type specific to that
keyword. We define the set of reserved words in a map.

 private static final Map<String, TokenType> keywords;

 static {
 keywords = new HashMap<>();
 keywords.put("and", AND);
 keywords.put("class", CLASS);
 keywords.put("else", ELSE);
 keywords.put("false", FALSE);
 keywords.put("for", FOR);
 keywords.put("fun", FUN);
 keywords.put("if", IF);
 keywords.put("nil", NIL);
 keywords.put("or", OR);
 keywords.put("print", PRINT);
 keywords.put("return", RETURN);
 keywords.put("super", SUPER);
 keywords.put("this", THIS);
 keywords.put("true", TRUE);
 keywords.put("var", VAR);
 keywords.put("while", WHILE);
 }

Then, after we scan an identifier, we check to see if it matches anything in the
map.

 while (isAlphaNumeric(peek())) advance();

 String text = source.substring(start, current);
 TokenType type = keywords.get(text);
 if (type == null) type = IDENTIFIER;
 addToken(type);
 }

If so, we use that keyword’s token type. Otherwise, it’s a regular user-defined
identifier.

And with that, we now have a complete scanner for the entire Lox lexical
grammar. Fire up the REPL and type in some valid and invalid code. Does it pro-
duce the tokens you expect? Try to come up with some interesting edge cases
and see if it handles them as it should.

lox/scanner.java
add after isAlpha()

lox/scanner.java
in class Scanner

lox/scanner.java
in identifier()

replace 1 line

cHAllenges 55

CHaLLENGES

1. The lexical grammars of Python and Haskell are not regular. What does that
mean, and why aren’t they?

2. Aside from separating tokens—distinguishing print foo from printfoo—
spaces aren’t used for much in most languages. However, in a couple of dark
corners, a space does affect how code is parsed in CoffeeScript, Ruby, and the C
preprocessor. Where and what effect does it have in each of those languages?

3. Our scanner here, like most, discards comments and whitespace since those
aren’t needed by the parser. Why might you want to write a scanner that does
not discard those? What would it be useful for?

4. Add support to Lox’s scanner for C-style /* ... */ block comments. Make
sure to handle newlines in them. Consider allowing them to nest. Is adding sup-
port for nesting more work than you expected? Why?

56 cHAPTeR 4 : scAnnIng

DESIGN NOtE: IMPLICIt SEMICOLONS

Programmers today are spoiled for choice in languages and have gotten picky about
syntax. They want their language to look clean and modern. One bit of syntactic lichen
that almost every new language scrapes off (and some ancient ones like BASIC never
had) is ; as an explicit statement terminator.

Instead, they treat a newline as a statement terminator where it makes sense to do
so. The “where it makes sense” part is the challenging bit. While most statements are
on their own line, sometimes you need to spread a single statement across a couple of
lines. Those intermingled newlines should not be treated as terminators.

Most of the obvious cases where the newline should be ignored are easy to detect,
but there are a handful of nasty ones:

• A return value on the next line:

if (condition) return
"value"

Is “value” the value being returned, or do we have a return statement with no
value followed by an expression statement containing a string literal?

• A parenthesized expression on the next line:

func
(parenthesized)

Is this a call to func(parenthesized), or two expression statements, one for
func and one for a parenthesized expression?

• A - on the next line:

first
-second

Is this first - second—an infix subtraction—or two expression statements,
one for first and one to negate second?

In all of these, either treating the newline as a separator or not would both produce
valid code, but possibly not the code the user wants. Across languages, there is an
unsettling variety of rules used to decide which newlines are separators. Here are a
couple:

• Lua completely ignores newlines, but carefully controls its grammar such that no
separator between statements is needed at all in most cases. This is perfectly legit:

a = 1 b = 2

Lua avoids the return problem by requiring a return statement to be the very
last statement in a block. If there is a value after return before the keyword end,
it must be for the return. For the other two cases, they allow an explicit ; and
expect users to use that. In practice, that almost never happens because there’s no
point in a parenthesized or unary negation expression statement.

desIgn noTe: ImPlIcIT semIcolons 57

• Go handles newlines in the scanner. If a newline appears following one of a handful
of token types that are known to potentially end a statement, the newline is treat-
ed like a semicolon. Otherwise it is ignored. The Go team provides a canonical code
formatter, gofmt, and the ecosystem is fervent about its use, which ensures that
idiomatic styled code works well with this simple rule.

• Python treats all newlines as significant unless an explicit backslash is used at the
end of a line to continue it to the next line. However, newlines anywhere inside a
pair of brackets ((), [], or {}) are ignored. Idiomatic style strongly prefers the
latter.

This rule works well for Python because it is a highly statement-oriented lan-
guage. In particular, Python’s grammar ensures a statement never appears inside
an expression. C does the same, but many other languages which have a “lambda”
or function literal syntax do not.

An example in JavaScript:

console.log(function() {
 statement();
});

Here, the console.log() expression contains a function literal which in turn
contains the statement statement();.

Python would need a different set of rules for implicitly joining lines if you could
get back into a statement where newlines should become meaningful while still
nested inside brackets.

• JavaScript’s “automatic semicolon insertion” rule is the real odd one. Where other
languages assume most newlines are meaningful and only a few should be ignored
in multi-line statements, JS assumes the opposite. It treats all of your newlines as
meaningless whitespace unless it encounters a parse error. If it does, it goes back
and tries turning the previous newline into a semicolon to get something gram-
matically valid.

This design note would turn into a design diatribe if I went into complete detail
about how that even works, much less all the various ways that JavaScript’s “solu-
tion” is a bad idea. It’s a mess. JavaScript is the only language I know where many
style guides demand explicit semicolons after every statement even though the
language theoretically lets you elide them.

If you’re designing a new language, you almost surely should avoid an explicit state-
ment terminator. Programmers are creatures of fashion like other humans, and semi-
colons are as passé as ALL CAPS KEYWORDS. Just make sure you pick a set of rules
that make sense for your language’s particular grammar and idioms. And don’t do what
JavaScript did.

And now you know why Python’s
lambda allows only a single expression
body.

A TRee-WAlk InTeRPReTeR 5representing Code

“To dwellers in a wood, almost every species of tree has its voice as
well as its feature.”

— Thomas Hardy, Under the Greenwood Tree

In the last chapter, we took the raw source code as a string and transformed it
into a slightly higher-level representation: a series of tokens. The parser we’ll
write in the next chapter takes those tokens and transforms them yet again, into
an even richer, more complex representation.

Before we can produce that representation, we need to define it. That’s the
subject of this chapter. Along the way, we’ll cover some theory around formal
grammars, feel the difference between functional and object-oriented program-
ming, go over a couple of design patterns, and do some metaprogramming.

Before we do all that, let’s focus on the main goal—a representation for code.
It should be simple for the parser to produce and easy for the interpreter to
consume. If you haven’t written a parser or interpreter yet, those requirements
aren’t exactly illuminating. Maybe your intuition can help. What is your brain
doing when you play the part of a human interpreter? How do you mentally eval-
uate an arithmetic expression like this:

1 + 2 * 3 - 4

Because you understand the order of operations—the old “Please Excuse My

I was so worried about this being one of
the most boring chapters in the book that
I kept stuffing more fun ideas into it until I
ran out of room.

60 cHAPTeR 5 : RePResenTIng code

Dear Aunt Sally” stuff—you know that the multiplication is evaluated before the
addition or subtraction. One way to visualize that precedence is using a tree.
Leaf nodes are numbers, and interior nodes are operators with branches for
each of their operands.

In order to evaluate an arithmetic node, you need to know the numeric values
of its subtrees, so you have to evaluate those first. That means working your way
from the leaves up to the root—a post-order traversal:

If I gave you an arithmetic expression, you could draw one of these trees pretty
easily. Given a tree, you can evaluate it without breaking a sweat. So it intuitive-
ly seems like a workable representation of our code is a tree that matches the
grammatical structure—the operator nesting—of the language.

We need to get more precise about what that grammar is then. Like lexical
grammars in the last chapter, there is a long ton of theory around syntactic
grammars. We’re going into that theory a little more than we did when scanning
because it turns out to be a useful tool throughout much of the interpreter. We
start by moving one level up the Chomsky hierarchy . . . 

5.1 Context-Free Grammars
In the last chapter, the formalism we used for defining the lexical grammar—the
rules for how characters get grouped into tokens—was called a regular language.
That was fine for our scanner, which emits a flat sequence of tokens. But regular
languages aren’t powerful enough to handle expressions which can nest arbi-
trarily deeply.

We need a bigger hammer, and that hammer is a context-free grammar
(CFG). It’s the next heaviest tool in the toolbox of formal grammars. A formal
grammar takes a set of atomic pieces it calls its “alphabet”. Then it defines a
(usually infinite) set of “strings” that are “in” the grammar. Each string is a se-
quence of “letters” in the alphabet.

I’m using all those quotes because the terms get a little confusing as you move
from lexical to syntactic grammars. In our scanner’s grammar, the alphabet
consists of individual characters and the strings are the valid lexemes—roughly
“words”. In the syntactic grammar we’re talking about now, we’re at a different
level of granularity. Now each “letter” in the alphabet is an entire token and a
“string” is a sequence of tokens—an entire expression.

Oof. Maybe a table will help:

A. Starting with the full tree, evaluate the
bottom-most operation, 2 * 3.

B. Now we can evaluate the +.

C. Next, the -.

D. The final answer.

That’s not to say a tree is the only possible
representation of our code. In Part III,
we’ll generate bytecode, another repre-
sentation that isn’t as human friendly but
is closer to the machine.

5.1 conTexT-fRee gRAmmARs 61

Terminology Lexical grammar Syntactic grammar

The “alphabet” is . . .  → Characters Tokens

A “string” is . . .  → Lexeme or token Expression

It’s implemented by the . . .  → Scanner Parser

A formal grammar’s job is to specify which strings are valid and which aren’t. If
we were defining a grammar for English sentences, “eggs are tasty for breakfast”
would be in the grammar, but “tasty breakfast for are eggs” would probably not.

5.1.1 Rules for grammars

How do we write down a grammar that contains an infinite number of valid
strings? We obviously can’t list them all out. Instead, we create a finite set of
rules. You can think of them as a game that you can “play” in one of two direc-
tions.

If you start with the rules, you can use them to generate strings that are in the
grammar. Strings created this way are called derivations because each is de-
rived from the rules of the grammar. In each step of the game, you pick a rule and
follow what it tells you to do. Most of the lingo around formal grammars comes
from playing them in this direction. Rules are called productions because they
produce strings in the grammar.

Each production in a context-free grammar has a head—its name—and a
body, which describes what it generates. In its pure form, the body is simply a
list of symbols. Symbols come in two delectable flavors:

• A terminal is a letter from the grammar’s alphabet. You can think of it like a
literal value. In the syntactic grammar we’re defining, the terminals are indi-
vidual lexemes—tokens coming from the scanner like if or 1234.

These are called “terminals”, in the sense of an “end point” because they
don’t lead to any further “moves” in the game. You simply produce that one
symbol.

• A nonterminal is a named reference to another rule in the grammar. It
means “play that rule and insert whatever it produces here”. In this way, the
grammar composes.

There is one last refinement: you may have multiple rules with the same name.
When you reach a nonterminal with that name, you are allowed to pick any of
the rules for it, whichever floats your boat.

To make this concrete, we need a way to write down these production rules.
People have been trying to crystallize grammar all the way back to Pāṇini’s
Ashtadhyayi, which codified Sanskrit grammar a mere couple thousand years
ago. Not much progress happened until John Backus and company needed a
notation for specifying ALGOL 58 and came up with Backus-Naur form (BNF).
Since then, nearly everyone uses some flavor of BNF, tweaked to their own tastes.

I tried to come up with something clean. Each rule is a name, followed by an
arrow (→), followed by a sequence of symbols, and finally ending with a semico-

Restricting heads to a single symbol
is a defining feature of context-free
grammars. More powerful formalisms like
unrestricted grammars allow a sequence
of symbols in the head as well as in the
body.

Yes, we need to define a syntax to use for
the rules that define our syntax. Should
we specify that metasyntax too? What
notation do we use for it? It’s languages
all the way down!

62 cHAPTeR 5 : RePResenTIng code

lon (;). Terminals are quoted strings, and nonterminals are lowercase words.
Using that, here’s a grammar for breakfast menus:

breakfast → protein "with" breakfast "on the side" ;
breakfast → protein ;
breakfast → bread ;

protein → crispiness "crispy" "bacon" ;
protein → "sausage" ;
protein → cooked "eggs" ;

crispiness → "really" ;
crispiness → "really" crispiness ;

cooked → "scrambled" ;
cooked → "poached" ;
cooked → "fried" ;

bread → "toast" ;
bread → "biscuits" ;
bread → "English muffin" ;

We can use this grammar to generate random breakfasts. Let’s play a round and
see how it works. By age-old convention, the game starts with the first rule in
the grammar, here breakfast. There are three productions for that, and we
randomly pick the first one. Our resulting string looks like:

protein "with" breakfast "on the side"

We need to expand that first nonterminal, protein, so we pick a production for
that. Let’s pick:

protein → cooked "eggs" ;

Next, we need a production for cooked, and so we pick "poached". That’s a
terminal, so we add that. Now our string looks like:

"poached" "eggs" "with" breakfast "on the side"

The next non-terminal is breakfast again. The first breakfast production we
chose recursively refers back to the breakfast rule. Recursion in the grammar
is a good sign that the language being defined is context-free instead of regular.
In particular, recursion where the recursive nonterminal has productions on
both sides implies that the language is not regular.

We could keep picking the first production for breakfast over and over
again yielding all manner of breakfasts like “bacon with sausage with scram-
bled eggs with bacon . . . ” We won’t though. This time we’ll pick bread. There are
three rules for that, each of which contains only a terminal. We’ll pick “English
muffin”.

With that, every nonterminal in the string has been expanded until it finally
contains only terminals and we’re left with:

Yes, I really am going to be using breakfast
examples throughout this entire book.
Sorry.

Imagine that we’ve recursively expanded
the breakfast rule here several
times, like “bacon with bacon with bacon
with . . . ” In order to complete the string
correctly, we need to add an equal number
of “on the side” bits to the end. Tracking
the number of required trailing parts
is beyond the capabilities of a regular
grammar. Regular grammars can express
repetition, but they can’t keep count of
how many repetitions there are, which
is necessary to ensure that the string
has the same number of with and
on the side parts.

5.1.2 enHAncIng ouR noTATIon 63

Throw in some ham and Hollandaise, and you’ve got eggs Benedict.
Any time we hit a rule that had multiple productions, we just picked one

arbitrarily. It is this flexibility that allows a short number of grammar rules to
encode a combinatorially larger set of strings. The fact that a rule can refer to
itself—directly or indirectly—kicks it up even more, letting us pack an infinite
number of strings into a finite grammar.

5.1.2 Enhancing our notation

Stuffing an infinite set of strings in a handful of rules is pretty fantastic, but let’s
take it further. Our notation works, but it’s tedious. So, like any good language
designer, we’ll sprinkle a little syntactic sugar on top—some extra convenience
notation. In addition to terminals and nonterminals, we’ll allow a few other
kinds of expressions in the body of a rule:

• Instead of repeating the rule name each time we want to add another produc-
tion for it, we’ll allow a series of productions separated by a pipe (|).

bread → "toast" | "biscuits" | "English muffin" ;

• Further, we’ll allow parentheses for grouping and then allow | within that to
select one from a series of options within the middle of a production.

protein → ("scrambled" | "poached" | "fried") "eggs" ;

• Using recursion to support repeated sequences of symbols has a certain ap-
pealing purity, but it’s kind of a chore to make a separate named sub-rule
each time we want to loop. So, we also use a postfix * to allow the previous
symbol or group to be repeated zero or more times.

crispiness → "really" "really"* ;

• A postfix + is similar, but requires the preceding production to appear at least
once.

crispiness → "really"+ ;

• A postfix ? is for an optional production. The thing before it can appear zero
or one time, but not more.

breakfast → protein ("with" breakfast "on the side")? ;

This is how the Scheme programming
language works. It has no built-in looping
functionality at all. Instead, all repetition
is expressed in terms of recursion.

64 cHAPTeR 5 : RePResenTIng code

With all of those syntactic niceties, our breakfast grammar condenses down to:

breakfast → protein ("with" breakfast "on the side")?
 | bread ;

protein → "really"+ "crispy" "bacon"
 | "sausage"
 | ("scrambled" | "poached" | "fried") "eggs" ;

bread → "toast" | "biscuits" | "English muffin" ;

Not too bad, I hope. If you’re used to grep or using regular expressions in your
text editor, most of the punctuation should be familiar. The main difference is
that symbols here represent entire tokens, not single characters.

We’ll use this notation throughout the rest of the book to precisely describe
Lox’s grammar. As you work on programming languages, you’ll find that
context-free grammars (using this or EBNF or some other notation) help you
crystallize your informal syntax design ideas. They are also a handy medium for
communicating with other language hackers about syntax.

The rules and productions we define for Lox are also our guide to the tree data
structure we’re going to implement to represent code in memory. Before we can
do that, we need an actual grammar for Lox, or at least enough of one for us to
get started.

5.1.3 A Grammar for Lox expressions

In the previous chapter, we did Lox’s entire lexical grammar in one fell swoop.
Every keyword and bit of punctuation is there. The syntactic grammar is larger,
and it would be a real bore to grind through the entire thing before we actually
get our interpreter up and running.

Instead, we’ll crank through a subset of the language in the next couple of
chapters. Once we have that mini-language represented, parsed, and interpret-
ed, then later chapters will progressively add new features to it, including the
new syntax. For now, we are going to worry about only a handful of expressions:

• Literals. Numbers, strings, Booleans, and nil.

• Unary expressions. A prefix ! to perform a logical not, and - to negate a
number.

• Binary expressions. The infix arithmetic (+, -, *, /) and logic operators (==,
!=, <, <=, >, >=) we know and love.

• Parentheses. A pair of (and) wrapped around an expression.

That gives us enough syntax for expressions like:

1 - (2 * 3) < 4 == false

Using our handy dandy new notation, here’s a grammar for those:

5.1.3 A gRAmmAR foR lox exPRessIons 65

expression → literal | unary | binary | grouping ;
literal → NUMBER | STRING | "true" | "false" | "nil" ;
grouping → "(" expression ")" ;
unary → ("-" | "!") expression ;
binary → expression operator expression ;
operator → "==" | "!=" | "<" | "<=" | ">" | ">="
 | "+" | "-" | "*" | "/" ;

There’s one bit of extra metasyntax here. In addition to quoted strings for ter-
minals that match exact lexemes, we CAPITALIZE terminals that are a single
lexeme whose text representation may vary. NUMBER is any number literal, and
STRING is any string literal. Later, we’ll do the same for IDENTIFIER.

This grammar is actually ambiguous, which we’ll see when we get to parsing
it. But it’s good enough for now.

5.2 Implementing Syntax trees
Finally, we get to write some code. That little expression grammar is our skele-
ton. Since the grammar is recursive—note how grouping, unary, and binary
all refer back to expression—our data structure will form a tree. Since this
structure represents the syntax of our language, it’s called a syntax tree.

Our scanner used a single Token class to represent all kinds of lexemes.
To distinguish the different kinds—think the number 123 versus the string
"123"—we included a simple TokenType enum. Syntax trees are not so homo-
geneous. Unary expressions have a single operand, binary expressions have two,
and literals have none.

We could mush that all together into a single Expression class with an arbi-
trary list of children. Some compilers do. But I like getting the most out of Java’s
type system. So we’ll define a base class for expressions. Then, for each kind of
expression—each production under expression—we create a subclass that
has fields for the nonterminals specific to that rule. This way, we get a compile
error if we, say, try to access the second operand of a unary expression.

Something like this:

package com.craftinginterpreters.lox;

abstract class Expr {
 static class Binary extends Expr {
 Binary(Expr left, Token operator, Expr right) {
 this.left = left;
 this.operator = operator;
 this.right = right;
 }

 final Expr left;
 final Token operator;
 final Expr right;
 }
 // Other expressions...
}

If you’re so inclined, try using this
grammar to generate a few expressions
like we did with the breakfast grammar
before. Do the resulting expressions look
right to you? Can you make it generate
anything wrong like 1 + / 3?

In particular, we’re defining an abstract
syntax tree (AST). In a parse tree, every
single grammar production becomes a
node in the tree. An AST elides produc-
tions that aren’t needed by later phases.

Tokens aren’t entirely homogeneous
either. Tokens for literals store the value,
but other kinds of lexemes don’t need
that state. I have seen scanners that use
different classes for literals and other
kinds of lexemes, but I figured I’d keep
things simpler.

I avoid abbreviations in my code because
they trip up a reader who doesn’t know
what they stand for. But in compilers
I’ve looked at, “Expr” and “Stmt” are so
ubiquitous that I may as well start getting
you used to them now.

66 cHAPTeR 5 : RePResenTIng code

Expr is the base class that all expression classes inherit from. As you can see
from Binary, the subclasses are nested inside of it. There’s no technical need for
this, but it lets us cram all of the classes into a single Java file.

5.2.1 Disoriented objects

You’ll note that, much like the Token class, there aren’t any methods here. It’s a
dumb structure. Nicely typed, but merely a bag of data. This feels strange in an
object-oriented language like Java. Shouldn’t the class do stuff?

The problem is that these tree classes aren’t owned by any single domain.
Should they have methods for parsing since that’s where the trees are created?
Or interpreting since that’s where they are consumed? Trees span the border
between those territories, which means they are really owned by neither.

In fact, these types exist to enable the parser and interpreter to communicate.
That lends itself to types that are simply data with no associated behavior. This
style is very natural in functional languages like Lisp and ML where all data is
separate from behavior, but it feels odd in Java.

Functional programming aficionados right now are jumping up to exclaim
“See! Object-oriented languages are a bad fit for an interpreter!” I won’t go that
far. You’ll recall that the scanner itself was admirably suited to object-orienta-
tion. It had all of the mutable state to keep track of where it was in the source
code, a well-defined set of public methods, and a handful of private helpers.

My feeling is that each phase or part of the interpreter works fine in an
object-oriented style. It is the data structures that flow between them that are
stripped of behavior.

5.2.2 Metaprogramming the trees

Java can express behavior-less classes, but I wouldn’t say that it’s particularly
great at it. Eleven lines of code to stuff three fields in an object is pretty tedious,
and when we’re all done, we’re going to have 21 of these classes.

I don’t want to waste your time or my ink writing all that down. Really, what
is the essence of each subclass? A name, and a list of typed fields. That’s it. We’re
smart language hackers, right? Let’s automate.

Instead of tediously handwriting each class definition, field declaration, con-
structor, and initializer, we’ll hack together a script that does it for us. It has a
description of each tree type—its name and fields—and it prints out the Java
code needed to define a class with that name and state.

This script is a tiny Java command-line app that generates a file named “Expr.
java”:

package com.craftinginterpreters.tool;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.List;

Picture me doing an awkward robot dance
when you read that. “AU-TO-MATE.”

I got the idea of scripting the syntax tree
classes from Jim Hugunin, creator of
Jython and IronPython.

An actual scripting language would be a
better fit for this than Java, but I’m trying
not to throw too many languages at you.

tool/generateAst.java
create new file

continued on next page . . .

5.2.1 dIsoRIenTed obJecTs 67

public class GenerateAst {
 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.err.println("Usage: generate_ast <output directory>");
 System.exit(64);
 }
 String outputDir = args[0];
 }
}

Note that this file is in a different package, .tool instead of .lox. This script
isn’t part of the interpreter itself. It’s a tool we, the people hacking on the inter-
preter, run ourselves to generate the syntax tree classes. When it’s done, we treat
“Expr.java” like any other file in the implementation. We are merely automating
how that file gets authored.

To generate the classes, it needs to have some description of each type and its
fields.

 String outputDir = args[0];
 defineAst(outputDir, "Expr", Arrays.asList(
 "Binary : Expr left, Token operator, Expr right",
 "Grouping : Expr expression",
 "Literal : Object value",
 "Unary : Token operator, Expr right"
));
 }

For brevity’s sake, I jammed the descriptions of the expression types into strings.
Each is the name of the class followed by : and the list of fields, separated by
commas. Each field has a type and a name.

The first thing defineAst() needs to do is output the base Expr class.

 private static void defineAst(
 String outputDir, String baseName, List<String> types)
 throws IOException {
 String path = outputDir + "/" + baseName + ".java";
 PrintWriter writer = new PrintWriter(path, "UTF-8");

 writer.println("package com.craftinginterpreters.lox;");
 writer.println();
 writer.println("import java.util.List;");
 writer.println();
 writer.println("abstract class " + baseName + " {");

 writer.println("}");
 writer.close();
 }

When we call this, baseName is “Expr”, which is both the name of the class and
the name of the file it outputs. We pass this as an argument instead of hardcod-
ing the name because we’ll add a separate family of classes later for statements.

tool/generateAst.java
in main()

tool/generateAst.java
add after main()

. . . from previous page

68 cHAPTeR 5 : RePResenTIng code

Inside the base class, we define each subclass.

 writer.println("abstract class " + baseName + " {");

 // The AST classes.
 for (String type : types) {
 String className = type.split(":")[0].trim();
 String fields = type.split(":")[1].trim();
 defineType(writer, baseName, className, fields);
 }
 writer.println("}");

That code, in turn, calls:

 private static void defineType(
 PrintWriter writer, String baseName,
 String className, String fieldList) {
 writer.println(" static class " + className + " extends " +
 baseName + " {");

 // Constructor.
 writer.println(" " + className + "(" + fieldList + ") {");

 // Store parameters in fields.
 String[] fields = fieldList.split(", ");
 for (String field : fields) {
 String name = field.split(" ")[1];
 writer.println(" this." + name + " = " + name + ";");
 }

 writer.println(" }");

 // Fields.
 writer.println();
 for (String field : fields) {
 writer.println(" final " + field + ";");
 }

 writer.println(" }");
 }

There we go. All of that glorious Java boilerplate is done. It declares each field
in the class body. It defines a constructor for the class with parameters for each
field and initializes them in the body.

Compile and run this Java program now and it blasts out a new “.java” file
containing a few dozen lines of code. That file’s about to get even longer.

tool/generateAst.java
in defineAst()

This isn’t the world’s most elegant string
manipulation code, but that’s fine. It only
runs on the exact set of class definitions
we give it. Robustness ain’t a priority.

tool/generateAst.java
add after defineAst()

Appendix II contains the code gener-
ated by this script once we’ve finished
implementing jlox and defined all of its
syntax tree nodes.

5.3 WoRkIng WITH TRees 69

5.3 Working with trees
Put on your imagination hat for a moment. Even though we aren’t there yet, con-
sider what the interpreter will do with the syntax trees. Each kind of expression
in Lox behaves differently at runtime. That means the interpreter needs to select
a different chunk of code to handle each expression type. With tokens, we can
simply switch on the TokenType. But we don’t have a “type” enum for the syntax
trees, just a separate Java class for each one.

We could write a long chain of type tests:

if (expr instanceof Expr.Binary) {
 // ...
} else if (expr instanceof Expr.Grouping) {
 // ...
} else // ...

But all of those sequential type tests are slow. Expression types whose names
are alphabetically later would take longer to execute because they’d fall through
more if cases before finding the right type. That’s not my idea of an elegant
solution.

We have a family of classes and we need to associate a chunk of behavior
with each one. The natural solution in an object-oriented language like Java is
to put those behaviors into methods on the classes themselves. We could add an
abstract interpret() method on Expr which each subclass would then imple-
ment to interpret itself.

This works alright for tiny projects, but it scales poorly. Like I noted before,
these tree classes span a few domains. At the very least, both the parser and in-
terpreter will mess with them. As you’ll see later, we need to do name resolution
on them. If our language was statically typed, we’d have a type checking pass.

If we added instance methods to the expression classes for every one of those
operations, that would smush a bunch of different domains together. That vio-
lates separation of concerns and leads to hard-to-maintain code.

5.3.1 The expression problem

This problem is more fundamental than it may seem at first. We have a handful
of types, and a handful of high-level operations like “interpret”. For each pair of
type and operation, we need a specific implementation. Picture a table:

Rows are types, and columns are operations. Each cell represents the unique
piece of code to implement that operation on that type.

This exact thing is literally called the
“Interpreter pattern” in Design Patterns:
Elements of Reusable Object-Oriented
Software, by Erich Gamma, et al.

70 cHAPTeR 5 : RePResenTIng code

An object-oriented language like Java assumes that all of the code in one row
naturally hangs together. It figures all the things you do with a type are likely
related to each other, and the language makes it easy to define them together as
methods inside the same class.

This makes it easy to extend the table by adding new rows. Simply define a new
class. No existing code has to be touched. But imagine if you want to add a new
operation—a new column. In Java, that means cracking open each of those exist-
ing classes and adding a method to it.

Functional paradigm languages in the ML family flip that around. There, you
don’t have classes with methods. Types and functions are totally distinct. To im-
plement an operation for a number of different types, you define a single func-
tion. In the body of that function, you use pattern matching—sort of a type-based
switch on steroids—to implement the operation for each type all in one place.

This makes it trivial to add new operations—simply define another function
that pattern matches on all of the types.

But, conversely, adding a new type is hard. You have to go back and add a new
case to all of the pattern matches in all of the existing functions.

Each style has a certain “grain” to it. That’s what the paradigm name literally
says—an object-oriented language wants you to orient your code along the rows
of types. A functional language instead encourages you to lump each column’s
worth of code together into a function.

A bunch of smart language nerds noticed that neither style made it easy to
add both rows and columns to the table. They called this difficulty the “expres-
sion problem” because—like we are now—they first ran into it when they were
trying to figure out the best way to model expression syntax tree nodes in a
compiler.

People have thrown all sorts of language features, design patterns, and pro-
gramming tricks to try to knock that problem down but no perfect language has
finished it off yet. In the meantime, the best we can do is try to pick a language
whose orientation matches the natural architectural seams in the program we’re
writing.

ML, short for “metalanguage” was created
by Robin Milner and friends and forms
one of the main branches in the great
programming language family tree. Its
children include SML, Caml, OCaml,
Haskell, and F#. Even Scala, Rust, and
Swift bear a strong resemblance.

Much like Lisp, it is one of those
languages that is so full of good ideas
that language designers today are still
rediscovering them over forty years later.

Languages with multimethods, like
Common Lisp’s CLOS, Dylan, and Julia
do support adding both new types and
operations easily. What they typically
sacrifice is either static type checking, or
separate compilation.

5.3.2 THe VIsIToR PATTeRn 71

Object-orientation works fine for many parts of our interpreter, but these
tree classes rub against the grain of Java. Fortunately, there’s a design pattern we
can bring to bear on it.

5.3.2 The Visitor pattern

The Visitor pattern is the most widely misunderstood pattern in all of Design
Patterns, which is really saying something when you look at the software archi-
tecture excesses of the past couple of decades.

The trouble starts with terminology. The pattern isn’t about “visiting”, and
the “accept” method in it doesn’t conjure up any helpful imagery either. Many
think the pattern has to do with traversing trees, which isn’t the case at all. We
are going to use it on a set of classes that are tree-like, but that’s a coincidence.
As you’ll see, the pattern works as well on a single object.

The Visitor pattern is really about approximating the functional style within
an OOP language. It lets us add new columns to that table easily. We can define all
of the behavior for a new operation on a set of types in one place, without having
to touch the types themselves. It does this the same way we solve almost every
problem in computer science: by adding a layer of indirection.

Before we apply it to our auto-generated Expr classes, let’s walk through a
simpler example. Say we have two kinds of pastries: beignets and crullers.

 abstract class Pastry {
 }

 class Beignet extends Pastry {
 }

 class Cruller extends Pastry {
 }

We want to be able to define new pastry operations—cooking them, eating them,
decorating them, etc.—without having to add a new method to each class every
time. Here’s how we do it. First, we define a separate interface.

 interface PastryVisitor {
 void visitBeignet(Beignet beignet);
 void visitCruller(Cruller cruller);
 }

Each operation that can be performed on pastries is a new class that implements
that interface. It has a concrete method for each type of pastry. That keeps the
code for the operation on both types all nestled snugly together in one class.

Given some pastry, how do we route it to the correct method on the visitor
based on its type? Polymorphism to the rescue! We add this method to Pastry:

 abstract class Pastry {
 abstract void accept(PastryVisitor visitor);
 }

Each subclass implements it.

A beignet (pronounced “ben-yay”, with
equal emphasis on both syllables) is a
deep-fried pastry in the same family as
doughnuts. When the French colonized
North America in the 1700s, they brought
beignets with them. Today, in the US, they
are most strongly associated with the
cuisine of New Orleans.

My preferred way to consume them is
fresh out of the fryer at Café du Monde,
piled high in powdered sugar, and washed
down with a cup of café au lait while I
watch tourists staggering around trying to
shake off their hangover from the previous
night’s revelry.

In Design Patterns, both of these methods
are confusingly named visit(), and
they rely on overloading to distinguish
them. This leads some readers to think
that the correct visit method is chosen
at runtime based on its parameter type.
That isn’t the case. Unlike overriding,
overloading is statically dispatched at
compile time.

Using distinct names for each method
makes the dispatch more obvious, and
also shows you how to apply this
pattern in languages that don’t support
overloading.

72 cHAPTeR 5 : RePResenTIng code

 class Beignet extends Pastry {
 @Override
 void accept(PastryVisitor visitor) {
 visitor.visitBeignet(this);
 }
 }

And:

 class Cruller extends Pastry {
 @Override
 void accept(PastryVisitor visitor) {
 visitor.visitCruller(this);
 }
 }

To perform an operation on a pastry, we call its accept() method and pass in
the visitor for the operation we want to execute. The pastry—the specific sub-
class’s overriding implementation of accept()—turns around and calls the
appropriate visit method on the visitor and passes itself to it.

That’s the heart of the trick right there. It lets us use polymorphic dispatch
on the pastry classes to select the appropriate method on the visitor class. In the
table, each pastry class is a row, but if you look at all of the methods for a single
visitor, they form a column.

We added one accept() method to each class, and we can use it for as many
visitors as we want without ever having to touch the pastry classes again. It’s a
clever pattern.

5.3.3 Visitors for expressions

OK, let’s weave it into our expression classes. We’ll also refine the pattern a little.
In the pastry example, the visit and accept() methods don’t return anything.
In practice, visitors often want to define operations that produce values. But
what return type should accept() have? We can’t assume every visitor class
wants to produce the same type, so we’ll use generics to let each implementation
fill in a return type.

First, we define the visitor interface. Again, we nest it inside the base class so
that we can keep everything in one file.

Another common refinement is an addi-
tional “context” parameter that is passed
to the visit methods and then sent back
through as a parameter to accept().
That lets operations take an additional
parameter. The visitors we’ll define in the
book don’t need that, so I omitted it.

5.3.3 VIsIToRs foR exPRessIons 73

 writer.println("abstract class " + baseName + " {");

 defineVisitor(writer, baseName, types);

 // The AST classes.

That function generates the visitor interface.

 private static void defineVisitor(
 PrintWriter writer, String baseName, List<String> types) {
 writer.println(" interface Visitor<R> {");

 for (String type : types) {
 String typeName = type.split(":")[0].trim();
 writer.println(" R visit" + typeName + baseName + "(" +
 typeName + " " + baseName.toLowerCase() + ");");
 }

 writer.println(" }");
 }

Here, we iterate through all of the subclasses and declare a visit method for each
one. When we define new expression types later, this will automatically include
them.

Inside the base class, we define the abstract accept() method.

 defineType(writer, baseName, className, fields);
 }

 // The base accept() method.
 writer.println();
 writer.println(" abstract <R> R accept(Visitor<R> visitor);");

 writer.println("}");

Finally, each subclass implements that and calls the right visit method for its
own type.

 writer.println(" }");

 // Visitor pattern.
 writer.println();
 writer.println(" @Override");
 writer.println(" <R> R accept(Visitor<R> visitor) {");
 writer.println(" return visitor.visit" +
 className + baseName + "(this);");
 writer.println(" }");

 // Fields.

tool/generateAst.java
add after defineAst()

tool/generateAst.java
in defineAst()

tool/generateAst.java
in defineType()

tool/generateAst.java
in defineAst()

74 cHAPTeR 5 : RePResenTIng code

There we go. Now we can define operations on expressions without having to
muck with the classes or our generator script. Compile and run this generator
script to output an updated “Expr.java” file. It contains a generated Visitor inter-
face and a set of expression node classes that support the Visitor pattern using
it.

Before we end this rambling chapter, let’s implement that Visitor interface
and see the pattern in action.

5.4 a (Not Very) Pretty Printer
When we debug our parser and interpreter, it’s often useful to look at a parsed
syntax tree and make sure it has the structure we expect. We could inspect it in
the debugger, but that can be a chore.

Instead, we’d like some code that, given a syntax tree, produces an unambig-
uous string representation of it. Converting a tree to a string is sort of the oppo-
site of a parser, and is often called “pretty printing” when the goal is to produce
a string of text that is valid syntax in the source language.

That’s not our goal here. We want the string to very explicitly show the nest-
ing structure of the tree. A printer that returned 1 + 2 * 3 isn’t super helpful if
what we’re trying to debug is whether operator precedence is handled correctly.
We want to know if the + or * is at the top of the tree.

To that end, the string representation we produce isn’t going to be Lox syntax.
Instead, it will look a lot like, well, Lisp. Each expression is explicitly parenthe-
sized, and all of its subexpressions and tokens are contained in that.

Given a syntax tree like:

It produces:

(* (- 123) (group 45.67))

Not exactly “pretty”, but it does show the nesting and grouping explicitly. To
implement this, we define a new class.

package com.craftinginterpreters.lox;

class AstPrinter implements Expr.Visitor<String> {
 String print(Expr expr) {
 return expr.accept(this);
 }
}

lox/AstPrinter.java
create new file

5.4 A (noT VeRy) PReTTy PRInTeR 75

As you can see, it implements the visitor interface. That means we need visit
methods for each of the expression types we have so far.

 return expr.accept(this);
 }

 @Override
 public String visitBinaryExpr(Expr.Binary expr) {
 return parenthesize(expr.operator.lexeme,
 expr.left, expr.right);
 }

 @Override
 public String visitGroupingExpr(Expr.Grouping expr) {
 return parenthesize("group", expr.expression);
 }

 @Override
 public String visitLiteralExpr(Expr.Literal expr) {
 if (expr.value == null) return "nil";
 return expr.value.toString();
 }

 @Override
 public String visitUnaryExpr(Expr.Unary expr) {
 return parenthesize(expr.operator.lexeme, expr.right);
 }
}

Literal expressions are easy—they convert the value to a string with a little
check to handle Java’s null standing in for Lox’s nil. The other expressions
have subexpressions, so they use this parenthesize() helper method:

 private String parenthesize(String name, Expr... exprs) {
 StringBuilder builder = new StringBuilder();

 builder.append("(").append(name);
 for (Expr expr : exprs) {
 builder.append(" ");
 builder.append(expr.accept(this));
 }
 builder.append(")");

 return builder.toString();
 }

It takes a name and a list of subexpressions and wraps them all up in parenthe-
ses, yielding a string like:

(+ 1 2)

lox/AstPrinter.java
add after print()

lox/AstPrinter.java
add after visitUnaryExpr()

76 cHAPTeR 5 : RePResenTIng code

Note that it calls accept() on each subexpression and passes in itself. This is
the recursive step that lets us print an entire tree.

We don’t have a parser yet, so it’s hard to see this in action. For now, we’ll hack
together a little main() method that manually instantiates a tree and prints it.

 public static void main(String[] args) {
 Expr expression = new Expr.Binary(
 new Expr.Unary(
 new Token(TokenType.MINUS, "-", null, 1),
 new Expr.Literal(123)),
 new Token(TokenType.STAR, "*", null, 1),
 new Expr.Grouping(
 new Expr.Literal(45.67)));

 System.out.println(new AstPrinter().print(expression));
 }

If we did everything right, it prints:

(* (- 123) (group 45.67))

You can go ahead and delete this method. We won’t need it. Also, as we add new
syntax tree types, I won’t bother showing the necessary visit methods for them
in AstPrinter. If you want to (and you want the Java compiler to not yell at you),
go ahead and add them yourself. It will come in handy in the next chapter when
we start parsing Lox code into syntax trees. Or, if you don’t care to maintain
AstPrinter, feel free to delete it. We won’t need it again.

This recursion is also why people think the
Visitor pattern itself has to do with trees.

lox/AstPrinter.java
add after parenthesize()

cHAllenges 77

CHaLLENGES

1. Earlier, I said that the |, *, and + forms we added to our grammar metasyntax
were just syntactic sugar. Take this grammar:

expr → expr ("(" (expr ("," expr)*)? ")" | "." IDENTIFIER)+
 | IDENTIFIER
 | NUMBER

Produce a grammar that matches the same language but does not use any of
that notational sugar.

Bonus: What kind of expression does this bit of grammar encode?

2. The Visitor pattern lets you emulate the functional style in an object-oriented
language. Devise a complementary pattern for a functional language. It should
let you bundle all of the operations on one type together and let you define new
types easily.

(SML or Haskell would be ideal for this exercise, but Scheme or another Lisp
works as well.)

3. In reverse Polish notation (RPN), the operands to an arithmetic operator are
both placed before the operator, so 1 + 2 becomes 1 2 +. Evaluation pro-
ceeds from left to right. Numbers are pushed onto an implicit stack. An arith-
metic operator pops the top two numbers, performs the operation, and pushes
the result. Thus, this:

(1 + 2) * (4 - 3)

in RPN becomes:

1 2 + 4 3 - *

Define a visitor class for our syntax tree classes that takes an expression, con-
verts it to RPN, and returns the resulting string.

A TRee-WAlk InTeRPReTeR 6Parsing Expressions

“Grammar, which knows how to control even kings.”

— Molière

This chapter marks the first major milestone of the book. Many of us have cob-
bled together a mishmash of regular expressions and substring operations to
extract some sense out of a pile of text. The code was probably riddled with bugs
and a beast to maintain. Writing a real parser—one with decent error handling,
a coherent internal structure, and the ability to robustly chew through a sophis-
ticated syntax—is considered a rare, impressive skill. In this chapter, you will
attain it.

It’s easier than you think, partially because we front-loaded a lot of the hard
work in the last chapter. You already know your way around a formal grammar.
You’re familiar with syntax trees, and we have some Java classes to represent
them. The only remaining piece is parsing—transmogrifying a sequence of to-
kens into one of those syntax trees.

Some CS textbooks make a big deal out of parsers. In the ’60s, computer sci-
entists—understandably tired of programming in assembly language—started
designing more sophisticated, human-friendly languages like Fortran and
ALGOL. Alas, they weren’t very machine-friendly for the primitive computers
of the time.

These pioneers designed languages that they honestly weren’t even sure how
to write compilers for, and then did groundbreaking work inventing parsing and

“Parse” comes to English from the Old
French “pars” for “part of speech”. It
means to take a text and map each word
to the grammar of the language. We use
it here in the same sense, except that our
language is a little more modern than Old
French.

Like many rites of passage, you’ll probably
find it looks a little smaller, a little less
daunting when it’s behind you than when
it loomed ahead.

Imagine how harrowing assembly
programming on those old machines must
have been that they considered Fortran to
be an improvement.

80 cHAPTeR 6 : PARsIng exPRessIons

compiling techniques that could handle these new, big languages on those old,
tiny machines.

Classic compiler books read like fawning hagiographies of these heroes and
their tools. The cover of Compilers: Principles, Techniques, and Tools literally has a
dragon labeled “complexity of compiler design” being slain by a knight bearing a
sword and shield branded “LALR parser generator” and “syntax-directed trans-
lation”. They laid it on thick.

A little self-congratulation is well-deserved, but the truth is you don’t need to
know most of that stuff to bang out a high quality parser for a modern machine.
As always, I encourage you to broaden your education and take it in later, but
this book omits the trophy case.

6.1 ambiguity and the Parsing Game
In the last chapter, I said you can “play” a context-free grammar like a game in
order to generate strings. Parsers play that game in reverse. Given a string—a
series of tokens—we map those tokens to terminals in the grammar to figure out
which rules could have generated that string.

The “could have” part is interesting. It’s entirely possible to create a grammar
that is ambiguous, where different choices of productions can lead to the same
string. When you’re using the grammar to generate strings, that doesn’t matter
much. Once you have the string, who cares how you got to it?

When parsing, ambiguity means the parser may misunderstand the user’s
code. As we parse, we aren’t just determining if the string is valid Lox code, we’re
also tracking which rules match which parts of it so that we know what part of
the language each token belongs to. Here’s the Lox expression grammar we put
together in the last chapter:

expression → literal
 | unary
 | binary
 | grouping ;

literal → NUMBER | STRING | "true" | "false" | "nil" ;
grouping → "(" expression ")" ;
unary → ("-" | "!") expression ;
binary → expression operator expression ;
operator → "==" | "!=" | "<" | "<=" | ">" | ">="
 | "+" | "-" | "*" | "/" ;

This is a valid string in that grammar:

But there are two ways we could have generated it. One way is:

6.1 AmbIguITy And THe PARsIng gAme 81

1. Starting at expression, pick binary.

2. For the left-hand expression, pick NUMBER, and use 6.

3. For the operator, pick "/".

4. For the right-hand expression, pick binary again.

5. In that nested binary expression, pick 3 - 1.

Another is:

1. Starting at expression, pick binary.

2. For the left-hand expression, pick binary again.

3. In that nested binary expression, pick 6 / 3.

4. Back at the outer binary, for the operator, pick "-".

5. For the right-hand expression, pick NUMBER, and use 1.

Those produce the same strings, but not the same syntax trees:

In other words, the grammar allows seeing the expression as (6 / 3) - 1 or
6 / (3 - 1). The binary rule lets operands nest any which way you want.
That in turn affects the result of evaluating the parsed tree. The way mathemati-
cians have addressed this ambiguity since blackboards were first invented is by
defining rules for precedence and associativity.

• Precedence determines which operator is evaluated first in an expression
containing a mixture of different operators. Precedence rules tell us that we
evaluate the / before the - in the above example. Operators with higher pre-
cedence are evaluated before operators with lower precedence. Equivalently,
higher precedence operators are said to “bind tighter”.

• Associativity determines which operator is evaluated first in a series of the
same operator. When an operator is left-associative (think “left-to-right”),
operators on the left evaluate before those on the right. Since - is left-asso-
ciative, this expression:

5 - 3 - 1

While not common these days, some
languages specify that certain pairs of
operators have no relative precedence.
That makes it a syntax error to mix those
operators in an expression without using
explicit grouping.

Likewise, some operators are
non-associative. That means it’s an error
to use that operator more than once in
a sequence. For example, Perl’s range
operator isn’t associative, so a .. b is
OK, but a .. b .. c is an error.

82 cHAPTeR 6 : PARsIng exPRessIons

is equivalent to:

(5 - 3) - 1

Assignment, on the other hand, is right-associative. This:

a = b = c

is equivalent to:

a = (b = c)

Without well-defined precedence and associativity, an expression that uses
multiple operators is ambiguous—it can be parsed into different syntax trees,
which could in turn evaluate to different results. We’ll fix that in Lox by applying
the same precedence rules as C, going from lowest to highest.

Name Operators Associates

Equality == != Left

Comparison > >= < <= Left

Term - + Left

Factor / * Left

Unary ! - Right

Right now, the grammar stuffs all expression types into a single expression
rule. That same rule is used as the non-terminal for operands, which lets the
grammar accept any kind of expression as a subexpression, regardless of
whether the precedence rules allow it.

We fix that by stratifying the grammar. We define a separate rule for each
precedence level.

expression → ...
equality → ...
comparison → ...
term → ...
factor → ...
unary → ...
primary → ...

Each rule here only matches expressions at its precedence level or higher. For
example, unary matches a unary expression like !negated or a primary ex-
pression like 1234. And term can match 1 + 2 but also 3 * 4 / 5. The final
primary rule covers the highest-precedence forms—literals and parenthesized
expressions.

We just need to fill in the productions for each of those rules. We’ll do the easy
ones first. The top expression rule matches any expression at any precedence

Instead of baking precedence right
into the grammar rules, some parser
generators let you keep the same
ambiguous-but-simple grammar and
then add in a little explicit operator
precedence metadata on the side in order
to disambiguate.

6.1 AmbIguITy And THe PARsIng gAme 83

level. Since equality has the lowest precedence, if we match that, then it cov-
ers everything.

expression → equality

Over at the other end of the precedence table, a primary expression contains all
the literals and grouping expressions.

primary → NUMBER | STRING | "true" | "false" | "nil"
 | "(" expression ")" ;

A unary expression starts with a unary operator followed by the operand. Since
unary operators can nest—!!true is a valid if weird expression—the operand
can itself be a unary operator. A recursive rule handles that nicely.

unary → ("!" | "-") unary ;

But this rule has a problem. It never terminates.
Remember, each rule needs to match expressions at that precedence level or

higher, so we also need to let this match a primary expression.

unary → ("!" | "-") unary
 | primary ;

That works.
The remaining rules are all binary operators. We’ll start with the rule for mul-

tiplication and division. Here’s a first try:

factor → factor ("/" | "*") unary
 | unary ;

The rule recurses to match the left operand. That enables the rule to match a
series of multiplication and division expressions like 1 * 2 / 3. Putting
the recursive production on the left side and unary on the right makes the rule
left-associative and unambiguous.

All of this is correct, but the fact that the first symbol in the body of the rule is
the same as the head of the rule means this production is left-recursive. Some
parsing techniques, including the one we’re going to use, have trouble with left
recursion. (Recursion elsewhere, like we have in unary and the indirect recur-
sion for grouping in primary are not a problem.)

There are many grammars you can define that match the same language. The
choice for how to model a particular language is partially a matter of taste and
partially a pragmatic one. This rule is correct, but not optimal for how we intend
to parse it. Instead of a left recursive rule, we’ll use a different one.

factor → unary (("/" | "*") unary)* ;

We define a factor expression as a flat sequence of multiplications and divisions.
This matches the same syntax as the previous rule, but better mirrors the code
we’ll write to parse Lox. We use the same structure for all of the other binary
operator precedence levels, giving us this complete expression grammar:

We could eliminate expression and
simply use equality in the other
rules that contain expressions, but using
expression makes those other rules
read a little better.

Also, in later chapters when we
expand the grammar to include
assignment and logical operators, we’ll
only need to change the production for
expression instead of touching every
rule that contains an expression.

In principle, it doesn’t matter whether you
treat multiplication as left- or right-as-
sociative—you get the same result either
way. Alas, in the real world with limited
precision, roundoff and overflow mean
that associativity can affect the result of a
sequence of multiplications. Consider:

print 0.1 * (0.2 * 0.3);
print (0.1 * 0.2) * 0.3;

In languages like Lox that use IEEE
754 double-precision floating-point
numbers, the first evaluates to
0.006, while the second yields
0.006000000000000001.
Sometimes that tiny difference matters.

84 cHAPTeR 6 : PARsIng exPRessIons

expression → equality ;
equality → comparison (("!=" | "==") comparison)* ;
comparison → term ((">" | ">=" | "<" | "<=") term)* ;
term → factor (("-" | "+") factor)* ;
factor → unary (("/" | "*") unary)* ;
unary → ("!" | "-") unary
 | primary ;
primary → NUMBER | STRING | "true" | "false" | "nil"
 | "(" expression ")" ;

This grammar is more complex than the one we had before, but in return we
have eliminated the previous one’s ambiguity. It’s just what we need to make a
parser.

6.2 recursive Descent Parsing
There is a whole pack of parsing techniques whose names are mostly combi-
nations of “L” and “R”—LL(k), LR(1), LALR—along with more exotic beasts like
parser combinators, Earley parsers, the shunting yard algorithm, and packrat
parsing. For our first interpreter, one technique is more than sufficient: recur-
sive descent.

Recursive descent is the simplest way to build a parser, and doesn’t require
using complex parser generator tools like Yacc, Bison or ANTLR. All you need
is straightforward handwritten code. Don’t be fooled by its simplicity, though.
Recursive descent parsers are fast, robust, and can support sophisticated error
handling. In fact, GCC, V8 (the JavaScript VM in Chrome), Roslyn (the C# com-
piler written in C#) and many other heavyweight production language imple-
mentations use recursive descent. It rocks.

Recursive descent is considered a top-down parser because it starts from
the top or outermost grammar rule (here expression) and works its way down
into the nested subexpressions before finally reaching the leaves of the syntax
tree. This is in contrast with bottom-up parsers like LR that start with primary
expressions and compose them into larger and larger chunks of syntax.

A recursive descent parser is a literal translation of the grammar’s rules
straight into imperative code. Each rule becomes a function. The body of the rule
translates to code roughly like:

Grammar notation Code representation

Terminal Code to match and consume a token

Nonterminal Call to that rule’s function

| if or switch statement

* or + while or for loop

? if statement

It’s called “recursive descent” because it
walks down the grammar. Confusingly,
we also use direction metaphorically
when talking about “high” and “low”
precedence, but the orientation is
reversed. In a top-down parser, you reach
the lowest-precedence expressions
first because they may in turn contain
subexpressions of higher precedence.

CS people really need to get together and
straighten out their metaphors. Don’t
even get me started on which direction a
stack grows or why trees have their roots
on top.

6.2 RecuRsIVe descenT PARsIng 85

The descent is described as “recursive” because when a grammar rule refers to
itself—directly or indirectly—that translates to a recursive function call.

6.2.1 The parser class

Each grammar rule becomes a method inside this new class:

package com.craftinginterpreters.lox;

import java.util.List;
import static com.craftinginterpreters.lox.TokenType.*;

class Parser {
 private final List<Token> tokens;
 private int current = 0;

 Parser(List<Token> tokens) {
 this.tokens = tokens;
 }
}

Like the scanner, the parser consumes a flat input sequence, only now we’re read-
ing tokens instead of characters. We store the list of tokens and use current to
point to the next token eagerly waiting to be parsed.

We’re going to run straight through the expression grammar now and trans-
late each rule to Java code. The first rule, expression, simply expands to the
equality rule, so that’s straightforward.

 private Expr expression() {
 return equality();
 }

Each method for parsing a grammar rule produces a syntax tree for that rule
and returns it to the caller. When the body of the rule contains a nonterminal—a
reference to another rule—we call that other rule’s method.

The rule for equality is a little more complex.

equality → comparison (("!=" | "==") comparison)* ;

In Java, that becomes:

 private Expr equality() {
 Expr expr = comparison();
 while (match(BANG_EQUAL, EQUAL_EQUAL)) {
 Token operator = previous();
 Expr right = comparison();
 expr = new Expr.Binary(expr, operator, right);
 }

 return expr;
 }

lox/Parser.java
create new file

lox/Parser.java
add after Parser()

This is why left recursion is problematic
for recursive descent. The function for a
left-recursive rule immediately calls itself,
which calls itself again, and so on, until
the parser hits a stack overflow and dies.

lox/Parser.java
add after expression()

86 cHAPTeR 6 : PARsIng exPRessIons

Let’s step through it. The first comparison nonterminal in the body translates
to the first call to comparison() in the method. We take that result and store it
in a local variable.

Then, the (...)* loop in the rule maps to a while loop. We need to know
when to exit that loop. We can see that inside the rule, we must first find either
a != or == token. So, if we don’t see one of those, we must be done with the se-
quence of equality operators. We express that check using a handy match()
method.

 private boolean match(TokenType... types) {
 for (TokenType type : types) {
 if (check(type)) {
 advance();
 return true;
 }
 }
 return false;
 }

This checks to see if the current token has any of the given types. If so, it con-
sumes the token and returns true. Otherwise, it returns false and leaves the
current token alone. The match() method is defined in terms of two more fun-
damental operations.

The check() method returns true if the current token is of the given type.
Unlike match(), it never consumes the token, it only looks at it.

 private boolean check(TokenType type) {
 if (isAtEnd()) return false;
 return peek().type == type;
 }

The advance() method consumes the current token and returns it, similar to
how our scanner’s corresponding method crawled through characters.

 private Token advance() {
 if (!isAtEnd()) current++;
 return previous();
 }

These methods bottom out on the last handful of primitive operations.

 private boolean isAtEnd() {
 return peek().type == EOF;
 }

 private Token peek() {
 return tokens.get(current);
 }

 private Token previous() {
 return tokens.get(current - 1);
 }

lox/Parser.java
add after equality()

lox/Parser.java
add after match()

lox/Parser.java
add after check()

lox/Parser.java
add after advance()

6.2.1 THe PARseR clAss 87

isAtEnd() checks if we’ve run out of tokens to parse. peek() returns the cur-
rent token we have yet to consume, and previous() returns the most recently
consumed token. The latter makes it easier to use match() and then access the
just-matched token.

That’s most of the parsing infrastructure we need. Where were we? Right, so
if we are inside the while loop in equality(), then we know we have found a
!= or == operator and must be parsing an equality expression.

We grab the matched operator token so we can track which kind of equality
expression we have. Then we call comparison() again to parse the right-
hand operand. We combine the operator and its two operands into a new
Expr.Binary syntax tree node, and then loop around. For each iteration, we
store the resulting expression back in the same expr local variable. As we zip
through a sequence of equality expressions, that creates a left-associative nested
tree of binary operator nodes.

The parser falls out of the loop once it hits a token that’s not an equality operator.
Finally, it returns the expression. Note that if the parser never encounters an
equality operator, then it never enters the loop. In that case, the equality()
method effectively calls and returns comparison(). In that way, this method
matches an equality operator or anything of higher precedence.

Moving on to the next rule . . . 

comparison → term ((">" | ">=" | "<" | "<=") term)* ;

Translated to Java:

 private Expr comparison() {
 Expr expr = term();

 while (match(GREATER, GREATER_EQUAL, LESS, LESS_EQUAL)) {
 Token operator = previous();
 Expr right = term();
 expr = new Expr.Binary(expr, operator, right);
 }

 return expr;
 }

The grammar rule is virtually identical to equality and so is the corresponding
code. The only differences are the token types for the operators we match, and
the method we call for the operands—now term() instead of comparison().
The remaining two binary operator rules follow the same pattern.

lox/Parser.java
add after equality()

If you wanted to do some clever Java 8,
you could create a helper method for
parsing a left-associative series of binary
operators given a list of token types, and
an operand method handle to simplify this
redundant code.

Parsing a == b == c == d == e.
For each iteration, we create a new binary
expression using the previous one as the
left operand.

88 cHAPTeR 6 : PARsIng exPRessIons

In order of precedence, first addition and subtraction:

 private Expr term() {
 Expr expr = factor();

 while (match(MINUS, PLUS)) {
 Token operator = previous();
 Expr right = factor();
 expr = new Expr.Binary(expr, operator, right);
 }

 return expr;
 }

And finally, multiplication and division:

 private Expr factor() {
 Expr expr = unary();

 while (match(SLASH, STAR)) {
 Token operator = previous();
 Expr right = unary();
 expr = new Expr.Binary(expr, operator, right);
 }

 return expr;
 }

That’s all of the binary operators, parsed with the correct precedence and asso-
ciativity. We’re crawling up the precedence hierarchy and now we’ve reached the
unary operators.

unary → ("!" | "-") unary
 | primary ;

The code for this is a little different.

 private Expr unary() {
 if (match(BANG, MINUS)) {
 Token operator = previous();
 Expr right = unary();
 return new Expr.Unary(operator, right);
 }

 return primary();
 }

Again, we look at the current token to see how to parse. If it’s a ! or -, we must
have a unary expression. In that case, we grab the token and then recursively
call unary() again to parse the operand. Wrap that all up in a unary expression
syntax tree and we’re done.

lox/Parser.java
add after comparison()

lox/Parser.java
add after term()

lox/Parser.java
add after factor()

The fact that the parser looks ahead at
upcoming tokens to decide how to parse
puts recursive descent into the category
of predictive parsers.

6.3 synTAx eRRoRs 89

Otherwise, we must have reached the highest level of precedence, primary
expressions.

primary → NUMBER | STRING | "true" | "false" | "nil"
 | "(" expression ")" ;

Most of the cases for the rule are single terminals, so parsing is straightforward.

 private Expr primary() {
 if (match(FALSE)) return new Expr.Literal(false);
 if (match(TRUE)) return new Expr.Literal(true);
 if (match(NIL)) return new Expr.Literal(null);

 if (match(NUMBER, STRING)) {
 return new Expr.Literal(previous().literal);
 }

 if (match(LEFT_PAREN)) {
 Expr expr = expression();
 consume(RIGHT_PAREN, "Expect ')' after expression.");
 return new Expr.Grouping(expr);
 }
 }

The interesting branch is the one for handling parentheses. After we match an
opening (and parse the expression inside it, we must find a) token. If we don’t,
that’s an error.

6.3 Syntax Errors
A parser really has two jobs:

1. Given a valid sequence of tokens, produce a corresponding syntax tree.

2. Given an invalid sequence of tokens, detect any errors and tell the user about
their mistakes.

Don’t underestimate how important the second job is! In modern IDEs and edi-
tors, the parser is constantly reparsing code—often while the user is still editing
it—in order to syntax highlight and support things like auto-complete. That
means it will encounter code in incomplete, half-wrong states all the time.

When the user doesn’t realize the syntax is wrong, it is up to the parser to
help guide them back onto the right path. The way it reports errors is a large
part of your language’s user interface. Good syntax error handling is hard. By
definition, the code isn’t in a well-defined state, so there’s no infallible way to
know what the user meant to write. The parser can’t read your mind.

There are a couple of hard requirements for when the parser runs into a syn-
tax error. A parser must:

lox/Parser.java
add after unary()

Not yet at least. With the way things are
going in machine learning these days, who
knows what the future will bring?

90 cHAPTeR 6 : PARsIng exPRessIons

• Detect and report the error. If it doesn’t detect the error and passes the
resulting malformed syntax tree on to the interpreter, all manner of horrors
may be summoned.

• Avoid crashing or hanging. Syntax errors are a fact of life, and language
tools have to be robust in the face of them. Segfaulting or getting stuck in an
infinite loop isn’t allowed. While the source may not be valid code, it’s still a
valid input to the parser because users use the parser to learn what syntax is
allowed.

Those are the table stakes if you want to get in the parser game at all, but you
really want to raise the ante beyond that. A decent parser should:

• Be fast. Computers are thousands of times faster than they were when pars-
er technology was first invented. The days of needing to optimize your parser
so that it could get through an entire source file during a coffee break are over.
But programmer expectations have risen as quickly, if not faster. They expect
their editors to reparse files in milliseconds after every keystroke.

• Report as many distinct errors as there are. Aborting after the first error is
easy to implement, but it’s annoying for users if every time they fix what they
think is the one error in a file, a new one appears. They want to see them all.

• Minimize cascaded errors. Once a single error is found, the parser no lon-
ger really knows what’s going on. It tries to get itself back on track and keep
going, but if it gets confused, it may report a slew of ghost errors that don’t
indicate other real problems in the code. When the first error is fixed, those
phantoms disappear, because they reflect only the parser’s own confusion.
Cascaded errors are annoying because they can scare the user into thinking
their code is in a worse state than it is.

The last two points are in tension. We want to report as many separate errors as
we can, but we don’t want to report ones that are merely side effects of an earlier
one.

The way a parser responds to an error and keeps going to look for later errors
is called error recovery. This was a hot research topic in the ’60s. Back then,
you’d hand a stack of punch cards to the secretary and come back the next day to
see if the compiler succeeded. With an iteration loop that slow, you really wanted
to find every single error in your code in one pass.

Today, when parsers complete before you’ve even finished typing, it’s less of
an issue. Simple, fast error recovery is fine.

6.3.1 Panic mode error recovery

Of all the recovery techniques devised in yesteryear, the one that best stood
the test of time is called—somewhat alarmingly—panic mode. As soon as the
parser detects an error, it enters panic mode. It knows at least one token doesn’t
make sense given its current state in the middle of some stack of grammar pro-
ductions.

Before it can get back to parsing, it needs to get its state and the sequence of
forthcoming tokens aligned such that the next token does match the rule being

Philosophically speaking, if an error isn’t
detected and the interpreter runs the
code, is it really an error?

You know you want to push it.

6.3.1 PAnIc mode eRRoR RecoVeRy 91

parsed. This process is called synchronization.
To do that, we select some rule in the grammar that will mark the synchro-

nization point. The parser fixes its parsing state by jumping out of any nested
productions until it gets back to that rule. Then it synchronizes the token stream
by discarding tokens until it reaches one that can appear at that point in the rule.

Any additional real syntax errors hiding in those discarded tokens aren’t re-
ported, but it also means that any mistaken cascaded errors that are side effects
of the initial error aren’t falsely reported either, which is a decent trade-off.

The traditional place in the grammar to synchronize is between statements.
We don’t have those yet, so we won’t actually synchronize in this chapter, but
we’ll get the machinery in place for later.

6.3.2 Entering panic mode

Back before we went on this side trip around error recovery, we were writing
the code to parse a parenthesized expression. After parsing the expression, the
parser looks for the closing) by calling consume(). Here, finally, is that method:

 private Token consume(TokenType type, String message) {
 if (check(type)) return advance();

 throw error(peek(), message);
 }

It’s similar to match() in that it checks to see if the next token is of the expected
type. If so, it consumes the token and everything is groovy. If some other token
is there, then we’ve hit an error. We report it by calling this:

 private ParseError error(Token token, String message) {
 Lox.error(token, message);
 return new ParseError();
 }

First, that shows the error to the user by calling:

 static void error(Token token, String message) {
 if (token.type == TokenType.EOF) {
 report(token.line, " at end", message);
 } else {
 report(token.line, " at '" + token.lexeme + "'", message);
 }
 }

This reports an error at a given token. It shows the token’s location and the token
itself. This will come in handy later since we use tokens throughout the inter-
preter to track locations in code.

After we report the error, the user knows about their mistake, but what does
the parser do next? Back in error(), we create and return a ParseError, an in-
stance of this new class:

lox/Parser.java
add after match()

lox/Parser.java
add after previous()

lox/lox.java
add after report()

92 cHAPTeR 6 : PARsIng exPRessIons

class Parser {
 private static class ParseError extends RuntimeException {}

 private final List<Token> tokens;

This is a simple sentinel class we use to unwind the parser. The error() method
returns the error instead of throwing it because we want to let the calling method
inside the parser decide whether to unwind or not. Some parse errors occur in
places where the parser isn’t likely to get into a weird state and we don’t need to
synchronize. In those places, we simply report the error and keep on truckin’.

For example, Lox limits the number of arguments you can pass to a function.
If you pass too many, the parser needs to report that error, but it can and should
simply keep on parsing the extra arguments instead of freaking out and going
into panic mode.

In our case, though, the syntax error is nasty enough that we want to panic
and synchronize. Discarding tokens is pretty easy, but how do we synchronize
the parser’s own state?

6.3.3 Synchronizing a recursive descent parser

With recursive descent, the parser’s state—which rules it is in the middle of rec-
ognizing—is not stored explicitly in fields. Instead, we use Java’s own call stack
to track what the parser is doing. Each rule in the middle of being parsed is a call
frame on the stack. In order to reset that state, we need to clear out those call
frames.

The natural way to do that in Java is exceptions. When we want to synchro-
nize, we throw that ParseError object. Higher up in the method for the grammar
rule we are synchronizing to, we’ll catch it. Since we synchronize on statement
boundaries, we’ll catch the exception there. After the exception is caught, the
parser is in the right state. All that’s left is to synchronize the tokens.

We want to discard tokens until we’re right at the beginning of the next
statement. That boundary is pretty easy to spot—it’s one of the main reasons
we picked it. After a semicolon, we’re probably finished with a statement. Most
statements start with a keyword—for, if, return, var, etc. When the next
token is any of those, we’re probably about to start a statement.

This method encapsulates that logic:

 private void synchronize() {
 advance();
 while (!isAtEnd()) {
 if (previous().type == SEMICOLON) return;

 switch (peek().type) {
 case CLASS: case FOR: case FUN: case IF: case PRINT:
 case RETURN: case VAR: case WHILE:
 return;
 }

 advance();
 }
 }

lox/Parser.java
nest inside class Parser

I say “probably” because we could hit a
semicolon separating clauses in a for
loop. Our synchronization isn’t perfect,
but that’s OK. We’ve already reported the
first error precisely, so everything after
that is kind of “best effort”.

lox/Parser.java
add after error()

Another way to handle common syntax
errors is with error productions. You
augment the grammar with a rule that
successfully matches the erroneous syntax.
The parser safely parses it but then
reports it as an error instead of producing
a syntax tree.

For example, some languages have a
unary + operator, like +123, but Lox does
not. Instead of getting confused when the
parser stumbles onto a + at the beginning
of an expression, we could extend the
unary rule to allow it.

unary → ("!"|"-"|"+")
 unary
 | primary ;

This lets the parser consume + without
going into panic mode or leaving the
parser in a weird state.

Error productions work well because
you, the parser author, know how the code
is wrong and what the user was likely
trying to do. That means you can give
a more helpful message to get the user
back on track, like, “Unary ‘+’ expressions
are not supported.” Mature parsers
tend to accumulate error productions
like barnacles since they help users fix
common mistakes.

6.3.3 syncHRonIzIng A RecuRsIVe descenT PARseR 93

It discards tokens until it thinks it has found a statement boundary. After catch-
ing a ParseError, we’ll call this and then we are hopefully back in sync. When it
works well, we have discarded tokens that would have likely caused cascaded
errors anyway, and now we can parse the rest of the file starting at the next
statement.

Alas, we don’t get to see this method in action, since we don’t have statements
yet. We’ll get to that in a couple of chapters. For now, if an error occurs, we’ll
panic and unwind all the way to the top and stop parsing. Since we can parse
only a single expression anyway, that’s no big loss.

6.4 Wiring up the Parser
We are mostly done parsing expressions now. There is one other place where we
need to add a little error handling. As the parser descends through the parsing
methods for each grammar rule, it eventually hits primary(). If none of the
cases in there match, it means we are sitting on a token that can’t start an expres-
sion. We need to handle that error too.

 if (match(LEFT_PAREN)) {
 Expr expr = expression();
 consume(RIGHT_PAREN, "Expect ')' after expression.");
 return new Expr.Grouping(expr);
 }

 throw error(peek(), "Expect expression.");
 }

With that, all that remains in the parser is to define an initial method to kick it
off. That method is called, naturally enough, parse().

 Expr parse() {
 try {
 return expression();
 } catch (ParseError error) {
 return null;
 }
 }

We’ll revisit this method later when we add statements to the language. For now,
it parses a single expression and returns it. We also have some temporary code to
exit out of panic mode. Syntax error recovery is the parser’s job, so we don’t want
the ParseError exception to escape into the rest of the interpreter.

When a syntax error does occur, this method returns null. That’s OK. The
parser promises not to crash or hang on invalid syntax, but it doesn’t promise to
return a usable syntax tree if an error is found. As soon as the parser reports an
error, hadError gets set, and subsequent phases are skipped.

Finally, we can hook up our brand new parser to the main Lox class and try it
out. We still don’t have an interpreter, so for now, we’ll parse to a syntax tree and
then use the AstPrinter class from the last chapter to display it.

Delete the old code to print the scanned tokens and replace it with this:

lox/Parser.java
in primary()

lox/Parser.java
add after Parser()

94 cHAPTeR 6 : PARsIng exPRessIons

 List<Token> tokens = scanner.scanTokens();
 Parser parser = new Parser(tokens);
 Expr expression = parser.parse();

 // Stop if there was a syntax error.
 if (hadError) return;

 System.out.println(new AstPrinter().print(expression));
 }

Congratulations, you have crossed the threshold! That really is all there is to
handwriting a parser. We’ll extend the grammar in later chapters with assign-
ment, statements, and other stuff, but none of that is any more complex than the
binary operators we tackled here.

Fire up the interpreter and type in some expressions. See how it handles
precedence and associativity correctly? Not bad for less than 200 lines of code.

CHaLLENGES

1. In C, a block is a statement form that allows you to pack a series of statements
where a single one is expected. The comma operator is an analogous syntax
for expressions. A comma-separated series of expressions can be given where a
single expression is expected (except inside a function call’s argument list). At
runtime, the comma operator evaluates the left operand and discards the result.
Then it evaluates and returns the right operand.

Add support for comma expressions. Give them the same precedence and
associativity as in C. Write the grammar, and then implement the necessary
parsing code.

2. Likewise, add support for the C-style conditional or “ternary” operator ?:. What
precedence level is allowed between the ? and :? Is the whole operator left-as-
sociative or right-associative?

3. Add error productions to handle each binary operator appearing without a
left-hand operand. In other words, detect a binary operator appearing at the
beginning of an expression. Report that as an error, but also parse and discard a
right-hand operand with the appropriate precedence.

lox/lox.java
in run()

replace 5 lines

It is possible to define a more complex
grammar than Lox’s that’s difficult to
parse using recursive descent. Predictive
parsing gets tricky when you may need
to look ahead a large number of tokens to
figure out what you’re sitting on.

In practice, most languages are
designed to avoid that. Even in cases
where they aren’t, you can usually hack
around it without too much pain. If you
can parse C++ using recursive descent—
which many C++ compilers do—you can
parse anything.

cHAllenges 95

DESIGN NOtE: LOGIC VErSUS HIStOrY

Let’s say we decide to add bitwise & and | operators to Lox. Where should we put
them in the precedence hierarchy? C—and most languages that follow in C’s foot-
steps—place them below ==. This is widely considered a mistake because it means
common operations like testing a flag require parentheses.

if (flags & FLAG_MASK == SOME_FLAG) { ... } // Wrong.
if ((flags & FLAG_MASK) == SOME_FLAG) { ... } // Right.

Should we fix this for Lox and put bitwise operators higher up the precedence table
than C does? There are two strategies we can take.

You almost never want to use the result of an == expression as the operand to a
bitwise operator. By making bitwise bind tighter, users don’t need to parenthesize
as often. So if we do that, and users assume the precedence is chosen logically to
minimize parentheses, they’re likely to infer it correctly.

This kind of internal consistency makes the language easier to learn because there
are fewer edge cases and exceptions users have to stumble into and then correct.
That’s good, because before users can use our language, they have to load all of that
syntax and semantics into their heads. A simpler, more rational language makes sense.

But, for many users there is an even faster shortcut to getting our language’s ideas
into their wetware—use concepts they already know. Many newcomers to our language
will be coming from some other language or languages. If our language uses some of
the same syntax or semantics as those, there is much less for the user to learn (and
unlearn).

This is particularly helpful with syntax. You may not remember it well today, but
way back when you learned your very first programming language, code probably
looked alien and unapproachable. Only through painstaking effort did you learn to
read and accept it. If you design a novel syntax for your new language, you force users
to start that process all over again.

Taking advantage of what users already know is one of the most powerful tools you
can use to ease adoption of your language. It’s almost impossible to overestimate how
valuable this is. But it faces you with a nasty problem: What happens when the thing
the users all know kind of sucks? C’s bitwise operator precedence is a mistake that
doesn’t make sense. But it’s a familiar mistake that millions have already gotten used
to and learned to live with.

Do you stay true to your language’s own internal logic and ignore history? Do you
start from a blank slate and first principles? Or do you weave your language into the
rich tapestry of programming history and give your users a leg up by starting from
something they already know?

There is no perfect answer here, only trade-offs. You and I are obviously biased
towards liking novel languages, so our natural inclination is to burn the history books
and start our own story.

In practice, it’s often better to make the most of what users already know. Getting
them to come to your language requires a big leap. The smaller you can make that
chasm, the more people will be willing to cross it. But you can’t always stick to history,
or your language won’t have anything new and compelling to give people a reason to
jump over.

A TRee-WAlk InTeRPReTeR 7Evaluating Expressions

“You are my creator, but I am your master; Obey!”

— Mary Shelley, Frankenstein

If you want to properly set the mood for this chapter, try to conjure up a thun-
derstorm, one of those swirling tempests that likes to yank open shutters at the
climax of the story. Maybe toss in a few bolts of lightning. In this chapter, our
interpreter will take breath, open its eyes, and execute some code.

A decrepit Victorian mansion is optional,
but adds to the ambiance.

98 cHAPTeR 7 : eVAluATIng exPRessIons

There are all manner of ways that language implementations make a computer
do what the user’s source code commands. They can compile it to machine code,
translate it to another high-level language, or reduce it to some bytecode format
for a virtual machine to run. For our first interpreter, though, we are going to
take the simplest, shortest path and execute the syntax tree itself.

Right now, our parser only supports expressions. So, to “execute” code, we
will evaluate an expression and produce a value. For each kind of expression
syntax we can parse—literal, operator, etc.—we need a corresponding chunk of
code that knows how to evaluate that tree and produce a result. That raises two
questions:

1. What kinds of values do we produce?

2. How do we organize those chunks of code?

Taking them on one at a time . . . 

7.1 representing Values
In Lox, values are created by literals, computed by expressions, and stored in
variables. The user sees these as Lox objects, but they are implemented in the un-
derlying language our interpreter is written in. That means bridging the lands of
Lox’s dynamic typing and Java’s static types. A variable in Lox can store a value of
any (Lox) type, and can even store values of different types at different points in
time. What Java type might we use to represent that?

Given a Java variable with that static type, we must also be able to determine
which kind of value it holds at runtime. When the interpreter executes a + op-
erator, it needs to tell if it is adding two numbers or concatenating two strings.
Is there a Java type that can hold numbers, strings, Booleans, and more? Is there
one that can tell us what its runtime type is? There is! Good old java.lang.Object.

In places in the interpreter where we need to store a Lox value, we can use
Object as the type. Java has boxed versions of its primitive types that all subclass
Object, so we can use those for Lox’s built-in types:

Lox type Java representation

Any Lox value Object

nil null

Boolean Boolean

number Double

string String

Given a value of static type Object, we can determine if the runtime value is a
number or a string or whatever using Java’s built-in instanceof operator. In
other words, the JVM’s own object representation conveniently gives us every-

Here, I’m using “value” and “object” pretty
much interchangeably.

Later in the C interpreter we’ll make
a slight distinction between them, but
that’s mostly to have unique terms for
two different corners of the implemen-
tation—in-place versus heap-allocated
data. From the user’s perspective, the
terms are synonymous.

7.1 RePResenTIng VAlues 99

thing we need to implement Lox’s built-in types. We’ll have to do a little more
work later when we add Lox’s notions of functions, classes, and instances, but
Object and the boxed primitive classes are sufficient for the types we need right
now.

7.2 Evaluating Expressions
Next, we need blobs of code to implement the evaluation logic for each kind of
expression we can parse. We could stuff that code into the syntax tree classes in
something like an interpret() method. In effect, we could tell each syntax
tree node, “Interpret thyself ”. This is the Gang of Four’s Interpreter design pat-
tern. It’s a neat pattern, but like I mentioned earlier, it gets messy if we jam all
sorts of logic into the tree classes.

Instead, we’re going to reuse our groovy Visitor pattern. In the previous
chapter, we created an AstPrinter class. It took in a syntax tree and recursively
traversed it, building up a string which it ultimately returned. That’s almost
exactly what a real interpreter does, except instead of concatenating strings, it
computes values.

We start with a new class.

package com.craftinginterpreters.lox;

class Interpreter implements Expr.Visitor<Object> {
}

The class declares that it’s a visitor. The return type of the visit methods will
be Object, the root class that we use to refer to a Lox value in our Java code. To
satisfy the Visitor interface, we need to define visit methods for each of the four
expression tree classes our parser produces. We’ll start with the simplest . . . 

7.2.1 Evaluating literals

The leaves of an expression tree—the atomic bits of syntax that all other expres-
sions are composed of—are literals. Literals are almost values already, but the
distinction is important. A literal is a bit of syntax that produces a value. A literal
always appears somewhere in the user’s source code. Lots of values are produced
by computation and don’t exist anywhere in the code itself. Those aren’t literals.
A literal comes from the parser’s domain. Values are an interpreter concept, part
of the runtime’s world.

So, much like we converted a literal token into a literal syntax tree node in the
parser, now we convert the literal tree node into a runtime value. That turns out
to be trivial.

 @Override
 public Object visitLiteralExpr(Expr.Literal expr) {
 return expr.value;
 }

We eagerly produced the runtime value way back during scanning and stuffed it

Another thing we need to do with values
is manage their memory, and Java does
that too. A handy object representation
and a really nice garbage collector are
the main reasons we’re writing our first
interpreter in Java.

lox/Interpreter.java
create new file

In the next chapter, when we implement
variables, we’ll add identifier expressions,
which are also leaf nodes.

lox/Interpreter.java
in class Interpreter

100 cHAPTeR 7 : eVAluATIng exPRessIons

in the token. The parser took that value and stuck it in the literal tree node, so to
evaluate a literal, we simply pull it back out.

7.2.2 Evaluating parentheses

The next simplest node to evaluate is grouping—the node you get as a result of
using explicit parentheses in an expression.

 @Override
 public Object visitGroupingExpr(Expr.Grouping expr) {
 return evaluate(expr.expression);
 }

A grouping node has a reference to an inner node for the expression contained
inside the parentheses. To evaluate the grouping expression itself, we recursive-
ly evaluate that subexpression and return it.

We rely on this helper method which simply sends the expression back into
the interpreter’s visitor implementation:

 private Object evaluate(Expr expr) {
 return expr.accept(this);
 }

7.2.3 Evaluating unary expressions

Like grouping, unary expressions have a single subexpression that we must
evaluate first. The difference is that the unary expression itself does a little work
afterwards.

 @Override
 public Object visitUnaryExpr(Expr.Unary expr) {
 Object right = evaluate(expr.right);

 switch (expr.operator.type) {
 case MINUS:
 return -(double)right;
 }

 // Unreachable.
 return null;
 }

First, we evaluate the operand expression. Then we apply the unary operator
itself to the result of that. There are two different unary expressions, identified
by the type of the operator token.

Shown here is -, which negates the result of the subexpression. The subex-
pression must be a number. Since we don’t statically know that in Java, we cast
it before performing the operation. This type cast happens at runtime when the
- is evaluated. That’s the core of what makes a language dynamically typed right
there.

lox/Interpreter.java
in class Interpreter

Some parsers don’t define tree nodes
for parentheses. Instead, when parsing
a parenthesized expression, they simply
return the node for the inner expression.
We do create a node for parentheses in
Lox because we’ll need it later to correctly
handle the left-hand sides of assignment
expressions.

lox/Interpreter.java
in class Interpreter

lox/Interpreter.java
add after visitLiteralExpr()

You’re probably wondering what happens
if the cast fails. Fear not, we’ll get into
that soon.

7.2.2 eVAluATIng PARenTHeses 101

You can start to see how evaluation recursively traverses the tree. We can’t
evaluate the unary operator itself until after we evaluate its operand subexpres-
sion. That means our interpreter is doing a post-order traversal—each node
evaluates its children before doing its own work.

The other unary operator is logical not.

 switch (expr.operator.type) {
 case BANG:
 return !isTruthy(right);
 case MINUS:

The implementation is simple, but what is this “truthy” thing about? We need to
make a little side trip to one of the great questions of Western philosophy: What
is truth?

7.2.4 Truthiness and falsiness

OK, maybe we’re not going to really get into the universal question, but at least
inside the world of Lox, we need to decide what happens when you use some-
thing other than true or false in a logic operation like ! or any other place
where a Boolean is expected.

We could just say it’s an error because we don’t roll with implicit conversions,
but most dynamically typed languages aren’t that ascetic. Instead, they take the
universe of values of all types and partition them into two sets, one of which
they define to be “true”, or “truthful”, or (my favorite) “truthy”, and the rest
which are “false” or “falsey”. This partitioning is somewhat arbitrary and gets
weird in a few languages.

Lox follows Ruby’s simple rule: false and nil are falsey, and everything else
is truthy. We implement that like so:

 private boolean isTruthy(Object object) {
 if (object == null) return false;
 if (object instanceof Boolean) return (boolean)object;
 return true;
 }

7.2.5 Evaluating binary operators

On to the last expression tree class, binary operators. There’s a handful of them,
and we’ll start with the arithmetic ones.

 @Override
 public Object visitBinaryExpr(Expr.Binary expr) {
 Object left = evaluate(expr.left);
 Object right = evaluate(expr.right);

 switch (expr.operator.type) {
 case MINUS:
 return (double)left - (double)right;
 case SLASH:

lox/Interpreter.java
in visitUnaryExpr()

In JavaScript, strings are truthy, but
empty strings are not. Arrays are truthy
but empty arrays are . . . also truthy. The
number 0 is falsey, but the string "0" is
truthy.

In Python, empty strings are falsey
like in JS, but other empty sequences are
falsey too.

In PHP, both the number 0 and
the string "0" are falsey. Most other
non-empty strings are truthy.

Get all that?

lox/Interpreter.java
add after visitUnaryExpr()

lox/Interpreter.java
add after evaluate()

continued on next page . . .

102 cHAPTeR 7 : eVAluATIng exPRessIons

 return (double)left / (double)right;
 case STAR:
 return (double)left * (double)right;
 }

 // Unreachable.
 return null;
 }

I think you can figure out what’s going on here. The main difference from the
unary negation operator is that we have two operands to evaluate.

I left out one arithmetic operator because it’s a little special.

 switch (expr.operator.type) {
 case MINUS:
 return (double)left - (double)right;
 case PLUS:
 if (left instanceof Double && right instanceof Double) {
 return (double)left + (double)right;
 }

 if (left instanceof String && right instanceof String) {
 return (String)left + (String)right;
 }

 break;
 case SLASH:

The + operator can also be used to concatenate two strings. To handle that, we
don’t just assume the operands are a certain type and cast them, we dynamically
check the type and choose the appropriate operation. This is why we need our
object representation to support instanceof.

Next up are the comparison operators.

 switch (expr.operator.type) {
 case GREATER:
 return (double)left > (double)right;
 case GREATER_EQUAL:
 return (double)left >= (double)right;
 case LESS:
 return (double)left < (double)right;
 case LESS_EQUAL:
 return (double)left <= (double)right;
 case MINUS:

They are basically the same as arithmetic. The only difference is that where the
arithmetic operators produce a value whose type is the same as the operands
(numbers or strings), the comparison operators always produce a Boolean.

The last pair of operators are equality.

 case BANG_EQUAL: return !isEqual(left, right);
 case EQUAL_EQUAL: return isEqual(left, right);

lox/Interpreter.java
in visitBinaryExpr()

We could have defined an operator
specifically for string concatenation.
That’s what Perl (.), Lua (..), Smalltalk
(,), Haskell (++), and others do.

I thought it would make Lox a little
more approachable to use the same
syntax as Java, JavaScript, Python, and
others. This means that the + operator
is overloaded to support both adding
numbers and concatenating strings. Even
in languages that don’t use + for strings,
they still often overload it for adding both
integers and floating-point numbers.

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

Did you notice we pinned down a subtle
corner of the language semantics here?
In a binary expression, we evaluate the
operands in left-to-right order. If those
operands have side effects, that choice
is user visible, so this isn’t simply an
implementation detail.

If we want our two interpreters to be
consistent (hint: we do), we’ll need to
make sure clox does the same thing.

. . . from previous page

7.3 RunTIme eRRoRs 103

Unlike the comparison operators which require numbers, the equality operators
support operands of any type, even mixed ones. You can’t ask Lox if 3 is less than
"three", but you can ask if it’s equal to it.

Like truthiness, the equality logic is hoisted out into a separate method.

 private boolean isEqual(Object a, Object b) {
 if (a == null && b == null) return true;
 if (a == null) return false;

 return a.equals(b);
 }

This is one of those corners where the details of how we represent Lox objects
in terms of Java matter. We need to correctly implement Lox’s notion of equality,
which may be different from Java’s.

Fortunately, the two are pretty similar. Lox doesn’t do implicit conversions in
equality and Java does not either. We do have to handle nil/null specially so
that we don’t throw a NullPointerException if we try to call equals() on null.
Otherwise, we’re fine. Java’s equals() method on Boolean, Double, and String
have the behavior we want for Lox.

And that’s it! That’s all the code we need to correctly interpret a valid Lox
expression. But what about an invalid one? In particular, what happens when a
subexpression evaluates to an object of the wrong type for the operation being
performed?

7.3 runtime Errors
I was cavalier about jamming casts in whenever a subexpression produces an
Object and the operator requires it to be a number or a string. Those casts can
fail. Even though the user’s code is erroneous, if we want to make a usable lan-
guage, we are responsible for handling that error gracefully.

It’s time for us to talk about runtime errors. I spilled a lot of ink in the pre-
vious chapters talking about error handling, but those were all syntax or static
errors. Those are detected and reported before any code is executed. Runtime
errors are failures that the language semantics demand we detect and report
while the program is running (hence the name).

Right now, if an operand is the wrong type for the operation being performed,
the Java cast will fail and the JVM will throw a ClassCastException. That unwinds
the whole stack and exits the application, vomiting a Java stack trace onto the
user. That’s probably not what we want. The fact that Lox is implemented in Java
should be a detail hidden from the user. Instead, we want them to understand
that a Lox runtime error occurred, and give them an error message relevant to
our language and their program.

The Java behavior does have one thing going for it, though. It correctly stops
executing any code when the error occurs. Let’s say the user enters some expres-
sion like:

2 * (3 / -"muffin")

Spoiler alert: it’s not.

lox/Interpreter.java
add after isTruthy()

What do you expect this to evaluate to:

(0 / 0) == (0 / 0)

According to IEEE 754, which specifies the
behavior of double-precision numbers, di-
viding a zero by zero gives you the special
NaN (“not a number”) value. Strangely
enough, NaN is not equal to itself.

In Java, the == operator on primitive
doubles preserves that behavior, but the
equals() method on the Double class
does not. Lox uses the latter, so doesn’t
follow IEEE. These kinds of subtle incom-
patibilities occupy a dismaying fraction of
language implementers’ lives.

We could simply not detect or report a
type error at all. This is what C does if you
cast a pointer to some type that doesn’t
match the data that is actually being
pointed to. C gains flexibility and speed
by allowing that, but is also famously
dangerous. Once you misinterpret bits in
memory, all bets are off.

Few modern languages accept unsafe
operations like that. Instead, most are
memory safe and ensure—through
a combination of static and runtime
checks—that a program can never
incorrectly interpret the value stored in a
piece of memory.

104 cHAPTeR 7 : eVAluATIng exPRessIons

You can’t negate a muffin, so we need to report a runtime error at that inner -
expression. That in turn means we can’t evaluate the / expression since it has no
meaningful right operand. Likewise for the *. So when a runtime error occurs
deep in some expression, we need to escape all the way out.

We could print a runtime error and then abort the process and exit the appli-
cation entirely. That has a certain melodramatic flair. Sort of the programming
language interpreter equivalent of a mic drop.

Tempting as that is, we should probably do something a little less cataclysmic.
While a runtime error needs to stop evaluating the expression, it shouldn’t kill
the interpreter. If a user is running the REPL and has a typo in a line of code, they
should still be able to keep the session going and enter more code after that.

7.3.1 Detecting runtime errors

Our tree-walk interpreter evaluates nested expressions using recursive method
calls, and we need to unwind out of all of those. Throwing an exception in Java is
a fine way to accomplish that. However, instead of using Java’s own cast failure,
we’ll define a Lox-specific one so that we can handle it how we want.

Before we do the cast, we check the object’s type ourselves. So, for unary -,
we add:

 case MINUS:
 checkNumberOperand(expr.operator, right);
 return -(double)right;

The code to check the operand is:

 private void checkNumberOperand(Token operator, Object operand) {
 if (operand instanceof Double) return;
 throw new RuntimeError(operator, "Operand must be a number.");
 }

When the check fails, it throws one of these:

package com.craftinginterpreters.lox;

class RuntimeError extends RuntimeException {
 final Token token;

 RuntimeError(Token token, String message) {
 super(message);
 this.token = token;
 }
}

Unlike the Java cast exception, our class tracks the token that identifies where in
the user’s code the runtime error came from. As with static errors, this helps the
user know where to fix their code.

We need similar checking for the binary operators. Since I promised you
every single line of code needed to implement the interpreters, I’ll run through
them all.

I don’t know, man, can you negate a
muffin?

lox/Interpreter.java
in visitUnaryExpr()

lox/Interpreter.java
add after visitUnaryExpr()

lox/Runtimeerror.java
create new file

I admit the name “RuntimeError”
is confusing since Java defines a
RuntimeException class. An annoying
thing about building interpreters is your
names often collide with ones already
taken by the implementation language.
Just wait until we support Lox classes.

7.3.1 deTecTIng RunTIme eRRoRs 105

Greater than:

 case GREATER:
 checkNumberOperands(expr.operator, left, right);
 return (double)left > (double)right;

Greater than or equal to:

 case GREATER_EQUAL:
 checkNumberOperands(expr.operator, left, right);
 return (double)left >= (double)right;

Less than:

 case LESS:
 checkNumberOperands(expr.operator, left, right);
 return (double)left < (double)right;

Less than or equal to:

 case LESS_EQUAL:
 checkNumberOperands(expr.operator, left, right);
 return (double)left <= (double)right;

Subtraction:

 case MINUS:
 checkNumberOperands(expr.operator, left, right);
 return (double)left - (double)right;

Division:

 case SLASH:
 checkNumberOperands(expr.operator, left, right);
 return (double)left / (double)right;

Multiplication:

 case STAR:
 checkNumberOperands(expr.operator, left, right);
 return (double)left * (double)right;

All of those rely on this validator, which is virtually the same as the unary one:

 private void checkNumberOperands(Token operator,
 Object left, Object right) {
 if (left instanceof Double && right instanceof Double) return;

 throw new RuntimeError(operator, "Operands must be numbers.");
 }

The last remaining operator, again the odd one out, is addition. Since + is over-

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
in visitBinaryExpr()

lox/Interpreter.java
add after checkNumberOperand()

106 cHAPTeR 7 : eVAluATIng exPRessIons

loaded for numbers and strings, it already has code to check the types. All we
need to do is fail if neither of the two success cases match.

 return (String)left + (String)right;
 }

 throw new RuntimeError(expr.operator,
 "Operands must be two numbers or two strings.");
 case SLASH:

That gets us detecting runtime errors deep in the innards of the evaluator. The
errors are getting thrown. The next step is to write the code that catches them.
For that, we need to wire up the Interpreter class into the main Lox class that
drives it.

7.4 Hooking Up the Interpreter
The visit methods are sort of the guts of the Interpreter class, where the real
work happens. We need to wrap a skin around them to interface with the rest of
the program. The Interpreter’s public API is simply one method.

 void interpret(Expr expression) {
 try {
 Object value = evaluate(expression);
 System.out.println(stringify(value));
 } catch (RuntimeError error) {
 Lox.runtimeError(error);
 }
 }

This takes in a syntax tree for an expression and evaluates it. If that succeeds,
evaluate() returns an object for the result value. interpret() converts that
to a string and shows it to the user. To convert a Lox value to a string, we rely on:

 private String stringify(Object object) {
 if (object == null) return "nil";

 if (object instanceof Double) {
 String text = object.toString();
 if (text.endsWith(".0")) {
 text = text.substring(0, text.length() - 2);
 }
 return text;
 }

 return object.toString();
 }

This is another of those pieces of code like isTruthy() that crosses the mem-
brane between the user’s view of Lox objects and their internal representation

lox/Interpreter.java
in visitBinaryExpr()

replace 1 line

Another subtle semantic choice: We
evaluate both operands before checking
the type of either. Imagine we have a
function say() that prints its argument
then returns it. Using that, we write:

say("left") - say("right");

Our interpreter prints “left” and “right”
before reporting the runtime error. We
could have instead specified that the
left operand is checked before even
evaluating the right.

lox/Interpreter.java
in class Interpreter

lox/Interpreter.java
add after isEqual()

7.4 HookIng uP THe InTeRPReTeR 107

in Java.
It’s pretty straightforward. Since Lox was designed to be familiar to someone

coming from Java, things like Booleans look the same in both languages. The two
edge cases are nil, which we represent using Java’s null, and numbers.

Lox uses double-precision numbers even for integer values. In that case, they
should print without a decimal point. Since Java has both floating point and in-
teger types, it wants you to know which one you’re using. It tells you by adding
an explicit .0 to integer-valued doubles. We don’t care about that, so we hack it
off the end.

7.4.1 Reporting runtime errors

If a runtime error is thrown while evaluating the expression, interpret()
catches it. This lets us report the error to the user and then gracefully contin-
ue. All of our existing error reporting code lives in the Lox class, so we put this
method there too:

 static void runtimeError(RuntimeError error) {
 System.err.println(error.getMessage() +
 "\n[line " + error.token.line + "]");
 hadRuntimeError = true;
 }

We use the token associated with the RuntimeError to tell the user what line of
code was executing when the error occurred. Even better would be to give the
user an entire call stack to show how they got to be executing that code. But we
don’t have function calls yet, so I guess we don’t have to worry about it.

After showing the error, runtimeError() sets this field:

 static boolean hadError = false;
 static boolean hadRuntimeError = false;

 public static void main(String[] args) throws IOException {

That field plays a small but important role.

 run(new String(bytes, Charset.defaultCharset()));

 // Indicate an error in the exit code.
 if (hadError) System.exit(65);
 if (hadRuntimeError) System.exit(70);
 }

If the user is running a Lox script from a file and a runtime error occurs, we set
an exit code when the process quits to let the calling process know. Not everyone
cares about shell etiquette, but we do.

7.4.2 Running the interpreter

Now that we have an interpreter, the Lox class can start using it.

Yet again, we take care of this edge case
with numbers to ensure that jlox and clox
work the same. Handling weird corners of
the language like this will drive you crazy
but is an important part of the job.

Users rely on these details—either
deliberately or inadvertently—and if the
implementations aren’t consistent, their
program will break when they run it on
different interpreters.

lox/lox.java
add after error()

lox/lox.java
in class Lox

lox/lox.java
in runFile()

If the user is running the REPL, we don’t
care about tracking runtime errors. After
they are reported, we simply loop around
and let them input new code and keep
going.

108 cHAPTeR 7 : eVAluATIng exPRessIons

public class Lox {
 private static final Interpreter interpreter = new Interpreter();
 static boolean hadError = false;

We make the field static so that successive calls to run() inside a REPL session
reuse the same interpreter. That doesn’t make a difference now, but it will lat-
er when the interpreter stores global variables. Those variables should persist
throughout the REPL session.

Finally, we remove the line of temporary code from the last chapter for print-
ing the syntax tree and replace it with this:

 // Stop if there was a syntax error.
 if (hadError) return;

 interpreter.interpret(expression);
 }

We have an entire language pipeline now: scanning, parsing, and execution.
Congratulations, you now have your very own arithmetic calculator.

As you can see, the interpreter is pretty bare bones. But the Interpreter class
and the Visitor pattern we’ve set up today form the skeleton that later chapters
will stuff full of interesting guts—variables, functions, etc. Right now, the inter-
preter doesn’t do very much, but it’s alive!

lox/lox.java
in class Lox

lox/lox.java
in run()

replace 1 line

cHAllenges 109

CHaLLENGES

1. Allowing comparisons on types other than numbers could be useful. The op-
erators might have a reasonable interpretation for strings. Even comparisons
among mixed types, like 3 < "pancake" could be handy to enable things like
ordered collections of heterogeneous types. Or it could simply lead to bugs and
confusion.

Would you extend Lox to support comparing other types? If so, which pairs
of types do you allow and how do you define their ordering? Justify your choices
and compare them to other languages.

2. Many languages define + such that if either operand is a string, the other
is converted to a string and the results are then concatenated. For example,
"scone" + 4 would yield scone4. Extend the code in visitBinaryExpr()
to support that.

3. What happens right now if you divide a number by zero? What do you think
should happen? Justify your choice. How do other languages you know handle
division by zero, and why do they make the choices they do?

Change the implementation in visitBinaryExpr() to detect and report
a runtime error for this case.

110 cHAPTeR 7 : eVAluATIng exPRessIons

DESIGN NOtE: StatIC aND DYNaMIC tYPING

Some languages, like Java, are statically typed which means type errors are detected
and reported at compile time before any code is run. Others, like Lox, are dynamically
typed and defer checking for type errors until runtime right before an operation is
attempted. We tend to consider this a black-and-white choice, but there is actually a
continuum between them.

It turns out even most statically typed languages do some type checks at runtime.
The type system checks most type rules statically, but inserts runtime checks in the
generated code for other operations.

For example, in Java, the static type system assumes a cast expression will always
safely succeed. After you cast some value, you can statically treat it as the destination
type and not get any compile errors. But downcasts can fail, obviously. The only reason
the static checker can presume that casts always succeed without violating the lan-
guage’s soundness guarantees, is because the cast is checked at runtime and throws
an exception on failure.

A more subtle example is covariant arrays in Java and C#. The static subtyping rules
for arrays allow operations that are not sound. Consider:

Object[] stuff = new Integer[1];
stuff[0] = "not an int!";

This code compiles without any errors. The first line upcasts the Integer array and
stores it in a variable of type Object array. The second line stores a string in one of its
cells. The Object array type statically allows that—strings are Objects—but the actual
Integer array that stuff refers to at runtime should never have a string in it! To avoid
that catastrophe, when you store a value in an array, the JVM does a runtime check to
make sure it’s an allowed type. If not, it throws an ArrayStoreException.

Java could have avoided the need to check this at runtime by disallowing the cast
on the first line. It could make arrays invariant such that an array of Integers is not an
array of Objects. That’s statically sound, but it prohibits common and safe patterns
of code that only read from arrays. Covariance is safe if you never write to the array.
Those patterns were particularly important for usability in Java 1.0 before it supported
generics. James Gosling and the other Java designers traded off a little static safety
and performance—those array store checks take time—in return for some flexibility.

There are few modern statically typed languages that don’t make that trade-off
somewhere. Even Haskell will let you run code with non-exhaustive matches. If you
find yourself designing a statically typed language, keep in mind that you can some-
times give users more flexibility without sacrificing too many of the benefits of static
safety by deferring some type checks until runtime.

On the other hand, a key reason users choose statically typed languages is because
of the confidence the language gives them that certain kinds of errors can never occur
when their program is run. Defer too many type checks until runtime, and you erode
that confidence.

A TRee-WAlk InTeRPReTeR 8Statements and State

“All my life, my heart has yearned for a thing I cannot name.”

— André Breton, Mad Love

The interpreter we have so far feels less like programming a real language and
more like punching buttons on a calculator. “Programming” to me means build-
ing up a system out of smaller pieces. We can’t do that yet because we have no
way to bind a name to some data or function. We can’t compose software without
a way to refer to the pieces.

To support bindings, our interpreter needs internal state. When you define
a variable at the beginning of the program and use it at the end, the interpreter
has to hold on to the value of that variable in the meantime. So in this chapter,
we will give our interpreter a brain that can not just process, but remember.

112 cHAPTeR 8 : sTATemenTs And sTATe

State and statements go hand in hand. Since statements, by definition, don’t
evaluate to a value, they need to do something else to be useful. That something
is called a side effect. It could mean producing user-visible output or modifying
some state in the interpreter that can be detected later. The latter makes them a
great fit for defining variables or other named entities.

In this chapter, we’ll do all of that. We’ll define statements that produce out-
put (print) and create state (var). We’ll add expressions to access and assign
to variables. Finally, we’ll add blocks and local scope. That’s a lot to stuff into one
chapter, but we’ll chew through it all one bite at a time.

8.1 Statements
We start by extending Lox’s grammar with statements. They aren’t very different
from expressions. We start with the two simplest kinds:

1. An expression statement lets you place an expression where a statement is
expected. They exist to evaluate expressions that have side effects. You may
not notice them, but you use them all the time in C, Java, and other languages.
Any time you see a function or method call followed by a ;, you’re looking at
an expression statement.

2. A print statement evaluates an expression and displays the result to the
user. I admit it’s weird to bake printing right into the language instead of
making it a library function. Doing so is a concession to the fact that we’re
building this interpreter one chapter at a time and want to be able to play
with it before it’s all done. To make print a library function, we’d have to wait
until we had all of the machinery for defining and calling functions before we
could witness any side effects.

New syntax means new grammar rules. In this chapter, we finally gain the abil-
ity to parse an entire Lox script. Since Lox is imperative and dynamically typed,
the “top level” of a script is simply a list of statements. The new rules are:

program → statement* EOF ;

statement → exprStmt
 | printStmt ;

exprStmt → expression ";" ;
printStmt → "print" expression ";" ;

The first rule is now program, which is the starting point for the grammar and
represents a complete Lox script or REPL entry. A program is a list of statements
followed by the special “end of file” token. The mandatory end token ensures the
parser consumes the entire input and doesn’t silently ignore erroneous uncon-
sumed tokens at the end of a script.

Right now, statement only has two cases for the two kinds of statements
we’ve described. We’ll fill in more later in this chapter and in the following ones.
The next step is turning this grammar into something we can store in memory—
syntax trees.

You could make a language that treats
variable declarations as expressions that
both create a binding and produce a value.
The only language I know that does that
is Tcl. Scheme seems like a contender,
but note that after a let expression
is evaluated, the variable it bound is
forgotten. The define syntax is not an
expression.

Pascal is an outlier. It distinguishes be-
tween procedures and functions. Functions
return values, but procedures cannot.
There is a statement form for calling a
procedure, but functions can only be
called where an expression is expected.
There are no expression statements in
Pascal.

I will note with only a modicum of
defensiveness that BASIC and Python
have dedicated print statements and
they are real languages. Granted, Python
did remove their print statement in
3.0 . . . 

8.1 sTATemenTs 113

8.1.1 Statement syntax trees

There is no place in the grammar where both an expression and a statement are
allowed. The operands of, say, + are always expressions, never statements. The
body of a while loop is always a statement.

Since the two syntaxes are disjoint, we don’t need a single base class that they
all inherit from. Splitting expressions and statements into separate class hier-
archies enables the Java compiler to help us find dumb mistakes like passing a
statement to a Java method that expects an expression.

That means a new base class for statements. As our elders did before us, we
will use the cryptic name “Stmt”. With great foresight, I have designed our little
AST metaprogramming script in anticipation of this. That’s why we passed in
“Expr” as a parameter to defineAst(). Now we add another call to define Stmt
and its subclasses.

 "Unary : Token operator, Expr right"
));

 defineAst(outputDir, "Stmt", Arrays.asList(
 "Expression : Expr expression",
 "Print : Expr expression"
));
 }

Run the AST generator script and behold the resulting “Stmt.java” file with the
syntax tree classes we need for expression and print statements. Don’t forget
to add the file to your IDE project or makefile or whatever.

8.1.2 Parsing statements

The parser’s parse() method that parses and returns a single expression was a
temporary hack to get the last chapter up and running. Now that our grammar
has the correct starting rule, program, we can turn parse() into the real deal.

 List<Stmt> parse() {
 List<Stmt> statements = new ArrayList<>();
 while (!isAtEnd()) {
 statements.add(statement());
 }

 return statements;
 }

This parses a series of statements, as many as it can find until it hits the end of
the input. This is a pretty direct translation of the program rule into recursive
descent style. We must also chant a minor prayer to the Java verbosity gods since
we are using ArrayList now.

Not really foresight: I wrote all the
code for the book before I sliced it into
chapters.

tool/generateAst.java
in main()

lox/Parser.java
method parse()
replace 7 lines

What about the code we had in here for
catching ParseError exceptions?
We’ll put better parse error handling
in place soon when we add support for
additional statement types.

114 cHAPTeR 8 : sTATemenTs And sTATe

package com.craftinginterpreters.lox;

import java.util.ArrayList;
import java.util.List;

A program is a list of statements, and we parse one of those statements using
this method:

 private Stmt statement() {
 if (match(PRINT)) return printStatement();

 return expressionStatement();
 }

A little bare bones, but we’ll fill it in with more statement types later. We deter-
mine which specific statement rule is matched by looking at the current token.
A print token means it’s obviously a print statement.

If the next token doesn’t look like any known kind of statement, we assume it
must be an expression statement. That’s the typical final fallthrough case when
parsing a statement, since it’s hard to proactively recognize an expression from
its first token.

Each statement kind gets its own method. First print:

 private Stmt printStatement() {
 Expr value = expression();
 consume(SEMICOLON, "Expect ';' after value.");
 return new Stmt.Print(value);
 }

Since we already matched and consumed the print token itself, we don’t need
to do that here. We parse the subsequent expression, consume the terminating
semicolon, and emit the syntax tree.

If we didn’t match a print statement, we must have one of these:

 private Stmt expressionStatement() {
 Expr expr = expression();
 consume(SEMICOLON, "Expect ';' after expression.");
 return new Stmt.Expression(expr);
 }

Similar to the previous method, we parse an expression followed by a semicolon.
We wrap that Expr in a Stmt of the right type and return it.

8.1.3 Executing statements

We’re running through the previous couple of chapters in microcosm, working
our way through the front end. Our parser can now produce statement syntax
trees, so the next and final step is to interpret them. As in expressions, we use
the Visitor pattern, but we have a new visitor interface, Stmt.Visitor, to imple-
ment since statements have their own base class.

We add that to the list of interfaces Interpreter implements.

lox/Parser.java

lox/Parser.java
add after expression()

lox/Parser.java
add after statement()

lox/Parser.java
add after printStatement()

8.1.3 execuTIng sTATemenTs 115

class Interpreter implements Expr.Visitor<Object>,
 Stmt.Visitor<Void> {
 void interpret(Expr expression) {

Unlike expressions, statements produce no values, so the return type of the visit
methods is Void, not Object. We have two statement types, and we need a visit
method for each. The easiest is expression statements.

 @Override
 public Void visitExpressionStmt(Stmt.Expression stmt) {
 evaluate(stmt.expression);
 return null;
 }

We evaluate the inner expression using our existing evaluate() method and
discard the value. Then we return null. Java requires that to satisfy the special
capitalized Void return type. Weird, but what can you do?

The print statement’s visit method isn’t much different.

 @Override
 public Void visitPrintStmt(Stmt.Print stmt) {
 Object value = evaluate(stmt.expression);
 System.out.println(stringify(value));
 return null;
 }

Before discarding the expression’s value, we convert it to a string using the
stringify() method we introduced in the last chapter and then dump it to
stdout.

Our interpreter is able to visit statements now, but we have some work to do
to feed them to it. First, modify the old interpret() method in the Interpreter
class to accept a list of statements—in other words, a program.

 void interpret(List<Stmt> statements) {
 try {
 for (Stmt statement : statements) {
 execute(statement);
 }
 } catch (RuntimeError error) {
 Lox.runtimeError(error);
 }
 }

This replaces the old code which took a single expression. The new code relies on
this tiny helper method:

 private void execute(Stmt stmt) {
 stmt.accept(this);
 }

That’s the statement analogue to the evaluate() method we have for expres-
sions. Since we’re working with lists now, we need to let Java know.

lox/Interpreter.java
replace 1 line

Java doesn’t let you use lowercase “void”
as a generic type argument for obscure
reasons having to do with type erasure
and the stack. Instead, there is a separate
“Void” type specifically for this use. Sort
of a “boxed void”, like “Integer” is for “int”.

lox/Interpreter.java
add after evaluate()

Appropriately enough, we discard the
value returned by evaluate() by
placing that call inside a Java expression
statement.

lox/Interpreter.java
add after visitExpressionStmt()

lox/Interpreter.java
method interpret()
replace 8 lines

lox/Interpreter.java
add after evaluate()

116 cHAPTeR 8 : sTATemenTs And sTATe

package com.craftinginterpreters.lox;

import java.util.List;

class Interpreter implements Expr.Visitor<Object>,

The main Lox class is still trying to parse a single expression and pass it to the
interpreter. We fix the parsing line like so:

 Parser parser = new Parser(tokens);
 List<Stmt> statements = parser.parse();

 // Stop if there was a syntax error.

And then replace the call to the interpreter with this:

 if (hadError) return;

 interpreter.interpret(statements);
 }

Basically just plumbing the new syntax through. OK, fire up the interpreter and
give it a try. At this point, it’s worth sketching out a little Lox program in a text
file to run as a script. Something like:

print "one";
print true;
print 2 + 1;

It almost looks like a real program! Note that the REPL, too, now requires you to
enter a statement instead of a simple expression. Don’t forget your semicolons.

8.2 Global Variables
Now that we have statements, we can start working on state. Before we get into
all of the complexity of lexical scoping, we’ll start off with the easiest kind of
variables—globals. We need two new constructs.

1. A variable declaration statement brings a new variable into the world.

var beverage = "espresso";

This creates a new binding that associates a name (here “beverage”) with a
value (here, the string "espresso").

2. Once that’s done, a variable expression accesses that binding. When the
identifier “beverage” is used as an expression, it looks up the value bound to
that name and returns it.

print beverage; // "espresso".

lox/Interpreter.java

lox/lox.java
in run()

replace 1 line

lox/lox.java
in run()

replace 1 line

Global state gets a bad rap. Sure, lots
of global state—especially mutable
state—makes it hard to maintain large
programs. It’s good software engineering
to minimize how much you use.

But when you’re slapping together a
simple programming language or, heck,
even learning your first language, the flat
simplicity of global variables helps. My
first language was BASIC and, though I
outgrew it eventually, it was nice that
I didn’t have to wrap my head around
scoping rules before I could make a
computer do fun stuff.

8.2 globAl VARIAbles 117

Later, we’ll add assignment and block scope, but that’s enough to get moving.

8.2.1 Variable syntax

As before, we’ll work through the implementation from front to back, starting
with the syntax. Variable declarations are statements, but they are different
from other statements, and we’re going to split the statement grammar in two to
handle them. That’s because the grammar restricts where some kinds of state-
ments are allowed.

The clauses in control flow statements—think the then and else branches of
an if statement or the body of a while—are each a single statement. But that
statement is not allowed to be one that declares a name. This is OK:

if (monday) print "Ugh, already?";

But this is not:

if (monday) var beverage = "espresso";

We could allow the latter, but it’s confusing. What is the scope of that beverage
variable? Does it persist after the if statement? If so, what is its value on days
other than Monday? Does the variable exist at all on those days?

Code like this is weird, so C, Java, and friends all disallow it. It’s as if there
are two levels of “precedence” for statements. Some places where a statement
is allowed—like inside a block or at the top level—allow any kind of statement,
including declarations. Others allow only the “higher” precedence statements
that don’t declare names.

To accommodate the distinction, we add another rule for kinds of statements
that declare names.

program → declaration* EOF ;

declaration → varDecl
 | statement ;

statement → exprStmt
 | printStmt ;

Declaration statements go under the new declaration rule. Right now, it’s only
variables, but later it will include functions and classes. Any place where a dec-
laration is allowed also allows non-declaring statements, so the declaration
rule falls through to statement. Obviously, you can declare stuff at the top level
of a script, so program routes to the new rule.

The rule for declaring a variable looks like:

varDecl → "var" IDENTIFIER ("=" expression)? ";" ;

Like most statements, it starts with a leading keyword. In this case, var. Then
an identifier token for the name of the variable being declared, followed by an
optional initializer expression. Finally, we put a bow on it with the semicolon.

To access a variable, we define a new kind of primary expression.

In this analogy, block statements
work sort of like parentheses do for
expressions. A block is itself in the
“higher” precedence level and can be used
anywhere, like in the clauses of an if
statement. But the statements it contains
can be lower precedence. You’re allowed
to declare variables and other names
inside the block. The curlies let you escape
back into the full statement grammar
from a place where only some statements
are allowed.

118 cHAPTeR 8 : sTATemenTs And sTATe

primary → "true" | "false" | "nil"
 | NUMBER | STRING
 | "(" expression ")"
 | IDENTIFIER ;

That IDENTIFIER clause matches a single identifier token, which is understood
to be the name of the variable being accessed.

These new grammar rules get their corresponding syntax trees. Over in the
AST generator, we add a new statement node for a variable declaration.

 "Expression : Expr expression",
 "Var : Token name, Expr initializer"
));

It stores the name token so we know what it’s declaring, along with the initializ-
er expression. (If there isn’t an initializer, that field is null.)

Then we add an expression node for accessing a variable.

 "Literal : Object value",
 "Variable : Token name"
));

It’s simply a wrapper around the token for the variable name. That’s it. As always,
don’t forget to run the AST generator script so that you get updated “Expr.java”
and “Stmt.java” files.

8.2.2 Parsing variables

Before we parse variable statements, we need to shift around some code to make
room for the new declaration rule in the grammar. The top level of a program
is now a list of declarations, so the entrypoint method to the parser changes.

 List<Stmt> parse() {
 List<Stmt> statements = new ArrayList<>();
 while (!isAtEnd()) {
 statements.add(declaration());
 }
 return statements;
 }

That calls this new method:

 private Stmt declaration() {
 try {
 if (match(VAR)) return varDeclaration();
 return statement();
 } catch (ParseError error) {
 synchronize();
 return null;
 }
 }

tool/generateAst.java
in main()

add “,” to previous line

tool/generateAst.java
in main()

add “,” to previous line

lox/Parser.java
in parse()

replace 1 line

lox/Parser.java
add after expression()

8.2.2 PARsIng VARIAbles 119

Hey, do you remember way back in that earlier chapter when we put the infra-
structure in place to do error recovery? We are finally ready to hook that up.

This declaration() method is the method we call repeatedly when parsing
a series of statements in a block or a script, so it’s the right place to synchro-
nize when the parser goes into panic mode. The whole body of this method is
wrapped in a try block to catch the exception thrown when the parser begins
error recovery. This gets it back to trying to parse the beginning of the next
statement or declaration.

The real parsing happens inside the try block. First, it looks to see if we’re
at a variable declaration by looking for the leading var keyword. If not, it falls
through to the existing statement() method that parses print and expres-
sion statements.

Remember how statement() tries to parse an expression statement if no
other statement matches? And expression() reports a syntax error if it can’t
parse an expression at the current token? That chain of calls ensures we report
an error if a valid declaration or statement isn’t parsed.

When the parser matches a var token, it branches to:

 private Stmt varDeclaration() {
 Token name = consume(IDENTIFIER, "Expect variable name.");

 Expr initializer = null;
 if (match(EQUAL)) {
 initializer = expression();
 }

 consume(SEMICOLON, "Expect ';' after variable declaration.");
 return new Stmt.Var(name, initializer);
 }

As always, the recursive descent code follows the grammar rule. The parser has
already matched the var token, so next it requires and consumes an identifier
token for the variable name.

Then, if it sees an = token, it knows there is an initializer expression and pars-
es it. Otherwise, it leaves the initializer null. Finally, it consumes the required
semicolon at the end of the statement. All this gets wrapped in a Stmt.Var syntax
tree node and we’re groovy.

Parsing a variable expression is even easier. In primary(), we look for an
identifier token.

 return new Expr.Literal(previous().literal);
 }

 if (match(IDENTIFIER)) {
 return new Expr.Variable(previous());
 }

 if (match(LEFT_PAREN)) {

That gives us a working front end for declaring and using variables. All that’s
left is to feed it into the interpreter. Before we get to that, we need to talk about
where variables live in memory.

lox/Parser.java
add after printStatement()

lox/Parser.java
in primary()

120 cHAPTeR 8 : sTATemenTs And sTATe

8.3 Environments
The bindings that associate variables to values need to be stored somewhere.
Ever since the Lisp folks invented parentheses, this data structure has been
called an environment.

You can think of it like a map where the keys are variable names and the values
are the variable’s, uh, values. In fact, that’s how we’ll implement it in Java. We
could stuff that map and the code to manage it right into Interpreter, but since it
forms a nicely delineated concept, we’ll pull it out into its own class.

Start a new file and add:

package com.craftinginterpreters.lox;

import java.util.HashMap;
import java.util.Map;

class Environment {
 private final Map<String, Object> values = new HashMap<>();
}

There’s a Java Map in there to store the bindings. It uses bare strings for the keys,
not tokens. A token represents a unit of code at a specific place in the source text,
but when it comes to looking up variables, all identifier tokens with the same
name should refer to the same variable (ignoring scope for now). Using the raw
string ensures all of those tokens refer to the same map key.

There are two operations we need to support. First, a variable definition binds
a new name to a value.

 void define(String name, Object value) {
 values.put(name, value);
 }

Not exactly brain surgery, but we have made one interesting semantic choice.
When we add the key to the map, we don’t check to see if it’s already present.
That means that this program works:

var a = "before";
print a; // "before".
var a = "after";
print a; // "after".

A variable statement doesn’t just define a new variable, it can also be used to
redefine an existing variable. We could choose to make this an error instead. The
user may not intend to redefine an existing variable. (If they did mean to, they

I like to imagine the environment literally,
as a sylvan wonderland where variables
and values frolic.

Java calls them maps or hashmaps. Other
languages call them hash tables, dictio-
naries (Python and C#), hashes (Ruby and
Perl), tables (Lua), or associative arrays
(PHP). Way back when, they were known
as scatter tables.

lox/environment.java
create new file

lox/environment.java
in class Environment

8.3 enVIRonmenTs 121

probably would have used assignment, not var.) Making redefinition an error
would help them find that bug.

However, doing so interacts poorly with the REPL. In the middle of a REPL
session, it’s nice to not have to mentally track which variables you’ve already de-
fined. We could allow redefinition in the REPL but not in scripts, but then users
would have to learn two sets of rules, and code copied and pasted from one form
to the other might not work.

So, to keep the two modes consistent, we’ll allow it—at least for global vari-
ables. Once a variable exists, we need a way to look it up.

class Environment {
 private final Map<String, Object> values = new HashMap<>();

 Object get(Token name) {
 if (values.containsKey(name.lexeme)) {
 return values.get(name.lexeme);
 }

 throw new RuntimeError(name,
 "Undefined variable '" + name.lexeme + "'.");
 }

This is a little more semantically interesting. If the variable is found, it simply
returns the value bound to it. But what if it’s not? Again, we have a choice:

• Make it a syntax error.

• Make it a runtime error.

• Allow it and return some default value like nil.

Lox is pretty lax, but the last option is a little too permissive to me. Making it a
syntax error—a compile-time error—seems like a smart choice. Using an unde-
fined variable is a bug, and the sooner you detect the mistake, the better.

The problem is that using a variable isn’t the same as referring to it. You can
refer to a variable in a chunk of code without immediately evaluating it if that
chunk of code is wrapped inside a function. If we make it a static error to mention
a variable before it’s been declared, it becomes much harder to define recursive
functions.

We could accommodate single recursion—a function that calls itself—by
declaring the function’s own name before we examine its body. But that doesn’t
help with mutually recursive procedures that call each other. Consider:

fun isOdd(n) {
 if (n == 0) return false;
 return isEven(n - 1);
}

fun isEven(n) {
 if (n == 0) return true;
 return isOdd(n - 1);
}

My rule about variables and scoping is,
“When in doubt, do what Scheme does”.
The Scheme folks have probably spent
more time thinking about variable scope
than we ever will—one of the main
goals of Scheme was to introduce lexical
scoping to the world—so it’s hard to go
wrong if you follow in their footsteps.

Scheme allows redefining variables at
the top level.

lox/environment.java
in class Environment

Granted, this is probably not the most
efficient way to tell if a number is even
or odd (not to mention the bad things
that happen if you pass a non-integer or
negative number to them). Bear with me.

122 cHAPTeR 8 : sTATemenTs And sTATe

The isEven() function isn’t defined by the time we are looking at the body
of isOdd() where it’s called. If we swap the order of the two functions, then
isOdd() isn’t defined when we’re looking at isEven()’s body.

Since making it a static error makes recursive declarations too difficult, we’ll
defer the error to runtime. It’s OK to refer to a variable before it’s defined as
long as you don’t evaluate the reference. That lets the program for even and odd
numbers work, but you’d get a runtime error in:

print a;
var a = "too late!";

As with type errors in the expression evaluation code, we report a runtime error
by throwing an exception. The exception contains the variable’s token so we can
tell the user where in their code they messed up.

8.3.1 Interpreting global variables

The Interpreter class gets an instance of the new Environment class.

class Interpreter implements Expr.Visitor<Object>,
 Stmt.Visitor<Void> {
 private Environment environment = new Environment();

 void interpret(List<Stmt> statements) {

We store it as a field directly in Interpreter so that the variables stay in memory
as long as the interpreter is still running.

We have two new syntax trees, so that’s two new visit methods. The first is for
declaration statements.

 @Override
 public Void visitVarStmt(Stmt.Var stmt) {
 Object value = null;
 if (stmt.initializer != null) {
 value = evaluate(stmt.initializer);
 }

 environment.define(stmt.name.lexeme, value);
 return null;
 }

If the variable has an initializer, we evaluate it. If not, we have another choice
to make. We could have made this a syntax error in the parser by requiring an
initializer. Most languages don’t, though, so it feels a little harsh to do so in Lox.

We could make it a runtime error. We’d let you define an uninitialized vari-
able, but if you accessed it before assigning to it, a runtime error would occur.
It’s not a bad idea, but most dynamically typed languages don’t do that. Instead,
we’ll keep it simple and say that Lox sets a variable to nil if it isn’t explicitly
initialized.

Some statically typed languages like Java
and C# solve this by specifying that the
top level of a program isn’t a sequence of
imperative statements. Instead, a program
is a set of declarations which all come into
being simultaneously. The implementation
declares all of the names before looking at
the bodies of any of the functions.

Older languages like C and Pascal
don’t work like this. Instead, they force
you to add explicit forward declarations
to declare a name before it’s fully
defined. That was a concession to the
limited computing power at the time. They
wanted to be able to compile a source
file in one single pass through the text, so
those compilers couldn’t gather up all of
the declarations first before processing
function bodies.

lox/Interpreter.java
in class Interpreter

lox/Interpreter.java
add after visitPrintStmt()

8.3.1 InTeRPReTIng globAl VARIAbles 123

var a;
print a; // "nil".

Thus, if there isn’t an initializer, we set the value to null, which is the Java rep-
resentation of Lox’s nil value. Then we tell the environment to bind the variable
to that value.

Next, we evaluate a variable expression.

 @Override
 public Object visitVariableExpr(Expr.Variable expr) {
 return environment.get(expr.name);
 }

This simply forwards to the environment which does the heavy lifting to make
sure the variable is defined. With that, we’ve got rudimentary variables work-
ing. Try this out:

var a = 1;
var b = 2;
print a + b;

We can’t reuse code yet, but we can start to build up programs that reuse data.

8.4 assignment
It’s possible to create a language that has variables but does not let you reas-
sign—or mutate—them. Haskell is one example. SML supports only mutable
references and arrays—variables cannot be reassigned. Rust steers you away
from mutation by requiring a mut modifier to enable assignment.

Mutating a variable is a side effect and, as the name suggests, some language
folks think side effects are dirty or inelegant. Code should be pure math that
produces values—crystalline, unchanging ones—like an act of divine creation.
Not some grubby automaton that beats blobs of data into shape, one imperative
grunt at a time.

Lox is not so austere. Lox is an imperative language, and mutation comes with
the territory. Adding support for assignment doesn’t require much work. Global
variables already support redefinition, so most of the machinery is there now.
Mainly, we’re missing an explicit assignment notation.

8.4.1 Assignment syntax

That little = syntax is more complex than it might seem. Like most C-derived lan-
guages, assignment is an expression and not a statement. As in C, it is the lowest
precedence expression form. That means the rule slots between expression
and equality (the next lowest precedence expression).

expression → assignment ;
assignment → IDENTIFIER "=" assignment
 | equality ;

lox/Interpreter.java
add after visitUnaryExpr()

I find it delightful that the same group
of people who pride themselves on
dispassionate logic are also the ones who
can’t resist emotionally loaded terms for
their work: “pure”, “side effect”, “lazy”,
“persistent”, “first-class”, “higher-order”.

In some other languages, like Pascal,
Python, and Go, assignment is a
statement.

124 cHAPTeR 8 : sTATemenTs And sTATe

This says an assignment is either an identifier followed by an = and an ex-
pression for the value, or an equality (and thus any other) expression. Later,
assignment will get more complex when we add property setters on objects,
like:

instance.field = "value";

The easy part is adding the new syntax tree node.

 defineAst(outputDir, "Expr", Arrays.asList(
 "Assign : Token name, Expr value",
 "Binary : Expr left, Token operator, Expr right",

It has a token for the variable being assigned to, and an expression for the new
value. After you run the AstGenerator to get the new Expr.Assign class, swap out
the body of the parser’s existing expression() method to match the updated
rule.

 private Expr expression() {
 return assignment();
 }

Here is where it gets tricky. A single token lookahead recursive descent parser
can’t see far enough to tell that it’s parsing an assignment until after it has gone
through the left-hand side and stumbled onto the =. You might wonder why it
even needs to. After all, we don’t know we’re parsing a + expression until after
we’ve finished parsing the left operand.

The difference is that the left-hand side of an assignment isn’t an expression
that evaluates to a value. It’s a sort of pseudo-expression that evaluates to a
“thing” you can assign to. Consider:

var a = "before";
a = "value";

On the second line, we don’t evaluate a (which would return the string “before”).
We figure out what variable a refers to so we know where to store the right-hand
side expression’s value. The classic terms for these two constructs are l-value
and r-value. All of the expressions that we’ve seen so far that produce values
are r-values. An l-value “evaluates” to a storage location that you can assign into.

We want the syntax tree to reflect that an l-value isn’t evaluated like a normal
expression. That’s why the Expr.Assign node has a Token for the left-hand side,
not an Expr. The problem is that the parser doesn’t know it’s parsing an l-value
until it hits the =. In a complex l-value, that may occur many tokens later.

makeList().head.next = node;

We have only a single token of lookahead, so what do we do? We use a little trick,
and it looks like this:

tool/generateAst.java
in main()

lox/Parser.java
in expression()

replace 1 line

In fact, the names come from assignment
expressions: l-values appear on the
left side of the = in an assignment, and
r-values on the right.

Since the receiver of a field assignment
can be any expression, and expressions
can be as long as you want to make them,
it may take an unbounded number of
tokens of lookahead to find the =.

8.4.1 AssIgnmenT synTAx 125

 private Expr assignment() {
 Expr expr = equality();

 if (match(EQUAL)) {
 Token equals = previous();
 Expr value = assignment();

 if (expr instanceof Expr.Variable) {
 Token name = ((Expr.Variable)expr).name;
 return new Expr.Assign(name, value);
 }

 error(equals, "Invalid assignment target.");
 }

 return expr;
 }

Most of the code for parsing an assignment expression looks similar to that of
the other binary operators like +. We parse the left-hand side, which can be any
expression of higher precedence. If we find an =, we parse the right-hand side
and then wrap it all up in an assignment expression tree node.

One slight difference from binary operators is that we don’t loop to build up a
sequence of the same operator. Since assignment is right-associative, we instead
recursively call assignment() to parse the right-hand side.

The trick is that right before we create the assignment expression node, we
look at the left-hand side expression and figure out what kind of assignment tar-
get it is. We convert the r-value expression node into an l-value representation.

This conversion works because it turns out that every valid assignment target
happens to also be valid syntax as a normal expression. Consider a complex field
assignment like:

newPoint(x + 2, 0).y = 3;

The left-hand side of that assignment could also work as a valid expression.

newPoint(x + 2, 0).y;

The first example sets the field, the second gets it.
This means we can parse the left-hand side as if it were an expression and then

after the fact produce a syntax tree that turns it into an assignment target. If the
left-hand side expression isn’t a valid assignment target, we fail with a syntax
error. That ensures we report an error on code like this:

a + b = c;

Right now, the only valid target is a simple variable expression, but we’ll add
fields later. The end result of this trick is an assignment expression tree node
that knows what it is assigning to and has an expression subtree for the value
being assigned. All with only a single token of lookahead and no backtracking.

lox/Parser.java
add after expressionStatement()

We report an error if the left-hand side
isn’t a valid assignment target, but we
don’t throw it because the parser isn’t in a
confused state where we need to go into
panic mode and synchronize.

You can still use this trick even if there
are assignment targets that are not valid
expressions. Define a cover grammar,
a looser grammar that accepts all of the
valid expression and assignment target
syntaxes. When you hit an =, report an
error if the left-hand side isn’t within
the valid assignment target grammar.
Conversely, if you don’t hit an =, report
an error if the left-hand side isn’t a valid
expression.

Way back in the parsing chapter, I said we
represent parenthesized expressions in
the syntax tree because we’ll need them
later. This is why. We need to be able to
distinguish these cases:

a = 3; // OK.
(a) = 3; // Error.

126 cHAPTeR 8 : sTATemenTs And sTATe

8.4.2 Assignment semantics

We have a new syntax tree node, so our interpreter gets a new visit method.

 @Override
 public Object visitAssignExpr(Expr.Assign expr) {
 Object value = evaluate(expr.value);
 environment.assign(expr.name, value);
 return value;
 }

For obvious reasons, it’s similar to variable declaration. It evaluates the right-
hand side to get the value, then stores it in the named variable. Instead of using
define() on Environment, it calls this new method:

 void assign(Token name, Object value) {
 if (values.containsKey(name.lexeme)) {
 values.put(name.lexeme, value);
 return;
 }

 throw new RuntimeError(name,
 "Undefined variable '" + name.lexeme + "'.");
 }

The key difference between assignment and definition is that assignment is not
allowed to create a new variable. In terms of our implementation, that means it’s
a runtime error if the key doesn’t already exist in the environment’s variable
map.

The last thing the visit() method does is return the assigned value. That’s
because assignment is an expression that can be nested inside other expres-
sions, like so:

var a = 1;
print a = 2; // "2".

Our interpreter can now create, read, and modify variables. It’s about as sophis-
ticated as early BASICs. Global variables are simple, but writing a large program
when any two chunks of code can accidentally step on each other’s state is no
fun. We want local variables, which means it’s time for scope.

8.5 Scope
A scope defines a region where a name maps to a certain entity. Multiple scopes
enable the same name to refer to different things in different contexts. In my
house, “Bob” usually refers to me. But maybe in your town you know a different
Bob. Same name, but different dudes based on where you say it.

Lexical scope (or the less commonly heard static scope) is a specific style
of scoping where the text of the program itself shows where a scope begins and
ends. In Lox, as in most modern languages, variables are lexically scoped. When

lox/environment.java
add after get()

Unlike Python and Ruby, Lox doesn’t do
implicit variable declaration.

Maybe a little better than that. Unlike
some old BASICs, Lox can handle variable
names longer than two characters.

lox/Interpreter.java
add after visitVarStmt()

8.4.2 AssIgnmenT semAnTIcs 127

you see an expression that uses some variable, you can figure out which variable
declaration it refers to just by statically reading the code.

For example:

{
 var a = "first";
 print a; // "first".
}

{
 var a = "second";
 print a; // "second".
}

Here, we have two blocks with a variable a declared in each of them. You and I
can tell just from looking at the code that the use of a in the first print state-
ment refers to the first a, and the second one refers to the second.

This is in contrast to dynamic scope where you don’t know what a name refers
to until you execute the code. Lox doesn’t have dynamically scoped variables, but
methods and fields on objects are dynamically scoped.

class Saxophone {
 play() {
 print "Careless Whisper";
 }
}

class GolfClub {
 play() {
 print "Fore!";
 }
}

fun playIt(thing) {
 thing.play();
}

When playIt() calls thing.play(), we don’t know if we’re about to hear
“Careless Whisper” or “Fore!” It depends on whether you pass a Saxophone or a
GolfClub to the function, and we don’t know that until runtime.

Scope and environments are close cousins. The former is the theoretical
concept, and the latter is the machinery that implements it. As our interpreter
works its way through code, syntax tree nodes that affect scope will change the
environment. In a C-ish syntax like Lox’s, scope is controlled by curly-braced
blocks. (That’s why we call it block scope.)

“Lexical” comes from the Greek “lexikos”
which means “related to words”. When
we use it in programming languages, it
usually means a thing you can figure out
from source code itself without having to
execute anything.

Lexical scope came onto the scene
with ALGOL. Earlier languages were often
dynamically scoped. Computer scientists
back then believed dynamic scope was
faster to execute. Today, thanks to early
Scheme hackers, we know that isn’t true.
If anything, it’s the opposite.

Dynamic scope for variables lives on
in some corners. Emacs Lisp defaults
to dynamic scope for variables. The
binding macro in Clojure provides it.
The widely disliked with statement in
JavaScript turns properties on an object
into dynamically scoped variables.

128 cHAPTeR 8 : sTATemenTs And sTATe

{
 var a = "in block";
}
print a; // Error! No more "a".

The beginning of a block introduces a new local scope, and that scope ends when
execution passes the closing }. Any variables declared inside the block disap-
pear.

8.5.1 Nesting and shadowing

A first cut at implementing block scope might work like this:

1. As we visit each statement inside the block, keep track of any variables de-
clared.

2. After the last statement is executed, tell the environment to delete all of those
variables.

That would work for the previous example. But remember, one motivation for
local scope is encapsulation—a block of code in one corner of the program
shouldn’t interfere with some other block. Check this out:

// How loud?
var volume = 11;

// Silence.
volume = 0;

// Calculate size of 3x4x5 cuboid.
{
 var volume = 3 * 4 * 5;
 print volume;
}

Look at the block where we calculate the volume of the cuboid using a local dec-
laration of volume. After the block exits, the interpreter will delete the global
volume variable. That ain’t right. When we exit the block, we should remove any
variables declared inside the block, but if there is a variable with the same name
declared outside of the block, that’s a different variable. It shouldn’t get touched.

When a local variable has the same name as a variable in an enclosing scope, it
shadows the outer one. Code inside the block can’t see it any more—it is hidden
in the “shadow” cast by the inner one—but it’s still there.

When we enter a new block scope, we need to preserve variables defined in
outer scopes so they are still around when we exit the inner block. We do that
by defining a fresh environment for each block containing only the variables
defined in that scope. When we exit the block, we discard its environment and
restore the previous one.

We also need to handle enclosing variables that are not shadowed.

8.5.1 nesTIng And sHAdoWIng 129

var global = "outside";
{
 var local = "inside";
 print global + local;
}

Here, global lives in the outer global environment and local is defined inside
the block’s environment. In that print statement, both of those variables are
in scope. In order to find them, the interpreter must search not only the current
innermost environment, but also any enclosing ones.

We implement this by chaining the environments together. Each environ-
ment has a reference to the environment of the immediately enclosing scope.
When we look up a variable, we walk that chain from innermost out until we
find the variable. Starting at the inner scope is how we make local variables
shadow outer ones.

Before we add block syntax to the grammar, we’ll beef up our Environment class
with support for this nesting. First, we give each environment a reference to its
enclosing one.

class Environment {
 final Environment enclosing;
 private final Map<String, Object> values = new HashMap<>();

This field needs to be initialized, so we add a couple of constructors.

 Environment() {
 enclosing = null;
 }

 Environment(Environment enclosing) {
 this.enclosing = enclosing;
 }

The no-argument constructor is for the global scope’s environment, which ends
the chain. The other constructor creates a new local scope nested inside the giv-
en outer one.

We don’t have to touch the define() method—a new variable is always
declared in the current innermost scope. But variable lookup and assignment
work with existing variables and they need to walk the chain to find them. First,
lookup:

lox/environment.java
in class Environment

While the interpreter is running, the
environments form a linear list of objects,
but consider the full set of environments
created during the entire execution. An
outer scope may have multiple blocks
nested within it, and each will point to the
outer one, giving a tree-like structure,
though only one path through the tree
exists at a time.

The boring name for this is a
parent-pointer tree, but I much prefer
the evocative cactus stack.

lox/environment.java
in class Environment

130 cHAPTeR 8 : sTATemenTs And sTATe

 return values.get(name.lexeme);
 }

 if (enclosing != null) return enclosing.get(name);

 throw new RuntimeError(name,
 "Undefined variable '" + name.lexeme + "'.");

If the variable isn’t found in this environment, we simply try the enclosing one.
That in turn does the same thing recursively, so this will ultimately walk the
entire chain. If we reach an environment with no enclosing one and still don’t
find the variable, then we give up and report an error as before.

Assignment works the same way.

 values.put(name.lexeme, value);
 return;
 }

 if (enclosing != null) {
 enclosing.assign(name, value);
 return;
 }

 throw new RuntimeError(name,

Again, if the variable isn’t in this environment, it checks the outer one, recur-
sively.

8.5.2 Block syntax and semantics

Now that Environments nest, we’re ready to add blocks to the language. Behold
the grammar:

statement → exprStmt
 | printStmt
 | block ;

block → "{" declaration* "}" ;

A block is a (possibly empty) series of statements or declarations surrounded by
curly braces. A block is itself a statement and can appear anywhere a statement
is allowed. The syntax tree node looks like this:

 defineAst(outputDir, "Stmt", Arrays.asList(
 "Block : List<Stmt> statements",
 "Expression : Expr expression",

It contains the list of statements that are inside the block. Parsing is straightfor-
ward. Like other statements, we detect the beginning of a block by its leading
token—in this case the {. In the statement() method, we add:

lox/environment.java
in get()

It’s likely faster to iteratively walk the
chain, but I think the recursive solution is
prettier. We’ll do something much faster
in clox.

lox/environment.java
in assign()

tool/generateAst.java
in main()

As always, don’t forget to run
“GenerateAst.java”.

8.5.2 block synTAx And semAnTIcs 131

 if (match(PRINT)) return printStatement();
 if (match(LEFT_BRACE)) return new Stmt.Block(block());

 return expressionStatement();

All the real work happens here:

 private List<Stmt> block() {
 List<Stmt> statements = new ArrayList<>();

 while (!check(RIGHT_BRACE) && !isAtEnd()) {
 statements.add(declaration());
 }

 consume(RIGHT_BRACE, "Expect '}' after block.");
 return statements;
 }

We create an empty list and then parse statements and add them to the list until
we reach the end of the block, marked by the closing }. Note that the loop also
has an explicit check for isAtEnd(). We have to be careful to avoid infinite
loops, even when parsing invalid code. If the user forgets a closing }, the parser
needs to not get stuck.

That’s it for syntax. For semantics, we add another visit method to Interpreter.

 @Override
 public Void visitBlockStmt(Stmt.Block stmt) {
 executeBlock(stmt.statements, new Environment(environment));
 return null;
 }

To execute a block, we create a new environment for the block’s scope and pass
it off to this other method:

 void executeBlock(List<Stmt> statements,
 Environment environment) {
 Environment previous = this.environment;
 try {
 this.environment = environment;

 for (Stmt statement : statements) {
 execute(statement);
 }
 } finally {
 this.environment = previous;
 }
 }

This new method executes a list of statements in the context of a given envi-
ronment. Up until now, the environment field in Interpreter always pointed
to the same environment—the global one. Now, that field represents the current
environment. That’s the environment that corresponds to the innermost scope

lox/Parser.java
in statement()

lox/Parser.java
add after expressionStatement()

Having block() return the raw
list of statements and leaving it to
statement() to wrap the list in a
Stmt.Block looks a little odd. I did it that
way because we’ll reuse block() later
for parsing function bodies and we don’t
want that body wrapped in a Stmt.Block.

lox/Interpreter.java
add after execute()

lox/Interpreter.java
add after execute()

Manually changing and restoring a
mutable environment field feels
inelegant. Another classic approach is to
explicitly pass the environment as a pa-
rameter to each visit method. To “change”
the environment, you pass a different
one as you recurse down the tree. You
don’t have to restore the old one, since
the new one lives on the Java stack and is
implicitly discarded when the interpreter
returns from the block’s visit method.

I considered that for jlox, but it’s
kind of tedious and verbose adding an
environment parameter to every single
visit method. To keep the book a little
simpler, I went with the mutable field.

132 cHAPTeR 8 : sTATemenTs And sTATe

containing the code to be executed.
To execute code within a given scope, this method updates the interpreter’s

environment field, visits all of the statements, and then restores the previous
value. As is always good practice in Java, it restores the previous environment
using a finally clause. That way it gets restored even if an exception is thrown.

Surprisingly, that’s all we need to do in order to fully support local variables,
nesting, and shadowing. Go ahead and try this out:

var a = "global a";
var b = "global b";
var c = "global c";
{
 var a = "outer a";
 var b = "outer b";
 {
 var a = "inner a";
 print a;
 print b;
 print c;
 }
 print a;
 print b;
 print c;
}
print a;
print b;
print c;

Our little interpreter can remember things now. We are inching closer to some-
thing resembling a full-featured programming language.

cHAllenges 133

CHaLLENGES

1. The REPL no longer supports entering a single expression and automatically
printing its result value. That’s a drag. Add support to the REPL to let users type
in both statements and expressions. If they enter a statement, execute it. If they
enter an expression, evaluate it and display the result value.

2. Maybe you want Lox to be a little more explicit about variable initialization.
Instead of implicitly initializing variables to nil, make it a runtime error to
access a variable that has not been initialized or assigned to, as in:

// No initializers.
var a;
var b;

a = "assigned";
print a; // OK, was assigned first.

print b; // Error!

3. What does the following program do?

var a = 1;
{
 var a = a + 2;
 print a;
}

What did you expect it to do? Is it what you think it should do? What does analo-
gous code in other languages you are familiar with do? What do you think users
will expect this to do?

134 cHAPTeR 8 : sTATemenTs And sTATe

DESIGN NOtE: IMPLICIt VarIaBLE DECLaratION

Lox has distinct syntax for declaring a new variable and assigning to an existing one.
Some languages collapse those to only assignment syntax. Assigning to a non-existent
variable automatically brings it into being. This is called implicit variable declaration
and exists in Python, Ruby, and CoffeeScript, among others. JavaScript has an explicit
syntax to declare variables, but can also create new variables on assignment. Visual
Basic has an option to enable or disable implicit variables.

When the same syntax can assign or create a variable, each language must decide
what happens when it isn’t clear about which behavior the user intends. In particular,
each language must choose how implicit declaration interacts with shadowing, and
which scope an implicitly declared variable goes into.

• In Python, assignment always creates a variable in the current function’s scope,
even if there is a variable with the same name declared outside of the function.

• Ruby avoids some ambiguity by having different naming rules for local and global
variables. However, blocks in Ruby (which are more like closures than like “blocks”
in C) have their own scope, so it still has the problem. Assignment in Ruby assigns
to an existing variable outside of the current block if there is one with the same
name. Otherwise, it creates a new variable in the current block’s scope.

• CoffeeScript, which takes after Ruby in many ways, is similar. It explicitly disallows
shadowing by saying that assignment always assigns to a variable in an outer scope
if there is one, all the way up to the outermost global scope. Otherwise, it creates
the variable in the current function scope.

• In JavaScript, assignment modifies an existing variable in any enclosing scope, if
found. If not, it implicitly creates a new variable in the global scope.

The main advantage to implicit declaration is simplicity. There’s less syntax and no
“declaration” concept to learn. Users can just start assigning stuff and the language
figures it out.

Older, statically typed languages like C benefit from explicit declaration because
they give the user a place to tell the compiler what type each variable has and how
much storage to allocate for it. In a dynamically typed, garbage-collected language,
that isn’t really necessary, so you can get away with making declarations implicit. It
feels a little more “scripty”, more “you know what I mean”.

But is that a good idea? Implicit declaration has some problems.

• A user may intend to assign to an existing variable, but may have misspelled it.
The interpreter doesn’t know that, so it goes ahead and silently creates some new
variable and the variable the user wanted to assign to still has its old value. This is
particularly heinous in JavaScript where a typo will create a global variable, which
may in turn interfere with other code.

• JS, Ruby, and CoffeeScript use the presence of an existing variable with the same
name—even in an outer scope—to determine whether or not an assignment cre-
ates a new variable or assigns to an existing one. That means adding a new variable
in a surrounding scope can change the meaning of existing code. What was once a
local variable may silently turn into an assignment to that new outer variable.

desIgn noTe: ImPlIcIT VARIAble declARATIon 135

• In Python, you may want to assign to some variable outside of the current function
instead of creating a new variable in the current one, but you can’t.

Over time, the languages I know with implicit variable declaration ended up adding
more features and complexity to deal with these problems.

• Implicit declaration of global variables in JavaScript is universally considered a
mistake today. “Strict mode” disables it and makes it a compile error.

• Python added a global statement to let you explicitly assign to a global variable
from within a function. Later, as functional programming and nested functions
became more popular, they added a similar nonlocal statement to assign to
variables in enclosing functions.

• Ruby extended its block syntax to allow declaring certain variables to be explicitly
local to the block even if the same name exists in an outer scope.

Given those, I think the simplicity argument is mostly lost. There is an argument that
implicit declaration is the right default but I personally find that less compelling.

My opinion is that implicit declaration made sense in years past when most script-
ing languages were heavily imperative and code was pretty flat. As programmers have
gotten more comfortable with deep nesting, functional programming, and closures, it’s
become much more common to want access to variables in outer scopes. That makes
it more likely that users will run into the tricky cases where it’s not clear whether they
intend their assignment to create a new variable or reuse a surrounding one.

So I prefer explicitly declaring variables, which is why Lox requires it.

A TRee-WAlk InTeRPReTeR 9Control Flow

“Logic, like whiskey, loses its beneficial effect when taken in too large
quantities.”

— Edward John Moreton Drax Plunkett, Lord Dunsany

Compared to last chapter’s grueling marathon, today is a lighthearted frolic
through a daisy meadow. But while the work is easy, the reward is surprisingly
large.

Right now, our interpreter is little more than a calculator. A Lox program can
only do a fixed amount of work before completing. To make it run twice as long
you have to make the source code twice as lengthy. We’re about to fix that. In
this chapter, our interpreter takes a big step towards the programming language
major leagues: Turing-completeness.

138 cHAPTeR 9 : conTRol floW

9.1 turing Machines (Briefly)
In the early part of last century, mathematicians stumbled into a series of con-
fusing paradoxes that led them to doubt the stability of the foundation they
had built their work upon. To address that crisis, they went back to square one.
Starting from a handful of axioms, logic, and set theory, they hoped to rebuild
mathematics on top of an impervious foundation.

They wanted to rigorously answer questions like, “Can all true statements be
proven?”, “Can we compute all functions that we can define?”, or even the more
general question, “What do we mean when we claim a function is ‘computable’?”

They presumed the answer to the first two questions would be “yes”. All that
remained was to prove it. It turns out that the answer to both is “no”, and aston-
ishingly, the two questions are deeply intertwined. This is a fascinating corner
of mathematics that touches fundamental questions about what brains are able
to do and how the universe works. I can’t do it justice here.

What I do want to note is that in the process of proving that the answer to
the first two questions is “no”, Alan Turing and Alonzo Church devised a precise
answer to the last question—a definition of what kinds of functions are comput-
able. They each crafted a tiny system with a minimum set of machinery that is
still powerful enough to compute any of a (very) large class of functions.

These are now considered the “computable functions”. Turing’s system is
called a Turing machine. Church’s is the lambda calculus. Both are still widely
used as the basis for models of computation and, in fact, many modern function-
al programming languages use the lambda calculus at their core.

Turing machines have better name recognition—there’s no Hollywood film
about Alonzo Church yet—but the two formalisms are equivalent in power. In
fact, any programming language with some minimal level of expressiveness is
powerful enough to compute any computable function.

You can prove that by writing a simulator for a Turing machine in your lan-
guage. Since Turing proved his machine can compute any computable function,
by extension, that means your language can too. All you need to do is translate
the function into a Turing machine, and then run that on your simulator.

If your language is expressive enough to do that, it’s considered Turing-
complete. Turing machines are pretty dang simple, so it doesn’t take much pow-

The most famous is Russell’s paradox.
Initially, set theory allowed you to define
any sort of set. If you could describe
it in English, it was valid. Naturally,
given mathematicians’ predilection for
self-reference, sets can contain other
sets. So Russell, rascal that he was, came
up with: R is the set of all sets that do not
contain themselves.

Does R contain itself? If it doesn’t,
then according to the second half of the
definition it should. But if it does, then it
no longer meets the definition. Cue mind
exploding.

They proved the answer to the first
question is “no” by showing that the
function that returns the truth value of a
given statement is not a computable one.

Turing called his inventions “a-machines”
for “automatic”. He wasn’t so self-aggran-
dizing as to put his own name on them.
Later mathematicians did that for him.
That’s how you get famous while still
retaining some modesty.

9.1 TuRIng mAcHInes (bRIefly) 139

er to do this. You basically need arithmetic, a little control flow, and the ability
to allocate and use (theoretically) arbitrary amounts of memory. We’ve got the
first. By the end of this chapter, we’ll have the second.

9.2 Conditional Execution
Enough history, let’s jazz up our language. We can divide control flow roughly
into two kinds:

• Conditional or branching control flow is used to not execute some piece of
code. Imperatively, you can think of it as jumping ahead over a region of code.

• Looping control flow executes a chunk of code more than once. It jumps
back so that you can do something again. Since you don’t usually want infinite
loops, it typically has some conditional logic to know when to stop looping as
well.

Branching is simpler, so we’ll start there. C-derived languages have two main
conditional execution features, the if statement and the perspicaciously named
“conditional” operator (?:). An if statement lets you conditionally execute
statements and the conditional operator lets you conditionally execute expres-
sions.

For simplicity’s sake, Lox doesn’t have a conditional operator, so let’s get our
if statement on. Our statement grammar gets a new production.

statement → exprStmt
 | ifStmt
 | printStmt
 | block ;

ifStmt → "if" "(" expression ")" statement
 ("else" statement)? ;

An if statement has an expression for the condition, then a statement to exe-
cute if the condition is truthy. Optionally, it may also have an else keyword and
a statement to execute if the condition is falsey. The syntax tree node has fields
for each of those three pieces.

 "Expression : Expr expression",
 "If : Expr condition, Stmt thenBranch," +
 " Stmt elseBranch",
 "Print : Expr expression",

Like other statements, the parser recognizes an if statement by the leading if
keyword.

 private Stmt statement() {
 if (match(IF)) return ifStatement();
 if (match(PRINT)) return printStatement();

We almost have the third too. You
can create and concatenate strings of
arbitrary size, so you can store unbounded
memory. But we don’t have any way to
access parts of a string.

The conditional operator is also called the
“ternary” operator because it’s the only
operator in C that takes three operands.

The semicolons in the rules aren’t quoted,
which means they are part of the grammar
metasyntax, not Lox’s syntax. A block
does not have a ; at the end and an if
statement doesn’t either, unless the then
or else statement happens to be one that
ends in a semicolon.

tool/generateAst.java
in main()

lox/Parser.java
in statement()

140 cHAPTeR 9 : conTRol floW

When it finds one, it calls this new method to parse the rest:

 private Stmt ifStatement() {
 consume(LEFT_PAREN, "Expect '(' after 'if'.");
 Expr condition = expression();
 consume(RIGHT_PAREN, "Expect ')' after if condition.");

 Stmt thenBranch = statement();
 Stmt elseBranch = null;
 if (match(ELSE)) {
 elseBranch = statement();
 }

 return new Stmt.If(condition, thenBranch, elseBranch);
 }

As usual, the parsing code hews closely to the grammar. It detects an else clause
by looking for the preceding else keyword. If there isn’t one, the elseBranch
field in the syntax tree is null.

That seemingly innocuous optional else has, in fact, opened up an ambiguity
in our grammar. Consider:

if (first) if (second) whenTrue(); else whenFalse();

Here’s the riddle: Which if statement does that else clause belong to? This isn’t
just a theoretical question about how we notate our grammar. It actually affects
how the code executes:

• If we attach the else to the first if statement, then whenFalse() is called if
first is falsey, regardless of what value second has.

• If we attach it to the second if statement, then whenFalse() is only called
if first is truthy and second is falsey.

Since else clauses are optional, and there is no explicit delimiter marking the
end of the if statement, the grammar is ambiguous when you nest ifs in this
way. This classic pitfall of syntax is called the dangling else problem.

It is possible to define a context-free grammar that avoids the ambiguity directly,
but it requires splitting most of the statement rules into pairs, one that allows an
if with an else and one that doesn’t. It’s annoying.

Instead, most languages and parsers avoid the problem in an ad hoc way.
No matter what hack they use to get themselves out of the trouble, they always
choose the same interpretation—the else is bound to the nearest if that pre-
cedes it.

lox/Parser.java
add after statement()

The parentheses around the condition
are only half useful. You need some kind
of delimiter between the condition and
the then statement, otherwise the parser
can’t tell when it has reached the end of
the condition expression. But the opening
parenthesis after if doesn’t do anything
useful. Dennis Ritchie put it there so
he could use) as the ending delimiter
without having unbalanced parentheses.

Other languages like Lua and some
BASICs use a keyword like then as the
ending delimiter and don’t have anything
before the condition. Go and Swift instead
require the statement to be a braced
block. That lets them use the { at the
beginning of the statement to tell when
the condition is done.

Here, formatting highlights the two ways
the else could be parsed. But note that
since whitespace characters are ignored
by the parser, this is only a guide to the
human reader.

9.3 logIcAl oPeRAToRs 141

Our parser conveniently does that already. Since ifStatement() eagerly
looks for an else before returning, the innermost call to a nested series will
claim the else clause for itself before returning to the outer if statements.

Syntax in hand, we are ready to interpret.

 @Override
 public Void visitIfStmt(Stmt.If stmt) {
 if (isTruthy(evaluate(stmt.condition))) {
 execute(stmt.thenBranch);
 } else if (stmt.elseBranch != null) {
 execute(stmt.elseBranch);
 }
 return null;
 }

The interpreter implementation is a thin wrapper around the self-same Java
code. It evaluates the condition. If truthy, it executes the then branch. Otherwise,
if there is an else branch, it executes that.

If you compare this code to how the interpreter handles other syntax we’ve
implemented, the part that makes control flow special is that Java if statement.
Most other syntax trees always evaluate their subtrees. Here, we may not evalu-
ate the then or else statement. If either of those has a side effect, the choice not
to evaluate it becomes user visible.

9.3 Logical Operators
Since we don’t have the conditional operator, you might think we’re done with
branching, but no. Even without the ternary operator, there are two other op-
erators that are technically control flow constructs—the logical operators and
and or.

These aren’t like other binary operators because they short-circuit. If, after
evaluating the left operand, we know what the result of the logical expression
must be, we don’t evaluate the right operand. For example:

false and sideEffect();

For an and expression to evaluate to something truthy, both operands must be
truthy. We can see as soon as we evaluate the left false operand that that isn’t
going to be the case, so there’s no need to evaluate sideEffect() and it gets
skipped.

This is why we didn’t implement the logical operators with the other binary
operators. Now we’re ready. The two new operators are low in the precedence
table. Similar to || and && in C, they each have their own precedence with or
lower than and. We slot them right between assignment and equality.

expression → assignment ;
assignment → IDENTIFIER "=" assignment
 | logic_or ;
logic_or → logic_and ("or" logic_and)* ;
logic_and → equality ("and" equality)* ;

lox/Interpreter.java
add after visitExpressionStmt()

I’ve always wondered why they don’t have
the same precedence, like the various
comparison or equality operators do.

142 cHAPTeR 9 : conTRol floW

Instead of falling back to equality, assignment now cascades to logic_or.
The two new rules, logic_or and logic_and, are similar to other binary op-
erators. Then logic_and calls out to equality for its operands, and we chain
back to the rest of the expression rules.

We could reuse the existing Expr.Binary class for these two new expressions
since they have the same fields. But then visitBinaryExpr() would have to
check to see if the operator is one of the logical operators and use a different
code path to handle the short circuiting. I think it’s cleaner to define a new class
for these operators so that they get their own visit method.

 "Literal : Object value",
 "Logical : Expr left, Token operator, Expr right",
 "Unary : Token operator, Expr right",

To weave the new expressions into the parser, we first change the parsing code
for assignment to call or().

 private Expr assignment() {
 Expr expr = or();

 if (match(EQUAL)) {

The code to parse a series of or expressions mirrors other binary operators.

 private Expr or() {
 Expr expr = and();

 while (match(OR)) {
 Token operator = previous();
 Expr right = and();
 expr = new Expr.Logical(expr, operator, right);
 }

 return expr;
 }

Its operands are the next higher level of precedence, the new and expression.

 private Expr and() {
 Expr expr = equality();

 while (match(AND)) {
 Token operator = previous();
 Expr right = equality();
 expr = new Expr.Logical(expr, operator, right);
 }

 return expr;
 }

That calls equality() for its operands, and with that, the expression parser is
all tied back together again. We’re ready to interpret.

The syntax doesn’t care that they
short-circuit. That’s a semantic concern.

tool/generateAst.java
in main()

lox/Parser.java
in assignment()

replace 1 line

lox/Parser.java
add after assignment()

lox/Parser.java
add after or()

9.4 WHIle looPs 143

 @Override
 public Object visitLogicalExpr(Expr.Logical expr) {
 Object left = evaluate(expr.left);

 if (expr.operator.type == TokenType.OR) {
 if (isTruthy(left)) return left;
 } else {
 if (!isTruthy(left)) return left;
 }

 return evaluate(expr.right);
 }

If you compare this to the earlier chapter’s visitBinaryExpr() method, you
can see the difference. Here, we evaluate the left operand first. We look at its
value to see if we can short-circuit. If not, and only then, do we evaluate the
right operand.

The other interesting piece here is deciding what actual value to return. Since
Lox is dynamically typed, we allow operands of any type and use truthiness to
determine what each operand represents. We apply similar reasoning to the
result. Instead of promising to literally return true or false, a logic operator
merely guarantees it will return a value with appropriate truthiness.

Fortunately, we have values with proper truthiness right at hand—the results
of the operands themselves. So we use those. For example:

print "hi" or 2; // "hi".
print nil or "yes"; // "yes".

On the first line, "hi" is truthy, so the or short-circuits and returns that. On the
second line, nil is falsey, so it evaluates and returns the second operand, "yes".

That covers all of the branching primitives in Lox. We’re ready to jump ahead
to loops. You see what I did there? Jump. Ahead. Get it? See, it’s like a reference
to . . . oh, forget it.

9.4 While Loops
Lox features two looping control flow statements, while and for. The while
loop is the simpler one, so we’ll start there. Its grammar is the same as in C.

statement → exprStmt
 | ifStmt
 | printStmt
 | whileStmt
 | block ;

whileStmt → "while" "(" expression ")" statement ;

We add another clause to the statement rule that points to the new rule for while.
It takes a while keyword, followed by a parenthesized condition expression,
then a statement for the body. That new grammar rule gets a syntax tree node.

lox/Interpreter.java
add after visitLiteralExpr()

144 cHAPTeR 9 : conTRol floW

 "Print : Expr expression",
 "While : Expr condition, Stmt body"
));

The node stores the condition and body. Here you can see why it’s nice to have
separate base classes for expressions and statements. The field declarations
make it clear that the condition is an expression and the body is a statement.

Over in the parser, we follow the same process we used for if statements.
First, we add another case in statement() to detect and match the leading
keyword.

 if (match(PRINT)) return printStatement();
 if (match(WHILE)) return whileStatement();
 if (match(LEFT_BRACE)) return new Stmt.Block(block());

That delegates the real work to this method:

 private Stmt whileStatement() {
 consume(LEFT_PAREN, "Expect '(' after 'while'.");
 Expr condition = expression();
 consume(RIGHT_PAREN, "Expect ')' after condition.");
 Stmt body = statement();

 return new Stmt.While(condition, body);
 }

The grammar is dead simple and this is a straight translation of it to Java.
Speaking of translating straight to Java, here’s how we execute the new syntax:

 @Override
 public Void visitWhileStmt(Stmt.While stmt) {
 while (isTruthy(evaluate(stmt.condition))) {
 execute(stmt.body);
 }
 return null;
 }

Like the visit method for if, this visitor uses the corresponding Java feature.
This method isn’t complex, but it makes Lox much more powerful. We can finally
write a program whose running time isn’t strictly bound by the length of the
source code.

9.5 For Loops
We’re down to the last control flow construct, Ye Olde C-style for loop. I proba-
bly don’t need to remind you, but it looks like this:

for (var i = 0; i < 10; i = i + 1) print i;

tool/generateAst.java
in main()

add “,” to previous line

lox/Parser.java
in statement()

lox/Parser.java
add after varDeclaration()

lox/Interpreter.java
add after visitVarStmt()

9.5 foR looPs 145

In grammarese, that’s:

statement → exprStmt
 | forStmt
 | ifStmt
 | printStmt
 | whileStmt
 | block ;

forStmt → "for" "(" (varDecl | exprStmt | ";")
 expression? ";"
 expression? ")" statement ;

Inside the parentheses, you have three clauses separated by semicolons:

1. The first clause is the initializer. It is executed exactly once, before anything
else. It’s usually an expression, but for convenience, we also allow a variable
declaration. In that case, the variable is scoped to the rest of the for loop—
the other two clauses and the body.

2. Next is the condition. As in a while loop, this expression controls when to
exit the loop. It’s evaluated once at the beginning of each iteration, including
the first. If the result is truthy, it executes the loop body. Otherwise, it bails.

3. The last clause is the increment. It’s an arbitrary expression that does some
work at the end of each loop iteration. The result of the expression is discard-
ed, so it must have a side effect to be useful. In practice, it usually increments
a variable.

Any of these clauses can be omitted. Following the closing parenthesis is a state-
ment for the body, which is typically a block.

9.5.1 Desugaring

That’s a lot of machinery, but note that none of it does anything you couldn’t
do with the statements we already have. If for loops didn’t support initializer
clauses, you could just put the initializer expression before the for statement.
Without an increment clause, you could simply put the increment expression at
the end of the body yourself.

In other words, Lox doesn’t need for loops, they just make some common
code patterns more pleasant to write. These kinds of features are called syntac-
tic sugar. For example, the previous for loop could be rewritten like so:

{
 var i = 0;
 while (i < 10) {
 print i;
 i = i + 1;
 }
}

Most modern languages have a high-
er-level looping statement for iterating
over arbitrary user-defined sequences.
C# has foreach, Java has “enhanced
for”, even C++ has range-based for
statements now. Those offer cleaner syn-
tax than C’s for statement by implicitly
calling into an iteration protocol that the
object being looped over supports.

I love those. For Lox, though, we’re
limited by building up the interpreter a
chapter at a time. We don’t have objects
and methods yet, so we have no way of
defining an iteration protocol that the
for loop could use. So we’ll stick with
the old school C for loop. Think of it
as “vintage”. The fixie of control flow
statements.

This delightful turn of phrase was coined
by Peter J. Landin in 1964 to describe
how some of the nice expression forms
supported by languages like ALGOL were
a sweetener sprinkled over the more
fundamental—but presumably less
palatable—lambda calculus underneath.

146 cHAPTeR 9 : conTRol floW

This script has the exact same semantics as the previous one, though it’s not as
easy on the eyes. Syntactic sugar features like Lox’s for loop make a language
more pleasant and productive to work in. But, especially in sophisticated lan-
guage implementations, every language feature that requires back-end support
and optimization is expensive.

We can have our cake and eat it too by desugaring. That funny word describes
a process where the front end takes code using syntax sugar and translates it to a
more primitive form that the back end already knows how to execute.

We’re going to desugar for loops to the while loops and other statements the
interpreter already handles. In our simple interpreter, desugaring really doesn’t
save us much work, but it does give me an excuse to introduce you to the tech-
nique. So, unlike the previous statements, we won’t add a new syntax tree node.
Instead, we go straight to parsing. First, add an import we’ll need soon.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

Like every statement, we start parsing a for loop by matching its keyword.

 private Stmt statement() {
 if (match(FOR)) return forStatement();
 if (match(IF)) return ifStatement();

Here is where it gets interesting. The desugaring is going to happen here, so we’ll
build this method a piece at a time, starting with the opening parenthesis before
the clauses.

 private Stmt forStatement() {
 consume(LEFT_PAREN, "Expect '(' after 'for'.");

 // More here...
 }

The first clause following that is the initializer.

 consume(LEFT_PAREN, "Expect '(' after 'for'.");

 Stmt initializer;
 if (match(SEMICOLON)) {
 initializer = null;
 } else if (match(VAR)) {
 initializer = varDeclaration();
 } else {
 initializer = expressionStatement();
 }
 }

If the token following the (is a semicolon then the initializer has been omitted.
Otherwise, we check for a var keyword to see if it’s a variable declaration. If
neither of those matched, it must be an expression. We parse that and wrap it in
an expression statement so that the initializer is always of type Stmt.

Oh, how I wish the accepted term for
this was “caramelization”. Why introduce
a metaphor if you aren’t going to stick
with it?

lox/Parser.java

lox/Parser.java
in statement()

lox/Parser.java
add after statement()

lox/Parser.java
in forStatement()

replace 1 line

In a previous chapter, I said we can split
expression and statement syntax trees
into two separate class hierarchies
because there’s no single place in the
grammar that allows both an expression
and a statement. That wasn’t entirely true,
I guess.

9.5.1 desugARIng 147

Next up is the condition.

 initializer = expressionStatement();
 }

 Expr condition = null;
 if (!check(SEMICOLON)) {
 condition = expression();
 }
 consume(SEMICOLON, "Expect ';' after loop condition.");
 }

Again, we look for a semicolon to see if the clause has been omitted. The last
clause is the increment.

 consume(SEMICOLON, "Expect ';' after loop condition.");

 Expr increment = null;
 if (!check(RIGHT_PAREN)) {
 increment = expression();
 }
 consume(RIGHT_PAREN, "Expect ')' after for clauses.");
 }

It’s similar to the condition clause except this one is terminated by the closing
parenthesis. All that remains is the body.

 consume(RIGHT_PAREN, "Expect ')' after for clauses.");
 Stmt body = statement();

 return body;
 }

We’ve parsed all of the various pieces of the for loop and the resulting AST
nodes are sitting in a handful of Java local variables. This is where the desugaring
comes in. We take those and use them to synthesize syntax tree nodes that ex-
press the semantics of the for loop, like the hand-desugared example I showed
you earlier.

The code is a little simpler if we work backward, so we start with the incre-
ment clause.

 Stmt body = statement();

 if (increment != null) {
 body = new Stmt.Block(
 Arrays.asList(
 body,
 new Stmt.Expression(increment)));
 }

 return body;

lox/Parser.java
in forStatement()

lox/Parser.java
in forStatement()

Is it just me or does that sound morbid?
“All that remained . . . was the body”.
lox/Parser.java
in forStatement()

lox/Parser.java
in forStatement()

148 cHAPTeR 9 : conTRol floW

The increment, if there is one, executes after the body in each iteration of the
loop. We do that by replacing the body with a little block that contains the origi-
nal body followed by an expression statement that evaluates the increment.

 }

 if (condition == null) condition = new Expr.Literal(true);
 body = new Stmt.While(condition, body);

 return body;

Next, we take the condition and the body and build the loop using a primitive
while loop. If the condition is omitted, we jam in true to make an infinite loop.

 body = new Stmt.While(condition, body);

 if (initializer != null) {
 body = new Stmt.Block(Arrays.asList(initializer, body));
 }

 return body;

Finally, if there is an initializer, it runs once before the entire loop. We do that by,
again, replacing the whole statement with a block that runs the initializer and
then executes the loop.

That’s it. Our interpreter now supports C-style for loops and we didn’t have
to touch the Interpreter class at all. Since we desugared to nodes the interpreter
already knows how to visit, there is no more work to do.

Finally, Lox is powerful enough to entertain us, at least for a few minutes.
Here’s a tiny program to print the first 21 elements in the Fibonacci sequence:

var a = 0;
var temp;

for (var b = 1; a < 10000; b = temp + b) {
 print a;
 temp = a;
 a = b;
}

lox/Parser.java
in forStatement()

lox/Parser.java
in forStatement()

cHAllenges 149

CHaLLENGES

1. A few chapters from now, when Lox supports first-class functions and dynamic
dispatch, we technically won’t need branching statements built into the lan-
guage. Show how conditional execution can be implemented in terms of those.
Name a language that uses this technique for its control flow.

2. Likewise, looping can be implemented using those same tools, provided our
interpreter supports an important optimization. What is it, and why is it neces-
sary? Name a language that uses this technique for iteration.

3. Unlike Lox, most other C-style languages also support break and continue
statements inside loops. Add support for break statements.

The syntax is a break keyword followed by a semicolon. It should be a syn-
tax error to have a break statement appear outside of any enclosing loop. At
runtime, a break statement causes execution to jump to the end of the nearest
enclosing loop and proceeds from there. Note that the break may be nested
inside other blocks and if statements that also need to be exited.

150 cHAPTeR 9 : conTRol floW

DESIGN NOtE: SPOONFULS OF SYNtaCtIC SUGar

When you design your own language, you choose how much syntactic sugar to pour
into the grammar. Do you make an unsweetened health food where each semantic
operation maps to a single syntactic unit, or some decadent dessert where every bit of
behavior can be expressed ten different ways? Successful languages inhabit all points
along this continuum.

On the extreme acrid end are those with ruthlessly minimal syntax like Lisp,
Forth, and Smalltalk. Lispers famously claim their language “has no syntax”, while
Smalltalkers proudly show that you can fit the entire grammar on an index card. This
tribe has the philosophy that the language doesn’t need syntactic sugar. Instead, the
minimal syntax and semantics it provides are powerful enough to let library code be as
expressive as if it were part of the language itself.

Near these are languages like C, Lua, and Go. They aim for simplicity and clarity over
minimalism. Some, like Go, deliberately eschew both syntactic sugar and the kind of
syntactic extensibility of the previous category. They want the syntax to get out of the
way of the semantics, so they focus on keeping both the grammar and libraries simple.
Code should be obvious more than beautiful.

Somewhere in the middle you have languages like Java, C#, and Python. Eventually
you reach Ruby, C++, Perl, and D—languages which have stuffed so much syntax into
their grammar, they are running out of punctuation characters on the keyboard.

To some degree, location on the spectrum correlates with age. It’s relatively easy to
add bits of syntactic sugar in later releases. New syntax is a crowd pleaser, and it’s less
likely to break existing programs than mucking with the semantics. Once added, you
can never take it away, so languages tend to sweeten with time. One of the main ben-
efits of creating a new language from scratch is it gives you an opportunity to scrape
off those accumulated layers of frosting and start over.

Syntactic sugar has a bad rap among the PL intelligentsia. There’s a real fetish for
minimalism in that crowd. There is some justification for that. Poorly designed, un-
needed syntax raises the cognitive load without adding enough expressiveness to car-
ry its weight. Since there is always pressure to cram new features into the language,
it takes discipline and a focus on simplicity to avoid bloat. Once you add some syntax,
you’re stuck with it, so it’s smart to be parsimonious.

At the same time, most successful languages do have fairly complex grammars,
at least by the time they are widely used. Programmers spend a ton of time in their
language of choice, and a few niceties here and there really can improve the comfort
and efficiency of their work.

Striking the right balance—choosing the right level of sweetness for your lan-
guage—relies on your own sense of taste.

A TRee-WAlk InTeRPReTeR 10Functions

“And that is also the way the human mind works—by the
compounding of old ideas into new structures that become new ideas
that can themselves be used in compounds, and round and round
endlessly, growing ever more remote from the basic earthbound
imagery that is each language’s soil.”

— Douglas R. Hofstadter, I Am a Strange Loop

This chapter marks the culmination of a lot of hard work. The previous chapters
add useful functionality in their own right, but each also supplies a piece of a
puzzle. We’ll take those pieces—expressions, statements, variables, control flow,
and lexical scope—add a couple more, and assemble them all into support for
real user-defined functions and function calls.

10.1 Function Calls
You’re certainly familiar with C-style function call syntax, but the grammar is
more subtle than you may realize. Calls are typically to named functions like:

152 cHAPTeR 10 : funcTIons

average(1, 2);

But the name of the function being called isn’t actually part of the call syntax.
The thing being called—the callee—can be any expression that evaluates to a
function. (Well, it does have to be a pretty high precedence expression, but paren-
theses take care of that.) For example:

getCallback()();

There are two call expressions here. The first pair of parentheses has
getCallback as its callee. But the second call has the entire getCallback()
expression as its callee. It is the parentheses following an expression that indi-
cate a function call. You can think of a call as sort of like a postfix operator that
starts with (.

This “operator” has higher precedence than any other operator, even the
unary ones. So we slot it into the grammar by having the unary rule bubble up
to a new call rule.

unary → ("!" | "-") unary | call ;
call → primary ("(" arguments? ")")* ;

This rule matches a primary expression followed by zero or more function calls.
If there are no parentheses, this parses a bare primary expression. Otherwise,
each call is recognized by a pair of parentheses with an optional list of argu-
ments inside. The argument list grammar is:

arguments → expression ("," expression)* ;

This rule requires at least one argument expression, followed by zero or more
other expressions, each preceded by a comma. To handle zero-argument calls,
the call rule itself considers the entire arguments production to be optional.

I admit, this seems more grammatically awkward than you’d expect for the
incredibly common “zero or more comma-separated things” pattern. There are
some sophisticated metasyntaxes that handle this better, but in our BNF and in
many language specs I’ve seen, it is this cumbersome.

Over in our syntax tree generator, we add a new node.

 "Binary : Expr left, Token operator, Expr right",
 "Call : Expr callee, Token paren, List<Expr> arguments",
 "Grouping : Expr expression",

It stores the callee expression and a list of expressions for the arguments. It also
stores the token for the closing parenthesis. We’ll use that token’s location when
we report a runtime error caused by a function call.

Crack open the parser. Where unary() used to jump straight to primary(),
change it to call, well, call().

 return new Expr.Unary(operator, right);
 }

 return call();
 }

The name is part of the call syntax in
Pascal. You can call only named functions
or functions stored directly in variables.

The rule uses * to allow matching a series
of calls like fn(1)(2)(3). Code like
that isn’t common in C-style languages,
but it is in the family of languages derived
from ML. There, the normal way of
defining a function that takes multiple
arguments is as a series of nested func-
tions. Each function takes one argument
and returns a new function. That function
consumes the next argument, returns yet
another function, and so on. Eventually,
once all of the arguments are consumed,
the last function completes the operation.

This style, called currying, after Haskell
Curry (the same guy whose first name
graces that other well-known functional
language), is baked directly into the
language syntax so it’s not as weird
looking as it would be here.

tool/generateAst.java
in main()

lox/Parser.java
in unary()

replace 1 line

10.1.1 mAxImum ARgumenT counTs 153

Its definition is:

 private Expr call() {
 Expr expr = primary();

 while (true) {
 if (match(LEFT_PAREN)) {
 expr = finishCall(expr);
 } else {
 break;
 }
 }

 return expr;
 }

The code here doesn’t quite line up with the grammar rules. I moved a few things
around to make the code cleaner—one of the luxuries we have with a handwrit-
ten parser. But it’s roughly similar to how we parse infix operators. First, we
parse a primary expression, the “left operand” to the call. Then, each time we
see a (, we call finishCall() to parse the call expression using the previously
parsed expression as the callee. The returned expression becomes the new expr
and we loop to see if the result is itself called.

The code to parse the argument list is in this helper:

 private Expr finishCall(Expr callee) {
 List<Expr> arguments = new ArrayList<>();
 if (!check(RIGHT_PAREN)) {
 do {
 arguments.add(expression());
 } while (match(COMMA));
 }

 Token paren = consume(RIGHT_PAREN,
 "Expect ')' after arguments.");

 return new Expr.Call(callee, paren, arguments);
 }

This is more or less the arguments grammar rule translated to code, except that
we also handle the zero-argument case. We check for that case first by seeing if
the next token is). If it is, we don’t try to parse any arguments.

Otherwise, we parse an expression, then look for a comma indicating that
there is another argument after that. We keep doing that as long as we find
commas after each expression. When we don’t find a comma, then the argument
list must be done and we consume the expected closing parenthesis. Finally, we
wrap the callee and those arguments up into a call AST node.

10.1.1 Maximum argument counts

Right now, the loop where we parse arguments has no bound. If you want to call

lox/Parser.java
add after unary()

This code would be simpler as
while (match(LEFT_PAREN))
instead of the silly while (true)
and break. Don’t worry, it will make
sense when we expand the parser later to
handle properties on objects.

lox/Parser.java
add after unary()

154 cHAPTeR 10 : funcTIons

a function and pass a million arguments to it, the parser would have no problem
with it. Do we want to limit that?

Other languages have various approaches. The C standard says a conforming
implementation has to support at least 127 arguments to a function, but doesn’t
say there’s any upper limit. The Java specification says a method can accept no
more than 255 arguments.

Our Java interpreter for Lox doesn’t really need a limit, but having a maxi-
mum number of arguments will simplify our bytecode interpreter in Part III.
We want our two interpreters to be compatible with each other, even in weird
corner cases like this, so we’ll add the same limit to jlox.

 do {
 if (arguments.size() >= 255) {
 error(peek(), "Can't have more than 255 arguments.");
 }
 arguments.add(expression());

Note that the code here reports an error if it encounters too many arguments,
but it doesn’t throw the error. Throwing is how we kick into panic mode which is
what we want if the parser is in a confused state and doesn’t know where it is in
the grammar anymore. But here, the parser is still in a perfectly valid state—it
just found too many arguments. So it reports the error and keeps on keepin’ on.

10.1.2 Interpreting function calls

We don’t have any functions we can call, so it seems weird to start implementing
calls first, but we’ll worry about that when we get there. First, our interpreter
needs a new import.

import java.util.ArrayList;
import java.util.List;

As always, interpretation starts with a new visit method for our new call expres-
sion node.

 @Override
 public Object visitCallExpr(Expr.Call expr) {
 Object callee = evaluate(expr.callee);

 List<Object> arguments = new ArrayList<>();
 for (Expr argument : expr.arguments) {
 arguments.add(evaluate(argument));
 }

 LoxCallable function = (LoxCallable)callee;
 return function.call(this, arguments);
 }

First, we evaluate the expression for the callee. Typically, this expression is just
an identifier that looks up the function by its name, but it could be anything.

The limit is 254 arguments if the method
is an instance method. That’s because
this—the receiver of the method—
works like an argument that is implicitly
passed to the method, so it claims one of
the slots.

lox/Parser.java
in finishCall()

lox/Interpreter.java

lox/Interpreter.java
add after visitBinaryExpr()

This is another one of those subtle seman-
tic choices. Since argument expressions
may have side effects, the order they are
evaluated could be user visible. Even so,
some languages like Scheme and C don’t
specify an order. This gives compilers
freedom to reorder them for efficiency,
but means users may be unpleasantly
surprised if arguments aren’t evaluated in
the order they expect.

10.1.2 InTeRPReTIng funcTIon cAlls 155

Then we evaluate each of the argument expressions in order and store the re-
sulting values in a list.

Once we’ve got the callee and the arguments ready, all that remains is to per-
form the call. We do that by casting the callee to a LoxCallable and then invoking
a call() method on it. The Java representation of any Lox object that can be
called like a function will implement this interface. That includes user-defined
functions, naturally, but also class objects since classes are “called” to construct
new instances. We’ll also use it for one more purpose shortly.

There isn’t too much to this new interface.

package com.craftinginterpreters.lox;

import java.util.List;

interface LoxCallable {
 Object call(Interpreter interpreter, List<Object> arguments);
}

We pass in the interpreter in case the class implementing call() needs it. We
also give it the list of evaluated argument values. The implementer’s job is then
to return the value that the call expression produces.

10.1.3 Call type errors

Before we get to implementing LoxCallable, we need to make the visit method
a little more robust. It currently ignores a couple of failure modes that we can’t
pretend won’t occur. First, what happens if the callee isn’t actually something
you can call? What if you try to do this:

"totally not a function"();

Strings aren’t callable in Lox. The runtime representation of a Lox string
is a Java string, so when we cast that to LoxCallable, the JVM will throw a
ClassCastException. We don’t want our interpreter to vomit out some nasty Java
stack trace and die. Instead, we need to check the type ourselves first.

 }

 if (!(callee instanceof LoxCallable)) {
 throw new RuntimeError(expr.paren,
 "Can only call functions and classes.");
 }

 LoxCallable function = (LoxCallable)callee;

We still throw an exception, but now we’re throwing our own exception type,
one that the interpreter knows to catch and report gracefully.

I stuck “Lox” before the name to distin-
guish it from the Java standard library’s
own Callable interface. Alas, all the good
simple names are already taken.

lox/loxcallable.java
create new file

lox/Interpreter.java
in visitCallExpr()

156 cHAPTeR 10 : funcTIons

10.1.4 Checking arity

The other problem relates to the function’s arity. Arity is the fancy term for the
number of arguments a function or operation expects. Unary operators have
arity one, binary operators two, etc. With functions, the arity is determined by
the number of parameters it declares.

fun add(a, b, c) {
 print a + b + c;
}

This function defines three parameters, a, b, and c, so its arity is three and it
expects three arguments. So what if you try to call it like this:

add(1, 2, 3, 4); // Too many.
add(1, 2); // Too few.

Different languages take different approaches to this problem. Of course, most
statically typed languages check this at compile time and refuse to compile the
code if the argument count doesn’t match the function’s arity. JavaScript discards
any extra arguments you pass. If you don’t pass enough, it fills in the missing
parameters with the magic sort-of-like-null-but-not-really value undefined.
Python is stricter. It raises a runtime error if the argument list is too short or
too long.

I think the latter is a better approach. Passing the wrong number of argu-
ments is almost always a bug, and it’s a mistake I do make in practice. Given that,
the sooner the implementation draws my attention to it, the better. So for Lox,
we’ll take Python’s approach. Before invoking the callable, we check to see if the
argument list’s length matches the callable’s arity.

 LoxCallable function = (LoxCallable)callee;
 if (arguments.size() != function.arity()) {
 throw new RuntimeError(expr.paren, "Expected " +
 function.arity() + " arguments but got " +
 arguments.size() + ".");
 }

 return function.call(this, arguments);

That requires a new method on the LoxCallable interface to ask it its arity.

interface LoxCallable {
 int arity();
 Object call(Interpreter interpreter, List<Object> arguments);

We could push the arity checking into the concrete implementation of call().
But, since we’ll have multiple classes implementing LoxCallable, that would end
up with redundant validation spread across a few classes. Hoisting it up into the
visit method lets us do it in one place.

lox/Interpreter.java
in visitCallExpr()

lox/loxcallable.java
in interface LoxCallable

10.1.4 cHeckIng ARITy 157

10.2 Native Functions
We can theoretically call functions, but we have no functions to call yet. Before
we get to user-defined functions, now is a good time to introduce a vital but often
overlooked facet of language implementations—native functions. These are
functions that the interpreter exposes to user code but that are implemented in
the host language (in our case Java), not the language being implemented (Lox).

Sometimes these are called primitives, external functions, or foreign
functions. Since these functions can be called while the user’s program is run-
ning, they form part of the implementation’s runtime. A lot of programming
language books gloss over these because they aren’t conceptually interesting.
They’re mostly grunt work.

But when it comes to making your language actually good at doing useful
stuff, the native functions your implementation provides are key. They provide
access to the fundamental services that all programs are defined in terms of. If
you don’t provide native functions to access the file system, a user’s going to have
a hell of a time writing a program that reads and displays a file.

Many languages also allow users to provide their own native functions. The
mechanism for doing so is called a foreign function interface (FFI), native
extension, native interface, or something along those lines. These are nice be-
cause they free the language implementer from providing access to every single
capability the underlying platform supports. We won’t define an FFI for jlox, but
we will add one native function to give you an idea of what it looks like.

10.2.1 Telling time

When we get to Part III and start working on a much more efficient implementa-
tion of Lox, we’re going to care deeply about performance. Performance work re-
quires measurement, and that in turn means benchmarks. These are programs
that measure the time it takes to exercise some corner of the interpreter.

We could measure the time it takes to start up the interpreter, run the bench-
mark, and exit, but that adds a lot of overhead—JVM startup time, OS shenan-
igans, etc. That stuff does matter, of course, but if you’re just trying to validate
an optimization to some piece of the interpreter, you don’t want that overhead
obscuring your results.

A nicer solution is to have the benchmark script itself measure the time
elapsed between two points in the code. To do that, a Lox program needs to be
able to tell time. There’s no way to do that now—you can’t implement a useful
clock “from scratch” without access to the underlying clock on the computer.

So we’ll add clock(), a native function that returns the number of seconds
that have passed since some fixed point in time. The difference between two
successive invocations tells you how much time elapsed between the two calls.
This function is defined in the global scope, so let’s ensure the interpreter has
access to that.

class Interpreter implements Expr.Visitor<Object>,
 Stmt.Visitor<Void> {
 final Environment globals = new Environment();
 private Environment environment = globals;

 void interpret(List<Stmt> statements) {

Curiously, two names for these
functions—“native” and “foreign”—are
antonyms. Maybe it depends on the
perspective of the person choosing the
term. If you think of yourself as “living”
within the runtime’s implementation (in
our case, Java) then functions written
in that are “native”. But if you have the
mindset of a user of your language, then
the runtime is implemented in some other
“foreign” language.

Or it may be that “native” refers to the
machine code language of the underlying
hardware. In Java, “native” methods
are ones implemented in C or C++ and
compiled to native machine code.

A classic native function almost every
language provides is one to print text to
stdout. In Lox, I made print a built-in
statement so that we could get stuff on
screen in the chapters before this one.

Once we have functions, we could
simplify the language by tearing out the
old print syntax and replacing it with a
native function. But that would mean
that examples early in the book wouldn’t
run on the interpreter from later chapters
and vice versa. So, for the book, I’ll leave
it alone.

If you’re building an interpreter for your
own language, though, you may want to
consider it.

lox/Interpreter.java
in class Interpreter
replace 1 line

158 cHAPTeR 10 : funcTIons

The environment field in the interpreter changes as we enter and exit local
scopes. It tracks the current environment. This new globals field holds a fixed
reference to the outermost global environment.

When we instantiate an Interpreter, we stuff the native function in that glob-
al scope.

 private Environment environment = globals;

 Interpreter() {
 globals.define("clock", new LoxCallable() {
 @Override
 public int arity() { return 0; }

 @Override
 public Object call(Interpreter interpreter,
 List<Object> arguments) {
 return (double)System.currentTimeMillis() / 1000.0;
 }

 @Override
 public String toString() { return "<native fn>"; }
 });
 }

 void interpret(List<Stmt> statements) {

This defines a variable named “clock”. Its value is a Java anonymous class that
implements LoxCallable. The clock() function takes no arguments, so its arity
is zero. The implementation of call() calls the corresponding Java function
and converts the result to a double value in seconds.

If we wanted to add other native functions—reading input from the user,
working with files, etc.—we could add them each as their own anonymous class
that implements LoxCallable. But for the book, this one is really all we need.

Let’s get ourselves out of the function-defining business and let our users
take over . . . 

10.3 Function Declarations
We finally get to add a new production to the declaration rule we introduced
back when we added variables. Function declarations, like variables, bind a new
name. That means they are allowed only in places where a declaration is permit-
ted.

declaration → funDecl | varDecl | statement ;

The updated declaration rule references this new rule:

funDecl → "fun" function ;
function → IDENTIFIER "(" parameters? ")" block ;

lox/Interpreter.java
in class Interpreter

In Lox, functions and variables occupy the
same namespace. In Common Lisp, the
two live in their own worlds. A function
and variable with the same name don’t
collide. If you call the name, it looks up
the function. If you refer to it, it looks up
the variable. This does require jumping
through some hoops when you do want to
refer to a function as a first-class value.

Richard P. Gabriel and Kent Pitman
coined the terms “Lisp-1” to refer to
languages like Scheme that put functions
and variables in the same namespace, and
“Lisp-2” for languages like Common Lisp
that partition them. Despite being totally
opaque, those names have since stuck.
Lox is a Lisp-1.

A named function declaration isn’t really
a single primitive operation. It’s syntactic
sugar for two distinct steps: (1) creating
a new function object, and (2) binding a
new variable to it. If Lox had syntax for
anonymous functions, we wouldn’t need
function declaration statements. You
could just do:

var add = fun (a, b) {
 print a + b;
};

However, since named functions are the
common case, I went ahead and gave Lox
nice syntax for them.

10.3 funcTIon declARATIons 159

The main funDecl rule uses a separate helper rule function. A function dec-
laration statement is the fun keyword followed by the actual function-y stuff.
When we get to classes, we’ll reuse that function rule for declaring methods.
Those look similar to function declarations, but aren’t preceded by fun.

The function itself is a name followed by the parenthesized parameter list and
the body. The body is always a braced block, using the same grammar rule that
block statements use. The parameter list uses this rule:

parameters → IDENTIFIER ("," IDENTIFIER)* ;

It’s like the earlier arguments rule, except that each parameter is an identifier,
not an expression. That’s a lot of new syntax for the parser to chew through, but
the resulting AST node isn’t too bad.

 "Expression : Expr expression",
 "Function : Token name, List<Token> params," +
 " List<Stmt> body",
 "If : Expr condition, Stmt thenBranch," +

A function node has a name, a list of parameters (their names), and then the
body. We store the body as the list of statements contained inside the curly brac-
es.

Over in the parser, we weave in the new declaration.

 try {
 if (match(FUN)) return function("function");
 if (match(VAR)) return varDeclaration();

Like other statements, a function is recognized by the leading keyword. When
we encounter fun, we call function. That corresponds to the function gram-
mar rule since we already matched and consumed the fun keyword. We’ll build
the method up a piece at a time, starting with this:

 private Stmt.Function function(String kind) {
 Token name = consume(IDENTIFIER, "Expect " + kind + " name.");
 }

Right now, it only consumes the identifier token for the function’s name. You
might be wondering about that funny little kind parameter. Just like we reuse
the grammar rule, we’ll reuse the function() method later to parse methods
inside classes. When we do that, we’ll pass in “method” for kind so that the error
messages are specific to the kind of declaration being parsed.

Next, we parse the parameter list and the parentheses wrapped around it.

 Token name = consume(IDENTIFIER, "Expect " + kind + " name.");
 consume(LEFT_PAREN, "Expect '(' after " + kind + " name.");
 List<Token> parameters = new ArrayList<>();
 if (!check(RIGHT_PAREN)) {
 do {
 if (parameters.size() >= 255) {
 error(peek(), "Can't have more than 255 parameters.");
 }

Methods are too classy to have fun.

tool/generateAst.java
in main()

lox/Parser.java
in declaration()

lox/Parser.java
add after expressionStatement()

continued on next page . . .

lox/Parser.java
in function()

160 cHAPTeR 10 : funcTIons

 parameters.add(
 consume(IDENTIFIER, "Expect parameter name."));
 } while (match(COMMA));
 }
 consume(RIGHT_PAREN, "Expect ')' after parameters.");
 }

This is like the code for handling arguments in a call, except not split out into
a helper method. The outer if statement handles the zero parameter case, and
the inner while loop parses parameters as long as we find commas to separate
them. The result is the list of tokens for each parameter’s name.

Just like we do with arguments to function calls, we validate at parse time that
you don’t exceed the maximum number of parameters a function is allowed to
have.

Finally, we parse the body and wrap it all up in a function node.

 consume(RIGHT_PAREN, "Expect ')' after parameters.");
 consume(LEFT_BRACE, "Expect '{' before " + kind + " body.");
 List<Stmt> body = block();
 return new Stmt.Function(name, parameters, body);
 }

Note that we consume the { at the beginning of the body here before calling
block(). That’s because block() assumes the brace token has already been
matched. Consuming it here lets us report a more precise error message if the {
isn’t found since we know it’s in the context of a function declaration.

10.4 Function Objects
We’ve got some syntax parsed so usually we’re ready to interpret, but first we
need to think about how to represent a Lox function in Java. We need to keep
track of the parameters so that we can bind them to argument values when the
function is called. And, of course, we need to keep the code for the body of the
function so that we can execute it.

That’s basically what the Stmt.Function class is. Could we just use that?
Almost, but not quite. We also need a class that implements LoxCallable so that
we can call it. We don’t want the runtime phase of the interpreter to bleed into
the front end’s syntax classes so we don’t want Stmt.Function itself to imple-
ment that. Instead, we wrap it in a new class.

package com.craftinginterpreters.lox;

import java.util.List;

class LoxFunction implements LoxCallable {
 private final Stmt.Function declaration;
 LoxFunction(Stmt.Function declaration) {
 this.declaration = declaration;
 }
}

. . . from previous page

lox/Parser.java
in function()

lox/loxfunction.java
create new file

10.4 funcTIon obJecTs 161

We implement the call() of LoxCallable like so:

 @Override
 public Object call(Interpreter interpreter,
 List<Object> arguments) {
 Environment environment = new Environment(interpreter.globals);
 for (int i = 0; i < declaration.params.size(); i++) {
 environment.define(declaration.params.get(i).lexeme,
 arguments.get(i));
 }

 interpreter.executeBlock(declaration.body, environment);
 return null;
 }

This handful of lines of code is one of the most fundamental, powerful pieces
of our interpreter. As we saw in the chapter on statements and state, managing
name environments is a core part of a language implementation. Functions are
deeply tied to that.

Parameters are core to functions, especially the fact that a function encapsu-
lates its parameters—no other code outside of the function can see them. This
means each function gets its own environment where it stores those variables.

Further, this environment must be created dynamically. Each function
call gets its own environment. Otherwise, recursion would break. If there are
multiple calls to the same function in play at the same time, each needs its own
environment, even though they are all calls to the same function.

For example, here’s a convoluted way to count to three:

fun count(n) {
 if (n > 1) count(n - 1);
 print n;
}

count(3);

Imagine we pause the interpreter right at the point where it’s about to print 1 in
the innermost nested call. The outer calls to print 2 and 3 haven’t printed their
values yet, so there must be environments somewhere in memory that still store
the fact that n is bound to 3 in one context, 2 in another, and 1 in the innermost,
like:

That’s why we create a new environment at each call, not at the function declara-
tion. The call() method we saw earlier does that. At the beginning of the call,
it creates a new environment. Then it walks the parameter and argument lists in
lockstep. For each pair, it creates a new variable with the parameter’s name and
binds it to the argument’s value.

lox/loxfunction.java
add after LoxFunction()

We’ll dig even deeper into environments
in the next chapter.

162 cHAPTeR 10 : funcTIons

So, for a program like this:

fun add(a, b, c) {
 print a + b + c;
}

add(1, 2, 3);

At the point of the call to add(), the interpreter creates something like this:

Then call() tells the interpreter to execute the body of the function in this new
function-local environment. Up until now, the current environment was the
environment where the function was being called. Now, we teleport from there
inside the new parameter space we’ve created for the function.

This is all that’s required to pass data into the function. By using different
environments when we execute the body, calls to the same function with the
same code can produce different results.

Once the body of the function has finished executing, executeBlock()
discards that function-local environment and restores the previous one that was
active back at the callsite. Finally, call() returns null, which returns nil to
the caller. (We’ll add return values later.)

Mechanically, the code is pretty simple. Walk a couple of lists. Bind some new
variables. Call a method. But this is where the crystalline code of the function
declaration becomes a living, breathing invocation. This is one of my favorite
snippets in this entire book. Feel free to take a moment to meditate on it if you’re
so inclined.

Done? OK. Note when we bind the parameters, we assume the parameter and
argument lists have the same length. This is safe because visitCallExpr()
checks the arity before calling call(). It relies on the function reporting its
arity to do that.

 @Override
 public int arity() {
 return declaration.params.size();
 }

That’s most of our object representation. While we’re in here, we may as well
implement toString().

 @Override
 public String toString() {
 return "<fn " + declaration.name.lexeme + ">";
 }

lox/loxfunction.java
add after LoxFunction()

lox/loxfunction.java
add after LoxFunction()

10.4.1 InTeRPReTIng funcTIon declARATIons 163

This gives nicer output if a user decides to print a function value.

fun add(a, b) {
 print a + b;
}

print add; // "<fn add>".

10.4.1 Interpreting function declarations

We’ll come back and refine LoxFunction soon, but that’s enough to get started.
Now we can visit a function declaration.

 @Override
 public Void visitFunctionStmt(Stmt.Function stmt) {
 LoxFunction function = new LoxFunction(stmt);
 environment.define(stmt.name.lexeme, function);
 return null;
 }

This is similar to how we interpret other literal expressions. We take a function
syntax node—a compile-time representation of the function—and convert it to
its runtime representation. Here, that’s a LoxFunction that wraps the syntax
node.

Function declarations are different from other literal nodes in that the dec-
laration also binds the resulting object to a new variable. So, after creating the
LoxFunction, we create a new binding in the current environment and store a
reference to it there.

With that, we can define and call our own functions all within Lox. Give it a
try:

fun sayHi(first, last) {
 print "Hi, " + first + " " + last + "!";
}

sayHi("Dear", "Reader");

I don’t know about you, but that looks like an honest-to-God programming lan-
guage to me.

10.5 return Statements
We can get data into functions by passing parameters, but we’ve got no way to
get results back out. If Lox were an expression-oriented language like Ruby or
Scheme, the body would be an expression whose value is implicitly the func-
tion’s result. But in Lox, the body of a function is a list of statements which
don’t produce values, so we need dedicated syntax for emitting a result. In other
words, return statements.

lox/Interpreter.java
add after visitExpressionStmt()

The Hotel California of data.

164 cHAPTeR 10 : funcTIons

I’m sure you can guess the grammar already.

statement → exprStmt
 | forStmt
 | ifStmt
 | printStmt
 | returnStmt
 | whileStmt
 | block ;

returnStmt → "return" expression? ";" ;

We’ve got one more—the final, in fact—production under the venerable
statement rule. A return statement is the return keyword followed by an
optional expression and terminated with a semicolon.

The return value is optional to support exiting early from a function that
doesn’t return a useful value. In statically typed languages, “void” functions don’t
return a value and non-void ones do. Since Lox is dynamically typed, there are
no true void functions. The compiler has no way of preventing you from taking
the result value of a call to a function that doesn’t contain a return statement.

fun procedure() {
 print "don't return anything";
}

var result = procedure();
print result; // ?

This means every Lox function must return something, even if it contains no
return statements at all. We use nil for this, which is why LoxFunction’s im-
plementation of call() returns null at the end. In that same vein, if you omit
the value in a return statement, we simply treat it as equivalent to:

return nil;

Over in our AST generator, we add a new node.

 "Print : Expr expression",
 "Return : Token keyword, Expr value",
 "Var : Token name, Expr initializer",

It keeps the return keyword token so we can use its location for error report-
ing, and the value being returned, if any. We parse it like other statements, first
by recognizing the initial keyword.

 if (match(PRINT)) return printStatement();
 if (match(RETURN)) return returnStatement();
 if (match(WHILE)) return whileStatement();

That branches out to a new method.

tool/generateAst.java
in main()

lox/Parser.java
in statement()

10.5.1 ReTuRnIng fRom cAlls 165

 private Stmt returnStatement() {
 Token keyword = previous();
 Expr value = null;
 if (!check(SEMICOLON)) {
 value = expression();
 }

 consume(SEMICOLON, "Expect ';' after return value.");
 return new Stmt.Return(keyword, value);
 }

After snagging the previously consumed return keyword, we look for a value
expression. Since many different tokens can potentially start an expression, it’s
hard to tell if a return value is present. Instead, we check if it’s absent. Since a
semicolon can’t begin an expression, if the next token is that, we know there
must not be a value.

10.5.1 Returning from calls

Interpreting a return statement is tricky. You can return from anywhere with-
in the body of a function, even deeply nested inside other statements. When the
return is executed, the interpreter needs to jump all the way out of whatever
context it’s currently in and cause the function call to complete, like some kind
of jacked up control flow construct.

For example, say we’re running this program and we’re about to execute the
return statement:

fun count(n) {
 while (n < 100) {
 if (n == 3) return n; // <--
 print n;
 n = n + 1;
 }
}

count(1);

The Java call stack currently looks roughly like this:

Interpreter.visitReturnStmt()
Interpreter.visitIfStmt()
Interpreter.executeBlock()
Interpreter.visitBlockStmt()
Interpreter.visitWhileStmt()
Interpreter.executeBlock()
LoxFunction.call()
Interpreter.visitCallExpr()

We need to get from the top of the stack all the way back to call(). I don’t know
about you, but to me that sounds like exceptions. When we execute a return
statement, we’ll use an exception to unwind the interpreter past the visit meth-

lox/Parser.java
add after printStatement()

166 cHAPTeR 10 : funcTIons

ods of all of the containing statements back to the code that began executing the
body.

The visit method for our new AST node looks like this:

 @Override
 public Void visitReturnStmt(Stmt.Return stmt) {
 Object value = null;
 if (stmt.value != null) value = evaluate(stmt.value);

 throw new Return(value);
 }

If we have a return value, we evaluate it, otherwise, we use nil. Then we take
that value and wrap it in a custom exception class and throw it.

package com.craftinginterpreters.lox;

class Return extends RuntimeException {
 final Object value;

 Return(Object value) {
 super(null, null, false, false);
 this.value = value;
 }
}

This class wraps the return value with the accoutrements Java requires for a
runtime exception class. The weird super constructor call with those null and
false arguments disables some JVM machinery that we don’t need. Since we’re
using our exception class for control flow and not actual error handling, we don’t
need overhead like stack traces.

We want this to unwind all the way to where the function call began, the
call() method in LoxFunction.

 arguments.get(i));
 }

 try {
 interpreter.executeBlock(declaration.body, environment);
 } catch (Return returnValue) {
 return returnValue.value;
 }
 return null;

We wrap the call to executeBlock() in a try-catch block. When it catches a
return exception, it pulls out the value and makes that the return value from
call(). If it never catches one of these exceptions, it means the function
reached the end of its body without hitting a return statement. In that case, it
implicitly returns nil.

Let’s try it out. We finally have enough power to support this classic exam-
ple—a recursive function to calculate Fibonacci numbers:

lox/Return.java
create new file

lox/loxfunction.java
in call()

replace 1 line

For the record, I’m not generally a fan
of using exceptions for control flow.
But inside a heavily recursive tree-walk
interpreter, it’s the way to go. Since our
own syntax tree evaluation is so heavily
tied to the Java call stack, we’re pressed
to do some heavyweight call stack
manipulation occasionally, and exceptions
are a handy tool for that.

lox/Interpreter.java
add after visitPrintStmt()

10.6 locAl funcTIons And closuRes 167

fun fib(n) {
 if (n <= 1) return n;
 return fib(n - 2) + fib(n - 1);
}

for (var i = 0; i < 20; i = i + 1) {
 print fib(i);
}

This tiny program exercises almost every language feature we have spent the
past several chapters implementing—expressions, arithmetic, branching, loop-
ing, variables, functions, function calls, parameter binding, and returns.

10.6 Local Functions and Closures
Our functions are pretty full featured, but there is one hole to patch. In fact, it’s
a big enough gap that we’ll spend most of the next chapter sealing it up, but we
can get started here.

LoxFunction’s implementation of call() creates a new environment where
it binds the function’s parameters. When I showed you that code, I glossed over
one important point: What is the parent of that environment?

Right now, it is always globals, the top-level global environment. That way,
if an identifier isn’t defined inside the function body itself, the interpreter can
look outside the function in the global scope to find it. In the Fibonacci example,
that’s how the interpreter is able to look up the recursive call to fib inside the
function’s own body—fib is a global variable.

But recall that in Lox, function declarations are allowed anywhere a name can
be bound. That includes the top level of a Lox script, but also the inside of blocks
or other functions. Lox supports local functions that are defined inside another
function, or nested inside a block.

Consider this classic example:

fun makeCounter() {
 var i = 0;
 fun count() {
 i = i + 1;
 print i;
 }

 return count;
}

var counter = makeCounter();
counter(); // "1".
counter(); // "2".

Here, count() uses i, which is declared outside of itself in the containing func-
tion makeCounter(). makeCounter() returns a reference to the count()
function and then its own body finishes executing completely.

Meanwhile, the top-level code invokes the returned count() function. That

You might notice this is pretty slow.
Obviously, recursion isn’t the most
efficient way to calculate Fibonacci
numbers, but as a microbenchmark, it
does a good job of stress testing how fast
our interpreter implements function calls.

As you can see, the answer is “not very
fast”. That’s OK. Our C interpreter will be
faster.

168 cHAPTeR 10 : funcTIons

executes the body of count(), which assigns to and reads i, even though the
function where i was defined has already exited.

If you’ve never encountered a language with nested functions before, this
might seem crazy, but users do expect it to work. Alas, if you run it now, you get
an undefined variable error in the call to counter() when the body of count()
tries to look up i. That’s because the environment chain in effect looks like this:

When we call count() (through the reference to it stored in counter), we
create a new empty environment for the function body. The parent of that is the
global environment. We lost the environment for makeCounter() where i is
bound.

Let’s go back in time a bit. Here’s what the environment chain looked like
right when we declared count() inside the body of makeCounter():

So at the point where the function is declared, we can see i. But when we return
from makeCounter() and exit its body, the interpreter discards that environ-
ment. Since the interpreter doesn’t keep the environment surrounding count()
around, it’s up to the function object itself to hang on to it.

This data structure is called a closure because it “closes over” and holds on to
the surrounding variables where the function is declared. Closures have been
around since the early Lisp days, and language hackers have come up with all
manner of ways to implement them. For jlox, we’ll do the simplest thing that
works. In LoxFunction, we add a field to store an environment.

 private final Stmt.Function declaration;
 private final Environment closure;

 LoxFunction(Stmt.Function declaration) {

“Closure” is yet another term coined by
Peter J. Landin. I assume before he came
along that computer scientists communi-
cated with each other using only primitive
grunts and pawing hand gestures.

lox/loxfunction.java
in class LoxFunction

10.6 locAl funcTIons And closuRes 169

We initialize that in the constructor.

 LoxFunction(Stmt.Function declaration, Environment closure) {
 this.closure = closure;
 this.declaration = declaration;

When we create a LoxFunction, we capture the current environment.

 public Void visitFunctionStmt(Stmt.Function stmt) {
 LoxFunction function = new LoxFunction(stmt, environment);
 environment.define(stmt.name.lexeme, function);

This is the environment that is active when the function is declared not when it’s
called, which is what we want. It represents the lexical scope surrounding the
function declaration. Finally, when we call the function, we use that environ-
ment as the call’s parent instead of going straight to globals.

 List<Object> arguments) {
 Environment environment = new Environment(closure);
 for (int i = 0; i < declaration.params.size(); i++) {

This creates an environment chain that goes from the function’s body out
through the environments where the function is declared, all the way out to the
global scope. The runtime environment chain matches the textual nesting of the
source code like we want. The end result when we call that function looks like
this:

Now, as you can see, the interpreter can still find i when it needs to because
it’s in the middle of the environment chain. Try running that makeCounter()
example now. It works!

Functions let us abstract over, reuse, and compose code. Lox is much more
powerful than the rudimentary arithmetic calculator it used to be. Alas, in our
rush to cram closures in, we let a bit of dynamic scoping leak into the interpreter.
In the next chapter, we will explore deeper into lexical scope and close that hole.

lox/loxfunction.java
constructor LoxFunction()
replace 1 line

lox/Interpreter.java
in visitFunctionStmt()
replace 1 line

lox/loxfunction.java
in call()
replace 1 line

170 cHAPTeR 10 : funcTIons

CHaLLENGES

1. Our interpreter carefully checks that the number of arguments passed to a
function matches the number of parameters it expects. Since this check is done
at runtime on every call, it has a performance cost. Smalltalk implementations
don’t have that problem. Why not?

2. Lox’s function declaration syntax performs two independent operations. It
creates a function and also binds it to a name. This improves usability for the
common case where you do want to associate a name with the function. But in
functional-styled code, you often want to create a function to immediately pass
it to some other function or return it. In that case, it doesn’t need a name.

Languages that encourage a functional style usually support anonymous
functions or lambdas—an expression syntax that creates a function without
binding it to a name. Add anonymous function syntax to Lox so that this works:

fun thrice(fn) {
 for (var i = 1; i <= 3; i = i + 1) {
 fn(i);
 }
}

thrice(fun (a) {
 print a;
});
// "1".
// "2".
// "3".

How do you handle the tricky case of an anonymous function expression occur-
ring in an expression statement:

fun () {};

3. Is this program valid?

fun scope(a) {
 var a = "local";
}

In other words, are a function’s parameters in the same scope as its local vari-
ables, or in an outer scope? What does Lox do? What about other languages you
are familiar with? What do you think a language should do?

A TRee-WAlk InTeRPReTeR 11resolving and Binding

“Once in a while you find yourself in an odd situation. You get into it
by degrees and in the most natural way but, when you are right in the
midst of it, you are suddenly astonished and ask yourself how in the
world it all came about.”

— Thor Heyerdahl, Kon-Tiki

Oh, no! Our language implementation is taking on water! Way back when we
added variables and blocks, we had scoping nice and tight. But when we later
added closures, a hole opened in our formerly waterproof interpreter. Most real
programs are unlikely to slip through this hole, but as language implementers,
we take a sacred vow to care about correctness even in the deepest, dampest
corners of the semantics.

We will spend this entire chapter exploring that leak, and then carefully
patching it up. In the process, we will gain a more rigorous understanding of
lexical scoping as used by Lox and other languages in the C tradition. We’ll also
get a chance to learn about semantic analysis—a powerful technique for extract-
ing meaning from the user’s source code without having to run it.

172 cHAPTeR 11 : ResolVIng And bIndIng

11.1 Static Scope
A quick refresher: Lox, like most modern languages, uses lexical scoping. This
means that you can figure out which declaration a variable name refers to just
by reading the text of the program. For example:

var a = "outer";
{
 var a = "inner";
 print a;
}

Here, we know that the a being printed is the variable declared on the previous
line, and not the global one. Running the program doesn’t—can’t—affect this.
The scope rules are part of the static semantics of the language, which is why
they’re also called static scope. I haven’t spelled out those scope rules, but now is
the time for precision:

A variable usage refers to the preceding declaration with the same name
in the innermost scope that encloses the expression where the variable is
used.

There’s a lot to unpack in that:

• I say “variable usage” instead of “variable expression” to cover both variable
expressions and assignments. Likewise with “expression where the variable
is used”.

• “Preceding” means appearing before in the program text.

var a = "outer";
{
 print a;
 var a = "inner";
}

Here, the a being printed is the outer one since it appears before the print
statement that uses it. In most cases, in straight line code, the declaration
preceding in text will also precede the usage in time. But that’s not always
true. As we’ll see, functions may defer a chunk of code such that its dynamic
temporal execution no longer mirrors the static textual ordering.

• “Innermost” is there because of our good friend shadowing. There may be
more than one variable with the given name in enclosing scopes, as in:

var a = "outer";
{
 var a = "inner";
 print a;
}

Our rule disambiguates this case by saying the innermost scope wins.

This is still nowhere near as precise as a
real language specification. Those docs
must be so explicit that even a Martian
or an outright malicious programmer
would be forced to implement the correct
semantics provided they followed the
letter of the spec.

That exactitude is important when a
language may be implemented by com-
peting companies who want their product
to be incompatible with the others to
lock customers onto their platform. For
this book, we can thankfully ignore those
kinds of shady shenanigans.

In JavaScript, variables declared using
var are implicitly “hoisted” to the begin-
ning of the block. Any use of that name in
the block will refer to that variable, even
if the use appears before the declaration.
When you write this in JavaScript:

{
 console.log(a);
 var a = "value";
}

It behaves like:

{
 var a; // Hoist.
 console.log(a);
 a = "value";
}

That means that in some cases you can
read a variable before its initializer has
run—an annoying source of bugs. The
alternate let syntax for declaring
variables was added later to address this
problem.

11.1 sTATIc scoPe 173

Since this rule makes no mention of any runtime behavior, it implies that a vari-
able expression always refers to the same declaration through the entire execu-
tion of the program. Our interpreter so far mostly implements the rule correctly.
But when we added closures, an error snuck in.

var a = "global";
{
 fun showA() {
 print a;
 }

 showA();
 var a = "block";
 showA();
}

Before you type this in and run it, decide what you think it should print.
OK . . . got it? If you’re familiar with closures in other languages, you’ll expect

it to print “global” twice. The first call to showA() should definitely print “glob-
al” since we haven’t even reached the declaration of the inner a yet. And by our
rule that a variable expression always resolves to the same variable, that implies
the second call to showA() should print the same thing.

Alas, it prints:

global
block

Let me stress that this program never reassigns any variable and contains only
a single print statement. Yet, somehow, that print statement for a never-as-
signed variable prints two different values at different points in time. We defi-
nitely broke something somewhere.

11.1.1 Scopes and mutable environments

In our interpreter, environments are the dynamic manifestation of static scopes.
The two mostly stay in sync with each other—we create a new environment
when we enter a new scope, and discard it when we leave the scope. There is one
other operation we perform on environments: binding a variable in one. This is
where our bug lies.

Let’s walk through that problematic example and see what the environments
look like at each step. First, we declare a in the global scope.

That gives us a single environment with a single variable in it. Then we enter the
block and execute the declaration of showA().

I know, it’s a totally pathological,
contrived program. It’s just weird. No
reasonable person would ever write code
like this. Alas, more of your life than you’d
expect will be spent dealing with bizarro
snippets of code like this if you stay in the
programming language game for long.

174 cHAPTeR 11 : ResolVIng And bIndIng

We get a new environment for the block. In that, we declare one name, showA,
which is bound to the LoxFunction object we create to represent the function.
That object has a closure field that captures the environment where the func-
tion was declared, so it has a reference back to the environment for the block.

Now we call showA().

The interpreter dynamically creates a new environment for the function body of
showA(). It’s empty since that function doesn’t declare any variables. The par-
ent of that environment is the function’s closure—the outer block environment.

Inside the body of showA(), we print the value of a. The interpreter looks up
this value by walking the chain of environments. It gets all the way to the global
environment before finding it there and printing "global". Great.

Next, we declare the second a, this time inside the block.

It’s in the same block—the same scope—as showA(), so it goes into the same
environment, which is also the same environment showA()’s closure refers to.
This is where it gets interesting. We call showA() again.

We create a new empty environment for the body of showA() again, wire it up
to that closure, and run the body. When the interpreter walks the chain of en-
vironments to find a, it now discovers the new a in the block environment. Boo.

I chose to implement environments in a way that I hoped would agree with
your informal intuition around scopes. We tend to consider all of the code within

11.1.2 PeRsIsTenT enVIRonmenTs 175

a block as being within the same scope, so our interpreter uses a single envi-
ronment to represent that. Each environment is a mutable hash table. When a
new local variable is declared, it gets added to the existing environment for that
scope.

That intuition, like many in life, isn’t quite right. A block is not necessarily all
the same scope. Consider:

{
 var a;
 // 1.
 var b;
 // 2.
}

At the first marked line, only a is in scope. At the second line, both a and b are.
If you define a “scope” to be a set of declarations, then those are clearly not the
same scope—they don’t contain the same declarations. It’s like each var state-
ment splits the block into two separate scopes, the scope before the variable is
declared and the one after, which includes the new variable.

But in our implementation, environments do act like the entire block is one
scope, just a scope that changes over time. Closures do not like that. When a
function is declared, it captures a reference to the current environment. The
function should capture a frozen snapshot of the environment as it existed at the
moment the function was declared. But instead, in the Java code, it has a reference
to the actual mutable environment object. When a variable is later declared in
the scope that environment corresponds to, the closure sees the new variable,
even though the declaration does not precede the function.

11.1.2 Persistent environments

There is a style of programming that uses what are called persistent data
structures. Unlike the squishy data structures you’re familiar with in imper-
ative programming, a persistent data structure can never be directly modified.
Instead, any “modification” to an existing structure produces a brand new object
that contains all of the original data and the new modification. The original is
left unchanged.

If we were to apply that technique to Environment, then every time you de-
clared a variable it would return a new environment that contained all of the
previously declared variables along with the one new name. Declaring a variable
would do the implicit “split” where you have an environment before the variable
is declared and one after:

Some languages make this split explicit. In
Scheme and ML, when you declare a local
variable using let, you also delineate the
subsequent code where the new variable
is in scope. There is no implicit “rest of
the block”.

This sounds like it might waste tons of
memory and time copying the structure
for each operation. In practice, persistent
data structures share most of their data
between the different “copies”.

176 cHAPTeR 11 : ResolVIng And bIndIng

A closure retains a reference to the Environment instance in play when the func-
tion was declared. Since any later declarations in that block would produce new
Environment objects, the closure wouldn’t see the new variables and our bug
would be fixed.

This is a legit way to solve the problem, and it’s the classic way to implement
environments in Scheme interpreters. We could do that for Lox, but it would
mean going back and changing a pile of existing code.

I won’t drag you through that. We’ll keep the way we represent environments
the same. Instead of making the data more statically structured, we’ll bake the
static resolution into the access operation itself.

11.2 Semantic analysis
Our interpreter resolves a variable—tracks down which declaration it refers
to—each and every time the variable expression is evaluated. If that variable is
swaddled inside a loop that runs a thousand times, that variable gets re-resolved
a thousand times.

We know static scope means that a variable usage always resolves to the same
declaration, which can be determined just by looking at the text. Given that, why
are we doing it dynamically every time? Doing so doesn’t just open the hole that
leads to our annoying bug, it’s also needlessly slow.

A better solution is to resolve each variable use once. Write a chunk of code
that inspects the user’s program, finds every variable mentioned, and figures out
which declaration each refers to. This process is an example of a semantic anal-
ysis. Where a parser tells only if a program is grammatically correct (a syntactic
analysis), semantic analysis goes farther and starts to figure out what pieces of
the program actually mean. In this case, our analysis will resolve variable bind-
ings. We’ll know not just that an expression is a variable, but which variable it is.

There are a lot of ways we could store the binding between a variable and its
declaration. When we get to the C interpreter for Lox, we’ll have a much more
efficient way of storing and accessing local variables. But for jlox, I want to min-
imize the collateral damage we inflict on our existing codebase. I’d hate to throw
out a bunch of mostly fine code.

Instead, we’ll store the resolution in a way that makes the most out of our
existing Environment class. Recall how the accesses of a are interpreted in the
problematic example.

In the first (correct) evaluation, we look at three environments in the chain be-
fore finding the global declaration of a. Then, when the inner a is later declared
in a block scope, it shadows the global one.

11.2 semAnTIc AnAlysIs 177

The next lookup walks the chain, finds a in the second environment and stops
there. Each environment corresponds to a single lexical scope where variables
are declared. If we could ensure a variable lookup always walked the same num-
ber of links in the environment chain, that would ensure that it found the same
variable in the same scope every time.

To “resolve” a variable usage, we only need to calculate how many “hops”
away the declared variable will be in the environment chain. The interesting
question is when to do this calculation—or, put differently, where in our inter-
preter’s implementation do we stuff the code for it?

Since we’re calculating a static property based on the structure of the source
code, the obvious answer is in the parser. That is the traditional home, and is
where we’ll put it later in clox. It would work here too, but I want an excuse to
show you another technique. We’ll write our resolver as a separate pass.

11.2.1 A variable resolution pass

After the parser produces the syntax tree, but before the interpreter starts ex-
ecuting it, we’ll do a single walk over the tree to resolve all of the variables it
contains. Additional passes between parsing and execution are common. If Lox
had static types, we could slide a type checker in there. Optimizations are often
implemented in separate passes like this too. Basically, any work that doesn’t
rely on state that’s only available at runtime can be done in this way.

Our variable resolution pass works like a sort of mini-interpreter. It walks
the tree, visiting each node, but a static analysis is different from a dynamic
execution:

• There are no side effects. When the static analysis visits a print statement, it
doesn’t actually print anything. Calls to native functions or other operations
that reach out to the outside world are stubbed out and have no effect.

• There is no control flow. Loops are visited only once. Both branches are
visited in if statements. Logic operators are not short-circuited.

11.3 a resolver Class
Like everything in Java, our variable resolution pass is embodied in a class.

package com.craftinginterpreters.lox;

import java.util.HashMap;

Variable resolution touches each node
once, so its performance is O(n) where
n is the number of syntax tree nodes.
More sophisticated analyses may have
greater complexity, but most are carefully
designed to be linear or not far from it. It’s
an embarrassing faux pas if your compiler
gets exponentially slower as the user’s
program grows.

lox/Resolver.java
create new file

continued on next page . . .

178 cHAPTeR 11 : ResolVIng And bIndIng

import java.util.List;
import java.util.Map;
import java.util.Stack;

class Resolver implements Expr.Visitor<Void>, Stmt.Visitor<Void> {
 private final Interpreter interpreter;

 Resolver(Interpreter interpreter) {
 this.interpreter = interpreter;
 }
}

Since the resolver needs to visit every node in the syntax tree, it implements
the visitor abstraction we already have in place. Only a few kinds of nodes are
interesting when it comes to resolving variables:

• A block statement introduces a new scope for the statements it contains.

• A function declaration introduces a new scope for its body and binds its pa-
rameters in that scope.

• A variable declaration adds a new variable to the current scope.

• Variable and assignment expressions need to have their variables resolved.

The rest of the nodes don’t do anything special, but we still need to implement
visit methods for them that traverse into their subtrees. Even though a + expres-
sion doesn’t itself have any variables to resolve, either of its operands might.

11.3.1 Resolving blocks

We start with blocks since they create the local scopes where all the magic hap-
pens.

 @Override
 public Void visitBlockStmt(Stmt.Block stmt) {
 beginScope();
 resolve(stmt.statements);
 endScope();
 return null;
 }

This begins a new scope, traverses into the statements inside the block, and then
discards the scope. The fun stuff lives in those helper methods. We start with the
simple one.

 void resolve(List<Stmt> statements) {
 for (Stmt statement : statements) {
 resolve(statement);
 }
 }

lox/Resolver.java
add after Resolver()

lox/Resolver.java
add after Resolver()

. . . from previous page

11.3.1 ResolVIng blocks 179

This walks a list of statements and resolves each one. It in turn calls:

 private void resolve(Stmt stmt) {
 stmt.accept(this);
 }

While we’re at it, let’s add another overload that we’ll need later for resolving an
expression.

 private void resolve(Expr expr) {
 expr.accept(this);
 }

These methods are similar to the evaluate() and execute() methods in
Interpreter—they turn around and apply the Visitor pattern to the given syntax
tree node.

The real interesting behavior is around scopes. A new block scope is created
like so:

 private void beginScope() {
 scopes.push(new HashMap<String, Boolean>());
 }

Lexical scopes nest in both the interpreter and the resolver. They behave like a
stack. The interpreter implements that stack using a linked list—the chain of
Environment objects. In the resolver, we use an actual Java Stack.

 private final Interpreter interpreter;
 private final Stack<Map<String, Boolean>> scopes = new Stack<>();

 Resolver(Interpreter interpreter) {

This field keeps track of the stack of scopes currently, uh, in scope. Each element
in the stack is a Map representing a single block scope. Keys, as in Environment,
are variable names. The values are Booleans, for a reason I’ll explain soon.

The scope stack is only used for local block scopes. Variables declared at the
top level in the global scope are not tracked by the resolver since they are more
dynamic in Lox. When resolving a variable, if we can’t find it in the stack of local
scopes, we assume it must be global.

Since scopes are stored in an explicit stack, exiting one is straightforward.

 private void endScope() {
 scopes.pop();
 }

Now we can push and pop a stack of empty scopes. Let’s put some things in them.

11.3.2 Resolving variable declarations

Resolving a variable declaration adds a new entry to the current innermost
scope’s map. That seems simple, but there’s a little dance we need to do.

lox/Resolver.java
add after visitBlockStmt()

lox/Resolver.java
add after resolve(Stmt stmt)

lox/Resolver.java
add after resolve()

lox/Resolver.java
in class Resolver

lox/Resolver.java
add after beginScope()

180 cHAPTeR 11 : ResolVIng And bIndIng

 @Override
 public Void visitVarStmt(Stmt.Var stmt) {
 declare(stmt.name);
 if (stmt.initializer != null) {
 resolve(stmt.initializer);
 }
 define(stmt.name);
 return null;
 }

We split binding into two steps, declaring then defining, in order to handle fun-
ny edge cases like this:

var a = "outer";
{
 var a = a;
}

What happens when the initializer for a local variable refers to a variable with
the same name as the variable being declared? We have a few options:

1. Run the initializer, then put the new variable in scope. Here, the new
local a would be initialized with “outer”, the value of the global one. In other
words, the previous declaration would desugar to:

var temp = a; // Run the initializer.
var a; // Declare the variable.
a = temp; // Initialize it.

2. Put the new variable in scope, then run the initializer. This means you
could observe a variable before it’s initialized, so we would need to figure
out what value it would have then. Probably nil. That means the new local
a would be re-initialized to its own implicitly initialized value, nil. Now the
desugaring would look like:

var a; // Define the variable.
a = a; // Run the initializer.

3. Make it an error to reference a variable in its initializer. Have the in-
terpreter fail either at compile time or runtime if an initializer mentions the
variable being initialized.

Do either of those first two options look like something a user actually wants?
Shadowing is rare and often an error, so initializing a shadowing variable based
on the value of the shadowed one seems unlikely to be deliberate.

The second option is even less useful. The new variable will always have the
value nil. There is never any point in mentioning it by name. You could use an
explicit nil instead.

Since the first two options are likely to mask user errors, we’ll take the third.
Further, we’ll make it a compile error instead of a runtime one. That way, the
user is alerted to the problem before any code is run.

In order to do that, as we visit expressions, we need to know if we’re inside

lox/Resolver.java
add after visitBlockStmt()

11.3.3 ResolVIng VARIAble exPRessIons 181

the initializer for some variable. We do that by splitting binding into two steps.
The first is declaring it.

 private void declare(Token name) {
 if (scopes.isEmpty()) return;

 Map<String, Boolean> scope = scopes.peek();
 scope.put(name.lexeme, false);
 }

Declaration adds the variable to the innermost scope so that it shadows any out-
er one and so that we know the variable exists. We mark it as “not ready yet” by
binding its name to false in the scope map. The value associated with a key in
the scope map represents whether or not we have finished resolving that vari-
able’s initializer.

After declaring the variable, we resolve its initializer expression in that same
scope where the new variable now exists but is unavailable. Once the initializer
expression is done, the variable is ready for prime time. We do that by defining
it.

 private void define(Token name) {
 if (scopes.isEmpty()) return;
 scopes.peek().put(name.lexeme, true);
 }

We set the variable’s value in the scope map to true to mark it as fully initialized
and available for use. It’s alive!

11.3.3 Resolving variable expressions

Variable declarations—and function declarations, which we’ll get to—write to
the scope maps. Those maps are read when we resolve variable expressions.

 @Override
 public Void visitVariableExpr(Expr.Variable expr) {
 if (!scopes.isEmpty() &&
 scopes.peek().get(expr.name.lexeme) == Boolean.FALSE) {
 Lox.error(expr.name,
 "Can't read local variable in its own initializer.");
 }

 resolveLocal(expr, expr.name);
 return null;
 }

First, we check to see if the variable is being accessed inside its own initializer.
This is where the values in the scope map come into play. If the variable exists in
the current scope but its value is false, that means we have declared it but not
yet defined it. We report that error.

After that check, we actually resolve the variable itself using this helper:

lox/Resolver.java
add after endScope()

lox/Resolver.java
add after declare()

lox/Resolver.java
add after visitVarStmt()

182 cHAPTeR 11 : ResolVIng And bIndIng

 private void resolveLocal(Expr expr, Token name) {
 for (int i = scopes.size() - 1; i >= 0; i--) {
 if (scopes.get(i).containsKey(name.lexeme)) {
 interpreter.resolve(expr, scopes.size() - 1 - i);
 return;
 }
 }
 }

This looks, for good reason, a lot like the code in Environment for evaluating a
variable. We start at the innermost scope and work outwards, looking in each
map for a matching name. If we find the variable, we resolve it, passing in the
number of scopes between the current innermost scope and the scope where the
variable was found. So, if the variable was found in the current scope, we pass in
0. If it’s in the immediately enclosing scope, 1. You get the idea.

If we walk through all of the block scopes and never find the variable, we
leave it unresolved and assume it’s global. We’ll get to the implementation of that
resolve() method a little later. For now, let’s keep on cranking through the
other syntax nodes.

11.3.4 Resolving assignment expressions

The other expression that references a variable is assignment. Resolving one
looks like this:

 @Override
 public Void visitAssignExpr(Expr.Assign expr) {
 resolve(expr.value);
 resolveLocal(expr, expr.name);
 return null;
 }

First, we resolve the expression for the assigned value in case it also contains
references to other variables. Then we use our existing resolveLocal()
method to resolve the variable that’s being assigned to.

11.3.5 Resolving function declarations

Finally, functions. Functions both bind names and introduce a scope. The name
of the function itself is bound in the surrounding scope where the function is
declared. When we step into the function’s body, we also bind its parameters into
that inner function scope.

 @Override
 public Void visitFunctionStmt(Stmt.Function stmt) {
 declare(stmt.name);
 define(stmt.name);
 resolveFunction(stmt);
 return null;
 }

lox/Resolver.java
add after define()

lox/Resolver.java
add after visitVarStmt()

lox/Resolver.java
add after visitBlockStmt()

11.3.4 ResolVIng AssIgnmenT exPRessIons 183

Similar to visitVariableStmt(), we declare and define the name of the
function in the current scope. Unlike variables, though, we define the name ea-
gerly, before resolving the function’s body. This lets a function recursively refer
to itself inside its own body.

Then we resolve the function’s body using this:

 private void resolveFunction(Stmt.Function function) {
 beginScope();
 for (Token param : function.params) {
 declare(param);
 define(param);
 }
 resolve(function.body);
 endScope();
 }

It’s a separate method since we will also use it for resolving Lox methods when
we add classes later. It creates a new scope for the body and then binds variables
for each of the function’s parameters.

Once that’s ready, it resolves the function body in that scope. This is different
from how the interpreter handles function declarations. At runtime, declaring
a function doesn’t do anything with the function’s body. The body doesn’t get
touched until later when the function is called. In a static analysis, we immedi-
ately traverse into the body right then and there.

11.3.6 Resolving the other syntax tree nodes

That covers the interesting corners of the grammars. We handle every place
where a variable is declared, read, or written, and every place where a scope is
created or destroyed. Even though they aren’t affected by variable resolution, we
also need visit methods for all of the other syntax tree nodes in order to recurse
into their subtrees. Sorry this bit is boring, but bear with me. We’ll go kind of
“top down” and start with statements.

An expression statement contains a single expression to traverse.

 @Override
 public Void visitExpressionStmt(Stmt.Expression stmt) {
 resolve(stmt.expression);
 return null;
 }

An if statement has an expression for its condition and one or two statements
for the branches.

 @Override
 public Void visitIfStmt(Stmt.If stmt) {
 resolve(stmt.condition);
 resolve(stmt.thenBranch);
 if (stmt.elseBranch != null) resolve(stmt.elseBranch);
 return null;
 }

lox/Resolver.java
add after resolve()

I did say the book would have every single
line of code for these interpreters. I didn’t
say they’d all be exciting.

lox/Resolver.java
add after visitBlockStmt()

lox/Resolver.java
add after visitFunctionStmt()

184 cHAPTeR 11 : ResolVIng And bIndIng

Here, we see how resolution is different from interpretation. When we resolve
an if statement, there is no control flow. We resolve the condition and both
branches. Where a dynamic execution steps only into the branch that is run, a
static analysis is conservative—it analyzes any branch that could be run. Since
either one could be reached at runtime, we resolve both.

Like expression statements, a print statement contains a single subexpres-
sion.

 @Override
 public Void visitPrintStmt(Stmt.Print stmt) {
 resolve(stmt.expression);
 return null;
 }

Same deal for return.

 @Override
 public Void visitReturnStmt(Stmt.Return stmt) {
 if (stmt.value != null) {
 resolve(stmt.value);
 }

 return null;
 }

As in if statements, with a while statement, we resolve its condition and re-
solve the body exactly once.

 @Override
 public Void visitWhileStmt(Stmt.While stmt) {
 resolve(stmt.condition);
 resolve(stmt.body);
 return null;
 }

That covers all the statements. On to expressions . . . 
Our old friend the binary expression. We traverse into and resolve both op-

erands.

 @Override
 public Void visitBinaryExpr(Expr.Binary expr) {
 resolve(expr.left);
 resolve(expr.right);
 return null;
 }

Calls are similar—we walk the argument list and resolve them all. The thing
being called is also an expression (usually a variable expression), so that gets
resolved too.

lox/Resolver.java
add after visitIfStmt()

lox/Resolver.java
add after visitPrintStmt()

lox/Resolver.java
add after visitVarStmt()

lox/Resolver.java
add after visitAssignExpr()

11.3.6 ResolVIng THe oTHeR synTAx TRee nodes 185

 @Override
 public Void visitCallExpr(Expr.Call expr) {
 resolve(expr.callee);

 for (Expr argument : expr.arguments) {
 resolve(argument);
 }

 return null;
 }

Parentheses are easy.

 @Override
 public Void visitGroupingExpr(Expr.Grouping expr) {
 resolve(expr.expression);
 return null;
 }

Literals are easiest of all.

 @Override
 public Void visitLiteralExpr(Expr.Literal expr) {
 return null;
 }

A literal expression doesn’t mention any variables and doesn’t contain any sub-
expressions so there is no work to do.

Since a static analysis does no control flow or short-circuiting, logical expres-
sions are exactly the same as other binary operators.

 @Override
 public Void visitLogicalExpr(Expr.Logical expr) {
 resolve(expr.left);
 resolve(expr.right);
 return null;
 }

And, finally, the last node. We resolve its one operand.

 @Override
 public Void visitUnaryExpr(Expr.Unary expr) {
 resolve(expr.right);
 return null;
 }

With all of these visit methods, the Java compiler should be satisfied that
Resolver fully implements Stmt.Visitor and Expr.Visitor. Now is a good time to
take a break, have a snack, maybe a little nap.

lox/Resolver.java
add after visitBinaryExpr()

lox/Resolver.java
add after visitCallExpr()

lox/Resolver.java
add after visitGroupingExpr()

lox/Resolver.java
add after visitLiteralExpr()

lox/Resolver.java
add after visitLogicalExpr()

186 cHAPTeR 11 : ResolVIng And bIndIng

11.4 Interpreting resolved Variables
Let’s see what our resolver is good for. Each time it visits a variable, it tells the
interpreter how many scopes there are between the current scope and the scope
where the variable is defined. At runtime, this corresponds exactly to the num-
ber of environments between the current one and the enclosing one where the
interpreter can find the variable’s value. The resolver hands that number to the
interpreter by calling this:

 void resolve(Expr expr, int depth) {
 locals.put(expr, depth);
 }

We want to store the resolution information somewhere so we can use it when
the variable or assignment expression is later executed, but where? One obvious
place is right in the syntax tree node itself. That’s a fine approach, and that’s
where many compilers store the results of analyses like this.

We could do that, but it would require mucking around with our syntax tree
generator. Instead, we’ll take another common approach and store it off to the
side in a map that associates each syntax tree node with its resolved data.

Interactive tools like IDEs often incrementally reparse and re-resolve parts
of the user’s program. It may be hard to find all of the bits of state that need
recalculating when they’re hiding in the foliage of the syntax tree. A benefit of
storing this data outside of the nodes is that it makes it easy to discard it—simply
clear the map.

 private Environment environment = globals;
 private final Map<Expr, Integer> locals = new HashMap<>();

 Interpreter() {

You might think we’d need some sort of nested tree structure to avoid getting
confused when there are multiple expressions that reference the same variable,
but each expression node is its own Java object with its own unique identity. A
single monolithic map doesn’t have any trouble keeping them separated.

As usual, using a collection requires us to import a couple of names.

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

And:

import java.util.List;
import java.util.Map;

class Interpreter implements Expr.Visitor<Object>,

11.4.1 Accessing a resolved variable

Our interpreter now has access to each variable’s resolved location. Finally, we

lox/Interpreter.java
add after execute()

I think I’ve heard this map called a “side
table” since it’s a tabular data structure
that stores data separately from the
objects it relates to. But whenever I try
to Google for that term, I get pages about
furniture.

lox/Interpreter.java
in class Interpreter

lox/Interpreter.java

lox/Interpreter.java

11.4 InTeRPReTIng ResolVed VARIAbles 187

get to make use of that. We replace the visit method for variable expressions
with this:

 public Object visitVariableExpr(Expr.Variable expr) {
 return lookUpVariable(expr.name, expr);
 }

That delegates to:

 private Object lookUpVariable(Token name, Expr expr) {
 Integer distance = locals.get(expr);
 if (distance != null) {
 return environment.getAt(distance, name.lexeme);
 } else {
 return globals.get(name);
 }
 }

There are a couple of things going on here. First, we look up the resolved dis-
tance in the map. Remember that we resolved only local variables. Globals are
treated specially and don’t end up in the map (hence the name locals). So, if
we don’t find a distance in the map, it must be global. In that case, we look it up,
dynamically, directly in the global environment. That throws a runtime error if
the variable isn’t defined.

If we do get a distance, we have a local variable, and we get to take advantage
of the results of our static analysis. Instead of calling get(), we call this new
method on Environment:

 Object getAt(int distance, String name) {
 return ancestor(distance).values.get(name);
 }

The old get() method dynamically walks the chain of enclosing environments,
scouring each one to see if the variable might be hiding in there somewhere. But
now we know exactly which environment in the chain will have the variable. We
reach it using this helper method:

 Environment ancestor(int distance) {
 Environment environment = this;
 for (int i = 0; i < distance; i++) {
 environment = environment.enclosing;
 }

 return environment;
 }

This walks a fixed number of hops up the parent chain and returns the environ-
ment there. Once we have that, getAt() simply returns the value of the variable
in that environment’s map. It doesn’t even have to check to see if the variable is
there—we know it will be because the resolver already found it before.

lox/Interpreter.java
in visitVariableExpr()
replace 1 line

lox/Interpreter.java
add after visitVariableExpr()

lox/environment.java
add after define()

lox/environment.java
add after define()

The way the interpreter assumes the
variable is in that map feels like flying
blind. The interpreter code trusts that
the resolver did its job and resolved the
variable correctly. This implies a deep
coupling between these two classes.
Each line of resolver code that touches a
scope must have its exact match in the
interpreter for modifying an environment.
This kind of coupling is a frequent source
of subtle bugs—which I found out myself
when writing the book—so pay close
attention when touching code like this.

188 cHAPTeR 11 : ResolVIng And bIndIng

11.4.2 Assigning to a resolved variable

We can also use a variable by assigning to it. The changes to visiting an assign-
ment expression are similar.

 public Object visitAssignExpr(Expr.Assign expr) {
 Object value = evaluate(expr.value);

 Integer distance = locals.get(expr);
 if (distance != null) {
 environment.assignAt(distance, expr.name, value);
 } else {
 globals.assign(expr.name, value);
 }

 return value;

Again, we look up the variable’s scope distance. If not found, we assume it’s
global and handle it the same way as before. Otherwise, we call this new method:

 void assignAt(int distance, Token name, Object value) {
 ancestor(distance).values.put(name.lexeme, value);
 }

As getAt() is to get(), assignAt() is to assign(). It walks a fixed number
of environments, and then stuffs the new value in that map.

Those are the only changes to Interpreter. This is why I chose a representation
for our resolved data that was minimally invasive. All of the rest of the nodes
continue working as they did before. Even the code for modifying environments
is unchanged.

11.4.3 Running the resolver

We do need to actually run the resolver, though. We insert the new pass after the
parser does its magic.

 // Stop if there was a syntax error.
 if (hadError) return;

 Resolver resolver = new Resolver(interpreter);
 resolver.resolve(statements);

 interpreter.interpret(statements);

We don’t run the resolver if there are any parse errors. If the code has a syntax
error, it’s never going to run, so there’s little value in resolving it. If the syntax is
clean, we tell the resolver to do its thing. The resolver has a reference to the in-
terpreter and pokes the resolution data directly into it as it walks over variables.
When the interpreter runs next, it has everything it needs.

At least, that’s true if the resolver succeeds. But what about errors during res-
olution?

lox/Interpreter.java
in visitAssignExpr()

replace 1 line

lox/environment.java
add after getAt()

lox/lox.java
in run()

11.4.2 AssIgnIng To A ResolVed VARIAble 189

11.5 resolution Errors
Since we are doing a semantic analysis pass, we have an opportunity to make
Lox’s semantics more precise, and to help users catch bugs early before running
their code. Take a look at this bad boy:

fun bad() {
 var a = "first";
 var a = "second";
}

We do allow declaring multiple variables with the same name in the global scope,
but doing so in a local scope is probably a mistake. If they knew the variable
already existed, they would have assigned to it instead of using var. And if they
didn’t know it existed, they probably didn’t intend to overwrite the previous one.

We can detect this mistake statically while resolving.

 Map<String, Boolean> scope = scopes.peek();
 if (scope.containsKey(name.lexeme)) {
 Lox.error(name,
 "Already a variable with this name in this scope.");
 }

 scope.put(name.lexeme, false);

When we declare a variable in a local scope, we already know the names of every
variable previously declared in that same scope. If we see a collision, we report
an error.

11.5.1 Invalid return errors

Here’s another nasty little script:

return "at top level";

This executes a return statement, but it’s not even inside a function at all. It’s
top-level code. I don’t know what the user thinks is going to happen, but I don’t
think we want Lox to allow this.

We can extend the resolver to detect this statically. Much like we track scopes
as we walk the tree, we can track whether or not the code we are currently visit-
ing is inside a function declaration.

 private final Stack<Map<String, Boolean>> scopes = new Stack<>();
 private FunctionType currentFunction = FunctionType.NONE;

 Resolver(Interpreter interpreter) {

Instead of a bare Boolean, we use this funny enum:

lox/Resolver.java
in declare()

lox/Resolver.java
in class Resolver

190 cHAPTeR 11 : ResolVIng And bIndIng

 private enum FunctionType {
 NONE,
 FUNCTION
 }

It seems kind of dumb now, but we’ll add a couple more cases to it later and then
it will make more sense. When we resolve a function declaration, we pass that
in.

 define(stmt.name);

 resolveFunction(stmt, FunctionType.FUNCTION);
 return null;

Over in resolveFunction(), we take that parameter and store it in the field
before resolving the body.

 private void resolveFunction(
 Stmt.Function function, FunctionType type) {
 FunctionType enclosingFunction = currentFunction;
 currentFunction = type;

 beginScope();

We stash the previous value of the field in a local variable first. Remember, Lox
has local functions, so you can nest function declarations arbitrarily deeply. We
need to track not just that we’re in a function, but how many we’re in.

We could use an explicit stack of FunctionType values for that, but instead
we’ll piggyback on the JVM. We store the previous value in a local on the Java
stack. When we’re done resolving the function body, we restore the field to that
value.

 endScope();
 currentFunction = enclosingFunction;
 }

Now that we can always tell whether or not we’re inside a function declaration,
we check that when resolving a return statement.

 public Void visitReturnStmt(Stmt.Return stmt) {
 if (currentFunction == FunctionType.NONE) {
 Lox.error(stmt.keyword, "Can't return from top-level code.");
 }

 if (stmt.value != null) {

Neat, right?
There’s one more piece. Back in the main Lox class that stitches everything

together, we are careful to not run the interpreter if any parse errors are en-
countered. That check runs before the resolver so that we don’t try to resolve
syntactically invalid code.

But we also need to skip the interpreter if there are resolution errors, so we

lox/Resolver.java
add after Resolver()

lox/Resolver.java
in visitFunctionStmt()

replace 1 line

lox/Resolver.java
method resolveFunction()

replace 1 line

lox/Resolver.java
in resolveFunction()

lox/Resolver.java
in visitReturnStmt()

cHAllenges 191

add another check.

 resolver.resolve(statements);

 // Stop if there was a resolution error.
 if (hadError) return;

 interpreter.interpret(statements);

You could imagine doing lots of other analysis in here. For example, if we added
break statements to Lox, we would probably want to ensure they are only used
inside loops.

We could go farther and report warnings for code that isn’t necessarily
wrong but probably isn’t useful. For example, many IDEs will warn if you have
unreachable code after a return statement, or a local variable whose value is
never read. All of that would be pretty easy to add to our static visiting pass, or
as separate passes.

But, for now, we’ll stick with that limited amount of analysis. The important
part is that we fixed that one weird annoying edge case bug, though it might be
surprising that it took this much work to do it.

CHaLLENGES

1. Why is it safe to eagerly define the variable bound to a function’s name when
other variables must wait until after they are initialized before they can be used?

2. How do other languages you know handle local variables that refer to the same
name in their initializer, like:

var a = "outer";
{
 var a = a;
}

Is it a runtime error? Compile error? Allowed? Do they treat global variables
differently? Do you agree with their choices? Justify your answer.

3. Extend the resolver to report an error if a local variable is never used.

4. Our resolver calculates which environment the variable is found in, but it’s still
looked up by name in that map. A more efficient environment representation
would store local variables in an array and look them up by index.

Extend the resolver to associate a unique index for each local variable de-
clared in a scope. When resolving a variable access, look up both the scope the
variable is in and its index and store that. In the interpreter, use that to quickly
access a variable by its index instead of using a map.

lox/lox.java
in run()

The choice of how many different analyses
to lump into a single pass is difficult. Many
small isolated passes, each with their own
responsibility, are simpler to implement
and maintain. However, there is a real
runtime cost to traversing the syntax tree
itself, so bundling multiple analyses into a
single pass is usually faster.

A TRee-WAlk InTeRPReTeR 12Classes

“One has no right to love or hate anything if one has not acquired
a thorough knowledge of its nature. Great love springs from great
knowledge of the beloved object, and if you know it but little you will
be able to love it only a little or not at all.”

— Leonardo da Vinci

We’re eleven chapters in, and the interpreter sitting on your machine is nearly a
complete scripting language. It could use a couple of built-in data structures like
lists and maps, and it certainly needs a core library for file I/O, user input, etc.
But the language itself is sufficient. We’ve got a little procedural language in the
same vein as BASIC, Tcl, Scheme (minus macros), and early versions of Python
and Lua.

If this were the ’80s, we’d stop here. But today, many popular languages
support “object-oriented programming”. Adding that to Lox will give users a
familiar set of tools for writing larger programs. Even if you personally don’t
like OOP, this chapter and the next will help you understand how others design
and build object systems.

If you really hate classes, though, you
can skip these two chapters. They are
fairly isolated from the rest of the book.
Personally, I find it’s good to learn more
about the things I dislike. Things look
simple at a distance, but as I get closer,
details emerge and I gain a more nuanced
perspective.

194 cHAPTeR 12 : clAsses

12.1 OOP and Classes
There are three broad paths to object-oriented programming: classes, proto-
types, and multimethods. Classes came first and are the most popular style. With
the rise of JavaScript (and to a lesser extent Lua), prototypes are more widely
known than they used to be. I’ll talk more about those later. For Lox, we’re taking
the, ahem, classic approach.

Since you’ve written about a thousand lines of Java code with me already, I’m
assuming you don’t need a detailed introduction to object orientation. The main
goal is to bundle data with the code that acts on it. Users do that by declaring a
class that:

1. Exposes a constructor to create and initialize new instances of the class

2. Provides a way to store and access fields on instances

3. Defines a set of methods shared by all instances of the class that operate on
each instances’ state.

That’s about as minimal as it gets. Most object-oriented languages, all the way
back to Simula, also do inheritance to reuse behavior across classes. We’ll add
that in the next chapter. Even kicking that out, we still have a lot to get through.
This is a big chapter and everything doesn’t quite come together until we have all
of the above pieces, so gather your stamina.

12.2 Class Declarations
Like we do, we’re gonna start with syntax. A class statement introduces a new
name, so it lives in the declaration grammar rule.

declaration → classDecl
 | funDecl
 | varDecl
 | statement ;

classDecl → "class" IDENTIFIER "{" function* "}" ;

The new classDecl rule relies on the function rule we defined earlier. To
refresh your memory:

function → IDENTIFIER "(" parameters? ")" block ;
parameters → IDENTIFIER ("," IDENTIFIER)* ;

In plain English, a class declaration is the class keyword, followed by the class’s
name, then a curly-braced body. Inside that body is a list of method declarations.
Unlike function declarations, methods don’t have a leading fun keyword. Each
method is a name, parameter list, and body.

Here’s an example:

Multimethods are the approach you’re
least likely to be familiar with. I’d love
to talk more about them—I designed a
hobby language around them once and
they are super rad—but there are only
so many pages I can fit in. If you’d like
to learn more, take a look at CLOS (the
object system in Common Lisp), Dylan,
Julia, or Raku.

It’s like the circle of life, sans Sir Elton
John.

12.1 ooP And clAsses 195

class Breakfast {
 cook() {
 print "Eggs a-fryin'!";
 }

 serve(who) {
 print "Enjoy your breakfast, " + who + ".";
 }
}

Like most dynamically typed languages, fields are not explicitly listed in the
class declaration. Instances are loose bags of data and you can freely add fields to
them as you see fit using normal imperative code.

Over in our AST generator, the classDecl grammar rule gets its own state-
ment node.

 "Block : List<Stmt> statements",
 "Class : Token name, List<Stmt.Function> methods",
 "Expression : Expr expression",

It stores the class’s name and the methods inside its body. Methods are repre-
sented by the existing Stmt.Function class that we use for function declaration
AST nodes. That gives us all the bits of state that we need for a method: name,
parameter list, and body.

A class can appear anywhere a named declaration is allowed, triggered by the
leading class keyword.

 try {
 if (match(CLASS)) return classDeclaration();
 if (match(FUN)) return function("function");

That calls out to:

 private Stmt classDeclaration() {
 Token name = consume(IDENTIFIER, "Expect class name.");
 consume(LEFT_BRACE, "Expect '{' before class body.");

 List<Stmt.Function> methods = new ArrayList<>();
 while (!check(RIGHT_BRACE) && !isAtEnd()) {
 methods.add(function("method"));
 }

 consume(RIGHT_BRACE, "Expect '}' after class body.");

 return new Stmt.Class(name, methods);
 }

There’s more meat to this than most of the other parsing methods, but it roughly
follows the grammar. We’ve already consumed the class keyword, so we look
for the expected class name next, followed by the opening curly brace. Once

tool/generateAst.java
in main()

lox/Parser.java
in declaration()

lox/Parser.java
add after declaration()

196 cHAPTeR 12 : clAsses

inside the body, we keep parsing method declarations until we hit the closing
brace. Each method declaration is parsed by a call to function(), which we
defined back in the chapter where functions were introduced.

Like we do in any open-ended loop in the parser, we also check for hitting
the end of the file. That won’t happen in correct code since a class should have a
closing brace at the end, but it ensures the parser doesn’t get stuck in an infinite
loop if the user has a syntax error and forgets to correctly end the class body.

We wrap the name and list of methods into a Stmt.Class node and we’re done.
Previously, we would jump straight into the interpreter, but now we need to
plumb the node through the resolver first.

 @Override
 public Void visitClassStmt(Stmt.Class stmt) {
 declare(stmt.name);
 define(stmt.name);
 return null;
 }

We aren’t going to worry about resolving the methods themselves yet, so for now
all we need to do is declare the class using its name. It’s not common to declare
a class as a local variable, but Lox permits it, so we need to handle it correctly.

Now we interpret the class declaration.

 @Override
 public Void visitClassStmt(Stmt.Class stmt) {
 environment.define(stmt.name.lexeme, null);
 LoxClass klass = new LoxClass(stmt.name.lexeme);
 environment.assign(stmt.name, klass);
 return null;
 }

This looks similar to how we execute function declarations. We declare the
class’s name in the current environment. Then we turn the class syntax node
into a LoxClass, the runtime representation of a class. We circle back and store
the class object in the variable we previously declared. That two-stage variable
binding process allows references to the class inside its own methods.

We will refine it throughout the chapter, but the first draft of LoxClass looks
like this:

package com.craftinginterpreters.lox;

import java.util.List;
import java.util.Map;

class LoxClass {
 final String name;

 LoxClass(String name) {
 this.name = name;
 }

lox/Resolver.java
add after visitBlockStmt()

lox/loxclass.java
create new file

continued on next page . . .

lox/Interpreter.java
add after visitBlockStmt()

12.3 cReATIng InsTAnces 197

 @Override
 public String toString() {
 return name;
 }
}

Literally a wrapper around a name. We don’t even store the methods yet. Not
super useful, but it does have a toString() method so we can write a trivial
script and test that class objects are actually being parsed and executed.

class DevonshireCream {
 serveOn() {
 return "Scones";
 }
}

print DevonshireCream; // Prints "DevonshireCream".

12.3 Creating Instances
We have classes, but they don’t do anything yet. Lox doesn’t have “static” meth-
ods that you can call right on the class itself, so without actual instances, classes
are useless. Thus instances are the next step.

While some syntax and semantics are fairly standard across OOP languag-
es, the way you create new instances isn’t. Ruby, following Smalltalk, creates
instances by calling a method on the class object itself, a recursively graceful
approach. Some, like C++ and Java, have a new keyword dedicated to birthing a
new object. Python has you “call” the class itself like a function. (JavaScript, ever
weird, sort of does both.)

I took a minimal approach with Lox. We already have class objects, and we
already have function calls, so we’ll use call expressions on class objects to create
new instances. It’s as if a class is a factory function that generates instances of
itself. This feels elegant to me, and also spares us the need to introduce syntax
like new. Therefore, we can skip past the front end straight into the runtime.

Right now, if you try this:

class Bagel {}
Bagel();

You get a runtime error. visitCallExpr() checks to see if the called object
implements LoxCallable and reports an error since LoxClass doesn’t. Not yet,
that is.

import java.util.Map;

class LoxClass implements LoxCallable {
 final String name;

In Smalltalk, even classes are created by
calling methods on an existing object,
usually the desired superclass. It’s sort
of a turtles-all-the-way-down thing. It
ultimately bottoms out on a few magical
classes like Object and Metaclass that the
runtime conjures into being ex nihilo.

lox/loxclass.java
replace 1 line

. . . from previous page

198 cHAPTeR 12 : clAsses

Implementing that interface requires two methods.

 @Override
 public Object call(Interpreter interpreter,
 List<Object> arguments) {
 LoxInstance instance = new LoxInstance(this);
 return instance;
 }

 @Override
 public int arity() {
 return 0;
 }

The interesting one is call(). When you “call” a class, it instantiates a new
LoxInstance for the called class and returns it. The arity() method is how
the interpreter validates that you passed the right number of arguments to a
callable. For now, we’ll say you can’t pass any. When we get to user-defined con-
structors, we’ll revisit this.

That leads us to LoxInstance, the runtime representation of an instance of a
Lox class. Again, our first implementation starts small.

package com.craftinginterpreters.lox;

import java.util.HashMap;
import java.util.Map;

class LoxInstance {
 private LoxClass klass;

 LoxInstance(LoxClass klass) {
 this.klass = klass;
 }

 @Override
 public String toString() {
 return klass.name + " instance";
 }
}

Like LoxClass, it’s pretty bare bones, but we’re only getting started. If you want
to give it a try, here’s a script to run:

class Bagel {}
var bagel = Bagel();

print bagel; // Prints "Bagel instance".

This program doesn’t do much, but it’s starting to do something.

lox/loxInstance.java
create new file

lox/loxclass.java
add after toString()

12.4 PRoPeRTIes on InsTAnces 199

12.4 Properties on Instances
We have instances, so we should make them useful. We’re at a fork in the road.
We could add behavior first—methods—or we could start with state—proper-
ties. We’re going to take the latter because, as we’ll see, the two get entangled in
an interesting way and it will be easier to make sense of them if we get proper-
ties working first.

Lox follows JavaScript and Python in how it handles state. Every instance is
an open collection of named values. Methods on the instance’s class can access
and modify properties, but so can outside code. Properties are accessed using a
. syntax.

someObject.someProperty

An expression followed by . and an identifier reads the property with that name
from the object the expression evaluates to. That dot has the same precedence as
the parentheses in a function call expression, so we slot it into the grammar by
replacing the existing call rule with:

call → primary ("(" arguments? ")" | "." IDENTIFIER)* ;

After a primary expression, we allow a series of any mixture of parenthesized
calls and dotted property accesses. “Property access” is a mouthful, so from here
on out, we’ll call these “get expressions”.

12.4.1 Get expressions

The syntax tree node is:

 "Call : Expr callee, Token paren, List<Expr> arguments",
 "Get : Expr object, Token name",
 "Grouping : Expr expression",

Following the grammar, the new parsing code goes in our existing call()
method.

 while (true) {
 if (match(LEFT_PAREN)) {
 expr = finishCall(expr);
 } else if (match(DOT)) {
 Token name = consume(IDENTIFIER,
 "Expect property name after '.'.");
 expr = new Expr.Get(expr, name);
 } else {
 break;
 }
 }

The outer while loop there corresponds to the * in the grammar rule. We zip
along the tokens building up a chain of calls and gets as we find parentheses and
dots, like so:

Allowing code outside of the class to
directly modify an object’s fields goes
against the object-oriented credo that
a class encapsulates state. Some lan-
guages take a more principled stance. In
Smalltalk, fields are accessed using simple
identifiers—essentially, variables that are
only in scope inside a class’s methods.
Ruby uses @ followed by a name to access
a field in an object. That syntax is only
meaningful inside a method and always
accesses state on the current object.

Lox, for better or worse, isn’t quite so
pious about its OOP faith.

tool/generateAst.java
in main()

lox/Parser.java
in call()

200 cHAPTeR 12 : clAsses

Instances of the new Expr.Get node feed into the resolver.

 @Override
 public Void visitGetExpr(Expr.Get expr) {
 resolve(expr.object);
 return null;
 }

OK, not much to that. Since properties are looked up dynamically, they don’t get
resolved. During resolution, we recurse only into the expression to the left of the
dot. The actual property access happens in the interpreter.

 @Override
 public Object visitGetExpr(Expr.Get expr) {
 Object object = evaluate(expr.object);
 if (object instanceof LoxInstance) {
 return ((LoxInstance) object).get(expr.name);
 }

 throw new RuntimeError(expr.name,
 "Only instances have properties.");
 }

First, we evaluate the expression whose property is being accessed. In Lox, only
instances of classes have properties. If the object is some other type like a num-
ber, invoking a getter on it is a runtime error.

If the object is a LoxInstance, then we ask it to look up the property. It must be
time to give LoxInstance some actual state. A map will do fine.

 private LoxClass klass;
 private final Map<String, Object> fields = new HashMap<>();

 LoxInstance(LoxClass klass) {

Each key in the map is a property name and the corresponding value is the prop-
erty’s value. To look up a property on an instance:

lox/Resolver.java
add after visitCallExpr()

You can literally see that property
dispatch in Lox is dynamic since we don’t
process the property name during the
static resolution pass.

lox/Interpreter.java
add after visitCallExpr()

lox/loxInstance.java
in class LoxInstance

12.4.2 seT exPRessIons 201

 Object get(Token name) {
 if (fields.containsKey(name.lexeme)) {
 return fields.get(name.lexeme);
 }
 throw new RuntimeError(name,
 "Undefined property '" + name.lexeme + "'.");
 }

An interesting edge case we need to handle is what happens if the instance
doesn’t have a property with the given name. We could silently return some
dummy value like nil, but my experience with languages like JavaScript is that
this behavior masks bugs more often than it does anything useful. Instead, we’ll
make it a runtime error.

So the first thing we do is see if the instance actually has a field with the given
name. Only then do we return it. Otherwise, we raise an error.

Note how I switched from talking about “properties” to “fields”. There is a
subtle difference between the two. Fields are named bits of state stored directly
in an instance. Properties are the named, uh, things, that a get expression may
return. Every field is a property, but as we’ll see, not every property is a field.

In theory, we can now read properties on objects. But since there’s no way to
actually stuff any state into an instance, there are no fields to access. Before we
can test out reading, we must support writing.

12.4.2 Set expressions

Setters use the same syntax as getters, except they appear on the left side of an
assignment.

someObject.someProperty = value;

In grammar land, we extend the rule for assignment to allow dotted identifiers
on the left-hand side.

assignment → (call ".")? IDENTIFIER "=" assignment
 | logic_or ;

Unlike getters, setters don’t chain. However, the reference to call allows any
high-precedence expression before the last dot, including any number of getters,
as in:

lox/loxInstance.java
add after LoxInstance()

Doing a hash table lookup for every field
access is fast enough for many language
implementations, but not ideal. High
performance VMs for languages like
JavaScript use sophisticated optimiza-
tions like “hidden classes” to avoid that
overhead.

Paradoxically, many of the opti-
mizations invented to make dynamic
languages fast rest on the observation
that—even in those languages—most
code is fairly static in terms of the types of
objects it works with and their fields.

Ooh, foreshadowing. Spooky!

202 cHAPTeR 12 : clAsses

Note here that only the last part, the .meat is the setter. The .omelette and
.filling parts are both get expressions.

Just as we have two separate AST nodes for variable access and variable as-
signment, we need a second setter node to complement our getter node.

 "Logical : Expr left, Token operator, Expr right",
 "Set : Expr object, Token name, Expr value",
 "Unary : Token operator, Expr right",

In case you don’t remember, the way we handle assignment in the parser is a
little funny. We can’t easily tell that a series of tokens is the left-hand side of an
assignment until we reach the =. Now that our assignment grammar rule has
call on the left side, which can expand to arbitrarily large expressions, that
final = may be many tokens away from the point where we need to know we’re
parsing an assignment.

Instead, the trick we do is parse the left-hand side as a normal expression.
Then, when we stumble onto the equal sign after it, we take the expression we
already parsed and transform it into the correct syntax tree node for the assign-
ment.

We add another clause to that transformation to handle turning an Expr.Get
expression on the left into the corresponding Expr.Set.

 return new Expr.Assign(name, value);
 } else if (expr instanceof Expr.Get) {
 Expr.Get get = (Expr.Get)expr;
 return new Expr.Set(get.object, get.name, value);
 }

That’s parsing our syntax. We push that node through into the resolver.

 @Override
 public Void visitSetExpr(Expr.Set expr) {
 resolve(expr.value);
 resolve(expr.object);
 return null;
 }

Again, like Expr.Get, the property itself is dynamically evaluated, so there’s
nothing to resolve there. All we need to do is recurse into the two subexpressions
of Expr.Set, the object whose property is being set, and the value it’s being set to.

That leads us to the interpreter.

 @Override
 public Object visitSetExpr(Expr.Set expr) {
 Object object = evaluate(expr.object);

 if (!(object instanceof LoxInstance)) {
 throw new RuntimeError(expr.name,
 "Only instances have fields.");
 }

tool/generateAst.java
in main()

lox/Parser.java
in assignment()

lox/Resolver.java
add after visitLogicalExpr()

lox/Interpreter.java
add after visitLogicalExpr()

continued on next page . . .

12.5 meTHods on clAsses 203

 Object value = evaluate(expr.value);
 ((LoxInstance)object).set(expr.name, value);
 return value;
 }

We evaluate the object whose property is being set and check to see if it’s a
LoxInstance. If not, that’s a runtime error. Otherwise, we evaluate the value be-
ing set and store it on the instance. That relies on a new method in LoxInstance.

 void set(Token name, Object value) {
 fields.put(name.lexeme, value);
 }

No real magic here. We stuff the values straight into the Java map where fields
live. Since Lox allows freely creating new fields on instances, there’s no need to
see if the key is already present.

12.5 Methods on Classes
You can create instances of classes and stuff data into them, but the class itself
doesn’t really do anything. Instances are just maps and all instances are more or
less the same. To make them feel like instances of classes, we need behavior—
methods.

Our helpful parser already parses method declarations, so we’re good there.
We also don’t need to add any new parser support for method calls. We already
have . (getters) and () (function calls). A “method call” simply chains those
together.

That raises an interesting question. What happens when those two expressions
are pulled apart? Assuming that method in this example is a method on the class
of object and not a field on the instance, what should the following piece of
code do?

var m = object.method;
m(argument);

This program “looks up” the method and stores the result—whatever that is—in
a variable and then calls that object later. Is this allowed? Can you treat a method
like it’s a function on the instance?

. . . from previous page

lox/loxInstance.java
add after get()

We hit another semantic edge case in
visitSetExpr(). There are three
distinct operations:

1. Evaluate the object.

2. Raise a runtime error if it’s not an
instance of a class.

3. Evaluate the value.

The order that those are performed in
could be user visible, which means we
need to carefully specify it and ensure our
implementations do these in the same
order.

204 cHAPTeR 12 : clAsses

What about the other direction?

class Box {}

fun notMethod(argument) {
 print "called function with " + argument;
}

var box = Box();
box.function = notMethod;
box.function("argument");

This program creates an instance and then stores a function in a field on it. Then
it calls that function using the same syntax as a method call. Does that work?

Different languages have different answers to these questions. One could
write a treatise on it. For Lox, we’ll say the answer to both of these is yes, it does
work. We have a couple of reasons to justify that. For the second example—
calling a function stored in a field—we want to support that because first-class
functions are useful and storing them in fields is a perfectly normal thing to do.

The first example is more obscure. One motivation is that users generally ex-
pect to be able to hoist a subexpression out into a local variable without changing
the meaning of the program. You can take this:

breakfast(omelette.filledWith(cheese), sausage);

And turn it into this:

var eggs = omelette.filledWith(cheese);
breakfast(eggs, sausage);

And it does the same thing. Likewise, since the . and the () in a method call are
two separate expressions, it seems you should be able to hoist the lookup part
into a variable and then call it later. We need to think carefully about what the
thing you get when you look up a method is, and how it behaves, even in weird
cases like:

class Person {
 sayName() {
 print this.name;
 }
}

var jane = Person();
jane.name = "Jane";

var method = jane.sayName;
method(); // ?

If you grab a handle to a method on some instance and call it later, does it “re-
member” the instance it was pulled off from? Does this inside the method still
refer to that original object?

A motivating use for this is callbacks.
Often, you want to pass a callback whose
body simply invokes a method on some
object. Being able to look up the method
and pass it directly saves you the chore of
manually declaring a function to wrap it.
Compare this:

fun callback(a, b, c) {
 obj.method(a, b, c);
}

takeCallback(callback);

With this:

takeCallback(obj.method);

12.5 meTHods on clAsses 205

Here’s a more pathological example to bend your brain:

class Person {
 sayName() {
 print this.name;
 }
}

var jane = Person();
jane.name = "Jane";

var bill = Person();
bill.name = "Bill";

bill.sayName = jane.sayName;
bill.sayName(); // ?

Does that last line print “Bill” because that’s the instance that we called the
method through, or “Jane” because it’s the instance where we first grabbed the
method?

Equivalent code in Lua and JavaScript would print “Bill”. Those languages
don’t really have a notion of “methods”. Everything is sort of functions-in-fields,
so it’s not clear that jane “owns” sayName any more than bill does.

Lox, though, has real class syntax so we do know which callable things are
methods and which are functions. Thus, like Python, C#, and others, we will have
methods “bind” this to the original instance when the method is first grabbed.
Python calls these bound methods.

In practice, that’s usually what you want. If you take a reference to a method
on some object so you can use it as a callback later, you want to remember the
instance it belonged to, even if that callback happens to be stored in a field on
some other object.

OK, that’s a lot of semantics to load into your head. Forget about the edge cas-
es for a bit. We’ll get back to those. For now, let’s get basic method calls working.
We’re already parsing the method declarations inside the class body, so the next
step is to resolve them.

 define(stmt.name);

 for (Stmt.Function method : stmt.methods) {
 FunctionType declaration = FunctionType.METHOD;
 resolveFunction(method, declaration);
 }

 return null;

We iterate through the methods in the class body and pass each one to the
resolveFunction() method we wrote for handling function declarations
already. The only difference is that we pass in a new FunctionType enum value.

 NONE,
 METHOD
 }

I know, imaginative name, right?

lox/Resolver.java
in visitClassStmt()

Storing the function type in a local
variable is pointless right now, but we’ll
expand this code before too long and it
will make more sense.

lox/Resolver.java
in enum FunctionType
add “,” to previous line

206 cHAPTeR 12 : clAsses

That’s going to be important when we resolve this expressions. For now, don’t
worry about it. The interesting stuff is in the interpreter.

 environment.define(stmt.name.lexeme, null);

 Map<String, LoxFunction> methods = new HashMap<>();
 for (Stmt.Function method : stmt.methods) {
 LoxFunction function = new LoxFunction(method, environment);
 methods.put(method.name.lexeme, function);
 }

 LoxClass klass = new LoxClass(stmt.name.lexeme, methods);
 environment.assign(stmt.name, klass);

When we interpret a class declaration statement, we turn the syntactic repre-
sentation of the class—its AST node—into its runtime representation. Now,
we need to do that for the methods contained in the class as well. Each method
declaration blossoms into a LoxFunction object.

We take all of those and wrap them up into a map, keyed by the method
names. That gets stored in LoxClass.

 final String name;
 private final Map<String, LoxFunction> methods;

 LoxClass(String name, Map<String, LoxFunction> methods) {
 this.name = name;
 this.methods = methods;
 }

 @Override
 public String toString() {

Where an instance stores state, the class stores behavior. LoxInstance has its
map of fields, and LoxClass gets a map of methods. Even though methods are
owned by the class, they are still accessed through instances of that class.

 Object get(Token name) {
 if (fields.containsKey(name.lexeme)) {
 return fields.get(name.lexeme);
 }

 LoxFunction method = klass.findMethod(name.lexeme);
 if (method != null) return method;

 throw new RuntimeError(name, // [hidden]
 "Undefined property '" + name.lexeme + "'.");

When looking up a property on an instance, if we don’t find a matching field, we
look for a method with that name on the instance’s class. If found, we return that.
This is where the distinction between “field” and “property” becomes meaning-
ful. When accessing a property, you might get a field—a bit of state stored on the
instance—or you could hit a method defined on the instance’s class.

lox/Interpreter.java
in visitClassStmt()

replace 1 line

lox/loxclass.java
in class LoxClass

replace 4 lines

lox/loxInstance.java
in get()

Looking for a field first implies that fields
shadow methods, a subtle but important
semantic point.

12.6 THIs 207

The method is looked up using this:

 LoxFunction findMethod(String name) {
 if (methods.containsKey(name)) {
 return methods.get(name);
 }

 return null;
 }

You can probably guess this method is going to get more interesting later. For
now, a simple map lookup on the class’s method table is enough to get us started.
Give it a try:

class Bacon {
 eat() {
 print "Crunch crunch crunch!";
 }
}

Bacon().eat(); // Prints "Crunch crunch crunch!".

12.6 This
We can define both behavior and state on objects, but they aren’t tied together
yet. Inside a method, we have no way to access the fields of the “current” object—
the instance that the method was called on—nor can we call other methods on
that same object.

To get at that instance, it needs a name. Smalltalk, Ruby, and Swift use “self ”.
Simula, C++, Java, and others use “this”. Python uses “self ” by convention, but
you can technically call it whatever you like.

For Lox, since we generally hew to Java-ish style, we’ll go with “this”. Inside a
method body, a this expression evaluates to the instance that the method was
called on. Or, more specifically, since methods are accessed and then invoked as
two steps, it will refer to the object that the method was accessed from.

That makes our job harder. Peep at:

class Egotist {
 speak() {
 print this;
 }
}

var method = Egotist().speak;
method();

On the second-to-last line, we grab a reference to the speak() method off an
instance of the class. That returns a function, and that function needs to remem-
ber the instance it was pulled off of so that later, on the last line, it can still find
it when the function is called.

lox/loxclass.java
add after LoxClass()

Apologies if you prefer chewy bacon over
crunchy. Feel free to adjust the script to
your taste.

“I” would have been a great choice, but
using “i” for loop variables predates OOP
and goes all the way back to Fortran. We
are victims of the incidental choices of our
forebears.

208 cHAPTeR 12 : clAsses

We need to take this at the point that the method is accessed and attach it to
the function somehow so that it stays around as long as we need it to. Hmm . . . a
way to store some extra data that hangs around a function, eh? That sounds an
awful lot like a closure, doesn’t it?

If we defined this as a sort of hidden variable in an environment that sur-
rounds the function returned when looking up a method, then uses of this in
the body would be able to find it later. LoxFunction already has the ability to hold
on to a surrounding environment, so we have the machinery we need.

Let’s walk through an example to see how it works:

class Cake {
 taste() {
 var adjective = "delicious";
 print "The " + this.flavor + " cake is " + adjective + "!";
 }
}

var cake = Cake();
cake.flavor = "German chocolate";
cake.taste(); // Prints "The German chocolate cake is delicious!".

When we first evaluate the class definition, we create a LoxFunction for
taste(). Its closure is the environment surrounding the class, in this case the
global one. So the LoxFunction we store in the class’s method map looks like so:

When we evaluate the cake.taste get expression, we create a new environ-
ment that binds this to the object the method is accessed from (here, cake).
Then we make a new LoxFunction with the same code as the original one but us-
ing that new environment as its closure.

12.6 THIs 209

This is the LoxFunction that gets returned when evaluating the get expression
for the method name. When that function is later called by a () expression, we
create an environment for the method body as usual.

The parent of the body environment is the environment we created earlier to
bind this to the current object. Thus any use of this inside the body success-
fully resolves to that instance.

Reusing our environment code for implementing this also takes care of
interesting cases where methods and functions interact, like:

class Thing {
 getCallback() {
 fun localFunction() {
 print this;
 }

 return localFunction;
 }
}

var callback = Thing().getCallback();
callback();

In, say, JavaScript, it’s common to return a callback from inside a method. That
callback may want to hang on to and retain access to the original object—the
this value—that the method was associated with. Our existing support for
closures and environment chains should do all this correctly.

Let’s code it up. The first step is adding new syntax for this.

 "Set : Expr object, Token name, Expr value",
 "This : Token keyword",
 "Unary : Token operator, Expr right",

Parsing is simple since it’s a single token which our lexer already recognizes as
a reserved word.

tool/generateAst.java
in main()

210 cHAPTeR 12 : clAsses

 return new Expr.Literal(previous().literal);
 }

 if (match(THIS)) return new Expr.This(previous());

 if (match(IDENTIFIER)) {

You can start to see how this works like a variable when we get to the resolver.

 @Override
 public Void visitThisExpr(Expr.This expr) {
 resolveLocal(expr, expr.keyword);
 return null;
 }

We resolve it exactly like any other local variable using “this” as the name for
the “variable”. Of course, that’s not going to work right now, because “this” isn’t
declared in any scope. Let’s fix that over in visitClassStmt().

 define(stmt.name);

 beginScope();
 scopes.peek().put("this", true);

 for (Stmt.Function method : stmt.methods) {

Before we step in and start resolving the method bodies, we push a new scope
and define “this” in it as if it were a variable. Then, when we’re done, we discard
that surrounding scope.

 }

 endScope();

 return null;

Now, whenever a this expression is encountered (at least inside a method) it
will resolve to a “local variable” defined in an implicit scope just outside of the
block for the method body.

The resolver has a new scope for this, so the interpreter needs to create a
corresponding environment for it. Remember, we always have to keep the resolv-
er’s scope chains and the interpreter’s linked environments in sync with each
other. At runtime, we create the environment after we find the method on the
instance. We replace the previous line of code that simply returned the method’s
LoxFunction with this:

 LoxFunction method = klass.findMethod(name.lexeme);
 if (method != null) return method.bind(this);

 throw new RuntimeError(name, // [hidden]
 "Undefined property '" + name.lexeme + "'.");

lox/Resolver.java
add after visitSetExpr()

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
in visitClassStmt()

lox/loxInstance.java
in get()

replace 1 line

lox/Parser.java
in primary()

12.6.1 InVAlId uses of THIs 211

Note the new call to bind(). That looks like so:

 LoxFunction bind(LoxInstance instance) {
 Environment environment = new Environment(closure);
 environment.define("this", instance);
 return new LoxFunction(declaration, environment);
 }

There isn’t much to it. We create a new environment nestled inside the method’s
original closure. Sort of a closure-within-a-closure. When the method is called,
that will become the parent of the method body’s environment.

We declare “this” as a variable in that environment and bind it to the given
instance, the instance that the method is being accessed from. Et voilà, the re-
turned LoxFunction now carries around its own little persistent world where
“this” is bound to the object.

The remaining task is interpreting those this expressions. Similar to the
resolver, it is the same as interpreting a variable expression.

 @Override
 public Object visitThisExpr(Expr.This expr) {
 return lookUpVariable(expr.keyword, expr);
 }

Go ahead and give it a try using that cake example from earlier. With less than
twenty lines of code, our interpreter handles this inside methods even in all
of the weird ways it can interact with nested classes, functions inside methods,
handles to methods, etc.

12.6.1 Invalid uses of this

Wait a minute. What happens if you try to use this outside of a method? What
about:

print this;

Or:

fun notAMethod() {
 print this;
}

There is no instance for this to point to if you’re not in a method. We could give
it some default value like nil or make it a runtime error, but the user has clearly
made a mistake. The sooner they find and fix that mistake, the happier they’ll be.

Our resolution pass is a fine place to detect this error statically. It already
detects return statements outside of functions. We’ll do something similar for
this. In the vein of our existing FunctionType enum, we define a new ClassType
one.

lox/Interpreter.java
add after visitSetExpr()

lox/loxfunction.java
add after LoxFunction()

212 cHAPTeR 12 : clAsses

 }

 private enum ClassType {
 NONE,
 CLASS
 }

 private ClassType currentClass = ClassType.NONE;

 void resolve(List<Stmt> statements) {

Yes, it could be a Boolean. When we get to inheritance, it will get a third value,
hence the enum right now. We also add a corresponding field, currentClass.
Its value tells us if we are currently inside a class declaration while traversing
the syntax tree. It starts out NONE which means we aren’t in one.

When we begin to resolve a class declaration, we change that.

 public Void visitClassStmt(Stmt.Class stmt) {
 ClassType enclosingClass = currentClass;
 currentClass = ClassType.CLASS;

 declare(stmt.name);

As with currentFunction, we store the previous value of the field in a local
variable. This lets us piggyback onto the JVM to keep a stack of currentClass
values. That way we don’t lose track of the previous value if one class nests in-
side another.

Once the methods have been resolved, we “pop” that stack by restoring the
old value.

 endScope();

 currentClass = enclosingClass;
 return null;

When we resolve a this expression, the currentClass field gives us the bit of
data we need to report an error if the expression doesn’t occur nestled inside a
method body.

 public Void visitThisExpr(Expr.This expr) {
 if (currentClass == ClassType.NONE) {
 Lox.error(expr.keyword,
 "Can't use 'this' outside of a class.");
 return null;
 }

 resolveLocal(expr, expr.keyword);

That should help users use this correctly, and it saves us from having to handle
misuse at runtime in the interpreter.

lox/Resolver.java
add after enum FunctionType

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
in visitThisExpr()

12.7 consTRucToRs And InITIAlIzeRs 213

12.7 Constructors and Initializers
We can do almost everything with classes now, and as we near the end of the
chapter we find ourselves strangely focused on a beginning. Methods and fields
let us encapsulate state and behavior together so that an object always stays in
a valid configuration. But how do we ensure a brand new object starts in a good
state?

For that, we need constructors. I find them one of the trickiest parts of a
language to design, and if you peer closely at most other languages, you’ll see
cracks around object construction where the seams of the design don’t quite fit
together perfectly. Maybe there’s something intrinsically messy about the mo-
ment of birth.

“Constructing” an object is actually a pair of operations:

1. The runtime allocates the memory required for a fresh instance. In most lan-
guages, this operation is at a fundamental level beneath what user code is able
to access.

2. Then, a user-provided chunk of code initializes the unformed object.

The latter is what we tend to think of when we hear “constructor”, but the
language itself has usually done some groundwork for us before we get to that
point. In fact, our Lox interpreter already has that covered when it creates a new
LoxInstance object.

We’ll do the remaining part—user-defined initialization—now. Languages
have a variety of notations for the chunk of code that sets up a new object for a
class. C++, Java, and C# use a method whose name matches the class name. Ruby
and Python call it init(). The latter is nice and short, so we’ll do that.

In LoxClass’s implementation of LoxCallable, we add a few more lines.

 List<Object> arguments) {
 LoxInstance instance = new LoxInstance(this);
 LoxFunction initializer = findMethod("init");
 if (initializer != null) {
 initializer.bind(instance).call(interpreter, arguments);
 }

 return instance;

When a class is called, after the LoxInstance is created, we look for an “init”
method. If we find one, we immediately bind and invoke it just like a normal
method call. The argument list is forwarded along.

That argument list means we also need to tweak how a class declares its arity.

 public int arity() {
 LoxFunction initializer = findMethod("init");
 if (initializer == null) return 0;
 return initializer.arity();
 }

If there is an initializer, that method’s arity determines how many arguments
you must pass when you call the class itself. We don’t require a class to define an

A few examples: In Java, even though
final fields must be initialized, it is still
possible to read one before it has been.
Exceptions—a huge, complex feature—
were added to C++ mainly as a way to
emit errors from constructors.

C++’s “placement new” is a rare example
where the innards of allocation are laid
bare for the programmer to prod.

lox/loxclass.java
in arity()
replace 1 line

lox/loxclass.java
in call()

214 cHAPTeR 12 : clAsses

initializer, though, as a convenience. If you don’t have an initializer, the arity is
still zero.

That’s basically it. Since we bind the init() method before we call it, it has
access to this inside its body. That, along with the arguments passed to the
class, are all you need to be able to set up the new instance however you desire.

12.7.1 Invoking init() directly

As usual, exploring this new semantic territory rustles up a few weird creatures.
Consider:

class Foo {
 init() {
 print this;
 }
}

var foo = Foo();
print foo.init();

Can you “re-initialize” an object by directly calling its init() method? If you
do, what does it return? A reasonable answer would be nil since that’s what it
appears the body returns.

However—and I generally dislike compromising to satisfy the implementa-
tion—it will make clox’s implementation of constructors much easier if we say
that init() methods always return this, even when directly called. In order to
keep jlox compatible with that, we add a little special case code in LoxFunction.

 return returnValue.value;
 }

 if (isInitializer) return closure.getAt(0, "this");
 return null;

If the function is an initializer, we override the actual return value and forcibly
return this. That relies on a new isInitializer field.

 private final Environment closure;

 private final boolean isInitializer;

 LoxFunction(Stmt.Function declaration, Environment closure,
 boolean isInitializer) {
 this.isInitializer = isInitializer;
 this.closure = closure;
 this.declaration = declaration;

We can’t simply see if the name of the LoxFunction is “init” because the user
could have defined a function with that name. In that case, there is no this to re-
turn. To avoid that weird edge case, we’ll directly store whether the LoxFunction
represents an initializer method. That means we need to go back and fix the few

Maybe “dislike” is too strong a claim.
It’s reasonable to have the constraints
and resources of your implementation
affect the design of the language. There
are only so many hours in the day, and
if a cut corner here or there lets you get
more features to users in less time, it may
very well be a net win for their happiness
and productivity. The trick is figuring out
which corners to cut that won’t cause
your users and future self to curse your
shortsightedness.

lox/loxfunction.java
in call()

lox/loxfunction.java
in class LoxFunction

replace 1 line

12.7.1 InVokIng InIT() dIRecTly 215

places where we create LoxFunctions.

 public Void visitFunctionStmt(Stmt.Function stmt) {
 LoxFunction function = new LoxFunction(stmt, environment,
 false);
 environment.define(stmt.name.lexeme, function);

For actual function declarations, isInitializer is always false. For methods,
we check the name.

 for (Stmt.Function method : stmt.methods) {
 LoxFunction function = new LoxFunction(method, environment,
 method.name.lexeme.equals("init"));
 methods.put(method.name.lexeme, function);

And then in bind() where we create the closure that binds this to a method,
we pass along the original method’s value.

 environment.define("this", instance);
 return new LoxFunction(declaration, environment,
 isInitializer);
 }

12.7.2 Returning from init()

We aren’t out of the woods yet. We’ve been assuming that a user-written ini-
tializer doesn’t explicitly return a value because most constructors don’t. What
should happen if a user tries:

class Foo {
 init() {
 return "something else";
 }
}

It’s definitely not going to do what they want, so we may as well make it a static
error. Back in the resolver, we add another case to FunctionType.

 FUNCTION,
 INITIALIZER,
 METHOD

We use the visited method’s name to determine if we’re resolving an initializer
or not.

 FunctionType declaration = FunctionType.METHOD;
 if (method.name.lexeme.equals("init")) {
 declaration = FunctionType.INITIALIZER;
 }

 resolveFunction(method, declaration);

lox/Interpreter.java
in visitFunctionStmt()
replace 1 line

lox/Interpreter.java
in visitClassStmt()
replace 1 line

lox/loxfunction.java
in bind()
replace 1 line

lox/Resolver.java
in enum FunctionType

lox/Resolver.java
in visitClassStmt()

216 cHAPTeR 12 : clAsses

When we later traverse into a return statement, we check that field and make
it an error to return a value from inside an init() method.

 if (stmt.value != null) {
 if (currentFunction == FunctionType.INITIALIZER) {
 Lox.error(stmt.keyword,
 "Can't return a value from an initializer.");
 }

 resolve(stmt.value);

We’re still not done. We statically disallow returning a value from an initializer,
but you can still use an empty early return.

class Foo {
 init() {
 return;
 }
}

That is actually kind of useful sometimes, so we don’t want to disallow it en-
tirely. Instead, it should return this instead of nil. That’s an easy fix over in
LoxFunction.

 } catch (Return returnValue) {
 if (isInitializer) return closure.getAt(0, "this");

 return returnValue.value;

If we’re in an initializer and execute a return statement, instead of returning
the value (which will always be nil), we again return this.

Phew! That was a whole list of tasks but our reward is that our little interpret-
er has grown an entire programming paradigm. Classes, methods, fields, this,
and constructors. Our baby language is looking awfully grown-up.

lox/Resolver.java
in visitReturnStmt()

lox/loxfunction.java
in call()

cHAllenges 217

CHaLLENGES

1. We have methods on instances, but there is no way to define “static” methods
that can be called directly on the class object itself. Add support for them. Use
a class keyword preceding the method to indicate a static method that hangs
off the class object.

class Math {
 class square(n) {
 return n * n;
 }
}

print Math.square(3); // Prints "9".

You can solve this however you like, but the “metaclasses” used by Smalltalk and
Ruby are a particularly elegant approach. Hint: Make LoxClass extend LoxInstance
and go from there.

2. Most modern languages support “getters” and “setters”—members on a class
that look like field reads and writes but that actually execute user-defined code.
Extend Lox to support getter methods. These are declared without a parameter
list. The body of the getter is executed when a property with that name is ac-
cessed.

class Circle {
 init(radius) {
 this.radius = radius;
 }

 area {
 return 3.141592653 * this.radius * this.radius;
 }
}

var circle = Circle(4);
print circle.area; // Prints roughly "50.2655".

3. Python and JavaScript allow you to freely access an object’s fields from outside
of its own methods. Ruby and Smalltalk encapsulate instance state. Only meth-
ods on the class can access the raw fields, and it is up to the class to decide
which state is exposed. Most statically typed languages offer modifiers like
private and public to control which parts of a class are externally accessi-
ble on a per-member basis.

What are the trade-offs between these approaches and why might a lan-
guage prefer one or the other?

218 cHAPTeR 12 : clAsses

DESIGN NOtE: PrOtOtYPES aND POWEr

In this chapter, we introduced two new runtime entities, LoxClass and LoxInstance.
The former is where behavior for objects lives, and the latter is for state. What if you
could define methods right on a single object, inside LoxInstance? In that case, we
wouldn’t need LoxClass at all. LoxInstance would be a complete package for defining
the behavior and state of an object.

We’d still want some way, without classes, to reuse behavior across multiple in-
stances. We could let a LoxInstance delegate directly to another LoxInstance to reuse
its fields and methods, sort of like inheritance.

Users would model their program as a constellation of objects, some of which
delegate to each other to reflect commonality. Objects used as delegates represent
“canonical” or “prototypical” objects that others refine. The result is a simpler runtime
with only a single internal construct, LoxInstance.

That’s where the name prototypes comes from for this paradigm. It was invented
by David Ungar and Randall Smith in a language called Self. They came up with it by
starting with Smalltalk and following the above mental exercise to see how much they
could pare it down.

Prototypes were an academic curiosity for a long time, a fascinating one that gen-
erated interesting research but didn’t make a dent in the larger world of programming.
That is, until Brendan Eich crammed prototypes into JavaScript, which then prompt-
ly took over the world. Many (many) words have been written about prototypes in
JavaScript. Whether that shows that prototypes are brilliant or confusing—or both!—
is an open question.

I won’t get into whether or not I think prototypes are a good idea for a language.
I’ve made languages that are prototypal and class-based, and my opinions of both are
complex. What I want to discuss is the role of simplicity in a language.

Prototypes are simpler than classes—less code for the language implementer to
write, and fewer concepts for the user to learn and understand. Does that make them
better? We language nerds have a tendency to fetishize minimalism. Personally, I think
simplicity is only part of the equation. What we really want to give the user is power,
which I define as:

power = breadth × ease ÷ complexity

None of these are precise numeric measures. I’m using math as analogy here, not
actual quantification.

• Breadth is the range of different things the language lets you express. C has a lot
of breadth—it’s been used for everything from operating systems to user applica-
tions to games. Domain-specific languages like AppleScript and Matlab have less
breadth.

• Ease is how little effort it takes to make the language do what you want. “Usability”
might be another term, though it carries more baggage than I want to bring in.
“Higher-level” languages tend to have more ease than “lower-level” ones. Most
languages have a “grain” to them where some things feel easier to express than
others.

• Complexity is how big the language (including its runtime, core libraries, tools,
ecosystem, etc.) is. People talk about how many pages are in a language’s spec, or
how many keywords it has. It’s how much the user has to load into their wetware

Including more than a handful by yours
truly:

 ⇾ craftinginterpreters.com/prototypes

Prototype-based Finch:
 ⇾ craftinginterpreters.com/finch

Class-based Wren:
 ⇾ craftinginterpreters.com/wren

http://craftinginterpreters.com/prototypes
http://craftinginterpreters.com/finch
http://craftinginterpreters.com/wren

desIgn noTe: PRoToTyPes And PoWeR 219

before they can be productive in the system. It is the antonym of simplicity.

Reducing complexity does increase power. The smaller the denominator, the larger
the resulting value, so our intuition that simplicity is good is valid. However, when
reducing complexity, we must take care not to sacrifice breadth or ease in the process,
or the total power may go down. Java would be a strictly simpler language if it removed
strings, but it probably wouldn’t handle text manipulation tasks well, nor would it be
as easy to get things done.

The art, then, is finding accidental complexity that can be omitted—language fea-
tures and interactions that don’t carry their weight by increasing the breadth or ease
of using the language.

If users want to express their program in terms of categories of objects, then bak-
ing classes into the language increases the ease of doing that, hopefully by a large
enough margin to pay for the added complexity. But if that isn’t how users are using
your language, then by all means leave classes out.

A TRee-WAlk InTeRPReTeR 13Inheritance

“Once we were blobs in the sea, and then fishes, and then lizards and
rats and then monkeys, and hundreds of things in between. This hand
was once a fin, this hand once had claws! In my human mouth I have
the pointy teeth of a wolf and the chisel teeth of a rabbit and the
grinding teeth of a cow! Our blood is as salty as the sea we used to live
in! When we’re frightened, the hair on our skin stands up, just like it
did when we had fur. We are history! Everything we’ve ever been on
the way to becoming us, we still are.”

— Terry Pratchett, A Hat Full of Sky

Can you believe it? We’ve reached the last chapter of Part II. We’re almost done
with our first Lox interpreter. The previous chapter was a big ball of intertwined
object-orientation features. I couldn’t separate those from each other, but I did
manage to untangle one piece. In this chapter, we’ll finish off Lox’s class support
by adding inheritance.

Inheritance appears in object-oriented languages all the way back to the first
one, Simula. Early on, Kristen Nygaard and Ole-Johan Dahl noticed commonali-
ties across classes in the simulation programs they wrote. Inheritance gave them
a way to reuse the code for those similar parts.

You could say all those other languages
inherited it from Simula. Hey-ooo! I’ll, uh,
see myself out.

222 cHAPTeR 13 : InHeRITAnce

13.1 Superclasses and Subclasses
Given that the concept is “inheritance”, you would hope they would pick a con-
sistent metaphor and call them “parent” and “child” classes, but that would be
too easy. Way back when, C. A. R. Hoare coined the term “subclass” to refer to
a record type that refines another type. Simula borrowed that term to refer to a
class that inherits from another. I don’t think it was until Smalltalk came along
that someone flipped the Latin prefix to get “superclass” to refer to the other
side of the relationship. From C++, you also hear “base” and “derived” classes. I’ll
mostly stick with “superclass” and “subclass”.

Our first step towards supporting inheritance in Lox is a way to specify a su-
perclass when declaring a class. There’s a lot of variety in syntax for this. C++ and
C# place a : after the subclass’s name, followed by the superclass name. Java uses
extends instead of the colon. Python puts the superclass(es) in parentheses af-
ter the class name. Simula puts the superclass’s name before the class keyword.

This late in the game, I’d rather not add a new reserved word or token to the
lexer. We don’t have extends or even :, so we’ll follow Ruby and use a less-than
sign (<).

class Doughnut {
 // General doughnut stuff...
}

class BostonCream < Doughnut {
 // Boston Cream-specific stuff...
}

To work this into the grammar, we add a new optional clause in our existing
classDecl rule.

classDecl → "class" IDENTIFIER ("<" IDENTIFIER)?
 "{" function* "}" ;

After the class name, you can have a < followed by the superclass’s name. The
superclass clause is optional because you don’t have to have a superclass. Unlike
some other object-oriented languages like Java, Lox has no root “Object” class
that everything inherits from, so when you omit the superclass clause, the class
has no superclass, not even an implicit one.

We want to capture this new syntax in the class declaration’s AST node.

 "Block : List<Stmt> statements",
 "Class : Token name, Expr.Variable superclass," +
 " List<Stmt.Function> methods",
 "Expression : Expr expression",

You might be surprised that we store the superclass name as an Expr.Variable,
not a Token. The grammar restricts the superclass clause to a single identifier,
but at runtime, that identifier is evaluated as a variable access. Wrapping the
name in an Expr.Variable early on in the parser gives us an object that the resolv-
er can hang the resolution information off of.

The new parser code follows the grammar directly.

“Super-” and “sub-” mean “above” and
“below” in Latin, respectively. Picture an
inheritance tree like a family tree with
the root at the top—subclasses are below
their superclasses on the diagram. More
generally, “sub-” refers to things that
refine or are contained by some more
general concept. In zoology, a subclass is
a finer categorization of a larger class of
living things.

In set theory, a subset is contained
by a larger superset which has all of the
elements of the subset and possibly more.
Set theory and programming languages
meet each other in type theory. There, you
have “supertypes” and “subtypes”.

In statically typed object-oriented lan-
guages, a subclass is also often a subtype
of its superclass. Say we have a Doughnut
superclass and a BostonCream subclass.
Every BostonCream is also an instance
of Doughnut, but there may be doughnut
objects that are not BostonCreams (like
Crullers).

Think of a type as the set of all values of
that type. The set of all Doughnut instanc-
es contains the set of all BostonCream
instances since every BostonCream is
also a Doughnut. So BostonCream is a
subclass, and a subtype, and its instances
are a subset. It all lines up.

tool/generateAst.java
in main()

replace 1 line

13.1 suPeRclAsses And subclAsses 223

 Token name = consume(IDENTIFIER, "Expect class name.");

 Expr.Variable superclass = null;
 if (match(LESS)) {
 consume(IDENTIFIER, "Expect superclass name.");
 superclass = new Expr.Variable(previous());
 }

 consume(LEFT_BRACE, "Expect '{' before class body.");

Once we’ve (possibly) parsed a superclass declaration, we store it in the AST.

 consume(RIGHT_BRACE, "Expect '}' after class body.");
 return new Stmt.Class(name, superclass, methods);
 }

If we didn’t parse a superclass clause, the superclass expression will be null.
We’ll have to make sure the later passes check for that. The first of those is the
resolver.

 define(stmt.name);
 if (stmt.superclass != null) {
 resolve(stmt.superclass);
 }

 beginScope();

The class declaration AST node has a new subexpression, so we traverse into and
resolve that. Since classes are usually declared at the top level, the superclass
name will most likely be a global variable, so this doesn’t usually do anything
useful. However, Lox allows class declarations even inside blocks, so it’s possible
the superclass name refers to a local variable. In that case, we need to make sure
it’s resolved.

Because even well-intentioned programmers sometimes write weird code,
there’s a silly edge case we need to worry about while we’re in here. Take a look
at this:

class Oops < Oops {}

There’s no way this will do anything useful, and if we let the runtime try to run
this, it will break the expectation the interpreter has about there not being cy-
cles in the inheritance chain. The safest thing is to detect this case statically and
report it as an error.

 define(stmt.name);
 if (stmt.superclass != null &&
 stmt.name.lexeme.equals(stmt.superclass.name.lexeme)) {
 Lox.error(stmt.superclass.name,
 "A class can't inherit from itself.");
 }

 if (stmt.superclass != null) {

lox/Parser.java
in classDeclaration()

lox/Parser.java
in classDeclaration()
replace 1 line

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
in visitClassStmt()

224 cHAPTeR 13 : InHeRITAnce

Assuming the code resolves without error, the AST travels to the interpreter.

 public Void visitClassStmt(Stmt.Class stmt) {
 Object superclass = null;
 if (stmt.superclass != null) {
 superclass = evaluate(stmt.superclass);
 if (!(superclass instanceof LoxClass)) {
 throw new RuntimeError(stmt.superclass.name,
 "Superclass must be a class.");
 }
 }

 environment.define(stmt.name.lexeme, null);

If the class has a superclass expression, we evaluate it. Since that could poten-
tially evaluate to some other kind of object, we have to check at runtime that the
thing we want to be the superclass is actually a class. Bad things would happen
if we allowed code like:

var NotAClass = "I am totally not a class";

class Subclass < NotAClass {} // ?!

Assuming that check passes, we continue on. Executing a class declaration turns
the syntactic representation of a class—its AST node—into its runtime repre-
sentation, a LoxClass object. We need to plumb the superclass through to that
too. We pass the superclass to the constructor.

 methods.put(method.name.lexeme, function);
 }

 LoxClass klass = new LoxClass(stmt.name.lexeme,
 (LoxClass)superclass, methods);

 environment.assign(stmt.name, klass);

The constructor stores it in a field.

 LoxClass(String name, LoxClass superclass,
 Map<String, LoxFunction> methods) {
 this.superclass = superclass;
 this.name = name;

Which we declare here:

 final String name;
 final LoxClass superclass;
 private final Map<String, LoxFunction> methods;

With that, we can define classes that are subclasses of other classes. Now, what
does having a superclass actually do?

lox/Interpreter.java
in visitClassStmt()

lox/Interpreter.java
in visitClassStmt()

replace 1 line

lox/loxclass.java
constructor LoxClass()

replace 1 line

lox/loxclass.java
in class LoxClass

13.2 InHeRITIng meTHods 225

13.2 Inheriting Methods
Inheriting from another class means that everything that’s true of the superclass
should be true, more or less, of the subclass. In statically typed languages, that
carries a lot of implications. The subclass must also be a subtype, and the memory
layout is controlled so that you can pass an instance of a subclass to a function
expecting a superclass and it can still access the inherited fields correctly.

Lox is a dynamically typed language, so our requirements are much simpler.
Basically, it means that if you can call some method on an instance of the su-
perclass, you should be able to call that method when given an instance of the
subclass. In other words, methods are inherited from the superclass.

This lines up with one of the goals of inheritance—to give users a way to reuse
code across classes. Implementing this in our interpreter is astonishingly easy.

 return methods.get(name);
 }

 if (superclass != null) {
 return superclass.findMethod(name);
 }
 return null;

That’s literally all there is to it. When we are looking up a method on an instance,
if we don’t find it on the instance’s class, we recurse up through the superclass
chain and look there. Give it a try:

class Doughnut {
 cook() {
 print "Fry until golden brown.";
 }
}

class BostonCream < Doughnut {}
BostonCream().cook();

There we go, half of our inheritance features are complete with only three lines
of Java code.

13.3 Calling Superclass Methods
In findMethod() we look for a method on the current class before walking up
the superclass chain. If a method with the same name exists in both the subclass
and the superclass, the subclass one takes precedence or overrides the super-
class method. Sort of like how variables in inner scopes shadow outer ones.

That’s great if the subclass wants to replace some superclass behavior com-
pletely. But, in practice, subclasses often want to refine the superclass’s behavior.
They want to do a little work specific to the subclass, but also execute the original
superclass behavior too.

However, since the subclass has overridden the method, there’s no way to
refer to the original one. If the subclass method tries to call it by name, it will

A fancier name for this hand-wavey
guideline is the Liskov substitution
principle. Barbara Liskov introduced it in
a keynote during the formative period of
object-oriented programming.

lox/loxclass.java
in findMethod()

226 cHAPTeR 13 : InHeRITAnce

just recursively hit its own override. We need a way to say “Call this method, but
look for it directly on my superclass and ignore my override”. Java uses super
for this, and we’ll use that same syntax in Lox. Here is an example:

class Doughnut {
 cook() {
 print "Fry until golden brown.";
 }
}

class BostonCream < Doughnut {
 cook() {
 super.cook();
 print "Pipe full of custard and coat with chocolate.";
 }
}

BostonCream().cook();

If you run this, it should print:

Fry until golden brown.
Pipe full of custard and coat with chocolate.

We have a new expression form. The super keyword, followed by a dot and an
identifier, looks for a method with that name. Unlike calls on this, the search
starts at the superclass.

13.3.1 Syntax

With this, the keyword works sort of like a magic variable, and the expression
is that one lone token. But with super, the subsequent . and property name are
inseparable parts of the super expression. You can’t have a bare super token
all by itself.

print super; // Syntax error.

So the new clause we add to the primary rule in our grammar includes the
property access as well.

primary → "true" | "false" | "nil" | "this"
 | NUMBER | STRING | IDENTIFIER | "(" expression ")"
 | "super" "." IDENTIFIER ;

Typically, a super expression is used for a method call, but, as with regular
methods, the argument list is not part of the expression. Instead, a super call is
a super access followed by a function call. Like other method calls, you can get a
handle to a superclass method and invoke it separately.

var method = super.cook;
method();

13.3.1 synTAx 227

So the super expression itself contains only the token for the super keyword
and the name of the method being looked up. The corresponding syntax tree
node is thus:

 "Set : Expr object, Token name, Expr value",
 "Super : Token keyword, Token method",
 "This : Token keyword",

Following the grammar, the new parsing code goes inside our existing
primary() method.

 return new Expr.Literal(previous().literal);
 }

 if (match(SUPER)) {
 Token keyword = previous();
 consume(DOT, "Expect '.' after 'super'.");
 Token method = consume(IDENTIFIER,
 "Expect superclass method name.");
 return new Expr.Super(keyword, method);
 }

 if (match(THIS)) return new Expr.This(previous());

A leading super keyword tells us we’ve hit a super expression. After that we
consume the expected . and method name.

13.3.2 Semantics

Earlier, I said a super expression starts the method lookup from “the super-
class”, but which superclass? The naïve answer is the superclass of this, the
object the surrounding method was called on. That coincidentally produces the
right behavior in a lot of cases, but that’s not actually correct. Gaze upon:

class A {
 method() {
 print "A method";
 }
}

class B < A {
 method() {
 print "B method";
 }
 test() {
 super.method();
 }
}

class C < B {}
C().test();

tool/generateAst.java
in main()

lox/Parser.java
in primary()

228 cHAPTeR 13 : InHeRITAnce

Translate this program to Java, C#, or C++ and it will print “A method”, which is
what we want Lox to do too. When this program runs, inside the body of test(),
this is an instance of C. The superclass of C is B, but that is not where the lookup
should start. If it did, we would hit B’s method().

Instead, lookup should start on the superclass of the class containing the super
expression. In this case, since test() is defined inside B, the super expression
inside it should start the lookup on B’s superclass—A.

Thus, in order to evaluate a super expression, we need access to the superclass
of the class definition surrounding the call. Alack and alas, at the point in the
interpreter where we are executing a super expression, we don’t have that eas-
ily available.

We could add a field to LoxFunction to store a reference to the LoxClass that
owns that method. The interpreter would keep a reference to the currently
executing LoxFunction so that we could look it up later when we hit a super
expression. From there, we’d get the LoxClass of the method, then its superclass.

That’s a lot of plumbing. In the last chapter, we had a similar problem when
we needed to add support for this. In that case, we used our existing environ-
ment and closure mechanism to store a reference to the current object. Could
we do something similar for storing the superclass? Well, I probably wouldn’t be
talking about it if the answer was no, so . . . yes.

One important difference is that we bound this when the method was ac-
cessed. The same method can be called on different instances and each needs its
own this. With super expressions, the superclass is a fixed property of the
class declaration itself. Every time you evaluate some super expression, the su-

Does anyone even like rhetorical
questions?

The execution flow goes like this:

1. We call test() on an instance of C.

2. That enters the test() method
inherited from B. That calls
super.method().

3. The superclass of B is A, so that chains
to method() on A, and the program
prints “A method”.

13.3.2 semAnTIcs 229

perclass is always the same.
That means we can create the environment for the superclass once, when the

class definition is executed. Immediately before we define the methods, we make
a new environment to bind the class’s superclass to the name super.

When we create the LoxFunction runtime representation for each method, that
is the environment they will capture in their closure. Later, when a method is
invoked and this is bound, the superclass environment becomes the parent for
the method’s environment, like so:

That’s a lot of machinery, but we’ll get through it a step at a time. Before we can
get to creating the environment at runtime, we need to handle the correspond-
ing scope chain in the resolver.

230 cHAPTeR 13 : InHeRITAnce

 resolve(stmt.superclass);
 }

 if (stmt.superclass != null) {
 beginScope();
 scopes.peek().put("super", true);
 }

 beginScope();

If the class declaration has a superclass, then we create a new scope surrounding
all of its methods. In that scope, we define the name “super”. Once we’re done
resolving the class’s methods, we discard that scope.

 endScope();

 if (stmt.superclass != null) endScope();

 currentClass = enclosingClass;

It’s a minor optimization, but we only create the superclass environment if the
class actually has a superclass. There’s no point creating it when there isn’t a
superclass since there’d be no superclass to store in it anyway.

With “super” defined in a scope chain, we are able to resolve the super ex-
pression itself.

 @Override
 public Void visitSuperExpr(Expr.Super expr) {
 resolveLocal(expr, expr.keyword);
 return null;
 }

We resolve the super token exactly as if it were a variable. The resolution stores
the number of hops along the environment chain that the interpreter needs to
walk to find the environment where the superclass is stored.

This code is mirrored in the interpreter. When we evaluate a subclass defini-
tion, we create a new environment.

 throw new RuntimeError(stmt.superclass.name,
 "Superclass must be a class.");
 }
 }

 environment.define(stmt.name.lexeme, null);

 if (stmt.superclass != null) {
 environment = new Environment(environment);
 environment.define("super", superclass);
 }

 Map<String, LoxFunction> methods = new HashMap<>();

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
add after visitSetExpr()

lox/Interpreter.java
in visitClassStmt()

13.3.2 semAnTIcs 231

Inside that environment, we store a reference to the superclass—the actual
LoxClass object for the superclass which we have now that we are in the run-
time. Then we create the LoxFunctions for each method. Those will capture the
current environment—the one where we just bound “super”—as their closure,
holding on to the superclass like we need. Once that’s done, we pop the environ-
ment.

 LoxClass klass = new LoxClass(stmt.name.lexeme,
 (LoxClass)superclass, methods);

 if (superclass != null) {
 environment = environment.enclosing;
 }

 environment.assign(stmt.name, klass);

We’re ready to interpret super expressions themselves. There are a few moving
parts, so we’ll build this method up in pieces.

 @Override
 public Object visitSuperExpr(Expr.Super expr) {
 int distance = locals.get(expr);
 LoxClass superclass = (LoxClass)environment.getAt(
 distance, "super");
 }

First, the work we’ve been leading up to. We look up the surrounding class’s su-
perclass by looking up “super” in the proper environment.

When we access a method, we also need to bind this to the object the method
is accessed from. In an expression like doughnut.cook, the object is whatever
we get from evaluating doughnut. In a super expression like super.cook,
the current object is implicitly the same current object that we’re using. In other
words, this. Even though we are looking up the method on the superclass, the
instance is still this.

Unfortunately, inside the super expression, we don’t have a convenient
node for the resolver to hang the number of hops to this on. Fortunately, we do
control the layout of the environment chains. The environment where “this” is
bound is always right inside the environment where we store “super”.

 LoxClass superclass = (LoxClass)environment.getAt(
 distance, "super");

 LoxInstance object = (LoxInstance)environment.getAt(
 distance - 1, "this");
 }

Offsetting the distance by one looks up “this” in that inner environment. I admit
this isn’t the most elegant code, but it works.

Now we’re ready to look up and bind the method, starting at the superclass.

lox/Interpreter.java
in visitClassStmt()

lox/Interpreter.java
add after visitSetExpr()

lox/Interpreter.java
in visitSuperExpr()

Writing a book that includes every single
line of code for a program means I can’t
hide the hacks by leaving them as an
“exercise for the reader”.

232 cHAPTeR 13 : InHeRITAnce

 LoxInstance object = (LoxInstance)environment.getAt(
 distance - 1, "this");

 LoxFunction method = superclass.findMethod(expr.method.lexeme);
 return method.bind(object);
 }

This is almost exactly like the code for looking up a method of a get expression,
except that we call findMethod() on the superclass instead of on the class of
the current object.

That’s basically it. Except, of course, that we might fail to find the method. So
we check for that too.

 LoxFunction method = superclass.findMethod(expr.method.lexeme);

 if (method == null) {
 throw new RuntimeError(expr.method,
 "Undefined property '" + expr.method.lexeme + "'.");
 }

 return method.bind(object);
 }

There you have it! Take that BostonCream example earlier and give it a try.
Assuming you and I did everything right, it should fry it first, then stuff it with
cream.

13.3.3 Invalid uses of super

As with previous language features, our implementation does the right thing
when the user writes correct code, but we haven’t bulletproofed the intepreter
against bad code. In particular, consider:

class Eclair {
 cook() {
 super.cook();
 print "Pipe full of crème pâtissière.";
 }
}

This class has a super expression, but no superclass. At runtime, the code for
evaluating super expressions assumes that “super” was successfully resolved
and will be found in the environment. That’s going to fail here because there is
no surrounding environment for the superclass since there is no superclass. The
JVM will throw an exception and bring our interpreter to its knees.

Heck, there are even simpler broken uses of super:

super.notEvenInAClass();

We could handle errors like these at runtime by checking to see if the lookup

lox/Interpreter.java
in visitSuperExpr()

lox/Interpreter.java
in visitSuperExpr()

13.3.3 InVAlId uses of suPeR 233

of “super” succeeded. But we can tell statically—just by looking at the source
code—that Eclair has no superclass and thus no super expression will work
inside it. Likewise, in the second example, we know that the super expression
is not even inside a method body.

Even though Lox is dynamically typed, that doesn’t mean we want to defer
everything to runtime. If the user made a mistake, we’d like to help them find it
sooner rather than later. So we’ll report these errors statically, in the resolver.

First, we add a new case to the enum we use to keep track of what kind of
class is surrounding the current code being visited.

 NONE,
 SUBCLASS
 }

We’ll use that to distinguish when we’re inside a class that has a superclass ver-
sus one that doesn’t. When we resolve a class declaration, we set that if the class
is a subclass.

 if (stmt.superclass != null) {
 currentClass = ClassType.SUBCLASS;
 resolve(stmt.superclass);

Then, when we resolve a super expression, we check to see that we are current-
ly inside a scope where that’s allowed.

 public Void visitSuperExpr(Expr.Super expr) {
 if (currentClass == ClassType.NONE) {
 Lox.error(expr.keyword,
 "Can't use 'super' outside of a class.");
 } else if (currentClass != ClassType.SUBCLASS) {
 Lox.error(expr.keyword,
 "Can't use 'super' in a class with no superclass.");
 }

 resolveLocal(expr, expr.keyword);

If not—oopsie!—the user made a mistake.

13.4 Conclusion
We made it! That final bit of error handling is the last chunk of code needed to
complete our Java implementation of Lox. This is a real accomplishment and one
you should be proud of. In the past dozen chapters and a thousand or so lines of
code, we have learned and implemented . . .  tokens and lexing, abstract syntax
trees, recursive descent parsing, prefix and infix expressions, runtime
representation of objects, interpreting code using the Visitor pattern,  lexical
scope, environment chains for storing variables, control flow, functions
with parameters,  closures, static variable resolution and error detection,
classes, constructors, fields, methods, and finally, inheritance.

We did all of that from scratch, with no external dependencies or magic tools.

lox/Resolver.java
in enum ClassType
add “,” to previous line

lox/Resolver.java
in visitClassStmt()

lox/Resolver.java
in visitSuperExpr()

234 cHAPTeR 13 : InHeRITAnce

Just you and I, our respective text editors, a couple of collection classes in the
Java standard library, and the JVM runtime.

This marks the end of Part II, but not the end of the book. Take a break. Maybe
write a few fun Lox programs and run them in your interpreter. (You may want
to add a few more native methods for things like reading user input.) When
you’re refreshed and ready, we’ll embark on our next adventure.

CHaLLENGES

1. Lox supports only single inheritance—a class may have a single superclass and
that’s the only way to reuse methods across classes. Other languages have
explored a variety of ways to more freely reuse and share capabilities across
classes: mixins, traits, multiple inheritance, virtual inheritance, extension meth-
ods, etc.

If you were to add some feature along these lines to Lox, which would you
pick and why? If you’re feeling courageous (and you should be at this point), go
ahead and add it.

2. In Lox, as in most other object-oriented languages, when looking up a method,
we start at the bottom of the class hierarchy and work our way up—a subclass’s
method is preferred over a superclass’s. In order to get to the superclass meth-
od from within an overriding method, you use super.

The language BETA takes the opposite approach. When you call a method,
it starts at the top of the class hierarchy and works down. A superclass method
wins over a subclass method. In order to get to the subclass method, the su-
perclass method can call inner, which is sort of like the inverse of super. It
chains to the next method down the hierarchy.

The superclass method controls when and where the subclass is allowed to
refine its behavior. If the superclass method doesn’t call inner at all, then the
subclass has no way of overriding or modifying the superclass’s behavior.

Take out Lox’s current overriding and super behavior and replace it with
BETA’s semantics. In short:

• When calling a method on a class, prefer the method highest on the class’s
inheritance chain.

• Inside the body of a method, a call to inner looks for a method with the
same name in the nearest subclass along the inheritance chain between the
class containing the inner and the class of this. If there is no matching
method, the inner call does nothing.

If you’ve never heard of BETA (likely),
start here:

 ⇾ craftinginterpreters.com/beta

http://craftinginterpreters.com/beta

cHAllenges 235

For example:

class Doughnut {
 cook() {
 print "Fry until golden brown.";
 inner();
 print "Place in a nice box.";
 }
}

class BostonCream < Doughnut {
 cook() {
 print "Pipe full of custard and coat with chocolate.";
 }
}

BostonCream().cook();

This should print:

Fry until golden brown.
Pipe full of custard and coat with chocolate.
Place in a nice box.

3. In the chapter where I introduced Lox, I challenged you to come up with a couple
of features you think the language is missing. Now that you know how to build
an interpreter, implement one of those features.

a Bytecode Virtual Machine PART III

Our Java interpreter, jlox, taught us many of the fundamentals of program-
ming languages, but we still have much to learn. First, if you run any interesting
Lox programs in jlox, you’ll discover it’s achingly slow. The style of interpreta-
tion it uses—walking the AST directly—is good enough for some real-world uses,
but leaves a lot to be desired for a general-purpose scripting language.

Also, we implicitly rely on runtime features of the JVM itself. We take for
granted that things like instanceof in Java work somehow. And we never for a
second worry about memory management because the JVM’s garbage collector
takes care of it for us.

When we were focused on high-level concepts, it was fine to gloss over those.
But now that we know our way around an interpreter, it’s time to dig down to
those lower layers and build our own virtual machine from scratch using noth-
ing more than the C standard library . . .

A byTecode VIRTuAl mAcHIne 14Chunks of Bytecode

“If you find that you’re spending almost all your time on theory, start
turning some attention to practical things; it will improve your
theories. If you find that you’re spending almost all your time on
practice, start turning some attention to theoretical things; it will
improve your practice.”

— Donald Knuth

We already have ourselves a complete implementation of Lox with jlox, so why
isn’t the book over yet? Part of this is because jlox relies on the JVM to do lots of
things for us. If we want to understand how an interpreter works all the way
down to the metal, we need to build those bits and pieces ourselves.

An even more fundamental reason that jlox isn’t sufficient is that it’s too damn
slow. A tree-walk interpreter is fine for some kinds of high-level, declarative
languages. But for a general-purpose, imperative language—even a “scripting”
language like Lox—it won’t fly.

Of course, our second interpreter relies
on the C standard library for basics like
memory allocation, and the C compiler
frees us from details of the underlying ma-
chine code we’re running it on. Heck, that
machine code is probably implemented in
terms of microcode on the chip. And the C
runtime relies on the operating system to
hand out pages of memory. But we have
to stop somewhere if this book is going to
fit on your bookshelf.

240 cHAPTeR 14 : cHunks of byTecode

Take this little script:

fun fib(n) {
 if (n < 2) return n;
 return fib(n - 1) + fib(n - 2);
}

var before = clock();
print fib(40);
var after = clock();
print after - before;

On my laptop, that takes jlox about 72 seconds to execute. An equivalent C
program finishes in half a second. Our dynamically typed scripting language
is never going to be as fast as a statically typed language with manual memory
management, but we don’t need to settle for more than two orders of magnitude
slower.

We could take jlox and run it in a profiler and start tuning and tweaking
hotspots, but that will only get us so far. The execution model—walking the
AST—is fundamentally the wrong design. We can’t micro-optimize that to the
performance we want any more than you can polish an AMC Gremlin into an
SR-71 Blackbird.

We need to rethink the core model. This chapter introduces that model, byte-
code, and begins our new interpreter, clox.

14.1 Bytecode?
In engineering, few choices are without trade-offs. To best understand why
we’re going with bytecode, let’s stack it up against a couple of alternatives.

14.1.1 Why not walk the AST?

Our existing interpreter has a couple of things going for it:

• Well, first, we already wrote it. It’s done. And the main reason it’s done is
because this style of interpreter is really simple to implement. The runtime
representation of the code directly maps to the syntax. It’s virtually effortless
to get from the parser to the data structures we need at runtime.

• It’s portable. Our current interpreter is written in Java and runs on any plat-
form Java supports. We could write a new implementation in C using the
same approach and compile and run our language on basically every platform
under the sun.

Those are real advantages. But, on the other hand, it’s not memory-efficient. Each
piece of syntax becomes an AST node. A tiny Lox expression like 1 + 2 turns
into a slew of objects with lots of pointers between them, something like:

This is a comically inefficient way to
actually calculate Fibonacci numbers.
Our goal is to see how fast the interpreter
runs, not to see how fast of a program we
can write. A slow program that does a lot
of work—pointless or not—is a good test
case for that.

14.1 byTecode? 241

Each of those pointers adds an extra 32 or 64 bits of overhead to the object.
Worse, sprinkling our data across the heap in a loosely connected web of objects
does bad things for spatial locality.

Modern CPUs process data way faster than they can pull it from RAM. To
compensate for that, chips have multiple layers of caching. If a piece of memory
it needs is already in the cache, it can be loaded more quickly. We’re talking up-
wards of 100 times faster.

How does data get into that cache? The machine speculatively stuffs things in
there for you. Its heuristic is pretty simple. Whenever the CPU reads a bit of data
from RAM, it pulls in a whole little bundle of adjacent bytes and stuffs them in
the cache.

If our program next requests some data close enough to be inside that cache
line, our CPU runs like a well-oiled conveyor belt in a factory. We really want to
take advantage of this. To use the cache effectively, the way we represent code in
memory should be dense and ordered like it’s read.

Now look up at that tree. Those sub-objects could be anywhere. Every step the
tree-walker takes where it follows a reference to a child node may step outside
the bounds of the cache and force the CPU to stall until a new lump of data can
be slurped in from RAM. Just the overhead of those tree nodes with all of their
pointer fields and object headers tends to push objects away from each other and
out of the cache.

Our AST walker has other overhead too around interface dispatch and the
Visitor pattern, but the locality issues alone are enough to justify a better code
representation.

14.1.2 Why not compile to native code?

If you want to go real fast, you want to get all of those layers of indirection out
of the way. Right down to the metal. Machine code. It even sounds fast. Machine
code.

I wrote an entire chapter about this
exact problem in my first book, Game
Programming Patterns, if you want to
really dig in:

 ⇾ craftinginterpreters.com/locality

Even if the objects happened to be
allocated in sequential memory when the
parser first produced them, after a couple
of rounds of garbage collection—which
may move objects around in memory—
there’s no telling where they’ll be.

The “(header)” parts are the bookkeeping
information the Java virtual machine uses
to support memory management and
store the object’s type. Those take up
space too!

http://craftinginterpreters.com/locality

242 cHAPTeR 14 : cHunks of byTecode

Compiling directly to the native instruction set the chip supports is what the
fastest languages do. Targeting native code has been the most efficient option
since way back in the early days when engineers actually handwrote programs
in machine code.

If you’ve never written any machine code, or its slightly more human-pal-
atable cousin assembly code before, I’ll give you the gentlest of introductions.
Native code is a dense series of operations, encoded directly in binary. Each
instruction is between one and a few bytes long, and is almost mind-numbingly
low level. “Move a value from this address to this register.” “Add the integers in
these two registers.” Stuff like that.

The CPU cranks through the instructions, decoding and executing each one
in order. There is no tree structure like our AST, and control flow is handled by
jumping from one point in the code directly to another. No indirection, no over-
head, no unnecessary skipping around or chasing pointers.

Lightning fast, but that performance comes at a cost. First of all, compiling to
native code ain’t easy. Most chips in wide use today have sprawling Byzantine ar-
chitectures with heaps of instructions that accreted over decades. They require
sophisticated register allocation, pipelining, and instruction scheduling.

And, of course, you’ve thrown portability out. Spend a few years mastering
some architecture and that still only gets you onto one of the several popular
instruction sets out there. To get your language on all of them, you need to learn
all of their instruction sets and write a separate back end for each one.

14.1.3 What is bytecode?

Fix those two points in your mind. On one end, a tree-walk interpreter is simple,
portable, and slow. On the other, native code is complex and platform-specific
but fast. Bytecode sits in the middle. It retains the portability of a tree-walker—
we won’t be getting our hands dirty with assembly code in this book. It sacrifices
some simplicity to get a performance boost in return, though not as fast as going
fully native.

Structurally, bytecode resembles machine code. It’s a dense, linear sequence
of binary instructions. That keeps overhead low and plays nice with the cache.
However, it’s a much simpler, higher-level instruction set than any real chip out
there. (In many bytecode formats, each instruction is only a single byte long,
hence “bytecode”.)

Imagine you’re writing a native compiler from some source language and
you’re given carte blanche to define the easiest possible architecture to target.
Bytecode is kind of like that. It’s an idealized fantasy instruction set that makes
your life as the compiler writer easier.

The problem with a fantasy architecture, of course, is that it doesn’t exist.
We solve that by writing an emulator—a simulated chip written in software that
interprets the bytecode one instruction at a time. A virtual machine (VM), if you
will.

That emulation layer adds overhead, which is a key reason bytecode is slower
than native code. But in return, it gives us portability. Write our VM in a lan-
guage like C that is already supported on all the machines we care about, and we
can run our emulator on top of any hardware we like.

This is the path we’ll take with our new interpreter, clox. We’ll follow in the
footsteps of the main implementations of Python, Ruby, Lua, OCaml, Erlang, and
others.

Yes, they actually wrote machine code
by hand. On punched cards. Which,
presumably, they punched with their fists.

The situation isn’t entirely dire. A
well-architected compiler lets you share
the front end and most of the middle layer
optimization passes across the different
architectures you support. It’s mainly the
code generation and some of the details
around instruction selection that you’ll
need to write afresh each time.

The LLVM project gives you some
of this out of the box. If your compiler
outputs LLVM’s own special intermediate
language, LLVM in turn compiles that to
native code for a plethora of architectures.

One of the first bytecode formats was
p-code, developed for Niklaus Wirth’s
Pascal language. You might think a PDP-11
running at 15MHz couldn’t afford the
overhead of emulating a virtual machine.
But back then, computers were in their
Cambrian explosion and new architec-
tures appeared every day. Keeping up
with the latest chips was worth more than
squeezing the maximum performance
from each one. That’s why the “p” in
p-code doesn’t stand for “Pascal”, but
“portable”.

14.1.3 WHAT Is byTecode? 243

In many ways, our VM’s design will parallel the structure of our previous
interpreter:

Of course, we won’t implement the phases strictly in order. Like our previous
interpreter, we’ll bounce around, building up the implementation one language
feature at a time. In this chapter, we’ll get the skeleton of the application in place
and create the data structures needed to store and represent a chunk of bytecode.

14.2 Getting Started
Where else to begin, but at main()? Fire up your trusty text editor and start
typing.

#include "common.h"

int main(int argc, const char* argv[]) {
 return 0;
}

From this tiny seed, we will grow our entire VM. Since C provides us with so
little, we first need to spend some time amending the soil. Some of that goes into
this header:

#ifndef clox_common_h
#define clox_common_h

#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>

#endif

There are a handful of types and constants we’ll use throughout the interpret-
er, and this is a convenient place to put them. For now, it’s the venerable NULL,
size_t, the nice C99 Boolean bool, and explicit-sized integer types—uint8_t
and friends.

Now is a good time to stretch, maybe
crack your knuckles. A little montage
music wouldn’t hurt either.

main.c
create new file

common.h
create new file

244 cHAPTeR 14 : cHunks of byTecode

14.3 Chunks of Instructions
Next, we need a module to define our code representation. I’ve been using
“chunk” to refer to sequences of bytecode, so let’s make that the official name
for that module.

#ifndef clox_chunk_h
#define clox_chunk_h

#include "common.h"

#endif

In our bytecode format, each instruction has a one-byte operation code (uni-
versally shortened to opcode). That number controls what kind of instruction
we’re dealing with—add, subtract, look up variable, etc. We define those here:

#include "common.h"

typedef enum {
 OP_RETURN,
} OpCode;

#endif

For now, we start with a single instruction, OP_RETURN. When we have a
full-featured VM, this instruction will mean “return from the current function”.
I admit this isn’t exactly useful yet, but we have to start somewhere, and this is a
particularly simple instruction, for reasons we’ll get to later.

14.3.1 A dynamic array of instructions

Bytecode is a series of instructions. Eventually, we’ll store some other data along
with the instructions, so let’s go ahead and create a struct to hold it all.

} OpCode;

typedef struct {
 uint8_t* code;
} Chunk;

#endif

At the moment, this is simply a wrapper around an array of bytes. Since we don’t
know how big the array needs to be before we start compiling a chunk, it must
be dynamic. Dynamic arrays are one of my favorite data structures. That sounds
like claiming vanilla is my favorite ice cream flavor, but hear me out. Dynamic
arrays provide:

chunk.h
create new file

chunk.h

chunk.h
add after enum OpCode

Butter pecan is actually my favorite.

14.3 cHunks of InsTRucTIons 245

• Cache-friendly, dense storage

• Constant-time indexed element lookup

• Constant-time appending to the end of the array

Those features are exactly why we used dynamic arrays all the time in jlox under
the guise of Java’s ArrayList class. Now that we’re in C, we get to roll our own.
If you’re rusty on dynamic arrays, the idea is pretty simple. In addition to the
array itself, we keep two numbers: the number of elements in the array we have
allocated (“capacity”) and how many of those allocated entries are actually in
use (“count”).

typedef struct {
 int count;
 int capacity;
 uint8_t* code;
} Chunk;

When we add an element, if the count is less than the capacity, then there is
already available space in the array. We store the new element right in there and
bump the count.

If we have no spare capacity, then the process is a little more involved.

1. Allocate a new array with more capacity.

2. Copy the existing elements from the old array to the new one.

3. Store the new capacity.

4. Delete the old array.

5. Update code to point to the new array.

6. Store the element in the new array now that there is room.

7. Update the count.

It looks like this:

chunk.h
in struct Chunk

Copying the existing elements when
you grow the array makes it seem like
appending an element is O(n), not O(1) like
I said above. However, you need to do this
copy step only on some of the appends.
Most of the time, there is already extra
capacity, so you don’t need to copy.

To understand how this works, we need
amortized analysis. That shows us that
as long as we grow the array by a multiple
of its current size, when we average out
the cost of a sequence of appends, each
append is O(1).

246 cHAPTeR 14 : cHunks of byTecode

We have our struct ready, so let’s implement the functions to work with it. C
doesn’t have constructors, so we declare a function to initialize a new chunk.

} Chunk;

void initChunk(Chunk* chunk);

#endif

And implement it thusly:

#include <stdlib.h>

#include "chunk.h"

void initChunk(Chunk* chunk) {
 chunk->count = 0;
 chunk->capacity = 0;
 chunk->code = NULL;
}

The dynamic array starts off completely empty. We don’t even allocate a raw
array yet. To append a byte to the end of the chunk, we use a new function.

void initChunk(Chunk* chunk);
void writeChunk(Chunk* chunk, uint8_t byte);

#endif

This is where the interesting work happens.

void writeChunk(Chunk* chunk, uint8_t byte) {
 if (chunk->capacity < chunk->count + 1) {
 int oldCapacity = chunk->capacity;
 chunk->capacity = GROW_CAPACITY(oldCapacity);
 chunk->code = GROW_ARRAY(uint8_t, chunk->code,
 oldCapacity, chunk->capacity);

chunk.h
add after struct Chunk

chunk.c
create new file

chunk.h
add after initChunk()

chunk.c
add after initChunk()

continued on next page . . .

14.3.1 A dynAmIc ARRAy of InsTRucTIons 247

 }

 chunk->code[chunk->count] = byte;
 chunk->count++;
}

The first thing we need to do is see if the current array already has capacity for
the new byte. If it doesn’t, then we first need to grow the array to make room. (We
also hit this case on the very first write when the array is NULL and capacity
is 0.)

To grow the array, first we figure out the new capacity and grow the array
to that size. Both of those lower-level memory operations are defined in a new
module.

#include "chunk.h"
#include "memory.h"

void initChunk(Chunk* chunk) {

This is enough to get us started.

#ifndef clox_memory_h
#define clox_memory_h

#include "common.h"

#define GROW_CAPACITY(capacity) \
 ((capacity) < 8 ? 8 : (capacity) * 2)

#endif

This macro calculates a new capacity based on a given current capacity. In order
to get the performance we want, the important part is that it scales based on the
old size. We grow by a factor of two, which is pretty typical. 1.5× is another com-
mon choice.

We also handle when the current capacity is zero. In that case, we jump
straight to eight elements instead of starting at one. That avoids a little extra
memory churn when the array is very small, at the expense of wasting a few
bytes on very small chunks.

Once we know the desired capacity, we create or grow the array to that size
using GROW_ARRAY().

#define GROW_CAPACITY(capacity) \
 ((capacity) < 8 ? 8 : (capacity) * 2)

#define GROW_ARRAY(type, pointer, oldCount, newCount) \
 (type*)reallocate(pointer, sizeof(type) * (oldCount), \
 sizeof(type) * (newCount))

void* reallocate(void* pointer, size_t oldSize, size_t newSize);

#endif

. . . from previous page

chunk.c

memory.h
create new file

I picked the number eight somewhat
arbitrarily for the book. Most dynamic
array implementations have a minimum
threshold like this. The right way to
pick a value for this is to profile against
real-world usage and see which constant
makes the best performance trade-off
between extra grows versus wasted
space.

memory.h

248 cHAPTeR 14 : cHunks of byTecode

This macro pretties up a function call to reallocate() where the real work
happens. The macro itself takes care of getting the size of the array’s element
type and casting the resulting void* back to a pointer of the right type.

This reallocate() function is the single function we’ll use for all dynamic
memory management in clox—allocating memory, freeing it, and changing the
size of an existing allocation. Routing all of those operations through a single
function will be important later when we add a garbage collector that needs to
keep track of how much memory is in use.

The two size arguments passed to reallocate() control which operation
to perform:

oldSize newSize Operation

0 Non-zero Allocate new block.

Non-zero 0 Free allocation.

Non-zero Smaller than oldSize Shrink existing allocation.

Non-zero Larger than oldSize Grow existing allocation.

That sounds like a lot of cases to handle, but here’s the implementation:

#include <stdlib.h>

#include "memory.h"

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {
 if (newSize == 0) {
 free(pointer);
 return NULL;
 }

 void* result = realloc(pointer, newSize);
 return result;
}

When newSize is zero, we handle the deallocation case ourselves by calling
free(). Otherwise, we rely on the C standard library’s realloc() function.
That function conveniently supports the other three aspects of our policy. When
oldSize is zero, realloc() is equivalent to calling malloc().

The interesting cases are when both oldSize and newSize are not zero.
Those tell realloc() to resize the previously allocated block. If the new size
is smaller than the existing block of memory, it simply updates the size of the
block and returns the same pointer you gave it. If the new size is larger, it at-
tempts to grow the existing block of memory.

It can do that only if the memory after that block isn’t already in use. If there
isn’t room to grow the block, realloc() instead allocates a new block of mem-
ory of the desired size, copies over the old bytes, frees the old block, and then
returns a pointer to the new block. Remember, that’s exactly the behavior we
want for our dynamic array.

memory.c
create new file

Since all we passed in was a bare pointer
to the first byte of memory, what does it
mean to “update” the block’s size? Under
the hood, the memory allocator maintains
additional bookkeeping information for
each block of heap-allocated memory,
including its size.

Given a pointer to some previously
allocated memory, it can find this book-
keeping information, which is necessary
to be able to cleanly free it. It’s this size
metadata that realloc() updates.

Many implementations of malloc()
store the allocated size in memory right
before the returned address.

14.4 dIsAssemblIng cHunks 249

Because computers are finite lumps of matter and not the perfect mathemat-
ical abstractions computer science theory would have us believe, allocation can
fail if there isn’t enough memory and realloc() will return NULL. We should
handle that.

 void* result = realloc(pointer, newSize);
 if (result == NULL) exit(1);
 return result;

There’s not really anything useful that our VM can do if it can’t get the memory
it needs, but we at least detect that and abort the process immediately instead of
returning a NULL pointer and letting it go off the rails later.

OK, we can create new chunks and write instructions to them. Are we done?
Nope! We’re in C now, remember, we have to manage memory ourselves, like in
Ye Olden Times, and that means freeing it too.

void initChunk(Chunk* chunk);
void freeChunk(Chunk* chunk);
void writeChunk(Chunk* chunk, uint8_t byte);

The implementation is:

void freeChunk(Chunk* chunk) {
 FREE_ARRAY(uint8_t, chunk->code, chunk->capacity);
 initChunk(chunk);
}

We deallocate all of the memory and then call initChunk() to zero out the
fields leaving the chunk in a well-defined empty state. To free the memory, we
add one more macro.

#define GROW_ARRAY(type, pointer, oldCount, newCount) \
 (type*)reallocate(pointer, sizeof(type) * (oldCount), \
 sizeof(type) * (newCount))

#define FREE_ARRAY(type, pointer, oldCount) \
 reallocate(pointer, sizeof(type) * (oldCount), 0)

void* reallocate(void* pointer, size_t oldSize, size_t newSize);

Like GROW_ARRAY(), this is a wrapper around a call to reallocate(). This
one frees the memory by passing in zero for the new size. I know, this is a lot
of boring low-level stuff. Don’t worry, we’ll get a lot of use out of these in later
chapters and will get to program at a higher level. Before we can do that, though,
we gotta lay our own foundation.

14.4 Disassembling Chunks
Now we have a little module for creating chunks of bytecode. Let’s try it out by
hand-building a sample chunk.

memory.c
in reallocate()

chunk.h
add after initChunk()

memory.h

chunk.c
add after initChunk()

250 cHAPTeR 14 : cHunks of byTecode

int main(int argc, const char* argv[]) {
 Chunk chunk;
 initChunk(&chunk);
 writeChunk(&chunk, OP_RETURN);
 freeChunk(&chunk);
 return 0;

Don’t forget the include.

#include "common.h"
#include "chunk.h"

int main(int argc, const char* argv[]) {

Run that and give it a try. Did it work? Uh . . . who knows? All we’ve done is push
some bytes around in memory. We have no human-friendly way to see what’s
actually inside that chunk we made.

To fix this, we’re going to create a disassembler. An assembler is an old-
school program that takes a file containing human-readable mnemonic names
for CPU instructions like “ADD” and “MULT” and translates them to their binary
machine code equivalent. A disassembler goes in the other direction—given a
blob of machine code, it spits out a textual listing of the instructions.

We’ll implement something similar. Given a chunk, it will print out all of the
instructions in it. A Lox user won’t use this, but we Lox maintainers will certainly
benefit since it gives us a window into the interpreter’s internal representation
of code.

In main(), after we create the chunk, we pass it to the disassembler.

 initChunk(&chunk);
 writeChunk(&chunk, OP_RETURN);

 disassembleChunk(&chunk, "test chunk");
 freeChunk(&chunk);

Again, we whip up yet another module.

#include "chunk.h"
#include "debug.h"

int main(int argc, const char* argv[]) {

Here’s that header:

#ifndef clox_debug_h
#define clox_debug_h

#include "chunk.h"

void disassembleChunk(Chunk* chunk, const char* name);
int disassembleInstruction(Chunk* chunk, int offset);

#endif

main.c
in main()

main.c

In jlox, our analogous tool was the
AstPrinter class.

main.c
in main()

I promise you we won’t be creating this
many new files in later chapters.

main.c

debug.h
create new file

14.4 dIsAssemblIng cHunks 251

In main(), we call disassembleChunk() to disassemble all of the instructions
in the entire chunk. That’s implemented in terms of the other function, which
just disassembles a single instruction. It shows up here in the header because
we’ll call it from the VM in later chapters.

Here’s a start at the implementation file:

#include <stdio.h>

#include "debug.h"

void disassembleChunk(Chunk* chunk, const char* name) {
 printf("== %s ==\n", name);
 for (int offset = 0; offset < chunk->count;) {
 offset = disassembleInstruction(chunk, offset);
 }
}

To disassemble a chunk, we print a little header (so we can tell which chunk we’re
looking at) and then crank through the bytecode, disassembling each instruc-
tion. The way we iterate through the code is a little odd. Instead of incrementing
offset in the loop, we let disassembleInstruction() do it for us. When
we call that function, after disassembling the instruction at the given offset,
it returns the offset of the next instruction. This is because, as we’ll see later,
instructions can have different sizes.

The core of the “debug” module is this function:

int disassembleInstruction(Chunk* chunk, int offset) {
 printf("%04d ", offset);

 uint8_t instruction = chunk->code[offset];
 switch (instruction) {
 case OP_RETURN:
 return simpleInstruction("OP_RETURN", offset);
 default:
 printf("Unknown opcode %d\n", instruction);
 return offset + 1;
 }
}

First, it prints the byte offset of the given instruction—that tells us where in the
chunk this instruction is. This will be a helpful signpost when we start doing
control flow and jumping around in the bytecode.

Next, it reads a single byte from the bytecode at the given offset. That’s our
opcode. We switch on that. For each kind of instruction, we dispatch to a little
utility function for displaying it. On the off chance that the given byte doesn’t
look like an instruction at all—a bug in our compiler—we print that too. For the
one instruction we do have, OP_RETURN, the display function is:

static int simpleInstruction(const char* name, int offset) {
 printf("%s\n", name);
 return offset + 1;
}

debug.c
create new file

We have only one instruction right now,
but this switch will grow throughout the
rest of the book.

debug.c
add after disassembleChunk()

debug.c
add after disassembleChunk()

252 cHAPTeR 14 : cHunks of byTecode

There isn’t much to a return instruction, so all it does is print the name of the
opcode, then return the next byte offset past this instruction. Other instructions
will have more going on.

If we run our nascent interpreter now, it actually prints something:

== test chunk ==
0000 OP_RETURN

It worked! This is sort of the “Hello, world!” of our code representation. We can
create a chunk, write an instruction to it, and then extract that instruction back
out. Our encoding and decoding of the binary bytecode is working.

14.5 Constants
Now that we have a rudimentary chunk structure working, let’s start making it
more useful. We can store code in chunks, but what about data? Many values the
interpreter works with are created at runtime as the result of operations.

1 + 2;

The value 3 appears nowhere in the code here. However, the literals 1 and 2 do.
To compile that statement to bytecode, we need some sort of instruction that
means “produce a constant” and those literal values need to get stored in the
chunk somewhere. In jlox, the Expr.Literal AST node held the value. We need a
different solution now that we don’t have a syntax tree.

14.5.1 Representing values

We won’t be running any code in this chapter, but since constants have a foot
in both the static and dynamic worlds of our interpreter, they force us to start
thinking at least a little bit about how our VM should represent values.

For now, we’re going to start as simple as possible—we’ll support only dou-
ble-precision, floating-point numbers. This will obviously expand over time, so
we’ll set up a new module to give ourselves room to grow.

#ifndef clox_value_h
#define clox_value_h

#include "common.h"

typedef double Value;

#endif

This typedef abstracts how Lox values are concretely represented in C. That way,
we can change that representation without needing to go back and fix existing
code that passes around values.

Back to the question of where to store constants in a chunk. For small fixed-
size values like integers, many instruction sets store the value directly in the

value.h
create new file

14.5 consTAnTs 253

code stream right after the opcode. These are called immediate instructions
because the bits for the value are immediately after the opcode.

That doesn’t work well for large or variable-sized constants like strings. In a
native compiler to machine code, those bigger constants get stored in a separate
“constant data” region in the binary executable. Then, the instruction to load a
constant has an address or offset pointing to where the value is stored in that
section.

Most virtual machines do something similar. For example, the Java Virtual
Machine associates a constant pool with each compiled class. That sounds good
enough for clox to me. Each chunk will carry with it a list of the values that
appear as literals in the program. To keep things simpler, we’ll put all constants
in there, even simple integers.

14.5.2 Value arrays

The constant pool is an array of values. The instruction to load a constant looks
up the value by index in that array. As with our bytecode array, the compiler
doesn’t know how big the array needs to be ahead of time. So, again, we need a
dynamic one. Since C doesn’t have generic data structures, we’ll write another
dynamic array data structure, this time for Value.

typedef double Value;

typedef struct {
 int capacity;
 int count;
 Value* values;
} ValueArray;

#endif

As with the bytecode array in Chunk, this struct wraps a pointer to an array
along with its allocated capacity and the number of elements in use. We also
need the same three functions to work with value arrays.

} ValueArray;

void initValueArray(ValueArray* array);
void writeValueArray(ValueArray* array, Value value);
void freeValueArray(ValueArray* array);

#endif

The implementations will probably give you déjà vu. First, to create a new one:

#include <stdio.h>

#include "memory.h"
#include "value.h"

In addition to needing two kinds of
constant instructions—one for immediate
values and one for constants in the
constant table—immediates also force us
to worry about alignment, padding, and
endianness. Some architectures aren’t
happy if you try to say, stuff a 4-byte
integer at an odd address.

Defining a new struct and manipulation
functions each time we need a dynamic
array of a different type is a chore. We
could cobble together some preprocessor
macros to fake generics, but that’s overkill
for clox. We won’t need many more of
these.

value.h

value.h
add after struct ValueArray

value.c
create new file

continued on next page . . .

254 cHAPTeR 14 : cHunks of byTecode

void initValueArray(ValueArray* array) {
 array->values = NULL;
 array->capacity = 0;
 array->count = 0;
}

Once we have an initialized array, we can start adding values to it.

void writeValueArray(ValueArray* array, Value value) {
 if (array->capacity < array->count + 1) {
 int oldCapacity = array->capacity;
 array->capacity = GROW_CAPACITY(oldCapacity);
 array->values = GROW_ARRAY(Value, array->values,
 oldCapacity, array->capacity);
 }

 array->values[array->count] = value;
 array->count++;
}

The memory-management macros we wrote earlier do let us reuse some of the
logic from the code array, so this isn’t too bad. Finally, to release all memory used
by the array:

void freeValueArray(ValueArray* array) {
 FREE_ARRAY(Value, array->values, array->capacity);
 initValueArray(array);
}

Now that we have growable arrays of values, we can add one to Chunk to store
the chunk’s constants.

 uint8_t* code;
 ValueArray constants;
} Chunk;

Don’t forget the include.

#include "common.h"
#include "value.h"

typedef enum {

Ah, C, and its Stone Age modularity story. Where were we? Right. When we ini-
tialize a new chunk, we initialize its constant list too.

 chunk->code = NULL;
 initValueArray(&chunk->constants);
}

Likewise, we free the constants when we free the chunk.

Fortunately, we don’t need other
operations like insertion and removal.

value.c
add after initValueArray()

value.c
add after writeValueArray()

chunk.h
in struct Chunk

chunk.h

chunk.c
in initChunk()

. . . from previous page

14.5.3 consTAnT InsTRucTIons 255

 FREE_ARRAY(uint8_t, chunk->code, chunk->capacity);
 freeValueArray(&chunk->constants);
 initChunk(chunk);

Next, we define a convenience method to add a new constant to the chunk. Our
yet-to-be-written compiler could write to the constant array inside Chunk di-
rectly—it’s not like C has private fields or anything—but it’s a little nicer to add
an explicit function.

void writeChunk(Chunk* chunk, uint8_t byte);
int addConstant(Chunk* chunk, Value value);

#endif

Then we implement it.

int addConstant(Chunk* chunk, Value value) {
 writeValueArray(&chunk->constants, value);
 return chunk->constants.count - 1;
}

After we add the constant, we return the index where the constant was append-
ed so that we can locate that same constant later.

14.5.3 Constant instructions

We can store constants in chunks, but we also need to execute them. In a piece of
code like:

print 1;
print 2;

The compiled chunk needs to not only contain the values 1 and 2, but know when
to produce them so that they are printed in the right order. Thus, we need an
instruction that produces a particular constant.

typedef enum {
 OP_CONSTANT,
 OP_RETURN,

When the VM executes a constant instruction, it “loads” the constant for use.
This new instruction is a little more complex than OP_RETURN. In the above
example, we load two different constants. A single bare opcode isn’t enough to
know which constant to load.

To handle cases like this, our bytecode—like most others—allows instruc-
tions to have operands. These are stored as binary data immediately after the
opcode in the instruction stream and let us parameterize what the instruction
does.

chunk.c
in freeChunk()

chunk.h
add after writeChunk()

chunk.c
add after writeChunk()

chunk.h
in enum OpCode

I’m being vague about what it means to
“load” or “produce” a constant because we
haven’t learned how the virtual machine
actually executes code at runtime yet.
For that, you’ll have to wait until you get
to (or skip ahead to, I suppose) the next
chapter.

256 cHAPTeR 14 : cHunks of byTecode

Each opcode determines how many operand bytes it has and what they mean.
For example, a simple operation like “return” may have no operands, where an
instruction for “load local variable” needs an operand to identify which variable
to load. Each time we add a new opcode to clox, we specify what its operands look
like—its instruction format.

In this case, OP_CONSTANT takes a single byte operand that specifies which
constant to load from the chunk’s constant array. Since we don’t have a compiler
yet, we “hand-compile” an instruction in our test chunk.

 initChunk(&chunk);

 int constant = addConstant(&chunk, 1.2);
 writeChunk(&chunk, OP_CONSTANT);
 writeChunk(&chunk, constant);

 writeChunk(&chunk, OP_RETURN);

We add the constant value itself to the chunk’s constant pool. That returns the
index of the constant in the array. Then we write the constant instruction, start-
ing with its opcode. After that, we write the one-byte constant index operand.
Note that writeChunk() can write opcodes or operands. It’s all raw bytes as far
as that function is concerned.

If we try to run this now, the disassembler is going to yell at us because it
doesn’t know how to decode the new instruction. Let’s fix that.

 switch (instruction) {
 case OP_CONSTANT:
 return constantInstruction("OP_CONSTANT", chunk, offset);
 case OP_RETURN:

This instruction has a different instruction format, so we write a new helper
function to disassemble it.

static int constantInstruction(const char* name, Chunk* chunk,
 int offset) {
 uint8_t constant = chunk->code[offset + 1];
 printf("%-16s %4d '", name, constant);
 printValue(chunk->constants.values[constant]);
 printf("'\n");
}

There’s more going on here. As with OP_RETURN, we print out the name of the
opcode. Then we pull out the constant index from the subsequent byte in the
chunk. We print that index, but that isn’t super useful to us human readers. So
we also look up the actual constant value—since constants are known at compile

Bytecode instruction operands are not
the same as the operands passed to an
arithmetic operator. You’ll see when
we get to expressions that arithmetic
operand values are tracked separately.
Instruction operands are a lower-level
notion that modify how the bytecode
instruction itself behaves.

main.c
in main()

debug.c
in disassembleInstruction()

debug.c
add after disassembleChunk()

14.6 lIne InfoRmATIon 257

time after all—and display the value itself too.
This requires some way to print a clox Value. That function will live in the

“value” module, so we include that.

#include "debug.h"
#include "value.h"

void disassembleChunk(Chunk* chunk, const char* name) {

Over in that header, we declare:

void freeValueArray(ValueArray* array);
void printValue(Value value);

#endif

And here’s an implementation:

void printValue(Value value) {
 printf("%g", value);
}

Magnificent, right? As you can imagine, this is going to get more complex once
we add dynamic typing to Lox and have values of different types.

Back in constantInstruction(), the only remaining piece is the return
value.

 printf("'\n");
 return offset + 2;
}

Remember that disassembleInstruction() also returns a number to tell
the caller the offset of the beginning of the next instruction. Where OP_RETURN
was only a single byte, OP_CONSTANT is two—one for the opcode and one for the
operand.

14.6 Line Information
Chunks contain almost all of the information that the runtime needs from the
user’s source code. It’s kind of crazy to think that we can reduce all of the differ-
ent AST classes that we created in jlox down to an array of bytes and an array of
constants. There’s only one piece of data we’re missing. We need it, even though
the user hopes to never see it.

When a runtime error occurs, we show the user the line number of the of-
fending source code. In jlox, those numbers live in tokens, which we in turn
store in the AST nodes. We need a different solution for clox now that we’ve
ditched syntax trees in favor of bytecode. Given any bytecode instruction, we
need to be able to determine the line of the user’s source program that it was
compiled from.

There are a lot of clever ways we could encode this. I took the absolute sim-

debug.c

value.h
add after freeValueArray()

value.c
add after freeValueArray()

debug.c
in constantInstruction()

This braindead encoding does do one
thing right: it keeps the line information
in a separate array instead of interleaving
it in the bytecode itself. Since line
information is only used when a runtime
error occurs, we don’t want it between
the instructions, taking up precious space
in the CPU cache and causing more cache
misses as the interpreter skips past it to
get to the opcodes and operands it cares
about.

258 cHAPTeR 14 : cHunks of byTecode

plest approach I could come up with, even though it’s embarrassingly inefficient
with memory. In the chunk, we store a separate array of integers that parallels
the bytecode. Each number in the array is the line number for the corresponding
byte in the bytecode. When a runtime error occurs, we look up the line number
at the same index as the current instruction’s offset in the code array.

To implement this, we add another array to Chunk.

 uint8_t* code;
 int* lines;
 ValueArray constants;

Since it exactly parallels the bytecode array, we don’t need a separate count or
capacity. Every time we touch the code array, we make a corresponding change
to the line number array, starting with initialization.

 chunk->code = NULL;
 chunk->lines = NULL;
 initValueArray(&chunk->constants);

And likewise deallocation:

 FREE_ARRAY(uint8_t, chunk->code, chunk->capacity);
 FREE_ARRAY(int, chunk->lines, chunk->capacity);
 freeValueArray(&chunk->constants);

When we write a byte of code to the chunk, we need to know what source line it
came from, so we add an extra parameter in the declaration of writeChunk().

void freeChunk(Chunk* chunk);
void writeChunk(Chunk* chunk, uint8_t byte, int line);
int addConstant(Chunk* chunk, Value value);

And in the implementation:

void writeChunk(Chunk* chunk, uint8_t byte, int line) {
 if (chunk->capacity < chunk->count + 1) {

When we allocate or grow the code array, we do the same for the line info too.

 chunk->code = GROW_ARRAY(uint8_t, chunk->code,
 oldCapacity, chunk->capacity);
 chunk->lines = GROW_ARRAY(int, chunk->lines,
 oldCapacity, chunk->capacity);
 }

Finally, we store the line number in the array.

 chunk->code[chunk->count] = byte;
 chunk->lines[chunk->count] = line;
 chunk->count++;

chunk.h
in struct Chunk

chunk.c
in initChunk()

chunk.c
in freeChunk()

chunk.h
function writeChunk()

replace 1 line

chunk.c
function writeChunk()

replace 1 line

chunk.c
in writeChunk()

chunk.c
in writeChunk()

14.6.1 dIsAssemblIng lIne InfoRmATIon 259

14.6.1 Disassembling line information

Alright, let’s try this out with our little, uh, artisanal chunk. First, since we
added a new parameter to writeChunk(), we need to fix those calls to pass in
some—arbitrary at this point—line number.

 int constant = addConstant(&chunk, 1.2);
 writeChunk(&chunk, OP_CONSTANT, 123);
 writeChunk(&chunk, constant, 123);

 writeChunk(&chunk, OP_RETURN, 123);

 disassembleChunk(&chunk, "test chunk");

Once we have a real front end, of course, the compiler will track the current line
as it parses and pass that in.

Now that we have line information for every instruction, let’s put it to good
use. In our disassembler, it’s helpful to show which source line each instruction
was compiled from. That gives us a way to map back to the original code when
we’re trying to figure out what some blob of bytecode is supposed to do. After
printing the offset of the instruction—the number of bytes from the beginning
of the chunk—we show its source line.

int disassembleInstruction(Chunk* chunk, int offset) {
 printf("%04d ", offset);
 if (offset > 0 &&
 chunk->lines[offset] == chunk->lines[offset - 1]) {
 printf(" | ");
 } else {
 printf("%4d ", chunk->lines[offset]);
 }

 uint8_t instruction = chunk->code[offset];

Bytecode instructions tend to be pretty fine-grained. A single line of source code
often compiles to a whole sequence of instructions. To make that more visually
clear, we show a | for any instruction that comes from the same source line as
the preceding one. The resulting output for our handwritten chunk looks like:

== test chunk ==
0000 123 OP_CONSTANT 0 '1.2'
0002 | OP_RETURN

We have a three-byte chunk. The first two bytes are a constant instruction that
loads 1.2 from the chunk’s constant pool. The first byte is the OP_CONSTANT op-
code and the second is the index in the constant pool. The third byte (at offset 2)
is a single-byte return instruction.

In the remaining chapters, we will flesh this out with lots more kinds of in-
structions. But the basic structure is here, and we have everything we need now
to completely represent an executable piece of code at runtime in our virtual
machine. Remember that whole family of AST classes we defined in jlox? In clox,
we’ve reduced that down to three arrays: bytes of code, constant values, and line

main.c
in main()
replace 4 lines

debug.c
in disassembleInstruction()

260 cHAPTeR 14 : cHunks of byTecode

information for debugging.
This reduction is a key reason why our new interpreter will be faster than

jlox. You can think of bytecode as a sort of compact serialization of the AST,
highly optimized for how the interpreter will deserialize it in the order it needs
as it executes. In the next chapter, we will see how the virtual machine does
exactly that.

CHaLLENGES

1. Our encoding of line information is hilariously wasteful of memory. Given that a
series of instructions often correspond to the same source line, a natural solu-
tion is something akin to run-length encoding of the line numbers.

Devise an encoding that compresses the line information for a series of in-
structions on the same line. Change writeChunk() to write this compressed
form, and implement a getLine() function that, given the index of an instruc-
tion, determines the line where the instruction occurs.

Hint: It’s not necessary for getLine() to be particularly efficient. Since it is
called only when a runtime error occurs, it is well off the critical path where perfor-
mance matters.

2. Because OP_CONSTANT uses only a single byte for its operand, a chunk may
only contain up to 256 different constants. That’s small enough that people
writing real-world code will hit that limit. We could use two or more bytes to
store the operand, but that makes every constant instruction take up more
space. Most chunks won’t need that many unique constants, so that wastes
space and sacrifices some locality in the common case to support the rare case.

To balance those two competing aims, many instruction sets feature multi-
ple instructions that perform the same operation but with operands of different
sizes. Leave our existing one-byte OP_CONSTANT instruction alone, and define
a second OP_CONSTANT_LONG instruction. It stores the operand as a 24-bit
number, which should be plenty.

Implement this function:

void writeConstant(Chunk* chunk, Value value, int line) {
 // Implement me...
}

It adds value to chunk’s constant array and then writes an appropriate
instruction to load the constant. Also add support to the disassembler for
OP_CONSTANT_LONG instructions.

Defining two instructions seems to be the best of both worlds. What sacri-
fices, if any, does it force on us?

cHAllenges 261

3. Our reallocate() function relies on the C standard library for dynamic
memory allocation and freeing. malloc() and free() aren’t magic. Find a
couple of open source implementations of them and explain how they work.
How do they keep track of which bytes are allocated and which are free? What
is required to allocate a block of memory? Free it? How do they make that effi-
cient? What do they do about fragmentation?

Hardcore mode: Implement reallocate() without calling realloc(),
malloc(), or free(). You are allowed to call malloc() once, at the begin-
ning of the interpreter’s execution, to allocate a single big block of memory,
which your reallocate() function has access to. It parcels out blobs of
memory from that single region, your own personal heap. It’s your job to define
how it does that.

262 cHAPTeR 14 : cHunks of byTecode

DESIGN NOtE: tESt YOUr LaNGUaGE

We’re almost halfway through the book and one thing we haven’t talked about is test-
ing your language implementation. That’s not because testing isn’t important. I can’t
possibly stress enough how vital it is to have a good, comprehensive test suite for your
language.

I wrote a test suite for Lox (which you are welcome to use on your own Lox imple-
mentation) before I wrote a single word of this book. Those tests found countless bugs
in my implementations.

Tests are important in all software, but they’re even more important for a program-
ming language for at least a couple of reasons:

• Users expect their programming languages to be rock solid. We are so used to
mature, stable compilers and interpreters that “It’s your code, not the compiler” is
an ingrained part of software culture. If there are bugs in your language implemen-
tation, users will go through the full five stages of grief before they can figure out
what’s going on, and you don’t want to put them through all that.

• A language implementation is a deeply interconnected piece of software. Some
codebases are broad and shallow. If the file loading code is broken in your text edi-
tor, it—hopefully!—won’t cause failures in the text rendering on screen. Language
implementations are narrower and deeper, especially the core of the interpreter
that handles the language’s actual semantics. That makes it easy for subtle bugs to
creep in caused by weird interactions between various parts of the system. It takes
good tests to flush those out.

• The input to a language implementation is, by design, combinatorial. There are
an infinite number of possible programs a user could write, and your implementa-
tion needs to run them all correctly. You obviously can’t test that exhaustively, but
you need to work hard to cover as much of the input space as you can.

• Language implementations are often complex, constantly changing, and full of
optimizations. That leads to gnarly code with lots of dark corners where bugs can
hide.

All of that means you’re gonna want a lot of tests. But what tests? Projects I’ve seen
focus mostly on end-to-end “language tests”. Each test is a program written in the
language along with the output or errors it is expected to produce. Then you have a
test runner that pushes the test program through your language implementation and
validates that it does what it’s supposed to. Writing your tests in the language itself
has a few nice advantages:

• The tests aren’t coupled to any particular API or internal architecture decisions of
the implementation. This frees you to reorganize or rewrite parts of your interpret-
er or compiler without needing to update a slew of tests.

• You can use the same tests for multiple implementations of the language.

• Tests can often be terse and easy to read and maintain since they are simply scripts
in your language.

You can find the test suite here:
 ⇾ craftinginterpreters.com/tests

http://craftinginterpreters.com/tests

desIgn noTe: TesT youR lAnguAge 263

It’s not all rosy, though:

• End-to-end tests help you determine if there is a bug, but not where the bug is.
It can be harder to figure out where the erroneous code in the implementation is
because all the test tells you is that the right output didn’t appear.

• It can be a chore to craft a valid program that tickles some obscure corner of the
implementation. This is particularly true for highly optimized compilers where you
may need to write convoluted code to ensure that you end up on just the right
optimization path where a bug may be hiding.

• The overhead can be high to fire up the interpreter, parse, compile, and run each
test script. With a big suite of tests—which you do want, remember—that can
mean a lot of time spent waiting for the tests to finish running.

I could go on, but I don’t want this to turn into a sermon. Also, I don’t pretend to be an
expert on how to test languages. I just want you to internalize how important it is that
you test yours. Seriously. Test your language. You’ll thank me for it.

A byTecode VIRTuAl mAcHIne 15a Virtual Machine

“Magicians protect their secrets not because the secrets are large and
important, but because they are so small and trivial. The wonderful
effects created on stage are often the result of a secret so absurd that
the magician would be embarrassed to admit that that was how it
was done.”

— Christopher Priest, The Prestige

We’ve spent a lot of time talking about how to represent a program as a sequence
of bytecode instructions, but it feels like learning biology using only stuffed,
dead animals. We know what instructions are in theory, but we’ve never seen
them in action, so it’s hard to really understand what they do. It would be hard to
write a compiler that outputs bytecode when we don’t have a good understand-
ing of how that bytecode behaves.

So, before we go and build the front end of our new interpreter, we will begin
with the back end—the virtual machine that executes instructions. It breathes
life into the bytecode. Watching the instructions prance around gives us a clear-
er picture of how a compiler might translate the user’s source code into a series
of them.

266 cHAPTeR 15 : A VIRTuAl mAcHIne

15.1 an Instruction Execution Machine
The virtual machine is one part of our interpreter’s internal architecture. You
hand it a chunk of code—literally a Chunk—and it runs it. The code and data
structures for the VM reside in a new module.

#ifndef clox_vm_h
#define clox_vm_h

#include "chunk.h"

typedef struct {
 Chunk* chunk;
} VM;

void initVM();
void freeVM();

#endif

As usual, we start simple. The VM will gradually acquire a whole pile of state it
needs to keep track of, so we define a struct now to stuff that all in. Currently, all
we store is the chunk that it executes.

Like we do with most of the data structures we create, we also define func-
tions to create and tear down a VM. Here’s the implementation:

#include "common.h"
#include "vm.h"

VM vm;

void initVM() {
}

void freeVM() {
}

OK, calling those functions “implementations” is a stretch. We don’t have any
interesting state to initialize or free yet, so the functions are empty. Trust me,
we’ll get there.

The slightly more interesting line here is that declaration of vm. This module
is eventually going to have a slew of functions and it would be a chore to pass
around a pointer to the VM to all of them. Instead, we declare a single global
VM object. We need only one anyway, and this keeps the code in the book a little
lighter on the page.

Before we start pumping fun code into our VM, let’s go ahead and wire it up to
the interpreter’s main entrypoint.

int main(int argc, const char* argv[]) {
 initVM();

 Chunk chunk;

vm.h
create new file

vm.c
create new file

The choice to have a static VM instance
is a concession for the book, but not
necessarily a sound engineering choice
for a real language implementation. If
you’re building a VM that’s designed to
be embedded in other host applications,
it gives the host more flexibility if you do
explicitly take a VM pointer and pass it
around.

That way, the host app can control
when and where memory for the VM is
allocated, run multiple VMs in parallel,
etc.

What I’m doing here is a global
variable, and everything bad you’ve heard
about global variables is still true when
programming in the large:

 ⇾ craftinginterpreters.com/singleton
But when keeping things small for a

book . . . 

main.c
in main()

http://craftinginterpreters.com/singleton

15.1 An InsTRucTIon execuTIon mAcHIne 267

We spin up the VM when the interpreter first starts. Then when we’re about to
exit, we wind it down.

 disassembleChunk(&chunk, "test chunk");
 freeVM();
 freeChunk(&chunk);

One last ceremonial obligation:

#include "debug.h"
#include "vm.h"

int main(int argc, const char* argv[]) {

Now when you run clox, it starts up the VM before it creates that hand-authored
chunk from the last chapter. The VM is ready and waiting, so let’s teach it to do
something.

15.1.1 Executing instructions

The VM springs into action when we command it to interpret a chunk of byte-
code.

 disassembleChunk(&chunk, "test chunk");
 interpret(&chunk);
 freeVM();

This function is the main entrypoint into the VM. It’s declared like so:

void freeVM();
InterpretResult interpret(Chunk* chunk);

#endif

The VM runs the chunk and then responds with a value from this enum:

} VM;

typedef enum {
 INTERPRET_OK,
 INTERPRET_COMPILE_ERROR,
 INTERPRET_RUNTIME_ERROR
} InterpretResult;

void initVM();
void freeVM();

We aren’t using the result yet, but when we have a compiler that reports stat-
ic errors and a VM that detects runtime errors, the interpreter will use this to
know how to set the exit code of the process.

We’re inching towards some actual implementation.

main.c
in main()

main.c

main.c
in main()

vm.h
add after freeVM()

vm.h
add after struct VM

268 cHAPTeR 15 : A VIRTuAl mAcHIne

InterpretResult interpret(Chunk* chunk) {
 vm.chunk = chunk;
 vm.ip = vm.chunk->code;
 return run();
}

First, we store the chunk being executed in the VM. Then we call run(), an
internal helper function that actually runs the bytecode instructions. Between
those two parts is an intriguing line. What is this ip business?

As the VM works its way through the bytecode, it keeps track of where it
is—the location of the instruction currently being executed. We don’t use a local
variable inside run() for this because eventually other functions will need to
access it. Instead, we store it as a field in VM.

typedef struct {
 Chunk* chunk;
 uint8_t* ip;
} VM;

Its type is a byte pointer. We use an actual real C pointer pointing right into the
middle of the bytecode array instead of something like an integer index because
it’s faster to dereference a pointer than look up an element in an array by index.

The name “IP” is traditional, and—unlike many traditional names in CS—ac-
tually makes sense: it’s an instruction pointer. Almost every instruction set in
the world, real and virtual, has a register or variable like this.

We initialize ip by pointing it at the first byte of code in the chunk. We haven’t
executed that instruction yet, so ip points to the instruction about to be executed.
This will be true during the entire time the VM is running: the IP always points
to the next instruction, not the one currently being handled.

The real fun happens in run().

static InterpretResult run() {
#define READ_BYTE() (*vm.ip++)

 for (;;) {
 uint8_t instruction;
 switch (instruction = READ_BYTE()) {
 case OP_RETURN: {
 return INTERPRET_OK;
 }
 }
 }

#undef READ_BYTE
}

This is the single most important function in all of clox, by far. When the inter-
preter executes a user’s program, it will spend something like 90% of its time
inside run(). It is the beating heart of the VM.

Despite that dramatic intro, it’s conceptually pretty simple. We have an outer
loop that goes and goes. Each turn through that loop, we read and execute a sin-
gle bytecode instruction.

vm.c
add after freeVM()

If we were trying to squeeze every ounce
of speed out of our bytecode interpreter,
we would store ip in a local variable. It
gets modified so often during execution
that we want the C compiler to keep it in
a register.

vm.h
in struct VM

x86, x64, and the CLR call it “IP”. 68k,
PowerPC, ARM, p-code, and the JVM call it
“PC”, for program counter.

vm.c
add after freeVM()

Or, at least, it will be in a few chapters
when it has enough content to be useful.
Right now, it’s not exactly a wonder of
software wizardry.

15.1.1 execuTIng InsTRucTIons 269

To process an instruction, we first figure out what kind of instruction we’re
dealing with. The READ_BYTE macro reads the byte currently pointed at by ip
and then advances the instruction pointer. The first byte of any instruction is
the opcode. Given a numeric opcode, we need to get to the right C code that
implements that instruction’s semantics. This process is called decoding or dis-
patching the instruction.

We do that process for every single instruction, every single time one is exe-
cuted, so this is the most performance critical part of the entire virtual machine.
Programming language lore is filled with clever techniques to do bytecode dis-
patch efficiently, going all the way back to the early days of computers.

Alas, the fastest solutions require either non-standard extensions to C, or
handwritten assembly code. For clox, we’ll keep it simple. Just like our disassem-
bler, we have a single giant switch statement with a case for each opcode. The
body of each case implements that opcode’s behavior.

So far, we handle only a single instruction, OP_RETURN, and the only thing it
does is exit the loop entirely. Eventually, that instruction will be used to return
from the current Lox function, but we don’t have functions yet, so we’ll repur-
pose it temporarily to end the execution.

Let’s go ahead and support our one other instruction.

 switch (instruction = READ_BYTE()) {
 case OP_CONSTANT: {
 Value constant = READ_CONSTANT();
 printValue(constant);
 printf("\n");
 break;
 }
 case OP_RETURN: {

We don’t have enough machinery in place yet to do anything useful with a con-
stant. For now, we’ll just print it out so we interpreter hackers can see what’s
going on inside our VM. That call to printf() necessitates an include.

#include <stdio.h>

#include "common.h"

We also have a new macro to define.

#define READ_BYTE() (*vm.ip++)
#define READ_CONSTANT() (vm.chunk->constants.values[READ_BYTE()])

 for (;;) {

READ_CONSTANT() reads the next byte from the bytecode, treats the resulting
number as an index, and looks up the corresponding Value in the chunk’s con-
stant table. In later chapters, we’ll add a few more instructions with operands
that refer to constants, so we’re setting up this helper macro now.

Like the previous READ_BYTE macro, READ_CONSTANT is only used inside
run(). To make that scoping more explicit, the macro definitions themselves
are confined to that function. We define them at the beginning and—because we
care—undefine them at the end.

Note that ip advances as soon as we read
the opcode, before we’ve actually started
executing the instruction. So, again, ip
points to the next byte of code to be used.

If you want to learn some of these tech-
niques, look up “direct threaded code”,
“jump table”, and “computed goto”.

vm.c
in run()

vm.c
add to top of file

vm.c
in run()

Undefining these macros explicitly might
seem needlessly fastidious, but C tends to
punish sloppy users, and the C preproces-
sor doubly so.

270 cHAPTeR 15 : A VIRTuAl mAcHIne

#undef READ_BYTE
#undef READ_CONSTANT
}

15.1.2 Execution tracing

If you run clox now, it executes the chunk we hand-authored in the last chapter
and spits out 1.2 to your terminal. We can see that it’s working, but that’s only
because our implementation of OP_CONSTANT has temporary code to log the
value. Once that instruction is doing what it’s supposed to do and plumbing that
constant along to other operations that want to consume it, the VM will become
a black box. That makes our lives as VM implementers harder.

To help ourselves out, now is a good time to add some diagnostic logging to the
VM like we did with chunks themselves. In fact, we’ll even reuse the same code.
We don’t want this logging enabled all the time—it’s just for us VM hackers, not
Lox users—so first we create a flag to hide it behind.

#include <stdint.h>

#define DEBUG_TRACE_EXECUTION

#endif

When this flag is defined, the VM disassembles and prints each instruction right
before executing it. Where our previous disassembler walked an entire chunk
once, statically, this disassembles instructions dynamically, on the fly.

 for (;;) {
#ifdef DEBUG_TRACE_EXECUTION
 disassembleInstruction(vm.chunk,
 (int)(vm.ip - vm.chunk->code));
#endif

 uint8_t instruction;

Since disassembleInstruction() takes an integer byte offset and we store
the current instruction reference as a direct pointer, we first do a little pointer
math to convert ip back to a relative offset from the beginning of the bytecode.
Then we disassemble the instruction that begins at that byte.

As ever, we need to bring in the declaration of the function before we can call
it.

#include "common.h"
#include "debug.h"
#include "vm.h"

I know this code isn’t super impressive so far—it’s literally a switch statement
wrapped in a for loop but, believe it or not, this is one of the two major com-
ponents of our VM. With this, we can imperatively execute instructions. Its
simplicity is a virtue—the less work it does, the faster it can do it. Contrast this

vm.c
in run()

common.h

vm.c
in run()

vm.c

15.1.2 execuTIon TRAcIng 271

with all of the complexity and overhead we had in jlox with the Visitor pattern
for walking the AST.

15.2 a Value Stack Manipulator
In addition to imperative side effects, Lox has expressions that produce, modify,
and consume values. Thus, our compiled bytecode needs a way to shuttle values
around between the different instructions that need them. For example:

print 3 - 2;

We obviously need instructions for the constants 3 and 2, the print statement,
and the subtraction. But how does the subtraction instruction know that 3 is the
minuend and 2 is the subtrahend? How does the print instruction know to print
the result of that?

To put a finer point on it, look at this thing right here:

fun echo(n) {
 print n;
 return n;
}

print echo(echo(1) + echo(2)) + echo(echo(4) + echo(5));

I wrapped each subexpression in a call to echo() that prints and returns its
argument. That side effect means we can see the exact order of operations.

Don’t worry about the VM for a minute. Think about just the semantics of
Lox itself. The operands to an arithmetic operator obviously need to be evaluated
before we can perform the operation itself. (It’s pretty hard to add a + b if you
don’t know what a and b are.) Also, when we implemented expressions in jlox,
we decided that the left operand must be evaluated before the right.

Here is the syntax tree for the print statement:

Given left-to-right evaluation, and the way the expressions are nested, any cor-
rect Lox implementation must print these numbers in this order:

Yes, I did have to look up “subtrahend”
and “minuend” in a dictionary. But
aren’t they delightful words? “Minuend”
sounds like a kind of Elizabethan dance
and “subtrahend” might be some sort of
underground Paleolithic monument.

We could have left evaluation order
unspecified and let each implementation
decide. That leaves the door open for
optimizing compilers to reorder arithmetic
expressions for efficiency, even in cases
where the operands have visible side
effects. C and Scheme leave evaluation
order unspecified. Java specifies left-to-
right evaluation like we do for Lox.

I think nailing down stuff like this
is generally better for users. When
expressions are not evaluated in the order
users intuit—possibly in different orders
across different implementations!—it can
be a burning hellscape of pain to figure
out what’s going on.

272 cHAPTeR 15 : A VIRTuAl mAcHIne

1 // from echo(1)
2 // from echo(2)
3 // from echo(1 + 2)
4 // from echo(4)
5 // from echo(5)
9 // from echo(4 + 5)
12 // from print 3 + 9

Our old jlox interpreter accomplishes this by recursively traversing the AST. It
does a postorder traversal. First it recurses down the left operand branch, then
the right operand, then finally it evaluates the node itself.

After evaluating the left operand, jlox needs to store that result somewhere
temporarily while it’s busy traversing down through the right operand tree. We
use a local variable in Java for that. Our recursive tree-walk interpreter creates a
unique Java call frame for each node being evaluated, so we could have as many
of these local variables as we needed.

In clox, our run() function is not recursive—the nested expression tree is
flattened out into a linear series of instructions. We don’t have the luxury of
using C local variables, so how and where should we store these temporary val-
ues? You can probably guess already, but I want to really drill into this because
it’s an aspect of programming that we take for granted, but we rarely learn why
computers are architected this way.

Let’s do a weird exercise. We’ll walk through the execution of the above pro-
gram a step at a time:

On the left are the steps of code. On the right are the values we’re tracking. Each
bar represents a number. It starts when the value is first produced—either a
constant or the result of an addition. The length of the bar tracks when a previ-
ously produced value needs to be kept around, and it ends when that value final-
ly gets consumed by an operation.

As you step through, you see values appear and then later get eaten. The lon-
gest-lived ones are the values produced from the left-hand side of an addition.
Those stick around while we work through the right-hand operand expression.

Hint: it’s in the name of this section, and
it’s how Java and C manage recursive calls
to functions.

15.2.1 THe Vm’s sTAck 273

In the above diagram, I gave each unique number its own visual column. Let’s
be a little more parsimonious. Once a number is consumed, we allow its column
to be reused for another later value. In other words, we take all of those gaps in
the previous illustration and fill them in, pushing in numbers from the right:

There’s some interesting stuff going on here. When we shift everything over,
each number still manages to stay in a single column for its entire life. Also,
there are no gaps left. In other words, whenever a number appears earlier than
another, then it will live at least as long as that second one. The first number to
appear is the last to be consumed. Hmm . . . last-in, first-out . . . why, that’s a stack!

In the second diagram, each time we introduce a number, we push it onto the
stack from the right. When numbers are consumed, they are always popped off
from rightmost to left.

Since the temporary values we need to track naturally have stack-like behav-
ior, our VM will use a stack to manage them. When an instruction “produces” a
value, it pushes it onto the stack. When it needs to consume one or more values,
it gets them by popping them off the stack.

15.2.1 The VM’s Stack

Maybe this doesn’t seem like a revelation, but I love stack-based VMs. When
you first see a magic trick, it feels like something actually magical. But then you
learn how it works—usually some mechanical gimmick or misdirection—and
the sense of wonder evaporates. There are a couple of ideas in computer science
where even after I pulled them apart and learned all the ins and outs, some of the
initial sparkle remained. Stack-based VMs are one of those.

As you’ll see in this chapter, executing instructions in a stack-based VM
is dead simple. In later chapters, you’ll also discover that compiling a source
language to a stack-based instruction set is a piece of cake. And yet, this archi-
tecture is fast enough to be used by production language implementations. It
almost feels like cheating at the programming language game.

This is also a stack:

Heaps—the data structure, not the
memory management thing—are another.
And Vaughan Pratt’s top-down operator
precedence parsing scheme, which we’ll
learn about in due time.

To take a bit of the sheen off: stack-based
interpreters aren’t a silver bullet. They’re
often adequate, but modern implementa-
tions of the JVM, the CLR, and JavaScript
all use sophisticated just-in-time
compilation pipelines to generate much
faster native code on the fly.

274 cHAPTeR 15 : A VIRTuAl mAcHIne

Alrighty, it’s codin’ time! Here’s the stack:

typedef struct {
 Chunk* chunk;
 uint8_t* ip;
 Value stack[STACK_MAX];
 Value* stackTop;
} VM;

We implement the stack semantics ourselves on top of a raw C array. The bottom
of the stack—the first value pushed and the last to be popped—is at element zero
in the array, and later pushed values follow it. If we push the letters of “crepe”—
my favorite stackable breakfast item—onto the stack, in order, the resulting C
array looks like this:

Since the stack grows and shrinks as values are pushed and popped, we need to
track where the top of the stack is in the array. As with ip, we use a direct point-
er instead of an integer index since it’s faster to dereference the pointer than
calculate the offset from the index each time we need it.

The pointer points at the array element just past the element containing the
top value on the stack. That seems a little odd, but almost every implementation
does this. It means we can indicate that the stack is empty by pointing at element
zero in the array.

If we pointed to the top element, then for an empty stack we’d need to point at
element -1. That’s undefined in C. As we push values onto the stack . . . 

 . . . stackTop always points just past the last item.

I remember it like this: stackTop points to where the next value to be pushed

What about when the stack is full, you
ask, Clever Reader? The C standard is
one step ahead of you. It is allowed and
well-specified to have an array pointer
that points just past the end of an array.

vm.h
in struct VM

15.2.1 THe Vm’s sTAck 275

will go. The maximum number of values we can store on the stack (for now, at
least) is:

#include "chunk.h"

#define STACK_MAX 256

typedef struct {

Giving our VM a fixed stack size means it’s possible for some sequence of in-
structions to push too many values and run out of stack space—the classic “stack
overflow”. We could grow the stack dynamically as needed, but for now we’ll
keep it simple. Since VM uses Value, we need to include its declaration.

#include "chunk.h"
#include "value.h"

#define STACK_MAX 256

Now that VM has some interesting state, we get to initialize it.

void initVM() {
 resetStack();
}

That uses this helper function:

static void resetStack() {
 vm.stackTop = vm.stack;
}

Since the stack array is declared directly inline in the VM struct, we don’t need
to allocate it. We don’t even need to clear the unused cells in the array—we
simply won’t access them until after values have been stored in them. The only
initialization we need is to set stackTop to point to the beginning of the array
to indicate that the stack is empty.

The stack protocol supports two operations:

InterpretResult interpret(Chunk* chunk);
void push(Value value);
Value pop();

#endif

You can push a new value onto the top of the stack, and you can pop the most
recently pushed value back off. Here’s the first function:

void push(Value value) {
 *vm.stackTop = value;
 vm.stackTop++;
}

vm.h

vm.h

vm.c
in initVM()

vm.h
add after interpret()

vm.c
add after freeVM()

vm.c
add after variable vm

276 cHAPTeR 15 : A VIRTuAl mAcHIne

If you’re rusty on your C pointer syntax and operations, this is a good warm-up.
The first line stores value in the array element at the top of the stack. Remember,
stackTop points just past the last used element, at the next available one. This
stores the value in that slot. Then we increment the pointer itself to point to the
next unused slot in the array now that the previous slot is occupied.

Popping is the mirror image.

Value pop() {
 vm.stackTop--;
 return *vm.stackTop;
}

First, we move the stack pointer back to get to the most recent used slot in the
array. Then we look up the value at that index and return it. We don’t need to
explicitly “remove” it from the array—moving stackTop down is enough to
mark that slot as no longer in use.

15.2.2 Stack tracing

We have a working stack, but it’s hard to see that it’s working. When we start im-
plementing more complex instructions and compiling and running larger pieces
of code, we’ll end up with a lot of values crammed into that array. It would make
our lives as VM hackers easier if we had some visibility into the stack.

To that end, whenever we’re tracing execution, we’ll also show the current
contents of the stack before we interpret each instruction.

#ifdef DEBUG_TRACE_EXECUTION
 printf(" ");
 for (Value* slot = vm.stack; slot < vm.stackTop; slot++) {
 printf("[");
 printValue(*slot);
 printf("]");
 }
 printf("\n");
 disassembleInstruction(vm.chunk,

We loop, printing each value in the array, starting at the first (bottom of the
stack) and ending when we reach the top. This lets us observe the effect of each
instruction on the stack. The output is pretty verbose, but it’s useful when we’re
surgically extracting a nasty bug from the bowels of the interpreter.

Stack in hand, let’s revisit our two instructions. First up:

 case OP_CONSTANT: {
 Value constant = READ_CONSTANT();
 push(constant);
 break;

In the last chapter, I was hand-wavey about how the OP_CONSTANT instruction
“loads” a constant. Now that we have a stack you know what it means to actually
produce a value: it gets pushed onto the stack.

vm.c
in run()

vm.c
in run()

replace 2 lines

vm.c
add after push()

15.2.2 sTAck TRAcIng 277

 case OP_RETURN: {
 printValue(pop());
 printf("\n");
 return INTERPRET_OK;

Then we make OP_RETURN pop the stack and print the top value before exiting.
When we add support for real functions to clox, we’ll change this code. But, for
now, it gives us a way to get the VM executing simple instruction sequences and
displaying the result.

15.3 an arithmetic Calculator
The heart and soul of our VM are in place now. The bytecode loop dispatches
and executes instructions. The stack grows and shrinks as values flow through
it. The two halves work, but it’s hard to get a feel for how cleverly they interact
with only the two rudimentary instructions we have so far. So let’s teach our
interpreter to do arithmetic.

We’ll start with the simplest arithmetic operation, unary negation.

var a = 1.2;
print -a; // -1.2.

The prefix - operator takes one operand, the value to negate. It produces a single
result. We aren’t fussing with a parser yet, but we can add the bytecode instruc-
tion that the above syntax will compile to.

 OP_CONSTANT,
 OP_NEGATE,
 OP_RETURN,

We execute it like so:

 }
 case OP_NEGATE: push(-pop()); break;
 case OP_RETURN: {

The instruction needs a value to operate on, which it gets by popping from the
stack. It negates that, then pushes the result back on for later instructions to use.
Doesn’t get much easier than that. We can disassemble it too.

 case OP_CONSTANT:
 return constantInstruction("OP_CONSTANT", chunk, offset);
 case OP_NEGATE:
 return simpleInstruction("OP_NEGATE", offset);
 case OP_RETURN:

And we can try it out in our test chunk.

vm.c
in run()

chunk.h
in enum OpCode

vm.c
in run()

debug.c
in disassembleInstruction()

278 cHAPTeR 15 : A VIRTuAl mAcHIne

 writeChunk(&chunk, constant, 123);
 writeChunk(&chunk, OP_NEGATE, 123);

 writeChunk(&chunk, OP_RETURN, 123);

After loading the constant, but before returning, we execute the negate instruc-
tion. That replaces the constant on the stack with its negation. Then the return
instruction prints that out:

-1.2

Magical!

15.3.1 Binary operators

OK, unary operators aren’t that impressive. We still only ever have a single value
on the stack. To really see some depth, we need binary operators. Lox has four
binary arithmetic operators: addition, subtraction, multiplication, and division.
We’ll go ahead and implement them all at the same time.

 OP_CONSTANT,
 OP_ADD,
 OP_SUBTRACT,
 OP_MULTIPLY,
 OP_DIVIDE,
 OP_NEGATE,

Back in the bytecode loop, they are executed like this:

 }
 case OP_ADD: BINARY_OP(+); break;
 case OP_SUBTRACT: BINARY_OP(-); break;
 case OP_MULTIPLY: BINARY_OP(*); break;
 case OP_DIVIDE: BINARY_OP(/); break;
 case OP_NEGATE: push(-pop()); break;

The only difference between these four instructions is which underlying C op-
erator they ultimately use to combine the two operands. Surrounding that core
arithmetic expression is some boilerplate code to pull values off the stack and
push the result. When we later add dynamic typing, that boilerplate will grow.
To avoid repeating that code four times, I wrapped it up in a macro.

#define READ_CONSTANT() (vm.chunk->constants.values[READ_BYTE()])
#define BINARY_OP(op) \
 do { \
 double b = pop(); \
 double a = pop(); \
 push(a op b); \
 } while (false)

 for (;;) {

main.c
in main()

Lox has some other binary operators—
comparison and equality—but those don’t
produce numbers as a result, so we aren’t
ready for them yet.

chunk.h
in enum OpCode

vm.c
in run()

vm.c
in run()

15.3.1 bInARy oPeRAToRs 279

I admit this is a fairly adventurous use of the C preprocessor. I hesitated to do
this, but you’ll be glad in later chapters when we need to add the type checking
for each operand and stuff. It would be a chore to walk you through the same
code four times.

If you aren’t familiar with the trick already, that outer do while loop prob-
ably looks really weird. This macro needs to expand to a series of statements. To
be careful macro authors, we want to ensure those statements all end up in the
same scope when the macro is expanded. Imagine if you defined:

#define WAKE_UP() makeCoffee(); drinkCoffee();

And then used it like:

if (morning) WAKE_UP();

The intent is to execute both statements of the macro body only if morning is
true. But it expands to:

if (morning) makeCoffee(); drinkCoffee();;

Oops. The if attaches only to the first statement. You might think you could fix
this using a block.

#define WAKE_UP() { makeCoffee(); drinkCoffee(); }

That’s better, but you still risk:

if (morning)
 WAKE_UP();
else
 sleepIn();

Now you get a compile error on the else because of that trailing ; after the
macro’s block. Using a do while loop in the macro looks funny, but it gives you
a way to contain multiple statements inside a block that also permits a semicolon
at the end.

Where were we? Right, so what the body of that macro does is straightfor-
ward. A binary operator takes two operands, so it pops twice. It performs the
operation on those two values and then pushes the result.

Pay close attention to the order of the two pops. Note that we assign the first
popped operand to b, not a. It looks backwards. When the operands themselves
are calculated, the left is evaluated first, then the right. That means the left oper-
and gets pushed before the right operand. So the right operand will be on top of
the stack. Thus, the first value we pop is b.

For example, if we compile 3 - 1, the data flow between the instructions
looks like so:

Did you even know you can pass an
operator as an argument to a macro? Now
you do. The preprocessor doesn’t care that
operators aren’t first class in C. As far as
it’s concerned, it’s all just text tokens.

I know, you can just feel the temptation
to abuse this, can’t you?

280 cHAPTeR 15 : A VIRTuAl mAcHIne

As we did with the other macros inside run(), we clean up after ourselves at the
end of the function.

#undef READ_CONSTANT
#undef BINARY_OP
}

Last is disassembler support.

 case OP_CONSTANT:
 return constantInstruction("OP_CONSTANT", chunk, offset);
 case OP_ADD:
 return simpleInstruction("OP_ADD", offset);
 case OP_SUBTRACT:
 return simpleInstruction("OP_SUBTRACT", offset);
 case OP_MULTIPLY:
 return simpleInstruction("OP_MULTIPLY", offset);
 case OP_DIVIDE:
 return simpleInstruction("OP_DIVIDE", offset);
 case OP_NEGATE:

The arithmetic instruction formats are simple, like OP_RETURN. Even though
the arithmetic operators take operands—which are found on the stack—the
arithmetic bytecode instructions do not.

Let’s put some of our new instructions through their paces by evaluating a
larger expression:

vm.c
in run()

debug.c
in disassembleInstruction()

15.3.1 bInARy oPeRAToRs 281

Building on our existing example chunk, here’s the additional instructions we
need to hand-compile that AST to bytecode.

 int constant = addConstant(&chunk, 1.2);
 writeChunk(&chunk, OP_CONSTANT, 123);
 writeChunk(&chunk, constant, 123);

 constant = addConstant(&chunk, 3.4);
 writeChunk(&chunk, OP_CONSTANT, 123);
 writeChunk(&chunk, constant, 123);

 writeChunk(&chunk, OP_ADD, 123);

 constant = addConstant(&chunk, 5.6);
 writeChunk(&chunk, OP_CONSTANT, 123);
 writeChunk(&chunk, constant, 123);

 writeChunk(&chunk, OP_DIVIDE, 123);
 writeChunk(&chunk, OP_NEGATE, 123);

 writeChunk(&chunk, OP_RETURN, 123);

The addition goes first. The instruction for the left constant, 1.2, is already there,
so we add another for 3.4. Then we add those two using OP_ADD, leaving it on the
stack. That covers the left side of the division. Next we push the 5.6, and divide
the result of the addition by it. Finally, we negate the result of that.

Note how the output of the OP_ADD implicitly flows into being an operand
of OP_DIVIDE without either instruction being directly coupled to each oth-
er. That’s the magic of the stack. It lets us freely compose instructions without
them needing any complexity or awareness of the data flow. The stack acts like a
shared workspace that they all read from and write to.

In this tiny example chunk, the stack still only gets two values tall, but when
we start compiling Lox source to bytecode, we’ll have chunks that use much
more of the stack. In the meantime, try playing around with this hand-authored
chunk to calculate different nested arithmetic expressions and see how values
flow through the instructions and stack.

You may as well get it out of your system now. This is the last chunk we’ll
build by hand. When we next revisit bytecode, we will be writing a compiler to
generate it for us.

main.c
in main()

282 cHAPTeR 15 : A VIRTuAl mAcHIne

CHaLLENGES

1. What bytecode instruction sequences would you generate for the following
expressions:

1 * 2 + 3
1 + 2 * 3
3 - 2 - 1
1 + 2 * 3 - 4 / -5

(Remember that Lox does not have a syntax for negative number literals, so the
-5 is negating the number 5.)

2. If we really wanted a minimal instruction set, we could eliminate either
OP_NEGATE or OP_SUBTRACT. Show the bytecode instruction sequence you
would generate for:

4 - 3 * -2

First, without using OP_NEGATE. Then, without using OP_SUBTRACT.
Given the above, do you think it makes sense to have both instructions? Why

or why not? Are there any other redundant instructions you would consider
including?

3. Our VM’s stack has a fixed size, and we don’t check if pushing a value overflows
it. This means the wrong series of instructions could cause our interpreter to
crash or go into undefined behavior. Avoid that by dynamically growing the
stack as needed.

What are the costs and benefits of doing so?

4. To interpret OP_NEGATE, we pop the operand, negate the value, and then push
the result. That’s a simple implementation, but it increments and decrements
stackTop unnecessarily, since the stack ends up the same height in the end.
It might be faster to simply negate the value in place on the stack and leave
stackTop alone. Try that and see if you can measure a performance difference.

Are there other instructions where you can do a similar optimization?

cHAllenges 283

DESIGN NOtE: rEGIStEr-BaSED BYtECODE

For the remainder of this book, we’ll meticulously implement an interpreter around a
stack-based bytecode instruction set. There’s another family of bytecode architectures
out there—register-based. Despite the name, these bytecode instructions aren’t quite
as difficult to work with as the registers in an actual chip like x64. With real hardware
registers, you usually have only a handful for the entire program, so you spend a lot of
effort trying to use them efficiently and shuttling stuff in and out of them.

In a register-based VM, you still have a stack. Temporary values still get pushed
onto it and popped when no longer needed. The main difference is that instructions
can read their inputs from anywhere in the stack and can store their outputs into spe-
cific stack slots.

Take this little Lox script:

var a = 1;
var b = 2;
var c = a + b;

In our stack-based VM, the last statement will get compiled to something like:

load <a> // Read local variable a and push onto stack.
load // Read local variable b and push onto stack.
add // Pop two values, add, push result.
store <c> // Pop value and store in local variable c.

(Don’t worry if you don’t fully understand the load and store instructions yet. We’ll go
over them in much greater detail when we implement variables.) We have four sep-
arate instructions. That means four times through the bytecode interpret loop, four
instructions to decode and dispatch. It’s at least seven bytes of code—four for the
opcodes and another three for the operands identifying which locals to load and store.
Three pushes and three pops. A lot of work!

In a register-based instruction set, instructions can read from and store directly
into local variables. The bytecode for the last statement above looks like:

add <a> <c> // Read values from a and b, add, store in c.

The add instruction is bigger—it has three instruction operands that define where in
the stack it reads its inputs from and writes the result to. But since local variables live
on the stack, it can read directly from a and b and then store the result right into c.

There’s only a single instruction to decode and dispatch, and the whole thing fits in
four bytes. Decoding is more complex because of the additional operands, but it’s still
a net win. There’s no pushing and popping or other stack manipulation.

The main implementation of Lua used to be stack-based. For Lua 5.0, the imple-
menters switched to a register instruction set and noted a speed improvement. The
amount of improvement, naturally, depends heavily on the details of the language
semantics, specific instruction set, and compiler sophistication, but that should get
your attention.

That raises the obvious question of why I’m going to spend the rest of the book
doing a stack-based bytecode. Register VMs are neat, but they are quite a bit harder
to write a compiler for. For what is likely to be your very first compiler, I wanted to
stick with an instruction set that’s easy to generate and easy to execute. Stack-based
bytecode is marvelously simple.

Register-based bytecode is a little closer
to the register windows supported by
SPARC chips.

The Lua dev team—Roberto
Ierusalimschy, Waldemar Celes, and
Luiz Henrique de Figueiredo—wrote a
fantastic paper on this, one of my all time
favorite computer science papers, “The
Implementation of Lua 5.0”:

 ⇾ craftinginterpreters.com/lua5

http://craftinginterpreters.com/lua5

284 cHAPTeR 15 : A VIRTuAl mAcHIne

It’s also much better known in the literature and the community. Even though you
may eventually move to something more advanced, it’s a good common ground to
share with the rest of your language hacker peers.

A byTecode VIRTuAl mAcHIne 16Scanning on Demand

“Literature is idiosyncratic arrangements in horizontal lines in only
twenty-six phonetic symbols, ten Arabic numbers, and about eight
punctuation marks.”

— Kurt Vonnegut, Like Shaking Hands With God: A Conversation about Writing

Our second interpreter, clox, has three phases—scanner, compiler, and virtual
machine. A data structure joins each pair of phases. Tokens flow from scanner
to compiler, and chunks of bytecode from compiler to VM. We began our imple-
mentation near the end with chunks and the VM. Now, we’re going to hop back to
the beginning and build a scanner that makes tokens. In the next chapter, we’ll
tie the two ends together with our bytecode compiler.

286 cHAPTeR 16 : scAnnIng on demAnd

I’ll admit, this is not the most exciting chapter in the book. With two implemen-
tations of the same language, there’s bound to be some redundancy. I did sneak
in a few interesting differences compared to jlox’s scanner. Read on to see what
they are.

16.1 Spinning Up the Interpreter
Now that we’re building the front end, we can get clox running like a real in-
terpreter. No more hand-authored chunks of bytecode. It’s time for a REPL and
script loading. Tear out most of the code in main() and replace it with:

int main(int argc, const char* argv[]) {
 initVM();

 if (argc == 1) {
 repl();
 } else if (argc == 2) {
 runFile(argv[1]);
 } else {
 fprintf(stderr, "Usage: clox [path]\n");
 exit(64);
 }

 freeVM();
 return 0;
}

If you pass no arguments to the executable, you are dropped into the REPL. A
single command line argument is understood to be the path to a script to run.

We’ll need a few system headers, so let’s get them all out of the way.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "common.h"

Next, we get the REPL up and REPL-ing.

#include "vm.h"

static void repl() {
 char line[1024];
 for (;;) {
 printf("> ");

 if (!fgets(line, sizeof(line), stdin)) {
 printf("\n");
 break;
 }

main.c
in main()

replace 26 lines

The code tests for one and two arguments,
not zero and one, because the first
argument in argv is always the name of
the executable being run.

main.c
add to top of file

main.c

continued on next page . . .

16.1 sPInnIng uP THe InTeRPReTeR 287

 interpret(line);
 }
}

A quality REPL handles input that spans multiple lines gracefully and doesn’t
have a hardcoded line length limit. This REPL here is a little more, ahem, austere,
but it’s fine for our purposes.

The real work happens in interpret(). We’ll get to that soon, but first let’s
take care of loading scripts.

static void runFile(const char* path) {
 char* source = readFile(path);
 InterpretResult result = interpret(source);
 free(source);

 if (result == INTERPRET_COMPILE_ERROR) exit(65);
 if (result == INTERPRET_RUNTIME_ERROR) exit(70);
}

We read the file and execute the resulting string of Lox source code. Then, based
on the result of that, we set the exit code appropriately because we’re scrupulous
tool builders and care about little details like that.

We also need to free the source code string because readFile() dynami-
cally allocates it and passes ownership to its caller. That function looks like this:

static char* readFile(const char* path) {
 FILE* file = fopen(path, "rb");

 fseek(file, 0L, SEEK_END);
 size_t fileSize = ftell(file);
 rewind(file);

 char* buffer = (char*)malloc(fileSize + 1);
 size_t bytesRead = fread(buffer, sizeof(char), fileSize, file);
 buffer[bytesRead] = '\0';

 fclose(file);
 return buffer;
}

Like a lot of C code, it takes more effort than it seems like it should, especially
for a language expressly designed for operating systems. The difficult part is that
we want to allocate a big enough string to read the whole file, but we don’t know
how big the file is until we’ve read it.

The code here is the classic trick to solve that. We open the file, but before
reading it, we seek to the very end using fseek(). Then we call ftell()
which tells us how many bytes we are from the start of the file. Since we seeked
(sought?) to the end, that’s the size. We rewind back to the beginning, allocate a
string of that size, and read the whole file in a single batch.

So we’re done, right? Not quite. These function calls, like most calls in the
C standard library, can fail. If this were Java, the failures would be thrown as

. . . from previous page

main.c
add after repl()

main.c
add after repl()

C asks us not just to manage memory
explicitly, but mentally. We programmers
have to remember the ownership rules
and hand-implement them throughout the
program. Java just does it for us. C++ gives
us tools to encode the policy directly so
that the compiler validates it for us.

I like C’s simplicity, but we pay a real
price for it—the language requires us to
be more conscientious.

Well, that size plus one. Always gotta
remember to make room for the null byte.

288 cHAPTeR 16 : scAnnIng on demAnd

exceptions and automatically unwind the stack so we wouldn’t really need to
handle them. In C, if we don’t check for them, they silently get ignored.

This isn’t really a book on good C programming practice, but I hate to encour-
age bad style, so let’s go ahead and handle the errors. It’s good for us, like eating
our vegetables or flossing.

Fortunately, we don’t need to do anything particularly clever if a failure oc-
curs. If we can’t correctly read the user’s script, all we can really do is tell the
user and exit the interpreter gracefully. First of all, we might fail to open the file.

 FILE* file = fopen(path, "rb");
 if (file == NULL) {
 fprintf(stderr, "Could not open file \"%s\".\n", path);
 exit(74);
 }

 fseek(file, 0L, SEEK_END);

This can happen if the file doesn’t exist or the user doesn’t have access to it. It’s
pretty common—people mistype paths all the time.

This failure is much rarer:

 char* buffer = (char*)malloc(fileSize + 1);
 if (buffer == NULL) {
 fprintf(stderr, "Not enough memory to read \"%s\".\n", path);
 exit(74);
 }

 size_t bytesRead = fread(buffer, sizeof(char), fileSize, file);

If we can’t even allocate enough memory to read the Lox script, the user’s prob-
ably got bigger problems to worry about, but we should do our best to at least let
them know.

Finally, the read itself may fail.

 size_t bytesRead = fread(buffer, sizeof(char), fileSize, file);
 if (bytesRead < fileSize) {
 fprintf(stderr, "Could not read file \"%s\".\n", path);
 exit(74);
 }

 buffer[bytesRead] = '\0';

This is also unlikely. Actually, the calls to fseek(), ftell(), and rewind()
could theoretically fail too, but let’s not go too far off in the weeds, shall we?

16.1.1 Opening the compilation pipeline

We’ve got ourselves a string of Lox source code, so now we’re ready to set up
a pipeline to scan, compile, and execute it. It’s driven by interpret(). Right
now, that function runs our old hardcoded test chunk. Let’s change it to some-
thing closer to its final incarnation.

main.c
in readFile()

main.c
in readFile()

main.c
in readFile()

Even good old printf() can fail. Yup.
How many times have you handled that
error?

16.1.1 oPenIng THe comPIlATIon PIPelIne 289

void freeVM();
InterpretResult interpret(const char* source);
void push(Value value);

Where before we passed in a Chunk, now we pass in the string of source code.
Here’s the new implementation:

InterpretResult interpret(const char* source) {
 compile(source);
 return INTERPRET_OK;
}

We won’t build the actual compiler yet in this chapter, but we can start laying out
its structure. It lives in a new module.

#include "common.h"
#include "compiler.h"
#include "debug.h"

For now, the one function in it is declared like so:

#ifndef clox_compiler_h
#define clox_compiler_h

void compile(const char* source);

#endif

That signature will change, but it gets us going.
The first phase of compilation is scanning—the thing we’re doing in this

chapter—so right now all the compiler does is set that up.

#include <stdio.h>

#include "common.h"
#include "compiler.h"
#include "scanner.h"

void compile(const char* source) {
 initScanner(source);
}

This will also grow in later chapters, naturally.

16.1.2 The scanner scans

There are still a few more feet of scaffolding to stand up before we can start writ-
ing useful code. First, a new header:

vm.h
function interpret()
replace 1 line

vm.c
function interpret()
replace 4 lines

vm.c

compiler.h
create new file

compiler.c
create new file

290 cHAPTeR 16 : scAnnIng on demAnd

#ifndef clox_scanner_h
#define clox_scanner_h

void initScanner(const char* source);

#endif

And its corresponding implementation:

#include <stdio.h>
#include <string.h>

#include "common.h"
#include "scanner.h"

typedef struct {
 const char* start;
 const char* current;
 int line;
} Scanner;

Scanner scanner;

As our scanner chews through the user’s source code, it tracks how far it’s gone.
Like we did with the VM, we wrap that state in a struct and then create a single
top-level module variable of that type so we don’t have to pass it around all of the
various functions.

There are surprisingly few fields. The start pointer marks the beginning of
the current lexeme being scanned, and current points to the current character
being looked at.

We have a line field to track what line the current lexeme is on for error report-
ing. That’s it! We don’t even keep a pointer to the beginning of the source code
string. The scanner works its way through the code once and is done after that.

Since we have some state, we should initialize it.

void initScanner(const char* source) {
 scanner.start = source;
 scanner.current = source;
 scanner.line = 1;
}

We start at the very first character on the very first line, like a runner crouched
at the starting line.

scanner.h
create new file

scanner.c
create new file

scanner.c
add after variable scanner

Here, we are in the middle of scanning the
identifier bacon. The current character
is o and the character we most recently
consumed is c.

16.2 A Token AT A TIme 291

16.2 a token at a time
In jlox, when the starting gun went off, the scanner raced ahead and eagerly
scanned the whole program, returning a list of tokens. This would be a challenge
in clox. We’d need some sort of growable array or list to store the tokens in. We’d
need to manage allocating and freeing the tokens, and the collection itself. That’s
a lot of code, and a lot of memory churn.

At any point in time, the compiler needs only one or two tokens—remember
our grammar requires only a single token of lookahead—so we don’t need to
keep them all around at the same time. Instead, the simplest solution is to not
scan a token until the compiler needs one. When the scanner provides one, it
returns the token by value. It doesn’t need to dynamically allocate anything—it
can just pass tokens around on the C stack.

Unfortunately, we don’t have a compiler yet that can ask the scanner for to-
kens, so the scanner will just sit there doing nothing. To kick it into action, we’ll
write some temporary code to drive it.

 initScanner(source);
 int line = -1;
 for (;;) {
 Token token = scanToken();
 if (token.line != line) {
 printf("%4d ", token.line);
 line = token.line;
 } else {
 printf(" | ");
 }
 printf("%2d '%.*s'\n", token.type, token.length, token.start);

 if (token.type == TOKEN_EOF) break;
 }
}

This loops indefinitely. Each turn through the loop, it scans one token and prints
it. When it reaches a special “end of file” token or an error, it stops. For example,
if we run the interpreter on this program:

print 1 + 2;

It prints out:

 1 31 'print'
 | 21 '1'
 | 7 '+'
 | 21 '2'
 | 8 ';'
 2 39 ''

The first column is the line number, the second is the numeric value of the token
type, and then finally the lexeme. That last empty lexeme on line 2 is the EOF
token.

The goal for the rest of the chapter is to make that blob of code work by imple-

compiler.c
in compile()

That %.*s in the format string is a neat
feature. Usually, you set the output
precision—the number of characters to
show—by placing a number inside the
format string. Using * instead lets you
pass the precision as an argument. So
that printf() call prints the first
token.length characters of the
string at token.start. We need to
limit the length like that because the
lexeme points into the original source
string and doesn’t have a terminator at
the end.

Yeah, the raw index of the token type
isn’t exactly human readable, but it’s all
C gives us.

292 cHAPTeR 16 : scAnnIng on demAnd

menting this key function:

void initScanner(const char* source);
Token scanToken();

#endif

Each call scans and returns the next token in the source code. A token looks like
this:

#define clox_scanner_h

typedef struct {
 TokenType type;
 const char* start;
 int length;
 int line;
} Token;

void initScanner(const char* source);

It’s pretty similar to jlox’s Token class. We have an enum identifying what type of
token it is—number, identifier, + operator, etc. The enum is virtually identical to
the one in jlox, so let’s just hammer out the whole thing.

#ifndef clox_scanner_h
#define clox_scanner_h

typedef enum {
 // Single-character tokens.
 TOKEN_LEFT_PAREN, TOKEN_RIGHT_PAREN,
 TOKEN_LEFT_BRACE, TOKEN_RIGHT_BRACE,
 TOKEN_COMMA, TOKEN_DOT, TOKEN_MINUS, TOKEN_PLUS,
 TOKEN_SEMICOLON, TOKEN_SLASH, TOKEN_STAR,
 // One or two character tokens.
 TOKEN_BANG, TOKEN_BANG_EQUAL,
 TOKEN_EQUAL, TOKEN_EQUAL_EQUAL,
 TOKEN_GREATER, TOKEN_GREATER_EQUAL,
 TOKEN_LESS, TOKEN_LESS_EQUAL,
 // Literals.
 TOKEN_IDENTIFIER, TOKEN_STRING, TOKEN_NUMBER,
 // Keywords.
 TOKEN_AND, TOKEN_CLASS, TOKEN_ELSE, TOKEN_FALSE,
 TOKEN_FOR, TOKEN_FUN, TOKEN_IF, TOKEN_NIL, TOKEN_OR,
 TOKEN_PRINT, TOKEN_RETURN, TOKEN_SUPER, TOKEN_THIS,
 TOKEN_TRUE, TOKEN_VAR, TOKEN_WHILE,

 TOKEN_ERROR, TOKEN_EOF
} TokenType;

typedef struct {

scanner.h
add after initScanner()

scanner.h

scanner.h

16.2.1 scAnnIng Tokens 293

Aside from prefixing all the names with TOKEN_ (since C tosses enum names in
the top-level namespace) the only difference is that extra TOKEN_ERROR type.
What’s that about?

There are only a couple of errors that get detected during scanning: unter-
minated strings and unrecognized characters. In jlox, the scanner reports those
itself. In clox, the scanner produces a synthetic “error” token for that error and
passes it over to the compiler. This way, the compiler knows an error occurred
and can kick off error recovery before reporting it.

The novel part in clox’s Token type is how it represents the lexeme. In jlox,
each Token stored the lexeme as its own separate little Java string. If we did that
for clox, we’d have to figure out how to manage the memory for those strings.
That’s especially hard since we pass tokens by value—multiple tokens could
point to the same lexeme string. Ownership gets weird.

Instead, we use the original source string as our character store. We repre-
sent a lexeme by a pointer to its first character and the number of characters
it contains. This means we don’t need to worry about managing memory for
lexemes at all and we can freely copy tokens around. As long as the main source
code string outlives all of the tokens, everything works fine.

16.2.1 Scanning tokens

We’re ready to scan some tokens. We’ll work our way up to the complete imple-
mentation, starting with this:

Token scanToken() {
 scanner.start = scanner.current;

 if (isAtEnd()) return makeToken(TOKEN_EOF);

 return errorToken("Unexpected character.");
}

Since each call to this function scans a complete token, we know we are
at the beginning of a new token when we enter the function. Thus, we set
scanner.start to point to the current character so we remember where the
lexeme we’re about to scan starts.

Then we check to see if we’ve reached the end of the source code. If so, we
return an EOF token and stop. This is a sentinel value that signals to the compiler
to stop asking for more tokens.

If we aren’t at the end, we do some . . . stuff . . . to scan the next token. But we
haven’t written that code yet. We’ll get to that soon. If that code doesn’t success-
fully scan and return a token, then we reach the end of the function. That must
mean we’re at a character that the scanner can’t recognize, so we return an error
token for that.

This function relies on a couple of helpers, most of which are familiar from
jlox. First up:

static bool isAtEnd() {
 return *scanner.current == '\0';
}

I don’t mean to sound flippant. We
really do need to think about and ensure
that the source string, which is created
far away over in the “main” module,
has a long enough lifetime. That’s why
runFile() doesn’t free the string until
interpret() finishes executing the
code and returns.

scanner.c
add after initScanner()

scanner.c
add after initScanner()

294 cHAPTeR 16 : scAnnIng on demAnd

We require the source string to be a good null-terminated C string. If the current
character is the null byte, then we’ve reached the end.

To create a token, we have this constructor-like function:

static Token makeToken(TokenType type) {
 Token token;
 token.type = type;
 token.start = scanner.start;
 token.length = (int)(scanner.current - scanner.start);
 token.line = scanner.line;
 return token;
}

It uses the scanner’s start and current pointers to capture the token’s lexeme.
It sets a couple of other obvious fields then returns the token. It has a sister func-
tion for returning error tokens.

static Token errorToken(const char* message) {
 Token token;
 token.type = TOKEN_ERROR;
 token.start = message;
 token.length = (int)strlen(message);
 token.line = scanner.line;
 return token;
}

The only difference is that the “lexeme” points to the error message string in-
stead of pointing into the user’s source code. Again, we need to ensure that the
error message sticks around long enough for the compiler to read it. In practice,
we only ever call this function with C string literals. Those are constant and eter-
nal, so we’re fine.

What we have now is basically a working scanner for a language with an emp-
ty lexical grammar. Since the grammar has no productions, every character is
an error. That’s not exactly a fun language to program in, so let’s fill in the rules.

16.3 a Lexical Grammar for Lox
The simplest tokens are only a single character. We recognize those like so:

 if (isAtEnd()) return makeToken(TOKEN_EOF);

 char c = advance();

 switch (c) {
 case '(': return makeToken(TOKEN_LEFT_PAREN);
 case ')': return makeToken(TOKEN_RIGHT_PAREN);
 case '{': return makeToken(TOKEN_LEFT_BRACE);
 case '}': return makeToken(TOKEN_RIGHT_BRACE);
 case ';': return makeToken(TOKEN_SEMICOLON);
 case ',': return makeToken(TOKEN_COMMA);

scanner.c
add after isAtEnd()

scanner.c
add after makeToken()

This part of the chapter is pretty dry, so
here’s a picture of an axolotl.

scanner.c
in scanToken()

continued on next page . . .

16.3 A lexIcAl gRAmmAR foR lox 295

 case '.': return makeToken(TOKEN_DOT);
 case '-': return makeToken(TOKEN_MINUS);
 case '+': return makeToken(TOKEN_PLUS);
 case '/': return makeToken(TOKEN_SLASH);
 case '*': return makeToken(TOKEN_STAR);
 }

 return errorToken("Unexpected character.");

We read the next character from the source code, and then do a straightforward
switch to see if it matches any of Lox’s one-character lexemes. To read the next
character, we use a new helper which consumes the current character and re-
turns it.

static char advance() {
 scanner.current++;
 return scanner.current[-1];
}

Next up are the two-character punctuation tokens like != and >=. Each of these
also has a corresponding single-character token. That means that when we see a
character like !, we don’t know if we’re in a ! token or a != until we look at the
next character too. We handle those like so:

 case '*': return makeToken(TOKEN_STAR);
 case '!':
 return makeToken(
 match('=') ? TOKEN_BANG_EQUAL : TOKEN_BANG);
 case '=':
 return makeToken(
 match('=') ? TOKEN_EQUAL_EQUAL : TOKEN_EQUAL);
 case '<':
 return makeToken(
 match('=') ? TOKEN_LESS_EQUAL : TOKEN_LESS);
 case '>':
 return makeToken(
 match('=') ? TOKEN_GREATER_EQUAL : TOKEN_GREATER);
 }

After consuming the first character, we look for an =. If found, we consume it and
return the corresponding two-character token. Otherwise, we leave the current
character alone (so it can be part of the next token) and return the appropriate
one-character token.

That logic for conditionally consuming the second character lives here:

static bool match(char expected) {
 if (isAtEnd()) return false;
 if (*scanner.current != expected) return false;
 scanner.current++;
 return true;
}

. . . from previous page

scanner.c
add after isAtEnd()

scanner.c
in scanToken()

scanner.c
add after advance()

296 cHAPTeR 16 : scAnnIng on demAnd

If the current character is the desired one, we advance and return true.
Otherwise, we return false to indicate it wasn’t matched.

Now our scanner supports all of the punctuation-like tokens. Before we get
to the longer ones, let’s take a little side trip to handle characters that aren’t part
of a token at all.

16.3.1 Whitespace

Our scanner needs to handle spaces, tabs, and newlines, but those characters
don’t become part of any token’s lexeme. We could check for those inside the
main character switch in scanToken() but it gets a little tricky to ensure that
the function still correctly finds the next token after the whitespace when you
call it. We’d have to wrap the whole body of the function in a loop or something.

Instead, before starting the token, we shunt off to a separate function.

Token scanToken() {
 skipWhitespace();
 scanner.start = scanner.current;

This advances the scanner past any leading whitespace. After this call returns,
we know the very next character is a meaningful one (or we’re at the end of the
source code).

static void skipWhitespace() {
 for (;;) {
 char c = peek();
 switch (c) {
 case ' ':
 case '\r':
 case '\t':
 advance();
 break;
 default:
 return;
 }
 }
}

It’s sort of a separate mini-scanner. It loops, consuming every whitespace
character it encounters. We need to be careful that it does not consume any non-
whitespace characters. To support that, we use this:

static char peek() {
 return *scanner.current;
}

This simply returns the current character, but doesn’t consume it. The previous
code handles all the whitespace characters except for newlines.

scanner.c
in scanToken()

scanner.c
add after errorToken()

scanner.c
add after advance()

16.3.1 WHITesPAce 297

 break;
 case '\n':
 scanner.line++;
 advance();
 break;
 default:

When we consume one of those, we also bump the current line number.

16.3.2 Comments

Comments aren’t technically “whitespace”, if you want to get all precise with
your terminology, but as far as Lox is concerned, they may as well be, so we skip
those too.

 break;
 case '/':
 if (peekNext() == '/') {
 // A comment goes until the end of the line.
 while (peek() != '\n' && !isAtEnd()) advance();
 } else {
 return;
 }
 break;
 default:

Comments start with // in Lox, so as with != and friends, we need a second
character of lookahead. However, with !=, we still wanted to consume the !
even if the = wasn’t found. Comments are different. If we don’t find a second /,
then skipWhitespace() needs to not consume the first slash either.

To handle that, we add:

static char peekNext() {
 if (isAtEnd()) return '\0';
 return scanner.current[1];
}

This is like peek() but for one character past the current one. If the current
character and the next one are both /, we consume them and then any other
characters until the next newline or the end of the source code.

We use peek() to check for the newline but not consume it. That way, the
newline will be the current character on the next turn of the outer loop in
skipWhitespace() and we’ll recognize it and increment scanner.line.

16.3.3 Literal tokens

Number and string tokens are special because they have a runtime value associ-
ated with them. We’ll start with strings because they are easy to recognize—they
always begin with a double quote.

scanner.c
in skipWhitespace()

scanner.c
in skipWhitespace()

scanner.c
add after peek()

298 cHAPTeR 16 : scAnnIng on demAnd

 match('=') ? TOKEN_GREATER_EQUAL : TOKEN_GREATER);
 case '"': return string();
 }

That calls a new function.

static Token string() {
 while (peek() != '"' && !isAtEnd()) {
 if (peek() == '\n') scanner.line++;
 advance();
 }

 if (isAtEnd()) return errorToken("Unterminated string.");

 // The closing quote.
 advance();
 return makeToken(TOKEN_STRING);
}

Similar to jlox, we consume characters until we reach the closing quote. We also
track newlines inside the string literal. (Lox supports multi-line strings.) And,
as ever, we gracefully handle running out of source code before we find the end
quote.

The main change here in clox is something that’s not present. Again, it relates
to memory management. In jlox, the Token class had a field of type Object to
store the runtime value converted from the literal token’s lexeme.

Implementing that in C would require a lot of work. We’d need some sort of
union and type tag to tell whether the token contains a string or double value.
If it’s a string, we’d need to manage the memory for the string’s character array
somehow.

Instead of adding that complexity to the scanner, we defer converting the
literal lexeme to a runtime value until later. In clox, tokens only store the lex-
eme—the character sequence exactly as it appears in the user’s source code.
Later in the compiler, we’ll convert that lexeme to a runtime value right when
we are ready to store it in the chunk’s constant table.

Next up, numbers. Instead of adding a switch case for each of the ten digits
that can start a number, we handle them here:

 char c = advance();
 if (isDigit(c)) return number();

 switch (c) {

That uses this obvious utility function:

static bool isDigit(char c) {
 return c >= '0' && c <= '9';
}

We finish scanning the number using this:

scanner.c
in scanToken()

scanner.c
add after skipWhitespace()

Doing the lexeme-to-value conversion
in the compiler does introduce some
redundancy. The work to scan a number
literal is awfully similar to the work
required to convert a sequence of digit
characters to a number value. But there
isn’t that much redundancy, it isn’t in
anything performance critical, and it
keeps our scanner simpler.

scanner.c
in scanToken()

scanner.c
add after initScanner()

16.4 IdenTIfIeRs And keyWoRds 299

static Token number() {
 while (isDigit(peek())) advance();

 // Look for a fractional part.
 if (peek() == '.' && isDigit(peekNext())) {
 // Consume the ".".
 advance();

 while (isDigit(peek())) advance();
 }

 return makeToken(TOKEN_NUMBER);
}

It’s virtually identical to jlox’s version except, again, we don’t convert the lexeme
to a double yet.

16.4 Identifiers and Keywords
The last batch of tokens are identifiers, both user-defined and reserved. This
section should be fun—the way we recognize keywords in clox is quite different
from how we did it in jlox, and touches on some important data structures.

First, though, we have to scan the lexeme. Names start with a letter or under-
score.

 char c = advance();

 if (isAlpha(c)) return identifier();
 if (isDigit(c)) return number();

We recognize those using this:

static bool isAlpha(char c) {
 return (c >= 'a' && c <= 'z') ||
 (c >= 'A' && c <= 'Z') ||
 c == '_';
}

Once we’ve found an identifier, we scan the rest of it here:

static Token identifier() {
 while (isAlpha(peek()) || isDigit(peek())) advance();
 return makeToken(identifierType());
}

After the first letter, we allow digits too, and we keep consuming alphanumer-
ics until we run out of them. Then we produce a token with the proper type.
Determining that “proper” type is the unique part of this chapter.

scanner.c
in scanToken()

scanner.c
add after initScanner()

scanner.c
add after skipWhitespace()

scanner.c
add after skipWhitespace()

300 cHAPTeR 16 : scAnnIng on demAnd

static TokenType identifierType() {
 return TOKEN_IDENTIFIER;
}

Okay, I guess that’s not very exciting yet. That’s what it looks like if we have no
reserved words at all. How should we go about recognizing keywords? In jlox, we
stuffed them all in a Java Map and looked them up by name. We don’t have any
sort of hash table structure in clox, at least not yet.

A hash table would be overkill anyway. To look up a string in a hash table, we
need to walk the string to calculate its hash code, find the corresponding bucket
in the hash table, and then do a character-by-character equality comparison on
any string it happens to find there.

Let’s say we’ve scanned the identifier “gorgonzola”. How much work should
we need to do to tell if that’s a reserved word? Well, no Lox keyword starts with
“g”, so looking at the first character is enough to definitively answer no. That’s a
lot simpler than a hash table lookup.

What about “cardigan”? We do have a keyword in Lox that starts with “c”:
“class”. But the second character in “cardigan”, “a”, rules that out. What about
“forest”? Since “for” is a keyword, we have to go farther in the string before we
can establish that we don’t have a reserved word. But, in most cases, only a char-
acter or two is enough to tell we’ve got a user-defined name on our hands. We
should be able to recognize that and fail fast.

Here’s a visual representation of that branching character-inspection logic:

We start at the root node. If there is a child node whose letter matches the first
character in the lexeme, we move to that node. Then repeat for the next letter in
the lexeme and so on. If at any point the next letter in the lexeme doesn’t match
a child node, then the identifier must not be a keyword and we stop. If we reach
a double-lined box, and we’re at the last character of the lexeme, then we found
a keyword.

Don’t worry if this is unfamiliar to you.
When we get to building our own hash
table from scratch, we’ll learn all about it
in exquisite detail.

Read down each chain of nodes and you’ll
see Lox’s keywords emerge.

scanner.c
add after skipWhitespace()

16.4.1 TRIes And sTATe mAcHInes 301

16.4.1 Tries and state machines

This tree diagram is an example of a thing called a trie. A trie stores a set of
strings. Most other data structures for storing strings contain the raw character
arrays and then wrap them inside some larger construct that helps you search
faster. A trie is different. Nowhere in the trie will you find a whole string.

Instead, each string the trie “contains” is represented as a path through the
tree of character nodes, as in our traversal above. Nodes that match the last
character in a string have a special marker—the double lined boxes in the illus-
tration. That way, if your trie contains, say, “banquet” and “ban”, you are able
to tell that it does not contain “banque”—the “e” node won’t have that marker,
while the “n” and “t” nodes will.

Tries are a special case of an even more fundamental data structure: a deter-
ministic finite automaton (DFA). You might also know these by other names:
finite-state machine, or just state machine. State machines are rad. They end
up useful in everything from game programming to implementing networking
protocols.

In a DFA, you have a set of states with transitions between them, forming a
graph. At any point in time, the machine is “in” exactly one state. It gets to other
states by following transitions. When you use a DFA for lexical analysis, each
transition is a character that gets matched from the string. Each state represents
a set of allowed characters.

Our keyword tree is exactly a DFA that recognizes Lox keywords. But DFAs
are more powerful than simple trees because they can be arbitrary graphs.
Transitions can form cycles between states. That lets you recognize arbitrarily
long strings. For example, here’s a DFA that recognizes number literals:

I’ve collapsed the nodes for the ten digits together to keep it more readable, but
the basic process works the same—you work through the path, entering nodes
whenever you consume a corresponding character in the lexeme. If we were so
inclined, we could construct one big giant DFA that does all of the lexical analysis
for Lox, a single state machine that recognizes and spits out all of the tokens we
need.

However, crafting that mega-DFA by hand would be challenging. That’s why
Lex was created. You give it a simple textual description of your lexical gram-
mar—a bunch of regular expressions—and it automatically generates a DFA for
you and produces a pile of C code that implements it.

We won’t go down that road. We already have a perfectly serviceable hand-
rolled scanner. We just need a tiny trie for recognizing keywords. How should
we map that to code?

The absolute simplest solution is to use a switch statement for each node
with cases for each branch. We’ll start with the root node and handle the easy
keywords.

“Trie” is one of the most confusing names
in CS. Edward Fredkin yanked it out of
the middle of the word “retrieval”, which
means it should be pronounced like
“tree”. But, uh, there is already a pretty
important data structure pronounced
“tree” which tries are a special case of, so
unless you never speak of these things
out loud, no one can tell which one you’re
talking about. Thus, people these days
often pronounce it like “try” to avoid the
headache.

I wrote a chapter about state machines in
my book on game programming:

 ⇾ craftinginterpreters.com/state

This style of diagram is called a syntax
diagram or the more charming railroad
diagram. The latter name is because it
looks something like a switching yard for
trains.

Back before Backus-Naur Form was a
thing, this was one of the predominant
ways of documenting a language’s
grammar. These days, we mostly use text,
but there’s something delightful about the
official specification for a textual language
relying on an image.

This is also how most regular expression
engines in programming languages and
text editors work under the hood. They
take your regex string and convert it to
a DFA, which they then use to match
strings.

If you want to learn the algorithm to
convert a regular expression into a DFA,
the dragon book has you covered:

 ⇾ craftinginterpreters.com/dragon

Simple doesn’t mean dumb. The same
approach is essentially what V8 does,
and that’s currently one of the world’s
most sophisticated, fastest language
implementations.

http://craftinginterpreters.com/state
http://craftinginterpreters.com/dragon

302 cHAPTeR 16 : scAnnIng on demAnd

static TokenType identifierType() {
 switch (scanner.start[0]) {
 case 'a': return checkKeyword(1, 2, "nd", TOKEN_AND);
 case 'c': return checkKeyword(1, 4, "lass", TOKEN_CLASS);
 case 'e': return checkKeyword(1, 3, "lse", TOKEN_ELSE);
 case 'i': return checkKeyword(1, 1, "f", TOKEN_IF);
 case 'n': return checkKeyword(1, 2, "il", TOKEN_NIL);
 case 'o': return checkKeyword(1, 1, "r", TOKEN_OR);
 case 'p': return checkKeyword(1, 4, "rint", TOKEN_PRINT);
 case 'r': return checkKeyword(1, 5, "eturn", TOKEN_RETURN);
 case 's': return checkKeyword(1, 4, "uper", TOKEN_SUPER);
 case 'v': return checkKeyword(1, 2, "ar", TOKEN_VAR);
 case 'w': return checkKeyword(1, 4, "hile", TOKEN_WHILE);
 }

 return TOKEN_IDENTIFIER;

These are the initial letters that correspond to a single keyword. If we see an
“s”, the only keyword the identifier could possibly be is super. It might not be,
though, so we still need to check the rest of the letters too. In the tree diagram,
this is basically that straight path hanging off the “s”.

We won’t roll a switch for each of those nodes. Instead, we have a utility func-
tion that tests the rest of a potential keyword’s lexeme.

static TokenType checkKeyword(int start, int length,
 const char* rest, TokenType type) {
 if (scanner.current - scanner.start == start + length &&
 memcmp(scanner.start + start, rest, length) == 0) {
 return type;
 }

 return TOKEN_IDENTIFIER;
}

We use this for all of the unbranching paths in the tree. Once we’ve found a pre-
fix that could only be one possible reserved word, we need to verify two things.
The lexeme must be exactly as long as the keyword. If the first letter is “s”, the
lexeme could still be “sup” or “superb”. And the remaining characters must
match exactly—“supar” isn’t good enough.

If we do have the right number of characters, and they’re the ones we want,
then it’s a keyword, and we return the associated token type. Otherwise, it must
be a normal identifier.

We have a couple of keywords where the tree branches again after the first
letter. If the lexeme starts with “f ”, it could be false, for, or fun. So we add
another switch for the branches coming off the “f ” node.

scanner.c
in identifierType()

scanner.c
add after skipWhitespace()

16.4.1 TRIes And sTATe mAcHInes 303

 case 'e': return checkKeyword(1, 3, "lse", TOKEN_ELSE);
 case 'f':
 if (scanner.current - scanner.start > 1) {
 switch (scanner.start[1]) {
 case 'a': return checkKeyword(2, 3, "lse", TOKEN_FALSE);
 case 'o': return checkKeyword(2, 1, "r", TOKEN_FOR);
 case 'u': return checkKeyword(2, 1, "n", TOKEN_FUN);
 }
 }
 break;
 case 'i': return checkKeyword(1, 1, "f", TOKEN_IF);

Before we switch, we need to check that there even is a second letter. “f ” by itself
is a valid identifier too, after all. The other letter that branches is “t”.

 case 's': return checkKeyword(1, 4, "uper", TOKEN_SUPER);
 case 't':
 if (scanner.current - scanner.start > 1) {
 switch (scanner.start[1]) {
 case 'h': return checkKeyword(2, 2, "is", TOKEN_THIS);
 case 'r': return checkKeyword(2, 2, "ue", TOKEN_TRUE);
 }
 }
 break;
 case 'v': return checkKeyword(1, 2, "ar", TOKEN_VAR);

That’s it. A couple of nested switch statements. Not only is this code short, but
it’s very, very fast. It does the minimum amount of work required to detect a
keyword, and bails out as soon as it can tell the identifier will not be a reserved
one.

And with that, our scanner is complete.

scanner.c
in identifierType()

scanner.c
in identifierType()

We sometimes fall into the trap of
thinking that performance comes from
complicated data structures, layers of
caching, and other fancy optimizations.
But, many times, all that’s required is to
do less work, and I often find that writing
the simplest code I can is sufficient to
accomplish that.

304 cHAPTeR 16 : scAnnIng on demAnd

CHaLLENGES

1. Many newer languages support string interpolation. Inside a string literal,
you have some sort of special delimiters—most commonly ${ at the beginning
and } at the end. Between those delimiters, any expression can appear. When
the string literal is executed, the inner expression is evaluated, converted to a
string, and then merged with the surrounding string literal.

For example, if Lox supported string interpolation, then this . . . 

var drink = "Tea";
var steep = 4;
var cool = 2;
print "${drink} will be ready in ${steep + cool} minutes.";

 . . . would print:

Tea will be ready in 6 minutes.

What token types would you define to implement a scanner for string interpo-
lation? What sequence of tokens would you emit for the above string literal?

What tokens would you emit for:

"Nested ${"interpolation?! Are you ${"mad?!"}"}"

Consider looking at other language implementations that support interpolation
to see how they handle it.

2. Several languages use angle brackets for generics and also have a >> right shift
operator. This led to a classic problem in early versions of C++:

vector<vector<string>> nestedVectors;

This would produce a compile error because the >> was lexed to a single right
shift token, not two > tokens. Users were forced to avoid this by putting a space
between the closing angle brackets.

Later versions of C++ are smarter and can handle the above code. Java and
C# never had the problem. How do those languages specify and implement this?

3. Many languages, especially later in their evolution, define “contextual key-
words”. These are identifiers that act like reserved words in some contexts but
can be normal user-defined identifiers in others.

For example, await is a keyword inside an async method in C#, but in
other methods, you can use await as your own identifier.

Name a few contextual keywords from other languages, and the context
where they are meaningful. What are the pros and cons of having contextual
keywords? How would you implement them in your language’s front end if you
needed to?

A byTecode VIRTuAl mAcHIne 17Compiling Expressions

“In the middle of the journey of our life I found myself within a dark
woods where the straight way was lost.”

— Dante Alighieri, Inferno

This chapter is exciting for not one, not two, but three reasons. First, it provides
the final segment of our VM’s execution pipeline. Once in place, we can plumb
the user’s source code from scanning all the way through to executing it.

306 cHAPTeR 17 : comPIlIng exPRessIons

Second, we get to write an actual, honest-to-God compiler. It parses source code
and outputs a low-level series of binary instructions. Sure, it’s bytecode and not
some chip’s native instruction set, but it’s way closer to the metal than jlox was.
We’re about to be real language hackers.

Third and finally, I get to show you one of my absolute favorite algorithms:
Vaughan Pratt’s “top-down operator precedence parsing”. It’s the most elegant
way I know to parse expressions. It gracefully handles prefix operators, postfix,
infix, mixfix, any kind of -fix you got. It deals with precedence and associativity
without breaking a sweat. I love it.

As usual, before we get to the fun stuff, we’ve got some preliminaries to work
through. You have to eat your vegetables before you get dessert. First, let’s ditch
that temporary scaffolding we wrote for testing the scanner and replace it with
something more useful.

InterpretResult interpret(const char* source) {
 Chunk chunk;
 initChunk(&chunk);

 if (!compile(source, &chunk)) {
 freeChunk(&chunk);
 return INTERPRET_COMPILE_ERROR;
 }

 vm.chunk = &chunk;
 vm.ip = vm.chunk->code;

 InterpretResult result = run();

 freeChunk(&chunk);
 return result;
}

We create a new empty chunk and pass it over to the compiler. The compiler will
take the user’s program and fill up the chunk with bytecode. At least, that’s what
it will do if the program doesn’t have any compile errors. If it does encounter an
error, compile() returns false and we discard the unusable chunk.

Otherwise, we send the completed chunk over to the VM to be executed.
When the VM finishes, we free the chunk and we’re done. As you can see, the
signature to compile() is different now.

#define clox_compiler_h

#include "vm.h"

bool compile(const char* source, Chunk* chunk);

#endif

We pass in the chunk where the compiler will write the code, and then
compile() returns whether or not compilation succeeded. We make the same
change to the signature in the implementation.

Bytecode was good enough for Niklaus
Wirth, and no one questions his street
cred.

Pratt parsers are a sort of oral tradition
in industry. No compiler book I’ve read
teaches them. Academia focuses on gen-
erated parsers, and Pratt’s technique is for
handwritten ones, so it gets overlooked.

But in production compilers, where
hand-rolled parsers are common, you’d
be surprised how many people know it.
Ask where they learned it, and it’s always,
“Oh, I worked on this compiler years ago
and my coworker said they took it from
this old front end . . . ”

vm.c
in interpret()

replace 2 lines

compiler.h
replace 1 line

17.1 sIngle-PAss comPIlATIon 307

#include "scanner.h"

bool compile(const char* source, Chunk* chunk) {
 initScanner(source);

That call to initScanner() is the only line that survives this chapter. Rip out
the temporary code we wrote to test the scanner and replace it with these three
lines:

 initScanner(source);
 advance();
 expression();
 consume(TOKEN_EOF, "Expect end of expression.");
}

The call to advance() “primes the pump” on the scanner. We’ll see what it does
soon. Then we parse a single expression. We aren’t going to do statements yet, so
that’s the only subset of the grammar we support. We’ll revisit this when we add
statements in a few chapters. After we compile the expression, we should be at
the end of the source code, so we check for the sentinel EOF token.

We’re going to spend the rest of the chapter making this function work, espe-
cially that little expression() call. Normally, we’d dive right into that function
definition and work our way through the implementation from top to bottom.

This chapter is different. Pratt’s parsing technique is remarkably simple once
you have it all loaded in your head, but it’s a little tricky to break into bite-sized
pieces. It’s recursive, of course, which is part of the problem. But it also relies
on a big table of data. As we build up the algorithm, that table grows additional
columns.

I don’t want to revisit 40-something lines of code each time we extend the
table. So we’re going to work our way into the core of the parser from the outside
and cover all of the surrounding bits before we get to the juicy center. This will
require a little more patience and mental scratch space than most chapters, but
it’s the best I could do.

17.1 Single-Pass Compilation
A compiler has roughly two jobs. It parses the user’s source code to understand
what it means. Then it takes that knowledge and outputs low-level instructions
that produce the same semantics. Many languages split those two roles into two
separate passes in the implementation. A parser produces an AST—just like jlox
does—and then a code generator traverses the AST and outputs target code.

In clox, we’re taking an old-school approach and merging these two passes
into one. Back in the day, language hackers did this because computers literally
didn’t have enough memory to store an entire source file’s AST. We’re doing it
because it keeps our compiler simpler, which is a real asset when programming
in C.

Single-pass compilers like we’re going to build don’t work well for all lan-
guages. Since the compiler has only a peephole view into the user’s program
while generating code, the language must be designed such that you don’t need
much surrounding context to understand a piece of syntax. Fortunately, tiny,

compiler.c
function compile()
replace 1 line

compiler.c
in compile()
replace 13 lines

If this chapter isn’t clicking with you and
you’d like another take on the concepts,
I wrote an article that teaches the
same algorithm but using Java and an
object-oriented style:

 ⇾ craftinginterpreters.com/pratt

In fact, most sophisticated optimizing
compilers have a heck of a lot more than
two passes. Determining not just what
optimization passes to have, but how to
order them to squeeze the most perfor-
mance out of the compiler—since the
optimizations often interact in complex
ways—is somewhere between an “open
area of research” and a “dark art”.

http://craftinginterpreters.com/pratt

308 cHAPTeR 17 : comPIlIng exPRessIons

dynamically typed Lox is well-suited to that.
What this means in practical terms is that our “compiler” C module has func-

tionality you’ll recognize from jlox for parsing—consuming tokens, matching
expected token types, etc. And it also has functions for code gen—emitting
bytecode and adding constants to the destination chunk. (And it means I’ll use
“parsing” and “compiling” interchangeably throughout this and later chapters.)

We’ll build the parsing and code generation halves first. Then we’ll stitch
them together with the code in the middle that uses Pratt’s technique to parse
Lox’s particular grammar and output the right bytecode.

17.2 Parsing tokens
First up, the front half of the compiler. This function’s name should sound fa-
miliar.

#include "scanner.h"

static void advance() {
 parser.previous = parser.current;

 for (;;) {
 parser.current = scanToken();
 if (parser.current.type != TOKEN_ERROR) break;

 errorAtCurrent(parser.current.start);
 }
}

Just like in jlox, it steps forward through the token stream. It asks the scanner
for the next token and stores it for later use. Before doing that, it takes the old
current token and stashes that in a previous field. That will come in handy
later so that we can get at the lexeme after we match a token.

The code to read the next token is wrapped in a loop. Remember, clox’s scan-
ner doesn’t report lexical errors. Instead, it creates special error tokens and leaves
it up to the parser to report them. We do that here.

We keep looping, reading tokens and reporting the errors, until we hit a
non-error one or reach the end. That way, the rest of the parser sees only valid
tokens. The current and previous token are stored in this struct:

#include "scanner.h"

typedef struct {
 Token current;
 Token previous;
} Parser;

Parser parser;

static void advance() {

compiler.c

compiler.c

Not that this should come as much of
a surprise. I did design the language
specifically for this book after all.

17.2 PARsIng Tokens 309

Like we did in other modules, we have a single global variable of this struct type
so we don’t need to pass the state around from function to function in the com-
piler.

17.2.1 Handling syntax errors

If the scanner hands us an error token, we need to actually tell the user. That
happens using this:

static void errorAtCurrent(const char* message) {
 errorAt(&parser.current, message);
}

We pull the location out of the current token in order to tell the user where the
error occurred and forward it to errorAt(). More often, we’ll report an error
at the location of the token we just consumed, so we give the shorter name to this
other function:

static void error(const char* message) {
 errorAt(&parser.previous, message);
}

The actual work happens here:

static void errorAt(Token* token, const char* message) {
 fprintf(stderr, "[line %d] Error", token->line);

 if (token->type == TOKEN_EOF) {
 fprintf(stderr, " at end");
 } else if (token->type == TOKEN_ERROR) {
 // Nothing.
 } else {
 fprintf(stderr, " at '%.*s'", token->length, token->start);
 }

 fprintf(stderr, ": %s\n", message);
 parser.hadError = true;
}

First, we print where the error occurred. We try to show the lexeme if it’s hu-
man-readable. Then we print the error message itself. After that, we set this
hadError flag. That records whether any errors occurred during compilation.
This field also lives in the parser struct.

 Token previous;
 bool hadError;
} Parser;

Earlier I said that compile() should return false if an error occurred. Now
we can make it do that.

compiler.c
add after variable parser

compiler.c
add after variable parser

compiler.c
add after variable parser

compiler.c
in struct Parser

310 cHAPTeR 17 : comPIlIng exPRessIons

 consume(TOKEN_EOF, "Expect end of expression.");
 return !parser.hadError;
}

I’ve got another flag to introduce for error handling. We want to avoid error
cascades. If the user has a mistake in their code and the parser gets confused
about where it is in the grammar, we don’t want it to spew out a whole pile of
meaningless knock-on errors after the first one.

We fixed that in jlox using panic mode error recovery. In the Java interpreter,
we threw an exception to unwind out of all of the parser code to a point where
we could skip tokens and resynchronize. We don’t have exceptions in C. Instead,
we’ll do a little smoke and mirrors. We add a flag to track whether we’re current-
ly in panic mode.

 bool hadError;
 bool panicMode;
} Parser;

When an error occurs, we set it.

static void errorAt(Token* token, const char* message) {
 parser.panicMode = true;
 fprintf(stderr, "[line %d] Error", token->line);

After that, we go ahead and keep compiling as normal as if the error never oc-
curred. The bytecode will never get executed, so it’s harmless to keep on truck-
ing. The trick is that while the panic mode flag is set, we simply suppress any
other errors that get detected.

static void errorAt(Token* token, const char* message) {
 if (parser.panicMode) return;
 parser.panicMode = true;

There’s a good chance the parser will go off in the weeds, but the user won’t know
because the errors all get swallowed. Panic mode ends when the parser reaches
a synchronization point. For Lox, we chose statement boundaries, so when we
later add those to our compiler, we’ll clear the flag there.

These new fields need to be initialized.

 initScanner(source);

 parser.hadError = false;
 parser.panicMode = false;

 advance();

And to display the errors, we need a standard header.

#include <stdio.h>
#include <stdlib.h>

#include "common.h"

compiler.c
in compile()

There is setjmp() and longjmp(),
but I’d rather not go there. Those make
it too easy to leak memory, forget to
maintain invariants, or otherwise have a
Very Bad Day.

compiler.c
in struct Parser

compiler.c
in errorAt()

compiler.c
in errorAt()

compiler.c
in compile()

compiler.c

17.3 emITTIng byTecode 311

There’s one last parsing function, another old friend from jlox.

static void consume(TokenType type, const char* message) {
 if (parser.current.type == type) {
 advance();
 return;
 }

 errorAtCurrent(message);
}

It’s similar to advance() in that it reads the next token. But it also validates that
the token has an expected type. If not, it reports an error. This function is the
foundation of most syntax errors in the compiler.

OK, that’s enough on the front end for now.

17.3 Emitting Bytecode
After we parse and understand a piece of the user’s program, the next step is
to translate that to a series of bytecode instructions. It starts with the easiest
possible step: appending a single byte to the chunk.

static void emitByte(uint8_t byte) {
 writeChunk(currentChunk(), byte, parser.previous.line);
}

It’s hard to believe great things will flow through such a simple function. It writes
the given byte, which may be an opcode or an operand to an instruction. It sends
in the previous token’s line information so that runtime errors are associated
with that line.

The chunk that we’re writing gets passed into compile(), but it needs to
make its way to emitByte(). To do that, we rely on this intermediary function:

Parser parser;
Chunk* compilingChunk;

static Chunk* currentChunk() {
 return compilingChunk;
}

static void errorAt(Token* token, const char* message) {

Right now, the chunk pointer is stored in a module-level variable like we store
other global state. Later, when we start compiling user-defined functions, the
notion of “current chunk” gets more complicated. To avoid having to go back and
change a lot of code, I encapsulate that logic in the currentChunk() function.

We initialize this new module variable before we write any bytecode:

compiler.c
add after advance()

compiler.c
add after consume()

compiler.c
add after variable parser

312 cHAPTeR 17 : comPIlIng exPRessIons

bool compile(const char* source, Chunk* chunk) {
 initScanner(source);
 compilingChunk = chunk;

 parser.hadError = false;

Then, at the very end, when we’re done compiling the chunk, we wrap things up.

 consume(TOKEN_EOF, "Expect end of expression.");
 endCompiler();
 return !parser.hadError;

That calls this:

static void endCompiler() {
 emitReturn();
}

In this chapter, our VM deals only with expressions. When you run clox, it will
parse, compile, and execute a single expression, then print the result. To print
that value, we are temporarily using the OP_RETURN instruction. So we have the
compiler add one of those to the end of the chunk.

static void emitReturn() {
 emitByte(OP_RETURN);
}

While we’re here in the back end we may as well make our lives easier.

static void emitBytes(uint8_t byte1, uint8_t byte2) {
 emitByte(byte1);
 emitByte(byte2);
}

Over time, we’ll have enough cases where we need to write an opcode followed
by a one-byte operand that it’s worth defining this convenience function.

17.4 Parsing Prefix Expressions
We’ve assembled our parsing and code generation utility functions. The missing
piece is the code in the middle that connects those together.

compiler.c
in compile()

compiler.c
in compile()

compiler.c
add after emitByte()

compiler.c
add after emitByte()

compiler.c
add after emitByte()

17.4 PARsIng PRefIx exPRessIons 313

The only step in compile() that we have left to implement is this function:

static void expression() {
 // What goes here?
}

We aren’t ready to implement every kind of expression in Lox yet. Heck, we
don’t even have Booleans. For this chapter, we’re only going to worry about four:

• Number literals: 123

• Parentheses for grouping: (123)

• Unary negation: -123

• The Four Horsemen of the Arithmetic: +, -, *, /

As we work through the functions to compile each of those kinds of expressions,
we’ll also assemble the requirements for the table-driven parser that calls them.

17.4.1 Parsers for tokens

For now, let’s focus on the Lox expressions that are each only a single token. In
this chapter, that’s just number literals, but there will be more later. Here’s how
we can compile them:

We map each token type to a different kind of expression. We define a
function for each expression that outputs the appropriate bytecode. Then we
build an array of function pointers. The indexes in the array correspond to the
TokenType enum values, and the function at each index is the code to compile
an expression of that token type.

To compile number literals, we store a pointer to the following function at the
TOKEN_NUMBER index in the array.

static void number() {
 double value = strtod(parser.previous.start, NULL);
 emitConstant(value);
}

We assume the token for the number literal has already been consumed and
is stored in previous. We take that lexeme and use the C standard library to
convert it to a double value. Then we generate the code to load that value using
this function:

static void emitConstant(Value value) {
 emitBytes(OP_CONSTANT, makeConstant(value));
}

First, we add the value to the constant table, then we emit an OP_CONSTANT
instruction that pushes it onto the stack at runtime. To insert an entry in the
constant table, we rely on:

compiler.c
add after endCompiler()

compiler.c
add after endCompiler()

compiler.c
add after emitReturn()

314 cHAPTeR 17 : comPIlIng exPRessIons

static uint8_t makeConstant(Value value) {
 int constant = addConstant(currentChunk(), value);
 if (constant > UINT8_MAX) {
 error("Too many constants in one chunk.");
 return 0;
 }

 return (uint8_t)constant;
}

Most of the work happens in addConstant(), which we defined back in an
earlier chapter. That adds the given value to the end of the chunk’s constant table
and returns its index. The new function’s job is mostly to make sure we don’t
have too many constants. Since the OP_CONSTANT instruction uses a single byte
for the index operand, we can store and load only up to 256 constants in a chunk.

That’s basically all it takes. Provided there is some suitable code that consumes
a TOKEN_NUMBER token, looks up number() in the function pointer array, and
then calls it, we can now compile number literals to bytecode.

17.4.2 Parentheses for grouping

Our as-yet-imaginary array of parsing function pointers would be great if every
expression was only a single token long. Alas, most are longer. However, many
expressions start with a particular token. We call these prefix expressions. For
example, when we’re parsing an expression and the current token is (, we know
we must be looking at a parenthesized grouping expression.

It turns out our function pointer array handles those too. The parsing func-
tion for an expression type can consume any additional tokens that it wants to,
just like in a regular recursive descent parser. Here’s how parentheses work:

static void grouping() {
 expression();
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after expression.");
}

Again, we assume the initial (has already been consumed. We recursively call
back into expression() to compile the expression between the parentheses,
then parse the closing) at the end.

As far as the back end is concerned, there’s literally nothing to a grouping
expression. Its sole function is syntactic—it lets you insert a lower-precedence
expression where a higher precedence is expected. Thus, it has no runtime se-
mantics on its own and therefore doesn’t emit any bytecode. The inner call to
expression() takes care of generating bytecode for the expression inside the
parentheses.

17.4.3 Unary negation

Unary minus is also a prefix expression, so it works with our model too.

compiler.c
add after emitReturn()

Yes, that limit is pretty low. If this were
a full-sized language implementation,
we’d want to add another instruction like
OP_CONSTANT_16 that stores the
index as a two-byte operand so we could
handle more constants when needed.

The code to support that isn’t partic-
ularly illuminating, so I omitted it from
clox, but you’ll want your VMs to scale to
larger programs.

compiler.c
add after endCompiler()

A Pratt parser isn’t a recursive descent
parser, but it’s still recursive. That’s to
be expected since the grammar itself is
recursive.

17.4.2 PARenTHeses foR gRouPIng 315

static void unary() {
 TokenType operatorType = parser.previous.type;

 // Compile the operand.
 expression();

 // Emit the operator instruction.
 switch (operatorType) {
 case TOKEN_MINUS: emitByte(OP_NEGATE); break;
 default: return; // Unreachable.
 }
}

The leading - token has been consumed and is sitting in parser.previous. We
grab the token type from that to note which unary operator we’re dealing with.
It’s unnecessary right now, but this will make more sense when we use this same
function to compile the ! operator in the next chapter.

As in grouping(), we recursively call expression() to compile the oper-
and. After that, we emit the bytecode to perform the negation. It might seem a
little weird to write the negate instruction after its operand’s bytecode since the
- appears on the left, but think about it in terms of order of execution:

1. We evaluate the operand first which leaves its value on the stack.

2. Then we pop that value, negate it, and push the result.

So the OP_NEGATE instruction should be emitted last. This is part of the com-
piler’s job—parsing the program in the order it appears in the source code and
rearranging it into the order that execution happens.

There is one problem with this code, though. The expression() function
it calls will parse any expression for the operand, regardless of precedence.
Once we add binary operators and other syntax, that will do the wrong thing.
Consider:

-a.b + c;

Here, the operand to - should be just the a.b expression, not the entire a.b + c.
But if unary() calls expression(), the latter will happily chew through all
of the remaining code including the +. It will erroneously treat the - as lower
precedence than the +.

When parsing the operand to unary -, we need to compile only expressions
at a certain precedence level or higher. In jlox’s recursive descent parser we ac-
complished that by calling into the parsing method for the lowest-precedence
expression we wanted to allow (in this case, call()). Each method for parsing a
specific expression also parsed any expressions of higher precedence too, so that
included the rest of the precedence table.

The parsing functions like number() and unary() here in clox are different.
Each only parses exactly one type of expression. They don’t cascade to include
higher-precedence expression types too. We need a different solution, and it
looks like this:

compiler.c
add after number()

Emitting the OP_NEGATE instruction
after the operands does mean that the
current token when the bytecode is
written is not the - token. That mostly
doesn’t matter, except that we use that
token for the line number to associate
with that instruction.

This means if you have a multi-line
negation expression, like:

print -
 true;

Then the runtime error will be reported on
the wrong line. Here, it would show the
error on line 2, even though the - is on
line 1. A more robust approach would be
to store the token’s line before compiling
the operand and then pass that into
emitByte(), but I wanted to keep
things simple for the book.

316 cHAPTeR 17 : comPIlIng exPRessIons

static void parsePrecedence(Precedence precedence) {
 // What goes here?
}

This function—once we implement it—starts at the current token and parses
any expression at the given precedence level or higher. We have some other
setup to get through before we can write the body of this function, but you can
probably guess that it will use that table of parsing function pointers I’ve been
talking about. For now, don’t worry too much about how it works. In order to
take the “precedence” as a parameter, we define it numerically.

} Parser;

typedef enum {
 PREC_NONE,
 PREC_ASSIGNMENT, // =
 PREC_OR, // or
 PREC_AND, // and
 PREC_EQUALITY, // == !=
 PREC_COMPARISON, // < > <= >=
 PREC_TERM, // + -
 PREC_FACTOR, // * /
 PREC_UNARY, // ! -
 PREC_CALL, // . ()
 PREC_PRIMARY
} Precedence;

Parser parser;

These are all of Lox’s precedence levels in order from lowest to highest. Since
C implicitly gives successively larger numbers for enums, this means that
PREC_CALL is numerically larger than PREC_UNARY. For example, say the com-
piler is sitting on a chunk of code like:

-a.b + c

If we call parsePrecedence(PREC_ASSIGNMENT), then it will parse the
entire expression because + has higher precedence than assignment. If instead
we call parsePrecedence(PREC_UNARY), it will compile the -a.b and stop
there. It doesn’t keep going through the + because the addition has lower prece-
dence than unary operators.

With this function in hand, it’s a snap to fill in the missing body for
expression().

static void expression() {
 parsePrecedence(PREC_ASSIGNMENT);
}

We simply parse the lowest precedence level, which subsumes all of the high-
er-precedence expressions too. Now, to compile the operand for a unary expres-
sion, we call this new function and limit it to the appropriate level:

compiler.c
add after unary()

compiler.c
add after struct Parser

compiler.c
in expression()

replace 1 line

17.5 PARsIng InfIx exPRessIons 317

 // Compile the operand.
 parsePrecedence(PREC_UNARY);

 // Emit the operator instruction.

We use the unary operator’s own PREC_UNARY precedence to permit nested
unary expressions like !!doubleNegative. Since unary operators have pretty
high precedence, that correctly excludes things like binary operators. Speaking
of which . . . 

17.5 Parsing Infix Expressions
Binary operators are different from the previous expressions because they are
infix. With the other expressions, we know what we are parsing from the very
first token. With infix expressions, we don’t know we’re in the middle of a bina-
ry operator until after we’ve parsed its left operand and then stumbled onto the
operator token in the middle.

Here’s an example:

1 + 2

Let’s walk through trying to compile it with what we know so far:

1. We call expression(). That in turn calls parsePrecedence(
PREC_ASSIGNMENT).

2. That function (once we implement it) sees the leading number token and
recognizes it is parsing a number literal. It hands off control to number().

3. number() creates a constant, emits an OP_CONSTANT, and returns back to
parsePrecedence().

Now what? The call to parsePrecedence() should consume the entire addi-
tion expression, so it needs to keep going somehow. Fortunately, the parser is
right where we need it to be. Now that we’ve compiled the leading number ex-
pression, the next token is +. That’s the exact token that parsePrecedence()
needs to detect that we’re in the middle of an infix expression and to realize that
the expression we already compiled is actually an operand to that.

So this hypothetical array of function pointers doesn’t just list functions to
parse expressions that start with a given token. Instead, it’s a table of function
pointers. One column associates prefix parser functions with token types. The
second column associates infix parser functions with token types.

The function we will use as the infix parser for TOKEN_PLUS, TOKEN_MINUS,
TOKEN_STAR, and TOKEN_SLASH is this:

static void binary() {
 TokenType operatorType = parser.previous.type;
 ParseRule* rule = getRule(operatorType);
 parsePrecedence((Precedence)(rule->precedence + 1));

compiler.c
in unary()
replace 1 line

Not that nesting unary expressions is
particularly useful in Lox. But other
languages let you do it, so we do too.

compiler.c
add after endCompiler()

continued on next page . . .

318 cHAPTeR 17 : comPIlIng exPRessIons

 switch (operatorType) {
 case TOKEN_PLUS: emitByte(OP_ADD); break;
 case TOKEN_MINUS: emitByte(OP_SUBTRACT); break;
 case TOKEN_STAR: emitByte(OP_MULTIPLY); break;
 case TOKEN_SLASH: emitByte(OP_DIVIDE); break;
 default:
 return; // Unreachable.
 }
}

When a prefix parser function is called, the leading token has already been
consumed. An infix parser function is even more in medias res—the entire left-
hand operand expression has already been compiled and the subsequent infix
operator consumed.

The fact that the left operand gets compiled first works out fine. It means at
runtime, that code gets executed first. When it runs, the value it produces will
end up on the stack. That’s right where the infix operator is going to need it.

Then we come here to binary() to handle the rest of the arithmetic op-
erators. This function compiles the right operand, much like how unary()
compiles its own trailing operand. Finally, it emits the bytecode instruction that
performs the binary operation.

When run, the VM will execute the left and right operand code, in that order,
leaving their values on the stack. Then it executes the instruction for the oper-
ator. That pops the two values, computes the operation, and pushes the result.

The code that probably caught your eye here is that getRule() line. When
we parse the right-hand operand, we again need to worry about precedence.
Take an expression like:

2 * 3 + 4

When we parse the right operand of the * expression, we need to just capture 3,
and not 3 + 4, because + is lower precedence than *. We could define a separate
function for each binary operator. Each would call parsePrecedence() and
pass in the correct precedence level for its operand.

But that’s kind of tedious. Each binary operator’s right-hand operand prece-
dence is one level higher than its own. We can look that up dynamically with this
getRule() thing we’ll get to soon. Using that, we call parsePrecedence()
with one level higher than this operator’s level.

This way, we can use a single binary() function for all binary operators
even though they have different precedences.

17.6 a Pratt Parser
We now have all of the pieces and parts of the compiler laid out. We have a func-
tion for each grammar production: number(), grouping(), unary(), and
binary(). We still need to implement parsePrecedence(), and getRule().
We also know we need a table that, given a token type, lets us find

• the function to compile a prefix expression starting with a token of that type,

. . . from previous page

We use one higher level of precedence
for the right operand because the binary
operators are left-associative. Given a
series of the same operator, like:

1 + 2 + 3 + 4

We want to parse it like:

((1 + 2) + 3) + 4

Thus, when parsing the right-hand
operand to the first +, we want to
consume the 2, but not the rest, so we
use one level above +’s precedence. But
if our operator was right-associative, this
would be wrong. Given:

a = b = c = d

Since assignment is right-associative, we
want to parse it as:

a = (b = (c = d))

To enable that, we would call
parsePrecedence() with the same
precedence as the current operator.

17.6 A PRATT PARseR 319

• the function to compile an infix expression whose left operand is followed by
a token of that type, and

• the precedence of an infix expression that uses that token as an operator.

We wrap these three properties in a little struct which represents a single row
in the parser table.

} Precedence;

typedef struct {
 ParseFn prefix;
 ParseFn infix;
 Precedence precedence;
} ParseRule;

Parser parser;

That ParseFn type is a simple typedef for a function type that takes no arguments
and returns nothing.

} Precedence;

typedef void (*ParseFn)();

typedef struct {

The table that drives our whole parser is an array of ParseRules. We’ve been
talking about it forever, and finally you get to see it.

ParseRule rules[] = {
 [TOKEN_LEFT_PAREN] = {grouping, NULL, PREC_NONE},
 [TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},
 [TOKEN_LEFT_BRACE] = {NULL, NULL, PREC_NONE},
 [TOKEN_RIGHT_BRACE] = {NULL, NULL, PREC_NONE},
 [TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
 [TOKEN_DOT] = {NULL, NULL, PREC_NONE},
 [TOKEN_MINUS] = {unary, binary, PREC_TERM},
 [TOKEN_PLUS] = {NULL, binary, PREC_TERM},
 [TOKEN_SEMICOLON] = {NULL, NULL, PREC_NONE},
 [TOKEN_SLASH] = {NULL, binary, PREC_FACTOR},
 [TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
 [TOKEN_BANG] = {NULL, NULL, PREC_NONE},
 [TOKEN_BANG_EQUAL] = {NULL, NULL, PREC_NONE},
 [TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
 [TOKEN_EQUAL_EQUAL] = {NULL, NULL, PREC_NONE},
 [TOKEN_GREATER] = {NULL, NULL, PREC_NONE},
 [TOKEN_GREATER_EQUAL] = {NULL, NULL, PREC_NONE},
 [TOKEN_LESS] = {NULL, NULL, PREC_NONE},
 [TOKEN_LESS_EQUAL] = {NULL, NULL, PREC_NONE},
 [TOKEN_IDENTIFIER] = {NULL, NULL, PREC_NONE},
 [TOKEN_STRING] = {NULL, NULL, PREC_NONE},

We don’t need to track the precedence of
the prefix expression starting with a given
token because all prefix operators in Lox
have the same precedence.

compiler.c
add after enum Precedence

compiler.c
add after enum Precedence

compiler.c
add after unary()

See what I mean about not wanting to
revisit the table each time we needed a
new column? It’s a beast.

If you haven’t seen the
[TOKEN_DOT] = syntax in a C array
literal, that is C99’s designated initializer
syntax. It’s clearer than having to count
array indexes by hand.

continued on next page . . .

C’s syntax for function pointer types is so
bad that I always hide it behind a typedef.
I understand the intent behind the
syntax—the whole “declaration reflects
use” thing—but I think it was a failed
syntactic experiment.

320 cHAPTeR 17 : comPIlIng exPRessIons

 [TOKEN_NUMBER] = {number, NULL, PREC_NONE},
 [TOKEN_AND] = {NULL, NULL, PREC_NONE},
 [TOKEN_CLASS] = {NULL, NULL, PREC_NONE},
 [TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
 [TOKEN_FALSE] = {NULL, NULL, PREC_NONE},
 [TOKEN_FOR] = {NULL, NULL, PREC_NONE},
 [TOKEN_FUN] = {NULL, NULL, PREC_NONE},
 [TOKEN_IF] = {NULL, NULL, PREC_NONE},
 [TOKEN_NIL] = {NULL, NULL, PREC_NONE},
 [TOKEN_OR] = {NULL, NULL, PREC_NONE},
 [TOKEN_PRINT] = {NULL, NULL, PREC_NONE},
 [TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
 [TOKEN_SUPER] = {NULL, NULL, PREC_NONE},
 [TOKEN_THIS] = {NULL, NULL, PREC_NONE},
 [TOKEN_TRUE] = {NULL, NULL, PREC_NONE},
 [TOKEN_VAR] = {NULL, NULL, PREC_NONE},
 [TOKEN_WHILE] = {NULL, NULL, PREC_NONE},
 [TOKEN_ERROR] = {NULL, NULL, PREC_NONE},
 [TOKEN_EOF] = {NULL, NULL, PREC_NONE},
};

You can see how grouping and unary are slotted into the prefix parser column
for their respective token types. In the next column, binary is wired up to the
four arithmetic infix operators. Those infix operators also have their precedenc-
es set in the last column.

Aside from those, the rest of the table is full of NULL and PREC_NONE. Most
of those empty cells are because there is no expression associated with those
tokens. You can’t start an expression with, say, else, and } would make for a
pretty confusing infix operator.

But, also, we haven’t filled in the entire grammar yet. In later chapters, as we
add new expression types, some of these slots will get functions in them. One of
the things I like about this approach to parsing is that it makes it very easy to see
which tokens are in use by the grammar and which are available.

Now that we have the table, we are finally ready to write the code that uses
it. This is where our Pratt parser comes to life. The easiest function to define is
getRule().

static ParseRule* getRule(TokenType type) {
 return &rules[type];
}

It simply returns the rule at the given index. It’s called by binary() to look up
the precedence of the current operator. This function exists solely to handle a
declaration cycle in the C code. binary() is defined before the rules table so
that the table can store a pointer to it. That means the body of binary() cannot
access the table directly.

Instead, we wrap the lookup in a function. That lets us forward declare
getRule() before the definition of binary(), and then define getRule()
after the table. We’ll need a couple of other forward declarations to handle the
fact that our grammar is recursive, so let’s get them all out of the way.

. . . from previous page

compiler.c
add after parsePrecedence()

This is what happens when you write your
VM in a language that was designed to be
compiled on a PDP-11.

17.6.1 PARsIng WITH PRecedence 321

 emitReturn();
}

static void expression();
static ParseRule* getRule(TokenType type);
static void parsePrecedence(Precedence precedence);

static void binary() {

If you’re following along and implementing clox yourself, pay close attention to
the little annotations that tell you where to put these code snippets. Don’t worry,
though, if you get it wrong, the C compiler will be happy to tell you.

17.6.1 Parsing with precedence

Now we’re getting to the fun stuff. The maestro that orchestrates all of the pars-
ing functions we’ve defined is parsePrecedence(). Let’s start with parsing
prefix expressions.

static void parsePrecedence(Precedence precedence) {
 advance();
 ParseFn prefixRule = getRule(parser.previous.type)->prefix;
 if (prefixRule == NULL) {
 error("Expect expression.");
 return;
 }

 prefixRule();
}

We read the next token and look up the corresponding ParseRule. If there is no
prefix parser, then the token must be a syntax error. We report that and return
to the caller.

Otherwise, we call that prefix parse function and let it do its thing. That prefix
parser compiles the rest of the prefix expression, consuming any other tokens
it needs, and returns back here. Infix expressions are where it gets interesting
since precedence comes into play. The implementation is remarkably simple.

 prefixRule();

 while (precedence <= getRule(parser.current.type)->precedence) {
 advance();
 ParseFn infixRule = getRule(parser.previous.type)->infix;
 infixRule();
 }
}

That’s the whole thing. Really. Here’s how the entire function works: At the be-
ginning of parsePrecedence(), we look up a prefix parser for the current

compiler.c
in parsePrecedence()
replace 1 line

compiler.c
in parsePrecedence()

compiler.c
add after endCompiler()

322 cHAPTeR 17 : comPIlIng exPRessIons

token. The first token is always going to belong to some kind of prefix expression,
by definition. It may turn out to be nested as an operand inside one or more infix
expressions, but as you read the code from left to right, the first token you hit
always belongs to a prefix expression.

After parsing that, which may consume more tokens, the prefix expression is
done. Now we look for an infix parser for the next token. If we find one, it means
the prefix expression we already compiled might be an operand for it. But only
if the call to parsePrecedence() has a precedence that is low enough to
permit that infix operator.

If the next token is too low precedence, or isn’t an infix operator at all, we’re
done. We’ve parsed as much expression as we can. Otherwise, we consume
the operator and hand off control to the infix parser we found. It consumes
whatever other tokens it needs (usually the right operand) and returns back to
parsePrecedence(). Then we loop back around and see if the next token is
also a valid infix operator that can take the entire preceding expression as its
operand. We keep looping like that, crunching through infix operators and their
operands until we hit a token that isn’t an infix operator or is too low precedence
and stop.

That’s a lot of prose, but if you really want to mind meld with Vaughan Pratt
and fully understand the algorithm, step through the parser in your debugger
as it works through some expressions. Maybe a picture will help. There’s only a
handful of functions, but they are marvelously intertwined:

Later, we’ll need to tweak the code in this chapter to handle assignment. But,
otherwise, what we wrote covers all of our expression compiling needs for the
rest of the book. We’ll plug additional parsing functions into the table when we
add new kinds of expressions, but parsePrecedence() is complete.

The arrow connects a function to
another function it directly calls. The

 arrow shows the table’s pointers to
the parsing functions.

17.7 dumPIng cHunks 323

17.7 Dumping Chunks
While we’re here in the core of our compiler, we should put in some instrumen-
tation. To help debug the generated bytecode, we’ll add support for dumping the
chunk once the compiler finishes. We had some temporary logging earlier when
we hand-authored the chunk. Now we’ll put in some real code so that we can
enable it whenever we want.

Since this isn’t for end users, we hide it behind a flag.

#include <stdint.h>

#define DEBUG_PRINT_CODE
#define DEBUG_TRACE_EXECUTION

When that flag is defined, we use our existing “debug” module to print out the
chunk’s bytecode.

 emitReturn();
#ifdef DEBUG_PRINT_CODE
 if (!parser.hadError) {
 disassembleChunk(currentChunk(), "code");
 }
#endif
}

We do this only if the code was free of errors. After a syntax error, the compiler
keeps on going but it’s in kind of a weird state and might produce broken code.
That’s harmless because it won’t get executed, but we’ll just confuse ourselves if
we try to read it.

Finally, to access disassembleChunk(), we need to include its header.

#include "scanner.h"

#ifdef DEBUG_PRINT_CODE
#include "debug.h"
#endif

typedef struct {

We made it! This was the last major section to install in our VM’s compilation
and execution pipeline. Our interpreter doesn’t look like much, but inside it is
scanning, parsing, compiling to bytecode, and executing.

Fire up the VM and type in an expression. If we did everything right, it should
calculate and print the result. We now have a very over-engineered arithmetic
calculator. We have a lot of language features to add in the coming chapters, but
the foundation is in place.

common.h

compiler.c
in endCompiler()

compiler.c

324 cHAPTeR 17 : comPIlIng exPRessIons

CHaLLENGES

1. To really understand the parser, you need to see how execution threads through
the interesting parsing functions—parsePrecedence() and the parser
functions stored in the table. Take this (strange) expression:

(-1 + 2) * 3 - -4

Write a trace of how those functions are called. Show the order they are called,
which calls which, and the arguments passed to them.

2. The ParseRule row for TOKEN_MINUS has both prefix and infix function point-
ers. That’s because - is both a prefix operator (unary negation) and an infix one
(subtraction).

In the full Lox language, what other tokens can be used in both prefix and
infix positions? What about in C or in another language of your choice?

3. You might be wondering about complex “mixfix” expressions that have more
than two operands separated by tokens. C’s conditional or “ternary” operator,
?:, is a widely known one.

Add support for that operator to the compiler. You don’t have to generate
any bytecode, just show how you would hook it up to the parser and handle the
operands.

cHAllenges 325

DESIGN NOtE: It’S JUSt ParSING

I’m going to make a claim here that will be unpopular with some compiler and language
people. It’s OK if you don’t agree. Personally, I learn more from strongly stated opin-
ions that I disagree with than I do from several pages of qualifiers and equivocation.
My claim is that parsing doesn’t matter.

Over the years, many programming language people, especially in academia, have
gotten really into parsers and taken them very seriously. Initially, it was the compiler
folks who got into compiler-compilers, LALR, and other stuff like that. The first half of
the dragon book is a long love letter to the wonders of parser generators.

Later, the functional programming folks got into parser combinators, packrat pars-
ers, and other sorts of things. Because, obviously, if you give a functional programmer
a problem, the first thing they’ll do is whip out a pocketful of higher-order functions.

Over in math and algorithm analysis land, there is a long legacy of research into
proving time and memory usage for various parsing techniques, transforming parsing
problems into other problems and back, and assigning complexity classes to different
grammars.

At one level, this stuff is important. If you’re implementing a language, you want
some assurance that your parser won’t go exponential and take 7,000 years to parse a
weird edge case in the grammar. Parser theory gives you that bound. As an intellectual
exercise, learning about parsing techniques is also fun and rewarding.

But if your goal is just to implement a language and get it in front of users, almost
all of that stuff doesn’t matter. It’s really easy to get worked up by the enthusiasm
of the people who are into it and think that your front end needs some whiz-bang
generated combinator-parser-factory thing. I’ve seen people burn tons of time writing
and rewriting their parser using whatever today’s hot library or technique is.

That’s time that doesn’t add any value to your user’s life. If you’re just trying to
get your parser done, pick one of the bog-standard techniques, use it, and move on.
Recursive descent, Pratt parsing, and the popular parser generators like ANTLR or
Bison are all fine.

Take the extra time you saved not rewriting your parsing code and spend it improv-
ing the compile error messages your compiler shows users. Good error handling and
reporting is more valuable to users than almost anything else you can put time into in
the front end.

All of us suffer from the vice of “when all
you have is a hammer, everything looks
like a nail”, but perhaps none so visibly
as compiler people. You wouldn’t believe
the breadth of software problems that
miraculously seem to require a new little
language in their solution as soon as you
ask a compiler hacker for help.

Yacc and other compiler-compilers are
the most delightfully recursive example.
“Wow, writing compilers is a chore. I
know, let’s write a compiler to write our
compiler for us.”

For the record, I don’t claim immunity
to this affliction.

A byTecode VIRTuAl mAcHIne 18types of Values

“When you are a Bear of Very Little Brain, and you Think of Things,
you find sometimes that a Thing which seemed very Thing ish inside
you is quite different when it gets out into the open and has other
people looking at it.”

— A. A. Milne, Winnie-the-Pooh

The past few chapters were huge, packed full of complex techniques and pages
of code. In this chapter, there’s only one new concept to learn and a scattering of
straightforward code. You’ve earned a respite.

Lox is dynamically typed. A single variable can hold a Boolean, number, or
string at different points in time. At least, that’s the idea. Right now, in clox, all
values are numbers. By the end of the chapter, it will also support Booleans and
nil. While those aren’t super interesting, they force us to figure out how our
value representation can dynamically handle different types.

18.1 tagged Unions
The nice thing about working in C is that we can build our data structures from
the raw bits up. The bad thing is that we have to do that. C doesn’t give you much

There is a third category next to statically
typed and dynamically typed: unityped.
In that paradigm, all variables have a
single type, usually a machine register
integer. Unityped languages aren’t com-
mon today, but some Forths and BCPL, the
language that inspired C, worked like this.

As of this moment, clox is unityped.

328 cHAPTeR 18 : TyPes of VAlues

for free at compile time and even less at runtime. As far as C is concerned, the
universe is an undifferentiated array of bytes. It’s up to us to decide how many
of those bytes to use and what they mean.

To choose a value representation, we need to answer two key questions:

1. How do we represent the type of a value? If you try to, say, multiply a num-
ber by true, we need to detect that error at runtime and report it. In order to
do that, we need to be able to tell what a value’s type is.

2. How do we store the value itself? We need to not only be able to tell that
three is a number, but that it’s different from the number four. I know, seems
obvious, right? But we’re operating at a level where it’s good to spell these
things out.

Since we’re not just designing this language but building it ourselves, when
answering these two questions we also have to keep in mind the implementer’s
eternal quest: to do it efficiently.

Language hackers over the years have come up with a variety of clever ways
to pack the above information into as few bits as possible. For now, we’ll start
with the simplest, classic solution: a tagged union. A value contains two parts: a
type “tag”, and a payload for the actual value. To store the value’s type, we define
an enum for each kind of value the VM supports.

#include "common.h"

typedef enum {
 VAL_BOOL,
 VAL_NIL,
 VAL_NUMBER,
} ValueType;

typedef double Value;

For now, we have only a couple of cases, but this will grow as we add strings,
functions, and classes to clox. In addition to the type, we also need to store the
data for the value—the double for a number, true or false for a Boolean. We
could define a struct with fields for each possible type.

But this is a waste of memory. A value can’t simultaneously be both a number
and a Boolean. So at any point in time, only one of those fields will be used. C lets
you optimize this by defining a union. A union looks like a struct except that all
of its fields overlap in memory.

The size of a union is the size of its largest field. Since the fields all reuse the
same bits, you have to be very careful when working with them. If you store data
using one field and then access it using another, you will reinterpret what the
underlying bits mean.

value.h

The cases here cover each kind of value
that has built-in support in the VM. When
we get to adding classes to the language,
each class the user defines doesn’t need
its own entry in this enum. As far as the
VM is concerned, every instance of a class
is the same type: “instance”.

In other words, this is the VM’s notion
of “type”, not the user’s.

If you’re familiar with a language in the
ML family, structs and unions in C roughly
mirror the difference between product
and sum types, between tuples and
algebraic data types.

Using a union to interpret bits as different
types is the quintessence of C. It opens up
clever optimizations and lets you slice and
dice each byte of memory in ways that
memory-safe languages disallow. But it
is also wildly unsafe and will happily saw
your fingers off if you don’t watch out.

18.2 lox VAlues And c VAlues 329

As the name “tagged union” implies, our new value representation combines
these two parts into a single struct.

} ValueType;

typedef struct {
 ValueType type;
 union {
 bool boolean;
 double number;
 } as;
} Value;

typedef struct {

There’s a field for the type tag, and then a second field containing the union of
all of the underlying values. On a 64-bit machine with a typical C compiler, the
layout looks like this:

The four-byte type tag comes first, then the union. Most architectures prefer
values be aligned to their size. Since the union field contains an eight-byte dou-
ble, the compiler adds four bytes of padding after the type field to keep that
double on the nearest eight-byte boundary. That means we’re effectively spend-
ing eight bytes on the type tag, which only needs to represent a number between
zero and three. We could stuff the enum in a smaller size, but all that would do is
increase the padding.

So our Values are 16 bytes, which seems a little large. We’ll improve it later. In
the meantime, they’re still small enough to store on the C stack and pass around
by value. Lox’s semantics allow that because the only types we support so far
are immutable. If we pass a copy of a Value containing the number three to
some function, we don’t need to worry about the caller seeing modifications to
the value. You can’t “modify” three. It’s three forever.

18.2 Lox Values and C Values
That’s our new value representation, but we aren’t done. Right now, the rest of
clox assumes Value is an alias for double. We have code that does a straight C
cast from one to the other. That code is all broken now. So sad.

With our new representation, a Value can contain a double, but it’s not equiv-
alent to it. There is a conversion step to get from one to the other. We need to go
through the code and insert those conversions to get clox working again.

We’ll implement these conversions as a handful of macros, one for each type
and operation. First, to promote a native C value to a clox Value:

value.h
add after enum ValueType
replace 1 line

A smart language hacker gave me the idea
to use “as” for the name of the union field
because it reads nicely, almost like a cast,
when you pull the various values out.

We could move the tag field after the
union, but that doesn’t help much either.
Whenever we create an array of Values—
which is where most of our memory usage
for Values will be—the C compiler will
insert that same padding between each
Value to keep the doubles aligned.

330 cHAPTeR 18 : TyPes of VAlues

} Value;

#define BOOL_VAL(value) ((Value){VAL_BOOL, {.boolean = value}})
#define NIL_VAL ((Value){VAL_NIL, {.number = 0}})
#define NUMBER_VAL(value) ((Value){VAL_NUMBER, {.number = value}})

typedef struct {

Each one of these takes a C value of the appropriate type and produces a Value
that has the correct type tag and contains the underlying value. This hoists
statically typed values up into clox’s dynamically typed universe. In order to do
anything with a Value, though, we need to unpack it and get the C value back out.

} Value;

#define AS_BOOL(value) ((value).as.boolean)
#define AS_NUMBER(value) ((value).as.number)

#define BOOL_VAL(value) ((Value){VAL_BOOL, {.boolean = value}})

These macros go in the opposite direction. Given a Value of the right type, they
unwrap it and return the corresponding raw C value. The “right type” part is
important! These macros directly access the union fields. If we were to do some-
thing like:

Value value = BOOL_VAL(true);
double number = AS_NUMBER(value);

Then we may open a smoldering portal to the Shadow Realm. It’s not safe to use
any of the AS_ macros unless we know the Value contains the appropriate type.
To that end, we define a last few macros to check a Value’s type.

} Value;

#define IS_BOOL(value) ((value).type == VAL_BOOL)
#define IS_NIL(value) ((value).type == VAL_NIL)
#define IS_NUMBER(value) ((value).type == VAL_NUMBER)

#define AS_BOOL(value) ((value).as.boolean)

These macros return true if the Value has that type. Any time we call one of the
AS_ macros, we need to guard it behind a call to one of these first. With these
eight macros, we can now safely shuttle data between Lox’s dynamic world and
C’s static one.

18.3 Dynamically typed Numbers
We’ve got our value representation and the tools to convert to and from it. All
that’s left to get clox running again is to grind through the code and fix every
place where data moves across that boundary. This is one of those sections of the

value.h
add after struct Value

value.h
add after struct Value

There’s no AS_NIL macro because there
is only one nil value, so a Value with
type VAL_NIL doesn’t carry any extra
data.

value.h
add after struct Value

The _VAL macros lift a C value into the
heavens. The AS_ macros bring it back
down.

18.3 dynAmIcAlly TyPed numbeRs 331

book that isn’t exactly mind-blowing, but I promised I’d show you every single
line of code, so here we are.

The first values we create are the constants generated when we compile num-
ber literals. After we convert the lexeme to a C double, we simply wrap it in a
Value before storing it in the constant table.

 double value = strtod(parser.previous.start, NULL);
 emitConstant(NUMBER_VAL(value));
}

Over in the runtime, we have a function to print values.

void printValue(Value value) {
 printf("%g", AS_NUMBER(value));
}

Right before we send the Value to printf(), we unwrap it and extract the dou-
ble value. We’ll revisit this function shortly to add the other types, but let’s get
our existing code working first.

18.3.1 Unary negation and runtime errors

The next simplest operation is unary negation. It pops a value off the stack, ne-
gates it, and pushes the result. Now that we have other types of values, we can’t
assume the operand is a number anymore. The user could just as well do:

print -false; // Uh...

We need to handle that gracefully, which means it’s time for runtime errors.
Before performing an operation that requires a certain type, we need to make
sure the Value is that type.

For unary negation, the check looks like this:

 case OP_DIVIDE: BINARY_OP(/); break;
 case OP_NEGATE:
 if (!IS_NUMBER(peek(0))) {
 runtimeError("Operand must be a number.");
 return INTERPRET_RUNTIME_ERROR;
 }
 push(NUMBER_VAL(-AS_NUMBER(pop())));
 break;
 case OP_RETURN: {

First, we check to see if the Value on top of the stack is a number. If it’s not, we
report the runtime error and stop the interpreter. Otherwise, we keep going.
Only after this validation do we unwrap the operand, negate it, wrap the result
and push it.

To access the Value, we use a new little function.

compiler.c
in number()
replace 1 line

value.c
in printValue()
replace 1 line

vm.c
in run()
replace 1 line

Lox’s approach to error-handling is
rather . . . spare. All errors are fatal and
immediately halt the interpreter. There’s
no way for user code to recover from an
error. If Lox were a real language, this is
one of the first things I would remedy.

332 cHAPTeR 18 : TyPes of VAlues

static Value peek(int distance) {
 return vm.stackTop[-1 - distance];
}

It returns a Value from the stack but doesn’t pop it. The distance argument is
how far down from the top of the stack to look: zero is the top, one is one slot
down, etc.

We report the runtime error using a new function that we’ll get a lot of mile-
age out of over the remainder of the book.

static void runtimeError(const char* format, ...) {
 va_list args;
 va_start(args, format);
 vfprintf(stderr, format, args);
 va_end(args);
 fputs("\n", stderr);

 size_t instruction = vm.ip - vm.chunk->code - 1;
 int line = vm.chunk->lines[instruction];
 fprintf(stderr, "[line %d] in script\n", line);
 resetStack();
}

You’ve certainly called variadic functions—ones that take a varying number
of arguments—in C before: printf() is one. But you may not have defined
your own. This book isn’t a C tutorial, so I’ll skim over it here, but basically
the ... and va_list stuff let us pass an arbitrary number of arguments to
runtimeError(). It forwards those on to vfprintf(), which is the flavor of
printf() that takes an explicit va_list.

Callers can pass a format string to runtimeError() followed by a number of
arguments, just like they can when calling printf() directly. runtimeError()
then formats and prints those arguments. We won’t take advantage of that in
this chapter, but later chapters will produce formatted runtime error messages
that contain other data.

After we show the hopefully helpful error message, we tell the user which
line of their code was being executed when the error occurred. Since we left
the tokens behind in the compiler, we look up the line in the debug information
compiled into the chunk. If our compiler did its job right, that corresponds to the
line of source code that the bytecode was compiled from.

We look into the chunk’s debug line array using the current bytecode in-
struction index minus one. That’s because the interpreter advances past each
instruction before executing it. So, at the point that we call runtimeError(),
the failed instruction is the previous one.

In order to use va_list and the macros for working with it, we need to bring
in a standard header.

#include <stdarg.h>
#include <stdio.h>

With this, our VM can not only do the right thing when we negate numbers (like
it used to before we broke it), but it also gracefully handles erroneous attempts
to negate other types (which we don’t have yet, but still).

Why not just pop the operand and then
validate it? In later chapters, it will be
important to leave operands on the stack
to ensure the garbage collector can find
them if a collection is triggered in the
middle of the operation. I do the same
thing here mostly out of habit.

vm.c
add after resetStack()

If you are looking for a C tutorial, I love
The C Programming Language, usually
called “K&R” in honor of its authors. It’s
not entirely up to date, but the quality of
the writing more than makes up for it.

Just showing the immediate line where
the error occurred doesn’t provide much
context. Better would be a full stack trace.
But we don’t even have functions to call
yet, so there is no call stack to trace.

vm.c
add to top of file

vm.c
add after pop()

18.3.2 bInARy ARITHmeTIc oPeRAToRs 333

18.3.2 Binary arithmetic operators

We have our runtime error machinery in place now, so fixing the binary opera-
tors is easier even though they’re more complex. We support four binary opera-
tors today: +, -, *, and /. The only difference between them is which underlying
C operator they use. To minimize redundant code between the four operators,
we wrapped up the commonality in a big preprocessor macro that takes the op-
erator token as a parameter.

That macro seemed like overkill a few chapters ago, but we get the benefit
from it today. It lets us add the necessary type checking and conversions in one
place.

#define READ_CONSTANT() (vm.chunk->constants.values[READ_BYTE()])
#define BINARY_OP(valueType, op) \
 do { \
 if (!IS_NUMBER(peek(0)) || !IS_NUMBER(peek(1))) { \
 runtimeError("Operands must be numbers."); \
 return INTERPRET_RUNTIME_ERROR; \
 } \
 double b = AS_NUMBER(pop()); \
 double a = AS_NUMBER(pop()); \
 push(valueType(a op b)); \
 } while (false)

 for (;;) {

Yeah, I realize that’s a monster of a macro. It’s not what I’d normally consider
good C practice, but let’s roll with it. The changes are similar to what we did for
unary negate. First, we check that the two operands are both numbers. If either
isn’t, we report a runtime error and yank the ejection seat lever.

If the operands are fine, we pop them both and unwrap them. Then we apply
the given operator, wrap the result, and push it back on the stack. Note that we
don’t wrap the result by directly using NUMBER_VAL(). Instead, the wrapper to
use is passed in as a macro parameter. For our existing arithmetic operators, the
result is a number, so we pass in the NUMBER_VAL macro.

 }
 case OP_ADD: BINARY_OP(NUMBER_VAL, +); break;
 case OP_SUBTRACT: BINARY_OP(NUMBER_VAL, -); break;
 case OP_MULTIPLY: BINARY_OP(NUMBER_VAL, *); break;
 case OP_DIVIDE: BINARY_OP(NUMBER_VAL, /); break;
 case OP_NEGATE:

Soon, I’ll show you why we made the wrapping macro an argument.

18.4 two New types
All of our existing clox code is back in working order. Finally, it’s time to add
some new types. We’ve got a running numeric calculator that now does a num-
ber of pointless paranoid runtime type checks. We can represent other types

vm.c
in run()
replace 6 lines

Did you know you can pass macros as
parameters to macros? Now you do!

vm.c
in run()
replace 4 lines

334 cHAPTeR 18 : TyPes of VAlues

internally, but there’s no way for a user’s program to ever create a Value of one
of those types. Not until now, that is. We’ll start by adding compiler support for
the three new literals: true, false, and nil. They’re all pretty simple, so we’ll
do all three in a single batch.

With number literals, we had to deal with the fact that there are billions of
possible numeric values. We attended to that by storing the literal’s value in the
chunk’s constant table and emitting a bytecode instruction that simply loaded
that constant. We could do the same thing for the new types. We’d store, say,
true, in the constant table, and use an OP_CONSTANT to read it out.

But given that there are literally (heh) only three possible values we need to
worry about with these new types, it’s gratuitous—and slow!—to waste a two-
byte instruction and a constant table entry on them. Instead, we’ll define three
dedicated instructions to push each of these literals on the stack.

 OP_CONSTANT,
 OP_NIL,
 OP_TRUE,
 OP_FALSE,
 OP_ADD,

Our scanner already treats true, false, and nil as keywords, so we can skip
right to the parser. With our table-based Pratt parser, we just need to slot parser
functions into the rows associated with those keyword token types. We’ll use the
same function in all three slots. Here:

 [TOKEN_ELSE] = {NULL, NULL, PREC_NONE},
 [TOKEN_FALSE] = {literal, NULL, PREC_NONE},
 [TOKEN_FOR] = {NULL, NULL, PREC_NONE},

Here:

 [TOKEN_THIS] = {NULL, NULL, PREC_NONE},
 [TOKEN_TRUE] = {literal, NULL, PREC_NONE},
 [TOKEN_VAR] = {NULL, NULL, PREC_NONE},

And here:

 [TOKEN_IF] = {NULL, NULL, PREC_NONE},
 [TOKEN_NIL] = {literal, NULL, PREC_NONE},
 [TOKEN_OR] = {NULL, NULL, PREC_NONE},

When the parser encounters false, nil, or true, in prefix position, it calls this
new parser function:

static void literal() {
 switch (parser.previous.type) {
 case TOKEN_FALSE: emitByte(OP_FALSE); break;
 case TOKEN_NIL: emitByte(OP_NIL); break;
 case TOKEN_TRUE: emitByte(OP_TRUE); break;
 default: return; // Unreachable.
 }
}

I’m not kidding about dedicated
operations for certain constant values
being faster. A bytecode VM spends
much of its execution time reading and
decoding instructions. The fewer, simpler
instructions you need for a given piece of
behavior, the faster it goes. Short instruc-
tions dedicated to common operations are
a classic optimization.

The Java bytecode instruction set has
dedicated instructions for loading 0.0,
1.0, 2.0, and the integer values from -1
through 5. (This ends up being a vestigial
optimization given that most mature JVMs
now JIT-compile the bytecode to machine
code before execution anyway.)

chunk.h
in enum OpCode

compiler.c
replace 1 line

compiler.c
replace 1 line

compiler.c
replace 1 line

compiler.c
add after binary()

We could have used separate parser func-
tions for each literal and saved ourselves a
switch but that felt needlessly verbose to
me. I think it’s mostly a matter of taste.

18.4 TWo neW TyPes 335

Since parsePrecedence() has already consumed the keyword token, all we
need to do is output the proper instruction. We figure that out based on the type
of token we parsed. Our front end can now compile Boolean and nil literals to
bytecode. Moving down the execution pipeline, we reach the interpreter.

 case OP_CONSTANT: {
 Value constant = READ_CONSTANT();
 push(constant);
 break;
 }
 case OP_NIL: push(NIL_VAL); break;
 case OP_TRUE: push(BOOL_VAL(true)); break;
 case OP_FALSE: push(BOOL_VAL(false)); break;
 case OP_ADD: BINARY_OP(NUMBER_VAL, +); break;

This is pretty self-explanatory. Each instruction summons the appropriate value
and pushes it onto the stack. We shouldn’t forget our disassembler either.

 case OP_CONSTANT:
 return constantInstruction("OP_CONSTANT", chunk, offset);
 case OP_NIL:
 return simpleInstruction("OP_NIL", offset);
 case OP_TRUE:
 return simpleInstruction("OP_TRUE", offset);
 case OP_FALSE:
 return simpleInstruction("OP_FALSE", offset);
 case OP_ADD:

With this in place, we can run this Earth-shattering program:

true

Except that when the interpreter tries to print the result, it blows up. We need to
extend printValue() to handle the new types too:

void printValue(Value value) {
 switch (value.type) {
 case VAL_BOOL:
 printf(AS_BOOL(value) ? "true" : "false");
 break;
 case VAL_NIL: printf("nil"); break;
 case VAL_NUMBER: printf("%g", AS_NUMBER(value)); break;
 }
}

There we go! Now we have some new types. They just aren’t very useful yet. Aside
from the literals, you can’t really do anything with them. It will be a while before
nil comes into play, but we can start putting Booleans to work in the logical
operators.

debug.c
in disassembleInstruction()

value.c
in printValue()
replace 1 line

vm.c
in run()

336 cHAPTeR 18 : TyPes of VAlues

18.4.1 Logical not and falsiness

The simplest logical operator is our old exclamatory friend unary not.

print !true; // "false"

This new operation gets a new instruction.

 OP_DIVIDE,
 OP_NOT,
 OP_NEGATE,

We can reuse the unary() parser function we wrote for unary negation to com-
pile a not expression. We just need to slot it into the parsing table.

 [TOKEN_STAR] = {NULL, binary, PREC_FACTOR},
 [TOKEN_BANG] = {unary, NULL, PREC_NONE},
 [TOKEN_BANG_EQUAL] = {NULL, NULL, PREC_NONE},

Because I knew we were going to do this, the unary() function already has a
switch on the token type to figure out which bytecode instruction to output. We
merely add another case.

 switch (operatorType) {
 case TOKEN_BANG: emitByte(OP_NOT); break;
 case TOKEN_MINUS: emitByte(OP_NEGATE); break;
 default: return; // Unreachable.
 }

That’s it for the front end. Let’s head over to the VM and conjure this instruction
into life.

 case OP_DIVIDE: BINARY_OP(NUMBER_VAL, /); break;
 case OP_NOT:
 push(BOOL_VAL(isFalsey(pop())));
 break;
 case OP_NEGATE:

Like our previous unary operator, it pops the one operand, performs the opera-
tion, and pushes the result. And, as we did there, we have to worry about dynam-
ic typing. Taking the logical not of true is easy, but there’s nothing preventing
an unruly programmer from writing something like this:

print !nil;

For unary minus, we made it an error to negate anything that isn’t a number.
But Lox, like most scripting languages, is more permissive when it comes to !
and other contexts where a Boolean is expected. The rule for how other types are
handled is called “falsiness”, and we implement it here:

chunk.h
in enum OpCode

compiler.c
replace 1 line

compiler.c
in unary()

vm.c
in run()

Now I can’t help but try to figure out what
it would mean to negate other types of
values. nil is probably its own negation,
sort of like a weird pseudo-zero. Negating
a string could, uh, reverse it?

18.4.1 logIcAl noT And fAlsIness 337

static bool isFalsey(Value value) {
 return IS_NIL(value) || (IS_BOOL(value) && !AS_BOOL(value));
}

Lox follows Ruby in that nil and false are falsey and every other value be-
haves like true. We’ve got a new instruction we can generate, so we also need to
be able to ungenerate it in the disassembler.

 case OP_DIVIDE:
 return simpleInstruction("OP_DIVIDE", offset);
 case OP_NOT:
 return simpleInstruction("OP_NOT", offset);
 case OP_NEGATE:

18.4.2 Equality and comparison operators

That wasn’t too bad. Let’s keep the momentum going and knock out the equality
and comparison operators too: ==, !=, <, >, <=, and >=. That covers all of the
operators that return Boolean results except the logical operators and and or.
Since those need to short-circuit (basically do a little control flow) we aren’t
ready for them yet.

Here are the new instructions for those operators:

 OP_FALSE,
 OP_EQUAL,
 OP_GREATER,
 OP_LESS,
 OP_ADD,

Wait, only three? What about !=, <=, and >=? We could create instructions for
those too. Honestly, the VM would execute faster if we did, so we should do that
if the goal is performance.

But my main goal is to teach you about bytecode compilers. I want you to start
internalizing the idea that the bytecode instructions don’t need to closely follow
the user’s source code. The VM has total freedom to use whatever instruction set
and code sequences it wants as long as they have the right user-visible behavior.

The expression a != b has the same semantics as !(a == b), so the com-
piler is free to compile the former as if it were the latter. Instead of a dedicated
OP_NOT_EQUAL instruction, it can output an OP_EQUAL followed by an OP_NOT.
Likewise, a <= b is the same as !(a > b) and a >= b is !(a < b). Thus, we
only need three new instructions.

Over in the parser, though, we do have six new operators to slot into the parse
table. We use the same binary() parser function from before. Here’s the row
for !=:

 [TOKEN_BANG] = {unary, NULL, PREC_NONE},
 [TOKEN_BANG_EQUAL] = {NULL, binary, PREC_EQUALITY},
 [TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},

vm.c
add after peek()

debug.c
in disassembleInstruction()

chunk.h
in enum OpCode

Is a <= b always the same as
!(a > b)? According to IEEE 754,
all comparison operators return false
when an operand is NaN. That means
NaN <= 1 is false and NaN > 1 is
also false. But our desugaring assumes the
latter is always the negation of the former.

For the book, we won’t get hung up on
this, but these kinds of details will matter
in your real language implementations.

compiler.c
replace 1 line

338 cHAPTeR 18 : TyPes of VAlues

The remaining five operators are a little farther down in the table.

 [TOKEN_EQUAL] = {NULL, NULL, PREC_NONE},
 [TOKEN_EQUAL_EQUAL] = {NULL, binary, PREC_EQUALITY},
 [TOKEN_GREATER] = {NULL, binary, PREC_COMPARISON},
 [TOKEN_GREATER_EQUAL] = {NULL, binary, PREC_COMPARISON},
 [TOKEN_LESS] = {NULL, binary, PREC_COMPARISON},
 [TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
 [TOKEN_IDENTIFIER] = {NULL, NULL, PREC_NONE},

Inside binary() we already have a switch to generate the right bytecode for
each token type. We add cases for the six new operators.

 switch (operatorType) {
 case TOKEN_BANG_EQUAL: emitBytes(OP_EQUAL, OP_NOT); break;
 case TOKEN_EQUAL_EQUAL: emitByte(OP_EQUAL); break;
 case TOKEN_GREATER: emitByte(OP_GREATER); break;
 case TOKEN_GREATER_EQUAL: emitBytes(OP_LESS, OP_NOT); break;
 case TOKEN_LESS: emitByte(OP_LESS); break;
 case TOKEN_LESS_EQUAL: emitBytes(OP_GREATER, OP_NOT); break;
 case TOKEN_PLUS: emitByte(OP_ADD); break;

The ==, <, and > operators output a single instruction. The others output a pair
of instructions, one to evalute the inverse operation, and then an OP_NOT to flip
the result. Six operators for the price of three instructions!

That means over in the VM, our job is simpler. Equality is the most general
operation.

 case OP_FALSE: push(BOOL_VAL(false)); break;
 case OP_EQUAL: {
 Value b = pop();
 Value a = pop();
 push(BOOL_VAL(valuesEqual(a, b)));
 break;
 }
 case OP_ADD: BINARY_OP(NUMBER_VAL, +); break;

You can evaluate == on any pair of objects, even objects of different types.
There’s enough complexity that it makes sense to shunt that logic over to a sep-
arate function. That function always returns a C bool, so we can safely wrap
the result in a BOOL_VAL. The function relates to Values, so it lives over in the
“value” module.

} ValueArray;

bool valuesEqual(Value a, Value b);
void initValueArray(ValueArray* array);

And here’s the implementation:

compiler.c
replace 5 lines

compiler.c
in binary()

vm.c
in run()

value.h
add after struct ValueArray

18.4.2 equAlITy And comPARIson oPeRAToRs 339

bool valuesEqual(Value a, Value b) {
 if (a.type != b.type) return false;
 switch (a.type) {
 case VAL_BOOL: return AS_BOOL(a) == AS_BOOL(b);
 case VAL_NIL: return true;
 case VAL_NUMBER: return AS_NUMBER(a) == AS_NUMBER(b);
 default: return false; // Unreachable.
 }
}

First, we check the types. If the Values have different types, they are definitely
not equal. Otherwise, we unwrap the two Values and compare them directly.

For each value type, we have a separate case that handles comparing the value
itself. Given how similar the cases are, you might wonder why we can’t simply
memcmp() the two Value structs and be done with it. The problem is that because
of padding and different-sized union fields, a Value contains unused bits. C gives
no guarantee about what is in those, so it’s possible that two equal Values actual-
ly differ in memory that isn’t used.

(You wouldn’t believe how much pain I went through before learning this fact.)
Anyway, as we add more types to clox, this function will grow new cases. For

now, these three are sufficient. The other comparison operators are easier since
they work only on numbers.

 push(BOOL_VAL(valuesEqual(a, b)));
 break;
 }
 case OP_GREATER: BINARY_OP(BOOL_VAL, >); break;
 case OP_LESS: BINARY_OP(BOOL_VAL, <); break;
 case OP_ADD: BINARY_OP(NUMBER_VAL, +); break;

We already extended the BINARY_OP macro to handle operators that return
non-numeric types. Now we get to use that. We pass in BOOL_VAL since the re-
sult value type is Boolean. Otherwise, it’s no different from plus or minus.

As always, the coda to today’s aria is disassembling the new instructions.

 case OP_FALSE:
 return simpleInstruction("OP_FALSE", offset);
 case OP_EQUAL:
 return simpleInstruction("OP_EQUAL", offset);

value.c
add after printValue()

Some languages have “implicit
conversions” where values of different
types may be considered equal if one
can be converted to the other’s type. For
example, the number 0 is equivalent to
the string “0” in JavaScript. This looseness
was a large enough source of pain that
JS added a separate “strict equality”
operator, ===.

PHP considers the strings “1” and “01”
to be equivalent because both can be
converted to equivalent numbers, though
the ultimate reason is because PHP was
designed by a Lovecraftian eldritch god to
destroy the mind.

Most dynamically typed languages that
have separate integer and floating-point
number types consider values of different
number types equal if the numeric values
are the same (so, say, 1.0 is equal to 1),
though even that seemingly innocuous
convenience can bite the unwary.

vm.c
in run()

debug.c
in disassembleInstruction()

continued on next page . . .

340 cHAPTeR 18 : TyPes of VAlues

 case OP_GREATER:
 return simpleInstruction("OP_GREATER", offset);
 case OP_LESS:
 return simpleInstruction("OP_LESS", offset);
 case OP_ADD:

With that, our numeric calculator has become something closer to a general
expression evaluator. Fire up clox and type in:

!(5 - 4 > 3 * 2 == !nil)

OK, I’ll admit that’s maybe not the most useful expression, but we’re making
progress. We have one missing built-in type with its own literal form: strings.
Those are much more complex because strings can vary in size. That tiny differ-
ence turns out to have implications so large that we give strings their very own
chapter.

CHaLLENGES

1. We could reduce our binary operators even further than we did here. Which
other instructions can you eliminate, and how would the compiler cope with
their absence?

2. Conversely, we can improve the speed of our bytecode VM by adding more spe-
cific instructions that correspond to higher-level operations. What instructions
would you define to speed up the kind of user code we added support for in this
chapter?

. . . from previous page

A byTecode VIRTuAl mAcHIne 19Strings

“‘Ah? A small aversion to menial labor?’ The doctor cocked an eyebrow.
‘Understandable, but misplaced. One should treasure those hum-
drum tasks that keep the body occupied but leave the mind and heart
unfettered.’”

— Tad Williams, The Dragonbone Chair

Our little VM can represent three types of values right now: numbers, Booleans,
and nil. Those types have two important things in common: they’re immutable
and they’re small. Numbers are the largest, and they still fit into two 64-bit
words. That’s a small enough price that we can afford to pay it for all values, even
Booleans and nils which don’t need that much space.

Strings, unfortunately, are not so petite. There’s no maximum length for a
string. Even if we were to artificially cap it at some contrived limit like 255 char-
acters, that’s still too much memory to spend on every single value.

We need a way to support values whose sizes vary, sometimes greatly. This is
exactly what dynamic allocation on the heap is designed for. We can allocate as
many bytes as we need. We get back a pointer that we’ll use to keep track of the
value as it flows through the VM.

UCSD Pascal, one of the first implemen-
tations of Pascal, had this exact limit.
Instead of using a terminating null byte to
indicate the end of the string like C, Pascal
strings started with a length value. Since
UCSD used only a single byte to store the
length, strings couldn’t be any longer than
255 characters.

342 cHAPTeR 19 : sTRIngs

19.1 Values and Objects
Using the heap for larger, variable-sized values and the stack for smaller, atomic
ones leads to a two-level representation. Every Lox value that you can store in a
variable or return from an expression will be a Value. For small, fixed-size types
like numbers, the payload is stored directly inside the Value struct itself.

If the object is larger, its data lives on the heap. Then the Value’s payload is a
pointer to that blob of memory. We’ll eventually have a handful of heap-allocated
types in clox: strings, instances, functions, you get the idea. Each type has its
own unique data, but there is also state they all share that our future garbage
collector will use to manage their memory.

We’ll call this common representation “Obj”. Each Lox value whose state lives on
the heap is an Obj. We can thus use a single new ValueType case to refer to all
heap-allocated types.

 VAL_NUMBER,
 VAL_OBJ
} ValueType;

When a Value’s type is VAL_OBJ, the payload is a pointer to the heap memory, so
we add another case to the union for that.

 double number;
 Obj* obj;
 } as;

As we did with the other value types, we crank out a couple of helpful macros for
working with Obj values.

#define IS_NUMBER(value) ((value).type == VAL_NUMBER)
#define IS_OBJ(value) ((value).type == VAL_OBJ)

#define AS_BOOL(value) ((value).as.boolean)

This evaluates to true if the given Value is an Obj. If so, we can use this:

“Obj” is short for “object”, natch.

value.h
in enum ValueType

value.h
in struct Value

value.h
add after struct Value

19.1 VAlues And obJecTs 343

#define IS_OBJ(value) ((value).type == VAL_OBJ)

#define AS_OBJ(value) ((value).as.obj)
#define AS_BOOL(value) ((value).as.boolean)

It extracts the Obj pointer from the value. We can also go the other way.

#define NUMBER_VAL(value) ((Value){VAL_NUMBER, {.number = value}})
#define OBJ_VAL(object) ((Value){VAL_OBJ, {.obj = (Obj*)object}})

typedef struct {

This takes a bare Obj pointer and wraps it in a full Value.

19.2 Struct Inheritance
Every heap-allocated value is an Obj, but Objs are not all the same. For strings,
we need the array of characters. When we get to instances, they will need their
data fields. A function object will need its chunk of bytecode. How do we handle
different payloads and sizes? We can’t use another union like we did for Value
since the sizes are all over the place.

Instead, we’ll use another technique. It’s been around for ages, to the point
that the C specification carves out specific support for it, but I don’t know that
it has a canonical name. It’s an example of type punning, but that term is too
broad. In the absence of any better ideas, I’ll call it struct inheritance, because
it relies on structs and roughly follows how single-inheritance of state works in
object-oriented languages.

Like a tagged union, each Obj starts with a tag field that identifies what kind of
object it is—string, instance, etc. Following that are the payload fields. Instead of
a union with cases for each type, each type is its own separate struct. The tricky
part is how to treat these structs uniformly since C has no concept of inheritance
or polymorphism. I’ll explain that soon, but first lets get the preliminary stuff
out of the way.

The name “Obj” itself refers to a struct that contains the state shared across all
object types. It’s sort of the “base class” for objects. Because of cyclic dependen-
cies between values and objects, we forward-declare it in the “value” module.

#include "common.h"

typedef struct Obj Obj;

typedef enum {

And the actual definition is in a new module.

#ifndef clox_object_h
#define clox_object_h

#include "common.h"
#include "value.h"

value.h

value.h

No, I don’t know how to pronounce “objs”
either. Feels like there should be a vowel
in there somewhere.

value.h

object.h
create new file

continued on next page . . .

344 cHAPTeR 19 : sTRIngs

struct Obj {
 ObjType type;
};

#endif

Right now, it contains only the type tag. Shortly, we’ll add some other bookkeep-
ing information for memory management. The type enum is this:

#include "value.h"

typedef enum {
 OBJ_STRING,
} ObjType;

struct Obj {

Obviously, that will be more useful in later chapters after we add more heap-al-
located types. Since we’ll be accessing these tag types frequently, it’s worth mak-
ing a little macro that extracts the object type tag from a given Value.

#include "value.h"

#define OBJ_TYPE(value) (AS_OBJ(value)->type)

typedef enum {

That’s our foundation.
Now, let’s build strings on top of it. The payload for strings is defined in a

separate struct. Again, we need to forward-declare it.

typedef struct Obj Obj;
typedef struct ObjString ObjString;

typedef enum {

The definition lives alongside Obj.

};

struct ObjString {
 Obj obj;
 int length;
 char* chars;
};

#endif

A string object contains an array of characters. Those are stored in a separate,
heap-allocated array so that we set aside only as much room as needed for each
string. We also store the number of bytes in the array. This isn’t strictly necessary

. . . from previous page

object.h

object.h

value.h

object.h
add after struct Obj

19.2 sTRucT InHeRITAnce 345

but lets us tell how much memory is allocated for the string without walking the
character array to find the null terminator.

Because ObjString is an Obj, it also needs the state all Objs share. It accom-
plishes that by having its first field be an Obj. C specifies that struct fields are
arranged in memory in the order that they are declared. Also, when you nest
structs, the inner struct’s fields are expanded right in place. So the memory for
Obj and for ObjString looks like this:

Note how the first bytes of ObjString exactly line up with Obj. This is not a coin-
cidence—C mandates it. This is designed to enable a clever pattern: You can take
a pointer to a struct and safely convert it to a pointer to its first field and back.

Given an ObjString*, you can safely cast it to Obj* and then access the
type field from it. Every ObjString “is” an Obj in the OOP sense of “is”. When
we later add other object types, each struct will have an Obj as its first field. Any
code that wants to work with all objects can treat them as base Obj* and ignore
any other fields that may happen to follow.

You can go in the other direction too. Given an Obj*, you can “downcast” it to
an ObjString*. Of course, you need to ensure that the Obj* pointer you have
does point to the obj field of an actual ObjString. Otherwise, you are unsafely
reinterpreting random bits of memory. To detect that such a cast is safe, we add
another macro.

#define OBJ_TYPE(value) (AS_OBJ(value)->type)

#define IS_STRING(value) isObjType(value, OBJ_STRING)

typedef enum {

It takes a Value, not a raw Obj* because most code in the VM works with Values.
It relies on this inline function:

};

static inline bool isObjType(Value value, ObjType type) {
 return IS_OBJ(value) && AS_OBJ(value)->type == type;
}

#endif

Pop quiz: Why not just put the body of this function right in the macro? What’s

The key part of the spec is:

§ 6.7.2.1 13 – Within a structure object,
the non-bit-field members and the units
in which bit-fields reside have addresses
that increase in the order in which they
are declared. A pointer to a structure
object, suitably converted, points to its
initial member (or if that member is a bit-
field, then to the unit in which it resides),
and vice versa. There may be unnamed
padding within a structure object, but not
at its beginning.

object.h

object.h
add after struct ObjString

346 cHAPTeR 19 : sTRIngs

different about this one compared to the others? Right, it’s because the body uses
value twice. A macro is expanded by inserting the argument expression every
place the parameter name appears in the body. If a macro uses a parameter more
than once, that expression gets evaluated multiple times.

That’s bad if the expression has side effects. If we put the body of isObjType()
into the macro definition and then you did, say,

IS_STRING(POP())

then it would pop two values off the stack! Using a function fixes that.
As long as we ensure that we set the type tag correctly whenever we create an

Obj of some type, this macro will tell us when it’s safe to cast a value to a specific
object type. We can do that using these:

#define IS_STRING(value) isObjType(value, OBJ_STRING)

#define AS_STRING(value) ((ObjString*)AS_OBJ(value))
#define AS_CSTRING(value) (((ObjString*)AS_OBJ(value))->chars)

typedef enum {

These two macros take a Value that is expected to contain a pointer to a valid
ObjString on the heap. The first one returns the ObjString* pointer. The sec-
ond one steps through that to return the character array itself, since that’s often
what we’ll end up needing.

19.3 Strings
OK, our VM can now represent string values. It’s time to add strings to the lan-
guage itself. As usual, we begin in the front end. The lexer already tokenizes
string literals, so it’s the parser’s turn.

 [TOKEN_IDENTIFIER] = {NULL, NULL, PREC_NONE},
 [TOKEN_STRING] = {string, NULL, PREC_NONE},
 [TOKEN_NUMBER] = {number, NULL, PREC_NONE},

When the parser hits a string token, it calls this parse function:

static void string() {
 emitConstant(OBJ_VAL(copyString(parser.previous.start + 1,
 parser.previous.length - 2)));
}

This takes the string’s characters directly from the lexeme. The + 1 and - 2
parts trim the leading and trailing quotation marks. It then creates a string ob-
ject, wraps it in a Value, and stuffs it into the constant table.

To create the string, we use copyString(), which is declared in object.h.

object.h

compiler.c
replace 1 line

If Lox supported string escape sequences
like \n, we’d translate those here. Since
it doesn’t, we can take the characters as
they are.

compiler.c
add after number()

19.3 sTRIngs 347

};

ObjString* copyString(const char* chars, int length);

static inline bool isObjType(Value value, ObjType type) {

The compiler module needs to include that.

#define clox_compiler_h

#include "object.h"
#include "vm.h"

Our “object” module gets an implementation file where we define the new func-
tion.

#include <stdio.h>
#include <string.h>

#include "memory.h"
#include "object.h"
#include "value.h"
#include "vm.h"

ObjString* copyString(const char* chars, int length) {
 char* heapChars = ALLOCATE(char, length + 1);
 memcpy(heapChars, chars, length);
 heapChars[length] = '\0';
 return allocateString(heapChars, length);
}

First, we allocate a new array on the heap, just big enough for the string’s char-
acters and the trailing terminator, using this low-level macro that allocates an
array with a given element type and count:

#include "common.h"

#define ALLOCATE(type, count) \
 (type*)reallocate(NULL, 0, sizeof(type) * (count))

#define GROW_CAPACITY(capacity) \

Once we have the array, we copy over the characters from the lexeme and ter-
minate it.

You might wonder why the ObjString can’t just point back to the original
characters in the source string. Some ObjStrings will be created dynamically at
runtime as a result of string operations like concatenation. Those strings obvi-
ously need to dynamically allocate memory for the characters, which means the
string needs to free that memory when it’s no longer needed.

If we had an ObjString for a string literal, and tried to free its character array
that pointed into the original source code string, bad things would happen. So,
for literals, we preemptively copy the characters over to the heap. This way, ev-

object.h
add after struct ObjString

compiler.h

object.c
create new file

We need to terminate the string ourselves
because the lexeme points at a range of
characters inside the monolithic source
string and isn’t terminated.

Since ObjString stores the length
explicitly, we could leave the character
array unterminated, but slapping a
terminator on the end costs us only a byte
and lets us pass the character array to C
standard library functions that expect a
terminated string.

memory.h

348 cHAPTeR 19 : sTRIngs

ery ObjString reliably owns its character array and can free it.
The real work of creating a string object happens in this function:

#include "vm.h"

static ObjString* allocateString(char* chars, int length) {
 ObjString* string = ALLOCATE_OBJ(ObjString, OBJ_STRING);
 string->length = length;
 string->chars = chars;
 return string;
}

It creates a new ObjString on the heap and then initializes its fields. It’s sort of
like a constructor in an OOP language. As such, it first calls the “base class” con-
structor to initialize the Obj state, using a new macro.

#include "vm.h"

#define ALLOCATE_OBJ(type, objectType) \
 (type*)allocateObject(sizeof(type), objectType)

static ObjString* allocateString(char* chars, int length) {

Like the previous macro, this exists mainly to avoid the need to redundantly cast
a void* back to the desired type. The actual functionality is here:

#define ALLOCATE_OBJ(type, objectType) \
 (type*)allocateObject(sizeof(type), objectType)

static Obj* allocateObject(size_t size, ObjType type) {
 Obj* object = (Obj*)reallocate(NULL, 0, size);
 object->type = type;
 return object;
}

static ObjString* allocateString(char* chars, int length) {

It allocates an object of the given size on the heap. Note that the size is not just the
size of Obj itself. The caller passes in the number of bytes so that there is room
for the extra payload fields needed by the specific object type being created.

Then it initializes the Obj state—right now, that’s just the type tag. This func-
tion returns to allocateString(), which finishes initializing the ObjString
fields. Voilà, we can compile and execute string literals.

19.4 Operations on Strings
Our fancy strings are there, but they don’t do much of anything yet. A good first
step is to make the existing print code not barf on the new value type.

object.c

object.c

object.c

I admit this chapter has a sea of helper
functions and macros to wade through.
I try to keep the code nicely factored,
but that leads to a scattering of tiny
functions. They will pay off when we reuse
them later.

Don’t get “voilà” confused with “viola”.
One means “there it is” and the other is a
string instrument, the middle child
between a violin and a cello. Yes, I did
spend two hours drawing a viola just to
mention that.

19.4 oPeRATIons on sTRIngs 349

 case VAL_NUMBER: printf("%g", AS_NUMBER(value)); break;
 case VAL_OBJ: printObject(value); break;
 }

If the value is a heap-allocated object, it defers to a helper function over in the
“object” module.

ObjString* copyString(const char* chars, int length);
void printObject(Value value);

static inline bool isObjType(Value value, ObjType type) {

The implementation looks like this:

void printObject(Value value) {
 switch (OBJ_TYPE(value)) {
 case OBJ_STRING:
 printf("%s", AS_CSTRING(value));
 break;
 }
}

We have only a single object type now, but this function will sprout additional
switch cases in later chapters. For string objects, it simply prints the character
array as a C string.

The equality operators also need to gracefully handle strings. Consider:

"string" == "string"

These are two separate string literals. The compiler will make two separate calls
to copyString(), create two distinct ObjString objects and store them as two
constants in the chunk. They are different objects in the heap. But our users (and
thus we) expect strings to have value equality. The above expression should eval-
uate to true. That requires a little special support.

 case VAL_NUMBER: return AS_NUMBER(a) == AS_NUMBER(b);
 case VAL_OBJ: {
 ObjString* aString = AS_STRING(a);
 ObjString* bString = AS_STRING(b);
 return aString->length == bString->length &&
 memcmp(aString->chars, bString->chars,
 aString->length) == 0;
 }
 default: return false; // Unreachable.

If the two values are both strings, then they are equal if their character arrays
contain the same characters, regardless of whether they are two separate objects
or the exact same one. This does mean that string equality is slower than equality
on other types since it has to walk the whole string. We’ll revise that later, but
this gives us the right semantics for now.

Finally, in order to use memcmp() and the new stuff in the “object” module,
we need a couple of includes. Here:

value.c
in printValue()

object.h
add after copyString()

object.c
add after copyString()

I told you terminating the string would
come in handy.

value.c
in valuesEqual()

350 cHAPTeR 19 : sTRIngs

#include <stdio.h>
#include <string.h>

#include "memory.h"

And here:

#include <string.h>

#include "object.h"
#include "memory.h"

19.4.1 Concatenation

Full-grown languages provide lots of operations for working with strings—ac-
cess to individual characters, the string’s length, changing case, splitting, join-
ing, searching, etc. When you implement your language, you’ll likely want all
that. But for this book, we keep things very minimal.

The only interesting operation we support on strings is +. If you use that op-
erator on two string objects, it produces a new string that’s a concatenation of
the two operands. Since Lox is dynamically typed, we can’t tell which behavior
is needed at compile time because we don’t know the types of the operands until
runtime. Thus, the OP_ADD instruction dynamically inspects the operands and
chooses the right operation.

 case OP_LESS: BINARY_OP(BOOL_VAL, <); break;
 case OP_ADD: {
 if (IS_STRING(peek(0)) && IS_STRING(peek(1))) {
 concatenate();
 } else if (IS_NUMBER(peek(0)) && IS_NUMBER(peek(1))) {
 double b = AS_NUMBER(pop());
 double a = AS_NUMBER(pop());
 push(NUMBER_VAL(a + b));
 } else {
 runtimeError(
 "Operands must be two numbers or two strings.");
 return INTERPRET_RUNTIME_ERROR;
 }
 break;
 }
 case OP_SUBTRACT: BINARY_OP(NUMBER_VAL, -); break;

If both operands are strings, it concatenates. If they’re both numbers, it adds
them. Any other combination of operand types is a runtime error.

To concatenate strings, we define a new function.

static void concatenate() {
 ObjString* b = AS_STRING(pop());
 ObjString* a = AS_STRING(pop());

value.c

value.c

vm.c
in run()

replace 1 line

This is more conservative than most
languages. In other languages, if one
operand is a string, the other can be any
type and it will be implicitly converted to
a string before concatenating the two.

I think that’s a fine feature, but would
require writing tedious “convert to string”
code for each type, so I left it out of Lox.

vm.c
add after isFalsey()

continued on next page . . .

19.4.1 concATenATIon 351

 int length = a->length + b->length;
 char* chars = ALLOCATE(char, length + 1);
 memcpy(chars, a->chars, a->length);
 memcpy(chars + a->length, b->chars, b->length);
 chars[length] = '\0';

 ObjString* result = takeString(chars, length);
 push(OBJ_VAL(result));
}

It’s pretty verbose, as C code that works with strings tends to be. First, we calcu-
late the length of the result string based on the lengths of the operands. We allo-
cate a character array for the result and then copy the two halves in. As always,
we carefully ensure the string is terminated.

In order to call memcpy(), the VM needs an include.

#include <stdio.h>
#include <string.h>

#include "common.h"

Finally, we produce an ObjString to contain those characters. This time we use a
new function, takeString().

};

ObjString* takeString(char* chars, int length);
ObjString* copyString(const char* chars, int length);

The implementation looks like this:

ObjString* takeString(char* chars, int length) {
 return allocateString(chars, length);
}

The previous copyString() function assumes it cannot take ownership of the
characters you pass in. Instead, it conservatively creates a copy of the characters
on the heap that the ObjString can own. That’s the right thing for string literals
where the passed-in characters are in the middle of the source string.

But, for concatenation, we’ve already dynamically allocated a character array
on the heap. Making another copy of that would be redundant (and would mean
concatenate() has to remember to free its copy). Instead, this function claims
ownership of the string you give it.

As usual, stitching this functionality together requires a couple of includes.

#include "debug.h"
#include "object.h"
#include "memory.h"
#include "vm.h"

vm.c

object.h
add after struct ObjString

object.c
add after allocateString()

vm.c

. . . from previous page

352 cHAPTeR 19 : sTRIngs

19.5 Freeing Objects
Behold this innocuous-seeming expression:

"st" + "ri" + "ng"

When the compiler chews through this, it allocates an ObjString for each of those
three string literals and stores them in the chunk’s constant table and generates
this bytecode:

0000 OP_CONSTANT 0 "st"
0002 OP_CONSTANT 1 "ri"
0004 OP_ADD
0005 OP_CONSTANT 2 "ng"
0007 OP_ADD
0008 OP_RETURN

The first two instructions push "st" and "ri" onto the stack. Then the OP_ADD
pops those and concatenates them. That dynamically allocates a new "stri"
string on the heap. The VM pushes that and then pushes the "ng" constant. The
last OP_ADD pops "stri" and "ng", concatenates them, and pushes the result:
"string". Great, that’s what we expect.

But, wait. What happened to that "stri" string? We dynamically allocated
it, then the VM discarded it after concatenating it with "ng". We popped it from
the stack and no longer have a reference to it, but we never freed its memory.
We’ve got ourselves a classic memory leak.

Of course, it’s perfectly fine for the Lox program to forget about intermediate
strings and not worry about freeing them. Lox automatically manages memory
on the user’s behalf. The responsibility to manage memory doesn’t disappear.
Instead, it falls on our shoulders as VM implementers.

The full solution is a garbage collector that reclaims unused memory while
the program is running. We’ve got some other stuff to get in place before we’re
ready to tackle that project. Until then, we are living on borrowed time. The lon-
ger we wait to add the collector, the harder it is to do.

Today, we should at least do the bare minimum: avoid leaking memory by
making sure the VM can still find every allocated object even if the Lox program
itself no longer references them. There are many sophisticated techniques that
advanced memory managers use to allocate and track memory for objects. We’re
going to take the simplest practical approach.

We’ll create a linked list that stores every Obj. The VM can traverse that list to
find every single object that has been allocated on the heap, whether or not the
user’s program or the VM’s stack still has a reference to it.

We could define a separate linked list node struct but then we’d have to allo-
cate those too. Instead, we’ll use an intrusive list—the Obj struct itself will be
the linked list node. Each Obj gets a pointer to the next Obj in the chain.

struct Obj {
 ObjType type;
 struct Obj* next;
};

Here’s the stack after each instruction:

I’ve seen a number of people implement
large swathes of their language before
trying to start on the GC. For the kind of
toy programs you typically run while a
language is being developed, you actually
don’t run out of memory before reaching
the end of the program, so this gets you
surprisingly far.

But that underestimates how hard it
is to add a garbage collector later. The
collector must ensure it can find every
bit of memory that is still being used so
that it doesn’t collect live data. There are
hundreds of places a language implemen-
tation can squirrel away a reference to
some object. If you don’t find all of them,
you get nightmarish bugs.

I’ve seen language implementations
die because it was too hard to get the
GC in later. If your language needs GC,
get it working as soon as you can. It’s a
crosscutting concern that touches the
entire codebase.

object.h
in struct Obj

19.5 fReeIng obJecTs 353

The VM stores a pointer to the head of the list.

 Value* stackTop;
 Obj* objects;
} VM;

When we first initialize the VM, there are no allocated objects.

 resetStack();
 vm.objects = NULL;
}

Every time we allocate an Obj, we insert it in the list.

 object->type = type;

 object->next = vm.objects;
 vm.objects = object;
 return object;

Since this is a singly linked list, the easiest place to insert it is as the head. That
way, we don’t need to also store a pointer to the tail and keep it updated.

The “object” module is directly using the global vm variable from the “vm”
module, so we need to expose that externally.

} InterpretResult;

extern VM vm;

void initVM();

Eventually, the garbage collector will free memory while the VM is still running.
But, even then, there will usually be unused objects still lingering in memory
when the user’s program completes. The VM should free those too.

There’s no sophisticated logic for that. Once the program is done, we can free
every object. We can and should implement that now.

void freeVM() {
 freeObjects();
}

That empty function we defined way back when finally does something! It calls
this:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void freeObjects();

#endif

Here’s how we free the objects:

vm.h
in struct VM

vm.c
in initVM()

object.c
in allocateObject()

vm.c
in freeVM()

memory.h
add after reallocate()

vm.h
add after enum InterpretResult

354 cHAPTeR 19 : sTRIngs

void freeObjects() {
 Obj* object = vm.objects;
 while (object != NULL) {
 Obj* next = object->next;
 freeObject(object);
 object = next;
 }
}

This is a CS 101 textbook implementation of walking a linked list and freeing its
nodes. For each node, we call:

static void freeObject(Obj* object) {
 switch (object->type) {
 case OBJ_STRING: {
 ObjString* string = (ObjString*)object;
 FREE_ARRAY(char, string->chars, string->length + 1);
 FREE(ObjString, object);
 break;
 }
 }
}

We aren’t only freeing the Obj itself. Since some object types also allocate other
memory that they own, we also need a little type-specific code to handle each
object type’s special needs. Here, that means we free the character array and
then free the ObjString. Those both use one last memory management macro.

 (type*)reallocate(NULL, 0, sizeof(type) * (count))

#define FREE(type, pointer) reallocate(pointer, sizeof(type), 0)

#define GROW_CAPACITY(capacity) \

It’s a tiny wrapper around reallocate() that “resizes” an allocation down to
zero bytes.

As usual, we need an include to wire everything together.

#include "common.h"
#include "object.h"

#define ALLOCATE(type, count) \

Then in the implementation file:

#include "memory.h"
#include "vm.h"

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {

With this, our VM no longer leaks memory. Like a good C program, it cleans up
its mess before exiting. But it doesn’t free any objects while the VM is running.

memory.h

Going through reallocate() instead
of calling free() directly seems
pointless. But later, having everything go
through reallocate() will make it
easier to keep track of how much memory
is in use.

memory.h

memory.c

memory.c
add after reallocate()

memory.c
add after reallocate()

cHAllenges 355

Later, when it’s possible to write longer-running Lox programs, the VM will eat
more and more memory as it goes, not relinquishing a single byte until the en-
tire program is done.

We won’t address that until we’ve added a real garbage collector, but this is a
big step. We now have the infrastructure to support a variety of different kinds
of dynamically allocated objects. And we’ve used that to add strings to clox, one
of the most used types in most programming languages. Strings in turn enable
us to build another fundamental data type, especially in dynamic languages: the
venerable hash table. But that’s for the next chapter . . . 

CHaLLENGES

1. Each string requires two separate dynamic allocations—one for the ObjString
and a second for the character array. Accessing the characters from a value
requires two pointer indirections, which can be bad for performance. A more
efficient solution relies on a technique called flexible array members. Use that
to store the ObjString and its character array in a single contiguous allocation.

2. When we create the ObjString for each string literal, we copy the characters
onto the heap. That way, when the string is later freed, we know it is safe to free
the characters too.

This is a simpler approach but wastes some memory, which might be a
problem on very constrained devices. Instead, we could keep track of which
ObjStrings own their character array and which are “constant strings” that just
point back to the original source string or some other non-freeable location.
Add support for this.

3. If Lox was your language, what would you have it do when a user tries to use
+ with one string operand and the other some other type? Justify your choice.
What do other languages do?

356 cHAPTeR 19 : sTRIngs

DESIGN NOtE: StrING ENCODING

In this book, I try not to shy away from the gnarly problems you’ll run into in a real lan-
guage implementation. We might not always use the most sophisticated solution—it’s
an intro book after all—but I don’t think it’s honest to pretend the problem doesn’t
exist at all. However, I did skirt around one really nasty conundrum: deciding how to
represent strings.

There are two facets to a string encoding:

• What is a single “character” in a string? How many different values are there
and what do they represent? The first widely adopted standard answer to this was
ASCII. It gave you 127 different character values and specified what they were. It
was great . . . if you only ever cared about English. While it has weird, mostly for-
gotten characters like “record separator” and “synchronous idle”, it doesn’t have
a single umlaut, acute, or grave. It can’t represent “jalapeño”, “naïve”, “Gruyère”, or
“Mötley Crüe”.

Next came Unicode. Initially, it supported 16,384 different characters (code
points), which fit nicely in 16 bits with a couple of bits to spare. Later that grew
and grew, and now there are well over 100,000 different code points including
such vital instruments of human communication as (Unicode Character ‘PILE
OF POO’, U+1F4A9).

Even that long list of code points is not enough to represent each possible vis-
ible glyph a language might support. To handle that, Unicode also has combining
characters that modify a preceding code point. For example, “a” followed by the
combining character “¨” gives you “ä”. (To make things more confusing Unicode also
has a single code point that looks like “ä”.)

If a user accesses the fourth “character” in “naïve”, do they expect to get back
“v” or “¨”? The former means they are thinking of each code point and its combining
character as a single unit—what Unicode calls an extended grapheme cluster—
the latter means they are thinking in individual code points. Which do your users
expect?

• How is a single unit represented in memory? Most systems using ASCII gave a
single byte to each character and left the high bit unused. Unicode has a handful
of common encodings. UTF-16 packs most code points into 16 bits. That was great
when every code point fit in that size. When that overflowed, they added surrogate
pairs that use multiple 16-bit code units to represent a single code point. UTF-32 is
the next evolution of UTF-16—it gives a full 32 bits to each and every code point.

UTF-8 is more complex than either of those. It uses a variable number of bytes
to encode a code point. Lower-valued code points fit in fewer bytes. Since each
character may occupy a different number of bytes, you can’t directly index into the
string to find a specific code point. If you want, say, the 10th code point, you don’t
know how many bytes into the string that is without walking and decoding all of
the preceding ones.

Choosing a character representation and encoding involves fundamental trade-offs.
Like many things in engineering, there’s no perfect solution:

• ASCII is memory efficient and fast, but it kicks non-Latin languages to the side.

• UTF-32 is fast and supports the whole Unicode range, but wastes a lot of memory
given that most code points do tend to be in the lower range of values, where a full

It goes without saying that a language
that does not let one discuss Gruyère
or Mötley Crüe is a language not worth
using.

An example of how difficult this problem
is comes from Python. The achingly long
transition from Python 2 to 3 is painful
mostly because of its changes around
string encoding.

desIgn noTe: sTRIng encodIng 357

32 bits aren’t needed.

• UTF-8 is memory efficient and supports the whole Unicode range, but its vari-
able-length encoding makes it slow to access arbitrary code points.

• UTF-16 is worse than all of them—an ugly consequence of Unicode outgrowing
its earlier 16-bit range. It’s less memory efficient than UTF-8 but is still a vari-
able-length encoding thanks to surrogate pairs. Avoid it if you can. Alas, if your
language needs to run on or interoperate with the browser, the JVM, or the CLR,
you might be stuck with it, since those all use UTF-16 for their strings and you don’t
want to have to convert every time you pass a string to the underlying system.

One option is to take the maximal approach and do the “rightest” thing. Support all
the Unicode code points. Internally, select an encoding for each string based on its
contents—use ASCII if every code point fits in a byte, UTF-16 if there are no surrogate
pairs, etc. Provide APIs to let users iterate over both code points and extended graph-
eme clusters.

This covers all your bases but is really complex. It’s a lot to implement, debug, and
optimize. When serializing strings or interoperating with other systems, you have
to deal with all of the encodings. Users need to understand the two indexing APIs
and know which to use when. This is the approach that newer, big languages tend to
take—like Raku and Swift.

A simpler compromise is to always encode using UTF-8 and only expose an API that
works with code points. For users that want to work with grapheme clusters, let them
use a third-party library for that. This is less Latin-centric than ASCII but not much
more complex. You lose fast direct indexing by code point, but you can usually live
without that or afford to make it O(n) instead of O(1).

If I were designing a big workhorse language for people writing large applications,
I’d probably go with the maximal approach. For my little embedded scripting language
Wren, I went with UTF-8 and code points.

A byTecode VIRTuAl mAcHIne 20Hash tables

“Hash, x. There is no definition for this word—nobody knows what
hash is.”

— Ambrose Bierce, The Unabridged Devil’s Dictionary

Before we can add variables to our burgeoning virtual machine, we need some
way to look up a value given a variable’s name. Later, when we add classes, we’ll
also need a way to store fields on instances. The perfect data structure for these
problems and others is a hash table.

You probably already know what a hash table is, even if you don’t know it
by that name. If you’re a Java programmer, you call them “HashMaps”. C# and
Python users call them “dictionaries”. In C++, it’s an “unordered map”. “Objects”
in JavaScript and “tables” in Lua are hash tables under the hood, which is what
gives them their flexibility.

A hash table, whatever your language calls it, associates a set of keys with a
set of values. Each key/value pair is an entry in the table. Given a key, you can
look up its corresponding value. You can add new key/value pairs and remove
entries by key. If you add a new value for an existing key, it replaces the previous
entry.

360 cHAPTeR 20 : HAsH TAbles

Hash tables appear in so many languages because they are incredibly power-
ful. Much of this power comes from one metric: given a key, a hash table returns
the corresponding value in constant time, regardless of how many keys are in the
hash table.

That’s pretty remarkable when you think about it. Imagine you’ve got a big
stack of business cards and I ask you to find a certain person. The bigger the
pile is, the longer it will take. Even if the pile is nicely sorted and you’ve got the
manual dexterity to do a binary search by hand, you’re still talking O(log n). But
with a hash table, it takes the same time to find that business card when the
stack has ten cards as when it has a million.

20.1 an array of Buckets
A complete, fast hash table has a couple of moving parts. I’ll introduce them
one at a time by working through a couple of toy problems and their solutions.
Eventually, we’ll build up to a data structure that can associate any set of names
with their values.

For now, imagine if Lox was a lot more restricted in variable names. What
if a variable’s name could only be a single lowercase letter. How could we very
efficiently represent a set of variable names and their values?

With only 26 possible variables (27 if you consider underscore a “letter”, I
guess), the answer is easy. Declare a fixed-size array with 26 elements. We’ll
follow tradition and call each element a bucket. Each represents a variable with
a starting at index zero. If there’s a value in the array at some letter’s index, then
that key is present with that value. Otherwise, the bucket is empty and that key/
value pair isn’t in the data structure.

Memory usage is great—just a single, reasonably sized array. There’s some
waste from the empty buckets, but it’s not huge. There’s no overhead for node
pointers, padding, or other stuff you’d get with something like a linked list or
tree.

Performance is even better. Given a variable name—its character—you can
subtract the ASCII value of a and use the result to index directly into the array.
Then you can either look up the existing value or store a new value directly into
that slot. It doesn’t get much faster than that.

This is sort of our Platonic ideal data structure. Lightning fast, dead simple,
and compact in memory. As we add support for more complex keys, we’ll have to
make some concessions, but this is what we’re aiming for. Even once you add in
hash functions, dynamic resizing, and collision resolution, this is still the core
of every hash table out there—a contiguous array of buckets that you index
directly into.

20.1.1 Load factor and wrapped keys

Confining Lox to single-letter variables would make our job as implementers
easier, but it’s probably no fun programming in a language that gives you only
26 storage locations. What if we loosened it a little and allowed variables up to
eight characters long?

More specifically, the average-case lookup
time is constant. Worst-case performance
can be, well, worse. In practice, it’s easy
to avoid degenerate behavior and stay on
the happy path.

Stuff all those cards in a Rolodex—does
anyone even remember those things
anymore?—with dividers for each letter,
and you improve your speed dramatically.
As we’ll see, that’s not too far from the
trick a hash table uses.

This limitation isn’t too far-fetched. The
initial versions of BASIC out of Dartmouth
allowed variable names to be only a single
letter followed by one optional digit.

Again, this restriction isn’t so crazy.
Early linkers for C treated only the first
six characters of external identifiers as
meaningful. Everything after that was
ignored. If you’ve ever wondered why
the C standard library is so enamored
of abbreviation—looking at you,
strncmp()—it turns out it wasn’t
entirely because of the small screens (or
teletypes!) of the day.

20.1 An ARRAy of buckeTs 361

That’s small enough that we can pack all eight characters into a 64-bit integer
and easily turn the string into a number. We can then use it as an array index.
Or, at least, we could if we could somehow allocate a 295,148 petabyte array.
Memory’s gotten cheaper over time, but not quite that cheap. Even if we could
make an array that big, it would be heinously wasteful. Almost every bucket
would be empty unless users started writing way bigger Lox programs than
we’ve anticipated.

Even though our variable keys cover the full 64-bit numeric range, we clear-
ly don’t need an array that large. Instead, we allocate an array with more than
enough capacity for the entries we need, but not unreasonably large. We map the
full 64-bit keys down to that smaller range by taking the value modulo the size of
the array. Doing that essentially folds the larger numeric range onto itself until it
fits the smaller range of array elements.

For example, say we want to store “bagel”. We allocate an array with eight
elements, plenty enough to store it and more later. We treat the key string as a
64-bit integer. On a little-endian machine like Intel, packing those characters
into a 64-bit word puts the first letter, “b” (ASCII value 98), in the least-signif-
icant byte. We take that integer modulo the array size (8) to fit it in the bounds
and get a bucket index, 2. Then we store the value there as usual.

Using the array size as a modulus lets us map the key’s numeric range down to
fit an array of any size. We can thus control the number of buckets independent-
ly of the key range. That solves our waste problem, but introduces a new one.
Any two variables whose key number has the same remainder when divided by
the array size will end up in the same bucket. Keys can collide. For example, if
we try to add “jam”, it also ends up in bucket 2.

We have some control over this by tuning the array size. The bigger the array, the

I’m using powers of two for the array
sizes here, but they don’t need to be.
Some styles of hash tables work best with
powers of two, including the one we’ll
build in this book. Others prefer prime
number array sizes or have other rules.

362 cHAPTeR 20 : HAsH TAbles

fewer the indexes that get mapped to the same bucket and the fewer the colli-
sions that are likely to occur. Hash table implementers track this collision likeli-
hood by measuring the table’s load factor. It’s defined as the number of entries
divided by the number of buckets. So a hash table with five entries and an array
of 16 elements has a load factor of 0.3125. The higher the load factor, the greater
the chance of collisions.

One way we mitigate collisions is by resizing the array. Just like the dynamic
arrays we implemented earlier, we reallocate and grow the hash table’s array as
it fills up. Unlike a regular dynamic array, though, we won’t wait until the array
is full. Instead, we pick a desired load factor and grow the array when it goes
over that.

20.2 Collision resolution
Even with a very low load factor, collisions can still occur. The birthday paradox
tells us that as the number of entries in the hash table increases, the chance of
collision increases very quickly. We can pick a large array size to reduce that,
but it’s a losing game. Say we wanted to store a hundred items in a hash table.
To keep the chance of collision below a still-pretty-high 10%, we need an array
with at least 47,015 elements. To get the chance below 1% requires an array with
492,555 elements, over 4,000 empty buckets for each one in use.

A low load factor can make collisions rarer, but the pigeonhole principle tells
us we can never eliminate them entirely. If you’ve got five pet pigeons and four
holes to put them in, at least one hole is going to end up with more than one pi-
geon. With 18,446,744,073,709,551,616 different variable names, any reasonably
sized array can potentially end up with multiple keys in the same bucket.

Thus we still have to handle collisions gracefully when they occur. Users don’t
like it when their programming language can look up variables correctly only
most of the time.

20.2.1 Separate chaining

Techniques for resolving collisions fall into two broad categories. The first is
separate chaining. Instead of each bucket containing a single entry, we let it
contain a collection of them. In the classic implementation, each bucket points
to a linked list of entries. To look up an entry, you find its bucket and then walk
the list until you find an entry with the matching key.

Put these two funny-named mathe-
matical rules together and you get this
observation: Take a birdhouse containing
365 pigeonholes, and use each pigeon’s
birthday to assign it to a pigeonhole. You’ll
need only about 26 randomly chosen
pigeons before you get a greater than 50%
chance of two pigeons in the same box.

20.2 collIsIon ResoluTIon 363

In catastrophically bad cases where every entry collides in the same bucket, the
data structure degrades into a single unsorted linked list with O(n) lookup. In
practice, it’s easy to avoid that by controlling the load factor and how entries get
scattered across buckets. In typical separate-chained hash tables, it’s rare for a
bucket to have more than one or two entries.

Separate chaining is conceptually simple—it’s literally an array of linked
lists. Most operations are straightforward to implement, even deletion which,
as we’ll see, can be a pain. But it’s not a great fit for modern CPUs. It has a lot of
overhead from pointers and tends to scatter little linked list nodes around in
memory which isn’t great for cache usage.

20.2.2 Open addressing

The other technique is called open addressing or (confusingly) closed hashing.
With this technique, all entries live directly in the bucket array, with one entry
per bucket. If two entries collide in the same bucket, we find a different empty
bucket to use instead.

Storing all entries in a single, big, contiguous array is great for keeping the
memory representation simple and fast. But it makes all of the operations on
the hash table more complex. When inserting an entry, its bucket may be full,
sending us to look at another bucket. That bucket itself may be occupied and so
on. This process of finding an available bucket is called probing, and the order
that you examine buckets is a probe sequence.

There are a number of algorithms for determining which buckets to probe
and how to decide which entry goes in which bucket. There’s been a ton of re-
search here because even slight tweaks can have a large performance impact.
And, on a data structure as heavily used as hash tables, that performance impact
touches a very large number of real-world programs across a range of hardware
capabilities.

As usual in this book, we’ll pick the simplest one that gets the job done ef-
ficiently. That’s good old linear probing. When looking for an entry, we look
in the first bucket its key maps to. If it’s not in there, we look in the very next
element in the array, and so on. If we reach the end, we wrap back around to the
beginning.

The good thing about linear probing is that it’s cache friendly. Since you walk
the array directly in memory order, it keeps the CPU’s cache lines full and happy.
The bad thing is that it’s prone to clustering. If you have a lot of entries with nu-
merically similar key values, you can end up with a lot of colliding, overflowing
buckets right next to each other.

Compared to separate chaining, open addressing can be harder to wrap your
head around. I think of open addressing as similar to separate chaining except
that the “list” of nodes is threaded through the bucket array itself. Instead of
storing the links between them in pointers, the connections are calculated im-
plicitly by the order that you look through the buckets.

The tricky part is that more than one of these implicit lists may be interleaved
together. Let’s walk through an example that covers all the interesting cases.
We’ll ignore values for now and just worry about a set of keys. We start with an
empty array of 8 buckets.

It’s called “open” addressing because the
entry may end up at an address (bucket)
outside of its preferred one. It’s called
“closed” hashing because all of the entries
stay inside the array of buckets.

If you’d like to learn more (and you should,
because some of these are really cool),
look into “double hashing”, “cuckoo
hashing”, “Robin Hood hashing”, and
anything those lead you to.

There are a few tricks to optimize this.
Many implementations store the first
entry right in the bucket so that in the
common case where there’s only one,
no extra pointer indirection is needed.
You can also make each linked list node
store a few entries to reduce the pointer
overhead.

364 cHAPTeR 20 : HAsH TAbles

We decide to insert “bagel”. The first letter, “b” (ASCII value 98), modulo the
array size (8) puts it in bucket 2.

Next, we insert “jam”. That also wants to go in bucket 2 (106 mod 8 = 2), but that
bucket’s taken. We keep probing to the next bucket. It’s empty, so we put it there.

We insert “fruit”, which happily lands in bucket 6.

Likewise, “migas” can go in its preferred bucket 5.

When we try to insert “eggs”, it also wants to be in bucket 5. That’s full, so we skip
to 6. Bucket 6 is also full. Note that the entry in there is not part of the same probe
sequence. “Fruit” is in its preferred bucket, 6. So the 5 and 6 sequences have
collided and are interleaved. We skip over that and finally put “eggs” in bucket 7.

We run into a similar problem with “nuts”. It can’t land in 6 like it wants to. Nor
can it go into 7. So we keep going. But we’ve reached the end of the array, so we
wrap back around to 0 and put it there.

In practice, the interleaving turns out to not be much of a problem. Even in sepa-
rate chaining, we need to walk the list to check each entry’s key because multiple
keys can reduce to the same bucket. With open addressing, we need to do that

20.3 HAsH funcTIons 365

same check, and that also covers the case where you are stepping over entries
that “belong” to a different original bucket.

20.3 Hash Functions
We can now build ourselves a reasonably efficient table for storing variable
names up to eight characters long, but that limitation is still annoying. In order
to relax the last constraint, we need a way to take a string of any length and
convert it to a fixed-size integer.

Finally, we get to the “hash” part of “hash table”. A hash function takes some
larger blob of data and “hashes” it to produce a fixed-size integer hash code
whose value depends on all of the bits of the original data. A good hash function
has three main goals:

• It must be deterministic. The same input must always hash to the same num-
ber. If the same variable ends up in different buckets at different points in
time, it’s gonna get really hard to find it.

• It must be uniform. Given a typical set of inputs, it should produce a wide
and evenly distributed range of output numbers, with as few clumps or pat-
terns as possible. We want it to scatter values across the whole numeric range
to minimize collisions and clustering.

• It must be fast. Every operation on the hash table requires us to hash the key
first. If hashing is slow, it can potentially cancel out the speed of the under-
lying array storage.

There is a veritable pile of hash functions out there. Some are old and optimized
for architectures no one uses anymore. Some are designed to be fast, others
cryptographically secure. Some take advantage of vector instructions and cache
sizes for specific chips, others aim to maximize portability.

There are people out there for whom designing and evaluating hash functions
is, like, their jam. I admire them, but I’m not mathematically astute enough to be
one. So for clox, I picked a simple, well-worn hash function called FNV-1a that’s
served me fine over the years. Consider trying out different ones in your code
and see if they make a difference.

OK, that’s a quick run through of buckets, load factors, open addressing, col-
lision resolution, and hash functions. That’s an awful lot of text and not a lot of
real code. Don’t worry if it still seems vague. Once we’re done coding it up, it will
all click into place.

20.4 Building a Hash table
The great thing about hash tables compared to other classic techniques like bal-
anced search trees is that the actual data structure is so simple. Ours goes into a
new module.

Hash functions are also used for
cryptography. In that domain, “good” has
a much more stringent definition to avoid
exposing details about the data being
hashed. We, thankfully, don’t need to
worry about those concerns for this book.

One of the original names for a hash table
was “scatter table” because it takes the
entries and scatters them throughout the
array. The word “hash” came from the idea
that a hash function takes the input data,
chops it up, and tosses it all together into
a pile to come up with a single number
from all of those bits.

Who knows, maybe hash functions could
turn out to be your thing too?

366 cHAPTeR 20 : HAsH TAbles

#ifndef clox_table_h
#define clox_table_h

#include "common.h"
#include "value.h"

typedef struct {
 int count;
 int capacity;
 Entry* entries;
} Table;

#endif

A hash table is an array of entries. As in our dynamic array earlier, we keep track
of both the allocated size of the array (capacity) and the number of key/value
pairs currently stored in it (count). The ratio of count to capacity is exactly the
load factor of the hash table.

Each entry is one of these:

#include "value.h"

typedef struct {
 ObjString* key;
 Value value;
} Entry;

typedef struct {

It’s a simple key/value pair. Since the key is always a string, we store the
ObjString pointer directly instead of wrapping it in a Value. It’s a little faster and
smaller this way.

To create a new, empty hash table, we declare a constructor-like function.

} Table;

void initTable(Table* table);

#endif

We need a new implementation file to define that. While we’re at it, let’s get all of
the pesky includes out of the way.

#include <stdlib.h>
#include <string.h>

#include "memory.h"
#include "object.h"
#include "table.h"
#include "value.h"

table.h

table.h
add after struct Table

table.c
create new file

continued on next page . . .

In clox, we only need to support keys that
are strings. Handling other types of keys
doesn’t add much complexity. As long as
you can compare two objects for equality
and reduce them to sequences of bits, it’s
easy to use them as hash keys.

table.h
create new file

20.4.1 HAsHIng sTRIngs 367

void initTable(Table* table) {
 table->count = 0;
 table->capacity = 0;
 table->entries = NULL;
}

As in our dynamic value array type, a hash table initially starts with zero capac-
ity and a NULL array. We don’t allocate anything until needed. Assuming we do
eventually allocate something, we need to be able to free it too.

void initTable(Table* table);
void freeTable(Table* table);

#endif

And its glorious implementation:

void freeTable(Table* table) {
 FREE_ARRAY(Entry, table->entries, table->capacity);
 initTable(table);
}

Again, it looks just like a dynamic array. In fact, you can think of a hash table
as basically a dynamic array with a really strange policy for inserting items. We
don’t need to check for NULL here since FREE_ARRAY() already handles that
gracefully.

20.4.1 Hashing strings

Before we can start putting entries in the table, we need to, well, hash them. To
ensure that the entries get distributed uniformly throughout the array, we want
a good hash function that looks at all of the bits of the key string. If it looked at,
say, only the first few characters, then a series of strings that all shared the same
prefix would end up colliding in the same bucket.

On the other hand, walking the entire string to calculate the hash is kind of
slow. We’d lose some of the performance benefit of the hash table if we had to
walk the string every time we looked for a key in the table. So we’ll do the obvi-
ous thing: cache it.

Over in the “object” module in ObjString, we add:

 char* chars;
 uint32_t hash;
};

Each ObjString stores the hash code for its string. Since strings are immutable in
Lox, we can calculate the hash code once up front and be certain that it will never
get invalidated. Caching it eagerly makes a kind of sense: allocating the string
and copying its characters over is already an O(n) operation, so it’s a good time to
also do the O(n) calculation of the string’s hash.

Whenever we call the internal function to allocate a string, we pass in its hash
code.

. . . from previous page

table.h
add after initTable()

table.c
add after initTable()

object.h
in struct ObjString

368 cHAPTeR 20 : HAsH TAbles

static ObjString* allocateString(char* chars, int length,
 uint32_t hash) {
 ObjString* string = ALLOCATE_OBJ(ObjString, OBJ_STRING);

That function simply stores the hash in the struct.

 string->chars = chars;
 string->hash = hash;
 return string;
}

The fun happens over at the callers. allocateString() is called from two
places: the function that copies a string and the one that takes ownership of an
existing dynamically allocated string. We’ll start with the first.

ObjString* copyString(const char* chars, int length) {
 uint32_t hash = hashString(chars, length);
 char* heapChars = ALLOCATE(char, length + 1);

No magic here. We calculate the hash code and then pass it along.

 memcpy(heapChars, chars, length);
 heapChars[length] = '\0';
 return allocateString(heapChars, length, hash);
}

The other string function is similar.

ObjString* takeString(char* chars, int length) {
 uint32_t hash = hashString(chars, length);
 return allocateString(chars, length, hash);
}

The interesting code is over here:

static uint32_t hashString(const char* key, int length) {
 uint32_t hash = 2166136261u;
 for (int i = 0; i < length; i++) {
 hash ^= (uint8_t)key[i];
 hash *= 16777619;
 }
 return hash;
}

This is the actual bona fide “hash function” in clox. The algorithm is called
“FNV-1a”, and is the shortest decent hash function I know. Brevity is certainly a
virtue in a book that aims to show you every line of code.

The basic idea is pretty simple, and many hash functions follow the same
pattern. You start with some initial hash value, usually a constant with certain
carefully chosen mathematical properties. Then you walk the data to be hashed.
For each byte (or sometimes word), you mix the bits into the hash value some-
how, and then scramble the resulting bits around some.

object.c
function allocateString()

replace 1 line

object.c
in allocateString()

object.c
in copyString()

object.c
in copyString()

replace 1 line

object.c
in takeString()

replace 1 line

object.c
add after allocateString()

20.4.2 InseRTIng enTRIes 369

What it means to “mix” and “scramble” can get pretty sophisticated.
Ultimately, though, the basic goal is uniformity—we want the resulting hash
values to be as widely scattered around the numeric range as possible to avoid
collisions and clustering.

20.4.2 Inserting entries

Now that string objects know their hash code, we can start putting them into
hash tables.

void freeTable(Table* table);
bool tableSet(Table* table, ObjString* key, Value value);

#endif

This function adds the given key/value pair to the given hash table. If an entry
for that key is already present, the new value overwrites the old value. The func-
tion returns true if a new entry was added. Here’s the implementation:

bool tableSet(Table* table, ObjString* key, Value value) {
 Entry* entry = findEntry(table->entries, table->capacity, key);
 bool isNewKey = entry->key == NULL;
 if (isNewKey) table->count++;

 entry->key = key;
 entry->value = value;
 return isNewKey;
}

Most of the interesting logic is in findEntry() which we’ll get to soon. That
function’s job is to take a key and figure out which bucket in the array it should
go in. It returns a pointer to that bucket—the address of the Entry in the array.

Once we have a bucket, inserting is straightforward. We update the hash
table’s size, taking care to not increase the count if we overwrote the value for
an already-present key. Then we copy the key and value into the corresponding
fields in the Entry.

We’re missing a little something here, though. We haven’t actually allocated
the Entry array yet. Oops! Before we can insert anything, we need to make sure
we have an array, and that it’s big enough.

bool tableSet(Table* table, ObjString* key, Value value) {
 if (table->count + 1 > table->capacity * TABLE_MAX_LOAD) {
 int capacity = GROW_CAPACITY(table->capacity);
 adjustCapacity(table, capacity);
 }

 Entry* entry = findEntry(table->entries, table->capacity, key);

This is similar to the code we wrote a while back for growing a dynamic array.
If we don’t have enough capacity to insert an item, we reallocate and grow the
array. The GROW_CAPACITY() macro takes an existing capacity and grows it by

table.h
add after freeTable()

table.c
add after freeTable()

table.c
in tableSet()

370 cHAPTeR 20 : HAsH TAbles

a multiple to ensure that we get amortized constant performance over a series
of inserts.

The interesting difference here is that TABLE_MAX_LOAD constant.

#include "value.h"

#define TABLE_MAX_LOAD 0.75

void initTable(Table* table) {

This is how we manage the table’s load factor. We don’t grow when the capacity is
completely full. Instead, we grow the array before then, when the array becomes
at least 75% full.

We’ll get to the implementation of adjustCapacity() soon. First, let’s look
at that findEntry() function you’ve been wondering about.

static Entry* findEntry(Entry* entries, int capacity,
 ObjString* key) {
 uint32_t index = key->hash % capacity;
 for (;;) {
 Entry* entry = &entries[index];
 if (entry->key == key || entry->key == NULL) {
 return entry;
 }

 index = (index + 1) % capacity;
 }
}

This function is the real core of the hash table. It’s responsible for taking a key
and an array of buckets, and figuring out which bucket the entry belongs in.
This function is also where linear probing and collision handling come into play.
We’ll use findEntry() both to look up existing entries in the hash table and to
decide where to insert new ones.

For all that, there isn’t much to it. First, we use modulo to map the key’s hash
code to an index within the array’s bounds. That gives us a bucket index where,
ideally, we’ll be able to find or place the entry.

There are a few cases to check for:

• If the key for the Entry at that array index is NULL, then the bucket is empty.
If we’re using findEntry() to look up something in the hash table, this
means it isn’t there. If we’re using it to insert, it means we’ve found a place to
add the new entry.

• If the key in the bucket is equal to the key we’re looking for, then that key is
already present in the table. If we’re doing a lookup, that’s good—we’ve found
the key we seek. If we’re doing an insert, this means we’ll be replacing the
value for that key instead of adding a new entry.

• Otherwise, the bucket has an entry in it, but with a different key. This is a
collision. In that case, we start probing. That’s what that for loop does. We
start at the bucket where the entry would ideally go. If that bucket is empty

table.c

table.c
add after freeTable()

It looks like we’re using == to see if two
strings are equal. That doesn’t work, does
it? There could be two copies of the same
string at different places in memory. Fear
not, astute reader. We’ll solve this further
on. And, strangely enough, it’s a hash
table that provides the tool we need.

Ideal max load factor varies based on the
hash function, collision-handling strategy,
and typical keysets you’ll see. Since a
toy language like Lox doesn’t have “real
world” data sets, it’s hard to optimize this,
and I picked 75% somewhat arbitrarily.
When you build your own hash tables,
benchmark and tune this.

20.4.3 AllocATIng And ResIzIng 371

or has the same key, we’re done. Otherwise, we advance to the next element—
this is the linear part of “linear probing”—and check there. If we go past the
end of the array, that second modulo operator wraps us back around to the
beginning.

We exit the loop when we find either an empty bucket or a bucket with the same
key as the one we’re looking for. You might be wondering about an infinite loop.
What if we collide with every bucket? Fortunately, that can’t happen thanks to
our load factor. Because we grow the array as soon as it gets close to being full,
we know there will always be empty buckets.

We return directly from within the loop, yielding a pointer to the found Entry
so the caller can either insert something into it or read from it. Way back in
tableSet(), the function that first kicked this off, we store the new entry in
that returned bucket and we’re done.

20.4.3 Allocating and resizing

Before we can put entries in the hash table, we do need a place to actually store
them. We need to allocate an array of buckets. That happens in this function:

static void adjustCapacity(Table* table, int capacity) {
 Entry* entries = ALLOCATE(Entry, capacity);
 for (int i = 0; i < capacity; i++) {
 entries[i].key = NULL;
 entries[i].value = NIL_VAL;
 }

 table->entries = entries;
 table->capacity = capacity;
}

We create a bucket array with capacity entries. After we allocate the array, we
initialize every element to be an empty bucket and then store the array (and its
capacity) in the hash table’s main struct. This code is fine for when we insert the
very first entry into the table, and we require the first allocation of the array. But
what about when we already have one and we need to grow it?

Back when we were doing a dynamic array, we could just use realloc()
and let the C standard library copy everything over. That doesn’t work for a hash
table. Remember that to choose the bucket for each entry, we take its hash key
modulo the array size. That means that when the array size changes, entries may
end up in different buckets.

Those new buckets may have new collisions that we need to deal with. So
the simplest way to get every entry where it belongs is to rebuild the table from
scratch by re-inserting every entry into the new empty array.

 entries[i].value = NIL_VAL;
 }

 for (int i = 0; i < table->capacity; i++) {
 Entry* entry = &table->entries[i];
 if (entry->key == NULL) continue;

table.c
add after findEntry()

table.c
in adjustCapacity()

continued on next page . . .

372 cHAPTeR 20 : HAsH TAbles

 Entry* dest = findEntry(entries, capacity, entry->key);
 dest->key = entry->key;
 dest->value = entry->value;
 }

 table->entries = entries;

We walk through the old array front to back. Any time we find a non-empty
bucket, we insert that entry into the new array. We use findEntry(), pass-
ing in the new array instead of the one currently stored in the Table. (This is
why findEntry() takes a pointer directly to an Entry array and not the whole
Table struct. That way, we can pass the new array and capacity before we’ve
stored those in the struct.)

After that’s done, we can release the memory for the old array.

 dest->value = entry->value;
 }

 FREE_ARRAY(Entry, table->entries, table->capacity);
 table->entries = entries;

With that, we have a hash table that we can stuff as many entries into as we like.
It handles overwriting existing keys and growing itself as needed to maintain
the desired load capacity.

While we’re at it, let’s also define a helper function for copying all of the en-
tries of one hash table into another.

bool tableSet(Table* table, ObjString* key, Value value);
void tableAddAll(Table* from, Table* to);

#endif

We won’t need this until much later when we support method inheritance, but
we may as well implement it now while we’ve got all the hash table stuff fresh
in our minds.

void tableAddAll(Table* from, Table* to) {
 for (int i = 0; i < from->capacity; i++) {
 Entry* entry = &from->entries[i];
 if (entry->key != NULL) {
 tableSet(to, entry->key, entry->value);
 }
 }
}

There’s not much to say about this. It walks the bucket array of the source hash
table. Whenever it finds a non-empty bucket, it adds the entry to the destination
hash table using the tableSet() function we recently defined.

table.c
in adjustCapacity()

table.h
add after tableSet()

table.c
add after tableSet()

. . . from previous page

20.4.4 ReTRIeVIng VAlues 373

20.4.4 Retrieving values

Now that our hash table contains some stuff, let’s start pulling things back out.
Given a key, we can look up the corresponding value, if there is one, with this
function:

void freeTable(Table* table);
bool tableGet(Table* table, ObjString* key, Value* value);
bool tableSet(Table* table, ObjString* key, Value value);

You pass in a table and a key. If it finds an entry with that key, it returns true,
otherwise it returns false. If the entry exists, the value output parameter
points to the resulting value.

Since findEntry() already does the hard work, the implementation isn’t
bad.

bool tableGet(Table* table, ObjString* key, Value* value) {
 if (table->count == 0) return false;

 Entry* entry = findEntry(table->entries, table->capacity, key);
 if (entry->key == NULL) return false;

 *value = entry->value;
 return true;
}

If the table is completely empty, we definitely won’t find the entry, so we check
for that first. This isn’t just an optimization—it also ensures that we don’t try to
access the bucket array when the array is NULL. Otherwise, we let findEntry()
work its magic. That returns a pointer to a bucket. If the bucket is empty, which
we detect by seeing if the key is NULL, then we didn’t find an Entry with our
key. If findEntry() does return a non-empty Entry, then that’s our match. We
take the Entry’s value and copy it to the output parameter so the caller can get
it. Piece of cake.

20.4.5 Deleting entries

There is one more fundamental operation a full-featured hash table needs to
support: removing an entry. This seems pretty obvious, if you can add things,
you should be able to un-add them, right? But you’d be surprised how many tuto-
rials on hash tables omit this.

I could have taken that route too. In fact, we use deletion in clox only in a tiny
edge case in the VM. But if you want to actually understand how to completely
implement a hash table, this feels important. I can sympathize with their desire
to overlook it. As we’ll see, deleting from a hash table that uses open addressing
is tricky.

At least the declaration is simple.

bool tableSet(Table* table, ObjString* key, Value value);
bool tableDelete(Table* table, ObjString* key);
void tableAddAll(Table* from, Table* to);

table.h
add after freeTable()

table.c
add after findEntry()

With separate chaining, deleting is as easy
as removing a node from a linked list.

table.h
add after tableSet()

374 cHAPTeR 20 : HAsH TAbles

The obvious approach is to mirror insertion. Use findEntry() to look up the
entry’s bucket. Then clear out the bucket. Done!

In cases where there are no collisions, that works fine. But if a collision has
occurred, then the bucket where the entry lives may be part of one or more im-
plicit probe sequences. For example, here’s a hash table containing three keys all
with the same preferred bucket, 2:

Remember that when we’re walking a probe sequence to find an entry, we know
we’ve reached the end of a sequence and that the entry isn’t present when we hit
an empty bucket. It’s like the probe sequence is a list of entries and an empty
entry terminates that list.

If we delete “biscuit” by simply clearing the Entry, then we break that probe
sequence in the middle, leaving the trailing entries orphaned and unreachable.
Sort of like removing a node from a linked list without relinking the pointer
from the previous node to the next one.

If we later try to look for “jam”, we’d start at “bagel”, stop at the next empty
Entry, and never find it.

To solve this, most implementations use a trick called tombstones. Instead of
clearing the entry on deletion, we replace it with a special sentinel entry called a
“tombstone”. When we are following a probe sequence during a lookup, and we
hit a tombstone, we don’t treat it like an empty slot and stop iterating. Instead,
we keep going so that deleting an entry doesn’t break any implicit collision
chains and we can still find entries after it.

The code looks like this:

bool tableDelete(Table* table, ObjString* key) {
 if (table->count == 0) return false;

 // Find the entry.
 Entry* entry = findEntry(table->entries, table->capacity, key);
 if (entry->key == NULL) return false;

 // Place a tombstone in the entry.
 entry->key = NULL;
 entry->value = BOOL_VAL(true);
 return true;
}

table.c
add after tableSet()

20.4.5 deleTIng enTRIes 375

First, we find the bucket containing the entry we want to delete. (If we don’t
find it, there’s nothing to delete, so we bail out.) We replace the entry with a
tombstone. In clox, we use a NULL key and a true value to represent that, but
any representation that can’t be confused with an empty bucket or a valid entry
works.

That’s all we need to do to delete an entry. Simple and fast. But all of the other
operations need to correctly handle tombstones too. A tombstone is a sort of
“half ” entry. It has some of the characteristics of a present entry, and some of
the characteristics of an empty one.

When we are following a probe sequence during a lookup, and we hit a tomb-
stone, we note it and keep going.

 for (;;) {
 Entry* entry = &entries[index];
 if (entry->key == NULL) {
 if (IS_NIL(entry->value)) {
 // Empty entry.
 return tombstone != NULL ? tombstone : entry;
 } else {
 // We found a tombstone.
 if (tombstone == NULL) tombstone = entry;
 }
 } else if (entry->key == key) {
 // We found the key.
 return entry;
 }

 index = (index + 1) % capacity;

The first time we pass a tombstone, we store it in this local variable:

 uint32_t index = key->hash % capacity;
 Entry* tombstone = NULL;

 for (;;) {

If we reach a truly empty entry, then the key isn’t present. In that case, if we
have passed a tombstone, we return its bucket instead of the later empty one.
If we’re calling findEntry() in order to insert a node, that lets us treat the
tombstone bucket as empty and reuse it for the new entry.

Reusing tombstone slots automatically like this helps reduce the number of
tombstones wasting space in the bucket array. In typical use cases where there
is a mixture of insertions and deletions, the number of tombstones grows for a
while and then tends to stabilize.

Even so, there’s no guarantee that a large number of deletes won’t cause the
array to be full of tombstones. In the very worst case, we could end up with no
empty buckets. That would be bad because, remember, the only thing preventing
an infinite loop in findEntry() is the assumption that we’ll eventually hit an
empty bucket.

So we need to be thoughtful about how tombstones interact with the table’s
load factor and resizing. The key question is, when calculating the load factor,
should we treat tombstones like full buckets or empty ones?

table.c
in findEntry()
replace 3 lines

table.c
in findEntry()

376 cHAPTeR 20 : HAsH TAbles

20.4.6 Counting tombstones

If we treat tombstones like full buckets, then we may end up with a bigger array
than we probably need because it artificially inflates the load factor. There are
tombstones we could reuse, but they aren’t treated as unused so we end up grow-
ing the array prematurely.

But if we treat tombstones like empty buckets and don’t include them in the
load factor, then we run the risk of ending up with no actual empty buckets to
terminate a lookup. An infinite loop is a much worse problem than a few extra
array slots, so for load factor, we consider tombstones to be full buckets.

That’s why we don’t reduce the count when deleting an entry in the previous
code. The count is no longer the number of entries in the hash table, it’s the num-
ber of entries plus tombstones. That implies that we increment the count during
insertion only if the new entry goes into an entirely empty bucket.

 bool isNewKey = entry->key == NULL;
 if (isNewKey && IS_NIL(entry->value)) table->count++;

 entry->key = key;

If we are replacing a tombstone with a new entry, the bucket has already been
accounted for and the count doesn’t change.

When we resize the array, we allocate a new array and re-insert all of the
existing entries into it. During that process, we don’t copy the tombstones over.
They don’t add any value since we’re rebuilding the probe sequences anyway,
and would just slow down lookups. That means we need to recalculate the count
since it may change during a resize. So we clear it out:

 }

 table->count = 0;
 for (int i = 0; i < table->capacity; i++) {

Then each time we find a non-tombstone entry, we increment it.

 dest->value = entry->value;
 table->count++;
 }

This means that when we grow the capacity, we may end up with fewer entries
in the resulting larger array because all of the tombstones get discarded. That’s a
little wasteful, but not a huge practical problem.

I find it interesting that much of the work to support deleting entries is in
findEntry() and adjustCapacity(). The actual delete logic is quite simple
and fast. In practice, deletions tend to be rare, so you’d expect a hash table to do
as much work as it can in the delete function and leave the other functions alone
to keep them faster. With our tombstone approach, deletes are fast, but lookups
get penalized.

I did a little benchmarking to test this out in a few different deletion scenar-
ios. I was surprised to discover that tombstones did end up being faster overall
compared to doing all the work during deletion to reinsert the affected entries.

But if you think about it, it’s not that the tombstone approach pushes the work

table.c
in tableSet()

replace 1 line

table.c
in adjustCapacity()

table.c
in adjustCapacity()

20.4.6 counTIng TombsTones 377

of fully deleting an entry to other operations, it’s more that it makes deleting
lazy. At first, it does the minimal work to turn the entry into a tombstone. That
can cause a penalty when later lookups have to skip over it. But it also allows that
tombstone bucket to be reused by a later insert too. That reuse is a very efficient
way to avoid the cost of rearranging all of the following affected entries. You
basically recycle a node in the chain of probed entries. It’s a neat trick.

20.5 String Interning
We’ve got ourselves a hash table that mostly works, though it has a critical flaw
in its center. Also, we aren’t using it for anything yet. It’s time to address both of
those and, in the process, learn a classic technique used by interpreters.

The reason the hash table doesn’t totally work is that when findEntry()
checks to see if an existing key matches the one it’s looking for, it uses == to
compare two strings for equality. That only returns true if the two keys are the
exact same string in memory. Two separate strings with the same characters
should be considered equal, but aren’t.

Remember, back when we added strings in the last chapter, we added explicit
support to compare the strings character-by-character in order to get true value
equality. We could do that in findEntry(), but that’s slow.

Instead, we’ll use a technique called string interning. The core problem is
that it’s possible to have different strings in memory with the same characters.
Those need to behave like equivalent values even though they are distinct ob-
jects. They’re essentially duplicates, and we have to compare all of their bytes to
detect that.

String interning is a process of deduplication. We create a collection of “in-
terned” strings. Any string in that collection is guaranteed to be textually dis-
tinct from all others. When you intern a string, you look for a matching string in
the collection. If found, you use that original one. Otherwise, the string you have
is unique, so you add it to the collection.

In this way, you know that each sequence of characters is represented by only
one string in memory. This makes value equality trivial. If two strings point to
the same address in memory, they are obviously the same string and must be
equal. And, because we know strings are unique, if two strings point to different
addresses, they must be distinct strings.

Thus, pointer equality exactly matches value equality. Which in turn means
that our existing == in findEntry() does the right thing. Or, at least, it will
once we intern all the strings. In order to reliably deduplicate all strings, the VM
needs to be able to find every string that’s created. We do that by giving it a hash
table to store them all.

 Value* stackTop;
 Table strings;
 Obj* objects;

As usual, we need an include.

#include "chunk.h"
#include "table.h"
#include "value.h"

In practice, we would first compare the
hash codes of the two strings. That quickly
detects almost all different strings—it
wouldn’t be a very good hash function if
it didn’t. But when the two hashes are the
same, we still have to compare characters
to make sure we didn’t have a hash
collision on different strings.

I’m guessing “intern” is short for
“internal”. I think the idea is that the
language’s runtime keeps its own “inter-
nal” collection of these strings, whereas
other strings could be user created and
floating around in memory. When you
intern a string, you ask the runtime to add
the string to that internal collection and
return a pointer to it.

Languages vary in how much string
interning they do and how it’s exposed
to the user. Lua interns all strings, which
is what clox will do too. Lisp, Scheme,
Smalltalk, Ruby and others have a
separate string-like type called “symbol”
that is implicitly interned. (This is why
they say symbols are “faster” in Ruby.)
Java interns constant strings by default,
and provides an API to let you explicitly
intern any string you give it.

vm.h
in struct VM

vm.h

378 cHAPTeR 20 : HAsH TAbles

When we spin up a new VM, the string table is empty.

 vm.objects = NULL;
 initTable(&vm.strings);
}

And when we shut down the VM, we clean up any resources used by the table.

void freeVM() {
 freeTable(&vm.strings);
 freeObjects();

Some languages have a separate type or an explicit step to intern a string. For
clox, we’ll automatically intern every one. That means whenever we create a new
unique string, we add it to the table.

 string->hash = hash;
 tableSet(&vm.strings, string, NIL_VAL);
 return string;

We’re using the table more like a hash set than a hash table. The keys are the
strings and those are all we care about, so we just use nil for the values.

This gets a string into the table assuming that it’s unique, but we need to actu-
ally check for duplication before we get here. We do that in the two higher-level
functions that call allocateString(). Here’s one:

 uint32_t hash = hashString(chars, length);
 ObjString* interned = tableFindString(&vm.strings, chars, length,
 hash);
 if (interned != NULL) return interned;

 char* heapChars = ALLOCATE(char, length + 1);

When copying a string into a new LoxString, we look it up in the string table
first. If we find it, instead of “copying”, we just return a reference to that string.
Otherwise, we fall through, allocate a new string, and store it in the string table.

Taking ownership of a string is a little different.

 uint32_t hash = hashString(chars, length);
 ObjString* interned = tableFindString(&vm.strings, chars, length,
 hash);
 if (interned != NULL) {
 FREE_ARRAY(char, chars, length + 1);
 return interned;
 }

 return allocateString(chars, length, hash);

Again, we look up the string in the string table first. If we find it, before we re-
turn it, we free the memory for the string that was passed in. Since ownership
is being passed to this function and we no longer need the duplicate string, it’s
up to us to free it.

vm.c
in initVM()

vm.c
in freeVM()

object.c
in allocateString()

object.c
in copyString()

object.c
in takeString()

20.5 sTRIng InTeRnIng 379

Before we get to the new function we need to write, there’s one more include.

#include "object.h"
#include "table.h"
#include "value.h"

To look for a string in the table, we can’t use the normal tableGet() function
because that calls findEntry(), which has the exact problem with duplicate
strings that we’re trying to fix right now. Instead, we use this new function:

void tableAddAll(Table* from, Table* to);
ObjString* tableFindString(Table* table, const char* chars,
 int length, uint32_t hash);

#endif

The implementation looks like so:

ObjString* tableFindString(Table* table, const char* chars,
 int length, uint32_t hash) {
 if (table->count == 0) return NULL;

 uint32_t index = hash % table->capacity;
 for (;;) {
 Entry* entry = &table->entries[index];
 if (entry->key == NULL) {
 // Stop if we find an empty non-tombstone entry.
 if (IS_NIL(entry->value)) return NULL;
 } else if (entry->key->length == length &&
 entry->key->hash == hash &&
 memcmp(entry->key->chars, chars, length) == 0) {
 // We found it.
 return entry->key;
 }

 index = (index + 1) % table->capacity;
 }
}

It appears we have copy-pasted findEntry(). There is a lot of redundancy, but
also a couple of key differences. First, we pass in the raw character array of the
key we’re looking for instead of an ObjString. At the point that we call this, we
haven’t created an ObjString yet.

Second, when checking to see if we found the key, we look at the actual
strings. We first see if they have matching lengths and hashes. Those are quick to
check and if they aren’t equal, the strings definitely aren’t the same.

If there is a hash collision, we do an actual character-by-character string
comparison. This is the one place in the VM where we actually test strings for
textual equality. We do it here to deduplicate strings and then the rest of the VM
can take for granted that any two strings at different addresses in memory must
have different contents.

In fact, now that we’ve interned all the strings, we can take advantage of it in

object.c

table.h
add after tableAddAll()

table.c
add after tableAddAll()

380 cHAPTeR 20 : HAsH TAbles

the bytecode interpreter. When a user does == on two objects that happen to be
strings, we don’t need to test the characters any more.

 case VAL_NUMBER: return AS_NUMBER(a) == AS_NUMBER(b);
 case VAL_OBJ: return AS_OBJ(a) == AS_OBJ(b);
 default: return false; // Unreachable.

We’ve added a little overhead when creating strings to intern them. But in return,
at runtime, the equality operator on strings is much faster. With that, we have a
full-featured hash table ready for us to use for tracking variables, instances, or
any other key-value pairs that might show up.

We also sped up testing strings for equality. This is nice for when the user does
== on strings. But it’s even more critical in a dynamically typed language like Lox
where method calls and instance fields are looked up by name at runtime. If test-
ing a string for equality is slow, then that means looking up a method by name is
slow. And if that’s slow in your object-oriented language, then everything is slow.

CHaLLENGES

1. In clox, we happen to only need keys that are strings, so the hash table we built
is hardcoded for that key type. If we exposed hash tables to Lox users as a first-
class collection, it would be useful to support different kinds of keys.

Add support for keys of the other primitive types: numbers, Booleans, and
nil. Later, clox will support user-defined classes. If we want to support keys
that are instances of those classes, what kind of complexity does that add?

2. Hash tables have a lot of knobs you can tweak that affect their performance.
You decide whether to use separate chaining or open addressing. Depending on
which fork in that road you take, you can tune how many entries are stored in
each node, or the probing strategy you use. You control the hash function, load
factor, and growth rate.

All of this variety wasn’t created just to give CS doctoral candidates some-
thing to publish theses on: each has its uses in the many varied domains and
hardware scenarios where hashing comes into play. Look up a few hash table
implementations in different open source systems, research the choices they
made, and try to figure out why they did things that way.

3. Benchmarking a hash table is notoriously difficult. A hash table implementation
may perform well with some keysets and poorly with others. It may work well at
small sizes but degrade as it grows, or vice versa. It may choke when deletions
are common, but fly when they aren’t. Creating benchmarks that accurately
represent how your users will use the hash table is a challenge.

Write a handful of different benchmark programs to validate our hash table
implementation. How does the performance vary between them? Why did you
choose the specific test cases you chose?

value.c
in valuesEqual()

replace 7 lines

Well, at least that wasn’t the only reason
they were created. Whether that was the
main reason is up for debate.

A byTecode VIRTuAl mAcHIne 21Global Variables

“If only there could be an invention that bottled up a memory, like
scent. And it never faded, and it never got stale. And then, when one
wanted it, the bottle could be uncorked, and it would be like living the
moment all over again.”

— Daphne du Maurier, Rebecca

The previous chapter was a long exploration of one big, deep, fundamental
computer science data structure. Heavy on theory and concept. There may have
been some discussion of big-O notation and algorithms. This chapter has fewer
intellectual pretensions. There are no large ideas to learn. Instead, it’s a handful
of straightforward engineering tasks. Once we’ve completed them, our virtual
machine will support variables.

Actually, it will support only global variables. Locals are coming in the next
chapter. In jlox, we managed to cram them both into a single chapter because
we used the same implementation technique for all variables. We built a chain
of environments, one for each scope, all the way up to the top. That was a simple,
clean way to learn how to manage state.

But it’s also slow. Allocating a hash table each time you enter a block or call
a function is not the road to a fast VM. Given how much code uses variables, if
variables go slow, everything goes slow. For clox, we’ll improve that by using a
more efficient strategy for local variables, but globals aren’t as easily optimized.

This is a common meta-strategy in
sophisticated language implementations.
Often, the same language feature will
have multiple implementation techniques,
each tuned for different use patterns.
For example, JavaScript VMs often have
a faster representation for objects that
are used more like instances of classes
compared to other objects whose set of
properties is more freely modified. C and
C++ compilers usually have a variety of
ways to compile switch statements
based on the number of cases and how
densely packed the case values are.

382 cHAPTeR 21 : globAl VARIAbles

A quick refresher on Lox semantics: Global variables in Lox are “late bound”,
or resolved dynamically. This means you can compile a chunk of code that refers
to a global variable before it’s defined. As long as the code doesn’t execute before
the definition happens, everything is fine. In practice, that means you can refer
to later variables inside the body of functions.

fun showVariable() {
 print global;
}

var global = "after";
showVariable();

Code like this might seem odd, but it’s handy for defining mutually recursive
functions. It also plays nicer with the REPL. You can write a little function in one
line, then define the variable it uses in the next.

Local variables work differently. Since a local variable’s declaration always oc-
curs before it is used, the VM can resolve them at compile time, even in a simple
single-pass compiler. That will let us use a smarter representation for locals. But
that’s for the next chapter. Right now, let’s just worry about globals.

21.1 Statements
Variables come into being using variable declarations, which means now is also
the time to add support for statements to our compiler. If you recall, Lox splits
statements into two categories. “Declarations” are those statements that bind a
new name to a value. The other kinds of statements—control flow, print, etc.—
are just called “statements”. We disallow declarations directly inside control
flow statements, like this:

if (monday) var croissant = "yes"; // Error.

Allowing it would raise confusing questions around the scope of the variable. So,
like other languages, we prohibit it syntactically by having a separate grammar
rule for the subset of statements that are allowed inside a control flow body.

statement → exprStmt
 | forStmt
 | ifStmt
 | printStmt
 | returnStmt
 | whileStmt
 | block ;

Then we use a separate rule for the top level of a script and inside a block.

declaration → classDecl
 | funDecl
 | varDecl
 | statement ;

21.1 sTATemenTs 383

The declaration rule contains the statements that declare names, and also
includes statement so that all statement types are allowed. Since block itself
is in statement, you can put declarations inside a control flow construct by
nesting them inside a block.

In this chapter, we’ll cover only a couple of statements and one declaration.

statement → exprStmt
 | printStmt ;

declaration → varDecl
 | statement ;

Up to now, our VM considered a “program” to be a single expression since that’s
all we could parse and compile. In a full Lox implementation, a program is a se-
quence of declarations. We’re ready to support that now.

 advance();

 while (!match(TOKEN_EOF)) {
 declaration();
 }

 endCompiler();

We keep compiling declarations until we hit the end of the source file. We com-
pile a single declaration using this:

static void declaration() {
 statement();
}

We’ll get to variable declarations later in the chapter, so for now, we simply for-
ward to statement().

static void statement() {
 if (match(TOKEN_PRINT)) {
 printStatement();
 }
}

Blocks can contain declarations, and control flow statements can contain other
statements. That means these two functions will eventually be recursive. We
may as well write out the forward declarations now.

static void expression();
static void statement();
static void declaration();
static ParseRule* getRule(TokenType type);

Blocks work sort of like parentheses
do for expressions. A block lets you put
the “lower-precedence” declaration
statements in places where only a “high-
er-precedence” non-declaring statement
is allowed.

compiler.c
in compile()
replace 2 lines

compiler.c
add after expression()

compiler.c
add after declaration()

compiler.c
add after expression()

384 cHAPTeR 21 : globAl VARIAbles

21.1.1 Print statements

We have two statement types to support in this chapter. Let’s start with print
statements, which begin, naturally enough, with a print token. We detect that
using this helper function:

static bool match(TokenType type) {
 if (!check(type)) return false;
 advance();
 return true;
}

You may recognize it from jlox. If the current token has the given type, we con-
sume the token and return true. Otherwise we leave the token alone and return
false. This helper function is implemented in terms of this other helper:

static bool check(TokenType type) {
 return parser.current.type == type;
}

The check() function returns true if the current token has the given type.
It seems a little silly to wrap this in a function, but we’ll use it more later, and I
think short verb-named functions like this make the parser easier to read.

If we did match the print token, then we compile the rest of the statement
here:

static void printStatement() {
 expression();
 consume(TOKEN_SEMICOLON, "Expect ';' after value.");
 emitByte(OP_PRINT);
}

A print statement evaluates an expression and prints the result, so we first
parse and compile that expression. The grammar expects a semicolon after that,
so we consume it. Finally, we emit a new instruction to print the result.

 OP_NEGATE,
 OP_PRINT,
 OP_RETURN,

At runtime, we execute this instruction like so:

 break;
 case OP_PRINT: {
 printValue(pop());
 printf("\n");
 break;
 }
 case OP_RETURN: {

When the interpreter reaches this instruction, it has already executed the code
for the expression, leaving the result value on top of the stack. Now we simply

compiler.c
add after consume()

It’s helpers all the way down!

compiler.c
add after consume()

This sounds trivial, but handwritten
parsers for non-toy languages get pretty
big. When you have thousands of lines
of code, a utility function that turns two
lines into one and makes the result a little
more readable easily earns its keep.

compiler.c
add after expression()

chunk.h
in enum OpCode

vm.c
in run()

21.1.1 PRInT sTATemenTs 385

pop and print it.
Note that we don’t push anything else after that. This is a key difference be-

tween expressions and statements in the VM. Every bytecode instruction has a
stack effect that describes how the instruction modifies the stack. For example,
OP_ADD pops two values and pushes one, leaving the stack one element smaller
than before.

You can sum the stack effects of a series of instructions to get their total ef-
fect. When you add the stack effects of the series of instructions compiled from
any complete expression, it will total one. Each expression leaves one result
value on the stack.

The bytecode for an entire statement has a total stack effect of zero. Since a
statement produces no values, it ultimately leaves the stack unchanged, though
it of course uses the stack while it’s doing its thing. This is important because
when we get to control flow and looping, a program might execute a long series
of statements. If each statement grew or shrank the stack, it might eventually
overflow or underflow.

While we’re in the interpreter loop, we should delete a bit of code.

 case OP_RETURN: {
 // Exit interpreter.
 return INTERPRET_OK;

When the VM only compiled and evaluated a single expression, we had some
temporary code in OP_RETURN to output the value. Now that we have statements
and print, we don’t need that anymore. We’re one step closer to the complete
implementation of clox.

As usual, a new instruction needs support in the disassembler.

 return simpleInstruction("OP_NEGATE", offset);
 case OP_PRINT:
 return simpleInstruction("OP_PRINT", offset);
 case OP_RETURN:

That’s our print statement. If you want, give it a whirl:

print 1 + 2;
print 3 * 4;

Exciting! OK, maybe not thrilling, but we can build scripts that contain as many
statements as we want now, which feels like progress.

21.1.2 Expression statements

Wait until you see the next statement. If we don’t see a print keyword, then we
must be looking at an expression statement.

 printStatement();
 } else {
 expressionStatement();
 }

The stack is one element shorter after an
OP_ADD, so its effect is -1:

vm.c
in run()
replace 2 lines

We’re only one step closer, though. We
will revisit OP_RETURN again when
we add functions. Right now, it exits the
entire interpreter loop.

debug.c
in disassembleInstruction()

compiler.c
in statement()

386 cHAPTeR 21 : globAl VARIAbles

It’s parsed like so:

static void expressionStatement() {
 expression();
 consume(TOKEN_SEMICOLON, "Expect ';' after expression.");
 emitByte(OP_POP);
}

An “expression statement” is simply an expression followed by a semicolon.
They’re how you write an expression in a context where a statement is expected.
Usually, it’s so that you can call a function or evaluate an assignment for its side
effect, like this:

brunch = "quiche";
eat(brunch);

Semantically, an expression statement evaluates the expression and discards the
result. The compiler directly encodes that behavior. It compiles the expression,
and then emits an OP_POP instruction.

 OP_FALSE,
 OP_POP,
 OP_EQUAL,

As the name implies, that instruction pops the top value off the stack and forgets
it.

 case OP_FALSE: push(BOOL_VAL(false)); break;
 case OP_POP: pop(); break;
 case OP_EQUAL: {

We can disassemble it too.

 return simpleInstruction("OP_FALSE", offset);
 case OP_POP:
 return simpleInstruction("OP_POP", offset);
 case OP_EQUAL:

Expression statements aren’t very useful yet since we can’t create any expres-
sions that have side effects, but they’ll be essential when we add functions later.
The majority of statements in real-world code in languages like C are expression
statements.

21.1.3 Error synchronization

While we’re getting this initial work done in the compiler, we can tie off a loose
end we left several chapters back. Like jlox, clox uses panic mode error recovery
to minimize the number of cascaded compile errors that it reports. The compiler
exits panic mode when it reaches a synchronization point. For Lox, we chose
statement boundaries as that point. Now that we have statements, we can imple-
ment synchronization.

compiler.c
add after expression()

chunk.h
in enum OpCode

vm.c
in run()

debug.c
in disassembleInstruction()

By my count, 80 of the 149 statements, in
the version of “compiler.c” that we have
at the end of this chapter are expression
statements.

21.1.3 eRRoR syncHRonIzATIon 387

 statement();

 if (parser.panicMode) synchronize();
}

If we hit a compile error while parsing the previous statement, we enter panic
mode. When that happens, after the statement we start synchronizing.

static void synchronize() {
 parser.panicMode = false;

 while (parser.current.type != TOKEN_EOF) {
 if (parser.previous.type == TOKEN_SEMICOLON) return;
 switch (parser.current.type) {
 case TOKEN_CLASS:
 case TOKEN_FUN:
 case TOKEN_VAR:
 case TOKEN_FOR:
 case TOKEN_IF:
 case TOKEN_WHILE:
 case TOKEN_PRINT:
 case TOKEN_RETURN:
 return;

 default:
 ; // Do nothing.
 }

 advance();
 }
}

We skip tokens indiscriminately until we reach something that looks like a state-
ment boundary. We recognize the boundary by looking for a preceding token
that can end a statement, like a semicolon. Or we’ll look for a subsequent token
that begins a statement, usually one of the control flow or declaration keywords.

21.2 Variable Declarations
Merely being able to print doesn’t win your language any prizes at the program-
ming language fair, so let’s move on to something a little more ambitious and get
variables going. There are three operations we need to support:

• Declaring a new variable using a var statement.

• Accessing the value of a variable using an identifier expression.

• Storing a new value in an existing variable using an assignment expression.

We can’t do either of the last two until we have some variables, so we start with

compiler.c
in declaration()

I can’t help but imagine a “language fair”
like some country 4H thing. Rows of
straw-lined stalls full of baby languages
mooing and baaing at each other.

compiler.c
add after printStatement()

388 cHAPTeR 21 : globAl VARIAbles

declarations.

static void declaration() {
 if (match(TOKEN_VAR)) {
 varDeclaration();
 } else {
 statement();
 }

 if (parser.panicMode) synchronize();

The placeholder parsing function we sketched out for the declaration grammar
rule has an actual production now. If we match a var token, we jump here:

static void varDeclaration() {
 uint8_t global = parseVariable("Expect variable name.");

 if (match(TOKEN_EQUAL)) {
 expression();
 } else {
 emitByte(OP_NIL);
 }
 consume(TOKEN_SEMICOLON,
 "Expect ';' after variable declaration.");

 defineVariable(global);
}

The keyword is followed by the variable name. That’s compiled by
parseVariable(), which we’ll get to in a second. Then we look for an = fol-
lowed by an initializer expression. If the user doesn’t initialize the variable,
the compiler implicitly initializes it to nil by emitting an OP_NIL instruction.
Either way, we expect the statement to be terminated with a semicolon.

There are two new functions here for working with variables and identifiers.
Here is the first:

static void parsePrecedence(Precedence precedence);

static uint8_t parseVariable(const char* errorMessage) {
 consume(TOKEN_IDENTIFIER, errorMessage);
 return identifierConstant(&parser.previous);
}

It requires the next token to be an identifier, which it consumes and sends here:

static void parsePrecedence(Precedence precedence);

static uint8_t identifierConstant(Token* name) {
 return makeConstant(OBJ_VAL(copyString(name->start,
 name->length)));
}

compiler.c
in declaration()

replace 1 line

compiler.c
add after expression()

Essentially, the compiler desugars a
variable declaration like:

var a;

into:

var a = nil;

The code it generates for both is identical.

compiler.c
add after parsePrecedence()

compiler.c
add after parsePrecedence()

21.2 VARIAble declARATIons 389

This function takes the given token and adds its lexeme to the chunk’s constant
table as a string. It then returns the index of that constant in the constant table.

Global variables are looked up by name at runtime. That means the VM—the
bytecode interpreter loop—needs access to the name. A whole string is too big
to stuff into the bytecode stream as an operand. Instead, we store the string in
the constant table and the instruction then refers to the name by its index in the
table.

This function returns that index all the way to varDeclaration() which
later hands it over to here:

static void defineVariable(uint8_t global) {
 emitBytes(OP_DEFINE_GLOBAL, global);
}

This outputs the bytecode instruction that defines the new variable and stores
its initial value. The index of the variable’s name in the constant table is the in-
struction’s operand. As usual in a stack-based VM, we emit this instruction last.
At runtime, we execute the code for the variable’s initializer first. That leaves the
value on the stack. Then this instruction takes that value and stores it away for
later.

Over in the runtime, we begin with this new instruction:

 OP_POP,
 OP_DEFINE_GLOBAL,
 OP_EQUAL,

Thanks to our handy-dandy hash table, the implementation isn’t too hard.

 case OP_POP: pop(); break;
 case OP_DEFINE_GLOBAL: {
 ObjString* name = READ_STRING();
 tableSet(&vm.globals, name, peek(0));
 pop();
 break;
 }
 case OP_EQUAL: {

We get the name of the variable from the constant table. Then we take the value
from the top of the stack and store it in a hash table with that name as the key.

This code doesn’t check to see if the key is already in the table. Lox is pretty
lax with global variables and lets you redefine them without error. That’s useful
in a REPL session, so the VM supports that by simply overwriting the value if the
key happens to already be in the hash table.

There’s another little helper macro:

#define READ_CONSTANT() (vm.chunk->constants.values[READ_BYTE()])
#define READ_STRING() AS_STRING(READ_CONSTANT())
#define BINARY_OP(valueType, op) \

It reads a one-byte operand from the bytecode chunk. It treats that as an index
into the chunk’s constant table and returns the string at that index. It doesn’t
check that the value is a string—it just indiscriminately casts it. That’s safe be-

compiler.c
add after parseVariable()

I know some of these functions seem
pretty pointless right now. But we’ll get
more mileage out of them as we add
more language features for working with
names. Function and class declarations
both declare new variables, and variable
and assignment expressions access them.

chunk.h
in enum OpCode

vm.c
in run()

Note that we don’t pop the value until
after we add it to the hash table. That
ensures the VM can still find the value if
a garbage collection is triggered right in
the middle of adding it to the hash table.
That’s a distinct possibility since the hash
table requires dynamic allocation when
it resizes.

vm.c
in run()

390 cHAPTeR 21 : globAl VARIAbles

cause the compiler never emits an instruction that refers to a non-string con-
stant.

Because we care about lexical hygiene, we also undefine this macro at the end
of the interpret function.

#undef READ_CONSTANT
#undef READ_STRING
#undef BINARY_OP

I keep saying “the hash table”, but we don’t actually have one yet. We need a place
to store these globals. Since we want them to persist as long as clox is running,
we store them right in the VM.

 Value* stackTop;
 Table globals;
 Table strings;

As we did with the string table, we need to initialize the hash table to a valid state
when the VM boots up.

 vm.objects = NULL;

 initTable(&vm.globals);
 initTable(&vm.strings);

And we tear it down when we exit.

void freeVM() {
 freeTable(&vm.globals);
 freeTable(&vm.strings);

As usual, we want to be able to disassemble the new instruction too.

 return simpleInstruction("OP_POP", offset);
 case OP_DEFINE_GLOBAL:
 return constantInstruction("OP_DEFINE_GLOBAL", chunk,
 offset);
 case OP_EQUAL:

And with that, we can define global variables. Not that users can tell that they’ve
done so, because they can’t actually use them. So let’s fix that next.

21.3 reading Variables
As in every programming language ever, we access a variable’s value using its
name. We hook up identifier tokens to the expression parser here:

 [TOKEN_LESS_EQUAL] = {NULL, binary, PREC_COMPARISON},
 [TOKEN_IDENTIFIER] = {variable, NULL, PREC_NONE},
 [TOKEN_STRING] = {string, NULL, PREC_NONE},

vm.c
in run()

vm.h
in struct VM

vm.c
in initVM()

vm.c
in freeVM()

debug.c
in disassembleInstruction()

compiler.c
replace 1 line

21.3 ReAdIng VARIAbles 391

That calls this new parser function:

static void variable() {
 namedVariable(parser.previous);
}

Like with declarations, there are a couple of tiny helper functions that seem
pointless now but will become more useful in later chapters. I promise.

static void namedVariable(Token name) {
 uint8_t arg = identifierConstant(&name);
 emitBytes(OP_GET_GLOBAL, arg);
}

This calls the same identifierConstant() function from before to take
the given identifier token and add its lexeme to the chunk’s constant table as a
string. All that remains is to emit an instruction that loads the global variable
with that name. Here’s the instruction:

 OP_POP,
 OP_GET_GLOBAL,
 OP_DEFINE_GLOBAL,

Over in the interpreter, the implementation mirrors OP_DEFINE_GLOBAL.

 case OP_POP: pop(); break;
 case OP_GET_GLOBAL: {
 ObjString* name = READ_STRING();
 Value value;
 if (!tableGet(&vm.globals, name, &value)) {
 runtimeError("Undefined variable '%s'.", name->chars);
 return INTERPRET_RUNTIME_ERROR;
 }
 push(value);
 break;
 }
 case OP_DEFINE_GLOBAL: {

We pull the constant table index from the instruction’s operand and get the vari-
able name. Then we use that as a key to look up the variable’s value in the globals
hash table.

If the key isn’t present in the hash table, it means that global variable has
never been defined. That’s a runtime error in Lox, so we report it and exit the
interpreter loop if that happens. Otherwise, we take the value and push it onto
the stack.

 return simpleInstruction("OP_POP", offset);
 case OP_GET_GLOBAL:
 return constantInstruction("OP_GET_GLOBAL", chunk, offset);
 case OP_DEFINE_GLOBAL:

A little bit of disassembling, and we’re done. Our interpreter is now able to run

compiler.c
add after string()

compiler.c
add after string()

chunk.h
in enum OpCode

vm.c
in run()

debug.c
in disassembleInstruction()

392 cHAPTeR 21 : globAl VARIAbles

code like this:

var beverage = "cafe au lait";
var breakfast = "beignets with " + beverage;
print breakfast;

There’s only one operation left.

21.4 assignment
Throughout this book, I’ve tried to keep you on a fairly safe and easy path. I don’t
avoid hard problems, but I try to not make the solutions more complex than they
need to be. Alas, other design choices in our bytecode compiler make assignment
annoying to implement.

Our bytecode VM uses a single-pass compiler. It parses and generates byte-
code on the fly without any intermediate AST. As soon as it recognizes a piece of
syntax, it emits code for it. Assignment doesn’t naturally fit that. Consider:

menu.brunch(sunday).beverage = "mimosa";

In this code, the parser doesn’t realize menu.brunch(sunday).beverage is
the target of an assignment and not a normal expression until it reaches =, many
tokens after the first menu. By then, the compiler has already emitted bytecode
for the whole thing.

The problem is not as dire as it might seem, though. Look at how the parser
sees that example:

Even though the .beverage part must not be compiled as a get expression, ev-
erything to the left of the . is an expression, with the normal expression seman-
tics. The menu.brunch(sunday) part can be compiled and executed as usual.

Fortunately for us, the only semantic differences on the left side of an assign-
ment appear at the very right-most end of the tokens, immediately preceding the
=. Even though the receiver of a setter may be an arbitrarily long expression, the
part whose behavior differs from a get expression is only the trailing identifier,
which is right before the =. We don’t need much lookahead to realize beverage
should be compiled as a set expression and not a getter.

Variables are even easier since they are just a single bare identifier before
an =. The idea then is that right before compiling an expression that can also be
used as an assignment target, we look for a subsequent = token. If we see one, we
compile it as an assignment or setter instead of a variable access or getter.

We don’t have setters to worry about yet, so all we need to handle are vari-
ables.

If you recall, assignment was pretty easy
in jlox.

21.4 AssIgnmenT 393

 uint8_t arg = identifierConstant(&name);

 if (match(TOKEN_EQUAL)) {
 expression();
 emitBytes(OP_SET_GLOBAL, arg);
 } else {
 emitBytes(OP_GET_GLOBAL, arg);
 }
}

In the parse function for identifier expressions, we look for an equals sign after
the identifier. If we find one, instead of emitting code for a variable access, we
compile the assigned value and then emit an assignment instruction.

That’s the last instruction we need to add in this chapter.

 OP_DEFINE_GLOBAL,
 OP_SET_GLOBAL,
 OP_EQUAL,

As you’d expect, its runtime behavior is similar to defining a new variable.

 }
 case OP_SET_GLOBAL: {
 ObjString* name = READ_STRING();
 if (tableSet(&vm.globals, name, peek(0))) {
 tableDelete(&vm.globals, name);
 runtimeError("Undefined variable '%s'.", name->chars);
 return INTERPRET_RUNTIME_ERROR;
 }
 break;
 }
 case OP_EQUAL: {

The main difference is what happens when the key doesn’t already exist in the
globals hash table. If the variable hasn’t been defined yet, it’s a runtime error to
try to assign to it. Lox doesn’t do implicit variable declaration.

The other difference is that setting a variable doesn’t pop the value off the
stack. Remember, assignment is an expression, so it needs to leave that value
there in case the assignment is nested inside some larger expression.

Add a dash of disassembly:

 return constantInstruction("OP_DEFINE_GLOBAL", chunk,
 offset);
 case OP_SET_GLOBAL:
 return constantInstruction("OP_SET_GLOBAL", chunk, offset);
 case OP_EQUAL:

So we’re done, right? Well . . . not quite. We’ve made a mistake! Take a gander at:

a * b = c + d;

According to Lox’s grammar, = has the lowest precedence, so this should be

compiler.c
in namedVariable()
replace 1 line

chunk.h
in enum OpCode

vm.c
in run()

The call to tableSet() stores the
value in the global variable table even if
the variable wasn’t previously defined.
That fact is visible in a REPL session, since
it keeps running even after the runtime
error is reported. So we also take care to
delete that zombie value from the table.

debug.c
in disassembleInstruction()

394 cHAPTeR 21 : globAl VARIAbles

parsed roughly like:

Obviously, a * b isn’t a valid assignment target, so this should be a syntax error.
But here’s what our parser does:

1. First, parsePrecedence() parses a using the variable() prefix parser.

2. After that, it enters the infix parsing loop.

3. It reaches the * and calls binary().

4. That recursively calls parsePrecedence() to parse the right operand.

5. That calls variable() again for parsing b.

6. Inside that call to variable(), it looks for a trailing =. It sees one and thus
parses the rest of the line as an assignment.

In other words, the parser sees the above code like:

We’ve messed up the precedence handling because variable() doesn’t take
into account the precedence of the surrounding expression that contains the
variable. If the variable happens to be the right-hand side of an infix operator,
or the operand of a unary operator, then that containing expression is too high
precedence to permit the =.

To fix this, variable() should look for and consume the = only if it’s in the
context of a low-precedence expression. The code that knows the current prece-
dence is, logically enough, parsePrecedence(). The variable() function
doesn’t need to know the actual level. It just cares that the precedence is low
enough to allow assignment, so we pass that fact in as a Boolean.

 }

 bool canAssign = precedence <= PREC_ASSIGNMENT;
 prefixRule(canAssign);

 while (precedence <= getRule(parser.current.type)->precedence) {

Wouldn’t it be wild if a * b was a valid
assignment target, though? You could
imagine some algebra-like language that
tried to divide the assigned value up in
some reasonable way and distribute it to
a and b . . . that’s probably a terrible idea.

21.4 AssIgnmenT 395

Since assignment is the lowest-precedence expression, the only time we allow an
assignment is when parsing an assignment expression or top-level expression
like in an expression statement. That flag makes its way to the parser function
here:

static void variable(bool canAssign) {
 namedVariable(parser.previous, canAssign);
}

Which passes it through a new parameter:

static void namedVariable(Token name, bool canAssign) {
 uint8_t arg = identifierConstant(&name);

And then finally uses it here:

 uint8_t arg = identifierConstant(&name);

 if (canAssign && match(TOKEN_EQUAL)) {
 expression();

That’s a lot of plumbing to get literally one bit of data to the right place in the
compiler, but arrived it has. If the variable is nested inside some expression with
higher precedence, canAssign will be false and this will ignore the = even if
there is one there. Then namedVariable() returns, and execution eventually
makes its way back to parsePrecedence().

Then what? What does the compiler do with our broken example from before?
Right now, variable() won’t consume the =, so that will be the current token.
The compiler returns back to parsePrecedence() from the variable()
prefix parser and then tries to enter the infix parsing loop. There is no parsing
function associated with =, so it skips that loop.

Then parsePrecedence() silently returns back to the caller. That also isn’t
right. If the = doesn’t get consumed as part of the expression, nothing else is
going to consume it. It’s an error and we should report it.

 infixRule();
 }

 if (canAssign && match(TOKEN_EQUAL)) {
 error("Invalid assignment target.");
 }
}

With that, the previous bad program correctly gets an error at compile time. OK,
now are we done? Still not quite. See, we’re passing an argument to one of the
parse functions. But those functions are stored in a table of function pointers,
so all of the parse functions need to have the same type. Even though most parse
functions don’t support being used as an assignment target—setters are the only
other one—our friendly C compiler requires them all to accept the parameter.

So we’re going to finish off this chapter with some grunt work. First, let’s go
ahead and pass the flag to the infix parse functions.

compiler.c
function namedVariable()
replace 1 line

compiler.c
in namedVariable()
replace 1 line

compiler.c
in parsePrecedence()

If Lox had arrays and subscript operators
like array[index] then an infix [
would also allow assignment to support
array[index] = value.

compiler.c
function variable()
replace 3 lines

396 cHAPTeR 21 : globAl VARIAbles

 ParseFn infixRule = getRule(parser.previous.type)->infix;
 infixRule(canAssign);
 }

We’ll need that for setters eventually. Then we’ll fix the typedef for the function
type.

} Precedence;

typedef void (*ParseFn)(bool canAssign);

typedef struct {

And some completely tedious code to accept this parameter in all of our existing
parse functions. Here:

static void binary(bool canAssign) {
 TokenType operatorType = parser.previous.type;

And here:

static void literal(bool canAssign) {
 switch (parser.previous.type) {

And here:

static void grouping(bool canAssign) {
 expression();

And here:

static void number(bool canAssign) {
 double value = strtod(parser.previous.start, NULL);

And here too:

static void string(bool canAssign) {
 emitConstant(OBJ_VAL(copyString(parser.previous.start + 1,

And, finally:

static void unary(bool canAssign) {
 TokenType operatorType = parser.previous.type;

Phew! We’re back to a C program we can compile. Fire it up and you can run this:

var breakfast = "beignets";
var beverage = "cafe au lait";
breakfast = "beignets with " + beverage;
print breakfast;

It’s starting to look like real code for an actual language!

compiler.c
in parsePrecedence()

replace 1 line

compiler.c
add after enum Precedence

replace 1 line

compiler.c
function binary()

replace 1 line

compiler.c
function literal()

replace 1 line

compiler.c
function grouping()

replace 1 line

compiler.c
function number()

replace 1 line

compiler.c
function string()

replace 1 line

compiler.c
function unary()

replace 1 line

cHAllenges 397

CHaLLENGES

1. The compiler adds a global variable’s name to the constant table as a string ev-
ery time an identifier is encountered. It creates a new constant each time, even
if that variable name is already in a previous slot in the constant table. That’s
wasteful in cases where the same variable is referenced multiple times by the
same function. That, in turn, increases the odds of filling up the constant table
and running out of slots since we allow only 256 constants in a single chunk.

Optimize this. How does your optimization affect the performance of the
compiler compared to the runtime? Is this the right trade-off?

2. Looking up a global variable by name in a hash table each time it is used is pretty
slow, even with a good hash table. Can you come up with a more efficient way to
store and access global variables without changing the semantics?

3. When running in the REPL, a user might write a function that references an
unknown global variable. Then, in the next line, they declare the variable. Lox
should handle this gracefully by not reporting an “unknown variable” compile
error when the function is first defined.

But when a user runs a Lox script, the compiler has access to the full text of
the entire program before any code is run. Consider this program:

fun useVar() {
 print oops;
}

var ooops = "too many o's!";

Here, we can tell statically that oops will not be defined because there is no
declaration of that global anywhere in the program. Note that useVar() is
never called either, so even though the variable isn’t defined, no runtime error
will occur because it’s never used either.

We could report mistakes like this as compile errors, at least when running
from a script. Do you think we should? Justify your answer. What do other
scripting languages you know do?

A byTecode VIRTuAl mAcHIne 22Local Variables

“And as imagination bodies forth
The forms of things unknown, the poet’s pen
Turns them to shapes and gives to airy nothing
A local habitation and a name.”

— William Shakespeare, A Midsummer Night’s Dream

The last chapter introduced variables to clox, but only of the global variety. In
this chapter, we’ll add blocks, block scope, and local variables. In jlox, we man-
aged to pack all of that and globals into one chapter. For clox, that’s two chapters
worth of work partially because, frankly, everything takes more effort in C.

But an even more important reason is that our approach to local variables will
be quite different from how we implemented globals. Global variables are late
bound in Lox. “Late” in this context means “resolved after compile time”. That’s
good for keeping the compiler simple, but not great for performance. Local vari-
ables are one of the most-used parts of a language. If locals are slow, everything
is slow. So we want a strategy for local variables that’s as efficient as possible.

Fortunately, lexical scoping is here to help us. As the name implies, lexical
scope means we can resolve a local variable just by looking at the text of the
program—locals are not late bound. Any processing work we do in the compiler
is work we don’t have to do at runtime, so our implementation of local variables
will lean heavily on the compiler.

There’s probably some dumb “think
globally, act locally” joke here, but I’m
struggling to find it.

Function parameters are also heavily
used. They work like local variables too,
so we’ll use the same implementation
technique for them.

400 cHAPTeR 22 : locAl VARIAbles

22.1 representing Local Variables
The nice thing about hacking on a programming language in modern times is
there’s a long lineage of other languages to learn from. So how do C and Java
manage their local variables? Why, on the stack, of course! They typically use the
native stack mechanisms supported by the chip and OS. That’s a little too low lev-
el for us, but inside the virtual world of clox, we have our own stack we can use.

Right now, we only use it for holding on to temporaries—short-lived blobs
of data that we need to remember while computing an expression. As long as
we don’t get in the way of those, we can stuff our local variables onto the stack
too. This is great for performance. Allocating space for a new local requires
only incrementing the stackTop pointer, and freeing is likewise a decrement.
Accessing a variable from a known stack slot is an indexed array lookup.

We do need to be careful, though. The VM expects the stack to behave like,
well, a stack. We have to be OK with allocating new locals only on the top of the
stack, and we have to accept that we can discard a local only when nothing is
above it on the stack. Also, we need to make sure temporaries don’t interfere.

Conveniently, the design of Lox is in harmony with these constraints. New
locals are always created by declaration statements. Statements don’t nest inside
expressions, so there are never any temporaries on the stack when a statement
begins executing. Blocks are strictly nested. When a block ends, it always takes
the innermost, most recently declared locals with it. Since those are also the lo-
cals that came into scope last, they should be on top of the stack where we need
them.

Step through this example program and watch how the local variables come
in and go out of scope:

See how they fit a stack perfectly? It seems that the stack will work for storing
locals at runtime. But we can go further than that. Not only do we know that they
will be on the stack, but we can even pin down precisely where they will be on the
stack. Since the compiler knows exactly which local variables are in scope at any
point in time, it can effectively simulate the stack during compilation and note

This alignment obviously isn’t coinci-
dental. I designed Lox to be amenable to
single-pass compilation to stack-based
bytecode. But I didn’t have to tweak
the language too much to fit in those
restrictions. Most of its design should feel
pretty natural.

This is in large part because the history
of languages is deeply tied to single-pass
compilation and—to a lesser degree—
stack-based architectures. Lox’s block
scoping follows a tradition stretching
back to BCPL. As programmers, our
intuition of what’s “normal” in a language
is informed even today by the hardware
limitations of yesteryear.

22.1 RePResenTIng locAl VARIAbles 401

where in the stack each variable lives.
We’ll take advantage of this by using these stack offsets as operands for the

bytecode instructions that read and store local variables. This makes working
with locals deliciously fast—as simple as indexing into an array.

There’s a lot of state we need to track in the compiler to make this whole thing
go, so let’s get started there. In jlox, we used a linked chain of “environment”
HashMaps to track which local variables were currently in scope. That’s sort
of the classic, schoolbook way of representing lexical scope. For clox, as usual,
we’re going a little closer to the metal. All of the state lives in a new struct.

} ParseRule;

typedef struct {
 Local locals[UINT8_COUNT];
 int localCount;
 int scopeDepth;
} Compiler;

Parser parser;

We have a simple, flat array of all locals that are in scope during each point in the
compilation process. They are ordered in the array in the order that their decla-
rations appear in the code. Since the instruction operand we’ll use to encode a
local is a single byte, our VM has a hard limit on the number of locals that can be
in scope at once. That means we can also give the locals array a fixed size.

#define DEBUG_TRACE_EXECUTION

#define UINT8_COUNT (UINT8_MAX + 1)

#endif

Back in the Compiler struct, the localCount field tracks how many locals are
in scope—how many of those array slots are in use. We also track the “scope
depth”. This is the number of blocks surrounding the current bit of code we’re
compiling.

Our Java interpreter used a chain of maps to keep each block’s variables sep-
arate from other blocks’. This time, we’ll simply number variables with the level
of nesting where they appear. Zero is the global scope, one is the first top-level
block, two is inside that, you get the idea. We use this to track which block each
local belongs to so that we know which locals to discard when a block ends.

Each local in the array is one of these:

} ParseRule;

typedef struct {
 Token name;
 int depth;
} Local;

typedef struct {

In this chapter, locals start at the bottom
of the VM’s stack array and are indexed
from there. When we add functions, that
scheme gets a little more complex. Each
function needs its own region of the stack
for its parameters and local variables. But,
as we’ll see, that doesn’t add as much
complexity as you might expect.

compiler.c
add after struct ParseRule

We’re writing a single-pass compiler,
so it’s not like we have too many other
options for how to order them in the array.

common.h

compiler.c
add after struct ParseRule

402 cHAPTeR 22 : locAl VARIAbles

We store the name of the variable. When we’re resolving an identifier, we com-
pare the identifier’s lexeme with each local’s name to find a match. It’s pretty
hard to resolve a variable if you don’t know its name. The depth field records
the scope depth of the block where the local variable was declared. That’s all the
state we need for now.

This is a very different representation from what we had in jlox, but it still
lets us answer all of the same questions our compiler needs to ask of the lexical
environment. The next step is figuring out how the compiler gets at this state. If
we were principled engineers, we’d give each function in the front end a param-
eter that accepts a pointer to a Compiler. We’d create a Compiler at the beginning
and carefully thread it through each function call . . . but that would mean a lot of
boring changes to the code we already wrote, so here’s a global variable instead:

Parser parser;
Compiler* current = NULL;
Chunk* compilingChunk;

Here’s a little function to initialize the compiler:

static void initCompiler(Compiler* compiler) {
 compiler->localCount = 0;
 compiler->scopeDepth = 0;
 current = compiler;
}

When we first start up the VM, we call it to get everything into a clean state.

 initScanner(source);
 Compiler compiler;
 initCompiler(&compiler);
 compilingChunk = chunk;

Our compiler has the data it needs, but not the operations on that data. There’s no
way to create and destroy scopes, or add and resolve variables. We’ll add those as
we need them. First, let’s start building some language features.

22.2 Block Statements
Before we can have any local variables, we need some local scopes. These come
from two things: function bodies and blocks. Functions are a big chunk of work
that we’ll tackle in a later chapter, so for now we’re only going to do blocks. As
usual, we start with the syntax. The new grammar we’ll introduce is:

statement → exprStmt
 | printStmt
 | block ;

block → "{" declaration* "}" ;

Blocks are a kind of statement, so the rule for them goes in the statement pro-

In particular, if we ever want to use our
compiler in a multi-threaded application,
possibly with multiple compilers running
in parallel, then using a global variable is
a bad idea.

compiler.c
add after variable parser

compiler.c
add after emitConstant()

compiler.c
in compile()

When you think about it, “block” is a
weird name. Used metaphorically, “block”
usually means a small indivisible unit, but
for some reason, the ALGOL 60 committee
decided to use it to refer to a compound
structure—a series of statements. It
could be worse, I suppose. Algol 58
called begin and end “statement
parentheses”.

22.2 block sTATemenTs 403

duction. The corresponding code to compile one looks like this:

 if (match(TOKEN_PRINT)) {
 printStatement();
 } else if (match(TOKEN_LEFT_BRACE)) {
 beginScope();
 block();
 endScope();
 } else {

After parsing the initial curly brace, we use this helper function to compile the
rest of the block:

static void block() {
 while (!check(TOKEN_RIGHT_BRACE) && !check(TOKEN_EOF)) {
 declaration();
 }

 consume(TOKEN_RIGHT_BRACE, "Expect '}' after block.");
}

It keeps parsing declarations and statements until it hits the closing brace. As
we do with any loop in the parser, we also check for the end of the token stream.
This way, if there’s a malformed program with a missing closing curly, the com-
piler doesn’t get stuck in a loop.

Executing a block simply means executing the statements it contains, one
after the other, so there isn’t much to compiling them. The semantically inter-
esting thing blocks do is create scopes. Before we compile the body of a block, we
call this function to enter a new local scope:

static void beginScope() {
 current->scopeDepth++;
}

In order to “create” a scope, all we do is increment the current depth. This is cer-
tainly much faster than jlox, which allocated an entire new HashMap for each
one. Given beginScope(), you can probably guess what endScope() does.

static void endScope() {
 current->scopeDepth--;
}

That’s it for blocks and scopes—more or less—so we’re ready to stuff some vari-
ables into them.

22.3 Declaring Local Variables
Usually we start with parsing here, but our compiler already supports parsing
and compiling variable declarations. We’ve got var statements, identifier ex-
pressions and assignment in there now. It’s just that the compiler assumes all

compiler.c
in statement()

This function will come in handy later for
compiling function bodies.

compiler.c
add after expression()

compiler.c
add after endCompiler()

compiler.c
add after beginScope()

404 cHAPTeR 22 : locAl VARIAbles

variables are global. So we don’t need any new parsing support, we just need to
hook up the new scoping semantics to the existing code.

Variable declaration parsing begins in varDeclaration() and relies on a
couple of other functions. First, parseVariable() consumes the identifier
token for the variable name, adds its lexeme to the chunk’s constant table as a
string, and then returns the constant table index where it was added. Then, af-
ter varDeclaration() compiles the initializer, it calls defineVariable()
to emit the bytecode for storing the variable’s value in the global variable hash
table.

Both of those helpers need a few changes to support local variables. In
parseVariable(), we add:

 consume(TOKEN_IDENTIFIER, errorMessage);

 declareVariable();
 if (current->scopeDepth > 0) return 0;

 return identifierConstant(&parser.previous);

First, we “declare” the variable. I’ll get to what that means in a second. After that,
we exit the function if we’re in a local scope. At runtime, locals aren’t looked up
by name. There’s no need to stuff the variable’s name into the constant table, so
if the declaration is inside a local scope, we return a dummy table index instead.

Over in defineVariable(), we need to emit the code to store a local vari-
able if we’re in a local scope. It looks like this:

static void defineVariable(uint8_t global) {
 if (current->scopeDepth > 0) {
 return;
 }

 emitBytes(OP_DEFINE_GLOBAL, global);

Wait, what? Yup. That’s it. There is no code to create a local variable at runtime.
Think about what state the VM is in. It has already executed the code for the
variable’s initializer (or the implicit nil if the user omitted an initializer), and
that value is sitting right on top of the stack as the only remaining temporary.
We also know that new locals are allocated at the top of the stack . . . right where
that value already is. Thus, there’s nothing to do. The temporary simply becomes
the local variable. It doesn’t get much more efficient than that.

compiler.c
in parseVariable()

compiler.c
in defineVariable()

22.3 declARIng locAl VARIAbles 405

OK, so what’s “declaring” about? Here’s what that does:

static void declareVariable() {
 if (current->scopeDepth == 0) return;

 Token* name = &parser.previous;
 addLocal(*name);
}

This is the point where the compiler records the existence of the variable. We
only do this for locals, so if we’re in the top-level global scope, we just bail out.
Because global variables are late bound, the compiler doesn’t keep track of which
declarations for them it has seen.

But for local variables, the compiler does need to remember that the variable
exists. That’s what declaring it does—it adds it to the compiler’s list of variables
in the current scope. We implement that using another new function.

static void addLocal(Token name) {
 Local* local = ¤t->locals[current->localCount++];
 local->name = name;
 local->depth = current->scopeDepth;
}

This initializes the next available Local in the compiler’s array of variables. It
stores the variable’s name and the depth of the scope that owns the variable.

Our implementation is fine for a correct Lox program, but what about invalid
code? Let’s aim to be robust. The first error to handle is not really the user’s fault,
but more a limitation of the VM. The instructions to work with local variables
refer to them by slot index. That index is stored in a single-byte operand, which
means the VM only supports up to 256 local variables in scope at one time.

If we try to go over that, not only could we not refer to them at runtime, but
the compiler would overwrite its own locals array, too. Let’s prevent that.

static void addLocal(Token name) {
 if (current->localCount == UINT8_COUNT) {
 error("Too many local variables in function.");
 return;
 }

 Local* local = ¤t->locals[current->localCount++];

compiler.c
add after identifierConstant()

compiler.c
add after identifierConstant()

compiler.c
in addLocal()

The code on the left compiles to the
sequence of instructions on the right.

Worried about the lifetime of the string
for the variable’s name? The Local directly
stores a copy of the Token struct for the
identifier. Tokens store a pointer to the
first character of their lexeme and the
lexeme’s length. That pointer points into
the original source string for the script or
REPL entry being compiled.

As long as that string stays around
during the entire compilation process—
which it must since, you know, we’re
compiling it—then all of the tokens
pointing into it are fine.

406 cHAPTeR 22 : locAl VARIAbles

The next case is trickier. Consider:

{
 var a = "first";
 var a = "second";
}

At the top level, Lox allows redeclaring a variable with the same name as a pre-
vious declaration because that’s useful for the REPL. But inside a local scope,
that’s a pretty weird thing to do. It’s likely to be a mistake, and many languages,
including our own Lox, enshrine that assumption by making this an error.

Note that the above program is different from this one:

{
 var a = "outer";
 {
 var a = "inner";
 }
}

It’s OK to have two variables with the same name in different scopes, even when
the scopes overlap such that both are visible at the same time. That’s shadowing,
and Lox does allow that. It’s only an error to have two variables with the same
name in the same local scope. We detect that error like so:

 Token* name = &parser.previous;
 for (int i = current->localCount - 1; i >= 0; i--) {
 Local* local = ¤t->locals[i];
 if (local->depth != -1 && local->depth < current->scopeDepth) {
 break;
 }

 if (identifiersEqual(name, &local->name)) {
 error("Already a variable with this name in this scope.");
 }
 }

 addLocal(*name);
}

Local variables are appended to the array when they’re declared, which means
the current scope is always at the end of the array. When we declare a new vari-
able, we start at the end and work backward, looking for an existing variable
with the same name. If we find one in the current scope, we report the error.
Otherwise, if we reach the beginning of the array or a variable owned by another
scope, then we know we’ve checked all of the existing variables in the scope.

To see if two identifiers are the same, we use this:

static bool identifiersEqual(Token* a, Token* b) {
 if (a->length != b->length) return false;
 return memcmp(a->start, b->start, a->length) == 0;
}

Interestingly, the Rust programming
language does allow this, and idiomatic
code relies on it.

compiler.c
in declareVariable()

Don’t worry about that odd
depth != -1 part yet. We’ll get to
what that’s about later.

compiler.c
add after identifierConstant()

22.4 usIng locAls 407

Since we know the lengths of both lexemes, we check that first. That will fail
quickly for many non-equal strings. If the lengths are the same, we check the
characters using memcmp(). To get to memcmp(), we need an include.

#include <stdlib.h>
#include <string.h>

#include "common.h"

With this, we’re able to bring variables into being. But, like ghosts, they linger
on beyond the scope where they are declared. When a block ends, we need to put
them to rest.

 current->scopeDepth--;

 while (current->localCount > 0 &&
 current->locals[current->localCount - 1].depth >
 current->scopeDepth) {
 emitByte(OP_POP);
 current->localCount--;
 }
}

When we pop a scope, we walk backward through the local array looking for any
variables declared at the scope depth we just left. We discard them by simply
decrementing the length of the array.

There is a runtime component to this too. Local variables occupy slots on the
stack. When a local variable goes out of scope, that slot is no longer needed and
should be freed. So, for each variable that we discard, we also emit an OP_POP
instruction to pop it from the stack.

22.4 Using Locals
We can now compile and execute local variable declarations. At runtime, their
values are sitting where they should be on the stack. Let’s start using them. We’ll
do both variable access and assignment at the same time since they touch the
same functions in the compiler.

We already have code for getting and setting global variables, and—like good
little software engineers—we want to reuse as much of that existing code as we
can. Something like this:

static void namedVariable(Token name, bool canAssign) {
 uint8_t getOp, setOp;
 int arg = resolveLocal(current, &name);
 if (arg != -1) {
 getOp = OP_GET_LOCAL;
 setOp = OP_SET_LOCAL;
 } else {
 arg = identifierConstant(&name);
 getOp = OP_GET_GLOBAL;

It would be a nice little optimization if
we could check their hashes, but tokens
aren’t full LoxStrings, so we haven’t
calculated their hashes yet.

compiler.c

compiler.c
in endScope()

When multiple local variables go out
of scope at once, you get a series of
OP_POP instructions that get interpret-
ed one at a time. A simple optimization
you could add to your Lox implementation
is a specialized OP_POPN instruction
that takes an operand for the number of
slots to pop and pops them all at once.

compiler.c
in namedVariable()
replace 1 line

continued on next page . . .

408 cHAPTeR 22 : locAl VARIAbles

 setOp = OP_SET_GLOBAL;
 }

 if (canAssign && match(TOKEN_EQUAL)) {

Instead of hardcoding the bytecode instructions emitted for variable access and
assignment, we use a couple of C variables. First, we try to find a local variable
with the given name. If we find one, we use the instructions for working with
locals. Otherwise, we assume it’s a global variable and use the existing bytecode
instructions for globals.

A little further down, we use those variables to emit the right instructions.
For assignment:

 if (canAssign && match(TOKEN_EQUAL)) {
 expression();
 emitBytes(setOp, (uint8_t)arg);
 } else {

And for access:

 emitBytes(setOp, (uint8_t)arg);
 } else {
 emitBytes(getOp, (uint8_t)arg);
 }

The real heart of this chapter, the part where we resolve a local variable, is here:

static int resolveLocal(Compiler* compiler, Token* name) {
 for (int i = compiler->localCount - 1; i >= 0; i--) {
 Local* local = &compiler->locals[i];
 if (identifiersEqual(name, &local->name)) {
 return i;
 }
 }

 return -1;
}

For all that, it’s straightforward. We walk the list of locals that are currently in
scope. If one has the same name as the identifier token, the identifier must refer
to that variable. We’ve found it! We walk the array backward so that we find the
last declared variable with the identifier. That ensures that inner local variables
correctly shadow locals with the same name in surrounding scopes.

At runtime, we load and store locals using the stack slot index, so that’s what
the compiler needs to calculate after it resolves the variable. Whenever a vari-
able is declared, we append it to the locals array in Compiler. That means the
first local variable is at index zero, the next one is at index one, and so on. In
other words, the locals array in the compiler has the exact same layout as the
VM’s stack will have at runtime. The variable’s index in the locals array is the
same as its stack slot. How convenient!

compiler.c
in namedVariable()

replace 1 line

compiler.c
in namedVariable()

replace 1 line

compiler.c
add after identifiersEqual()

. . . from previous page

22.4.1 InTeRPReTIng locAl VARIAbles 409

If we make it through the whole array without finding a variable with the
given name, it must not be a local. In that case, we return -1 to signal that it
wasn’t found and should be assumed to be a global variable instead.

22.4.1 Interpreting local variables

Our compiler is emitting two new instructions, so let’s get them working. First is
loading a local variable:

 OP_POP,
 OP_GET_LOCAL,
 OP_GET_GLOBAL,

And its implementation:

 case OP_POP: pop(); break;
 case OP_GET_LOCAL: {
 uint8_t slot = READ_BYTE();
 push(vm.stack[slot]);
 break;
 }
 case OP_GET_GLOBAL: {

It takes a single-byte operand for the stack slot where the local lives. It loads
the value from that index and then pushes it on top of the stack where later
instructions can find it.

Next is assignment:

 OP_GET_LOCAL,
 OP_SET_LOCAL,
 OP_GET_GLOBAL,

You can probably predict the implementation.

 }
 case OP_SET_LOCAL: {
 uint8_t slot = READ_BYTE();
 vm.stack[slot] = peek(0);
 break;
 }
 case OP_GET_GLOBAL: {

It takes the assigned value from the top of the stack and stores it in the stack slot
corresponding to the local variable. Note that it doesn’t pop the value from the
stack. Remember, assignment is an expression, and every expression produces a
value. The value of an assignment expression is the assigned value itself, so the
VM just leaves the value on the stack.

Our disassembler is incomplete without support for these two new instruc-
tions.

chunk.h
in enum OpCode

vm.c
in run()

It seems redundant to push the local’s
value onto the stack since it’s already
on the stack lower down somewhere.
The problem is that the other bytecode
instructions only look for data at the
top of the stack. This is the core aspect
that makes our bytecode instruction set
stack-based. Register-based bytecode
instruction sets avoid this stack juggling
at the cost of having larger instructions
with more operands.

chunk.h
in enum OpCode

vm.c
in run()

410 cHAPTeR 22 : locAl VARIAbles

 return simpleInstruction("OP_POP", offset);
 case OP_GET_LOCAL:
 return byteInstruction("OP_GET_LOCAL", chunk, offset);
 case OP_SET_LOCAL:
 return byteInstruction("OP_SET_LOCAL", chunk, offset);
 case OP_GET_GLOBAL:

The compiler compiles local variables to direct slot access. The local variable’s
name never leaves the compiler to make it into the chunk at all. That’s great for
performance, but not so great for introspection. When we disassemble these in-
structions, we can’t show the variable’s name like we could with globals. Instead,
we just show the slot number.

static int byteInstruction(const char* name, Chunk* chunk,
 int offset) {
 uint8_t slot = chunk->code[offset + 1];
 printf("%-16s %4d\n", name, slot);
 return offset + 2;
}

22.4.2 Another scope edge case

We already sunk some time into handling a couple of weird edge cases around
scopes. We made sure shadowing works correctly. We report an error if two
variables in the same local scope have the same name. For reasons that aren’t
entirely clear to me, variable scoping seems to have a lot of these wrinkles. I’ve
never seen a language where it feels completely elegant.

We’ve got one more edge case to deal with before we end this chapter. Recall
this strange beastie we first met in jlox’s implementation of variable resolution:

{
 var a = "outer";
 {
 var a = a;
 }
}

We slayed it then by splitting a variable’s declaration into two phases, and we’ll
do that again here:

As soon as the variable declaration begins—in other words, before its initial-
izer—the name is declared in the current scope. The variable exists, but in a
special “uninitialized” state. Then we compile the initializer. If at any point in
that expression we resolve an identifier that points back to this variable, we’ll
see that it is not initialized yet and report an error. After we finish compiling the
initializer, we mark the variable as initialized and ready for use.

debug.c
in disassembleInstruction()

debug.c
add after simpleInstruction()

Erasing local variable names in the
compiler is a real issue if we ever want to
implement a debugger for our VM. When
users step through code, they expect to
see the values of local variables organized
by their names. To support that, we’d need
to output some additional information
that tracks the name of each local variable
at each stack slot.

No, not even Scheme.

22.4.2 AnoTHeR scoPe edge cAse 411

To implement this, when we declare a local, we need to indicate the “unini-
tialized” state somehow. We could add a new field to Local, but let’s be a little
more parsimonious with memory. Instead, we’ll set the variable’s scope depth to
a special sentinel value, -1.

 local->name = name;
 local->depth = -1;
}

Later, once the variable’s initializer has been compiled, we mark it initialized.

 if (current->scopeDepth > 0) {
 markInitialized();
 return;
 }

That is implemented like so:

static void markInitialized() {
 current->locals[current->localCount - 1].depth =
 current->scopeDepth;
}

So this is really what “declaring” and “defining” a variable means in the compiler.
“Declaring” is when the variable is added to the scope, and “defining” is when it
becomes available for use.

When we resolve a reference to a local variable, we check the scope depth to
see if it’s fully defined.

 if (identifiersEqual(name, &local->name)) {
 if (local->depth == -1) {
 error("Can't read local variable in its own initializer.");
 }
 return i;

If the variable has the sentinel depth, it must be a reference to a variable in its
own initializer, and we report that as an error.

That’s it for this chapter! We added blocks, local variables, and real, honest-
to-God lexical scoping. Given that we introduced an entirely different runtime
representation for variables, we didn’t have to write a lot of code. The implemen-
tation ended up being pretty clean and efficient.

You’ll notice that almost all of the code we wrote is in the compiler. Over in the
runtime, it’s just two little instructions. You’ll see this as a continuing trend in
clox compared to jlox. One of the biggest hammers in the optimizer’s toolbox is
pulling work forward into the compiler so that you don’t have to do it at runtime.
In this chapter, that meant resolving exactly which stack slot every local variable
occupies. That way, at runtime, no lookup or resolution needs to happen.

compiler.c
in addLocal()
replace 1 line

compiler.c
in defineVariable()

compiler.c
add after parseVariable()

compiler.c
in resolveLocal()

You can look at static types as an extreme
example of this trend. A statically typed
language takes all of the type analysis
and type error handling and sorts it all
out during compilation. Then the runtime
doesn’t have to waste any time checking
that values have the proper type for their
operation. In fact, in some statically typed
languages like C, you don’t even know the
type at runtime. The compiler completely
erases any representation of a value’s type
leaving just the bare bits.

412 cHAPTeR 22 : locAl VARIAbles

CHaLLENGES

1. Our simple local array makes it easy to calculate the stack slot of each local
variable. But it means that when the compiler resolves a reference to a variable,
we have to do a linear scan through the array.

Come up with something more efficient. Do you think the additional com-
plexity is worth it?

2. How do other languages handle code like this:

var a = a;

What would you do if it was your language? Why?

3. Many languages make a distinction between variables that can be reassigned
and those that can’t. In Java, the final modifier prevents you from assigning to
a variable. In JavaScript, a variable declared with let can be assigned, but one
declared using const can’t. Swift treats let as single-assignment and uses
var for assignable variables. Scala and Kotlin use val and var.

Pick a keyword for a single-assignment variable form to add to Lox. Justify
your choice, then implement it. An attempt to assign to a variable declared us-
ing your new keyword should cause a compile error.

4. Extend clox to allow more than 256 local variables to be in scope at a time.

A byTecode VIRTuAl mAcHIne 23Jumping Back and Forth

“The order that our mind imagines is like a net, or like a ladder, built
to attain something. But afterward you must throw the ladder away,
because you discover that, even if it was useful, it was meaningless.”

— Umberto Eco, The Name of the Rose

It’s taken a while to get here, but we’re finally ready to add control flow to our
virtual machine. In the tree-walk interpreter we built for jlox, we implemented
Lox’s control flow in terms of Java’s. To execute a Lox if statement, we used a Java
if statement to run the chosen branch. That works, but isn’t entirely satisfying.
By what magic does the JVM itself or a native CPU implement if statements?
Now that we have our own bytecode VM to hack on, we can answer that.

When we talk about “control flow”, what are we referring to? By “flow” we
mean the way execution moves through the text of the program. Almost like
there is a little robot inside the computer wandering through our code, exe-
cuting bits and pieces here and there. Flow is the path that robot takes, and by
controlling the robot, we drive which pieces of code it executes.

In jlox, the robot’s locus of attention—the current bit of code—was implicit
based on which AST nodes were stored in various Java variables and what Java
code we were in the middle of running. In clox, it is much more explicit. The
VM’s ip field stores the address of the current bytecode instruction. The value of
that field is exactly “where we are” in the program.

414 cHAPTeR 23 : JumPIng bAck And foRTH

Execution proceeds normally by incrementing the ip. But we can mutate that
variable however we want to. In order to implement control flow, all that’s nec-
essary is to change the ip in more interesting ways. The simplest control flow
construct is an if statement with no else clause:

if (condition) print("condition was truthy");

The VM evaluates the bytecode for the condition expression. If the result is
truthy, then it continues along and executes the print statement in the body.
The interesting case is when the condition is falsey. When that happens, execu-
tion skips over the then branch and proceeds to the next statement.

To skip over a chunk of code, we simply set the ip field to the address of the
bytecode instruction following that code. To conditionally skip over some code,
we need an instruction that looks at the value on top of the stack. If it’s falsey, it
adds a given offset to the ip to jump over a range of instructions. Otherwise, it
does nothing and lets execution proceed to the next instruction as usual.

When we compile to bytecode, the explicit nested block structure of the code
evaporates, leaving only a flat series of instructions behind. Lox is a structured
programming language, but clox bytecode isn’t. The right—or wrong, depending
on how you look at it—set of bytecode instructions could jump into the middle of
a block, or from one scope into another.

The VM will happily execute that, even if the result leaves the stack in an
unknown, inconsistent state. So even though the bytecode is unstructured, we’ll
take care to ensure that our compiler only generates clean code that maintains
the same structure and nesting that Lox itself does.

This is exactly how real CPUs behave. Even though we might program them
using higher-level languages that mandate structured control flow, the compiler
lowers that down to raw jumps. At the bottom, it turns out goto is the only real
control flow.

Anyway, I didn’t mean to get all philosophical. The important bit is that if we
have that one conditional jump instruction, that’s enough to implement Lox’s
if statement, as long as it doesn’t have an else clause. So let’s go ahead and get
started with that.

23.1 If Statements
This many chapters in, you know the drill. Any new feature starts in the front
end and works its way through the pipeline. An if statement is, well, a state-
ment, so that’s where we hook it into the parser.

 if (match(TOKEN_PRINT)) {
 printStatement();
 } else if (match(TOKEN_IF)) {
 ifStatement();
 } else if (match(TOKEN_LEFT_BRACE)) {

When we see an if keyword, we hand off compilation to this function:

compiler.c
in statement()

23.1 If sTATemenTs 415

static void ifStatement() {
 consume(TOKEN_LEFT_PAREN, "Expect '(' after 'if'.");
 expression();
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after condition.");

 int thenJump = emitJump(OP_JUMP_IF_FALSE);
 statement();

 patchJump(thenJump);
}

First we compile the condition expression, bracketed by parentheses. At run-
time, that will leave the condition value on top of the stack. We’ll use that to
determine whether to execute the then branch or skip it.

Then we emit a new OP_JUMP_IF_FALSE instruction. It has an operand for
how much to offset the ip—how many bytes of code to skip. If the condition is
falsey, it adjusts the ip by that amount. Something like this:

But we have a problem. When we’re writing the OP_JUMP_IF_FALSE instruc-
tion’s operand, how do we know how far to jump? We haven’t compiled the then
branch yet, so we don’t know how much bytecode it contains.

To fix that, we use a classic trick called backpatching. We emit the jump
instruction first with a placeholder offset operand. We keep track of where that
half-finished instruction is. Next, we compile the then body. Once that’s done,
we know how far to jump. So we go back and replace that placeholder offset with
the real one now that we can calculate it. Sort of like sewing a patch onto the
existing fabric of the compiled code.

We encode this trick into two helper functions.

compiler.c
add after expressionStatement()

Have you ever noticed that the (after the
if keyword doesn’t actually do anything
useful? The language would be just as
unambiguous and easy to parse without
it, like:

if condition)
 print("looks weird");

The closing) is useful because it
separates the condition expression
from the body. Some languages use a
then keyword instead. But the opening
(doesn’t do anything. It’s just there
because unmatched parentheses look bad
to us humans.

The boxes with the torn edges here
represent the blob of bytecode generated
by compiling some sub-clause of a control
flow construct. So the “condition expres-
sion” box is all of the instructions emitted
when we compiled that expression.

416 cHAPTeR 23 : JumPIng bAck And foRTH

static int emitJump(uint8_t instruction) {
 emitByte(instruction);
 emitByte(0xff);
 emitByte(0xff);
 return currentChunk()->count - 2;
}

The first emits a bytecode instruction and writes a placeholder operand for the
jump offset. We pass in the opcode as an argument because later we’ll have two
different instructions that use this helper. We use two bytes for the jump off-
set operand. A 16-bit offset lets us jump over up to 65,535 bytes of code, which
should be plenty for our needs.

The function returns the offset of the emitted instruction in the chunk. After
compiling the then branch, we take that offset and pass it to this:

static void patchJump(int offset) {
 // -2 to adjust for the bytecode for the jump offset itself.
 int jump = currentChunk()->count - offset - 2;

 if (jump > UINT16_MAX) {
 error("Too much code to jump over.");
 }

 currentChunk()->code[offset] = (jump >> 8) & 0xff;
 currentChunk()->code[offset + 1] = jump & 0xff;
}

This goes back into the bytecode and replaces the operand at the given location
with the calculated jump offset. We call patchJump() right before we emit the
next instruction that we want the jump to land on, so it uses the current byte-
code count to determine how far to jump. In the case of an if statement, that
means right after we compile the then branch and before we compile the next
statement.

That’s all we need at compile time. Let’s define the new instruction.

 OP_PRINT,
 OP_JUMP_IF_FALSE,
 OP_RETURN,

Over in the VM, we get it working like so:

 break;
 }
 case OP_JUMP_IF_FALSE: {
 uint16_t offset = READ_SHORT();
 if (isFalsey(peek(0))) vm.ip += offset;
 break;
 }
 case OP_RETURN: {

This is the first instruction we’ve added that takes a 16-bit operand. To read that
from the chunk, we use a new macro.

compiler.c
add after emitBytes()

Some instruction sets have separate
“long” jump instructions that take larger
operands for when you need to jump a
greater distance.

compiler.c
add after emitConstant()

chunk.h
in enum OpCode

vm.c
in run()

23.1.1 else clAuses 417

#define READ_CONSTANT() (vm.chunk->constants.values[READ_BYTE()])
#define READ_SHORT() \
 (vm.ip += 2, (uint16_t)((vm.ip[-2] << 8) | vm.ip[-1]))
#define READ_STRING() AS_STRING(READ_CONSTANT())

It yanks the next two bytes from the chunk and builds a 16-bit unsigned integer
out of them. As usual, we clean up our macro when we’re done with it.

#undef READ_BYTE
#undef READ_SHORT
#undef READ_CONSTANT

After reading the offset, we check the condition value on top of the stack. If it’s
falsey, we apply this jump offset to the ip. Otherwise, we leave the ip alone and
execution will automatically proceed to the next instruction following the jump
instruction.

In the case where the condition is falsey, we don’t need to do any other work.
We’ve offset the ip, so when the outer instruction dispatch loop turns again, it
will pick up execution at that new instruction, past all of the code in the then
branch.

Note that the jump instruction doesn’t pop the condition value off the stack.
So we aren’t totally done here, since this leaves an extra value floating around
on the stack. We’ll clean that up soon. Ignoring that for the moment, we do have
a working if statement in Lox now, with only one little instruction required to
support it at runtime in the VM.

23.1.1 Else clauses

An if statement without support for else clauses is like Morticia Addams with-
out Gomez. So, after we compile the then branch, we look for an else keyword.
If we find one, we compile the else branch.

 patchJump(thenJump);

 if (match(TOKEN_ELSE)) statement();
}

When the condition is falsey, we’ll jump over the then branch. If there’s an else
branch, the ip will land right at the beginning of its code. But that’s not enough,
though. Here’s the flow that leads to:

vm.c
in run()

vm.c
in run()

I said we wouldn’t use C’s if statement
to implement Lox’s control flow, but we
do use one here to determine whether or
not to offset the instruction pointer. But
we aren’t really using C for control flow. If
we wanted to, we could do the same thing
purely arithmetically. Let’s assume we
have a function falsey() that takes a
Lox Value and returns 1 if it’s falsey or 0
otherwise. Then we could implement the
jump instruction like:

case OP_JUMP_IF_FALSE: {
 uint16_t offset =
 READ_SHORT();
 vm.ip += falsey()
 * offset;
 break;
}

The falsey() function might use
control flow to handle the different value
types, but that’s an implementation detail
of that function and doesn’t affect how
our VM does its own control flow.

compiler.c
in ifStatement()

418 cHAPTeR 23 : JumPIng bAck And foRTH

If the condition is truthy, we execute the then branch like we want. But after that,
execution rolls right on through into the else branch. Oops! When the condition
is true, after we run the then branch, we need to jump over the else branch. That
way, in either case, we only execute a single branch, like this:

To implement that, we need another jump from the end of the then branch.

 statement();

 int elseJump = emitJump(OP_JUMP);

 patchJump(thenJump);

We patch that offset after the end of the else body.

 if (match(TOKEN_ELSE)) statement();
 patchJump(elseJump);
}

After executing the then branch, this jumps to the next statement after the else
branch. Unlike the other jump, this jump is unconditional. We always take it, so
we need another instruction that expresses that.

 OP_PRINT,
 OP_JUMP,
 OP_JUMP_IF_FALSE,

We interpret it like so:

 break;
 }
 case OP_JUMP: {
 uint16_t offset = READ_SHORT();
 vm.ip += offset;
 break;
 }
 case OP_JUMP_IF_FALSE: {

Nothing too surprising here—the only difference is that it doesn’t check a condi-
tion and always applies the offset.

We have then and else branches working now, so we’re close. The last bit is to
clean up that condition value we left on the stack. Remember, each statement is

compiler.c
in ifStatement()

chunk.h
in enum OpCode

vm.c
in run()

compiler.c
in ifStatement()

23.1.1 else clAuses 419

required to have zero stack effect—after the statement is finished executing, the
stack should be as tall as it was before.

We could have the OP_JUMP_IF_FALSE instruction pop the condition itself,
but soon we’ll use that same instruction for the logical operators where we don’t
want the condition popped. Instead, we’ll have the compiler emit a couple of
explicit OP_POP instructions when compiling an if statement. We need to take
care that every execution path through the generated code pops the condition.

When the condition is truthy, we pop it right before the code inside the then
branch.

 int thenJump = emitJump(OP_JUMP_IF_FALSE);
 emitByte(OP_POP);
 statement();

Otherwise, we pop it at the beginning of the else branch.

 patchJump(thenJump);
 emitByte(OP_POP);

 if (match(TOKEN_ELSE)) statement();

This little instruction here also means that every if statement has an implicit
else branch even if the user didn’t write an else clause. In the case where they
left it off, all the branch does is discard the condition value.

The full correct flow looks like this:

If you trace through, you can see that it always executes a single branch and en-
sures the condition is popped first. All that remains is a little disassembler sup-
port.

 return simpleInstruction("OP_PRINT", offset);
 case OP_JUMP:
 return jumpInstruction("OP_JUMP", 1, chunk, offset);
 case OP_JUMP_IF_FALSE:
 return jumpInstruction("OP_JUMP_IF_FALSE", 1, chunk, offset);
 case OP_RETURN:

These two instructions have a new format with a 16-bit operand, so we add a new
utility function to disassemble them.

compiler.c
in ifStatement()

compiler.c
in ifStatement()

debug.c
in disassembleInstruction()

420 cHAPTeR 23 : JumPIng bAck And foRTH

static int jumpInstruction(const char* name, int sign,
 Chunk* chunk, int offset) {
 uint16_t jump = (uint16_t)(chunk->code[offset + 1] << 8);
 jump |= chunk->code[offset + 2];
 printf("%-16s %4d -> %d\n", name, offset,
 offset + 3 + sign * jump);
 return offset + 3;
}

There we go, that’s one complete control flow construct. If this were an ’80s
movie, the montage music would kick in and the rest of the control flow syntax
would take care of itself. Alas, the ’80s are long over, so we’ll have to grind it out
ourselves.

23.2 Logical Operators
You probably remember this from jlox, but the logical operators and and or ar-
en’t just another pair of binary operators like + and -. Because they short-circuit
and may not evaluate their right operand depending on the value of the left one,
they work more like control flow expressions.

They’re basically a little variation on an if statement with an else clause.
The easiest way to explain them is to just show you the compiler code and the
control flow it produces in the resulting bytecode. Starting with and, we hook it
into the expression parsing table here:

 [TOKEN_NUMBER] = {number, NULL, PREC_NONE},
 [TOKEN_AND] = {NULL, and_, PREC_AND},
 [TOKEN_CLASS] = {NULL, NULL, PREC_NONE},

That hands off to a new parser function.

static void and_(bool canAssign) {
 int endJump = emitJump(OP_JUMP_IF_FALSE);

 emitByte(OP_POP);
 parsePrecedence(PREC_AND);

 patchJump(endJump);
}

At the point this is called, the left-hand side expression has already been com-
piled. That means at runtime, its value will be on top of the stack. If that value
is falsey, then we know the entire and must be false, so we skip the right op-
erand and leave the left-hand side value as the result of the entire expression.
Otherwise, we discard the left-hand value and evaluate the right operand which
becomes the result of the whole and expression.

Those four lines of code right there produce exactly that. The flow looks like
this:

debug.c
add after byteInstruction()

My enduring love of Depeche Mode
notwithstanding.

compiler.c
replace 1 line

compiler.c
add after defineVariable()

23.2 logIcAl oPeRAToRs 421

Now you can see why OP_JUMP_IF_FALSE leaves the value on top of the stack.
When the left-hand side of the and is falsey, that value sticks around to become
the result of the entire expression.

23.2.1 Logical or operator

The or operator is a little more complex. First we add it to the parse table.

 [TOKEN_NIL] = {literal, NULL, PREC_NONE},
 [TOKEN_OR] = {NULL, or_, PREC_OR},
 [TOKEN_PRINT] = {NULL, NULL, PREC_NONE},

When that parser consumes an infix or token, it calls this:

static void or_(bool canAssign) {
 int elseJump = emitJump(OP_JUMP_IF_FALSE);
 int endJump = emitJump(OP_JUMP);

 patchJump(elseJump);
 emitByte(OP_POP);

 parsePrecedence(PREC_OR);
 patchJump(endJump);
}

In an or expression, if the left-hand side is truthy, then we skip over the right
operand. Thus we need to jump when a value is truthy. We could add a separate
instruction, but just to show how our compiler is free to map the language’s se-
mantics to whatever instruction sequence it wants, I implemented it in terms of
the jump instructions we already have.

When the left-hand side is falsey, it does a tiny jump over the next statement.
That statement is an unconditional jump over the code for the right operand.
This little dance effectively does a jump when the value is truthy. The flow looks
like this:

We’ve got plenty of space left in our
opcode range, so we could have separate
instructions for conditional jumps that
implicitly pop and those that don’t, I
suppose. But I’m trying to keep things
minimal for the book. In your bytecode
VM, it’s worth exploring adding more
specialized instructions and seeing how
they affect performance.

compiler.c
replace 1 line

compiler.c
add after number()

422 cHAPTeR 23 : JumPIng bAck And foRTH

If I’m honest with you, this isn’t the best way to do this. There are more instruc-
tions to dispatch and more overhead. There’s no good reason why or should be
slower than and. But it is kind of fun to see that it’s possible to implement both
operators without adding any new instructions. Forgive me my indulgences.

OK, those are the three branching constructs in Lox. By that, I mean, these
are the control flow features that only jump forward over code. Other languages
often have some kind of multi-way branching statement like switch and maybe
a conditional expression like ?:, but Lox keeps it simple.

23.3 While Statements
That takes us to the looping statements, which jump backward so that code can be
executed more than once. Lox only has two loop constructs, while and for. A
while loop is (much) simpler, so we start the party there.

 ifStatement();
 } else if (match(TOKEN_WHILE)) {
 whileStatement();
 } else if (match(TOKEN_LEFT_BRACE)) {

When we reach a while token, we call:

static void whileStatement() {
 consume(TOKEN_LEFT_PAREN, "Expect '(' after 'while'.");
 expression();
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after condition.");

 int exitJump = emitJump(OP_JUMP_IF_FALSE);
 emitByte(OP_POP);
 statement();

 patchJump(exitJump);
 emitByte(OP_POP);
}

Most of this mirrors if statements—we compile the condition expression, sur-
rounded by mandatory parentheses. That’s followed by a jump instruction that
skips over the subsequent body statement if the condition is falsey.

We patch the jump after compiling the body and take care to pop the condition
value from the stack on either path. The only difference from an if statement is
the loop. That looks like this:

 statement();
 emitLoop(loopStart);

 patchJump(exitJump);

After the body, we call this function to emit a “loop” instruction. That instruction
needs to know how far back to jump. When jumping forward, we had to emit the
instruction in two stages since we didn’t know how far we were going to jump

compiler.c
in statement()

compiler.c
add after printStatement()

Really starting to second-guess my deci-
sion to use the same jump instructions for
the logical operators.

compiler.c
in whileStatement()

23.3 WHIle sTATemenTs 423

until after we emitted the jump instruction. We don’t have that problem now.
We’ve already compiled the point in code that we want to jump back to—it’s right
before the condition expression.

All we need to do is capture that location as we compile it.

static void whileStatement() {
 int loopStart = currentChunk()->count;
 consume(TOKEN_LEFT_PAREN, "Expect '(' after 'while'.");

After executing the body of a while loop, we jump all the way back to before the
condition. That way, we re-evaluate the condition expression on each iteration.
We store the chunk’s current instruction count in loopStart to record the off-
set in the bytecode right before the condition expression we’re about to compile.
Then we pass that into this helper function:

static void emitLoop(int loopStart) {
 emitByte(OP_LOOP);

 int offset = currentChunk()->count - loopStart + 2;
 if (offset > UINT16_MAX) error("Loop body too large.");

 emitByte((offset >> 8) & 0xff);
 emitByte(offset & 0xff);
}

It’s a bit like emitJump() and patchJump() combined. It emits a new loop
instruction, which unconditionally jumps backwards by a given offset. Like the
jump instructions, after that we have a 16-bit operand. We calculate the offset
from the instruction we’re currently at to the loopStart point that we want to
jump back to. The + 2 is to take into account the size of the OP_LOOP instruc-
tion’s own operands which we also need to jump over.

From the VM’s perspective, there really is no semantic difference between
OP_LOOP and OP_JUMP. Both just add an offset to the ip. We could have used a
single instruction for both and given it a signed offset operand. But I figured it
was a little easier to sidestep the annoying bit twiddling required to manually
pack a signed 16-bit integer into two bytes, and we’ve got the opcode space avail-
able, so why not use it?

The new instruction is here:

 OP_JUMP_IF_FALSE,
 OP_LOOP,
 OP_RETURN,

And in the VM, we implement it thusly:

 }
 case OP_LOOP: {
 uint16_t offset = READ_SHORT();
 vm.ip -= offset;
 break;
 }
 case OP_RETURN: {

compiler.c
in whileStatement()

chunk.h
in enum OpCode

vm.c
in run()

compiler.c
add after emitBytes()

424 cHAPTeR 23 : JumPIng bAck And foRTH

The only difference from OP_JUMP is a subtraction instead of an addition.
Disassembly is similar too.

 return jumpInstruction("OP_JUMP_IF_FALSE", 1, chunk, offset);
 case OP_LOOP:
 return jumpInstruction("OP_LOOP", -1, chunk, offset);
 case OP_RETURN:

That’s our while statement. It contains two jumps—a conditional forward one
to escape the loop when the condition is not met, and an unconditional loop
backward after we have executed the body. The flow looks like this:

23.4 For Statements
The other looping statement in Lox is the venerable for loop, inherited from C.
It’s got a lot more going on with it compared to a while loop. It has three clauses,
all of which are optional:

• The initializer can be a variable declaration or an expression. It runs once at
the beginning of the statement.

• The condition clause is an expression. Like in a while loop, we exit the loop
when it evaluates to something falsey.

• The increment expression runs once at the end of each loop iteration.

In jlox, the parser desugared a for loop to a synthesized AST for a while loop
with some extra stuff before it and at the end of the body. We’ll do something
similar, though we won’t go through anything like an AST. Instead, our bytecode
compiler will use the jump and loop instructions we already have.

We’ll work our way through the implementation a piece at a time, starting
with the for keyword.

 printStatement();
 } else if (match(TOKEN_FOR)) {
 forStatement();
 } else if (match(TOKEN_IF)) {

It calls a helper function. If we only supported for loops with empty clauses like
for (;;), then we could implement it like this:

debug.c
in disassembleInstruction()

If you want a refresher, chapter “Control
Flow”, section 9.5 goes through the
semantics in more detail.

compiler.c
in statement()

23.4 foR sTATemenTs 425

static void forStatement() {
 consume(TOKEN_LEFT_PAREN, "Expect '(' after 'for'.");
 consume(TOKEN_SEMICOLON, "Expect ';'.");

 int loopStart = currentChunk()->count;
 consume(TOKEN_SEMICOLON, "Expect ';'.");
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after for clauses.");

 statement();
 emitLoop(loopStart);
}

There’s a bunch of mandatory punctuation at the top. Then we compile the body.
Like we did for while loops, we record the bytecode offset at the top of the body
and emit a loop to jump back to that point after it. We’ve got a working imple-
mentation of infinite loops now.

23.4.1 Initializer clause

Now we’ll add the first clause, the initializer. It executes only once, before the
body, so compiling is straightforward.

 consume(TOKEN_LEFT_PAREN, "Expect '(' after 'for'.");
 if (match(TOKEN_SEMICOLON)) {
 // No initializer.
 } else if (match(TOKEN_VAR)) {
 varDeclaration();
 } else {
 expressionStatement();
 }

 int loopStart = currentChunk()->count;

The syntax is a little complex since we allow either a variable declaration
or an expression. We use the presence of the var keyword to tell which we
have. For the expression case, we call expressionStatement() instead of
expression(). That looks for a semicolon, which we need here too, and also
emits an OP_POP instruction to discard the value. We don’t want the initializer
to leave anything on the stack.

If a for statement declares a variable, that variable should be scoped to the
loop body. We ensure that by wrapping the whole statement in a scope.

static void forStatement() {
 beginScope();
 consume(TOKEN_LEFT_PAREN, "Expect '(' after 'for'.");

Then we close it at the end.

 emitLoop(loopStart);
 endScope();
}

compiler.c
add after expressionStatement()

Alas, without return statements, there
isn’t any way to terminate it short of a
runtime error.

compiler.c
in forStatement()
replace 1 line

compiler.c
in forStatement()

compiler.c
in forStatement()

426 cHAPTeR 23 : JumPIng bAck And foRTH

23.4.2 Condition clause

Next, is the condition expression that can be used to exit the loop.

 int loopStart = currentChunk()->count;
 int exitJump = -1;
 if (!match(TOKEN_SEMICOLON)) {
 expression();
 consume(TOKEN_SEMICOLON, "Expect ';' after loop condition.");

 // Jump out of the loop if the condition is false.
 exitJump = emitJump(OP_JUMP_IF_FALSE);
 emitByte(OP_POP); // Condition.
 }

 consume(TOKEN_RIGHT_PAREN, "Expect ')' after for clauses.");

Since the clause is optional, we need to see if it’s actually present. If the clause is
omitted, the next token must be a semicolon, so we look for that to tell. If there
isn’t a semicolon, there must be a condition expression.

In that case, we compile it. Then, just like with while, we emit a conditional
jump that exits the loop if the condition is falsey. Since the jump leaves the value
on the stack, we pop it before executing the body. That ensures we discard the
value when the condition is true.

After the loop body, we need to patch that jump.

 emitLoop(loopStart);

 if (exitJump != -1) {
 patchJump(exitJump);
 emitByte(OP_POP); // Condition.
 }

 endScope();

We do this only when there is a condition clause. If there isn’t, there’s no jump to
patch and no condition value on the stack to pop.

23.4.3 Increment clause

I’ve saved the best for last, the increment clause. It’s pretty convoluted. It ap-
pears textually before the body, but executes after it. If we parsed to an AST and
generated code in a separate pass, we could simply traverse into and compile the
for statement AST’s body field before its increment clause.

Unfortunately, we can’t compile the increment clause later, since our compil-
er only makes a single pass over the code. Instead, we’ll jump over the increment,
run the body, jump back up to the increment, run it, and then go to the next
iteration.

I know, a little weird, but hey, it beats manually managing ASTs in memory in
C, right? Here’s the code:

compiler.c
in forStatement()

replace 1 line

compiler.c
in forStatement()

23.4.2 condITIon clAuse 427

 }

 if (!match(TOKEN_RIGHT_PAREN)) {
 int bodyJump = emitJump(OP_JUMP);
 int incrementStart = currentChunk()->count;
 expression();
 emitByte(OP_POP);
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after for clauses.");

 emitLoop(loopStart);
 loopStart = incrementStart;
 patchJump(bodyJump);
 }

 statement();

Again, it’s optional. Since this is the last clause, when omitted, the next token
will be the closing parenthesis. When an increment is present, we need to com-
pile it now, but it shouldn’t execute yet. So, first, we emit an unconditional jump
that hops over the increment clause’s code to the body of the loop.

Next, we compile the increment expression itself. This is usually an assign-
ment. Whatever it is, we only execute it for its side effect, so we also emit a pop
to discard its value.

The last part is a little tricky. First, we emit a loop instruction. This is the main
loop that takes us back to the top of the for loop—right before the condition
expression if there is one. That loop happens right after the increment, since the
increment executes at the end of each loop iteration.

Then we change loopStart to point to the offset where the increment ex-
pression begins. Later, when we emit the loop instruction after the body state-
ment, this will cause it to jump up to the increment expression instead of the top
of the loop like it does when there is no increment. This is how we weave the
increment in to run after the body.

It’s convoluted, but it all works out. A complete loop with all the clauses com-
piles to a flow like this:

compiler.c
in forStatement()
replace 1 line

428 cHAPTeR 23 : JumPIng bAck And foRTH

As with implementing for loops in jlox, we didn’t need to touch the runtime.
It all gets compiled down to primitive control flow operations the VM already
supports. In this chapter, we’ve taken a big leap forward—clox is now Turing-
complete. We’ve also covered quite a bit of new syntax: three statements and two
expression forms. Even so, it only took three new simple instructions. That’s a
pretty good effort-to-reward ratio for the architecture of our VM.

CHaLLENGES

1. In addition to if statements, most C-family languages have a multi-way
switch statement. Add one to clox. The grammar is:

switchStmt → "switch" "(" expression ")"
 "{" switchCase* defaultCase? "}" ;
switchCase → "case" expression ":" statement* ;
defaultCase → "default" ":" statement* ;

To execute a switch statement, first evaluate the parenthesized switch value
expression. Then walk the cases. For each case, evaluate its value expression. If
the case value is equal to the switch value, execute the statements under the
case and then exit the switch statement. Otherwise, try the next case. If no
case matches and there is a default clause, execute its statements.

To keep things simpler, we’re omitting fallthrough and break statements.
Each case automatically jumps to the end of the switch statement after its
statements are done.

2. In jlox, we had a challenge to add support for break statements. This time, let’s
do continue:

continueStmt → "continue" ";" ;

A continue statement jumps directly to the top of the nearest enclosing loop,
skipping the rest of the loop body. Inside a for loop, a continue jumps to the
increment clause, if there is one. It’s a compile-time error to have a continue
statement not enclosed in a loop.

Make sure to think about scope. What should happen to local variables de-
clared inside the body of the loop or in blocks nested inside the loop when a
continue is executed?

3. Control flow constructs have been mostly unchanged since ALGOL 68. Language
evolution since then has focused on making code more declarative and high
level, so imperative control flow hasn’t gotten much attention.

For fun, try to invent a useful novel control flow feature for Lox. It can be a
refinement of an existing form or something entirely new. In practice, it’s hard
to come up with something useful enough at this low expressiveness level to
outweigh the cost of forcing a user to learn an unfamiliar notation and behavior,
but it’s a good chance to practice your design skills.

I couldn’t resist the pun. I regret nothing.

cHAllenges 429

DESIGN NOtE: CONSIDErING GOtO HarMFUL

Discovering that all of our beautiful structured control flow in Lox is actually compiled
to raw unstructured jumps is like the moment in Scooby Doo when the monster rips
the mask off their face. It was goto all along! Except in this case, the monster is under
the mask. We all know goto is evil. But . . . why?

It is true that you can write outrageously unmaintainable code using goto. But I
don’t think most programmers around today have seen that first hand. It’s been a long
time since that style was common. These days, it’s a boogie man we invoke in scary
stories around the campfire.

The reason we rarely confront that monster in person is because Edsger Dijkstra
slayed it with his famous letter “Go To Statement Considered Harmful”, published in
Communications of the ACM (March, 1968). Debate around structured programming
had been fierce for some time with adherents on both sides, but I think Dijkstra de-
serves the most credit for effectively ending it. Most new languages today have no
unstructured jump statements.

A one-and-a-half page letter that almost single-handedly destroyed a language
feature must be pretty impressive stuff. If you haven’t read it, I encourage you to do
so. It’s a seminal piece of computer science lore, one of our tribe’s ancestral songs.
Also, it’s a nice, short bit of practice for reading academic CS writing, which is a useful
skill to develop.

I’ve read it through a number of times, along with a few critiques, responses, and
commentaries. I ended up with mixed feelings, at best. At a very high level, I’m with
him. His general argument is something like this:

1. As programmers, we write programs—static text—but what we care about is the
actual running program—its dynamic behavior.

2. We’re better at reasoning about static things than dynamic things. (He doesn’t
provide any evidence to support this claim, but I accept it.)

3. Thus, the more we can make the dynamic execution of the program reflect its tex-
tual structure, the better.

This is a good start. Drawing our attention to the separation between the code we
write and the code as it runs inside the machine is an interesting insight. Then he tries
to define a “correspondence” between program text and execution. For someone who
spent literally his entire career advocating greater rigor in programming, his definition
is pretty hand-wavey. He says:

Let us now consider how we can characterize the progress of a process. (You may think
about this question in a very concrete manner: suppose that a process, considered as a
time succession of actions, is stopped after an arbitrary action, what data do we have to
fix in order that we can redo the process until the very same point?)

Imagine it like this. You have two computers with the same program running on the
exact same inputs—so totally deterministic. You pause one of them at an arbitrary
point in its execution. What data would you need to send to the other computer to be
able to stop it exactly as far along as the first one was?

If your program allows only simple statements like assignment, it’s easy. You just
need to know the point after the last statement you executed. Basically a breakpoint,
the ip in our VM, or the line number in an error message. Adding branching control

That is, if you can get past Dijkstra’s
insufferable faux-modest self-aggrandiz-
ing writing style:

More recently I discovered why the use of
the go to statement has such disastrous
effects.  . . . At that time I did not attach too
much importance to this discovery; I now
submit my considerations for publication
because in very recent discussions in
which the subject turned up, I have been
urged to do so.

Ah, yet another one of my many
discoveries. I couldn’t even be bothered
to write it up until the clamoring masses
begged me to.

430 cHAPTeR 23 : JumPIng bAck And foRTH

flow like if and switch doesn’t add any more to this. Even if the marker points inside
a branch, we can still tell where we are.

Once you add function calls, you need something more. You could have paused
the first computer in the middle of a function, but that function may be called from
multiple places. To pause the second machine at exactly the same point in the entire
program’s execution, you need to pause it on the right call to that function.

So you need to know not just the current statement, but, for function calls that
haven’t returned yet, you need to know the locations of the callsites. In other words,
a call stack, though I don’t think that term existed when Dijkstra wrote this. Groovy.

He notes that loops make things harder. If you pause in the middle of a loop body,
you don’t know how many iterations have run. So he says you also need to keep an
iteration count. And, since loops can nest, you need a stack of those (presumably inter-
leaved with the call stack pointers since you can be in loops in outer calls too).

This is where it gets weird. So we’re really building to something now, and you
expect him to explain how goto breaks all of this. Instead, he just says:

The unbridled use of the go to statement has an immediate consequence that it becomes
terribly hard to find a meaningful set of coordinates in which to describe the process
progress.

He doesn’t prove that this is hard, or say why. He just says it. He does say that one
approach is unsatisfactory:

With the go to statement one can, of course, still describe the progress uniquely by a
counter counting the number of actions performed since program start (viz. a kind of
normalized clock). The difficulty is that such a coordinate, although unique, is utterly
unhelpful.

But . . . that’s effectively what loop counters do, and he was fine with those. It’s not like
every loop is a simple “for every integer from 0 to 10” incrementing count. Many are
while loops with complex conditionals.

Taking an example close to home, consider the core bytecode execution loop at the
heart of clox. Dijkstra argues that that loop is tractable because we can simply count
how many times the loop has run to reason about its progress. But that loop runs once
for each executed instruction in some user’s compiled Lox program. Does knowing
that it executed 6,201 bytecode instructions really tell us VM maintainers anything
edifying about the state of the interpreter?

In fact, this particular example points to a deeper truth. Böhm and Jacopini’s struc-
tured program theorem proved that any control flow using goto can be transformed
into one using just sequencing, loops, and branches. Our bytecode interpreter loop is
a living example of that proof: it implements the unstructured control flow of the clox
bytecode instruction set without using any gotos itself.

That seems to offer a counter-argument to Dijkstra’s claim: you can define a corre-
spondence for a program using gotos by transforming it to one that doesn’t and then
use the correspondence from that program, which—according to him—is acceptable
because it uses only branches and loops.

But, honestly, my argument here is also weak. I think both of us are basically doing
pretend math and using fake logic to make what should be an empirical, human-cen-
tered argument. Dijkstra is right that some code using goto is really bad. Much of that
could and should be turned into clearer code by using structured control flow.

By eliminating goto completely from languages, you’re definitely prevented from
writing bad code using gotos. It may be that forcing users to use structured control

desIgn noTe: consIdeRIng goTo HARmful 431

flow and making it an uphill battle to write goto-like code using those constructs is a
net win for all of our productivity.

But I do wonder sometimes if we threw out the baby with the bathwater. In the
absence of goto, we often resort to more complex structured patterns. The “switch
inside a loop” is a classic one. Another is using a guard variable to exit out of a series
of nested loops:

// See if the matrix contains a zero.
bool found = false;
for (int x = 0; x < xSize; x++) {
 for (int y = 0; y < ySize; y++) {
 for (int z = 0; z < zSize; z++) {
 if (matrix[x][y][z] == 0) {
 printf("found");
 found = true;
 break;
 }
 }
 if (found) break;
 }
 if (found) break;
}

Is that really better than:

for (int x = 0; x < xSize; x++) {
 for (int y = 0; y < ySize; y++) {
 for (int z = 0; z < zSize; z++) {
 if (matrix[x][y][z] == 0) {
 printf("found");
 goto done;
 }
 }
 }
}
done:

I guess what I really don’t like is that we’re making language design and engineering
decisions today based on fear. Few people today have any subtle understanding of
the problems and benefits of goto. Instead, we just think it’s “considered harmful”.
Personally, I’ve never found dogma a good starting place for quality creative work.

You could do this without break state-
ments—themselves a limited goto-ish
construct—by inserting !found && at
the beginning of the condition clause of
each loop.

A byTecode VIRTuAl mAcHIne 24Calls and Functions

“Any problem in computer science can be solved with another level of
indirection. Except for the problem of too many layers of indirection.”

— David Wheeler

This chapter is a beast. I try to break features into bite-sized pieces, but some-
times you gotta swallow the whole meal. Our next task is functions. We could
start with only function declarations, but that’s not very useful when you can’t
call them. We could do calls, but there’s nothing to call. And all of the runtime
support needed in the VM to support both of those isn’t very rewarding if it isn’t
hooked up to anything you can see. So we’re going to do it all. It’s a lot, but we’ll
feel good when we’re done.

Eating—consumption—is a weird
metaphor for a creative act. But most of
the biological processes that produce
“output” are a little less, ahem, decorous.

434 cHAPTeR 24 : cAlls And funcTIons

24.1 Function Objects
The most interesting structural change in the VM is around the stack. We already
have a stack for local variables and temporaries, so we’re partway there. But we
have no notion of a call stack. Before we can make much progress, we’ll have to
fix that. But first, let’s write some code. I always feel better once I start moving.
We can’t do much without having some kind of representation for functions, so
we’ll start there. From the VM’s perspective, what is a function?

A function has a body that can be executed, so that means some bytecode. We
could compile the entire program and all of its function declarations into one big
monolithic Chunk. Each function would have a pointer to the first instruction of
its code inside the Chunk.

This is roughly how compilation to native code works where you end up with
one solid blob of machine code. But for our bytecode VM, we can do something a
little higher level. I think a cleaner model is to give each function its own Chunk.
We’ll want some other metadata too, so let’s go ahead and stuff it all in a struct
now.

 struct Obj* next;
};

typedef struct {
 Obj obj;
 int arity;
 Chunk chunk;
 ObjString* name;
} ObjFunction;

struct ObjString {

Functions are first class in Lox, so they need to be actual Lox objects. Thus
ObjFunction has the same Obj header that all object types share. The arity field
stores the number of parameters the function expects. Then, in addition to the
chunk, we store the function’s name. That will be handy for reporting readable
runtime errors.

This is the first time the “object” module has needed to reference Chunk, so
we get an include.

#include "common.h"
#include "chunk.h"
#include "value.h"

Like we did with strings, we define some accessories to make Lox functions eas-
ier to work with in C. Sort of a poor man’s object orientation. First, we’ll declare
a C function to create a new Lox function.

 uint32_t hash;
};

ObjFunction* newFunction();
ObjString* takeString(char* chars, int length);

object.h
add after struct Obj

Humans don’t seem to find numeric
bytecode offsets particularly illuminating
in crash dumps.

object.h

object.h
add after struct ObjString

24.1 funcTIon obJecTs 435

The implementation is over here:

ObjFunction* newFunction() {
 ObjFunction* function = ALLOCATE_OBJ(ObjFunction, OBJ_FUNCTION);
 function->arity = 0;
 function->name = NULL;
 initChunk(&function->chunk);
 return function;
}

We use our friend ALLOCATE_OBJ() to allocate memory and initialize the ob-
ject’s header so that the VM knows what type of object it is. Instead of passing
in arguments to initialize the function like we did with ObjString, we set the
function up in a sort of blank state—zero arity, no name, and no code. That will
get filled in later after the function is created.

Since we have a new kind of object, we need a new object type in the enum.

typedef enum {
 OBJ_FUNCTION,
 OBJ_STRING,
} ObjType;

When we’re done with a function object, we must return the bits it borrowed
back to the operating system.

 switch (object->type) {
 case OBJ_FUNCTION: {
 ObjFunction* function = (ObjFunction*)object;
 freeChunk(&function->chunk);
 FREE(ObjFunction, object);
 break;
 }
 case OBJ_STRING: {

This switch case is responsible for freeing the ObjFunction itself as well as any
other memory it owns. Functions own their chunk, so we call Chunk’s destruc-
tor-like function.

Lox lets you print any object, and functions are first-class objects, so we need
to handle them too.

 switch (OBJ_TYPE(value)) {
 case OBJ_FUNCTION:
 printFunction(AS_FUNCTION(value));
 break;
 case OBJ_STRING:

This calls out to:

static void printFunction(ObjFunction* function) {
 printf("<fn %s>", function->name->chars);
}

object.c
add after allocateObject()

object.h
in enum ObjType

memory.c
in freeObject()

We don’t need to explicitly free the
function’s name because it’s an ObjString.
That means we can let the garbage
collector manage its lifetime for us. Or, at
least, we’ll be able to once we implement
a garbage collector.

object.c
in printObject()

object.c
add after copyString()

436 cHAPTeR 24 : cAlls And funcTIons

Since a function knows its name, it may as well say it.
Finally, we have a couple of macros for converting values to functions. First,

make sure your value actually is a function.

#define OBJ_TYPE(value) (AS_OBJ(value)->type)

#define IS_FUNCTION(value) isObjType(value, OBJ_FUNCTION)
#define IS_STRING(value) isObjType(value, OBJ_STRING)

Assuming that evaluates to true, you can then safely cast the Value to an
ObjFunction pointer using this:

#define IS_STRING(value) isObjType(value, OBJ_STRING)

#define AS_FUNCTION(value) ((ObjFunction*)AS_OBJ(value))
#define AS_STRING(value) ((ObjString*)AS_OBJ(value))

With that, our object model knows how to represent functions. I’m feeling
warmed up now. You ready for something a little harder?

24.2 Compiling to Function Objects
Right now, our compiler assumes it is always compiling to one single chunk.
With each function’s code living in separate chunks, that gets more complex.
When the compiler reaches a function declaration, it needs to emit code into the
function’s chunk when compiling its body. At the end of the function body, the
compiler needs to return to the previous chunk it was working with.

That’s fine for code inside function bodies, but what about code that isn’t?
The “top level” of a Lox program is also imperative code and we need a chunk to
compile that into. We can simplify the compiler and VM by placing that top-lev-
el code inside an automatically defined function too. That way, the compiler
is always within some kind of function body, and the VM always runs code by
invoking a function. It’s as if the entire program is wrapped inside an implicit
main() function.

Before we get to user-defined functions, then, let’s do the reorganization
to support that implicit top-level function. It starts with the Compiler struct.
Instead of pointing directly to a Chunk that the compiler writes to, it instead has
a reference to the function object being built.

typedef struct {
 ObjFunction* function;
 FunctionType type;

 Local locals[UINT8_COUNT];

We also have a little FunctionType enum. This lets the compiler tell when it’s
compiling top-level code versus the body of a function. Most of the compiler
doesn’t care about this—that’s why it’s a useful abstraction—but in one or two
places the distinction is meaningful. We’ll get to one later.

object.h

object.h

One semantic corner where that analogy
breaks down is global variables. They have
special scoping rules different from local
variables, so in that way, the top level of a
script isn’t like a function body.

compiler.c
in struct Compiler

24.2 comPIlIng To funcTIon obJecTs 437

typedef enum {
 TYPE_FUNCTION,
 TYPE_SCRIPT
} FunctionType;

Every place in the compiler that was writing to the Chunk now needs to go
through that function pointer. Fortunately, many chapters ago, we encapsu-
lated access to the chunk in the currentChunk() function. We only need to fix
that and the rest of the compiler is happy.

Compiler* current = NULL;

static Chunk* currentChunk() {
 return ¤t->function->chunk;
}

static void errorAt(Token* token, const char* message) {

The current chunk is always the chunk owned by the function we’re in the
middle of compiling. Next, we need to actually create that function. Previously,
the VM passed a Chunk to the compiler which filled it with code. Instead, the
compiler will create and return a function that contains the compiled top-level
code—which is all we support right now—of the user’s program.

24.2.1 Creating functions at compile time

We start threading this through in compile(), which is the main entry point
into the compiler.

 Compiler compiler;
 initCompiler(&compiler, TYPE_SCRIPT);

 parser.hadError = false;

There are a bunch of changes in how the compiler is initialized. First, we initial-
ize the new Compiler fields.

static void initCompiler(Compiler* compiler, FunctionType type) {
 compiler->function = NULL;
 compiler->type = type;
 compiler->localCount = 0;

Then we allocate a new function object to compile into.

 compiler->scopeDepth = 0;
 compiler->function = newFunction();
 current = compiler;

Creating an ObjFunction in the compiler might seem a little strange. A function
object is the runtime representation of a function, but here we are creating it
at compile time. The way to think of it is that a function is similar to a string or

compiler.c
add after struct Local

compiler.c
add after variable current
replace 5 lines

compiler.c
in compile()
replace 2 lines

compiler.c
function initCompiler()
replace 1 line

compiler.c
in initCompiler()

I know, it looks dumb to null the
function field only to immediately
assign it a value a few lines later. More
garbage collection-related paranoia.

It’s almost like I had a crystal ball that
could see into the future and knew we’d
need to change the code later. But, really,
it’s because I wrote all the code for the
book before any of the text.

438 cHAPTeR 24 : cAlls And funcTIons

number literal. It forms a bridge between the compile time and runtime worlds.
When we get to function declarations, those really are literals—they are a no-
tation that produces values of a built-in type. So the compiler creates function
objects during compilation. Then, at runtime, they are simply invoked.

Here is another strange piece of code:

 current = compiler;

 Local* local = ¤t->locals[current->localCount++];
 local->depth = 0;
 local->name.start = "";
 local->name.length = 0;
}

Remember that the compiler’s locals array keeps track of which stack slots are
associated with which local variables or temporaries. From now on, the compil-
er implicitly claims stack slot zero for the VM’s own internal use. We give it an
empty name so that the user can’t write an identifier that refers to it. I’ll explain
what this is about when it becomes useful.

That’s the initialization side. We also need a couple of changes on the other
end when we finish compiling some code.

static ObjFunction* endCompiler() {
 emitReturn();

Previously, when interpret() called into the compiler, it passed in a Chunk to
be written to. Now that the compiler creates the function object itself, we return
that function. We grab it from the current compiler here:

 emitReturn();
 ObjFunction* function = current->function;

#ifdef DEBUG_PRINT_CODE

And then return it to compile() like so:

#endif

 return function;
}

Now is a good time to make another tweak in this function. Earlier, we added
some diagnostic code to have the VM dump the disassembled bytecode so we
could debug the compiler. We should fix that to keep working now that the gen-
erated chunk is wrapped in a function.

#ifdef DEBUG_PRINT_CODE
 if (!parser.hadError) {
 disassembleChunk(currentChunk(), function->name != NULL
 ? function->name->chars : "<script>");
 }
#endif

compiler.c
in initCompiler()

compiler.c
function endCompiler()

replace 1 line

compiler.c
in endCompiler()

compiler.c
in endCompiler()

compiler.c
in endCompiler()

replace 1 line

We can create functions at compile time
because they contain only data available
at compile time. The function’s code,
name, and arity are all fixed. When we
add closures in the next chapter, which
capture variables at runtime, the story
gets more complex.

24.3 cAll fRAmes 439

Notice the check in here to see if the function’s name is NULL? User-defined
functions have names, but the implicit function we create for the top-level code
does not, and we need to handle that gracefully even in our own diagnostic code.
Speaking of which:

static void printFunction(ObjFunction* function) {
 if (function->name == NULL) {
 printf("<script>");
 return;
 }
 printf("<fn %s>", function->name->chars);

There’s no way for a user to get a reference to the top-level function and try to
print it, but our DEBUG_TRACE_EXECUTION diagnostic code that prints the
entire stack can and does.

Bumping up a level to compile(), we adjust its signature.

#include "vm.h"

ObjFunction* compile(const char* source);

#endif

Instead of taking a chunk, now it returns a function. Over in the implementation:

ObjFunction* compile(const char* source) {
 initScanner(source);

Finally we get to some actual code. We change the very end of the function to
this:

 while (!match(TOKEN_EOF)) {
 declaration();
 }

 ObjFunction* function = endCompiler();
 return parser.hadError ? NULL : function;
}

We get the function object from the compiler. If there were no compile errors,
we return it. Otherwise, we signal an error by returning NULL. This way, the VM
doesn’t try to execute a function that may contain invalid bytecode.

Eventually, we will update interpret() to handle the new declaration of
compile(), but first we have some other changes to make.

24.3 Call Frames
It’s time for a big conceptual leap. Before we can implement function declara-
tions and calls, we need to get the VM ready to handle them. There are two main
problems we need to worry about:

object.c
in printFunction()

It is no fun if the diagnostic code we
use to find bugs itself causes the VM to
segfault!

compiler.h
function compile()
replace 1 line

compiler.c
function compile()
replace 1 line

compiler.c
in compile()
replace 2 lines

440 cHAPTeR 24 : cAlls And funcTIons

24.3.1 Allocating local variables

The compiler allocates stack slots for local variables. How should that work when
the set of local variables in a program is distributed across multiple functions?

One option would be to keep them totally separate. Each function would get
its own dedicated set of slots in the VM stack that it would own forever, even
when the function isn’t being called. Each local variable in the entire program
would have a bit of memory in the VM that it keeps to itself.

Believe it or not, early programming language implementations worked this
way. The first Fortran compilers statically allocated memory for each variable.
The obvious problem is that it’s really inefficient. Most functions are not in the
middle of being called at any point in time, so sitting on unused memory for
them is wasteful.

The more fundamental problem, though, is recursion. With recursion, you
can be “in” multiple calls to the same function at the same time. Each needs its
own memory for its local variables. In jlox, we solved this by dynamically allo-
cating memory for an environment each time a function was called or a block
entered. In clox, we don’t want that kind of performance cost on every function
call.

Instead, our solution lies somewhere between Fortran’s static allocation and
jlox’s dynamic approach. The value stack in the VM works on the observation that
local variables and temporaries behave in a last-in first-out fashion. Fortunately
for us, that’s still true even when you add function calls into the mix. Here’s an
example:

fun first() {
 var a = 1;
 second();
 var b = 2;
}

fun second() {
 var c = 3;
 var d = 4;
}

first();

Step through the program and look at which variables are in memory at each
point in time:

It’s basically what you’d get if you de-
clared every local variable in a C program
using static.

Fortran avoided this problem by
disallowing recursion entirely. Recursion
was considered an advanced, esoteric
feature at the time.

24.3.1 AllocATIng locAl VARIAbles 441

As execution flows through the two calls, every local variable obeys the princi-
ple that any variable declared after it will be discarded before the first variable
needs to be. This is true even across calls. We know we’ll be done with c and d
before we are done with a. It seems we should be able to allocate local variables
on the VM’s value stack.

Ideally, we still determine where on the stack each variable will go at compile
time. That keeps the bytecode instructions for working with variables simple
and fast. In the above example, we could imagine doing so in a straightforward
way, but that doesn’t always work out. Consider:

fun first() {
 var a = 1;
 second();
 var b = 2;
 second();
}

fun second() {
 var c = 3;
 var d = 4;
}

first();

In the first call to second(), c and d would go into slots 1 and 2. But in the second
call, we need to have made room for b, so c and d need to be in slots 2 and 3. Thus
the compiler can’t pin down an exact slot for each local variable across function
calls. But within a given function, the relative locations of each local variable are
fixed. Variable d is always in the slot right after c. This is the key insight.

When a function is called, we don’t know where the top of the stack will be
because it can be called from different contexts. But, wherever that top happens
to be, we do know where all of the function’s local variables will be relative to
that starting point. So, like many problems, we solve our allocation problem
with a level of indirection.

At the beginning of each function call, the VM records the location of the first
slot where that function’s own locals begin. The instructions for working with
local variables access them by a slot index relative to that, instead of relative to
the bottom of the stack like they do today. At compile time, we calculate those
relative slots. At runtime, we convert that relative slot to an absolute stack index
by adding the function call’s starting slot.

I say “imagine” because the compiler can’t
actually figure this out. Because functions
are first class in Lox, we can’t determine
which functions call which others at
compile time.

442 cHAPTeR 24 : cAlls And funcTIons

It’s as if the function gets a “window” or “frame” within the larger stack where it
can store its locals. The position of the call frame is determined at runtime, but
within and relative to that region, we know where to find things.

The historical name for this recorded location where the function’s locals
start is a frame pointer because it points to the beginning of the function’s call
frame. Sometimes you hear base pointer, because it points to the base stack slot
on top of which all of the function’s variables live.

That’s the first piece of data we need to track. Every time we call a function,
the VM determines the first stack slot where that function’s variables begin.

24.3.2 Return addresses

Right now, the VM works its way through the instruction stream by increment-
ing the ip field. The only interesting behavior is around control flow instructions
which offset the ip by larger amounts. Calling a function is pretty straightfor-
ward—simply set ip to point to the first instruction in that function’s chunk.
But what about when the function is done?

The VM needs to return back to the chunk where the function was called from
and resume execution at the instruction immediately after the call. Thus, for
each function call, we need to track where we jump back to when the call com-
pletes. This is called a return address because it’s the address of the instruction
that the VM returns to after the call.

Again, thanks to recursion, there may be multiple return addresses for a sin-
gle function, so this is a property of each invocation and not the function itself.

24.3.3 The call stack

So for each live function invocation—each call that hasn’t returned yet—we
need to track where on the stack that function’s locals begin, and where the
caller should resume. We’ll put this, along with some other stuff, in a new struct.

#define STACK_MAX 256

typedef struct {
 ObjFunction* function;
 uint8_t* ip;
 Value* slots;
} CallFrame;

typedef struct {

A CallFrame represents a single ongoing function call. The slots field points
into the VM’s value stack at the first slot that this function can use. I gave it a plu-
ral name because—thanks to C’s weird “pointers are sort of arrays” thing—we’ll
treat it like an array.

The implementation of return addresses is a little different from what I de-
scribed above. Instead of storing the return address in the callee’s frame, the
caller stores its own ip. When we return from a function, the VM will jump to
the ip of the caller’s CallFrame and resume from there.

I also stuffed a pointer to the function being called in here. We’ll use that to

The authors of early Fortran compilers
had a clever trick for implementing return
addresses. Since they didn’t support
recursion, any given function needed
only a single return address at any point
in time. So when a function was called
at runtime, the program would modify its
own code to change a jump instruction at
the end of the function to jump back to its
caller. Sometimes the line between genius
and madness is hair thin.

vm.h

24.3.2 ReTuRn AddResses 443

look up constants and for a few other things.
Each time a function is called, we create one of these structs. We could dy-

namically allocate them on the heap, but that’s slow. Function calls are a core
operation, so they need to be as fast as possible. Fortunately, we can make the
same observation we made for variables: function calls have stack semantics. If
first() calls second(), the call to second() will complete before first()
does.

So over in the VM, we create an array of these CallFrame structs up front and
treat it as a stack, like we do with the value array.

typedef struct {
 CallFrame frames[FRAMES_MAX];
 int frameCount;

 Value stack[STACK_MAX];

This array replaces the chunk and ip fields we used to have directly in the VM.
Now each CallFrame has its own ip and its own pointer to the ObjFunction that
it’s executing. From there, we can get to the function’s chunk.

The new frameCount field in the VM stores the current height of the
CallFrame stack—the number of ongoing function calls. To keep clox simple,
the array’s capacity is fixed. This means, as in many language implementations,
there is a maximum call depth we can handle. For clox, it’s defined here:

#include "value.h"

#define FRAMES_MAX 64
#define STACK_MAX (FRAMES_MAX * UINT8_COUNT)

typedef struct {

We also redefine the value stack’s size in terms of that to make sure we have
plenty of stack slots even in very deep call trees. When the VM starts up, the
CallFrame stack is empty.

 vm.stackTop = vm.stack;
 vm.frameCount = 0;
}

The “vm.h” header needs access to ObjFunction, so we add an include.

#define clox_vm_h

#include "object.h"
#include "table.h"

Now we’re ready to move over to the VM’s implementation file. We’ve got some
grunt work ahead of us. We’ve moved ip out of the VM struct and into CallFrame.
We need to fix every line of code in the VM that touches ip to handle that. Also,
the instructions that access local variables by stack slot need to be updated to do
so relative to the current CallFrame’s slots field.

We’ll start at the top and plow through it.

Many Lisp implementations dynamically
allocate stack frames because it simplifies
implementing continuations. If your
language supports continuations, then
function calls do not always have stack
semantics.

vm.h
in struct VM
replace 2 lines

vm.h
replace 1 line

vm.c
in resetStack()

vm.h
replace 1 line

It is still possible to overflow the stack
if enough function calls use enough
temporaries in addition to locals. A robust
implementation would guard against this,
but I’m trying to keep things simple.

444 cHAPTeR 24 : cAlls And funcTIons

static InterpretResult run() {
 CallFrame* frame = &vm.frames[vm.frameCount - 1];

#define READ_BYTE() (*frame->ip++)

#define READ_SHORT() \
 (frame->ip += 2, \
 (uint16_t)((frame->ip[-2] << 8) | frame->ip[-1]))

#define READ_CONSTANT() \
 (frame->function->chunk.constants.values[READ_BYTE()])

#define READ_STRING() AS_STRING(READ_CONSTANT())

First, we store the current topmost CallFrame in a local variable inside the main
bytecode execution function. Then we replace the bytecode access macros with
versions that access ip through that variable.

Now onto each instruction that needs a little tender loving care.

 case OP_GET_LOCAL: {
 uint8_t slot = READ_BYTE();
 push(frame->slots[slot]);
 break;

Previously, OP_GET_LOCAL read the given local slot directly from the VM’s stack
array, which meant it indexed the slot starting from the bottom of the stack.
Now, it accesses the current frame’s slots array, which means it accesses the
given numbered slot relative to the beginning of that frame.

Setting a local variable works the same way.

 case OP_SET_LOCAL: {
 uint8_t slot = READ_BYTE();
 frame->slots[slot] = peek(0);
 break;

The jump instructions used to modify the VM’s ip field. Now, they do the same
for the current frame’s ip.

 case OP_JUMP: {
 uint16_t offset = READ_SHORT();
 frame->ip += offset;
 break;

Same with the conditional jump:

 case OP_JUMP_IF_FALSE: {
 uint16_t offset = READ_SHORT();
 if (isFalsey(peek(0))) frame->ip += offset;
 break;

And our backward-jumping loop instruction:

vm.c
in run()

replace 4 lines

vm.c
in run()

replace 1 line

vm.c
in run()

replace 1 line

vm.c
in run()

replace 1 line

vm.c
in run()

replace 1 line

We could access the current frame by
going through the CallFrame array every
time, but that’s verbose. More important-
ly, storing the frame in a local variable
encourages the C compiler to keep that
pointer in a register. That speeds up
access to the frame’s ip. There’s no
guarantee that the compiler will do this,
but there’s a good chance it will.

24.3.3 THe cAll sTAck 445

 case OP_LOOP: {
 uint16_t offset = READ_SHORT();
 frame->ip -= offset;
 break;

We have some diagnostic code that prints each instruction as it executes to help
us debug our VM. That needs to work with the new structure too.

 printf("\n");
 disassembleInstruction(&frame->function->chunk,
 (int)(frame->ip - frame->function->chunk.code));
#endif

Instead of passing in the VM’s chunk and ip fields, now we read from the cur-
rent CallFrame.

You know, that wasn’t too bad, actually. Most instructions just use the mac-
ros so didn’t need to be touched. Next, we jump up a level to the code that calls
run().

InterpretResult interpret(const char* source) {
 ObjFunction* function = compile(source);
 if (function == NULL) return INTERPRET_COMPILE_ERROR;

 push(OBJ_VAL(function));
 CallFrame* frame = &vm.frames[vm.frameCount++];
 frame->function = function;
 frame->ip = function->chunk.code;
 frame->slots = vm.stack;

 InterpretResult result = run();

We finally get to wire up our earlier compiler changes to the back-end chang-
es we just made. First, we pass the source code to the compiler. It returns us a
new ObjFunction containing the compiled top-level code. If we get NULL back,
it means there was some compile-time error which the compiler has already
reported. In that case, we bail out since we can’t run anything.

Otherwise, we store the function on the stack and prepare an initial CallFrame
to execute its code. Now you can see why the compiler sets aside stack slot
zero—that stores the function being called. In the new CallFrame, we point to
the function, initialize its ip to point to the beginning of the function’s bytecode,
and set up its stack window to start at the very bottom of the VM’s value stack.

This gets the interpreter ready to start executing code. After finishing, the
VM used to free the hardcoded chunk. Now that the ObjFunction owns that code,
we don’t need to do that anymore, so the end of interpret() is simply this:

 frame->slots = vm.stack;

 return run();
}

The last piece of code referring to the old VM fields is runtimeError(). We’ll
revisit that later in the chapter, but for now let’s change it to this:

vm.c
in run()
replace 1 line

vm.c
in run()
replace 2 lines

vm.c
in interpret()
replace 10 lines

vm.c
in interpret()
replace 4 lines

446 cHAPTeR 24 : cAlls And funcTIons

 fputs("\n", stderr);

 CallFrame* frame = &vm.frames[vm.frameCount - 1];
 size_t instruction = frame->ip - frame->function->chunk.code - 1;
 int line = frame->function->chunk.lines[instruction];
 fprintf(stderr, "[line %d] in script\n", line);

Instead of reading the chunk and ip directly from the VM, it pulls those from
the topmost CallFrame on the stack. That should get the function working again
and behaving as it did before.

Assuming we did all of that correctly, we got clox back to a runnable state.
Fire it up and it does . . . exactly what it did before. We haven’t added any new
features yet, so this is kind of a let down. But all of the infrastructure is there
and ready for us now. Let’s take advantage of it.

24.4 Function Declarations
Before we can do call expressions, we need something to call, so we’ll do function
declarations first. The fun starts with a keyword.

static void declaration() {
 if (match(TOKEN_FUN)) {
 funDeclaration();
 } else if (match(TOKEN_VAR)) {
 varDeclaration();

That passes control to here:

static void funDeclaration() {
 uint8_t global = parseVariable("Expect function name.");
 markInitialized();
 function(TYPE_FUNCTION);
 defineVariable(global);
}

Functions are first-class values, and a function declaration simply creates and
stores one in a newly declared variable. So we parse the name just like any other
variable declaration. A function declaration at the top level will bind the func-
tion to a global variable. Inside a block or other function, a function declaration
creates a local variable.

In an earlier chapter, I explained how variables get defined in two stages. This
ensures you can’t access a variable’s value inside the variable’s own initializer.
That would be bad because the variable doesn’t have a value yet.

Functions don’t suffer from this problem. It’s safe for a function to refer to its
own name inside its body. You can’t call the function and execute the body until
after it’s fully defined, so you’ll never see the variable in an uninitialized state.
Practically speaking, it’s useful to allow this in order to support recursive local
functions.

To make that work, we mark the function declaration’s variable “initialized”
as soon as we compile the name, before we compile the body. That way the name

vm.c
in runtimeError()

replace 2 lines

Yes, I am going to make a joke about the
fun keyword every time it comes up.

compiler.c
in declaration()

replace 1 line

compiler.c
add after block()

24.4 funcTIon declARATIons 447

can be referenced inside the body without generating an error.
We do need one check, though.

static void markInitialized() {
 if (current->scopeDepth == 0) return;
 current->locals[current->localCount - 1].depth =

Before, we called markInitialized() only when we already knew we were
in a local scope. Now, a top-level function declaration will also call this function.
When that happens, there is no local variable to mark initialized—the function
is bound to a global variable.

Next, we compile the function itself—its parameter list and block body.
For that, we use a separate helper function. That helper generates code that
leaves the resulting function object on top of the stack. After that, we call
defineVariable() to store that function back into the variable we declared
for it.

I split out the code to compile the parameters and body because we’ll reuse it
later for parsing method declarations inside classes. Let’s build it incrementally,
starting with this:

static void function(FunctionType type) {
 Compiler compiler;
 initCompiler(&compiler, type);
 beginScope();

 consume(TOKEN_LEFT_PAREN, "Expect '(' after function name.");
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after parameters.");
 consume(TOKEN_LEFT_BRACE, "Expect '{' before function body.");
 block();

 ObjFunction* function = endCompiler();
 emitBytes(OP_CONSTANT, makeConstant(OBJ_VAL(function)));
}

For now, we won’t worry about parameters. We parse an empty pair of parenthe-
ses followed by the body. The body starts with a left curly brace, which we parse
here. Then we call our existing block() function, which knows how to compile
the rest of a block including the closing brace.

24.4.1 A stack of compilers

The interesting parts are the compiler stuff at the top and bottom. The Compiler
struct stores data like which slots are owned by which local variables, how many
blocks of nesting we’re currently in, etc. All of that is specific to a single func-
tion. But now the front end needs to handle compiling multiple functions nested
within each other.

The trick for managing that is to create a separate Compiler for each function
being compiled. When we start compiling a function declaration, we create a new
Compiler on the C stack and initialize it. initCompiler() sets that Compiler
to be the current one. Then, as we compile the body, all of the functions that emit
bytecode write to the chunk owned by the new Compiler’s function.

compiler.c
in markInitialized()

compiler.c
add after block()

This beginScope() doesn’t have
a corresponding endScope() call.
Because we end Compiler completely
when we reach the end of the function
body, there’s no need to close the
lingering outermost scope.

Remember that the compiler treats
top-level code as the body of an
implicit function, so as soon as we add any
function declarations, we’re in a world of
nested functions.

448 cHAPTeR 24 : cAlls And funcTIons

After we reach the end of the function’s block body, we call endCompiler().
That yields the newly compiled function object, which we store as a constant
in the surrounding function’s constant table. But, wait, how do we get back to
the surrounding function? We lost it when initCompiler() overwrote the
current compiler pointer.

We fix that by treating the series of nested Compiler structs as a stack. Unlike
the Value and CallFrame stacks in the VM, we won’t use an array. Instead, we
use a linked list. Each Compiler points back to the Compiler for the function that
encloses it, all the way back to the root Compiler for the top-level code.

} FunctionType;

typedef struct Compiler {
 struct Compiler* enclosing;
 ObjFunction* function;

Inside the Compiler struct, we can’t reference the Compiler typedef since that
declaration hasn’t finished yet. Instead, we give a name to the struct itself and
use that for the field’s type. C is weird.

When initializing a new Compiler, we capture the about-to-no-longer-be-
current one in that pointer.

static void initCompiler(Compiler* compiler, FunctionType type) {
 compiler->enclosing = current;
 compiler->function = NULL;

Then when a Compiler finishes, it pops itself off the stack by restoring the previ-
ous compiler to be the new current one.

#endif

 current = current->enclosing;
 return function;

Note that we don’t even need to dynamically allocate the Compiler structs. Each
is stored as a local variable in the C stack—either in compile() or function().
The linked list of Compilers threads through the C stack. The reason we can get
an unbounded number of them is because our compiler uses recursive descent,
so function() ends up calling itself recursively when you have nested func-
tion declarations.

24.4.2 Function parameters

Functions aren’t very useful if you can’t pass arguments to them, so let’s do pa-
rameters next.

 consume(TOKEN_LEFT_PAREN, "Expect '(' after function name.");
 if (!check(TOKEN_RIGHT_PAREN)) {
 do {
 current->function->arity++;
 if (current->function->arity > 255) {

compiler.c
add after enum FunctionType

replace 1 line

compiler.c
in initCompiler()

compiler.c
in endCompiler()

Using the native stack for Compiler
structs does mean our compiler has a
practical limit on how deeply nested
function declarations can be. Go too far
and you could overflow the C stack. If
we want the compiler to be more robust
against pathological or even malicious
code—a real concern for tools like
JavaScript VMs—it would be good to have
our compiler artificially limit the amount
of function nesting it permits.

compiler.c
in function()

continued on next page . . .

24.4.2 funcTIon PARAmeTeRs 449

 errorAtCurrent("Can't have more than 255 parameters.");
 }
 uint8_t constant = parseVariable("Expect parameter name.");
 defineVariable(constant);
 } while (match(TOKEN_COMMA));
 }
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after parameters.");

Semantically, a parameter is simply a local variable declared in the outermost
lexical scope of the function body. We get to use the existing compiler support
for declaring named local variables to parse and compile parameters. Unlike
local variables, which have initializers, there’s no code here to initialize the pa-
rameter’s value. We’ll see how they are initialized later when we do argument
passing in function calls.

While we’re at it, we note the function’s arity by counting how many param-
eters we parse. The other piece of metadata we store with a function is its name.
When compiling a function declaration, we call initCompiler() right after
we parse the function’s name. That means we can grab the name right then from
the previous token.

 current = compiler;
 if (type != TYPE_SCRIPT) {
 current->function->name = copyString(parser.previous.start,
 parser.previous.length);
 }

 Local* local = ¤t->locals[current->localCount++];

Note that we’re careful to create a copy of the name string. Remember, the
lexeme points directly into the original source code string. That string may get
freed once the code is finished compiling. The function object we create in the
compiler outlives the compiler and persists until runtime. So it needs its own
heap-allocated name string that it can keep around.

Rad. Now we can compile function declarations, like this:

fun areWeHavingItYet() {
 print "Yes we are!";
}

print areWeHavingItYet;

We just can’t do anything useful with them.

24.5 Function Calls
By the end of this section, we’ll start to see some interesting behavior. The next
step is calling functions. We don’t usually think of it this way, but a function call
expression is kind of an infix (operator. You have a high-precedence expression
on the left for the thing being called—usually just a single identifier. Then the (
in the middle, followed by the argument expressions separated by commas, and

. . . from previous page

compiler.c
in initCompiler()

We can print them! I guess that’s not very
useful, though.

450 cHAPTeR 24 : cAlls And funcTIons

a final) to wrap it up at the end.
That odd grammatical perspective explains how to hook the syntax into our

parsing table.

ParseRule rules[] = {
 [TOKEN_LEFT_PAREN] = {grouping, call, PREC_CALL},
 [TOKEN_RIGHT_PAREN] = {NULL, NULL, PREC_NONE},

When the parser encounters a left parenthesis following an expression, it dis-
patches to a new parser function.

static void call(bool canAssign) {
 uint8_t argCount = argumentList();
 emitBytes(OP_CALL, argCount);
}

We’ve already consumed the (token, so next we compile the arguments using
a separate argumentList() helper. That function returns the number of ar-
guments it compiled. Each argument expression generates code that leaves its
value on the stack in preparation for the call. After that, we emit a new OP_CALL
instruction to invoke the function, using the argument count as an operand.

We compile the arguments using this friend:

static uint8_t argumentList() {
 uint8_t argCount = 0;
 if (!check(TOKEN_RIGHT_PAREN)) {
 do {
 expression();
 argCount++;
 } while (match(TOKEN_COMMA));
 }
 consume(TOKEN_RIGHT_PAREN, "Expect ')' after arguments.");
 return argCount;
}

That code should look familiar from jlox. We chew through arguments as long as
we find commas after each expression. Once we run out, we consume the final
closing parenthesis and we’re done.

Well, almost. Back in jlox, we added a compile-time check that you don’t pass
more than 255 arguments to a call. At the time, I said that was because clox would
need a similar limit. Now you can see why—since we stuff the argument count
into the bytecode as a single-byte operand, we can only go up to 255. We need to
verify that in this compiler too.

 expression();
 if (argCount == 255) {
 error("Can't have more than 255 arguments.");
 }
 argCount++;

That’s the front end. Let’s skip over to the back end, with a quick stop in the
middle to declare the new instruction.

compiler.c
add after unary()

replace 1 line

compiler.c
add after defineVariable()

compiler.c
in argumentList()

compiler.c
add after binary()

24.5.1 bIndIng ARgumenTs To PARAmeTeRs 451

 OP_LOOP,
 OP_CALL,
 OP_RETURN,

24.5.1 Binding arguments to parameters

Before we get to the implementation, we should think about what the stack looks
like at the point of a call and what we need to do from there. When we reach the
call instruction, we have already executed the expression for the function being
called, followed by its arguments. Say our program looks like this:

fun sum(a, b, c) {
 return a + b + c;
}

print 4 + sum(5, 6, 7);

If we pause the VM right on the OP_CALL instruction for that call to sum(), the
stack looks like this:

Picture this from the perspective of sum() itself. When the compiler compiled
sum(), it automatically allocated slot zero. Then, after that, it allocated local
slots for the parameters a, b, and c, in order. To perform a call to sum(), we need
a CallFrame initialized with the function being called and a region of stack slots
that it can use. Then we need to collect the arguments passed to the function and
get them into the corresponding slots for the parameters.

When the VM starts executing the body of sum(), we want its stack window
to look like this:

Do you notice how the argument slots that the caller sets up and the parameter
slots the callee needs are both in exactly the right order? How convenient! This is
no coincidence. When I talked about each CallFrame having its own window into
the stack, I never said those windows must be disjoint. There’s nothing prevent-
ing us from overlapping them, like this:

The top of the caller’s stack contains the function being called followed by the

chunk.h
in enum OpCode

Different bytecode VMs and real CPU
architectures have different calling con-
ventions, which is the specific mechanism
they use to pass arguments, store the
return address, etc. The mechanism I use
here is based on Lua’s clean, fast virtual
machine.

452 cHAPTeR 24 : cAlls And funcTIons

arguments in order. We know the caller doesn’t have any other slots above those
in use because any temporaries needed when evaluating argument expressions
have been discarded by now. The bottom of the callee’s stack overlaps so that the
parameter slots exactly line up with where the argument values already live.

This means that we don’t need to do any work to “bind an argument to a pa-
rameter”. There’s no copying values between slots or across environments. The
arguments are already exactly where they need to be. It’s hard to beat that for
performance.

Time to implement the call instruction.

 }
 case OP_CALL: {
 int argCount = READ_BYTE();
 if (!callValue(peek(argCount), argCount)) {
 return INTERPRET_RUNTIME_ERROR;
 }
 break;
 }
 case OP_RETURN: {

We need to know the function being called and the number of arguments passed
to it. We get the latter from the instruction’s operand. That also tells us where to
find the function on the stack by counting past the argument slots from the top
of the stack. We hand that data off to a separate callValue() function. If that
returns false, it means the call caused some sort of runtime error. When that
happens, we abort the interpreter.

If callValue() is successful, there will be a new frame on the CallFrame
stack for the called function. The run() function has its own cached pointer to
the current frame, so we need to update that.

 return INTERPRET_RUNTIME_ERROR;
 }
 frame = &vm.frames[vm.frameCount - 1];
 break;

Since the bytecode dispatch loop reads from that frame variable, when the VM
goes to execute the next instruction, it will read the ip from the newly called
function’s CallFrame and jump to its code. The work for executing that call be-
gins here:

static bool callValue(Value callee, int argCount) {
 if (IS_OBJ(callee)) {
 switch (OBJ_TYPE(callee)) {
 case OBJ_FUNCTION:
 return call(AS_FUNCTION(callee), argCount);
 default:
 break; // Non-callable object type.
 }
 }
 runtimeError("Can only call functions and classes.");
 return false;
}

vm.c
in run()

vm.c
in run()

vm.c
add after peek()

Using a switch statement to check a
single type is overkill now, but will make
sense when we add cases to handle other
callable types.

24.5.1 bIndIng ARgumenTs To PARAmeTeRs 453

There’s more going on here than just initializing a new CallFrame. Because Lox is
dynamically typed, there’s nothing to prevent a user from writing bad code like:

var notAFunction = 123;
notAFunction();

If that happens, the runtime needs to safely report an error and halt. So the first
thing we do is check the type of the value that we’re trying to call. If it’s not a
function, we error out. Otherwise, the actual call happens here:

static bool call(ObjFunction* function, int argCount) {
 CallFrame* frame = &vm.frames[vm.frameCount++];
 frame->function = function;
 frame->ip = function->chunk.code;
 frame->slots = vm.stackTop - argCount - 1;
 return true;
}

This simply initializes the next CallFrame on the stack. It stores a pointer to the
function being called and points the frame’s ip to the beginning of the function’s
bytecode. Finally, it sets up the slots pointer to give the frame its window into
the stack. The arithmetic there ensures that the arguments already on the stack
line up with the function’s parameters:

The funny little - 1 is to account for stack slot zero which the compiler set aside
for when we add methods later. The parameters start at slot one so we make the
window start one slot earlier to align them with the arguments.

Before we move on, let’s add the new instruction to our disassembler.

 return jumpInstruction("OP_LOOP", -1, chunk, offset);
 case OP_CALL:
 return byteInstruction("OP_CALL", chunk, offset);
 case OP_RETURN:

And one more quick side trip. Now that we have a handy function for initiating
a CallFrame, we may as well use it to set up the first frame for executing the
top-level code.

 push(OBJ_VAL(function));
 call(function, 0);

 return run();

debug.c
in disassembleInstruction()

vm.c
in interpret()
replace 4 lines

vm.c
add after peek()

454 cHAPTeR 24 : cAlls And funcTIons

OK, now back to calls . . . 

24.5.2 Runtime error checking

The overlapping stack windows work based on the assumption that a call passes
exactly one argument for each of the function’s parameters. But, again, because
Lox ain’t statically typed, a foolish user could pass too many or too few argu-
ments. In Lox, we’ve defined that to be a runtime error, which we report like so:

static bool call(ObjFunction* function, int argCount) {
 if (argCount != function->arity) {
 runtimeError("Expected %d arguments but got %d.",
 function->arity, argCount);
 return false;
 }

 CallFrame* frame = &vm.frames[vm.frameCount++];

Pretty straightforward. This is why we store the arity of each function inside the
ObjFunction for it.

There’s another error we need to report that’s less to do with the user’s fool-
ishness than our own. Because the CallFrame array has a fixed size, we need to
ensure a deep call chain doesn’t overflow it.

 }

 if (vm.frameCount == FRAMES_MAX) {
 runtimeError("Stack overflow.");
 return false;
 }

 CallFrame* frame = &vm.frames[vm.frameCount++];

In practice, if a program gets anywhere close to this limit, there’s most likely a
bug in some runaway recursive code.

24.5.3 Printing stack traces

While we’re on the subject of runtime errors, let’s spend a little time making
them more useful. Stopping on a runtime error is important to prevent the VM
from crashing and burning in some ill-defined way. But simply aborting doesn’t
help the user fix their code that caused that error.

The classic tool to aid debugging runtime failures is a stack trace—a print
out of each function that was still executing when the program died, and where
the execution was at the point that it died. Now that we have a call stack and
we’ve conveniently stored each function’s name, we can show that entire stack
when a runtime error disrupts the harmony of the user’s existence. It looks like
this:

vm.c
in call()

vm.c
in call()

24.5.2 RunTIme eRRoR cHeckIng 455

 fputs("\n", stderr);

 for (int i = vm.frameCount - 1; i >= 0; i--) {
 CallFrame* frame = &vm.frames[i];
 ObjFunction* function = frame->function;
 size_t instruction = frame->ip - function->chunk.code - 1;
 fprintf(stderr, "[line %d] in ",
 function->chunk.lines[instruction]);
 if (function->name == NULL) {
 fprintf(stderr, "script\n");
 } else {
 fprintf(stderr, "%s()\n", function->name->chars);
 }
 }

 resetStack();
}

After printing the error message itself, we walk the call stack from top (the most
recently called function) to bottom (the top-level code). For each frame, we find
the line number that corresponds to the current ip inside that frame’s function.
Then we print that line number along with the function name.

For example, if you run this broken program:

fun a() { b(); }
fun b() { c(); }
fun c() {
 c("too", "many");
}

a();

It prints out:

Expected 0 arguments but got 2.
[line 4] in c()
[line 2] in b()
[line 1] in a()
[line 7] in script

That doesn’t look too bad, does it?

24.5.4 Returning from functions

We’re getting close. We can call functions, and the VM will execute them. But we
can’t return from them yet. We’ve had an OP_RETURN instruction for quite some
time, but it’s always had some kind of temporary code hanging out in it just to
get us out of the bytecode loop. The time has arrived for a real implementation.

The - 1 is because the IP is already
sitting on the next instruction to be
executed but we want the stack trace to
point to the previous failed instruction.

There is some disagreement on which
order stack frames should be shown in a
trace. Most put the innermost function as
the first line and work their way towards
the bottom of the stack. Python prints
them out in the opposite order. So reading
from top to bottom tells you how your
program got to where it is, and the last
line is where the error actually occurred.

There’s a logic to that style. It ensures
you can always see the innermost
function even if the stack trace is too long
to fit on one screen. On the other hand,
the “inverted pyramid” from journalism
tells us we should put the most important
information first in a block of text. In a
stack trace, that’s the function where
the error actually occurred. Most other
language implementations do that.

vm.c
in runtimeError()
replace 4 lines

456 cHAPTeR 24 : cAlls And funcTIons

 case OP_RETURN: {
 Value result = pop();
 vm.frameCount--;
 if (vm.frameCount == 0) {
 pop();
 return INTERPRET_OK;
 }

 vm.stackTop = frame->slots;
 push(result);
 frame = &vm.frames[vm.frameCount - 1];
 break;
 }

When a function returns a value, that value will be on top of the stack. We’re
about to discard the called function’s entire stack window, so we pop that return
value off and hang on to it. Then we discard the CallFrame for the returning
function. If that was the very last CallFrame, it means we’ve finished executing
the top-level code. The entire program is done, so we pop the main script func-
tion from the stack and then exit the interpreter.

Otherwise, we discard all of the slots the callee was using for its parameters
and local variables. That includes the same slots the caller used to pass the ar-
guments. Now that the call is done, the caller doesn’t need them anymore. This
means the top of the stack ends up right at the beginning of the returning func-
tion’s stack window.

We push the return value back onto the stack at that new, lower location. Then
we update the run() function’s cached pointer to the current frame. Just like
when we began a call, on the next iteration of the bytecode dispatch loop, the VM
will read ip from that frame, and execution will jump back to the caller, right
where it left off, immediately after the OP_CALL instruction.

vm.c
in run()

replace 2 lines

24.6 ReTuRn sTATemenTs 457

Note that we assume here that the function did actually return a value, but a
function can implicitly return by reaching the end of its body:

fun noReturn() {
 print "Do stuff";
 // No return here.
}

print noReturn(); // ???

We need to handle that correctly too. The language is specified to implicitly re-
turn nil in that case. To make that happen, we add this:

static void emitReturn() {
 emitByte(OP_NIL);
 emitByte(OP_RETURN);
}

The compiler calls emitReturn() to write the OP_RETURN instruction at the
end of a function body. Now, before that, it emits an instruction to push nil onto
the stack. And with that, we have working function calls! They can even take
parameters! It almost looks like we know what we’re doing here.

24.6 return Statements
If you want a function that returns something other than the implicit nil, you
need a return statement. Let’s get that working.

 ifStatement();
 } else if (match(TOKEN_RETURN)) {
 returnStatement();
 } else if (match(TOKEN_WHILE)) {

When the compiler sees a return keyword, it goes here:

static void returnStatement() {
 if (match(TOKEN_SEMICOLON)) {
 emitReturn();
 } else {
 expression();
 consume(TOKEN_SEMICOLON, "Expect ';' after return value.");
 emitByte(OP_RETURN);
 }
}

The return value expression is optional, so the parser looks for a semicolon token
to tell if a value was provided. If there is no return value, the statement implic-
itly returns nil. We implement that by calling emitReturn(), which emits an
OP_NIL instruction. Otherwise, we compile the return value expression and
return it with an OP_RETURN instruction.

compiler.c
in emitReturn()

compiler.c
in statement()

compiler.c
add after printStatement()

458 cHAPTeR 24 : cAlls And funcTIons

This is the same OP_RETURN instruction we’ve already implemented—we
don’t need any new runtime code. This is quite a difference from jlox. There, we
had to use exceptions to unwind the stack when a return statement was exe-
cuted. That was because you could return from deep inside some nested blocks.
Since jlox recursively walks the AST, that meant there were a bunch of Java
method calls we needed to escape out of.

Our bytecode compiler flattens that all out. We do recursive descent during
parsing, but at runtime, the VM’s bytecode dispatch loop is completely flat. There
is no recursion going on at the C level at all. So returning, even from within some
nested blocks, is as straightforward as returning from the end of the function’s
body.

We’re not totally done, though. The new return statement gives us a new
compile error to worry about. Returns are useful for returning from functions
but the top level of a Lox program is imperative code too. You shouldn’t be able
to return from there.

return "What?!";

We’ve specified that it’s a compile error to have a return statement outside of
any function, which we implement like so:

static void returnStatement() {
 if (current->type == TYPE_SCRIPT) {
 error("Can't return from top-level code.");
 }

 if (match(TOKEN_SEMICOLON)) {

This is one of the reasons we added that FunctionType enum to the compiler.

24.7 Native Functions
Our VM is getting more powerful. We’ve got functions, calls, parameters, returns.
You can define lots of different functions that can call each other in interesting
ways. But, ultimately, they can’t really do anything. The only user-visible thing a
Lox program can do, regardless of its complexity, is print. To add more capabili-
ties, we need to expose them to the user.

A programming language implementation reaches out and touches the mate-
rial world through native functions. If you want to be able to write programs
that check the time, read user input, or access the file system, we need to add
native functions—callable from Lox but implemented in C—that expose those
capabilities.

At the language level, Lox is fairly complete—it’s got closures, classes, inher-
itance, and other fun stuff. One reason it feels like a toy language is because it
has almost no native capabilities. We could turn it into a real language by adding
a long list of them.

However, grinding through a pile of OS operations isn’t actually very educa-
tional. Once you’ve seen how to bind one piece of C code to Lox, you get the idea.
But you do need to see one, and even a single native function requires us to build
out all the machinery for interfacing Lox with C. So we’ll go through that and do

Allowing return at the top level isn’t
the worst idea in the world. It would
give you a natural way to terminate a
script early. You could maybe even use a
returned number to indicate the process’s
exit code.

compiler.c
in returnStatement()

24.7 nATIVe funcTIons 459

all the hard work. Then, when that’s done, we’ll add one tiny native function just
to prove that it works.

The reason we need new machinery is because, from the implementation’s
perspective, native functions are different from Lox functions. When they are
called, they don’t push a CallFrame, because there’s no bytecode code for that
frame to point to. They have no bytecode chunk. Instead, they somehow refer-
ence a piece of native C code.

We handle this in clox by defining native functions as an entirely different
object type.

} ObjFunction;

typedef Value (*NativeFn)(int argCount, Value* args);

typedef struct {
 Obj obj;
 NativeFn function;
} ObjNative;

struct ObjString {

The representation is simpler than ObjFunction—merely an Obj header and a
pointer to the C function that implements the native behavior. The native func-
tion takes the argument count and a pointer to the first argument on the stack. It
accesses the arguments through that pointer. Once it’s done, it returns the result
value.

As always, a new object type carries some accoutrements with it. To create an
ObjNative, we declare a constructor-like function.

ObjFunction* newFunction();
ObjNative* newNative(NativeFn function);
ObjString* takeString(char* chars, int length);

We implement that like so:

ObjNative* newNative(NativeFn function) {
 ObjNative* native = ALLOCATE_OBJ(ObjNative, OBJ_NATIVE);
 native->function = function;
 return native;
}

The constructor takes a C function pointer to wrap in an ObjNative. It sets up the
object header and stores the function. For the header, we need a new object type.

typedef enum {
 OBJ_FUNCTION,
 OBJ_NATIVE,
 OBJ_STRING,
} ObjType;

The VM also needs to know how to deallocate a native function object.

object.h
add after struct ObjFunction

object.h
add after newFunction()

object.c
add after newFunction()

object.h
in enum ObjType

460 cHAPTeR 24 : cAlls And funcTIons

 }
 case OBJ_NATIVE:
 FREE(ObjNative, object);
 break;
 case OBJ_STRING: {

There isn’t much here since ObjNative doesn’t own any extra memory. The other
capability all Lox objects support is being printed.

 break;
 case OBJ_NATIVE:
 printf("<native fn>");
 break;
 case OBJ_STRING:

In order to support dynamic typing, we have a macro to see if a value is a native
function.

#define IS_FUNCTION(value) isObjType(value, OBJ_FUNCTION)
#define IS_NATIVE(value) isObjType(value, OBJ_NATIVE)
#define IS_STRING(value) isObjType(value, OBJ_STRING)

Assuming that returns true, this macro extracts the C function pointer from a
Value representing a native function:

#define AS_FUNCTION(value) ((ObjFunction*)AS_OBJ(value))
#define AS_NATIVE(value) \
 (((ObjNative*)AS_OBJ(value))->function)
#define AS_STRING(value) ((ObjString*)AS_OBJ(value))

All of this baggage lets the VM treat native functions like any other object. You
can store them in variables, pass them around, throw them birthday parties, etc.
Of course, the operation we actually care about is calling them—using one as the
left-hand operand in a call expression.

Over in callValue() we add another type case.

 case OBJ_FUNCTION:
 return call(AS_FUNCTION(callee), argCount);
 case OBJ_NATIVE: {
 NativeFn native = AS_NATIVE(callee);
 Value result = native(argCount, vm.stackTop - argCount);
 vm.stackTop -= argCount + 1;
 push(result);
 return true;
 }
 default:

If the object being called is a native function, we invoke the C function right then
and there. There’s no need to muck with CallFrames or anything. We just hand
off to C, get the result, and stuff it back in the stack. This makes native functions

memory.c
in freeObject()

object.c
in printObject()

object.h

object.h

vm.c
in callValue()

24.7 nATIVe funcTIons 461

as fast as we can get.
With this, users should be able to call native functions, but there aren’t any

to call. Without something like a foreign function interface, users can’t define
their own native functions. That’s our job as VM implementers. We’ll start with a
helper to define a new native function exposed to Lox programs.

static void defineNative(const char* name, NativeFn function) {
 push(OBJ_VAL(copyString(name, (int)strlen(name))));
 push(OBJ_VAL(newNative(function)));
 tableSet(&vm.globals, AS_STRING(vm.stack[0]), vm.stack[1]);
 pop();
 pop();
}

It takes a pointer to a C function and the name it will be known as in Lox. We
wrap the function in an ObjNative and then store that in a global variable with
the given name.

You’re probably wondering why we push and pop the name and function on
the stack. That looks weird, right? This is the kind of stuff you have to worry about
when garbage collection gets involved. Both copyString() and newNative()
dynamically allocate memory. That means once we have a GC, they can poten-
tially trigger a collection. If that happens, we need to ensure the collector knows
we’re not done with the name and ObjFunction so that it doesn’t free them out
from under us. Storing them on the value stack accomplishes that.

It feels silly, but after all of that work, we’re going to add only one little native
function.

static Value clockNative(int argCount, Value* args) {
 return NUMBER_VAL((double)clock() / CLOCKS_PER_SEC);
}

This returns the elapsed time since the program started running, in seconds. It’s
handy for benchmarking Lox programs. In Lox, we’ll name it clock().

 initTable(&vm.strings);

 defineNative("clock", clockNative);
}

To get to the C standard library clock() function, the “vm” module needs an
include.

#include <string.h>
#include <time.h>

#include "common.h"

That was a lot of material to work through, but we did it! Type this in and try it
out:

Don’t worry if you didn’t follow all that.
It will make a lot more sense once we get
around to implementing the GC.

vm.c
add after variable vm

vm.c
in initVM()

vm.c

vm.c
add after runtimeError()

462 cHAPTeR 24 : cAlls And funcTIons

fun fib(n) {
 if (n < 2) return n;
 return fib(n - 2) + fib(n - 1);
}

var start = clock();
print fib(35);
print clock() - start;

We can write a really inefficient recursive Fibonacci function. Even better, we
can measure just how inefficient it is. This is, of course, not the smartest way to
calculate a Fibonacci number. But it is a good way to stress test a language im-
plementation’s support for function calls. On my machine, running this in clox is
about five times faster than in jlox. That’s quite an improvement.

CHaLLENGES

1. Reading and writing the ip field is one of the most frequent operations inside
the bytecode loop. Right now, we access it through a pointer to the current
CallFrame. That requires a pointer indirection which may force the CPU to by-
pass the cache and hit main memory. That can be a real performance sink.

Ideally, we’d keep the ip in a native CPU register. C doesn’t let us require
that without dropping into inline assembly, but we can structure the code to
encourage the compiler to make that optimization. If we store the ip directly in
a C local variable and mark it register, there’s a good chance the C compiler
will accede to our polite request.

This does mean we need to be careful to load and store the local ip back into
the correct CallFrame when starting and ending function calls. Implement this
optimization. Write a couple of benchmarks and see how it affects the perfor-
mance. Do you think the extra code complexity is worth it?

2. Native function calls are fast in part because we don’t validate that the call
passes as many arguments as the function expects. We really should, or an
incorrect call to a native function without enough arguments could cause the
function to read uninitialized memory. Add arity checking.

3. Right now, there’s no way for a native function to signal a runtime error. In a real
implementation, this is something we’d need to support because native func-
tions live in the statically typed world of C but are called from dynamically typed
Lox land. If a user, say, tries to pass a string to sqrt(), that native function
needs to report a runtime error.

Extend the native function system to support that. How does this capability
affect the performance of native calls?

4. Add some more native functions to do things you find useful. Write some
programs using those. What did you add? How do they affect the feel of the
language and how practical it is?

It’s a little slower than a comparable Ruby
program run in Ruby 2.4.3p205, and about
3x faster than one run in Python 3.7.3. And
we still have a lot of simple optimizations
we can do in our VM.

A byTecode VIRTuAl mAcHIne 25Closures

“As the man said, for every complex problem there’s a simple solution,
and it’s wrong.”

— Umberto Eco, Foucault’s Pendulum

Thanks to our diligent labor in the last chapter, we have a virtual machine with
working functions. What it lacks is closures. Aside from global variables, which
are their own breed of animal, a function has no way to reference a variable
declared outside of its own body.

var x = "global";
fun outer() {
 var x = "outer";
 fun inner() {
 print x;
 }
 inner();
}
outer();

Run this example now and it prints “global”. It’s supposed to print “outer”. To
fix this, we need to include the entire lexical scope of all surrounding functions
when resolving a variable.

464 cHAPTeR 25 : closuRes

This problem is harder in clox than it was in jlox because our bytecode VM
stores locals on a stack. We used a stack because I claimed locals have stack se-
mantics—variables are discarded in the reverse order that they are created. But
with closures, that’s only mostly true.

fun makeClosure() {
 var local = "local";
 fun closure() {
 print local;
 }
 return closure;
}

var closure = makeClosure();
closure();

The function makeClosure() declares a variable, local. It also creates an
inner function, closure() that captures that variable. Then makeClosure()
returns a reference to that function. Since the closure escapes while holding on
to the local variable, local must outlive the function call where it was created.

We could solve this problem by dynamically allocating memory for all local
variables. That’s what jlox does by putting everything in those Environment
objects that float around in Java’s heap. But we don’t want to. Using a stack is
really fast. Most local variables are not captured by closures and do have stack
semantics. It would suck to make all of those slower for the benefit of the rare
local that is captured.

This means a more complex approach than we used in our Java interpreter.
Because some locals have very different lifetimes, we will have two implemen-
tation strategies. For locals that aren’t used in closures, we’ll keep them just as
they are on the stack. When a local is captured by a closure, we’ll adopt another
solution that lifts them onto the heap where they can live as long as needed.

Closures have been around since the early Lisp days when bytes of memo-
ry and CPU cycles were more precious than emeralds. Over the intervening
decades, hackers devised all manner of ways to compile closures to optimized
runtime representations. Some are more efficient but require a more complex
compilation process than we could easily retrofit into clox.

The technique I explain here comes from the design of the Lua VM. It is fast,
parsimonious with memory, and implemented with relatively little code. Even
more impressive, it fits naturally into the single-pass compilers clox and Lua
both use. It is somewhat intricate, though. It might take a while before all the
pieces click together in your mind. We’ll build them one step at a time, and I’ll try
to introduce the concepts in stages.

25.1 Closure Objects
Our VM represents functions at runtime using ObjFunction. These objects are
created by the front end during compilation. At runtime, all the VM does is load
the function object from a constant table and bind it to a name. There is no op-
eration to “create” a function at runtime. Much like string and number literals,
they are constants instantiated purely at compile time.

Oh no, it’s escaping!

There is a reason that C and Java use the
stack for their local variables, after all.

Search for “closure conversion” or
“lambda lifting” to start exploring.

In other words, a function declaration in
Lox is a kind of literal—a piece of syntax
that defines a constant value of a built-in
type.

25.1 closuRe obJecTs 465

That made sense because all of the data that composes a function is known at
compile time: the chunk of bytecode compiled from the function’s body, and the
constants used in the body. Once we introduce closures, though, that represen-
tation is no longer sufficient. Take a gander at:

fun makeClosure(value) {
 fun closure() {
 print value;
 }
 return closure;
}

var doughnut = makeClosure("doughnut");
var bagel = makeClosure("bagel");
doughnut();
bagel();

The makeClosure() function defines and returns a function. We call it twice
and get two closures back. They are created by the same nested function decla-
ration, closure, but close over different values. When we call the two closures,
each prints a different string. That implies we need some runtime representa-
tion for a closure that captures the local variables surrounding the function as
they exist when the function declaration is executed, not just when it is compiled.

We’ll work our way up to capturing variables, but a good first step is defining
that object representation. Our existing ObjFunction type represents the “raw”
compile-time state of a function declaration, since all closures created from
a single declaration share the same code and constants. At runtime, when we
execute a function declaration, we wrap the ObjFunction in a new ObjClosure
structure. The latter has a reference to the underlying bare function along with
runtime state for the variables the function closes over.

We’ll wrap every function in an ObjClosure, even if the function doesn’t actually
close over and capture any surrounding local variables. This is a little wasteful,
but it simplifies the VM because we can always assume that the function we’re
calling is an ObjClosure. That new struct starts out like this:

typedef struct {
 Obj obj;
 ObjFunction* function;
} ObjClosure;

Right now, it simply points to an ObjFunction and adds the necessary object
header stuff. Grinding through the usual ceremony for adding a new object type
to clox, we declare a C function to create a new closure.

The Lua implementation refers to the raw
function object containing the bytecode
as a “prototype”, which is a great word
to describe this, except that word also
gets overloaded to refer to prototypal
inheritance.

object.h
add after struct ObjString

466 cHAPTeR 25 : closuRes

} ObjClosure;

ObjClosure* newClosure(ObjFunction* function);
ObjFunction* newFunction();

Then we implement it here:

ObjClosure* newClosure(ObjFunction* function) {
 ObjClosure* closure = ALLOCATE_OBJ(ObjClosure, OBJ_CLOSURE);
 closure->function = function;
 return closure;
}

It takes a pointer to the ObjFunction it wraps. It also initializes the type field to
a new type.

typedef enum {
 OBJ_CLOSURE,
 OBJ_FUNCTION,

And when we’re done with a closure, we release its memory.

 switch (object->type) {
 case OBJ_CLOSURE: {
 FREE(ObjClosure, object);
 break;
 }
 case OBJ_FUNCTION: {

We free only the ObjClosure itself, not the ObjFunction. That’s because the clo-
sure doesn’t own the function. There may be multiple closures that all reference
the same function, and none of them claims any special privilege over it. We
can’t free the ObjFunction until all objects referencing it are gone—including
even the surrounding function whose constant table contains it. Tracking that
sounds tricky, and it is! That’s why we’ll write a garbage collector soon to manage
it for us.

We also have the usual macros for checking a value’s type.

#define OBJ_TYPE(value) (AS_OBJ(value)->type)

#define IS_CLOSURE(value) isObjType(value, OBJ_CLOSURE)
#define IS_FUNCTION(value) isObjType(value, OBJ_FUNCTION)

And to cast a value:

#define IS_STRING(value) isObjType(value, OBJ_STRING)

#define AS_CLOSURE(value) ((ObjClosure*)AS_OBJ(value))
#define AS_FUNCTION(value) ((ObjFunction*)AS_OBJ(value))

Closures are first-class objects, so you can print them.

object.h
add after struct ObjClosure

object.c
add after allocateObject()

object.h
in enum ObjType

memory.c
in freeObject()

Perhaps I should have defined a macro to
make it easier to generate these macros.
Maybe that would be a little too meta.

object.h

object.h

25.1.1 comPIlIng To closuRe obJecTs 467

 switch (OBJ_TYPE(value)) {
 case OBJ_CLOSURE:
 printFunction(AS_CLOSURE(value)->function);
 break;
 case OBJ_FUNCTION:

They display exactly as ObjFunction does. From the user’s perspective, the differ-
ence between ObjFunction and ObjClosure is purely a hidden implementation
detail. With that out of the way, we have a working but empty representation
for closures.

25.1.1 Compiling to closure objects

We have closure objects, but our VM never creates them. The next step is get-
ting the compiler to emit instructions to tell the runtime when to create a new
ObjClosure to wrap a given ObjFunction. This happens right at the end of a func-
tion declaration.

 ObjFunction* function = endCompiler();
 emitBytes(OP_CLOSURE, makeConstant(OBJ_VAL(function)));
}

Before, the final bytecode for a function declaration was a single OP_CONSTANT
instruction to load the compiled function from the surrounding function’s con-
stant table and push it onto the stack. Now we have a new instruction.

 OP_CALL,
 OP_CLOSURE,
 OP_RETURN,

Like OP_CONSTANT, it takes a single operand that represents a constant table
index for the function. But when we get over to the runtime implementation, we
do something more interesting.

First, let’s be diligent VM hackers and slot in disassembler support for the
instruction.

 case OP_CALL:
 return byteInstruction("OP_CALL", chunk, offset);
 case OP_CLOSURE: {
 offset++;
 uint8_t constant = chunk->code[offset++];
 printf("%-16s %4d ", "OP_CLOSURE", constant);
 printValue(chunk->constants.values[constant]);
 printf("\n");
 return offset;
 }
 case OP_RETURN:

There’s more going on here than we usually have in the disassembler. By the end
of the chapter, you’ll discover that OP_CLOSURE is quite an unusual instruction.
It’s straightforward right now—just a single byte operand—but we’ll be adding

object.c
in printObject()

compiler.c
in function()
replace 1 line

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

468 cHAPTeR 25 : closuRes

to it. This code here anticipates that future.

25.1.2 Interpreting function declarations

Most of the work we need to do is in the runtime. We have to handle the new
instruction, naturally. But we also need to touch every piece of code in the VM
that works with ObjFunction and change it to use ObjClosure instead—function
calls, call frames, etc. We’ll start with the instruction, though.

 }
 case OP_CLOSURE: {
 ObjFunction* function = AS_FUNCTION(READ_CONSTANT());
 ObjClosure* closure = newClosure(function);
 push(OBJ_VAL(closure));
 break;
 }
 case OP_RETURN: {

Like the OP_CONSTANT instruction we used before, first we load the compiled
function from the constant table. The difference now is that we wrap that func-
tion in a new ObjClosure and push the result onto the stack.

Once you have a closure, you’ll eventually want to call it.

 switch (OBJ_TYPE(callee)) {
 case OBJ_CLOSURE:
 return call(AS_CLOSURE(callee), argCount);
 case OBJ_NATIVE: {

We remove the code for calling objects whose type is OBJ_FUNCTION. Since we
wrap all functions in ObjClosures, the runtime will never try to invoke a bare
ObjFunction anymore. Those objects live only in constant tables and get immedi-
ately wrapped in closures before anything else sees them.

We replace the old code with very similar code for calling a closure instead.
The only difference is the type of object we pass to call(). The real changes are
over in that function. First, we update its signature.

static bool call(ObjClosure* closure, int argCount) {
 if (argCount != function->arity) {

Then, in the body, we need to fix everything that referenced the function to han-
dle the fact that we’ve introduced a layer of indirection. We start with the arity
checking:

static bool call(ObjClosure* closure, int argCount) {
 if (argCount != closure->function->arity) {
 runtimeError("Expected %d arguments but got %d.",
 closure->function->arity, argCount);
 return false;

The only change is that we unwrap the closure to get to the underlying function.
The next thing call() does is create a new CallFrame. We change that code to

vm.c
in run()

vm.c
in callValue()

replace 2 lines

We don’t want any naked functions
wandering around the VM! What would
the neighbors say?

vm.c
function call()

replace 1 line

vm.c
in call()

replace 3 lines

25.1.2 InTeRPReTIng funcTIon declARATIons 469

store the closure in the CallFrame and get the bytecode pointer from the clo-
sure’s function.

 CallFrame* frame = &vm.frames[vm.frameCount++];
 frame->closure = closure;
 frame->ip = closure->function->chunk.code;
 frame->slots = vm.stackTop - argCount - 1;

This necessitates changing the declaration of CallFrame too.

typedef struct {
 ObjClosure* closure;
 uint8_t* ip;

That change triggers a few other cascading changes. Every place in the VM that
accessed CallFrame’s function needs to use a closure instead. First, the macro for
reading a constant from the current function’s constant table:

 (uint16_t)((frame->ip[-2] << 8) | frame->ip[-1]))

#define READ_CONSTANT() \
 (frame->closure->function->chunk.constants.values[READ_BYTE()])

#define READ_STRING() AS_STRING(READ_CONSTANT())

When DEBUG_TRACE_EXECUTION is enabled, it needs to get to the chunk from
the closure.

 printf("\n");
 disassembleInstruction(&frame->closure->function->chunk,
 (int)(frame->ip - frame->closure->function->chunk.code));
#endif

Likewise when reporting a runtime error:

 CallFrame* frame = &vm.frames[i];
 ObjFunction* function = frame->closure->function;
 size_t instruction = frame->ip - function->chunk.code - 1;

Almost there. The last piece is the blob of code that sets up the very first CallFrame
to begin executing the top-level code for a Lox script.

 push(OBJ_VAL(function));
 ObjClosure* closure = newClosure(function);
 pop();
 push(OBJ_VAL(closure));
 call(closure, 0);

 return run();

The compiler still returns a raw ObjFunction when compiling a script. That’s
fine, but it means we need to wrap it in an ObjClosure here, before the VM can

vm.c
in call()
replace 2 lines

vm.h
in struct CallFrame
replace 1 line

vm.c
in run()
replace 2 lines

vm.c
in run()
replace 2 lines

vm.c
in runtimeError()
replace 1 line

vm.c
in interpret()
replace 1 line

470 cHAPTeR 25 : closuRes

execute it.
We are back to a working interpreter. The user can’t tell any difference, but

the compiler now generates code telling the VM to create a closure for each func-
tion declaration. Every time the VM executes a function declaration, it wraps
the ObjFunction in a new ObjClosure. The rest of the VM now handles those
ObjClosures floating around. That’s the boring stuff out of the way. Now we’re
ready to make these closures actually do something.

25.2 Upvalues
Our existing instructions for reading and writing local variables are limited to a
single function’s stack window. Locals from a surrounding function are outside
of the inner function’s window. We’re going to need some new instructions.

The easiest approach might be an instruction that takes a relative stack slot
offset that can reach before the current function’s window. That would work if
closed-over variables were always on the stack. But as we saw earlier, these vari-
ables sometimes outlive the function where they are declared. That means they
won’t always be on the stack.

The next easiest approach, then, would be to take any local variable that gets
closed over and have it always live on the heap. When the local variable declara-
tion in the surrounding function is executed, the VM would allocate memory for
it dynamically. That way it could live as long as needed.

This would be a fine approach if clox didn’t have a single-pass compiler. But
that restriction we chose in our implementation makes things harder. Take a
look at this example:

fun outer() {
 var x = 1; // (1)
 x = 2; // (2)

 fun inner() { // (3)
 print x;
 }

 inner();
}

Here, the compiler compiles the declaration of x at (1) and emits code for the
assignment at (2). It does that before reaching the declaration of inner() at
(3) and discovering that x is in fact closed over. We don’t have an easy way to
go back and fix that already-emitted code to treat x specially. Instead, we want
a solution that allows a closed-over variable to live on the stack exactly like a
normal local variable until the point that it is closed over.

Fortunately, thanks to the Lua dev team, we have a solution. We use a level of
indirection that they call an upvalue. An upvalue refers to a local variable in an
enclosing function. Every closure maintains an array of upvalues, one for each
surrounding local variable that the closure uses.

The previous code looks a little
silly because we still push the original
ObjFunction onto the stack. Then we
pop it after creating the closure, only
to then push the closure. Why put the
ObjFunction on there at all? As usual,
when you see weird stack stuff going
on, it’s to keep the forthcoming garbage
collector aware of some heap-allocated
objects.

25.2 uPVAlues 471

The upvalue points back into the stack to where the variable it captured lives.
When the closure needs to access a closed-over variable, it goes through the
corresponding upvalue to reach it. When a function declaration is first executed
and we create a closure for it, the VM creates the array of upvalues and wires
them up to “capture” the surrounding local variables that the closure needs.

For example, if we throw this program at clox,

{
 var a = 3;

 fun f() {
 print a;
 }
}

the compiler and runtime will conspire together to build up a set of objects in
memory like this:

That might look overwhelming, but fear not. We’ll work our way through it. The
important part is that upvalues serve as the layer of indirection needed to con-
tinue to find a captured local variable even after it moves off the stack. But before
we get to all that, let’s focus on compiling captured variables.

25.2.1 Compiling upvalues

As usual, we want to do as much work as possible during compilation to keep ex-
ecution simple and fast. Since local variables are lexically scoped in Lox, we have
enough knowledge at compile time to resolve which surrounding local variables
a function accesses and where those locals are declared. That, in turn, means
we know how many upvalues a closure needs, which variables they capture, and
which stack slots contain those variables in the declaring function’s stack window.

Currently, when the compiler resolves an identifier, it walks the block scopes
for the current function from innermost to outermost. If we don’t find the vari-
able in that function, we assume the variable must be a global. We don’t consider
the local scopes of enclosing functions—they get skipped right over. The first
change, then, is inserting a resolution step for those outer local scopes.

472 cHAPTeR 25 : closuRes

 if (arg != -1) {
 getOp = OP_GET_LOCAL;
 setOp = OP_SET_LOCAL;
 } else if ((arg = resolveUpvalue(current, &name)) != -1) {
 getOp = OP_GET_UPVALUE;
 setOp = OP_SET_UPVALUE;
 } else {

This new resolveUpvalue() function looks for a local variable declared in
any of the surrounding functions. If it finds one, it returns an “upvalue index”
for that variable. (We’ll get into what that means later.) Otherwise, it returns
-1 to indicate the variable wasn’t found. If it was found, we use these two new
instructions for reading or writing to the variable through its upvalue:

 OP_SET_GLOBAL,
 OP_GET_UPVALUE,
 OP_SET_UPVALUE,
 OP_EQUAL,

We’re implementing this sort of top-down, so I’ll show you how these work at
runtime soon. The part to focus on now is how the compiler actually resolves the
identifier.

static int resolveUpvalue(Compiler* compiler, Token* name) {
 if (compiler->enclosing == NULL) return -1;

 int local = resolveLocal(compiler->enclosing, name);
 if (local != -1) {
 return addUpvalue(compiler, (uint8_t)local, true);
 }

 return -1;
}

We call this after failing to resolve a local variable in the current function’s scope,
so we know the variable isn’t in the current compiler. Recall that Compiler stores
a pointer to the Compiler for the enclosing function, and these pointers form a
linked chain that goes all the way to the root Compiler for the top-level code.
Thus, if the enclosing Compiler is NULL, we know we’ve reached the outermost
function without finding a local variable. The variable must be global, so we
return -1.

Otherwise, we try to resolve the identifier as a local variable in the enclosing
compiler. In other words, we look for it right outside the current function. For
example:

fun outer() {
 var x = 1;
 fun inner() {
 print x; // (1)
 }
 inner();
}

compiler.c
in namedVariable()

chunk.h
in enum OpCode

compiler.c
add after resolveLocal()

It might end up being an entirely
undefined variable and not even global.
But in Lox, we don’t detect that error
until runtime, so from the compiler’s
perspective, it’s “hopefully global”.

25.2.1 comPIlIng uPVAlues 473

When compiling the identifier expression at (1), resolveUpvalue() looks
for a local variable x declared in outer(). If found—like it is in this example—
then we’ve successfully resolved the variable. We create an upvalue so that the
inner function can access the variable through that. The upvalue is created here:

static int addUpvalue(Compiler* compiler, uint8_t index,
 bool isLocal) {
 int upvalueCount = compiler->function->upvalueCount;
 compiler->upvalues[upvalueCount].isLocal = isLocal;
 compiler->upvalues[upvalueCount].index = index;
 return compiler->function->upvalueCount++;
}

The compiler keeps an array of upvalue structures to track the closed-over iden-
tifiers that it has resolved in the body of each function. Remember how the com-
piler’s Local array mirrors the stack slot indexes where locals live at runtime?
This new upvalue array works the same way. The indexes in the compiler’s array
match the indexes where upvalues will live in the ObjClosure at runtime.

This function adds a new upvalue to that array. It also keeps track of the num-
ber of upvalues the function uses. It stores that count directly in the ObjFunction
itself because we’ll also need that number for use at runtime.

The index field tracks the closed-over local variable’s slot index. That way
the compiler knows which variable in the enclosing function needs to be cap-
tured. We’ll circle back to what that isLocal field is for before too long. Finally,
addUpvalue() returns the index of the created upvalue in the function’s
upvalue list. That index becomes the operand to the OP_GET_UPVALUE and
OP_SET_UPVALUE instructions.

That’s the basic idea for resolving upvalues, but the function isn’t fully baked.
A closure may reference the same variable in a surrounding function multiple
times. In that case, we don’t want to waste time and memory creating a separate
upvalue for each identifier expression. To fix that, before we add a new upvalue,
we first check to see if the function already has an upvalue that closes over that
variable.

 int upvalueCount = compiler->function->upvalueCount;

 for (int i = 0; i < upvalueCount; i++) {
 Upvalue* upvalue = &compiler->upvalues[i];
 if (upvalue->index == index && upvalue->isLocal == isLocal) {
 return i;
 }
 }

 compiler->upvalues[upvalueCount].isLocal = isLocal;

If we find an upvalue in the array whose slot index matches the one we’re add-
ing, we just return that upvalue index and reuse it. Otherwise, we fall through
and add the new upvalue.

These two functions access and modify a bunch of new state, so let’s define
that. First, we add the upvalue count to ObjFunction.

compiler.c
add after resolveLocal()

Like constants and function arity, the
upvalue count is another one of those
little pieces of data that form the bridge
between the compiler and runtime.

compiler.c
in addUpvalue()

474 cHAPTeR 25 : closuRes

 int arity;
 int upvalueCount;
 Chunk chunk;

We’re conscientious C programmers, so we zero-initialize that when an
ObjFunction is first allocated.

 function->arity = 0;
 function->upvalueCount = 0;
 function->name = NULL;

In the compiler, we add a field for the upvalue array.

 int localCount;
 Upvalue upvalues[UINT8_COUNT];
 int scopeDepth;

For simplicity, I gave it a fixed size. The OP_GET_UPVALUE and OP_SET_UPVALUE
instructions encode an upvalue index using a single byte operand, so there’s a
restriction on how many upvalues a function can have—how many unique vari-
ables it can close over. Given that, we can afford a static array that large. We also
need to make sure the compiler doesn’t overflow that limit.

 if (upvalue->index == index && upvalue->isLocal == isLocal) {
 return i;
 }
 }

 if (upvalueCount == UINT8_COUNT) {
 error("Too many closure variables in function.");
 return 0;
 }

 compiler->upvalues[upvalueCount].isLocal = isLocal;

Finally, the Upvalue struct type itself.

typedef struct {
 uint8_t index;
 bool isLocal;
} Upvalue;

The index field stores which local slot the upvalue is capturing. The isLocal
field deserves its own section, which we’ll get to next.

25.2.2 Flattening upvalues

In the example I showed before, the closure is accessing a variable declared in

object.h
in struct ObjFunction

object.c
in newFunction()

compiler.c
in struct Compiler

compiler.c
add after struct Local

compiler.c
in addUpvalue()

25.2.2 flATTenIng uPVAlues 475

the immediately enclosing function. Lox also supports accessing local variables
declared in any enclosing scope, as in:

fun outer() {
 var x = 1;

 fun middle() {
 fun inner() {
 print x;
 }
 }
}

Here, we’re accessing x in inner(). That variable is defined not in middle(),
but all the way out in outer(). We need to handle cases like this too. You might
think that this isn’t much harder since the variable will simply be somewhere
farther down on the stack. But consider this devious example:

fun outer() {
 var x = "value";

 fun middle() {
 fun inner() {
 print x;
 }

 print "create inner closure";
 return inner;
 }

 print "return from outer";
 return middle;
}

var mid = outer();
var in = mid();
in();

When you run this, it should print:

return from outer
create inner closure
value

I know, it’s convoluted. The important part is that outer()—where x is de-
clared—returns and pops all of its variables off the stack before the declaration
of inner() executes. So, at the point in time that we create the closure for
inner(), x is already off the stack.

Here, I traced out the execution flow for you:

If you work on programming languages
long enough, you will develop a finely
honed skill at creating bizarre programs
like this that are technically valid but
likely to trip up an implementation
written by someone with a less perverse
imagination than you.

476 cHAPTeR 25 : closuRes

See how x is popped before it is captured and then later accessed ? We
really have two problems:

1. We need to resolve local variables that are declared in surrounding functions
beyond the immediately enclosing one.

2. We need to be able to capture variables that have already left the stack.

Fortunately, we’re in the middle of adding upvalues to the VM, and upvalues are
explicitly designed for tracking variables that have escaped the stack. So, in a
clever bit of self-reference, we can use upvalues to allow upvalues to capture
variables declared outside of the immediately surrounding function.

The solution is to allow a closure to capture either a local variable or an exist-
ing upvalue in the immediately enclosing function. If a deeply nested function
references a local variable declared several hops away, we’ll thread it through all
of the intermediate functions by having each function capture an upvalue for
the next function to grab.

In the above example, middle() captures the local variable x in the immediate-
ly enclosing function outer() and stores it in its own upvalue. It does this even
though middle() itself doesn’t reference x. Then, when the declaration of
inner() executes, its closure grabs the upvalue from the ObjClosure for
middle() that captured x. A function captures—either a local or upvalue—only
from the immediately surrounding function, which is guaranteed to still be
around at the point that the inner function declaration executes.

25.2.2 flATTenIng uPVAlues 477

In order to implement this, resolveUpvalue() becomes recursive.

 if (local != -1) {
 return addUpvalue(compiler, (uint8_t)local, true);
 }

 int upvalue = resolveUpvalue(compiler->enclosing, name);
 if (upvalue != -1) {
 return addUpvalue(compiler, (uint8_t)upvalue, false);
 }

 return -1;

It’s only another three lines of code, but I found this function really challenging
to get right the first time. This in spite of the fact that I wasn’t inventing anything
new, just porting the concept over from Lua. Most recursive functions either do
all their work before the recursive call (a pre-order traversal, or “on the way
down”), or they do all the work after the recursive call (a post-order traversal,
or “on the way back up”). This function does both. The recursive call is right in
the middle.

We’ll walk through it slowly. First, we look for a matching local variable in
the enclosing function. If we find one, we capture that local and return. That’s
the base case.

Otherwise, we look for a local variable beyond the immediately enclosing
function. We do that by recursively calling resolveUpvalue() on the enclosing
compiler, not the current one. This series of resolveUpvalue() calls works its
way along the chain of nested compilers until it hits one of the base cases—ei-
ther it finds an actual local variable to capture or it runs out of compilers.

When a local variable is found, the most deeply nested call to
resolveUpvalue() captures it and returns the upvalue index. That re-
turns to the next call for the inner function declaration. That call captures
the upvalue from the surrounding function, and so on. As each nested call to
resolveUpvalue() returns, we drill back down into the innermost function
declaration where the identifier we are resolving appears. At each step along
the way, we add an upvalue to the intervening function and pass the resulting
upvalue index down to the next call.

It might help to walk through the original example when resolving x:

compiler.c
in resolveUpvalue()

The other base case, of course, is if there
is no enclosing function. In that case, the
variable can’t be resolved lexically and is
treated as global.

Each recursive call to
resolveUpvalue() walks out one
level of function nesting. So an inner
recursive call refers to an outer nested
declaration. The innermost recursive call
to resolveUpvalue() that finds
the local variable will be for the outermost
function, just inside the enclosing
function where that variable is actually
declared.

478 cHAPTeR 25 : closuRes

Note that the new call to addUpvalue() passes false for the isLocal pa-
rameter. Now you see that that flag controls whether the closure captures a local
variable or an upvalue from the surrounding function.

By the time the compiler reaches the end of a function declaration, every
variable reference has been resolved as either a local, an upvalue, or a global.
Each upvalue may in turn capture a local variable from the surrounding func-
tion, or an upvalue in the case of transitive closures. We finally have enough
data to emit bytecode which creates a closure at runtime that captures all of the
correct variables.

 emitBytes(OP_CLOSURE, makeConstant(OBJ_VAL(function)));

 for (int i = 0; i < function->upvalueCount; i++) {
 emitByte(compiler.upvalues[i].isLocal ? 1 : 0);
 emitByte(compiler.upvalues[i].index);
 }
}

The OP_CLOSURE instruction is unique in that it has a variably sized encoding.
For each upvalue the closure captures, there are two single-byte operands. Each
pair of operands specifies what that upvalue captures. If the first byte is one, it
captures a local variable in the enclosing function. If zero, it captures one of the
function’s upvalues. The next byte is the local slot or upvalue index to capture.

This odd encoding means we need some bespoke support in the disassembly
code for OP_CLOSURE.

 printf("\n");

 ObjFunction* function = AS_FUNCTION(
 chunk->constants.values[constant]);
 for (int j = 0; j < function->upvalueCount; j++) {
 int isLocal = chunk->code[offset++];
 int index = chunk->code[offset++];
 printf("%04d | %s %d\n",
 offset - 2, isLocal ? "local" : "upvalue", index);
 }

 return offset;

For example, take this script:

fun outer() {
 var a = 1;
 var b = 2;
 fun middle() {
 var c = 3;
 var d = 4;
 fun inner() {
 print a + c + b + d;
 }
 }
}

compiler.c
in function()

debug.c
in disassembleInstruction()

25.3 uPVAlue obJecTs 479

If we disassemble the instruction that creates the closure for inner(), it prints
this:

0004 9 OP_CLOSURE 2 <fn inner>
0006 | upvalue 0
0008 | local 1
0010 | upvalue 1
0012 | local 2

We have two other, simpler instructions to add disassembler support for.

 case OP_SET_GLOBAL:
 return constantInstruction("OP_SET_GLOBAL", chunk, offset);
 case OP_GET_UPVALUE:
 return byteInstruction("OP_GET_UPVALUE", chunk, offset);
 case OP_SET_UPVALUE:
 return byteInstruction("OP_SET_UPVALUE", chunk, offset);
 case OP_EQUAL:

These both have a single-byte operand, so there’s nothing exciting going on. We
do need to add an include so the debug module can get to AS_FUNCTION().

#include "debug.h"
#include "object.h"
#include "value.h"

With that, our compiler is where we want it. For each function declaration, it
outputs an OP_CLOSURE instruction followed by a series of operand byte pairs
for each upvalue it needs to capture at runtime. It’s time to hop over to that side
of the VM and get things running.

25.3 Upvalue Objects
Each OP_CLOSURE instruction is now followed by the series of bytes that specify
the upvalues the ObjClosure should own. Before we process those operands, we
need a runtime representation for upvalues.

typedef struct ObjUpvalue {
 Obj obj;
 Value* location;
} ObjUpvalue;

We know upvalues must manage closed-over variables that no longer live on the
stack, which implies some amount of dynamic allocation. The easiest way to do
that in our VM is by building on the object system we already have. That way,
when we implement a garbage collector in the next chapter, the GC can manage
memory for upvalues too.

Thus, our runtime upvalue structure is an ObjUpvalue with the typical Obj
header field. Following that is a location field that points to the closed-over
variable. Note that this is a pointer to a Value, not a Value itself. It’s a reference

debug.c

object.h
add after struct ObjString

debug.c
in disassembleInstruction()

480 cHAPTeR 25 : closuRes

to a variable, not a value. This is important because it means that when we assign
to the variable the upvalue captures, we’re assigning to the actual variable, not
a copy. For example:

fun outer() {
 var x = "before";
 fun inner() {
 x = "assigned";
 }
 inner();
 print x;
}
outer();

This program should print “assigned” even though the closure assigns to x and
the surrounding function accesses it.

Because upvalues are objects, we’ve got all the usual object machinery, start-
ing with a constructor-like function:

ObjString* copyString(const char* chars, int length);
ObjUpvalue* newUpvalue(Value* slot);
void printObject(Value value);

It takes the address of the slot where the closed-over variable lives. Here is the
implementation:

ObjUpvalue* newUpvalue(Value* slot) {
 ObjUpvalue* upvalue = ALLOCATE_OBJ(ObjUpvalue, OBJ_UPVALUE);
 upvalue->location = slot;
 return upvalue;
}

We simply initialize the object and store the pointer. That requires a new object
type.

 OBJ_STRING,
 OBJ_UPVALUE
} ObjType;

And on the back side, a destructor-like function:

 FREE(ObjString, object);
 break;
 }
 case OBJ_UPVALUE:
 FREE(ObjUpvalue, object);
 break;
 }

Multiple closures can close over the same variable, so ObjUpvalue does not own
the variable it references. Thus, the only thing to free is the ObjUpvalue itself.

And, finally, to print:

object.h
add after copyString()

object.h
in enum ObjType

memory.c
in freeObject()

object.c
add after copyString()

25.3.1 uPVAlues In closuRes 481

 case OBJ_STRING:
 printf("%s", AS_CSTRING(value));
 break;
 case OBJ_UPVALUE:
 printf("upvalue");
 break;
 }

Printing isn’t useful to end users. Upvalues are objects only so that we can take
advantage of the VM’s memory management. They aren’t first-class values that
a Lox user can directly access in a program. So this code will never actually ex-
ecute . . . but it keeps the compiler from yelling at us about an unhandled switch
case, so here we are.

25.3.1 Upvalues in closures

When I first introduced upvalues, I said each closure has an array of them. We’ve
finally worked our way back to implementing that.

 ObjFunction* function;
 ObjUpvalue** upvalues;
 int upvalueCount;
} ObjClosure;

Different closures may have different numbers of upvalues, so we need a dynam-
ic array. The upvalues themselves are dynamically allocated too, so we end up
with a double pointer—a pointer to a dynamically allocated array of pointers to
upvalues. We also store the number of elements in the array.

When we create an ObjClosure, we allocate an upvalue array of the proper
size, which we determined at compile time and stored in the ObjFunction.

ObjClosure* newClosure(ObjFunction* function) {
 ObjUpvalue** upvalues = ALLOCATE(ObjUpvalue*,
 function->upvalueCount);
 for (int i = 0; i < function->upvalueCount; i++) {
 upvalues[i] = NULL;
 }

 ObjClosure* closure = ALLOCATE_OBJ(ObjClosure, OBJ_CLOSURE);

Before creating the closure object itself, we allocate the array of upvalues and
initialize them all to NULL. This weird ceremony around memory is a careful
dance to please the (forthcoming) garbage collection deities. It ensures the
memory manager never sees uninitialized memory.

Then we store the array in the new closure, as well as copy the count over
from the ObjFunction.

 closure->function = function;
 closure->upvalues = upvalues;
 closure->upvalueCount = function->upvalueCount;
 return closure;

object.c
in printObject()

object.h
in struct ObjClosure

Storing the upvalue count in the closure
is redundant because the ObjFunction
that the ObjClosure references also keeps
that count. As usual, this weird code is to
appease the GC. The collector may need
to know an ObjClosure’s upvalue array
size after the closure’s corresponding
ObjFunction has already been freed.

object.c
in newClosure()

object.c
in newClosure()

482 cHAPTeR 25 : closuRes

When we free an ObjClosure, we also free the upvalue array.

 case OBJ_CLOSURE: {
 ObjClosure* closure = (ObjClosure*)object;
 FREE_ARRAY(ObjUpvalue*, closure->upvalues,
 closure->upvalueCount);
 FREE(ObjClosure, object);

ObjClosure does not own the ObjUpvalue objects themselves, but it does own the
array containing pointers to those upvalues.

We fill the upvalue array over in the interpreter when it creates a closure.
This is where we walk through all of the operands after OP_CLOSURE to see what
kind of upvalue each slot captures.

 push(OBJ_VAL(closure));
 for (int i = 0; i < closure->upvalueCount; i++) {
 uint8_t isLocal = READ_BYTE();
 uint8_t index = READ_BYTE();
 if (isLocal) {
 closure->upvalues[i] =
 captureUpvalue(frame->slots + index);
 } else {
 closure->upvalues[i] = frame->closure->upvalues[index];
 }
 }
 break;

This code is the magic moment when a closure comes to life. We iterate over
each upvalue the closure expects. For each one, we read a pair of operand bytes.
If the upvalue closes over a local variable in the enclosing function, we let
captureUpvalue() do the work.

Otherwise, we capture an upvalue from the surrounding function. An
OP_CLOSURE instruction is emitted at the end of a function declaration. At
the moment that we are executing that declaration, the current function is the
surrounding one. That means the current function’s closure is stored in the
CallFrame at the top of the callstack. So, to grab an upvalue from the enclosing
function, we can read it right from the frame local variable, which caches a
reference to that CallFrame.

Closing over a local variable is more interesting. Most of the work happens in
a separate function, but first we calculate the argument to pass to it. We need to
grab a pointer to the captured local’s slot in the surrounding function’s stack win-
dow. That window begins at frame->slots, which points to slot zero. Adding
index offsets that to the local slot we want to capture. We pass that pointer here:

static ObjUpvalue* captureUpvalue(Value* local) {
 ObjUpvalue* createdUpvalue = newUpvalue(local);
 return createdUpvalue;
}

This seems a little silly. All it does is create a new ObjUpvalue that captures the

memory.c
in freeObject()

vm.c
in run()

vm.c
add after callValue()

25.3.1 uPVAlues In closuRes 483

given stack slot and returns it. Did we need a separate function for this? Well, no,
not yet. But you know we are going to end up sticking more code in here.

First, let’s wrap up what we’re working on. Back in the interpreter code for
handling OP_CLOSURE, we eventually finish iterating through the upvalue ar-
ray and initialize each one. When that completes, we have a new closure with an
array full of upvalues pointing to variables.

With that in hand, we can implement the instructions that work with those
upvalues.

 }
 case OP_GET_UPVALUE: {
 uint8_t slot = READ_BYTE();
 push(*frame->closure->upvalues[slot]->location);
 break;
 }
 case OP_EQUAL: {

The operand is the index into the current function’s upvalue array. So we simply
look up the corresponding upvalue and dereference its location pointer to read
the value in that slot. Setting a variable is similar.

 }
 case OP_SET_UPVALUE: {
 uint8_t slot = READ_BYTE();
 *frame->closure->upvalues[slot]->location = peek(0);
 break;
 }
 case OP_EQUAL: {

We take the value on top of the stack and store it into the slot pointed to by the
chosen upvalue. Just as with the instructions for local variables, it’s important
that these instructions are fast. User programs are constantly reading and writ-
ing variables, so if that’s slow, everything is slow. And, as usual, the way we make
them fast is by keeping them simple. These two new instructions are pretty good:
no control flow, no complex arithmetic, just a couple of pointer indirections and
a push().

This is a milestone. As long as all of the variables remain on the stack, we have
working closures. Try this:

fun outer() {
 var x = "outside";
 fun inner() {
 print x;
 }
 inner();
}
outer();

Run this, and it correctly prints “outside”.

vm.c
in run()

vm.c
in run()

The set instruction doesn’t pop the
value from the stack because, remember,
assignment is an expression in Lox. So the
result of the assignment—the assigned
value—needs to remain on the stack for
the surrounding expression.

484 cHAPTeR 25 : closuRes

25.4 Closed Upvalues
Of course, a key feature of closures is that they hold on to the variable as long as
needed, even after the function that declares the variable has returned. Here’s
another example that should work:

fun outer() {
 var x = "outside";
 fun inner() {
 print x;
 }

 return inner;
}

var closure = outer();
closure();

But if you run it right now . . . who knows what it does? At runtime, it will end up
reading from a stack slot that no longer contains the closed-over variable. Like
I’ve mentioned a few times, the crux of the issue is that variables in closures
don’t have stack semantics. That means we’ve got to hoist them off the stack
when the function where they were declared returns. This final section of the
chapter does that.

25.4.1 Values and variables

Before we get to writing code, I want to dig into an important semantic point.
Does a closure close over a value or a variable? This isn’t purely an academic ques-
tion. I’m not just splitting hairs. Consider:

var globalSet;
var globalGet;

fun main() {
 var a = "initial";

 fun set() { a = "updated"; }
 fun get() { print a; }

 globalSet = set;
 globalGet = get;
}

main();
globalSet();
globalGet();

The outer main() function creates two closures and stores them in global vari-
ables so that they outlive the execution of main() itself. Both of those closures
capture the same variable. The first closure assigns a new value to it and the

If Lox didn’t allow assignment, it would be
an academic question.

The fact that I’m using a couple of global
variables isn’t significant. I needed some
way to return two values from a function,
and without any kind of collection type in
Lox, my options were limited.

25.4 closed uPVAlues 485

second closure reads the variable.
What does the call to globalGet() print? If closures capture values then

each closure gets its own copy of a with the value that a had at the point in time
that the closure’s function declaration executed. The call to globalSet() will
modify set()’s copy of a, but get()’s copy will be unaffected. Thus, the call to
globalGet() will print “initial”.

If closures close over variables, then get() and set() will both capture—
reference—the same mutable variable. When set() changes a, it changes the
same a that get() reads from. There is only one a. That, in turn, implies the call
to globalGet() will print “updated”.

Which is it? The answer for Lox and most other languages I know with closures
is the latter. Closures capture variables. You can think of them as capturing the
place the value lives. This is important to keep in mind as we deal with closed-over
variables that are no longer on the stack. When a variable moves to the heap, we
need to ensure that all closures capturing that variable retain a reference to its
one new location. That way, when the variable is mutated, all closures see the
change.

25.4.2 Closing upvalues

We know that local variables always start out on the stack. This is faster, and
lets our single-pass compiler emit code before it discovers the variable has been
captured. We also know that closed-over variables need to move to the heap if
the closure outlives the function where the captured variable is declared.

Following Lua, we’ll use open upvalue to refer to an upvalue that points to a
local variable still on the stack. When a variable moves to the heap, we are closing
the upvalue and the result is, naturally, a closed upvalue. The two questions we
need to answer are:

1. Where on the heap does the closed-over variable go?

2. When do we close the upvalue?

The answer to the first question is easy. We already have a convenient object on
the heap that represents a reference to a variable—ObjUpvalue itself. The closed-
over variable will move into a new field right inside the ObjUpvalue struct. That
way we don’t need to do any additional heap allocation to close an upvalue.

The second question is straightforward too. As long as the variable is on the
stack, there may be code that refers to it there, and that code must work cor-
rectly. So the logical time to hoist the variable to the heap is as late as possible.
If we move the local variable right when it goes out of scope, we are certain that
no code after that point will try to access it from the stack. After the variable is
out of scope, the compiler will have reported an error if any code tried to use it.

The compiler already emits an OP_POP instruction when a local variable goes
out of scope. If a variable is captured by a closure, we will instead emit a differ-
ent instruction to hoist that variable out of the stack and into its corresponding
upvalue. To do that, the compiler needs to know which locals are closed over.

The compiler already maintains an array of Upvalue structs for each local
variable in the function to track exactly that state. That array is good for answer-
ing “Which variables does this closure use?” But it’s poorly suited for answering,
“Does any function capture this local variable?” In particular, once the Compiler

By “after” here, I mean in the lexical or
textual sense—code past the } for the
block containing the declaration of the
closed-over variable.

The compiler doesn’t pop parameters and
locals declared immediately inside the
body of a function. We’ll handle those too,
in the runtime.

486 cHAPTeR 25 : closuRes

for some closure has finished, the Compiler for the enclosing function whose
variable has been captured no longer has access to any of the upvalue state.

In other words, the compiler maintains pointers from upvalues to the locals
they capture, but not in the other direction. So we first need to add some extra
tracking inside the existing Local struct so that we can tell if a given local is cap-
tured by a closure.

 int depth;
 bool isCaptured;
} Local;

This field is true if the local is captured by any later nested function declaration.
Initially, all locals are not captured.

 local->depth = -1;
 local->isCaptured = false;
}

Likewise, the special “slot zero local” that the compiler implicitly declares is not
captured.

 local->depth = 0;
 local->isCaptured = false;
 local->name.start = "";

When resolving an identifier, if we end up creating an upvalue for a local vari-
able, we mark it as captured.

 if (local != -1) {
 compiler->enclosing->locals[local].isCaptured = true;
 return addUpvalue(compiler, (uint8_t)local, true);

Now, at the end of a block scope when the compiler emits code to free the stack
slots for the locals, we can tell which ones need to get hoisted onto the heap. We’ll
use a new instruction for that.

 while (current->localCount > 0 &&
 current->locals[current->localCount - 1].depth >
 current->scopeDepth) {
 if (current->locals[current->localCount - 1].isCaptured) {
 emitByte(OP_CLOSE_UPVALUE);
 } else {
 emitByte(OP_POP);
 }
 current->localCount--;
 }

The instruction requires no operand. We know that the variable will always be
right on top of the stack at the point that this instruction executes. We declare
the instruction.

compiler.c
in struct Local

compiler.c
in addLocal()

Later in the book, it will become possible
for a user to capture this variable. Just
building some anticipation here.

compiler.c
in initCompiler()

compiler.c
in resolveUpvalue()

compiler.c
in endScope()

replace 1 line

25.4.3 TRAckIng oPen uPVAlues 487

 OP_CLOSURE,
 OP_CLOSE_UPVALUE,
 OP_RETURN,

And add trivial disassembler support for it:

 }
 case OP_CLOSE_UPVALUE:
 return simpleInstruction("OP_CLOSE_UPVALUE", offset);
 case OP_RETURN:

Excellent. Now the generated bytecode tells the runtime exactly when each cap-
tured local variable must move to the heap. Better, it does so only for the locals
that are used by a closure and need this special treatment. This aligns with our
general performance goal that we want users to pay only for functionality that
they use. Variables that aren’t used by closures live and die entirely on the stack
just as they did before.

25.4.3 Tracking open upvalues

Let’s move over to the runtime side. Before we can interpret OP_CLOSE_UPVALUE
instructions, we have an issue to resolve. Earlier, when I talked about whether
closures capture variables or values, I said it was important that if multiple clo-
sures access the same variable that they end up with a reference to the exact
same storage location in memory. That way if one closure writes to the variable,
the other closure sees the change.

Right now, if two closures capture the same local variable, the VM creates a
separate Upvalue for each one. The necessary sharing is missing. When we move
the variable off the stack, if we move it into only one of the upvalues, the other
upvalue will have an orphaned value.

To fix that, whenever the VM needs an upvalue that captures a particular
local variable slot, we will first search for an existing upvalue pointing to that
slot. If found, we reuse that. The challenge is that all of the previously created
upvalues are squirreled away inside the upvalue arrays of the various closures.
Those closures could be anywhere in the VM’s memory.

The first step is to give the VM its own list of all open upvalues that point to
variables still on the stack. Searching a list each time the VM needs an upvalue
sounds like it might be slow, but in practice, it’s not bad. The number of variables
on the stack that actually get closed over tends to be small. And function decla-
rations that create closures are rarely on performance critical execution paths
in the user’s program.

Even better, we can order the list of open upvalues by the stack slot index they
point to. The common case is that a slot has not already been captured—sharing
variables between closures is uncommon—and closures tend to capture locals
near the top of the stack. If we store the open upvalue array in stack slot order,
as soon as we step past the slot where the local we’re capturing lives, we know it
won’t be found. When that local is near the top of the stack, we can exit the loop
pretty early.

Maintaining a sorted list requires inserting elements in the middle efficient-
ly. That suggests using a linked list instead of a dynamic array. Since we defined
the ObjUpvalue struct ourselves, the easiest implementation is an intrusive list

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

The VM does share upvalues if one closure
captures an upvalue from a surrounding
function. The nested case works correctly.
But if two sibling closures capture the
same local variable, they each create a
separate ObjUpvalue.

Closures are frequently invoked inside hot
loops. Think about the closures passed
to typical higher-order functions on
collections like map() and filter().
That should be fast. But the function
declaration that creates the closure
happens only once and is usually outside
of the loop.

488 cHAPTeR 25 : closuRes

that puts the next pointer right inside the ObjUpvalue struct itself.

 Value* location;
 struct ObjUpvalue* next;
} ObjUpvalue;

When we allocate an upvalue, it is not attached to any list yet so the link is NULL.

 upvalue->location = slot;
 upvalue->next = NULL;
 return upvalue;

The VM owns the list, so the head pointer goes right inside the main VM struct.

 Table strings;
 ObjUpvalue* openUpvalues;
 Obj* objects;

The list starts out empty.

 vm.frameCount = 0;
 vm.openUpvalues = NULL;
}

Starting with the first upvalue pointed to by the VM, each open upvalue points
to the next open upvalue that references a local variable farther down the stack.
This script, for example,

{
 var a = 1;
 fun f() { print a; }
 var b = 2;
 fun g() { print b; }
 var c = 3;
 fun h() { print c; }
}

should produce a series of linked upvalues like so:

Whenever we close over a local variable, before creating a new upvalue, we look
for an existing one in the list.

object.h
in struct ObjUpvalue

object.c
in newUpvalue()

vm.h
in struct VM

vm.c
in resetStack()

25.4.3 TRAckIng oPen uPVAlues 489

static ObjUpvalue* captureUpvalue(Value* local) {
 ObjUpvalue* prevUpvalue = NULL;
 ObjUpvalue* upvalue = vm.openUpvalues;
 while (upvalue != NULL && upvalue->location > local) {
 prevUpvalue = upvalue;
 upvalue = upvalue->next;
 }

 if (upvalue != NULL && upvalue->location == local) {
 return upvalue;
 }

 ObjUpvalue* createdUpvalue = newUpvalue(local);

We start at the head of the list, which is the upvalue closest to the top of the
stack. We walk through the list, using a little pointer comparison to iterate past
every upvalue pointing to slots above the one we’re looking for. While we do that,
we keep track of the preceding upvalue on the list. We’ll need to update that
node’s next pointer if we end up inserting a node after it.

There are three reasons we can exit the loop:

1. The local slot we stopped at is the slot we’re looking for. We found an ex-
isting upvalue capturing the variable, so we reuse that upvalue.

2. We ran out of upvalues to search. When upvalue is NULL, it means every
open upvalue in the list points to locals above the slot we’re looking for, or
(more likely) the upvalue list is empty. Either way, we didn’t find an upvalue
for our slot.

3. We found an upvalue whose local slot is below the one we’re looking for.
Since the list is sorted, that means we’ve gone past the slot we are closing over,
and thus there must not be an existing upvalue for it.

In the first case, we’re done and we’ve returned. Otherwise, we create a new up-
value for our local slot and insert it into the list at the right location.

 ObjUpvalue* createdUpvalue = newUpvalue(local);
 createdUpvalue->next = upvalue;

 if (prevUpvalue == NULL) {
 vm.openUpvalues = createdUpvalue;
 } else {
 prevUpvalue->next = createdUpvalue;
 }

 return createdUpvalue;

The current incarnation of this function already creates the upvalue, so we only
need to add code to insert the upvalue into the list. We exited the list traversal
by either going past the end of the list, or by stopping on the first upvalue whose
stack slot is below the one we’re looking for. In either case, that means we need
to insert the new upvalue before the object pointed at by upvalue (which may be

vm.c
in captureUpvalue()

It’s a singly linked list. It’s not like we have
any other choice than to start at the head
and go forward from there.

vm.c
in captureUpvalue()

490 cHAPTeR 25 : closuRes

NULL if we hit the end of the list).
As you may have learned in Data Structures 101, to insert a node into a linked

list, you set the next pointer of the previous node to point to your new one.
We have been conveniently keeping track of that preceding node as we walked
the list. We also need to handle the special case where we are inserting a new
upvalue at the head of the list, in which case the “next” pointer is the VM’s head
pointer.

With this updated function, the VM now ensures that there is only ever a sin-
gle ObjUpvalue for any given local slot. If two closures capture the same variable,
they will get the same upvalue. We’re ready to move those upvalues off the stack
now.

25.4.4 Closing upvalues at runtime

The compiler helpfully emits an OP_CLOSE_UPVALUE instruction to tell the VM
exactly when a local variable should be hoisted onto the heap. Executing that
instruction is the interpreter’s responsibility.

 }
 case OP_CLOSE_UPVALUE:
 closeUpvalues(vm.stackTop - 1);
 pop();
 break;
 case OP_RETURN: {

When we reach the instruction, the variable we are hoisting is right on top of
the stack. We call a helper function, passing the address of that stack slot. That
function is responsible for closing the upvalue and moving the local from the
stack to the heap. After that, the VM is free to discard the stack slot, which it does
by calling pop().

The fun stuff happens here:

static void closeUpvalues(Value* last) {
 while (vm.openUpvalues != NULL &&
 vm.openUpvalues->location >= last) {
 ObjUpvalue* upvalue = vm.openUpvalues;
 upvalue->closed = *upvalue->location;
 upvalue->location = &upvalue->closed;
 vm.openUpvalues = upvalue->next;
 }
}

This function takes a pointer to a stack slot. It closes every open upvalue it can
find that points to that slot or any slot above it on the stack. Right now, we pass
a pointer only to the top slot on the stack, so the “or above it” part doesn’t come
into play, but it will soon.

To do this, we walk the VM’s list of open upvalues, again from top to bottom.
If an upvalue’s location points into the range of slots we’re closing, we close the
upvalue. Otherwise, once we reach an upvalue outside of the range, we know the
rest will be too, so we stop iterating.

There is a shorter implementation that
handles updating either the head pointer
or the previous upvalue’s next pointer
uniformly by using a pointer to a pointer,
but that kind of code confuses almost
everyone who hasn’t reached some Zen
master level of pointer expertise. I went
with the basic if statement approach.

vm.c
in run()

vm.c
add after captureUpvalue()

25.4.4 closIng uPVAlues AT RunTIme 491

The way an upvalue gets closed is pretty cool. First, we copy the variable’s val-
ue into the closed field in the ObjUpvalue. That’s where closed-over variables
live on the heap. The OP_GET_UPVALUE and OP_SET_UPVALUE instructions
need to look for the variable there after it’s been moved. We could add some con-
ditional logic in the interpreter code for those instructions to check some flag for
whether the upvalue is open or closed.

But there is already a level of indirection in play—those instructions deref-
erence the location pointer to get to the variable’s value. When the variable
moves from the stack to the closed field, we simply update that location to
the address of the ObjUpvalue’s own closed field.

We don’t need to change how OP_GET_UPVALUE and OP_SET_UPVALUE are
interpreted at all. That keeps them simple, which in turn keeps them fast. We do
need to add the new field to ObjUpvalue, though.

 Value* location;
 Value closed;
 struct ObjUpvalue* next;

And we should zero it out when we create an ObjUpvalue so there’s no uninitial-
ized memory floating around.

 ObjUpvalue* upvalue = ALLOCATE_OBJ(ObjUpvalue, OBJ_UPVALUE);
 upvalue->closed = NIL_VAL;
 upvalue->location = slot;

Whenever the compiler reaches the end of a block, it discards all local variables
in that block and emits an OP_CLOSE_UPVALUE for each local variable that was
closed over. The compiler does not emit any instructions at the end of the outer-
most block scope that defines a function body. That scope contains the function’s
parameters and any locals declared immediately inside the function. Those need
to get closed too.

This is the reason closeUpvalues() accepts a pointer to a stack slot. When
a function returns, we call that same helper and pass in the first stack slot owned
by the function.

 Value result = pop();
 closeUpvalues(frame->slots);
 vm.frameCount--;

I’m not praising myself here. This is all the
Lua dev team’s innovation.

object.h
in struct ObjUpvalue

object.c
in newUpvalue()

There’s nothing preventing us from closing
the outermost function scope in the
compiler and emitting OP_POP and
OP_CLOSE_UPVALUE instructions.
Doing so is just unnecessary because the
runtime discards all of the stack slots
used by the function implicitly when it
pops the call frame.

vm.c
in run()

492 cHAPTeR 25 : closuRes

By passing the first slot in the function’s stack window, we close every remaining
open upvalue owned by the returning function. And with that, we now have a
fully functioning closure implementation. Closed-over variables live as long as
they are needed by the functions that capture them.

This was a lot of work! In jlox, closures fell out naturally from our environ-
ment representation. In clox, we had to add a lot of code—new bytecode instruc-
tions, more data structures in the compiler, and new runtime objects. The VM
very much treats variables in closures as different from other variables.

There is a rationale for that. In terms of implementation complexity, jlox gave
us closures “for free”. But in terms of performance, jlox’s closures are anything
but. By allocating all environments on the heap, jlox pays a significant perfor-
mance price for all local variables, even the majority which are never captured
by closures.

With clox, we have a more complex system, but that allows us to tailor the im-
plementation to fit the two use patterns we observe for local variables. For most
variables which do have stack semantics, we allocate them entirely on the stack
which is simple and fast. Then, for the few local variables where that doesn’t
work, we have a second slower path we can opt in to as needed.

Fortunately, users don’t perceive the complexity. From their perspective,
local variables in Lox are simple and uniform. The language itself is as simple
as jlox’s implementation. But under the hood, clox is watching what the user
does and optimizing for their specific uses. As your language implementations
grow in sophistication, you’ll find yourself doing this more. A large fraction of
“optimization” is about adding special case code that detects certain uses and
provides a custom-built, faster path for code that fits that pattern.

We have lexical scoping fully working in clox now, which is a major milestone.
And, now that we have functions and variables with complex lifetimes, we also
have a lot of objects floating around in clox’s heap, with a web of pointers string-
ing them together. The next step is figuring out how to manage that memory so
that we can free some of those objects when they’re no longer needed.

cHAllenges 493

CHaLLENGES

1. Wrapping every ObjFunction in an ObjClosure introduces a level of indirection
that has a performance cost. That cost isn’t necessary for functions that do not
close over any variables, but it does let the runtime treat all calls uniformly.

Change clox to only wrap functions in ObjClosures that need upvalues. How
does the code complexity and performance compare to always wrapping func-
tions? Take care to benchmark programs that do and do not use closures. How
should you weight the importance of each benchmark? If one gets slower and
one faster, how do you decide what trade-off to make to choose an implemen-
tation strategy?

2. Read the design note below. I’ll wait. Now, how do you think Lox should behave?
Change the implementation to create a new variable for each loop iteration.

3. A famous koan teaches us that “objects are a poor man’s closure” (and vice
versa). Our VM doesn’t support objects yet, but now that we have closures we
can approximate them. Using closures, write a Lox program that models two-di-
mensional vector “objects”. It should:

• Define a “constructor” function to create a new vector with the given x and
y coordinates.

• Provide “methods” to access the x and y coordinates of values returned from
that constructor.

• Define an addition “method” that adds two vectors and produces a third.

Meditate on:
 ⇾ craftinginterpreters.com/koan

http://craftinginterpreters.com/koan

494 cHAPTeR 25 : closuRes

DESIGN NOtE: CLOSING OVEr tHE LOOP VarIaBLE

Closures capture variables. When two closures capture the same variable, they share a
reference to the same underlying storage location. This fact is visible when new values
are assigned to the variable. Obviously, if two closures capture different variables,
there is no sharing.

var globalOne;
var globalTwo;

fun main() {
 {
 var a = "one";
 fun one() { print a; }

 globalOne = one;
 }

 {
 var a = "two";
 fun two() { print a; }

 globalTwo = two;
 }
}

main();
globalOne();
globalTwo();

This prints “one” then “two”. In this example, it’s pretty clear that the two a variables
are different. But it’s not always so obvious. Consider:

var globalOne;
var globalTwo;

fun main() {
 for (var a = 1; a <= 2; a = a + 1) {
 fun closure() { print a; }

 if (globalOne == nil) {
 globalOne = closure;
 } else {
 globalTwo = closure;
 }
 }
}

main();
globalOne();
globalTwo();

desIgn noTe: closIng oVeR THe looP VARIAble 495

The code is convoluted because Lox has no collection types. The important part is
that the main() function does two iterations of a for loop. Each time through the
loop, it creates a closure that captures the loop variable. It stores the first closure in
globalOne and the second in globalTwo.

There are definitely two different closures. Do they close over two different vari-
ables? Is there only one a for the entire duration of the loop, or does each iteration get
its own distinct a variable?

The script here is strange and contrived, but this does show up in real code in lan-
guages that aren’t as minimal as clox. Here’s a JavaScript example:

var closures = [];
for (var i = 1; i <= 2; i++) {
 closures.push(function () { console.log(i); });
}

closures[0]();
closures[1]();

Does this print “1” then “2”, or does it print “3” twice? You may be surprised to hear that
it prints “3” twice. In this JavaScript program, there is only a single i variable whose
lifetime includes all iterations of the loop, including the final exit.

If you’re familiar with JavaScript, you probably know that variables declared using
var are implicitly hoisted to the surrounding function or top-level scope. It’s as if you
really wrote this:

var closures = [];
var i;
for (i = 1; i <= 2; i++) {
 closures.push(function () { console.log(i); });
}

closures[0]();
closures[1]();

At that point, it’s clearer that there is only a single i. Now consider if you change the
program to use the newer let keyword:

var closures = [];
for (let i = 1; i <= 2; i++) {
 closures.push(function () { console.log(i); });
}

closures[0]();
closures[1]();

Does this new program behave the same? Nope. In this case, it prints “1” then “2”. Each
closure gets its own i. That’s sort of strange when you think about it. The increment
clause is i++. That looks very much like it is assigning to and mutating an existing
variable, not creating a new one.

Let’s try some other languages. Here’s Python:

You’re wondering how three enters the
picture? After the second iteration, i++
is executed, which increments i to three.
That’s what causes i <= 2 to evaluate
to false and end the loop. If i never
reached three, the loop would run forever.

496 cHAPTeR 25 : closuRes

closures = []
for i in range(1, 3):
 closures.append(lambda: print(i))

closures[0]()
closures[1]()

Python doesn’t really have block scope. Variables are implicitly declared and are au-
tomatically scoped to the surrounding function. Kind of like hoisting in JS, now that I
think about it. So both closures capture the same variable. Unlike C, though, we don’t
exit the loop by incrementing i past the last value, so this prints “2” twice.

What about Ruby? Ruby has two typical ways to iterate numerically. Here’s the
classic imperative style:

closures = []
for i in 1..2 do
 closures << lambda { puts i }
end

closures[0].call
closures[1].call

This, like Python, prints “2” twice. But the more idiomatic Ruby style is using a high-
er-order each() method on range objects:

closures = []
(1..2).each do |i|
 closures << lambda { puts i }
end

closures[0].call
closures[1].call

If you’re not familiar with Ruby, the do |i| ... end part is basically a closure that
gets created and passed to the each() method. The |i| is the parameter signature
for the closure. The each() method invokes that closure twice, passing in 1 for i the
first time and 2 the second time.

In this case, the “loop variable” is really a function parameter. And, since each iter-
ation of the loop is a separate invocation of the function, those are definitely separate
variables for each call. So this prints “1” then “2”.

If a language has a higher-level iterator-based looping structure like foreach in
C#, Java’s “enhanced for”, for-of in JavaScript, for-in in Dart, etc., then I think it’s
natural to the reader to have each iteration create a new variable. The code looks like
a new variable because the loop header looks like a variable declaration. And there’s
no increment expression that looks like it’s mutating that variable to advance to the
next step.

If you dig around StackOverflow and other places, you find evidence that this is
what users expect, because they are very surprised when they don’t get it. In partic-
ular, C# originally did not create a new loop variable for each iteration of a foreach
loop. This was such a frequent source of user confusion that they took the very rare
step of shipping a breaking change to the language. In C# 5, each iteration creates a
fresh variable.

desIgn noTe: closIng oVeR THe looP VARIAble 497

Old C-style for loops are harder. The increment clause really does look like muta-
tion. That implies there is a single variable that’s getting updated each step. But it’s
almost never useful for each iteration to share a loop variable. The only time you can
even detect this is when closures capture it. And it’s rarely helpful to have a closure
that references a variable whose value is whatever value caused you to exit the loop.

The pragmatically useful answer is probably to do what JavaScript does with let
in for loops. Make it look like mutation but actually create a new variable each time,
because that’s what users want. It is kind of weird when you think about it, though.

A byTecode VIRTuAl mAcHIne 26Garbage Collection

“I wanna, I wanna,
I wanna, I wanna,
I wanna be trash.”

— The Whip, “Trash”

We say Lox is a “high-level” language because it frees programmers from wor-
rying about details irrelevant to the problem they’re solving. The user becomes
an executive, giving the machine abstract goals and letting the lowly computer
figure out how to get there.

Dynamic memory allocation is a perfect candidate for automation. It’s neces-
sary for a working program, tedious to do by hand, and yet still error-prone. The
inevitable mistakes can be catastrophic, leading to crashes, memory corruption,
or security violations. It’s the kind of risky-yet-boring work that machines excel
at over humans.

This is why Lox is a managed language, which means that the language
implementation manages memory allocation and freeing on the user’s behalf.
When a user performs an operation that requires some dynamic memory, the
VM automatically allocates it. The programmer never worries about deallocating
anything. The machine ensures any memory the program is using sticks around
as long as needed.

500 cHAPTeR 26 : gARbAge collecTIon

Lox provides the illusion that the computer has an infinite amount of memo-
ry. Users can allocate and allocate and allocate and never once think about where
all these bytes are coming from. Of course, computers do not yet have infinite
memory. So the way managed languages maintain this illusion is by going be-
hind the programmer’s back and reclaiming memory that the program no longer
needs. The component that does this is called a garbage collector.

26.1 reachability
This raises a surprisingly difficult question: how does a VM tell what memory
is not needed? Memory is only needed if it is read in the future, but short of
having a time machine, how can an implementation tell what code the program
will execute and which data it will use? Spoiler alert: VMs cannot travel into the
future. Instead, the language makes a conservative approximation: it considers a
piece of memory to still be in use if it could possibly be read in the future.

That sounds too conservative. Couldn’t any bit of memory potentially be read?
Actually, no, at least not in a memory-safe language like Lox. Here’s an example:

var a = "first value";
a = "updated";
// GC here.
print a;

Say we run the GC after the assignment has completed on the second line. The
string “first value” is still sitting in memory, but there is no way for the user’s
program to ever get to it. Once a got reassigned, the program lost any reference
to that string. We can safely free it. A value is reachable if there is some way for
a user program to reference it. Otherwise, like the string “first value” here, it is
unreachable.

Many values can be directly accessed by the VM. Take a look at:

var global = "string";
{
 var local = "another";
 print global + local;
}

Pause the program right after the two strings have been concatenated but before
the print statement has executed. The VM can reach "string" by looking
through the global variable table and finding the entry for global. It can find
"another" by walking the value stack and hitting the slot for the local variable
local. It can even find the concatenated string "stringanother" since that
temporary value is also sitting on the VM’s stack at the point when we paused
our program.

All of these values are called roots. A root is any object that the VM can reach
directly without going through a reference in some other object. Most roots are
global variables or on the stack, but as we’ll see, there are a couple of other places
the VM stores references to objects that it can find.

Other values can be found by going through a reference inside another value.
Fields on instances of classes are the most obvious case, but we don’t have those

Recycling would really be a better meta-
phor for this. The GC doesn’t throw away
the memory, it reclaims it to be reused
for new data. But managed languages are
older than Earth Day, so the inventors
went with the analogy they knew.

I’m using “conservative” in the general
sense. There is such a thing as a “conser-
vative garbage collector” which means
something more specific. All garbage
collectors are “conservative” in that they
keep memory alive if it could be accessed,
instead of having a Magic 8-Ball that lets
them more precisely know what data will
be accessed.

A conservative GC is a special kind of
collector that considers any piece of mem-
ory to be a pointer if the value in there
looks like it could be an address. This is in
contrast to a precise GC—which is what
we’ll implement—that knows exactly
which words in memory are pointers and
which store other kinds of values like
numbers or strings.

We’ll get there soon, though!

26.1 ReAcHAbIlITy 501

yet. Even without those, our VM still has indirect references. Consider:

fun makeClosure() {
 var a = "data";

 fun f() { print a; }
 return f;
}

{
 var closure = makeClosure();
 // GC here.
 closure();
}

Say we pause the program on the marked line and run the garbage collector.
When the collector is done and the program resumes, it will call the closure,
which will in turn print "data". So the collector needs to not free that string.
But here’s what the stack looks like when we pause the program:

The "data" string is nowhere on it. It has already been hoisted off the stack
and moved into the closed upvalue that the closure uses. The closure itself is on
the stack. But to get to the string, we need to trace through the closure and its
upvalue array. Since it is possible for the user’s program to do that, all of these
indirectly accessible objects are also considered reachable.

This gives us an inductive definition of reachability:

• All roots are reachable.

• Any object referred to from a reachable object is itself reachable.

These are the values that are still “live” and need to stay in memory. Any value
that doesn’t meet this definition is fair game for the collector to reap. That recur-
sive pair of rules hints at a recursive algorithm we can use to free up unneeded
memory:

502 cHAPTeR 26 : gARbAge collecTIon

1. Starting with the roots, traverse through object references to find the full set
of reachable objects.

2. Free all objects not in that set.

Many different garbage collection algorithms are in use today, but they all
roughly follow that same structure. Some may interleave the steps or mix them,
but the two fundamental operations are there. They mostly differ in how they
perform each step.

26.2 Mark-Sweep Garbage Collection
The first managed language was Lisp, the second “high-level” language to be
invented, right after Fortran. John McCarthy considered using manual memory
management or reference counting, but eventually settled on (and coined) gar-
bage collection—once the program was out of memory, it would go back and find
unused storage it could reclaim.

He designed the very first, simplest garbage collection algorithm, called
mark-and-sweep or just mark-sweep. Its description fits in three short para-
graphs in the initial paper on Lisp. Despite its age and simplicity, the same fun-
damental algorithm underlies many modern memory managers. Some corners
of CS seem to be timeless.

As the name implies, mark-sweep works in two phases:

• Marking: We start with the roots and traverse or trace through all of the
objects those roots refer to. This is a classic graph traversal of all of the
reachable objects. Each time we visit an object, we mark it in some way.
(Implementations differ in how they record the mark.)

• Sweeping: Once the mark phase completes, every reachable object in the
heap has been marked. That means any unmarked object is unreachable and
ripe for reclamation. We go through the unmarked objects and free each one.

It looks something like this:

That’s what we’re gonna implement. Whenever we decide it’s time to reclaim
some bytes, we’ll trace everything and mark all the reachable objects, free what
didn’t get marked, and then resume the user’s program.

If you want to explore other GC algo-
rithms, The Garbage Collection Handbook
(Jones, et al.) is the canonical reference.
For a large book on such a deep, narrow
topic, it is quite enjoyable to read. Or
perhaps I have a strange idea of fun.

In John McCarthy’s “History of Lisp”, he
notes: “Once we decided on garbage
collection, its actual implementation
could be postponed, because only toy
examples were being done.” Our choice
to procrastinate adding the GC to clox
follows in the footsteps of giants.

A tracing garbage collector is any
algorithm that traces through the graph of
object references. This is in contrast with
reference counting, which has a different
strategy for tracking the reachable
objects.

26.2 mARk-sWeeP gARbAge collecTIon 503

26.2.1 Collecting garbage

This entire chapter is about implementing this one function:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void collectGarbage();
void freeObjects();

We’ll work our way up to a full implementation starting with this empty shell:

void collectGarbage() {
}

The first question you might ask is, When does this function get called? It turns
out that’s a subtle question that we’ll spend some time on later in the chapter.
For now we’ll sidestep the issue and build ourselves a handy diagnostic tool in
the process.

#define DEBUG_TRACE_EXECUTION

#define DEBUG_STRESS_GC

#define UINT8_COUNT (UINT8_MAX + 1)

We’ll add an optional “stress test” mode for the garbage collector. When this flag
is defined, the GC runs as often as it possibly can. This is, obviously, horrendous
for performance. But it’s great for flushing out memory management bugs that
occur only when a GC is triggered at just the right moment. If every moment
triggers a GC, you’re likely to find those bugs.

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {
 if (newSize > oldSize) {
#ifdef DEBUG_STRESS_GC
 collectGarbage();
#endif
 }

 if (newSize == 0) {

Whenever we call reallocate() to acquire more memory, we force a collection
to run. The if check is because reallocate() is also called to free or shrink an
allocation. We don’t want to trigger a GC for that—in particular because the GC
itself will call reallocate() to free memory.

Collecting right before allocation is the classic way to wire a GC into a VM.
You’re already calling into the memory manager, so it’s an easy place to hook in
the code. Also, allocation is the only time when you really need some freed up
memory so that you can reuse it. If you don’t use allocation to trigger a GC, you
have to make sure every possible place in code where you can loop and allocate
memory also has a way to trigger the collector. Otherwise, the VM can get into a
starved state where it needs more memory but never collects any.

Of course, we’ll end up adding a bunch of
helper functions too.
memory.h
add after reallocate()

memory.c
add after freeObject()

common.h

memory.c
in reallocate()

More sophisticated collectors might run
on a separate thread or be interleaved
periodically during program execution—
often at function call boundaries or when
a backward jump occurs.

504 cHAPTeR 26 : gARbAge collecTIon

26.2.2 Debug logging

While we’re on the subject of diagnostics, let’s put some more in. A real challenge
I’ve found with garbage collectors is that they are opaque. We’ve been running
lots of Lox programs just fine without any GC at all so far. Once we add one, how
do we tell if it’s doing anything useful? Can we tell only if we write programs that
plow through acres of memory? How do we debug that?

An easy way to shine a light into the GC’s inner workings is with some logging.

#define DEBUG_STRESS_GC
#define DEBUG_LOG_GC

#define UINT8_COUNT (UINT8_MAX + 1)

When this is enabled, clox prints information to the console when it does some-
thing with dynamic memory.

We need a couple of includes.

#include "vm.h"

#ifdef DEBUG_LOG_GC
#include <stdio.h>
#include "debug.h"
#endif

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {

We don’t have a collector yet, but we can start putting in some of the logging now.
We’ll want to know when a collection run starts.

void collectGarbage() {
#ifdef DEBUG_LOG_GC
 printf("-- gc begin\n");
#endif
}

Eventually we will log some other operations during the collection, so we’ll also
want to know when the show’s over.

 printf("-- gc begin\n");
#endif

#ifdef DEBUG_LOG_GC
 printf("-- gc end\n");
#endif
}

We don’t have any code for the collector yet, but we do have functions for allocat-
ing and freeing, so we can instrument those now.

common.h

memory.c

memory.c
in collectGarbage()

memory.c
in collectGarbage()

26.2.2 debug loggIng 505

 vm.objects = object;

#ifdef DEBUG_LOG_GC
 printf("%p allocate %zu for %d\n", (void*)object, size, type);
#endif

 return object;

And at the end of an object’s lifespan:

static void freeObject(Obj* object) {
#ifdef DEBUG_LOG_GC
 printf("%p free type %d\n", (void*)object, object->type);
#endif

 switch (object->type) {

With these two flags, we should be able to see that we’re making progress as we
work through the rest of the chapter.

26.3 Marking the roots
Objects are scattered across the heap like stars in the inky night sky. A reference
from one object to another forms a connection, and these constellations are the
graph that the mark phase traverses. Marking begins at the roots.

#ifdef DEBUG_LOG_GC
 printf("-- gc begin\n");
#endif

 markRoots();

#ifdef DEBUG_LOG_GC

Most roots are local variables or temporaries sitting right in the VM’s stack, so
we start by walking that.

static void markRoots() {
 for (Value* slot = vm.stack; slot < vm.stackTop; slot++) {
 markValue(*slot);
 }
}

To mark a Lox value, we use this new function:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void markValue(Value value);
void collectGarbage();

object.c
in allocateObject()

memory.c
in freeObject()

memory.c
add after freeObject()

memory.h
add after reallocate()

memory.c
in collectGarbage()

506 cHAPTeR 26 : gARbAge collecTIon

Its implementation is here:

void markValue(Value value) {
 if (IS_OBJ(value)) markObject(AS_OBJ(value));
}

Some Lox values—numbers, Booleans, and nil—are stored directly inline in
Value and require no heap allocation. The garbage collector doesn’t need to wor-
ry about them at all, so the first thing we do is ensure that the value is an actual
heap object. If so, the real work happens in this function:

void* reallocate(void* pointer, size_t oldSize, size_t newSize);
void markObject(Obj* object);
void markValue(Value value);

Which is defined here:

void markObject(Obj* object) {
 if (object == NULL) return;
 object->isMarked = true;
}

The NULL check is unnecessary when called from markValue(). A Lox Value
that is some kind of Obj type will always have a valid pointer. But later we will
call this function directly from other code, and in some of those places, the ob-
ject being pointed to is optional.

Assuming we do have a valid object, we mark it by setting a flag. That new
field lives in the Obj header struct all objects share.

 ObjType type;
 bool isMarked;
 struct Obj* next;

Every new object begins life unmarked because we haven’t yet determined if it
is reachable or not.

 object->type = type;
 object->isMarked = false;

 object->next = vm.objects;

Before we go any farther, let’s add some logging to markObject().

void markObject(Obj* object) {
 if (object == NULL) return;
#ifdef DEBUG_LOG_GC
 printf("%p mark ", (void*)object);
 printValue(OBJ_VAL(object));
 printf("\n");
#endif

 object->isMarked = true;

memory.c
add after reallocate()

memory.h
add after reallocate()

memory.c
add after reallocate()

object.h
in struct Obj

object.c
in allocateObject()

memory.c
in markObject()

26.3.1 less obVIous RooTs 507

This way we can see what the mark phase is doing. Marking the stack takes care
of local variables and temporaries. The other main source of roots are the global
variables.

 markValue(*slot);
 }

 markTable(&vm.globals);
}

Those live in a hash table owned by the VM, so we’ll declare another helper func-
tion for marking all of the objects in a table.

ObjString* tableFindString(Table* table, const char* chars,
 int length, uint32_t hash);
void markTable(Table* table);

#endif

We implement that in the “table” module here:

void markTable(Table* table) {
 for (int i = 0; i < table->capacity; i++) {
 Entry* entry = &table->entries[i];
 markObject((Obj*)entry->key);
 markValue(entry->value);
 }
}

Pretty straightforward. We walk the entry array. For each one, we mark its
value. We also mark the key strings for each entry since the GC manages those
strings too.

26.3.1 Less obvious roots

Those cover the roots that we typically think of—the values that are obviously
reachable because they’re stored in variables the user’s program can see. But the
VM has a few of its own hidey-holes where it squirrels away references to values
that it directly accesses.

Most function call state lives in the value stack, but the VM maintains a sepa-
rate stack of CallFrames. Each CallFrame contains a pointer to the closure being
called. The VM uses those pointers to access constants and upvalues, so those
closures need to be kept around too.

 }

 for (int i = 0; i < vm.frameCount; i++) {
 markObject((Obj*)vm.frames[i].closure);
 }

 markTable(&vm.globals);

memory.c
in markRoots()

table.h
add after tableFindString()

table.c
add after tableFindString()

memory.c
in markRoots()

508 cHAPTeR 26 : gARbAge collecTIon

Speaking of upvalues, the open upvalue list is another set of values that the VM
can directly reach.

 for (int i = 0; i < vm.frameCount; i++) {
 markObject((Obj*)vm.frames[i].closure);
 }

 for (ObjUpvalue* upvalue = vm.openUpvalues;
 upvalue != NULL;
 upvalue = upvalue->next) {
 markObject((Obj*)upvalue);
 }

 markTable(&vm.globals);

Remember also that a collection can begin during any allocation. Those alloca-
tions don’t just happen while the user’s program is running. The compiler itself
periodically grabs memory from the heap for literals and the constant table. If
the GC runs while we’re in the middle of compiling, then any values the compiler
directly accesses need to be treated as roots too.

To keep the compiler module cleanly separated from the rest of the VM, we’ll
do that in a separate function.

 markTable(&vm.globals);
 markCompilerRoots();
}

It’s declared here:

ObjFunction* compile(const char* source);
void markCompilerRoots();

#endif

Which means the “memory” module needs an include.

#include <stdlib.h>

#include "compiler.h"
#include "memory.h"

And the definition is over in the “compiler” module.

void markCompilerRoots() {
 Compiler* compiler = current;
 while (compiler != NULL) {
 markObject((Obj*)compiler->function);
 compiler = compiler->enclosing;
 }
}

memory.c
in markRoots()

memory.c
in markRoots()

compiler.h
add after compile()

memory.c

compiler.c
add after compile()

26.4 TRAcIng obJecT RefeRences 509

Fortunately, the compiler doesn’t have too many values that it hangs on to. The
only object it uses is the ObjFunction it is compiling into. Since function declara-
tions can nest, the compiler has a linked list of those and we walk the whole list.

Since the “compiler” module is calling markObject(), it also needs an in-
clude.

#include "compiler.h"
#include "memory.h"
#include "scanner.h"

Those are all the roots. After running this, every object that the VM—runtime
and compiler—can get to without going through some other object has its mark
bit set.

26.4 tracing Object references
The next step in the marking process is tracing through the graph of references
between objects to find the indirectly reachable values. We don’t have instances
with fields yet, so there aren’t many objects that contain references, but we do
have some. In particular, ObjClosure has the list of ObjUpvalues it closes over as
well as a reference to the raw ObjFunction that it wraps. ObjFunction, in turn,
has a constant table containing references to all of the literals created in the
function’s body. This is enough to build a fairly complex web of objects for our
collector to crawl through.

Now it’s time to implement that traversal. We can go breadth-first, depth-
first, or in some other order. Since we just need to find the set of all reachable
objects, the order we visit them mostly doesn’t matter.

26.4.1 The tricolor abstraction

As the collector wanders through the graph of objects, we need to make sure it
doesn’t lose track of where it is or get stuck going in circles. This is particularly
a concern for advanced implementations like incremental GCs that interleave
marking with running pieces of the user’s program. The collector needs to be
able to pause and then pick up where it left off later.

To help us soft-brained humans reason about this complex process, VM hack-
ers came up with a metaphor called the tricolor abstraction. Each object has a
conceptual “color” that tracks what state the object is in, and what work is left
to do.

• At the beginning of a garbage collection, every object is white. This color
means we have not reached or processed the object at all.

• During marking, when we first reach an object, we darken it gray. This col-
or means we know the object itself is reachable and should not be collected.
But we have not yet traced through it to see what other objects it references. In
graph algorithm terms, this is the worklist—the set of objects we know about
but haven’t processed yet.

compiler.c

I slotted this chapter into the book right
here specifically because we now have
closures which give us interesting objects
for the garbage collector to process.

I say “mostly” because some garbage
collectors move objects in the order
that they are visited, so traversal order
determines which objects end up adjacent
in memory. That impacts performance
because the CPU uses locality to
determine which memory to preload into
the caches.

Even when traversal order does matter,
it’s not clear which order is best. It’s very
difficult to determine which order objects
will be used in in the future, so it’s hard
for the GC to know which order will help
performance.

Advanced garbage collection algorithms
often add other colors to the abstraction.
I’ve seen multiple shades of gray,
and even purple in some designs. My
puce-chartreuse-fuchsia-malachite
collector paper was, alas, not accepted for
publication.

510 cHAPTeR 26 : gARbAge collecTIon

• When we take a gray object and mark all of the objects it references, we
then turn the gray object black. This color means the mark phase is done pro-
cessing that object.

In terms of that abstraction, the marking process now looks like this:

1. Start off with all objects white.

2. Find all the roots and mark them gray.

3. Repeat as long as there are still gray objects:

1. Pick a gray object. Turn any white objects that the object mentions to gray.

2. Mark the original gray object black.

I find it helps to visualize this. You have a web of objects with references between
them. Initially, they are all little white dots. Off to the side are some incoming
edges from the VM that point to the roots. Those roots turn gray. Then each gray
object’s siblings turn gray while the object itself turns black. The full effect is a
gray wavefront that passes through the graph, leaving a field of reachable black
objects behind it. Unreachable objects are not touched by the wavefront and stay
white.

At the end, you’re left with a sea of reached, black objects sprinkled with islands
of white objects that can be swept up and freed. Once the unreachable objects
are freed, the remaining objects—all black—are reset to white for the next gar-
bage collection cycle.

26.4.2 A worklist for gray objects

In our implementation we have already marked the roots. They’re all gray. The
next step is to start picking them and traversing their references. But we don’t
have any easy way to find them. We set a field on the object, but that’s it. We don’t
want to have to traverse the entire object list looking for objects with that field
set.

Instead, we’ll create a separate worklist to keep track of all of the gray objects.
When an object turns gray, in addition to setting the mark field we’ll also add it
to the worklist.

 object->isMarked = true;

 if (vm.grayCapacity < vm.grayCount + 1) {
 vm.grayCapacity = GROW_CAPACITY(vm.grayCapacity);

Note that at every step of this process
no black node ever points to a white
node. This property is called the tricolor
invariant. The traversal process maintains
this invariant to ensure that no reachable
object is ever collected.

memory.c
in markObject()

continued on next page . . .

26.4.2 A WoRklIsT foR gRAy obJecTs 511

 vm.grayStack = (Obj**)realloc(vm.grayStack,
 sizeof(Obj*) * vm.grayCapacity);
 }

 vm.grayStack[vm.grayCount++] = object;
}

We could use any kind of data structure that lets us put items in and take them
out easily. I picked a stack because that’s the simplest to implement with a
dynamic array in C. It works mostly like other dynamic arrays we’ve built in
Lox, except, note that it calls the system realloc() function and not our own
reallocate() wrapper. The memory for the gray stack itself is not managed
by the garbage collector. We don’t want growing the gray stack during a GC to
cause the GC to recursively start a new GC. That could tear a hole in the space-
time continuum.

We’ll manage its memory ourselves, explicitly. The VM owns the gray stack.

 Obj* objects;
 int grayCount;
 int grayCapacity;
 Obj** grayStack;
} VM;

It starts out empty.

 vm.objects = NULL;

 vm.grayCount = 0;
 vm.grayCapacity = 0;
 vm.grayStack = NULL;

 initTable(&vm.globals);

And we need to free it when the VM shuts down.

 object = next;
 }

 free(vm.grayStack);
}

We take full responsibility for this array. That includes allocation failure. If we
can’t create or grow the gray stack, then we can’t finish the garbage collection.
This is bad news for the VM, but fortunately rare since the gray stack tends to
be pretty small. It would be nice to do something more graceful, but to keep the
code in this book simple, we just abort.

 vm.grayStack = (Obj**)realloc(vm.grayStack,
 sizeof(Obj*) * vm.grayCapacity);

 if (vm.grayStack == NULL) exit(1);
 }

vm.h
in struct VM

vm.c
in initVM()

memory.c
in freeObjects()

To be more robust, we can allocate a
“rainy day fund” block of memory when
we start the VM. If the gray stack alloca-
tion fails, we free the rainy day block and
try again. That may give us enough wiggle
room on the heap to create the gray stack,
finish the GC, and free up more memory.
memory.c
in markObject()

. . . from previous page

512 cHAPTeR 26 : gARbAge collecTIon

26.4.3 Processing gray objects

OK, now when we’re done marking the roots, we have both set a bunch of fields
and filled our work list with objects to chew through. It’s time for the next phase.

 markRoots();
 traceReferences();

#ifdef DEBUG_LOG_GC

Here’s the implementation:

static void traceReferences() {
 while (vm.grayCount > 0) {
 Obj* object = vm.grayStack[--vm.grayCount];
 blackenObject(object);
 }
}

It’s as close to that textual algorithm as you can get. Until the stack empties, we
keep pulling out gray objects, traversing their references, and then marking
them black. Traversing an object’s references may turn up new white objects
that get marked gray and added to the stack. So this function swings back and
forth between turning white objects gray and gray objects black, gradually ad-
vancing the entire wavefront forward.

Here’s where we traverse a single object’s references:

static void blackenObject(Obj* object) {
 switch (object->type) {
 case OBJ_NATIVE:
 case OBJ_STRING:
 break;
 }
}

Each object kind has different fields that might reference other objects, so we
need a specific blob of code for each type. We start with the easy ones—strings
and native function objects contain no outgoing references so there is nothing
to traverse.

Note that we don’t set any state in the traversed object itself. There is no di-
rect encoding of “black” in the object’s state. A black object is any object whose
isMarked field is set and that is no longer in the gray stack.

Now let’s start adding in the other object types. The simplest is upvalues.

static void blackenObject(Obj* object) {
 switch (object->type) {
 case OBJ_UPVALUE:
 markValue(((ObjUpvalue*)object)->closed);
 break;
 case OBJ_NATIVE:

When an upvalue is closed, it contains a reference to the closed-over value. Since

memory.c
in collectGarbage()

memory.c
add after markValue()

An easy optimization we could do in
markObject() is to skip adding
strings and native functions to the gray
stack at all since we know they don’t
need to be processed. Instead, they could
darken from white straight to black.

You may rightly wonder why we have the
isMarked field at all. All in good time,
friend.

memory.c
in blackenObject()

memory.c
add after markRoots()

26.4.3 PRocessIng gRAy obJecTs 513

the value is no longer on the stack, we need to make sure we trace the reference
to it from the upvalue.

Next are functions.

 switch (object->type) {
 case OBJ_FUNCTION: {
 ObjFunction* function = (ObjFunction*)object;
 markObject((Obj*)function->name);
 markArray(&function->chunk.constants);
 break;
 }
 case OBJ_UPVALUE:

Each function has a reference to an ObjString containing the function’s name.
More importantly, the function has a constant table packed full of references to
other objects. We trace all of those using this helper:

static void markArray(ValueArray* array) {
 for (int i = 0; i < array->count; i++) {
 markValue(array->values[i]);
 }
}

The last object type we have now—we’ll add more in later chapters—is closures.

 switch (object->type) {
 case OBJ_CLOSURE: {
 ObjClosure* closure = (ObjClosure*)object;
 markObject((Obj*)closure->function);
 for (int i = 0; i < closure->upvalueCount; i++) {
 markObject((Obj*)closure->upvalues[i]);
 }
 break;
 }
 case OBJ_FUNCTION: {

Each closure has a reference to the bare function it wraps, as well as an array of
pointers to the upvalues it captures. We trace all of those.

That’s the basic mechanism for processing a gray object, but there are two
loose ends to tie up. First, some logging.

static void blackenObject(Obj* object) {
#ifdef DEBUG_LOG_GC
 printf("%p blacken ", (void*)object);
 printValue(OBJ_VAL(object));
 printf("\n");
#endif

 switch (object->type) {

This way, we can watch the tracing percolate through the object graph. Speaking
of which, note that I said graph. References between objects are directed, but

memory.c
in blackenObject()

memory.c
in blackenObject()

memory.c
in blackenObject()

memory.c
add after markValue()

514 cHAPTeR 26 : gARbAge collecTIon

that doesn’t mean they’re acyclic! It’s entirely possible to have cycles of objects.
When that happens, we need to ensure our collector doesn’t get stuck in an in-
finite loop as it continually re-adds the same series of objects to the gray stack.

The fix is easy.

 if (object == NULL) return;
 if (object->isMarked) return;

#ifdef DEBUG_LOG_GC

If the object is already marked, we don’t mark it again and thus don’t add it to
the gray stack. This ensures that an already-gray object is not redundantly added
and that a black object is not inadvertently turned back to gray. In other words, it
keeps the wavefront moving forward through only the white objects.

26.5 Sweeping Unused Objects
When the loop in traceReferences() exits, we have processed all the objects
we could get our hands on. The gray stack is empty, and every object in the heap
is either black or white. The black objects are reachable, and we want to hang on
to them. Anything still white never got touched by the trace and is thus garbage.
All that’s left is to reclaim them.

 traceReferences();
 sweep();

#ifdef DEBUG_LOG_GC

All of the logic lives in one function.

static void sweep() {
 Obj* previous = NULL;
 Obj* object = vm.objects;
 while (object != NULL) {
 if (object->isMarked) {
 previous = object;
 object = object->next;
 } else {
 Obj* unreached = object;
 object = object->next;
 if (previous != NULL) {
 previous->next = object;
 } else {
 vm.objects = object;
 }

 freeObject(unreached);
 }
 }
}

memory.c
in markObject()

memory.c
in collectGarbage()

memory.c
add after traceReferences()

26.5 sWeePIng unused obJecTs 515

I know that’s kind of a lot of code and pointer shenanigans, but there isn’t much
to it once you work through it. The outer while loop walks the linked list of
every object in the heap, checking their mark bits. If an object is marked (black),
we leave it alone and continue past it. If it is unmarked (white), we unlink it
from the list and free it using the freeObject() function we already wrote.

Most of the other code in here deals with the fact that removing a node from a
singly linked list is cumbersome. We have to continuously remember the previ-
ous node so we can unlink its next pointer, and we have to handle the edge case
where we are freeing the first node. But, otherwise, it’s pretty simple—delete
every node in a linked list that doesn’t have a bit set in it.

There’s one little addition:

 if (object->isMarked) {
 object->isMarked = false;
 previous = object;

After sweep() completes, the only remaining objects are the live black ones
with their mark bits set. That’s correct, but when the next collection cycle starts,
we need every object to be white. So whenever we reach a black object, we go
ahead and clear the bit now in anticipation of the next run.

26.5.1 Weak references and the string pool

We are almost done collecting. There is one remaining corner of the VM that
has some unusual requirements around memory. Recall that when we added
strings to clox we made the VM intern them all. That means the VM has a hash
table containing a pointer to every single string in the heap. The VM uses this to
de-duplicate strings.

During the mark phase, we deliberately did not treat the VM’s string table as
a source of roots. If we had, no string would ever be collected. The string table

memory.c
in sweep()

516 cHAPTeR 26 : gARbAge collecTIon

would grow and grow and never yield a single byte of memory back to the oper-
ating system. That would be bad.

At the same time, if we do let the GC free strings, then the VM’s string table
will be left with dangling pointers to freed memory. That would be even worse.

The string table is special and we need special support for it. In particular, it
needs a special kind of reference. The table should be able to refer to a string,
but that link should not be considered a root when determining reachability.
That implies that the referenced object can be freed. When that happens, the
dangling reference must be fixed too, sort of like a magic, self-clearing pointer.
This particular set of semantics comes up frequently enough that it has a name:
a weak reference.

We have already implicitly implemented half of the string table’s unique be-
havior by virtue of the fact that we don’t traverse it during marking. That means
it doesn’t force strings to be reachable. The remaining piece is clearing out any
dangling pointers for strings that are freed.

To remove references to unreachable strings, we need to know which strings
are unreachable. We don’t know that until after the mark phase has completed.
But we can’t wait until after the sweep phase is done because by then the ob-
jects—and their mark bits—are no longer around to check. So the right time is
exactly between the marking and sweeping phases.

 traceReferences();
 tableRemoveWhite(&vm.strings);
 sweep();

The logic for removing the about-to-be-deleted strings exists in a new function
in the “table” module.

ObjString* tableFindString(Table* table, const char* chars,
 int length, uint32_t hash);

void tableRemoveWhite(Table* table);
void markTable(Table* table);

The implementation is here:

void tableRemoveWhite(Table* table) {
 for (int i = 0; i < table->capacity; i++) {
 Entry* entry = &table->entries[i];
 if (entry->key != NULL && !entry->key->obj.isMarked) {
 tableDelete(table, entry->key);
 }
 }
}

We walk every entry in the table. The string intern table uses only the key of
each entry—it’s basically a hash set not a hash map. If the key string object’s
mark bit is not set, then it is a white object that is moments from being swept
away. We delete it from the hash table first and thus ensure we won’t see any
dangling pointers.

memory.c
in collectGarbage()

table.c
add after tableFindString()

This can be a real problem. Java does
not intern all strings, but it does intern
string literals. It also provides an API to
add strings to the string table. For many
years, the capacity of that table was fixed,
and strings added to it could never be
removed. If users weren’t careful about
their use of String.intern(), they
could run out of memory and crash.

Ruby had a similar problem for years
where symbols—interned string-like
values—were not garbage collected. Both
eventually enabled the GC to collect these
strings.

table.h
add after tableFindString()

26.6 WHen To collecT 517

26.6 When to Collect
We have a fully functioning mark-sweep garbage collector now. When the stress
testing flag is enabled, it gets called all the time, and with the logging enabled
too, we can watch it do its thing and see that it is indeed reclaiming memory. But,
when the stress testing flag is off, it never runs at all. It’s time to decide when the
collector should be invoked during normal program execution.

As far as I can tell, this question is poorly answered by the literature. When
garbage collectors were first invented, computers had a tiny, fixed amount of
memory. Many of the early GC papers assumed that you set aside a few thousand
words of memory—in other words, most of it—and invoked the collector when-
ever you ran out. Simple.

Modern machines have gigs of physical RAM, hidden behind the operating
system’s even larger virtual memory abstraction, which is shared among a slew
of other programs all fighting for their chunk of memory. The operating system
will let your program request as much as it wants and then page in and out from
the disc when physical memory gets full. You never really “run out” of memory,
you just get slower and slower.

26.6.1 Latency and throughput

It no longer makes sense to wait until you “have to”, to run the GC, so we need a
more subtle timing strategy. To reason about this more precisely, it’s time to in-
troduce two fundamental numbers used when measuring a memory manager’s
performance: throughput and latency.

Every managed language pays a performance price compared to explicit, us-
er-authored deallocation. The time spent actually freeing memory is the same,
but the GC spends cycles figuring out which memory to free. That is time not
spent running the user’s code and doing useful work. In our implementation,
that’s the entirety of the mark phase. The goal of a sophisticated garbage collec-
tor is to minimize that overhead.

There are two key metrics we can use to understand that cost better:

• Throughput is the total fraction of time spent running user code versus
doing garbage collection work. Say you run a clox program for ten seconds
and it spends a second of that inside collectGarbage(). That means the
throughput is 90%—it spent 90% of the time running the program and 10%
on GC overhead.

Throughput is the most fundamental measure because it tracks the to-
tal cost of collection overhead. All else being equal, you want to maximize
throughput. Up until this chapter, clox had no GC at all and thus 100%
throughput. That’s pretty hard to beat. Of course, it came at the slight expense
of potentially running out of memory and crashing if the user’s program ran
long enough. You can look at the goal of a GC as fixing that “glitch” while sac-
rificing as little throughput as possible.

• Latency is the longest continuous chunk of time where the user’s program
is completely paused while garbage collection happens. It’s a measure of
how “chunky” the collector is. Latency is an entirely different metric than
throughput.

Consider two runs of a clox program that both take ten seconds. In the first

Well, not exactly 100%. It did still put
the allocated objects into a linked list, so
there was some tiny overhead for setting
those pointers.

518 cHAPTeR 26 : gARbAge collecTIon

run, the GC kicks in once and spends a solid second in collectGarbage()
in one massive collection. In the second run, the GC gets invoked five times,
each for a fifth of a second. The total amount of time spent collecting is still
a second, so the throughput is 90% in both cases. But in the second run, the
latency is only 1/5th of a second, five times less than in the first.

If you like analogies, imagine your program is a bakery selling fresh-baked
bread to customers. Throughput is the total number of warm, crusty baguettes
you can serve to customers in a single day. Latency is how long the unluckiest
customer has to wait in line before they get served.

Running the garbage collector is like shutting down the bakery temporarily
to go through all of the dishes, sort out the dirty from the clean, and then wash
the used ones. In our analogy, we don’t have dedicated dishwashers, so while this
is going on, no baking is happening. The baker is washing up.

Selling fewer loaves of bread a day is bad, and making any particular cus-
tomer sit and wait while you clean all the dishes is too. The goal is to maximize
throughput and minimize latency, but there is no free lunch, even inside a bak-
ery. Garbage collectors make different trade-offs between how much throughput
they sacrifice and latency they tolerate.

Being able to make these trade-offs is useful because different user pro-
grams have different needs. An overnight batch job that is generating a report
from a terabyte of data just needs to get as much work done as fast as possible.
Throughput is queen. Meanwhile, an app running on a user’s smartphone needs
to always respond immediately to user input so that dragging on the screen
feels buttery smooth. The app can’t freeze for a few seconds while the GC mucks
around in the heap.

As a garbage collector author, you control some of the trade-off between
throughput and latency by your choice of collection algorithm. But even within
a single algorithm, we have a lot of control over how frequently the collector runs.

Our collector is a stop-the-world GC which means the user’s program is
paused until the entire garbage collection process has completed. If we wait a
long time before we run the collector, then a large number of dead objects will
accumulate. That leads to a very long pause while the collector runs, and thus
high latency. So, clearly, we want to run the collector really frequently.

But every time the collector runs, it spends some time visiting live objects.
That doesn’t really do anything useful (aside from ensuring that they don’t incor-

If each person represents a thread,
then an obvious optimization is to
have separate threads running garbage
collection, giving you a concurrent
garbage collector. In other words, hire
some dishwashers to clean while others
bake. This is how very sophisticated GCs
work because it does let the bakers—the
worker threads—keep running user code
with little interruption.

However, coordination is required. You
don’t want a dishwasher grabbing a bowl
out of a baker’s hands! This coordination
adds overhead and a lot of complexity.
Concurrent collectors are fast, but
challenging to implement correctly.

Clearly the baking analogy is going to my
head.

In contrast, an incremental garbage
collector can do a little collection, then
run some user code, then collect a little
more, and so on.

The bar represents the execution of a
program, divided into time spent running
user code and time spent in the GC. The
size of the largest single slice of time
running the GC is the latency. The size of
all of the user code slices added up is the
throughput.

26.6.2 self-AdJusTIng HeAP 519

rectly get deleted). Time visiting live objects is time not freeing memory and also
time not running user code. If you run the GC really frequently, then the user’s
program doesn’t have enough time to even generate new garbage for the VM to
collect. The VM will spend all of its time obsessively revisiting the same set of
live objects over and over, and throughput will suffer. So, clearly, we want to run
the collector really infrequently.

In fact, we want something in the middle, and the frequency of when the
collector runs is one of our main knobs for tuning the trade-off between latency
and throughput.

26.6.2 Self-adjusting heap

We want our GC to run frequently enough to minimize latency but infrequently
enough to maintain decent throughput. But how do we find the balance between
these when we have no idea how much memory the user’s program needs and
how often it allocates? We could pawn the problem onto the user and force them
to pick by exposing GC tuning parameters. Many VMs do this. But if we, the GC
authors, don’t know how to tune it well, odds are good most users won’t either.
They deserve a reasonable default behavior.

I’ll be honest with you, this is not my area of expertise. I’ve talked to a number
of professional GC hackers—this is something you can build an entire career
on—and read a lot of the literature, and all of the answers I got were . . . vague.
The strategy I ended up picking is common, pretty simple, and (I hope!) good
enough for most uses.

The idea is that the collector frequency automatically adjusts based on the live
size of the heap. We track the total number of bytes of managed memory that
the VM has allocated. When it goes above some threshold, we trigger a GC. After
that, we note how many bytes of memory remain—how many were not freed.
Then we adjust the threshold to some value larger than that.

The result is that as the amount of live memory increases, we collect less fre-
quently in order to avoid sacrificing throughput by re-traversing the growing
pile of live objects. As the amount of live memory goes down, we collect more
frequently so that we don’t lose too much latency by waiting too long.

The implementation requires two new bookkeeping fields in the VM.

 ObjUpvalue* openUpvalues;

 size_t bytesAllocated;
 size_t nextGC;
 Obj* objects;

The first is a running total of the number of bytes of managed memory the VM
has allocated. The second is the threshold that triggers the next collection. We
initialize them when the VM starts up.

 vm.objects = NULL;
 vm.bytesAllocated = 0;
 vm.nextGC = 1024 * 1024;

 vm.grayCount = 0;

vm.h
in struct VM

vm.c
in initVM()

520 cHAPTeR 26 : gARbAge collecTIon

The starting threshold here is arbitrary. It’s similar to the initial capacity we
picked for our various dynamic arrays. The goal is to not trigger the first few GCs
too quickly but also to not wait too long. If we had some real-world Lox programs,
we could profile those to tune this. But since all we have are toy programs, I just
picked a number.

Every time we allocate or free some memory, we adjust the counter by that
delta.

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {
 vm.bytesAllocated += newSize - oldSize;
 if (newSize > oldSize) {

When the total crosses the limit, we run the collector.

 collectGarbage();
#endif

 if (vm.bytesAllocated > vm.nextGC) {
 collectGarbage();
 }
 }

Now, finally, our garbage collector actually does something when the user runs a
program without our hidden diagnostic flag enabled. The sweep phase frees ob-
jects by calling reallocate(), which lowers the value of bytesAllocated,
so after the collection completes, we know how many live bytes remain. We
adjust the threshold of the next GC based on that.

 sweep();

 vm.nextGC = vm.bytesAllocated * GC_HEAP_GROW_FACTOR;

#ifdef DEBUG_LOG_GC

The threshold is a multiple of the heap size. This way, as the amount of memory
the program uses grows, the threshold moves farther out to limit the total time
spent re-traversing the larger live set. Like other numbers in this chapter, the
scaling factor is basically arbitrary.

#endif

#define GC_HEAP_GROW_FACTOR 2

void* reallocate(void* pointer, size_t oldSize, size_t newSize) {

You’d want to tune this in your implementation once you had some real pro-
grams to benchmark it on. Right now, we can at least log some of the statistics
that we have. We capture the heap size before the collection.

 printf("-- gc begin\n");
 size_t before = vm.bytesAllocated;
#endif

A challenge with learning garbage
collectors is that it’s very hard to
discover the best practices in an isolated
lab environment. You don’t see how a
collector actually performs unless you run
it on the kind of large, messy real-world
programs it is actually intended for. It’s
like tuning a rally car—you need to take it
out on the course.

memory.c
in reallocate()

memory.c
in collectGarbage()

memory.c

memory.c
in collectGarbage()

memory.c
in reallocate()

26.7 gARbAge collecTIon bugs 521

And then print the results at the end.

 printf("-- gc end\n");
 printf(" collected %zu bytes (from %zu to %zu) next at %zu\n",
 before - vm.bytesAllocated, before, vm.bytesAllocated,
 vm.nextGC);
#endif

This way we can see how much the garbage collector accomplished while it ran.

26.7 Garbage Collection Bugs
In theory, we are all done now. We have a GC. It kicks in periodically, collects
what it can, and leaves the rest. If this were a typical textbook, we would wipe
the dust from our hands and bask in the soft glow of the flawless marble edifice
we have created.

But I aim to teach you not just the theory of programming languages but the
sometimes painful reality. I am going to roll over a rotten log and show you the
nasty bugs that live under it, and garbage collector bugs really are some of the
grossest invertebrates out there.

The collector’s job is to free dead objects and preserve live ones. Mistakes are
easy to make in both directions. If the VM fails to free objects that aren’t needed,
it slowly leaks memory. If it frees an object that is in use, the user’s program
can access invalid memory. These failures often don’t immediately cause a crash,
which makes it hard for us to trace backward in time to find the bug.

This is made harder by the fact that we don’t know when the collector will
run. Any call that eventually allocates some memory is a place in the VM where
a collection could happen. It’s like musical chairs. At any point, the GC might
stop the music. Every single heap-allocated object that we want to keep needs to
find a chair quickly—get marked as a root or stored as a reference in some other
object—before the sweep phase comes to kick it out of the game.

How is it possible for the VM to use an object later—one that the GC itself
doesn’t see? How can the VM find it? The most common answer is through a
pointer stored in some local variable on the C stack. The GC walks the VM’s value
and CallFrame stacks, but the C stack is hidden to it.

In previous chapters, we wrote seemingly pointless code that pushed an ob-
ject onto the VM’s value stack, did a little work, and then popped it right back
off. Most times, I said this was for the GC’s benefit. Now you see why. The code
between pushing and popping potentially allocates memory and thus can trigger
a GC. We had to make sure the object was on the value stack so that the collector’s
mark phase would find it and keep it alive.

I wrote the entire clox implementation before splitting it into chapters and
writing the prose, so I had plenty of time to find all of these corners and flush
out most of these bugs. The stress testing code we put in at the beginning of this
chapter and a pretty good test suite were very helpful.

But I fixed only most of them. I left a couple in because I want to give you a
hint of what it’s like to encounter these bugs in the wild. If you enable the stress
test flag and run some toy Lox programs, you can probably stumble onto a few.
Give it a try and see if you can fix any yourself.

memory.c
in collectGarbage()

Our GC can’t find addresses in the C stack,
but many can. Conservative garbage
collectors look all through memory,
including the native stack. The most
well-known of this variety is the Boehm–
Demers–Weiser garbage collector,
usually just called the “Boehm collector”.
(The shortest path to fame in CS is a last
name that’s alphabetically early so that it
shows up first in sorted lists of names.)

Many precise GCs walk the C stack
too. Even those have to be careful about
pointers to live objects that exist only in
CPU registers.

522 cHAPTeR 26 : gARbAge collecTIon

26.7.1 Adding to the constant table

You are very likely to hit the first bug. The constant table each chunk owns is a
dynamic array. When the compiler adds a new constant to the current function’s
table, that array may need to grow. The constant itself may also be some heap-al-
located object like a string or a nested function.

The new object being added to the constant table is passed to addConstant().
At that moment, the object can be found only in the parameter to that function
on the C stack. That function appends the object to the constant table. If the table
doesn’t have enough capacity and needs to grow, it calls reallocate(). That in
turn triggers a GC, which fails to mark the new constant object and thus sweeps
it right before we have a chance to add it to the table. Crash.

The fix, as you’ve seen in other places, is to push the constant onto the stack
temporarily.

int addConstant(Chunk* chunk, Value value) {
 push(value);
 writeValueArray(&chunk->constants, value);

Once the constant table contains the object, we pop it off the stack.

 writeValueArray(&chunk->constants, value);
 pop();
 return chunk->constants.count - 1;

When the GC is marking roots, it walks the chain of compilers and marks each
of their functions, so the new constant is reachable now. We do need an include
to call into the VM from the “chunk” module.

#include "memory.h"
#include "vm.h"

void initChunk(Chunk* chunk) {

26.7.2 Interning strings

Here’s another similar one. All strings are interned in clox, so whenever we
create a new string, we also add it to the intern table. You can see where this is
going. Since the string is brand new, it isn’t reachable anywhere. And resizing
the string pool can trigger a collection. Again, we go ahead and stash the string
on the stack first.

 string->chars = chars;
 string->hash = hash;

 push(OBJ_VAL(string));
 tableSet(&vm.strings, string, NIL_VAL);

And then pop it back off once it’s safely nestled in the table.

chunk.c
in addConstant()

chunk.c
in addConstant()

chunk.c

object.c
in allocateString()

26.7.1 AddIng To THe consTAnT TAble 523

 tableSet(&vm.strings, string, NIL_VAL);
 pop();

 return string;
}

This ensures the string is safe while the table is being resized. Once it survives
that, allocateString() will return it to some caller which can then take
responsibility for ensuring the string is still reachable before the next heap al-
location occurs.

26.7.3 Concatenating strings

One last example: Over in the interpreter, the OP_ADD instruction can be used to
concatenate two strings. As it does with numbers, it pops the two operands from
the stack, computes the result, and pushes that new value back onto the stack.
For numbers that’s perfectly safe.

But concatenating two strings requires allocating a new character array on
the heap, which can in turn trigger a GC. Since we’ve already popped the oper-
and strings by that point, they can potentially be missed by the mark phase and
get swept away. Instead of popping them off the stack eagerly, we peek them.

static void concatenate() {
 ObjString* b = AS_STRING(peek(0));
 ObjString* a = AS_STRING(peek(1));

 int length = a->length + b->length;

That way, they are still hanging out on the stack when we create the result string.
Once that’s done, we can safely pop them off and replace them with the result.

 ObjString* result = takeString(chars, length);
 pop();
 pop();
 push(OBJ_VAL(result));

Those were all pretty easy, especially because I showed you where the fix was.
In practice, finding them is the hard part. All you see is an object that should be
there but isn’t. It’s not like other bugs where you’re looking for the code that
causes some problem. You’re looking for the absence of code which fails to prevent
a problem, and that’s a much harder search.

But, for now at least, you can rest easy. As far as I know, we’ve found all of the
collection bugs in clox, and now we have a working, robust, self-tuning, mark-
sweep garbage collector.

object.c
in allocateString()

vm.c
in concatenate()
replace 2 lines

vm.c
in concatenate()

524 cHAPTeR 26 : gARbAge collecTIon

CHaLLENGES

1. The Obj header struct at the top of each object now has three fields: type,
isMarked, and next. How much memory do those take up (on your machine)?
Can you come up with something more compact? Is there a runtime cost to
doing so?

2. When the sweep phase traverses a live object, it clears the isMarked field to
prepare it for the next collection cycle. Can you come up with a more efficient
approach?

3. Mark-sweep is only one of a variety of garbage collection algorithms out there.
Explore those by replacing or augmenting the current collector with another
one. Good candidates to consider are reference counting, Cheney’s algorithm,
or the Lisp 2 mark-compact algorithm.

cHAllenges 525

DESIGN NOtE: GENEratIONaL COLLECtOrS

A collector loses throughput if it spends a long time re-visiting objects that are still
alive. But it can increase latency if it avoids collecting and accumulates a large pile of
garbage to wade through. If only there were some way to tell which objects were likely
to be long-lived and which weren’t. Then the GC could avoid revisiting the long-lived
ones as often and clean up the ephemeral ones more frequently.

It turns out there kind of is. Many years ago, GC researchers gathered metrics on
the lifetime of objects in real-world running programs. They tracked every object when
it was allocated, and eventually when it was no longer needed, and then graphed out
how long objects tended to live.

They discovered something they called the generational hypothesis, or the much
less tactful term infant mortality. Their observation was that most objects are very
short-lived but once they survive beyond a certain age, they tend to stick around quite
a long time. The longer an object has lived, the longer it likely will continue to live. This
observation is powerful because it gave them a handle on how to partition objects into
groups that benefit from frequent collections and those that don’t.

They designed a technique called generational garbage collection. It works like
this: Every time a new object is allocated, it goes into a special, relatively small region
of the heap called the “nursery”. Since objects tend to die young, the garbage collector
is invoked frequently over the objects just in this region.

Each time the GC runs over the nursery is called a “generation”. Any objects that
are no longer needed get freed. Those that survive are now considered one generation
older, and the GC tracks this for each object. If an object survives a certain number of
generations—often just a single collection—it gets tenured. At this point, it is copied
out of the nursery into a much larger heap region for long-lived objects. The garbage
collector runs over that region too, but much less frequently since odds are good that
most of those objects will still be alive.

Generational collectors are a beautiful marriage of empirical data—the observa-
tion that object lifetimes are not evenly distributed—and clever algorithm design that
takes advantage of that fact. They’re also conceptually quite simple. You can think of
one as just two separately tuned GCs and a pretty simple policy for moving objects
from one to the other.

Nurseries are also usually managed
using a copying collector which is faster
at allocating and freeing objects than a
mark-sweep collector.

A byTecode VIRTuAl mAcHIne 27Classes and Instances

“Caring too much for objects can destroy you. Only—if you care for
a thing enough, it takes on a life of its own, doesn’t it? And isn’t the
whole point of things—beautiful things—that they connect you to
some larger beauty?”

— Donna Tartt, The Goldfinch

The last area left to implement in clox is object-oriented programming. OOP is a
bundle of intertwined features: classes, instances, fields, methods, initializers,
and inheritance. Using relatively high-level Java, we packed all that into two
chapters. Now that we’re coding in C, which feels like building a model of the
Eiffel tower out of toothpicks, we’ll devote three chapters to covering the same
territory. This makes for a leisurely stroll through the implementation. After
strenuous chapters like closures and the garbage collector, you have earned a
rest. In fact, the book should be easy from here on out.

In this chapter, we cover the first three features: classes, instances, and fields.
This is the stateful side of object orientation. Then in the next two chapters, we
will hang behavior and code reuse off of those objects.

People who have strong opinions about
object-oriented programming—read
“everyone”—tend to assume OOP means
some very specific list of language
features, but really there’s a whole space
to explore, and each language has its own
ingredients and recipes.

Self has objects but no classes. CLOS
has methods but doesn’t attach them
to specific classes. C++ initially had no
runtime polymorphism—no virtual meth-
ods. Python has multiple inheritance, but
Java does not. Ruby attaches methods to
classes, but you can also define methods
on a single object.

528 cHAPTeR 27 : clAsses And InsTAnces

27.1 Class Objects
In a class-based object-oriented language, everything begins with classes. They
define what sorts of objects exist in the program and are the factories used to
produce new instances. Going bottom-up, we’ll start with their runtime repre-
sentation and then hook that into the language.

By this point, we’re well-acquainted with the process of adding a new object
type to the VM. We start with a struct.

} ObjClosure;

typedef struct {
 Obj obj;
 ObjString* name;
} ObjClass;

ObjClosure* newClosure(ObjFunction* function);

After the Obj header, we store the class’s name. This isn’t strictly needed for the
user’s program, but it lets us show the name at runtime for things like stack
traces.

The new type needs a corresponding case in the ObjType enum.

typedef enum {
 OBJ_CLASS,
 OBJ_CLOSURE,

And that type gets a corresponding pair of macros. First, for testing an object’s
type:

#define OBJ_TYPE(value) (AS_OBJ(value)->type)

#define IS_CLASS(value) isObjType(value, OBJ_CLASS)
#define IS_CLOSURE(value) isObjType(value, OBJ_CLOSURE)

And then for casting a Value to an ObjClass pointer:

#define IS_STRING(value) isObjType(value, OBJ_STRING)

#define AS_CLASS(value) ((ObjClass*)AS_OBJ(value))
#define AS_CLOSURE(value) ((ObjClosure*)AS_OBJ(value))

The VM creates new class objects using this function:

} ObjClass;

ObjClass* newClass(ObjString* name);
ObjClosure* newClosure(ObjFunction* function);

The implementation lives over here:

object.h
add after struct ObjClosure

object.h
in enum ObjType

object.h

object.h

object.h
add after struct ObjClass

27.1 clAss obJecTs 529

ObjClass* newClass(ObjString* name) {
 ObjClass* klass = ALLOCATE_OBJ(ObjClass, OBJ_CLASS);
 klass->name = name;
 return klass;
}

Pretty much all boilerplate. It takes in the class’s name as a string and stores it.
Every time the user declares a new class, the VM will create a new one of these
ObjClass structs to represent it.

When the VM no longer needs a class, it frees it like so:

 switch (object->type) {
 case OBJ_CLASS: {
 FREE(ObjClass, object);
 break;
 }
 case OBJ_CLOSURE: {

We have a memory manager now, so we also need to support tracing through
class objects.

 switch (object->type) {
 case OBJ_CLASS: {
 ObjClass* klass = (ObjClass*)object;
 markObject((Obj*)klass->name);
 break;
 }
 case OBJ_CLOSURE: {

When the GC reaches a class object, it marks the class’s name to keep that string
alive too.

The last operation the VM can perform on a class is printing it.

 switch (OBJ_TYPE(value)) {
 case OBJ_CLASS:
 printf("%s", AS_CLASS(value)->name->chars);
 break;
 case OBJ_CLOSURE:

A class simply says its own name.

27.2 Class Declarations
Runtime representation in hand, we are ready to move into the parser.

static void declaration() {
 if (match(TOKEN_CLASS)) {
 classDeclaration();
 } else if (match(TOKEN_FUN)) {
 funDeclaration();

object.c
add after allocateObject()

memory.c
in freeObject()

The braces here are pointless now, but will
be useful in the next chapter when we add
some more code to the switch case.

memory.c
in blackenObject()

object.c
in printObject()

compiler.c
in declaration()
replace 1 line

I named the variable “klass” not just
to give the VM a zany preschool “Kidz
Korner” feel. It makes it easier to get
clox compiling as C++ where “class” is a
reserved word.

530 cHAPTeR 27 : clAsses And InsTAnces

Class declarations are statements, and the parser recognizes one by the leading
class keyword. The rest of the compilation happens over here:

static void classDeclaration() {
 consume(TOKEN_IDENTIFIER, "Expect class name.");
 uint8_t nameConstant = identifierConstant(&parser.previous);
 declareVariable();

 emitBytes(OP_CLASS, nameConstant);
 defineVariable(nameConstant);

 consume(TOKEN_LEFT_BRACE, "Expect '{' before class body.");
 consume(TOKEN_RIGHT_BRACE, "Expect '}' after class body.");
}

Immediately after the class keyword is the class’s name. We take that identifier
and add it to the surrounding function’s constant table as a string. As you just
saw, printing a class shows its name, so the compiler needs to stuff the name
string somewhere that the runtime can find. The constant table is the way to do
that.

The class’s name is also used to bind the class object to a variable of the same
name. So we declare a variable with that identifier right after consuming its
token.

Next, we emit a new instruction to actually create the class object at runtime.
That instruction takes the constant table index of the class’s name as an operand.

After that, but before compiling the body of the class, we define the variable
for the class’s name. Declaring the variable adds it to the scope, but recall from a
previous chapter that we can’t use the variable until it’s defined. For classes, we
define the variable before the body. That way, users can refer to the containing
class inside the bodies of its own methods. That’s useful for things like factory
methods that produce new instances of the class.

Finally, we compile the body. We don’t have methods yet, so right now it’s
simply an empty pair of braces. Lox doesn’t require fields to be declared in the
class, so we’re done with the body—and the parser—for now.

The compiler is emitting a new instruction, so let’s define that.

 OP_RETURN,
 OP_CLASS,
} OpCode;

And add it to the disassembler:

 case OP_RETURN:
 return simpleInstruction("OP_RETURN", offset);
 case OP_CLASS:
 return constantInstruction("OP_CLASS", chunk, offset);
 default:

For such a large-seeming feature, the interpreter support is minimal.

We could have made class declarations be
expressions instead of statements—they
are essentially a literal that produces a
value after all. Then users would have
to explicitly bind the class to a variable
themselves like:

var Pie = class {}

Sort of like lambda functions but for class-
es. But since we generally want classes to
be named anyway, it makes sense to treat
them as declarations.

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

compiler.c
add after function()

27.3 InsTAnces of clAsses 531

 break;
 }
 case OP_CLASS:
 push(OBJ_VAL(newClass(READ_STRING())));
 break;
 }

We load the string for the class’s name from the constant table and pass that to
newClass(). That creates a new class object with the given name. We push that
onto the stack and we’re good. If the class is bound to a global variable, then the
compiler’s call to defineVariable() will emit code to store that object from
the stack into the global variable table. Otherwise, it’s right where it needs to be
on the stack for a new local variable.

There you have it, our VM supports classes now. You can run this:

class Brioche {}
print Brioche;

Unfortunately, printing is about all you can do with classes, so next is making
them more useful.

27.3 Instances of Classes
Classes serve two main purposes in a language:

• They are how you create new instances. Sometimes this involves a new
keyword, other times it’s a method call on the class object, but you usually
mention the class by name somehow to get a new instance.

• They contain methods. These define how all instances of the class behave.

We won’t get to methods until the next chapter, so for now we will only worry
about the first part. Before classes can create instances, we need a representa-
tion for them.

} ObjClass;

typedef struct {
 Obj obj;
 ObjClass* klass;
 Table fields;
} ObjInstance;

ObjClass* newClass(ObjString* name);

Instances know their class—each instance has a pointer to the class that it is an
instance of. We won’t use this much in this chapter, but it will become critical
when we add methods.

More important to this chapter is how instances store their state. Lox lets
users freely add fields to an instance at runtime. This means we need a storage

vm.c
in run()

“Local” classes—classes declared inside
the body of a function or block, are an
unusual concept. Many languages don’t
allow them at all. But since Lox is a
dynamically typed scripting language,
it treats the top level of a program and
the bodies of functions and blocks
uniformly. Classes are just another kind
of declaration, and since you can declare
variables and functions inside blocks, you
can declare classes in there too.

object.h
add after struct ObjClass

Adding fields to an object at runtime is
a big practical difference between most
dynamic and static languages. The latter
usually require fields to be explicitly
declared so the compiler knows what
fields each instance has. It uses that to
determine the memory needed for each
instance and the offsets where each field
can be found.

In Lox and other dynamic languages,
accessing a field is usually a hash table
lookup. Constant time, but still pretty
heavyweight. In a language like C++,
accessing a field is as fast as offsetting a
pointer by an integer constant.

532 cHAPTeR 27 : clAsses And InsTAnces

mechanism that can grow. We could use a dynamic array, but we also want to
look up fields by name as quickly as possible. There’s a data structure that’s just
perfect for quickly accessing a set of values by name and—even more conve-
niently—we’ve already implemented it. Each instance stores its fields using a
hash table.

We only need to add an include, and we’ve got it.

#include "chunk.h"
#include "table.h"
#include "value.h"

This new struct gets a new object type.

 OBJ_FUNCTION,
 OBJ_INSTANCE,
 OBJ_NATIVE,

I want to slow down a bit here because the Lox language’s notion of “type” and the
VM implementation’s notion of “type” brush against each other in ways that can
be confusing. Inside the C code that makes clox, there are a number of different
types of Obj—ObjString, ObjClosure, etc. Each has its own internal representa-
tion and semantics.

In the Lox language, users can define their own classes—say Cake and Pie—
and then create instances of those classes. From the user’s perspective, an in-
stance of Cake is a different type of object than an instance of Pie. But, from the
VM’s perspective, every class the user defines is simply another value of type
ObjClass. Likewise, each instance in the user’s program, no matter what class it
is an instance of, is an ObjInstance. That one VM object type covers instances of
all classes. The two worlds map to each other something like this:

object.h

object.h
in enum ObjType

27.3 InsTAnces of clAsses 533

Got it? OK, back to the implementation. We also get our usual macros.

#define IS_FUNCTION(value) isObjType(value, OBJ_FUNCTION)
#define IS_INSTANCE(value) isObjType(value, OBJ_INSTANCE)
#define IS_NATIVE(value) isObjType(value, OBJ_NATIVE)

And:

#define AS_FUNCTION(value) ((ObjFunction*)AS_OBJ(value))
#define AS_INSTANCE(value) ((ObjInstance*)AS_OBJ(value))
#define AS_NATIVE(value) \

Since fields are added after the instance is created, the “constructor” function
only needs to know the class.

ObjFunction* newFunction();
ObjInstance* newInstance(ObjClass* klass);
ObjNative* newNative(NativeFn function);

We implement that function here:

ObjInstance* newInstance(ObjClass* klass) {
 ObjInstance* instance = ALLOCATE_OBJ(ObjInstance, OBJ_INSTANCE);
 instance->klass = klass;
 initTable(&instance->fields);
 return instance;
}

We store a reference to the instance’s class. Then we initialize the field table to an
empty hash table. A new baby object is born!

At the sadder end of the instance’s lifespan, it gets freed.

 FREE(ObjFunction, object);
 break;
 }
 case OBJ_INSTANCE: {
 ObjInstance* instance = (ObjInstance*)object;
 freeTable(&instance->fields);
 FREE(ObjInstance, object);
 break;
 }
 case OBJ_NATIVE:

The instance owns its field table so when freeing the instance, we also free the
table. We don’t explicitly free the entries in the table, because there may be other
references to those objects. The garbage collector will take care of those for us.
Here we free only the entry array of the table itself.

Speaking of the garbage collector, it needs support for tracing through in-
stances.

object.h

object.h

object.h
add after newFunction()

object.c
add after newFunction()

memory.c
in freeObject()

534 cHAPTeR 27 : clAsses And InsTAnces

 markArray(&function->chunk.constants);
 break;
 }
 case OBJ_INSTANCE: {
 ObjInstance* instance = (ObjInstance*)object;
 markObject((Obj*)instance->klass);
 markTable(&instance->fields);
 break;
 }
 case OBJ_UPVALUE:

If the instance is alive, we need to keep its class around. Also, we need to keep ev-
ery object referenced by the instance’s fields. Most live objects that are not roots
are reachable because some instance refers to the object in a field. Fortunately,
we already have a nice markTable() function to make tracing them easy.

Less critical but still important is printing.

 break;
 case OBJ_INSTANCE:
 printf("%s instance",
 AS_INSTANCE(value)->klass->name->chars);
 break;
 case OBJ_NATIVE:

An instance prints its name followed by “instance”. (The “instance” part is main-
ly so that classes and instances don’t print the same.)

The real fun happens over in the interpreter. Lox has no special new keyword.
The way to create an instance of a class is to invoke the class itself as if it were a
function. The runtime already supports function calls, and it checks the type of
object being called to make sure the user doesn’t try to invoke a number or other
invalid type.

We extend that runtime checking with a new case.

 switch (OBJ_TYPE(callee)) {
 case OBJ_CLASS: {
 ObjClass* klass = AS_CLASS(callee);
 vm.stackTop[-argCount - 1] = OBJ_VAL(newInstance(klass));
 return true;
 }
 case OBJ_CLOSURE:

If the value being called—the object that results when evaluating the expression
to the left of the opening parenthesis—is a class, then we treat it as a constructor
call. We create a new instance of the called class and store the result on the stack.

We’re one step farther. Now we can define classes and create instances of
them.

class Brioche {}
print Brioche();

Note the parentheses after Brioche on the second line now. This prints “Brioche
instance”.

object.c
in printObject()

Most object-oriented languages let a
class define some sort of toString()
method that lets the class specify how its
instances are converted to a string and
printed. If Lox was less of a toy language, I
would want to support that too.

vm.c
in callValue()

We ignore any arguments passed to the
call for now. We’ll revisit this code in the
next chapter when we add support for
initializers.

memory.c
in blackenObject()

27.4 geT And seT exPRessIons 535

27.4 Get and Set Expressions
Our object representation for instances can already store state, so all that re-
mains is exposing that functionality to the user. Fields are accessed and modified
using get and set expressions. Not one to break with tradition, Lox uses the clas-
sic “dot” syntax:

eclair.filling = "pastry creme";
print eclair.filling;

The period—full stop for my English friends—works sort of like an infix oper-
ator. There is an expression to the left that is evaluated first and produces an
instance. After that is the . followed by a field name. Since there is a preceding
operand, we hook this into the parse table as an infix expression.

 [TOKEN_COMMA] = {NULL, NULL, PREC_NONE},
 [TOKEN_DOT] = {NULL, dot, PREC_CALL},
 [TOKEN_MINUS] = {unary, binary, PREC_TERM},

As in other languages, the . operator binds tightly, with precedence as high as
the parentheses in a function call. After the parser consumes the dot token, it
dispatches to a new parse function.

static void dot(bool canAssign) {
 consume(TOKEN_IDENTIFIER, "Expect property name after '.'.");
 uint8_t name = identifierConstant(&parser.previous);

 if (canAssign && match(TOKEN_EQUAL)) {
 expression();
 emitBytes(OP_SET_PROPERTY, name);
 } else {
 emitBytes(OP_GET_PROPERTY, name);
 }
}

The parser expects to find a property name immediately after the dot. We load
that token’s lexeme into the constant table as a string so that the name is avail-
able at runtime.

We have two new expression forms—getters and setters—that this one
function handles. If we see an equals sign after the field name, it must be a set
expression that is assigning to a field. But we don’t always allow an equals sign
after the field to be compiled. Consider:

a + b.c = 3

This is syntactically invalid according to Lox’s grammar, which means our Lox
implementation is obligated to detect and report the error. If dot() silently
parsed the = 3 part, we would incorrectly interpret the code as if the user had
written:

a + (b.c = 3)

I say “sort of” because the right-hand
side after the . is not an expression, but
a single identifier whose semantics are
handled by the get or set expression itself.
It’s really closer to a postfix expression.

compiler.c
replace 1 line

The compiler uses “property” instead of
“field” here because, remember, Lox also
lets you use dot syntax to access a meth-
od without calling it. “Property” is the
general term we use to refer to any named
entity you can access on an instance.
Fields are the subset of properties that are
backed by the instance’s state.

compiler.c
add after call()

536 cHAPTeR 27 : clAsses And InsTAnces

The problem is that the = side of a set expression has much lower precedence
than the . part. The parser may call dot() in a context that is too high prece-
dence to permit a setter to appear. To avoid incorrectly allowing that, we parse
and compile the equals part only when canAssign is true. If an equals token
appears when canAssign is false, dot() leaves it alone and returns. In that
case, the compiler will eventually unwind up to parsePrecedence(), which
stops at the unexpected = still sitting as the next token and reports an error.

If we find an = in a context where it is allowed, then we compile the expres-
sion that follows. After that, we emit a new OP_SET_PROPERTY instruction.
That takes a single operand for the index of the property name in the constant
table. If we didn’t compile a set expression, we assume it’s a getter and emit an
OP_GET_PROPERTY instruction, which also takes an operand for the property
name.

Now is a good time to define these two new instructions.

 OP_SET_UPVALUE,
 OP_GET_PROPERTY,
 OP_SET_PROPERTY,
 OP_EQUAL,

And add support for disassembling them:

 return byteInstruction("OP_SET_UPVALUE", chunk, offset);
 case OP_GET_PROPERTY:
 return constantInstruction("OP_GET_PROPERTY", chunk, offset);
 case OP_SET_PROPERTY:
 return constantInstruction("OP_SET_PROPERTY", chunk, offset);
 case OP_EQUAL:

27.4.1 Interpreting getter and setter expressions

Sliding over to the runtime, we’ll start with get expressions since those are a
little simpler.

 }
 case OP_GET_PROPERTY: {
 ObjInstance* instance = AS_INSTANCE(peek(0));
 ObjString* name = READ_STRING();

 Value value;
 if (tableGet(&instance->fields, name, &value)) {
 pop(); // Instance.
 push(value);
 break;
 }
 }
 case OP_EQUAL: {

When the interpreter reaches this instruction, the expression to the left of the
dot has already been executed and the resulting instance is on top of the stack.
We read the field name from the constant pool and look it up in the instance’s

You can’t set a non-field property, so
I suppose that instruction could have
been OP_SET_FIELD, but I thought it
looked nicer to be consistent with the get
instruction.

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

vm.c
in run()

27.4.1 InTeRPReTIng geTTeR And seTTeR exPRessIons 537

field table. If the hash table contains an entry with that name, we pop the in-
stance and push the entry’s value as the result.

Of course, the field might not exist. In Lox, we’ve defined that to be a runtime
error. So we add a check for that and abort if it happens.

 push(value);
 break;
 }

 runtimeError("Undefined property '%s'.", name->chars);
 return INTERPRET_RUNTIME_ERROR;
 }
 case OP_EQUAL: {

There is another failure mode to handle which you’ve probably noticed. The above
code assumes the expression to the left of the dot did evaluate to an ObjInstance.
But there’s nothing preventing a user from writing this:

var obj = "not an instance";
print obj.field;

The user’s program is wrong, but the VM still has to handle it with some grace.
Right now, it will misinterpret the bits of the ObjString as an ObjInstance and, I
don’t know, catch on fire or something definitely not graceful.

In Lox, only instances are allowed to have fields. You can’t stuff a field onto
a string or number. So we need to check that the value is an instance before ac-
cessing any fields on it.

 case OP_GET_PROPERTY: {
 if (!IS_INSTANCE(peek(0))) {
 runtimeError("Only instances have properties.");
 return INTERPRET_RUNTIME_ERROR;
 }

 ObjInstance* instance = AS_INSTANCE(peek(0));

If the value on the stack isn’t an instance, we report a runtime error and safely
exit.

Of course, get expressions are not very useful when no instances have any
fields. For that we need setters.

 return INTERPRET_RUNTIME_ERROR;
 }
 case OP_SET_PROPERTY: {
 ObjInstance* instance = AS_INSTANCE(peek(1));
 tableSet(&instance->fields, READ_STRING(), peek(0));
 Value value = pop();
 pop();
 push(value);
 break;
 }
 case OP_EQUAL: {

vm.c
in run()

Lox could support adding fields to values
of other types. It’s our language and we
can do what we want. But it’s likely a
bad idea. It significantly complicates the
implementation in ways that hurt perfor-
mance—for example, string interning gets
a lot harder.

Also, it raises gnarly semantic ques-
tions around the equality and identity of
values. If I attach a field to the number 3,
does the result of 1 + 2 have that field
as well? If so, how does the implemen-
tation track that? If not, are those two
resulting “threes” still considered equal?

vm.c
in run()

vm.c
in run()

538 cHAPTeR 27 : clAsses And InsTAnces

This is a little more complex than OP_GET_PROPERTY. When this executes, the
top of the stack has the instance whose field is being set and above that, the value
to be stored. Like before, we read the instruction’s operand and find the field
name string. Using that, we store the value on top of the stack into the instance’s
field table.

After that is a little stack juggling. We pop the stored value off, then pop the
instance, and finally push the value back on. In other words, we remove the
second element from the stack while leaving the top alone. A setter is itself an
expression whose result is the assigned value, so we need to leave that value on
the stack. Here’s what I mean:

class Toast {}
var toast = Toast();
print toast.jam = "grape"; // Prints "grape".

Unlike when reading a field, we don’t need to worry about the hash table not
containing the field. A setter implicitly creates the field if needed. We do need to
handle the user incorrectly trying to store a field on a value that isn’t an instance.

 case OP_SET_PROPERTY: {
 if (!IS_INSTANCE(peek(1))) {
 runtimeError("Only instances have fields.");
 return INTERPRET_RUNTIME_ERROR;
 }

 ObjInstance* instance = AS_INSTANCE(peek(1));

Exactly like with get expressions, we check the value’s type and report a run-
time error if it’s invalid. And, with that, the stateful side of Lox’s support for
object-oriented programming is in place. Give it a try:

class Pair {}

var pair = Pair();
pair.first = 1;
pair.second = 2;
print pair.first + pair.second; // 3.

This doesn’t really feel very object-oriented. It’s more like a strange, dynamical-
ly typed variant of C where objects are loose struct-like bags of data. Sort of a
dynamic procedural language. But this is a big step in expressiveness. Our Lox
implementation now lets users freely aggregate data into bigger units. In the
next chapter, we will breathe life into those inert blobs.

The stack operations go like this:

vm.c
in run()

cHAllenges 539

CHaLLENGES

1. Trying to access a non-existent field on an object immediately aborts the entire
VM. The user has no way to recover from this runtime error, nor is there any way
to see if a field exists before trying to access it. It’s up to the user to ensure on
their own that only valid fields are read.

How do other dynamically typed languages handle missing fields? What do
you think Lox should do? Implement your solution.

2. Fields are accessed at runtime by their string name. But that name must always
appear directly in the source code as an identifier token. A user program cannot
imperatively build a string value and then use that as the name of a field. Do you
think they should be able to? Devise a language feature that enables that and
implement it.

3. Conversely, Lox offers no way to remove a field from an instance. You can set a
field’s value to nil, but the entry in the hash table is still there. How do other
languages handle this? Choose and implement a strategy for Lox.

4. Because fields are accessed by name at runtime, working with instance state is
slow. It’s technically a constant-time operation—thanks, hash tables—but the
constant factors are relatively large. This is a major component of why dynamic
languages are slower than statically typed ones.

How do sophisticated implementations of dynamically typed languages cope
with and optimize this?

A byTecode VIRTuAl mAcHIne 28Methods and Initializers

“When you are on the dancefloor, there is nothing to do but dance.”

— Umberto Eco, The Mysterious Flame of Queen Loana

It is time for our virtual machine to bring its nascent objects to life with behav-
ior. That means methods and method calls. And, since they are a special kind of
method, initializers too.

All of this is familiar territory from our previous jlox interpreter. What’s new
in this second trip is an important optimization we’ll implement to make method
calls over seven times faster than our baseline performance. But before we get to
that fun, we gotta get the basic stuff working.

542 cHAPTeR 28 : meTHods And InITIAlIzeRs

28.1 Method Declarations
We can’t optimize method calls before we have method calls, and we can’t call
methods without having methods to call, so we’ll start with declarations.

28.1.1 Representing methods

We usually start in the compiler, but let’s knock the object model out first this
time. The runtime representation for methods in clox is similar to that of jlox.
Each class stores a hash table of methods. Keys are method names, and each val-
ue is an ObjClosure for the body of the method.

typedef struct {
 Obj obj;
 ObjString* name;
 Table methods;
} ObjClass;

A brand new class begins with an empty method table.

 klass->name = name;
 initTable(&klass->methods);
 return klass;

The ObjClass struct owns the memory for this table, so when the memory man-
ager deallocates a class, the table should be freed too.

 case OBJ_CLASS: {
 ObjClass* klass = (ObjClass*)object;
 freeTable(&klass->methods);
 FREE(ObjClass, object);

Speaking of memory managers, the GC needs to trace through classes into the
method table. If a class is still reachable (likely through some instance), then all
of its methods certainly need to stick around too.

 markObject((Obj*)klass->name);
 markTable(&klass->methods);
 break;

We use the existing markTable() function, which traces through the key string
and value in each table entry.

Storing a class’s methods is pretty familiar coming from jlox. The different
part is how that table gets populated. Our previous interpreter had access to the
entire AST node for the class declaration and all of the methods it contained. At
runtime, the interpreter simply walked that list of declarations.

Now every piece of information the compiler wants to shunt over to the
runtime has to squeeze through the interface of a flat series of bytecode instruc-
tions. How do we take a class declaration, which can contain an arbitrarily large
set of methods, and represent it as bytecode? Let’s hop over to the compiler and
find out.

object.h
in struct ObjClass

object.c
in newClass()

memory.c
in freeObject()

memory.c
in blackenObject()

28.1 meTHod declARATIons 543

28.1.2 Compiling method declarations

The last chapter left us with a compiler that parses classes but allows only an
empty body. Now we insert a little code to compile a series of method declara-
tions between the braces.

 consume(TOKEN_LEFT_BRACE, "Expect '{' before class body.");
 while (!check(TOKEN_RIGHT_BRACE) && !check(TOKEN_EOF)) {
 method();
 }
 consume(TOKEN_RIGHT_BRACE, "Expect '}' after class body.");

Lox doesn’t have field declarations, so anything before the closing brace at the
end of the class body must be a method. We stop compiling methods when we
hit that final curly or if we reach the end of the file. The latter check ensures our
compiler doesn’t get stuck in an infinite loop if the user accidentally forgets the
closing brace.

The tricky part with compiling a class declaration is that a class may declare
any number of methods. Somehow the runtime needs to look up and bind all of
them. That would be a lot to pack into a single OP_CLASS instruction. Instead,
the bytecode we generate for a class declaration will split the process into a series
of instructions. The compiler already emits an OP_CLASS instruction that cre-
ates a new empty ObjClass object. Then it emits instructions to store the class in
a variable with its name.

Now, for each method declaration, we emit a new OP_METHOD instruction
that adds a single method to that class. When all of the OP_METHOD instructions
have executed, we’re left with a fully formed class. While the user sees a class
declaration as a single atomic operation, the VM implements it as a series of
mutations.

To define a new method, the VM needs three things:

1. The name of the method.

2. The closure for the method body.

3. The class to bind the method to.

We’ll incrementally write the compiler code to see how those all get through to
the runtime, starting here:

static void method() {
 consume(TOKEN_IDENTIFIER, "Expect method name.");
 uint8_t constant = identifierConstant(&parser.previous);
 emitBytes(OP_METHOD, constant);
}

Like OP_GET_PROPERTY and other instructions that need names at runtime,
the compiler adds the method name token’s lexeme to the constant table, getting
back a table index. Then we emit an OP_METHOD instruction with that index as
the operand. That’s the name. Next is the method body:

compiler.c
in classDeclaration()

We did something similar for closures.
The OP_CLOSURE instruction needs
to know the type and index for each
captured upvalue. We encoded that using
a series of pseudo-instructions following
the main OP_CLOSURE instruction—
basically a variable number of operands.
The VM processes all of those extra
bytes immediately when interpreting the
OP_CLOSURE instruction.

Here our approach is a little different
because from the VM’s perspective,
each instruction to define a method is a
separate stand-alone operation. Either
approach would work. A variable-sized
pseudo-instruction is possibly marginally
faster, but class declarations are rarely in
hot loops, so it doesn’t matter much.

compiler.c
add after function()

544 cHAPTeR 28 : meTHods And InITIAlIzeRs

 uint8_t constant = identifierConstant(&parser.previous);

 FunctionType type = TYPE_FUNCTION;
 function(type);
 emitBytes(OP_METHOD, constant);

We use the same function() helper that we wrote for compiling function
declarations. That utility function compiles the subsequent parameter list and
function body. Then it emits the code to create an ObjClosure and leave it on top
of the stack. At runtime, the VM will find the closure there.

Last is the class to bind the method to. Where can the VM find that?
Unfortunately, by the time we reach the OP_METHOD instruction, we don’t know
where it is. It could be on the stack, if the user declared the class in a local scope.
But a top-level class declaration ends up with the ObjClass in the global variable
table.

Fear not. The compiler does know the name of the class. We can capture it
right after we consume its token.

 consume(TOKEN_IDENTIFIER, "Expect class name.");
 Token className = parser.previous;
 uint8_t nameConstant = identifierConstant(&parser.previous);

And we know that no other declaration with that name could possibly shadow
the class. So we do the easy fix. Before we start binding methods, we emit what-
ever code is necessary to load the class back on top of the stack.

 defineVariable(nameConstant);

 namedVariable(className, false);
 consume(TOKEN_LEFT_BRACE, "Expect '{' before class body.");

Right before compiling the class body, we call namedVariable(). That helper
function generates code to load a variable with the given name onto the stack.
Then we compile the methods.

This means that when we execute each OP_METHOD instruction, the stack has
the method’s closure on top with the class right under it. Once we’ve reached the
end of the methods, we no longer need the class and tell the VM to pop it off the
stack.

 consume(TOKEN_RIGHT_BRACE, "Expect '}' after class body.");
 emitByte(OP_POP);
}

Putting all of that together, here is an example class declaration to throw at the
compiler:

class Brunch {
 bacon() {}
 eggs() {}
}

compiler.c
in method()

If Lox supported declaring classes only at
the top level, the VM could assume that
any class could be found by looking it up
directly from the global variable table.
Alas, because we support local classes, we
need to handle that case too.

compiler.c
in classDeclaration()

compiler.c
in classDeclaration()

The preceding call to
defineVariable() pops
the class, so it seems silly to call
namedVariable() to load it right
back onto the stack. Why not simply
leave it on the stack in the first place?
We could, but in the next chapter we will
insert code between these two calls to
support inheritance. At that point, it will
be simpler if the class isn’t sitting around
on the stack.

compiler.c
in classDeclaration()

28.1.3 execuTIng meTHod declARATIons 545

Given that, here is what the compiler generates and how those instructions af-
fect the stack at runtime:

All that remains for us is to implement the runtime for that new OP_METHOD
instruction.

28.1.3 Executing method declarations

First we define the opcode.

 OP_CLASS,
 OP_METHOD
} OpCode;

We disassemble it like other instructions that have string constant operands.

 case OP_CLASS:
 return constantInstruction("OP_CLASS", chunk, offset);
 case OP_METHOD:
 return constantInstruction("OP_METHOD", chunk, offset);
 default:

And over in the interpreter, we add a new case too.

 break;
 case OP_METHOD:
 defineMethod(READ_STRING());
 break;
 }

There, we read the method name from the constant table and pass it here:

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

vm.c
in run()

546 cHAPTeR 28 : meTHods And InITIAlIzeRs

static void defineMethod(ObjString* name) {
 Value method = peek(0);
 ObjClass* klass = AS_CLASS(peek(1));
 tableSet(&klass->methods, name, method);
 pop();
}

The method closure is on top of the stack, above the class it will be bound to. We
read those two stack slots and store the closure in the class’s method table. Then
we pop the closure since we’re done with it.

Note that we don’t do any runtime type checking on the closure or class ob-
ject. That AS_CLASS() call is safe because the compiler itself generated the code
that causes the class to be in that stack slot. The VM trusts its own compiler.

After the series of OP_METHOD instructions is done and the OP_POP has
popped the class, we will have a class with a nicely populated method table,
ready to start doing things. The next step is pulling those methods back out and
using them.

28.2 Method references
Most of the time, methods are accessed and immediately called, leading to this
familiar syntax:

instance.method(argument);

But remember, in Lox and some other languages, those two steps are distinct and
can be separated.

var closure = instance.method;
closure(argument);

Since users can separate the operations, we have to implement them separately.
The first step is using our existing dotted property syntax to access a method
defined on the instance’s class. That should return some kind of object that the
user can then call like a function.

The obvious approach is to look up the method in the class’s method table and
return the ObjClosure associated with that name. But we also need to remember
that when you access a method, this gets bound to the instance the method was
accessed from. Here’s the example from when we added methods to jlox:

class Person {
 sayName() {
 print this.name;
 }
}

var jane = Person();
jane.name = "Jane";
var method = jane.sayName;
method(); // ?

vm.c
add after closeUpvalues()

The VM trusts that the instructions it
executes are valid because the only way to
get code to the bytecode interpreter is by
going through clox’s own compiler. Many
bytecode VMs, like the JVM and CPython,
support executing bytecode that has been
compiled separately. That leads to a differ-
ent security story. Maliciously crafted
bytecode could crash the VM or worse.

To prevent that, the JVM does a
bytecode verification pass before it
executes any loaded code. CPython says
it’s up to the user to ensure any bytecode
they run is safe.

28.2 meTHod RefeRences 547

This should print “Jane”, so the object returned by .sayName somehow needs
to remember the instance it was accessed from when it later gets called. In jlox,
we implemented that “memory” using the interpreter’s existing heap-allocated
Environment class, which handled all variable storage.

Our bytecode VM has a more complex architecture for storing state. Local
variables and temporaries are on the stack, globals are in a hash table, and
variables in closures use upvalues. That necessitates a somewhat more complex
solution for tracking a method’s receiver in clox, and a new runtime type.

28.2.1 Bound methods

When the user executes a method access, we’ll find the closure for that method
and wrap it in a new “bound method” object that tracks the instance that the
method was accessed from. This bound object can be called later like a function.
When invoked, the VM will do some shenanigans to wire up this to point to the
receiver inside the method’s body.

Here’s the new object type:

} ObjInstance;

typedef struct {
 Obj obj;
 Value receiver;
 ObjClosure* method;
} ObjBoundMethod;

ObjClass* newClass(ObjString* name);

It wraps the receiver and the method closure together. The receiver’s type is
Value even though methods can be called only on ObjInstances. Since the VM
doesn’t care what kind of receiver it has anyway, using Value means we don’t
have to keep converting the pointer back to a Value when it gets passed to more
general functions.

The new struct implies the usual boilerplate you’re used to by now. A new case
in the object type enum:

typedef enum {
 OBJ_BOUND_METHOD,
 OBJ_CLASS,

A macro to check a value’s type:

#define OBJ_TYPE(value) (AS_OBJ(value)->type)

#define IS_BOUND_METHOD(value) isObjType(value, OBJ_BOUND_METHOD)
#define IS_CLASS(value) isObjType(value, OBJ_CLASS)

Another macro to cast the value to an ObjBoundMethod pointer:

I took the name “bound method” from
CPython. Python behaves similar to Lox
here, and I used its implementation for
inspiration.

object.h
add after struct ObjInstance

object.h
in enum ObjType

object.h

548 cHAPTeR 28 : meTHods And InITIAlIzeRs

#define IS_STRING(value) isObjType(value, OBJ_STRING)

#define AS_BOUND_METHOD(value) ((ObjBoundMethod*)AS_OBJ(value))
#define AS_CLASS(value) ((ObjClass*)AS_OBJ(value))

A function to create a new ObjBoundMethod:

} ObjBoundMethod;

ObjBoundMethod* newBoundMethod(Value receiver,
 ObjClosure* method);
ObjClass* newClass(ObjString* name);

And an implementation of that function here:

ObjBoundMethod* newBoundMethod(Value receiver,
 ObjClosure* method) {
 ObjBoundMethod* bound = ALLOCATE_OBJ(ObjBoundMethod,
 OBJ_BOUND_METHOD);
 bound->receiver = receiver;
 bound->method = method;
 return bound;
}

The constructor-like function simply stores the given closure and receiver.
When the bound method is no longer needed, we free it.

 switch (object->type) {
 case OBJ_BOUND_METHOD:
 FREE(ObjBoundMethod, object);
 break;
 case OBJ_CLASS: {

The bound method has a couple of references, but it doesn’t own them, so it frees
nothing but itself. However, those references do get traced by the garbage col-
lector.

 switch (object->type) {
 case OBJ_BOUND_METHOD: {
 ObjBoundMethod* bound = (ObjBoundMethod*)object;
 markValue(bound->receiver);
 markObject((Obj*)bound->method);
 break;
 }
 case OBJ_CLASS: {

This ensures that a handle to a method keeps the receiver around in memory
so that this can still find the object when you invoke the handle later. We also
trace the method closure.

object.h

object.h
add after struct ObjBoundMethod

object.c
add after allocateObject()

memory.c
in freeObject()

memory.c
in blackenObject()

Tracing the method closure isn’t really
necessary. The receiver is an ObjInstance,
which has a pointer to its ObjClass, which
has a table for all of the methods. But it
feels dubious to me in some vague way to
have ObjBoundMethod rely on that.

28.2.2 AccessIng meTHods 549

The last operation all objects support is printing.

 switch (OBJ_TYPE(value)) {
 case OBJ_BOUND_METHOD:
 printFunction(AS_BOUND_METHOD(value)->method->function);
 break;
 case OBJ_CLASS:

A bound method prints exactly the same way as a function. From the user’s
perspective, a bound method is a function. It’s an object they can call. We don’t
expose that the VM implements bound methods using a different object type.

Put on your party hat because we just reached a little milestone.
ObjBoundMethod is the very last runtime type to add to clox. You’ve written
your last IS_ and AS_ macros. We’re only a few chapters from the end of the
book, and we’re getting close to a complete VM.

28.2.2 Accessing methods

Let’s get our new object type doing something. Methods are accessed using the
same “dot” property syntax we implemented in the last chapter. The compiler
already parses the right expressions and emits OP_GET_PROPERTY instructions
for them. The only changes we need to make are in the runtime.

When a property access instruction executes, the instance is on top of the
stack. The instruction’s job is to find a field or method with the given name and
replace the top of the stack with the accessed property.

The interpreter already handles fields, so we simply extend the
OP_GET_PROPERTY case with another section.

 pop(); // Instance.
 push(value);
 break;
 }

 if (!bindMethod(instance->klass, name)) {
 return INTERPRET_RUNTIME_ERROR;
 }
 break;
 }

We insert this after the code to look up a field on the receiver instance. Fields
take priority over and shadow methods, so we look for a field first. If the instance
does not have a field with the given property name, then the name may refer to
a method.

We take the instance’s class and pass it to a new bindMethod() helper. If
that function finds a method, it places the method on the stack and returns
true. Otherwise it returns false to indicate a method with that name couldn’t
be found. Since the name also wasn’t a field, that means we have a runtime error,
which aborts the interpreter.

Here is the good stuff:

object.c
in printObject()

vm.c
in run()
replace 2 lines

550 cHAPTeR 28 : meTHods And InITIAlIzeRs

static bool bindMethod(ObjClass* klass, ObjString* name) {
 Value method;
 if (!tableGet(&klass->methods, name, &method)) {
 runtimeError("Undefined property '%s'.", name->chars);
 return false;
 }

 ObjBoundMethod* bound = newBoundMethod(peek(0),
 AS_CLOSURE(method));
 pop();
 push(OBJ_VAL(bound));
 return true;
}

First we look for a method with the given name in the class’s method table. If we
don’t find one, we report a runtime error and bail out. Otherwise, we take the
method and wrap it in a new ObjBoundMethod. We grab the receiver from its
home on top of the stack. Finally, we pop the instance and replace the top of the
stack with the bound method.

For example:

class Brunch {
 eggs() {}
}

var brunch = Brunch();
var eggs = brunch.eggs;

Here is what happens when the VM executes the bindMethod() call for the
brunch.eggs expression:

That’s a lot of machinery under the hood, but from the user’s perspective, they
simply get a function that they can call.

vm.c
add after callValue()

28.2.3 cAllIng meTHods 551

28.2.3 Calling methods

Users can declare methods on classes, access them on instances, and get bound
methods onto the stack. They just can’t do anything useful with those bound
method objects. The operation we’re missing is calling them. Calls are imple-
mented in callValue(), so we add a case there for the new object type.

 switch (OBJ_TYPE(callee)) {
 case OBJ_BOUND_METHOD: {
 ObjBoundMethod* bound = AS_BOUND_METHOD(callee);
 return call(bound->method, argCount);
 }
 case OBJ_CLASS: {

We pull the raw closure back out of the ObjBoundMethod and use the existing
call() helper to begin an invocation of that closure by pushing a CallFrame for
it onto the call stack. That’s all it takes to be able to run this Lox program:

class Scone {
 topping(first, second) {
 print "scone with " + first + " and " + second;
 }
}

var scone = Scone();
scone.topping("berries", "cream");

That’s three big steps. We can declare, access, and invoke methods. But some-
thing is missing. We went to all that trouble to wrap the method closure in an
object that binds the receiver, but when we invoke the method, we don’t use that
receiver at all.

28.3 This
The reason bound methods need to keep hold of the receiver is so that it can be
accessed inside the body of the method. Lox exposes a method’s receiver through
this expressions. It’s time for some new syntax. The lexer already treats this
as a special token type, so the first step is wiring that token up in the parse table.

 [TOKEN_SUPER] = {NULL, NULL, PREC_NONE},
 [TOKEN_THIS] = {this_, NULL, PREC_NONE},
 [TOKEN_TRUE] = {literal, NULL, PREC_NONE},

When the parser encounters a this in prefix position, it dispatches to a new
parser function.

static void this_(bool canAssign) {
 variable(false);
}

A bound method is a first-class value, so
they can store it in variables, pass it to
functions, and otherwise do “value”-y
stuff with it.

vm.c
in callValue()

compiler.c
replace 1 line

compiler.c
add after variable()

552 cHAPTeR 28 : meTHods And InITIAlIzeRs

We’ll apply the same implementation technique for this in clox that we used in
jlox. We treat this as a lexically scoped local variable whose value gets magical-
ly initialized. Compiling it like a local variable means we get a lot of behavior for
free. In particular, closures inside a method that reference this will do the right
thing and capture the receiver in an upvalue.

When the parser function is called, the this token has just been consumed
and is stored as the previous token. We call our existing variable() function
which compiles identifier expressions as variable accesses. It takes a single
Boolean parameter for whether the compiler should look for a following = op-
erator and parse a setter. You can’t assign to this, so we pass false to disallow
that.

The variable() function doesn’t care that this has its own token type and
isn’t an identifier. It is happy to treat the lexeme “this” as if it were a variable
name and then look it up using the existing scope resolution machinery. Right
now, that lookup will fail because we never declared a variable whose name is
“this”. It’s time to think about where the receiver should live in memory.

At least until they get captured by closures, clox stores every local variable on
the VM’s stack. The compiler keeps track of which slots in the function’s stack
window are owned by which local variables. If you recall, the compiler sets aside
stack slot zero by declaring a local variable whose name is an empty string.

For function calls, that slot ends up holding the function being called. Since
the slot has no name, the function body never accesses it. You can guess where
this is going. For method calls, we can repurpose that slot to store the receiver.
Slot zero will store the instance that this is bound to. In order to compile this
expressions, the compiler simply needs to give the correct name to that local
variable.

 local->isCaptured = false;
 if (type != TYPE_FUNCTION) {
 local->name.start = "this";
 local->name.length = 4;
 } else {
 local->name.start = "";
 local->name.length = 0;
 }
}

We want to do this only for methods. Function declarations don’t have a this.
And, in fact, they must not declare a variable named “this”, so that if you write
a this expression inside a function declaration which is itself inside a method,
the this correctly resolves to the outer method’s receiver.

class Nested {
 method() {
 fun function() {
 print this;
 }
 function();
 }
}

Nested().method();

compiler.c
in initCompiler()

replace 2 lines

The underscore at the end of the name of
the parser function is because this is
a reserved word in C++ and we support
compiling clox as C++.

28.3 THIs 553

This program should print “Nested instance”. To decide what name to give to
local slot zero, the compiler needs to know whether it’s compiling a function or
method declaration, so we add a new case to our FunctionType enum to distin-
guish methods.

 TYPE_FUNCTION,
 TYPE_METHOD,
 TYPE_SCRIPT

When we compile a method, we use that type.

 uint8_t constant = identifierConstant(&parser.previous);

 FunctionType type = TYPE_METHOD;
 function(type);

Now we can correctly compile references to the special “this” variable, and the
compiler will emit the right OP_GET_LOCAL instructions to access it. Closures
can even capture this and store the receiver in upvalues. Pretty cool.

Except that at runtime, the receiver isn’t actually in slot zero. The interpreter
isn’t holding up its end of the bargain yet. Here is the fix:

 case OBJ_BOUND_METHOD: {
 ObjBoundMethod* bound = AS_BOUND_METHOD(callee);
 vm.stackTop[-argCount - 1] = bound->receiver;
 return call(bound->method, argCount);
 }

When a method is called, the top of the stack contains all of the arguments, and
then just under those is the closure of the called method. That’s where slot zero
in the new CallFrame will be. This line of code inserts the receiver into that slot.
For example, given a method call like this:

scone.topping("berries", "cream");

We calculate the slot to store the receiver like so:

The -argCount skips past the arguments and the - 1 adjusts for the fact that
stackTop points just past the last used stack slot.

compiler.c
in enum FunctionType

compiler.c
in method()
replace 1 line

vm.c
in callValue()

554 cHAPTeR 28 : meTHods And InITIAlIzeRs

28.3.1 Misusing this

Our VM now supports users correctly using this, but we also need to make sure
it properly handles users misusing this. Lox says it is a compile error for a this
expression to appear outside of the body of a method. These two wrong uses
should be caught by the compiler:

print this; // At top level.

fun notMethod() {
 print this; // In a function.
}

So how does the compiler know if it’s inside a method? The obvious answer is to
look at the FunctionType of the current Compiler. We did just add an enum case
there to treat methods specially. However, that wouldn’t correctly handle code
like the earlier example where you are inside a function which is, itself, nested
inside a method.

We could try to resolve “this” and then report an error if it wasn’t found in
any of the surrounding lexical scopes. That would work, but would require us to
shuffle around a bunch of code, since right now the code for resolving a variable
implicitly considers it a global access if no declaration is found.

In the next chapter, we will need information about the nearest enclosing
class. If we had that, we could use it here to determine if we are inside a method.
So we may as well make our future selves’ lives a little easier and put that ma-
chinery in place now.

Compiler* current = NULL;
ClassCompiler* currentClass = NULL;

static Chunk* currentChunk() {

This module variable points to a struct representing the current, innermost class
being compiled. The new type looks like this:

} Compiler;

typedef struct ClassCompiler {
 struct ClassCompiler* enclosing;
} ClassCompiler;

Parser parser;

Right now we store only a pointer to the ClassCompiler for the enclosing class,
if any. Nesting a class declaration inside a method in some other class is an
uncommon thing to do, but Lox supports it. Just like the Compiler struct, this
means ClassCompiler forms a linked list from the current innermost class being
compiled out through all of the enclosing classes.

If we aren’t inside any class declaration at all, the module variable
currentClass is NULL. When the compiler begins compiling a class, it pushes
a new ClassCompiler onto that implicit linked stack.

compiler.c
add after variable current

compiler.c
add after struct Compiler

28.3.1 mIsusIng THIs 555

 defineVariable(nameConstant);

 ClassCompiler classCompiler;
 classCompiler.enclosing = currentClass;
 currentClass = &classCompiler;

 namedVariable(className, false);

The memory for the ClassCompiler struct lives right on the C stack, a handy
capability we get by writing our compiler using recursive descent. At the end of
the class body, we pop that compiler off the stack and restore the enclosing one.

 emitByte(OP_POP);

 currentClass = currentClass->enclosing;
}

When an outermost class body ends, enclosing will be NULL, so this resets
currentClass to NULL. Thus, to see if we are inside a class—and therefore
inside a method—we simply check that module variable.

static void this_(bool canAssign) {
 if (currentClass == NULL) {
 error("Can't use 'this' outside of a class.");
 return;
 }

 variable(false);

With that, this outside of a class is correctly forbidden. Now our methods real-
ly feel like methods in the object-oriented sense. Accessing the receiver lets them
affect the instance you called the method on. We’re getting there!

28.4 Instance Initializers
The reason object-oriented languages tie state and behavior together—one of
the core tenets of the paradigm—is to ensure that objects are always in a valid,
meaningful state. When the only way to touch an object’s state is through its
methods, the methods can make sure nothing goes awry. But that presumes the
object is already in a proper state. What about when it’s first created?

Object-oriented languages ensure that brand new objects are properly set
up through constructors, which both produce a new instance and initialize its
state. In Lox, the runtime allocates new raw instances, and a class may declare
an initializer to set up any fields. Initializers work mostly like normal methods,
with a few tweaks:

1. The runtime automatically invokes the initializer method whenever an in-
stance of a class is created.

2. The caller that constructs an instance always gets the instance back after the

compiler.c
in classDeclaration()

compiler.c
in classDeclaration()

compiler.c
in this_()

Of course, Lox does let outside code
directly access and modify an instance’s
fields without going through its methods.
This is unlike Ruby and Smalltalk, which
completely encapsulate state inside
objects. Our toy scripting language, alas,
isn’t so principled.

556 cHAPTeR 28 : meTHods And InITIAlIzeRs

initializer finishes, regardless of what the initializer function itself returns.
The initializer method doesn’t need to explicitly return this.

3. In fact, an initializer is prohibited from returning any value at all since the
value would never be seen anyway.

Now that we support methods, to add initializers, we merely need to implement
those three special rules. We’ll go in order.

28.4.1 Invoking initializers

First, automatically calling init() on new instances:

 vm.stackTop[-argCount - 1] = OBJ_VAL(newInstance(klass));
 Value initializer;
 if (tableGet(&klass->methods, vm.initString,
 &initializer)) {
 return call(AS_CLOSURE(initializer), argCount);
 }
 return true;

After the runtime allocates the new instance, we look for an init() method on
the class. If we find one, we initiate a call to it. This pushes a new CallFrame for
the initializer’s closure. Say we run this program:

class Brunch {
 init(food, drink) {}
}

Brunch("eggs", "coffee");

When the VM executes the call to Brunch(), it goes like this:

Any arguments passed to the class when we called it are still sitting on the stack
above the instance. The new CallFrame for the init() method shares that stack
window, so those arguments implicitly get forwarded to the initializer.

Lox doesn’t require a class to define an initializer. If omitted, the runtime
simply returns the new uninitialized instance. However, if there is no init()
method, then it doesn’t make any sense to pass arguments to the class when cre-
ating the instance. We make that an error.

It’s as if the initializer is implicitly
wrapped in a bundle of code like this:

fun create(klass) {
 var obj = newInstance(
 klass);
 obj.init();
 return obj;
}

Note how the value returned by init()
is discarded.

vm.c
in callValue()

28.4.1 InVokIng InITIAlIzeRs 557

 return call(AS_CLOSURE(initializer), argCount);
 } else if (argCount != 0) {
 runtimeError("Expected 0 arguments but got %d.",
 argCount);
 return false;
 }

When the class does provide an initializer, we also need to ensure that the num-
ber of arguments passed matches the initializer’s arity. Fortunately, the call()
helper does that for us already.

To call the initializer, the runtime looks up the init() method by name. We
want that to be fast since it happens every time an instance is constructed. That
means it would be good to take advantage of the string interning we’ve already
implemented. To do that, the VM creates an ObjString for “init” and reuses it.
The string lives right in the VM struct.

 Table strings;
 ObjString* initString;
 ObjUpvalue* openUpvalues;

We create and intern the string when the VM boots up.

 initTable(&vm.strings);

 vm.initString = copyString("init", 4);

 defineNative("clock", clockNative);

We want it to stick around, so the GC considers it a root.

 markCompilerRoots();
 markObject((Obj*)vm.initString);
}

Look carefully. See any bug waiting to happen? No? It’s a subtle one. The garbage
collector now reads vm.initString. That field is initialized from the result of
calling copyString(). But copying a string allocates memory, which can trigger
a GC. If the collector ran at just the wrong time, it would read vm.initString
before it had been initialized. So, first we zero the field out.

 initTable(&vm.strings);

 vm.initString = NULL;
 vm.initString = copyString("init", 4);

We clear the pointer when the VM shuts down since the next line will free it.

 freeTable(&vm.strings);
 vm.initString = NULL;
 freeObjects();

vm.c
in callValue()

vm.h
in struct VM

vm.c
in initVM()

memory.c
in markRoots()

vm.c
in freeVM()

vm.c
in initVM()

558 cHAPTeR 28 : meTHods And InITIAlIzeRs

OK, that lets us call initializers.

28.4.2 Initializer return values

The next step is ensuring that constructing an instance of a class with an initial-
izer always returns the new instance, and not nil or whatever the body of the
initializer returns. Right now, if a class defines an initializer, then when an in-
stance is constructed, the VM pushes a call to that initializer onto the CallFrame
stack. Then it just keeps on trucking.

The user’s invocation on the class to create the instance will complete when-
ever that initializer method returns, and will leave on the stack whatever val-
ue the initializer puts there. That means that unless the user takes care to put
return this; at the end of the initializer, no instance will come out. Not very
helpful.

To fix this, whenever the front end compiles an initializer method, it will
emit different bytecode at the end of the body to return this from the method
instead of the usual implicit nil most functions return. In order to do that, the
compiler needs to actually know when it is compiling an initializer. We detect
that by checking to see if the name of the method we’re compiling is “init”.

 FunctionType type = TYPE_METHOD;
 if (parser.previous.length == 4 &&
 memcmp(parser.previous.start, "init", 4) == 0) {
 type = TYPE_INITIALIZER;
 }

 function(type);

We define a new function type to distinguish initializers from other methods.

 TYPE_FUNCTION,
 TYPE_INITIALIZER,
 TYPE_METHOD,

Whenever the compiler emits the implicit return at the end of a body, we check
the type to decide whether to insert the initializer-specific behavior.

static void emitReturn() {
 if (current->type == TYPE_INITIALIZER) {
 emitBytes(OP_GET_LOCAL, 0);
 } else {
 emitByte(OP_NIL);
 }

 emitByte(OP_RETURN);

In an initializer, instead of pushing nil onto the stack before returning, we
load slot zero, which contains the instance. This emitReturn() function is also
called when compiling a return statement without a value, so this also correct-
ly handles cases where the user does an early return inside the initializer.

compiler.c
in method()

compiler.c
in enum FunctionType

compiler.c
in emitReturn()

replace 1 line

28.4.2 InITIAlIzeR ReTuRn VAlues 559

28.4.3 Incorrect returns in initializers

The last step, the last item in our list of special features of initializers, is making
it an error to try to return anything else from an initializer. Now that the compil-
er tracks the method type, this is straightforward.

 if (match(TOKEN_SEMICOLON)) {
 emitReturn();
 } else {
 if (current->type == TYPE_INITIALIZER) {
 error("Can't return a value from an initializer.");
 }

 expression();

We report an error if a return statement in an initializer has a value. We still
go ahead and compile the value afterwards so that the compiler doesn’t get con-
fused by the trailing expression and report a bunch of cascaded errors.

Aside from inheritance, which we’ll get to soon, we now have a fairly full-fea-
tured class system working in clox.

class CoffeeMaker {
 init(coffee) {
 this.coffee = coffee;
 }

 brew() {
 print "Enjoy your cup of " + this.coffee;

 // No reusing the grounds!
 this.coffee = nil;
 }
}

var maker = CoffeeMaker("coffee and chicory");
maker.brew();

Pretty fancy for a C program that would fit on an old floppy disk.

28.5 Optimized Invocations
Our VM correctly implements the language’s semantics for method calls and
initializers. We could stop here. But the main reason we are building an entire
second implementation of Lox from scratch is to execute faster than our old Java
interpreter. Right now, method calls even in clox are slow.

Lox’s semantics define a method invocation as two operations—accessing
the method and then calling the result. Our VM must support those as separate
operations because the user can separate them. You can access a method without
calling it and then invoke the bound method later. Nothing we’ve implemented
so far is unnecessary.

I acknowledge that “floppy disk” may
no longer be a useful size reference for
current generations of programmers.
Maybe I should have said “a few tweets”
or something.

compiler.c
in returnStatement()

560 cHAPTeR 28 : meTHods And InITIAlIzeRs

But always executing those as separate operations has a significant cost.
Every single time a Lox program accesses and invokes a method, the runtime
heap allocates a new ObjBoundMethod, initializes its fields, then pulls them
right back out. Later, the GC has to spend time freeing all of those ephemeral
bound methods.

Most of the time, a Lox program accesses a method and then immediately
calls it. The bound method is created by one bytecode instruction and then
consumed by the very next one. In fact, it’s so immediate that the compiler can
even textually see that it’s happening—a dotted property access followed by an
opening parenthesis is most likely a method call.

Since we can recognize this pair of operations at compile time, we have the
opportunity to emit a new, special instruction that performs an optimized meth-
od call.

We start in the function that compiles dotted property expressions.

 if (canAssign && match(TOKEN_EQUAL)) {
 expression();
 emitBytes(OP_SET_PROPERTY, name);
 } else if (match(TOKEN_LEFT_PAREN)) {
 uint8_t argCount = argumentList();
 emitBytes(OP_INVOKE, name);
 emitByte(argCount);
 } else {

After the compiler has parsed the property name, we look for a left parenthesis.
If we match one, we switch to a new code path. There, we compile the argument
list exactly like we do when compiling a call expression. Then we emit a single
new OP_INVOKE instruction. It takes two operands:

1. The index of the property name in the constant table.

2. The number of arguments passed to the method.

In other words, this single instruction combines the operands of the
OP_GET_PROPERTY and OP_CALL instructions it replaces, in that order. It real-
ly is a fusion of those two instructions. Let’s define it.

 OP_CALL,
 OP_INVOKE,
 OP_CLOSURE,

And add it to the disassembler:

 case OP_CALL:
 return byteInstruction("OP_CALL", chunk, offset);
 case OP_INVOKE:
 return invokeInstruction("OP_INVOKE", chunk, offset);
 case OP_CLOSURE: {

This is a new, special instruction format, so it needs a little custom disassembly
logic.

compiler.c
in dot()

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

If you spend enough time watching your
bytecode VM run, you’ll notice it often
executes the same series of bytecode
instructions one after the other. A classic
optimization is to define a new single
instruction called a superinstruction that
fuses those into a single instruction with
the same behavior as the entire sequence.

One of the largest performance drains
in a bytecode interpreter is decoding
and dispatching each instruction. Fusing
instructions eliminates some of that.

The challenge is determining which in-
struction sequences are common enough
to benefit from this optimization. Every
new superinstruction claims an opcode
for its own use and there are only so many
of those to go around. Add too many, and
you’ll need a larger encoding for opcodes,
which then increases code size and makes
decoding all instructions slower.

28.5 oPTImIzed InVocATIons 561

static int invokeInstruction(const char* name, Chunk* chunk,
 int offset) {
 uint8_t constant = chunk->code[offset + 1];
 uint8_t argCount = chunk->code[offset + 2];
 printf("%-16s (%d args) %4d '", name, argCount, constant);
 printValue(chunk->constants.values[constant]);
 printf("'\n");
 return offset + 3;
}

We read the two operands and then print out both the method name and the
argument count. Over in the interpreter’s bytecode dispatch loop is where the
real action begins.

 }
 case OP_INVOKE: {
 ObjString* method = READ_STRING();
 int argCount = READ_BYTE();
 if (!invoke(method, argCount)) {
 return INTERPRET_RUNTIME_ERROR;
 }
 frame = &vm.frames[vm.frameCount - 1];
 break;
 }
 case OP_CLOSURE: {

Most of the work happens in invoke(), which we’ll get to. Here, we look up the
method name from the first operand and then read the argument count operand.
Then we hand off to invoke() to do the heavy lifting. That function returns
true if the invocation succeeds. As usual, a false return means a runtime
error occurred. We check for that here and abort the interpreter if disaster has
struck.

Finally, assuming the invocation succeeded, then there is a new CallFrame on
the stack, so we refresh our cached copy of the current frame in frame.

The interesting work happens here:

static bool invoke(ObjString* name, int argCount) {
 Value receiver = peek(argCount);
 ObjInstance* instance = AS_INSTANCE(receiver);
 return invokeFromClass(instance->klass, name, argCount);
}

First we grab the receiver off the stack. The arguments passed to the method are
above it on the stack, so we peek that many slots down. Then it’s a simple matter
to cast the object to an instance and invoke the method on it.

That does assume the object is an instance. As with OP_GET_PROPERTY in-
structions, we also need to handle the case where a user incorrectly tries to call
a method on a value of the wrong type.

vm.c
in run()

vm.c
add after callValue()

debug.c
add after constantInstruction()

562 cHAPTeR 28 : meTHods And InITIAlIzeRs

 Value receiver = peek(argCount);

 if (!IS_INSTANCE(receiver)) {
 runtimeError("Only instances have methods.");
 return false;
 }

 ObjInstance* instance = AS_INSTANCE(receiver);

That’s a runtime error, so we report that and bail out. Otherwise, we get the in-
stance’s class and jump over to this other new utility function:

static bool invokeFromClass(ObjClass* klass, ObjString* name,
 int argCount) {
 Value method;
 if (!tableGet(&klass->methods, name, &method)) {
 runtimeError("Undefined property '%s'.", name->chars);
 return false;
 }
 return call(AS_CLOSURE(method), argCount);
}

This function combines the logic of how the VM implements OP_GET_PROPERTY
and OP_CALL instructions, in that order. First we look up the method by name in
the class’s method table. If we don’t find one, we report that runtime error and
exit.

Otherwise, we take the method’s closure and push a call to it onto the CallFrame
stack. We don’t need to heap allocate and initialize an ObjBoundMethod. In fact,
we don’t even need to juggle anything on the stack. The receiver and method
arguments are already right where they need to be.

If you fire up the VM and run a little program that calls methods now, you
should see the exact same behavior as before. But, if we did our job right, the per-
formance should be much improved. I wrote a little microbenchmark that does
a batch of 10,000 method calls. Then it tests how many of these batches it can
execute in 10 seconds. On my computer, without the new OP_INVOKE instruc-
tion, it got through 1,089 batches. With this new optimization, it finished 8,324
batches in the same time. That’s 7.6 times faster, which is a huge improvement
when it comes to programming language optimization.

28.5.1 Invoking fields

The fundamental creed of optimization is: “Thou shalt not break correctness.”
Users like it when a language implementation gives them an answer faster, but

vm.c
in invoke()

As you can guess by now, we split this
code into a separate function because
we’re going to reuse it later—in this case
for super calls.

vm.c
add after callValue()

This is a key reason why we use stack
slot zero to store the receiver—it’s how
the caller already organizes the stack
for a method call. An efficient calling
convention is an important part of a
bytecode VM’s performance story.

We shouldn’t pat ourselves on the back
too firmly. This performance improvement
is relative to our own unoptimized
method call implementation which was
quite slow. Doing a heap allocation for
every single method call isn’t going to win
any races.

28.5.1 InVokIng fIelds 563

only if it’s the right answer. Alas, our implementation of faster method invoca-
tions fails to uphold that principle:

class Oops {
 init() {
 fun f() {
 print "not a method";
 }

 this.field = f;
 }
}

var oops = Oops();
oops.field();

The last line looks like a method call. The compiler thinks that it is and dutifully
emits an OP_INVOKE instruction for it. However, it’s not. What is actually hap-
pening is a field access that returns a function which then gets called. Right now,
instead of executing that correctly, our VM reports a runtime error when it can’t
find a method named “field”.

Earlier, when we implemented OP_GET_PROPERTY, we handled both field
and method accesses. To squash this new bug, we need to do the same thing for
OP_INVOKE.

 ObjInstance* instance = AS_INSTANCE(receiver);

 Value value;
 if (tableGet(&instance->fields, name, &value)) {
 vm.stackTop[-argCount - 1] = value;
 return callValue(value, argCount);
 }

 return invokeFromClass(instance->klass, name, argCount);

Pretty simple fix. Before looking up a method on the instance’s class, we look
for a field with the same name. If we find a field, then we store it on the stack in
place of the receiver, under the argument list. This is how OP_GET_PROPERTY
behaves since the latter instruction executes before a subsequent parenthesized
list of arguments has been evaluated.

Then we try to call that field’s value like the callable that it hopefully is. The
callValue() helper will check the value’s type and call it as appropriate or
report a runtime error if the field’s value isn’t a callable type like a closure.

That’s all it takes to make our optimization fully safe. We do sacrifice a little
performance, unfortunately. But that’s the price you have to pay sometimes. You
occasionally get frustrated by optimizations you could do if only the language
wouldn’t allow some annoying corner case. But, as language implementers, we
have to play the game we’re given.

The code we wrote here follows a typical pattern in optimization:

1. Recognize a common operation or sequence of operations that is performance
critical. In this case, it is a method access followed by a call.

vm.c
in invoke()

As language designers, our role is very
different. If we do control the language
itself, we may sometimes choose to
restrict or change the language in ways
that enable optimizations. Users want
expressive languages, but they also want
fast implementations. Sometimes it is
good language design to sacrifice a little
power if you can give them perf in return.

There are cases where users may be sat-
isfied when a program sometimes returns
the wrong answer in return for running
significantly faster or with a better bound
on the performance. These are the field of
Monte Carlo algorithms. For some use
cases, this is a good trade-off.

The important part, though, is that
the user is choosing to apply one of these
algorithms. We language implementers
can’t unilaterally decide to sacrifice their
program’s correctness.

564 cHAPTeR 28 : meTHods And InITIAlIzeRs

2. Add an optimized implementation of that pattern. That’s our OP_INVOKE
instruction.

3. Guard the optimized code with some conditional logic that validates that the
pattern actually applies. If it does, stay on the fast path. Otherwise, fall back
to a slower but more robust unoptimized behavior. Here, that means check-
ing that we are actually calling a method and not accessing a field.

As your language work moves from getting the implementation working at all
to getting it to work faster, you will find yourself spending more and more time
looking for patterns like this and adding guarded optimizations for them. Full-
time VM engineers spend much of their careers in this loop.

But we can stop here for now. With this, clox now supports most of the fea-
tures of an object-oriented programming language, and with respectable per-
formance.

CHaLLENGES

1. The hash table lookup to find a class’s init() method is constant time, but
still fairly slow. Implement something faster. Write a benchmark and measure
the performance difference.

2. In a dynamically typed language like Lox, a single callsite may invoke a variety
of methods on a number of classes throughout a program’s execution. Even so,
in practice, most of the time a callsite ends up calling the exact same method
on the exact same class for the duration of the run. Most calls are actually not
polymorphic even if the language says they can be.

How do advanced language implementations optimize based on that obser-
vation?

3. When interpreting an OP_INVOKE instruction, the VM has to do two hash table
lookups. First, it looks for a field that could shadow a method, and only if that
fails does it look for a method. The former check is rarely useful—most fields do
not contain functions. But it is necessary because the language says fields and
methods are accessed using the same syntax, and fields shadow methods.

That is a language choice that affects the performance of our implementa-
tion. Was it the right choice? If Lox were your language, what would you do?

cHAllenges 565

DESIGN NOtE: NOVELtY BUDGEt

I still remember the first time I wrote a tiny BASIC program on a TRS-80 and made a
computer do something it hadn’t done before. It felt like a superpower. The first time I
cobbled together just enough of a parser and interpreter to let me write a tiny program
in my own language that made a computer do a thing was like some sort of higher-order
meta-superpower. It was and remains a wonderful feeling.

I realized I could design a language that looked and behaved however I chose. It was
like I’d been going to a private school that required uniforms my whole life and then
one day transferred to a public school where I could wear whatever I wanted. I don’t
need to use curly braces for blocks? I can use something other than an equals sign for
assignment? I can do objects without classes? Multiple inheritance and multimethods?
A dynamic language that overloads statically, by arity?

Naturally, I took that freedom and ran with it. I made the weirdest, most arbitrary
language design decisions. Apostrophes for generics. No commas between arguments.
Overload resolution that can fail at runtime. I did things differently just for difference’s
sake.

This is a very fun experience that I highly recommend. We need more weird,
avant-garde programming languages. I want to see more art languages. I still make
oddball toy languages for fun sometimes.

However, if your goal is success where “success” is defined as a large number of
users, then your priorities must be different. In that case, your primary goal is to have
your language loaded into the brains of as many people as possible. That’s really hard.
It takes a lot of human effort to move a language’s syntax and semantics from a com-
puter into trillions of neurons.

Programmers are naturally conservative with their time and cautious about what
languages are worth uploading into their wetware. They don’t want to waste their time
on a language that ends up not being useful to them. As a language designer, your goal
is thus to give them as much language power as you can with as little required learning
as possible.

One natural approach is simplicity. The fewer concepts and features your language
has, the less total volume of stuff there is to learn. This is one of the reasons minimal
scripting languages often find success even though they aren’t as powerful as the big
industrial languages—they are easier to get started with, and once they are in some-
one’s brain, the user wants to keep using them.

The problem with simplicity is that simply cutting features often sacrifices power
and expressiveness. There is an art to finding features that punch above their weight,
but often minimal languages simply do less.

There is another path that avoids much of that problem. The trick is to realize that
a user doesn’t have to load your entire language into their head, just the part they don’t
already have in there. As I mentioned in an earlier design note, learning is about trans-
ferring the delta between what they already know and what they need to know.

Many potential users of your language already know some other programming
language. Any features your language shares with that language are essentially “free”
when it comes to learning. It’s already in their head, they just have to recognize that
your language does the same thing.

In other words, familiarity is another key tool to lower the adoption cost of your lan-
guage. Of course, if you fully maximize that attribute, the end result is a language that
is completely identical to some existing one. That’s not a recipe for success, because at
that point there’s no incentive for users to switch to your language at all.

So you do need to provide some compelling differences. Some things your language
can do that other languages can’t, or at least can’t do as well. I believe this is one of the

In particular, this is a big advantage
of dynamically typed languages. A
static language requires you to learn two
languages—the runtime semantics and
the static type system—before you can
get to the point where you are making the
computer do stuff. Dynamic languages
require you to learn only the former.

Eventually, programs get big enough
that the value of static analysis pays for
the effort to learn that second static
language, but the value proposition isn’t
as obvious at the outset.

566 cHAPTeR 28 : meTHods And InITIAlIzeRs

fundamental balancing acts of language design: similarity to other languages lowers
learning cost, while divergence raises the compelling advantages.

I think of this balancing act in terms of a novelty budget, or as Steve Klabnik calls
it, a “strangeness budget”. Users have a low threshold for the total amount of new
stuff they are willing to accept to learn a new language. Exceed that, and they won’t
show up.

Anytime you add something new to your language that other languages don’t have,
or anytime your language does something other languages do in a different way, you
spend some of that budget. That’s OK—you need to spend it to make your language
compelling. But your goal is to spend it wisely. For each feature or difference, ask your-
self how much compelling power it adds to your language and then evaluate critically
whether it pays its way. Is the change so valuable that it is worth blowing some of your
novelty budget?

In practice, I find this means that you end up being pretty conservative with syn-
tax and more adventurous with semantics. As fun as it is to put on a new change of
clothes, swapping out curly braces with some other block delimiter is very unlikely
to add much real power to the language, but it does spend some novelty. It’s hard for
syntax differences to carry their weight.

On the other hand, new semantics can significantly increase the power of the lan-
guage. Multimethods, mixins, traits, reflection, dependent types, runtime metapro-
gramming, etc. can radically level up what a user can do with the language.

Alas, being conservative like this is not as fun as just changing everything. But it’s
up to you to decide whether you want to chase mainstream success or not in the first
place. We don’t all need to be radio-friendly pop bands. If you want your language to
be like free jazz or drone metal and are happy with the proportionally smaller (but
likely more devoted) audience size, go for it.

Klabnik writes about the strangeness
budget here:

 ⇾ craftinginterpreters.com/budget

A related concept in psychology is
idiosyncrasy credit, the idea that
other people in society grant you a finite
amount of deviations from social norms.
You earn credit by fitting in and doing
in-group things, which you can then
spend on oddball activities that might
otherwise raise eyebrows. In other words,
demonstrating that you are “one of the
good ones” gives you license to raise your
freak flag, but only so far.

http://craftinginterpreters.com/budget

A byTecode VIRTuAl mAcHIne 29Superclasses

“You can choose your friends but you sho’ can’t choose your family, an’
they’re still kin to you no matter whether you acknowledge ’em or not,
and it makes you look right silly when you don’t.”

— Harper Lee, To Kill a Mockingbird

This is the very last chapter where we add new functionality to our VM. We’ve
packed almost the entire Lox language in there already. All that remains is in-
heriting methods and calling superclass methods. We have another chapter after
this one, but it introduces no new behavior. It only makes existing stuff faster.
Make it to the end of this one, and you’ll have a complete Lox implementation.

Some of the material in this chapter will remind you of jlox. The way we re-
solve super calls is pretty much the same, though viewed through clox’s more
complex mechanism for storing state on the stack. But we have an entirely dif-
ferent, much faster, way of handling inherited method calls this time around.

29.1 Inheriting Methods
We’ll kick things off with method inheritance since it’s the simpler piece. To
refresh your memory, Lox inheritance syntax looks like this:

That “only” should not imply that making
stuff faster isn’t important! After all, the
whole purpose of our entire second virtual
machine is better performance over jlox.
You could argue that all of the past fifteen
chapters are “optimization”.

568 cHAPTeR 29 : suPeRclAsses

class Doughnut {
 cook() { print "Dunk in the fryer."; }
}

class Cruller < Doughnut {
 finish() { print "Glaze with icing."; }
}

Here, the Cruller class inherits from Doughnut and thus, instances of Cruller
inherit the cook() method. I don’t know why I’m belaboring this. You know
how inheritance works. Let’s start compiling the new syntax.

 currentClass = &classCompiler;

 if (match(TOKEN_LESS)) {
 consume(TOKEN_IDENTIFIER, "Expect superclass name.");
 variable(false);
 namedVariable(className, false);
 emitByte(OP_INHERIT);
 }

 namedVariable(className, false);

After we compile the class name, if the next token is a <, then we found a
superclass clause. We consume the superclass’s identifier token, then call
variable(). That function takes the previously consumed token, treats it as a
variable reference, and emits code to load the variable’s value. In other words, it
looks up the superclass by name and pushes it onto the stack.

After that, we call namedVariable() to load the subclass doing the inher-
iting onto the stack, followed by an OP_INHERIT instruction. That instruction
wires up the superclass to the new subclass. In the last chapter, we defined an
OP_METHOD instruction to mutate an existing class object by adding a method to
its method table. This is similar—the OP_INHERIT instruction takes an existing
class and applies the effect of inheritance to it.

In the previous example, when the compiler works through this bit of syntax:

class Cruller < Doughnut {

The result is this bytecode:

compiler.c
in classDeclaration()

29.1.1 execuTIng InHeRITAnce 569

Before we implement the new OP_INHERIT instruction, we have an edge case
to detect.

 variable(false);

 if (identifiersEqual(&className, &parser.previous)) {
 error("A class can't inherit from itself.");
 }

 namedVariable(className, false);

A class cannot be its own superclass. Unless you have access to a deranged nu-
clear physicist and a very heavily modified DeLorean, you cannot inherit from
yourself.

29.1.1 Executing inheritance

Now onto the new instruction.

 OP_CLASS,
 OP_INHERIT,
 OP_METHOD

There are no operands to worry about. The two values we need—superclass and
subclass—are both found on the stack. That means disassembling is easy.

 return constantInstruction("OP_CLASS", chunk, offset);
 case OP_INHERIT:
 return simpleInstruction("OP_INHERIT", offset);
 case OP_METHOD:

The interpreter is where the action happens.

 break;
 case OP_INHERIT: {
 Value superclass = peek(1);
 ObjClass* subclass = AS_CLASS(peek(0));
 tableAddAll(&AS_CLASS(superclass)->methods,
 &subclass->methods);
 pop(); // Subclass.
 break;
 }
 case OP_METHOD:

From the top of the stack down, we have the subclass then the superclass. We
grab both of those and then do the inherit-y bit. This is where clox takes a dif-
ferent path than jlox. In our first interpreter, each subclass stored a reference to
its superclass. On method access, if we didn’t find the method in the subclass’s
method table, we recursed through the inheritance chain looking at each ances-
tor’s method table until we found it.

For example, calling cook() on a Cruller instance sends jlox on this journey:

compiler.c
in classDeclaration()

Interestingly, with the way we implement
method inheritance, I don’t think allowing
cycles would actually cause any problems
in clox. It wouldn’t do anything useful,
but I don’t think it would cause a crash or
infinite loop.

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

vm.c
in run()

570 cHAPTeR 29 : suPeRclAsses

That’s a lot of work to perform during method invocation time. It’s slow, and
worse, the farther an inherited method is up the ancestor chain, the slower it
gets. Not a great performance story.

The new approach is much faster. When the subclass is declared, we copy
all of the inherited class’s methods down into the subclass’s own method table.
Later, when calling a method, any method inherited from a superclass will be
found right in the subclass’s own method table. There is no extra runtime work
needed for inheritance at all. By the time the class is declared, the work is done.
This means inherited method calls are exactly as fast as normal method calls—a
single hash table lookup.

I’ve sometimes heard this technique called “copy-down inheritance”. It’s simple
and fast, but, like most optimizations, you get to use it only under certain con-
straints. It works in Lox because Lox classes are closed. Once a class declaration is
finished executing, the set of methods for that class can never change.

In languages like Ruby, Python, and JavaScript, it’s possible to crack open
an existing class and jam some new methods into it or even remove them. That
would break our optimization because if those modifications happened to a su-
perclass after the subclass declaration executed, the subclass would not pick up
those changes. That breaks a user’s expectation that inheritance always reflects
the current state of the superclass.

Fortunately for us (but not for users who like the feature, I guess), Lox doesn’t
let you patch monkeys or punch ducks, so we can safely apply this optimization.

What about method overrides? Won’t copying the superclass’s methods into
the subclass’s method table clash with the subclass’s own methods? Fortunately,
no. We emit the OP_INHERIT after the OP_CLASS instruction that creates the
subclass but before any method declarations and OP_METHOD instructions have
been compiled. At the point that we copy the superclass’s methods down, the
subclass’s method table is empty. Any methods the subclass overrides will over-
write those inherited entries in the table.

Well, two hash table lookups, I guess.
Because first we have to make sure a
field on the instance doesn’t shadow the
method.

As you can imagine, changing the set of
methods a class defines imperatively at
runtime can make it hard to reason about
a program. It is a very powerful tool, but
also a dangerous tool.

Those who find this tool maybe a little
too dangerous gave it the unbecoming
name “monkey patching”, or the even less
decorous “duck punching”.

29.1.2 InVAlId suPeRclAsses 571

29.1.2 Invalid superclasses

Our implementation is simple and fast, which is just the way I like my VM code.
But it’s not robust. Nothing prevents a user from inheriting from an object that
isn’t a class at all:

var NotClass = "So not a class";
class OhNo < NotClass {}

Obviously, no self-respecting programmer would write that, but we have to
guard against potential Lox users who have no self respect. A simple runtime
check fixes that.

 Value superclass = peek(1);
 if (!IS_CLASS(superclass)) {
 runtimeError("Superclass must be a class.");
 return INTERPRET_RUNTIME_ERROR;
 }

 ObjClass* subclass = AS_CLASS(peek(0));

If the value we loaded from the identifier in the superclass clause isn’t an
ObjClass, we report a runtime error to let the user know what we think of them
and their code.

29.2 Storing Superclasses
Did you notice that when we added method inheritance, we didn’t actually add
any reference from a subclass to its superclass? After we copy the inherited
methods over, we forget the superclass entirely. We don’t need to keep a handle
on the superclass, so we don’t.

That won’t be sufficient to support super calls. Since a subclass may override
the superclass method, we need to be able to get our hands on superclass method
tables. Before we get to that mechanism, I want to refresh your memory on how
super calls are statically resolved.

Back in the halcyon days of jlox, I showed you this tricky example to explain
the way super calls are dispatched:

class A {
 method() { print "A method"; }
}

class B < A {
 method() { print "B method"; }

 test() { super.method(); }
}

class C < B {}
C().test();

vm.c
in run()

“May” might not be a strong enough
word. Presumably the method has been
overridden. Otherwise, why are you
bothering to use super instead of just
calling it directly?

572 cHAPTeR 29 : suPeRclAsses

Inside the body of the test() method, this is an instance of C. If super calls
were resolved relative to the superclass of the receiver, then we would look in
C’s superclass, B. But super calls are resolved relative to the superclass of the
surrounding class where the super call occurs. In this case, we are in B’s test()
method, so the superclass is A, and the program should print “A method”.

This means that super calls are not resolved dynamically based on the run-
time instance. The superclass used to look up the method is a static—practically
lexical—property of where the call occurs. When we added inheritance to jlox,
we took advantage of that static aspect by storing the superclass in the same
Environment structure we used for all lexical scopes. Almost as if the interpret-
er saw the above program like this:

class A {
 method() { print "A method"; }
}

var Bs_super = A;
class B < A {
 method() { print "B method"; }

 test() { runtimeSuperCall(Bs_super, "method"); }
}

var Cs_super = B;
class C < B {}

C().test();

Each subclass has a hidden variable storing a reference to its superclass.
Whenever we need to perform a super call, we access the superclass from that
variable and tell the runtime to start looking for methods there.

We’ll take the same path with clox. The difference is that instead of jlox’s
heap-allocated Environment class, we have the bytecode VM’s value stack and
upvalue system. The machinery is a little different, but the overall effect is the
same.

29.2.1 A superclass local variable

Our compiler already emits code to load the superclass onto the stack. Instead
of leaving that slot as a temporary, we create a new scope and make it a local
variable.

 }

 beginScope();
 addLocal(syntheticToken("super"));
 defineVariable(0);

 namedVariable(className, false);
 emitByte(OP_INHERIT);

compiler.c
in classDeclaration()

29.2.1 A suPeRclAss locAl VARIAble 573

Creating a new lexical scope ensures that if we declare two classes in the same
scope, each has a different local slot to store its superclass. Since we always name
this variable “super”, if we didn’t make a scope for each subclass, the variables
would collide.

We name the variable “super” for the same reason we use “this” as the name
of the hidden local variable that this expressions resolve to: “super” is a re-
served word, which guarantees the compiler’s hidden variable won’t collide with
a user-defined one.

The difference is that when compiling this expressions, we conveniently
have a token sitting around whose lexeme is “this”. We aren’t so lucky here.
Instead, we add a little helper function to create a synthetic token for the given
constant string.

static Token syntheticToken(const char* text) {
 Token token;
 token.start = text;
 token.length = (int)strlen(text);
 return token;
}

Since we opened a local scope for the superclass variable, we need to close it.

 emitByte(OP_POP);

 if (classCompiler.hasSuperclass) {
 endScope();
 }

 currentClass = currentClass->enclosing;

We pop the scope and discard the “super” variable after compiling the class body
and its methods. That way, the variable is accessible in all of the methods of the
subclass. It’s a somewhat pointless optimization, but we create the scope only if
there is a superclass clause. Thus we need to close the scope only if there is one.

To track that, we could declare a little local variable in classDeclaration().
But soon, other functions in the compiler will need to know whether the sur-
rounding class is a subclass or not. So we may as well give our future selves a
hand and store this fact as a field in the ClassCompiler now.

typedef struct ClassCompiler {
 struct ClassCompiler* enclosing;
 bool hasSuperclass;
} ClassCompiler;

When we first initialize a ClassCompiler, we assume it is not a subclass.

 ClassCompiler classCompiler;
 classCompiler.hasSuperclass = false;
 classCompiler.enclosing = currentClass;

Then, if we see a superclass clause, we know we are compiling a subclass.

compiler.c
add after variable()

compiler.c
in classDeclaration()

compiler.c
in struct ClassCompiler

compiler.c
in classDeclaration()

I say “constant string” because tokens
don’t do any memory management
of their lexeme. If we tried to use a
heap-allocated string for this, we’d end
up leaking memory because it never gets
freed. But the memory for C string literals
lives in the executable’s constant data
section and never needs to be freed, so
we’re fine.

574 cHAPTeR 29 : suPeRclAsses

 emitByte(OP_INHERIT);
 classCompiler.hasSuperclass = true;
 }

This machinery gives us a mechanism at runtime to access the superclass object
of the surrounding subclass from within any of the subclass’s methods—simply
emit code to load the variable named “super”. That variable is a local outside of
the method body, but our existing upvalue support enables the VM to capture
that local inside the body of the method or even in functions nested inside that
method.

29.3 Super Calls
With that runtime support in place, we are ready to implement super calls. As
usual, we go front to back, starting with the new syntax. A super call begins,
naturally enough, with the super keyword.

 [TOKEN_RETURN] = {NULL, NULL, PREC_NONE},
 [TOKEN_SUPER] = {super_, NULL, PREC_NONE},
 [TOKEN_THIS] = {this_, NULL, PREC_NONE},

When the expression parser lands on a super token, control jumps to a new
parsing function which starts off like so:

static void super_(bool canAssign) {
 consume(TOKEN_DOT, "Expect '.' after 'super'.");
 consume(TOKEN_IDENTIFIER, "Expect superclass method name.");
 uint8_t name = identifierConstant(&parser.previous);
}

This is pretty different from how we compiled this expressions. Unlike this, a
super token is not a standalone expression. Instead, the dot and method name
following it are inseparable parts of the syntax. However, the parenthesized
argument list is separate. As with normal method access, Lox supports getting a
reference to a superclass method as a closure without invoking it:

class A {
 method() { print "A"; }
}

class B < A {
 method() {
 var closure = super.method;
 closure(); // Prints "A".
 }
}

In other words, Lox doesn’t really have super call expressions, it has super ac-
cess expressions, which you can choose to immediately invoke if you want. So
when the compiler hits a super token, we consume the subsequent . token and

compiler.c
in classDeclaration()

This is it, friend. The very last entry you’ll
add to the parsing table.

compiler.c
replace 1 line

Hypothetical question: If a bare super
token was an expression, what kind of
object would it evaluate to?

compiler.c
add after syntheticToken()

29.3 suPeR cAlls 575

then look for a method name. Methods are looked up dynamically, so we use
identifierConstant() to take the lexeme of the method name token and
store it in the constant table just like we do for property access expressions.

Here is what the compiler does after consuming those tokens:

 uint8_t name = identifierConstant(&parser.previous);

 namedVariable(syntheticToken("this"), false);
 namedVariable(syntheticToken("super"), false);
 emitBytes(OP_GET_SUPER, name);
}

In order to access a superclass method on the current instance, the runtime needs
both the receiver and the superclass of the surrounding method’s class. The
first namedVariable() call generates code to look up the current receiv-
er stored in the hidden variable “this” and push it onto the stack. The second
namedVariable() call emits code to look up the superclass from its “super”
variable and push that on top.

Finally, we emit a new OP_GET_SUPER instruction with an operand for the
constant table index of the method name. That’s a lot to hold in your head. To
make it tangible, consider this example program:

class Doughnut {
 cook() {
 print "Dunk in the fryer.";
 this.finish("sprinkles");
 }

 finish(ingredient) { print "Finish with " + ingredient; }
}

class Cruller < Doughnut {
 finish(ingredient) {
 // No sprinkles, always icing.
 super.finish("icing");
 }
}

The bytecode emitted for the super.finish("icing") expression looks and
works like this:

compiler.c
in super_()

576 cHAPTeR 29 : suPeRclAsses

The first three instructions give the runtime access to the three pieces of infor-
mation it needs to perform the super access:

1. The first instruction loads the instance onto the stack.

2. The second instruction loads the superclass where the method is resolved.

3. Then the new OP_GET_SUPER instuction encodes the name of the method
to access as an operand.

The remaining instructions are the normal bytecode for evaluating an argument
list and calling a function.

We’re almost ready to implement the new OP_GET_SUPER instruction in the
interpreter. But before we do, the compiler has some errors it is responsible for
reporting.

static void super_(bool canAssign) {
 if (currentClass == NULL) {
 error("Can't use 'super' outside of a class.");
 } else if (!currentClass->hasSuperclass) {
 error("Can't use 'super' in a class with no superclass.");
 }

 consume(TOKEN_DOT, "Expect '.' after 'super'.");

A super call is meaningful only inside the body of a method (or in a function
nested inside a method), and only inside the method of a class that has a super-
class. We detect both of these cases using the value of currentClass. If that’s
NULL or points to a class with no superclass, we report those errors.

29.3.1 Executing super accesses

Assuming the user didn’t put a super expression where it’s not allowed, their
code passes from the compiler over to the runtime. We’ve got ourselves a new
instruction.

 OP_SET_PROPERTY,
 OP_GET_SUPER,
 OP_EQUAL,

We disassemble it like other opcodes that take a constant table index operand.

 return constantInstruction("OP_SET_PROPERTY", chunk, offset);
 case OP_GET_SUPER:
 return constantInstruction("OP_GET_SUPER", chunk, offset);
 case OP_EQUAL:

You might anticipate something harder, but interpreting the new instruction is
similar to executing a normal property access.

compiler.c
in super_()

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

29.3.1 execuTIng suPeR Accesses 577

 }
 case OP_GET_SUPER: {
 ObjString* name = READ_STRING();
 ObjClass* superclass = AS_CLASS(pop());

 if (!bindMethod(superclass, name)) {
 return INTERPRET_RUNTIME_ERROR;
 }
 break;
 }
 case OP_EQUAL: {

As with properties, we read the method name from the constant table. Then
we pass that to bindMethod() which looks up the method in the given class’s
method table and creates an ObjBoundMethod to bundle the resulting closure to
the current instance.

The key difference is which class we pass to bindMethod(). With a normal
property access, we use the ObjInstances’s own class, which gives us the dynamic
dispatch we want. For a super call, we don’t use the instance’s class. Instead, we
use the statically resolved superclass of the containing class, which the compiler
has conveniently ensured is sitting on top of the stack waiting for us.

We pop that superclass and pass it to bindMethod(), which correctly skips
over any overriding methods in any of the subclasses between that superclass
and the instance’s own class. It also correctly includes any methods inherited by
the superclass from any of its superclasses.

The rest of the behavior is the same. Popping the superclass leaves the in-
stance at the top of the stack. When bindMethod() succeeds, it pops the in-
stance and pushes the new bound method. Otherwise, it reports a runtime error
and returns false. In that case, we abort the interpreter.

29.3.2 Faster super calls

We have superclass method accesses working now. And since the returned object
is an ObjBoundMethod that you can then invoke, we’ve got super calls working
too. Just like last chapter, we’ve reached a point where our VM has the complete,
correct semantics.

But, also like last chapter, it’s pretty slow. Again, we’re heap allocating an
ObjBoundMethod for each super call even though most of the time the very next
instruction is an OP_CALL that immediately unpacks that bound method, in-
vokes it, and then discards it. In fact, this is even more likely to be true for super
calls than for regular method calls. At least with method calls there is a chance
that the user is actually invoking a function stored in a field. With super calls,
you’re always looking up a method. The only question is whether you invoke it
immediately or not.

The compiler can certainly answer that question for itself if it sees a left pa-
renthesis after the superclass method name, so we’ll go ahead and perform the
same optimization we did for method calls. Take out the two lines of code that
load the superclass and emit OP_GET_SUPER, and replace them with this:

vm.c
in run()

Another difference compared to
OP_GET_PROPERTY is that we don’t
try to look for a shadowing field first.
Fields are not inherited, so super
expressions always resolve to methods.

If Lox were a prototype-based
language that used delegation instead
of inheritance, then instead of one class
inheriting from another class, instances
would inherit from (“delegate to”) other
instances. In that case, fields could be
inherited, and we would need to check for
them here.

578 cHAPTeR 29 : suPeRclAsses

 namedVariable(syntheticToken("this"), false);
 if (match(TOKEN_LEFT_PAREN)) {
 uint8_t argCount = argumentList();
 namedVariable(syntheticToken("super"), false);
 emitBytes(OP_SUPER_INVOKE, name);
 emitByte(argCount);
 } else {
 namedVariable(syntheticToken("super"), false);
 emitBytes(OP_GET_SUPER, name);
 }
}

Now before we emit anything, we look for a parenthesized argument list. If we
find one, we compile that. Then we load the superclass. After that, we emit a new
OP_SUPER_INVOKE instruction. This superinstruction combines the behavior
of OP_GET_SUPER and OP_CALL, so it takes two operands: the constant table
index of the method name to look up and the number of arguments to pass to it.

Otherwise, if we don’t find a (, we continue to compile the expression as a
super access like we did before and emit an OP_GET_SUPER.

Drifting down the compilation pipeline, our first stop is a new instruction.

 OP_INVOKE,
 OP_SUPER_INVOKE,
 OP_CLOSURE,

And just past that, its disassembler support.

 return invokeInstruction("OP_INVOKE", chunk, offset);
 case OP_SUPER_INVOKE:
 return invokeInstruction("OP_SUPER_INVOKE", chunk, offset);
 case OP_CLOSURE: {

A super invocation instruction has the same set of operands as OP_INVOKE, so
we reuse the same helper to disassemble it. Finally, the pipeline dumps us into
the interpreter.

 break;
 }
 case OP_SUPER_INVOKE: {
 ObjString* method = READ_STRING();
 int argCount = READ_BYTE();
 ObjClass* superclass = AS_CLASS(pop());
 if (!invokeFromClass(superclass, method, argCount)) {
 return INTERPRET_RUNTIME_ERROR;
 }
 frame = &vm.frames[vm.frameCount - 1];
 break;
 }
 case OP_CLOSURE: {

This handful of code is basically our implementation of OP_INVOKE mixed to-
gether with a dash of OP_GET_SUPER. There are some differences in how the

compiler.c
in super_()
replace 2 lines

This is a particularly super superinstruc-
tion, if you get what I’m saying. I . . . I’m
sorry for this terrible joke.

chunk.h
in enum OpCode

debug.c
in disassembleInstruction()

vm.c
in run()

29.4 A comPleTe VIRTuAl mAcHIne 579

stack is organized, though. With an unoptimized super call, the superclass is
popped and replaced by the ObjBoundMethod for the resolved function before the
arguments to the call are executed. This ensures that by the time the OP_CALL
is executed, the bound method is under the argument list, where the runtime
expects it to be for a closure call.

With our optimized instructions, things are shuffled a bit:

Now resolving the superclass method is part of the invocation, so the arguments
need to already be on the stack at the point that we look up the method. This
means the superclass object is on top of the arguments.

Aside from that, the behavior is roughly the same as an OP_GET_SUPER fol-
lowed by an OP_CALL. First, we pull out the method name and argument count
operands. Then we pop the superclass off the top of the stack so that we can look
up the method in its method table. This conveniently leaves the stack set up just
right for a method call.

We pass the superclass, method name, and argument count to our existing
invokeFromClass() function. That function looks up the given method
on the given class and attempts to create a call to it with the given arity. If a
method could not be found, it returns false, and we bail out of the interpreter.
Otherwise, invokeFromClass() pushes a new CallFrame onto the call stack
for the method’s closure. That invalidates the interpreter’s cached CallFrame
pointer, so we refresh frame.

29.4 a Complete Virtual Machine
Take a look back at what we’ve created. By my count, we wrote around 2,500
lines of fairly clean, straightforward C. That little program contains a complete
implementation of the—quite high-level!—Lox language, with a whole prece-
dence table full of expression types and a suite of control flow statements. We
implemented variables, functions, closures, classes, fields, methods, and inher-
itance.

Even more impressive, our implementation is portable to any platform with
a C compiler, and is fast enough for real-world production use. We have a sin-
gle-pass bytecode compiler, a tight virtual machine interpreter for our internal
instruction set, compact object representations, a stack for storing variables
without heap allocation, and a precise garbage collector.

If you go out and start poking around in the implementations of Lua, Python,
or Ruby, you will be surprised by how much of it now looks familiar to you. You

580 cHAPTeR 29 : suPeRclAsses

have seriously leveled up your knowledge of how programming languages work,
which in turn gives you a deeper understanding of programming itself. It’s like
you used to be a race car driver, and now you can pop the hood and repair the
engine too.

You can stop here if you like. The two implementations of Lox you have are
complete and full featured. You built the car and can drive it wherever you want
now. But if you are looking to have more fun tuning and tweaking for even great-
er performance out on the track, there is one more chapter. We don’t add any
new capabilities, but we roll in a couple of classic optimizations to squeeze even
more perf out. If that sounds fun, keep reading . . . 

CHaLLENGES

1. A tenet of object-oriented programming is that a class should ensure new ob-
jects are in a valid state. In Lox, that means defining an initializer that populates
the instance’s fields. Inheritance complicates invariants because the instance
must be in a valid state according to all of the classes in the object’s inheritance
chain.

The easy part is remembering to call super.init() in each subclass’s
init() method. The harder part is fields. There is nothing preventing two
classes in the inheritance chain from accidentally claiming the same field name.
When this happens, they will step on each other’s fields and possibly leave you
with an instance in a broken state.

If Lox was your language, how would you address this, if at all? If you would
change the language, implement your change.

2. Our copy-down inheritance optimization is valid only because Lox does not per-
mit you to modify a class’s methods after its declaration. This means we don’t
have to worry about the copied methods in the subclass getting out of sync with
later changes to the superclass.

Other languages, like Ruby, do allow classes to be modified after the fact.
How do implementations of languages like that support class modification
while keeping method resolution efficient?

3. In the jlox chapter on inheritance, we had a challenge to implement the BETA
language’s approach to method overriding. Solve the challenge again, but this
time in clox. Here’s the description of the previous challenge:

In Lox, as in most other object-oriented languages, when looking up a meth-
od, we start at the bottom of the class hierarchy and work our way up—a sub-
class’s method is preferred over a superclass’s. In order to get to the superclass
method from within an overriding method, you use super.

The language BETA takes the opposite approach. When you call a method,
it starts at the top of the class hierarchy and works down. A superclass method
wins over a subclass method. In order to get to the subclass method, the su-
perclass method can call inner, which is sort of like the inverse of super. It
chains to the next method down the hierarchy.

cHAllenges 581

The superclass method controls when and where the subclass is allowed to
refine its behavior. If the superclass method doesn’t call inner at all, then the
subclass has no way of overriding or modifying the superclass’s behavior.

Take out Lox’s current overriding and super behavior, and replace it with
BETA’s semantics. In short:

• When calling a method on a class, the method highest on the class’s inheri-
tance chain takes precedence.

• Inside the body of a method, a call to inner looks for a method with the
same name in the nearest subclass along the inheritance chain between the
class containing the inner and the class of this. If there is no matching
method, the inner call does nothing.
For example:

class Doughnut {
 cook() {
 print "Fry until golden brown.";
 inner();
 print "Place in a nice box.";
 }
}

class BostonCream < Doughnut {
 cook() {
 print "Pipe full of custard and coat with chocolate.";
 }
}

BostonCream().cook();

This should print:

Fry until golden brown.
Pipe full of custard and coat with chocolate.
Place in a nice box.

Since clox is about not just implementing Lox, but doing so with good perfor-
mance, this time around try to solve the challenge with an eye towards efficien-
cy.

A byTecode VIRTuAl mAcHIne 30Optimization

“The evening’s the best part of the day. You’ve done your day’s work.
Now you can put your feet up and enjoy it.”

— Kazuo Ishiguro, The Remains of the Day

If I still lived in New Orleans, I’d call this chapter a lagniappe, a little something
extra given for free to a customer. You’ve got a whole book and a complete virtual
machine already, but I want you to have some more fun hacking on clox. This
time, we’re going for pure performance. We’ll apply two very different optimiza-
tions to our virtual machine. In the process, you’ll get a feel for measuring and
improving the performance of a language implementation—or any program,
really.

584 cHAPTeR 30 : oPTImIzATIon

30.1 Measuring Performance
Optimization means taking a working application and improving its perfor-
mance. An optimized program does the same thing, it just takes less resources to
do so. The resource we usually think of when optimizing is runtime speed, but it
can also be important to reduce memory usage, startup time, persistent storage
size, or network bandwidth. All physical resources have some cost—even if the
cost is mostly in wasted human time—so optimization work often pays off.

There was a time in the early days of computing that a skilled programmer
could hold the entire hardware architecture and compiler pipeline in their head
and understand a program’s performance just by thinking real hard. Those days
are long gone, separated from the present by microcode, cache lines, branch
prediction, deep compiler pipelines, and mammoth instruction sets. We like to
pretend C is a “low-level” language, but the stack of technology between

printf("Hello, world!");

and a greeting appearing on screen is now perilously tall.
Optimization today is an empirical science. Our program is a border collie

sprinting through the hardware’s obstacle course. If we want her to reach the
end faster, we can’t just sit and ruminate on canine physiology until enlight-
enment strikes. Instead, we need to observe her performance, see where she
stumbles, and then find faster paths for her to take.

Much like agility training is particular to one dog and one obstacle course, we
can’t assume that our virtual machine optimizations will make all Lox programs
run faster on all hardware. Different Lox programs stress different areas of the
VM, and different architectures have their own strengths and weaknesses.

30.1.1 Benchmarks

When we add new functionality, we validate correctness by writing tests—Lox
programs that use a feature and validate the VM’s behavior. Tests pin down se-
mantics and ensure we don’t break existing features when we add new ones. We
have similar needs when it comes to performance:

1. How do we validate that an optimization does improve performance, and by
how much?

2. How do we ensure that other unrelated changes don’t regress performance?

The Lox programs we write to accomplish those goals are benchmarks. These
are carefully crafted programs that stress some part of the language implemen-
tation. They measure not what the program does, but how long it takes to do it.

By measuring the performance of a benchmark before and after a change,
you can see what your change does. When you land an optimization, all of the
tests should behave exactly the same as they did before, but hopefully the bench-
marks run faster.

Once you have an entire suite of benchmarks, you can measure not just that
an optimization changes performance, but on which kinds of code. Often you’ll
find that some benchmarks get faster while others get slower. Then you have to
make hard decisions about what kinds of code your language implementation

Most benchmarks measure running time.
But, of course, you’ll eventually find your-
self needing to write benchmarks that
measure memory allocation, how much
time is spent in the garbage collector,
startup time, etc.

30.1 meAsuRIng PeRfoRmAnce 585

optimizes for.
The suite of benchmarks you choose to write is a key part of that decision.

In the same way that your tests encode your choices around what correct be-
havior looks like, your benchmarks are the embodiment of your priorities when
it comes to performance. They will guide which optimizations you implement,
so choose your benchmarks carefully, and don’t forget to periodically reflect on
whether they are helping you reach your larger goals.

Benchmarking is a subtle art. Like tests, you need to balance not overfitting
to your implementation while ensuring that the benchmark does actually tickle
the code paths that you care about. When you measure performance, you need
to compensate for variance caused by CPU throttling, caching, and other weird
hardware and operating system quirks. I won’t give you a whole sermon here,
but treat benchmarking as its own skill that improves with practice.

30.1.2 Profiling

OK, so you’ve got a few benchmarks now. You want to make them go faster. Now
what? First of all, let’s assume you’ve done all the obvious, easy work. You are
using the right algorithms and data structures—or, at least, you aren’t using
ones that are aggressively wrong. I don’t consider using a hash table instead of
a linear search through a huge unsorted array “optimization” so much as “good
software engineering”.

Since the hardware is too complex to reason about our program’s perfor-
mance from first principles, we have to go out into the field. That means profiling.
A profiler, if you’ve never used one, is a tool that runs your program and tracks
hardware resource use as the code executes. Simple ones show you how much
time was spent in each function in your program. Sophisticated ones log data
cache misses, instruction cache misses, branch mispredictions, memory alloca-
tions, and all sorts of other metrics.

There are many profilers out there for various operating systems and languag-
es. On whatever platform you program, it’s worth getting familiar with a decent
profiler. You don’t need to be a master. I have learned things within minutes of
throwing a program at a profiler that would have taken me days to discover on
my own through trial and error. Profilers are wonderful, magical tools.

30.2 Faster Hash table Probing
Enough pontificating, let’s get some performance charts going up and to the
right. The first optimization we’ll do, it turns out, is about the tiniest possible
change we could make to our VM.

When I first got the bytecode virtual machine that clox is descended from
working, I did what any self-respecting VM hacker would do. I cobbled together
a couple of benchmarks, fired up a profiler, and ran those scripts through my in-
terpreter. In a dynamically typed language like Lox, a large fraction of user code
is field accesses and method calls, so one of my benchmarks looked something
like this:

“Your program” here means the Lox VM
itself running some other Lox program.
We are trying to optimize clox, not the
user’s Lox script. Of course, the choice of
which Lox program to load into our VM
will highly affect which parts of clox get
stressed, which is why benchmarks are so
important.

A profiler won’t show us how much time
is spent in each Lox function in the script
being run. We’d have to write our own
“Lox profiler” to do that, which is slightly
out of scope for this book.

In the early proliferation of JavaScript
VMs, the first widely used benchmark
suite was SunSpider from WebKit. During
the browser wars, marketing folks used
SunSpider results to claim their browser
was fastest. That highly incentivized VM
hackers to optimize to those benchmarks.

Unfortunately, SunSpider programs
often didn’t match real-world JavaScript.
They were mostly microbenchmarks—tiny
toy programs that completed quickly.
Those benchmarks penalize complex just-
in-time compilers that start off slower
but get much faster once the JIT has had
enough time to optimize and re-compile
hot code paths. This put VM hackers in the
unfortunate position of having to choose
between making the SunSpider numbers
get better, or actually optimizing the
kinds of programs real users ran.

Google’s V8 team responded by sharing
their Octane benchmark suite, which was
closer to real-world code at the time.
Years later, as JavaScript use patterns
continued to evolve, even Octane
outlived its usefulness. Expect that your
benchmarks will evolve as your language’s
ecosystem does.

Remember, the ultimate goal is to make
user programs faster, and benchmarks are
only a proxy for that.

586 cHAPTeR 30 : oPTImIzATIon

class Zoo {
 init() {
 this.aardvark = 1;
 this.baboon = 1;
 this.cat = 1;
 this.donkey = 1;
 this.elephant = 1;
 this.fox = 1;
 }
 ant() { return this.aardvark; }
 banana() { return this.baboon; }
 tuna() { return this.cat; }
 hay() { return this.donkey; }
 grass() { return this.elephant; }
 mouse() { return this.fox; }
}

var zoo = Zoo();
var sum = 0;
var start = clock();
while (sum < 100000000) {
 sum = sum + zoo.ant()
 + zoo.banana()
 + zoo.tuna()
 + zoo.hay()
 + zoo.grass()
 + zoo.mouse();
}

print clock() - start;
print sum;

If you’ve never seen a benchmark before, this might seem ludicrous. What is
going on here? The program itself doesn’t intend to do anything useful. What it
does do is call a bunch of methods and access a bunch of fields since those are the
parts of the language we’re interested in. Fields and methods live in hash tables,
so it takes care to populate at least a few interesting keys in those tables. That is
all wrapped in a big loop to ensure our profiler has enough execution time to dig
in and see where the cycles are going.

Before I tell you what my profiler showed me, spend a minute taking a few
guesses. Where in clox’s codebase do you think the VM spent most of its time?
Is there any code we’ve written in previous chapters that you suspect is partic-
ularly slow?

Here’s what I found: Naturally, the function with the greatest inclusive time
is run(). (Inclusive time means the total time spent in some function and all
other functions it calls—the total time between when you enter the function
and when it returns.) Since run() is the main bytecode execution loop, it drives
everything.

Inside run(), there are small chunks of time sprinkled in various cases in
the bytecode switch for common instructions like OP_POP, OP_RETURN, and
OP_ADD. The big heavy instructions are OP_GET_GLOBAL with 17% of the execu-
tion time, OP_GET_PROPERTY at 12%, and OP_INVOKE which takes a whopping

Another thing this benchmark is
careful to do is use the result of the code
it executes. By calculating a rolling sum
and printing the result, we ensure the VM
must execute all that Lox code. This is an
important habit. Unlike our simple Lox
VM, many compilers do aggressive dead
code elimination and are smart enough
to discard a computation whose result is
never used.

Many a programming language hacker
has been impressed by the blazing perfor-
mance of a VM on some benchmark, only
to realize that it’s because the compiler
optimized the entire benchmark program
away to nothing.

If you really want to benchmark hash
table performance, you should use many
tables of different sizes. The six keys we
add to each table here aren’t even enough
to get over our hash table’s eight-element
minimum threshold. But I didn’t want to
throw an enormous benchmark script at
you. Feel free to add more critters and
treats if you like.

30.2.1 sloW key WRAPPIng 587

42% of the total running time.
So we’ve got three hotspots to optimize? Actually, no. Because it turns out

those three instructions spend almost all of their time inside calls to the same
function: tableGet(). That function claims a whole 72% of the execution time
(again, inclusive). Now, in a dynamically typed language, we expect to spend a
fair bit of time looking stuff up in hash tables—it’s sort of the price of dyna-
mism. But, still, wow.

30.2.1 Slow key wrapping

If you take a look at tableGet(), you’ll see it’s mostly a wrapper around a call
to findEntry() where the actual hash table lookup happens. To refresh your
memory, here it is in full:

static Entry* findEntry(Entry* entries, int capacity,
 ObjString* key) {
 uint32_t index = key->hash % capacity;
 Entry* tombstone = NULL;

 for (;;) {
 Entry* entry = &entries[index];
 if (entry->key == NULL) {
 if (IS_NIL(entry->value)) {
 // Empty entry.
 return tombstone != NULL ? tombstone : entry;
 } else {
 // We found a tombstone.
 if (tombstone == NULL) tombstone = entry;
 }
 } else if (entry->key == key) {
 // We found the key.
 return entry;
 }

 index = (index + 1) % capacity;
 }
}

When running that previous benchmark—on my machine, at least—the VM
spends 70% of the total execution time on one line in this function. Any guesses
as to which one? No? It’s this:

 uint32_t index = key->hash % capacity;

That pointer dereference isn’t the problem. It’s the little %. It turns out the mod-
ulo operator is really slow. Much slower than other arithmetic operators. Can we
do something better?

In the general case, it’s really hard to re-implement a fundamental arithmetic
operator in user code in a way that’s faster than what the CPU itself can do. After
all, our C code ultimately compiles down to the CPU’s own arithmetic operations.
If there were tricks we could use to go faster, the chip would be using them.

Pipelining makes it hard to talk about
the performance of an individual CPU
instruction, but to give you a feel for
things, division and modulo are about
30-50 times slower than addition and
subtraction on x86.

588 cHAPTeR 30 : oPTImIzATIon

However, we can take advantage of the fact that we know more about our
problem than the CPU does. We use modulo here to take a key string’s hash code
and wrap it to fit within the bounds of the table’s entry array. That array starts
out at eight elements and grows by a factor of two each time. We know—and the
CPU and C compiler do not—that our table’s size is always a power of two.

Because we’re clever bit twiddlers, we know a faster way to calculate the re-
mainder of a number modulo a power of two: bit masking. Let’s say we want to
calculate 229 modulo 64. The answer is 37, which is not particularly apparent in
decimal, but is clearer when you view those numbers in binary:

On the left side of the illustration, notice how the result (37) is simply the divi-
dend (229) with the highest two bits shaved off? Those two highest bits are the
bits at or to the left of the divisor’s single 1 bit.

On the right side, we get the same result by taking 229 and bitwise AND-ing
it with 63, which is one less than our original power of two divisor. Subtracting
one from a power of two gives you a series of 1 bits. That is exactly the mask we
need in order to strip out those two leftmost bits.

In other words, you can calculate a number modulo any power of two by sim-
ply AND-ing it with that power of two minus one. I’m not enough of a mathema-
tician to prove to you that this works, but if you think it through, it should make
sense. We can replace that slow modulo operator with a very fast decrement and
bitwise AND. We simply change the offending line of code to this:

static Entry* findEntry(Entry* entries, int capacity,
 ObjString* key) {
 uint32_t index = key->hash & (capacity - 1);
 Entry* tombstone = NULL;

CPUs love bitwise operators, so it’s hard to improve on that.
Our linear probing search may need to wrap around the end of the array, so

there is another modulo in findEntry() to update.

 // We found the key.
 return entry;
 }

 index = (index + 1) & (capacity - 1);
 }

This line didn’t show up in the profiler since most searches don’t wrap.
The findEntry() function has a sister function, tableFindString() that

does a hash table lookup for interning strings. We may as well apply the same op-
timizations there too. This function is called only when interning strings, which

table.c
in findEntry()

replace 1 line

table.c
in findEntry()

replace 1 line

Another potential improvement is to
eliminate the decrement by storing the
bit mask directly instead of the capacity.
In my tests, that didn’t make a difference.
Instruction pipelining makes some
operations essentially free if the CPU is
bottlenecked elsewhere.

30.2.1 sloW key WRAPPIng 589

wasn’t heavily stressed by our benchmark. But a Lox program that created lots
of strings might noticeably benefit from this change.

 if (table->count == 0) return NULL;

 uint32_t index = hash & (table->capacity - 1);
 for (;;) {
 Entry* entry = &table->entries[index];

And also when the linear probing wraps around.

 return entry->key;
 }

 index = (index + 1) & (table->capacity - 1);
 }

Let’s see if our fixes were worth it. I tweaked that zoological benchmark to count
how many batches of 10,000 calls it can run in ten seconds. More batches equals
faster performance. On my machine using the unoptimized code, the bench-
mark gets through 3,192 batches. After this optimization, that jumps to 6,249.

That’s almost exactly twice as much work in the same amount of time. We made
the VM twice as fast (usual caveat: on this benchmark). That is a massive win
when it comes to optimization. Usually you feel good if you can claw a few per-
centage points here or there. Since methods, fields, and global variables are so
prevalent in Lox programs, this tiny optimization improves performance across
the board. Almost every Lox program benefits.

Now, the point of this section is not that the modulo operator is profoundly
evil and you should stamp it out of every program you ever write. Nor is it that
micro-optimization is a vital engineering skill. It’s rare that a performance prob-
lem has such a narrow, effective solution. We got lucky.

The point is that we didn’t know that the modulo operator was a performance
drain until our profiler told us so. If we had wandered around our VM’s codebase
blindly guessing at hotspots, we likely wouldn’t have noticed it. What I want you
to take away from this is how important it is to have a profiler in your toolbox.

To reinforce that point, let’s go ahead and run the original benchmark in
our now-optimized VM and see what the profiler shows us. On my machine,
tableGet() is still a fairly large chunk of execution time. That’s to be expected
for a dynamically typed language. But it has dropped from 72% of the total ex-
ecution time down to 35%. That’s much more in line with what we’d like to see
and shows that our optimization didn’t just make the program faster, but made
it faster in the way we expected. Profilers are as useful for verifying solutions as
they are for discovering problems.

table.c
in tableFindString()
replace 1 line

table.c
in tableFindString()
replace 1 line

Our original benchmark fixed the amount
of work and then measured the time.
Changing the script to count how many
batches of calls it can do in ten seconds
fixes the time and measures the work.
For performance comparisons, I like the
latter measure because the reported
number represents speed. You can directly
compare the numbers before and after an
optimization. When measuring execution
time, you have to do a little arithmetic
to get to a good relative measure of
performance.

590 cHAPTeR 30 : oPTImIzATIon

30.3 NaN Boxing
This next optimization has a very different feel. Thankfully, despite the odd
name, it does not involve punching your grandmother. It’s different, but not,
like, that different. With our previous optimization, the profiler told us where
the problem was, and we merely had to use some ingenuity to come up with a
solution.

This optimization is more subtle, and its performance effects more scattered
across the virtual machine. The profiler won’t help us come up with this. Instead,
it was invented by someone thinking deeply about the lowest levels of machine
architecture.

Like the heading says, this optimization is called NaN boxing or sometimes
NaN tagging. Personally I like the latter name because “boxing” tends to imply
some kind of heap-allocated representation, but the former seems to be the more
widely used term. This technique changes how we represent values in the VM.

On a 64-bit machine, our Value type takes up 16 bytes. The struct has two
fields, a type tag and a union for the payload. The largest fields in the union are
an Obj pointer and a double, which are both 8 bytes. To keep the union field
aligned to an 8-byte boundary, the compiler adds padding after the tag too:

That’s pretty big. If we could cut that down, then the VM could pack more values
into the same amount of memory. Most computers have plenty of RAM these
days, so the direct memory savings aren’t a huge deal. But a smaller representa-
tion means more Values fit in a cache line. That means fewer cache misses, which
affects speed.

If Values need to be aligned to their largest payload size, and a Lox number
or Obj pointer needs a full 8 bytes, how can we get any smaller? In a dynamical-
ly typed language like Lox, each value needs to carry not just its payload, but
enough additional information to determine the value’s type at runtime. If a Lox
number is already using the full 8 bytes, where could we squirrel away a couple
of extra bits to tell the runtime “this is a number”?

This is one of the perennial problems for dynamic language hackers. It par-
ticularly bugs them because statically typed languages don’t generally have this
problem. The type of each value is known at compile time, so no extra memory
is needed at runtime to track it. When your C compiler compiles a 32-bit int, the
resulting variable gets exactly 32 bits of storage.

Dynamic language folks hate losing ground to the static camp, so they’ve come
up with a number of very clever ways to pack type information and a payload
into a small number of bits. NaN boxing is one of those. It’s a particularly good fit
for languages like JavaScript and Lua, where all numbers are double-precision
floating point. Lox is in that same boat.

30.3.1 What is (and is not) a number?

Before we start optimizing, we need to really understand how our friend the
CPU represents floating-point numbers. Almost all machines today use the same

I’m not sure who first came up with this
trick. The earliest source I can find is David
Gudeman’s 1993 paper “Representing
Type Information in Dynamically Typed
Languages”. Everyone else cites that. But
Gudeman himself says the paper isn’t
novel work, but instead “gathers together
a body of folklore”.

Maybe the inventor has been lost to
the mists of time, or maybe it’s been
reinvented a number of times. Anyone
who ruminates on IEEE 754 long enough
probably starts thinking about trying
to stuff something useful into all those
unused NaN bits.

30.3 nAn boxIng 591

scheme, encoded in the venerable scroll IEEE 754, known to mortals as the “IEEE
Standard for Floating-Point Arithmetic”.

In the eyes of your computer, a 64-bit, double-precision, IEEE floating-point
number looks like this:

• Starting from the right, the first 52 bits are the fraction, mantissa, or sig-
nificand bits. They represent the significant digits of the number, as a binary
integer.

• Next to that are 11 exponent bits. These tell you how far the mantissa is shift-
ed away from the decimal (well, binary) point.

• The highest bit is the sign bit, which indicates whether the number is posi-
tive or negative.

I know that’s a little vague, but this chapter isn’t a deep dive on floating point
representation. If you want to know how the exponent and mantissa play to-
gether, there are already better explanations out there than I could write.

The important part for our purposes is that the spec carves out a special case
exponent. When all of the exponent bits are set, then instead of just represent-
ing a really big number, the value has a different meaning. These values are “Not
a Number” (hence, NaN) values. They represent concepts like infinity or the
result of division by zero.

Any double whose exponent bits are all set is a NaN, regardless of the man-
tissa bits. That means there’s lots and lots of different NaN bit patterns. IEEE
754 divides those into two categories. Values where the highest mantissa bit is
0 are called signalling NaNs, and the others are quiet NaNs. Signalling NaNs
are intended to be the result of erroneous computations, like division by zero.
A chip may detect when one of these values is produced and abort a program
completely. They may self-destruct if you try to read one.

Quiet NaNs are supposed to be safer to use. They don’t represent useful nu-
meric values, but they should at least not set your hand on fire if you touch them.

Every double with all of its exponent bits set and its highest mantissa bit set
is a quiet NaN. That leaves 52 bits unaccounted for. We’ll avoid one of those so
that we don’t step on Intel’s “QNaN Floating-Point Indefinite” value, leaving us 51
bits. Those remaining bits can be anything. We’re talking 2,251,799,813,685,248
unique quiet NaN bit patterns.

That’s a lot of hyphens for one sentence.

Since the sign bit is always present, even
if the number is zero, that implies that
“positive zero” and “negative zero” have
different bit representations, and indeed,
IEEE 754 does distinguish those.

I don’t know if any CPUs actually do trap
signalling NaNs and abort. The spec just
says they could.

592 cHAPTeR 30 : oPTImIzATIon

This means a 64-bit double has enough room to store all of the various different
numeric floating-point values and also has room for another 51 bits of data that
we can use however we want. That’s plenty of room to set aside a couple of bit
patterns to represent Lox’s nil, true, and false values. But what about Obj
pointers? Don’t pointers need a full 64 bits too?

Fortunately, we have another trick up our other sleeve. Yes, technically point-
ers on a 64-bit architecture are 64 bits. But, no architecture I know of actually
uses that entire address space. Instead, most widely used chips today only ever
use the low 48 bits. The remaining 16 bits are either unspecified or always zero.

If we’ve got 51 bits, we can stuff a 48-bit pointer in there with three bits to
spare. Those three bits are just enough to store tiny type tags to distinguish be-
tween nil, Booleans, and Obj pointers.

That’s NaN boxing. Within a single 64-bit double, you can store all of the dif-
ferent floating-point numeric values, a pointer, or any of a couple of other spe-
cial sentinel values. Half the memory usage of our current Value struct, while
retaining all of the fidelity.

What’s particularly nice about this representation is that there is no need to
convert a numeric double value into a “boxed” form. Lox numbers are just nor-
mal, 64-bit doubles. We still need to check their type before we use them, since
Lox is dynamically typed, but we don’t need to do any bit shifting or pointer
indirection to go from “value” to “number”.

For the other value types, there is a conversion step, of course. But, fortunate-
ly, our VM hides all of the mechanism to go from values to raw types behind a
handful of macros. Rewrite those to implement NaN boxing, and the rest of the
VM should just work.

30.3.2 Conditional support

I know the details of this new representation aren’t clear in your head yet. Don’t
worry, they will crystallize as we work through the implementation. Before we
get to that, we’re going to put some compile-time scaffolding in place.

For our previous optimization, we rewrote the previous slow code and called
it done. This one is a little different. NaN boxing relies on some very low-level
details of how a chip represents floating-point numbers and pointers. It probably
works on most CPUs you’re likely to encounter, but you can never be totally sure.

It would suck if our VM completely lost support for an architecture just be-
cause of its value representation. To avoid that, we’ll maintain support for both
the old tagged union implementation of Value and the new NaN-boxed form. We
select which representation we want at compile time using this flag:

#include <stdint.h>

#define NAN_BOXING
#define DEBUG_PRINT_CODE

If that’s defined, the VM uses the new form. Otherwise, it reverts to the old style.
The few pieces of code that care about the details of the value representation—
mainly the handful of macros for wrapping and unwrapping Values—vary based
on whether this flag is set. The rest of the VM can continue along its merry way.

Most of the work happens in the “value” module where we add a section for
the new type.

48 bits is enough to address 262,144
gigabytes of memory. Modern operating
systems also give each process its own
address space, so that should be plenty.

common.h

30.3.2 condITIonAl suPPoRT 593

typedef struct ObjString ObjString;

#ifdef NAN_BOXING

typedef uint64_t Value;

#else

typedef enum {

When NaN boxing is enabled, the actual type of a Value is a flat, unsigned 64-bit
integer. We could use double instead, which would make the macros for dealing
with Lox numbers a little simpler. But all of the other macros need to do bitwise
operations and uint64_t is a much friendlier type for that. Outside of this mod-
ule, the rest of the VM doesn’t really care one way or the other.

Before we start re-implementing those macros, we close the #else branch of
the #ifdef at the end of the definitions for the old representation.

#define OBJ_VAL(object) ((Value){VAL_OBJ, {.obj = (Obj*)object}})

#endif

typedef struct {

Our remaining task is simply to fill in that first #ifdef section with new imple-
mentations of all the stuff already in the #else side. We’ll work through it one
value type at a time, from easiest to hardest.

30.3.3 Numbers

We’ll start with numbers since they’re easiest. To “convert” a C double to a NaN-
boxed clox Value, we don’t need to touch a single bit—the representation is
exactly the same. But we do need to convince our C compiler of that fact, which
we made harder by defining Value to be uint64_t.

We need to get the compiler to take a set of bits that it thinks are a double and
use those same bits as a uint64_t, or vice versa. This is called type punning. C
and C++ programmers have been doing this since the days of bell bottoms and
8-tracks, but the language specifications have hesitated to say which of the many
ways to do this is officially sanctioned.

I know one way to convert a double to Value and back that I believe is
supported by both the C and C++ specs. Unfortunately, it doesn’t fit in a single
expression, so the conversion macros have to call out to helper functions. Here’s
the first macro:

typedef uint64_t Value;

#define NUMBER_VAL(num) numToValue(num)

#else

That macro passes the double here:

value.h

Spec authors don’t like type punning
because it makes optimization harder. A
key optimization technique is reordering
instructions to fill the CPU’s execution
pipelines. A compiler can reorder code
only when doing so doesn’t have a
user-visible effect, obviously.

Pointers make that harder. If two
pointers point to the same value, then
a write through one and a read through
the other cannot be reordered. But what
about two pointers of different types? If
those could point to the same object, then
basically any two pointers could be aliases
to the same value. That drastically limits
the amount of code the compiler is free to
rearrange.

To avoid that, compilers want to
assume strict aliasing—pointers of
incompatible types cannot point to the
same value. Type punning, by nature,
breaks that assumption.

value.h

value.h

594 cHAPTeR 30 : oPTImIzATIon

#define NUMBER_VAL(num) numToValue(num)

static inline Value numToValue(double num) {
 Value value;
 memcpy(&value, &num, sizeof(double));
 return value;
}

#else

I know, weird, right? The way to treat a series of bytes as having a different type
without changing their value at all is memcpy()? This looks horrendously slow:
Create a local variable. Pass its address to the operating system through a syscall
to copy a few bytes. Then return the result, which is the exact same bytes as the
input. Thankfully, because this is the supported idiom for type punning, most
compilers recognize the pattern and optimize away the memcpy() entirely.

“Unwrapping” a Lox number is the mirror image.

typedef uint64_t Value;

#define AS_NUMBER(value) valueToNum(value)

#define NUMBER_VAL(num) numToValue(num)

That macro calls this function:

#define NUMBER_VAL(num) numToValue(num)

static inline double valueToNum(Value value) {
 double num;
 memcpy(&num, &value, sizeof(Value));
 return num;
}

static inline Value numToValue(double num) {

It works exactly the same except we swap the types. Again, the compiler will
eliminate all of it. Even though those calls to memcpy() will disappear, we still
need to show the compiler which memcpy() we’re calling so we also need an
include.

#define clox_value_h

#include <string.h>

#include "common.h"

That was a lot of code to ultimately do nothing but silence the C type checker.
Doing a runtime type test on a Lox number is a little more interesting. If all we
have are exactly the bits for a double, how do we tell that it is a double? It’s time
to get bit twiddling.

value.h

value.h

value.h

If you find yourself with a compiler that
does not optimize the memcpy() away,
try this instead:

double valueToNum(
 Value value) {
 union {
 uint64_t bits;
 double num;
 } data;
 data.bits = value;
 return data.num;
}

value.hvalue.h

30.3.4 nIl, TRue, And fAlse 595

typedef uint64_t Value;

#define IS_NUMBER(value) (((value) & QNAN) != QNAN)

#define AS_NUMBER(value) valueToNum(value)

We know that every Value that is not a number will use a special quiet NaN rep-
resentation. And we presume we have correctly avoided any of the meaningful
NaN representations that may actually be produced by doing arithmetic on
numbers.

If the double has all of its NaN bits set, and the quiet NaN bit set, and one
more for good measure, we can be pretty certain it is one of the bit patterns we
ourselves have set aside for other types. To check that, we mask out all of the bits
except for our set of quiet NaN bits. If all of those bits are set, it must be a NaN-
boxed value of some other Lox type. Otherwise, it is actually a number.

The set of quiet NaN bits are declared like this:

#ifdef NAN_BOXING

#define QNAN ((uint64_t)0x7ffc000000000000)

typedef uint64_t Value;

It would be nice if C supported binary literals. But if you do the conversion,
you’ll see that value is the same as this:
This is exactly all of the exponent bits, plus the quiet NaN bit, plus one extra to
dodge that Intel value.

30.3.4 Nil, true, and false

The next type to handle is nil. That’s pretty simple since there’s only one nil
value and thus we need only a single bit pattern to represent it. There are two
other singleton values, the two Booleans, true and false. This calls for three
total unique bit patterns.

Two bits give us four different combinations, which is plenty. We claim the
two lowest bits of our unused mantissa space as a “type tag” to determine which
of these three singleton values we’re looking at. The three type tags are defined
like so:

#define QNAN ((uint64_t)0x7ffc000000000000)

#define TAG_NIL 1 // 01.
#define TAG_FALSE 2 // 10.
#define TAG_TRUE 3 // 11.

typedef uint64_t Value;

value.h

Pretty certain, but not strictly guaranteed.
As far as I know, there is nothing prevent-
ing a CPU from producing a NaN value as
the result of some operation whose bit
representation collides with ones we have
claimed. But in my tests across a number
of architectures, I haven’t seen it happen.

value.h

value.h

596 cHAPTeR 30 : oPTImIzATIon

Our representation of nil is thus all of the bits required to define our quiet NaN
representation along with the nil type tag bits:

In code, we check the bits like so:

#define AS_NUMBER(value) valueToNum(value)

#define NIL_VAL ((Value)(uint64_t)(QNAN | TAG_NIL))
#define NUMBER_VAL(num) numToValue(num)

We simply bitwise OR the quiet NaN bits and the type tag, and then do a little
cast dance to teach the C compiler what we want those bits to mean.

Since nil has only a single bit representation, we can use equality on uint64_t
to see if a Value is nil.

typedef uint64_t Value;

#define IS_NIL(value) ((value) == NIL_VAL)
#define IS_NUMBER(value) (((value) & QNAN) != QNAN)

You can guess how we define the true and false values.

#define AS_NUMBER(value) valueToNum(value)

#define FALSE_VAL ((Value)(uint64_t)(QNAN | TAG_FALSE))
#define TRUE_VAL ((Value)(uint64_t)(QNAN | TAG_TRUE))
#define NIL_VAL ((Value)(uint64_t)(QNAN | TAG_NIL))

The bits look like this:

To convert a C bool into a Lox Boolean, we rely on these two singleton values and
the good old conditional operator.

#define AS_NUMBER(value) valueToNum(value)

#define BOOL_VAL(b) ((b) ? TRUE_VAL : FALSE_VAL)
#define FALSE_VAL ((Value)(uint64_t)(QNAN | TAG_FALSE))

value.h

value.h

value.h

value.h

30.3.5 obJecTs 597

There’s probably a cleverer bitwise way to do this, but my hunch is that the com-
piler can figure one out faster than I can. Going the other direction is simpler.

#define IS_NUMBER(value) (((value) & QNAN) != QNAN)

#define AS_BOOL(value) ((value) == TRUE_VAL)
#define AS_NUMBER(value) valueToNum(value)

Since we know there are exactly two Boolean bit representations in Lox—unlike
in C where any non-zero value can be considered “true”—if it ain’t true, it must
be false. This macro does assume you call it only on a Value that you know is a
Lox Boolean. To check that, there’s one more macro.

typedef uint64_t Value;

#define IS_BOOL(value) (((value) | 1) == TRUE_VAL)
#define IS_NIL(value) ((value) == NIL_VAL)

That looks a little strange. A more obvious macro would look like this:

#define IS_BOOL(v) ((v) == TRUE_VAL || (v) == FALSE_VAL)

Unfortunately, that’s not safe. The expansion mentions v twice, which means if
that expression has any side effects, they will be executed twice. We could have
the macro call out to a separate function, but, ugh, what a chore.

Instead, we bitwise OR a 1 onto the value to merge the only two valid Boolean
bit patterns. That leaves three potential states the value can be in:

1. It was FALSE_VAL and has now been converted to TRUE_VAL.

2. It was TRUE_VAL and the | 1 did nothing and it’s still TRUE_VAL.

3. It’s some other, non-Boolean value.

At that point, we can simply compare the result to TRUE_VAL to see if we’re in
the first two states or the third.

30.3.5 Objects

The last value type is the hardest. Unlike the singleton values, there are billions
of different pointer values we need to box inside a NaN. This means we need
both some kind of tag to indicate that these particular NaNs are Obj pointers, and
room for the addresses themselves.

The tag bits we used for the singleton values are in the region where I decided
to store the pointer itself, so we can’t easily use a different bit there to indicate
that the value is an object reference. However, there is another bit we aren’t us-
ing. Since all our NaN values are not numbers—it’s right there in the name—the
sign bit isn’t used for anything. We’ll go ahead and use that as the type tag for
objects. If one of our quiet NaNs has its sign bit set, then it’s an Obj pointer.
Otherwise, it must be one of the previous singleton values.

value.h

value.h

We actually could use the lowest bits to
store the type tag even when the value
is an Obj pointer. That’s because Obj
pointers are always aligned to an 8-byte
boundary since Obj contains a 64-bit
field. That, in turn, implies that the three
lowest bits of an Obj pointer will always
be zero. We could store whatever we
wanted in there and just mask it off before
dereferencing the pointer.

This is another value representation
optimization called pointer tagging.

598 cHAPTeR 30 : oPTImIzATIon

If the sign bit is set, then the remaining low bits store the pointer to the Obj:

To convert a raw Obj pointer to a Value, we take the pointer and set all of the
quiet NaN bits and the sign bit.

#define NUMBER_VAL(num) numToValue(num)
#define OBJ_VAL(obj) \
 (Value)(SIGN_BIT | QNAN | (uint64_t)(uintptr_t)(obj))

static inline double valueToNum(Value value) {

The pointer itself is a full 64 bits, and in principle, it could thus overlap with
some of those quiet NaN and sign bits. But in practice, at least on the architec-
tures I’ve tested, everything above the 48th bit in a pointer is always zero. There’s
a lot of casting going on here, which I’ve found is necessary to satisfy some of
the pickiest C compilers, but the end result is just jamming some bits together.

We define the sign bit like so:

#ifdef NAN_BOXING

#define SIGN_BIT ((uint64_t)0x8000000000000000)
#define QNAN ((uint64_t)0x7ffc000000000000)

To get the Obj pointer back out, we simply mask off all of those extra bits.

#define AS_NUMBER(value) valueToNum(value)
#define AS_OBJ(value) \
 ((Obj*)(uintptr_t)((value) & ~(SIGN_BIT | QNAN)))

#define BOOL_VAL(b) ((b) ? TRUE_VAL : FALSE_VAL)

The tilde (~), if you haven’t done enough bit manipulation to encounter it before,
is bitwise NOT. It toggles all ones and zeroes in its operand. By masking the value
with the bitwise negation of the quiet NaN and sign bits, we clear those bits and
let the pointer bits remain.

One last macro:

#define IS_NUMBER(value) (((value) & QNAN) != QNAN)
#define IS_OBJ(value) \
 (((value) & (QNAN | SIGN_BIT)) == (QNAN | SIGN_BIT))

#define AS_BOOL(value) ((value) == TRUE_VAL)

A Value storing an Obj pointer has its sign bit set, but so does any negative num-
ber. To tell if a Value is an Obj pointer, we need to check that both the sign bit and

value.h

value.h

value.h

I try to follow the letter of the law when
it comes to the code in this book, so this
paragraph is dubious. There comes a point
when optimizing where you push the
boundary of not just what the spec says
you can do, but what a real compiler and
chip let you get away with.

There are risks when stepping outside
of the spec, but there are rewards in that
lawless territory too. It’s up to you to
decide if the gains are worth it.

value.h

30.3.6 VAlue funcTIons 599

all of the quiet NaN bits are set. This is similar to how we detect the type of the
singleton values, except this time we use the sign bit as the tag.

30.3.6 Value functions

The rest of the VM usually goes through the macros when working with Values,
so we are almost done. However, there are a couple of functions in the “value”
module that peek inside the otherwise black box of Value and work with its en-
coding directly. We need to fix those too.

The first is printValue(). It has separate code for each value type. We no
longer have an explicit type enum we can switch on, so instead we use a series of
type tests to handle each kind of value.

void printValue(Value value) {
#ifdef NAN_BOXING
 if (IS_BOOL(value)) {
 printf(AS_BOOL(value) ? "true" : "false");
 } else if (IS_NIL(value)) {
 printf("nil");
 } else if (IS_NUMBER(value)) {
 printf("%g", AS_NUMBER(value));
 } else if (IS_OBJ(value)) {
 printObject(value);
 }
#else
 switch (value.type) {

This is technically a tiny bit slower than a switch, but compared to the overhead
of actually writing to a stream, it’s negligible.

We still support the original tagged union representation, so we keep the old
code and enclose it in the #else conditional section.

 }
#endif
}

The other operation is testing two values for equality.

bool valuesEqual(Value a, Value b) {
#ifdef NAN_BOXING
 return a == b;
#else
 if (a.type != b.type) return false;

It doesn’t get much simpler than that! If the two bit representations are identical,
the values are equal. That does the right thing for the singleton values since each
has a unique bit representation and they are only equal to themselves. It also
does the right thing for Obj pointers, since objects use identity for equality—two
Obj references are equal only if they point to the exact same object.

It’s mostly correct for numbers too. Most floating-point numbers with differ-
ent bit representations are distinct numeric values. Alas, IEEE 754 contains a

value.c
in printValue()

value.c
in printValue()

value.c
in valuesEqual()

600 cHAPTeR 30 : oPTImIzATIon

pothole to trip us up. For reasons that aren’t entirely clear to me, the spec man-
dates that NaN values are not equal to themselves. This isn’t a problem for the
special quiet NaNs that we are using for our own purposes. But it’s possible to
produce a “real” arithmetic NaN in Lox, and if we want to correctly implement
IEEE 754 numbers, then the resulting value is not supposed to be equal to itself.
More concretely:

var nan = 0/0;
print nan == nan;

IEEE 754 says this program is supposed to print “false”. It does the right thing
with our old tagged union representation because the VAL_NUMBER case applies
== to two values that the C compiler knows are doubles. Thus the compiler gen-
erates the right CPU instruction to perform an IEEE floating-point equality.

Our new representation breaks that by defining Value to be a uint64_t. If we
want to be fully compliant with IEEE 754, we need to handle this case.

#ifdef NAN_BOXING
 if (IS_NUMBER(a) && IS_NUMBER(b)) {
 return AS_NUMBER(a) == AS_NUMBER(b);
 }
 return a == b;

I know, it’s weird. And there is a performance cost to doing this type test every
time we check two Lox values for equality. If we are willing to sacrifice a little
compatibility—who really cares if NaN is not equal to itself?—we could leave
this off. I’ll leave it up to you to decide how pedantic you want to be.

Finally, we close the conditional compilation section around the old imple-
mentation.

 }
#endif
}

And that’s it. This optimization is complete, as is our clox virtual machine. That
was the last line of new code in the book.

30.3.7 Evaluating performance

The code is done, but we still need to figure out if we actually made anything
better with these changes. Evaluating an optimization like this is very different
from the previous one. There, we had a clear hotspot visible in the profiler. We
fixed that part of the code and could instantly see the hotspot get faster.

The effects of changing the value representation are more diffused. The mac-
ros are expanded in place wherever they are used, so the performance changes
are spread across the codebase in a way that’s hard for many profilers to track
well, especially in an optimized build.

We also can’t easily reason about the effects of our change. We’ve made values
smaller, which reduces cache misses all across the VM. But the actual real-world
performance effect of that change is highly dependent on the memory use of the
Lox program being run. A tiny Lox microbenchmark may not have enough val-

value.c
in valuesEqual()

In fact, jlox gets NaN equality wrong. Java
does the right thing when you compare
primitive doubles using ==, but not if
you box those to Double or Object and
compare them using equals(), which
is how jlox implements equality.

value.c
in valuesEqual()

When doing profiling work, you almost
always want to profile an optimized
“release” build of your program since that
reflects the performance story your end
users experience. Compiler optimizations,
like inlining, can dramatically affect
which parts of the code are performance
hotspots. Hand-optimizing a debug build
risks sending you off “fixing” problems
that the optimizing compiler will already
solve for you.

Make sure you don’t accidentally
benchmark and optimize your debug
build. I seem to make that mistake at least
once a year.

30.3.7 eVAluATIng PeRfoRmAnce 601

ues scattered around in memory for the effect to be noticeable, and even things
like the addresses handed out to us by the C memory allocator can impact the
results.

If we did our job right, basically everything gets a little faster, especially on
larger, more complex Lox programs. But it is possible that the extra bitwise
operations we do when NaN-boxing values nullify the gains from the better
memory use. Doing performance work like this is unnerving because you can’t
easily prove that you’ve made the VM better. You can’t point to a single surgically
targeted microbenchmark and say, “There, see?”

Instead, what we really need is a suite of larger benchmarks. Ideally, they
would be distilled from real-world applications—not that such a thing exists
for a toy language like Lox. Then we can measure the aggregate performance
changes across all of those. I did my best to cobble together a handful of larger
Lox programs. On my machine, the new value representation seems to make
everything roughly 10% faster across the board.

That’s not a huge improvement, especially compared to the profound effect of
making hash table lookups faster. I added this optimization in large part because
it’s a good example of a certain kind of performance work you may experience,
and honestly, because I think it’s technically really cool. It might not be the first
thing I would reach for if I were seriously trying to make clox faster. There is
probably other, lower-hanging fruit.

But, if you find yourself working on a program where all of the easy wins
have been taken, then at some point you may want to think about tuning your
value representation. I hope this chapter has shined a light on some of the op-
tions you have in that area.

30.4 Where to Next
We’ll stop here with the Lox language and our two interpreters. We could tinker
on it forever, adding new language features and clever speed improvements. But,
for this book, I think we’ve reached a natural place to call our work complete. I
won’t rehash everything we’ve learned in the past many pages. You were there
with me and you remember. Instead, I’d like to take a minute to talk about where
you might go from here. What is the next step in your programming language
journey?

Most of you probably won’t spend a significant part of your career working
in compilers or interpreters. It’s a pretty small slice of the computer science
academia pie, and an even smaller segment of software engineering in industry.
That’s OK. Even if you never work on a compiler again in your life, you will cer-
tainly use one, and I hope this book has equipped you with a better understand-
ing of how the programming languages you use are designed and implemented.

You have also learned a handful of important, fundamental data structures
and gotten some practice doing low-level profiling and optimization work. That
kind of expertise is helpful no matter what domain you program in.

I also hope I gave you a new way of looking at and solving problems. Even if
you never work on a language again, you may be surprised to discover how many
programming problems can be seen as language-like. Maybe that report gener-
ator you need to write can be modeled as a series of stack-based “instructions”
that the generator “executes”. That user interface you need to render looks an
awful lot like traversing an AST.

This goes for other domains too. I don’t
think there’s a single topic I’ve learned
in programming—or even outside of
programming—that I haven’t ended up
finding useful in other areas. One of my
favorite aspects of software engineering is
how much it rewards those with eclectic
interests.

602 cHAPTeR 30 : oPTImIzATIon

If you do want to go further down the programming language rabbit hole,
here are some suggestions for which branches in the tunnel to explore:

• Our simple, single-pass bytecode compiler pushed us towards mostly runtime
optimization. In a mature language implementation, compile-time optimiza-
tion is generally more important, and the field of compiler optimizations is
incredibly rich. Grab a classic compilers book, and rebuild the front end of
clox or jlox to be a sophisticated compilation pipeline with some interesting
intermediate representations and optimization passes.

Dynamic typing will place some restrictions on how far you can go, but
there is still a lot you can do. Or maybe you want to take a big leap and add
static types and a type checker to Lox. That will certainly give your front end
a lot more to chew on.

• In this book, I aim to be correct, but not particularly rigorous. My goal is
mostly to give you an intuition and a feel for doing language work. If you like
more precision, then the whole world of programming language academia is
waiting for you. Languages and compilers have been studied formally since
before we even had computers, so there is no shortage of books and papers
on parser theory, type systems, semantics, and formal logic. Going down this
path will also teach you how to read CS papers, which is a valuable skill in its
own right.

• Or, if you just really enjoy hacking on and making languages, you can take
Lox and turn it into your own plaything. Change the syntax to something that
delights your eye. Add missing features or remove ones you don’t like. Jam
new optimizations in there.

Eventually you may get to a point where you have something you think
others could use as well. That gets you into the very distinct world of pro-
gramming language popularity. Expect to spend a ton of time writing docu-
mentation, example programs, tools, and useful libraries. The field is crowded
with languages vying for users. To thrive in that space you’ll have to put on
your marketing hat and sell. Not everyone enjoys that kind of public-facing
work, but if you do, it can be incredibly gratifying to see people use your lan-
guage to express themselves.

Or maybe this book has satisfied your craving and you’ll stop here. Whichever
way you go, or don’t go, there is one lesson I hope to lodge in your heart. Like I
was, you may have initially been intimidated by programming languages. But in
these chapters, you’ve seen that even really challenging material can be tackled
by us mortals if we get our hands dirty and take it a step at a time. If you can
handle compilers and interpreters, you can do anything you put your mind to.

I like Cooper and Torczon’s Engineering a
Compiler for this. Appel’s Modern Compiler
Implementation books are also well
regarded.

The text of this book is copyrighted to me,
but the code and the implementations
of jlox and clox use the very permissive
MIT license. You are more than welcome
to take either of those interpreters and
do whatever you want with them. Go to
town:

 ⇾ craftinginterpreters.com/repo
If you make significant changes to the

language, it would be good to also change
the name, mostly to avoid confusing
people about what the name “Lox”
represents.

http://craftinginterpreters.com/repo

cHAllenges 603

CHaLLENGES

Assigning homework on the last day of school seems cruel but if you really want
something to do during your summer vacation:

1. Fire up your profiler, run a couple of benchmarks, and look for other hotspots in
the VM. Do you see anything in the runtime that you can improve?

2. Many strings in real-world user programs are small, often only a character or
two. This is less of a concern in clox because we intern strings, but most VMs
don’t. For those that don’t, heap allocating a tiny character array for each of
those little strings and then representing the value as a pointer to that array
is wasteful. Often, the pointer is larger than the string’s characters. A classic
trick is to have a separate value representation for small strings that stores the
characters inline in the value.

Starting from clox’s original tagged union representation, implement that
optimization. Write a couple of relevant benchmarks and see if it helps.

3. Reflect back on your experience with this book. What parts of it worked well for
you? What didn’t? Was it easier for you to learn bottom-up or top-down? Did the
illustrations help or distract? Did the analogies clarify or confuse?

The more you understand your personal learning style, the more effectively
you can upload knowledge into your head. You can specifically target material
that teaches you the way you learn best.

appendix I

Here is a complete grammar for Lox. The chapters that introduce each part of
the language include the grammar rules there, but this collects them all into one
place.

a1.1 Syntax Grammar
The syntactic grammar is used to parse the linear sequence of tokens into the
nested syntax tree structure. It starts with the first rule that matches an entire
Lox program (or a single REPL entry).

program → declaration* EOF ;

A1.1.1 Declarations

A program is a series of declarations, which are the statements that bind new
identifiers or any of the other statement types.

declaration → classDecl | funDecl | varDecl | statement ;

classDecl → "class" IDENTIFIER ("<" IDENTIFIER)?
 "{" function* "}" ;
funDecl → "fun" function ;
varDecl → "var" IDENTIFIER ("=" expression)? ";" ;

606 APPendIx I

A1.1.2 Statements

The remaining statement rules produce side effects, but do not introduce bind-
ings.

statement → exprStmt
 | forStmt
 | ifStmt
 | printStmt
 | returnStmt
 | whileStmt
 | block ;

exprStmt → expression ";" ;
forStmt → "for" "(" (varDecl | exprStmt | ";")
 expression? ";"
 expression? ")" statement ;
ifStmt → "if" "(" expression ")" statement
 ("else" statement)? ;
printStmt → "print" expression ";" ;
returnStmt → "return" expression? ";" ;
whileStmt → "while" "(" expression ")" statement ;
block → "{" declaration* "}" ;

Note that block is a statement rule, but is also used as a nonterminal in a couple
of other rules for things like function bodies.

A1.1.3 Expressions

Expressions produce values. Lox has a number of unary and binary operators
with different levels of precedence. Some grammars for languages do not direct-
ly encode the precedence relationships and specify that elsewhere. Here, we use
a separate rule for each precedence level to make it explicit.

expression → assignment ;

assignment → (call ".")? IDENTIFIER "=" assignment
 | logic_or ;

logic_or → logic_and ("or" logic_and)* ;
logic_and → equality ("and" equality)* ;
equality → comparison (("!=" | "==") comparison)* ;
comparison → term ((">" | ">=" | "<" | "<=") term)* ;
term → factor (("-" | "+") factor)* ;
factor → unary (("/" | "*") unary)* ;

unary → ("!" | "-") unary | call ;
call → primary ("(" arguments? ")" | "." IDENTIFIER)* ;
primary → "true" | "false" | "nil" | "this"
 | NUMBER | STRING | IDENTIFIER | "(" expression ")"
 | "super" "." IDENTIFIER ;

A1.1.2 sTATemenTs 607

A1.1.4 Utility rules

In order to keep the above rules a little cleaner, some of the grammar is split out
into a few reused helper rules.

function → IDENTIFIER "(" parameters? ")" block ;
parameters → IDENTIFIER ("," IDENTIFIER)* ;
arguments → expression ("," expression)* ;

a1.2 Lexical Grammar
The lexical grammar is used by the scanner to group characters into tokens.
Where the syntax is context free, the lexical grammar is regular—note that
there are no recursive rules.

NUMBER → DIGIT+ ("." DIGIT+)? ;
STRING → "\"" <any char except "\"">* "\"" ;
IDENTIFIER → ALPHA (ALPHA | DIGIT)* ;
ALPHA → "a" ... "z" | "A" ... "Z" | "_" ;
DIGIT → "0" ... "9" ;

appendix II

For your edification, here is the code produced by the little script we built to
automate generating the syntax tree classes for jlox.

a2.1 Expressions
Expressions are the first syntax tree nodes we see, introduced in Chapter 5,
“Representing Code”. The main Expr class defines the visitor interface used to
dispatch against the specific expression types, and contains the other expres-
sion subclasses as nested classes.

package com.craftinginterpreters.lox;

import java.util.List;

abstract class Expr {
 interface Visitor<R> {
 R visitAssignExpr(Assign expr);
 R visitBinaryExpr(Binary expr);
 R visitCallExpr(Call expr);
 R visitGetExpr(Get expr);
 R visitGroupingExpr(Grouping expr);
 R visitLiteralExpr(Literal expr);
 R visitLogicalExpr(Logical expr);
 R visitSetExpr(Set expr);
 R visitSuperExpr(Super expr);

lox/expr.java
create new file

continued on next page . . .

610 APPendIx II

 R visitThisExpr(This expr);
 R visitUnaryExpr(Unary expr);
 R visitVariableExpr(Variable expr);
 }

 // Nested Expr classes here...

 abstract <R> R accept(Visitor<R> visitor);
}

A2.1.1 Assign expression

Variable assignment is introduced in Chapter 8, “Statements and State”.

 static class Assign extends Expr {
 Assign(Token name, Expr value) {
 this.name = name;
 this.value = value;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitAssignExpr(this);
 }

 final Token name;
 final Expr value;
 }

A2.1.2 Binary expression

Binary operators are introduced in Chapter 5, “Representing Code”.

 static class Binary extends Expr {
 Binary(Expr left, Token operator, Expr right) {
 this.left = left;
 this.operator = operator;
 this.right = right;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitBinaryExpr(this);
 }

 final Expr left;
 final Token operator;
 final Expr right;
 }

. . . from previous page

lox/expr.java
nest inside class Expr

lox/expr.java
nest inside class Expr

A2.1.1 AssIgn exPRessIon 611

A2.1.3 Call expression

Function call expressions are introduced in Chapter 10, “Functions”.

 static class Call extends Expr {
 Call(Expr callee, Token paren, List<Expr> arguments) {
 this.callee = callee;
 this.paren = paren;
 this.arguments = arguments;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitCallExpr(this);
 }

 final Expr callee;
 final Token paren;
 final List<Expr> arguments;
 }

A2.1.4 Get expression

Property access “get” expressions are introduced in Chapter 12, “Classes”.

 static class Get extends Expr {
 Get(Expr object, Token name) {
 this.object = object;
 this.name = name;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitGetExpr(this);
 }

 final Expr object;
 final Token name;
 }

A2.1.5 Grouping expression

Using parentheses to group expressions is introduced in Chapter 5, “Representing
Code”.

 static class Grouping extends Expr {
 Grouping(Expr expression) {
 this.expression = expression;
 }

lox/expr.java
nest inside class Expr

lox/expr.java
nest inside class Expr

lox/expr.java
nest inside class Expr

continued on next page . . .

612 APPendIx II

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitGroupingExpr(this);
 }

 final Expr expression;
 }

A2.1.6 Literal expression

Literal value expressions are introduced in Chapter 5, “Representing Code”.

 static class Literal extends Expr {
 Literal(Object value) {
 this.value = value;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitLiteralExpr(this);
 }

 final Object value;
 }

A2.1.7 Logical expression

The logical and and or operators are introduced in Chapter 9, “Control Flow”.

 static class Logical extends Expr {
 Logical(Expr left, Token operator, Expr right) {
 this.left = left;
 this.operator = operator;
 this.right = right;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitLogicalExpr(this);
 }

 final Expr left;
 final Token operator;
 final Expr right;
 }

A2.1.8 Set expression

Property assignment “set” expressions are introduced in Chapter 12, “Classes”.

lox/expr.java
nest inside class Expr

lox/expr.java
nest inside class Expr

. . . from previous page

A2.1.6 lITeRAl exPRessIon 613

 static class Set extends Expr {
 Set(Expr object, Token name, Expr value) {
 this.object = object;
 this.name = name;
 this.value = value;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitSetExpr(this);
 }

 final Expr object;
 final Token name;
 final Expr value;
 }

A2.1.9 Super expression

The super expression is introduced in Chapter 13, “Inheritance”.

 static class Super extends Expr {
 Super(Token keyword, Token method) {
 this.keyword = keyword;
 this.method = method;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitSuperExpr(this);
 }

 final Token keyword;
 final Token method;
 }

A2.1.10 This expression

The this expression is introduced in Chapter 12, “Classes”.

 static class This extends Expr {
 This(Token keyword) {
 this.keyword = keyword;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitThisExpr(this);
 }

lox/expr.java
nest inside class Expr

lox/expr.java
nest inside class Expr

continued on next page . . .

lox/expr.java
nest inside class Expr

614 APPendIx II

 final Token keyword;
 }

A2.1.11 Unary expression

Unary operators are introduced in Chapter 5, “Representing Code”.

 static class Unary extends Expr {
 Unary(Token operator, Expr right) {
 this.operator = operator;
 this.right = right;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitUnaryExpr(this);
 }

 final Token operator;
 final Expr right;
 }

A2.1.12 Variable expression

Variable access expressions are introduced in Chapter 8, “Statements and State”.

 static class Variable extends Expr {
 Variable(Token name) {
 this.name = name;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitVariableExpr(this);
 }

 final Token name;
 }

a2.2 Statements
Statements form a second hierarchy of syntax tree nodes independent of ex-
pressions. We add the first couple of them in Chapter 8, “Statements and State”.

package com.craftinginterpreters.lox;

import java.util.List;

lox/expr.java
nest inside class Expr

lox/expr.java
nest inside class Expr

lox/stmt.java
create new file

continued on next page . . .

. . . from previous page

A2.1.11 unARy exPRessIon 615

abstract class Stmt {
 interface Visitor<R> {
 R visitBlockStmt(Block stmt);
 R visitClassStmt(Class stmt);
 R visitExpressionStmt(Expression stmt);
 R visitFunctionStmt(Function stmt);
 R visitIfStmt(If stmt);
 R visitPrintStmt(Print stmt);
 R visitReturnStmt(Return stmt);
 R visitVarStmt(Var stmt);
 R visitWhileStmt(While stmt);
 }

 // Nested Stmt classes here...

 abstract <R> R accept(Visitor<R> visitor);
}

A2.2.1 Block statement

The curly-braced block statement that defines a local scope is introduced in
Chapter 8, “Statements and State”.

 static class Block extends Stmt {
 Block(List<Stmt> statements) {
 this.statements = statements;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitBlockStmt(this);
 }

 final List<Stmt> statements;
 }

A2.2.2 Class statement

Class declarations are introduced in, unsurprisingly, Chapter 12, “Classes”.

 static class Class extends Stmt {
 Class(Token name,
 Expr.Variable superclass,
 List<Stmt.Function> methods) {
 this.name = name;
 this.superclass = superclass;
 this.methods = methods;
 }

lox/stmt.java
nest inside class Stmt

lox/stmt.java
nest inside class Stmt

continued on next page . . .

. . . from previous page

616 APPendIx II

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitClassStmt(this);
 }

 final Token name;
 final Expr.Variable superclass;
 final List<Stmt.Function> methods;
 }

A2.2.3 Expression statement

The expression statement is introduced in Chapter 8, “Statements and State”.

 static class Expression extends Stmt {
 Expression(Expr expression) {
 this.expression = expression;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitExpressionStmt(this);
 }

 final Expr expression;
 }

A2.2.4 Function statement

Function declarations are introduced in, you guessed it, Chapter 10, “Functions”.

 static class Function extends Stmt {
 Function(Token name, List<Token> params, List<Stmt> body) {
 this.name = name;
 this.params = params;
 this.body = body;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitFunctionStmt(this);
 }

 final Token name;
 final List<Token> params;
 final List<Stmt> body;
 }

lox/stmt.java
nest inside class Stmt

lox/stmt.java
nest inside class Stmt

. . . from previous page

A2.2.3 exPRessIon sTATemenT 617

A2.2.5 If statement

The if statement is introduced in Chapter 9, “Control Flow”.

 static class If extends Stmt {
 If(Expr condition, Stmt thenBranch, Stmt elseBranch) {
 this.condition = condition;
 this.thenBranch = thenBranch;
 this.elseBranch = elseBranch;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitIfStmt(this);
 }

 final Expr condition;
 final Stmt thenBranch;
 final Stmt elseBranch;
 }

A2.2.6 Print statement

The print statement is introduced in Chapter 8, “Statements and State”.

 static class Print extends Stmt {
 Print(Expr expression) {
 this.expression = expression;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitPrintStmt(this);
 }

 final Expr expression;
 }

A2.2.7 Return statement

You need a function to return from, so return statements are introduced in
Chapter 10, “Functions”.

 static class Return extends Stmt {
 Return(Token keyword, Expr value) {
 this.keyword = keyword;
 this.value = value;
 }

lox/stmt.java
nest inside class Stmt

lox/stmt.java
nest inside class Stmt

continued on next page . . .

lox/stmt.java
nest inside class Stmt

618 APPendIx II

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitReturnStmt(this);
 }

 final Token keyword;
 final Expr value;
 }

A2.2.8 Variable statement

Variable declarations are introduced in Chapter 8, “Statements and State”.

 static class Var extends Stmt {
 Var(Token name, Expr initializer) {
 this.name = name;
 this.initializer = initializer;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitVarStmt(this);
 }

 final Token name;
 final Expr initializer;
 }

A2.2.9 While statement

The while statement is introduced in Chapter 9, “Control Flow”.

 static class While extends Stmt {
 While(Expr condition, Stmt body) {
 this.condition = condition;
 this.body = body;
 }

 @Override
 <R> R accept(Visitor<R> visitor) {
 return visitor.visitWhileStmt(this);
 }

 final Expr condition;
 final Stmt body;
 }

lox/stmt.java
nest inside class Stmt

lox/stmt.java
nest inside class Stmt

. . . from previous page

A
AAD 16
abstract syntax tree 13, 65
actual parameter 28
adventure 1
A Hat Full of Sky 221
algebraic data type 328
ALGOL 58 language 61
ALGOL 60 language 402
ALGOL 68 language 428
ALGOL language 79

lexical scope 127
syntactic sugar 145

Alighieri, Dante 305
allocating instances 213
alphabet 60
a-machine 138 . See also Turing machine
ambiguous grammar 80
AMC Gremlin 240
A Midsummer Night’s Dream 399
amortized analysis 245
and operator 25
anonymous function 170
ANTLR parser generator 325
Appel, Andrew 602
argument 28
arithmetic operator 24
arity 156
ARM instruction set 15
ASCII 23, 356
Ashtadhyayi 61
assembler 250

associative array 120
associativity 25, 81
AST 65 . See abstract syntax tree
AstPrinter class 74
attribute 14
axolotl 294

b
back end 14–15
backpatching 415
Backus, John 61
Backus-Naur form 61, 301
base class 33, 222 . See also superclass
base pointer 442
BASIC language 5

print statement 112
single-letter variable name 360
then keyword 140

BCD 16
BCPL language

block scoping 400
bytecode compiler 16
unityped 327

beignet 71
Beignet class 72
benchmark 7, 157, 584–585
BETA language 234, 580
Bierce, Ambrose 359
binary expression 64
binary operator 24
binary search 360

binding 14
binding parameters 161–162
birthday paradox 362
Bison parser generator 6, 325
bit masking 588
bitwise operator

precedence in C 95
block 26
block scope 127
BNF 61 . See also Backus-Naur form
body, grammar rule 61
Boehm-Demers-Weiser garbage collector 521
Böhm, Corrado 430
Boolean 23
Boole, George 23
bootstrapping 8
bound method 205, 547
Bourdain, Anthony 21
branching control flow 27, 139
breakfast 21
breakpoint 429
Breton, André 111
bucket, hash table 360
bytecode 16

c
C++ language

classes 30
constructor inheritance 33
field access 531
inheritance 222

Index

620

instantiation 197
memory management 287
runtime polymorphism 527
syntactic sugar 150
this 207
used for language implementation 8

cache . See CPU cache
cactus stack 129
Café du Monde 71
callback 204
callee 152
call expression 27
call frame 442
CallFrame struct 442
calling convention 451
call stack 434
Caml language 70
capacity, array 245
Careless Whisper 127
cascaded error 90
Celes, Waldemar 283
CFG 60 . See also context-free grammar
character 23, 356–357
Cheney’s algorithm 524
Chesterton, G.K. 3
Chomsky hierarchy 45
Chunk struct 244
Church, Alonzo 138
Clang compiler 19
C language

argument evaluation order 154, 271
linker identifier limitation 360
memory management 287
syntactic sugar 150

C# language
classes 30
closing over loop variable 496
constructor inheritance 33
Dictionary 359
inheritance 222
syntactic sugar 150

class 29–34
declaration 31–32

ClassType enum 212
clock() 34
Clojure language

dynamic scope 127
CLOS 70, 194, 527
closed hashing 363 . See also open addressing
closed upvalue 485
closure 28–29, 168

runtime state 438
closure conversion 464
CLR 18 . See also Common Language Runtime
clustering 363
COBOL language 12
code gen 15 . See also code generation
code generation 15
code point 23, 356
CoffeeScript language

expression-based 35
implicit variable declaration 134–135

whitespace sensitivity 55
collision, of hash keys 361
combining character 356
comment

block 55
line 22

Common Language Runtime 18
Common Lisp language

multimethods 70
namespaces 158

common subexpression elimination 15
comparison operator 24
compiler 18

just-in-time . See just-in-time compiler
single-pass . See single-pass compiler
source-to-source 17

compiler-compiler 6
Compiler struct 401
computed goto 269
concatenation, string 24, 102, 350–351
concurrent garbage collection 518
conditional control flow 139
conditional operator 24
condition clause 27, 145
configuration file 4
conservative garbage collection 500
constant folding 15
constant pool 253
constant propagation 15
constant string 355
constant table 253
constructor 213
context-free grammar 60–61
contextual keyword 304
continuation-passing style 14
control flow 27, 413–414
control flow graph 14
Cooper, Keith 602
copy-down inheritance 570
Coraline 3
core library 34
count, array 245
covariance 110
cover grammar 125
CP/M operating system 18
C Programming Language, The 332
CPU cache 241
CPython

bound method 547
bytecode verification 546
compiler and interpreter 19
implemented in C 8
unoptimized code 15

Cruller class 72
cryptographic hash 365
cuckoo hashing 363
Curry, Haskell 4, 152
Curry-Howard isomorphism 4
currying 152

d
Dahl, Ole-Johan 221
dangling else problem 140
Dart language

closing over loop variable 496
data flow analysis 17
dead code elimination 15, 586
debugger 41
declaration reflects use 22, 319
declaration statement 382
declaring variables 181
decoding, instruction 269
de Figueiredo, Luiz Henrique 283
defining variables 181
delegation 31, 577
derivation 61
derived class 33, 222 . See also subclass
designated initializer syntax 319
Design Patterns: Elements of Reusable Object-

Oriented Software 69
desugaring 146

for loop 146
variable declarations 388

deterministic finite automaton 301
DFA 301 . See also deterministic finite

automaton
dictionary 120, 359
Dijkstra, Edsger 429
direct threaded code 269
disassembler 250–252
dispatch

dynamic . See dynamic dispatch
instruction 269
static . See static dispatch

D language
syntactic sugar 150

domain-specific language 4
double hashing 363
double-precision 23
do-while loop 27
Dragonbone Chair, The 341
dragon book

formal language theory 45
hagiography 80
loving parser generators 325
magic 5

DSL . See domain-specific language
duck punching 570 . See also monkey patching
dumping bytecode 323
Dylan language 70, 194
dynamic array 244–249
dynamic dispatch 27, 30
dynamic scope 127
dynamic types 22

continuum with static types 110
runtime type checking 14, 100

e
EBNF 64
Eco, Umberto 413, 463, 541
effect 26

621

Eich, Brendan 22, 218
Emacs Lisp language

dynamic scope 127
emulator 242
encapsulation

of function parameters 161
of state 199

Engineering a Compiler 602
enhanced for statement 145
entry, hash table 359
Entry struct 366
environment 120
Environment class 120
equality operator 24
error handling 41–43

cover grammar 125
panic mode 90
syntax 89–93

error production 92
error recovery 90
error token 293
escape sequence 346
evaluation order 102
exception

for control flow 166
in C++ 213

exponent bits 591
Expr class 65
expression 24–27, 35

and . See and operator
arithmetic . See arithmetic operator
binary . See binary operator
call . See call expression
comparison . See comparison operator
conditional . See conditional operator
equality . See equality operator
get . See get expression
grouping . See grouping
logical . See logical operator
not . See not operator
or . See or operator
set . See set expression
super . See super expression
this . See this expression
variable . See variable expression

expression problem 69–71
expression statement 26, 112
extended grapheme cluster 356
extension method 234
external function 157

f
falsiness 101
familiarity, language 95, 565
FFI 157 . See also foreign function interface
Fibonacci function

in clox 462
in jlox 167

field 201
finite-state machine 45, 301
first class

class 32
function 28

fixity 24
F# language 70
flexible array member 355
Flex scanner generator 45
floating point 23, 51
floppy disk 559
FNV-1a hash function 365

implementation 368
foreach in C# 145
foreign function 157
foreign function interface 157
formal grammar 60
formal (parameter) 28
for statement 27
Forth language

syntactic sugar 150
unityped 327

FORTRAN 77 language 7
Fortran language 15

better than machine code 79
self-modifying code 442
variable allocation 440

forward declaration 122
Foucault’s Pendulum 463
Four Horsemen of the Arithmetic 313
fraction bits 591
frame pointer 442
Frankenstein 97
Fredkin, Edward 301
front end 14
FSM . See finite-state machine
function 27–29

declaration 28
defining 28

FunctionType enum 190, 437

g
Gabriel, Richard P. 158
Gaiman, Neil 3
Gamma, Erich 69
Gang of Four 99
garbage collection 23

effect on locality 241
generational 23
tracing 23

Garbage Collection Handbook, The 502
garbage collector 500
Gates, Bill 18
GC 23 . See also garbage collection
GCC compiler

compiling to native code 19
targeting multiple languages 15
written in C++ 8

GenerateAst class 67
generational garbage collection 525
generational hypothesis 525
get expression 199
getter 217
GIMPLE 15

global value numbering 15
Go language

assignment statement 123
go tool 19
implicit semicolon 57
runtime 16
syntactic sugar 150
unparenthesized condition 140

Goldfinch, The 527
Gosling, James 110
goto

computed 269
harmful effects of 429–431
the real control flow 414

grammar 13
formal . See formal grammar
lexical . See lexical grammar
syntactic . See syntactic grammar

grapheme cluster 23
grep 64
grouping expression 25
growth factor

array 247
heap 520

Gruyère 356
Gudeman, David 590

H
Hardy, Thomas 59
hash

data structure 120
etymology 365

hash code 365
hash function 365
hashmap 120
hash table 120
Haskell language

expression-based 35
lexical grammar 55
ML descendent 70

head, grammar production 61
Heinlein, Robert A. 39
Heyerdahl, Thor 171
hidden class 201
History of Lisp 502
Hoare, C. A. R. 222
Hofstadter, Douglas R. 151
hoisting 22
Hopper, Grace 12
Hotel California 163
hotspot 18, 589
HotSpot JVM 18
Howard, William Alvin 4
Hugunin, Jim 66

I
I Am a Strange Loop 151
identifier 14

scanning 53–54
idiosyncrasy credit 566

622

IEEE 754 103, 337, 590
Ierusalimschy, Roberto 283
if statement 27
immediate instruction 253
immutable value 329
implementation, language 11
Implementation of Lua 5.0, The 283
implicit conversion 22, 339
implicit return 35
inclusive time 586
incremental garbage collection 518
increment clause 145
infant mortality 525
Inferno 305
infix operator 24
inheritance 33
initializer clause 145
initializer method 32–33
initializing instances 213
instance 32, 531
instantiation 32–33
instruction format 256
instruction pointer 268
instruction selection 16
intermediate representation 14
internal consistency 95
interning . See string interning
interpreter 18–20
Interpreter class 115
Interpreter design pattern 69, 99
InterpretResult enum 267
intrusive list

of Obj 352
of ObjUpvalue 487–488

invariance, type 110
invocation, function 162
IP 268 . See also instruction pointer
IR 14 . See also intermediate representation
IronPython 66
Ishiguro, Kazuo 583

J
Jacopini, Giuseppi 430
Java language

closing over loop variable 496
collecting interned strings 516
final variable 412
HashMap 359
instantiation 197
single inheritance 527
string interning 377
super expression 226
syntactic sugar 150
this 207
virtual machine 16

JavaScript language
automatic semicolon insertion 57
benchmarks 585
closing over loop variable 495
early history 22
extra arguments 156

hoisting 172
implemented in C++ 8
implicit conversion 339
implicit variable declaration 134–135
instantiation 197
let and const 412
prototypes 218
truthiness 101
virtual machine 16
with statement 127

Java Virtual Machine 18
JIT 18 . See also just-in-time compiler
John, Elton 194
Julia language 70

multimethods 194
jump instruction 414
jump table 269
just-in-time compiler 18, 273
JVM 18 . See also Java Virtual Machine

bytecode verification 546
Jython 66

k
key, in hash table 359
Kildall, Gary 18
Klabnik, Steve 566
klass 529
Knuth, Donald 239
Kon-Tiki 171
Kotlin language

val and var 412
K&R 332 . See also C Programming Language,

The
Kristofferson, Kris 18

l
lagniappe 583
LALR parser generator 80
lambda 170
lambda calculus 138
lambda lifting 464
Landin, Peter J. 29, 145, 168
language power 218
late binding 382, 399
latency 517–518
Lee, Harper 567
left-associative operator 81
left-recursive rule 83

in recursive descent 85
Leonardo da Vinci 193
Lesk, Mike 45
lexeme 43
lexer 13 . See also scanner
lexical analysis 13, 39 . See also scanning
lexical grammar 45
lexical scope 126–127, 172, 399
lexing 13, 39 . See also scanning
Lex scanner generator 6, 45
Like Shaking Hands With God: A Conversation

about Writing 285

linear probing 363
linked list 489

ClassCompiler 554
Liskov, Barbara 225
Liskov substitution principle 225
Lisp

garbage collection 502
Lisp-1 and Lisp-2 158
Lisp 2 mark-compact algorithm 524
Lisp language

closures 29
compared to ML 70
continuations 443
expression-based 35
interpreter 20
REPL 40
symbols 377
syntactic sugar 150

literal 23–24, 44
evaluation 99

little language . See domain-specific language
LLVM 8, 242
load factor 362, 370
local class 531
local function 167
locality . See spatial locality
Local struct 401
logical operator 25 . See also and operator; See

also or operator
lookahead 49–50

unbounded 124
looping control flow 139
loop invariant code motion 15
loop unrolling 15
Lord Dunsany 137
Lord of the Rings, The 11
Lovecraftian eldritch god 339
LoxCallable interface 155
Lox class 40
LoxClass class 196
LoxFunction class 160
LoxInstance class 198
Lua language

calling convention 451
closures 464
clox debt to 22
implemented in C 8
register-based VM 283
statement separation 56
string interning 377
syntactic sugar 150
table 359
unoptimized code 15

l-value 124

m
MacGyver 22
Mad Love 111
magic 5, 23, 265, 437
managed language 499
mantissa bits 591

623

map 120
mark-and-sweep garbage collector 502
marking phase 502
mark-sweep garbage collector 502
markup language 4
Matsumoto, Yukihiro . See Matz
Matz 17, 19
Maurier, Daphne du 381
maximal munch 53
McCarthy, John 502
memory management 22–23 . See also garbage

collection
memory safety 103
metaclass 217
metalanguage 70 . See also ML language
metaprogramming

to generate AST classes 66–68
metasyntax 61
method 32
method call 203
microbenchmark 585
microcode 239
Microsoft 18
middle end 14
Milne, A. A. 327
Milner, Robin 70
minuend 271
mixfix operator 24
mixin 234
ML language

algebraic datatypes 328
family tree 70
let expression 175

Modern Compiler Implementation 602
Modula-3 language 15
Molière 79
monkey patching 570 . See also duck punching
Monte Carlo algorithm 563
Mötley Crüe 356
Motorola 68k instruction set 15
MRI 8, 17
multimethod 70, 194
multiple inheritance 234
mutation 123
Mysterious Flame of Queen Loana, The 541

n
Name of the Rose, The 413
NaN 103, 337

equality 600
NaN boxing 590
NaN tagging 590
native code 15
native extension 157
native function 157, 458
native interface 157
negation 24
negative zero 591
nesting 128
Next 700 Programming Languages, The 29
nil 23–24

Nim language 10
non-associative operator 81
nonterminal 61
not operator 25
novelty budget 566
null 24 . See also nil
number 23 . See also double-precision; See

also floating point
literal 51–52

nursery 525
Nygaard, Kristen 221

o
ObjBoundMethod struct 547
ObjClass struct 528
ObjClosure struct 465
object 98
object-oriented language 8, 29

pure 34
object-oriented programming 30, 193–194,

527
ObjFunction struct 434
ObjInstance struct 531
ObjNative struct 459
ObjString struct 344
Obj struct 343–344
ObjType enum 344
ObjUpvalue struct 479
OCaml language 70
Octane benchmark suite 585
OOP 30 . See also object-oriented programming
OP_ADD 278
OP_CALL 451
OP_CLASS 530
OP_CLOSE_UPVALUE 487
OP_CLOSURE 467
opcode 244
OP_CONSTANT 255
OP_DEFINE_GLOBAL 389
OP_DIVIDE 278
open addressing 363
open upvalue 485
OP_EQUAL 337
operand 24

of bytecode instruction 255
operation code 244 . See also opcode
operator 24

and . See and operator
binary . See binary operator
comparison . See comparison operator
conditional . See conditional operator
equality . See equality operator
infix . See infix operator
logical . See logical operator
mixfix . See mixfix operator
not . See not operator
or . See or operator
postfix . See postfix operator
prefix . See prefix operator
scanning 48
ternary . See ternary operator

operator overloading 102
OP_FALSE 334
OP_GET_GLOBAL 391
OP_GET_LOCAL 409
OP_GET_PROPERTY 536
OP_GET_SUPER 576
OP_GET_UPVALUE 472
OP_GREATER 337
OP_INHERIT 569
OP_INVOKE 560
OP_JUMP 418
OP_JUMP_IF_FALSE 416
OP_LESS 337
OP_LOOP 423
OP_METHOD 545
OP_MULTIPLY 278
OP_NEGATE 277
OP_NIL 334
OP_NOT 336
OP_POP 386
OP_PRINT 384
OP_RETURN 244
OP_SET_GLOBAL 393
OP_SET_LOCAL 409
OP_SET_PROPERTY 536
OP_SET_UPVALUE 472
OP_SUBTRACT 278
OP_SUPER_INVOKE 578
optimization 15, 492
OP_TRUE 334
order of operations 59–60 . See also precedence
or operator 25
overloading 71
overriding 71, 225

P
padding, struct 329
panic mode 90
Pāṇini 61
parameter 28
parent-pointer tree 129
ParseFn typedef 319
parser 13

etymology 79
ParseRule struct 319
parse tree 13, 65
parsing 13
Pascal language

assignment statement 123
function call syntax 152
p-code 16
procedures and functions in 112
single-pass compilation 17
string length byte 341
syntax 22

Pastry class 71
PastryVisitor interface 71
pattern matching 70
payload 328
p-code 16, 242
PDP-11 242, 320

624

Perl language
complexity 31
reference counting 23
syntactic sugar 150

persistent data structure 175
PHP language

implicit conversion 339
reference counting 23
truthiness 101
virtual machine 8

pigeonhole principle 362
pipelining, instruction 587
Pitman, Kent 158
placement new 213
Please Excuse My Dear Aunt Sally 59–60
PL/M language 18
pointer tagging 597
positive zero 591
postfix operator 24
post-order traversal 60, 101, 477
Pratchett, Terry 221
Pratt parser 306 . See also top-down operator

precedence parser
Pratt, Vaughan 273, 306
precedence 25, 81
Precedence enum 316
precise garbage collection 500
predictive parsing 88, 94
prefix operator 24
pre-order traversal 477
Prestige, The 265
pretty printing 74–76
Priest, Christopher 265
primitive 157
print statement 22, 26, 112
probe sequence 363
probing 363
procedural language 193
production, grammar 61
product type 328
profiler 585
program counter 268
prompt 40
property 199, 535
property access 199
prototypes 30–31, 218–219, 577

Lua function 465
puce-chartreuse-fuchsia-malachite garbage

collector 509
pun 6, 14, 428
punched cards 7, 242
Python language

assignment statement 123
closing over loop variable 496
dictionary 359
extra arguments 156
implicit semicolon 57
implicit variable declaration 134–135
inheritance 222
instantiation 197
lexical grammar 55
multiple inheritance 527

print statement 112
reference counting 23
self 207
stack trace order 455
string encoding 356
syntactic sugar 150
truthiness 101
virtual machine 16

q
QNaN Floating-Point Indefinite 591
quiet NaN 591

R
Racket language 30 . See also Scheme language
railroad diagram 301
rainy day fund 511
Raku language

multimethods 194
string encoding 357

range-based for statement 145
reachability 500
Rebecca 381
recursion 27

local variables in 440
recursive descent parsing 84–85
reference counting 23, 524
register allocation 16
register-based bytecode 283–284, 409
register window 283
regular expression 45
regular language 45, 60
Remains of the Day, The 583
REPL 40
Representing Type Information in Dynamically

Typed Languages 590
reserved word 53 . See also keyword
resolution 14, 176, 463
Resolver class 178
return address 442
Return class 166
return statement 28
reverse Polish notation 77
Richards, Martin 16
right-associative operator 82
Ritchie, Dennis 8, 22, 140
Robin Hood hashing 363
root, garbage collector 500
RPN 77 . See also reverse Polish notation
RTL 15
Ruby language

closing over loop variable 496
collecting symbols 516
expression-based 35
field access 199
implemented in C 8
implicit variable declaration 134–135
inheritance 222
inheritance syntax 33
instantiation 197

optional parentheses 27
self 207
singleton methods 31, 527
state encapsulation 555
symbol 377
syntactic sugar 150
tree-walk interpreter 17, 19
truthiness 101
whitespace sensitivity 55

rule, grammar 61
runtime 16
runtime error 103–106, 454
Russell’s paradox 138
Rust language

ML descendent 70
redeclaring locals 406

r-value 124

s
Sasada, Koichi 17
Scala language

ML descendent 70
val and var 412

scalar replacement of aggregates 15
scanner 13
Scanner class 46
Scanner struct 290
scanning 13, 39
scatter table 120, 365
Scheme language

argument evaluation order 154, 271
let expression 175
minimalism 22
recursion for repetition 27, 63
symbol 377
variable declaration 112

Schmidt, Eric 45
scope 14, 126
scripting language 4, 40
self-hosting 8
Self language

no classes 527
prototypes 218

semantic analysis 171, 176
semantics 14
separate chaining 362

deletion 373
set expression 201
setter 217
shadowing

method 206
variable 128

Shakespeare, William 399
Shelley, Mary 97
short-circuiting 25, 141
side effect 112
side table 186
signalling NaN 591
sign bit 591
significand bits 591
simplicity, language 565

625

Simula language
inheritance 194, 221
this 207

single-pass compiler 17, 307–308
Singleton design pattern 266
Smalltalk language

constructor inheritance 33
dispatch for branching 27
field access 199
instantiation 197
minimalism 22
self 207
state encapsulation 555
symbol 377
syntactic sugar 150

Smith, Randall 218
SML language

expression-based 35
ML descendent 70

SPARC instruction set 15, 283
spatial locality 241

effects of garbage collection on 509
SR-71 Blackbird 240
stack-based virtual machine 273
stack effect 385
stack overflow 448
stack semantics 464
stack trace 454
standard library 34
state 111
state machine 301
statement 26–27, 35

block . See block
expression . See expression statement
for . See for statement
if . See if statement
print . See print statement
return . See return statement
var . See variable statement
while . See while statement

statement parentheses 402
static analysis 14
static dispatch 30
static scope 126
static single-assignment 14
static types 4, 14, 22, 411

continuum with dynamic types 110
Stmt class 113
stop-the-world garbage collection 518
strangeness budget 566
strength reduction 15
strict aliasing 593
string 23

concatenation . See concatenation, string
encoding 356–357
in formal grammar 60
interning 377
interpolation 304
literal 50–51

struct inheritance 343–345
Structure and Interpretation of Computer

Programs 5

structured programming 429
structured program theorem 430
subclass 33, 222
subexpression 24
subscript operator 395
subtrahend 271
subtype 222
suite, benchmark 601
sum type 328
SunSpider benchmark suite 585
superclass 33, 222
super expression 33
superinstruction 560
supertype 222
sweeping phase 502
Swift language

let and var 412
ML descendent 70
self 207
string encoding 357
unparenthesized condition 140

symbol
grammar 61

symbol table 14
synchronization 91–93
syntactic grammar 60
syntactic sugar 145–146

taste 150
syntax 13

error 13
tree . See abstract syntax tree

syntax diagram 301
syntax-directed translation 17, 80
syntax tree 65

T
table 120, 359
Table struct 366
tagged union 328–329
target architecture 15
Tartt, Donna 527
Tcl language

variable declaration 112
temporary 400
tenured object 525
terminal 61
terminator 347
ternary operator 24, 139 . See also conditional

expression
this expression 22, 32
three-address code 14
throughput 517
Time Enough for Love 39
token 13, 39

location 44
type 43

Token class 44
Token struct 292
TokenType enum, clox 292
TokenType enum, jlox 43
To Kill a Mockingbird 567

Tolkien, J. R. R. 11
tombstone 374–377
top-down operator precedence parser 273, 306
top-down parser 84
Torczon, Linda 602
tracing garbage collector 502
trait 234
transcompiler 17
transpiler 17
Trash 499
tree . See abstract syntax tree
tree-walk interpreter 17
tricolor abstraction 509–510
tricolor invariant 510
trie 301
TRS-80 565
truthiness 101
tuple type 328
Turing, Alan 138
Turing-completeness 138–139, 428
Turing machine 138
type

dynamic . See dynamic types
error 14
static . See static types

type punning 343, 593

u
Unabridged Devil’s Dictionary, The 359
unary expression 64
Under the Greenwood Tree 59
Ungar, David 218
Unicode 23, 356
unityped language 327
UNIX 18
unordered map 359
unreachability 500
unreachable code 191
unrestricted grammar 61
upvalue 470–471

open and closed 485
Upvalue struct 474
UTF-8, UTF-16, and UTF-32 356–357

V
V8 JavaScript VM 585
value 98
ValueArray struct 253
value, in hash table 359
Value struct 329
ValueType enum 328
variable 22, 26–27
variable declaration 116

implicit 134–135
variable expression 116
variadic function 332
var statement 26
viola 348
virtual inheritance 234
virtual machine 16, 242

626

language 16
process 16
system 16

Visitor design pattern 71, 99
Visitor pattern 71
VM 16 . See also virtual machine
VM struct 266
Void type in Java 115
Vonnegut, Kurt 285

W
Wall, Larry 31
waterbed theory 31
weak reference 515–516
WebAssembly 18
Wheeler, David 433
while statement 27
Whip, The 499
Williams, Tad 341
Winnie-the-Pooh 327
Wirth, Niklaus 16, 242, 306
wizard . See magic; See also Structure and

Interpretation of Computer Programs
worklist 509
Wren language

string encoding 357
Wulf, William 14

x
x86 instruction set 15
XLT86 17

y
Yacc parser generator 6, 20
YARV 17

	Design Note: What’s in a Name?
	Design Note: Expressions and Statements
	Design Note: Implicit Semicolons
	Design Note: Logic Versus History
	Design Note: Static and Dynamic Typing
	Design Note: Implicit Variable Declaration
	Design Note: Spoonfuls of Syntactic Sugar
	Design Note: Prototypes and Power
	Design Note: Test Your Language
	Design Note: Register-Based Bytecode
	Design Note: It’s Just Parsing
	Design Note: String Encoding
	Design Note: Considering Goto Harmful
	Design Note: Closing Over the Loop Variable
	Design Note: Generational Collectors
	Design Note: Novelty Budget
	Welcome
	Introduction
	1.1 Why Learn This Stuff?
	1.2 How the Book Is Organized
	1.3 The First Interpreter
	1.4 The Second Interpreter
	Challenges
	Design Note: What’s in a Name?

	A Map of the Territory
	2.1 The Parts of a Language
	2.2 Shortcuts and Alternate Routes
	2.3 Compilers and Interpreters
	2.4 Our Journey
	Challenges

	The Lox Language
	3.1 Hello, Lox
	3.2 A High-Level Language
	3.3 Data Types
	3.4 Expressions
	3.5 Statements
	3.6 Variables
	3.7 Control Flow
	3.8 Functions
	3.9 Classes
	3.10 The Standard Library
	Challenges
	Design Note: Expressions and Statements

	A Tree-Walk Interpreter
	Scanning
	4.1 The Interpreter Framework
	4.2 Lexemes and Tokens
	4.3 Regular Languages and Expressions
	4.4 The Scanner Class
	4.5 Recognizing Lexemes
	4.6 Longer Lexemes
	4.7 Reserved Words and Identifiers
	Challenges
	Design Note: Implicit Semicolons

	Representing Code
	5.1 Context-Free Grammars
	5.2 Implementing Syntax Trees
	5.3 Working with Trees
	5.4 A (Not Very) Pretty Printer
	Challenges

	Parsing Expressions
	6.1 Ambiguity and the Parsing Game
	6.2 Recursive Descent Parsing
	6.3 Syntax Errors
	6.4 Wiring up the Parser
	Challenges
	Design Note: Logic Versus History

	Evaluating Expressions
	7.1 Representing Values
	7.2 Evaluating Expressions
	7.3 Runtime Errors
	7.4 Hooking Up the Interpreter
	Challenges
	Design Note: Static and Dynamic Typing

	Statements and State
	8.1 Statements
	8.2 Global Variables
	8.3 Environments
	8.4 Assignment
	8.5 Scope
	Challenges
	Design Note: Implicit Variable Declaration

	Control Flow
	9.1 Turing Machines (Briefly)
	9.2 Conditional Execution
	9.3 Logical Operators
	9.4 While Loops
	9.5 For Loops
	Challenges
	Design Note: Spoonfuls of Syntactic Sugar

	Functions
	10.1 Function Calls
	10.2 Native Functions
	10.3 Function Declarations
	10.4 Function Objects
	10.5 Return Statements
	10.6 Local Functions and Closures
	Challenges

	Resolving and Binding
	11.1 Static Scope
	11.2 Semantic Analysis
	11.3 A Resolver Class
	11.4 Interpreting Resolved Variables
	11.5 Resolution Errors
	Challenges

	Classes
	12.1 OOP and Classes
	12.2 Class Declarations
	12.3 Creating Instances
	12.4 Properties on Instances
	12.5 Methods on Classes
	12.6 This
	12.7 Constructors and Initializers
	Challenges
	Design Note: Prototypes and Power

	Inheritance
	13.1 Superclasses and Subclasses
	13.2 Inheriting Methods
	13.3 Calling Superclass Methods
	13.4 Conclusion
	Challenges

	A Bytecode Virtual Machine
	Chunks of Bytecode
	14.1 Bytecode?
	14.2 Getting Started
	14.3 Chunks of Instructions
	14.4 Disassembling Chunks
	14.5 Constants
	14.6 Line Information
	Challenges
	Design Note: Test Your Language

	A Virtual Machine
	15.1 An Instruction Execution Machine
	15.2 A Value Stack Manipulator
	15.3 An Arithmetic Calculator
	Challenges
	Design Note: Register-Based Bytecode

	Scanning on Demand
	16.1 Spinning Up the Interpreter
	16.2 A Token at a Time
	16.3 A Lexical Grammar for Lox
	16.4 Identifiers and Keywords
	Challenges

	Compiling Expressions
	17.1 Single-Pass Compilation
	17.2 Parsing Tokens
	17.3 Emitting Bytecode
	17.4 Parsing Prefix Expressions
	17.5 Parsing Infix Expressions
	17.6 A Pratt Parser
	17.7 Dumping Chunks
	Challenges
	Design Note: It’s Just Parsing

	Types of Values
	18.1 Tagged Unions
	18.2 Lox Values and C Values
	18.3 Dynamically Typed Numbers
	18.4 Two New Types
	Challenges

	Strings
	19.1 Values and Objects
	19.2 Struct Inheritance
	19.3 Strings
	19.4 Operations on Strings
	19.5 Freeing Objects
	Challenges
	Design Note: String Encoding

	Hash Tables
	20.1 An Array of Buckets
	20.2 Collision Resolution
	20.3 Hash Functions
	20.4 Building a Hash Table
	20.5 String Interning
	Challenges

	Global Variables
	21.1 Statements
	21.2 Variable Declarations
	21.3 Reading Variables
	21.4 Assignment
	Challenges

	Local Variables
	22.1 Representing Local Variables
	22.2 Block Statements
	22.3 Declaring Local Variables
	22.4 Using Locals
	Challenges

	Jumping Back and Forth
	23.1 If Statements
	23.2 Logical Operators
	23.3 While Statements
	23.4 For Statements
	Challenges
	Design Note: Considering Goto Harmful

	Calls and Functions
	24.1 Function Objects
	24.2 Compiling to Function Objects
	24.3 Call Frames
	24.4 Function Declarations
	24.5 Function Calls
	24.6 Return Statements
	24.7 Native Functions
	Challenges

	Closures
	25.1 Closure Objects
	25.2 Upvalues
	25.3 Upvalue Objects
	25.4 Closed Upvalues
	Challenges
	Design Note: Closing Over the Loop Variable

	Garbage Collection
	26.1 Reachability
	26.2 Mark-Sweep Garbage Collection
	26.3 Marking the Roots
	26.4 Tracing Object References
	26.5 Sweeping Unused Objects
	26.6 When to Collect
	26.7 Garbage Collection Bugs
	Challenges
	Design Note: Generational Collectors

	Classes and Instances
	27.1 Class Objects
	27.2 Class Declarations
	27.3 Instances of Classes
	27.4 Get and Set Expressions
	Challenges

	Methods and Initializers
	28.1 Method Declarations
	28.2 Method References
	28.3 This
	28.4 Instance Initializers
	28.5 Optimized Invocations
	Challenges
	Design Note: Novelty Budget

	Superclasses
	29.1 Inheriting Methods
	29.2 Storing Superclasses
	29.3 Super Calls
	29.4 A Complete Virtual Machine
	Challenges

	Optimization
	30.1 Measuring Performance
	30.2 Faster Hash Table Probing
	30.3 NaN Boxing
	30.4 Where to Next
	Challenges

	Backmatter
	Appendix I
	A1.1 Syntax Grammar
	A1.2 Lexical Grammar

	Appendix II
	A2.1 Expressions
	A2.2 Statements

	Index

