C# Programming

for Absolute
Beginners

Learn to Think Like a Programmer and
Start Writing Code

Second Edition

Radek Vystavel

Apress:




C# Programming for
Absolute Beginners

Learn to Think Like a Programmer
and Start Writing Code

Second Edition

Radek Vystavél

Apress’



C# Programming for Absolute Beginners: Learn to Think Like a Programmer and
Start Writing Code

Radek Vystavél
Ondfejov, Czech Republic

ISBN-13 (pbk): 978-1-4842-7146-9 ISBN-13 (electronic): 978-1-4842-7147-6
https://doi.org/10.1007/978-1-4842-7147-6

Copyright © 2021 by Radek Vystavél

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484271469. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-7147-6

To my parents whose loving care allowed me to
live an untroubled childhood and to develop my talents
in exact sciences. Let this book be a celebration of their efforts,
not having been, hopefully, in vain.

Mym rodiciim, jejichz ldaskyplnd péce mi umoZznila proZit
bezstarostné détstvi a rozvinout naddni pro exaktni védy.
At'je tato kniha oslavou jejich usili, které, doufam, neprislo vnivec.



Table of Contents

About the AUROF ........ccccicemmiimsiniss s XXV
About the Technical ReVIEWET .......ccussusssassssassssssssansssanssssssssnsssasssssssssnsssassssasssansas XXvii
Acknowledgments........ccccuuuisssnmmmnmmmmmmssssssssnssnnnmeesssssssssssnnnneessssssssnnnnnnnnnesssssnnnnnnns XXix
Chapter 1: Getting Ready........ccciuuissmmmmmsssssnnmmsssssnnsmssssssnssssssssssnsssssnssssssssnsnsssssnnnnsssss 1
CH LANQUAGE . v.vevereerreerssesessesessesessssessssesesss s ssasessssasssssssssasessssensssanssessessnsenssssssssnsensssansssssessnsannns 1
WHom IS ThiS BOOK FOF .....coviuiiiiiiriirsisscse s sesasssssssssens 2
How the Book Differs from OTNErsS ... sssess 2
How t0 WOrk With the BOOK..........cccocrierircnircsercc s 3
What to Install on YOUr COMPULET........ccceiiirniercsin e sn s s s ss e snens 4
Development ENVIFONMENT .........ccoeiiiiiincr s sresr e snens 4
LT LIS (00 T 5
WINAOWS VEISIONS ......cveeeereecriecreece e se e s e s e e 5
Non-Windows Operating SyStEMS.........cccriiiinininisns e s 6
INSTAIALION ... e s r e r e ne e nnnn s 7
Free RegiStration ..........coccorecrerere s s 7
Updates and FEedDacK ... e s 8
SUMIMAIY.c.eetee e e e e R e b e e e R e e R e e R e ne e Re e e Re e e e e e e e e Re e e Re e nenne e nRnnn s 9

g T G H ) ) 11
Chapter 2: Your First Program.........cccccuusseennmmsssssnsmssssssssssssssssssssssssssssssssssssssssnnnsnss 13
SEEING I IN ACHON ... p e ne e 13
Creating the PrOJECT ... e e e s s 13
Launching Visual STUIO ........cceceieniininern s s ss s snens 14
Creating NeW ProjECL........cccvcii it s 16



TABLE OF CONTENTS

Writing the Program COOB........ccvereverrerseriersesensersessessssessessessessssessessesssssssessessesssssssessessessssensessens 17
The Look of the Development ENVIironment..........ccccoverininnnneninsensennessesses e sessessse e sessens 17
Knowing Where to Write Statements.........covcvvrinernrnienens e sessessessssesessees 19
WHEING The COUE.......ccveerereereeserere et s sr e s a e sa e e s s ae e e e s e naennen 19
Understanding Your First Statements.........cccvcvvrernrninenesensene s sese s sessessessessssessessens 21
USING INTEIIISENSE .....cvereerteririere st re et s s s s s e e s saesa e e e e s e sae e e e s e naesnene e e naennens 22

SAVING the PrOJECL.......ecvererererrerere s se s s s s sa s s s e e s sresa e e s s aesae e e e naesaesa e e e e nnees 22

Launching YOUr Program..........ccccvcieninniniene s sss e s s ss e s sssssssessessesssssssesnesrsssssennesnes 23
) 25

Changing TEXE SIZE......ccuevrerrreererererese s e nr e e nnn e 25

Dealing With ETOIS .......cccoverereseresesesese s s s e s sesss e s sss s sesssssssssessssssensssssssssssnsssenns 26

FiniSNiNgG YOUEr WOTK.......cccoieriiiseriese s s ss s s sn s ss s s s s ssssesssssssssnsessns 28

ReSTONNG YOUE WOTK.......ccorcereresirsere st se s se s sae s s sa e e e saesae s s naennes 28

TransSTerring YOUE WOTK.......cocvciieinririn s s s ss s s sn e s s sne s e 31

USING SOIULION EXPIOTET ......ccciieccerieerincrins et b e st s e sttt 31

E 1] 4= OSSOSO 34

Chapter 3: Dealing with Qutput .......ccccinemmmniiemmmmmsssn 35

Producing NUMEKiC QULPUL........ccvveeriirireerese s 35
L SRS 35
RS0 0] OSSR 36
DISCUSSION ....cviuirsreesree s s e s r e s r e e e s e R e p e e e e nRe e nr s 37

MaKing CalCUIAtIONS........cccvereririerere e sere s se e s b s ae st ae s ae e e e e s ae e e e e e naennes 37
TASK vt 37
SOIULION .t ——————— 38

Making More Complex CalCUIAtionsS.........ccccverererverieresessersese s sessese e sessesse e ssssessessessesessessesaes 38
LT 38
SOIULION ..t 38
3T ] 0] o R 39

O 101410 = SR 40
L] 40
£S04 41



TABLE OF CONTENTS

Outputting SPecial CharaCters ........cvvirverernrerserere s s sse s sse e s e ssesaessesessesneees 41
L] 4
£S04 42
DT TS0 o R 43

Using Preformatied TeXL........cco o s s a e s 43
LTSRN 44
£ 10 10§ 44

7 [0 T T = T I OSSOSO SSN 44
LTSS 44
£ 10 0TSSR 45
DT o111 0 o 46

SUIMIMAIY.....eeeeeeeere e e e e s ae e e e e e e e e e Re e s ee e se e e e e Re e e se e nen e e nnnneas 46

Chapter 4: Using Variables ......ccccuusseemmmmsssnsnmmssssnsnmmssssssnsessssssssssssssnnsssssssnnssssssnnnsnsss 47

B3] (0] T = SO S PSSR 47
L SRS 47
RS0 10 OSSPSR 47
DISCUSSION ....cviuersreerree s s e r e e e re e e e s e R e r e e s e R e nr s 48

(0T T0 T (1T 0T R 49
TASK ettt 49
SOIULION .t ———————— 49

2 [0 T 1= T I RO 50
L] 50
SOIULION ..t 50
DT ] 0] o R 51

Doing Calculations With Variables...........cccvrevennnnieninensnene s sessesse e sssssssessessessssessesnes 51
LT 51
£S04 51
DT o111 0 o N 52

Assembling a Grand COmMBINAtION...........ccvovierievnrerrere s se e sre s e e saesaens 52
LTSS 53

vii



TABLE OF CONTENTS

RST8] 11 TP 53
DT o111 0 o N 54
Working with Decimal NUMDETS .......ccovciiiiinnsinicness s srs e s sesnesnens 54
TASK wvuvurueuesesesesssssssesessssss s s s e e e e e e e R R R R e e e R R R R 54

B30 1] TP 54
DT o111 0 o RN 55
Working With LOGICal VAIUES ........coeviiirierererinsene s s s s e s st ses e sressssesnesnens 56
LTS T RT 56

830 0] TSP 56
DT o110 o 56
SUIMIMAIY..... et e e e e e ae e e e s e e e e e Re e s e e e re e e e e Re e e se e nennn e nnnneas 57
Chapter 5: Working with ODjects........cccusemmmmnsssmmnmmnsssnsnmmssssssnmmssssssnmnsssssnesssssnnnenns 59
WhEE TIME IS I? .t e e nr s 59
L SRS 59

RS0 0] OSSR 60
What Date IS I TOUAY?.......coeierrerererirrerierese s re s ses e s ssesaeses e s e ssesse e s e s e saeste e s e ssesaesssnenaesaens 60
TASK ettt e 60
SOIUTION oot ———————— 61
Working with Date COMPONENTS........c.ccvvrierertrrriere s se s s e s s sessessesessessesaessssessessens 62
L] 62
SOIULION .t 62
USING NAMESPACES ....c.veruerereereereres e s sessesssessesaesesssesae s e sseesaesaesaesssesaesaessessessesaessssssesaessnnsens 63
IMPOEANT USING .evveveieriersie et s r e s s e e s b s e e s a e e e nn e e ae e 63
LTS 0 (o= S 65
WiItROUT USINGS......eiiiiiece et s s a e s e n e s n 66

C# 9.0 MinimalistiC Program..........ccccinicnncninners s ses s sessesessssessssesessesessssens 67
Using the Environment ODJECT.........ccoeviiriircrr s 70
LTSRN 70
S0 11 70 70
SUIMIMAIY....eteereeere s s e se e e e e e e e e e Re e r e se e e e s Re e re e nen e e nrnnnes 71

viil



TABLE OF CONTENTS

Chapter 6: Using Object ACtiONS ......cccuvusssemsssssssnnnsmssssnssssssssnsssssssssnsssssssnnsssssssnnnssss 73
Displaying the Month in TeXL........ccciiiiniin e 73
LTSS 73

310 0SS 74
DT o111 0 o N 74
DiSPlaying TOMOITOW. ......ccciererinseresesrs s se s s e st b e s s b e e ne s p e e e e nennas 74
LTSS 75

ST 11 0] P 75
Displaying @ SPECifiC DALE .........ccoveerrrerereneresererese s 76
LTSRS 76
S0 11 0] P 76

310 LT 0T S T =N 0 S 77
LTSS 77
S0 11 170 P 77
o) T 78
ROIING TWO DiICE....vvueeerreerrssesesseersesessssessssese s sr s s s e e s se e s e s srs e s e sss e sssssssssessssssessnsessns 78
L SRS 78

30 10 ST 79
Getting the Path t0 the DeSKLOP .......cccvceereceriserncs s e 80
L S S TS STSS 81

RS0 10 SOOI 81
ENUMEIALION ...ttt 82

£ 11114 7R 83
Chapter 7: More About ObJectS.......cccvusmmmmssnmmsssnsmsssnsesssnsesssnsesssnsssssnsssssnnssssnnssssans 85
Text @s @n ODJECT........cc e —————————— 85
LTSRN 85

ST 11 0] P 86
DT o110 o 86

ix



TABLE OF CONTENTS

NUMDEIS @S ODJBCIS....cveitrererrertrrerereresseressesse e s e sse s sas e s e saesae e s e saesaese s e saesaesaesesnesaesaessnnenaeas 87
LT 87
RST8] 11 TR 88
DT T 10 o R 88

Formatting NUMDEIS ........oovree e n e 89
LTS 90
B30 11 TP 90

LOCANIZEA QULPUL ..o e e s r e e 91
LTSS Cl
RST8] 1] TP 92

0] T 1T T T N 0 93
S LT 0 T 3 93
CIASSES ....eeeeeeereecrerse e e e e e e e e e e R e e e R e R e e e 94
Relation Between Class and ODJECL........c..cocvrvrnnnnnni e 94
SPECIAl CIASSES .....eeerueruiriiiirire s s s s e s bbb e ae b e e e nenne s 94
R3] (1T L= 95

SUIMIMAIY....eveertecreee e e e s e e e s Re e e e e e e e e Re e s e se e e e nRe e e Ee e nen e e nnnnnes 95

Part I1: Calculations .......cecvirummmseemsssssssmmessssssssssssssssnssssssssnssnnnnnsssssnssnnnnnnnnssnnes 9 7

Chapter 8: Inputl........ccinimm s ————————————. 99

3 ] ] SR 99
L] 99
£ 10 1] 100
BELer INPUL ... e e 100
TASK weuvueuesesesesesssssssesesasssss s s s s s e e e e e ee e e R R A A A e R e e e R e nan 100
£ 10 10O 101
DT o111 0] o TN 101
NUMEHIC INPUL ... p e e 101
LTSS 101
£ 0] 11 0] 102
DT 1T 0] o T 103



TABLE OF CONTENTS

Calculation with Entered NUMDET ..........ccoviiininnssssss s sesss s 103
LT 103
£S04 104

=] 0= 104
LTSS 104
£S04 105

AGITION ...t b e e e e e e Rnnan 105
LTSS 106
£ 0] 11 0] 106

INCOMTECT INPUL......oee e g e nae 107
LTS 107
£ 0] 11 0] 107
What HapPEned ..o s et b e e 109
Interior of the CAtCh Part..........ooeoee s 109
Complete SOIULION ... e e 109
TSN et —————————————— 110
EXPIANALION.......cceiieiccircr e e e 110

£ 7 S 111

Chapter 9: NUMDErS.....ccccuriisnmnmmmssssnnnmmsssssnnmsssssnsnssssssnnsssssssnnsesssssnnnssssssnnsessssnnnnss 113

DECIMAl INPUL.......ceeeecccer e e e e e e s s ae e e s ae s ae e e e s e nne e 113
TASK vt 113
SOIULION .t 114

Localized NUMEKIC INPUL .......ceieiirier e se e s s se s n e s s a e s s 114
LT 115
£S04 115
Testing and CONCIUSIONS........cieververiererrserserese s s s e e s e s ssesse e s e ssesaeses e ssesaessessssesseses 116

BasSiC ArtNMETIC........cce e e 118
LTS 118
£S04 118

Mathematical FUNCLIONS...........coreerec e 119
LTSS 119



TABLE OF CONTENTS

B30 11 120
DT eT 1T 0] o N 121
INTEYET DIVISION ....eeueiectecircc e e s e e e b e e nne 121
TASK wvuvueuesesesesssesesssssessssssssss s s s e e e e e e e e R AR R R A e e e e R nan 122

RS0 11 TS 123
DT o111 0] o N 124
SUMIMANY ..t e e s R e e e e R R e e e e e R e R e e e e e Re e Re e R e e e e e Re e R e e e e e Renns 124
Chapter 10: Economic Calculations..........ccccununssmmmmmmmmmmmmsssssssssssssmmssssssssssssssssnns 127
CUITENCY CONVEISION......civiererscserreserssesessesessesessssesessesessssesessesesssssssssssssssssssansssssssssssssssansssnsssnns 127
LTSRS 127

£ o] 11 0] TS 128
TOAI PFICE c.vveereesiscssnrese e e ne e p e nr e nrnnn s 128
LGSR 128

B30 0] OSSPSR 129
DT o117 0] o ST STS 130

0] 01110 RN 130
L SRR 131

B30 0] OSSOSO 131
DISCUSSION ....cviuerirucersese e e e e s e R e b e ep e e e e pe e 132
ROUNGING .. eiueireiirire s serses s ser e s s sae e se s ae b e s e s ae s s e e e e e e aesae e e e saeeae st e e nannnens 133
TASK ettt 133
SOIUTION .. 134
FUtNEr ROUNAING ..ottt sa e s a e s n e s s n e 135
LTS 135
£S04 137
ValUG-AUEA TAX .....cvieerieriee e s se s re e e 139
LTS 139
YT 1T LS 139
£S04 140
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e b e e e RenR e e e e naenrs 141

xii



TABLE OF CONTENTS

Chapter 11: Calculations with Dates ........cccrnmsemmnmmssssnnnmmsssssnnmmmsssnnemsssssesssnn 143
Date INPUL.....oe e 143
LTSS 143

£ 10 10§ 144
DT o111 0] o T 145
SINGIE MONTN......oe e ———————— 145
LTSRN 145

£ 0] 11 0] 145
DT o110 o T 146
01T (- O PSP 147
LTSS 147
ANAIYSIS ... reee e s s e s e e e e AR e e e e e Re e nRe e e e e nnRennas 148
S0 11 0] S 149
Date DIffErBNCE .....veeeeeeereeerer e e 149
LTSS 150
30 11 0] ST 150
TIME ZONES ANA UTC .....eceeveeriresereses s se s se s s sn e s ssssssnssasssesssssnsenens 151
L= TSRS 151

B30 0] OSSPSR 152
11T 111 1T o OSSOSO 153
Chapter 12: Understanding Different Kinds of Numbers..........ccosccemrrnsssnnnnnssssnnnns 155
MOre NUMEKIC TYPES ...vecerecrerieirsi e s e s se s e s p e s st e s nne 155
LTSS 155

£ 10 10§ 156
DT o111 0] o N 157
Memory CONSUMPLION........ccciiiirirre e r e e s p e nne 159
LTSRN 159

£ 0] 11 0] 160

0] 1 T £ 160
DT o110 o S 161

xiii



TABLE OF CONTENTS

OVEITIOW ....cvtcct e a e a s e R 161
LTS 162

RS0 11 O 162
DIR[0 o PO 163
Dealing With OVEITIOW.......ccceveierrerere s serere s e e s srese s e sse s ss s e s ssesaesesnesaesaesasnensesaens 163
LTS PO 163

B30 11 TR 164
Settings in ViSual STUAIO........ccveveverrerererre s s s s e e e s s se s e ssesnesassesnesaenes 165
RESUITS......ceeieeeeerce e e 167
SUMIMANY ..ttt e e R e e e e R e R e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e aenns 168
Chapter 13: Accumulating Values ......ccccccrrrrmmssssssssssmmmmsmssssssssssssssssssssssssssssssssnnnes 171
Ten MOre, REVISITEA .....cccvererererreeriererree e re s s s e e s se s s e s ae s s e s sa e sae s e e n e snesaensesaesnesaenns 171
LTSRS 172

£ o] 11 170 TS 172
DT o110 o TS 172
Compound ASSIGNMENT ........oeieierernesre e nr e 173
LGSR 173

B3 0] 0] OSSPSR 173
Further Compound ASSIgNMENTS.........cccviririennrirrere s s se e saens 174
L SRR 174

B30 0] OSSPSR 174
Incrementing and DECrEMENTING .....cccvvvvriererrnrrre e saesre e se e ene e 175
L] 175
SOIULION <. 176
Compound AsSigNMENt AN TEXT.......cccvirrerierrrerrerere s sse e sse e ssssessessessesessessesnes 177
LTS 177

£ 10 10 177
Progressive SUMMALION ........cocvvvverire s s ss s e s saesaese s e saesnesa s e naenaees 178
LTSS 178
£S04 179

Xiv



TABLE OF CONTENTS

01 o] L= AL SRS 180
L] 180
£S04 181

£ 11134 7 182

Part III: Conditionals ........cuseeesssssemmmssssnsmssssnssmsssnnssssssnssssssnssssssnnsssssnnssnsssnnnss 183
Chapter 14: Essential TOOIS ......ccccuunmmmmmmmmmmmmmmssssssssssssmmemsssssssssssssssesssssssssssssnnsnnes 185

1102 LT T L OSSN 185
Exploring the POSSIDIlItIES .......cccveveerenernserrsesese s 185
EXAMPIES ...t e e e 186
0 T 189
Keyboard SHOMCULS .......ccovcccecercer e 189

DOCUMENTALION.......ccceeereeeriee s e ne e 190
dOCS.MICIOSOML.COM.....eceieececer e e 190
R T= 2L OSSPSR 191
SPECITIC ClasSS PAGR .....c.ecerererrrreirinsesise s se s se s s ses s sns e nsanis 192
COMMON SAICH ...t 194

DebUgPiNg TOOIS.......ccvierierrrerir e 195
(0] e OSSOSO 195
Stepping Through the COe ..o s 195
BreakPOiNtS .....cieieriiircre e e e e e e 197
MemMOry INSPECHION ...t nr s 198

CH INTEIACHIVE ...t s 200
WRAL IS T2, 201
HOW 10 LAUNCH IE?.....ooeci s 201
NOTES .eeeereere e s e e R e e e R e e e e R R e e R e e e n e nns 202

£ 11134 R 203

Chapter 15: Getting Started with Conditions .........ccussemrrnssssnnnmssssssnnessssssssesssssnnns 205

PaSSWOId INPUL ..o s e e s p e nne 205
LTSRN 205
ANAIYSIS ... e e e e e AR e e e e R e nRe e e e e nnRennas 206



TABLE OF CONTENTS

B30 11 208
DT eT 1T 0] o N 209
REVErsed CONGILION.........cccrurrrrieirererissessse e se s 209
TASK wvuvueuesesesesssesesssssessssssssss s s s e e e e e e e e R AR R R A e e e e R nan 209
RS0 11 TS 209
DT o111 0] o N 210
LENGIN CHECK .....cercieccer it e e s p e e nne 210
LTSS 210
£ 0] 11 0] 211
POSItIVE NUMDEIS .....ceeeeeeccrircseree e s 212
LTS 212
S0 11 0] T 213
0dd and EVEN NUMDEKS ..o 215
LTS TSRS 215
3o 11 1T TS 216
Case INAIfFEIBNCE .......cecerreerrerire s e 216
LGSR 217
B30 0] OSSPSR 217
WiIthOUL BraCES.....c.ueeeireeeriie s sn s s n s e sn s 218
L GRS 219
B30 0] OSSOSO 219
Greater of TWO NUMDETS ... s 219
TASK vt e 220
B30 11 N 220
Without the elSe Branch............ccirinn s 221
L] 221
B30 11 O 222
Using @ BUilt-in FUNCHION.......c.coiiire e s e sn e s n e ne e 222
LTSS 223
RS0 11 OO 223
BT 1] 11042 OSSOSO 223



TABLE OF CONTENTS

Chapter 16: Practical Conditions.......ccccuseemrrmsssssnnmssssssssmsssssssssssssssnssssssssssssssssnnnss 225
ApPending EXIENSION ... p s e 225
LTSS 225

£ 10 10§ 226
DT o111 0] o T 226

L3 (72 T 12 o 228
LTSRN 228

£ 0] 11 0] 228
DEAAINE CNECK .....eeueereeereecrenesese e se e e s s s e s e sen e s 229
LTSS 229
30 11 0] 230
INVOICE DAte CHECK ......ececeecrercsere e 231
LTSS 231

£ 0] 11 0] TS 232
Spanish DAY 0F WEEK ........coveriririrnscrnness s se s s sn s s e 233
L GRS 233

B3 0] 0] OSSPSR 234
SWitch Statement ... ——————— 236
LGSO 236

B30 0] OSSPSR 236
L1134 R 238
Chapter 17: Compound Conditions .........cccusmrmssnsssssnsmsssssessssssssssssssssssssssnssssanssssas 239
B (o3 TR 239
LTS 239
S0 11 0] 240
DT 1T 0] o 241
Username and PASSWOI .........ccoveeerrenerensmsenesesrese s ses e e ses e e se e ses e ssssessesesessssenns 241
LTSRS 241

£ o] 11 0] R 242
DT 1T 0] o TS 243

Xvii



TABLE OF CONTENTS

0T £ 243
LTS 244
RS0 11 O 244
DIR[0 o PO 245
Precalculation of CONAItioNS ..........covreenmnennensse e 245
LTS PO 245
B30 11 TR 246
DT eT 1T 0] o TN 247
YES OF NO REBVEISEA.........eeeeeecerce e s 247
LTSRN 247
B30 1] TR 247
DT eT 1] 0] o N 248
(6T oL 0= 248
LTSS 248
30 0] T 249
Better RANQe CHECK ........coccceeeereer s e 250
LTSS 250
30 11 0] 250
B30T 111 7o OSSO 251

RS0 ¢ TP 253
LTS 253
ANAIYSIS ..o rer s e e a e R 254
£S04 256

S0CCEI AREINALIVEIY ......cvieireccire e e p e 257
YT LS 257
£S04 258

Minimum of THree NUMDEIS ..o e 259
LTSS 259
ANGIYSIS ...t e e E e R e nnn 259
£ 10 10T 260

Xviii



TABLE OF CONTENTS

Minimum with Built=in FUNCEION..........cci s 261
£S04 261
Linear EQUALtION ..........cceciiceiinnsinscne s s sr s s s 262
TASK weuvueuesesesesesssssssssasssessssss s s s ss e e e e e e e e R AR R A e R e e nan 262
YT 1T LS 262

£ 10 10O 263
QUAratic EQUALION........cccceeireeecrescrr e et 264
LTS 264
ANGIYSIS ...t e e R e nnn 265
£S04 266
DT o111 0] o T 267
£ 267
Chapter 19: Advanced Conditions........ccuuseemmmmsssnmnmmssssnnnmsssssssnmssssssnnsssssssssssssssnnnss 269
CoNditional OPEIatOr ........ccceverirere s 269
LGSR 269

B30 0 OSSPSR 270
DISCUSSION ....cviuerersesesrese e s e e s e e e e e e s p e er e e e e R nr s 270
SUMMArY EVAIUALION .....coerececircere s s e a e e s b s s nnes 271
TASK ettt 271
DELAIIS ...cvvvciire i —————————————————————— 271
SOIULION .t ———————————— 272
DISCUSSION ....cviuerirucrerese e e e e e e R p e e e e re e 275
SeCONd CharaCter TEST........cuccccrrrrernseise s s 276
L] 276
SOIULION <.t 278
DT T 10 o 278

£ 11134 7R 280

Xix



TABLE OF CONTENTS

Part IV: LOOPS...uuueeeemnnnnnmnmnnnnnnnnnnsssssssssssssssssssssssssssssssssnssssnnnnnnnnnnnnnnnnssnnsnnnss 281
Chapter 20: First LOOPS .....ccuiseurmmssssnmmmssssnsnmsssssssssssssssssssssssssnssssssnnssssssnnnssssssnnnnss 283
Repeating the SAme TeX ... e 283
TASK weuvurueuesesesesssesssesssasssss s s s s e e e e e e sn s R R A A A e R e e e e R nan 283
£S04 284
SOIULION USING @ LOOP ...cveierereerrererrerersessssessessessssessessessesssssssessessessssessessesssssssessesssssssensessens 285
£S04 285

HOW the Or LOOP WOTKS .......oociieeneciirersee s rere s rese s s sse s e s s ssessnesaessessesssssaesnesnenns 285

L (=0 0 o S 287
EXPIOre [ YOUISEIF.......oeceeceecerier st se e se s s n e s s 287

Lo TSRO SRRR 287
Choosing the Number of Repetitions ... 287
LTSS 287

£ 10 10O 288

DT o111 0] o TN 289
Throwing a Die Repeatedly ... s s 289
LTSS 289

£ 0] 11 0] 290
Repeating Similar LINES .......c.cccorererenerneseresesese s s sesss e sssse s sessssenns 290
LTSS 290
Solution Without @ LOOP.....cccverinniric s s ses e ssssessesnens 291
SOIULION USING @ LOOP......ccuecrircrereeriese s ese e se s s se s se e sessssenns 292
DT 1T 0] o T 292
£ 7 o S 293
Chapter 21: Improving LOOPS .....ccuiceumrussssnnmmsssssssnssssssnssssssssssssssssssnsssssssnnssssssnnnnss 295
{01100 T T =« R 295
LTS 295
£S04 296

Dy =T P T 0T N 0T o S 296
LTS 296



TABLE OF CONTENTS

LT A0 10T 297
LT 0110 T 1] 298
TRIFA SOIULION ... 299
ROCK-SCISSOIS-PAPEN .....covieririririesire sttt et e bt et 300
LTS PR 300

£ 10 10O 301
DT eT 1T 0] o T 303
SUMIMANY ..ttt e e R e e e e R e R e e e e e R e R e e e e e Re e Re R e e e e e Re e b e e e e e aennn 303
Chapter 22: NUMDEr Series .....ccccuusummmmmssssnnmmsssssnnnmsssssnnsssssssnnnssssssnnnsssssnnnnsssssnnnnss 305
Y] 1 S 305
LTSS 305

£ o] 11 0] TS 306
DT o110 o TS 307
ARErNative SOIULION .......ccoeeeerecrerce s nne s 307
DESCENUING SEIIES ...cvrveerreerrresesese e res s ne s ne e e 307
LGSR 307

B30 0] OSSPSR 308
DT o117 0] o SRS 309
DECiMAal NUMDES ....cccovecerieerinesinsesesese e s s nn s 309
LGSR 309
Seemingly COrreCt SOIULION.........ccvvceviererese s 310
TESHING ..cveeerresecee e e a e r R 311
The Cause Of the ErTOr.......cc i sessssnssasens 311
COITECE SOIULION....cviveerreeresese e s e e ne e nrnne e nr s 312
SECONA POWETS ...t 313
TASK et 313
SOIULION .ot ——— 314

L 0T LT 314
LTS 314
SOIULION .ot 315

xxi



TABLE OF CONTENTS

TWO INAEPENAENT SEIIES....ccveieriererertrrerre s e s e s saesae e s e aesaesa e e e e naees 316
LTS 316

RS0 11 O 317
DIR[0 o PO 318

£ 1134 7 318
Chapter 23: Unknown Number of Repetitions .......cccucccmrmnssmmnmnssssnnnsssssssssssssssnnnns 321
ENtering @ PASSWOI ..o 321
LTSS 321

£ 0] 11 0] 322
d0-While CONSTIFUCTION ... e 323
TRIS CASE ...cuvrueerueereeeresesesse e ree e se s e e e se e e s e se s e e e e e s ae e e e e sesae e nse e nee e nennn e nnennas 323
Variable Outside of the LOOP.......cccrriinnr s 323

L OSSO 323
Waiting fOr DESCENG.........ccoeeerrrererenerree s s se s e s se e e s e nnenens 323
LTSRN 324
30 11 0] S 324
DT 1T 0] o T 325
Every Week Until the End of YEar ... e 325
LTSS 325

£ 0] 11 170 TS 326

As Long As the Number Six IS Bing TRIOWN ........ccccvvrmrnsnnenenese s sessssessssessnnes 327
LGSR 327

B30 10 OSSPSR 328
Until the SECON SiX ..o s 329
TASK vt 329

RS0 10 OSSPSR 330
Until TWO SiXES iN @ ROW ...c.coviuiiicririssssscss s s sss s s sesss s 330
TASK et e 331
SOIUTION <.t 331

£ 11134 7R 332

xXxii



TABLE OF CONTENTS

Chapter 24: Accumulating Intermediate ReSults.........ccccvssemmnrnsssnnnnnnsssnsnssssssnnnns 335
Sum of the Entered NUMDETS..........cveoceererernecsere s s seseaes 335
LTSS 335

£ 10 10§ 336
Product of the Entered NUMDETS..........covoreirererecr e 336
LTSS 337
30 11 0] 337
DT o110 o T 338
LTI 1T TR 338
LTSS 338
30 11 0] 339
The SECONU GrE@LEST........cveerrrrerrrreserese s sr s ne s nrnne e 340
LTSS 340

£ 0] 11 0] TS 341
Output of All ENtered NAMES.......cccvieviviiinereninsinse s sss e s sss e s e sessssessessessesessessesnens 343
L GRS 343

B3 0] 0] OSSPSR 343
DISCUSSION ....cviuerereesrese e s s b e e e re e e e e e e e nre e 345
11T 111 1T o OSSOSO 345
Chapter 25: Advanced LOOPS ......cuuseeerrmssssnnsesssssssnssssssnssssssssssnsssssssnsssssssnnsssssssnnnss 347
Thank God I’s Friday (TGIF) .......ccccoeereeerrnierereseresesesesese e e ses e sessesessesesssesessssessssesessessssenens 347
LTSS 347

£ 10 10§ 348
DT o111 0] o N 348
o0 349
LTSRN 349

£ 0] 11 0] 350

£ T S 351
LTSS 351
ANAIYSIS ... e e s e e R e e e e R e nRe e e e e rnRe e 351

xxiii



TABLE OF CONTENTS

B30 11 353
ENNANCEMENL. ... 354

1 o]y I I T o1 o OSSO SRS 354
TASK wvuvueuesesesesssesesssssessssssssss s s s e e e e e e e e R AR R R A e e e e R nan 354

o 0] Lo L0 SR 356
RST8] 11 TP 357
SUMIMANY ..t e e s R e e e e R R e e e e e R e R e e e e e Re e Re e R e e e e e Re e R e e e e e Renns 359
Personal NOTES ........ccovrueeriecrircsere s ne e e 359
0] T 360
THE SINE TASK ...eveeereecrercrere s s e se e sre e e s s e nnnnnns 360
a0 0 14 o1 360

0] T LT 1T T ] S 361
INA@X...ciiiisnmnnmsssnnnnsssssnnnnnssssnnnsnssssnnnsnssssnnnssssssnnnsnsssnnnnnnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 363

XXiv



About the Author

Radek Vystavél started programming at a young age and
has been doing it ever since, as well as sharing it with others.
Having worked as both a programming teacher in college
and privately as a programmer, Radek started writing books
on programming because many of his students had no
previous knowledge of programming, and he had difficulty
finding a suitable textbook for them. Throughout the years,
he has gained a unique insight into what resonates when
teaching beginners.




About the Technical Reviewer

Carsten Thomsen is a back-end developer primarily

but working with smaller front-end bits as well. He has
authored and reviewed a number of books and created
numerous Microsoft Learning courses, all to do with
software development. He works as freelancer/contractor
in various countries in Europe, using Azure, Visual Studio,
Azure DevOps, and GitHub as some of his tools. Being an
exceptional troubleshooter, asking the right questions,
including the less logical ones, in a most logical to least

logical fashion, he also enjoys working with architecture,
research, analysis, development, testing, and bug fixing.
Carsten is a very good communicator with great mentoring and team-lead skills and
great skills researching and presenting new material.

Xxvii



Acknowledgments

Special thanks to my daughter, Amaélie, who assisted me in preparing the manuscript.
She typed a large portion of it and prepared many figures, upon my instruction.

Thanks to the whole Apress team, including the technical reviewer, whose expertise
and drive allowed the book to be completed properly and on time. Also, the book got
much better due to the work of the editors, who kindly polished my English.

XXix



CHAPTER 1

Getting Ready

Welcome, dear reader, as you begin your journey to learn programming! Computers,
tablets, mobile phones, and many other electronic devices are programmable and will
do exactly what a human programmer tells them to do.

Programming is a world based entirely on logic. In this respect, it is quite unique
among human activities. If you like logic—for example, you like solving puzzles or you
are accustomed to searching for the meaningful order around you—then you will love
programming.

C# Language

In this book, you will create some real programs, and for this purpose, you need to

learn a programming language, which is what gives the computer its instructions.
Programming languages provide the interaction between computers and humans. They
are strict enough so that absolutely dumb computers can understand them, and yet they
are human enough so that programmers can write code using them.

Over time, many programming languages have been created, and many are in use
today. Each language has its virtues and drawbacks.

For this book, I have chosen the C# programming language, which is my number-
one language both for professional development and for teaching. It’s about 20 years
old, which means its creators could avoid the known flaws of older languages when
developing it. In addition, it is now a time-proven language, not to be readily replaced by
some new fashion.

C# is actually the flagship language of Microsoft. It is quite universal—you can use it
to write a variety of programs ranging from traditional console and desktop applications
through websites and services to mobile development, both for business and for
entertainment. Originally born on Windows, it has been quickly spreading onto other
platforms in recent years—such as Linux, Mac, Android, and iOS.

© Radek Vystavél 2021
R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_1


https://doi.org/10.1007/978-1-4842-7147-6_1#DOI

CHAPTER 1  GETTING READY

I hope you will have a good time with it and you will find many uses for it in your
future professional/hobby life!

Whom Is This Book For

The book is primarily intended for those who have no or only a limited knowledge of
programming. To get the most from this book, you should be skillful with computers—
you should be able to install a program, know what a file or a folder is, and so on.

However, because of the book’s deep coverage of the topics included, you may also
benefit from the book if you are an intermediate programmer or someone who has
already mastered another programming language and want to start with C#. You will
simply proceed faster through the book than absolute beginners.

How the Book Differs from Others

I wrote this book based on my 15 years of experience teaching programming to various
groups of students, teachers, hobbyists, and others. For many of them, it was their first
encounter with the subject. I watched them closely while working, and over the years I
have accumulated a fair amount of information about how people learn, what is easy for
them, and what requires more attention.

In this book, you will benefit from this knowledge. The book differs from similar ones
mostly in the following aspects:

o The pace of explanations—that is, the speed of proceeding to new
topics—is appropriately slow so that you do not get lost shortly after
having started. A common fallacy of expert authors is to consider
beginner stuff as trivial. Actually, it is trivial—for them. But not for
the reader. I have made considerable effort to avoid this and to spend
enough time on things considered easy by the initiated.

o Ibelieve that for you to successfully grasp all the new ideas, you need
to see them used repeatedly in slightly different situations, and this is
what you find here. The examples are written so that you proceed in
small steps, reinforcing what you already know and always adding a
little bit of new information or perspective.



CHAPTER 1  GETTING READY

The multitude of examples allows me to go quite deep into the
subject even while staying at the beginner level. Many starter books
show a new notion through one or two textbook examples and
move on. This is not so here. The examples chosen stem from real
programming. They often represent the core of various situations I
have found myself in when developing real-world software. I cover
the core topics distilled to an elementary level.

I have authored several programming books in the Czech language
and have found that many readers preferred the coding examples
over the explanatory text. This probably reflects our modern times
of information overload. That is why I have written this book using a
concise, task-oriented approach. You will find a minimum of talking
and a maximum of action here. Enjoy it!

How to Work with the Book

Before I start telling you how to prepare your computer, here are some tips on how you

might work with the book to get maximum usefulness out of it:

The book contains many exercises. These are not tasks for practicing
what you have already learned. These tasks constitute the main
instructions of the book. This means you are not supposed to try to
solve them after reading what the task is. What you are supposed to
do is to read what the task is about, see its illustrative screenshots,
and go immediately to study its solution.

You should not just read the solutions. You are strongly encouraged
to type them on your computer and get them working. The exercises
will have much greater impact on your understanding if you try
everything yourself.

In case you cannot get some exercise working, you can always check
the accompanying source code at https://github.com/apress/
csharp-programming-for-absolute-begs. Also, you might want to
visit my website at http://modernizrogramovani.cz/en/.


https://github.com/apress/csharp-programming-for-absolute-begs
https://github.com/apress/csharp-programming-for-absolute-begs
http://modernizrogramovani.cz/en/

CHAPTER 1  GETTING READY

o Ineach task, try to understand the logic of its solution. Also, it is
helpful to try your own modifications of the tasks. Do not be afraid to
play with the code. It is not a chemical lab; you will not blow up your
house!

e Thaveincluded lots of comments in the solutions. Actually, each
logical part of the code is prepended by a blank line and a comment
explaining its purpose. Please pay close attention to these comments;
they are the primary hints situated exactly in the places they are
explaining. Only the longer explanations I have placed outside of the
code, into the regular text of the book.

e Atthe end of each chapter, you can relax and read its summary. You
can then compare it to what you learned about the topics covered
before moving on to the next chapter.

What to Install on Your Computer

That’s enough introduction. Let’s proceed to how to get ready—or, rather, how you
should get your computer ready.

Development Environment

To work with this book, you need a single program installed on your computer—a
so-called integrated development environment (IDE).

What is an IDE? Well, to perform any activity on a computer, you need the
appropriate software. To write text, you use a word processor; to view a web page, you
use a browser; and so on. In the same way, to create programs, you use specialized
software that facilitates programming, and this software is the development
environment. In other words, it is a “program for programming.”

It is often called an “integrated” development environment because it brings
together all the programmer’s activities—writing the code using a smart editor, building
the program into a computer-ready form, launching and testing it, peeking into a
computer’s memory, and so on—into one place with tools to help.



CHAPTER 1 GETTING READY

Visual Studio

For C#, the number-one development environment is Visual Studio. At the time of
writing, the latest production version is 2019, and it is available in a free-of-charge
edition called Community (see Figure 1-1). In a minute, you are going to learn how
to install it. Throughout this book, I will use the version of Visual Studio available in
January 2021, which includes a preview of features planned for the next production
release, .NET 5 platform and C# 9.0 language, among others.

Figure 1-1. Visual Studio Community

Windows Versions

Visual Studio requires the Windows operating system. If you perform a web search for
Visual Studio system requirements, you will find the Windows versions supported (see
Figure 1-2).



CHAPTER 1  GETTING READY

Visual Studio 2019 System Requirements

The following products support the minimum system requirements below:

Supported Visual Studio 2019 will install and run on the following operating systems (64 bit
Operating recommended; ARM is not supported):
Systems

* Windows 10 version 1703 or higher: Home, Professional, Education, and
Enterprise (LTSC and S are not supported)

* Windows Server 2019: Standard and Datacenter

* Windows Server 2016: Standard and Datacenter

¢ Windows 8.1 (with Update 2919355): Core, Professional, and Enterprise

¢ Windows Server 2012 R2 (with Update 2919355): Essentials, Standard,
Datacenter

* Windows 7 SP1 (with latest Windows Updates): Home Premium, Professional,
Enterprise, Ultimate

Figure 1-2. Windows versions supported

As you can see, you do not need to have the latest and greatest version of Windows.
As of January 2021, you can even have Windows 7 with Service Pack 1 installed.

Also, to work with the book, you do not even need the latest Visual Studio version.
Almost all the examples in the book will run on older versions perfectly well.

Non-Windows Operating Systems

If you do not have the Windows operating system on your computer, you will be happy

to hear about the Visual Studio Code development environment. This is a free-of-charge,
multiplatform IDE running also on Linux or Mac, allowing you to program in C# on these
systems.

In this book’s examples, I will use Visual Studio Community installed on Windows.
Irecommend you do the same. If this is not feasible for you, use Visual Studio Code,
taking into account that some things might be a little different from what you see in the
book.



CHAPTER 1  GETTING READY

Installation

Now you know what to install—Visual Studio Community—so, please, go ahead! Point
your web browser to http://visualstudio.com, look for something like “Download
Visual Studio,” and be sure to choose the “Community” edition. Click the button or link,
and the installer starts downloading.

During installation, a screen with the different components you can select appears

(see Figure 1-3).

Just:In-Time debugger
Live Share

Modifying — Visusl Studio Community 2019 Preview — 16,0 Preview 20 x|
load: Individual comp Language packs  Installation locations
| Web & Cloud (4) - -
Installation details
ASP.NET and web development IA Azure development » Visual Studio core editor
Build web applications using ASP.NET Core, ASP.NET, Azure SOKs, tooks, and projects for developing cloud spps
HTMLJavaScript, and Cantainers including Dacker supp... and cresting resources using NET Core and NET Frame.. ~ .NET desktop development
w Included
¥ NET desktop development tools
- o B 7.2 devel
Pythvon development J“ Hodejs derelopment y iz;:«\.::::;:(. 2 development tools
Editing, debugging, interactive developement and source " Build scalable netwark applications using Node.js, an v N
gontrel for Pythan, asymchronous event-driven JavaSeript untime, IntelliCace
= Optional
.NET Core development tools
- M NeT 1 Runtime [LT:
Desktop & Mobile (5) B9 .NET Care 21 Runtire [LT5)
NET Framewark 4 = 45 development taals
Bl NET desktop development #+—1 Dasktop development with G Blﬂ?d for Visual Studio
'1-] Build WPF, Windews Forms, and conssle applications L-;I Build maderm C++ apps for Windows using toals of your Entity Frameseod: 6 looks
using C#, Visual Basic, and F# with NET Core and .NET F.. choice, inchuding MSVC, Clang, CMake, or MSBuild, NET profiling tosls

MLMET Model Builder {Preview)

W Universal Windauws Platform development Mabile development with NET
1 F= desktep language support
Create applications for the Universal Windows Platiorm Build eross-platform appheations for i0S, Android or PreEmptive Protection - Dotfuscatar
with C®, VB, or optionally Cs =, Windows using Xamarin reCmptive Frotectior usCator
Locaticn

CAProgram Files (x86)\Microsoft Visual Studio\ 2018\ Preview

Tetal space required 0 B
By continuing, you agree to the licerse for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Studis.
This software is licensed separately, as set cut in the Zrd Paty Notices or in its ing licerse. By you also agree to those licenses. Lose

Figure 1-3. Installing Visual Studio

Be sure to select “NET desktop development” and click the Install button. After that,
the installation should run smoothly.

Free Registration

After you have installed Visual Studio, you should register your copy (free of charge) the
first time you launch it. On the appropriate screen, click the “Sign in” button and enter
your Microsoft account credentials. If you do not have a Microsoft account yet, just click

the “Sign up” link to get one (see Figure 1-4).


http://visualstudio.com

CHAPTER 1  GETTING READY

Sign in to Visual Studio Visual Studio

Visual Studio will help you plan projects, Commun'ty 2019

collaborate with your team, and manage your

code online from anywhere. License: Visual Studio Community
This product is licensed to:

Learn more vystavel@moderniProgramovani.cz

Sign in to start using your Azure credits, publish

code to a private Git repository, sync your

settings, and unlock the IDE.

Sign in o account

Account options

Check for an updated license

All Accounts +Ad

16.0.30803.129 D16.9

A
Figure 1-4. Registrating your copy of Visual Studio

If you skip this step during the first launch of Visual Studio, you can register later by
selecting Help » Register Product in Visual Studio.

Updates and Feedback

Information technologies quickly change. Something may be different at the time you
read the book. In case there appears an important Visual Studio change, you may check
my website at http://moderniProgramovani.cz/en/ to get an updated info.

Also, I welcome any kind of feedback concerning the book—your suggestions for its
improvement, your feelings studying it, your experiences teaching with it, etc. My email
address is vystavel@moderniProgramovani.cz. Thank you!


http://moderniprogramovani.cz/en/

CHAPTER 1  GETTING READY

Summary

In this book, you are going to study programming and, specifically, the C# programming
language. You will learn to code in C# via many practical exercises that will guide you
toward more and more complex topics. To be able to follow along with the exercises, you

should prepare your computer in the following ways:

e Youneed a computer with the Windows operating system (at least
Windows 7 with Service Pack 1).

e You need to install an appropriate development environment. In this
book, I will work with the free Visual Studio Community.



PART |

Data



CHAPTER 2

Your First Program

You have your computer ready now, so let’s start programming! In this chapter, you will

create your first program in the C# language and learn all the steps that you need to
perform to do this.

Seeing It in Action

In this chapter, you'll create a program that displays message “I am starting to program
in C#” to the user (see Figure 2-1).

i — O X

I am starting to program in C#. 2

Figure 2-1. Your first program

Creating the Project

You start every new program by creating a new project, so let’s do that now.

© Radek Vystavél 2021
R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_2

13


https://doi.org/10.1007/978-1-4842-7147-6_2#DOI

CHAPTER 2 YOUR FIRST PROGRAM

Launching Visual Studio

Launch Visual Studio. Start screen similar to Figure 2-2 should appear.

- o X
Open recent Get started
As you use Visual Studio, any projects, folders, or files that you open will
show up here for quick access. % Connect to a codgspace
Create and manage cloud-powered
You can pin anything that you open frequently so that it's always at the top development environments

of the list.

= Clone a repository
Get code from an online repository
like GitHub or Azure DevOps

99 Open a project or
solution

Open a local Visual Studio project
or .sin file

2. Open a local folder

Mavigate and edit code within any
folder Y.

Continue without code +

Figure 2-2. Visual Studio Start screen

Drag the scrollbar down and choose the “Create a new project” action (see Figure 2-3).

14



CHAPTER 2  YOUR FIRST PROGRAM

- o X
Open recent Get started
As you use Visual Studio, any projects, folders, or files that you open will [?:; %?S:Jé?: gglutlu_g lg:vggf S/ -
show up here for quick access.
You can pin anything that you open frequently so that it's always at the top
of the lst T3 Open a project or
solution m
Open a local Visual Studio project
or .sln file
2. Open a local folder
Navigate and edit code within any
folder
43 Create a new project
Choose a project template with code
scaffolding to get started

Continue without code »

Figure 2-3. Choosing for a new project

15



CHAPTER 2 YOUR FIRST PROGRAM

Create a new
project

Recent project templates

Search for templates (Alt+5S) R -

All l[anguages » All platforms b All project types

E" Console App (.NET Core)
A list of your recently accessed templates A project for creating a command-line application that can run
will be displayed here. on .NET Core on Windows, Linux and MacO5.

C# LUnux macOS  Windows  Console

Console App (.NET Core)

A project for creating a command-line application that can run
on .NET Core on Windows, Linux and MacOS.

Visual Basic  Windows  Lnux macOS  Console

‘nhﬁ‘! Class Library (.NET Standard)

" A project for creating a class library that targets .NET Standard.
C# Androd 0S LUnux macOS  Windows  Library

;:SE Class Library (.NET Standard)
7 A project for creating a dlass library that targets .NET Standard.

Back Next i |

Figure 2-4. Selecting a project template

Creating New Project

The dialog that appears (see Figure 2-4) requires you to choose a new project template.
Select the Console App C# template and press the Next button.

In the next dialog (see Figure 2-5), type “My first program” as a new project name
and press the Create button.

16



CHAPTER 2  YOUR FIRST PROGRAM

Configure your new project

Console App (NE]' Core) C# Unux macOS Windows Console
~

Project name

l My first program

Location

C:\Users\vystavel\source\repos

Solution name ©

My first program

[] Place solution and project in the same directory

Figure 2-5. Entering a name for your new project

Writing the Program Code

The most important step is writing the program'’s code, so read on.

The Look of the Development Environment

After project creation, Visual Studio looks like Figure 2-6.

EaCk

17



CHAPTER 2  YOUR FIRST PROGRAM

¢} File Edit View Git Proje Build Debug Test Apalyze Tools Search (Ctrl..® M..am - O 3
Extensions Window Help

-0 B -2 BP9 Debug- AnyCPU - Litadi| 3 u[MI glveshae £ [EERILiuch

Program.cs # X
&My first program =1 My_first_program.Progi ']‘3’.Main(string[] args)
sing System;

@ Solution Explorer L
oo d o-50B|F -
= Search Solution Explorer (Ctrl+8) 2 -
&1 Solution "My first program’ (1 of 1
4 [= My first program
{ 1 b & Dependencies

b <= Program.cs

-namespace My_first_program

x0qjoo] Jasojdx3 Jansas RS

= class Program

{

static void Main(string[] zrgs)

{
}

Console.WriteLine("Hello World!");

4+ Add to Source Control = &>

Figure 2-6. The look of Visual Studio

The main part of the development environment window is occupied by the source code
editor. In it, the Program. cs file is opened, as is suggested by the tab’s title. Program.cs
is the main file of your new Console project. As you can see, it already contains some
source code.

You might wonder where this code came from. You haven’t written any line of code
yet! The answer is that Visual Studio generated the code when you selected the Console
App template. As you saw when creating the project, Visual Studio contains many
different templates; these templates are ready-made project skeletons for different types
of programs.

You can see that the code contains some strange words like using, namespace, class,
and so on. I am not going to explain these now because you do not need a detailed
understanding of them at this time. But Visual Studio needs these lines, so just leave
them alone. What you do need to know is where to write your own statements, which is
what I will explain next.

18



CHAPTER 2  YOUR FIRST PROGRAM

Knowing Where to Write Statements

You write program statements between the curly brackets that you find after the line
containing the word Main (see Figure 2-7).

o¢) File Edit View Git Proje Build Debug Test Apalyze Tools Search (Ctrl..®# | M..am - O 56
Extensions Window Help

B-% M9 Debugr AnycPU - L2 u[MI wlveshae £ [EiILaCE

Program.cs # X
[ My first program =| % My_first_program.Progi '1‘3’.Main(string[] args)
sing System;

@ 5
Hoodd o-58p|p -
—1 Search Solution Explorer (Ctrl+8) 2 -
&1 Solution "My first program' (1 of 1
4 [ My first program
{ » b & Dependendies

b = Program.cs

-namespace My_first_program

X0Qq|o0] Ja10jdx3 1anias JEEES

class Program

atic voidtring[] args)

Console.WriteLine("Hello World!");

4+ Add to Source Control = #3

Figure 2-7. Where you write your statements
In all previous Visual Studio versions, the space between curly brackets was left

blank. Now the IDE creators decided to include a single line of code which you may
delete or modify subsequently.

Writing the Code

In this case, type the following statements between the curly brackets after the Main
line. Make sure to type them exactly as you see here. Differences between lowercase
and uppercase matter, and semicolons matter, too!

19



CHAPTER 2 YOUR FIRST PROGRAM

// Output of text to the user
Console.WritelLine("I am starting to program in C#.");

// Waiting for Enter
Console.ReadlLine();

Visual Studio now looks like Figure 2-8.

™) Fle Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search..® Mu,am — O %
i@-0 @-%= WP ?-C - Debug- AnyCPU - » Myfirstprogram - | 5 @ _i'= 8|3 % |1 & LiveShare &

§ Program.cs* + X ~ & Solution Explorer

(=38 = My first program -i"'w. My _first_program.Program -EG’.Hain(string{] args) tleodfl|lo-s B A

-g using System; = [ search Solution Explorer (Ctrl+d) 2 -
% . ] Solution "My first program’ (1 of 1 [§
2 -namespace My_first_program + [ My first program

o 2

g 5 ¥ & Dependendes

5 " » < Program.cs

g class Program

{ ]
static void Main(string[] args)

{

// Output of text to the user
Console.WriteLine("I am starting to program in C#.");

// Waiting for Enter
Console.ReadlLine();

4
Solution Explorer eifeELGES

Properties

B3

Qutput
Show output from: Package Manager

Time Elapsed: 09:00:80.1316453
Finished

Error List [elllall
7 Ready

+ Add to Source Control - %5

Figure 2-8. Entering your first code statements

Please double-check that you typed the statements in the same place as I did. Again,
they have to be between the brackets. Also, be careful of the brackets. Do not accidentally
delete any of them.

20



CHAPTER 2  YOUR FIRST PROGRAM
The source code of Program. cs now looks like this:
using System;

namespace My first program

{
class Program
{
static void Main(string[] args)
{
// Output of text to the user
Console.WriteLine("I am starting to program in C#.");
// Waiting for Enter
Console.ReadlLine();
}
}
}

Understanding Your First Statements

What do these statements do?
e Console.Writeline outputs (writes) a single line to the user.

e Console.ReadlLine, in general, reads a line of text that the user
enters with the keyboard. In this case, however, the purpose of
the statement is to make your program wait for the user to press
Enter when everything is done. In other words, you do not want the
program window to disappear immediately.

o Everything following the two slashes (//) until the end of a
corresponding line is ignored. This text contains your remarks/
comments. Visual Studio colors them in green.

21



CHAPTER 2 YOUR FIRST PROGRAM

Using IntelliSense

You probably have noticed that when you type, Visual Studio offers you available
possibilities (see Figure 2-9). You can choose an option either using the mouse or using
the arrow keys followed by pressing the Tab key.

o) File Edit View Git Project Build Debug Test Apalyze Tools Extensions Window Help ... A M...am = o %
@-90|@-2 M |90 - Debug- AnyCPU - b Myfirstprogram = 5% |@ i 50 @ LliveShare £ EIGEUEENTIC

Program.cs* = x

~ & Solution Explorer vl
-[Q.Main(string[] args) Hleoadlo-58R| -

> Program.cs

£

2

=3 & My first program - [ “% My_first_program.Program

m 2 dniaina - -

8 using System; Search Solution Explorer (Ctrl+{) # -
% & &3 Solution "My first program’ (1 of 1 ff
:' namespace My_first_program 4 [ My first program

g { b & Dependencies

g

class Program
{ ]
static void Main(string[] args)

4
// Output of text to the user Solution Explorer E(

Properties

¥ *: Console = | class System.Console
} *: ConsoleCancelEventArgs Represents the standardfinput, output, and error streams for console applications. This ¢
} ® ConsoleCanceleventHandler =
& ConsoleColor
< ConsoleKey

< ConsoleKeylnfo
& ConsoleModifiers -
Fll{} % & 0 & & § @ ==

Ln: 10

1
]

Error List Output

O Ready

+ Add to Source Control ~ #3

Figure 2-9. Using IntelliSense

The part of Visual Studio that provides you with these hints is called IntelliSense.
Get used to relying on it as much as you can. It is the best way to avoid unnecessary

typos.

Saving the Project

You have written several lines of code, so you probably want to save them. According
to the default settings of Visual Studio, projects are automatically saved before every
program launch. However, sometimes you want to save the changes manually. In that
case, choose File » Save All from the Visual Studio menu, or click Ctrl+S.

22



CHAPTER 2  YOUR FIRST PROGRAM

Launching Your Program

Having written your program, you usually want to launch it to see it “in action” and to
check whether it does what you meant it to do.

Prepare yourself. The great moment of your first program launch is coming! Choose
Debug » Start Debugging from the Visual Studio menu, or just press the F5 key.

Visual Studio builds and launches your program (see Figure 2-10). The program
outputs the specified text and waits for the Enter key to be pressed, which is exactly the

way you have programmed it.

L = O X

I am starting to program in C#.

Figure 2-10. Launching your program

Now in the role of the user, press the Enter key. The program terminates, and the
“black window” disappears. Actually, it was the behavior of Visual Studio up until now.
In the present version, there is a new measure added preventing the console window
from disappearing as you can see after hitting the Enter key (Figure 2-11).

23



CHAPTER 2 YOUR FIRST PROGRAM

i Microsoft Visual Studio Debug Console S=1ES
I am starting to program in C#. E|

C:\Users\vystavel\source\repos\My first program\My first program\bin\Debug\netco
reapp3.1\My first program.exe (process 4412) exited with code ©.

To automatically close the console when debugging stops, enable Tools->Options->
Debugging- >Automatically close the console when debugging stops.

Press any key to close this window . . .

Figure 2-11. The added measure preventing the window from disappearing

Since Console.ReadLine() prevents the window from disappearing also when
running outside of Visual Studio, I will be including this statement in all our programs.
If you want, you can disable the new Visual Studio measure according to the instructions
given in the message of Figure 2-11.

In Visual Studio, select the Tools » Options menu. In the dialog, click the Debugging
group, then tick the option “Automatically close the console when debugging stops,” and
confirm by pressing OK (see Figure 2-12).

L HE

Search Options (Ctrl+E) p  General

» Environment B v Show parallel stacks diagram bottom-up |
b Projects and Solutions Ignore GPU memory access exceptions if the data written didn't change the

» Source Control Use Managed Compatibility Mode

¢ Work Items ¥ Warn when using custom debugger visualizers against potentially unsafe pr

‘ Enable Windows debug heap allocator (Native only)
[ + Debugging l Enable Diagnostic Tools while debugging
¥ Show elapsed time PerfTip while debugging

» Cross Platform v Enable Edit and Continue

» Database Tools v Enable Native Edit and Continue

> F# Tools ¥ Apply changes on continue (Native only)

b IntelliCode ¥ Warn about stale code (Native only)

b Live Share . ; .

» NuGet Package Manager Bty dose e consle when dsbugoing s |

b Test

b Text Templating v Bring Visual Studio to the foreground when breaking in the debugger

> Web Forms Designer B « Enable fast expression evaluation (Managed only) -
» Web Performance Test Tools « | o

n Windauwre Earme Macianar LI

OK | Cancel

—

Figure 2-12. Disabling the new measure

24



CHAPTER 2  YOUR FIRST PROGRAM

Note

With the default settings of your computer, your programs will appear with white type on
a black background, as you can see in Figure 2-10. However, for better readability, I will
show all the later screenshots in black type on a light background (see Figure 2-11).

Changing Text Size

Do you think the outputted text is too small? Do you need to enlarge the font your
programs will use?

If so, click the title bar icon at the upper-left corner of the “black screen” of the
launched program and choose Defaults (see Figure 2-13).

Restore ng to program in C#. A
Move
Size

= Minimize

o Maxmize

x Close

dit >

Figure 2-13. Choosing Default settings

Then click the Font tab, change the font according to your preferences, and confirm
the change by clicking the OK button (see Figure 2-14).

25



CHAPTER 2 YOUR FIRST PROGRAM

Console Windows Properties X

Opiiout Colors

Size Window Preview

True Type fonts are
recommended for high DPI
displays as raster fonts may
not display cleary.

Bold fonts

Selected Font: Lucida Console
C: \WIN DOWS> d Each characteris:

= 13 screen pixels wide
SYSTEM il 20 screen pixels high
CVCTEMI?D B

Concel

Figure 2-14. Changing the font

When the next program launches, the new font will be used.

Dealing with Errors

If you did not write the statements exactly the way I showed you or you wrote them in the
wrong place, the program build would terminate unsuccessfully with errors.

Let’s try this! Delete the semicolon at the end of the line with the Console.WritelLine
statement.

When you try to launch your program (by pressing the F5 key), the trial terminates
with an error dialog (see Figure 2-15).

26



CHAPTER 2  YOUR FIRST PROGRAM

Microsoft Visual Studio X

0 There were build errors. Would you like to continue and run the last
successful build?

Yes No

[J Do not show this dialog again

Figure 2-15. Getting an error

In this dialog, always click No; you do not want to run some older version of your
program (if it exists).
After clicking No, the Error List pane appears (see Figure 2-16) at the bottom.

) File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help .. 2 M...am =
io-0|@-= @0 | Debug- AnyCPU - » Myfirstprogram - | 5 |@ it | | @ LiveShare & m

%ﬂ' ~ & Solution Explorer -
[l & My first program 'l“-'sMy_,ﬁrsL,pmgmm.ngmm -[Q.Main(string[] args) "tloodll o-50@| S =
g using System; 5l search Solution Explorer (Ctri+8) 2 -
= = &1 Solution "My first program’ (1 of 1
= -namespace My_first_program 4 & My first program
- :
) { b Dependencies
=2 Drefarences b < Program.cs
£ class Program g
{
Error List | %
Entire Solution - [@ 1 Error ||+ 0 Warnings || @ 0 Messages |[*r|| Build + IntelliSens - Search Error List p-
" Code Description Project File L.. Suppression...
@ (5100; expected My first program Program.cs 10 Active

Error List Output

O Ready + Add to Source Control « #3

Figure 2-16. Error list

27



CHAPTER 2 YOUR FIRST PROGRAM

Return the deleted semicolon, and everything will be fine again. In the future, it
may be more difficult to find what you did wrong, especially at the beginning of your
programming career. That’'s OK—my opinion is that you can’t become an expert in a field
until you have made all the possible mistakes there are.

Finishing Your Work

You have just gone through all the essential steps of program development. You will
proceed along the same lines in every future project you do.

You now need to learn how to terminate your work and how to get back to it later.
The former is simple; you can finish your work on this project by choosing File » Close
Solution from the menu or by closing the whole Visual Studio program.

Restoring Your Work

When you want to get back to your project later, you can reopen it in Visual Studio using
one of the following ways:

e From the Start Page: This is the page that appears immediately after
Visual Studio starts and contains links to your recent projects (see
Figure 2-17). Simply click the right one.

28



CHAPTER 2  YOUR FIRST PROGRAM

Visual Studio 2019

Open recent Get started

| 2| (% Connect to a codespace

Create and manage doud-powered
development environments

3] My first program.sin

C:\Users\vystavel\source\repos\My first program é Qlorle a repository
Get code from an online repository
like GitHub or Azure DevOps

¢3 Open a project or
solution

Open a local Visual Studio project
or .sin file

2. Open a local folder

Navigate and edit code within any
folder
Continue without code »

Figure 2-17. Using the Start Page

o From the Open Project dialog: Select File » Open » Project/Solution
from the Visual Studio menu. The Open Project dialog appears in
which you should locate your project (see Figure 2-18). Specifically,
look for files with the .sln extension. If you cannot see the file
extensions, turn their display on in Windows File Explorer (on the
View tab, select the “File name extensions” check box), as shown in
Figure 2-19.

29



CHAPTER 2 YOUR FIRST PROGRAM

>¢J Open Project X
« v « Proje.. » My first program » v & | Search My first program ¥l

Organize ¥ New folder =~ @ @
[ Desktop gl Name =
‘ Downloads o

: Vs
| Documents # |
=] Pict - g
R (%8 My first program.sin
!Instal

D Music
B videos

o] Microsoft Visual S

Projects
v < >
File name: | My first program.sin v | All Project Files (*.sln;*.dsw;*.ve v
Figure 2-18. Opening your program with the Open Project dialog
I B 5 | My first program = ] x
Home Share -- 0
E [ (@ Extralarge icons [&] Large icons . =i2 (=]~ Item check boxes D
@ & Mediumicons |5 Small icons - i Ii]' 3 File name extensions =
Mavigation t

pane~ HE List [.—:: Details

= by> fm L Hidden items Hems
Panes Layout Current view Show/hide
& Downloads s
5] Documents # I My first program
& Pictures A My first program.sin
!Instal

b Music
B videos

¢& OneDrive

B8 This PC v

7 items

je selected  Options

Figure 2-19. Showing extensions

o From the Recent Projects menu: Select File » Recent Projects and

Solutions. Visual Studio remembers what project you were working

on recently. Just choose the appropriate project (see Figure 2-20).

30



CHAPTER 2  YOUR FIRST PROGRAM

dit View Git Debug Analyze Tools Extensions Window Help Search (Cirl+Q) 2 =

=] X
| - »Attach.- . &LlveShare &

Open »
@ Connect to a codespace Solution Explorer 3 x
& Clone Repository... comlm
& Start Window

Close

Close Solution

Start Live Share Session
Join Live Share Session...

x0qjoo] Jalojdx3 Jonses B

Save Selected Items Ctrl+5
Save Selected Items As...
W Save All Ctrl+5hift+5
Page Setup...
Print... Ctrl+P

Account Settings...

Recent Projects and Solutions

1 My first program.sin JC:\Users\vystavel\source\repas\My first program)

Solution Explorer [SREEIRES

Alt+F4

Error List Qutput

£ Ready

Figure 2-20. Opening your project from the File menu

Transferring Your Work

You may also be interested in how to transfer your project to somewhere else from your
computer, so you can work on it later on a different computer. The answer is simple.

If you're using a flash drive, OneDrive, or something similar, just transfer the project’s
whole folder.

Using Solution Explorer

There is an important issue with transferring your projects onto another computer that
you should be familiar with. Sometimes, a project is opened without a source code editor
(see Figure 2-21).

31



CHAPTER 2 YOUR FIRST PROGRAM

¢) File Edit View Git Project Build Debug Test ... » M..am - @] X
Analyze Tools Extensions Window Help
fc-o|8-%@P|9 - | Debug- AN C Mgl PREVIEW ADMIN

Solution Explorer v 3 ox
cCo@al - F-
Search Solution Explorer (Ctrl+d) 2 -

f2J Solution "My first program’ (1 of 1 f
Blank area 4 @ My first program

b & Dependencies

b Program.cs

X0Q|00| J3i0|dX3 J9AIRS

Solution Explorer Eeji@ELls[S

Properties
My first program Project Properties -

E]% | &

File Name My first program.i*
Full Path C:\Users\vystavel -
File Name
Name of the project file.

Error List Output

[J Ready 4 Add to Source Control ~ #;

Figure 2-21. Opening a project without a source code editor

What do you do in such a situation? There is a pane (subwindow) called Solution
Explorer usually located at the right side of the Visual Studio window. Simply double-
click your source code file, Program. cs (see Figure 2-22).

32



CHAPTER 2  YOUR FIRST PROGRAM

¢) File Edit View Git Project Build Debug Test Search.. £  M..am —  [BF
Analyze Tools Extensions Window Help

fe-0 @3- M Y- -] Debug- it “ |7 & LiveShare £

Program.cs = X =8 Solution Explorer
&I My first program 'I"'\ My_first_prograr 'I‘?‘.h-'lain(_st_ring[] arg - | ¥ p———v & [ | M =

using System; Search Solution Explorer (Ctrl+&) £~

%] Solution My first program' (1 of 1 ¢
4 My first program

| » < Program.cs I

-namespace My_first_program

{

= class Program

{

X0q[oo| JaJojdx3 JAAIRS

static void Main(string[] arg:

{

// Output of text to the i Solution Explorer Kejif@ENTs(-

Console.WriteLine("I am s

Properties
Program.cs File Properties -
[H]% | &

B8 Advanced =
Build Action C# compiler

// Waiting for Enter
Console.ReadLine();

Build Action
How the file relates to the build and...

Error List Output

4 Add to Source Control -~ #5

Figure 2-22. Opening your source code via Solution Explorer

Did even Solution Explorer disappear? No problem! At any time, you can display it
using the menu selection View » Solution Explorer (see Figure 2-23).

33



CHAPTER 2  YOUR FIRST PROGRAM

) File Edi‘ View | 'Sit Project Build Debug Test Search.. 2  M..am - O X
Analyze pen

R PP o oIC iR R— 2 LliveShare £ LAl 0
: %3 Solution Explorer Ctrl+Alt+L
3 Program.co =TI ctrl+0, ctrl+G &l Solution Explorer e s
ol <My first pt § Git Repository ar+o,ctrl+s  Flo o @ Bl o-SFH| S =
-g Usl & Team Explorer Ctrl+", Ctrl+M Search Solution Explorer (Ctrl+d) 2 -
3 S Server Explorer Ctrl+Alt+S &3 Solution "My first program’ (1 of 1
: -nam 8z Test Explorer Ctrl+E, T 4 [@ My first program
g { = Bookmark Window Ctrl+K, Ctrl+W b Dependencies
g 7 Call Hierarchy Ctrl+Alt+K b < Program.cs

& Class View Ctrl+Shift+C

B Code Definition Window Ctrl+~, D

E1 Object Browser Ctrl+Alt+)

E': E)::)[:ulim g:::a‘ltli o Solution Explorer EefiseERES

Figure 2-23. Opening Solution Explorer

Summary

In this chapter, you made your first program, and you also started learning about how to
work with the Visual Studio development environment. You went through all the steps of
program development, which essentially are these:

o C(Creating the project

Editing the source code

e Saving the source code

o Launching the program

¢ Detecting and removing possible errors

o Transferring your project onto another computer of yours to work on
it elsewhere

34



CHAPTER 3

Dealing with Output

You already know all the main steps that you should take when developing a program in
the C# language. In addition, you have already seen the important statement Console.
Writeline, which displays data on your user’s screen. In this chapter, you will extend
your knowledge of this statement. I will also show you other possibilities for the output.

Producing Numeric Output

You already know how to display some text. In this section, you will learn how to display
anumber.

Task

You will write a program that displays the number 37 (see Figure 3-1).

Figure 3-1. The program in action

35
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_3


https://doi.org/10.1007/978-1-4842-7147-6_3#DOI

CHAPTER 3  DEALING WITH OUTPUT

Solution

In Visual Studio, create a new project called Numeric Output. The code is similar to the
previous program you wrote in Chapter 2, as shown here:

static void Main(string[] args)

{
// Output of a number to the user
Console.WritelLine(37);
// Waiting for Enter
Console.ReadLine();

}

Note In this example, and all the following examples in the book, | show you just
the block of code after the line with the Main word. This is the block of code you
are in control of; in other words, it’s the block of code you change. The rest of the
Program.cs source code should remain intact the same way you left it in your
first program from the previous chapter.

To be sure you understand me, the whole source code looks like this:
using System;

namespace Numeric_output

{
class Program
{
static void Main(string[] args)
{
// Output of a number to the user
Console.WritelLine(37);
// Waiting for Enter
Console.ReadlLine();
}
}
}

36



CHAPTER 3  DEALING WITH OUTPUT

But, again, this is the last time you will see the whole source code. There is no need to
repeat the Visual Studio-generated code each time I show an example because you will
never change it. If you are ever in doubt, you can consult the complete sample projects
accompanying the book.

After typing in the code, launch the program using the F5 key. To terminate the
program, press Enter.

Discussion

Unlike with text, you do not surround numbers with quotes.
Of course, you could surround “37” in quotes, but there is a profound difference
between the number 37 and the text “37”—you can calculate with numbers. That is why

you are learning now how to work with numbers correctly.

Making Calculations

The next task is to make a simple calculation.

Task

You are going to display to the user what 1 plus 1 is (see Figure 3-2).

Figure 3-2. 1 plus 1

37



CHAPTER 3  DEALING WITH OUTPUT

Solution

Here is the code:

static void Main(string[] args)

{
// Output of a calculation
Console.WritelLine(1 + 1);
// Waiting for Enter
Console.ReadLine();
}
Type it in and launch the program!
Note

In programming, this kind of calculation (generally, a combination of values) is called an
expression.

Making More Complex Calculations

Of course, you do not need a computer to add 1 to 1. But what about 1 plus 2 times 3? Do
you think this is ridiculously trivial again? Wait just a minute because even in this simple
case mistakes are easy to make!

Task

You'll create a program to add 1 plus 2 times 3.

Solution

Here is the code:

static void Main(string[] args)

{

// Multiplication has greater priority
Console.WritelLine(1 + 2*3);

38



CHAPTER 3  DEALING WITH OUTPUT

// Forcing priority using parentheses
Console.WriteLine((1 + 2)*3);

// Waiting for Enter
Console.ReadLine();

The launched program looks like Figure 3-3.

(G

Figure 3-3. Doing more complex calculations

Discussion

Note the following about this program:

e The purpose of this task was to show you that you always have to
know what exactly needs to be calculated. In this example, you have
to make up your mind about whether you want to do addition first or
multiplication first.

o Inbasic math rules, multiplication and division have higher priority
than addition or subtraction. It is the same in programming as in
mathematics. If you first want to add 1 to 2 and then multiply by 3,
you need to use parentheses around the 1 and 2.

39



CHAPTER 3  DEALING WITH OUTPUT

e Thave not used spaces around the multiplication symbol (asterisk),
but this has nothing to do with the calculation order. It just looks
better to me. In C#, spaces and line breaks do not matter. (Of course,
you should not break a word in the middle.)

o Finally, the example shows that the computer executes program
statements in the order they are written. This means from the top
down.

Joining Text

You will now explore that the plus operator (+) can be used also with text, not just with
numbers. In other words, it adds text together.

Task

The task is to explore how to add text together (see Figure 3-4).

- — a X

I have started to program A
in C#.
I have started to program in C#.

Figure 3-4. Joining text

40



CHAPTER 3  DEALING WITH OUTPUT

Solution

Here is the code:

static void Main(string[] args)

{
// Normal text
Console.WritelLine("I have started to program");
// Also normal text
Console.WriteLine(" in C#.");
// Joining two texts using plus sign
Console.WriteLine("I have started to program" + " in C#.");
// Waiting for Enter
Console.ReadlLine();
}

Note the space before the in preposition!

Outputting Special Characters

Sometimes, you need to output a special character to the screen. Here are some
examples:

e Output Enter to terminate a line.

e Output a quote mark. (Quotes in C# serve as text delimiters, so they
must be treated specially.)

e Output a Unicode character (of course, if your font knows how to
draw it).

Task

Now you will write a program that shows how to work with special characters.

41



CHAPTER 3  DEALING WITH OUTPUT

Solution

To work with special characters, you use escape sequences. In C#, an escape sequence
starts with a backslash.

static void Main(string[] args)

{
// Multiline output
Console.WriteLine("First line\r\nSecond line");
// 1 prefer specifying "Enter" in more human form
Console.WriteLine("First line" + Environment.NewlLine + "Second line");
// Text containing a quote
Console.WriteLine("The letter started so sweet: \"My Darling\"");
// Unicode characters, in this case Greek beta
Console.WriteLine("If the font knows, here is Greek beta: \u03B2");
// Backslashes themselves need to be doubled
Console.WritelLine("Path to desktop on my computer: " + "C:\\Users\\
vystavel\\Desktop");
// Waiting for Enter
Console.ReadlLine();

}

The result should look like Figure 3-5.

" - O X

[First line A
Second line

|[First line

Second line

The letter started so sweet: "My Darling"

If the font knows, here is Greek beta: B

Path to desktop on my computer: C:\Users\vystavel\Desktop

Figure 3-5. Working with special characters

42



CHAPTER 3  DEALING WITH OUTPUT

Discussion

Note the following about this program:

o In C#, a backslash in text introduces a so-called escape sequence.
But what if you want to output a backslash? Then you need to double
it. This is often the case when dealing with file paths in the Windows

operating system.

o Console applications will recognize even the simple \n as a line
terminator (meaning Enter). However, in many other C# programs,
you need “the whole Enter,” which is signified with \r\n. That is why
you used it in this program. You also used Environment.NewlLine,
which is definitely the best alternative since it is nicely human

readable.

Using Preformatted Text

Sometimes, you might want to display multiline text in one go (see Figure 3-6).

" — a

Yes, and how many times
[can a man turn his head
and pretend

that he just doesn't see?

Figure 3-6. Multiline text

43



CHAPTER 3  DEALING WITH OUTPUT

Task

You will create a program to display multiline text.

Solution

You prepend the opening quote mark of the text with the at (@) sign, as shown here:

static void Main(string[] args)

{
// Bob Dylan...
Console.WriteLine(@" Yes, and how many times can a man turn his head
and pretend that he just doesn’t see?");
// Waiting for Enter
Console.ReadlLine();
}
Note

The at (@) sign also switches off escape sequences. That is why you might find it useful
when dealing with file paths in Windows (mentioned earlier); in that case, you do not
have to double each backslash.

Adding 1 and 1

In the next task, you will return to the problem of adding 1 to 1. Are you wondering why I
am returning to such a trivial task? Well, even doing something as simple as adding 1 to 1
can go wrong. Let’s see.

Task

The task is to explore different ways of putting two numbers together (see Figure 3-7).

44



CHAPTER 3  DEALING WITH OUTPUT

] — O X
Senior math test A

One and one is:
a) 11

b) 2

c) mostly fun

Figure 3-7. Putting numbers together

Solution

Here is the code:

static void Main(string[] args)
{

// Pay special attention when mixing texts with numbers!
Console.WritelLine(
@"Senior math test

One and one is:");
Console.WritelLine("a) " + 1 + 1);
Console.WriteLine("b) " + (1 + 1));
Console.WriteLine("c) " + "mostly fun");

// Waiting for Enter
Console.ReadlLine();

45



CHAPTER 3  DEALING WITH OUTPUT

Discussion

When you mix numbers with text, the result might appear different from what you
expect!

Let’s consider the first answer (a). The computer calculates the whole expression
from left to right. First, it takes the text a) and a number (the first 1). It joins them
together to be a) 1. Then, it takes this new text and the final number (the second 1) and
again joins them together to obtain the texta) 11.

The second answer (b) is different. The parentheses make the computer perform the
addition of the numbers first, joining the text on the left only afterward.

Sometimes, it may be more transparent to precalculate the intermediate results and
store them in variables. This is what you are going to study in the next chapter. Of course,
variables have many more uses than this, as you are going to see.

Summary

In this chapter, you explored several possibilities that the Console.Writeline statement
gives you for different kinds of output. Specifically, you have learned the following:

o In addition to text, you can work with numbers in your programs.
Unlike with text, you do not surround numbers with quotes.

¢ You can combine several values into expressions. For this purpose,
you use operators such as +, -, and *. With numbers, they do ordinary
arithmetic. The plus operator works also with text, in which case it
joins two pieces of text into a single one.

e In calculations, you always have to be careful about the order in
which the result is evaluated. Multiplication and division have
precedence over addition and subtraction. To force a different
evaluation order, use parentheses.

o Special characters such as quotes or newlines are output using
escape sequences starting with backslash.

¢ You can conveniently output preformatted multiline text by
prepending it with an at (@) sign.

46



CHAPTER 4

Using Variables

In this chapter, you will learn all about variables. A variable is a named place in the
computer’s memory where a program can store something. It can be anything you want.
In fact, you can have as many variables in your program as you need.

This chapter will start with some simple examples, but eventually you will see that
variables are absolutely fundamental to programming.

Storing Text

The first task will introduce you to variables. You will learn how to perform some basic
operations with them.

Task

You'll create a variable named message. Afterward, you will store some text in it. Finally,
you will display the value of the variable to the user.

Solution

Here is the code:

static void Main(string[] args)

47

{
// Declaration of a variable to store text
string message;
// Storing a value in prepared variable (assignment statement)
message = "I can't live with you.";
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_4


https://doi.org/10.1007/978-1-4842-7147-6_4#DOI

CHAPTER 4  USING VARIABLES

// Another variable (initialized with some value)
string anotherMessage = "I can't live without you.";

// Output of variables
Console.WritelLine(message);
Console.WritelLine(anotherMessage);

// Waiting for Enter
Console.ReadlLine();

Discussion

Now let’s discuss the solution.

Variable Declaration

If you want to use a variable, you need to declare (create) it first.
The general syntax of a variable declaration statement is as follows:

typeName[ space JvariableName[semicolon].

In this case, it reads as follows:
string message;

The type denotes the category of values that you want to store in the variable. In this
case, you want to store text, which is why you used the type called string.
Alternative

There is an alternative way to write a variable declaration statement. In front of the
semicolon, you can use an equal sign and the initial value of the variable.
Here is an example of this syntax:

string anotherMessage = "I can't live without you.";

48



CHAPTER 4  USING VARIABLES

Assignment Statement

There is one more thing in the code that needs to be explained. The second statement is
as follows:

message = "I can't live with you.";

This stores a value (the text “I can’t live with you.”) in the prepared variable
(message), and it is called an assignment statement. You use it whenever you want to
store something.

The general syntax of the assignment statement is as follows:

WHERE (TO STORE) = WHAT (TO STORE);

Storing Numbers

In the next task, you will learn about variables that store numbers rather than text.

Task

You will create (declare) a variable called number. Afterward, you will store some number
in it. Finally, you will display the variable’s value to the user.

Solution

The data type for numeric values is called int. Strictly speaking, this is the data type for
whole numbers (integers). It will not be long until you see that distinguishing whole and

decimal numbers matters in programming.

static void Main(string[] args)

{

// Variable for storing number (with initial value)
int number = -12;

// Output of value of the variable
Console.WritelLine("Value of the variable: " + number);

49



CHAPTER 4  USING VARIABLES

// Waiting for Enter
Console.ReadlLine();

Do not forget, numbers are entered without quotes.

Adding 1 and 1

What? Adding 1 and 1 again? You probably think I'm going mad!

Task

In the previous chapter, I told you that variables could provide you with greater certainty
when combining numbers with text. Now I am returning to that suggestion.

Solution

Here is the code:

static void Main(string[] args)
{
// Precalculation of result (into a variable)
int sum = 1 + 1;
// Output to the user
Console.WritelLine(
@"Answer to Senior math test

One and one is: " + sum);

// Waiting for Enter
Console.ReadLine();

}

For the result of running the program, see Figure 4-1.

50



CHAPTER 4  USING VARIABLES

- O 5
Answer to Senior math test 2

One and one is: 2

Figure 4-1. The result of the 1 plus 1 program

Discussion

Please compare the calculation of adding 1 to 1 to the calculations from the previous
chapter. Here, you explicitly store the result in a variable. This allows you to avoid
possible problems with the order of evaluation and getting the incorrect answer of 11.

Doing Calculations with Variables

In the next task, you will learn how to use several variables at once.

Task

You are going to store some numbers in two variables. After that, you will calculate their
sum into the third one.

Solution

Here is the code:

static void Main(string[] args)

{
// 1. SOLUTION

// Values to be summed

51



CHAPTER 4  USING VARIABLES

int firstNumber = 42;
int secondNumber = 11;

// Calculating
int sum = firstNumber + secondNumber;

// Output
Console.WriteLine("Sum is:

+ sum);

// 2. SOLUTION
// Declaring all variables at once
int thirdNumber, fourthNumber, newSum;

// Values to be summed
thirdNumber = 42;
fourthNumber = 11;

// Calculating
newSum = thirdNumber + fourthNumber;

// Output
Console.WriteLine("Calculated another way:

+ newSum);

// Waiting for Enter
Console.ReadLine();

Discussion

The two (alternative) solutions show two cases you will often meet:
e You declare a variable and immediately store a value in it.

¢ You declare a variable first and store a value in it later.

Assembling a Grand Combination

Often, you need to assemble your output from several values. In this task, you will learn
how.

52



CHAPTER 4  USING VARIABLES

Task

I will show you how to assemble complex text via an example of a soccer match result
(Figure 4-2).

" s 0 X

Match FC Liverpool - Manchester United ended with result 3:2. ~

Figure 4-2. Grand combination program

In the example, you have some fixed text, some (potentially) variable text, and some
(potentially) variable numbers. This is a typical real-world situation.

Solution

To store (potentially) variable values, you use variables. Of course, the values are actually
fixed in this simple program, but generally you would be getting them from somewhere
else (such as a user, file, database, or web service). You will learn later in the book how to
get input from a user.

static void Main(string[] args)

{
// Data in variables
string clubl = "FC Liverpool";
string club2 = "Manchester United";
int goalsi = 3;
int goals2 = 2;

// Output of match result
Console.WritelLine(
"Match " + club1 + " - " + club2 +
" ended with result " +

goalsi + + goals2 + ".");

53



CHAPTER 4  USING VARIABLES

// Waiting for Enter
Console.ReadlLine();

Discussion

In the solution, you should especially note the following:

e You are using variables with different data types to store different
kinds of values.

e You are constructing the displayed message from nine parts joined
together by eight plus signs. Some of the parts of the message are
fixed, while the others are variable.

Working with Decimal Numbers

In programming, you need to thoroughly distinguish between whole and decimal
numbers. You already know how to work with whole numbers, so now you will look at
the decimals.

Task

In this task, I will show you some examples of how to work with decimals.

Solution

In C#, there is a type called double for decimal numbers. Here is the code:

static void Main(string[] args)
{
// IN CODE, decimal separator is always DOT regardless of computer
language settings
double piApproximately = 3.14;

// Pi is already available in C#
double piMorePrecisely = Math.PI;

54



CHAPTER 4  USING VARIABLES

// Decimal numbers have always limited precision
double notCompletelyOne = 0.999999999999999999;

// Outputs
Console.WriteLine("Pi value from our code: " + piApproximately);
Console.WriteLine("Pi value from C#: " + piMorePrecisely);

Console.WriteLine("This should not be exact one:

+ notCompletelyOne);

// Waiting for Enter
Console.ReadlLine();

Discussion

Please note the following:

e Incode, you always need to use a decimal point as a separator
between the integer and decimal parts of a number.

o However, the output depends on your Windows settings. As you can
see in Figure 4-3, the output on my computer uses a comma as a
decimal separator since I have my computer set to the Czech language.

e You can also see that decimal numbers do not have infinite precision.
They are rounded after approximately 15 significant digits.

# - O X

Pi value from our code: 3,14 A
Pi value from C#: 3,14159265358979
This should not be exact one: 1

Figure 4-3. The result of the decimal numbers program

55



CHAPTER 4  USING VARIABLES

Working with Logical Values

In programming, you often work with logical values, which are the values of “yes” and “no.”

Task

In this task, I will show you how to work with logical values.

Solution

The type for logical values is called bool in C#. The value “yes” is written as true, and the
value “no” is written as false. Here is the code:

static void Main(string[] args)

{
// Two logical (Boolean) variables
bool thePrettiestGirlLovesMe = true;
bool iAmHungry = false;

// Use exclamation mark to negate logical value
bool iAmNotHungry = !iAmHungry;

// Output
Console.WriteLine("She loves me: " + thePrettiestGirlLovesMe);
Console.WriteLine("I am hungry: " + iAmHungry);

Console.WriteLine("I am not hungry: " + iAmNotHungry);

// Waiting for Enter
Console.ReadlLine();

Discussion

Note that you use an exclamation mark whenever you need to negate a logical value
(to flip it from “yes” to “no” and back again).

56



CHAPTER 4  USING VARIABLES

Summary

In this chapter, you were introduced to the important concept of variables. In every real

program, you need to temporarily store values (calculation results, user inputs, etc.) in a

computer’s memory, and this is exactly what you use variables for. A variable is a place in

memory that has a name to reference it and its data type to be clear about what kind of

data you will store in it.

Specifically, you learned the following:

Before you can use a variable, you must declare it. An appropriate
statement is string message;.

To store a value in a variable, you use the assignment statement
format of where = what;. An example is message = "Some text";.

In C#, the data type for text is string.
The data type for the whole numbers (integers) is int.

In programming, contrary to common usage, care must be taken to
distinguish between whole and decimal numbers.

The data type for decimal numbers is double.

There is a special data type called bool for storing so-called logical
values true and false, which are computer equivalents of “yes” and

«u. ”

no.

57



CHAPTER 5

Working with Objects

Variables of type string, int, double, and bool always contain a single value—text, a single
number, or a single yes/no value. However, such “atomic” values can be grouped into
aggregates that are called objects. A single object can contain multiple values that are called
its components or members. Grouping can go so far that an object can contain several other
objects inside itself, for example. In this chapter, you are going to learn about objects.

What Time Is It?

The first object you will encounter is a DateTime object containing various components
of a single instance of time, such as day, month, year, hour, minute, second, and so on.

Task

You will write a program that displays the current date and time to the user (see Figure 5-1).

P — O X
Now is 1/23/2021 5:58:48 AM 2

Figure 5-1. Displaying the current date and time
In this task, you will get to know objects of the DateTime type.

59
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_5


https://doi.org/10.1007/978-1-4842-7147-6_5#DOI

CHAPTER5 WORKING WITH OBJECTS

Solution

Here is the code:

static void Main(string[] args)

{

// Variable of DateTime type, at first empty
DateTime now;

// Storing of current date and time into our variable
now = DateTime.Now;

// Output
Console.WriteLine("Now is

+ now);

// Waiting for Enter
Console.ReadlLine();

What Date Is It Today?

Let’s go further with the DateTime object.

Task

Say you are interested only in today’s date, with the time component excluded

(see Figure 5-2).

60



CHAPTER 5 WORKING WITH OBJECTS

. — O X
Today is 1/23/2021 12:00:00 AM 2

Figure 5-2. Displaying just the date

The difference between today’s date and current time can be substantial in many

programs!

Solution

Here is the code:

static void Main(string[] args)

{
// Variable of DateTime type, at first empty
DateTime today;

// Storing of today's date (without time component)
today = DateTime.Today;

// Output
Console.WritelLine("Today is

+ today);

// Waiting for Enter
Console.ReadlLine();

61



CHAPTER5 WORKING WITH OBJECTS

Working with Date Components

You might wonder where the mentioned components of an object are. Let’s see the
components of the DateTime object. If you append a variable of the DateTime type with a
dot, Visual Studio IntelliSense displays all the possible components available.

Task

You will learn about the various components of the DateTime object.

Solution

Here is the code:

static void Main(string[] args)

{
// Current date and time (using single statement)
DateTime now = DateTime.Now;

// Picking up individual components
int day = now.Day;

int month = now.Month;

int year = now.Year;

int hours = now.Hour;

int minutes = now.Minute;

int seconds = now.Second;

DateTime justDateWithoutTime = now.Date;

// Output

Console.WriteLine("Day: " + day);
Console.WriteLine("Month: " + month);
Console.WritelLine("Year: " + year);
Console.WriteLine("Hours: " + hours);

+ minutes);
+ seconds);

Console.WritelLine("Minutes:
Console.WritelLine("Seconds:

Console.WritelLine("Date component: " + justDateWithoutTime);

62



CHAPTER 5 WORKING WITH OBJECTS

// Formatting output our way
Console.WriteLine("Our output: " +

year + ", " + month + "/" + day +

+

hours + " hours " + minutes + " minutes");

// Waiting for Enter
Console.ReadlLine();

Figure 5-3 shows the components of the DateTime object.

" - O X
Day: 23 8
Month: 1

Year: 2021

Hours: 6

Minutes: 4

Seconds: 29

Date component: 1/23/2021 12:00:00 AM

Our output: 2021, 1/23 6 hours 4 minutes

Figure 5-3. Components of the DateTime object

Using Namespaces

Well, now that you have met your first object, I should tell you something about namespaces.

Important using

With the last project still open, use two slashes to comment out the first line (using
System;) in the Program.cs source code (see Figure 5-4). You can also just delete the
line. However, to return to the original version, it is more convenient just to comment out

the line.
63



CHAPTER5 WORKING WITH OBJECTS

) File Edit View Git Project Build Debug
3-2 W 9 - Debug- AnyCP

Q- ©

Program.cs* + X
€ Da onents | % Date_compc
ing System;

-namespace Date_components

{

B class Program

{

8 static void Main(str:

X0Q|00| Ja10|dX3 JBAIIS

Figure 5-4. Commenting out the first line

Within an instant, a multitude of red waves appear in the source code. When you try
to launch your program using the F5 key, it will not launch (see Figure 5-5).

Microsoft Visual Studio X

0 There were build errors. Would you like to continue and run the last
successful build?

Yes No

[J Do not show this dialog again

Figure 5-5. Getting errors

64



CHAPTER 5 WORKING WITH OBJECTS

Just to remind you, always click No in the error dialog that appears.
The Error List pane that appears shows plenty of errors—suddenly Visual Studio
“does not know” either DateTime or Console (see Figure 5-6).

™) Fle Edit View Git Project Build Debug Test Apalyze JTools Extensions Window Help Sear. R Da...ts - (w] -
‘@-0 -2 W Y- | Debug- AnyCPU - b Date components - | & @& _i s . @Llveshare & EIEVETL]

Program.cs* =
& Date components
#  [/using System;

Solution Explorer .
CORP| o-5FH| L=
Search Solution Explorer (Ctrl+8) £ -
&1 Solution 'Date components' (1 of 1
« [ Date components
b & Dependencies

-1*% Date_components.Program ']Q.Main(string[] args)

-namespace Date_components

¥nn|oo] Jasojdxg Janesg

> PIOOIAMLCS
- & X
: - |[© 12 Errors ||[+ 0 Wamnings || © 0 Messages |[%¢] Build + IntelliSens - Search Error List p-
" Code Description Project File L.. Suppression.. *
& o 4|The type or namespace name 'DateTime’ could not be found (are you Date components  Program.cs 9 Atthe

missing a using directive or an assembly reference?)
@ CS010.The name 'DateTime' does not exist in the current context Date components  Program.cs 9  Adive
o cs024 The type or namespace name 'DateTime’ could not be found (are you

missing a using directive or an assembly reference?) Date components  Program.cs 18 Adive
@ CS010.The name "Console' does not exist in the current context Date components  Program.cs 21 Adtive
@ (CS010.The name "Console' does not exist in the current context Date components  Program.cs 22 Acdive
@ CS010:The name "Console’ does not exist in the current context Date components  Program.cs 23 Adive

& CS010.The name 'Console’ not exist in the current context Date components  Program.cs 24 Adive

COes No L [ he cl Ll OLEx] AL L

) :
Error List Output

O Ready + Add to Source Control ~ #3

Figure 5-6. Error List pane

The using line is quite important, isn’t it? I am going to explain why next.

Namespaces

Almost everything in C# belongs to some hierarchically higher unit. In this case, both
DateTime and Console belong to the System namespace. If you want to use them, you
have to declare the corresponding namespace with a using line at the top of your source
code. Otherwise, Visual Studio does not understand them.

Why are there things like namespaces? What do you need them for? Well, there are
not an infinite number of names for objects, so you need to specify which one you are
using. For example, you do not need to use the DateTime class just from Microsoft; you
could program your own DateTime, or you could buy some wonderful DateTime from
another programmer. That is why you need a way to distinguish among them. This way is
through namespaces.

65



CHAPTER5 WORKING WITH OBJECTS

Every object type belongs to some namespace. For example, the System namespace
is “managed” by Microsoft. If I prepared my own DateTime, I might put it in the
RadekVystavél.Books namespace

Well, maybe no one needs to make their own DateTime, but there are better
examples. For example, the TextBox class prepared for text box controls in programs
with graphical user interfaces exists in at least four versions from Microsoft:

o For desktop apps in Windows Forms technology
o For desktop apps in WPF technology

o For web apps

e For so-called Universal (touch-oriented) apps

Each of the text boxes mentioned belongs to a separate namespace.

Without usings

If you now delete the two slashes you used to comment out the using System; line,
everything will return to a normal state. However, it might be interesting to see how the
program appears with no using at all, which is what you are going to do next.

In your source code, you need to qualify all the occurrences of DateTime and Console
with the appropriate namespace, that is, System. Qualification is technically performed
by prepending the namespace to the name being qualified.

//using System;

namespace Date_components_without using_

{

class Program

{
static void Main(string[] args)
{
// Current date and time (using single statement)
System.DateTime now = System.DateTime.Now;

// Picking up individual components
int day = now.Day;
int month = now.Month;

66



CHAPTER 5 WORKING WITH OBJECTS

int year = now.Year;

int hours = now.Hour;

int minutes = now.Minute;

int seconds = now.Second;

System.DateTime justDateWithoutTime = now.Date;
// Output

System.Console.WritelLine("Day: " + day);
System.Console.WriteLine("Month: " + month);
System.Console.WritelLine("Year: " + year);
System.Console.WritelLine("Hours: " + hours);

System.Console
System.Console
System.Console

MWriteLine("Minutes: " + minutes);

WriteLine("Seconds: " + seconds);

justDateWithoutTime);

// Formatting
System.Console

year + ",

+

hours +

// Waiting for
System.Console

It is better with usings, isn’

WritelLine("Date component: " +

output our way

JWriteLine("Our output: " +

"+ month + "/" + day +

hours " + minutes + " minutes");
Enter

.ReadlLine();

tit?

C# 9.0 Minimalistic Program

Since we are experimenting with things outside the Main method, it is a proper time

now to get acquainted with a C# 9.0 innovation allowing you to omit “boilerplate code,”

namely, namespace, class, and Main lines (plus corresponding braces, of course).

Get back to the “Working with Date Components” sooner in this chapter, and open

the appropriate project in Visual Studio once more.

67



CHAPTER5 WORKING WITH OBJECTS

Remove everything what is not our code with the exception of the using lines.
Specifically, you should delete three lines beginning with namespace, class, and Main,
plus three opening braces and three closing braces. Your code editor in Visual Studio will
look like Figure 5-7.

) File Edit View Git Project Build Debug Test Apalyze Tools Extensions Window Help .. £  Da..ts = o
10 0|@ = R¥[9 - | Debug- AnyCPU - » Datecomponents- 5@ . i (#LiveShare £

Ll Program.cs* = x ~ & Solution Explorer - .
-l & Date companents z z ‘ool o-rsaR| S -

g using System; & [ search Solution Explorer (Ctri+d) »-
3 . : | Solution 'Date components' (1 of 1
; DateTime now = DateTime.Now; 4 [# Date components

) ¢ & Dependencies

g // Picking up individual components » ¢ Program.cs

2

int day = now.Day;

int month = now.Month;
int year = now.Year;
int hours = now.Hour;
int minutes = now.Minute; —
int seconds = now.Second;

DateTime justDateWithoutTime = now.Date;

// Output

Console.WriteLine("Day: " + day);

Console.WriteLine("Month: " + month);
Console.WritelLine("Year: " + year);
Console.WriteLine("Hours: " + hours);
Console.WriteLine("Minutes: " + minutes);
Console.WriteLine("Seconds: " + seconds);
Console.WriteLine("Date component: " + justDateWithoutTime);

4
Solution Explorer KeiSeEGIES

- Properties

// Formatting output our way
Console.WriteLine("Our output: " +
year + ", " + month + "/" + day +
g
hours + " hours

+ minutes + " minutes");

// Waiting for Enter
Console.ReadlLine();

W% - 01 0 € 3 | F b 1S Oh4l SPCCRIF
Error List Qutput

O Ready + Add to Source Control « #>
Figure 5-7. Omitting “boilerplate code”

Hit the F5 key to run the program. At first, it may look like deleting all these lines was
not a good idea (see Figure 5-8).

68



CHAPTER 5 WORKING WITH OBJECTS

Error List v AaXx
Entire Solution - || 1 Error |||+ 0 Warnings || @ 0 Messages Build + IntelliSens - Search Error List P -
¥ Code Description Project File Line Suppression Stat
o (_Smaneature 'top-level statements' is not available in C# 8.0. Please use Date components  Pragram.cs 3 Adive

language version 9.0 or greater.

Error List Output

Figure 5-8. Visual Studio complaining about the C# version

The IDE complains about the C# version, at least on my computer with the preview
version of Visual Studio. The error message says we need C# 9.0. So, if we manage to
switch to C# 9.0, our case might not be lost in the end.

From the Visual Studio menu, choose Project » Properties (see Figure 5-9).

) File Edit View Gitl' Project __Puild Debug Test Analyze Tools Extensi
f0-0| 8- B9 lass... r

' *a Add New Data Source...

Program.cs = * | 3 Add New Item... Ctrl+Shift+A .
@Da_vte components | "o Add Existing Item... Shift+Alt+A
n using Systen o it project File
: “4 New Folder Ctrl+Alt+N

DateTime now

A A A A PP PP PPPPPPPS

Exclude From Project

// Picking . ® Show All Files

int day = nc  Add Project Reference...

int month = Add Shared Project Reference...

int year = r  Add COM Reference...

int hours =|% Add Connected Service

int minutes # Setas Startup Project Ctrl+R
int seconds Export Template...

DateTime jysa
# Date components Properties

| // Output

w
3
1]
oo
m
>
el
(=}
=
m
L
-
(=
=
[~
Q
>

Figure 5-9. Choosing the Project Properties menu

In the screen that appears, go to the Target framework combo and select “NET 5.0”
(see Figure 5-10). This will switch C# 9.0 on.

69



CHAPTER5 WORKING WITH OBJECTS

) File Edit View Git Project Build Debug Test Apalyze Tools Extensions Window Help

i@-9 @-2 W -7 - Debugr AnyCPU - P Date components ~ | 5* @ _ e L
}g Date components* += x [T Ke]
(17
=2 Application*® —
m PP Configuration: IN}A ;J Platform: [N,u"A ;I
=8 Build _
) Build Events Assembly name: Default namespace:
é’* Package |Date components IDate_components
g Debug Target framework: Output type:
Signing % ‘Ccnsole Application
Code Analysis Startup object:
Resources |(N ot set) LJ

Figure 5-10. Changing target

Hit the F5 key again and the program should launch smoothly now.

Using the Environment Object

To conclude the chapter, you will take one more look at the Environment object you
already know. It is fruitful to look at things from different perspectives.

Task

The Environment object contains information about a program’s “surroundings”
(i.e., about the computer and the operating system). You already saw the Environment.
NewLine component. Now you are going to learn about more components.

Solution

Here is the code:

static void Main(string[] args)

{

// Displaying components of Environment object
Console.WritelLine("Device name: " + Environment.MachineName);

70



Console.WriteLine("64-bit system:
Console.WriteLine("User name:

CHAPTER 5 WORKING WITH OBJECTS

+ Environment.Is64BitOperatingSystem);

+ Environment.UserName);

// Waiting for Enter
Console.ReadLine();

Contrary to the previous program, I have not extracted object components into

variables here. I have used them directly just so you could see another possible way of

using them.

Summary

In this chapter, you got acquainted with objects, which are essentially conglomerates of

several components. Contrary to “atomic” (single-valued) types such as int or string,

objects usually contain a number of values.

Specifically, you met the following:

The DateTime object, which can be used to retrieve the current date
or time
The Environment object, which can be used to retrieve information

about a program’s “surroundings” such as computer names or
usernames

You also learned the following:

The objects can be stored in variables of the appropriate type.

An object’s components can be accessed via the so-called dot
notation. You write the name of an object’s variable and append
the dot, and a list of available components pops up thanks to Visual
Studio IntelliSense.

Each object type belongs to some namespace. To put it simply,
namespaces can be viewed as containers of similar object types.

An important namespace is the System namespace, which contains
basic object types such as DateTime or Console.

71



CHAPTER5 WORKING WITH OBJECTS

72

You indicate you want to use a specific namespace with a using line
at the beginning of the source code.

If you do not include the appropriate using line, you have to fully
qualify the type’s name. This means you prepend the type’s name
with the namespace’s name and a dot.

C# 9.0 allows you to omit so-called “boilerplate” code, the code
generated from a project template rather than written by you.



CHAPTER 6

Using Object Actions

You already know from the previous chapter that an object is a kind of data conglomerate
consisting of several “pieces of data.” You also know that you can access an object’s individual
components when you enter the object name, a dot, and the component name. In this
chapter, you will find that objects in programming are even more complex. You will learn that
besides data components, objects can encapsulate actions that you can perform with the
corresponding object. Through several tasks, you will get practice using object actions.

Displaying the Month in Text

This first task will introduce you to actions that you can perform with DateTime objects.

Task

You will write a program that will display the current date with the month presented by
text rather than by a number (or, generally, in long form), as shown in Figure 6-1.

v - O X
Today is Saturday, January 23, 2021 2

v

Figure 6-1. Displaying the current date with the month presented in text

You can achieve this task using the ToLongDateString action of the DateTime object.

73
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_6


https://doi.org/10.1007/978-1-4842-7147-6_6#DOI

CHAPTER6  USING OBJECT ACTIONS

Solution

Here is the code:

static void Main(string[] args)

{
// Today's date
DateTime today = DateTime.Today;
// Output
Console.WritelLine("Today is " + today.TolLongDateString());
// Waiting for Enter
Console.ReadlLine();
}
Discussion
Note the following:

e When you launch some object action in C#, the action name is always
appended by parentheses (round brackets), even if there is nothing
between them.

o The parentheses are often not empty but contain a parameter
(or parameters), which is some action-specific information. For
example, in the case of the Console.Writeline action, you specify in
parentheses what you want to display.

e The actions you can perform with objects are also called methods.

o The month name displayed by the ToLongDateString method
depends on the operating system language setting.

Displaying Tomorrow

DateTime objects have more actions available than just converting a date into text. Date
arithmetic is especially important.

74



CHAPTER6  USING OBJECT ACTIONS

Task

You will write a program that displays tomorrow’s date (see Figure 6-2).

" - a X
Today is 1/23/2021. 2
I will start learning on 1/24/2021.

Figure 6-2. Displaying tomorrow'’s date

Solution

DateTime objects can perform further interesting actions (methods), such as the
following:

o UsingAddDays for date arithmetic
o Using ToShortDateString for displaying the date in short form

Here is the code:

static void Main(string[] args)
{
// Today's date
DateTime today = DateTime.Today;

// Tomorrow's date
DateTime tomorrow = today.AddDays(1);

// Output

Console.WritelLine("Today is " + today.ToShortDateString() + ".");
Console.WritelLine("I will start learning on "
ToShortDateString() + ".");

+ tomorrow.

75



CHAPTER6  USING OBJECT ACTIONS

// Waiting for Enter
Console.ReadlLine();

Displaying a Specific Date

Let’s continue with dates and see what a constructor is.

Task

When working with dates, you do not have to always start from today’s date. You can
choose some specific date (see Figure 6-3).

il - () X
D-Day (Overlord operation): Tuesday, June 6, 1944, A

Figure 6-3. Starting with a specific date

Solution

You can create a DateTime object initialized with a specific date by calling an object’s
constructor. You enter the new word, type the name (i.e., DateTime), and use parentheses
with the possible parameters. In this case, the parameters are the year, month, and day.

static void Main(string[] args)

{
// A specific date

DateTime overlordDday = new DateTime(1944, 6, 6);

76



CHAPTER6  USING OBJECT ACTIONS

// Output
Console.WriteLine("D-Day (Overlord operation): " +
overlordDday.ToLongDateString() + ".");

// Waiting for Enter
Console.ReadlLine();

Rolling a Single Die

Enough dates. Now you will learn how to work with chance or randomness.

Task

You will write a program that “throws” a die three times (see Figure 6-4).

" - O X
Thrown numbers: 5, 3, 6 A

Figure 6-4. Rolling a die

Solution

To work with chance, you need a random number generator. In C#, you use the Random
object for that purpose.
You first create a Random object by calling its constructor once at the beginning of the

program run, and afterward you repeatedly call its method called Next.

77



CHAPTER6  USING OBJECT ACTIONS

static void Main(string[] args)

{
// Creating random number generator object
Random randomNumbers = new Random();

// Repeatedly throwing a die

int number1l = randomNumbers.Next(1, 6 + 1);
int number2 = randomNumbers.Next(1, 6 + 1);
int number3 = randomNumbers.Next(1, 6 + 1);

// Output
Console.WriteLine("Thrown numbers: " +

number1 + ", " +

number2 + ", " +
number3);

// Waiting for Enter
Console.ReadlLine();

Note

The Next method (action) requires two parameters in parentheses:
e The lower bound of the interval of generated numbers

e The upper bound increased by 1 (I'm sorry, but I was not the one
who invented this strangeness)

Rolling Two Dice

Staying with the topic of random numbers, you will now see how to use more than one
random number series.

Task

You will write a program that throws a pair of dice three times (see Figure 6-5). I will
show you the right way to do this and the wrong way.

78



CHAPTER6  USING OBJECT ACTIONS

- — a X

[CORRECTLY A
Thrown couples: 4-3, 1-1, 3-1

INCORRECTLY
Thrown couples: 4-4, 3-3, 1-1

Figure 6-5. Rolling dice three times

Solution

The main message of the solution is to use a single random number generator. If you
had two of them created practically at the same time, they would usually generate the
same numbers! Here is the code:

static void Main(string[] args)

{
// 1. CORRECT SOLUTION
// Creating random number generator object
Random randomNumbers = new Random();

// Repeatedly throwing two dice
int correctNumberi1i = randomNumbers.Next(1, 6 + 1);

int correctNumber12 = randomNumbers.Next(1, 6 + 1);

int correctNumber21

randomNumbers.Next(1, 6 + 1);

int correctNumber22 = randomNumbers.Next(1, 6 + 1);

randomNumbers.Next(1, 6 + 1);
randomNumbers.Next(1, 6 + 1);

int correctNumber3i
int correctNumber32

// Output
Console.WriteLine("CORRECTLY");
Console.WriteLine("Thrown couples: " +

79



CHAPTER6  USING OBJECT ACTIONS

+ correctNumber12 + ", " +

correctNumberil +

+ correctNumber22 + ", " +
+ correctNumber32);

correctNumber21 +
correctNumber3i +

// 2. INCORRECT SOLUTION

// Two random number generators
Random randomNumbersi = new Random();
Random randomNumbers2 = new Random();

// Repeatedly throwing two dice
int incorrectNumber11 = randomNumbersi.Next(1, 6 + 1);

int incorrectNumber12 = randomNumbers2.Next(1, 6 + 1);

int incorrectNumber21

randomNumbersi.Next(1, 6 + 1);

int incorrectNumber22 = randomNumbers2.Next(1, 6 + 1);

randomNumbersi.Next(1, 6 + 1);
randomNumbers2.Next(1, 6 + 1);

int incorrectNumber31
int incorrectNumber32

// Output
Console.WritelLine(); // empty line
Console.WriteLine("INCORRECTLY");

Console.WriteLine("Thrown couples: " +

+ incorrectNumber12 + ",

incorrectNumber11 +

+ incorrectNumber22 + ", " +
+ incorrectNumber32);

incorrectNumber21 +

incorrectNumber31 +

// Waiting for Enter
Console.ReadlLine();

Getting the Path to the Desktop

To conclude the chapter, you will learn about the actions of yet another object.

80



CHAPTER6  USING OBJECT ACTIONS

Task

When you work with files, you might want to create a file on the user’s desktop. However,
everybody has their own file system path to the desktop. I will show you how to find that
path (see Figure 6-6).

. - o X
lPath to your desktop: C:\Users\vystavel\Desktop &

Figure 6-6. Finding the path

Solution

You can use your old friend, the Environment object. Here is the code:

static void Main(string[] args)

{
// Finding path to the desktop

string pathToDesktop = Environment.GetFolderPath(Environment.
SpecialFolder.Desktop);

// Output
Console.WriteLine("Path to your desktop: " + pathToDesktop);

// Waiting for Enter
Console.ReadlLine();

81



CHAPTER6  USING OBJECT ACTIONS

Enumeration

Pay special attention to the way you have specified that you are interested in the desktop.
The value of Desktop is one of the values of an enumeration called Environment.
SpecialFolder.

Whenever Visual Studio wants you to enter an enumeration’s value, it usually offers
you a corresponding enumeration. In this case, when you choose GetFolderPath from
IntelliSense and type an open parenthesis afterward, the Environment.SpecialFolder
enumeration immediately pops up (see Figure 6-7).

™) File Edit View Git Project Bulld Debug Test Analy Tools B> ns  Wind Help Search.. @ Pa...op - o 75
f0-0 | @-2 M@ 9" Debug- AnyCPU - b Pathtodesktop-| & |@ _ | = % |. @liveShare & EEEUGETFGT
Program.cs* = X

& Path to desktop +| "% Path_to_desktop.Program - | % Main(string[] args)
using System;

-namespace Path_to_desktop

{

X0qjoo| JBuojdxg Janeg

class Program
{
static void Main(string[] args)
{
// Finding path to the desktop
string pathToDesktop = Envircnment.GetFolderPath()
4 ] of 2 ¥ string Environment.GetFolderPath(Environment.SpecialFolder folder)

Gets the path to the system special folder that is identified by the specified enumeration.
folder: One of enumeration values that identifies a system special folder.

7
s
=
=
S
m
5
2
Q
(=)
B
(=]
i
=]
=
2
&

[enum System
| Specifies ent
*z StackOverflowException
*3 STAThreadAttribute
2 static

- &
Error List Output F{l s oo @

J Ready

Figure 6-7. Using IntelliSense

Select the offered enumeration by using the Tab key, enter a dot, and then select the
Desktop value.

82



CHAPTER6  USING OBJECT ACTIONS

Summary

The main purpose of this chapter was to show you that objects are more complex entities
than just conglomerates of data components. Specifically, they frequently contain
methods, which are actions you can perform that usually operate on the object’s data.

You got acquainted with various methods of the DateTime, Random, and Environment
objects. Specifically, you studied the following:

« Conversions of dates to text using the ToLongDateString and
ToShortDateString methods

e One of the methods for date arithmetic, namely, AddDays

e The Next method for producing a single random number within a
specified range

e The GetFolderPath method, which can be used to get the file system
path to special folders such as Desktop, Documents, and so on

You also learned about creating objects using constructor calls. You entered the new
word, followed by the object type’s name and parentheses. Some constructors, like that
of Random objects, require just empty parentheses, while others, like that of DateTime,
require you to specify some values (year, month, and day) between the parentheses.

Within the final example, you also found usage of so-called enumerations, which are
essentially sets of predefined (enumerated) values. Visual Studio’s IntelliSense is of great
help when working with the enumerations.

83



CHAPTER 7

More About Objects

You have seen an object act as a data conglomerate, or container. You have seen the data
it contains as its properties that can be accessed after appending a dot to the object’s
name. Accessing a property means either questioning its value or assigning a new value
to it.

You have also discovered that (possibly many) actions can be associated with an
object. Actions are called methods, and like properties, they can be accessed after
appending a dot to the object’s name. Moreover, accessing a particular method of an
object requires you to add a pair of parentheses to the method’s name, with possible
parameter values inside them. Accessing a method (usually you would say calling it)
means to launch the operation it implements and to execute the statements it contains
inside (without you knowing them).

These are the tenets of programming with objects, the basics of which you studied
in the previous two chapters. This chapter will round out your knowledge of objects by
exposing you to further insights.

Let’s dig into objects a bit more now.

Text as an Object

In C#, even ordinary text behaves like an object; you can add a dot to text and get plenty
of possibilities. Let’s take a look.

Task

You will create a program that displays a number of characters of text, converts the text
into uppercase, and checks whether the text contains a specific word (Figure 7-1).

85
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_7


https://doi.org/10.1007/978-1-4842-7147-6_7#DOI

CHAPTER 7  MORE ABOUT OBJECTS

. - O X
riginal text: This is the last day of our acquaintance 2
r of characters: 40

In uppercase: THIS IS THE LAST DAY OF OUR ACQUAINTANCE
Does it contain word "last"? True

Figure 7-1. The final program

Solution

Here is the code:

static void Main(string[] args)

{
// Some text to try things on
string text = "This is the last day of our acquaintance";
// What e.g. can be done with texts
Console.WritelLine("Original text: " + text);
Console.WriteLine("Number of characters: " + text.Length);
Console.WritelLine("In uppercase: " + text.ToUpper());
Console.WriteLine("Does it contain word \"last\"? " + text.
Contains("last"));
// Waiting for Enter
Console.ReadlLine();

}

Discussion

Data members (e.g., Length) are not accompanied by parentheses, contrary to methods
(such as ToUpper, Contains), which always need parentheses even if there is nothing
between them.

86



CHAPTER 7  MORE ABOUT OBJECTS

How can you quickly find out whether something is a method (and therefore will

need parentheses)? You can do this either by looking at the violet cube in IntelliSense or

looking for parentheses in the tooltip (see Figure 7-2).

) Teus a5 objects - Microsaft Visual Studio Bl = | Quick Launch (Ctri+Q) Pl = B X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Radek Vystavél ~
o - (SR - - & -| Debug-/|AnyCPU - PStart-| S _ | = a| N 2

Program.cs ® X
¥ Texts as objects - | % Texts_as_objects.Program -| %« Main(string[] args)
-namespace Texts_as_objects
i
class Program
{
static void Main(string[] args)

{

// Some text to try things on
string text = "This is the last day of

string strifll.
Returns a

// What e.g. can be done with texts @ TrimEnd
Console.WriteLine("Original text: " + text® Tnmstett

e.WriteLine("Number of characters: "/ @ %
e.WriteLine("In uppercase: " + text.ToUpper());
e.WriteLine("Does it contain word \"last\"? " + text.Contains("last’

Error List

Ready T Add to Source Control ~

Figure 7-2. Checking whether something is a method

Numbers as Objects

In the previous exercise, you saw that ordinary text—a value of type string—can behave

like an object and show internal components such as properties and methods. Now you

will see that even numbers can behave like objects, although their actions are much
sparser. Actually, the only one worth mentioning is the action of converting to text.

Task

You will explore what pops up after appending a dot to a numeric variable, and you will

learn how to convert from a number to text.

87



CHAPTER 7  MORE ABOUT OBJECTS

Solution

To convert a number into its textual representation, use the ToString method. Actually,

to convert anything into text, you have always the ToString method (action) available
in C#.

static void Main(string[] args)

{

// Some number
int number = 1234;

// Conversion to text
//string numberAsText = number; // DOES NOT WORK!
string numberAsText = number.ToString();

// Output
Console.WriteLine("Output of number: " + number);
Console.WriteLine("Output of text: " + numberAsText);

// Waiting for Enter
Console.ReadlLine();

Discussion

You can see that a value of type int cannot be directly assigned to a variable of type

string. You have to convert it to text form first.

88

Of course, in the output, you cannot see any difference (see Figure 7-3).



CHAPTER 7  MORE ABOUT OBJECTS

- — a X

Output of text: 1234

Output of number: 1234 A

Figure 7-3. The output

However, many times you will need to convert a number into text without
immediately displaying it. Then you will store the text form of the value in a string-
typed variable, which is what you have just seen.

To conclude the discussion, I will tell you the reasons why you cannot see any

difference in the two displayed lines of Figure 7-3:

e The Console.WritelLine method converts everything it gets into text.
It does this silently using the ToString conversion behind the scenes.

o Ifyoujoin some text with a number using the plus sign, the number
gets automatically converted to text in C#. If you desire greater
control, always write down . ToString() in connection with

numbers.

Formatting Numbers

In the previous exercise, you were busy with converting numbers into their textual

representations. However, there are multiple ways that a single number can be expressed

in a text form. You will now learn about decimal places, rounding, thousands separation,

and so on.

89



CHAPTER 7  MORE ABOUT OBJECTS

Task

In the present exercise, you will see several examples of the use of the ToString method
to get nicely formatted numeric output (see Figure 7-4).

i - ) X
Separating thousands and millions + money to cents A
1,234.56
789 .00
1,234,567

Figure 7-4. Nicely formatted output

Solution

Here is the code:

static void Main(string[] args)
{
// Some money amounts and a number
double amount = 1234.56;
double anotherAmount = 789;
int wholeNumber = 1234567;

// Formatted outputs

Console.WritelLine("Separating thousands and millions + money to cents");
Console.WritelLine(amount.ToString("N2"));
Console.WritelLine(anotherAmount.ToString("N2"));
Console.WritelLine(wholeNumber.ToString("N0"));

// Waiting for Enter
Console.ReadlLine();

90



CHAPTER 7  MORE ABOUT OBJECTS

Contrary to the earlier exercise, the ToString method call now has a parameter
between parentheses. The format string specifies the way the output should look.

In the format strings used here, N means thousands separation is required, and two
and zero denote the number of decimal places in the output.

Localized Output

Ordinary number formatting (like in the previous task) works according to the Windows
language setting. However, sometimes you do not want the output to depend on user
settings. You may want a fixed-language setting, such as American, Czech, or whatever.

Task

In this exercise, you will study the display of numbers in two different language styles,
Czech and American (see Figure 7-5).

ole number - Czech: 1 234 567 2
ole number - American: 1,234,567

Decimal number - Czech: 1 234 567,89

Decimal number - American: 1,234,567.89

Figure 7-5. Two different number styles

As you can seg, in the Czech language, you use a space as the thousands separator
and a comma as a decimal separator. The same comma is used as a thousands separator
in American formatting, so you can imagine that letting a computer decide what
language to use (according to Windows settings) can sometimes lead to a confusion and
incorrect program behavior.

91



CHAPTER 7  MORE ABOUT OBJECTS

Solution

First, add the appropriate using line at the top of the source code (with a reference to the
System.Globalization namespace), as shown in Figure 7-6.

™) File Edit View Git Project Build Debug Test Analyze
T 0-0 B-2 WP 9 - Debugr AnyCPU -~ » Localize

Program.cs* + X
Localized output v | *% Localized_output.
=using System;

‘' |using System.Globalization;

=namespace Localized_output

|

= ClasS.Program
{

Figure 7-6. Adding a using line

X0Q|00| J210|dX3 19AIRS

After that, enter the code into the Main method as usual:

static void Main(string[] args)
{
// Whole and decimal number
int wholeNumber = 1234567;
double decimalNumber = 1234567.89;

// Localization objects
CultureInfo czech

new CultureInfo("cs-CZ");
new CultureInfo("en-US");

CultureInfo american

92



CHAPTER 7  MORE ABOUT OBJECTS

// Localized output

Console.WriteLine("Whole number - Czech: + wholeNumber.
ToString("No", czech));

Console.WriteLine("Whole number - American:

+ wholeNumber.
ToString("No", american));

Console.WritelLine("Decimal number - Czech: + decimalNumber.
ToString("N2", czech));

Console.WriteLine("Decimal number - American:

+ decimalNumber.
ToString("N2", american));

// Waiting for Enter
Console.ReadlLine();

Concluding Notes

To finalize your knowledge of objects within the scope of this book, I will introduce you
to some more object concepts. Please do not be worried if you do not understand them
exactly right now. It is okay to just get an introduction to them at this stage of your study.

Static Objects

First, I want to draw your attention toward the existence of two kinds of objects. There
are “classic” objects such as DateTime, Random, and CultureInfo, and there are “static”
objects such as Console, Environment, and Math.

You can have as many classic objects as you want in your program. For example, you
had two DateTimes in the variables today and tomorrow. You also had three Randoms in
the variables randomNumbexrs, randomNumbers1, and randomNumbers2.

Contrary to classic objects, static objects are always single—you have just one
Console, just one Environment, and also just a single Math.

Also, you always create classic objects on demand, while the static ones exist since
the program’s start without any effort on your part.

Strictly using the official terminology, I should be talking about “classes with static
components” rather than about “static objects.” However, I prefer the latter, beginner-
friendly term. It’s better to be approximately beautiful than exactly ugly.

93



CHAPTER 7  MORE ABOUT OBJECTS

Classes

Every documentation or textbook dealing with objects abounds with usage of the word
class. So, what does this mean? To put it simply, a class is a synonym for an object data
type. Instead of “an object of Random type,” you can speak about “an object of the Random
class” This means a class can also be viewed as the name of a certain type of objects.

Relation Between Class and Object

From a different perspective, a class is also a C# source code defining what an object
of a particular kind contains and how it behaves. You can also say that classes serve as
templates for objects. For example, the Random class source code (which Microsoft has,
not you) defines what properties and what methods all Randoms will have.

As a consequence, all Random objects behave in the same way because all of them are
created from the same template, or from the same class. The same can be said about all
DateTimes, all CultureInfos, and so on.

To put it another way, as a well-known maxim of object-oriented programming,
an object is a class instance. The word instance means a single realization, or a single

occurrence.

Special Classes

You saw in this chapter that text, numbers, and so on also behave like objects. Here are
their corresponding classes:

Data Type Corresponding Class

string String
int Int32
double Double
bool Boolean

In C#, you can use string and String interchangeably, int and Int32
interchangeably, and so on. Of course, you need a using System; line at the top of your
source code since all the corresponding classes belong to that particular namespace.

94



CHAPTER 7  MORE ABOUT OBJECTS

Structures

In C#, you may encounter the term structure or struct, as well. What are structures?

Well, you can view them as something like lightweight classes. At a beginner’s level,
they are almost indistinguishable from normal classes, so you may simply substitute the
word class wherever you see structure or struct for a long time.

For example, DateTime is the prime example of a structure. However, for the sake of
simplicity, everywhere in this book I treat DateTime on equal terms with normal classes
like Random or CultureInfo. The only subtle difference you might perceive when working
at the level of this book is that DateTime objects do not necessarily have to be explicitly
created, for example, via a constructor call. It is enough, though possibly not practical,
to declare a variable of that type.

Summary

In this chapter, you learned that even ordinary text and numbers can behave like objects.
Specifically, you studied the following:

o Length property, plus ToUpper and Contains methods of text/strings
e ToString method of numbers

In the latter case, you also saw that the output generated by the ToString
method can be controlled by format strings (like N2, etc.) and language specifications
(CultureInfo objects). In the future, you will find it convenient to use the ToString
method with absolutely everything in C#, not just with numbers.

You got your first glimpse into object programming terminology. Specifically, note
the following:

o Contrary to ordinary objects, static objects always exist in a single
copy. While you can have as many DateTimes as you like, you always
have precisely one Console.

e The word class is synonymous to “object data type.” You will often
read about objects of a specific class, which means “object of a
particular type”

95



PART Il

Calculations



CHAPTER 8

Input

Up to now, all of your programs have been manipulating data (numbers, text, and so on)
that was either fixed directly in source code or drawn from the operating system (dates,
random numbers, and so on). Typically, programs get their data from the user, which is
what you will learn about in this chapter.

Text Input

You will start your study of input with the simplest possible case.

Task

You will write a program that accepts a single line of text from the user and immediately
repeats the inputted text to the output (see Figure 8-1).

" — a X

Hallo from keyboard! A
Hallo from keyboard!

Figure 8-1. The completed program

99
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_8


https://doi.org/10.1007/978-1-4842-7147-6_8#DOI

CHAPTER 8  INPUT

Solution

Here is the code:

static void Main(string[] args)

{

// Reading single line of text (until user presses Enter key)
string input = Console.Readline();

// Outputting the input
Console.WritelLine(input);

// Waiting for Enter
Console.ReadLine();

When you launch the program using the F5 key, you will see an empty screen. Enter

a sentence and send it to the program using the Enter key.

Better Input

In the previous program, the user may have no idea what to do. You have not told the
user what to do. In this exercise, you will improve the input procedure.

Task

You will modify the previous program in a way to give the user a hint about what they are

supposed to do (see Figure 8-2).

" - o *

[Enter a sentence (and press Enter): Now I know what to do! A
You have entered: Now I know what to do!

Figure 8-2. The improved program

100



CHAPTER 8  INPUT

Solution

Here is the code:

static void Main(string[] args)

{
// Hinting user what we want from her
Console.Write("Enter a sentence (and press Enter): ");
// Reading line of text
string input = Console.ReadlLine();
// Repeating to the output
Console.WriteLine("You have entered: " + input);
// Waiting for Enter
Console.ReadlLine();

}

Discussion

Console.Write does not transfer the cursor to the next line, contrary to Console.
Writeline, which you have been using exclusively up to now.

Numeric Input

In previous exercises, you were engaged with the input of text information from the user.
Now you will switch to numbers, which are equally important.

Task

You will write a program that takes a number from the user, stores it in a numeric

variable, and finally repeats it to the user (see Figure 8-3).

101



CHAPTER 8  INPUT

- — a X

FHow old are you? 115 A
Your age: 115

Figure 8-3. Reading a number from the screen

Solution

Console.ReadLine always reads text even if its meaning is a number. If you want to
hold a real number (i.e., a value of the int type), you have to manufacture it using the
Convert.ToInt32 call

static void Main(string[] args)

{
// Prompting the user
Console.Write("How old are you? ");
// Reading line of text
string input = Console.Readline();
// CONVERTING TO NUMBER (of entered text)
int enteredNumber = Convert.ToInt32(input);
// Output of entered number
Console.WritelLine("Your age: " + enteredNumber);
// Waiting for Enter
Console.ReadlLine();

}

102



CHAPTER 8  INPUT

Discussion

Strictly speaking, you have not actually needed a real number yet since you have not
made any calculation on the numbers. However, this will change in the next exercise.
Here, you were exploring numeric input in the simplest possible form.

Calculation with Entered Number

You will now do your first calculation with the value entered by the user.

Task

You will write a program that accepts a year of birth from the user and calculates their

age afterward (see Figure 8-4).

v — O X
Enter year of your birth: 2007 2
This year you are/will be: 14

Figure 8-4. Calculating an age

103



CHAPTER 8  INPUT

Solution

Here is the solution:

static void Main(string[] args)

{
// Prompting the user

Console.Write("Enter year of your birth: ");

// Reading line of text
string input = Console.ReadlLine();

// CONVERING TO NUMBER (of entered text)
int yearOfBirth = Convert.ToInt32(input);

// Finding this year
DateTime today = DateTime.Today;
int thisYear = today.Year;

// Calculating age
int age = thisYear - yearOfBirth;

// Outputting the result
Console.WritelLine("This year you are/will be:

+ age);

// Waiting for Enter
Console.ReadlLine();

Ten More

Let’s continue with the calculations.

Task

You will write a program that accepts a number from the user. After that, it displays a
number that is greater by ten than the one entered (see Figure 8-5).

104



CHAPTER 8

INPUT

Enter a number: 124
Number greater by ten: 134

O

X

Figure 8-5. Adding ten to a number

Solution

Here is the code:

static void Main(string[] args)

{
// Number input
Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);

// Calculating
int result = number + 10;

// Displaying the result

Console.WriteLine("Number greater by ten:

// Waiting for Enter
Console.ReadlLine();

Addition

+ result);

You will take this step further now and make calculations with two numbers from the user.

105



CHAPTER 8  INPUT

Task

You will write a program that sums two numbers entered by the user (see Figure 8-6).

a - O X

Enter 1. number: 57 A
Enter 2. number: 18
Sum of entered numbers is: 75

Figure 8-6. Summing two numbers

Solution

Here is the code:

static void Main(string[] args)

{

106

// Input of 1. number
Console.Write("Enter 1. number: ");
string inputl = Console.ReadlLine();
int number1l = Convert.ToInt32(input1);

// Input of 2. number
Console.Write("Enter 2. number: ");
string input2 = Console.Readline();
int number2 = Convert.ToInt32(input2);

// Calculating
int result = numberi + number2;




CHAPTER 8  INPUT

// Result output
Console.WriteLine("Sum of entered numbers is:

+ result);

// Waiting for Enter
Console.ReadLine();

Incorrect Input

In the previous programs with numbers, if the user entered something other than a
number, the program terminated with a runtime error. Production programs, however,
should not behave like this. Now you will learn how to deal with a runtime error.

Task

In this exercise, you will modify the previous program so that it correctly handles
nonnumeric input from the user (see Figure 8-7).

- — a X

Enter 1. number: 12 A
Enter 2. number: hallo
Incorrect input - cannot calculate

Figure 8-7. Providing feedback for an error

Solution

Leave your last project opened, or open it again if you closed it already. In what follows,
you will edit the project’s Program. cs source code; specifically, you will insert
a try-catch construct in an appropriate place.

107



CHAPTER 8  INPUT

Using your mouse, select the whole interior of Main excluding the last statement
(waiting for Enter), exactly as shown in Figure 8-8. After that, right-click anywhere in the
selected block and choose Snippet and then Surround With from the context menu.

o) File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search.. 2 Ad..on — (] e
100 [@- W9 Debug- AnyCPU - b Addition |5 [@ . b T u (M Gl glveshore £ [EEGILUCE
Program.cs® = x

& Addition -| *% Addition.Program -| % Main(string[] args)
using System;

o
105

namespace Addition

{

X0qoo] Jas0|dx] Janses

class Program
{ M
static void Main(string[] args)
{
// Input of 1. number
Console.Write( - Quick Actions and Refactorings...
string inputl o Rename... F2
int numberl = Remove and Sort Usings
X Peek Definition Alt+F12
// Input of 2. 4 GoTo Definition Fi2
Console.Write( Go To Base Alt+Home

sappadosd sabuey) 39 Jasopdxg uogn

string input2 Go To Implementation Ctrl+F12
int number2 = Find All References Shift+F12

Z  View Call Hierarchy Cirl+K, Ctri+T
// Calculating  (reate Unit Tests
int result = n Breakpoint

% RunToC Ctrl+F10
// Result outp S 154

Console.Writel pekoQUcl] Interactive Crl+E, Ctr+E 5
Lsomme ) cuen, s
// Waiting for| & CU Ctrl+X e Clrl+K, Ctrl+X

Console.ReadLi @ Copy Ctri+C Insert Comment
Paste Ctri+V

Annotation
Outlining

Error List Output

O Ready + Add to Source Control -~ #32

Figure 8-8. Choosing Surround With

In the small pane that pops up, select Try (see Figure 8-9).

108



CHAPTER 8  INPUT

! lock

B %

“* Na mespace
%' struct

while =

Figure 8-9. Selecting Try

What Happened

What happened? Visual Studio wrapped the selected lines into the try block, which
consists of the word try and a pair of curly brackets. It also inserted a catch block, which
includes the word catch and a pair of curly brackets, after the try block.

Interior of the catch Part

Delete the statement throw inside the catch block and enter the following statement
instead:

Console.WriteLine("Incorrect input - cannot calculate");

Complete Solution

Here is the complete solution:

static void Main(string[] args)

{
try

{
// Input of 1. number

Console.Write("Enter 1. number: ");

109



CHAPTER 8  INPUT

string input1l = Console.ReadlLine();
int number1l = Convert.ToInt32(inputl);

// Input of 2. number
Console.Write("Enter 2. number: ");
string input2 = Console.ReadlLine();
int number2 = Convert.ToInt32(input2);

// Calculating
int result = numberi + number2;
// Result output

Console.WriteLine("Sum of entered numbers is: " + result);
}
catch (Exception)
{
Console.WriteLine("Incorrect input - cannot calculate");
}

// Waiting for Enter
Console.ReadLine();

Testing

You can test your program both for numeric input and for nonsense now.

Explanation

Statements in a try block are executed in a kind of “trial mode”:

o When all of them succeed, execution in the try block proceeds
normally, and the catch block is skipped afterward.

o When a statement fails, the rest of the try block is skipped, and
statements in the catch block are executed instead.

110



CHAPTER 8  INPUT

Summary

In this chapter, you entered a new level of programming skill. Up to now, you considered

just the output from your program. Here, you started dealing with the input from the

user, first textual input and then numeric input.

Specifically, you learned the following:

To get text input from the user using the Console.ReadlLine method
call.

To display a hint to the user before requesting the input. For that
purpose, you used the Console.Write method, which differs from its
sister Console.Writeline in that it does not terminate a line.

To convert textual input of a number into its actual numeric
representation using the Convert.ToInt32 method to make various
calculations with it afterward.

In the final exercise, you considered the important situation of runtime errors, such

as nonnumeric inputs. You learned to deal with them using the try-catch construct.

The construct consists of two blocks:

The try block surrounds statements executed “on trial.” If everything
goes OK, the try block does not change anything, and after its
completion, the program’s execution continues immediately after the
whole try-catch construct.

The catch block surrounds statements that are executed exclusively
when an error appears during the try block processing. In the
presence of the catch block, a statement in the try block that fails
does not cause a runtime error and program termination. Instead,
the error is “caught,” and a specified alternative action is launched.

111



CHAPTER 9

Numbers

In the previous chapter, you learned about input in general and numeric input in
particular. You also did some simple calculations on numbers entered by the user. In
this chapter, you will look at numbers in more detail. After all, a computer is called a

computer because it computes frequently!

Decimal Input

You will start with the task of reading a decimal number from the user.

Task

You will write a program that accepts a decimal number from the user and repeats it
immediately on the screen (see Figure 9-1).

You have entered number 2.71828

Enter a decimal number: 2.71828 A

Figure 9-1. The final program

© Radek Vystavél 2021
R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_9

113


https://doi.org/10.1007/978-1-4842-7147-6_9#DOI

CHAPTER9  NUMBERS

Solution

There are two differences between the input of whole and decimal numbers:

e You convert text input into a corresponding number by calling the
Convert.ToDouble method.

o To store a converted number, you use a variable of type double.

Here is the code:

static void Main(string[] args)

{
// Decimal input
Console.Write("Enter a decimal number: ");
string input = Console.ReadlLine();
double decimalNumber = Convert.ToDouble(input);
// Repeating entered number to the output
Console.WriteLine("You have entered number " + decimalNumber);
// Waiting for Enter
Console.ReadlLine();
}

Localized Numeric Input

In the previous exercise, the user enters a decimal separator according to the Windows
language setting. This means a decimal point for the English language. However, it may
mean something else in other languages. For example, a comma is used as a decimal
separator in the Czech language.

In the current exercise, I will show you how to force numeric input in a specific
localization, regardless of the Windows settings. You did a similar task concerning
localized output earlier in the book; now you are going to concentrate on input.

114



CHAPTER9  NUMBERS

Task

The task is to write a program that reads a decimal number with two fixed-language
settings, American and Czech.

Solution

To work with specific localizations, use the CultureInfo object. Also, please do not
forget to insert the using System.Globalization; line at the top of your source code.
Here is the code:

static void Main(string[] args)

{
// AMERICAN

CultureInfo american = new CultureInfo("en-US");

try
{
// Input
Console.Write("Enter American decimal number: ");
string input = Console.ReadLine();
double number = Convert.ToDouble(input, american);
// Output
Console.WriteLine("You have entered " + number);
}
catch (Exception)
{
// Error message
Console.WritelLine("Incorrect input");
}
// CZECH
CultureInfo czech = new CultureInfo("cs-CZ");
try
{
// Input
Console.WritelLine();

Console.Write("Enter Czech decimal number: ");

115



CHAPTER9  NUMBERS

string input = Console.ReadlLine();
double number = Convert.ToDouble(input, czech);

// Output
Console.WriteLine("You have entered " + number);
}
catch (Exception)
{
// Error message
Console.WriteLine("Incorrect input");
}
// Waiting for Enter
Console.ReadlLine();

Testing and Conclusions

The following sections cover how this works.

Test with a Decimal Point

Run your program and enter a number with a decimal point twice (see Figure 9-2).

# - O X

Enter American decimal number: 2.71828
You have entered 2.71828

Enter Czech decimal number: 2.71828
Incorrect input

Figure 9-2. Entering two numbers with decimal points

116



CHAPTER9  NUMBERS

The program accepts a point as a decimal separator when using the American
localization. At the same time, it refuses a decimal point when using the Czech
localization since a point is not a valid decimal separator in Czech.

Test with a Decimal Comma

Run your program again and this time enter a number with a decimal comma twice (see
Figure 9-3).

" - o X

Enter American decimal number: 2,71828 A
You have entered 271828

Enter Czech decimal number: 2,71828
You have entered 2.71828

Figure 9-3. Entering a number twice with a comma

Now the program accepts the decimal comma as a valid separator in Czech.
When using the American localization, the program does not see any decimal
number. It simply ignores the comma and converts the user input into a whole number!

Further Conclusions

In this book, I am showing the output with decimal points in the figures. This is because
I have not specified any localization in the output statements, and my Windows settings
are currently set to American English. Both tests show that decimal input may betray
you if you are not careful enough. Just to remind you, if you enter a decimal number
directly in your C# source code, you should always use a decimal point regardless of your
settings.

117



CHAPTER9  NUMBERS

Basic Arithmetic

You are working with numbers in this chapter, so it is a good time to perform all four

basic arithmetic operations.

Task

You will write a program that accepts two decimal numbers from the user and displays
the results of their addition, subtraction, multiplication, and division (see Figure 9-4).

# - O X

Enter first number: 5.5
Enter second number: 2
Sum is 7.5

Difference is 3.5
Product is 11

Quotient is 2.75

Figure 9-4. Doing basic arithmetic

Solution

Here is the code:

static void Main(string[] args)
{
// Inputs
Console.Write("Enter first number: ");
string inputl = Console.ReadlLine();
double number1l = Convert.ToDouble(input1);

Console.Write("Enter second number: ");
string input2 = Console.ReadLine();

118



CHAPTER9  NUMBERS

double number2 = Convert.ToDouble(input2);

// Calculations

double sum = numberl + number2;

double difference = numberl - number2;
double product = number1 * number2;
double quotient = numberl / number2;

// Output
Console.WriteLine("Sum is
Console.WritelLine("Difference is

+ sum);

+ difference);

Console.WritelLine("Product is " + product);

Console.WritelLine("Quotient is

+ quotient);

// Waiting for Enter
Console.ReadlLine();

Mathematical Functions

When you do engineering or financial calculations, you often need more complex
operations than the four basic ones shown in the previous exercise. Now you will see
how to perform the complex operations using built-in (predefined) mathematical
functions.

Task

To get you a taste of the mathematical functions available, you will calculate the sine and
the square root of the entered numbers in this task (see Figure 9-5).

119



CHAPTER9  NUMBERS

W - O

Enter an angle in degrees: 30
Sine of the angle is: 0.5

Enter a positive number: 2
Square root of the number is: 1.4142135623731

Figure 9-5. Calculating the sine and the square root

Solution

Here is the code:

static void Main(string[] args)

{

120

// Input of angle

Console.Write("Enter an angle in degrees: ");
string input = Console.ReadlLine();

double angleInDegrees = Convert.ToDouble(input);

// Calculation and output of sine value
double angleInRadians = angleInDegrees * Math.PI / 180;
double result = Math.Sin(angleInRadians);
Console.WriteLine("Sine of the angle is:

+ result);

// Input of a positive number
Console.Writeline();

Console.Write("Enter a positive number: ");
input = Console.Readline();

double number = Convert.ToDouble(input);

// Calculation and output of square root
Console.WritelLine("Square root of the number is: " + Math.
Sqrt(number));




CHAPTER9  NUMBERS

// Waiting for Enter
Console.ReadlLine();

Discussion

Note the following:

To calculate values of mathematical functions, you use the Math
object; it contains many useful functions, not just the ones shown.

The Sin function requires the angle to be specified in radians. If your
inputis in degrees, which is usually the case, you need to make a

conversion.

With the second input (a number), you “recycled” the variable input
that was already used before; you used it a second time since you did
not need the stored value anymore. However, this means you do not
declare the variable a second time.

You do not have to “recycle” variables; variables are not precious
resources these days. But you can if you want, which is what I
showed you.

Contrary to the first calculation, you did not store the calculated
square root into any variable. You directly wrote the calculation into
the output statement (WritelLine).

If the user enters a negative number, its square root cannot be
calculated, and the result becomes NaN (which means “not-a-

number”).

Integer Division

When programming, surprisingly often you will need to work with integer division,

which is division with a remainder. For example, 33 divided by 7 is either 4.71428...

normally or 4 with remainder 5.

121



CHAPTER9  NUMBERS

On various computing platforms, you will do integer division differently from
“normal” division. Unfortunately, in C#, you use the same operator, the slash (/), for both
types. It works like this:

o Ifyou put a slash between two values of the int type, the slash
performs integer division.

o Ifatleast one of the two values is of double type, the slash performs

“normal” division.

This behavior may be the source of ugly, difficult-to-find errors. The behavior is 45
years old and stems from when the C language was created; unfortunately, several newer
languages, such as C#, inherited the behavior. Just be aware of it and be careful when
using a slash.

Task

In this exercise, you will explore “normal” and integer divisions of the two numbers
entered by the user (see Figure 9-6).

. - O X

Enter 1. whole number (dividend): 33 a
Enter 2. whole number (divisor): 7

Integer quotient: 4 with remainder 5

"Normal" quotient : 4.71428571428571

"Normal" quotient (alternatively): 4.71428571428571

Figure 9-6. Exploring “normal” and integer divisions

122



CHAPTER9  NUMBERS

Solution

Here is the code:

static void Main(string[] args)

{

// Inputs

Console.Write("Enter 1. whole number (dividend): ");
string inputl = Console.ReadlLine();

int number1l = Convert.ToInt32(input1);

Console.Write("Enter 2. whole number (divisor): ");
string input2 = Console.Readline();
int number2 = Convert.ToInt32(input2);

// Integer calculations
int integerQuotient = number1 / number2;
int remainder = numberl % number2;

// "Normal" calculations

double numberidouble = numberi;

double number2double = number2;

double normalQuotient = numberidouble / number2double;

// Alternatively
double normalQuotientAlternatively = (double)numberl / (double)number2;

// Outputs
Console.WriteLine("----------------- ");
Console.WritelLine("Integer quotient: "
" with remainder " + remainder);
Console.WriteLine("\"Normal\" quotient :
Console.WriteLine("\"Normal\" quotient (alternatively): " +

normalQuotientAlternatively);

+ integerQuotient +

+ normalQuotient);

// Waiting for Enter
Console.ReadlLine();

123



CHAPTER9  NUMBERS

Discussion

Note the following:
e To compute the remainder, you use the % operator (percent sign).

o Thave shown you two ways to force the entered values to doubles to
achieve “normal” division.

o Assignment to variables of type double.

e Type castto double; you prepend the value with the target type in
parentheses.

Summary

In this chapter, you explored numbers in a greater detail. You already knew about the
difference between integers and decimal numbers in computing, and you knew how to
read integers; in this chapter, you learned how to read decimals. You also found out that
reading decimal numbers is language sensitive and can lead to surprising results when
not being careful. If you do not specify the language to be used, the numbers are read
using the Windows language settings. Specifically, you studied the following:

e Using the Convert.ToDouble method to convert textual user input

into an actual decimal number
o Storing the converted value in a variable of type double

« Enforcing language settings with the CultureInfo object passed as a
second parameter to the conversion method

In addition, you learned how to do basic arithmetic using the operators +, -, *, and /
and how to do more complex operations using built-in mathematical functions of the
(static) Math object.

124



CHAPTER9  NUMBERS

Finally, you explored integer division and its comparison to “normal” division
and got to know about some tricky behavior of the slash operator, which performs the
following:

o Integer division when used with two integers

o “Normal” division when at least one of the numbers is a decimal
You learned how to force “normal” division even with integers:

o Either assigning them to double-typed variables prior to calculation

o Typecasting them within the calculation

125



CHAPTER 10

Economic Calculations

In this chapter, you will learn how to count money. It’s pretty simple, but you need to use

some Comimaon sense.

Currency Conversion

Performing simple economic calculations usually means doing currency conversions,
which you will try in this section.

Task

After accepting an amount in euros and the euro exchange rate, you will convert the
amount to dollars (see Figure 10-1).

Enter amount in euros: 3.79
Enter euro exchange rate (how many dollars per 1 euro): 1.24

Amount in dollars: 4.6996

Figure 10-1. Converting to dollars

127
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_10


https://doi.org/10.1007/978-1-4842-7147-6_10#DOI

CHAPTER 10  ECONOMIC CALCULATIONS

Solution

Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter amount in euros: ");
string inputEuros = Console.Readline();
double amountEuros = Convert.ToDouble(inputEuros);
Console.Write("Enter euro exchange rate (how many dollars per 1 euro): ");
string inputExchangeRate = Console.Readline();
double euroEchangeRate = Convert.ToDouble(inputExchangeRate);
// Calculation
double amountDollars = amountEuros * euroEchangeRate;
// Output
Console.WritelLine();
Console.WriteLine("Amount in dollars: " + amountDollars);
// Waiting for Enter
Console.ReadlLine();
}

Total Price

In this exercise, you will calculate the total price of an order.

Task

Say one of your customers buys several items, some of them possibly multiple times. You
need to calculate the total price including the shipping cost. In this program, the prices
and amounts of two products, as well as the shipping price, will be fixed directly in the
source code for simplicity (see Figure 10-2).

128



CHAPTER 10  ECONOMIC CALCULATIONS

Product "C# Programming for Absolute Beginners (book)" - enter number of pieces: 3
Product “All Quiet on Western Front (DVD)" - enter number of pieces: 1

Order calculation

Figure 10-2. Calculating total costs

Solution

Here is the code:

static void Main(string[] args)

{

// Fixed values

const double bookPrice = 29.8;
const double dvdPrice = 9.9;
const double shipmentPrice = 25;

// Inputs
Console.WriteLine("Order");
Console.WriteLine("----- ");

Console.Write("Product \"C# Programming for Absolute Beginners
(book)\" - enter number of pieces: ");

string inputBookPieces = Console.ReadLine();

int bookPieces = Convert.ToInt32(inputBookPieces);

Console.Write("Product \"All Quiet on Western Front (DVD)\" - enter
number of pieces: ");

string inputDvdPieces = Console.ReadLine();

int dvdPieces = Convert.ToInt32(inputDvdPieces);

129



CHAPTER 10  ECONOMIC CALCULATIONS

// Calculations

double totalForBook = bookPrice * bookPieces;

double totalForDvd = dvdPrice * dvdPieces;

double totalForOrder = totalForBook + totalForDvd + shipmentPrice;

// Outputs

Console.WritelLine();
Console.WritelLine("Order calculation");
Console.Writeline("----------------- ");

Console.WritelLine("Book: " + totalForBook);
Console.WriteLine("Dvd: " + totalForDvd);
Console.WriteLine("Shipment: " + shipmentPrice);
Console.WriteLine("TOTAL: " + totalForOrder);

// Waiting for Enter
Console.ReadlLine();

Discussion

Prepending fixed “variables” with const says they are constants, which are values that
are not going to change in the course of the program run. Visual Studio does not allow
you to assign new values to these “variables.”

Personally, I do not use const often. I just wanted to show it to you in case you see it

during the course of your work.

Commissions

In capitalism, what matters most is not to create, produce, or plant something. The most
important thing is to sell! And the person selling usually gets a commission, so you must
learn how to calculate that.

130



CHAPTER 10  ECONOMIC CALCULATIONS

Task

You will write a program that accepts the price of a product and then calculates the
percentage of commission for the merchant, distributor, and producer. From the data, it
also calculates the income division among the three parties (see Figure 10-3).

" - O X

Enter customer price of product: 481 A
Enter merchant commission (percents): 35
Enter distributor commission (percents): 20

Income division
rchant: 168.35
istributor: 62.53

Producer: 250.12

Figure 10-3. Calculating commissions

Solution

Here is the code:

static void Main(string[] args)
{
// Inputs
Console.Write("Enter customer price of product: ");
string inputPrice = Console.ReadlLine();
double customerPrice = Convert.ToDouble(inputPrice);

Console.Write("Enter merchant commission (percents): ");
string inputMerchantPercents = Console.Readline();
int merchantPercents = Convert.ToInt32(inputMerchantPercents);

131



CHAPTER 10  ECONOMIC CALCULATIONS

Console.Write("Enter distributor commission (percents): ");
string inputDistributorPercents = Console.ReadlLine();
int distributorPercents = Convert.ToInt32(inputDistributorPercents);

// Calculations

double coefficient1 = 1 - merchantPercents / 100.0;

double coefficient2 = 1 - distributorPercents / 100.0;

double wholesalePrice = customerPrice * coefficienti;

double priceAfterCommissionSubtraction = wholesalePrice * coefficient2;

double merchantIncome = customerPrice - wholesalePrice;
double distributorIncome = wholesalePrice -
priceAfterCommissionSubtraction;

double producerIncome = priceAfterCommissionSubtraction;

// Outputs

Console.Writeline();
Console.WriteLine("Income division");
Console.WriteLine("---------------- ");

+ merchantIncome);
" + distributorIncome);

Console.WritelLine("Merchant:
Console.WritelLine("Distributor:

Console.WritelLine("Producer: " + producerIncome);

// Waiting for Enter
Console.ReadlLine();

Discussion

Sometimes, commission percentages might be decimal numbers. I have chosen integers

in this example because I wanted to show you how to correctly divide integers with a

practical example. As you know, to perform “normal” division, you need at least one

number—either in front of or after a slash—to be a double. That is why you use 100.0.
If you used 100 instead, the result would be surprising (see Figure 10-4).

132



CHAPTER 10  ECONOMIC CALCULATIONS

" - O X

Enter customer price of product: 481 A
Enter merchant commission (percents): 35
Enter distributor commission (percents): 20

Income division
rchant: ©
istributor: ©

Producer: 481

Figure 10-4. Commission percents, incorrect

Do you know why this happens? It’s all because of rounding.

Rounding

Money amounts are usually being rounded to cents. I will show you how to do this
and what the difference is between rounding just for output and rounding for further
calculations. The difference is small but sometimes significant. You might miss a cent

and cause a problem for someone.

Task

After the user enters two monetary amounts (possibly somehow calculated with more
than two decimal places), the program will display them with percent precision, round
them to cents, and finally compare the calculation with the original values to the one
with rounded values (Figure 10-5).

133



CHAPTER 10  ECONOMIC CALCULATIONS

First amount (original value): 1234.567
Second amount (original value): 9.876

First amount displayed with cent precision: 1,234.57
Second amount displayed with cent precision: 9.88

First amount rounded to cents: 1234.57
Second amount rounded to cents: 9.88

Sum of original amounts: 1,244.44
Sum of rounded amounts: 1,244.45
On invoice, we need sum of rounded amounts

Figure 10-5. Rounding program

Solution

Here is the code:

static void Main(string[] args)

{
// For simplicity, inputs are fixed in program
// Some amounts, e.g. after commission calculations, cent fractions are

possible
double amountl = 1234.567;
double amount2 = 9.876;

// Displaying inputs (original values)
Console.WriteLine("First amount (original value):
Console.WriteLine("Second amount (original value):

+ amount1);
+ amount2);

Console.WriteLine();

// Rounding just for output
Console.WriteLine("First amount displayed with cent precision: " +
amount1.ToString("N2"));

134



CHAPTER 10  ECONOMIC CALCULATIONS

Console.WritelLine("Second amount displayed with cent precision: " +
amount2.ToString("N2"));
Console.WritelLine();

// Rounding for further calculations + informative output
double roundedAmountl = Math.Round(amount1, 2); // 2 = two decimal places
double roundedAmount2 = Math.Round(amount2, 2);

Console.WritelLine("First amount rounded to cents: " + roundedAmount1);
Console.WritelLine("Second amount rounded to cents: " + roundedAmount2);
Console.WritelLine();

// Calculations
double sumOfOriginalAmounts = amountl + amount2;
double sumOfRoundedAmounts = roundedAmountl + roundedAmount2;

// Calculation outputs
Console.WriteLine("Sum of original amounts:
ToString("N2"));

Console.WriteLine("Sum of rounded amounts:
ToString("N2"));

Console.WriteLine("On invoice, we need sum of rounded amounts");

+ sumOfOriginalAmounts.

+ sumOfRoundedAmounts.

// Waiting for Enter
Console.ReadlLine();

Further Rounding

Sometimes, rounding can be more complicated.

Task

In this task, I will show you how to round to dollars, round to hundreds of dollars, always

round down, and always round up (see Figures 10-6 and 10-7).

135



CHAPTER 10  ECONOMIC CALCULATIONS

[Enter (decimal) amount in dollars: 7361.567

To dollars

INearest : 7362
Always down: 7361
Always up : 7362
To cents

[Nearest : 7361.57
Always down: 7361.56
Always up : 7361.57

To hundreds of dollars

[Nearest : 7400
Always down: 7300
Always up : 7400

Figure 10-6. More complicated rounding

136



CHAPTER 10  ECONOMIC CALCULATIONS

] —

Enter (decimal) amount in dollars: 3216.492

To dollars
Nearest :+ 3216
Always down: 3216
Always up : 3217
To cents

Nearest : 3216.49
Always down: 3216.49
Always up : 3216.5

To hundreds of dollars
Nearest : 3200
Always down: 3200
Always up : 3300

O

X

~

v

Figure 10-7. Another number to round to dollars, cents, and hundreds of dollars

Solution

Here is the code:

static void Main(string[] args)
{
// Input
Console.Write("Enter (decimal) amount in dollars: ");
string input = Console.Readline();
double amount = Convert.ToDouble(input);

137



CHAPTER 10  ECONOMIC CALCULATIONS

138

// To dollars
double nearest
double alwaysDown
double alwaysUp

Math.Round(amount);
Math.Floor(amount);
Math.Ceiling(amount);

Console.Writeline();
Console.WriteLine("To dollars");
Console.WriteLine("---------- ");

Console.WriteLine("Nearest : " + nearest);

Console.WriteLine("Always down: " + alwaysDown);

Console.WriteLine("Always up : " + alwaysUp);
// To cents

nearest = Math.Round(amount, 2);

alwaysDown = Math.Floor(100 * amount) / 100;
alwaysUp = Math.Ceiling(100 * amount) / 100;
Console.Writeline();

Console.WriteLine("To cents");
Console.WritelLine("-------- ");
Console.WriteLine("Nearest : " + nearest);

Console.WriteLine("Always down: " + alwaysDown);

+ alwaysUp);

Console.WriteLine("Always up

// To hundreds of dollars

nearest = 100 * Math.Round(amount / 100);
alwaysDown = 100 * Math.Floor(amount / 100);
alwaysUp = 100 * Math.Ceiling(amount / 100);
Console.WritelLine();

Console.WriteLine("To hundreds of dollars");
Console.WriteLine("-------====----------- ");
Console.WriteLine("Nearest : " + nearest);

Console.WritelLine("Always down:
Console.WriteLine("Always up : "

+ alwaysDown);
+ alwaysUp);

// Waiting for Enter
Console.ReadlLine();



CHAPTER 10  ECONOMIC CALCULATIONS

Discussion

Of course, you can also display rounded values with cents, if you want, using value.
ToString("N2").

Value-Added Tax

In Europe, we have a nice thing called value-added tax (VAT). Everybody is happy to pay
more money for goods if it allows politicians to have a bigger budget for ... Actually,
what for?

Task

In this task, you will create a simple VAT calculator (see Figure 10-8). The program starts
from the price a customer pays for a product and calculates the price without VAT (the
merchant gets from the purchase) and also the VAT itself (what the merchant transfers to
the tax administrator).

# = a X

Enter customer price of a product: 2841.37 4
Enter VAT rate in %: 21

Price without VAT: 2,348.24
VAT: 493.13

Figure 10-8. Calculating VAT

Analysis

If you want to program something, you have to understand the essence of that something
first. So, how does the European VAT work?

The foundation of the calculation is the price without VAT. To get this price, the
appropriate percent part (e.g., 21 percent) is added, and you get the price a customer

139



CHAPTER 10  ECONOMIC CALCULATIONS

pays. What is important is that the percents are calculated from the price without VAT,
not from the customer price (see Figure 10-9)!

Price without VAT | VAT
100 % 21 %

Figure 10-9. Understanding how the VAT works

If the VAT rate is, for example, 21 percent, you need to divide the customer price by
1.21 to get the price without the VAT. For the general value of the tax rate, you calculate
the divisor by adding the appropriate fraction to 1.

Solution

Here is the code:

static void Main(string[] args)
{
// Inputs
Console.Write("Enter customer price of a product: ");
string inputPrice = Console.Readline();
double customerPrice = Convert.ToDouble(inputPrice);

Console.Write("Enter VAT rate in %: ");
string inputVatRate = Console.Readline();
double vatRate = Convert.ToDouble(inputVatRate);

// Calculations

double divisor = 1 + vatRate / 100.0;

double calculatedPriceWithoutVat = customerPrice / divisor;

double priceWithoutVat = Math.Round(calculatedPriceWithoutVat, 2);
double vat = customerPrice - priceWithoutVat;

140



CHAPTER 10  ECONOMIC CALCULATIONS

// Outputs

Console.Writeline();

Console.WriteLine("Price without VAT: " + priceWithoutVat.ToString("N2"));
Console.WriteLine("VAT: " + vat.ToString("N2"));

// Waiting for Enter
Console.ReadlLine();

Summary

In this chapter, you practiced calculations on a variety of real examples from the
economic world. What is always the most important in calculations like these is to
understand the real-world problem first. To understand how you would get the results
without a program, start with a pencil, paper, and a calculator. It is also often helpful to
structure your program appropriately, dividing the whole calculation into small pieces,
and to use descriptive names for your variables.

Among other things, you learned how to do rounding. Specifically, you studied

several built-in mathematical functions:

e You know how to use Math.Round for the most common rounding,
in other words, to the nearest whole number. You can specify the
number of required decimal places in the second parameter of the
method call.

¢ You know how to use Math.Floor for always rounding down, in other
words, to the greatest integer that is less than or equal to the number
being rounded.

e You know how to use Math.Ceiling for always rounding up, in
other words, to the lowest integer that is greater than or equal to the
number being rounded.

You also learned a trick of how to round to hundreds, including dividing by 100
before rounding and multiplying by the same amount afterward.

141



CHAPTER 11

Calculations with Dates

In the previous chapter, you practiced calculations from the economic world. You will
frequently need to do calculations with dates, too. Say you need to set the date when
an invoice is due. Or say you want to calculate how many days an invoice is past due.
Or, you might need to know the first and last days of a specific period like a month or a
quarter. In this chapter, you'll learn how to do calculations with dates.

Date Input

First, you will learn how to read a date from a user. I will show you some simple date
arithmetic, too.

Task

In this task, you will get a DateTime object based on the user input. After that, you will
calculate the next and previous days (see Figure 11-1).

Enter a date: 11/17/1989 A

Entered day : Friday, November 17, 1989
Following day: Saturday, November 18, 1989
Previous day : Thursday, November 16, 1989

Figure 11-1. Calculating the next and previous days

143
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_11


https://doi.org/10.1007/978-1-4842-7147-6_11#DOI

CHAPTER 11 CALCULATIONS WITH DATES

Solution

The point is to use the Convert.ToDateTime method. If the user enters a nonexistent day
(February 29 of a nonleap year, for example), the method causes a runtime error that you
can deal with using the try-catch construction.

static void Main(string[] args)

{

try

{
// Text input of date
Console.Write("Enter date: ");
string input = Console.ReadLine();
// Conversion to DateTime object
DateTime enteredDate = Convert.ToDateTime(input);
// Some calculations
DateTime followingDay = enteredDate.AddDays(1);
DateTime previousDay = enteredDate.AddDays(-1);
// Outputs
Console.WritelLine();
Console.WriteLine("Entered day " + enteredDate.
ToLongDateString());
Console.WritelLine("Following day: " + followingDay.
ToLongDateString());
Console.WriteLine("Previous day : " + previousDay.
ToLongDateString());

}

catch (Exception)

{
// Treating incorrect input
Console.WriteLine("Incorrect input");

}

// Waiting for Enter

Console.ReadLine();

}

144



CHAPTER 11 CALCULATIONS WITH DATES

Discussion

You can also call the Convert.ToDateTime method with two parameters instead of one.
The second parameter is the language setting, which is the CultureInfo object you
already know. This is similar to other conversion methods.

Single Month

Now you will practice working with DateTime components and creating this object using

a constructor call.

Task

A user enters a date. This program displays the first and last days of the month in which
the entered date falls (see Figure 11-2).

[ o a X
Enter a date: 2/17/2022 &

Corresponding month: from 2/1/2022 to 2/28/2022

Figure 11-2. Calculating the first and last days of the month

Solution

Here is the code:

static void Main(string[] args)
{
// Date input
Console.Write("Enter a date: ");
145



CHAPTER 11 CALCULATIONS WITH DATES

string input = Console.ReadlLine();
DateTime enteredDate = Convert.ToDateTime(input);

// Calculations
int enteredYear = enteredDate.Year;
int enteredMonth = enteredDate.Month;

DateTime firstDayOfMonth = new DateTime(enteredYear, enteredMonth, 1);
DateTime lastDayOfMonth = firstDayOfMonth.AddMonths(1).AddDays(-1);

// Outputs
Console.WritelLine();
Console.WriteLine("Corresponding month: " +
"from " + firstDayOfMonth.ToShortDateString() +
" to " + lastDayOfMonth.ToShortDateString());

// Waiting for Enter
Console.ReadlLine();

Discussion

Note the following:

e According to the previous exercise, you get a DateTime object from
the user using the Convert.ToDateTime method call.

e You start picking the month and year numbers from the entered date.
You use the Month and Year properties for that purpose.

o Using these numbers, you easily assemble the first day of the month
because its day number is always one.

e The last day of the month is not that easy because months differ in
length. The trick is to add a month and subtract a day!

e Note that I do not store AddMonth’s result anywhere. I directly call
AddDays upon it instead. This is called method chaining.

o For the sake of simplicity, I do not deal with the possibility of
incorrect input here.

146



CHAPTER 11 CALCULATIONS WITH DATES

Quarter

Continuing with dates, I will show you some interesting tricks you must sometimes
employ to get the correct results.

Task

For the entered day, this program will display the beginning, end, and number (from one
to four) of the year’s quarter that the day belongs to (see Figures 11-3 and 11-4).

[l - a X
Enter a date: 7/18/2022 A

Corresponding quarter: number-3, from 7/1/2022 to 9/30/2022

Figure 11-3. Showing the corresponding quarter

. - O X
Enter a date: 5/31/2022 e

Corresponding quarter: number-2, from 4/1/2022 to 6/30/2022

Figure 11-4. Showing the corresponding quarter, another example

147



CHAPTER 11 CALCULATIONS WITH DATES

Analysis

The key to this task is to determine the quarter’s number. From that, the quarter’s first
month follows.

Quarter’s Number
You need to transform the month number into the quarter’s number like this:
e Monthl,2,0r3=1
e Month4,5,0or6=2
e Month7,80r9=3
¢ Month10,11,0r12=4

This is a beautiful case of integer division use. You can see that you need to add two
to the month number first and perform integer division by three after that:

int numberOfQuarter = (enteredMonth + 2) / 3;

Quarter’s First Month Number

If you already have the quarter’s number, you get the quarter’s first month like this:
e 1 (January) for the first quarter
e 4 (April) for the second quarter
e 7 (July) for the third quarter
e 10 (October) for the fourth quarter

You may realize that the quarter’s number must be multiplied by three. To get the
correct results, you need to subtract two subsequently:

int monthOfQuarterStart = 3 * numberOfQuarter - 2;

First and Last Days

Having the first month available, you can proceed in steps similar to the previous
exercise. To get the first day, you use the DateTime constructor with the day number set
to one. To get the last day, you add three months and subtract one day.

148



CHAPTER 11 CALCULATIONS WITH DATES

Solution

Here is the code:

static void Main(string[] args)

{

// Date input

Console.Write("Enter a date: ");

string input = Console.ReadlLine();

DateTime enteredDate = Convert.ToDateTime(input);

// Calculations
int enteredYear = enteredDate.Year;
int enteredMonth = enteredDate.Month;

int numberOfQuarter = (enteredMonth + 2) / 3;

int monthOfQuarterStart = 3 * numberOfQuarter - 2;

DateTime firstDayOfQuarter = new DateTime(enteredYear,
monthOfQuarterStart, 1);

DateTime lastDayOfQuarter = firstDayOfQuarter.AddMonths(3).AddDays(-1);

// Outputs

Console.Writeline();

Console.WritelLine("Corresponding quarter: " +
"number-" + numberOfQuarter +
", from " + firstDayOfQuarter.ToShortDateString() +
" to " + lastDayOfQuarter.ToShortDateString());

// Waiting for Enter
Console.ReadlLine();

Date Difference

You frequently need to calculate the time span between two specific dates, in other

words, how many days or years have passed between the entered dates. This is what you

will study now.

149



CHAPTER 11 CALCULATIONS WITH DATES

Task

A user enters the date of their birth. The program displays how many days the world is
happy to have them (see Figure 11-5).

- - 0o X
Enter your date of birth: 9/18/1939 A

Today is: 1/23/2021
The world likes you for this number of days: 29,713

Figure 11-5. Calculating how many days alive

Solution

As you can see, you need to subtract the birth date from today’s date. When you subtract
dates, the result is a TimeSpan object. With this object in hand, you can use one of its
many properties. You will use the Days property in this exercise.

Here is the code:

static void Main(string[] args)

{
// Input

Console.Write("Enter your date of birth: ");
string input = Console.ReadlLine();
DateTime dateOfBirth = Convert.ToDateTime(input);

// Today
DateTime today = DateTime.Today;

// Date difference
TimeSpan difference = today - dateOfBirth;
int numberOfDays = difference.Days;

150



CHAPTER 11 CALCULATIONS WITH DATES

// Output

Console.WritelLine();

Console.WriteLine("Today is: " + today.ToShortDateString());
Console.WriteLine("The world likes you for this number of days: " +
numberOfDays.ToString("N0"));

// Waiting for Enter
Console.ReadlLine();

Time Zones and UTC

If you want to store the moment when something happened (e.g., to log orders, issues,
and so on), you may be unpleasantly surprised by daylight saving time. Or, maybe more
important, say you are creating a program that will operate across the globe. You will
have to work with different time zones.

To handle these cases, it is good to know how to work with Universal Time
Coordinated (UTC), which is the time at the zeroth meridian free from food additives.
Pardon me, I mean free from daylight saving. UTC is simply time zone independent.

It is also good to get acquainted with DateTimeOffset objects that contain time zone
information in addition to the date and time.

Task

In this exercise, I will show you how to work both with UTC and with the time zones
included in a DateTimeOffset object. You will create a program that works with the
current time (see Figure 11-6).

151



CHAPTER 11 CALCULATIONS WITH DATES

. - O
Now: 1/23/2021 8:08:25 AM
UTC now: 1/23/2021 7:08:25 AM

(including time zone): 1/23/2021 8:08:25 AM +01:00
Time zone (offset against UTC): 1
UTC now (including time zone): 1/23/2021 7:08:25 AM +00:00

Figure 11-6. DateTimeOffset object

Solution

Here is the code:

static void Main(string[] args)
{
// Current time serves as input
DateTime now = DateTime.Now;
DateTime utcNow = DateTime.UtcNow;
DateTimeOffset completeInstant = DateTimeOffset.Now;
DateTimeOffset utcCompleteInstant = DateTimeOffset.UtcNow;

// Outputs

Console.WriteLine("Now: " + now);
Console.WriteLine("UTC now: " + utcNow);
Console.WritelLine("Now (including time zone):
Console.WritelLine("Time zone (offset against UTC):
Offset.TotalHours);

Console.WriteLine("UTC now (including time zone): " +
utcCompleteInstant);

+ completeInstant);

// Waiting for Enter
Console.ReadlLine();

Please note that some variables are of the DateTime type, while others are of the
DateTimeOffset type.

152

+ completeInstant.



CHAPTER 11 CALCULATIONS WITH DATES

Summary

In this chapter, you quite thoroughly learned how to do calculations with dates.

You started by getting a date from the user using the Convert.ToDateTime method
and followed with getting a date from the specified year, month, and day using
DateTime’s constructor call (new DateTime...).

In your calculations, you made appropriate use of various properties of DateTime
objects, such as Day, Month, or Year, as well as its methods, such as AddDays. Also, to
calculate a quarter’s number, you used integer division to your advantage.

Further, you got acquainted with how to calculate the difference between any two
given dates and what to do with the result. Specifically, you used the TimeSpan object.

Finally, we discussed UTC and time zones to facilitate programs operating across
multiple zones and to handle leaps of time due to daylight saving correctly. Specifically,
you learned about the DateTimeOffset object.

153



CHAPTER 12

Understanding Different
Kinds of Numbers

In this chapter, you will study several more advanced topics concerning numbers and
calculations, such as more numeric types, memory consumption, and overflow. If you do
not need this much detail at this time, you can safely skip this chapter or just skim it.

More Numeric Types

You already know that there is a distinction between whole numbers and decimal
numbers in computing. You use the int type for whole numbers, and you use the double
type for decimal numbers.

But there are other numeric data types in C#. Although many of them exist mainly for
historical reasons and you will probably never use them, it is good to know about them
at least.

Task

You will write a program that displays an overview of all the C# numeric data types. For
each type, its range of possible values will be printed (see Figure 12-1).

155
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_12


https://doi.org/10.1007/978-1-4842-7147-6_12#DOI

CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

iSigned whole numbers

byte: -128 to 127

hort: -32768 to 32767

int: -2147483648 to 2147483647

long: -9223372036854775808 to 9223372036854775807

Unsigned whole numbers

lbyte: © to 255

ushort: @ to 65535

unit: © to 4294967295

ulong: © to 184467440873709551615

Basic decimal numbers

float: -3.402823E+38 to 3.402823E+38
double: -1.79769313486232E+308 to 1.79769313486232E+308

Exact decimal numbers

decimal: -79228162514264337593543950335 to 79228162514264337593543950335

Figure 12-1. Printing all numeric data types

Solution

Here is the code:

sta

{

156

tic void Main(string[] args)

// Immediately outputs
Console.WritelLine("Signed whole numbers");
Console.WriteLine("-------------------- ");

Console.WritelLine("sbyte:
Console.WriteLine("short:

Console.WriteLine("int:
Console.WriteLine("long:

Console.WritelLine();

+ sbyte.MinValue + " to

+ int.MinValue + " to

+ sbyte.MaxValue);

+ short.MinvValue + " to " + short.MaxValue);

+ int.MaxValue);

+ long.MinValue + " to " + long.MaxValue);



}

CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Console.WritelLine("Unsigned whole numbers");
Console.WriteLine("-------==------------- ");
Console.WriteLine("byte: " + byte.MinValue + " to " + byte.MaxValue);
Console.WritelLine("ushort: " + ushort.MinValue + " to " + ushort.MaxValue);

Console.WriteLine("unit: " + uint.MinValue + " to " + uint.MaxValue);
Console.WriteLine("ulong: " + ulong.MinValue + " to " + ulong.MaxValue);
Console.WritelLine();

Console.WritelLine("Basic decimal numbers");
Console.WriteLine("---------===--------- ");

Console.WriteLine("float: " + float.MinValue + " to " + float.MaxValue);
Console.WriteLine("double: " + double.MinValue + " to " + double.MaxValue);

Console.WritelLine();

Console.WritelLine("Exact decimal numbers");
Console.WriteLine("--------------------- ");
+ decimal.MinValue + " to " + decimal.MaxValue);

Console.Writeline("decimal:

// Waiting for Enter
Console.ReadlLine();

Note

To display the ranges, I have used the MinValue and MaxValue properties of all the

numeric data types.

Discussion

The following sections discuss this program.

Unsigned Numbers

The results printed by the program show that some data types do not allow the storage of

negative numbers! However, these unsigned numbers are rarely used, with the exception

of the byte type, which you use when reading binary data from a file, a database, or a

web service.

157



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Contrary to their signed counterparts, unsigned numbers usually begin with a u,
meaning “unsigned.” Similarly, the signed type sbyte starts with an s, meaning the
“signed” variant of the much more important byte.

Decimal Numbers

Decimal type ranges are displayed in scientific notation (also called exponential
notation). For example, the greatest float number is displayed as 3.4E+38, which means
3.4 times 10 to the 38th power. This is a really big number, isn’t it?

Decimal types differ also in their precision. While the float type stores a decimal
value with approximately 7 significant digits, the double type offers a precision of about
15 significant digits, and the decimal type offers 28 digits.

Special Type decimal

The decimal data type is somewhat special. Because of the following reasons, it is
preferably used when working with currency:

o [Itstores cent values exactly. For example, the amount of 12.80 will be
stored precisely as 12.80 rather than something like 12.7999999999,
which might happen using other types.

e Because of a large number of significant digits, the decimal data type
allows you to represent large amounts of money and still keep the
cent precision.

However, both of these reasons are not as convincing as they might seem. If you
perform rounding correctly, you can store cents exactly with the double type. And
frankly speaking, you usually need to solve other problems than that of whether double
15 digits are enough for money!

Moreover, many things are easier with the double type, which is why I use preferably
double for decimals in this book.

One last note: Calculations with the decimal type are much slower (in fact, hundreds
of times slower) than the same calculations with the double type. This does not matter if
you crunch just a few numbers, but the difference can be significant in large data sets.

158



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Memory Consumption

If you know something about bits and bytes, it may have occurred to you that the type
ranges differ because of the memory space that is available to the corresponding types.
This is exactly right, and you will learn more about it in this section.

Task

In this section, you will write a program that tells you how many bytes of memory each
type uses (see Figure 12-2).

v - ‘O X
Whole numbers A
byte: 1
sbyte: 1
short: 2
lushort: 2
int: 4
juint: 4
long: 8
ulong: 8

Decimal numbers

float: 4

Eouble: 8
ecimal: 16

v

Figure 12-2. Displaying the number of bytes each type uses
159



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Solution

Here is the code:

static void Main(string[] args)

{
// Outputs
Console.WriteLine("Whole numbers");
Console.WriteLine("------------- ");
Console.WriteLine("byte: " + sizeof(byte));
Console.WriteLine("sbyte: " + sizeof(sbyte));
Console.WritelLine();
Console.WriteLine("short: " + sizeof(short));
Console.WriteLine("ushort: " + sizeof(ushort));
Console.WritelLine();
Console.WriteLine("int: " + sizeof(int));
Console.WriteLine("uint: " + sizeof(uint));
Console.Writeline();
Console.WritelLine("long: " + sizeof(long));
Console.WritelLine("ulong: " + sizeof(ulong));
Console.Writeline();
Console.WriteLine("Decimal numbers");
Console.WriteLine("--------------- ");
Console.WritelLine("float: " + sizeof(float));
Console.WriteLine("double: " + sizeof(double));
Console.WriteLine("decimal: " + sizeof(decimal));
Console.Writeline();
// Waiting for Enter
Console.ReadlLine();

}

Connections

It is possible to connect the results of the current and previous programs. For example,

let’s discuss the important int type. It uses 4 bytes, or 32 bits of memory. This means

2 to the 32nd power of possible values, which is more than four billion. int is a signed

160



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

type, so you have two billion for positive numbers and two billion for negative numbers.

Its unsigned counterpart uint has all four billion values for positive numbers (and, of

course, Zero).

Discussion

You may feel confused about the variety of numeric data types. To help you understand

them, here is a summary of when you should use each one:

int: For regular work with values that are intrinsically integers (e.g.,
counts of something).

double: For regular work with values that may be decimal (e.g.,
measured values) or values you do math with. Money amounts are
also mostly OK.

byte: For work with binary data.

long: For big integer values such as file sizes, payment identifications
(e.g., ten digits may be required), or multiplication results of regular
(whole) values.

decimal: A common choice for money amounts.

The other types are not used that often.

Overflow

When the program calculates a value that does not “fit” into an appropriate type’s range,

what happens is called overflow. The behavior of your program can be very strange, as

shown in Figure 12-3.

161



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

" o 0O X

Million times million: -727379968 2
also in long: -727379968

Figure 12-3. Overflow

Overflow can occur especially when multiplying because multiplying generally
results in large numbers.

Task

In this section, you will write a program that tries to calculate a million times a million.

Solution

Here is the code:

static void Main(string[] args)

{
// Multiplying million by million
int million = 1000000;
int result = million * million;
long resultInlong = million * million;
// Outputs
Console.WriteLine("Million times million: " + result);
Console.WritelLine("also in long: " + resultInLong);
// Waiting for Enter
Console.ReadlLine();
}

162



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Discussion

What the program does is totally unexpected. You need to be aware of this kind of
anomaly.

What is actually happening? The program multiplies a million by a million. The
result is too big to fit into the positive or negative two billion range of the 32-bit signed
int type. So, the computer simply throws away the upper bits, resulting in complete
nonsense.

Please note that you get the same nonsense even when you store the result in a long-
typed variable. That nonsense, which throws away the bits greater than 32, arises during
calculation. According to C# rules, int times int is simply int regardless of where you
store the result.

Dealing with Overflow

The previous program displayed an incorrect result. Now you will see what can be done
aboutit.

Task

Here are two possibilities of how to handle overflow problems:

o Ifyoudo not expect a big value and it appears anyway, the program
should at least crash or let you know about the problem. Displaying
anonsense value is the worst alternative. Users trust their computers
and can make wrong decisions based upon believing incorrect
results.

o Ifyouhave an idea that int might be insufficient, you can make the
calculation correctly with the following solution.

163



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Solution

The new project source code follows:

static void Main(string[] args)

{

164

// 0. Preparation
int million = 1000000;

// 1. Crash at least, we do not
// definitely want a nonsense
Console.WritelLine("1. calculation");

try
{
long result = million * million;
Console.WritelLine("Million times million:" + result);
}
catch (Exception)
{
Console.WriteLine("I cannot calculate this.");
}

// 2. Correct calculation of a big value
Console.WritelLine("2. calculation");

long millionInLong = million;

long correctResult = millionInLong * millionInlong;

Console.WriteLine("Million times million: " + correctResult.

ToString("No"));

// 3. Alternative calculation of a big valule
Console.WriteLine("3. calculation");
long correctResultAlternatively = (long)million * (long)million;

Console.WriteLine("Million times million: " +
correctResultAlternatively.ToString("No0"));

// Waiting for Enter
Console.ReadlLine();



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Note

However, this code does not solve everything. When you immediately launch the
program, the first calculation is still going to be wrong. People sometimes take try-catch
as a kind of panacea, but it is definitely not. You need something else, as discussed next.

Settings in Visual Studio

You need to set up your project in Visual Studio so that it reports overflow out of the
program instead of sweeping it under the rug.

From the Visual Studio menu, choose Project and then <Project name> Properties
(see Figure 12-4).

) File Edit View Giuild Debug Test Analyze Tools Extensions

@ Show All Files

0 class Pr add project Reference...
{ | Add Shared Project Reference...
A stat Add COM Reference...
% Add Connected Service

£+ Set as Startup Project Ctrl+R
Export Template...

(") Manage NuGet Packages...

/# Overflow treatment Properties

‘@-0/@-2 |9 ¥ AddCass... S|
- *w Add New Data Source...

s Program.cs® + x - ‘a Add New Item... Ctrl+Shift+A -
@ E]Overﬂow: treatment o Add Existing Item... Shift+Alt+A

g using Systen o et project File

=]

= *

] =namespace O\ RewiEe CHEAK

= { Exclude From Project

%

(=]

>

Figure 12-4. Opening the properties

Choose the Build tab next, scroll vertically (and maybe also horizontally) so that
you can see the Advanced button (it is really hidden!), and then click that button (see
Figure 12-5).

165



CHAPTER 12 UNDERSTANDING DIFFERENT KINDS OF NUMBERS

p¢) File Edit View Git Project Build Debug Test Analyze Tools Extensions Search.. # oQv.nt - O X
Window Help
fO@-0 @3- W 0 -0 - Debug- AnyCPU - P Overflow treatment - | - & Live Share & ELGEGELOIU]

Program.cs*

Configuration: I'I Platform: |Adtive (Any CPU) =
4 Bl

|1701;1702

Package
Debug
Signing

xoqjoo| Jaiojdx3 Janes

Code Analysis
Resources

sajuadold sabueyd) 319 Jalojdxg uopnjos

[;Nu1605

1entation file:

ilization assembly:

L Advanced...

[J Ready + Add to Source Control -~ #3

Error List Output

Figure 12-5. Build tab

In the dialog that appears, select the “Check for arithmetic overflow/underflow”
check box and confirm by clicking the OK button (see Figure 12-6).

166



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

Advanced Build Settings 2| x|
General
Language version: |Automatical|y selected based on framework version J
Why can' | ifferent C# version?
Internal compiler error reporting: |Prompt :J
l W Check for arithmetic overflow I
Output
Debugging information: [Portable L]
File alignment: |512 :J
Library base address: |0x00400000
ITl Cancel ‘

Figure 12-6. “Check for arithmetic overflow/underflow” check box

Your project is finally ready to run now.

Results

Now the program behaves according to expectations, as shown in Figure 12-7.

B - O X

1. calculation
I cannot calculate this.

2. calculation

illion times million: 1,000,000,000,000
3. calculation

illion times million: 1,000,000,000,000

Figure 12-7. Multiplying a million by a million

167



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

First Alternative

The first calculation correctly reports a problem. Omitting the try-catch construct
would cause a runtime error, but at least it does not display an incorrect result.

Other Alternatives

A correct calculation converts the million into a long type before the calculation starts.
Here are two ways to perform this conversion:

o Assigning the million to a variable of type long
o Using an explicit fype cast with (long)million

If you do not require precise integer arithmetic, you might also calculate in the
double type. Unless you solve some very exotic math, double does not have a chance to
overflow.

Summary

In this chapter, you studied advanced number calculations. You got to know all the
numeric data types that are available in C#. The types differ in whether they allow
integers or decimals, and they differ also in the ranges of allowed values. Types for
decimals mutually differ also in the precision with which the number is stored.

At the beginner’s level, knowledge of int and double is enough; you can always work
using them only. When you become more experienced, you might also use the following:

o The long type for big integers such as file sizes, ten-digit payment
numbers, or multiplication results of moderately sized numbers

o The decimal type for working with currency
o The byte type for working with binary data

You also studied the question of overflow. When a calculated value is too big to fit
into the range of a particular data type, nonsense results. The default behavior of Visual
Studio is to continue as normally. However, now you know how to change the settings to
cause a runtime error at least, because continuing with the incorrect result is the worst
alternative.

168



CHAPTER 12  UNDERSTANDING DIFFERENT KINDS OF NUMBERS

The best alternative is to avoid the overflow completely by choosing a data type with
an appropriate range. However, keep in mind that changing the type of variable used
to store the result may not be enough. For example, int multiplied by int is always int
with a maximum value of about two billion, regardless of where you store it. It may be
suitable to convert the number into a long type before the calculation.

169



CHAPTER 13

Accumulating Values

Up to now, you have worked with variables where you stored a value that you later used.
After the initial assignment, the value of the variable did not change. Now you are ready

to go to the next step, which is to study a case when a variable’s value changes during the
program run, in other words, when a new value is determined from the old one.

Ten More, Revisited

First, you will return to the task of adding ten to a number, which you studied in
Chapter 8. The program’s goal is to present a value that is greater by ten than the number
entered by the user (see Figure 13-1).

" — a X

Enter a number: 123 2
Number ten more greater is: 133

Figure 13-1. Displaying the user’s number plus ten

171
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_13


https://doi.org/10.1007/978-1-4842-7147-6_13#DOI

CHAPTER 13 ACCUMULATING VALUES

Task

You will now solve this task in a new way; specifically, you will store the calculation result
in the same variable where you originally stored the entered number.

This is not necessarily a better solution, but you will learn how to build upon it
further in later sections.

Solution

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);

// Calculation
number = number + 10;

// Result output
Console.WriteLine("Number ten more greater is: " + number);

// Waiting for Enter
Console.ReadlLine();

Discussion

The core statement of the solution is as follows: number = number + 10;. This statement
is unusual in the sense that the same thing—the variable number—appears on both sides
of the equal sign!

The computer executes the statement like this: “Take the present value of the
variable number, add ten to it, and store the result as the new value of the variable
number.” Thus, the net result of the statement is augmenting number’s value by ten.

172



CHAPTER 13 ACCUMULATING VALUES

Compound Assignment

There is a nice shortcut for doing the same thing, which is called compound assignment.
You will study this now.

Task

You will solve the previous exercise using the more concise compound assignment.

Solution

Here is the code:

static void Main(string[] args)

{
// Input

Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);

// Calculation using compound assignment
number += 10; // same as number = number + 10;

// Result output
Console.WritelLine("Number ten more greater is: " + number);

// Waiting for Enter
Console.ReadLine();

}
Note

In this code, you use the compound assignment operator (+=), which is a shortcut that
does the same thing as the previous solution. You will see compound assignments in all
C-family programming languages.

173



CHAPTER 13 ACCUMULATING VALUES

Further Compound Assignments

Did you like compound assignment? There are even more similar assignments to use

when working with other arithmetic operations.

Task

I'will show you a program that illustrates compound assignment in connection with
subtraction, multiplication, and division (see Figure 13-2).

# — O X
[Enter a number: 17 A

After decrease by 5: 12
Ten times greater: 120
Decreased to one half: 60

Figure 13-2. Compound assignment

Solution

Here is the code:

sta

{

174

tic void Main(string[] args)

// Input

Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);
Console.Writeline();




}

CHAPTER 13
// With subtraction
number -= 5; // same as number = number - 5;
Console.WritelLine("After decrease by 5: " + number);

// With multiplication
number *= 10; // same as number = number * 10;
+ number);

Console.WritelLine("Ten times greater:

// With division
number /= 2; // same as number = number / 2;
Console.WritelLine("Decreased to one half: "

// Waiting for Enter
Console.ReadlLine();

Note

The program works with the same variable every time!
The division here is integer division since both number and 2 are ints.

Incrementing and Decrementing

By far the most frequent change for a variable is a change by one. That is why there are

special super-concise ways for how to make such calculations.

Task

You'll now get acquainted with the increment operator (++) and the decrement

operator (--), as shown in Figure 13-3.

+ number);

ACCUMULATING VALUES

175



CHAPTER 13 ACCUMULATING VALUES

"

Enter a number: 17

Increased by 1: 18
Back again: 17

Figure 13-3. Increment and decrement operators

Solution

Here is the code:

static void Main(string[] args)

{

176

// Input

Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);

// Increasing by 1 using INCREMENT OPERATOR
number++; // same as number = number + 1;

Console.WritelLine("Increased by 1: " + number);

// Decreasing by 1 using DECREMENT OPERATOR
number--; // same as number = number - 1;
Console.WritelLine("Back again: " + number);

// Waiting for Enter
Console.ReadlLine();




CHAPTER 13 ACCUMULATING VALUES

Compound Assignment and Text

Since the + operator can be used with text, you can use the compound assignment
operator (+=) with text, too. You will probably use this frequently.

Task

This task will get you familiar with text concatenations using compound assignment
(see Figure 13-4).

# — O X
Valuable books A

[Homage to Catalonia
Silent Spring
The beat of a different drum

Figure 13-4. Text concatenations using compound assignment

Solution

Here is the code:

static void Main(string[] args)

{
// Initial value (empty text)

string books = "";

// Appending

books += "Homage to Catalonia" + Environment.NewlLine;

books += "Silent Spring" + Environment.NewlLine;

books += "The beat of a different drum" + Environment.NewlLine;

177



CHAPTER 13 ACCUMULATING VALUES

// Output
Console.WritelLine("Valuable books");
Console.WriteLine("-------------- ");

Console.WritelLine(books);

// Waiting for Enter
Console.ReadlLine();

Progressive Summation

Progressive summation is an important principle of summing a large number of values.
It means summing them not all at once in a single statement but summing them one by
one, progressively accumulating intermediate results in a special variable.

Task

You will write a program that progressively sums three entered numbers. Sure, summing
three numbers would be more conveniently done at once in a single line. However,
I'want to illustrate the important principle of progressive summation on a simple
example and get you used to the idea before covering a more complex topic, namely,

loops (see Figure 13-5).

- — a X

Enter first number: 10 A
Enter second number: 20
Enter third number: -2

Sum of entered numbers: 28

Figure 13-5. Progressively summing three entered numbers

178



CHAPTER 13 ACCUMULATING VALUES

Solution

Here is the code:

static void Main(string[] args)

{
// Preparation - variable to accumulate intemediate result
int sum = 0;
// Input - 1. number
Console.Write("Enter first number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);
// Adding first number to intermediate result
sum += number;
// Input - 2. number
Console.Write("Enter second number: ");
input = Console.Readline();
number = Convert.ToInt32(input);
// Adding second number to intermediate result
sum += number;
// Input - 3. number
Console.Write("Enter third number: ");
input = Console.ReadlLine();
number = Convert.ToInt32(input);
// Adding third number to intermediate result
sum += number;
// Output
Console.WritelLine();
Console.WriteLine("Sum of entered numbers: " + sum);
// Waiting for Enter
Console.ReadLine();
}

179



CHAPTER 13 ACCUMULATING VALUES

Multiple Text Join

Again, since the + operator can be used with text, too, you can extend the principle

of progressive summation to text. In this context, it may rather be called progressive

accumulation.

Task

You will write a program that progressively accumulates names entered by the user. It

will be interesting to make two accumulations; the first one is in the original order, and

the second one is in the reverse order.
For simplicity, you will work with three values only (see Figure 13-6).

2 - ()

Enter first person: Mileva Maric
Enter second person: Michel Besso
Enter third person: Marcel Grossmann

Entered persons

rcel Grossmann

In reversed order
rcel Grossmann
chel Besso
leva Maric

Figure 13-6. Progressively accumulating names

180



CHAPTER 13 ACCUMULATING VALUES

Solution

Here is the code:

static void Main(string[] args)

{

// Preparation - variables to accumulate intermediate results

string inOriginalOrder = "";

string inReversedOrder = "";

// Input of the first person
Console.Write("Enter first person: ");
string person = Console.Readline();

// Appending the first person to intermediate result
inOriginalOrder += person + Environment.NewlLine;
inReversedOrder = person + Environment.NewlLine + inReversedOrder;

// Input of the second person
Console.Write("Enter second person: ");
person = Console.ReadlLine();

// Appending the second person to intermediate result
inOriginalOrder += person + Environment.NewlLine;
inReversedOrder = person + Environment.NewlLine + inReversedOrder;

// Input of the third person
Console.Write("Enter third person: ");
person = Console.ReadlLine();

// Appending the third person to intermediate result
inOriginalOrder += person + Environment.NewlLine;
inReversedOrder = person + Environment.NewlLine + inReversedOrder;

// Output

Console.WritelLine();
Console.WritelLine("Entered persons");
Console.WriteLine("--------------- ");
Console.WritelLine(inOriginalOrder);
Console.WriteLine("In reversed order");

181



CHAPTER 13 ACCUMULATING VALUES

Console.WriteLine("----------------- ");
Console.WritelLine(inReversedOrder);

// Waiting for Enter
Console.ReadLine();

Note

It is interesting to note that when joining the people’s names in reverse order, the
compound assignment is of no help.

Summary

The central topic of this chapter has been the accumulation of values in the same
variable. Contrary to the programs so far, the programs here were repeatedly changing
the value of a variable, usually using its original value, and modifying it somehow.
Specifically, you studied the following:

o Statements such as variable = variable + change; that take the
present value of variable, add change to it, and store the result as a
new value of variable

o Compound assignments such as variable += change;, which are
short equivalents of previous statements

e Compound assignments with other arithmetic operations: -=, *=, /=
o Compound assignments with text (only +=)

e Incrementing (adding one) and decrementing (subtracting one)
variables using the super-short notation of variable++; and
variable--;

At the end of the chapter, you got acquainted with the principle of progressive
summation (and progressive accumulation), which means summing numbers one by
one while storing intermediate results in a special variable. This principle is mostly used
when summing a large number of values, and you will appreciate its extreme importance
when studying loops later in this book.

182



PART Il

Conditionals



CHAPTER 14

Essential Tools

You have already completed two parts of this book. In the next two parts, you will learn
about more complicated topics, such as dealing with conditions and loops. So that you
properly understand these topics, in this chapter I will cover some tools that can be of
great help to you in your programming.

IntelliSense

You know the first tool I will cover: Visual Studio IntelliSense. Whenever you start typing
anything, Visual Studio immediately offers you options for completing the text. When you
choose one of the options, the development environment shows you further details about
the option in a tooltip—what the option does, what parameters it requires, and so on.

I am covering IntelliSense in this chapter because it is often underused by beginning
programmers. I recommend you get used to completing virtually every word you type
using IntelliSense. You will spare yourself of a huge number of typos.

Exploring the Possibilities

Using IntelliSense is also a way to explore all the possibilities that every contemporary
computing platform offers.
In former days, you had to study the possibilities in manuals or books. Some of
them were capable enough to cover almost all the questions a programmer had. Today,
however, there are so many possibilities that even a 1000-page book cannot show them all.
You still need books (definitely this one!) to give you reliable and systematic
instruction so you can understand the principles, but you will probably want to explore
further possibilities not mentioned there. IntelliSense is a tool that can show you many
of them.

185
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_14


https://doi.org/10.1007/978-1-4842-7147-6_14#DOI

CHAPTER 14  ESSENTIAL TOOLS

Examples

Are you looking for possibilities of how you can manipulate text? Create a variable of the
string type and enter its name followed by a dot (see Figure 14-1).

4 IntelliSense - Microsoft Visual Studio X & |quickLaunch (Ctrl+Q) °| = B X

File Edit View Project Build Debug Team Tools Test Analyze Window Help Radek Vystavél ~ Ll

: B-2 @9~ - Debug- AnycPU - P start-|F | == M 4

6' *

<Ml Frogram.cs* = X - _ .

g ElnteiliSepse e v__‘%lnteIIiSense.Prog_ram '__ﬁ’aMain(string;[] args) =
=Busing System; +

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

“namespace IntelliSense

{

o class Program

{

= static void Main(string[] args)

{

sapuadold Ja10idx3 wea) Jai0jdx3 uonnjos

string text oeedidck brown fox jumps over the lazy dog.";
text.
} @ MNormalize =
} G, OfTypes<>
} G, OrderBy<>
@, OrderByDescending<>
@ Padleft
@ PadRight
[} Remove
@ Replace
@, Reverse<>

F o9

string stghg.Remove(int startindex, int count) (+ 1 overload)
Returns g new string in which a specified number of characters in the current ins

100% - 4

Error List

Thekeyc.. Ln14 Col 18 Ch 18 INS 1 Add to Source Control =

Figure 14-1. Entering a variable name and a dot

You can find even more possibilities when you directly enter string followed by a
dot (see Figure 14-2).

186



CHAPTER 14  ESSENTIAL TOOLS

ﬂJ IntelliSense - Microsoft Visual Studio ¢ Quick Launch (Ctrl+Q) R} = B X
File Edit View Project Build Debug Team Tools Test Analyze Window  Radek Vystavél ~
Help

2

(8- @9 - Debug- AnyCPU - P Start-| B _ W

Program.cs* +® X

& IntelliSense - “IntelliSense.Program - _' @, Main(string[] args)
Jusing System;
using System.Collections.Generic;
using System.Lling;
using System.Text;
|using System.Threading.Tasks;

-namespace IntelliSense

{

z class Program

{

static void

saiuadold J1910)dx3 wea) Ja10jdx3 uonn|os

’CW“PN& “ int string. pare(string strA, string strB) (+ 9 overloads)
CompareOrdinal Compares tWp specified string objects and returns an integer that
Concat
Concat<>
Copy
Empty
Equals

Format

Intern

[

R. Ln13 Col 20 Ch 20 1 Add to Source Control ~

Error List

e 90000000

Figure 14-2. Entering a data type and a dot

Are you looking for actions you can perform with dates? Enter the DateTime variable
and then a dot (see Figure 14-3).

187



CHAPTER 14  ESSENTIAL TOOLS

"ﬂJ IntelliSense - Microsoft Visual Studio Y & Quick Launch (Ctrl+Q) KR| = B X
File Edit View Project Build Debug Team Tools Test Analyze Window Radek Vystavél ~
Help

io- B-2 W9 | Debug- AnyCPU - P Start~| 5 _ M fE| T 2[R 4

Program.cs® + X
& IntelliSense --%IﬁteIIiSense.Program -_' '« Main(string([] args) -
=using System; *
using System.Collections.Generic; =
using System.Ling;
using System.Text;
using System.Threading.Tasks;

-namespace IntelliSense

{

- class Program

{

- static void Main(string[] args)

{

sanuadold Jai0jdx3 wes) Jsiojdx3 uonnjos

DateTime now = DateTime.Now;
now.

I‘Qﬁi | *™ | DateTime DateTime.Add(TimeSpan value)

AddDays Returns a new DateTime that adds the value of the specified TimeSpan
AddHours

AddMilliseconds

AddMinutes

AddMonths -
AddSeconds
AddTicks
AddYears

R. Ln14 Col 17 Ch 1 1 Add to Source Control «

Error List

IR E)

Figure 14-3. Entering DateTime and a dot

Like with text, you can enter DateTime and a dot and get some tips on what might be
useful to use (see Figure 14-4).

188



CHAPTER 14  ESSENTIAL TOOLS

24 inteliSense - Microsoft Visual Studio X & Quick Launch (Crl+Q L = B X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Radek Vystavél ~ RV
0.0 | B -2 M 9 -] Debug- AnyCPU - P Start~| s M E| = = | M il

Program.cs®™ * X
&l IntelliSense -;“w.lnteIIiSense.Program s Main(string[] args)
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;

-namespace IntelliSense

{

- class Program

{

saiuadold Jeiojdx3 wes] Jsiojdx3 uonnjos

static void Main(string[] args)

{
}

DateTime.

@ FromOADate

@ lsLeapYear

@ MaxValue

@ MinValue

»~ ;Now | DateTime DateTime.Now { get; }

® Parse Gets a DateTime object that is set to the current date and time on this comr
@ ParseExact
@ ReferenceEquals
@ SpecifyKind

Error List F e @

Ready Ln13 Col 22 Ch 22 T Add to Source Control «

Figure 14-4. Getting some tips from IntelliSense

Note

The list of possibilities that IntelliSense offers you can be narrowed down using the icons
at the bottom of the list. Click an appropriate icon if you want to see just properties, just
methods, and so on.

Keyboard Shortcuts

It happens sometimes that you do something and IntelliSense disappears. In this case,
you may find Ctrl+] or other keyboard shortcuts useful. To get a list of them, in Visual
Studio’s menu bar, select Edit » IntelliSense » List Members (see Figure 14-5).

189



CHAPTER 14  ESSENTIAL TOOLS

- Microsoft Visual Studio X & | Quick Lau rl+Q) P = B X
Project Build Debug Team Jools Test Apalyze Window Help Radek Vystavél = i

'oo- Psanc | A BT 3a N

‘ Find and Replace ¢ b

12 Undo Ctrl+Z ! — =

! ; ;,Program * | “a Main(string[] args) s

-

‘ 5

a

& Cut Ctrl+X &

-]

iy + 3

@ Copy Ctrl+C =

bt

x : 5

(<]

8

Paste Special » B

X Delete Del '%

g 3

% SelectAll Ctri+A 3[] args) 5

Insert File As Text...

Advanced v

Bookmarks

IntelliSense

Betactor

Ctrl+)
Next Method

i+ Shift+Space

Vi Metk
ErevIus Mediod ¥ Quick Info Ctrl+K, Ctrl+1

lur—r—

Error List A* Complete Word Ctrl+Space

M Toggle Completion Mode Ctrl+Alt+Space

Ready Ln13 Col 22 Ch22

de - e e e n

Figure 14-5. Shortcut for List Members

Documentation

IntelliSense can give you many tips. It can also show you the basic usage of the feature
you search for. However, the place where you can find all the detailed information is the
online documentation.

docs.microsoft.com

The Web at http://docs.microsoft.comis the best place to start looking for anything
concerning C# and other Microsoft technologies (see Figure 14-6). On the page, click
“Documentation” and then go directly to “C#”.

190



CHAPTER 14  ESSENTIAL TOOLS

BE Developer tools, technical docur %X | =

&« C m %) https://docs.microsoft.com/en-us/
(3 zsch2 [ Z0nd o mP me Obchod [3 Oreapl [ mssaL [ msank P4 GE DPH DatSchr (&7 ChPokl [ )5 JE MsfiDev
=. Microsoft | Docs Documentation Learn Q&A Code Samples

docs.microsoft.com

The home for Microsoft documentation and learning for developers and technology professionals.

Search for articles training ahd code samples... AR Search

\/ \/

Documentation Learn

Search our expansive documentation Discover tra

resources for Microsoft products. matter, or te

Figure 14-6. Microsoft documentation

Search

You can work with the documentation site using the links provided. However, more
frequently you are going to search for specific things. For example, enter Console class
in the search field and press the Enter key (see Figure 14-7).

191



CHAPTER 14  ESSENTIAL TOOLS

B8 Technical documentation | Micre % | 4

< O @ & msdnmicrosoftcom/library

=. Microsoft | Docs Documentation Learn Q&A Code Samples

WELCOME TO MICROSOFT DOCUMENTATION

Technical documentation

Search for in-depth articles on Microsoft developer tools and technologies.

Console class L Search

Figure 14-7. Searching for “Console class”

The link you are interested in is often the first one returned (see Figure 14-8).

L Micrze x S
“ 0O @ & npsidocsmicrosoftcom
=. MiCIOSDﬁ | Docs Documentation  Learn  Q&A  Code Samples £ sparch
Filter [ F Console class ] P Search
Content area 366,876 results for "Console class”
® Al
O i 3
) Documentation 103K Console Class (System)
O Learn 230 ‘dotnet P R
() Lez 0 /dotnet/api/system.console
) Reference 264K Represents the standarg mpul, output, and error streams for consele applications.This class cannot be
inherited

Install and manage NuGet packages using the console in Visual Studio
/nuget/consume-packages/install-use- packages-powershell
Instructions for using the NuGet Package Manager Console in Visual Studio for working with packages.

Figure 14-8. Viewing documentation for “Console class”

Specific Class Page

After clicking the correct link, you will find all the things about a specific class, such as
Console in this example.

192



CHAPTER 14  ESSENTIAL TOOLS

When I am getting acquainted with some class I do not know yet, I usually look for
“Common Operations” and “Remarks” sections, which cover basic information about
the class usage and entry points to further details (see Figures 14-9 and 14-10).

BT Console Class (System) | Micros: % |

< O A] 8 https://docs.microsoft.com/en-us/dotnet/api/system.console?view=net-5.0

Common Operations

The Console class contains the following methods for reading console input and writing

console output:
¢ The overloads of the ReadKey method read an individual character.
¢ The ReadLine method reads an entire line of input.

¢ The Write method overloads convert an instance of a value type, an array of characters,
or a set of objects to a formatted or unformatted string, and then write that string to the

console.

e A parallel set of WriteLine method overloads output the same string as the Write
overloads but also add a line termination string.

The Console class also contains methods and properties to perform the following operations:

* Get or set the size of the screen buffer. The BufferHeight and BufferWidth properties let
you get or set the buffer height and width, respectively, and the SetBufferSize method
lets you set the buffer size in a single method call.

Figure 14-9. Getting introductory information in the Common Operations section

193



CHAPTER 14  ESSENTIAL TOOLS

BY Console Class (System) | Micras: % [+

& O N & https://docs.microsoft.com/en-us/dotnet/api/system.console?view=net-5.0

Remarks

The console is an operating system window where users interact with the operating system or
with a text-based console application by entering text input through the computer keyboard,
and by reading text output from the computer terminal. For example, in the Windows
operating system, the console is called the Command Prompt window and accepts MS-DOS
commands. The Console class provides basic support for applications that read characters
from, and write characters to, the console.

For information about developing with the Console class, see the following sections:

® Console |/O Streams

L]

Screen Buffer and Console Window

Unicode Support for the Console

® Common Operations

.NET Core Notes

Figure 14-10. Getting more details in the Remarks section

Common Search

To conclude this section about documentation, note that you can perform your searches
outside of the Microsoft documentation site, too. Simply use your favorite web browser
to search.

However, contrary to a documentation site search, a common search displays
irrelevant results more frequently. To compensate for this, you can refine your query
using the programming language name, such as entering Console class C# in your
favorite web browser’s search field.

194



CHAPTER 14  ESSENTIAL TOOLS

Debugging Tools

Besides IntelliSense and documentation, there are other tools that you are going to
find helpful. Specifically, you can use debugging tools that allow you to look inside a
computer, so to speak. You can use them to see how the computer executes individual
commands, what values are stored in memory, and so on.

These are the tools you are going to study now. Originally, they were developed
to facilitate program debugging, in other words, searching for and removing errors.
However, they are probably even more useful as illustrative tools to facilitate your

understanding of various programming constructions.

Project

It is best to try all the tools in practice, so please open the “Treating incorrect input”
project in Visual Studio from Chapter 8. The program adds two numbers and treats
possible input errors using try-catch.

Stepping Through the Code

A computer works so fast that it is impossible to follow it with its gigahertz speed. That is
why it’s often helpful to step through the code, which forces the computer to execute one
statement at a time, upon your command.

Go to your opened “Treating incorrect input” project and launch it using the F10 key
instead of the usual F5. Of course, selecting the Debug » Step Over menu does the same
thing (see Figure 14-11).

195



CHAPTER 14  ESSENTIAL TOOLS

4] Treating incorrect input (Debugging) - Microsoft Visual Studio X8 £ quickla trl+Q) 2 = B8 X
File Edit View Projet Build Debug Team Jools Test Analyze Window Help Radek Vystavél ~
e - S Y - . ’gonlinue'p; L I "i".".‘:::

Program.cs *# X

<= Treating incorrect input -1 " Treating_incorrect_input.Program ~| % Main(string[] args)
using System;

Jasodx3 uonnjos

namespace Treating_incorrect_input

{
class P
{
static void Main(string[] args)
{
try
{
// Input of 1. number
nsole.Write("Enter 1. number: ");
string inputl = Console.Readline();
int numberl = Convert.ToInt32(inputl);

W% = 4 »

Figure 14-11. Launching a program using the F10 key

The individual program statements are now being executed one at a time whenever
you press F10. All the while, using a yellow arrow and yellow background, the
development environment denotes the statement that is to be executed in the next step.

Now just play with the stepping. Try the case when the user enters correct data and
also the case of wrong input. The IDE will show you how try-catch or anything else
works. This allows you to see how the program runs with your own eyes.

Terminate Stepping

When you find what you were looking for, you do not have to step through the program
to the last statement. There are other choices:

o Using the F5 key (or Debug » Continue), you can continue the
regular program execution (no stepping).

o Using the Shift+F5 key (or Debug » Stop Debugging), you can
terminate program execution.

196



CHAPTER 14  ESSENTIAL TOOLS

Breakpoints

I have covered what to do if you do not want to step through your code after you have
passed the point you are interested in. There is another situation. Say you do not want
to do any stepping before you get to the place of interest. In that case, you can use a
breakpoint.

Click the statement where the computer is to stop and press F9 (alternatively, right-
click and choose Breakpoint » Insert Breakpoint). The fact a breakpoint has been placed
is indicated with a dark red background and a dark red bullet at the beginning of the line
(see Figure 14-12).

1?] Treating incorrect input (Debugging) - Microsoft Visual Studio Xa £ Juick La tri+Q p = 0O X
File Edit View Project Build Debug Team JTools Test Apalyze Window Help Radek Vystavél ~ RV]
- LR - » Continue~ 5, 1 m O I T
v

Program.cs # X - g
<= Treating incorrect input -1 "% Treating_incorrect_inputProgram -| ©. Main(string[] args) -5
. - - - S

static void Main(string[] args) + i

< { =
S

try a

{

// Input of 1. number
Console.Write("Enter 1. number: ");
string inputl = Console.ReadLine();
int numberl = Convert.ToInt32(inputl);

// Input of 2. number

.Write("Enter 2. number: ");
string input2 = Console.ReadLine();
int nu PUTC3Z2(1nput2);

// Calculating
int result = numberl + number2;

// Result output
Console.WriteLine("Sum of entered numbers is: " + result); .
00% =~ 4 »

Figure 14-12. Inserted breakpoint

197



CHAPTER 14  ESSENTIAL TOOLS

Using a Breakpoint

If your program is still running from the previous exercise, terminate it by using the
Shift+F5 key combination. Now launch the program the regular way, in other words,
using the F5 key. It will run normally, and it will stop when it reaches the breakpoint.
Visual Studio pops up in front of the program'’s window.

After that, you can step through the code or just look at something and use the F5 key
to run your program further until its end or until the next breakpoint.

Removing a Breakpoint

To remove a breakpoint that you do not need any longer, press F9 again on a particular
line, or right-click and choose Breakpoint » Delete Breakpoint from the context menu.

Memory Inspection

Whenever your program is suspended (from a breakpoint, stepping, and so on), you
can inspect the memory that is available to your program and explore the values of
individual variables.

To facilitate memory inspection, Visual Studio shows the Autos, Locals, and Watch
panes at the bottom of its window. If those panes are not there, you can display them
using the Debug » Windows menu.

While the Autos and Locals panes automatically select the variables to display, the
Watch pane is populated manually according to what you want to see. You can enter a
particular variable’s name in the pane, or you can right-click the variable in the code and
select Add Watch from the context menu (see Figure 14-13).

198



CHAPTER 14  ESSENTIAL TOOLS

4] Treating incorrect input (Debugging) - Microsoft Visual Studio ¥ £ Quick Launch (Ctri+sQ) 2 = B X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Radek Vystavél ~
o - SO WM i ¥ Continue ~ 3" = O >t i

-

Programcs & X 2_
€= Treating incorrect input -1 "% Treating_incorrect_input.Program - | % Main(string[] args) 5
static void Main(string[] args) E‘
(
try *
{
/f t of 1. number
con Quick Actions and Refactorings.. Ctrl+.
Strifg’ | o Rename..
int numl Remove and Sort Usings
// Inpu & Peek Definition Alt+F12
© Console % Go To Definition F12
string ! Go To Implementation Ctri+F12
int numl  ging Ajl References Shift+F12
7 eaie 7 View Call Hierarchy Ctrl+K Ctrl+T
int rest Create Unit Tests
Step Into Specific »
// Resu| & Run To Cursor Ctrl+F10
Console 2, et Next Statement Ctrl+Shift+F10  esult); .

»

Go To Disass® Alt+G

Waech | Add Watch
OuickWa Shift+F9
fegramM. C=
Execute in Interactive Ctrl+E, Ctri+E
Snippet »
Cut Ctrl+X
Copy Ctrl+C
(K118 Watch 1 Pacte -
Ready Ln18 ; Outlining »

Figure 14-13. Selecting Add Watch

The current value of the selected variable appears in the Watch window
(see Figure 14-14).

199



CHAPTER 14  ESSENTIAL TOOLS

]| Teeating incorrect input (Debugging) - Micreseft Visual Studio X8 £ Quicklaunch (Ctrl+Q) Rl = B X
File Edit View Project Build Debug Team Jools Test Apalyze Window Help Radek Vystavél ~ RV}
SCAN - B NI P Continue~ 5 _ 1 m ® > Simisl s "

S

Program.cs # X

& Treating incorrect input -1 "% Treating_incorrect_inputProgram - . Main(string[] args) .
static void Main(string[] args) +
{

Ja10dx3 uonnjo:

try
{
// Input of 1. number
Console.Write("Enter 1. number: ");
string inputl = Console.ReadlLine();
int numberl = Convert.ToInt32(inputl); i

// Input of 2. number

o Console.Write("Enter 2. number: ");
string input2 = Console.ReadLine();
int number2 = Convert.ToInt32(input2);

// Calculating
int result = numberl + number2;

// Result output
Console.WriteLine("Sum of entered numbers is:

"

+ result); .
[ ]

Watch 1 = 0 x | Call Stack v 8 %
Name

Value Name Lan
@ number1 23 © Treating incormect input.exe!Treating_incorrect input.Pregram M. C=

(Ee=1 Watch 1 [«11B371a Exception Settings Immediate Window

Ln27 Col 17

Ready Ch17 + Add to Source Control ~

Figure 14-14. Using the Watch window

C# Interactive

The last tool to help you that I will mention here enables you to study C# statements in
interactive mode.

200



What Is It?

CHAPTER 14

ESSENTIAL TOOLS

Up to now, you have always had to write a program with several statements and then

launch it to see it in action. The interactive mode allows you to enter individual C#

statements and run them immediately. You can explore some C# features much faster

this way.

How to Launch It?

You can start the interactive mode by selecting View » Other Windows » C# Interactive

(see Figure 14-15). You do not even need to have a project created/opened.

m oject Debug Team
Biution Explorer

22 Team Explorer

8 Server Explorer

Call Hierarchy

Class View

Code Definition Window

Object Browser

ngae»

Error List
Qutput
Task List
Toolboy

Notifications

4 09

Other Windows
Tonlbar

3 Full Screen

MNext Task

Previous Task

# Properties Window

Figure 14-15. Switching to interactive mode

Tools
Ctri+Alt+L
Ctrl+\, Ctri+M
Ctri+Alt+S

Test An

Ctri+Alt+K
Ctrl+Shift+C
Ctri+\, D
Ctri+Alt+)
Ctrl+\ E
Ctrl+Alt+O
Ctrl+\ T
Ctrl+Alt+X

Shift+Alt+Enter

"

B Hv 8@ 00T

P e @ @ i

Load Test Runs

Source Control Explorer
Bookmark Window Ctri+K, Ctrl+W
Application Insights Search
Application Insights Trends
Web Publish Activity

Task Runner Explorer Ctrl+Alt+Bkspce
Package Manager Cgnsole
Browser Link Dashboard
Document Outline Ctri+Alt+T
History

Pending Changes

Property Manager

Ctrl+Shift+E

Jasoidx3 weay Jasopdx3 uonnjos

201



CHAPTER 14  ESSENTIAL TOOLS

Figure 14-16 shows an example interactive session—I have declared a numeric
variable, augmented it by ten, and displayed its value.

:ﬂ Microsoft Visual Studic X & Quick Laun Ctrl+Q P = B X
File Edit View Project Debug Team Jools Test Analyze Window Help Radek Vystavél = il
B-LmP|2-C- » Attach... = | 5 _

C# Interactive
OE ¢
Microsoft (R) Roslyn C# Compiler version 2.1.0.61520
Loading context from 'CSharpInteractive.rsp’.
Type "#help” for more information.
> int number = 71;

Jasojdxg wea) sas0)dx3 uonnjos

> number += 10;
> number

Error List

Ln8

Figure 14-16. Example interactive session

Notes

Note the following:

o Ifyouneed to enter a multiline statement, you can terminate lines

with Shift+Enter instead of simply Enter.

o Using #help displays concise information about how to work with the

interactive mode.

202



CHAPTER 14  ESSENTIAL TOOLS

Summary

This chapter introduced you to the tooling that you can use in your programming,
including IntelliSense, the documentation, debugging tools, and the interactive mode.

IntelliSense shows a list of available possibilities and corresponding tooltips when
you type in the Visual Studio editor. You already know how to use it. Here, I introduced
IntelliSense as a way of exploring the huge C# universe. For example, if you want to
manipulate text and you do not know precisely how a corresponding method is called,
you can append a string variable with a dot and browse through the possibilities. You
can also append the type’s name with a dot to get still more possibilities.

You learned about the Microsoft documentation website, which contains valuable
information for all Microsoft programming technologies, including the C# language and
the .NET platform. You usually perform full-text searches on this website.

In the chapter, I uncovered some debugging tools, which allow you to see “inside
the computer” You can watch how individual statements are executed, check the
variable values, and so on. Specifically, you learned how to step through your code, set
breakpoints, and inspect the memory.

The interactive mode is a way to quickly enter C# statements and see what they do. It
is a fine tool to explore new features.

203



CHAPTER 15

Getting Started
with Conditions

Up to now, a program’s statements have always been executed from the beginning to
the end regardless of anything else, simply when their turn came. In this chapter, the
whole new world will start to unveil itself because you will learn about the conditional
execution of program statements. This means you will work with statements that may or
may not execute depending on whether some condition is fulfilled.

Password Input

Your first program with conditions will evaluate a password. The user may or may not
be allowed to enter the system depending on whether they have entered the correct

password.

Task

You will write a program that prompts the user to enter a password and then evaluates
whether the entered password is correct. For the sake of simplicity, the correct password
will be specified directly in the code (see Figures 15-1 and 15-2).

205
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_15


https://doi.org/10.1007/978-1-4842-7147-6_15#DOI

CHAPTER 15  GETTING STARTED WITH CONDITIONS

" — a X

[Enter password: Hello A
Incorrect password

Figure 15-1. Incorrect password

d - O X

Enter password: friend A
Password is OK, please enter

Figure 15-2. Correct password

Analysis

Let’s look at this program in more detail.

The Program

In this program, some activity is performed when both passwords (the entered one and
the stored one) agree, and a different activity is performed when they disagree. In this
case, you either allow or refuse the user with an appropriate message (see Figure 15-3).

206



CHAPTER 15  GETTING STARTED WITH CONDITIONS

[entered [entered
password agrees password
with the stored] disagrees]

) 4

v r

[ Refuse the user ]
?4 L 4

Generally, program branching means taking different paths depending on the fulfillment
of a condition (see Figure 15-4).

[ Confirm the user ]

Figure 15-3. The program flow

Program Branching

[condition holds] [condition does not hdd]

<

v r

[ Conditioned activity ] [ Alternative activity ]

Figure 15-4. Branching

207



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Syntax
For branching, C# uses the if-else construction shown here:

if (condition)

{

Statements to perform when the condition holds

}

else

{

Statements to perform otherwise

}

Solution

Here is the code:

static void Main(string[] args)

{
// Input

Console.Write("Enter password: ");
string enteredPassword = Console.ReadlLine();

// Password check
if (enteredPassword == "friend")

{

Console.WriteLine("Password is OK, please enter");

}

else

{

Console.WriteLine("Incorrect password");

}

// Waiting for Enter
Console.ReadlLine();

208



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Discussion

To formulate the condition, I have used an equality test, which is entered using a couple
of equal signs. If the compared values are the same, the test evaluates to true, the
condition is considered fulfilled, and the statements in the if branch are executed. If the
compared values are different, the test evaluates to false, the condition is considered
not fulfilled, and the statements in the else branch are executed.

Test

Now you can check how the program executes! Besides doing an ordinary program run,
you can also step through the code, as you learned in the previous chapter.

Reversed Condition

So that you get more familiar with conditions, it is useful to see them from different
perspectives. Staying with the password issue, let’s view it in another way.

Task

The task now is to solve the previous exercise alternatively, namely, with the condition
reversed. In other words, you will test for inequality instead of equality.

Solution

Here is the code:

static void Main(string[] args)

{

// Correct password
string correctPassword = "friend";

// Input
Console.Write("Enter password: ");
string enteredPassword = Console.ReadLine();

209



CHAPTER 15  GETTING STARTED WITH CONDITIONS

// Password check
if (enteredPassword != correctPassword)

{
Console.WriteLine("Incorrect password");
}
else
{
Console.WriteLine("Password is OK, please enter");
}
// Waiting for Enter
Console.ReadlLine();
}
Discussion

In this exercise, I have used an inequality test, which is typed using an exclamation mark
followed by an equal sign. The test returns true when the compared values disagree.

Length Check

While two pieces of text can only be compared to find out if they are the same or
different, two numbers can also be compared to figure out which one is longer (or
shorter). Let’s take a look.

Task

In this section, you will study number comparisons in a program that evaluates whether
the entered text is at most four characters long (see Figures 15-5 and 15-6).

210



CHAPTER 15  GETTING STARTED WITH CONDITIONS

¢ - O X
mter a word: Bill A
rd is short (at most 4 characters)

Figure 15-5. Short text

¢ - O X
mter a word: Gates A
rd is long (more than 4 characters)

Figure 15-6. Long text

Solution

Presumably, you should determine the number of characters of the entered text and
compare it to the number four. You learned how to determine the number of characters
of text—using its Length property—in Chapter 7 (the program was “Texts as objects”).
Anyway, if you do not remember the name of the property, you can add a dot to the end
of a text variable and browse through the IntelliSense possibilities to see what might be
appropriate, as covered in the previous chapter.

211



CHAPTER 15  GETTING STARTED WITH CONDITIONS
Here is the code:

static void Main(string[] args)

{
// Input

Console.Write("Enter a word: ");
string word = Console.ReadLine();

// Determining length
int wordLength = word.Length;

// Checking length
if (wordLength <= 4)
{

Console.WriteLine("Word is short (at most 4 characters)");

}

else

{

Console.WriteLine("Word is long (more than 4 characters)");

}

// Waiting for Enter
Console.ReadlLine();

}
Note

I have used a less-than-or-equal-to operator in this solution, which looks like this: <=.

Positive Numbers

In this section, you will get some more practice with number comparisons.

Task

You will write a program that evaluates whether the number entered by the user is
positive or not (see Figures 15-7 and 15-8).

212



CHAPTER 15  GETTING STARTED WITH CONDITIONS

- — a X

[Enter a number: 231 2
The number is positive

Figure 15-7. It’s positive

- — a X

[Enter a number: -11 2
The number is NOT positive

Figure 15-8. It’s not positive

Solution

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);

213



CHAPTER 15  GETTING STARTED WITH CONDITIONS

// Evaluation
if (number > 0)

{
Console.WriteLine("The number is positive");
}
else
{
Console.WriteLine("The number is NOT positive");
}
// Waiting for Enter
Console.ReadlLine();
}
Discussion

I have used a greater-than operator to compare the entered number to zero.

What do you think the program does when the user enters zero? It checks the

condition 0 > 0 and finds it is not fulfilled. Therefore, it displays that the number is not

positive. This is the reason for the rather unusual message wording (“.. NOT positive”),

as shown in Figure 15-9. I have not used “..is negative”.

- — a X

[Enter a number: © 2
The number is NOT positive

Figure 15-9. Results for zero

214



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Odd and Even Numbers

Let’s proceed to another number comparison.

Task

Your task now is to write a program that evaluates whether the number entered by the

user is odd or even (see Figures 15-10 and 15-11).

" — a X

[Enter a number: 16 A
The number is even

Figure 15-10. Determining even

" — a X

[Enter a number: 73 A
The number is odd

Figure 15-11. Determining odd

215



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Solution

The core of the solution is to determine the remainder of dividing the entered number by
two. If the remainder is zero, the number is even. If there is some remainder, the number
is odd.

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Enter a number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);

// Remainder calculation
int remainderAfterDivisionByTwo = number % 2;

// Evaluation
if (remainderAfterDivisionByTwo == 0)

{

Console.WriteLine("The number is even");

}

else

{

Console.WriteLine("The number is odd");

}

// Waiting for Enter
Console.ReadlLine();

Case Indifference

You already know that two pieces of text can be compared to see if they are equal
or unequal. This comparison is case sensitive. In other words, hobbit and Hobbit
are considered different words. Frequently, however, you need case-insensitive

comparisons, which I will show you now.

216



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Task

In this program, the user will enter two names, and you will evaluate whether they are
the same or different, disregarding the difference between lowercase and uppercase (see
Figures 15-12 and 15-13).

" — a X

Enter a name: Juliet A
Enter another name: JuLIET
You have entered the same names

Figure 15-12. The same names

" — a X

Enter a name: Juliet A
Enter another name: Romeo
You have entered different names

Figure 15-13. Different names

Solution

The core of the solution is to convert both pieces of text to lowercase prior to doing the
comparison. You can use the ToLower method call for that purpose.

217



CHAPTER 15  GETTING STARTED WITH CONDITIONS
Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter a name: ");
string name1l = Console.ReadlLine();

Console.Write("Enter another name: ");
string name2 = Console.ReadlLine();

// Converting to small letters
string name1inSmall = namel.Tolower();
string name2inSmall = name2.Tolower();

// Evaluating
if (namei1inSmall == name2inSmall)

{

Console.WriteLine("You have entered the same names");

}

else

{

Console.WriteLine("You have entered different names");

}

// Waiting for Enter
Console.ReadlLine();

Without Braces

C# allows you to omit the braces surrounding the if and else branches if the branch
contains just a single statement. Generally, I do not recommend this practice because it
can be misleading. I will show this to you now just so that you are aware of it.

218



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Task

You will solve the previous exercise again, this time without braces.

Solution

Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter a name: ");
string namel = Console.ReadlLine();

Console.Write("Enter another name: ");
string name2 = Console.ReadlLine();

// Converting to small letters
string name1inSmall = namel.Tolower();
string name2inSmall = name2.Tolower();

// Evaluating
// BRANCHES NOT DELIMITED BY BRACES (CURLY BRACKETS)
if (nameilinSmall == name2inSmall)
Console.WriteLine("You have entered the same names");
else
Console.WriteLine("You have entered different names");

// Waiting for Enter
Console.ReadlLine();

Greater of Two Numbers

A frequent task of a programmer is to find which of two numbers is greater (or smaller,
analogously).

219



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Task

Your task now is to write a program that asks the user for two numbers and then says

which of the two numbers is greater (see Figure 15-14).

- — a X

Enter first number: 17 A
Enter second number: 24
Greater of entered numbers is: 24

Figure 15-14. Determining which number is greater

Solution

Here is the code:

static void Main(string[] args)

{

220

// Inputs

Console.Write("Enter first number: ");
string inputl = Console.ReadlLine();
int number1l = Convert.ToInt32(input1);

Console.Write("Enter second number: ");
string input2 = Console.ReadlLine();
int number2 = Convert.ToInt32(input2);




CHAPTER 15  GETTING STARTED WITH CONDITIONS

// Evaluating
int greater;
if (number1l > number2)

{
greater = numberi;
}
else
{
greater = number2;
}
// Output
Console.WritelLine("Greater of entered numbers is: " + greater);

// Waiting for Enter
Console.ReadlLine();

Without the else Branch

In previous exercises, you always had two branches—the if branch and the else
branch. In other words, you were always in an either-or situation. It is important to note,
however, that the else branch can be omitted if you want. This means if a condition is
fulfilled, you do something, and if it is not fulfilled, you simply do nothing. Take a look!

Task

In the previous exercise, you set the greater variable either to the first value or to the
second value.

Now you will solve the same task in a different way. First, you will set the greater
variable directly to the first value, and then if the second one is greater, you will change
the final result.

221



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Solution

Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter first number: ");
string inputl = Console.ReadlLine();
int number1l = Convert.ToInt32(input1);
Console.Write("Enter second number: ");
string input2 = Console.Readline();
int number2 = Convert.ToInt32(input2);
// Evaluating
int greater = numberi;
if (number2 > greater)
{

greater = number2;

}
// Output
Console.WritelLine("Greater of entered numbers is: " + greater);
// Waiting for Enter
Console.ReadlLine();

}

Using a Built-in Function

Frequently in this book, I show you things from different angles. I strongly believe this
promotes your understanding. For the current problem of finding the greater value of
two, I will show you a third way to solve it. The task is so frequent, in fact, that there is a
convenient built-in function for it.

222



CHAPTER 15  GETTING STARTED WITH CONDITIONS

Task

You will solve the previous exercise using the built-in function Math.Max.

Solution

Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter first number: ");
string inputl = Console.ReadlLine();
int number1l = Convert.ToInt32(input1);
Console.Write("Enter second number: ");
string input2 = Console.ReadlLine();
int number2 = Convert.ToInt32(input2);
// Evaluating
int greater = Math.Max(number1, number2);
// Output
Console.WritelLine("Greater of entered numbers is: "
// Waiting for Enter
Console.ReadLine();

}

Summary

+ greater);

In this chapter, you started studying the conditional execution of program statements,

which means that the execution or nonexecution of one or more statements can be

conditioned by some test. You saw the following examples of tests:

223



CHAPTER 15  GETTING STARTED WITH CONDITIONS

o Testing the equality of two pieces of text or two numbers with the ==
operator

o Testing the inequality of two pieces of text or two numbers with the
!= operator

o Testing whether a number is greater (or less) than another number
with the > (or <) operator

The last test can be extended to “greater than or equal to” (or “less than or equal to”)
with the >= (or <=) operator.

To use conditional execution in your code, you learned about the if-else construct.
This consists of a condition and two branches. If the condition is evaluated to be true
(fulfilled), the statements in the if branch are executed. If the condition is evaluated to
be false (not fulfilled), the statements in the else branch are executed.

You learned that if a branch consists of a single statement, C# syntax allows you
to omit the braces surrounding the branch, though I discourage you from doing that
because people frequently forget to include the braces later when they extend a branch
to several statements.

More important, you learned that the else branch can be omitted if you want. This
means there is no alternative action—nothing is done when the condition is not fulfilled.

As a bonus, you learned about the useful built-in function Math.Max. (You can
probably guess that there is a similar function called Math.Min.)

224



CHAPTER 16

Practical Conditions

In the previous chapter, you learned about the conditional execution of a program’s
statements. In this chapter, you will deepen your knowledge of this topic. I will show you
how to use conditions and branching on several simple tasks that you will encounter

sooner or later in your programming career.

Appending Extension

Sometimes, you want to ask the user about a file name, but you do not know whether the

user will enter it with or without an extension.

Task

You will write a program that appends the . png extension to the entered file name unless
the extension is already part of the input (see Figures 16-1 and 16-2).

" - O X

Enter image name: BeautifulSunset o
are going to use name: BeautifulSunset.png

Figure 16-1. Appending the .png extension

225
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_16


https://doi.org/10.1007/978-1-4842-7147-6_16#DOI

CHAPTER 16 PRACTICAL CONDITIONS

e

- 0

nter image name: BeautifulSunrise.png

are going to use name: BeautifulSunrise.png

Figure 16-2. Not appending the .png extension

Solution

Here is the code:

static void Main(string[] args)

{

// Input
Console.Write("Enter image name: ");
string fileName = Console.Readline();

// Appending extension (ONLY IN CASE OF NEED)
if (!fileName.ToLower().EndsWith(".png"))

{

}

fileName += ".png";

// Output

Console.WriteLine("We are going to use name:

+ fileName);

// Waiting for Enter
Console.ReadlLine();

Discussion

Let’s discuss this program a bit.

226




CHAPTER 16 PRACTICAL CONDITIONS

Extension Detection

The most interesting point of the current exercise is finding out whether the entered file

name ends with a particular extension:

» First, you convert the file name to lowercase so you do not have to
distinguish between .png and . PNG.

¢ You use the method EndsWith to find whether the text ends or does
not end with something specific. In this case, the method call returns
true if the text ends with . png. Otherwise, it returns false.

e You negate the result returned by the EndsWith method using the
! operator. The exclamation mark changes true to false, and vice
versa. This means you actually ask “Does the text not end with . png?”
instead of “Does it end with . png?”.

Entering a Condition

Note that you do not always have to enter a comparison when specifying a condition.
You do not always have to use “less than,” for example. It is enough if the condition
evaluates to a Boolean value, such as true or false.

If the condition evaluates to true, it is considered fulfilled, and the statements in the
if branch are executed.

If the condition evaluates to false, it is considered not fulfilled, and the statements
in the else branch are executed (or nothing is executed in the case of a missing else
branch).

Missing else Branch

The example program has a missing else branch. If the entered name ends with .png,
the EndsWith method will find it and will return true. If you get false, the condition is
considered not fulfilled, so the statement appending the extension will not be executed,
and the entered name will remain unchanged.

227



CHAPTER 16 PRACTICAL CONDITIONS

Chaining

Note the chaining of the ToLower and EndsWith methods. The output of the lowercase
conversion is not stored in any variable. Instead, it serves as input for the next method in
the chain, in other words, EndsWith.

Head and Tail

Let’s do some more exercises concerning conditions.

Task

You will write a program that throws a coin once (see Figure 16-3).

" — (] X
[Head tossed A

Figure 16-3. Throwing a coin

Solution

The core of the solution is to generate a random number—zero or one—and convert it to
heads or tails subsequently.
Here is the code:

static void Main(string[] args)

{

// Random number generator
Random randomNumbers = new Random();

// Random number 0/1 and its transformation
int randomNumber = randomNumbers.Next(0, 1 + 1);

228



CHAPTER 16 PRACTICAL CONDITIONS

if (randomNumber == 0)

{

Console.WritelLine("Head tossed");

}

else

{

Console.WriteLine("Tail tossed");

}

// Waiting for Enter
Console.ReadlLine();

}

Discussion

Ijust want to remind you that the Next method requires the upper bound of a random
number range to be specified already augmented by 1. That is why you wrote 1+1 in the
previous program. Of course, you could also have written 2 directly, but 1+1 seems to me
more logical, stating 1 as the upper bound and adding the (strangely) required 1.

Deadline Check

“Never trust the user,” as the old saying goes. This means you as a programmer always
have to check user-entered data in production software.

You need to check the user data usually not because of malicious use because 99.9
percent of your users do not have any intention to abuse your software. Users simply
make mistakes. That is why you should check their input and prompt them to correct it.

So, now you will learn how to implement some input checking.

Task

You will write a program that prompts the user to enter an order deadline and presents a
warning if the user enters a date in the past (see Figure 16-4).

229



CHAPTER 16 PRACTICAL CONDITIONS

0 - o x
Enter order deadline: 1/23/2021 2
Error! You have entered date in the past.

Figure 16-4. Checking a date

Solution

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Enter order deadline: ");
string input = Console.ReadlLine();
DateTime enteredDeadline = Convert.ToDateTime(input);
// Checking entered value
DateTime today = DateTime.Today;
if (enteredDeadline < today)
{
Console.WriteLine("Error! You have entered date in the past.");
}
else
{
Console.WritelLine("Deadline accepted.");
}
// Waiting for Enter
Console.ReadlLine();
}

230



CHAPTER 16 PRACTICAL CONDITIONS

Discussion

Note the following:

e To convert a date entered in text form into the DateTime object, you
use the Convert.ToDateTime method call.

o Conversion fails if a nonexistent date is entered. You can handle this
using try-catch.

e Similar to number conversions, Convert.ToDateTime can accept
a second parameter specifying the language to be used for the

conversion.

Invoice Date Check

Let’s do one more exercise for checking user-entered data.

Task

Value-added tax (VAT) regulations in my country require that the date an invoice is
issued cannot precede the date of payment, and at the same time, it cannot be later than
15 days after the payment.

The current task is to perform both checks (see Figures 16-5, 16-6, and 16-7).

] - (] X
Payment date: 6/24/2021 8

Invoice date: 6/20/2021
Invoice date cannot precede payment date.

Figure 16-5. Date too early

231



CHAPTER 16 PRACTICAL CONDITIONS

Payment date: 6/24/2021
Invoice date: 7/12/2021

Invoice cannot be issued later than 15 days after payment.

Figure 16-6. Date too late

. - o X
Payment date: 6/24/2021 =
Invoice date: 7/1/2021

Dates accepted.

Figure 16-7. Dates accepted

Solution

Here is the solution:

static void Main(string[] args)

{

232

// Inputs

Console.Write("Payment date: ");

string inputPayment = Console.Readline();

DateTime paymentDate = Convert.ToDateTime(inputPayment);

Console.Write("Invoice date: ");
string inputInvoice = Console.ReadlLine();
DateTime invoiceDate = Convert.ToDateTime(inputInvoice);

// Checking
bool ok = true;
if (invoiceDate < paymentDate)




}

CHAPTER 16 PRACTICAL CONDITIONS

Console.WriteLine("Invoice date cannot precede payment date.");
ok = false;

}

if (invoiceDate > paymentDate.AddDays(15))

{
Console.WritelLine("Invoice cannot be issued later than 15 days
after payment.");
ok = false;

}

if (ok)

{

Console.WritelLine("Dates accepted.");

}

// Waiting for Enter
Console.ReadlLine();

Discussion

You are using a helper variable called ok in this solution. The variable monitors whether
everything is OK. At first, you set it to true. If any of the performed checks fail, you toggle
the value to false. If the variable stays true after both checks, you know everything is

OK, and a confirming message is displayed to the user.

Spanish Day of Week

Now you will learn how to split the code’s execution into multiple branches.

Task

You will write a program that displays the Spanish version of the day of the week (lunes,

martes, miércoles, and so on) for a date entered by the user (see Figure 16-8).

233



CHAPTER 16 PRACTICAL CONDITIONS

- — O X

ﬁter a date: 5/8/1945 2
rtes
The happiest day of the 26th century.

Figure 16-8. Displaying days in Spanish

Solution

You can find the day of the week using the DayOfWeek property of the DateTime object.
The conversion to Spanish can be made using a series of conditions.
Here is the code:

static void Main(string[] args)
{
// Input
Console.Write("Enter a date: ");
string input = Console.ReadlLine();
DateTime enteredDate = Convert.ToDateTime(input);

// Finding day of week (in enumeration)
DayOflWeek dayOfWeek = enteredDate.DayOfWeek;

// Spanish texts

string spanish = "";

if (dayOfWeek == DayOfWeek.Monday)
spanish = "Lunes";

if (dayOfWeek == DayOfWeek.Tuesday)
spanish = "Martes";

if (dayOfWeek == DayOfWeek.Wednesday)
spanish = "Miercoles";

if (dayOfWeek == DayOfWeek.Thursday)
spanish = "Jueves";

234



CHAPTER 16 PRACTICAL CONDITIONS

if (dayOfWeek == DayOfWeek.Friday)
spanish = "Viernes";

if (dayOfWeek == DayOfWeek.Saturday)
spanish = "Sabado";

if (dayOfWeek == DayOfWeek.Sunday)
spanish = "Domingo";

// Output

Console.WritelLine(spanish);

if (enteredDate == new DateTime(1945, 5, 8))
Console.WriteLine("The happiest day of the 20th century.");

// Waiting for Enter
Console.ReadlLine();

}

Discussion

Note the following:

e You have omitted braces surrounding individual if branches. You
can do that because there is only a single statement in every branch.
I normally do not do this, but in this case of many simple ifs, it
seemed to me that it would make the code neater.

o Individual days of the week are members of the DayOfWeek
enumeration. Visual Studio offers you the enumeration as soon as
you hit the spacebar on your keyboard after entering two equal signs
(see Figure 16-9). Use what Visual Studio offers!

235



CHAPTER 16 PRACTICAL CONDITIONS

_’_‘J Spanish day of week - Microsoft Visual Studio Y & Quick Launch (Ctrl+Q) Rl = B X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Radek Vystavél = I
F-I 3-2 Hd"'|'9' '| Debug - Any CPU - P Start- | H_chafi| = | N .

Program.cs* # X

¥0q|oo]

Spanish day of week - “% Spanish_day_of_week Program ~ le, Main(string(] args)
Console.Write("Enter a date: ");
string input = Console.ReadlLine();
DateTime enteredDate = Convert.ToDateTime(input);

// Finding day of week (in enumeration)
DayOflleek dayOflkleek = enteredDate.DayOflWeek;

// Spanish texts

string spanish =
if (dayOfWeek ==

4z DataMisalignedException

saruadosd Jsasojdxg wea) Jasojdxg uonnjos

DateTime
& DateTimeKind

enum System.DayOfWeek
Specifies the day of the week.
=

[3

Error List i -

Ready Ln 23 i - SEEIREN Add to Source Control

Figure 16-9. Using the DayOfWeek enumeration

Switch Statement

For certain cases of multiple branching, there also exists a switch statement in C#. Now
you will learn how to work with it.

Task

You will solve the last task using a switch statement.

Solution

Here is the code:

static void Main(string[] args)

{
// Input

Console.Write("Enter a date: ");

236



CHAPTER 16

string input = Console.ReadlLine();
DateTime enteredDate = Convert.ToDateTime(input);

// Finding day of week (in enumeration)
DayOfleek dayOfWeek = enteredDate.DayOfWeek;

// Spanish texts
string spanish = "";
switch (dayOfiWeek)
{
case DayOfleek.Monday:
spanish = "Lunes";
break;
case DayOfWeek.Tuesday:
spanish = "Martes";
break;
case DayOfWeek.Wednesday:
spanish = "Miercoles";
break;
case DayOfWeek.Thursday:
spanish = "Jueves";
break;
case DayOfWeek.Friday:
spanish = "Viernes";
break;
case DayOflWeek.Saturday:
spanish = "Sabado";
break;
case DayOflWeek.Sunday:
spanish = "Domingo";
break;

PRACTICAL CONDITIONS

237



CHAPTER 16 PRACTICAL CONDITIONS

// Output

Console.WritelLine(spanish);

if (enteredDate == new DateTime(1945, 5, 8))
Console.WritelLine("The happiest day of the 20th century.");

// Waiting for Enter
Console.ReadlLine();

}

Discussion

You can use the switch statement as an if-series replacement if the repeated branching
is always based on the same value. This is the dayOfleek variable’s value in this case.

As to the syntax, the switch keyword is followed (in parentheses) by a variable
(or expression) whose value determines which branch the execution will take. The
individual branches start with the case keyword followed by a specific value of the
control variable and a colon. You should terminate each branch with the break keyword.

Summary

In this chapter, you wrote programs with conditional execution for a variety of practical
tasks. Specifically, you learned the following:

o To enter conditions without any of relational operators such as <, ==,
and so on. The condition simply has to evaluate to the bool type. It is
considered fulfilled when it evaluates to true.

o To negate the condition using the ! operator.

¢ To transform random numbers into another kind of data, such as a
heads/tails pair.

o To perform various checks of the user input, especially for dates.

o To branch your program into several alternative execution paths,
either by using a series of if statements or by using a switch
statement.

238



CHAPTER 17

Compound Conditions

You have now some experience formulating conditions and using them to solve real
problems. As to more complex problems, what you often need is to assemble your
condition out of two or more partial conditions. This is what you will study in this
chapter.

Yes or No

Your first use of compound conditions will be to check that the user input belongs to one
of the allowed alternatives.

Task

You will write a program that checks whether the user entered either yes or no. All other
inputs will be considered incorrect (see Figures 17-1 and 17-2).

. - 0O X
Do you love me? no a
0K .

Figure 17-1. Acceptable answer but sad

239
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_17


https://doi.org/10.1007/978-1-4842-7147-6_17#DOI

CHAPTER 17 COMPOUND CONDITIONS

Do you love me? Yes, but...
Say it straight!

Figure 17-2. Yes!

Solution

Here's the code:

static void Main(string[] args)

{
// Input
Console.Write("Do you love me? ");
string input = Console.Readline();
// Evaluating
string inputInSmall = input.ToLower();
if (inputInSmall == "yes" || inputInSmall == "no")
{
Console.WriteLine("0K.");
}
else
{
Console.WritelLine("Say it straight!");
}
// Waiting for Enter
Console.ReadlLine();
}

240



CHAPTER 17 COMPOUND CONDITIONS

Discussion

Note the following:

To disregard the difference in case, you convert the input to
lowercase letters.

The condition used is a compound condition. It consists of two
partial conditions connected using the conditional OR operator,
which is typed as || (two vertical lines).

The condition is fulfilled (and the if branch is executed) if at least
one of the partial conditions is fulfilled. This means the user entered
eitheryes or no. In this case, the alternatives are mutually exclusive.
However, you will encounter cases when both conditions can be
fulfilled simultaneously.

The condition is not fulfilled (and the else branch is executed) if
neither the first nor the second partial condition is fulfilled. In other
words, the user entered something besides yes or no.

Username and Password

Now you will look at partial conditions that should always be fulfilled simultaneously.

Task

You will write a program that checks whether the user entered the correct username

(Orwell) and at the same time the correct password (Catalonia). The username is case

insensitive, meaning it can be lowercase and uppercase (see Figures 17-3 and 17-4).

241



CHAPTER 17 COMPOUND CONDITIONS

User name: orwell
Password: 1984
ould not log you in.

Figure 17-3. Correct username but incorrect password

User name: orwell
Password: Catalonia
Thanks for your books!

Figure 17-4. Correct username and password

Solution

Here is the code:

static void Main(string[] args)
{
// Correct values
string correctUsername
string correctPassword

"Orwell";
"Catalonia";

// Inputs
Console.Write("User name: ");
string enteredUserName = Console.ReadlLine();

242



CHAPTER 17 COMPOUND CONDITIONS

Console.Write("Password: ");
string enteredPassword = Console.ReadlLine();

// Evaluating
if (enteredUserName.TolLower() == correctUsername.TolLower() &&
enteredPassword == correctPassword)

{
Console.WriteLine("Thanks for your books!");
}
else
{
Console.WriteLine("Could not log you in.");
}
// Waiting for Enter
Console.ReadlLine();
}
Discussion
Note the following:

e The condition used is a compound condition again. Its partial
conditions are connected using the conditional AND operator, which
is typed as && (two ampersands).

e The condition is fulfilled (and the if branch is executed) if both
partial conditions are fulfilled simultaneously. This means the user
has to enter both the correct username and the correct password.

o To not fulfill the condition (and thus execute the else branch), it is
enough to not fulfill either one of the partial conditions.

Two Users

You can even combine several AND and OR operators to get a really complex compound
condition. Take a look!

243



CHAPTER 17 COMPOUND CONDITIONS

Task

You will modify the previous task to allow two possible users to log in. Both will have

their own passwords.

Solution

Here is the code:

static void Main(string[] args)
{
// Correct values
string correctUsernamel
string correctPassword1

"Orwell";
"Catalonia";

"Blair";
"1984";

string correctUsername2
string correctPassword2

// Inputs
Console.Write("User name: ");
string enteredUsername = Console.Readline();

Console.Write("Password: ");
string enteredPassword = Console.ReadlLine();

// Evalulating

if (enteredUsername.TolLower() == correctUsernamel.TolLower() &&
enteredPassword == correctPasswordl ||
enteredUsername.TolLower() == correctUsername2.TolLower() &&
enteredPassword == correctPassword2)

{
Console.WriteLine("Thanks for your books!");

}

else

{
Console.WriteLine("Could not log you in.");

}

244



CHAPTER 17 COMPOUND CONDITIONS

// Waiting for Enter
Console.ReadlLine();

Discussion

Note the following:
e You can combine both conditional operators: AND with OR.

o Fulfillment of the complete condition requires the user to enter the
correct first username and the correct first password or the correct
second username and the correct second password.

e The condition intentionally uses a higher priority (precedence) for
the AND operator compared to the OR operator. Specifically, both
potential users are evaluated first, and the partial results are ORed

afterward.

o Ifyouneed a different evaluation order, just use parentheses (round
brackets) similarly to mathematics.

Precalculation of Conditions

The compound condition in the previous exercise is already quite complex. To
understand this, you must concentrate when reading it. In similar situations, it may be
better to precalculate (calculate in advance) partial conditions. This is what I am going to
show you now.

Task

The task is the same as the previous one, but the solution will be different.

245



CHAPTER 17 COMPOUND CONDITIONS

Solution

Here is the code:

static void Main(string[] args)

{
// Correct values
string correctUsernamel = "Orwell";
string correctPasswordi = "Catalonia";
string correctUsername2 = "Blair";
string correctPassword2 = "1984";
// Inputs
Console.Write("User name: ");
string enteredUsername = Console.ReadLine();
Console.Write("Password: ");
string enteredPassword = Console.ReadLine();
// Evaluating
bool useriok = enteredUsername.TolLower() == correctUsernamel.TolLower() 8&&
enteredPassword == correctPasswordi;
bool user2ok = enteredUsername.TolLower() == correctUsername2.ToLower() 88&
enteredPassword == correctPassword2;
if (useriok || user2ok)
{
Console.WriteLine("Thanks for your books!");
}
else
{
Console.WriteLine("Could not log you in.");
}
// Waiting for Enter
Console.ReadlLine();
}

246



CHAPTER 17 COMPOUND CONDITIONS

Discussion

Note the following:

¢ You check both users one after another. The main condition can then
be written in a clear and concise way.

« Partial conditions are precalculated into variables of type bool.
When a condition is fulfilled, the corresponding variable has its
value set to true.

Yes or No Reversed

You learned about reversing conditions already in Chapter 15. In that chapter, the
condition was simple. Now you will reverse a compound condition, which is a bit trickier

and requires greater care.

Task

You will return to the “Yes or No” project from the beginning of this chapter once again.
For the purpose of practicing compound conditions, think about how you would reverse
the original condition to swap the if and else branches.

Solution

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Do you love me? ");
string input = Console.Readline();

// Evaluating
string inputInSmall = input.TolLower();
if (inputInSmall != "yes" &% inputInSmall != "no")

247



CHAPTER 17 COMPOUND CONDITIONS

{
Console.WritelLine("Say it straight!");

}

else

{

Console.WritelLine("0K.");

}

// Waiting for Enter
Console.ReadlLine();

Discussion

Note the following:

o Instead of checking the correct input, you now check the incorrect

one.
o Theinputis incorrect when it neither equals yes or no.

» Reversing the condition caused the OR operator to change into
the AND operator. It also caused the equalities to change into

inequalities.

Grade Check

Now I would like to turn your attention to a frequent test of a number belonging to a
specified set, or a specified range. The following two tasks concern this.

Task

The user enters a grade of a student. The program will check then whether the entered
number is in the set of possible values 1, 2, 3, 4, or 5 (see Figures 17-5 and 17-6).

248



CHAPTER 17 COMPOUND CONDITIONS

- - O X
[Enter a grade: 2 2
Input OK.

Figure 17-5. Within the range

" — (] X

[Enter a grade: 7 2
Incorrect input.

Figure 17-6. Not within the range

Solution

The condition can be formulated enumerating the individual alternatives. For the sake
of simplicity, I do not check for possible nonnumeric input. You can handle this yourself
using try-catch as usual.

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Enter a grade: ");
string input = Console.ReadlLine();
int grade = Convert.ToInt32(input);

249



CHAPTER 17 COMPOUND CONDITIONS

// Evaluating

if (grade == 1 ||

grade == 2 ||

grade == 3 ||

grade == 4 ||

grade == 5)
{

Console.WriteLine("Input OK.");
}
else
{

Console.WriteLine("Incorrect input.");
}

// Waiting for Enter
Console.ReadLine();

Better Range Check

The allowed numbers (possible grades) actually constitute a range of one to five (a
continuous range without gaps). In such a case, you can use a better way to check
whether a number belongs to a specific range or not.

Task

The task is to solve the previous exercise using a range check.

Solution

A number belongs to a range given by its lower and upper bounds when it is greater than
or equal to the lower bound and at the same time it is less than or equal to the upper
bound.

250



CHAPTER 17 COMPOUND CONDITIONS

Here is the code:

static void Main(string[] args)

{
// Input
Console.Write("Enter a grade: ");
string input = Console.ReadlLine();
int grade = Convert.ToInt32(input);

// Evaluating
if (grade »>= 1 &3 grade <= 5)
{
Console.WriteLine("Input OK.");

}

else

{

Console.WriteLine("Incorrect input.");

}

// Waiting for Enter
Console.ReadlLine();

Summary

This chapter introduced you to the topic of compound conditions. You learned that
the if statement condition can be compounded by several partial conditions joined
together using conditional AND and conditional OR operators.

In C#, the AND operator is written as &8, and it evaluates to true when both partial
conditions are fulfilled. On the other hand, the OR operator is written as | |, and it
evaluates to true when at least one of the partial conditions is fulfilled.

You also saw a larger number of partial conditions combined into a single one. In
this case, the question of operator precedence is important. With no parentheses, the
AND is always evaluated before the OR. Note, however, that such conditions can become
rather complex and difficult to read. It is advisable to calculate parts of the whole
condition separately in advance and store them temporarily in bool-typed variables.

251



CHAPTER 17 COMPOUND CONDITIONS

I also tried to bring your attention to the problem of reversing compound conditions,
which requires extra care and concentration to do it right. Specifically, you learned that
when reversing, the ANDs are toggled into ORs (and vice versa), and equalities change
into inequalities (and vice versa).

Finally, I showed you how to check whether a number belongs either to a specified
set or to a specified range. In the latter case, you performed simultaneous tests against

lower and upper bounds of the range.

252



CHAPTER 18

Multiple Conditions

Staying with the topic of conditions, you will now proceed to more complex examples.
In this chapter, you will meet tasks that can be solved using several conditions in a single
program.

Soccer

First, you will consider in detail a typical situation of three branches of alternative
execution paths.

Task

You will prepare a program in which the user enters data about a soccer match: the
numbers of goals scored by both sides. The program then evaluates the match result. It
displays whether the first club won, the second club won, or it was a tie (see Figures 18-1,
18-2, and 18-3).

i — ad X

Goals scored by Liverpool: 3 A
Goals scored by Manchester: 1
[Liverpool won.

Figure 18-1. The first club won

253
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_18


https://doi.org/10.1007/978-1-4842-7147-6_18#DOI

CHAPTER 18  MULTIPLE CONDITIONS

i - (] X

Goals scored by Liverpool: 2
iGoals scored by Manchester: 2
Tie.

Figure 18-2. It'’s a tie

P — O X

Goals scored by Liverpool: ©
Goals scored by Manchester: 1
Manchester won.

Figure 18-3. The second club won

Analysis

You can solve the task using three conditions in a row, each of them considering a
specific match result (see Figure 18-4).

254



CHAPTER 18  MULTIPLE CONDITIONS

[goals Liverpool > goals Manchester]

A 4

[ Liverpool won ]

[otherwise]

[goals Liverpool = goals Manchester]

[otherwise]

[goals Liverpool < goals Manchester]

A 4

[ Manchester won ]

[otherwise]

®

Figure 18-4. The program flow

255



CHAPTER 18  MULTIPLE CONDITIONS

Solution

Here is the code:

static void Main(string[] args)

{

256

// Inputs

Console.Write("Goals scored by Liverpool: ");

string inputLiverpool = Console.ReadLine();

int goalsLiverpool = Convert.ToInt32(inputlLiverpool);

Console.Write("Goals scored by Manchester: ");
string inputManchester = Console.Readline();
int goalsManchester = Convert.ToInt32(inputManchester);

// Evaluating
if (goalsLiverpool > goalsManchester)

{
Console.WriteLine("Liverpool won.");
}
if (goalsLiverpool == goalsManchester)
{
Console.WriteLine("Tie.");
}
if (goalsLiverpool < goalsManchester)
{
Console.WriteLine("Manchester won.");
}

// Waiting for Enter
Console.ReadlLine();



CHAPTER 18  MULTIPLE CONDITIONS

Soccer Alternatively

To show you another point of view, you will solve the previous exercise in an alternative
way. Previously, you used three conditions in a row. This time, you will nest the second

condition into the first one.

Analysis
As shown in Figure 18-5, the program will branch into the following alternatives first:
e Liverpool won.
e Liverpool did not win.
The alternative, “Liverpool did not win,” will be further branched into the following:
o Tie.

¢ Manchester won.

[goals Liverpool > goals Manchester] [otherwise]

' [goals Liverpool = goals Manchester] A [otherwise]

[ Liverpool won ]

v

Manchester won ]

.../\-
<

N ¢

Figure 18-5. The program flow

257



CHAPTER 18  MULTIPLE CONDITIONS

Solution

Here is the code:

static void Main(string[] args)

{

258

// Inputs

Console.Write("Goals scored by Liverpool: ");

string inputLiverpool = Console.ReadLine();

int goalsLiverpool = Convert.ToInt32(inputlLiverpool);

Console.Write("Goals scored by Manchester: ");
string inputManchester = Console.Readline();
int goalsManchester = Convert.ToInt32(inputManchester);

// Evaluating
if (goalsLiverpool > goalsManchester)

{
// Here we know Liverpool won. We can display the result.
Console.WritelLine("Liverpool won.");
}
else
{
// Here we know Liverpool did not win. We will decide
//  between tie and victorious Manchester
if (goalsLiverpool == goalsManchester)
{
Console.WriteLine("Tie.");
}
else
{
Console.WriteLine("Manchester won.");
}
}
// Waiting for Enter
Console.ReadlLine();



CHAPTER 18  MULTIPLE CONDITIONS

Minimum of Three Numbers

The next example uses conditional execution to compare three numbers.

Task

You will write a program that finds the smallest of three numbers entered by the user
(see Figure 18-6).

- — a X

Enter 1. number: 34 2
Enter 2. number: 12

Enter 3. number: 73

The least of entered numbers is 12

Figure 18-6. Finding the smallest number

Analysis

The task can be solved by subsequent processing of all the entered numbers. You will use
a helper variable to store the minimal value found so far.

At the beginning, the first entered number becomes the minimum. In the second
step, you compare the second number to the minimum. If the former is less than the
latter, the former becomes the minimum. Finally, the same procedure is performed with
the third number.

259



CHAPTER 18  MULTIPLE CONDITIONS

Solution

Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter 1. number: ");
string inputl = Console.ReadlLine();
int number1l = Convert.ToInt32(input1);
Console.Write("Enter 2. number: ");
string input2 = Console.Readline();
int number2 = Convert.ToInt32(input2);
Console.Write("Enter 3. number: ");
string input3 = Console.ReadlLine();
int number3 = Convert.ToInt32(input3);
// At the beginning, we set 1st number as minimum
int minimum = numberi;
// Is not 2nd number less than present minimum?
if (number2 < minimum)
{
minimum = number2;
}
// Is not 3rd number less than present minimum?
if (number3 < minimum)
{
minimum = numbexr3;
}
// Output
Console.WriteLine("The least of entered numbers is " + minimum);
// Waiting for Enter
Console.ReadLine();
}

260



CHAPTER 18  MULTIPLE CONDITIONS

Minimum with Built-in Function

You can solve the previous exercise using the Math.Min function, which is readily

available in C#. The function itself determines the least of two numbers. I will show you

how to use it for the case of three numbers.

Solution

First, you determine the smallest of the first and second numbers. The result will then

“compete” with the third one.
Here is the code:

static void Main(string[] args)

{
// Inputs
Console.Write("Enter 1. number: ");
string input1l = Console.Readline();
int number1l = Convert.ToInt32(input1);
Console.Write("Enter 2. number: ");
string input2 = Console.ReadlLine();
int number2 = Convert.ToInt32(input2);
Console.Write("Enter 3. number: ");
string input3 = Console.ReadlLine();
int number3 = Convert.ToInt32(input3);
// Evaluating
int min12 = Math.Min(number1, number2);
int minimum = Math.Min(min12, number3);
// Output
Console.WriteLine("The least of entered numbers is
// Waiting for Enter
Console.ReadlLine();

}

+ minimum);

261



CHAPTER 18  MULTIPLE CONDITIONS

Linear Equation

This exercise will get a bit into mathematics.

Task

You will write a program to solve a linear equation, in other words, an equation of the
type ax+ b =0.

For example, 2x + 6 = O is a linear equation, with the 2 being a and the 6 being b.

The solution is clearly -3. When you substitute -3 for x, the left side becomes zero, in
other words, equal to the right side.

The user enters the equation to be solved in the form of the coefficients a and b. The
program then calculates and displays its solution (see Figure 18-7).

" - (] X

Enter a: 2 8
Enter b: 6
Solution is x=-3

Figure 18-7. Calculating and displaying its solution

Analysis

Whenever you want to program anything, you need to understand the real-world
problem first. In other words, you need to know how to solve it without a computer.

262



CHAPTER 18  MULTIPLE CONDITIONS

What follows is a mathematical reminder of how to solve a linear equation:
o Ifaisnotzero, the obvious solution is -b/a

e The case of a equal to zero is a kind of mathematical curiosity.
The equation degenerates to a strange “equation without x” or the
pseudo-equation b = 0. Such an “equation”

¢ Has infinitely many solutions for b equal to zero (it always holds
regardless of x)

¢ Does not have a solution for a nonzero b (no x can fulfill the
equation)

Solution

Here is the code:

static void Main(string[] args)
{
// Inputs
Console.Write("Enter a: ");
string inputA = Console.ReadlLine();
double a = Convert.ToDouble(inputA);

Console.Write("Enter b: ");
string inputB = Console.Readline();
double b = Convert.ToDouble(inputB);

// Solving the equation

if (a !=0)

{
// a is non-zero, the equation has "normal" solution
double solution = -b / a;
Console.WriteLine("Solution is x=" + solution);

}

else

{

// a is zero, result depends on b

263



CHAPTER 18  MULTIPLE CONDITIONS

if (b == 0)
{

Console.WritelLine("The equation \"is solved\" by any x");

}

else

{

Console.WriteLine("The equation does not have a solution");

}

// Waiting for Enter
Console.ReadlLine();

Quadratic Equation

Staying with mathematics, the next exercise concerns a more difficult quadratic
equation.

Task

You will write a program to solve a quadratic equation, in other words, an equation
like ax2 + bx + ¢ = 0. An example of a quadratic equation is x2 - x - 2 = 0 with a being
1, bbeing -1, and ¢ being -2. The equation mentioned has two solutions: -1 and 2.
Substituting any of the two zeros the left side.

The equation to be solved will be entered in the form of the coefficients a, b, and c.
The program calculates and displays its solution (see Figure 18-8).

264



CHAPTER 18  MULTIPLE CONDITIONS

" - O X

Enter a: 1 2
Enter b: -1

Enter c: -2

The equation has two solutions:

-1

2

Figure 18-8. Solving a quadratic equation

For the sake of simplicity, you will not consider the case of a equal to zero, which
would transfer the task to the previous one, a linear equation.

Analysis

Once upon a time, someone clever worked out a procedure to solve quadratic equations.
You probably know it from school. You calculate the so-called discriminant first:

D =b*-4ac

The solution then branches according to the discriminant value.
e For D > 0, the equation has two solutions given by the following:

_-b+JD

2a

1,2
e For D = 0, the same formula applies with the two solutions

coinciding.

e For D < 0, the equation does not have a solution in real numbers.

265



CHAPTER 18  MULTIPLE CONDITIONS

Solution

Here is the code:

static void Main(string[] args)

{

266

// Inputs

Console.Write("Enter a: ");

string input = Console.ReadlLine();
double a = Convert.ToDouble(input);

Console.Write("Enter b: ");
string inputB = Console.Readline();
double b = Convert.ToDouble(inputB);

Console.Write("Enter c: ");
string inputC = Console.ReadlLine();
double c = Convert.ToDouble(inputC);

// Solving + output
double d =b *b -4 *a *c;

if (d > 0)

{
double x1 = (-b - Math.Sqrt(d)) / (2 * a);
double x2 = (-b + Math.Sqrt(d)) / (2 * a);

Console.WriteLine("The equation has two solutions:");
Console.WritelLine(x1);
Console.WritelLine(x2);

+ X);

}
if (d == 0)
{
double x = -b / (2 * a);
Console.WriteLine("The equation has a single solution: "
}
if (d < 0)
{
Console.WriteLine("The equation does not have a solution");
}



CHAPTER 18  MULTIPLE CONDITIONS

// Waiting for Enter
Console.ReadlLine();

Discussion

The most interesting point of this exercise is the way you enter the formula in code. Note
that the numerator and the denominator have to be enclosed in parentheses to ascertain
the correct order of calculations! The mathematical formula does not contain them
because mathematicians use fractions.

When calculating the discriminant, I do not use parentheses; I just rely on the

precedence of multiplication to subtraction.

Test

To check that the program calculates correctly, you can write further code as a test; the
left side should become zero after substituting the solution for x.

Summary

In this chapter, you saw several examples of using more than one condition to do the task
assigned.

First, you solved a soccer match evaluation in two alternative ways. The first
one considered the individual possibilities one after another using three simple if
statements. The second one used a branch nested inside another branch.

You further exercised multiple conditions in a row one after another to find the
smallest of three numbers. To do this, you stored a “minimum-so-far” value in a helper
variable.

The same task was then solved using the built-in function Math.Min. You already
know that the function determines the minimum of two values. Here, I showed you an
interesting case of how you can use it for three numbers.

In the final two tasks, you practiced multiple conditions in examples from
mathematics, namely, solving linear and quadratic equations. The last task gave you the
opportunity to see a bit more complex calculation written in code.

267



CHAPTER 19

Advanced Conditions

The third part of this book concludes with several tasks concerning conditional
execution that may be considered advanced. First, you will study the conditional
operator, then you will write a program containing several complex conditions, and
finally you will learn about an important maxim: when you want to test something, you

must be sure it exists.

Conditional Operator

In many cases, the if-else construction can be replaced with the conditional operator,
which results in one of the two values depending on whether a condition is or is not fulfilled.
If you know the IF function of Excel, you will find the conditional operator familiar.

Task

You will solve the former “Head and Tail” task (from Chapter 16) using the conditional
operator (see Figure 19-1).

¥ - O X
Tail tossed A

Figure 19-1. Using the conditional operator

269
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_19


https://doi.org/10.1007/978-1-4842-7147-6_19#DOI

CHAPTER 19  ADVANCED CONDITIONS

Solution

Here’s the code:

static void Main(string[] args)

{

// Random number generator
Random randomNumbers = new Random();

// Random number 0/1 and its transformation

int randomNumber = randomNumbers.Next(0, 1 + 1);

string message = randomNumber == 0 ? "Head tossed" : "Tail tossed";
Console.WritelLine(message);

// Waiting for Enter
Console.ReadlLine();

Discussion

The conditional operator (? :) syntax looks like this:
condition ? yesValue : noValue
The result of such an expression is as follows:
o yesValue if the condition holds (is fulfilled)

o noValue otherwise

The Program

In this case, the condition is an equality test of the randomNumber variable against zero.
If it is true, the message variable is assigned the “Head tossed” text. Otherwise, it is
assigned the “Tail tossed” text.

Terminology

The conditional operator is also called a ternary operator since it is the only operator that
accepts three operands (values it works with): a condition, a yesValue, and a noValue.

270



CHAPTER 19  ADVANCED CONDITIONS

Summary Evaluation

Now you will exercise more complex conditions in a realistic situation.

Task

The task is to write a program for summary evaluation of a student (see Figure 19-2).
The user enters grades from four subjects (in the range one to five, with one being
the best). The user also specifies whether the student being considered had some
unexcused absence or not. The program then gives a summary evaluation, which is a
kind of overall score:

o Excellent
¢ Good

e Failed

W - 0O X

Egter grades from individual subjects: A
thematics: 1

Information technology: 1

Science: 2

[English: 2

Any unexcused absences? (yes/no): no

Summary evaluation: Excellent

Figure 19-2. Summary evaluation of a student

Details

I emphasized in Chapter 18 that to be able to program anything, you need to exactly
understand the task being solved. In the current exercise, you need to specify the exact
criteria for summary evaluation.

271



CHAPTER 19  ADVANCED CONDITIONS

A student has an Excellent evaluation when
e The arithmetic average of all the grades is not higher than 1.5.
e The student does not have any grade worse than 2.
e The student does not have any unexcused absence.

The student is considered Failed when at least one of their grades is 5.
In all other cases, the summary evaluation is Good.
You can probably guess now that the program is not going to be trivial.

Solution

Here’s the code:

static void Main(string[] args)

{

272

// 1. PREPARATIONS

string errorMessage = "Incorrect input";

int mathematics, informationTechnology, science, english;
bool hasUnexcusedAbsences;

// 2. INPUTS
try
{

Console.WriteLine("Enter grades from individual subjects:");

Console.Write("Mathematics: ");
string input = Console.ReadlLine();
mathematics = Convert.ToInt32(input);
if (mathematics < 1 || mathematics > 5)
{
Console.WritelLine(errorMessage);
return;



CHAPTER 19  ADVANCED CONDITIONS

Console.Write("Information technology: ");
input = Console.ReadlLine();
informationTechnology = Convert.ToInt32(input);
if (informationTechnology < 1 || informationTechnology > 5)
{
Console.WritelLine(errorMessage);
return;

}

Console.Write("Science: ");

input = Console.ReadlLine();

science = Convert.ToInt32(input);

if (science < 1 || science > 5)

{
Console.WritelLine(errorMessage);
return;

}

Console.Write("English: ");

input = Console.Readline();

english = Convert.ToInt32(input);

if (english < 1 || english > 5)

{
Console.WritelLine(errorMessage);
return;

}

Console.Write("Any unexcused absences? (yes/no): ");

input = Console.Readline();

input = input.TolLower(); // not distinguishing upper/lower
if (input != "yes" && input != "no"

{
Console.WritelLine(errorMessage);
return;

}

hasUnexcusedAbsences = input == "yes";

273



CHAPTER 19  ADVANCED CONDITIONS

catch (Exception)

{
Console.WritelLine(errorMessage);
return;

}

// 3. EVALUATION
// You need arithmetic average of all the grades
double average = (mathematics + informationTechnology + science +
english) / 4.0;
string message;
// Testing all conditions for excellence
if (average < 1.5001 8&
mathematics <= 2 && informationTechnology <= 2 &&
science <= 2 && english <= 2 &&
'hasUnexcusedAbsences)

{
message = "Excellent";
}
else
{
// Here you know the result is not excellent, so testing the other
two possibilities
if (mathematics == 5 || informationTechnology == 5 ||
science == 5 || english == 5)
{
message = "Failed";
}
else
{
message = "Good";
}
}

274



CHAPTER 19  ADVANCED CONDITIONS

// 4. OUTPUT
Console.WritelLine("Summary evaluation: " + message);

// Waiting for Enter
Console.ReadLine();

Discussion

The following sections explain the program.

Grade Inputs

In this exercise, you thoroughly care about doing an input data check. A try-catch
wraps the whole input section. You also need to check whether the grades belong in the
one to five range.

Note that a grade less than one or greater than five signals an error. You use the | |
operator (“at least one”).

Program Termination

An erroneous input terminates the program immediately. You use the return statement
here that terminates a subprogram in general. However, when used inside Main, it
directly terminates the whole program.

Yes/No Input

To enter whether the student had some unexcused absence, the user enters either yes or
no. The input difference from both yes and no signals an error. I use the && operator (“at
the same time”).

Before the check, you convert the input into lowercase so that it does not mind when
the user uses capital letters.

What is interesting is the line containing both single and double equal signs (single
for assignment, double for comparison):

hasUnexcusedAbsences = input == "yes";

275



CHAPTER 19  ADVANCED CONDITIONS

The “work” of the == operator results in either a true or false value according to
whether the equality holds. The resulting value is then assigned into the bool-typed
hasUnexcusedAbsences variable.

Beware of Integer Division!

When calculating the grade average, you divide the sum by the value of 4.0, not by the
value of 4. You do not want the computer to consider the slash as an integer division
operator. That is why you are avoiding the division of int by int.

If you entered just 4, then the case of 1, 2, 2, 2 grades would be mistakenly
evaluated as Excellent since the average would be calculated to a precise 1 instead of
the correct 1.75!

Decimal Arithmetic
Why did you enter the check of the average as follows?
average < 1.5001
Why didn’t you use the following?
average <= 1.5

It was because decimal arithmetic does not have to be precise. Sometimes, it is
possible that the computer calculates something like 1.500000000001 instead of the
correct 1.5. That is why you use a little bit greater number in the test.

Second Character Test

Many programs crash because a programmer forgets to test that something exists before
accessing it. This task will be your first acquaintance with this frequent issue.

Task

I will show you how to test the second character of the entered text. Let’s say a product
label has to always have a capital X in the second position (see Figures 19-3 and 19-4).

276



CHAPTER 19  ADVANCED CONDITIONS

- — (] X

[Enter product label: 3X76 2
Label is OK

Figure 19-3. Testing the second character, correct

- — O X

[Enter product label: ABX16 2
Incorrect label

Figure 19-4. Testing the second character, incorrect

Why is such a test so important that I have decided to get you acquainted with it? You
need to test first whether the second character exists at all. This is what you will often
meet; you will not be able to test something until you have found that something exists!

In this case, the program must not crash upon empty or too short input (see
Figure 19-5).

277



CHAPTER 19  ADVANCED CONDITIONS

[Enter product label: M
Incorrect label

Figure 19-5. Incorrect label, not crashing

Solution

Here’s the code:

static void Main(string[] args)

{
// Input

Console.Write("Enter product label: ");
string label = Console.ReadlLine();

// Evaluating
if (label.Length >= 2 && label.Substring(1, 1)

{
Console.WriteLine("Label is OK");

}

else

{

Console.WriteLine("Incorrect label");

}

// Waiting for Enter
Console.ReadlLine();

Discussion

The following sections explain the program.

278

")




CHAPTER 19  ADVANCED CONDITIONS

Getting the Character

You access the second character using the Substring method that generally pulls a
specific part (substring) out of the given text. The method requires two parameters:

o The position of the first character of the required substring: The
position numbering starts with zero, so the second character position

is one.

o The number of characters of the required substring: In this case,
what you need is just a single character, which is why the second

parameter is one, too.

Existence Test

The test of whether a given character equals something has a hidden catch: the second
character does not have to exist at all. This happens when the user enters zero or one
character.

In such a case, the Substring(1,1) call would cause a runtime error.

This means you have to test first whether the text is at least two characters long. Only
if this test passes can you access the second character.

There is a compound condition in the code, as shown here:

if (label.Length >= 2 8& label.Substring(1, 1) == "X")

Its functioning relies upon the short-circuit evaluation of the && operator. If the first
partial condition of an AND join does not hold, the second one is not evaluated at all,
since it is useless. Even if it held, it would not change the overall result because the AND
operator requires both parts to hold simultaneously.

In this case, when the length of a label is less than two, then the Substring call,
which would fail, is skipped, and the program does not crash!

Note that an analogous statement can be made about the | | operator, too.

An Experiment

Try to omit the first partial condition (the length check). Then enter a single character as
a user. The program would terminate with a runtime error. This way you will see that the
first condition really is important.

279



CHAPTER 19  ADVANCED CONDITIONS

Summary

In this chapter, you studied several examples of advanced conditions.

You started with the so-called conditional operator (?:), which is also called a
ternary operator because it works with three values. Depending on the fulfillment of
the specified condition (the first value, before the question mark), the operator’s “work”
results in either yesValue (the second value, between the question mark and the colon)
or noValue (the third value, after the colon). The conditional operator is a suitable
shortcut replacement for certain types of if-else situations.

The middle task of summary evaluation was a kind of recap of all the things you
learned about conditional execution. There you have met various tests and many
compound conditions, as well as negation with the ! operator.

The final task of testing the second character of some text has shown you the
importance of testing that the second character exists at all before you explore what it
is. There you used the short-circuit evaluation of conditions. If the result of a compound
condition can be decided already after the first partial condition is evaluated, then the
second partial condition is skipped altogether.

280



PART IV

Loops



CHAPTER 20

First Loops

You are entering the most difficult chapters of this book. Loops are a mighty tool that all
programmers need as much as the air they breathe. Understanding loops is not easy,
which is why you will go through many exercises with loops.

Repeating the Same Text

Aloop is a tool to efficiently write repetitions of the same or more often a similar activity.
So that you can properly appreciate loops, you will solve some of the tasks twice, first
without a loop and then with it. You will start with some repetition of the same activity,
and after that you will move on to using loops to repeat similar activities.

Task

You will write a program that displays “I will start learning tomorrow.” ten times in a row
(see Figure 20-1).

283
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_20


https://doi.org/10.1007/978-1-4842-7147-6_20#DOI

CHAPTER 20  FIRST LOOPS

will
will
will
will
will
will
will
will
will
will

start
start
start
start
start
start
start
start
start
start

learning
learning
learning
learning
learning
learning
learning
learning
learning
learning

L B B B T B R B O

tomorrow.
tomorrow.
tomorrow.
tomorrow.
tomorrow.
tomorrow.
tomorrow.
tomorrow.
tomorrow.
tomorrow.

Figure 20-1. Ten repetitions

Solution

Here is the code:

static void Main(string[] args)
{

// Output

Console.WritelLine("I will
will
will
will
will

start
start
start

Console.WritelLine("I
Console.WritelLine("I
Console.WritelLine("I
Console.WritelLine("I

start
start

will
will
will
will
will

Console.WritelLine("I start

Console.WritelLine("I start
Console.WritelLine("I

Console.WritelLine("I

start
start

Console.WritelLine("I start

284

learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.

learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.

");
");
");
");
");

");
");
");
");
");




CHAPTER 20  FIRST LOOPS

// Waiting for Enter
Console.ReadlLine();

Solution Using a Loop

Think a bit about the previous exercise. Can you imagine that someone might want you

to change the displayed sentence? Can you imagine repeating it a hundred times rather

than ten times? Can you imagine the number of repetitions being entered by the user?
To solve these problems, you need a new tool: a loop.

Solution

Here is the code:

static void Main(string[] args)

{
// Output

for (int count = 0; count < 10; count++)

{

Console.WriteLine("I will start learning tomorrow.");

}

// Waiting for Enter
Console.ReadlLine();

How the for Loop Works

You use the for construction to indicate repetition. Its general syntax looks like this:

for (initializer; loopCondition; iterator)

{
statement;
statement;
statement;
}

285



CHAPTER 20  FIRST LOOPS

The for loop works like this:
e initializer is performed once before entering the loop.

o loopCondition is being evaluated before every turn of the loop. If
it holds, the computer enters the loop and executes the statements
inside its body.

e The iterator statement is executed after every turn of the loop is
completed. After that, loopCondition is evaluated again.

Figure 20-2 shows the program flow.

.

previous ]

statements

.

[ initializer ]

: /K [otherwise]

-

[loopCondition
holds]

[ statement ]

v

| [ statement ] '

v

.

v

[ iterator ]

|

A

v
further
statements

v

Figure 20-2. The program flow

286



CHAPTER 20  FIRST LOOPS

The Loop

In this case, the required number of repetitions is achieved by counting the loop turns
performed so far. For that purpose, you use the count variable.

At the beginning (initializer), the variable is set to zero.

After completing every loop turn (iterator), the variable is incremented by one.

The loop body (the display of a line of text) is repeated as long as
(loopCondition) the number of lines in the output has not reached ten. As soon as
the count variable becomes ten, the condition (count < 10 or 10 < 10) will no longer
be fulfilled, the loop will terminate, and the computer will continue executing the
statements following the loop.

Explore It Yourself

You should take the time to explore the inner workings of loops to grasp them
thoroughly. Use debugging tools you already know: stepping and inspecting the count
variable.

Tip
Visual Studio can help you write a for loop without mistakes. Just enter for, press the
Tab key twice, and edit the generated loop header.

Choosing the Number of Repetitions

The for loop allows you to solve cases when you do not know the number of repetitions
in advance (at the time of code writing).

Task

You will modify the previous exercise to let the user specify the number of the sentence
repetitions (see Figure 20-3).

287



CHAPTER 20

FIRST LOOPS

I

L B B B B B

will
will
will
will
will
will
will

[Enter number

start
start
start
start
start
start
start

of repetitions: 7
learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.
learning tomorrow.

Figure 20-3. Letting the user specify the number of sentence repetitions

Solution

Here's the code:

static void Main(string[] args)

{

// Input
Console.Write("Enter number of repetitions: ");
string input = Console.Readline();

int howManyTimes

// Output

Convert.ToInt32(input);

for (int count = 0; count < howManyTimes; count++)

{

288

Console.WritelLine("I will start learning tomorrow.");




CHAPTER 20

// Waiting for Enter
Console.ReadlLine();

Discussion

Note the following:

o Compared to the previous task, you replaced the fixed number of
repetitions with a variable value entered by the user.

e Carefully choose the name of the variable to store the required total
number of repetitions; here it’s howManyTimes. Specifically, you
should distinguish it from the count variable storing the current
number of repetitions.

Throwing a Die Repeatedly

You will see one more example of repeating the same activity.

Task

You will write a program that throws a die 20 times (see Figure 20-4).

FIRST LOOPS

- - a
1662153265661 221646 2

Figure 20-4. Throwing a die 20 times

289



CHAPTER 20  FIRST LOOPS

Solution

Here’s the code:

static void Main(string[] args)

{
// Random number generator
Random randomNumbers = new Random();
// Output
for (int count = 0; count < 20; count++)
{
int thrown = randomNumbers.Next(1, 6 + 1);
Console.Write(thrown.ToString() + " ");
}
// Waiting for Enter
Console.ReadlLine();
}

Repeating Similar Lines

What if the repeated activity was not the same but just similar?

Task

You will output ten similar lines, differing only in the printed line number (see Figure 20-5).

290



CHAPTER 20  FIRST LOOPS

1. To
2. To
3. To
4. To
5. To
6. To
7a 10
8. To
9. To

learn
learn
learn
learn
learn
learn
learn
learn
learn

10. To learn

My main to-do list: A

- O X

Figure 20-5. Outputting something similar ten times

Solution Without a Loop

Again, you can start with a solution without a loop to appreciate the importance of loops.

Here's the code:

static void Main(string[] args)

{

// Output
Console.WriteLine("My main to-do list:");

Console
Console
Console
Console
Console
Console

Writeline("1.
MWriteline("2.
MWritelLine("3.
WritelLine("4.
MWriteLine("s.
WriteLine("6.

To
To
To
To
To
To

learn");
learn");
learn");
learn");
learn");
learn");

291



CHAPTER 20  FIRST LOOPS

Console.WriteLine("7. To learn");
Console.WritelLine("8. To learn");
Console.WritelLine("9. To learn");
Console.WritelLine("10. To learn");

// Waiting for Enter
Console.ReadlLine();

Solution Using a Loop

Loops can efficiently solve this type of problem. Actually, you will find yourself
incorporating loops to repeat similar activities more often than to repeat precisely the

same ones.

static void Main(string[] args)

{
// Output

Console.WriteLine("My main to-do list:");

for (int taskNumber = 1; taskNumber <= 10; taskNumber++)

{

Console.WritelLine(taskNumber.ToString() + ". To learn");

}

// Waiting for Enter
Console.ReadlLine();

Discussion

The following sections discuss the program.

Control Variable

The core of the solution is to use the value of the loop’s control variable inside its body.
In this program, you name the variable taskNumber, and you use its value for output.

292



CHAPTER 20  FIRST LOOPS

This is how you achieve displaying one in the first passage of the loop, two in the
second passage, and so on.
Check the situation yourself using your debugging tools.

The Loop Starts at 1

The previous exercise (repeatedly throwing a die) used the loop with its control variable
running from 0 to 19. Contrary to that, this time it was more convenient to start at 1
rather than at 0. This change also caused the loop condition to change. You used a “less
than or equal” test rather than a “less than” one.

Summary

The chapter introduced you to the topic of loops, which are a mighty programming tool
allowing you to specify repetitions of the same or, more often, a similar activity.

For loops, C# offers several programming constructs; you learned about the most
fundamental for loop in this chapter. In the code, the for loop consists of a header
controlling the loop and a body consisting of the statements to be repeated surrounded
with braces. The header itself consists of three parts separated by semicolons:

o The initializer is the statement to be executed once before the loop
starts “revolving.”

e The loop condition is the condition evaluated before each turn of
the loop. If it is fulfilled (i.e., evaluated to true), another round of
statements of the loop’s body is executed. If it is not fulfilled (i.e.,
evaluated to false), the loop is terminated, and the program’s
execution continues to the statements after the loop.

o The iterator is the statement to be executed after each turn of the
loop.

To get a deeper understanding of how for loops work, definitely use debugging tools
like stepping and memory inspection.

The for loop is most often controlled by a variable working more or less like a
counter of loop turns. This variable is called the control variable. In the last task, you
learned how to use the value of the control variable also inside the loop’s body.

293



CHAPTER 21

Improving Loops

As you've learned, loops are mighty, and they are not trivial. That is why all the
remaining chapters of the book are dedicated to understanding loops better. Let’s
proceed to some more difficult exercises.

Choosing Text

First, you will return to the exercise with text repetition from the previous chapter and
improve on it.

Task

In the section “Choosing the Number of Repetitions,” the user was allowed to vary
the number of repetitions of a given sentence. Now you will allow the user to vary the
sentence itself (see Figure 21-1).

. - O X

Enter text to repeat: I will not distract my classmates any more. *
Enter number of repetitions: 8

I will not distract my classmates any more.

will not distract my classmates any more.

will not distract my classmates any more.

will not distract my classmates any more.

will not distract my classmates any more.

will not distract my classmates any more.

will not distract my classmates any more.

will not distract my classmates any more.

o

Figure 21-1. Varying a sentence

© Radek Vystavél 2021
R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_21

295


https://doi.org/10.1007/978-1-4842-7147-6_21#DOI

CHAPTER 21  IMPROVING LOOPS

Solution

Here’s the code:

static void Main(string[] args)

{
// Inputs

Console.Write("Enter text to repeat: ");
string textToRepeat = Console.ReadlLine();

Console.Write("Enter number of repetitions: ");
string input = Console.ReadLine();
int howManyTimes = Convert.ToInt32(input);

// Output
for (int count = 0; count < howManyTimes; count++)

{

Console.WritelLine(textToRepeat);

}

// Waiting for Enter
Console.ReadlLine();

Alternating Loop

Quite frequently, you need to repeat a couple of activities. You do the first thing, then the
second one, and the first one again, and so on. It is interesting to look at such a task in
code. I will show you three ways of how to solve this.

Task

You will write a program that alternates between two tasks in a to-do list
(see Figure 21-2).

296



CHAPTER 21  IMPROVING LOOPS

1.
2.
3.
4.
5.
6.
7.
8.
9.

Learning
Dating
Learning
Dating
Learning
Dating
Learning
Dating
Learning

10. Dating

My main to-do list: A

- O X

Figure 21-2. Alternating between two tasks

First Solution

The first solution is based on distinguishing whether the loop’s control variable, which is

running from one to ten, is odd or even. When it is odd, you display “Learning.” When it

is even, you display “Dating.’

An odd/even test will be performed by checking the remainder after integer division

by two. Just to remind you, the remainder is calculated using the percent sign (%)

operator in C#.

static void Main(string[] args)

{

// Output
Console.WriteLine("My

for (int taskNumber

{

string taskText

main to-do list:");

1; taskNumber <= 10; taskNumber++)

taskNumber % 2 != 0 ? "Learning" : "Dating";

297



CHAPTER 21  IMPROVING LOOPS

Console.WritelLine(taskNumber.ToString() + ". " + taskText);
}
// Waiting for Enter
Console.ReadlLine();
}
Note

You incorporate the odd/even test into a conditional (ternary) operator (?:). You could
have also used an ordinary if-else.

Second Solution

The second solution toggles a Boolean value back and forth.

You have a bool-typed variable that you toggle from true to false, and vice versa, in
every turn of a loop. When the variable equals to true, you display the first text. When it
is false, you display the second one.

static void Main(string[] args)

{

// Preparations
Console.WriteLine("My main to-do list:");
bool learning = true;

for (int taskNumber = 1; taskNumber <= 10; taskNumber++)

{
// Output

string taskText = learning ? "Learning" : "Dating";
Console.WritelLine(taskNumber.ToString() + ". " + taskText);

// Toggling of the flag
learning = !learning;

}

// Waiting for Enter
Console.ReadlLine();

298



CHAPTER 21  IMPROVING LOOPS

Notes

Note the following:

o The condition does not have to be entered as learning == true. The
learning variable is already bool-typed, which means you can use it
directly as a condition. When it is true, the condition holds.

e You need to set the initial value of the variable before entering the
loop. The initial value is used during the first turn of the loop. In this
case, you set it to true.

o Toggling from true to false, and vice versa, is performed using the
negation operator (!).

Third Solution

The third approach to the solution is to repeat the loop five times rather than ten times
and to perform both “odd activity” and “even activity” in a single turn of the loop.
Here’s the code:

static void Main(string[] args)

{
// Preparations
Console.WriteLine("My main to-do list:");
int taskNumber = 1;
for (int coupleCount = 0; coupleCount < 5; coupleCount++)
{
// Couple output and adjusting task number
Console.WritelLine(taskNumber.ToString() + ". Learning");
taskNumber++;
Console.WritelLine(taskNumber.ToString() + ". Dating");
taskNumber++;
}
// Waiting for Enter
Console.ReadlLine();
}

299



CHAPTER 21  IMPROVING LOOPS

Rock-Scissors-Paper

In the next exercise, you will see the for loop with many statements inside its body. The
looping will represent individual rounds of a game.

Task

You will write a program that plays a specified number of rounds of the rock-scissors-
paper game with the user (see Figure 21-3).

- — O X

Enter your name: Frodo 2
Enter number of game rounds: 3

Enter Ror S or P: R
Frodo:Computer - Rock:Scissors
You won

Enter Ror Sor P: S
Frodo:Computer - Scissors:Rock
I won

Enter Ror S or P: P
Frodo:Computer - Paper:Paper
Tie

GAME OVER - OVERALL RESULT
[Frodo:Computer - 1,5:1,5

Figure 21-3. The game

Scoring will be similar to chess: one point for a victory and half a point for a tie.

300



CHAPTER 21

Solution

Here’s the code:

static void Main(string[] args)

{

// Preparations
Random randomNumbers = new Random();

double playerPoints = 0;
double computerPoints = 0;

int rock = 1, scissors = 2, paper = 3;

// Inputs
Console.Write("Enter your name: ");
string playerName = Console.Readline();

Console.Write("Enter number of game rounds: ");
string input = Console.ReadlLine();
int totalRounds = Convert.ToInt32(input);

Console.WritelLine();

// Individual rounds

IMPROVING LOOPS

for (int roundNumber = 0; roundNumber < totalRounds; roundNumber++)

{

// Computer chooses
int computerChoice = randomNumbers.Next(1, 3 + 1);

// Player chooses

Console.Write("Enter R or S or P: ");

string playerInput = Console.Readline();

string playerInputUppercase = playerInput.ToUpper();

int playerChoice = playerInputUppercase == "R" ?
rock : (playerInputUppercase == "S" ? scissors :

// Round evaluation

string message = "";

paper);

301



CHAPTER 21  IMPROVING LOOPS

if (computerChoice == rock 88 playerChoice == scissors ||
computerChoice == scissors & playerChoice == paper ||
computerChoice == paper && playerChoice == rock)

// Computer won
computerPoints += 1;
message = "I won";

else

// Tie or player won

if (computerChoice == playerChoice)

{
// Tie
computerPoints += 0.5;
playerPoints += 0.5;
message = "Tie";

}

else

{
// Player won
playerPoints += 1;
message = "You won";

}

// Round output
string playerChoiceInText = playerChoice == rock ?

"Rock" : (playerChoice == scissors ? "Scissors" : "Paper");
string computerChoiceInText = computerChoice == rock ?

"Rock" : (computerChoice == scissors ? "Scissors" : "Paper");
Console.WritelLine(playerName + ":Computer - " +

playerChoiceInText + + computerChoiceInText);
Console.WritelLine(message);
Console.WriteLine();

} // End of loop for game round

302



CHAPTER 21  IMPROVING LOOPS

// Game evaluation
Console.WritelLine("GAME OVER - OVERALL RESULT");

Console.WriteLine(playerName + ":Computer - " +
playerPoints.ToString() + ":" + computerPoints.ToString());

// Waiting for Enter

Console.ReadlLine();
}
Discussion
Note the following:

e The computer “chooses” using random numbers: 1 for rock, 2 for
scissors, and 3 for paper.

o For the sake of simplicity, when the user enters something other than
R, S, or P, you take it as “paper”

e You do not distinguish between lowercase and uppercase in user
input.

o Inseveral places, threefold branching is solved using two nested
conditional (ternary) operators rather than using two nested if-
elses. Note carefully how noValue of the first conditional operator
is specified using another conditional operator, which is enclosed in
parentheses.

e Ifyou do not like the conditional (ternary) operator, simply do not
use it. It is just a shortcut of a special if-else case. I personally like it
very much, so I use it frequently.

Summary

In this chapter, you continued your study of the loops. The first exercise was basically
areminder of what you learned in the previous chapter. You modified one of the
previous tasks.

303



CHAPTER 21  IMPROVING LOOPS

Next, you were exposed to several ways of solving alternating loops, that is, loops
repeating similar pairs of activities. Specifically, you studied the following solutions:

o Alternating output based on whether the control variable is odd or
even

o Toggling a bool variable indicating whether you want the first output
or not

e Performing both activities of the pair in a single turn of the loop

The final example of the rock-scissors-paper game was actually not centered on
looping. The loop was just the means to repeat the game rounds. One game round was
an example of a real, more complex procedure that you could make with what you have
learned in this book so far.

304



CHAPTER 22

Number Series

Several programming tasks reduce to generating regular number series. This is what
you are going to study in this chapter. You will also get a better understanding of loops

this way.

Every Other

You are already able to generate a simple number series, say from one to ten. You will
tackle generating a bit more complex series now.

Task

In this task, you will display “every other” number until 20 (see Figure 22-1).

305
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_22


https://doi.org/10.1007/978-1-4842-7147-6_22#DOI

CHAPTER 22  NUMBER SERIES

Figure 22-1. Displaying every other number

Solution

Here’s the code:

static void Main(string[] args)

{
// Output

for (int number = 2; number <= 20; number += 2)

{

Console.WritelLine(number);

}

// Waiting for Enter
Console.ReadlLine();

306



CHAPTER 22  NUMBER SERIES

Discussion

The most difficult point of the exercise is to realize how to write an iterator of the
for loop. Since you want to augment the number variable by two, the corresponding
statement will be number += 2.

Alternative Solution

It is interesting to solve the exercise in another way. You can have an ordinary loop from
one to ten stepping by one and display twice the amount of its control variable rather
than the variable itself.

static void Main(string[] args)

{
// Output
for (int line = 1; line <= 10; line++)
{
int displayedNumber = 2 * line;
Console.WritelLine(displayedNumber);
}
// Waiting for Enter
Console.ReadlLine();
}

Descending Series

What if the numbers in the series were descending? Many things will change then. Let’s
take a look.

Task

In this task, you will display numbers going down from ten to one (see Figure 22-2).

307



CHAPTER 22  NUMBER SERIES

10

P NWRAUON WO

Figure 22-2. Numbers going down

Solution

Here’s the code:

static void Main(string[] args)

{
// Output

for (int number = 10; number >= 1; number--)

{

Console.WriteLine(number);

}

// Waiting for Enter
Console.ReadlLine();

308



CHAPTER 22  NUMBER SERIES

Discussion

Note the following:
e The loop’s initializer is possibly the simplest. You just start at ten.

o The iterator is not difficult either; the numbers go down, which is why

you just subtract one at the end of each turn.

e The most difficult is the loop condition. You must formulate it in such
a way that it holds as long as you want the loop to go on and that it
ceases holding at the moment you want to quit. The correct test is
whether the number variable is greater than or equal to one.

Decimal Numbers

A series with decimal numbers might surprise you.

Task

In this task, you will generate a series from 9 to 0 with the numbers decreasing by 0.9 in

every step (see Figure 22-3).

309



CHAPTER 22  NUMBER SERIES

. - O X
9.0 A
8.1
7.2
6.3
5.4
4.5
3.6
2.7
1.8
lg.Q

.0

Figure 22-3. Decreasing by 0.9

Seemingly Correct Solution

Using the style of the previous exercise, you could write the following:

static void Main(string[] args)

{
// Output

for (double number = 9; number >= 0; number -= 0.9)

{

Console.WriteLine(number.ToString("N1"));

}

// Waiting for Enter
Console.ReadlLine();

310



CHAPTER 22  NUMBER SERIES

Testing

However, testing discloses the missing last member of the series: zero (see Figure 22-4).

v - O X
9.0 A
8.1
7.2
6.3
5.4
4.5
3.6
2l
1.8
0.9

Figure 22-4. Missing last number

How can that be?

The Cause of the Error

The exercise shows how working with decimal numbers can be tricky; you need to be
careful because decimal arithmetic can be imprecise!

You can sense the cause when you omit the formatting on a single decimal place
(.ToString("N1")). Try it (see Figure 22-5).

311



CHAPTER 22  NUMBER SERIES

|
a
X

O FP NWPE U OSSN 0O
NNV DA WNR

‘g
|

Figure 22-5. Omitting the formatting

You can see that the expected second-to-last series member is slightly less than it is
supposed to be. Further subtraction of 0.9 gets you slightly below zero, which is why the
expected last zero is not displayed.

Correct Solution

Working with decimal numbers, you need to specify a loop’s terminal value with a slight
free play.
The correct solution of the exercise thus looks like this:

static void Main(string[] args)

{
// Output

for (double number = 9; number >= -0.0001; number -= 0.9)

{

Console.WriteLine(number.ToString("N1"));

}

// Waiting for Enter
Console.ReadlLine();

Check the result!

312



CHAPTER 22  NUMBER SERIES

Second Powers

Now, what about displaying two connected numbers in a single line?

Task

In addition to numbers in a one to ten series, you can display the corresponding second
power in every line of output (see Figure 22-6).

() X

OV P WNR
P WNERE O LR

O 00 N
00
Hgmmmm

=
©
=
8

Figure 22-6. Displaying the second power

313



CHAPTER 22  NUMBER SERIES

Solution

Here’s the code:

static void Main(string[] args)

{
// Output
for (int number = 1; number <= 10; number++)
{
int secondPower = number * number;
Console.WriteLine(number.ToString() + " " + secondPower.
ToString());
}
// Waiting for Enter
Console.ReadlLine();
}

Two in a Row

Let’s stay with two numbers in a line here.

Task

In this task, you will generate a 1-20 series with a couple of numbers in every line of

output (see Figure 22-7).

314



CHAPTER 22  NUMBER SERIES

v

Figure 22-7. Displaying more than one number on a line

Solution

This exercise closely resembles the task of the alternating loop from the previous chapter.
It can be solved in a number of ways, too. I will choose one of them: you will add a space
after an odd number and a line break after an even number.

Here’s the code:

static void Main(string[] args)

{
// Output
for (int number = 1; number <= 20; number++)
{

Console.Write(number);

315



CHAPTER 22  NUMBER SERIES

// What goes after the number depends on the even/odd test
if (number % 2 != 0)

{
// 0dd number, displaying space
Console.Write(" ");
}
else
{
// Even number, new line
Console.WritelLine();
}
}
// Waiting for Enter
Console.ReadlLine();

Two Independent Series

Another interesting case that you might meet some day is the case of two independent

series.

Task

You will have two, a bit arbitrary, number series with a different count of members.
The first one is descending by 2 in every step (111, 109, ..., 97), and the second one is
ascending by 3 in every step (237, 240, ..., 270).

The program will display both a number from the first series and a number from the
second series in every row (see Figure 22-8).

316



111
109
107
105
103
101

99

97

237
240
243
246
249
252
255
258
261
264
267
270

Figure 22-8. More complex alternating

Solution

Here’s the code:

static void Main(string[] args)

{

// Preparation
int first = 111;

// Output
for (int second = 237; second <= 270; second += 3)

{

// Preparing first text

string firstText = first >= 97 ?
first.ToString().PadLeft(3) : "

)

CHAPTER 22  NUMBER SERIES

317



CHAPTER 22  NUMBER SERIES

// Actual output
Console.WritelLine(firstText +

+ second.ToString());

// Changing x

first -= 2;
}
// Waiting for Enter
Console.ReadlLine();
}
Discussion
Note the following:

e One of the series (the longer one) is displayed using the loop’s control
variable. The other one uses another independent variable.

o Inevery step, you check whether the shorter series still goes on.

o To achieve some nice formatting, you use the PadLeft method call,
which adds spaces to the left of its parameter to reach the specified
total number of characters.

Summary

In this chapter, you practiced loops on tasks of generating various number series.
Specifically, you learned the following:

e How to write the loop’s iterator when the series is stepping by two.

e Howto display in a loop’s body not directly the control variable but
the value derived (calculated) from it.

e How to generate a descending series using the - - operator in a loop’s
iterator and specify the loop condition using the >= operator so that it
is fulfilled as long as you want to do looping.

318



CHAPTER 22  NUMBER SERIES

e That decimal number series require extra care because of the
imprecise representation of decimal numbers in memory. This
means, for example, that you need to provide an extra free play in the
loop condition.

You also solved cases with two numbers in a single output row, with the more
difficult final task of two independent series.

319



CHAPTER 23

Unknown Number
of Repetitions

In all the loops you have solved so far, you knew the number of iterations. Sometimes,
you do not know it when writing a program, simply because the user is supposed to enter
it. However, in all the cases, when a loop started, it had already been determined how
many times it would iterate.

Sometimes, the number of repetitions is not known at the moment a loop starts
executing. Frequently, you will be concerned with the question of whether a loop should
g0 on or terminate.

Entering a Password

The first task concerns logging in. You do not know in advance how many attempts the
user will need.

Task

You will repeatedly ask the user to enter a password until the user enters the correct one
(see Figure 23-1). The correct password will be friend.

321
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_23


https://doi.org/10.1007/978-1-4842-7147-6_23#DOI

CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

" — a

Enter password: enemy
Enter password: foe

Enter password: friend
Come inside, please...

Figure 23-1. Repeatedly asking a question

Solution

Here’s the code:

static void Main(string[] args)

{

string correctPassword = "friend";

bool ok; // the variable must be declared outside of the loop!
do
{

// Input

Console.Write("Enter password: ");

string enteredPassword = Console.ReadlLine();

// Evaluating
ok = enteredPassword == correctPassword;
} while (!ok); // loop repeats when the condition holds

Console.WriteLine("Come inside, please...");

// Waiting for Enter
Console.ReadlLine();

322



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

do-while Construction

To write the loop, you use the do-while construct.

The computer enters the loop after the word do, executes its statements, and asks
“Once more?”. If the condition after the while word holds, the computer returns to the
beginning of the loop, in other words, after the do word. And so on.

The loop terminates at the moment when its condition after the while word is
evaluated as unfulfilled (false).

This Case

In this case, the program evaluates the entered password after each input. The
evaluation result is then stored in a bool-typed variable called ok.

You want the loop to go on if the entered password is incorrect. That is why you use a
negation operator (an exclamation mark) in the while condition.

Variable Outside of the Loop

C# requires that all variables used in the loop condition be declared outside of the loop.
When you declare them inside, they are not visible when specifying the condition.

Tip
Visual Studio can help you with your do-while loops. Just enter do and press the Tab key
twice.

Waiting for Descend

Imagine the computer watches some quantity that grows most of the time, and the task
is to detect the (possibly rare) moment when it lessens (descends).

You would usually encounter such a problem when digging through a large amount
of data stored in a file or in a database. However, you will resolve this on data entered by
the user.

323



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

Task

You will make a program that repeatedly asks the user for input (see Figure 23-2).
Whenever the user enters a number less than the previous one, the program will notify
the user (and terminate).

- — a X

Enter a value (number): 37 A
Enter a value (number): 41
Enter a value (number): 72
Enter a value (number): 64
scend detected...

Figure 23-2. Terminating when the number gets smaller

Solution

The core of the solution is to remember the previous value, not just the value currently
entered.
Here’s the code:

static void Main(string[] args)
{
// Preparations
int previous = int.MinValue;
bool ok;

// Repeating until descend
do

{
// Input

Console.Write("Enter a value (number): ");

324



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

string input = Console.ReadlLine();
int value = Convert.ToInt32(input);

// Evaluating
ok = value >= previous; // ok = still not descending

// Storing for the next round of the loop
previous = value;

} while (ok);

// Message to the user
Console.WritelLine("Descend detected...");

// Waiting for Enter
Console.ReadlLine();

Discussion

The first value is somewhat special because it has no predecessor. Its absence can
be circumvented by simulating it using some very small number. C# offers you int.
MinValue, which is the minimum value that can be stored in the int type, which is minus

two billion approximately.

Every Week Until the End of Year

Let’s proceed to the next exercise, which has to do with dates.

Task

The task is to display dates until the year’s end starting with today and proceeding in
one-week steps (see Figure 23-3).

325



CHAPTER 23

UNKNOWN NUMBER OF REPETITIONS

Saturday,
Saturday,
Saturday,
Saturday,
Saturday,
Saturday,

November
November
December
December
December
December

20, 2021
27, 2021
4, 2021

11, 2021
18, 2021
25, 2021

Figure 23-3. Stepping through the year, one week at a time

Solution

Here’s the code:

static void Main(string[] args)

{
// Today
DateTime today = DateTime.Today;
int thisYear = today.Year;

// Repeating

DateTime date = today;

do

{
// Output
Console.WritelLine(date.TolLongDateString());

// Preparing next output (a week later)
date = date.AddDays(7);
} while (date.Year == thisYear);

// Waiting for Enter
Console.ReadlLine();

326



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

As Long As the Number Six Is Being Thrown

Random numbers can provide you with other nice examples of the uncertain
termination of a loop.

Task

You will throw a die and keep throwing it as long as there is a six (see Figures 23-4 and 23-5).

w - O X

Figure 23-4. Rolling a die once (no six, no repetitions)

327



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

Figure 23-5. Rolling a die as long as you get a six

You may know some board game where this principle is used.

Solution

Here's the code:

static void Main(string[] args)
{
// Random number generator
Random randomNumbers = new Random();

// Throwing as long as we have six

int thrown;

do

{
thrown = randomNumbers.Next(1, 6 + 1);
Console.WriteLine(thrown);

} while (thrown == 6);

328



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

// Waiting for Enter
Console.ReadlLine();

Until the Second Six

This task is about the unknown number of repetitions with random values.

Task

You will write a program that throws a die until the six is thrown for the second time
(see Figure 23-6).

" — O X
5 ~
4
16
1
4
1
16

Figure 23-6. Waiting until a six appears twice

329



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

Solution

You simply count the number of times a six die is thrown.
Here’s the code:

static void Main(string[] args)

{
// Random number generator
Random randomNumbers = new Random();
// Throwing until the second six is thrown
int howManySixes = 0;
do
{
// Actual throwing
int thrown = randomNumbers.Next(1, 6 + 1);
Console.WriteLine(thrown);
// Counting sixes
if (thrown == 6)
{
howManySixes++;
}
} while (howManySixes < 2);
// Waiting for Enter
Console.ReadlLine();
}

Until Two Sixes in a Row

Do you know why there are so many examples of throwing dice? I liked to play board
games when I was a kid, can you tell?

330



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

Task

In this program, you will be throwing a die until a six is thrown twice in a row
(see Figure 23-7).

- — O X
3 ~
3
2
16
4
1
1
16
16

Figure 23-7. Two sixes in a row

Solution

Besides the currently thrown number, you need to track the previous one as well. This is
similar to the program in the “Waiting for Descend” section.

If both the current and previous numbers are sixes, the program terminates.

Again, the first value is specific in not having a predecessor. That is why the previous
variable starts with zero, which is a value that can never appear on a die.

331



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS
Here’s the code:

static void Main(string[] args)

{
// Random number generator
Random randomNumbers = new Random();
// Preparations
int previous = 0;
bool ending;
// Throwing until two sixes in a row
do
{
// Actually throwing
int thrown = randomNumbers.Next(1, 6 + 1);
Console.WriteLine(thrown);
// Evaluating
ending = thrown == 6 && previous == 6;
// Preparing for next round of the loop
previous = thrown;
} while (!ending);
// Waiting for Enter
Console.ReadlLine();
}
Summary

In this chapter, you studied loops with the number of repetitions not known at the
time the loops start. In C#, this kind of loop can be suitably written using the do-while
construct. Its function is first to execute the statements of its body and then to ask, “Once
more?” You evaluate the condition, and if it holds, you execute another round of the
loop.

You also saw that to use some variable in a do-while loop condition, the variable
must be declared outside of the loop.

332



CHAPTER 23  UNKNOWN NUMBER OF REPETITIONS

A frequent mistake when using the do-while loop is the wrong formulation of its
condition. You must be careful and write it in such a way that if you want to continue
looping, the condition should evaluate to true.

In a couple of tasks of this chapter, you needed some value from the previous round
of aloop. For this purpose, you used a special variable where you stored the value. Of
course, the first round of the loop required special treatment.

333



CHAPTER 24

Accumulating
Intermediate Results

In this chapter, you will study the important case of using loops to process large sets
of data. You will often use a loop to go through a large amount of data to accumulate
(aggregate) some intermediate result, which becomes the final result after the loop
terminates.

Sum of the Entered Numbers

A typical task in this category is summing a lot of values.

Task

Say the user is entering numbers, with the last one being zero. In other words, users
indicate they are finished by entering zero. The program then displays the sum of all the
entered numbers (see Figure 24-1).

il - a X
Enter a number (@ = end): 10 s
Enter a number (© = end): 20
Enter a number (@ = end): 30
Enter a number (© = end): 40
Enter a number (@ = end): ©

um of entered numbers is: 100

Figure 24-1. Summing all numbers until zero

335
© Radek Vystavél 2021

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_24


https://doi.org/10.1007/978-1-4842-7147-6_24#DOI

CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

Solution

The solution’s core is accumulating the intermediate result. You have to keep it in

avariable and to add every entered number into that variable. As soon as the user

terminates the input, the variable will contain the overall sum of all the entered values.

Here's the code:

static void Main(string[] args)

{

// Preparations
int sum = 0;
int number;

// Entering numbers until zero
do
{
// Input
Console.Write("Enter a number (0 = end): ");
string input = Console.ReadLine();
number = Convert.ToInt32(input);

// Adding to intermediate sum
sum += number;
} while (number != 0);

// Output
Console.WriteLine("Sum of entered numbers is:

+ sum.ToString());

// Waiting for Enter
Console.ReadlLine();

Product of the Entered Numbers

What about multiplying the entered numbers instead of summing them? Do you think

the task is the same? It’s not entirely.

336



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

Task

In this program, the user enters numbers, with the last one being zero (see Figure 24-2).
The program then displays the product of all the entered numbers, with the exclusion of
the final zero, obviously, which would make everything zero.

" - O X
Enter a number (© = end): 10 2
Enter a number (© = end): 20
Enter a number (@ = end): 3@

Enter a number (© = end): 40
Enter a number (© = end): ©
Product of entered numbers (excluding zero) is: 240,000

Figure 24-2. Multiplying all numbers

Solution

Here's the code:

static void Main(string[] args)
{

// Preparations

double product = 1;

int number;

// Entering numbers until zero
do
{
// Input
Console.Write("Enter a number (0 = end): ");
string input = Console.ReadlLine();
number = Convert.ToInt32(input);

// Accumulating in intermediate product (but not the last zero!)
if (number != 0)

337



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

{

product *= number;

}

} while (number != 0);

// Output
Console.WritelLine("Product of entered numbers (excluding zero) is:
product.ToString("No"));

// Waiting for Enter
Console.ReadlLine();

Discussion

Note the following:

o The product variable starts at a value of one contrary to zero, which
you used when calculating the sum.

e When updating the product, you need to take care not to include the
final zero.

e You declare the product variable in type double for the result not to
overflow. When you multiply, you quickly get big numbers.

The Greatest

Another typical task when processing a large amount of data is searching for the
extremes, in other words, the maximum or the minimum.

Task

In this program, the user enters ten numbers. The program then outputs which one is
the greatest (see Figure 24-3).

338



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

1.
2.
3.
4.
5.
6.
7.
8.
9.

10. number: 200
The greatest of entered numbers was: 429

number:
number:
number:
number:
number:
number:
number:
number:
number:

- O X

16

Figure 24-3. Outputting the greatest number

Solution

You are going to accumulate the intermediate result again. This time, it will be the

greatest number “so far” You have to take special care with the first value; the greatest

variable is set to the least possible value at the beginning in order to ascertain that the

first entered number is always greater.

Because you expect exactly ten values in the input, it is more convenient to use the

for loop here.

Here's the code:

static void Main(string[] args)

{

// Preparation
int greatest = int.MinValue;

// Input of ten numbers

for (int order = 1; order <= 10; order++)

339



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

{
// Input
Console.Write("Enter " + order.ToString() + ". number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);
// Is it greater than the greatest so far?
if (number > greatest)
{
greatest = number;
}
}
// Output

Console.WritelLine("The greatest of entered numbers was:
ToString());

+ greatest.

// Waiting for Enter
Console.ReadlLine();

The Second Greatest

What about the second greatest value? This is a substantially more difficult exercise.

Task

The task is to choose the second greatest number out of the ten entered ones
(see Figure 24-4).

340



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

B — O X

Enter 1. number: 33 A
Enter 2. number: -44

Enter 3. number: 580

Enter 4. number: 14

Enter 5. number: 45

Enter 6. number: 497

Enter 7. number: -100

Enter 8. number: ©

Enter 9. number: 50

Enter 10. number: 300

he second greatest of entered numbers was: 497

Figure 24-4. Displaying the second greatest number

Solution

You need to remember and continuously update the two greatest numbers. It would not
be enough to remember just the second greatest.

The situation resembles a ski competition, with the competitors arriving to the
finish line one after another. At a certain moment, someone is the first; moments later,
someone else pushes the first finisher out to the second place. Possibly in a later time,
that skier may lose even the second place, simply because someone else will be better
than them, or even better than the new leader.

Here’s the code:

static void Main(string[] args)

{

// Preparation
int greatest = int.MinValue;
int secondGreatest = int.MinValue;

// Input of ten numbers
for (int order = 1; order <= 10; order++)

341



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

342

{
// Input
Console.Write("Enter " + order.ToString() + ". number: ");
string input = Console.ReadlLine();
int number = Convert.ToInt32(input);
// Is it greater than the greatest so far?
if (number > greatest)
{
// Moving so far greatest to the second place
secondGreatest = greatest;
// Entered number becomes the greatest so far
greatest = number;
}
else
{
// We did not beat the greatest, will we beat the second
greatest at least?
if (number > secondGreatest)
{
secondGreatest = number;
}
}
}
// Output

Console.WriteLine("The second greatest of entered numbers was:

secondGreatest.ToString());

// Waiting for Enter
Console.ReadlLine();

+



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

Output of All Entered Names

The final exercise of the chapter is concerned with text, specifically processing a large
amount of text (see Figure 24-5).

. - O x

Enter person: Amy 2
Enter person: Brandon

Enter person: Celia

Enter person: David

Enter person: Eve

Enter person: Francis

Enter person:

Entered persons: Amy, Brandon, Celia, David, Eve, Francis

In reversed order: Francis, Eve, David, Celia, Brandon, Amy

Figure 24-5. Printing in the original order and then reversed

Task

You will write a program that repeatedly reads the names entered by the user. The empty
input signals the termination. The program then repeats all the entered names, first in
the same order and then in the reversed order.

Solution

So that you are able to repeat all the names at the end, you need to remember them

somewhere. You need to accumulate them. One variable will accumulate them at its end

(the same order output) and the other one at its beginning (the reversed order output).
Here’s the code:

static void Main(string[] args)

{

// Preparation
string inSameOrder = "";

343



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

string inReversedOrder = "";
bool terminating;

// Repeating until blank input

do

{
// Input
Console.Write("Enter person: ");
string person = Console.ReadlLine();

// Processing input

terminating = person.Trim() == "";
if (!terminating)
{

inSameOrder = inSameOrder + person + ", ";

inReversedOrder = person + ", " + inReversedOrder;

}

} while (!terminating);

// Removing trailing comma and space
if (inSameOrder.EndsWith(", "))

{
int numberOfCharacters = inSameOrder.Length;
inSameOrder = inSameOrder.Remove(numberOfCharacters - 2);
}
if (inReversedOrder.EndsWith(", "))
{
int numberOfCharacters = inReversedOrder.Llength;
inReversedOrder = inReversedOrder.Remove(numberOfCharacters - 2);
}
// Output

+ inSameOrder);
" + inReversedOrder);

Console.WritelLine("Entered persons:
Console.WriteLine("In reversed order:

// Waiting for Enter
Console.ReadlLine();

344



CHAPTER 24  ACCUMULATING INTERMEDIATE RESULTS

Discussion

Note the following:

e You use the Trim method to cut off possible leading or trailing spaces
of the entered text in order to allow termination with any blank input,
including several spaces.

e Atthe end, you have to get rid of the last two characters in both
accumulated pieces of text. Before doing it, you test whether these
two characters (a comma and a space) appear at the end of the text
at all. These characters will not be there if the user immediately
terminates the program by entering a blank line.

e To test whether text ends with something, you use the EndsWith
method.

Summary

One of the most frequent usages of loops is processing large amounts of data, be it
numbers, text, or whole objects. In the loop’s body, you process a single piece of data,
while the loop ascertains that all the data gets its turn.

You practiced processing larger amounts of data with examples of summing,
multiplying, and finding extremes.

The most difficult exercise was that of finding the second greatest number, which
required careful thinking about the possible situation that may arise depending on the
data.

The last task showed you several methods to cope with text: Trim, EndsWith, and
Remove.

345



CHAPTER 25

Advanced Loops

In this chapter, you will complete the topic of simple loops. That’s simple in a sense of “not
nested,” not in a sense of “trivial.” No loops are trivial, especially the loops in this chapter.
The chapter and the whole book will close with a bonus: a moon landing simulation

game. If you find the exercises in this chapter too difficult, play the game only.

Thank God It’s Friday (TGIF)

It is time to get acquainted with the while loop, which is a cousin of the do-while loop

you are already familiar with.

Task

You will prepare a program that displays the date of the nearest Friday and the number

of days remaining (see Figure 25-1).

r - O X
Nearest Friday: 1/29/2021 2
Remaining days: 5

Figure 25-1. Displaying the nearest Friday

347
© Radek Vystavél 2021
R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6_25


https://doi.org/10.1007/978-1-4842-7147-6_25#DOI

CHAPTER 25  ADVANCED LOOPS

Solution

Here’s the code:

static void Main(string[] args)

{
// Today's date
DateTime today = DateTime.Today;
// Moving day after day until hit on Friday
DateTime date = today;
while (date.DayOfWeek != DayOfWeek.Friday)
{
date = date.AddDays(1);
}
// Calculating remaining days
TimeSpan dateDifference = date - today;
int daysRemaining = dateDifference.Days;
// Outputs
Console.WritelLine("Nearest Friday: " + date.ToShortDateString());
Console.WritelLine("Remaining days: " + daysRemaining.ToString());
if (daysRemaining == 0)
{
Console.WriteLine("Thanks God!");
}
// Waiting for Enter
Console.ReadlLine();
}
Discussion

Let’s look at the program more closely.

348



CHAPTER 25  ADVANCED LOOPS

While Loop

To write the loop, you use the while construct, which is similar in function to do-while,
except its condition is at the beginning. The condition is thus being evaluated for the first
time before the loop is entered, and if it does not hold, the loop body is not executed even
a single time!

This Case

Testing the condition before entering the loop is exactly what you need to do. If today is
Friday, you want to let it be untouched. Otherwise, you are adding one day.

TimeSpan Object

When you subtract two dates, the result that arises is always a TimeSpan object. Its Days
property says how many days have passed during the “time span” between the two dates.

Power

Loops are frequently practiced in mathematical exercises.

Task

You will write a program that calculates the nth power of the number x given the decimal
x and the positive integer n on its input (see Figure 25-2).

" — O X
Enter x (number to be raised): 2 a
Enter n (power): 10
X n=1024

Figure 25-2. Calculating the nth power

349



CHAPTER 25  ADVANCED LOOPS

Just to remind you, 2'° = 2x2x2x2x2x2x2x2x2x2 = 1024, which is the number 2

repeated 10 times in the final product.

Solution

The task can be solved using repeated multiplication by x. This means you use the

intermediate result accumulation approach that you have already learned.

In principle, the solution is quite close to the one in the “Product of the Entered

Numbers” section in Chapter 24:

static void Main(string[] args)

{

350

// Inputs

Console.Write("Enter x (number to be raised): ");
string inputX = Console.Readline();

double x = Convert.ToDouble(inputX);

Console.Write("Enter n (power): ");
string inputN = Console.ReadlLine();
int n = Convert.ToInt32(inputN);

// Calculating
double result = 1;
for (int count = 0; count < n; count++)

{

result *= x;
}
// Output

Console.WritelLine("x"n=" + result.ToString());

// Waiting for Enter
Console.ReadlLine();



CHAPTER 25  ADVANCED LOOPS

Sine

Continuing with mathematics, do you know how a computer actually performs
calculations, for example, the sine function? If you are into mathematics, you might be
interested in it.

To perform the task, you can use a so-called Taylor expansion. Some smart people
found that the value of the sine function at a given point x (x is an angle in radians) can
be calculated as a sum of infinite series:

Task

The task now is to write a program that calculates the sum of this series and compares
the result to the value of the ready-made method Math.Sin (see Figure 25-3).

@ — O X

Enter an angle in degrees: 45 A
Our value: ©.707106781186547
Math.Sin: ©.707106781186547

Figure 25-3. Calculating sine

If you are not interested in how to calculate the value of the sine function, use this
task as a challenge to write a more difficult loop.

Analysis

First, you have to analyze the calculation.

351



CHAPTER 25  ADVANCED LOOPS

Infinite Series

The series to be summed is infinite, but you may wonder how to sum an infinite number
of numbers.

You cannot do this, of course. The trick is that you actually do not need to sum an
infinite number of members of the series. At a certain point, they become so small that
their contribution is somewhere far behind the decimal point.

For practical reasons, you need only a definite precision, say 15 decimal places; the
double type does not accommodate more places anyway. You will thus be calculating
the sum as long as the series members are greater than one on the 15th place after the
decimal point.

Series Members

All the series members are similar to one another. They have an odd power up, odd
factorial down, and a changing sign.
To remind you, 7! =1 x 2 x 3 x ... x 7. In other words, the factorial is the product of all

the numbers from one to the number given.

Factorial

It is possible to calculate the factorial in a way similar to how you calculated the power
earlier in this chapter, in other words, progressively multiplying all the numbers in a
loop.

However, you can do it in a smarter way. You do not need to calculate every factorial
from scratch. You can always get it much faster from the previously calculated one.

For example, 7! =7 x 6 x 5!. The factorial of 7 can be calculated from the factorial of 5
by multiplying by “missing numbers” 6 and 7.

Power

A similar trick can be used to calculate the “power part” of each series member. The
power does not have to be calculated from scratch. The next power is simply the
previous power times x squared.

For example, x” = x5 x X2

352



Solution

Here’s the solution:

static void Main(string[] args)

{
// Input

Console.Write("Enter an angle in degrees:

string input = Console.ReadlLine();

double angle = Convert.ToInt32(input);

// Converting to radians
double x = Math.PI / 180 * angle;

// Preparations
double member;

double sum = 0;

double tinyValue = 1e-15;
double sign = 1;

double power = x;

double factorial = 1;

double multiplier = 1;

// Sum of the series

do
{

CHAPTER 25

");

// Calculating current member of the series

member = sign * power / factorial;

// Appending to sum
sum += member;

// Preparing next step
sign *= -1;
multiplier++;

factorial *= multiplier;
multiplier++;

factorial *= multiplier;

ADVANCED LOOPS

353



CHAPTER 25  ADVANCED LOOPS

power *= x * x;

} while (Math.Abs(member) > tinyValue);
// Output

Console.WritelLine("Our value: " + sum.ToString());
Console.WritelLine("Math.Sin: " + Math.Sin(x).ToString());

// Waiting for Enter
Console.ReadlLine();

Enhancement

You can make the calculation still better using the fact that the series converges the
fastest for values of x around zero. The calculation for the big values of x could be
converted to the small values of x using sine function symmetries.

I would think that Microsoft has this trick in the code of Math.Sin.

Moon Landing

Ever since the Apollo 11 moon landing, creating a simulation of a lunar module landing
has been popular on various programming platforms. So, you will write a similar
simulation as the concluding task of this book.

Task

You will write a program simulating the moon landing. It will keep track of the module’s
height h above, the moon’s surface, the module’s velocity v, and the mass mF of the fuel
remaining for landing.

The user’s task is to land softly (with the least possible velocity). In each step,
representing one second of the landing maneuver, the user enters how much the braking
should be applied based on a percentage. The higher the percent, the lower the velocity,
but at the same time, the more fuel that’s consumed, as shown in Figure 25-4.

354



CHAPTER 25  ADVANCED LOOPS

v — O X

Height: 50.0 Velocity: 8.0 Fuel: 35.0 A
Enter percentage of breaking (©-100): ©

Height: 41.2 Velocity: 9.6 Fuel: 35.0
Enter percentage of breaking (©-100): ©

Height: 30.8 Velocity: 11.2 Fuel: 35.0
Enter percentage of breaking (©-100): 20

Height: 19.2 Velocity: 12.0 Fuel: 32.6
Enter percentage of breaking (©-100): 100

Height: 8.6 Velocity: 9.1 Fuel: 20.6
Enter percentage of breaking (©-100): 100

Height: 1.0 Velocity: 6.2 Fuel: 8.6
Enter percentage of breaking (©-100): 100

Landing velocity: 3.3
Soft landing, congratulations!

Figure 25-4. The moon landing program

355



CHAPTER 25  ADVANCED LOOPS

As soon as the height decreases below zero, the module has landed. The program
notifies the user on the landing velocity and performs the evaluation according to the

following table:
Landing Velocity Evaluation
Less than 4 m/s Soft landing
4-8 m/s Hard landing
Greater than 8 m/s T

If all the fuel is consumed before the landing is over, the program starts ignoring the
entered braking values, and the braking force is set to zero.

Physical Model

The program will be based on the model of reality discussed here.
Here are the initial values:

e h=50(m)
e v=8(m/s)
o mp=35(kg)

In each step representing one second of the landing maneuver, the values of the
tracked physical quantities will change according to the following relations (means the
change of the corresponding quantity, as is usual in physics):

h=-v-a/2

v=a

mg=-F /3000

where
e The braking force is F = 360 x percent of braking.

o The acceleration toward the surface is a = 1.62 - F / 8000.

356



CHAPTER 25  ADVANCED LOOPS

Solution

Here’s the code:

static void Main(string[] args)
{
// Initial values
double h = 50, v = 8, mF = 35;

// Preparation
bool malfunction = false;

// Repeating individual landing steps
while (h >= 0)
{
// Displaying current values
"Height: " + h.ToString("N1");
"Velocity: " + v.ToString("N1");
"Fuel: " + mF.ToString("N1");
" "+ velocity + " " + fuel);

string height
string velocity
string fuel
Console.WritelLine(height +

// Input
Console.Write("Enter percentage of breaking (0-100): ");
string input = Console.Readline();
double percents = 0;
try
{
percents = Convert.ToDouble(input);
if (percents < 0 || percents > 100)

{
malfunction = true;
}
}
catch (Exception)
{
malfunction = true;
}

357



CHAPTER 25  ADVANCED LOOPS

358

if (malfunction)

{
percents = 0;
Console.WriteLine("CONTROL MALFUNCTION!");
}
// Fuel check
if (mF <= 0)
{
percents = 0;
Console.WriteLine("NO FUEL!");
}

// Calculating new values

double F = 360 * percents;
double a = 1.62 - F / 8000;
h-=v+al/2;
V += a;
mF -= F / 3000;
if (mF <= 0)
{
mF = 0;
}
// Output of an empty line
Console.WritelLine();

} // End of a single landing step

// Output
Console.WritelLine("Landing velocity: " + v.ToString("N1"));
string evaluation = v < 4 ?

"Soft landing, congratulations!" :

(v <= 8 ? "Hard landing." : "Houston, crew is lost...");
Console.WritelLine(evaluation);

// Waiting for Enter
Console.ReadlLine();



CHAPTER 25  ADVANCED LOOPS

Summary

This chapter closed the book with several examples of what might be considered
advanced loops.

The first exercise was perhaps the easiest. It got you acquainted with the while loop,
a close relative of the do-while loop you are already familiar with. The only difference is
that the while loop has its condition at the beginning, which means it is being evaluated
already before the loop is entered for the first time. Subsequently, the loop’s body will
never be executed in case the condition does not evaluate to true at the beginning.

This was precisely what you needed. If the present day was Friday, you did not want
to execute the loop’s body (moving a day further) even a single time; you wanted to stay
with Friday.

The next task transferred you into the domain of mathematics. You exercised
repeated multiplication and gradual result accumulation to get the nth power of a
specified number.

The Sine task was probably the most difficult one of the whole book. I presented it
here as a bonus for mathematically minded readers. You saw how the computer can
calculate the values of what is called a transcendent mathematical function.

The sine values can be calculated using an infinite Taylor series. The trick is to
truncate the series after the finite number of its members at the moment they are
becoming too small to add anything to the final result considering the finite precision of
decimal numbers in the computer.

The solution also showed you some tricks to get the calculation faster. You used
previous series members to efficiently calculate the next ones.

The final moon landing task combined many things you learned throughout the
book in a relaxing game you can enjoy!

Personal Notes

Now that this book is at its end, allow me, please, a few personal notes. Programming
is not only about computers, keywords, and algorithmic thinking. To me, it is a lifelong
passion and personal.

359



CHAPTER 25 ADVANCED LOOPS
Dice

I noted already that there are lots of exercises in this book simulating dice throwing
because I played lots of board games as a child. These were not just games purchased
from a store. I invented many of my own games then, with most of them simulating sport
events. There were different rules for sprints, long runs, jumps, bike races, soccer, and so
on. That was possibly a good preparation for becoming a programmer.

The Sine Task

I admit the Sine task of this chapter is substantially above a beginner’s level. I included it
to give you a glimpse at your possible future in the Wonderful Land of Programming.

To me, the task also has a personal connection. At some point when I was in school,
Iwondered how a calculator computes sines. I was thinking the function values are
tabulated (“hardwired”) in the calculator and further interpolated. Only later did I find
out the other way, the one you saw.

Moon Landing

A simplified version of the moon landing task was actually my first encounter with
programming. No, I didn’t program it; [ was its computer instead.

When I was young, I read a special issue of a journal explaining programming to
youngsters like me. The issue contained a paper computer. It was a piece of paper with
windows representing variables. In these windows, you could pull paper strips, writing a
variable’s values on them. Assigning a new value to a variable? You just pulled the strip
to hide the old value and wrote down a new value on the same strip with a pencil.

I performed all the calculations using an electronic calculator. I was executing the
program’s statements, and I was the computer’s CPU running at a marvelous speed of
0.5 Hz (yes, the G is omitted intentionally), which could be boosted to 0.6 Hz using a
chocolate bar.

At that time, which was 1982 in Czechoslovakia, I landed that moon module possibly
several hundred times, later also using my software on a programmable calculator.
Perhaps I was the most experienced astronaut of the days. Regardless, that was a highly
motivating road toward programming.

360



CHAPTER 25  ADVANCED LOOPS

Concluding Wish

To stay on a cosmic note, I hope I managed to launch you into your own programming
orbit. Sometimes, I went a bit deep, so maybe you will appreciate returning to the
exercises and working through the book a few times. It’s a way to refill the supplies of

your cosmic station.
I wish you many joys and successes in your future programming!

361



Index

A

Accumulating intermediate result
accumulated values
compound assignment, 173-175
increment and decrement
operators, 176-177
progressive summation, 178-179
text concatenations, 177-178
text join, 180-182
user’s number plus ten, 171-172
entering numbers, 335-336
greatest number, 338-340
output program, 343-345
product entering numbers, 337-339
second greatest value, 340-342
Arithmetic operations, 118-119

B

Breakpoint, 197-198

C

Calculations (dates)
date difference, 149-151
input information
Culturelnfo object, 145
Convert.ToDateTime
method, 144-145
DateTime object, 143

© Radek Vystavél 2021

DateTimeOffset object, 152-153
quarter
analysis, 148
corresponding quarter, 147
first/last days, 148
month number, 148
number, 148
source code, 149
single month, 145-146
try-catch construction, 144
Case-insensitive
comparisons, 216-218
Character test
existence test, 279
experiment, 279
source code, 278
Substring method, 279
task, 276-278
testing, 276
Compound conditions
AND/OR operators, 243-245
assignment
arithmetic operations, 174
operator (+=), 173
source code, 173-174
task, 173
grade check, 248-250
pre-calculation, 245-247
range check, 250-251
reversing conditions, 247-248

R. Vystavél, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-7147-6

363


https://doi.org/10.1007/978-1-4842-7147-6#DOI

INDEX

Compound conditions (cont.)
username/password, 241-243
users, 244
yes/no program, 239-241

Conditional execution
braces, 218-219
built-in function, 223-224
case-insensitive

comparisons, 216-218
compare three numbers, 259-260
else branch, 221-222
greater/smaller

numbers, 219-221
length check, 210-212
long text, 211
odd/even number, 215-216
password input

branching, 207

correct password, 206
if-else construction, 208
incorrect password, 206
program flow, 207-208
source code, 208

task (correct password), 205-206

test execution, 209
positive number, 212-214
operators

source code, 270

head/tail task, 269

ternary operator/program, 270
reversed condition, 209-210
short text, 211

C# programming language
aspects, 2-3
interaction, 1
primary source, 2
working process, 3-4
Currency conversions, 127-128

364

D

Debugging tools
breakpoint, 197-198
launching program, 196
memory inspection, 198-200
project, 195
step through code, 195
terminate stepping, 196
Descending series, 307

Development environment see Integrated
development environment (IDE)

Dice throwing, 360

Documentation
docs.microsoft.com, 190-191
introductory information, 193
operations section, 193
remarks section, 194
search (console class), 191-192
specific class page, 192-194

E,F,G, H
Economic calculations
commissions, 130-133
complicated rounding program,
136-140
currency conversions, 127-128
rounding program, 133-135
total price, 128-130
VAT (see Value-added tax (VAT))
Evaluation
decimal arithmetic, 276
details, 271
grade input, 275
integer division operator, 276
program termination, 275
realistic situation, 271



INDEX

Interactive mode
C# statement, 200
features, 201
help displays, 202
multiline
statement, 202
view selection, 201-202

source code, 272-275
task, 271
yes/no input, 275

LJ,K

Increment/decrement operators, 176-177

Input program
addition, 105-107
calculation, 103-104 L
input text information, 99-100 Loops

improved program, 100-101
numbers (see Numeric input)
numeric variable, 101-103
runtime error
catch block, 109
complete solution, 109-110
context menu, 108
nonnumeric input, 107
statements, 110
testing, 110
try selection, 109
ten number, 105-106
textual/numeric input, 111
try-catch block, 111

Integer division, 122-125
Integrated development environment

(IDE), 4

IntelliSense

data type, 186-187
DateTime, 187-188

details, 185

keyboard shortcuts, 188-189
list members, 189-190
possibilities, 185

tab key, 22

tips (information), 188-189
variable name, 186

do-while loop, 359
line numbers
control variable, 292-293
for loop, 293
initializer/iterator, 293
output task, 290
source code, 291-292
moon landing, 354-358
personal notes, 359-360
power, 349-350
repetitions
count variable, 287
for construction, 285
number of, 289
program flow, 286
sentence repetitions, 288
source code, 284-285, 288
task, 283, 287
ten repetitions, 284
working process, 286
rock-scissors-paper
game, 300-303
sine (see Sine function)
text repetition, 295-296
TGIF (see Thank God It’s Friday
(TGIF))
throws, 289-290

365



INDEX

Loops (cont.)
to-do list

bool-typed variable, 298

conditional (ternary)
operator (?:), 298

notes, 299

odd/even test, 297

source code, 299

tasks, 296-297

Mathematical
functions, 119-121, 141
Memory consumption
byte types, 159
connections, 160
numeric data types, 161
source code, 160
task, 159
Microsoft documentation (see
Documentation)
Moon landing
evaluation, 356
personal notes, 360
physical model, 356
program, 355
source code, 357-359
task, 354
Multiple conditions
built-in function, 261
compare three
numbers, 259-260
linear equation, 262-264
quadratic
equation, 264-267
smallest number, 259
soccer (see Soccer match)

366

Non-Windows operating

system, 6

Number series

decimal numbers
error message, 311
program execution, 312
solution, 310
task, 309
testing, 311
descending series, 307
every other number, 305-307
independent series, 316-318
row numbers, 314-316
second power, 313-314

Numeric data types, 155

decimal data type, 158

decimal type, 158

memory (see Memory consumption)
note, 157

overflow (see Overflow)

scientific notation, 158

source code, 156-157

task, 155

unsigned numbers, 157, 158
whole/decimal numbers, 155

Numeric input, 113

arithmetic operations, 118, 119
decimal number, 113, 114
integer division, 122-125
localization
comma statement, 117
decimal points, 116
output statements, 117
source code, 115
task, 114
mathematical functions, 119-121



Numeric output
adding 1 to 1, 44-46
calculations, 37-38
complex calculation, 38-40
joining text, 40-41
preformatted text, 43-44
quotes, 37
special character, 41-43
source code, 36-37
task (program displays), 35

O

Object actions
accessing code, 85
classes, 94
components/members, 59, 62-63
constructor, 76-77
date task, 60-61
desktop path, 80-81
display month, 73-74
enumeration, 82
formatted output, 90-92
localized output, 91-93
minimalistic program
boilerplate code, 67-68
changing target, 69-70
project properties menu, 69
Visual Studio, 69
namespaces
comment line, 63-64
error message, 64
graphical user interfaces, 66-67
list pane error, 65
using System, 66-67
next method, 78
numbers, 87-89
environment object, 70-71

INDEX

random number generator, 77
rolling program, 77-78
relation class/object, 94
rolling dice, 79-81

specific date, 76

special classes, 94

static objects, 93

structure, 95

text program, 85-87

time displays, 59-60
ToLongDateString action, 73
tomorrow date, 75-76
ToString method, 90

Overflow

long type, 168

note, 165

possibilities, 163

programs, 162-164

project source code, 164

source code, 162

try-catch, 168

Visual Studio
arithmetic

overflow/underflow, 167

build tab, 166
expectations, 167
properties, 165

Passion/personal notes, 359-360
Practical conditional execution

appending extension
chaining, 228
condition evaluation, 227
detection, 227
else branch, 227
.png extension, 225

367



INDEX

Practical conditional execution (cont.)

source code, 226

task, 225
DayOfWeek enumeration, 236
deadline check, 229-231
head/tail process, 228, 229
invoice date check, 231-233
Spanish version, 233-236
switch statement, 236-238

Programming languages

displays message, 13
error message, 26-28
launching process
Console.ReadLine(), 24
debugging, 24
disappearing messages, 23-24
note, 25
outputs, 23
program code
development
environment, 17-18
IntelliSense, 22
source code, 19-21
statements, 19-21
restoring project
extensions, 30
file menu, 31
project dialog, 30
start page, 28
saving project, 22
solution explorer
menu selection, 33-34
program.cs, 32-33
source code editor, 32
text size, 25-26
transfers, 31
Visual Studio, 13-17
working process, 28

368

Progressive accumulation, 180-182
Progressive summation, 178-179

Q

Quadratic equation
analysis, 265
program solving task, 264-265
source code, 266-267
testing process, 267

R

Repetitions (number)
descends, 323-325
entering password

bool-typed variable, 323
do-while construct, 323
do-while loops, 323
program task, 321
source code, 322
variables, 323
one-week steps, 325-326
row information, 331-333
second six, 329-330
throw, 327-329
Rock-scissors-paper
game, 300-303

S

Sine function
analysis, 351
enhancement, 354
factorial program, 352
infinite series, 351-352
power, 352
series members, 352



source code, 353
task, 351

Soccer match

analysis, 254-257

club won, 253-254
program flow, 255-257
source code, 256-258
three numbers, 259-260

Text concatenations, 177-178
Thank God It’s Friday (TGIF)

do-while loop, 347
source code, 348
task, 347

testing, 349
TimeSpan object, 349
while loop, 349

Universal Time Coordinated

(UTC), 151-152

V,W, X, Y, Z

Value-added tax (VAT)

analysis/calculation, 139

invoice data checking, 231-232

INDEX

source code, 140-141
task, 139

Variables

adding 1/1, 50-51
calculation, 51-52
decimal numbers program, 55-56
grand combination program, 53-55
logical values, 56
meaning, 47
storing text
alternative, 48
assignment statement, 49
numbers, 49-50
source code, 47
task, 47
variable declaration, 48
whole/decimal numbers, 54-55

Visual Studio

community, 5

components, 7

free registration, 7

installation, 7

program creation
button creation, 16-17
new project, 15
start screen, 14
templates, 16

system requirements, 5

updates/feedback, 8

Windows versions, 6

369



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Ready
	C# Language
	Whom Is This Book For
	How the Book Differs from Others
	How to Work with the Book
	What to Install on Your Computer
	Development Environment
	Visual Studio
	Windows Versions
	Non-Windows Operating Systems

	Installation
	Free Registration

	Updates and Feedback
	Summary

	Part I: Data
	Chapter 2: Your First Program
	Seeing It in Action
	Creating the Project
	Launching Visual Studio
	Creating New Project

	Writing the Program Code
	The Look of the Development Environment
	Knowing Where to Write Statements
	Writing the Code
	Understanding Your First Statements
	Using IntelliSense

	Saving the Project
	Launching Your Program
	Note

	Changing Text Size
	Dealing with Errors
	Finishing Your Work
	Restoring Your Work
	Transferring Your Work
	Using Solution Explorer
	Summary

	Chapter 3: Dealing with Output
	Producing Numeric Output
	Task
	Solution
	Discussion

	Making Calculations
	Task
	Solution
	Note


	Making More Complex Calculations
	Task
	Solution
	Discussion

	Joining Text
	Task
	Solution

	Outputting Special Characters
	Task
	Solution
	Discussion

	Using Preformatted Text
	Task
	Solution
	Note


	Adding 1 and 1
	Task
	Solution
	Discussion

	Summary

	Chapter 4: Using Variables
	Storing Text
	Task
	Solution
	Discussion
	Variable Declaration
	Alternative
	Assignment Statement


	Storing Numbers
	Task
	Solution

	Adding 1 and 1
	Task
	Solution
	Discussion

	Doing Calculations with Variables
	Task
	Solution
	Discussion

	Assembling a Grand Combination
	Task
	Solution
	Discussion

	Working with Decimal Numbers
	Task
	Solution
	Discussion

	Working with Logical Values
	Task
	Solution
	Discussion

	Summary

	Chapter 5: Working with Objects
	What Time Is It?
	Task
	Solution

	What Date Is It Today?
	Task
	Solution

	Working with Date Components
	Task
	Solution

	Using Namespaces
	Important using
	Namespaces
	Without usings

	C# 9.0 Minimalistic Program
	Using the Environment Object
	Task
	Solution

	Summary

	Chapter 6: Using Object Actions
	Displaying the Month in Text
	Task
	Solution
	Discussion

	Displaying Tomorrow
	Task
	Solution

	Displaying a Specific Date
	Task
	Solution

	Rolling a Single Die
	Task
	Solution
	Note

	Rolling Two Dice
	Task
	Solution

	Getting the Path to the Desktop
	Task
	Solution
	Enumeration

	Summary

	Chapter 7: More About Objects
	Text as an Object
	Task
	Solution
	Discussion

	Numbers as Objects
	Task
	Solution
	Discussion

	Formatting Numbers
	Task
	Solution

	Localized Output
	Task
	Solution

	Concluding Notes
	Static Objects
	Classes
	Relation Between Class and Object
	Special Classes
	Structures

	Summary


	Part II: Calculations
	Chapter 8: Input
	Text Input
	Task
	Solution

	Better Input
	Task
	Solution
	Discussion

	Numeric Input
	Task
	Solution
	Discussion

	Calculation with Entered Number
	Task
	Solution

	Ten More
	Task
	Solution

	Addition
	Task
	Solution

	Incorrect Input
	Task
	Solution
	What Happened
	Interior of the catch Part
	Complete Solution
	Testing
	Explanation

	Summary

	Chapter 9: Numbers
	Decimal Input
	Task
	Solution

	Localized Numeric Input
	Task
	Solution
	Testing and Conclusions
	Test with a Decimal Point
	Test with a Decimal Comma
	Further Conclusions


	Basic Arithmetic
	Task
	Solution

	Mathematical Functions
	Task
	Solution
	Discussion

	Integer Division
	Task
	Solution
	Discussion

	Summary

	Chapter 10: Economic Calculations
	Currency Conversion
	Task
	Solution

	Total Price
	Task
	Solution
	Discussion

	Commissions
	Task
	Solution
	Discussion

	Rounding
	Task
	Solution

	Further Rounding
	Task
	Solution
	Discussion


	Value-Added Tax
	Task
	Analysis
	Solution

	Summary

	Chapter 11: Calculations with Dates
	Date Input
	Task
	Solution
	Discussion

	Single Month
	Task
	Solution
	Discussion

	Quarter
	Task
	Analysis
	Quarter’s Number
	Quarter’s First Month Number
	First and Last Days

	Solution

	Date Difference
	Task
	Solution

	Time Zones and UTC
	Task
	Solution

	Summary

	Chapter 12: Understanding Different Kinds of Numbers
	More Numeric Types
	Task
	Solution
	Note

	Discussion
	Unsigned Numbers
	Decimal Numbers
	Special Type decimal


	Memory Consumption
	Task
	Solution
	Connections
	Discussion

	Overflow
	Task
	Solution
	Discussion

	Dealing with Overflow
	Task
	Solution
	Note

	Settings in Visual Studio
	Results
	First Alternative
	Other Alternatives


	Summary

	Chapter 13: Accumulating Values
	Ten More, Revisited
	Task
	Solution
	Discussion

	Compound Assignment
	Task
	Solution
	Note


	Further Compound Assignments
	Task
	Solution
	Note


	Incrementing and Decrementing
	Task
	Solution

	Compound Assignment and Text
	Task
	Solution

	Progressive Summation
	Task
	Solution

	Multiple Text Join
	Task
	Solution
	Note


	Summary


	Part III: Conditionals
	Chapter 14: Essential Tools
	IntelliSense
	Exploring the Possibilities
	Examples
	Note
	Keyboard Shortcuts

	Documentation
	docs.microsoft.com
	Search
	Specific Class Page
	Common Search

	Debugging Tools
	Project
	Stepping Through the Code
	Terminate Stepping

	Breakpoints
	Using a Breakpoint
	Removing a Breakpoint

	Memory Inspection

	C# Interactive
	What Is It?
	How to Launch It?
	Notes

	Summary

	Chapter 15: Getting Started with Conditions
	Password Input
	Task
	Analysis
	The Program
	Program Branching
	Syntax

	Solution
	Discussion
	Test


	Reversed Condition
	Task
	Solution
	Discussion

	Length Check
	Task
	Solution
	Note


	Positive Numbers
	Task
	Solution
	Discussion


	Odd and Even Numbers
	Task
	Solution

	Case Indifference
	Task
	Solution

	Without Braces
	Task
	Solution

	Greater of Two Numbers
	Task
	Solution

	Without the else Branch
	Task
	Solution

	Using a Built-in Function
	Task
	Solution

	Summary

	Chapter 16: Practical Conditions
	Appending Extension
	Task
	Solution
	Discussion
	Extension Detection
	Entering a Condition
	Missing else Branch
	Chaining


	Head and Tail
	Task
	Solution
	Discussion


	Deadline Check
	Task
	Solution
	Discussion


	Invoice Date Check
	Task
	Solution
	Discussion


	Spanish Day of Week
	Task
	Solution
	Discussion


	Switch Statement
	Task
	Solution
	Discussion


	Summary

	Chapter 17: Compound Conditions
	Yes or No
	Task
	Solution
	Discussion

	Username and Password
	Task
	Solution
	Discussion

	Two Users
	Task
	Solution
	Discussion

	Precalculation of Conditions
	Task
	Solution
	Discussion

	Yes or No Reversed
	Task
	Solution
	Discussion

	Grade Check
	Task
	Solution

	Better Range Check
	Task
	Solution

	Summary

	Chapter 18: Multiple Conditions
	Soccer
	Task
	Analysis
	Solution

	Soccer Alternatively
	Analysis
	Solution

	Minimum of Three Numbers
	Task
	Analysis
	Solution

	Minimum with Built-in Function
	Solution

	Linear Equation
	Task
	Analysis
	Solution

	Quadratic Equation
	Task
	Analysis
	Solution
	Discussion
	Test


	Summary

	Chapter 19: Advanced Conditions
	Conditional Operator
	Task
	Solution
	Discussion
	The Program
	Terminology


	Summary Evaluation
	Task
	Details
	Solution
	Discussion
	Grade Inputs
	Program Termination
	Yes/No Input
	Beware of Integer Division!
	Decimal Arithmetic


	Second Character Test
	Task
	Solution
	Discussion
	Getting the Character
	Existence Test
	An Experiment


	Summary


	Part IV: Loops
	Chapter 20: First Loops
	Repeating the Same Text
	Task
	Solution
	Solution Using a Loop
	Solution
	How the for Loop Works
	The Loop
	Explore It Yourself
	Tip

	Choosing the Number of Repetitions
	Task
	Solution
	Discussion

	Throwing a Die Repeatedly
	Task
	Solution

	Repeating Similar Lines
	Task
	Solution Without a Loop
	Solution Using a Loop
	Discussion
	Control Variable
	The Loop Starts at 1


	Summary

	Chapter 21: Improving Loops
	Choosing Text
	Task
	Solution

	Alternating Loop
	Task
	First Solution
	Note

	Second Solution
	Notes

	Third Solution

	Rock-Scissors-Paper
	Task
	Solution
	Discussion

	Summary

	Chapter 22: Number Series
	Every Other
	Task
	Solution
	Discussion
	Alternative Solution

	Descending Series
	Task
	Solution
	Discussion

	Decimal Numbers
	Task
	Seemingly Correct Solution
	Testing
	The Cause of the Error
	Correct Solution

	Second Powers
	Task
	Solution

	Two in a Row
	Task
	Solution

	Two Independent Series
	Task
	Solution
	Discussion

	Summary

	Chapter 23: Unknown Number of Repetitions
	Entering a Password
	Task
	Solution
	do-while Construction
	This Case
	Variable Outside of the Loop
	Tip

	Waiting for Descend
	Task
	Solution
	Discussion

	Every Week Until the End of Year
	Task
	Solution

	As Long As the Number Six Is Being Thrown
	Task
	Solution

	Until the Second Six
	Task
	Solution

	Until Two Sixes in a Row
	Task
	Solution

	Summary

	Chapter 24: Accumulating Intermediate Results
	Sum of the Entered Numbers
	Task
	Solution

	Product of the Entered Numbers
	Task
	Solution
	Discussion

	The Greatest
	Task
	Solution

	The Second Greatest
	Task
	Solution

	Output of All Entered Names
	Task
	Solution
	Discussion

	Summary

	Chapter 25: Advanced Loops
	Thank God It’s Friday (TGIF)
	Task
	Solution
	Discussion
	While Loop
	This Case
	TimeSpan Object


	Power
	Task
	Solution

	Sine
	Task
	Analysis
	Infinite Series
	Series Members
	Factorial
	Power

	Solution
	Enhancement

	Moon Landing
	Task
	Physical Model
	Solution

	Summary
	Personal Notes
	Dice
	The Sine Task
	Moon Landing

	Concluding Wish


	Index



