
Introducing
.NET 6

Getting Started with Blazor, MAUI,
Windows App SDK, Desktop Development,
and Containers
—
Nico Vermeir

Introducing .NET 6
Getting Started with Blazor, MAUI,

Windows App SDK, Desktop
Development, and Containers

Nico Vermeir

Introducing .NET 6: Getting Started with Blazor, MAUI, Windows App SDK,
Desktop Development, and Containers

ISBN-13 (pbk): 978-1-4842-7318-0		 ISBN-13 (electronic): 978-1-4842-7319-7
https://doi.org/10.1007/978-1-4842-7319-7

Copyright © 2022 by Nico Vermeir

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page.

Printed on acid-free paper

Nico Vermeir
Merchtem, Belgium

https://doi.org/10.1007/978-1-4842-7319-7

iii

Chapter 1: �A Tour of .NET 6�� 1

.�NET 6��� 1

Version Support�� 2

Supported Versions�� 3

A Unified Platform�� 4

Roadmap�� 5

Supported Operating Systems��� 6

Command Line Interface�� 8

Desktop Development�� 12

Blazor��� 15

MAUI��� 17

Wrapping Up�� 20

Chapter 2: �Runtimes and Desktop Packs��� 21

.�NET 6 Architecture�� 21

Runtimes�� 22

CoreCLR�� 23

Mono��� 23

WinRT��� 24

Managed Execution Process�� 24

Desktop Packs��� 25

Wrapping Up�� 29

Table of Contents
About the Author�� ix

Acknowledgments�� xi

Introduction�� xiii

iv

Chapter 3: �Command Line Interface�� 31

Dotnet New�� 33

Dotnet Restore��� 38

NuGet.config��� 43

Dotnet Build��� 46

Dotnet Publish�� 52

Dotnet Run��� 56

Dotnet Test��� 58

Using the CLI in GitHub Actions�� 60

Other Commands��� 63

Wrapping Up�� 64

Chapter 4: �Desktop Development�� 65

WinAPI�� 66

WinForms��� 69

STAThread��� 71

WinForms Startup��� 72

The Message Loop��� 82

The Form Designer��� 82

WPF�� 91

WPF Startup�� 93

XAML Layout��� 95

Visual Tree�� 103

Data Binding��� 106

Windows App SDK�� 109

Building a Windows App SDK application��� 110

Using Windows APIs with Windows App SDK��� 113

Packaging��� 115

Migrating to .NET 6�� 119

Upgrade Assistant�� 122

Wrapping Up�� 123

Table of Contents

v

Chapter 5: �Blazor��� 125

Blazor WebAssembly�� 125

Creating a Blazor Wasm Project��� 126

Blazor Progressive Web Apps��� 127

Exploring the Blazor Client Project��� 129

Blazor in .NET 6�� 132

Blazor Component System��� 134

Creating Blazor Pages�� 136

Running a Blazor App��� 140

Blazor Server��� 144

SignalR��� 144

Blazor Desktop��� 148

Wrapping Up�� 152

Chapter 6: �MAUI��� 153

Project Structure�� 154

Exploring MAUI��� 156

The Cross-Platform World�� 159

Application Lifecycle�� 161

MVVM��� 164

MVVM Toolkit�� 170

Wrapping Up�� 176

Chapter 7: �ASP.NET Core�� 177

Model-View-Controller��� 177

Routing��� 185

Views�� 186

Controllers�� 189

Web API�� 200

Controller-Based APIs��� 201

Minimal APIs��� 215

Wrapping Up�� 219

Table of Contents

vi

Chapter 8: �Microsoft Azure�� 221

Web Apps��� 222

Creating an App Service��� 222

Static Web Apps��� 234

Web App for Containers��� 237

Docker�� 238

Azure Functions��� 245

Deploying Azure Functions��� 253

Wrapping Up�� 257

Chapter 9: �Application Architecture�� 259

Record Types�� 259

Monolith Architecture��� 263

Microservices��� 264

Container Orchestration��� 265

Kubernetes��� 265

Docker Compose�� 268

Dapr��� 270

Installing Dapr�� 270

Dapr State Management��� 272

Wrapping Up�� 273

Chapter 10: �.NET Compiler Platform�� 275

Roslyn�� 275

Compiler API��� 277

Diagnostic API��� 278

Scripting API��� 278

Workspace API�� 278

Syntax Tree��� 278

Roslyn SDK��� 279

Creating an Analyzer�� 282

Table of Contents

vii

Source Generators��� 285

Writing a Source Generator�� 285

Debugging Source Generators�� 293

Wrapping Up�� 295

Chapter 11: �Advanced .NET 6�� 297

Garbage Collector�� 297

The Heap�� 299

The Stack�� 300

Garbage Collection��� 300

A Look at the Threadpool��� 301

Async in .NET 6�� 304

Await/Async�� 304

Cancellations�� 308

WaitAsync��� 310

Conclusion��� 311

Index�� 313

Table of Contents

ix

About the Author

Nico Vermeir is a Microsoft MVP in the field of Windows

development. He works as an application architect

at Inetum-Realdolmen Belgium and spends a lot of

time keeping up with the rapidly changing world of

technology. He loves talking about and using the newest

and experimental technologies in the .NET stack. Nico

cofounded MADN, a user group focusing on building

modern applications in .NET. He regularly presents on the

topic of .NET at user groups and conferences.

In his free time, you can find him enjoying rides on his motorcycle, jamming on his

guitar, or having a beer with friends.

xi

Acknowledgments

Thank you to the great people at Apress for the support during the writing of this book.

Thank you Damien Foggon for the technical review; you’ve helped me grow as an

author and made this a better book.

A big thank you to the worldwide .NET community. Each and every one of you keeps

pushing me every day to grow as a developer, as a community member, and as a person.

xiii

Introduction

Welcome to .NET 6! A very exciting new release of Microsoft’s managed application

runtime and SDK. .NET 6 is a release that has been long in the making; it is the next

step in the one .NET dream. In this book, we will discover what .NET 6 has to offer; we

will learn about exciting updates on existing frameworks like WinForms and WPF and

discover new things like Minimal APIs.

We will start with a quick tour around .NET 6 in the first chapter, just to get a feel of

how big this .NET release really is. In the next chapter, we will go a bit more technical

and see what the different runtimes are and how a cross-platform framework like .NET

still manages to run native applications on Windows, mobile, and more. In Chapter 3,

we will go into the command line tooling; here we will discover that Visual Studio is not

performing any magic tricks, it’s just calling the CLI underneath. In Chapters 4–7, we

will learn about the different application frameworks .NET hosts, from native Windows

desktop to web applications with ASP.NET Core to cross-platform mobile applications.

From there, we cross over into the cloud and see Azure’s support for .NET 6. The final

three chapters are a bit more advanced; we go into application architecture and what

.NET 6 and C# 10 features help write better architectured code, and we take a look at the

compiler platform, or Roslyn. And finally we end on a chapter with some more advanced

topics like threading and async/await.

The book is written in a demo-based manner. Feel free to pull up your computer and

follow along while reading; all the steps are explained so that we can discover the topics

together.

Happy learning!

1
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_1

CHAPTER 1

A Tour of .NET 6
Welcome to .NET 6! An exciting new release of Microsoft’s popular framework. .NET 6

is the next big step in delivering the “one .NET” vision. The vision that would unify all of

.NET to have a single runtime for mobile, Web, IoT, games, and many more targets.

In this first chapter, we will look at the versioning of .NET, together with its support

timeframes and release schedule. We will go over the supported operating systems,

what it means to have a unified platform, and how to get started with .NET 6 using the

command line interface.

�.NET 6
The .NET framework has been around since the year 2000. Over the years, it has grown

into a very mature, popular framework that could target many platforms. However,

sharing code between those different platforms was not an easy task because of how

the .NET framework was built. With .NET Core, Microsoft wanted to start from a clean

slate using .NET Standard as a way to share code between the different platforms. They

took the API surface of the base class library and started implementing everything

anew, using modern techniques and APIs to improve performance of the framework.

.NET Standard was created as an interface. It exposed parts of the BCL API; .NET Core

is an implementation of that .NET Standard interface. Because .NET Standard was an

abstraction, we could create .NET Standard class libraries that could be referenced from

every type of platform, as long as they used the correct version of .NET Core. This quickly

became confusing as .NET Core 3 was using .NET Standard 2.1, but .NET Standard 1.6

was .NET Core 1.0. The next step in unifying all of .NET was taken with .NET 5. .NET 5,

which was actually .NET Core 4, was the release where .NET Core became the successor

of the classic .NET Framework. The final release of the classic .NET Framework is

4.8; from that moment on, .NET Core is the main branch of the framework. To avoid

confusion, later on .NET Core was renamed to simply .NET and the versioning of the

https://doi.org/10.1007/978-1-4842-7319-7_1#DOI

2

classic .NET framework was taken over, hence .NET 5. .NET Standard disappeared as

well; as of .NET 5, we just have .NET 5 class libraries and those are compatible with every

platform that is on .NET 5. .NET 6 is one of the final steps in unifying the platform as it

unifies Mono and .NET, fulfilling the “one .NET” dream.

So far we have spoken about .NET, .NET Core, and .NET Framework. This might get a

bit confusing, so here is how I will talk about the different types of .NET in this book:

•	 .NET: This is .NET 5, .NET 6, and future releases. It is the unified

release.

•	 .NET Core: This is the previous release that wasn’t .NET Framework.

•	 .NET Framework: The classic .NET framework that ended on

version 4.8.

�Version Support
First and foremost, .NET 6 is a Long Term Support release (LTS), meaning it will receive

updates for the coming 3 years (up until, and including, 2024). Non-LTS versions are

supported for 1 year, usually up to 3 months after the next LTS version release.

So how do we recognize LTS versions from non-LTS versions? Simple. Every odd

numbered release (.NET 5, .NET 7, etc.) will be a non-LTS release and every even

numbered release (.NET 6, .NET 8, etc.) will be an LTS release (Figure 1-1). The current

release cadence Microsoft has set for .NET is a new release every year around November.

This release cadence was introduced with .NET 5.

Figure 1-1.  Release timeline of .NET (Source: Microsoft)

Chapter 1 A Tour of .NET 6

3

Why is this important? If you’re starting a new software project, it’s important to

know that the underlying framework will not cause any security risks. No software is

bug-free, so bugs and security risks will show up over the lifetime of any software; .NET is

no exception. Writing your software using a version of .NET that will receive patches and

updates for the coming years ensures that vulnerabilities and bugs in the framework get

patched instead of potentially make your application crash, or vulnerable for attacks.

Does this mean that we can forget about the odd-numbered releases, since they are

only supported for about a year? Not necessarily, it all depends on the context around

the software you’re developing. If you’re building software that will still be in active

development by the time of the next .NET LTS release, it can easily be included in the

backlog to upgrade to the next version once it lands. If you’re building software that will

be delivered in the current non-LTS timeframe and there’s no maintenance planned on

the software, make sure your customer knows about the support. So, as usual it depends.

Luckily, upgrading to a next release usually isn’t very difficult. If you are in a consultant

role, set the correct expectations to your customer.

Tip  Do not jump on the latest version of .NET just because it’s the latest version,
be sure to check the support status, inform your customer when applicable, and
make a well-informed decision.

�Supported Versions
There are multiple versions of .NET under active support at any given time. Table 1-1

gives an overview of the support status of the more recent .NET versions.

Table 1-1.  An overview of .NET versions and their support status

Version Original release date Support level End of support

.NET 6 November 2021 LTS February 2025

.NET 5 November 2020 Non-LTS February 2022

.NET Core 3.1 December 2019 LTS December 2022

All details concerning support for .NET can be found in the official .NET Support Policy

found at https://dotnet.microsoft.com/platform/support/policy/dotnet-core.

Chapter 1 A Tour of .NET 6

https://dotnet.microsoft.com/platform/support/policy/dotnet-core

4

�A Unified Platform
From the very start, .NET Core was meant to be cross-platform and cross-idiom. Its

purpose was to bring a bunch of separate, .NET-based technologies together under one

umbrella. Before .NET Core, we could do different styles of apps, but not all of those were

part of .NET, for example, Mono, the open-source .NET implementation for Linux- and

Unix-based systems and Xamarin, the native mobile .NET solution built on Mono.

.NET Core 3 shifted the unification of .NET into high gear by adding Windows

Presentation Foundation (WPF) and Windows Forms (WinForms) support into the

framework. .NET 5 expanded on this work by adding Mono; the work on Mono brought

.NET into the WebAssembly world. Blazor WebAssembly was the first result of this

unification. With Blazor WebAssembly, we got native .NET running in the browser,

using Mono. More information on Blazor can be found in Chapter 5 of this book. .NET 6

delivers the fully realized unified vision by including Xamarin as a part of .NET instead of

a separate framework.

Figure 1-2.  .NET – a unified platform (Source: Microsoft)

Chapter 1 A Tour of .NET 6

5

Xamarin is no longer the mobile platform that happens to look like .NET. It’s now a

part of the framework, using .NET class libraries and .NET SDK tools to provide a great

developer experience. A quick example of this is being able to use dotnet new ios

or dotnet new android followed by dotnet build or dotnet run. As a result, you’ll

see a mobile project being created, compiled and running on either a physical device

or emulator. This is the result of work that started back in .NET 5, by bringing Mono

into .NET.

We’ll dive deeper into Xamarin in the MAUI chapter of this book.

�Roadmap
Microsoft made the decision to openly develop .NET, something they’ve done since .NET

Core. That means that the backlog for .NET 6, and future versions, is visible to everyone.

There’s even a Blazor-based web application that shows an overview of what’s proposed,

what’s in progress, and what’s been completed. The website can be found at https://

themesof.net/, and because everything happens out in the open, the Blazor web app’s

source code is available at https://github.com/terrajobst/themesof.net.

The .NET team uses GitHub and GitHub Issues, Boards, and Milestones to keep

track of their work. Although GitHub Issues is not very agile-friendly, especially when

compared to tools like Azure DevOps or Jira, they have identified four categories of

issues. Issues are categorized using labels. The four labels, as per their website, are as

follows:

	 1.	 Theme: A top-level/overarching objective that will span the

project leases. A theme will often have an associated document

describing those objectives.

	 2.	 Epic: This is a higher level grouping of related user stories; it can

span up to the entire release. For example, “Enterprises have a

first class experience acquiring and deploying .NET 6.0.”

Chapter 1 A Tour of .NET 6

https://themesof.net/
https://themesof.net/
https://github.com/terrajobst/themesof.net

6

	 3.	 User story: An explanation of the feature written from the

perspective of the end user. Its purpose is to articulate how

a software feature will provide value to the customer. Once

implemented, it will contribute value toward the overall epic. For

example, “As an IT Pro, I have easy access to .NET Core installer

release information and scripts in my air gapped environment so I

can use this to determine which updates need to be deployed.”

	 4.	 Issue: These are all other work items. These could be bugs,

features, or developer tasks. We leave it up to the engineering

team/area owner how and if they want to use these.

�Supported Operating Systems
Since .NET is a cross-platform framework, there are a multitude of operation systems

supported. Support ranges from Windows to Linux, macOS, Android, iOS, and

tvOS. Table 1-2 lists the different versions of Windows that support .NET 6.

Table 1-2.  Versions of Windows that support .NET 6

Operating system Version Architecture

Windows 7 SP1, 8.1 x64, x86

Windows 10 Version 1607+ x64, x86, ARM64

Windows 11 Version 22000+ x64, x86, ARM64

Windows Server 2012+ x64, x86

Windows Server Core 2012+ x64, x86

Nano Server Version 1809+ x64

Table 1-3 lists the supported Linux distributions with the supported versions and

architecture.

Chapter 1 A Tour of .NET 6

7

Table 1-3.  Linux versions that support .NET 6

Operating system Version Architecture

Alpine Linux 3.13+ x64, ARM64, ARM32

CentOS 7+ x64

Debian 10+ x64, x86, ARM64, ARM32

Fedora 33+ x64

openSUSE 15+ x64

Red Hat Enterprise Linux 7+ x64, ARM64

SUSE Enterprise Linux 12 SP2+ x64

Ubuntu 16.04, 18.04, 20.04+ x64, ARM64, ARM32

Table 1-4 lists the supported versions and architectures for macOS.

Table 1-4.  macOS versions that support .NET 6

Operating system Version Architecture

macOS 10.15+ x64, ARM64

Table 1-5 lists the supported versions and architectures for Android.

Table 1-5.  Android versions that support .NET 6

Operating system Version Architecture

Android API 21+ x64, ARM, ARM64

Table 1-6 lists the supported versions and architectures for iOS and tvOS.

Table 1-6.  iOS and tvOS versions that support .NET 6

Operating system Version Architecture

iOS 10.0+ x64, ARM, ARM64

tvOS 10.0+ x64, ARM, ARM64

Chapter 1 A Tour of .NET 6

8

The above tables list supported operating systems, versions, and architectures at the

time of writing. The most up-to-date version of this list for .NET 6 is available at https://

github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md.

�Command Line Interface
.NET ships with a powerful Command Line Interface (CLI) tooling system since .NET

Core. With the .NET command line, we can do things like creating a new project,

installing tools and templates, running tests, compiling, and much more. While most of

the CLI commands are rarely used manually, we can use them to script build and deploy

automation. Tools like Azure DevOps or GitHub actions have full support for these

commands.

The basic commands consist of:

•	 New

•	 Restore

•	 Build

•	 Publish

•	 Run

•	 Test

•	 Vstest

•	 Pack

•	 Migrate

•	 Clean

•	 Sln

•	 Help

•	 Store

Before we use the CLI, we have to install .NET 6 on our machine. If you have Visual

Studio 2022 installed, you might already have it up and running.

We can see what version of .NET we are currently running by opening up a

Powershell prompt and executing dotnet –-version.

Chapter 1 A Tour of .NET 6

https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md

9

Figure 1-3.  Current installed version of .NET

If you get another version, maybe from .NET 5, you can download the .NET 6

installer from https://dotnet.microsoft.com/download/dotnet/6.0. Make sure to

download and install the SDK to get the command line tooling.

Once .NET 6 is installed, we can see what project templates we have by executing

dotnet new. The tooling will list all available options if we don’t specify a specific

template as shown in Figure 1-4. The contents of this list depend of course on the

different workloads and templates you have installed on your system.

Figure 1-4.  Available project templates in dotnet new

Let’s try to create, build, and run a .NET 6 WinForms application without any help

from an IDE.

First we create the project by selecting the correct dotnet new template.

Chapter 1 A Tour of .NET 6

https://dotnet.microsoft.com/download/dotnet/6.0

10

Figure 1-5.  Creating a WinForms project through command line

This command created a WinForms project called DotnetSixWinForms in the current

directory. Just to verify that it really is a .NET 6 project, let’s have a look at the .csproj file.

Listing 1-1.  WinForms project file

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>WinExe</OutputType>

 <TargetFramework>net6.0-windows</TargetFramework>

 <Nullable>enable</Nullable>

 <UseWindowsForms>true</UseWindowsForms>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

</Project>

TargetFramework is set to net6.0-windows, so we’re running on .NET 6 using the

Windows compatibility pack. The compatibility packs are explained in more detail

in Chapter 2. For now it means that we are running on .NET 6 but referencing some

extra binaries so we can hook into the native Windows APIs, for example, to render

our application or access the filesystem. Next step, let’s build the project through

dotnet build.

Chapter 1 A Tour of .NET 6

11

Figure 1-6.  Building the project through the command line

I first made sure my command line was set in the directory where the .csproj or .sln

file lives. If this is the case, a simple dotnet build suffices. The tool looks for a .csproj

or .sln in its current directory and starts building it. What is happening right now is the

exact same thing that happens when we build a project in Visual Studio. We call the

.NET build system MSBuild and pass in parameters and a reference to a project, and it

will start building. Once it is done building, you will find the familiar bin and obj folders

in the project folder that you will also find after building from Visual Studio. There is no

extra magic happening in Visual Studio; it triggers the same command we just executed

manually.

As a final step, we execute dotnet run which will effectively build the project if

necessary and launch it, showing a blank WinForms page as shown in Figure 1-7.

Figure 1-7.  Running a WinForms application from the command line

Chapter 1 A Tour of .NET 6

12

We’ll get deeper into the command line in Chapter 3 of this book.

�Desktop Development
The desktop to this day remains a very important target for applications. Not every type

of application is suited to be a web application. That’s why Microsoft brought WPF and

WinForms back into active development with the release of .NET Core 3. Not only that,

but they are also expanding the possibilities for desktop developers.

Before they brought WPF and WinForms back, however, they were considered

legacy. It was time for a new modern desktop application framework. The Universal

Windows Platform saw the light of day years ago as the cross-device Windows app

framework. It promised a “build once, run everywhere” experience, and they mostly

delivered. But since UWP was mostly targeted at mobile experiences through Windows

on tablets and phones, it kept lacking in features to make it a true successor to

WPF. Today UWP has matured into a decent application framework that can deliver

modern, fast applications, but it still does not have all features WPF has.

To close this gap, Microsoft has introduced the Windows App SDK. The Windows

App SDK aims to bring all desktop development options closer together. The Windows

App SDK brings a set of Windows APIs that are decoupled from Windows itself. The

APIs are released via NuGet packages so that they can be updated out of band with the

operating system.

The Windows App SDK consists of a few parts. One of the major parts is WinUI 3.

WinUI 3 decouples the XAML-based UI controls of UWP from the framework and makes

them available as NuGet packages. This makes it possible for Microsoft to update their

control library apart from the operating system. It also makes it possible for application

developers to support newer UI features on older versions of Windows, without the need

of operating system upgrades.

Getting started with The Windows App SDK can be done in a few different ways,

which we’ll get deeper into in Chapter 4. The fastest way to get into Project Reunion is by

using the WinUI templates in Visual Studio.

Chapter 1 A Tour of .NET 6

13

Figure 1-8.  WinUI project templates

The Blank App, Packaged template creates a new UWP project, including a package

manifest for distribution through the Microsoft Store. Figure 1-9 shows the newly created

solution.

Figure 1-9.  A fresh WinUI project in Visual Studio

If you’ve ever built a UWP app, you might not see any difference at first sight.

However, under the hood all the XAML controls this app is using are coming from a

NuGet package, not from the UWP SDK like it used to. Have a look at the dependencies

shown in Figure 1-13.

Chapter 1 A Tour of .NET 6

14

Figure 1-10.  Dependencies for a WinUI project

Figure 1-10 shows that the Windows SDK is still referenced; we still need that for all

the system calls, like creating the app’s window and drawing everything on screen. The

controls however all come from the Microsoft.WindowsAppSDK NuGet package.

An easy way to discover all the controls available in WinUI is by browsing the

control gallery app available on the Windows Store www.microsoft.com/store/

productid/9P3JFPWWDZRC.

The source code of the gallery app is available at https://github.com/Microsoft/

Xaml-Controls-Gallery/.

Figure 1-11.  The WinUI 3 Control Gallery Sample app

Chapter 1 A Tour of .NET 6

http://www.microsoft.com/store/productid/9P3JFPWWDZRC
http://www.microsoft.com/store/productid/9P3JFPWWDZRC
https://github.com/Microsoft/Xaml-Controls-Gallery/
https://github.com/Microsoft/Xaml-Controls-Gallery/

15

The Control Gallery Sample App is not only a demo application, but it provides

XAML snippets and links to official documentation for every control in the toolkit.

Figure 1-12.  XAML snippets and links to documentation in the Control
Gallery app

�Blazor
Blazor is Microsoft’s answer to front-end web frameworks like Angular, Vue, and React.

Its main selling point is that you can write these web apps in C# rather than JavaScript.

You can still inject JavaScript and consume JavaScript libraries where you need to, but

everything can basically be done through C#.

Blazor currently comes in two flavors:

•	 Blazor Server

•	 Blazor WebAssembly

Blazor Server runs all its C# logic in an ASP.NET context on a webserver and

sends back the results. This is done through a SignalR connection instead of page

reloads like ASP.NET MVC. This version of Blazor was released in .NET Core 3. Blazor

WebAssembly was released in the .NET 5 timeframe. It runs all of its C# logic in the

browser, not through some form of C# to JavaScript transpiling but through the magic of

WebAssembly.

Chapter 1 A Tour of .NET 6

16

WebAssembly (abbreviated Wasm) is a binary instruction format for a
stack-based virtual machine. Wasm is designed as a portable compilation
target for programming languages, enabling deployment on the web for
client and server applications.

Source: https://webassembly.org

Like the official description says, Wasm is a virtual execution environment in your

browser. Wasm is an official W3C spec https://www.w3.org/wasm/.

Since Wasm is an environment that runs native code, Microsoft was able to get a

version of .NET running inside of Wasm. With this, Blazor Wasm was born.

.NET 6 brings Blazor to the desktop. With Blazor Desktop, we can build hybrid

applications, parts can be native UI, and parts can be web UI. It’s not unlike Electron,

but it differs in that applications can actually be, for example, part WPF and part web.

Figure 1-13 shows a Blazor Desktop application that mixes native WPF controls with a

Blazor Web Component.

Figure 1-13.  Mixing WPF UI with Blazor Web Components (Source: Microsoft)

As you can see in Figure 1-13, Blazor Desktop goes beyond just mixing two UI

stacks. The data is shared between them. The counter increment button is web UI, while

the button to see the counter value and the message box showing the value are both

Chapter 1 A Tour of .NET 6

https://webassembly.org
https://www.w3.org/wasm/

17

native Windows UI through WPF. This enables a very interesting scenario where parts

of a web application can be refactored into web components to be used on both a web

application and a native application.

We’ll learn more about Blazor in Chapter 5 of this book.

�MAUI
WPF, WinForms, and the Windows App SDK are all tightly coupled to Windows. A more

cross-platform solution from Microsoft is called the .NET Multi-Platform App UI. The

.NET Multi-Platform App UI, MAUI for short, is one of the biggest new parts in .NET 6. It

basically is the new version of Xamarin Forms, but it’s more than that. MAUI brings an

entire new project system, no longer fiddling around with at least three projects in your

mobile app solution. One project that contains all your mobile heads, assets, and shared

code. Everything together in one .NET project.

Figure 1-14.  Single project for iOS, Android, and Mac Catalyst

MAUI no longer focuses solely on mobile either; it’s now a full-fledged solution for

building cross-platform, cross-idiom applications. Xamarin Forms has had support for

UWP for quite some time, but it was never an important part of the framework, which

resulted in a poor developer and user experience. With MAUI we can target Android,

iOS, macOS, and Windows. All as first-class citizens. For Windows, this means improved

UWP support, by leveraging the Windows App SDK.

Chapter 1 A Tour of .NET 6

18

As for XAML flavor, if you’re building a cross-platform application with MAUI,

you’ll be using the same flavor of XAML you’re used to from Xamarin Forms. As for

macOS, Xamarin Forms has support for macOS through AppKit bindings; that support is

still there.

Apple is now taking a different route for macOS development and has introduced

Mac Catalyst, a framework that enables developers to build macOS desktop applications

with UIKit. MAUI includes bindings for both AppKit and Mac Catalyst to suit every

developer’s needs. However, since Mac Catalyst is the default for Apple, MAUI also takes

this as the default framework for macOS-based applications.

Getting a Xamarin Forms installation up and running has been notoriously hard so

far. It’s one of the most heard complaints from developers trying to get into Xamarin.

You’d need to install Visual Studio with the correct mobile workload and install the

correct UWP SDK versions, Android SDK version, and iOS SDK versions. Next to that,

if you want to build iOS apps on Windows, you’ll need a mac with the correct version

of Visual Studio for Mac, Mono, and iOS SDK installed. With .NET 6 comes a tool that

can check your system for MAUI compatibility and install all missing pieces for you.

In pure .NET fashion, it’s a command line tool that you can install through the dotnet

command line.

To install:

dotnet tool install -g Redth.Net.Maui.Check

To Run:

maui-check

Running the tool will launch it in a new CLI window.

Chapter 1 A Tour of .NET 6

19

Figure 1-15.  Maui-check checking for JDK, VS2022, and Android SDKs

The tool is community supported and open source; the source can be found at

https://github.com/Redth/dotnet-maui-check.

Maui-check looks for:

•	 OpenJdk/AndroidSDK

•	 .NET 6 SDK

•	 .NET MAUI/iOS/Android workloads and packs

•	 .NET MAUI Templates

•	 Workload Resolver .sentinel files for .NET and Visual Studio

Windows/Mac

We’ll dive deeper into MAUI in Chapter 6 of this book.

Chapter 1 A Tour of .NET 6

https://github.com/Redth/dotnet-maui-check

20

�Wrapping Up
In this introductory chapter, we reviewed .NET roadmap and its history. I hope this

chapter gave you a sense of what .NET 6 is about and made you eager to dive deeper

into the latest release of .NET. The different concepts that we have touched upon in

this chapter will be explored further in the rest of the book. We will take a closer look at

.NET tooling with the command line interface; we will explore desktop development in

WPF, WinForms, and the Windows App SDK. We will learn about building powerful web

applications that run on the client with Blazor and how to build cross-platform mobile

apps with MAUI.

While not an exhaustive list of everything .NET 6 offers, we have selected the most

important parts of .NET 6. .NET 6 is a big and important release; it brings a plethora of

new features and new paradigms to the framework. Consequent chapters in this book

will cover many of those and go into much more detail. Before we dive into all the feature

goodness, let’s take a look under the hood in Chapter 2 and explore the various runtimes

and extensibility packs.

Chapter 1 A Tour of .NET 6

21
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_2

CHAPTER 2

Runtimes and Desktop
Packs
.NET 6 runs everywhere, from Windows to the Web, Linux, and mobile and embedded

devices. But how? How do they manage to get the same code to run and behave in

(mostly) the same way not only across platforms but also across CPU architectures? The

secret is in the underlying architecture of .NET 6.

There have been numerous iterations in Microsoft’s cross-platform strategy. We’ve

seen shared projects in Xamarin, where the code gets compiled into each platform;

we have had portable class libraries where the libraries supported the lowest common

denominator of all the selected platforms and more recently we had .NET Standard

libraries. But why all these different approaches? It’s actually quite simple. .NET on one

platform was not exactly the same as .NET on another platform. We’ve had .NET, Mono,

.NET Compact Framework, .NET Micro Framework, etc.

Fixing the splintering of .NET versions was one of the core promises of .NET Core;

it took a bit longer than expected but we are finally getting really close to one .NET. No

matter what platform you are running on, if your application is running on .NET 6, you

can use .NET 6 class libraries and share them over all supported platforms.

�.NET 6 Architecture
A very big step on the road to .NET unification was taken in .NET 5, by closing a big gap

in missing APIs compared to the classic .NET Framework Microsoft that was able to

serve the .NET API surface as an abstraction layer. This means that, as developers, we

don’t have to worry about what platform we’re running on or if certain .NET features will

work or even compile on the platform we’re running on. Figure 2-1 shows Microsoft’s

view on .NET architecture.

https://doi.org/10.1007/978-1-4842-7319-7_2#DOI

22

Figure 2-1.  .NET unification

What the image portraits is the .NET abstraction layer. We write the same .NET code

everywhere, but depending on the compile target, a different compiler will be used.

When executing a .NET application, a different runtime may be used depending on the

platform it is being executed on. Let’s take a command line application, for example, a

command line has no UI so no platform-specific code to render screens is necessary,

meaning that the same CLI application can run on Windows, Linux, and macOS. When

compiling this application, the default .NET 6 compiler will be used, resulting in one

executable. Running this executable on Windows will be handled by the common

language runtime, CoreCLR. On macOS and Linux, however, this will be handled by

Mono, completely transparent to developers and users.

�Runtimes
The .NET languages are managed languages, meaning that code you write in C#

gets compiled down to intermediate language. Once your code gets executed, that

intermediate language is compiled into machine code by the just in time compiler, or

JIT. That JIT is part of the common language runtime, or CLR.

Chapter 2 Runtimes and Desktop Packs

23

When writing .NET code, we don’t program against an operating system; the system

APIs in C# don’t target Windows/Linux/macOS directly; instead, they target the API

surface of the common language runtime called CoreFX. CoreFX is the newer name of

what used to be the Base Class Library or BCL. It includes the System.* namespaces that

we use all the time to call platform or framework APIs. The CLR calls into the operating

system’s APIs via CoreFX to perform the tasks requested by the developer. In this way,

the CLR functions as an abstraction layer, enabling cross-platform code.

The CLR also gives us memory management, keeping track of objects in memory

and releasing them when they are no longer needed. This garbage collection is part of

the runtime and is what makes .NET languages managed, compared to unmanaged

languages like C and C++ where you must do your own memory management.

.NET 6 contains two default runtimes. Depending on the platform you are running

your code on, it will be executed by either CoreCLR or Mono.

The .NET 6 runtimes are open source and available at

https://github.com/dotnet/runtime.

�CoreCLR
The CoreCLR is the .NET 6 version of the classic CLR. It is the common language runtime

used for running .NET code on Windows. No matter if it is a desktop application, web

application, or console app, if any of these run on Windows, they will use the CoreCLR.

�Mono
Mono started as an open-source project to bring .NET and its languages to Linux. Mono

was based on the publication of the .NET open standard. The first version of Mono

was released in 2004. The maintainers of the Mono open-source project were a small

company called Ximian. Ximian and thus Mono were acquired by Novell, Novell was

acquired by Attachmate, and the future of Mono seemed very dark. Some people from

Ximian formed a new company called Xamarin. Xamarin continued the work on Mono,

eventually releasing a mobile cross-platform framework based on Mono. Microsoft

became the owner of the Mono project after acquiring Xamarin in 2016.

Mono currently ships as part of .NET 6; it is the default runtime when not running on

a Windows-based operating system.

Chapter 2 Runtimes and Desktop Packs

https://github.com/dotnet/runtime

24

�WinRT
The Windows Runtime, or WinRT, is the runtime used for Universal Windows Platform

Applications, or UWP. UWP was originally meant to deliver a “build once, run on all

Windows 10 devices.” These devices included computers, tablets, smartphones, Xbox,

Hololens, and embedded devices. WinRT applications can be built using C# or C++ and

XAML. WinRT is not a runtime in the strict sense of the word. It’s more like an interface

on top of the Win32 API.

�Managed Execution Process
The managed execution process is the process that is followed to get from code to a

running application. It consists of three steps.

First step is compiling to the Microsoft Intermediate Language, or MSIL. For this,

we will need a compiler that can compile the language we’re writing our code in to

intermediate language.

The second step is compiling the MSIL code into native code. There are two ways to

do this.

The first one is using the Just-In-Time, or JIT compiler. The JIT compiler is supplied

by the runtime, making JIT compilation possible on different architectures and

operating system. If there is a .NET runtime on the platform, there is a JIT compiler. JIT

compilation is not a one-shot process; it happens continuously as your application is

being used; this is by design to keep in mind that not all code in the MSIL will end up

being called. By JIT compiling on the go, the runtime limits the number of resources your

application is using. Once a piece of MSIL is compiled into native code, it is stored in

memory and does not need to recompile if the application is running.

Figure 2-2.  Managed execution process

Chapter 2 Runtimes and Desktop Packs

25

The second way to compile MSIL into native code is doing it ahead of time (AOT)

using .NET’s ahead-of-time compiler called CoreRT. Ahead of time compilation means

that the full set of MSIL instructions get translated into native code before anything

is being executed, usually during installation of software. In .NET AOT compilation is

handled by a tool called the native image generator, or Ngen. Ngen compiles all MSIL

in an assembly into native code; that native code gets persisted on disk so that when a

user launched your application, there is no more JIT compilation, resulting in a faster

application.

An important step in the compilation step of the managed execution process for

both JIT and AOT is code verification. Code verifications makes sure that the code being

compiled into native is safe; it protects the system from malicious behavior in software.

The compiler takes the MSIL and treats it as unsafe by default. It will verify that the MSIL

was correctly generated, that no memory locations can be accessed that shouldn’t be

accessed, that all type references are compatible, and so on. Note that this verification

can be disabled by system administrator.

The final step in the managed execution process is running the code. This is where

the operating system takes the native code, either from the AOT compiler or from the

JIT compiler, and executes the instructions. While the application is being executed, the

runtime will trigger services like garbage collection, code verification, and so on.

�Desktop Packs
.NET 6 furthers Microsoft’s cross-platform, open-source journey that they started in

2014. While it all started with cloud and Web, we now have support for Windows desktop

applications written in WPF or WinForms. But since Windows is not cross-platform

and both WinForms and WPF are too integrated in Windows to make it cross-platform,

there had to be a solution to make those frameworks work while still maintaining the

Figure 2-3.  Ahead-of-time compilation

Chapter 2 Runtimes and Desktop Packs

26

cross-platform mindset. To get the Windows only assemblies into the framework, they

would have to either make .NET tied into one operating system again, or make different

flavors of .NET, or put those assemblies into packs that can be optionally added to an

application. That third option is exactly what they did. Figure 2-2 shows how the .NET 6

architecture is layered to have a common base library called CoreFX but can still have

specific targets.

On the image we can clearly see that .NET is still very much cross-platform, but

should we want to add Windows-only code, for example, we can by referencing a specific

.NET implementation through a Target Framework Moniker, or TFM.

Listing 2-1 shows setting the Target Framework Moniker or TFM to .NET 6 with

Windows support and the UseWPF tag in the csproj file that adds support for WPF in a

.NET 6 project.

Listing 2-1.  Adding WPF support

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>WinExe</OutputType>

 <TargetFramework>net6.0-windows</TargetFramework>

 <Nullable>enable</Nullable>

 <UseWPF>true</UseWPF>

 </PropertyGroup>

</Project>

Figure 2-4.  .NET 6 layered architecture

Chapter 2 Runtimes and Desktop Packs

27

For comparison, Listing 2-2 shows the project file for a .NET 6 WinForms project.

Listing 2-2.  Adding WinForms support

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>WinExe</OutputType>

 <TargetFramework>net6.0-windows</TargetFramework>

 <UseWindowsForms>true</UseWindowsForms>

 </PropertyGroup>

</Project>

The default TFM for .NET 6 is net6.0. Referencing that TFM means you will get

access to all the common, cross-platform APIs. However, should you have the need to

have platform-specific APIs, like, for example, the notification system on Android or

iOS, you can use OS-specific Target Framework Monikers. In general if you are building

a class library or an ASP.NET project, net6.0 should suffice. For other types of projects,

.NET 6 includes the following TFMs:

•	 net6.0

•	 net6.0-Android

•	 net6.0-ios

•	 net6.0-macos

•	 net6.0-maccatalyst

•	 net6.0-tvos

•	 net6.0-Windows

Creating a new WPF or WinForms project will automatically set the TFM to

net6.0-windows.

The WPF and WinForms project templates include a reference to Microsoft.

WindowsDesktop.App.WPF or Microsoft.WindowsDesktop.App.WinForms. These are

called Desktop Packs.

Chapter 2 Runtimes and Desktop Packs

28

In the solution explorer, you can find the desktop pack under Dependencies,

Frameworks, as shown in Figure 2-3.

Figure 2-5.  The WPF Desktop pack

Chapter 2 Runtimes and Desktop Packs

29

While the net6.0-windows TFM is sufficient to get access to the native Windows

APIs, it does not contain the specific logic to render WinForms via GDI+ or WPF via

DirectX. That logic is contained in the desktop packs. We go over how WinForms and

WPF work in more detail in Chapter 4 of this book.

�Wrapping Up
While .NET 6 is an easy-to-use and very developer-friendly framework, there is a

lot going on under the hood. It has a layered architecture with several runtimes, a

complex three-step compilation process, and even different ways of compiling. All of

this complexity is hidden pretty well for us developers; we don’t have to worry that

our application will select the Mono runtime on Linux; that is all taken care of for us.

However, it is still important to have an idea of what is going on under the hood.

Besides making .NET easy to use, Microsoft had a big challenge with maintaining the

cross-platform dream while still being able to provide access to platform-native APIs.

Not only for new applications written in new technologies but also for more mature

frameworks like WPF and WinForms. Multiple extensions of .NET 6 were created to solve

this. We can use these extensions by targeting the correct Target Framework Moniker.

Add the desktop packs to this and the cross-platform, native story with full legacy

support is complete.

Chapter 2 Runtimes and Desktop Packs

31
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_3

CHAPTER 3

Command Line Interface
.NET 6 ships with an extensive set of command line interface (CLI) tools. The toolset

allows us to develop, build, run, test, and execute .NET applications on multiple

platforms. The .NET 6 CLI ships as part of the .NET 6 SDK.

In this chapter, we will go over the most commonly used commands in the CLI. We

will learn about creating projects, restoring dependencies, and even compiling and

deploying applications. You will see that what we do from Visual Studio is not magic of

the editor but it just triggers these command line tools.

Table 3-1 shows an overview of the basic commands included with the .NET 6

CLI. The complete CLI documentation can be found at https://docs.microsoft.com/

en-us/dotnet/core/tools/.

https://doi.org/10.1007/978-1-4842-7319-7_3#DOI
https://docs.microsoft.com/en-us/dotnet/core/tools/
https://docs.microsoft.com/en-us/dotnet/core/tools/

32

Table 3-1.  Basic CLI commands

Command Explanation

New Create a new project using a project template

Restore Restore dependencies to the project

Build Compile the project

Publish Outputs the binaries of an application to a folder for deployment

Run Execute the application

Test Run automated tests included in the project

Vstest Superseded by test

Pack Packages the project as a NuGet package

Migrate Migrates old .NET Core 2 projects to newer SDK-style projects

Clean Cleans project output

Sln Lists or modifies the project in a solution

Help Shows more information on a command

Store Deploys assemblies to the runtime package store

Besides basic commands, there are also commands that can directly modify a

project. Table 3-2 lists the project modification commands.

Table 3-2.  Project modification commands

Command Explanation

Add package Adds NuGet package to the project

Add reference Adds project reference to the project

Remove package Removes NuGet package from the project

Remove reference Removes project reference from the project

List reference Lists project references

We also have some more advanced commands at our disposal. Table 3-3 lists the

advanced commands with a short description.

Chapter 3 Command Line Interface

33

Table 3-3.  Advanced .NET CLI commands

Command Explanation

Nuget delete Deletes or unlists a package from a NuGet server

Nuget locals Clears or lists local NuGet resources

Nuget push Pushes a package to a NuGet server and lists it

Msbuild Builds a project and all dependencies

The .NET CLI manages more than just projects. We can use it to install extra tools; an

example of this is shown in Chapter 6 with maui-check, which is a tool that verifies that

everything is installed correctly to start doing mobile development with .NET. Table 3-4

shows the available commands to manage tools in .NET.

Table 3-4.  Commands for .NET tools

Command Explanation

Tool install Installs a .NET tool

Tool list Lists all installed tools

Tool update Updates a tool to the latest version

Tool restore Installs all tools referenced in a manifest file

Tool run Runs a tool

Tool uninstall Removes a tool from the system

�Dotnet New
The dotnet new command can create a new project, configuration file or solution, based

on a template.

Listing 3-1 shows the help for the command as a reference.

Chapter 3 Command Line Interface

34

Listing 3-1.  Help page for dotnet new

dotnet new --help

Usage: new [options]

Options:

 -h, --help Displays help for this command.

 -l, --list <PARTIAL_NAME> �Lists templates containing the specified

template name. If no name is specified, lists

all templates.

 -n, --name �The name for the output being created. If no

name is specified, the name of the output

directory is used.

 -o, --output Location to place the generated output.

 -i, --install Installs a source or a template package.

 -u, --uninstall Uninstalls a source or a template package.

 --interactive �Allows the internal dotnet restore command to

stop and wait for user input or action (e.g.,

to complete authentication).

 --add-source, --nuget-source �Specifies a NuGet source to use during

install.

 --type �Filters templates based on available types.

Predefined values are "project" and "item".

 --dry-run �Displays a summary of what would happen if

the given command line were run if it would

result in a template creation.

 --force �Forces content to be generated even if it

would change existing files.

 -lang, --language �Filters templates based on language and

specifies the language of the template

to create.

 --update-check �Check the currently installed template

packages for updates.

 --update-apply �Check the currently installed template

packages for update, and install the updates.

 --search <PARTIAL_NAME> �Searches for the templates on NuGet.org.

Chapter 3 Command Line Interface

35

 --author <Author> �Filters the templates based on the template

author. Applicable only with --search or

--list | -l option.

 --package <PACKAGE> �Filters the templates based on NuGet package

ID. Applies to --search.

 --columns <COLUMNS_LIST> �Comma separated list of columns to display in

--list and --search output.

 �The supported columns are language, tags,

author, type.

 --columns-all �Display all columns in --list and

--search output.

 --tag <TAG> �Filters the templates based on the tag.

Applies to --search and --list.

 --no-update-check �Disables checking for the template package

updates when instantiating a template.

Help can also be requested per project type. Listing 3-2 shows the output for dotnet

new wpf –help, for example.

Listing 3-2.  Help for WPF

WPF Application (C#)

Author: Microsoft

Description: A project for creating a .NET WPF Application

Options:

 -f|--framework The target framework for the project.

 netcoreapp3.0 - Target netcoreapp3.0

 netcoreapp3.1 - Target netcoreapp3.1

 net5.0 - Target net5.0

 net6.0 - Target net6.0

 Default: net6.0

 --langVersion Sets langVersion in the created project file

 text - Optional

Chapter 3 Command Line Interface

36

 --no-restore �If specified, skips the automatic restore of the project

on create.

 bool - Optional

 Default: false

 --nullable �Whether to enable nullable reference types for this project.

 bool - Optional

 Default: true

WPF is one of the available templates in .NET 6. For a complete list of all available

templates on your machine, you can run dotnet new --list or dotnet new -l.

Figure 3-1.  List of installed templates

Chapter 3 Command Line Interface

37

This list can be extended by installing other templates, either manually or through

the command line. Third parties can provide their own templates as well. Let’s say, for

example, we want to create an Uno app through the command line (https://platform.

uno/). I have the Uno SDK installed on my machine, but not the dotnet new templates.

According to their docs, I can create a new Uno project using dotnet new unoapp.

Figure 3-1 shows the result.

Figure 3-2.  Trying to create a new project without template

Looking at the documentation for dotnet new, we can see that there’s an --install flag

that “Installs a source or a template pack.” From the Uno docs, we can find a command to

download and install their template pack. Figure 3-2 shows the templates after installing.

Figure 3-3.  Output after installing the Uno templates

Let’s try the dotnet new command again.

Figure 3-4.  Successfully created a new Uno project through the command line

Chapter 3 Command Line Interface

https://platform.uno/
https://platform.uno/

38

Since the templates have been installed on my machine, dotnet new knows what to

do. It inflates the template into a new project and puts it in the directory my command

line is currently set in. the -o parameter stands for Output; dotnet new will use this as the

name for both the folder and the project it’s creating.

Templates are distributed using NuGet infrastructure and thus are packaged

as NuGet packages. The default install location of these templates on Windows is

%USERPROFILE%\.templateengine\dotnetcli\.

An interesting option in dotnet new is the dry-run option. Figure 3-4 shows the

output if we try to create a new WPF project with the --dry-run flag.

Figure 3-5.  Dry-run output

Dry-run lists all the actions that would have happened if the command was run

without --dry-run. It didn’t actually do anything; the command just lists what would

have happened.

Creating new projects through inflating a template is handled by a component called

the .NET Core Templating Engine. It’s an open source piece of software, available at

https://github.com/dotnet/templating.

�Dotnet Restore
The dotnet restore command restores dependencies and tools of a project. It uses the

information in the project’s projectfile (*.csproj in case of a C#-based project). This

command usually does not need to be executed explicitly; it gets triggered from the

following:

Chapter 3 Command Line Interface

https://github.com/dotnet/templating

39

•	 dotnet new

•	 dotnet build

•	 dotnet build server

•	 dotnet run

•	 dotnet test

•	 dotnet publish

•	 dotnet pack

Should you still want to do dotnet restore manually for whatever reason, you can

stop it being called from the above commands by using the --no-restore option like so:

Listing 3-3.  Creating a new project without restoring packages

dotnet new wpf -o WpfDemo --no-restore

Being able to prevent package restore and call it whenever we need it gives us the

flexibility needed to setup a fine-grained build pipeline. More on build and release

pipelines further in this chapter.

Listing 3-4 shows the help on dotnet restore.

Listing 3-4.  dotnet restore help

Usage:

 dotnet [options] restore [<PROJECT | SOLUTION>...]

Arguments:

 �<PROJECT | SOLUTION> The project or solution file to operate on. If a file

is not specified, the command will search the current directory for one.

Options:

 -s, --source <SOURCE> �The NuGet package source to use for

the restore.

 --packages <PACKAGES_DIR> The directory to restore packages to.

 --use-current-runtime �Use current runtime as the target

runtime.

 --disable-parallel �Prevent restoring multiple projects

in parallel.

Chapter 3 Command Line Interface

40

 --configfile <FILE> The NuGet configuration file to use.

 --no-cache �Do not cache packages and http

requests.

 --ignore-failed-sources �Treat package source failures as

warnings.

 -f, --force �Force all dependencies to be resolved

even if the last restore was

successful.

 �This is equivalent to deleting

project.assets.json.

 -r, --runtime <RUNTIME_IDENTIFIER> �The target runtime to restore

packages for.

 --no-dependencies �Do not restore project-to-project

references and only restore the

specified project.

 -v, --verbosity <LEVEL> �Set the MSBuild verbosity level.

Allowed values are q[uiet],

m[inimal], n[ormal], d[etailed], and

diag[nostic].

 --interactive �Allows the command to stop and wait

for user input or action (e.g., to

complete authentication).

 --use-lock-file �Enables project lock file to be

generated and used with restore.

 --locked-mode �Don't allow updating project

lock file.

 --lock-file-path <LOCK_FILE_PATH> �Output location where project lock

file is written. By default, this is

'PROJECT_ROOT\packages.lock.json'.

 --force-evaluate �Forces restore to reevaluate all

dependencies even if a lock file

already exists.

 -?, -h, --help Show command line help.

Chapter 3 Command Line Interface

41

Dotnet restore needs a project to restore; it either finds this implicitly in the folder

the command line is currently set in, through a project path can be passed explicitly or

through a solution file.

Before we can build an application, we first need to do a dotnet restore. This will

generate a project.assets.json file that dotnet build needs. That file contains a complete

configuration for dotnet build; it configures project path and name, referenced libraries,

target frameworks, and so on. Listing 3-5 shows an example of the project.assets.json.

Listing 3-5.  project.assets.json example

{

 "version": 3,

 "targets": {

 "net6.0": {}

 },

 "libraries": {},

 "projectFileDependencyGroups": {

 "net6.0": []

 },

 "packageFolders": {

 "C:\\Users\\myUser\\.nuget\\packages\\": {},

 �"C:\\Program Files (x86)\\Microsoft Visual Studio\\Shared\\

NuGetPackages": {},

 "C:\\Program Files (x86)\\Microsoft\\Xamarin\\NuGet\\": {},

 "C:\\Program Files\\dotnet\\sdk\\NuGetFallbackFolder": {}

 },

 "project": {

 "version": "1.0.0",

 "restore": {

 �"projectUniqueName": "C:\\Projects\\Apress\\cli\\CliDemo\\CliDemo.

csproj",

 "projectName": "CliDemo",

 "projectPath": "C:\\Projects\\Apress\\cli\\CliDemo\\CliDemo.csproj",

 "packagesPath": "C:\\Users\\myUser\\.nuget\\packages\\",

 "outputPath": "C:\\Projects\\Apress\\cli\\CliDemo\\obj\\",

 "projectStyle": "PackageReference",

Chapter 3 Command Line Interface

42

 "fallbackFolders": [

 �"C:\\Program Files (x86)\\Microsoft Visual Studio\\Shared\\

NuGetPackages",

 "C:\\Program Files (x86)\\Microsoft\\Xamarin\\NuGet\\",

 "C:\\Program Files\\dotnet\\sdk\\NuGetFallbackFolder"

],

 "configFilePaths": [

 "C:\\Users\\myUser\\AppData\\Roaming\\NuGet\\NuGet.Config",

 �"C:\\Program Files (x86)\\NuGet\\Config\\Microsoft.VisualStudio.

FallbackLocation.config",

 �"C:\\Program Files (x86)\\NuGet\\Config\\Microsoft.VisualStudio.

Offline.config",

 "C:\\Program Files (x86)\\NuGet\\Config\\Xamarin.Offline.config"

],

 "originalTargetFrameworks": [

 "net6.0"

],

 "sources": {

 "C:\\Program Files (x86)\\Microsoft SDKs\\NuGetPackages\\": {},

 "https://api.nuget.org/v3/index.json": {}

 },

 "frameworks": {

 "net6.0": {

 "targetAlias": "net6.0",

 "projectReferences": {}

 }

 },

 "warningProperties": {

 "warnAsError": [

 "NU1605"

]

 }

 },

 "frameworks": {

 "net6.0": {

 "targetAlias": "net6.0",

Chapter 3 Command Line Interface

43

 "imports": [

 "net48"

],

 "assetTargetFallback": true,

 "warn": true,

 "frameworkReferences": {

 "Microsoft.NETCore.App": {

 "privateAssets": "all"

 }

 },

 �"runtimeIdentifierGraphPath": "C:\\Program Files\\dotnet\\

sdk\\6.0.100\\RuntimeIdentifierGraph.json"

 }

 }

 }

}

You can find this file in your project’s obj folder after dotnet restore should you want

to take a look.

�NuGet.config
Dotnet restore can take a nuget.config file into account. A nuget.config file can set

different settings per project; it’s an XML file with one <configuration> top-level node.

Listing 3-6 shows an example of a nuget.config file.

Listing 3-6.  nuget.config example

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <config>

 <!-- Set default install location for packages -->

 <add key="repositoryPath" value="%HOME%/Packages" />

 </config>

Chapter 3 Command Line Interface

44

 <packageRestore>

 <add key="enabled" value="True" />

 <add key="automatic" value="True" />

 </packageRestore>

 <!-- Specify package sources used for this project -->

 <packageSources>

 �<add key="NuGet official package source" value="https://api.nuget.

org/v3/index.json" />

 </packageSources>

 <!-- Set Microsoft as trusted signer -->

 <trustedSigners>

 <author name="microsoft">

 �<certificate fingerprint="3F9001EA83C560D712C24CF213C3D31

2CB3BFF51EE89435D3430BD06B5D0EECE" hashAlgorithm="SHA256"

allowUntrustedRoot="false" />

 �<certificate fingerprint="AA12DA22A49BCE7D5C1AE64CC1F3D89

2F150DA76140F210ABD2CBFFCA2C18A27" hashAlgorithm="SHA256"

allowUntrustedRoot="false" />

 </author>

 �<repository name="nuget.org" serviceIndex="https://api.nuget.org/

v3/index.json">

 �<certificate fingerprint="0E5F38F57DC1BCC806D8494F4F90FBC

EDD988B46760709CBEEC6F4219AA6157D" hashAlgorithm="SHA256"

allowUntrustedRoot="false" />

 �<certificate fingerprint="5A2901D6ADA3D18260B9C6DFE2133C9

5D74B9EEF6AE0E5DC334C8454D1477DF4" hashAlgorithm="SHA256"

allowUntrustedRoot="false" />

 <owners>microsoft;aspnet;nuget</owners>

 </repository>

 </trustedSigners>

</configuration>

Chapter 3 Command Line Interface

45

The config file can contain a config section with:

•	 dependencyVersion

•	 globalPackagesFolder

•	 repositoryPath

•	 defaultPushSource

•	 proxy settings

•	 http_proxy

•	 http_proxy.user

•	 http_proxy.password

•	 no_proxy

•	 signatureValidationMode

The config file can also control binding redirects. Binding redirects trick .NET

into believing an assembly is actually another one, for example, if one specific NuGet

package needs an older version of another package, we can trick the compiler into

thinking package v3.5 is actually package v2.0. NuGet can set those redirects in your

projects automatically. We can control this behavior through the <bindingRedirects>

section.

NuGet.config can contain instructions on automatic restore of packages during

builds; this is enabled by default but can be disabled by setting automatic to false in the

<packageRestore> section.

If the nuget.config file is at solution level of a code base, we can control

whether or not the packages themselves are included in source control by setting

disableSourceControlIntegration in the <solution> section.

Probably the most used section in nuget.config is the <packageSources> section.

This is used to add extra package sources where NuGet can look for packages, besides

nuget.org. It can come in handy if you have an own private package feed, for example,

Azure DevOps Artifact Feeds. Should one of those feeds need credentials, you can

set those through <packageSourceCredentials> or through API keys via <apikeys>.

Besides explicitly defining package sources, we can also explicitly disable them through

<disabledPackageSource>.

Chapter 3 Command Line Interface

46

There are other interesting but less used sections available. Table 3-5 shows a

complete overview for completeness.

Table 3-5.  Overview of NuGet.config sections

Element Description

<config> General configuration

<bindingRedirects> Sets whether or not NuGet handles automatic redirects

<packageRestore> Controls if package restore is enabled and automatic on build

<solution> Enables/disables source control integration of the solution file

<packageSource> Adds extra NuGet package sources to restore packages from

<trustedSigners> Sets trusted package authors, with their signature and repository feeds

<fallbackPackageFolders> Points to folders that act as a local, offline cache for packages

<packageManagement> Allows projects to use the older packages.config instead of

PackageReference

�Dotnet Build
Dotnet build builds (what a shock!) your project and all of its dependencies. It’s a

straightforward command with a limited set of options. Listing 3-7 shows its options.

Listing 3-7.  Options for dotnet build

Usage:

 dotnet [options] build [<PROJECT | SOLUTION>...]

Arguments:

 �<PROJECT | SOLUTION> The project or solution file to operate on. If a

file is not specified, the command will search the current directory

for one.

Options:

 --use-current-runtime �Use current runtime as the target

runtime.

Chapter 3 Command Line Interface

47

 -f, --framework <FRAMEWORK> �The target framework to build for.

The target framework must also be

specified in the project file.

 -c, --configuration <CONFIGURATION> �The configuration to use for

building the project. The default

for most projects is 'Debug.'

 -r, --runtime <RUNTIME_IDENTIFIER> The target runtime to build for.

 --version-suffix <VERSION_SUFFIX> �Set the value of the

$(VersionSuffix) property to use

when building the project.

 --no-restore �Do not restore the project before

building.

 --interactive �Allows the command to stop and wait

for user input or action (e.g., to

complete authentication).

 -v, --verbosity <LEVEL> �Set the MSBuild verbosity level.

Allowed values are q[uiet],

m[inimal], n[ormal], d[etailed], and

diag[nostic].

 --debug

 -o, --output <OUTPUT_DIR> �The output directory to place built

artifacts in.

 --no-incremental Do not use incremental building.

 --no-dependencies �Do not build project-to-project

references and only build the

specified project.

 --nologo �Do not display the startup banner or

the copyright message.

 --sc, --self-contained �Publish the .NET runtime with your

application so the runtime doesn't

need to be installed on the target

machine.

 �The default is 'true' if a runtime

identifier is specified.

Chapter 3 Command Line Interface

48

 --no-self-contained �Publish your application as a

framework-dependent application.

A compatible .NET runtime must be

installed on the target machine to

run your application.

 -a, --arch <arch> The target architecture.

 --os <os> The target operating system.

 -?, -h, --help Show command line help.

Dotnet build triggers the same workflow as Build Solution does in Visual Studio;

whenever you click Build Solution in Visual Studio, it launches dotnet build under the

hood. It takes your code and its dependencies and compiles it into DLLs, executables,

symbols, and so on.

Before we can build an application, we need to make sure that all dependencies

are restored. This can be done by running dotnet restore which we’ve seen earlier in

this chapter. However, we don’t have to run dotnet restore every time before building

a project; it runs implicitly when executing dotnet build. Unless we use dotnet build

--no-restore.

Dotnet build uses msbuild to do the actual compiling of the code. MSBuild options

can be passed in through parameters like -l for logging. MSBuild can be called directly

from the dotnet tool by using dotnet msbuild <arguments>. We won’t dive into the

msbuild options in this book. The dotnet build command is basically the same as

msbuild -restore although the output looks different.

Two important parameters for the dotnet build command are configuration and

runtime. Configuration specifies the configuration used for this build, while the runtime

parameter specifies what version of the .NET runtime we’re building against.

The default configurations in .NET are Release and Debug. If we don’t specify a

configuration, the Debug configuration will be used by default. Depending on the

selected configuration, the build output will by default appear in bin\<config>\net6.0.

These configurations differ in the way they optimize code for either debugging purposes

or performance. Listing 3-8 shows how we can switch configurations.

Listing 3-8.  Running a build in the Release configuration

dotnet build -c release

Chapter 3 Command Line Interface

49

Runtimes are specified using a runtime identifier (RID). RIDs are used to define

on the type of system architecture the application will run. An application needs to be

compiled differently for a 64-bit Intel processor compared to a 64-bit ARM processor

and for the different operating systems and their versions. An RID follows the pattern as

shown in Listing 3-9.

Listing 3-9.  RID pattern

<os>.<version>-<architecture>-<additional>

For example, let’s build an application for use on ARM64, which is an architecture

that Windows can run on and try to run the application. Figure 3-6 shows the build and

the attempt to run the application.

Figure 3-6.  Running an ARM application on x64

The .NET runtime contains a runtime.json file. In this file is a runtime graph; it

specifies what operating systems and what versions/architectures are available or what

the fallback is. Listing 3-10 shows an example entry from runtime.json.

Chapter 3 Command Line Interface

50

Listing 3-10.  Example entry in runtime.json

"alpine.3.13": {

 "#import": [

 "alpine.3.12"

]

}

Listing 3-10 shows the entry for Alpine Linux, a lightweight Linux distribution. The

entry specifies Alpine version 3.13 but imports 3.12; when .NET tries to restore NuGet

packages for a project targeting Alpine Linux, it will try to find packages targeting Alpine

3.13. Should there be a package that does not target this version, it will look for a fallback

to Alpine 3.12 support. The complete runtime.json file can be found on GitHub https://

github.com/dotnet/runtime/blob/main/src/libraries/Microsoft.NETCore.

Platforms/src/runtime.json.

Listing 3-11.  dotnet runtimes

Listing 3-11 lists the most common runtimes for .NET:

•	 Windows Portable

•	 win-x64

•	 win-x86

•	 win-arm

•	 win-arm64

•	 Windows 7/Windows Server 2008 R2

•	 win7-x64

•	 win7-x86

•	 Windows 8.1/Windows Server 2012 R2

•	 win81-x64

•	 win81-x86

•	 win81-arm

Chapter 3 Command Line Interface

https://github.com/dotnet/runtime/blob/main/src/libraries/Microsoft.NETCore.Platforms/src/runtime.json
https://github.com/dotnet/runtime/blob/main/src/libraries/Microsoft.NETCore.Platforms/src/runtime.json
https://github.com/dotnet/runtime/blob/main/src/libraries/Microsoft.NETCore.Platforms/src/runtime.json

51

•	 Windows 10/Windows Server 2016

•	 win10-x64

•	 win10-x86

•	 win10-arm

•	 win10-arm64

•	 Linux Portable

•	 linux-x64

•	 linux-musl-x64

•	 linux-arm

•	 linux-arm64

•	 Red Hat Enterprise Linux

•	 rhel-x64

•	 rhel.6-x64

•	 MacOS Portable

•	 osx-x64 (Minimum OS version is macOS 10.12 Sierra.)

•	 macOS 10.x

•	 osx.10.10-x64

•	 osx.10.11-x64

•	 osx.10.12-x64

•	 osx.10.13-x64

•	 osx.10.14-x64

•	 osx.10.15-x64

•	 macOS 11.x

•	 osx.11.0-x64

•	 osx.11.0-arm64

Chapter 2 of this book dives deeper into runtimes, platforms, and extensibility packs.

Chapter 3 Command Line Interface

52

�Dotnet Publish
Dotnet publish takes the compiled application and its dependencies and publishes them

to the file system, ready for deployment either through a webserver or application setup

through an MSI or setup file, …

Listing 3-12.  Dotnet publish options

Usage:

 dotnet [options] publish [<PROJECT | SOLUTION>...]

Arguments:

 �<PROJECT | SOLUTION> The project or solution file to operate on. If a file

is not specified, the command will search the current directory for one.

Options:

 --use-current-runtime �Use current runtime as the target

runtime.

 -o, --output <OUTPUT_DIR> �The output directory to place the

published artifacts in.

 --manifest <MANIFEST> �The path to a target manifest

file that contains the list of

packages to be excluded from the

publish step.

 --no-build �Do not build the project before

publishing. Implies --no-restore.

 --sc, --self-contained �Publish the .NET runtime with your

application so the runtime doesn't

need to be installed on the target

machine.

 �The default is 'true' if a runtime

identifier is specified.

 --no-self-contained �Publish your application as a

framework-dependent application.

A compatible .NET runtime must be

installed on the target machine to

run your application.

Chapter 3 Command Line Interface

53

 --nologo �Do not display the startup banner or

the copyright message.

 -f, --framework <FRAMEWORK> �The target framework to publish

for. The target framework has to be

specified in the project file.

 -r, --runtime <RUNTIME_IDENTIFIER> �The target runtime to publish for.

This is used when creating a self-

contained deployment.

 �The default is to publish a

framework-dependent application.

 -c, --configuration <CONFIGURATION> �The configuration to publish for.

The default for most projects is

'Debug'.

 --version-suffix <VERSION_SUFFIX> �Set the value of the

$(VersionSuffix) property to use

when building the project.

 --interactive �Allows the command to stop and wait

for user input or action (e.g., to

complete authentication).

 --no-restore �Do not restore the project before

building.

 -v, --verbosity <LEVEL> �Set the MSBuild verbosity level.

Allowed values are q[uiet],

m[inimal], n[ormal], d[etailed], and

diag[nostic].

 -a, --arch <arch> The target architecture.

 --os <os> The target operating system.

 -?, -h, --help Show command line help.

Running dotnet publish will compile the application and publish the output to

a specific directory. The output will contain the DLLs, a *.deps.json file listing all the

project dependencies, a *.runtime.json file that specifies the runtime for the application,

and the dependencies for the application. Just like with dotnet build, this command also

runs dotnet restore implicitly, and just like with dotnet build, dotnet restore also calls

into msbuild, passing the parameters through.

Chapter 3 Command Line Interface

54

Dotnet publish comes with a plethora of options; however, most of those are just

pass-through to the dotnet build command that gets called when publishing. Those

parameters have already been discussed when talking about dotnet build, so let us focus

on the dotnet deploy specific ones.

--framework, or -f, deploys the application for a specific target framework. Note

that the target framework moniker (TFM) needs to be specified in the project file. If we

specify multiple frameworks, we will get output for all of these different frameworks with

one deploy command. Listing 3-13 lists the TFMs for .NET 6.

Listing 3-13.  Target framework monikers for .NET 6

•	 net6.0

•	 net6.0-android

•	 net6.0-ios

•	 net6.0-macos

•	 net6.0-maccatalyst

•	 net6.0-tvos

•	 net6.0-windows

Listing 3-14 shows how the target framework is specified in the project file.

Listing 3-14.  Specifying .NET 6 as target framework

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

</Project>

Listing 3-14 comes from a command line-type application. It specifies .NET 6 as

target framework; this is not an OS-specific TFM so this application will run everywhere

.NET 6 is supported (Windows, Linux, MacOS, …). Projects can specify multiple TFMs by

changing the TargetFramework tag to the plural TargetFrameworks.

Chapter 3 Command Line Interface

55

Listing 3-15.  Specifying multiple target frameworks

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFrameworks>net6.0;net45</TargetFrameworks>

 </PropertyGroup>

</Project>

Listing 3-15 targets both .NET 6 and .NET 4.5. If we were to build this project, we

would get two output folders, one for each target platform containing a binary compiled

for that specific platform.

-p:PublishSingleFile=true gives you a single file as output. This single file

executable is a self-extracting archive containing all dependencies and libraries for your

application. At first run, it extracts everything in a directory based on version number

and name of the application. Every new launch of the application will launch from that

folder, meaning that the first run will be slower since the extracting needs to happen first.

Having a single file makes it easier to distribute applications. Publishing as a single file

works since .NET Core 3.0; if you’re targeting older versions, you’ll get compiler errors.

Figure 3-7 shows the differences in publishing single file or not.

Figure 3-7.  Publishing single file (left) or default (right)

Chapter 3 Command Line Interface

56

--self-contained Self-contained applications include the .NET runtime your

application specifies so that it doesn’t need to be installed on the target machines.

This eliminates the risk of having to install multiple versions of the .NET runtime on a

machine, potentially causing conflicts. Shipping the .NET runtime with your application

greatly simplifies installation, but it does come with a warning. Software contains bugs,

especially in complex software like .NET; these bugs can show up pretty late in their

lifespan and potentially cause severe security issues. Companies like Microsoft are

usually quite fast to fix those security issues and push out an update. If you are packaging

a specific .NET runtime version with your app, it is up to you as application developer

to follow up on those .NET updates and update your application with the new version

of the .NET runtime when needed. In other words, you are responsible for replacing

vulnerable .NET binaries in your application.

--no-self-contained does not ship the .NET runtime with the application. In this

case, the application relies on the version of the .NET runtime installed on the user’s

machine.

�Dotnet Run
Dotnet run runs your application. It builds the application using dotnet build and

launches the application.

Listing 3-16.  Documentation on dotnet run

Usage:

 dotnet [options] run [[--] <additional arguments>...]]

Options:

 -c, --configuration <CONFIGURATION> �The configuration to run for.

The default for most projects is

'Debug'.

 -f, --framework <FRAMEWORK> �The target framework to run for.

The target framework must also be

specified in the project file.

 -r, --runtime <RUNTIME_IDENTIFIER> The target runtime to run for.

Chapter 3 Command Line Interface

57

 --project <project> �The path to the project file to run

(defaults to the current directory

if there is only one project).

 -p, --property <property> Properties to be passed to MSBuild.

 --launch-profile <launch-profile> �The name of the launch profile (if

any) to use when launching the

application.

 --no-launch-profile �Do not attempt to use

launchSettings.json to configure the

application.

 --no-build �Do not build the project before

running. Implies --no-restore.

 --interactive �Allows the command to stop and wait

for user input or action (e.g., to

complete authentication).

 --no-restore �Do not restore the project before

building.

 --sc, --self-contained �Publish the .NET runtime with your

application so the runtime doesn't

need to be installed on the target

machine.

 �The default is 'true' if a runtime

identifier is specified.

 --no-self-contained �Publish your application as a

framework-dependent application.

A compatible .NET runtime must be

installed on the target machine to

run your application.

 -v, --verbosity <LEVEL> �Set the MSBuild verbosity level.

Allowed values are q[uiet],

m[inimal], n[ormal], d[etailed], and

diag[nostic].

 -a, --arch <arch> �The target architecture.

 --os <os> The target operating system.

 -?, -h, --help Show command line help.

Chapter 3 Command Line Interface

58

Dotnet run executes the binaries in the bin/<config>/<TFM> folder. This is

where the output of the build command is put. In case of .NET 6, this could be

/bin/<Configuration>/net6.0. Other frameworks can be specified by using the

--framework parameter. A configuration can be specified by using the --configuration

parameter. Listing 3-17 shows a complete example of a dotnet run command.

Listing 3-17.  Running a .NET 6 application using CLI

dotnet run --configuration Release --framework net6.0 --project

.\CliDemo.csproj

�Dotnet Test
Dotnet test is used to run unit tests included in a project.

Listing 3-18.  dotnet test documentation (shortened for brevity)

Usage:

 dotnet [options] test [<PROJECT | SOLUTION>...]

Arguments:

 �<PROJECT | SOLUTION> The project or solution file to operate on. If a file

is not specified, the command will search the current directory for one.

Options:

 -s, --settings <SETTINGS_FILE> �The settings file to use when

running tests.

 -t, --list-tests �List the discovered tests instead

of running the tests.

 -e, --environment <NAME="VALUE"> �Sets the value of an environment

variable.

 �Creates the variable if it does not

exist and overrides if it does

 �This will force the tests to be run

in an isolated process.

 �This argument can be specified

multiple times to provide multiple

variables.

Chapter 3 Command Line Interface

59

Dotnet test commands trigger a dotnet build after which it executes any unit tests it

finds. It supports any test framework that has support for .NET 6, for example, MSTest,

NUnit, XUnit, etc. Every test that was run by the tool will print its result; after all tests are

run, the dotnet test command will return to either 0 (all tests successful) or 1 (at least one

test failed). Figure 3-8 shows an example output of dotnet test.

Figure 3-8.  Example output of dotnet test

In the screenshot, you can see that four tests passed, while one failed. The tests in

this sample project are written using NUnit; dotnet test automatically picks up on this

and uses the correct adapter. Should it not find the correct adapter, or you want to use a

custom one, you can use the --test-adapter-path option of the dotnet test command.

The custom adapter needs to be named *.TestAdapter.dll for it to be picked up by the

.NET CLI tooling. Figure 3-6 also shows that the first step in running the test command is

verifying if dependencies need to be restored or if the project needs to be compiled.

After fixing the failing unit test, we get the result shown in Figure 3-9.

Figure 3-9.  Passing all unit tests

Other often used options in dotnet test are:

•	 --configuration same as with dotnet build and dotnet deploy, sets the

configuration to be used.

•	 --collect enables data collection, for example, code coverage.

Chapter 3 Command Line Interface

60

•	 --framework sets the framework used for the test host. This does

not set the framework your application is built against; it’s only the

framework version that the test host is using.

�Using the CLI in GitHub Actions
In case you’re wondering why you would ever use command line functions when you

have a perfectly good, very powerful IDE experience, you’ve come to the right place. The

.NET CLI is mostly used in CI/CD pipelines. We’ll dive deeper in the nitty-gritty of CI/

CD in Chapter 7 of this book; for now just remember that it is a tool chain that builds,

tests, and deploys applications automatically, for example, on every source code push on

specific branches. GitHub Actions is one example of a cloud-based CI/CD toolchain that

developers can leverage. Other examples are Azure DevOps or Jenkins. In this example,

we’ll use GitHub Actions. The different steps required to make a GitHub Action build

and deploy a .NET 6 application are defined in a YAML file. If you don’t know YAML, it’s

a data language that is often used for configuration files. It has a minimal syntax, based

on indentation instead of brackets like JSON or element tags like XML.

GitHub Actions are available from the top menu on a GitHub Repository as shown in

Figure 3-10.

Figure 3-10.  GitHub Actions

Listing 3-19 shows a simple example of a GitHub Actions YAML file.

Listing 3-19.  Building a .NET 6 application through GitHub Actions

Name: Net6Demo

on:

 push:

 branches: [main]

 pull_request:

 branches: [main]

Chapter 3 Command Line Interface

61

env:

 PROJECTFILE_PATH: './src/Net6Demo.Api/Net6Demo.Api.csproj'

 PROJECT_PATH: './src/Net6Demo.Api/'

 DOTNET_VERSION: '6.0'

 CONFIG: Release

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Setup .NET 6

 uses: actions/setup-dotnet@v1

 with:

 dotnet-version: ${{ env.DOTNET_VERSION }}

 - name: Install dependencies

 run: dotnet restore ${{ env.PROJECTFILE_PATH }}

 - name: Build

 run: |

 �dotnet build ${{ env.PROJECTFILE_PATH }} –c ${{ env.CONFIG }} –

no-restore

 dotnet publish ${{ env.PROJECTFILE_PATH }} -c ${{ env.CONFIG }}

Let’s go over the top-level blocks first. The first block, ‘name’, specifies the name for

this specific GitHub Action.

‘on’ specifies the triggers. In this case the action will get triggered whenever a new

commit happens on the main branch or when a pull request against the main branch is

created.

‘env’ registers variables that can be used throughout the YAML file, to prevent

duplicate hard-coded values.

‘jobs’ is where the magic happens; in this example, we have a ‘build’ job. This job will

compile our application and publish the output, ready for a deploy job to pick it up and

push it to a server.

Chapter 3 Command Line Interface

62

‘build’ has two blocks. The first one ‘runs on’ specified the operating system that

will be used for the build. Pipelines, like GitHub Actions or Azure DevOps, are run on,

usually virtual, machines. Those machines have a specific operating system installed and

have a piece of software called an agent. This agent reports the machine’s status to the

build service and can accept build requests. Once a request comes in, it downloads all

the different tasks and starts executing the request. The GitHub Actions agent takes the

YAML file, downloads the tasks needed, and performs them. GitHub Actions provides

agents on Windows, Linux, and MacOS. They also provide an option to host your own

agent on your own machines.

‘steps’ contain all the steps needed to compile the application. This is quite a simple

setup. Listing 3-20 shows the extracted steps from the complete file in Listing 3-19.

Listing 3-20.  Steps in a GitHub Action

steps:

- uses: actions/checkout@v2

- name: Setup .NET 6

 uses: actions/setup-dotnet@v1

 with:

 dotnet-version: ${{ env.DOTNET_VERSION }}

- name: Install dependencies

 run: dotnet restore ${{ env.PROJECTFILE_PATH }}

- name: Build

 run: |

 �dotnet build ${{ env.PROJECTFILE_PATH }} --c ${{ env.CONFIG }}

--no-restore

 dotnet publish ${{ env.PROJECTFILE_PATH }} -c ${{ env.CONFIG }}

The first step in the action only has a ‘uses’ statement. ‘uses’ specifies a specific task

to be used for this step. In this case, it specifies ‘actions/checkout@v2’; this means that

the agent will look for an action called checkout and download version 2 of this action.

This specific one will perform a git checkout command against the main branch, as

defined earlier in the YAML file, of our current GitHub repository.

Chapter 3 Command Line Interface

63

The ‘Setup .NET 6’ step will download the actions/setup-dotnet/@v1 task and pass in

the environment variables we’ve defined earlier. This task will then setup the specified

version of the .NET SDK and install it on the machine where the agent is hosted.

The final two steps use .NET CLI commands that we’ve described earlier in this

chapter. First, we will restore the dependencies using dotnet restore. I like to do the

restore separately from the build command. When a task failed, we can search for the

reason in the task logs; by splitting the restore and build task, we limit the log size we

potentially need to look through.

In the ‘Build’ step, we use dotnet build in Release configuration; we prevent restoring

dependencies with the --no-restore flag since that happened in the previous step. And

finally we use dotnet deploy to create our artifacts.

This specific action only builds the application and creates artifacts ready for

deployment. The actual deployment of the artifacts is usually defined separately and is

very dependent on the environment you want to deploy to.

�Other Commands
This chapter has described the most common basic commands in the .NET CLI tooling.

There are plenty more commands, like add and remove. Add and remove are used for

adding or removing both NuGet packages and project references. Figure 3-11 shows

adding the Entity Framework NuGet package using the CLI.

Figure 3-11.  Adding a NuGet package through the command line

Figure 3-12 shows adding a project reference to a .NET 6 class library using the

command line.

Chapter 3 Command Line Interface

64

Figure 3-12.  Adding a project reference through the command line

Some frameworks, extension, etc. come with their own command line-based tool;

Entity Framework, for example, ships with a CLI tool, for example, to create migrations

or update a database. These tools are managed with the dotnet tool command. Dotnet

tool can install tools, list all the installed tools, update or restore them, run them, and

uninstall them.

�Wrapping Up
In this chapter, we have gone over the most common parts of the extensive CLI tooling

that is included with .NET 6. We as developers use these tools more than we realize,

since they are the magic behind the buttons and shortcut keys in Visual Studio. Knowing

what the capabilities are, and how to find the different options, is important knowledge,

not only to have an idea of what is going on under the hood of Visual Studio but also to

be able to define build and release pipelines.

Chapter 3 Command Line Interface

65
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_4

CHAPTER 4

Desktop Development
I often get the question if there is still use in learning desktop technologies like WPF

or WinForms. My answer is always the same: of course there is! There has been a big

movement toward the Web the past few years, which definitely makes sense in regard

to ease of deployment and installation. No need to juggle MSI files around, making sure

every client computer has the correct version of .NET installed, finding out what version

of the software a customer is using, and so on. With web applications, we install the

software on a server, and all of our users just use their browsers to use the application. So

why are native apps (both desktop and mobile apps) still a thing? The answer is simple,

performance and capabilities. The Web, for now, does not have the same level of access

to peripherals and operating system as a native app does. As for performance, let’s look

at the way an operating system renders its applications. Rendering happens in steps,

layer by layer. A WPF application, for example, will render its main window followed by

the controls on that specific window; the whole rendering of an application is optimized

to draw the user interface as fast as possible to not make the user feel like the application

is hanging. If we apply that same logic to a web browser, you’ll understand that the

browser’s main window and controls like the back and forward buttons, favorite bar,

extension icons, and so on are rendered first. Once everything is on the screen, the

browser will start interpreting and rendering the HTML, so the actual user interface of

your web application is last to render. Another major difference is threading, JavaScript

is single-threaded, so it’s not possible to schedule heavy work on a separate thread. The

advice there is to have a server handle the heavy lifting and make your frontend wait for

the response, which is a very valid argument, except for applications that need real-time

heavy processing, like the software stock brokers use, for example. Every millisecond of

delay caused by a request going over the network can cost them money. A native desktop

application, running on a powerful client computer, can handle these calculations

with ease.

https://doi.org/10.1007/978-1-4842-7319-7_4#DOI

66

.NET 6 comes with multiple choices for desktop development, WPF, WinForms,

Windows App SDK, CLI, Blazor Desktop, and MAUI. In this chapter, we’ll take a look at

these options, except for Blazor Desktop, and we will discuss that option in the Blazor

chapter of this book.

�WinAPI
Win32 and Win64, depending on the OS and CPU architecture, are the APIs in

Windows that allow applications to run. The API is responsible for everything going

on in Windows, from rendering applications and access to the operating system to

installation/configuration and so on. It’s the engine under the hood of Windows.

Without WinAPI, we simply wouldn’t be able to run applications on Windows. WinAPI

is a native C/C++ API, meaning we’d need to write applications in those languages to

leverage the WinAPI API set.

With WinAPI, we can build applications that have incredible performance, because

we are in an unmanaged world. Languages like C# and Java, for example, are managed

languages, meaning that there is a runtime taking care of recovering and managing

memory. Unmanaged code, like C or C++, runs much closer to the metal, leaving

the responsibility of reclaiming memory to the developer but gaining performance

in return. But this performance comes with a price. It takes longer to develop these

types of applications, and since they are unmanaged they are more prone to memory-

related bugs. Listing 4-1 shows an example of the C++ code needed to simply draw an

empty window on screen. Feel free to copy, compile, and run the code in Listing 4-1 if

you have a C++ environment setup, and you will notice that it just works but shows an

empty screen.

Listing 4-1.  Drawing an empty window with Win32

#ifndef UNICODE

#define UNICODE

#endif

#include <windows.h>

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM

lParam);

Chapter 4 Desktop Development

67

int WINAPI wWinMain(HINSTANCE hInstance, HINSTANCE, PWSTR pCmdLine, int

nCmdShow)

{

 // Register the window class.

 const wchar_t CLASS_NAME[] = L"Sample Window Class";

 WNDCLASS wc = { };

 wc.lpfnWndProc = WindowProc;

 wc.hInstance = hInstance;

 wc.lpszClassName = CLASS_NAME;

 RegisterClass(&wc);

 // Create the window.

 HWND hwnd = CreateWindowEx(

 0, // Optional window styles.

 CLASS_NAME, // Window class

 L"Learn to Program Windows", // Window text

 WS_OVERLAPPEDWINDOW, // Window style

 // Size and position

 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, // Parent window

 NULL, // Menu

 hInstance, // Instance handle

 NULL // Additional application data

);

 if (hwnd == NULL)

 {

 return 0;

 }

 ShowWindow(hwnd, nCmdShow);

Chapter 4 Desktop Development

68

 // Run the message loop.

 MSG msg = { };

 while (GetMessage(&msg, NULL, 0, 0))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return 0;

}

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam,

LPARAM lParam)

{

 switch (uMsg)

 {

 case WM_DESTROY:

 PostQuitMessage(0);

 return 0;

 case WM_PAINT:

 {

 PAINTSTRUCT ps;

 HDC hdc = BeginPaint(hwnd, &ps);

 // All painting occurs here, between BeginPaint and EndPaint.

 FillRect(hdc, &ps.rcPaint, (HBRUSH) (COLOR_WINDOW+1));

 EndPaint(hwnd, &ps);

 }

 return 0;

 }

 return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

Chapter 4 Desktop Development

69

�WinForms
WinForms was introduced in 2002 as part of the initial release of .NET. It was meant to be

the successor of the very popular Visual Basic 6. WinForms provided the same graphical

editor that allowed developers to drag and drop a user interface onto a canvas, specifying

anchor points to specify resizing behavior.

WinForms is a managed wrapper around Win32, enabling .NET as an option to

create Windows applications.

Within Win32 is an API set responsible for drawing 2D vector graphics and formatted

text on the screen; this API is called GDI+ (or simply GDI on Windows versions older

than Windows XP). GDI+ stands for Graphics Device Interface. It is an abstraction

layer between applications and the graphics hardware. WinForms relies heavily on

GDI+ to perform its rendering. As .NET developers, we usually don’t come into direct

contact with GDI+; instead, we use the abstractions provided by WinForms and let the

framework handle all the low-level drawing code. Before .NET 6, WinForms was strictly

using GDI+ for drawing on the screen, which made development easier as it creates an

abstraction of the graphical device; while this made development easier, it also slowed

down performance because of the abstraction overhead. To solve this, the WinForms

team opted to use the classic GDI in specific cases, for example, when rendering

brushes.

Let’s explore WinForms. From Visual Studio 2022, start a new project and select

WinForms as project template. Give it a good name and let the project generate.

Building a user interface in WinForms is usually done through the designer surface in

Visual Studio; the designer generates C# code that is used to actually draw all elements

on screen. We can write the C# directly should we need to, but the designer greatly

simplifies creating complex screens. To open the designer, double-click Form1.cs in the

solution explorer.

Chapter 4 Desktop Development

70

Figure 4-2 shows the basic layout of a new WinForms project in .NET 6.

Figure 4-2.  A new .NET 6 WinForms project

In the Frameworks section, you’ll notice an entry for .NET, Microsoft.NETCore.App,

and another reference called Microsoft.WindowsDesktop.App.WindowsForms. This is the

desktop pack needed to be able to run and develop Windows native desktop applications

with .NET 6. More information on extensibility packs can be found in Chapter 2 of this

book. Program.cs contains the entry point of our application. Listing 4-2 shows the

default Program class.

Figure 4-1.  The WinForms designer

Chapter 4 Desktop Development

71

Listing 4-2.  Default Program class

internal static class Program

{

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 ApplicationConfiguration.Initialize();

 Application.Run(new Form1());

 }

}

Program is a static class; just like any other .NET 6 project, it is the starting point of

our application.

�STAThread
First thing to note here is the STAThread attribute. STA stands for single-threaded

apartment; to understand what this does, we need to make a sidestep into the world of

the apartment model process, but before we get into that we need to make sure we’ve got

the meaning of a few concepts right.

Process: A set of resources, code, data, and virtual memory

Thread: Code that is executed within a process in a linear way

An application typically has one process that can contain one or more threads.

Creating multiple threads within a process allows our application to execute code in

parallel; do keep in mind that running code in parallel does not automatically guarantee

an increase in performance. Multithreading can be hard to get right and comes with its

own set of challenges like thread safety, preventing deadlocks and race conditions.

Component Object Model, or COM, enables application to open up their functionality

to other applications in an API-like manner, by generating wrappers that can be called in

other application. Windows exposes COM wrappers, for example, for the file and folder

dialogs or message boxes.

Chapter 4 Desktop Development

72

WinForms relies on the COM wrappers exposed by Windows, and COM runs in a

process with a single thread (the UI thread); however, new threads can be created from

that point on. This is needed, for example, when you need to execute a long-running

operation and you want to prevent the UI from freezing.

The final concept we need to know is the apartment. An apartment is a group of

COM objects in a process. Every COM object lives in exactly one apartment, meaning

that the methods on a COM object can only be called from a thread that belongs to the

same apartment; should any other thread need to call into that COM object, it needs to

pass through a proxy.

The WinForms process contains a single thread for rendering the UI; to render

the UI, it needs to call into COM wrappers, which means that the COM wrappers and

the single thread in our application’s process need to belong to the same apartment.

Since apartments come in two flavors, single-threaded and multithreaded, and we

only have one thread, we need a single-threaded apartment. However, we are building

a C# application; C# applications ever since .NET Framework 2.0 by default use a

multithreaded apartment. That’s why the STAThread attribute is set on the Program

class, to indicate that this application needs a single-threaded apartment.

�WinForms Startup
To keep the Program class clean and tidy, some configuration is abstracted away since

.NET 6. The Initialize method that you can see in Program.cs, or Listing 4-2, that

is called on ApplicationConfiguration calls three configuration methods, shown in

Listing 4-3.

Listing 4-3.  The configuration calls in Initialize

Application.SetHighDpiMode(HighDpiMode.SystemAware);

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

�DPI Mode

After the STAThread attribute, we see some default configuration being set, starting with

high DPI mode. DPI, or dots per inch, specifies how many pixels a screen can render on

a one inch line; nowadays, the term DPI is often used together with PPI, pixels per inch.

Strictly speaking, DPI is a term used for printers and PPI for screens, but DPI seems to be

Chapter 4 Desktop Development

73

the term most often used in both contexts. So in short, the higher the DPI of a monitor,

the more pixels can be placed upon the screen. So why does this matter? Let’s compare

two surfaces with different DPI values and draw a rectangle of 8 by 2 pixels on them.

Figure 4-3 shows the same rectangle but drawn on surfaces of the same physical size,

but with different DPI values; notice that the higher the DPI of a surface is, the smaller

the objects drawn on that surface seem to appear. Operating systems, including mobile

operating systems, solve this problem by implementing logical pixels per inch. It’s sort

of a virtual screen that is laid over the actual screen; this technique exists to ensure that

applications look the same across different screens; aspect ratios are a different problem

of course; but that’s beside the point here.

So what was the problem with WinForms applications? Windows tried to make sure

that an application looked the same size on every monitor; in a multi-monitor setup that

combines high DPI monitors with normal DPI monitors, this means that applications

will be “zoomed in” if you will, instead of being scaled natively. This results in a blurry,

pixelated image. We can simulate this in Windows by changing the scale factor in the

display settings, shown in Figure 4-4.

Figure 4-3.  Comparing different DPI

Chapter 4 Desktop Development

74

Figure 4-4.  Display scale settings in Windows

Figures 4-5 and 4-6 show the difference in application sharpness when high DPI

support is switched off in a WinForms application. The screenshots were taken on

175% size.

Figure 4-5.  A sharp looking application

Chapter 4 Desktop Development

75

Figure 4-6.  The same application at a different scale factor

Notice that Figure 4-6 shows a very blurry experience, not what you want to see on

an expensive, fancy 4k ultrawide monitor is it? To fix this, Microsoft updated the GDI API

with multiple modes for high DPI. The work on high DPI mode started in .NET Core 3

and kept improving with each release.

•	 DPI Unaware – this is the “old” behavior; applications assume 100%

scaling at 96 DPI; this will result in the blurry applications that are

demonstrated in Figure 4-6.

•	 System DPI Aware – apps will scale according to the DPI of the main

monitor at the time of login into Windows. This can still result in

blurry applications on the other monitors, but the application will

look great on the main monitor.

•	 Per Monitor DPI Aware – this enables applications to update their

rendering according to the DPI of the monitor they are currently

on. These applications can update immediately when moved to a

monitor with a different DPI; this does require developers to test their

UI at different DPI settings.

•	 Mixed Mode DPI Aware – in mixed mode, we can set one of the

above three modes on every top-level window, meaning that we can

have different application windows behave differently on different

monitors.

Chapter 4 Desktop Development

76

DPI mode in a WinForms application can be set in the app.config file, through an

API call or via a static method that needs to be called at startup. The default template in

.NET 6 includes setting the DPI mode to System Aware through the static method, which

is now the recommended way of setting the DPI mode. Depending on what version of

Windows your application is running on, you can have three or four modes.

•	 Unaware

•	 Unaware GDI Scaled

•	 System Aware

•	 Per Monitor

•	 Per Monitor v2

Most of these match perfectly on the list of modes supported in the GDI+ API, but

what about Per Monitor v2? This is a mode that only works on Windows 10 version

1607 and later. Per Monitor v2 extends the Per Monitor option into the non-client areas,

meaning that title bars and scroll bars, for example, will keep DPI scaling in mind as well.

It also extends scaling events to child windows while Per Monitor limits this for parent

windows only.

�Responding to Scale Events

WinForms provides some events, helper methods, and properties to allow us to react to

DPI changes and update the UI where needed.

•	 DpiChanged – an event that fires when the DPI is changed for the

monitor the form is currently on.

•	 DpiChangedAfterParent – an event that fires when the parent control

or form changed DPI from code after receiving a DpiChanged event.

•	 DpiChangedBeforeParent – an event that fires when the parent

control or form changed DPI from code before receiving a

DpiChanged event.

•	 LogicalToDeviceUnits – a helper method that converts a logical

size to device units, keeping the current DPI in mind, and returns a

System.Drawing.Size object.

Chapter 4 Desktop Development

77

•	 ScaleBitmapLogicalToDevice – a helper method that scales a System.

Drawing.Bitmap to device units after a DPI change.

•	 DeviceDpi – a property that gets the current DPI value for the

monitor the form is currently displayed on. This property comes in as

a parameter on a DpiChanged event.

Listing 4-4 shows an example of a form that uses some of these events and properties

to show a form that displays DPI information. If you still have the designer window

open from the first part of this chapter, you can press F7 to switch to the code behind.

From there we can add an eventhandler to the DpiChanged event, shown here in the

constructor. From that eventhandler, we update the text on a label that we dropped on

the form using the designer.

Listing 4-4.  Reacting to DPI changes

public partial class DpiForm : Form

{

 public DpiForm()

 {

 InitializeComponent();

 DpiLabel.Text = $"Current DPI: {DeviceDpi}";

 DpiChanged += OnDpiChanged;

 }

 private void OnDpiChanged(object sender, DpiChangedEventArgs e)

 {

 �DpiLabel.Text = $"DPI changed from {e.DeviceDpiOld} to

{e.DeviceDpiNew}";

 }

}

Figure 4-7 shows the result of the form when it starts up.

Chapter 4 Desktop Development

78

Figure 4-7.  Form displaying the current DPI

If we set High DPI mode to DpiUnaware and change the scaling of the monitor,

you’ll notice that the form seems to zoom in; it will get blurry but the text in the label will

remain the same. This means that the system still calculates the size according to 96 DPI,

instead of the new value. Figure 4-8 shows this result.

Figure 4-8.  Result when scaling set to 175%

After setting High DPI mode to PerMonitorV2, we expect the DPI to change when we

adjust scaling, and it does exactly that, but we get a new problem as shown in Figure 4-9.

Figure 4-9.  Result after changing scaling

You’ll notice that the text we do see is rendered sharp; however, the label didn’t

resize, so our text is being cut off. This is because the WinForms designer, by default, sets

autoscale mode to Font. However, our font size is not changing; our scale factor is. We

can solve this by changing the autoscale mode as shown in Listing 4-5; Figure 4-10 shows

the result.

Chapter 4 Desktop Development

79

Listing 4-5.  Setting autoscale mode to DPI instead of font

public DpiForm()

{

 InitializeComponent();

 DpiLabel.Text = $"Current DPI: {DeviceDpi}";

 AutoScaleMode = AutoScaleMode.Dpi;

 DpiChanged += OnDpiChanged;

}

private void OnDpiChanged(object sender, DpiChangedEventArgs e)

{

 �DpiLabel.Text = $"DPI changed from {e.DeviceDpiOld} to

{e.DeviceDpiNew}";

}

Figure 4-10.  Result after changing autoscale mode

�Visual Styles

Let’s continue with the startup calls; the next step is Application.EnableVisualStyles.

EnableVisualStyles simply prepares all the colors, fonts, and other visual elements in

the theme of the current operating system. Let’s take a form with a label, datepicker, and

a button as shown in Figure 4-11.

Chapter 4 Desktop Development

80

Figure 4-11.  Form with default controls

The elements on this form automatically take the styling of Windows 10, the

operating system the application was running on when taking this screenshot. We can

disable loading the visual styles by replacing the call to Initialize with Listing 4-3 and

commenting out Application.EnableVisualStyles method we get the result from

Figure 4-12.

Chapter 4 Desktop Development

81

Figure 4-12.  Same application without Windows 10 theme

The application still runs, but visually it looks very old; that is because all the controls

fallback to their default look and feel. Application.EnableVisualStyles will keep the

user’s preference in mind; if it runs on a Windows system with visual styles disabled, it

will respect this setting and load the application without visual styles.

�Text Rendering

The next call in our WinForms application’s startup cycle is Application.SetCompatibl

eTextRenderingDefault(false).

Before I can explain what SetCompatibleTextRenderingDefault does, we’ll

need to take a small history lesson. Back in .NET Framework version older than .NET

2.0, text was rendered using GDI+ and its Graphics class. From .NET Framework

2.0 onward, this was switched to GDI and the TextRenderer class. TextRenderer

fixed a number of problems with performance and localization. Because WinForms

prides itself on backward compatibility, we had two different ways text on WinForms

controls could be rendered, and they were visually different. To fix this, the

Chapter 4 Desktop Development

82

SetCompatibleTextRenderingDefault method was introduced, and when the bool

value is set to true, all text will be rendered using the old Graphics class in the GDI+

library. The default WinForms template passes false as parameter so that text in our

applications is rendered using TextRenderer in GDI instead of Graphic in GDI+. The only

time this parameter needs to be true is when you’re migrating an old .NET Framework

1.0 or 1.1 app to a newer version, and even then it might be worth seeing how many

controls and logic need to be changed to just make the app run on GDI.

�The Message Loop
The final call before our application appears on screen is Application.Run(new

Form1()).

The Run method starts what’s called the message loop. A Windows desktop

application needs a loop where it handles user events. The application exits once the

loop exits, and this can be done programmatically by calling Exit() to terminate

the application or ExitThread() to terminate the current thread, which will exit the

application only if no other foreground threads are running. Applications can be exited

manually by the user clicking the close button, pressing ALT-F4 or any other way to close

an application on Windows. The Run method takes in a form as parameter; this form

will be the startup form of the application. The message loop will end once this form is

closed, effectively exiting the application.

�The Form Designer
Building a form is usually done through the form designer. The designer is a visual

canvas where controls can be dropped from the toolbox and laid out. Doing this visually

makes for a powerful and fast developer loop. Figure 4-13 shows dropping a button from

the toolbox onto the designer surface.

Chapter 4 Desktop Development

83

Figure 4-13.  Dropping a button onto the designer

Feel free to double-click a form to open the designer and play around with the

toolbox. Drop some components, move some controls around, and have a look at the

properties. You’ll notice that the designer tries to help you by snapping the controls

to align with the margins of the other controls to make for a consistent layout. Once

a control is placed, we can use the properties window (F4 is the shortcut key to open

the properties for the selected control) to set different properties and hook up event

handlers. For example, click on the dropdown for BackColor and try some different

values. You will notice that the designer reacts immediately to your changes.

Chapter 4 Desktop Development

84

Figure 4-14.  Properties window

�Responding to Events

There are a few different ways to make a button react to a click. The fastest way is to

double click on the button in the designer; this will generate a click event handler in

the code behind of the form. Double-clicking any control will hook up an event handler

to the default event for that control; click event for buttons, textchanged for textboxes,

selectionchanged for combobox, and so on. Should we want to hook up another event,

we can do this through the events pane in the properties window, found behind the

lightning icon that can be seen in Figure 4-14. Look for the event you need and double-

click the space beside it, as shown in Figure 4-15.

Chapter 4 Desktop Development

85

Figure 4-15.  Hooking up an event through the properties window

Another way is to do programmatically as shown in Listing 4-6.

Listing 4-6.  Programmatically reacting to a button getting focus

public ProductForm()

{

 InitializeComponent();

 DetailsButton.DragOver += DetailsButton_DragOver;

}

private void DetailsButton_DragOver(object sender, EventArgs e)

{

}

Once our design looks good in the designer, it’s time to see what it actually looks like

on screen. The first results are very good, until we resize the window.

Chapter 4 Desktop Development

86

Looks like our application is not very responsive yet. Making controls resized in

WinForms is done through anchors; anchor is a property set on every control that

determines what border is anchored to the side of the form.

Figure 4-16.  Resized window

Chapter 4 Desktop Development

87

Figure 4-17.  Anchoring a button to the left and top

After applying the correct anchor points, which is all anchor points in this case, we

can make the form behave like Figure 4-18.

Chapter 4 Desktop Development

88

Figure 4-18.  Form that resizes using anchor points

Figure 4-19 shows the used anchor points for every control.

Chapter 4 Desktop Development

89

Figure 4-19.  Anchor points on the form

The grid that is on the form in Figures 4-18 and 4-19 is the DataGridView. The classic

DataGrid control has not been ported from .NET Framework; DataGridView is based on

DataGrid and extends it, for example, in the data sources it accepts. Listing 4-7 shows a

simple example of setting data to the DataGridView named ProductsDataGrid.

Listing 4-7.  Setting data to a DataGridView

private async void ProductForm_Load(object sender, EventArgs e)

{

 var ctx = new AdventureWorksContext();

 var products = await ctx.Products.ToListAsync();

 ProductsDataGrid.DataSource = products;

}

We’re using an Entity Framework datacontext to easily get to our data. Once data

is loaded, we assign it to the DataGridView’s DataSource property, and that is all that’s

needed to show the data in the grid.

Chapter 4 Desktop Development

90

Let’s add the possibility to add new products to the dataset; Listing 4-8 shows a first

attempt at this.

Listing 4-8.  Add new products to the dataset

public partial class ProductForm : Form

{

 private List<Product> _products;

 public ProductForm()

 {

 InitializeComponent();

 }

 private async void ProductForm_Load(object sender, EventArgs e)

 {

 AdventureWorksContext ctx = new ();

 _products = await ctx.Products.ToListAsync();

 ProductsDataGrid.DataSource = _products;

 }

 private void AddProductButton_Click(object sender, EventArgs e)

 {

 _products.Add(new Product());

 }

}

The click event handler is triggered when the Add Product button is clicked; nothing

seems to happen however. Should you set a breakpoint in the event handler, you’ll

notice that the event is triggered and new products are added to the list but that change

is not reflected in the UI. That is because in WinForms the UI is not reactive; it does not

monitor every property to see if it might need to update; instead, it waits for an event that

tells it what property has changed. Listing 4-9 shows a working example.

Chapter 4 Desktop Development

91

Listing 4-9.  Working databinding

public partial class ProductForm : Form

{

 private BindingList<Product> _products;

 public ProductForm()

 {

 InitializeComponent();

 }

 private async void ProductForm_Load(object sender, EventArgs e)

 {

 AdventureWorksContext ctx = new();

 List<Product> products = await ctx.Products.ToListAsync();

 _products = new BindingList<Product>(products);

 ProductsDataGrid.DataSource = _products;

 }

 private void AddProductButton_Click(object sender, EventArgs e)

 {

 _products.Add(new Product());

 }

}

Only one thing changed; the List<Product> has changed into a

BindingList<Product>; a BindingList triggers an event whenever the data in the list

changes, allowing our UI to respond to that change.

�WPF
Windows Presentation Foundation, WPF for short, is the spiritual successor of

WinForms. It was known under the codename “Avalon” and was announced in .NET

Framework 3.0 timeframe. WPF relies on DirectX for its rendering, compared to

WinForm’s GDI. The biggest difference between WinForms and WPF is the UI, while

there still is a graphical designer, it no longer generates C# code to build its UI but

instead generates eXtended Application Markup Language, or XAML.

Chapter 4 Desktop Development

92

WPF was ported from the classic .NET Framework to .NET Core 3.0. After the initial

port, a new visual designer was created and has evolved with every release of .NET.

After creating a new WPF project with .NET 6, we end with the solution as shown in

Figure 4-20.

Figure 4-20.  A blank WPF project

That is a very lightweight project structure; it contains only three files! And we

can even remove AssemblyInfo should we want to. AssemblyInfo contains theming

information for our WPF application. It sets the ThemeInfo assembly attribute; this

attribute specifies if there is an assembly containing resource definitions for the controls

used in your application. Resource definitions include templates, styles, and colors.

The ThemeInfoattribute takes two parameters, a theme-specific dictionary location

and a generic dictionary location. Resource dictionaries in XAML are comparable to

CSS files in web development; they contain style definitions, converters, and so on. The

ThemeInfo resource dictionary locations can be set to one of three values.

•	 ExternalAssembly

•	 None

•	 SourceAssembly

External assemblies live outside of your code base. WPF will search for assemblies

according to a naming convention. For example, take an application called

DotnetSixWpf. If we want to place theming in a separate assembly, we can name that

assembly, or assemblies, DotnetSixWpf.Dark.dll or DotnetSixWpf.Light.dll, for example,

to define dark and light themes. The names of your themes are whatever you want

them to be, but the naming of the assembly needs to be <assembly>.<themename>.

Chapter 4 Desktop Development

93

SourceAssembly refers to resource dictionaries that are included within your

application. In our project, we need to have a themes folder where WPF will look for our

style definitions.

�WPF Startup
Moving on to App.xaml, this file is the starting point of our application. You’ll notice

that it consists of two files, App.xaml and App.xaml.cs. The xaml file and the code

behind code file are both the same partial class. When compiling, the XAML code gets

transformed into C# code; this is very important to know because if you change the

namespace or class name in the code behind, you’ll also need to change it on the XAML

side of things.

Listing 4-10.  Default App.xaml in WPF

<Application x:Class="Dotnet6WpfDemo.App"

 �xmlns="http://schemas.microsoft.com/winfx/2006/xaml/

presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="clr-namespace:Dotnet6WpfDemo"

 StartupUri="MainWindow.xaml">

 <Application.Resources>

 </Application.Resources>

</Application>

Listing 4-10 shows the XAML part of App.xaml. The important part here is the

StartupUri; this property sets the first window to show when launching the application.

You’ll notice that the code behind of App.xaml is quite empty. That is because the

bootstrapping and launching of the WPF application is done in the generated App class

that combines both the XAML and the code parts. You can inspect this file by going to

your project in Windows Explorer and take a look in the obj folder.

Chapter 4 Desktop Development

94

Every file in this folder that has .g. in its filename has been generated by the

compiler. Listing 4-11 shows the generated App.g.cs file, the actual starting point of the

application.

Listing 4-11.  Generated application startup code

public partial class App : System.Windows.Application {

 /// <summary>

 /// InitializeComponent

 /// </summary>

 [System.Diagnostics.DebuggerNonUserCodeAttribute()]

 �[System.CodeDom.Compiler.GeneratedCodeAttribute("PresentationBuild

Tasks", "6.0.0.0")]

 public void InitializeComponent() {

 #line 5 "..\..\..\App.xaml"

 �this.StartupUri = new System.Uri("MainWindow.xaml", System.

UriKind.Relative);

 #line default

 #line hidden

 }

Figure 4-21.  Generated files on disk

Chapter 4 Desktop Development

95

 /// <summary>

 /// Application Entry Point.

 /// </summary>

 [System.STAThreadAttribute()]

 [System.Diagnostics.DebuggerNonUserCodeAttribute()]

 �[System.CodeDom.Compiler.GeneratedCodeAttribute("PresentationBuild

Tasks", "6.0.0.0")]

 public static void Main() {

 Dotnet6WpfDemo.App app = new Dotnet6WpfDemo.App();

 app.InitializeComponent();

 app.Run();

 }

}

Even in the generated startup code, there is not a lot going on; you will notice

the StartupUri property being set to the value that was defined in App.xaml. Next to

that there is the Main method that every application in .NET 6 has as a starting point.

Main initializes our App class and calls its Run method; that method is part of WPF’s

Application base class. It contains the logic for creating the window wrapper and creates

the first window to be shown. The application base class also contains some virtual

methods that can be overridden for configuring lifecycle events; some examples of these

methods are OnActivated, OnDeactivated, OnLoadCompleted, OnExit, OnStartup,

OnSessionEnding, and OnNavigated.

�XAML Layout
Moving on to MainWindow. MainWindow also consists of two files, just like the App

class. Building your UI in a WPF application can be done quite similar to WinForms;

WPF also has a graphical designer, for example. Visual Studio by default shows the XAML

editor when opening a XAML file. We can switch to the designer by pressing shift-F7 or

selecting Design on the bottom left of Visual Studio.

Chapter 4 Desktop Development

96

Figure 4-22.  WPF graphical designer

As you can see in Figure 4-22, it allows us to drag and drop controls from the toolbox

and position them in a very graphical way, just like with WinForms. Figure 4-23 shows

the running application; don’t worry about the logic to get data in the datagrid; we’re

only looking at the design in this example.

Chapter 4 Desktop Development

97

Figure 4-23.  The application

It really does look very similar to the WinForms version, so why does WPF even exist

if it’s just a copy of WinForms? Because it really is not a copy of WinForms. The designer

was created to make it easier for WinForms developers to cross over to WPF, but if you

blindly follow the way you are used to doing things, you will not get very performant

generated code. That brings us to another big difference between WinForms and WPF,

the WinForms designer generated C# or Visual Basic code, and the WPF designer

generates XAML code. XAML is an XML-based language that allows us to define layouts

in a nested way, similar to HTML. Listing 4-12 shows the XAML code that was generated

by using the designer.

Listing 4-12.  Generated XAML code

<Window

 x:Class="Dotnet6WpfDemo.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

Chapter 4 Desktop Development

98

 Title="MainWindow"

 Width="800"

 Height="450"

 mc:Ignorable="d">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="589*" />

 <ColumnDefinition Width="211*" />

 </Grid.ColumnDefinitions>

 <DataGrid x:Name="ProductsDataGrid" Margin="10,10,10,10" />

 <Button

 Grid.Column="1"

 Width="191"

 Margin="0,10,0,0"

 HorizontalAlignment="Center"

 VerticalAlignment="Top"

 Content="Add Product" />

 <Button

 Grid.Column="1"

 Width="191"

 Margin="0,43,0,0"

 HorizontalAlignment="Center"

 VerticalAlignment="Top"

 Content="Details" />

 <Button

 Grid.Column="1"

 Width="191"

 Margin="0,404,0,0"

 HorizontalAlignment="Center"

 VerticalAlignment="Top"

 Content="Delete Product" />

 <Button

 Grid.Column="1"

 Width="0"

 Margin="350,228,0,0"

Chapter 4 Desktop Development

99

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Content="Button" />

 </Grid>

</Window>

XAML works with layout containers; one of those is the grid. A grid can get divided

into rows and columns; elements in a grid get placed in a certain row and a certain

column. The height of the rows and the width of the columns can be set in three ways.

We can hardcode it in pixels, for example, <ColumnDefinition Width="150" /> creates

a column that is 150 pixels wide. We can make the column size itself automatically by

using <ColumnDefinition Width="Auto" />. Or we can use star notation to make a

column by either taking up all available space or dividing all available space over a set of

columns relatively as shown in Listing 4-13.

Listing 4-13.  Relative sizing of columns

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="1*" />

 <ColumnDefinition Width="2*" />

</Grid.ColumnDefinitions>

In Listing 4-13, we see two columns defined using star notation. In total we get 3,

meaning that the available space will be divided into three equal parts. The first column

will get one part, hence 1*. The second column will get two parts, hence 2*.

If we go back to Listing 4-12, we will see that the columns of that grid are defined as

589* and 211*. That is because of the designer; I have created those columns by clicking

in the designer. What happens is that the grid is divided up into 800 columns, 589 for the

first column and 211 for the second column. This can be greatly simplified by changing

the column definitions to Listing 4-14. Keep in mind that this will change the width ratio

between the different columns. Always verify the result when changing values in XAML.

Listing 4-14.  Simplified columndefinitions

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="3*" />

 <ColumnDefinition Width="1*" />

</Grid.ColumnDefinitions>

Chapter 4 Desktop Development

100

This can also be done from the designer; if you select the grid, its sizings become

visible and can be adjusted as shown in Figure 4-24.

Figure 4-24.  Changing grid layout from the designer

The next optimalization is easily spotted if we try to resize the form; notice what

happens to the delete button.

Figure 4-25.  Delete button is not responsive

As you can see, the button does not respond nicely to resizing the form. Listing 4-15

shows the XAML for this specific button.

Listing 4-15.  XAML for the delete button

<Button

 Grid.Column="1"

 Width="191"

 Margin="0,404,0,0"

Chapter 4 Desktop Development

101

 HorizontalAlignment="Center"

 VerticalAlignment="Top"

 Content="Delete Product" />

The button is vertically aligned to the top, meaning that it will appear as close to

the top of its parent as it is allowed. The margin property pushed the button down from

the top. Margin takes four values, respectively, left, top, right, and bottom. Do take

care not to mix this order up with the order in CSS, which is different! By setting the

VerticalAligment to Bottom, we can force the button down; by using the bottom margin,

we can push it back up a bit to align with the datagrid. Figure 4-26 shows the improved

responsiveness.

Figure 4-26.  Delete button stays in relative place after resizing

Listing 4-16 shows the new XAML.

Listing 4-16.  Improved XAML for the button

<Button

 Grid.Column="1"

 Margin="10"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Bottom"

 Content="Delete Product" />

One last thing to improve is the XAML for the other two buttons; just like with the

delete product button, their positioning is done with absolute values. What we could

do is use a StackPanel within our Grid. A StackPanel is a container that will take all its

children and stack them in a vertical or horizontal list, giving the exact outcome we need

for the two top buttons. However, every time you think of nesting containers, think twice.

WPF has a layouting cycle; the grid will start calculating the size of every row, every

column. If we place a StackPanel in Row index 0, column index 1, it will start calculating

the sizing of the grid; if it reaches the StackPanel, it will need to do a new layout cycle

Chapter 4 Desktop Development

102

on the Grid because of the relative sizing of the panel, resulting in lower performance of

the application. In other words, try to prevent nesting of layout containers as much as

possible, even if it means more manual XAML work. The problem we’re facing can be

fixed easily by adding extra rows to our grid. Listing 4-17 shows the full XAML code for

the grid.

Listing 4-17.  Full responsive XAML

<Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="3*" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <DataGrid

 x:Name="ProductsDataGrid"

 Grid.Row="0"

 Grid.RowSpan="3"

 Grid.Column="0"

 Margin="10,10,0,10" />

 <Button

 Grid.Row="0"

 Grid.Column="1"

 Margin="10"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Top"

 Content="Add Product" />

 <Button

 Grid.Row="1"

 Grid.Column="1"

 Margin="10"

Chapter 4 Desktop Development

103

 HorizontalAlignment="Stretch"

 VerticalAlignment="Top"

 Content="Details" />

 <Button

 Grid.Row="2"

 Grid.Column="1"

 Margin="10"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Bottom"

 Content="Delete Product" />

</Grid>

Looking at the rowdefinitions, you will notice three rows. The top two have height

set to Auto; the third one takes on all available space. This combined with the correct

VerticalAlignments and some margins results in exactly the layout we want, including

responsiveness. A small extra performance optimalization could be to give the top two

rows an absolute value. Those rows exist solely to contain one button each; if there is

absolutely no reason for the buttons to grow in height, we can set the row height to a

fixed value so that the layout cycle doesn’t need to calculate the height.

�Visual Tree
The WPF designer includes some tools to speed up the process of developing a

UI. Figure 4-27 shows the toolbar in the title bar of a WPF application running in debug.

Figure 4-27.  Visual Tree toolbar

Much like the DOM in HTML, WPF builds a visual tree of elements that are

created in a window. That visual tree can be inspected and even adjusted at runtime.

Listing 4-18 shows a generic method that can be used to find ancestors of a certain type;

these methods will traverse the visual tree in search for the specific type.

Chapter 4 Desktop Development

104

Listing 4-18.  Finding a parent in the visual tree

public static T FindParentOfType<T>(this DependencyObject element) where T

: DependencyObject

{

 DependencyObject parentElement = element;

 do

 {

 parentElement = VisualTreeHelper.GetParent(parentElement);

 T parent = parentElement as T;

 if (parent != null)

 {

 return parent;

 }

 } while (parentElement != null);

 return null;

}

This example uses the VisualTreeHelper to traverse the visual tree in search for a

specific type. Being able to inspect and traverse the visual tree from code gives us a great

flexibility. No matter what control or part of the UI we are in, we can always find specific

control instances. This allows us to create dynamic views where classic databinding,

where you need to know everything up front, would not suffice.

Back to the toolbar, the Select Element on the toolbar allows us to select an element

in the running application and inspect its runtime values, much like the developer tools

in a browser. First select the Select Element button on the toolbar, select an element

in the running application, and switch back to Visual Studio. In Visual Studio is a Live

Visual Tree pane; it might be collapsed by default. If you can’t find it, use the Search box

in the title bar to search for Live Visual Tree. In the Live Visual Tree pane, we can see the

actual current visual tree. Right-clicking an element and selecting Show Properties will

open the Live Property Explorer pane showing the properties of the selected element.

The properties that are not calculated by WPF can be changed here and will impact the

running application. Do note that your changes here will not automatically reflect in

your XAML code. These are great tools to find the exact values you need, or debugging a

visual issue while running your application, but it is not a real-time editor.

Chapter 4 Desktop Development

105

Figure 4-28.  Inspecting the visual tree

Chapter 4 Desktop Development

106

We can even use the toolbar to show us the layout adorners like margins and

paddings of a selected element, as demonstrated in Figure 4-29. By toggling the layout

adorners, we can inspect the margins and paddings of selected elements, again very

similar to what you might be used to from browser developer tools.

The Hot Reload check in the toolbar shows that we can edit our XAML and save it,

and the changes will be reflected in the running application without restarting it. We will

dive deeper into Hot Reload later in this chapter.

�Data Binding
One of the greatest strengths of XAML is its binding framework. XAML bindings allow

us to bind UI properties to C# properties so that the UI updates whenever the property

changes, or vice versa. In the example, we’ve been using so far the items in the datagrid

loaded in a WinForms style of working, as demonstrated in Listing 4-19.

Listing 4-19.  Loading the datagrid

public partial class MainWindow : Window

{

 private List<Product> _products;

 public MainWindow()

 {

 InitializeComponent();

 Loaded += OnLoaded;

 }

Figure 4-29.  Layout adorners for the selected button

Chapter 4 Desktop Development

107

 private async void OnLoaded(object sender, RoutedEventArgs e)

 {

 AdventureWorksContext ctx = new();

 _ products = await ctx.Products.ToListAsync();

 ProductsDataGrid.ItemsSource = _products;

 }

 private void AddProductButton_Click(object sender, EventArgs e)

 {

 _products.Add(new Product());

 }

}

While this does work, it does not use any binding. Converting this is as simple as

turning the private field into a public property and remove setting the itemssource

manually.

Listing 4-20.  Ready for binding

public partial class MainWindow : Window

{

 public List<Product> Products { get; set; }

 public MainWindow()

 {

 InitializeComponent();

 DataContext = this;

 Loaded += OnLoaded;

 }

 private async void OnLoaded(object sender, RoutedEventArgs e)

 {

 AdventureWorksContext ctx = new();

 Products = await ctx.Products.ToListAsync();

 }

Chapter 4 Desktop Development

108

 private void AddProductButton_Click(object sender, EventArgs e)

 {

 Products.Add(new Product());

 }

}

A very important line that has snuck in here is DataContext = this. This line tells

the binding framework in what instance it can resolve its bindings; in this case, we set it

to the code behind of the window. Now we just need to set the binding statement in the

datagrid.

Listing 4-21.  Setting a binding in XAML

<DataGrid

 x:Name="ProductsDataGrid"

 Grid.Row="0"

 Grid.RowSpan="3"

 ItemsSource="{Binding Products}"

 Grid.Column="0"

 Margin="10,10,0,10" />

That should do it! However, when we run the application, you’ll notice that the

datagrid is still empty. Did we miss something? Are bindings broken in .NET 6? Do not

worry; this is a result of the order in which things are happening and a result of the fact

that we aren’t notifying the UI of a change yet.

The binding framework is not constantly monitoring its bound properties for

changes; this would really tear down any performance. Instead, it listens to property

changed events coming from its datacontext. To fire these events, we need to implement

the INotifyPropertyChanged interface. Listing 4-22 shows the changes to make it work.

Listing 4-22.  Implementing INotifyPropertyChanged

public partial class MainWindow : Window, INotifyPropertyChanged

 {

 private List<Product> _products;

 //INotifyPropertyChanged member

 public event PropertyChangedEventHandler PropertyChanged;

Chapter 4 Desktop Development

109

 public List<Product> Products

 {

 get => _products;

 set

 {

 if (value == _products)

 {

 return;

 }

 _products = value;

 �PropertyChanged?.Invoke(this, new PropertyChangedEventArgs

(nameof(Products)));

 }

 }

...

The INotifyPropertyChanged interface contains one member, the PropertyChanged

event. We fire this in the set method of the Products property. By firing this event, we

notify the datagrid that its data has changed and that it needs to refresh its UI. We dive

deeper into XAML, binding, and the MVVM design pattern in Chapter 6 of this book.

Chapter 6 handles MAUI, Microsoft’s cross-platform framework.

�Windows App SDK
As we have seen, there are different ways of building desktop applications for Windows.

Each platform, being it WinForms or WPF, comes with its own specific way of interacting

with the operating system. Back when .NET 6 was in its planning phase, a new project

was announced by Microsoft under the name Project Reunion. Project Reunion

promised to unify the way desktop applications were build and were interacting with the

operating system. Eventually Project Reunion got renamed to the Windows App SDK.

The Windows App SDK is a set of components, tools, and a unified API that can be

used to build applications for Windows 10 and Windows 11. The Windows App SDK

does not replace any frameworks; it’s more of an add-on, something that complements

current frameworks to provide a more consistent way of working.

The Windows App SDK consists of several features.

Chapter 4 Desktop Development

110

The easiest way to get started with the Windows App SDK is by downloading and

installing the Visual Studio 2022 extension from https://aka.ms/windowsappsdk/

stable-vsix-2022-cs. This extension will install the WinUI project templates in

Visual Studio.

Besides the extension, we also need the Universal Windows Platform, .NET Desktop,

and Desktop Development with C++ workloads installed from the Visual Studio Installer.

�Building a Windows App SDK application
From Visual Studio, we create a new solution. In the project type selection window, we

can filter on WinUI. The WinUI 3 templates contain the references to the Windows App

SDK. The SDK is fully wired up and ready to go.

Table 4-1.  Windows App SDK features

Feature Description

WinUI 3 The UI components for building Windows applications

DWriteCore Cleartype text rendering using a device-independent text layout

system

MRT core Manage translations and images in multiple languages and scales

App instancing Control over applications being able to run multiple instances of

themselves

Rich activation Launch your app through a URI or from another app

Power management Inspect how your app affects the device’s power usage

App windows management Create and manage app windows

Push notifications Send rich push notifications from Azure to your app

Deployment Deploy the Windows App SDK runtime with your app

Chapter 4 Desktop Development

https://aka.ms/windowsappsdk/stable-vsix-2022-cs
https://aka.ms/windowsappsdk/stable-vsix-2022-cs

111

There are two types of WinUI applications, packaged applications and unpackaged

applications. Unpackaged applications result in an executable that we ourselves are

responsible for to put into an installer; these types of applications are used when

installing through an MSI or setup.exe wizard. Packaged applications on the other hand

are fully prepared to be installed using MSIX. MSIX is Microsoft’s packaging format; it is

an easy way for users to install, update, and uninstall applications on their system. The

biggest advantage to MSIX is that every application installed through MSIX works with a

sandboxed registry and a sandboxed filesystem, meaning if we uninstall the application,

all traces of it are effectively removed from the system. This prevents the slowing down of

computers because of registry keys that keep floating around.

There are two app templates, one packaged with MSIX and one packaged with MSIX

using a Windows Application Packaging (WAP) project. The second type will generate

a solution with two projects. The second project is only there to configure and generate

the MSIX file using the package manifest. This is mostly there for backward compatibility

reasons since the WAP projects have been around ever since MSIX was introduced

with UWP.

Figure 4-30.  WinUI templates

Chapter 4 Desktop Development

112

As you might have seen, there is no template for creating unpackaged apps. An

unpackaged app can be created by selecting the packaged app without WAP template

and adding the WindowsPackageType setting with value None to the project file. For this

example, we will use the Blank App, Packaged project type, without a WAP project. Select

the template and create a new solution. Figure 4-31 shows the generated project.

The dependencies clearly show the reference to the Windows App SDK. The

Package.appxmanifest is used for setting app preferences, like preferred orientation,

the icons to be shown in the Microsoft Store should we want to publish our application

there, and package versioning. The app.manifest file is an XML file that contains some

startup settings. Listing 4-23 shows the default content.

Listing 4-23.  app.manifest file

<?xml version="1.0" encoding="utf-8"?>

<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">

 <assemblyIdentity version="1.0.0.0" name="ApressWinUiDemo.app"/>

 <application xmlns="urn:schemas-microsoft-com:asm.v3">

 <windowsSettings>

 <!-- The combination of below two tags have the following effect:

 1) Per-Monitor for >= Windows 10 Anniversary Update

 2) System < Windows 10 Anniversary Update

Figure 4-31.  Packaged Windows App SDK project

Chapter 4 Desktop Development

113

 -->

 �<dpiAware xmlns="http://schemas.microsoft.com/SMI/2005/

WindowsSettings">true/PM</dpiAware>

 �<dpiAwareness xmlns="http://schemas.microsoft.com/SMI/2016/

WindowsSettings">PerMonitorV2, PerMonitor</dpiAwareness>

 </windowsSettings>

 </application>

</assembly>

Those DPI values sure look familiar; they are the same values we have set back when

we were talking about WinForms.

Let’s have a look at MainWindow.xaml. It looks very similar to what we had in WPF,

so how do we know we really are using the Windows App SDK with WinUI 3? Figure 4-32

shows what the namespaces for a button in XAML; on the left is the WinUI 3 project we

just created, while on the right is a .NET 6 WPF application.

Every control in WinUI 3 lives in the Microsoft.UI.Xaml.Controls namespace. With

this, we have confirmation that we are using the controls from the WinUI 3 library,

coming from the Windows App SDK NuGet package. No longer do we need to wait

for a Windows update whenever a bug is found in a control or when new controls are

announced. Thanks to WinUI 3, the controls are now shipped out of band with Windows,

through NuGet.

�Using Windows APIs with Windows App SDK
An often-requested feature for WinUI was access to the Windows APIs, for example,

to set the title in the window’s title bar or to automatically center a window when

launching. This functionality has been released with the Windows App SDK. Listing 4-24

Figure 4-32.  WinUI 3 namespaces vs. WPF namespaces

Chapter 4 Desktop Development

114

shows how we can use the Windows App SDK to get a reference to the AppWindow

object for the current window. This code can be copied directly in the code behind of

any WinUI window, for example, the default MainWindow in the project template.

Listing 4-24.  Getting a reference to AppWindow

private AppWindow GetAppWindowForCurrentWindow()

{

 IntPtr hWnd = WinRT.Interop.WindowNative.GetWindowHandle(window);

 WindowId myWndId = Win32Interop.GetWindowIdFromWindow(hWnd);

 return AppWindow.GetFromWindowId(myWndId);

}

Thanks to the Windows App SDK, we get access to the Windows Runtime, or WinRT,

interop capabilities. We first fetch a pointer to where the window lives in memory

(window is the name given to the window element in XAML). With that pointer we

can grab the window ID, and finally with that ID we can fetch the actual AppWindow

instance.

Now that we have an AppWindow instance we can start using it to manipulate the

window. Listing 4-25 shows the code to set a title in the titlebar and to resize the window

into a square of 500 by 500 pixels.

Listing 4-25.  Manipulating the AppWindow

private void myButton_Click(object sender, RoutedEventArgs e)

{

 AppWindow appWindow = GetCurrentAppWindow();

 if (appWindow != null)

 {

 appWindow.Title = "Hello Windows App SDK!";

 appWindow.Resize(new SizeInt32(500, 500));

 }

}

This code replaces the button’s event handler that was in MainWindow when it was

created. When we run this and click the button, you will see the title change, and the

window will resize to the result in Figure 4-33.

Chapter 4 Desktop Development

115

This was just one example of how we can use the Windows App SDK. The full set of

documentation can be found at https://docs.microsoft.com/en-us/windows/apps/

windows-app-sdk/ .

�Packaging
Once your application is ready to be shipped, we can package it as an MSIX. Make sure

to verify the Packaging tab in Package.appxmanifest. Before we can create our MSIX,

we need to select a certificate to sign our application. MSIX requires this to prevent

attacks on the user’s system through altered software. The toolchain does allow us

to create a test certificate, but I would strongly advice to get a real trusted certificate

to sign your applications. For now, for the sake of this demo, a self-signed certificate

will suffice. Click on the Choose Certificate option and select Create. This will create

a self-signed certificate and add it to your project as a *.pfx file. Figure 4-34 shows the

certificate window.

Figure 4-33.  AppWindow after manipulation

Chapter 4 Desktop Development

https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/

116

This certificate will now be used to sign your application before packaging it as an

MSIX. But certificates only work when they are trusted by the machine they are used

on. Navigate to the pfx file in Windows Explorer and double-click it. This will launch the

Certificate Import Wizard. Select Local Machine as store location in step 1. The certificate’s

filename in step 2 should already be filled in with your pfx file. In step 3 you are asked to

select a password; this is optional and can be left blank. In the final step we will select the

certificate store ourselves and browse to Trusted Root Certificate Authorities.

Figure 4-34.  Selecting a certificate for signing

Chapter 4 Desktop Development

117

Select Next and Finish to import the certificate into your Trusted Root Authority.

A quick but very important sidenote. We have just imported a self-signed certificate
into our Trusted Root store of our machine. This is not the way certificates are
meant to be used, and we are potentially opening up our machine for malicious
software. Keep this in mind and remove the certificate from your store as soon as
possible.

Once everything is in order, right-click the project and select Pack.

Figure 4-35.  Selected the trusted root authorities

Chapter 4 Desktop Development

118

Once Visual Studio is done packaging your application, you will find an MSIX file in

your project’s bin\<cpu architecture>\Release\net6.0-windows10.0.19041.0\win10-x86\

AppPackages\ApressWinUiDemo_1.0.0.0_x86_Test.

Double-click the MSIX file and an installer will popup. If you did everything

correctly, the installer will say that this is a trusted app, which means that the certificate

that was used for signing the application is trusted by your machine. Figure 4-37 shows

the installer.

After installing, the application will show up in the list of installed applications on

your Windows installation. Remember, this application is using sandboxed registry and

filesystem, so uninstalling it shouldn’t leave a trace behind.

Figure 4-36.  Pack option in Visual Studio

Figure 4-37.  Installing an MSIX packaged application

Chapter 4 Desktop Development

119

�Migrating to .NET 6
The basics of migrating an existing desktop application to .NET 6 is straightforward, of

course depending on the complexity of the application. Migration comes in six steps.

	 1.	 Run the portability analyzer.

	 2.	 Migrate to PackageReference.

	 3.	 Update to .NET 4.8.

	 4.	 Switch the desktop project to .NET 6.

	 5.	 Switch any class libraries to .NET 6.

	 6.	 Run the application and test thoroughly.

First step is usually running a Visual Studio extension called “Portability Analyzer.”

The documentation can be found at https://docs.microsoft.com/en-us/dotnet/

standard/analyzers/portability-analyzer. This extension will scan your code base

and generate a report that gives an overview of how portable your code is and what

assemblies are compatible with which version of .NET. The report in Excel looks like in

Figure 4-38.

I’ve used a demo application that was built in WinForms with .NET 4.0; in the

analyzer settings, I’ve checked .NET 5 as target framework. The analyzer tells me that

my application is 100% compatible with .NET 5; since .NET 6 is the successor of .NET

5, it should work just fine. Do keep in mind that all this analyzer does is checking if

the framework APIs you use and and the references you have are compatible with the

selected target framework. It does not compile, run, or test your application in any way.

Figure 4-38.  Portability Analyzer

Chapter 4 Desktop Development

https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer

120

The next step in the porting process is moving away from the old packages.config

file to PackageReference. NuGet references used to be stored in an xml file called

packages.config in older versions of .NET. After a while those referenced moved to a

section in the csproj file called PackageReference. Migration to PackageReference is

straightforward in Visual Studio; right-click references and select Migrate packages.

config to PackageReference.

Visual Studio will uninstall all NuGet packages from the project; remove the

packages.config and reinstall the NuGet packages in PackageReference. After migration

it will show an HTML report detailing any compatibility issues. Don’t forget to build your

application after this step to make sure all packages are restored from the NuGet package

feed. Make sure that your NuGet packages have the correct version installed. You might

need to update some to have .NET 6 support.

After upgrading to PackageReference, the next step is to update your application to

the latest version of the classic .NET Framework, .NET 4.8. Upgrading to .NET 4.8 first

will bring you closer to “the new .NET” that started with .NET Core. This is done easily

from the properties of each project, as shown in Figure 4-40.

Figure 4-39.  Migrating to PackageReference

Chapter 4 Desktop Development

121

If you don’t see the .NET Framework 4.8 option, you need to download and install

the .NET Framework 4.8 SDK from this link https://dotnet.microsoft.com/en-us/

download/visual-studio-sdks . Make sure your application still compiles and runs

after this step.

With that, we’re finally ready for the big migration! There’s quite an easy trick to

move an application to .NET 6.

•	 Create a new .NET 6 application of the same type (WPF, WinForms,

Class Library, etc.) as the project you’re trying to migrate.

•	 Copy the csproj of the new project to the location of the old project.

•	 Rename the new csproj to have the same name as the csproj of the

old application.

•	 Open in Visual Studio, recreate the references, and add the NuGet

packages again.

Figure 4-40.  Updating to .NET 4.8

Chapter 4 Desktop Development

https://dotnet.microsoft.com/en-us/download/visual-studio-sdks
https://dotnet.microsoft.com/en-us/download/visual-studio-sdks

122

And that’s it! Because of the new project structure since .NET Core, it’s as easy

as replacing the csproj with a .NET 6 version. There is one more step after migrating

all projects within your solution: test every single button, textbox, and flow in your

application. No matter how insignificant the code seems, or whether or not it compiles,

test everything! For example, Process.Start("https://www.apress.com") might seem

like a very trivial piece of code that couldn’t break, but it does. Since .NET Core, this no

longer works and crashes the application.

�Upgrade Assistant
There is an alternative to doing the migration manually. Microsoft has created a

command line tool called Upgrade Assistant. It basically does the same steps as

described above but automatically. The upgrade assistant is open source and can be

found at https://github.com/dotnet/upgrade-assistant. Upgrading a project using

the upgrade assistant is as easy as calling upgrade assistant upgrade .\Pixelator.

csproj. The upgrade assistant is a wizard that guides you through the process step by

step, allowing you to skip whatever step you want or see more details.

Just like with the manual process, test every single nook and cranny of your

application after migrating to .NET 6!

Figure 4-41.  Upgrade assistant

Chapter 4 Desktop Development

https://www.apress.com
https://github.com/dotnet/upgrade-assistant

123

�Wrapping Up
The desktop remains a very important platform to this day. Microsoft knows this and

provides us as developers with several options for building great desktop experiences.

Classic frameworks like WinForms and WPF have received updates to bring them in the

modern era, with support for high-DPI monitors. Tools like the Windows App SDK unify

the API surface of Windows so that we have a common way of interacting with Windows,

no matter the desktop framework we are using. In this chapter, we have explored all

three options. We have seen that each of the three options has its own strengths and that

there is no best option.

Chapter 4 Desktop Development

125
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_5

CHAPTER 5

Blazor
Blazor, the new kid on the block in the web frontend world since 2018. It understandably

gets compared to the likes of Angular, React, and Vue all the time, but it is a whole other

beast. For starters, Blazor is not JavaScript based; it is .NET based.

Blazor, in its pure web form, has two flavors. There is Blazor Server and Blazor

WebAssembly. No matter what version you prefer, the development experience is the

same; you use C# and HTML to build your frontend application. But, haven’t we tried

this before? Wasn’t there something called Silverlight that also let us build frontend web

applications with C#? There sure was, but Silverlight was based on a plugin system that

was Windows only; it could never survive in this day and age where so much of what

we do on the Internet happens on mobile devices or on non-Windows devices. Blazor

manages to bring us .NET to the web frontend using only open web standards. No

plugins are required; Blazor applications run in the same secure sandbox as JavaScript-

based frameworks but with added flexibility, depending on your choice of Blazor flavor.

�Blazor WebAssembly
Blazor WebAssembly is the version of Blazor that comes the closest to JavaScript

frameworks like Angular and React in that the code is executed in the user’s browser

instead of on a server. This is however not done by transpiling C# code into JavaScript

in a TypeScript kind of way; instead, Blazor makes use of WebAssembly, an open web

standard that defines a binary code format for running applications in the browser

sandbox. In other words, WebAssembly is a platform that can run applications.

WebAssembly, or Wasm, became a W3C recommendation in December 2019. One of

the main objectives of Wasm was getting better, even near-native, performance out of

web applications. While JavaScript is definitely a powerful language, it still lacks the

performance, features, and maturity from the more enterprise-ready managed languages

like C# and Java.

https://doi.org/10.1007/978-1-4842-7319-7_5#DOI

126

After Wasm was officially a supported standard in the most common browsers,

someone at Microsoft decided to see if they could get .NET to run on that new platform.

After a while, a proof of concept was ready and demoed using a stripped down version

of Mono. This proof of concept turned into a development team; the development team

turned the demo into a product.

Blazor Wasm is evolving fast, but it is also limited by WebAssembly itself in some

ways. The current version of Wasm doesn’t allow direct manipulation of the DOM

and has no multithreading. Both limitations are being addressed in future versions of

WebAssembly.

�Creating a Blazor Wasm Project
.NET 6 comes with default templates for Blazor Wasm applications. Figure 5-1 shows the

second step in the wizard where we can provide additional information.

Figure 5-1.  Blazor Wasm template wizard

The template can be configured in multiple ways. First there are some built-in

authentication types like single user accounts or the Microsoft Identity Platform.

Choosing one of these options will adjust the template with boilerplate code that enables

either local users or users to log in using their Microsoft account. More information on

the built-in security can be found at https://docs.microsoft.com/en-us/aspnet/

core/blazor/security/?view=aspnetcore-6.0. Configure for HTTPS is checked

by default and sets the configuration so that the application only responds to HTTPS

requests.

Chapter 5 Blazor

https://docs.microsoft.com/en-us/aspnet/core/blazor/security/?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/blazor/security/?view=aspnetcore-6.0

127

The second option allows you to host your application in an ASP.NET Core project.

By default, a Blazor Wasm project can be a static hosted web application; by adding a

server-side component, we still maintain the exact same Blazor client project, but we get

extra server-side capabilities. Since Blazor Wasm cannot connect directly to a database,

we usually need an API in some form to feed data to the app; in .NET, this is usually an

ASP.NET WebAPI. By making your Blazor app ASP.NET Core hosted, you automatically

get your WebAPI and Wasm application in one application. Project-wise you will get

three projects, the Blazor Wasm client project, the ASP.NET Core server project, and

a shared project that can share classes between both. Only the Server project needs

to be deployed. Since that project has a reference to the Blazor client project, it will

automatically include it in the artifacts that get deployed onto the web server. Figure 5-2

shows a diagram to illustrate the relation between client, server, and shared.

Figure 5-2.  Blazor client/server architecture

�Blazor Progressive Web Apps
The final option in the project wizard is Progressive Web Application. A Progressive Web

Application, or PWA, is a web application that can install itself like a native application.

Meaning that it will get an icon and when launched will not show any browser controls

anymore, but it will still be “just” a web application. By checking the option in the project

wizard, the template will include a manifest.json file. This file enables browsers to install

web applications as a PWA. Listing 5-1 shows the default manifest.json included with a

new created project. You will find the manifest.json in the Blazor client project under the

wwwroot folder.

Chapter 5 Blazor

128

Listing 5-1.  Default manifest file for a Blazor Wasm app

{

 "name": "BlazorWasmDemo",

 "short_name": "BlazorWasmDemo",

 "start_url": "./",

 "display": "standalone",

 "background_color": "#ffffff",

 "theme_color": "#03173d",

 "prefer_related_applications": false,

 "icons": [

 {

 "src": "icon-512.png",

 "type": "image/png",

 "sizes": "512x512"

 },

 {

 "src": "icon-192.png",

 "type": "image/png",

 "sizes": "192x192"

 }

]

}

As you can tell, it consists of meta information that the operation system needs to

be able to make it look like the web application is installed on the OS. If we launch this

application in a browser that supports PWA installation, you will see an icon lighting

up allowing us to install the PWA as an app. Figure 5-3 shows the browser option in

Microsoft Edge once it detects a manifest.json file. The exact look might be different

depending on your browser and browser version.

Chapter 5 Blazor

129

Figure 5-3.  Installing a web app as PWA

Besides a manifest.json file, there’s also a service worker added to the project. Service

workers are JavaScript code that acts like a proxy between the application and the

network. Service workers enable offline access to web applications by caching data and

fetching updated data once the network is available.

More information on building a Blazor-based PWA, including the manifest file and

service workers, can be found at https://docs.microsoft.com/en-us/aspnet/core/

blazor/progressive-web-app?view=aspnetcore-6.0&tabs=visual-studio.

�Exploring the Blazor Client Project
Figure 5-4 shows a default Blazor WASM client project loaded in Visual Studio.

Chapter 5 Blazor

https://docs.microsoft.com/en-us/aspnet/core/blazor/progressive-web-app?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/blazor/progressive-web-app?view=aspnetcore-6.0&tabs=visual-studio

130

Figure 5-4.  A Blazor WASM project

Blazor makes use of the Razor framework that made its debut in ASP.NET MVC. If

you have done ASP.NET MVC before, you will recognize a lot of things, but there are

some Blazor-specific things in there as well.

Listing 5-2 shows the content of the counter page.

Listing 5-2.  Counter page in the default Blazor template

@page "/counter"

<h1>Counter</h1>

Chapter 5 Blazor

131

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

}

Razor is a framework that mixes HTML and .NET code. It allows us to declare

variables and bind them to HTML elements or trigger .NET methods from HTML

elements.

In Razor, an @ sign signals the start of a .NET statement. An example of this is

@page "/counter" at the top of the page. Page is an attribute; instead of using square

brackets, we use the @ sign again to set this attribute to the counter page. In case of the

page attribute, it is used for Blazor’s navigation service. This page can now be accessed

through https://the-webapps-url/counter.

The @code directive specifies the code block for this specific page; those code blocks

are scoped to the page they are declared in. The sample code declares a private field

called currentCount in a normal C# way. That field is bound to in HTML by prefixing it

with an @ sign, <p role="status">Current count: @currentCount</p>.

This page also demonstrates updating a data field by calling a method. The HTML

button specifies an @onclick event. This type of event is different from the HTML/

JavaScript combination you might be used to because of the @ sign. Once again, this

signals a .NET statement, in this case calling a method that is declared within this page.

The IncrementCount method increases the integer field with 1, immediately updating

the UI as a result.

The interesting part here is that the page is not updated through a server callback but

rather through updating the DOM; this can be seen in most browser’s dev tools (F12).

Looking at the visual tree in dev tools, they often mark the elements that are changing.

Figure 5-5 shows this for the counter page right after clicking the button for the fifth time.

Chapter 5 Blazor

https://www.the-webapps-url/counter

132

Figure 5-5.  Updating the DOM after a button click

As you can see, only one element is marked, so only one small part of the page is

changing. This results in fast web applications that feel more native than, for example,

ASP.NET MVC applications that often rely on page reloads and server callbacks.

�Blazor in .NET 6
To see how .NET 6 handles Blazor projects, let’s start at the beginning. As usual a Blazor

app starts at Program.cs, shown in Listing 5-3.

Listing 5-3.  Program class of a Blazor WASM application

using BlazorWasmDemo;

using Microsoft.AspNetCore.Components.Web;

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

var builder = WebAssemblyHostBuilder.CreateDefault(args);

builder.RootComponents.Add<App>("#app");

builder.RootComponents.Add<HeadOutlet>("head::after");

builder.Services.AddScoped(sp => new HttpClient { BaseAddress = new

Uri(builder.HostEnvironment.BaseAddress) });

await builder.Build().RunAsync();

Chapter 5 Blazor

133

Blazor in .NET 6 makes use of top-level statements to trim down the size and

complexity of the Program file. As you can see in Listing 5-3, there is no namespace, no

class declaration, and no Main method declaration; the Main method is still there but it

is hidden away as a syntactic trick; should you inspect the intermediate language, you

will find the Main method there. More information on top-level statements can be found

here https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/top-

level-statements.

This sample application sets the App component as root component for this web

application. The system uses selectors like selectors in CSS to select the correct element

in the index.html file where to inject the components. In the default template, the #app

selector is used. If you open the default index.html file in the wwwroot folder of your

project, you will find a div with app as ID. This is the div where our Blazor application

will be hosted.

The App component is listed in Listing 5-4.

Listing 5-4.  Default app component

<Router AppAssembly="@typeof(App).Assembly">

 <Found Context="routeData">

 �<RouteView RouteData="@routeData" DefaultLayout=

"@typeof(MainLayout)" />

 <FocusOnNavigate RouteData="@routeData" Selector="h1" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p role="alert">Sorry, there’s nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

The App component is the most top-level component in a default Blazor application.

It configures the router, to enable page navigation, and considers the router to be similar

to a NavigationPage if you’re more used to Xamarin Forms or MAUI development. The

router specifies found and not found views; the not found view will be shown whenever

navigation triggers an HTTP 404.

Chapter 5 Blazor

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/top-level-statements
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/top-level-statements

134

Another rootcomponent being added is the HeadOutlet. Its selector specifies that

the component is added to the head section of the HTML file rather than replacing it.

The component itself allows us to easily set the title of the page to be reflected in the

browser’s tab or title bar.

After adding the root components, we register an HTTP client as a scoped service

into .NET’s dependency injection framework. We are registering our services here so that

we can inject them in our Blazor pages later on as we will see in a minute.

�Blazor Component System
As we have seen in Listing 5-4, the App.razor component declares a Router. That Router

loads MainLayout.razor. MainLayout.razor is a component that can be best viewed as the

application’s template. Listing 5-5 shows the default MainLayout.razor.

Listing 5-5.  MainLayout.razor

@inherits LayoutComponentBase

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <main>

 <div class="top-row px-4">

 �

About

 </div>

 <article class="content px-4">

 @Body

 </article>

 </main>

</div>

Chapter 5 Blazor

135

The layout specifies where the navigation menu lives, what the grid layout of the

page is, and so on. The NavMenu element specified in MainLayout is actually another

Blazor component living in our project. You can find it in the Shared folder. Blazor

components can be embedded in each other in a very similar way as HTML elements

are added on a page. We can even add properties to a component, mark them as

Parameter with an attribute, and pass data between components this way. An example

of this is included in the default template in the Shared folder. Listing 5-6 shows the

SurveyPrompt property as parameter declaration.

Listing 5-6.  Adding parameters to a Blazor component

[Parameter]

public string? Title { get; set; }

That parameter can be set as if it was a property on an HTML element as

demonstrated in Listing 5-7.

Listing 5-7.  Setting a parameter

<SurveyPrompt Title="How is Blazor working for you?" />

MainLayout also contains an @Body placeholder. This placeholder is where all our

Blazor pages will be inserted into the layout of the application. Choosing what page to

have as initial page is as simple as setting a page’s route to “/”. This is often Index.razor,

as is the case in the default template. Listing 5-8 shows a snippet of the default Index.

razor page.

Listing 5-8.  Index.Razor’s page declaration

@page "/"

<PageTitle>Index</PageTitle>

Since the url to this page is the root url of the application, this page will be initially

loaded and placed on the @Body part of MainLayout. The PageTitle we specify here

is what will go in the HeadOutlet root component we declared in Program.cs and will

become the page title.

If we now go back to the counter page we have previously seen, you can clearly see

where the navigation menu comes from and what part of the MainLayout is replaced

with the code from the counter component.

Chapter 5 Blazor

136

�Creating Blazor Pages
We have mentioned both Blazor pages and Blazor components before. Blazor pages

are components with an @page directive, giving them a url for the routing system to

navigate to.

Let’s jump to FetchData.razor, starting with the attributes at the top of the file, listed

in Listing 5-9.

Listing 5-9.  Attributes in FetchData.razor

@page "/fetchdata"

@inject HttpClient Http

We’ve run into the page attribute before. As a reminder, it configures the route for this

page; when navigating to https://<hostname:port>/fetchdata, we will be redirected to

this page. The inject attribute is Blazor’s version of dependency injection. It will search

for the HttpClient type in the ServiceCollection that we’ve seen in Listing 5-3 and set an

instance of that type to the Http member.

In Listing 5-6, we see the Razor code of the FetchData class. As mentioned before,

Razor can be explained by HTML mixed C# snippets. Take the if statement for example.

It is prefixed with an @ sign, signaling that a code statement will follow. The statement

is followed by brackets, embedding the code between the brackets in the statement.

This specific statement will prevent a potential NullReferenceException on forecasts.

The code loops over the forecasts collection, but if that collection is not loaded yet, it

will crash. The interesting part here is that that if statement will actually get reevaluated

as soon as the forecasts collection is updated. This is because Blazor has an internal

method called StateHasChanged. When this method is triggered, Blazor will re-render

its current state, take a diff between the old and the new render tree, and apply that

diff to the old one that is still on screen. This results in only a partial refresh of the page

instead of a full page reload. StateHasChanged can be called manually by us, but Blazor

calls it internally whenever a property on a component changes or when an event on a

component is triggered. This results in an easy way to show a “loading” message while

data is being fetched from an API.

The foreach statement loops over the forecasts collection and lists its content in

an HTML table. This is a great example of how flexible Razor can mix HTML elements

with .NET data. We can even call member methods, like the ToShortDateString on the

DateTime struct.

Chapter 5 Blazor

137

Listing 5-10.  Razor code

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

{

 <table class="table">

 <thead>

 <tr>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var forecast in forecasts)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

 </table>

}

Chapter 5 Blazor

138

The final part of the FetchData file is the code block. Every Razor file can contain

a @code block. This contains most of the logic of a Razor component, and its lifecycle

methods.

Listing 5-11.  Code block in a Razor file

@code {

 private WeatherForecast[]? forecasts;

 protected override async Task OnInitializedAsync()

 {

 �forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>

("sample-data/weather.json");

 }

 public class WeatherForecast

 {

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string? Summary { get; set; }

 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

 }

}

The most interesting part of Listing 5-11 is OnInitializedAsync. This is one of seven

lifecycle methods of a Blazor component. The complete list of lifecycle methods is:

•	 OnInitialized

•	 OnInitializedAsync

•	 OnParametersSet

•	 OnParametersSetAsync

•	 OnAfterRender

•	 OnAfterRenderAsync

•	 ShouldRender

Chapter 5 Blazor

139

As you can see, every lifecycle event, except for ShouldRender, has both a

synchronous and an asynchronous version. If you are hooking into one of the lifecycle

events and you need to call an async method, you need to use the async version of the

lifecycle method. We can even use both the async and the sync version of these lifecycle

methods at the same time; they will both execute but there is no guarantee that they will

always run or finish in the same order. OnInitialized is called after the component is

done loading and all UI components are available; this is the perfect lifecycle event to

load initial data from a data service. OnParametersSet is called after parameters change

value, usually due to another component that updates the parameter on the current

component. OnAfterRender is called after everything is done rendering, but other

initializations might still be happening inside other components that we are referencing.

And finally, ShouldRender is called right before rendering happens. Microsoft has a nice

diagram showing the component lifecycle. I have added that diagram for your reference

as Figure 5-6.

Chapter 5 Blazor

140

Figure 5-6.  Razor component lifecycle (Source: Microsoft)

�Running a Blazor App
So, now we know how Blazor works. But how do we go from entering a URL in our

browser to a running Blazor application? Is it a plugin like Silverlight was? Do we need

browsers that support Blazor? The answer is simple. Blazor is not plugin based; it

runs on WebAssembly. All we need is a browser that supports Wasm, and all modern

browsers do. To understand how Blazor is loaded into a browser, we need to step back

and look at a basic web server. A web server in its purest form is a server that hosts a

bunch of files. Those files get downloaded to the browser of someone who enters the

URL that routes to your webserver. Webservers have had a form of conventions, for

Chapter 5 Blazor

141

example, if no specific html file is specified in the URL, the server will, by default, look

for index.html or default.html. Other web servers, like IIS, for example, also take this

convention into account; index.aspx is still the startpage of an ASP.NET application. A

Blazor WASM application is served as a static website; there’s no need for an IIS server to

make the calculations or run the .NET code. All we need is a website that can serve static

content, in this case HTML, CSS, JS, and DLL files.

Figure 5-7 shows the generated files when publishing a stand-alone Blazor WASM

client application without PWA support from Visual Studio. The deploy step took our

wwwroot content and copied it to the output folder; it compiled our .NET code and

added that to the output as well.

Figure 5-7.  Output after publishing a Blazor WASM application

There is our index.html file! There’s HTML and CSS files right there; no need to

compile or compute anything; a static file server can deliver these files to a modern

browser; the browser will spin up the WASM runtime and load in the Blazor app. We

don’t even need to install .NET 6 into our browser; notice that _framework folder in

Figure 5-7? That contains the .NET 6 assemblies; it just ships with our application.

Figure 5-8 shows part of the contents of that folder.

Chapter 5 Blazor

142

Figure 5-8.  _ framework folder

There are some interesting files in this folder. I have removed a lot of the files from

Figure 5-8 for brevity, but the interesting ones are still there. Before we go into the

actual files, notice that there are three versions of the files? That is because the output

generates every file in a normal way and twice using a different type of compression. The

.gz files are gzipped, while the .br files are compressed with Brotli. It is up to the server

that serves our application to detect what the optimal type is for the client requesting

our files.

Chapter 5 Blazor

143

Let’s start with the actual .NET 6 runtime. As you can see, the assemblies are there,

in part. All the System.* files are part of the .NET 6 assemblies, while all of the Microsoft.*

files are specific for Blazor. When publishing a Blazor application, the framework will

run a linker process. This process will remove unreachable or unused code from the

generated intermediate language files, and it will remove unused binaries from the

output (tree shaking). These operations are not perfect. It is very important to perform a

complete end-to-end test of your application after publishing. There is a possibility that

the linker was too aggressive and that your application suddenly behaves in unexpected

ways. To fix this, the linker can be configured to ignore certain modules by adding nodes

to the project file. The complete documentation on how to do this can be found at

https://docs.microsoft.com/en-us/dotnet/core/deploying/trim-self-contained.

The blazor.boot.json file contains information about the project. It contains a list of

assemblies, with hashes to prevent tampering, that need to be loaded in order for the

application to start.

blazor.webassembly.js is the glue between the web world, where the HTML lives, and

the native world, where .NET lives. As mentioned before, we currently cannot directly

access the DOM from within the .NET Blazor code. To work around this, Microsoft

created this JavaScript file. Since we cannot interact with the elements in the visual tree

from within Blazor, but we can call JavaScript functions through JS Interop, this file can

serve as a bridge from Blazor to the visual tree.

BlazorWasmDemo.dll contains the application code we have written.

dotnet.wasm is the native Webassembly code that contains the instructions to load

up the .NET runtime environment in the Webassembly sandbox.

Loading a Blazor WASM application means downloading all these files and loading

them into the WASM sandbox. At first sight, that might look like a lot but the Blazor team

has been hard at work to shrink .NET down as much as possible; combined with linking

and tree shaking, they managed to get a Blazor WASM application to a reasonable size

when compared with other JavaScript-based SPA frameworks. Figure 5-9 shows the

browser’s network tab when opening a published Blazor WASM application, hosted on

a static Azure website. This is an actual in-house application we are actively using and

developing, so no demo application. Do keep in mind that the size on the screenshots is

just for demo purposes, the actual size of your application will be different.

Figure 5-9.  Launching a published Blazor WASM app

Chapter 5 Blazor

https://docs.microsoft.com/en-us/dotnet/core/deploying/trim-self-contained

144

A total of 9.7 MB was downloaded; this was the first launch of that specific

application. Figure 5-10 shows the same metric, but after launching the app for a

second time.

Figure 5-10.  Launching the app again

Launching the app again takes significantly less time and resources. That is because

the browser caches as much as possible. There’s even quite a big chance that your users

won’t notice the three seconds it takes to load your application. That is because there is

a big difference between speed and the perception of speed. As mentioned before, the

first thing loaded into the browser is the index.html file. That file contains logic to show

“Loading…,” while the WASM and .NET runtimes are being downloaded and started;

replace that with a nice loading animation, and your application will be perceived as

loading quite fast.

�Blazor Server
Blazor Server is a second flavor of Blazor. It looks and feels very similar to Blazor WASM,

but the big difference is in the underlying architecture. Instead of running inside web

assembly, it actually runs on a server, hence the name. Blazor server uses a SignalR

connection to send requests to a server that handles all the instructions and sends back

changes to the DOM. Before we go any deeper, let’s see what SignalR is.

�SignalR
SignalR has been around for quite some years. It is a framework that allows developers

to easily implement real-time communication between clients and servers. It enables

server code to directly call methods on clients instead of clients having to poll for data

on the server. A simple example of this is a chat application where client A pushes

a new message to the server; the server then calls client B with the new message as

parameter. All of this is possible due to Websockets, which is the underlying mechanism

of SignalR. But it goes one step further. On platforms that don’t support Websockets,

Chapter 5 Blazor

145

SignalR can automatically fall back to older transport protocols. Because of this fallback

functionality and a load of abstractions on top of the Websockets, API SignalR has

quickly gained a lot of popularity.

Thanks to SignalR we have server–client and client–server communication. By

leveraging this, Microsoft built a server-based web framework that does not do page

reloads; instead, they receive a piece of DOM through the SignalR connection. We can

see this in action by launching the counter page of the default Blazor Server template.

The project template is mostly the same as Blazor WASM, from App.razor to MainLayout

down to the code of the components. Just like in Blazor WASM, when you inspect the

HTML code and click the counter button, you will see that only the element containing

the number is updated; the rest of the page is never reloaded.

There are a few differences in how Blazor Server launches compared to Blazor

WASM. Let’s start at the main entrance point of the application, Program.cs.

Listing 5-12.  Program.cs from a Blazor Server application

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddRazorPages();

builder.Services.AddServerSideBlazor();

builder.Services.AddSingleton<WeatherForecastService>();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 // �The default HSTS value is 30 days. You may want to change this for

production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

Chapter 5 Blazor

146

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.MapBlazorHub();

app.MapFallbackToPage("/_Host");

app.Run();

Program.cs in .NET 6 contains top-level statements once again, making for a cleaner

file without a class declaration. If you’ve used ASP.NET MVC before, the instructions in

this file might look very familiar. That is because the SignalR connection is powered by

ASP.NET, so we need to bootstrap that framework as well. Similar to Blazor WASM, we

start by registering services in the built-in dependency injection (DI). After registering

services, we have basic boilerplate code to enable HTTPS, set up routing, and start

the app.

There are two Blazor-specific calls in this file. The first one is builder.

Services.AddServerSideBlazor();. This call registers Blazor-specific services

into the DI container, services like the NavigationManager for navigation between

Razor components or the IJSRuntime to enable JavaScript interop. The exact

code of this method can be found on GitHub https://github.com/dotnet/

aspnetcore/blob/main/src/Components/Server/src/DependencyInjection/

ComponentServiceCollectionExtensions.cs. The second Blazor-specific call is app.

MapBlazorHub();. This call opens the connection to the Blazor SignalR hub. A SignalR

hub is a class that contains communication logic between clients and a SignalR server.

In this case, the hub will contain the logic that enables receiving instructions and data

from a client, generating a DOM diff and sending it back to the client. The SignalR

part of Blazor Server is also open sourced on GitHub at https://github.com/dotnet/

aspnetcore/tree/main/src/Components/Server/src/BlazorPack.

Another difference from Blazor WASM is the absence of the index.html page from

the wwwroot folder; instead, there is a _Host.cshtml file in the Pages folder of the project.

Files with the cshtml extension are ASP.NET webpages; since Blazor Server has need

for a webserver that supports .NET, we can leverage the power of ASP.NET as well. The

_Host.cshtml file is mostly HTML 5 with a namespace and a routing attribute. But it does

contain an interesting line that impacts the entire application.

Chapter 5 Blazor

https://github.com/dotnet/aspnetcore/blob/main/src/Components/Server/src/DependencyInjection/ComponentServiceCollectionExtensions.cs
https://github.com/dotnet/aspnetcore/blob/main/src/Components/Server/src/DependencyInjection/ComponentServiceCollectionExtensions.cs
https://github.com/dotnet/aspnetcore/blob/main/src/Components/Server/src/DependencyInjection/ComponentServiceCollectionExtensions.cs
https://github.com/dotnet/aspnetcore/tree/main/src/Components/Server/src/BlazorPack
https://github.com/dotnet/aspnetcore/tree/main/src/Components/Server/src/BlazorPack

147

Listing 5-13.  Rendering mode in Blazor Server

<component type="typeof(App)" render-mode="ServerPrerendered" />

The component tag specifies where in the host file our actual Blazor application will

get rendered. The type parameter sets the startup type of the app. The render mode will

specify where the application is rendered and how dynamic it can be. There are three

options.

•	 Static: All components are rendered into static HTML, meaning that

there is no connection to a Blazor SignalR server and pages have no

Blazor functionality.

•	 Server: The webserver builds the HTML, connects to SignalR, and

activates all Blazor functionality. After the server is finished with all

that, the browser will receive the HTML and render everything. This

is the slowest option but with the most consistent results.

•	 ServerPrerendered: This option uses a technique called hydration.

Hydration is a known pattern in most popular SPA frameworks; it

takes the best of both static and server render modes to find a middle

ground between performance and functionality. Hydration is a two-

step process; the first step renders static HTML which gives users

the illusion of a fast page load. At this point, the page has appeared

on screen but there is no Blazor functionality. In the second step,

there is a piece of JavaScript in blazor.server.js that will open the

connection to the SignalR hub and hydrate the already rendered page

with functionality; the page basically re-renders invisible to the user.

The blazor.server.js file is a file included in the Microsoft.AspNetCore.

Components.Server.dll assembly. It gets injected in your application’s

output automatically.

ServerPrerendered is the default option, and looking from an end-user perspective,

it is the most interesting one performance vs. functionality-wise. However, do be careful

with automated tests. We have run into issues where the test runner is clicking a button

before the re-rendering has taken place. The re-rendering usually happens fast, from a

human perspective. Automated tests are executed by machines and can happen faster

than the re-rendering.

Chapter 5 Blazor

148

As soon as _Host.cshtml is finished loading, we are in Blazor land. From here on

out, everything works exactly the same as Blazor WASM, development-wise. Feel free to

compare the code of the Razor components that are in the default templates for server

and WASM projects; they are the same components. Since we’ve already discussed Razor

components in the Blazor WASM section of this chapter, we won’t go over it again.

�Blazor Desktop
Back in Chapter 4, I briefly mentioned that Blazor was also available for building desktop

applications. Using Blazor in WinForms or WPF applications is possible, thanks to

a control called the BlazorWebView. The BlazorWebView is a component that hosts

a WebView2 control, which in its turn is a component that can render HTML based

on Microsoft’s Edge browser. The BlazorWebView also knows how to initialize and

run Blazor.

Unfortunately at the time of writing, there are no project templates available for WPF

or WinForms that include the Blazor setup, so for now we will have to do it manually. For

this demo, we will start from a WinForms project. The procedure for WPF is very similar

so it shouldn’t be a problem to follow along.

We will start with a new .NET 6-based WinForms application. Once that is created,

we start by editing the project file and changing our target SDK from Microsoft.NET.Sdk

to Microsoft.NET.Sdk.Razor. In the end, your project file should look like Listing 5-14.

Listing 5-14.  The modified project file

<Project Sdk="Microsoft.NET.Sdk.Razor">

 <PropertyGroup>

 <OutputType>WinExe</OutputType>

 <TargetFramework>net6.0-windows</TargetFramework>

 <Nullable>enable</Nullable>

 <UseWindowsForms>true</UseWindowsForms>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

</Project>

Chapter 5 Blazor

149

Once the SDK is changed, we need to add a NuGet reference to Microsoft.

AspNetCore.Components.WebView.WindowsForms. There is a different package for

when you are following along for a WPF project; make sure to select the correct one.

Figure 5-11 shows both options.

Figure 5-11.  WPF and WinForms versions of the WebView package

Note that at the time of writing both of these packages were still in Prerelease. That is

because the Blazor Desktop efforts are part of MAUI, Microsoft’s cross-platform mobile

framework which we will talk about in Chapter 6. MAUI was supposed to be released

together with .NET 6 but they missed that mark. Instead it will launch somewhere

in 2022.

Once the NuGet package is installed, we can start adding Blazor files. We start by

creating a wwwroot folder in the WinForms project and adding in an index.html and

app.css. I have copied these files over from a Blazor WASM project. Next I have copied

the Counter.razor component that we have seen before in this chapter. In the end, your

project should look like Figure 5-12.

Figure 5-12.  Project structure for WinForms with Blazor

Chapter 5 Blazor

150

An important step is changing the Copy to output property for every file in the

wwwroot folder to Copy if newer as demonstrated in Figure 5-13.

Figure 5-13.  Changing the copy to output properties

The final step in the process is creating the BlazorWebView and adding it to a form.

This can be done through the editor; the BlazorWebView will show up in the toolbox, or it

can be done by code. Listing 5-15 shows adding the BlazorWebView by code.

Listing 5-15.  Adding the BlazorWebView to a form

public BlazorForm()

{

 InitializeComponent();

 var serviceCollection = new ServiceCollection();

 serviceCollection.AddBlazorWebView();

 var blazor = new BlazorWebView

 {

 Dock = DockStyle.Fill,

 HostPage = "wwwroot/index.html",

 Services = serviceCollection.BuildServiceProvider(),

 };

 blazor.RootComponents.Add<Counter>("#app");

 Controls.Add(blazor);

}

Chapter 5 Blazor

151

We are adding the BlazorWebView from the constructor. First we create a new

instance of ServiceCollection, which is needed for dependency injection inside the

Blazor part. We call the AddBlazorWebView extension method on the ServiceCollection

to wire up all of the Blazor framework-related services. Next we create an instance

of the BlazorWebView WinForms component; we let it dock to all sides so that the

BlazorWebView will take up all available space on the form. The HostPage is the index.

html file we have copied over from another Blazor project into the wwwroot folder. The

Services property is the ServiceCollection where all Blazor services are registered.

Just like before, we add a rootcomponent to the div with ID app. In this case, we add

the only component our application currently has, the counter component. We are free

to add as many components as we want; we can copy an entire Blazor application in

here with the MainLayout, the routing mechanism, and so on.

The final step is adding the BlazorWebView to our form’s list of controls. Once this is

done, we can launch the application and we will see that the Blazor counter component

is loaded and visible on a native Windows Forms application. Figure 5-14 shows the

running application.

Figure 5-14.  Blazor running inside a WinForms application

Chapter 5 Blazor

152

Since this is basically a control running on a form, we are free to mix Blazor

components with WinForms controls to create fully hybrid applications.

�Wrapping Up
As we have seen, Blazor is Microsoft’s answer to popular client-side frameworks

like Angular and React. It allows us to build powerful, dynamic, and beautiful web

applications using .NET instead of JavaScript. Blazor comes in different flavors, fully

client-side, thanks to the power of WebAssembly of client-server, thanks to real-time

communication over SignalR.

Besides being a framework for building web applications, Microsoft has been

investigating bringing it to different platforms. The result of that can be found in the

Prerelease version of the BlazorWebView. With the BlazorWebView, we can share

Blazor components from the web to WPF and WinForms and eventually even to mobile

applications with MAUI.

Chapter 5 Blazor

153
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_6

CHAPTER 6

MAUI
MAUI, or the Multi-Application User Interface, is the next iteration of Microsoft’s

Xamarin framework. Xamarin has come a long way since its startup days back in

2011. It has evolved from being a C# wrapper around Java and Objective-C to a world-

class cross-platform library, enabling mobile developers to write apps for multiple

platforms in the same language, without ever having to switch back to the platform’s

native language. All of this was, thanks to Mono, an open-source implementation of

.NET. Mono’s original reason of existence was bringing .NET to the Linux world, enabling

Mono developers to build Linux-based desktop applications with C# and Visual Basic.

Mono quickly evolved to a platform that brings .NET to a wide range of architectures and

operating systems, even into the world of embedded systems. Since Android and iOS are

*Nix-based operating systems, it wasn’t that far-fetched to get a version of Mono running

on these mobile platforms, and thus Xamarin was born.

In 2014 Xamarin released Xamarin.Forms, which adds an extra UI abstraction layer

on top of Xamarin. It further abstracts platform differences by enabling developers to

write a UI once and run it on different platforms.

Microsoft acquired Xamarin in 2016; they made the framework license free and even

gave it a more open open-source license. The Xamarin community has grown large since

then. Since the acquisition focus has shifted from more Xamarin Native to Xamarin

Forms, pushing XAML as the UI framework of choice. A lot of work was done to improve

performance and stability. The tooling greatly increased, bringing us a UI Previewer and

telemetry tools.

With MAUI, a new chapter in the life of Xamarin begins. MAUI will aim to shorten

the developer loop (develop–build–run) and greatly improve the tooling. MAUI can

target Android, iOS, Windows, and MacOS.

https://doi.org/10.1007/978-1-4842-7319-7_6#DOI

154

�Project Structure
The most prominent change is the new project structure. A new Xamarin.Forms solution

in Visual Studio already contained three projects before any code was written, as shown

in Figure 6-1.

Figure 6-1.  A classic Xamarin Forms project

A newly created Xamarin.Forms app that can run on Android and iOS consists of

three projects: a Xamarin.Android project, a Xamarin.iOS project, and a .NET class

library. The Android and iOS project are what we call the “platform heads”; they exist

mainly to bootstrap the Xamarin.Forms platform and call into the shared code that lives

in the .NET class library, XamarinDemo.Shared. The two platform heads are also used

whenever an app needs platform-specific implementations; this might be needed if the

cross-platform layer doesn’t suffice.

Chapter 6 MAUI

155

Figure 6-2 shows a newly created MAUI application using The Blank MAUI app

template in Visual Studio in .NET 6.

Figure 6-2.  A new .NET 6 MAUI project

This app supports Android, iOS, Windows, and Mac Catalyst. You’ll notice that

the multiple platform heads are gone; instead, we get one class library that contains a

Platforms folder containing a folder for each platform we’re supporting with our app. This

is mostly done through compiler magic; we still get an APK file for Android and an IPA for

iOS, but our code is easier to manage since it’s all in one place. Selecting which platform to

launch or debug on is built into the new Visual Studio tooling, as shown in Figure 6-3.

Figure 6-3.  Selecting the debug target

Chapter 6 MAUI

156

Figure 6-4 shows the newly created app running on an Android and Windows device.

Figure 6-4.  MAUI App running on Android

�Exploring MAUI
The startup of a MAUI project looks quite similar to how ASP.net has been operating ever

since .NET Core. It uses a Microsoft.Extensions.HostBuilder to bootstrap and launch

an app. However, this is where the multiplatform part starts; just like with Xamarin

before, we first need to launch the actual application on the operating system that we’re

targeting; that’s what the platform-specific folders are for. Let’s take the iOS folder as an

example.

Chapter 6 MAUI

157

Figure 6-5.  The iOS platform folder

The contents of this folder should look familiar if you have done Xamarin Forms

work before. It looks similar to the contents of the iOS project in a Xamarin.Forms

project; it also serves the exact same purpose. Program.cs is the launch class of iOS in

this case. It creates a UIApplication instance passing AppDelegate as startup class. These

classes are .NET wrappers around the native iOS APIs.

As I’ve mentioned before, the single project system is mostly compiler tricks, which

isn’t a bad thing; not having a project for every supported platform greatly simplifies

things and makes it easier to maintain an overview once a project grows to a certain size.

A Maui.iOS application starts with Program.cs

Listing 6-1.  The starting point of a MAUI iOS application

public class Program

{

 // This is the main entry point of the application.

 static void Main(string[] args)

 {

Chapter 6 MAUI

158

 UIApplication.Main(args, null, typeof(AppDelegate));

 }

}

Nothing exciting going on here, just a basic .NET application starting point. It calls

into UIApplication.Main to start the application loop. The parameters passed into this

method determine the actual starting point of the iOS application, AppDelegate in this

case. Listing 6-2 shows the content of AppDelegate.cs.

Listing 6-2.  iOS AppDelegate.cs

[Register("AppDelegate")]

public class AppDelegate : MauiUIApplicationDelegate

{

 �protected override MauiApp CreateMauiApp() => MauiProgram.

CreateMauiApp();

}

This is where things are starting to really get different from the classic Xamarin

way of working. Instead of overriding the FinishedLaunching method and calling

into Xamarin.Forms, from there we make sure that AppDelegate inherits from

MauiUIApplicationDelegate and calls CreateMauiApp on the MauiProgram class

included in the project. The other platforms work in a very similar way. Listing 6-3 shows

the corresponding Android file.

Listing 6-3.  Android MainApplication.cs

[Application]

public class MainApplication : MauiApplication

{

 public MainApplication(IntPtr handle, JniHandleOwnership ownership)

 : base(handle, ownership)

 {

 }

 �protected override MauiApp CreateMauiApp() => MauiProgram.

CreateMauiApp();

}

Chapter 6 MAUI

159

The base class is a different, Android-specific, one; and there is a constructor. That

constructor is needed for Android to successfully launch the application. But we do see

the same call to MauiProgram.CreateMauiApp.

All our target platforms call MauiProgram.CreateMauiApp() in their startup. This

method initializes the cross-platform part of MAUI, while the platform-specific class

initializes and bootstraps the application according to the platform. These startup

classes can be found in their respective folder in the Platforms folder of your project. For

Android, it’s called MainApplication, while for iOS and MacOS it’s AppDelegate, and for

Windows it’s App.xaml.cs.

All of these platform-specific classes inherit from a platform-specific Maui base

class. This class is where FinishedLaunching moved to. Once the OS has bootstrapped

and launched the app, this method fires and initializes the MAUI context. Besides

FinishedLaunching, this class also handles all lifecycle events, for example, when the

app is activated, moved to the background, terminated, and so on. We’ll discuss app

lifecycle more a bit further in this chapter.

�The Cross-Platform World
Once the operating system has bootstrapped our app, we enter MAUI cross-platform

space. MauiProgram.cs creates the MAUI context in a way which should look familiar;

it’s very similar to the Program.cs we have seen in other frameworks within .NET 6.

Listing 6-4.  MauiProgram Startup class

public static class MauiProgram

{

 public static MauiApp CreateMauiApp()

 {

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

 .ConfigureFonts(fonts =>

 {

 �fonts.AddFont("OpenSans-Regular.ttf",

"OpenSansRegular");

 });

Chapter 6 MAUI

160

 return builder.Build();

 }

}

The CreateMauiApp method creates a builder. With that builder, we can set our

startup object to the App class; keep in mind that at the point we reach this code, our

application is already launched. We are now setting up the cross-platform world. We can

use the builder for several other things like configuring external fonts that are packaged

with the project, for example. Finally we call the Build method on the builder. From that

moment on, control will be passed to the class defined as startup. Listing 6-5 shows the

App class.

Listing 6-5.  The Application class

public partial class App : Application

{

 public App()

 {

 InitializeComponent();

 MainPage = new MainPage();

 }

}

This is the part where we finally get into our own code. Everything is set up and

bootstrapped, ready to go. InitializeComponent starts building the visual tree; next we

instantiate a new instance of MainPage and set that as the current page. The Application

base class contains a MainPage property; whatever page is set to that property is the one

shown on screen. Things might get a bit confusing here since we are setting a property

called MainPage with an instance of a class called MainPage.

Chapter 6 MAUI

161

�Application Lifecycle
Applications go through different stages while running, stages like starting, stopping,

sleeping, and resuming. These differ depending on the platform your app is running

on. A mobile application will go to sleep once it’s moved to the background to preserve

battery; a WPF application, for example, will keep running even when minimized,

choosing efficiency over battery life.

Why is this important to know, and use, as a developer? Consider you’re building

a mobile app. The app contains a registration form; one of your users is filling out the

form and suddenly gets a call before being able to press the save button. A call pushes

your app to the background, giving priority to the phone app. If this is a high-end device,

the app might keep its data in the background, but the mobile operating system might

decide that the app is taking up too many resources in the background and to remove

it from memory while still keeping it in the open apps list. That’s why, as a developer,

you need to hook into the pausing event. We can use this event to temporarily store

data, like the data already entered in the form, and resume that data when the resuming

event fires.

Lifecycle events in MAUI are abstracted away from the platform. That means that
there is a common API that will work over all platforms, but they have a different
implementation under the hood. It also means that the common API is built mostly
on top of structures that are available across all platforms. It’s possible to break
out of the shared layer and go into platform-specific code, should you need more
fine-grained control of the lifecycle on a specific platform.

There are a number of lifecycle events available, on different parts of an application.

The following tables Lifecycle events on application level (Table 6-1), Lifecycle events on

window level (Table 6-2), Lifecycle events on page level (Table 6-3), and Lifecycle events

on view level (Table 6-4) provide a complete list of the available lifecycle events at the

time of writing.

Chapter 6 MAUI

162

Table 6-1.  Lifecycle events on application level

Lifecycle event Description

Creating Fires after the operating system started to create the application in memory

Created Fires when the application is created in memory, but before anything is

rendered on-screen

Resuming Resuming can fire on two occasions: after the Created event or when

returning to the app from the background

Resumed Current window has finished rendering; app is available for use

Pausing Fires when the application is going into background mode

Paused Fires when the application has gone into background mode

Stopping Fires when a user closed the app

Stopped Fires when the app finished closing

Table 6-2.  Lifecycle events on window level

Lifecycle event Description

Creating Fires after the application has been created, but before the application

window is created

Created Fires after the application’s native window has been created. The cross-

platform window is available after this event, but nothing is rendering yet

Resuming A bubble up event from Application.Resuming, giving us access to the

resuming event from within a window, enabling specific actions per window

Resumed A bubble up event from Application.Resumed, giving us access to the

resumed event from within a window, enabling specific actions per window.

Also fires whenever a window is being maximized after being minimized on

desktop platforms

Pausing A bubble up event from Application.Pausing, giving us access to the pausing

event from within a window, enabling specific actions per window

(continued)

Chapter 6 MAUI

163

Table 6-3.  Lifecycle events on page level

Lifecycle event Description

NavigatingTo Fires when a page is going to be navigated to and after NavigatingFrom

NavigatedTo Fires when a page has been navigated to through a NavigationPage element

NavigatingFrom Fires right before the NavigatingTo event

NavigatedFrom Fires after NavigatingTo

Table 6-4.  Lifecycle events on view level

Lifecycle event Description

AttachingHandler Fires before a view is created that attaches to the native handler

AttachedHandler Fires after the native handler has set the view. After this all properties are

initialized and ready for use

DetachingHandler Fires before a view is being detached from a native platform handler

DetachedHandler Fires after a view has been removed from the native handler

AttachingParent Fires when a view is about to get connected to a cross-platform visual tree

AttachedParent Fires when a parent is set on this view

DetachingParent Fires when a parent is about to be removed from the view

DetachedParent Fires when a parent is removed from the view

Lifecycle event Description

Paused A bubble up event from Application.Paused, giving us access to the paused

event from within a window, enabling specific actions per window. Also fires

whenever a window is being on desktop platforms

Stopping Fires when a window is closing

Stopped Fires when a window is closed

Table 6-2.  (continued)

Chapter 6 MAUI

164

�MVVM
Xamarin.Forms brought XAML into the cross-platform mobile world as an abstraction

layer on top of the supported platforms their own UI stack. It’s an XML-based layout and

style engine that transform into platform-native elements at compile time by default. Just

like the WPF XAML stack, it supports databinding, templating, resource dictionaries, and

so on. This book is not a XAML guide, but MAUI has made some changes in the available

design patterns for writing cross-platform apps, so I’ll provide a high-level overview.

Model-View-ViewModel (MVVM) was introduced in 2005 by Microsoft architects

Ken Cooper and Ted Peters. They developed a pattern that leveraged databinding to

decouple data and logic from the view so that the view could be developed separately

from the logic and so that the logic could be unit-tested without creating the entire

visual tree.

MVVM consists of three layers:

•	 Model: the domain model

•	 View: the XAML pages that contain the visual aspects of the

application

•	 ViewModel: the properties and commands that will be used on

the view

The most important part is the ViewModel; you can compare it to a controller in

MVC, but stateful. A ViewModel for a specific view gathers all the data the view needs,

shapes it into bindable properties, and makes sure to react to property changes where

needed. A view in MAUI has a BindingContext property which needs to contain a

reference to the correct ViewModel, as shown in Listing 6-6.

Listing 6-6.  Setting a BindingContext on a MAUI ContentPage

public MainPage()

{

 InitializeComponent();

 BindingContext = new MainViewModel();

}

From this moment on, all bindings that do not specify another BindingContext will

turn to the MainViewModel class to resolve their bindings when requested.

Chapter 6 MAUI

165

Databinding in MAUI with XAML is the same as with Xamarin.Forms and quite

similar to databinding in WPF (or Silverlight if you want to go way back). Let’s look at an

example using a ViewModel.

I’ve created a new project using the default MAUI XAML template. I’ve added a

ViewModels folder and created a MainViewModel inside that folder. Listing 6-7 shows

the created MainViewModel.

Listing 6-7.  MainViewModel

public class MainViewModel

{

 private ICommand _increaseCountCommand;

 public int Count { get; private set; }

 �public ICommand IncreaseCountCommand => _increaseCountCommand ??= new

Command(IncreaseCount);

 private void IncreaseCount()

 {

 Count++;

 }

}

Let’s start with Count; Count is a basic auto-property with a private set,

nothing special there so far. It’s a public property which means it’s available to

bind to. The datatype here is integer, but it can be anything, even complex objects.

IncreaseCountCommand is an ICommand which is an abstraction of reacting on user

actions. ICommand is an interface from the System.Windows namespace. It’s used

for exactly this use case in WPF, UWP, and every other XAML-based framework. The

Command implementation however lives in the Microsoft.Maui assemblies. This way

Microsoft is giving us a way to use familiar concepts, while under the covers, it is a brand

new implementation. In this case, we will attach the IncreaseCountCommand to a

button tap in a minute. We’re using C# 8’s null-coalescing assignment feature to assign

an ICommand implementation. This means that when the property’s getter is called, it

will check for null and first assign the value if it is null; if not, it will return the value.

Chapter 6 MAUI

166

We could also initialize the command using the constructor as shown in Listing 6-8.

Listing 6-8.  The same MainViewModel but with command initialization done in

the constructor

public class MainViewModel

{

 public int Count { get; private set; }

 public ICommand IncreaseCountCommand { get; private set; }

 public MainViewModel()

 {

 IncreaseCountCommand = new Command(IncreaseCount);

 }

 private void IncreaseCount()

 {

 Count++;

 }

}

This works just the same, so where’s the difference? When binding to an ICommand,

the getter is only being called when the command is triggered. Meaning that a page will

load, but the IncreaseCountCommand will not be initialized yet as long as the user does

not tap the button. On a page with a lot of commands, this shaves of precious time of the

viewmodel initialization; we’re basically deferring initializing each command until it’s

needed for the first time.

In MainPage.xaml, we’ll transform the basic example from the MAUI template into

an MVVM example. We’ll start by removing most of the code in MainPage.xaml.cs, as

that logic now lives in the MainViewModel.

Listing 6-9.  Cleaned up MainPage

public partial class MainPage : ContentPage

{

 public MainPage()

 {

 InitializeComponent();

Chapter 6 MAUI

167

 BindingContext = new MainViewModel();

 }

}

There are some parts we still need of course. Notice that this class is partial; the other

part of the partial class is the XAML file itself. The XAML compiler transforms that XAML

code into a partial C# class.

Do not remove InitializeComponent; this method call triggers the creation of all

elements on page. This should typically be the first call in the constructor of a page.

After that, we set the BindingContext; as mentioned before, this will bubble down to

all elements on that page unless we specifically assign another BindingContext to an

element.

In XAML, we need to change the label and the button to bind to the properties on

our ViewModel. Listing 6-10 shows the label.

Listing 6-10.  Label with binding

<Label

 Text="{Binding Count}"

 Grid.Row="2"

 FontSize="18"

 FontAttributes="Bold"

 x:Name="CounterLabel"

 HorizontalOptions="Center" />

Let’s zoom into the binding; all other properties speak for themselves. A binding

statement is always set between squiggly brackets. We use the Binding keyword to tell

MAUI that we want to dynamically bind to a property on the BindingContext. Keep

in mind that there is no IntelliSense here because we’ve set the BindingContext in C#

land; the XAML editor does not know this. Since we’re compiling our XAML code, we

do get compile-time errors on typos. So, by putting Text="{Binding Count}" we’re

telling MAUI that we want the value of BindingContext.BindingProperty or in this case

MainViewModel.Count to be put into the Text property of this label. Listing 6-11 shows

the bindings for the Button.

Chapter 6 MAUI

168

Listing 6-11.  Binding a command to a button

<Button

 Text="Click me"

 Command="{Binding IncreaseCountCommand}"

 FontAttributes="Bold"

 Grid.Row="3"

 SemanticProperties.Hint="Counts the number of times you click"

 HorizontalOptions="Center" />

For the button, we bind to its Command property. When the element’s default action

(Click or Tap in case of a button) is triggered, the system will try to cast the object bound

to Command to an ICommand and trigger its Execute method. Note that it is possible to

assign both a click event handler and a command to a button; both will fire if the button

is tapped.

Let’s try it out! Launch the app and you should see something similar to Figure 6-6

(your version might look different depending on the platform you’re targeting).

Figure 6-6.  Running the MVVM-based app

Notice the “0” on top of the page? That’s our databinding at work; the Count property

has a default value of 0, and thanks to databinding, we see that value reflected on page.

Click the button and you’ll see that… nothing happens? Have we made a mistake? If you

put a breakpoint in the IncreaseCount method in the MainViewModel, you’ll see that it

hits whenever we click the button, and the integer’s value does increase, so why doesn’t

the new value show on the page? The answer is simple: the databinding system does

not constantly monitor its BindingContext for changes; this would simply cost too many

resources. Instead it trusts us as developers to tell it when a value changes so that it can

refresh that property; this is done by using the InotifyPropertyChanged interface. We

can implement this interface on our MainViewModel as shown in Listing 6-12.

Chapter 6 MAUI

169

Listing 6-12.  Implementing INotifyPropertyChanged

Public class MainViewModel : InotifyPropertyChanged

{

 private int _count;

 private Icommand _increaseCountCommand;

 public int Count

 {

 get => _count;

 set

 {

 if (_count == value)

 return;

 _count = value;

 �PropertyChanged?.Invoke(this, new PropertyChangedEventArgs

(nameof(Count)));

 }

 }

 �public Icommand IncreaseCountCommand => _increaseCountCommand ??= new

Command(IncreaseCount);

 private void IncreaseCount()

 {

 Count++;

 }

 public event PropertyChangedEventHandler PropertyChanged;

}

INotifyPropertyChanged has one member, an event called PropertyChanged.

That event takes the name of the property that just changed as a string parameter. We

are using the nameof() method to prevent typing errors in magic strings. The nameof

method gets replaced by the actual name of the member we pass in at compile time, so

using this has no impact on the runtime performance. The binding framework listens for

this event, takes the name of the property that just changed, looks for it in its bindings,

and refreshes that specific binding. Triggering that event can happen wherever you need

Chapter 6 MAUI

170

it; often it happens in a property’s setter, like in this example. In the setter of Count, we

first make sure that there really is a new value, to prevent unnecessary events firing. If

the value really did change, we set the new value to the backing field of the property and

trigger the event by calling its Invoke method. With this code in place, if we run the app

again and tap the button, you will see the UI update whenever the property updates.

Figure 6-7.  UI is updating

�MVVM Toolkit
MVVM can get a bit tedious to set up, implementing INotifyPropertyChanged

everywhere and so on. To make this experience a bit simpler, Microsoft has released an

MVVM Toolkit as part of its Windows Community Toolkit. The toolkit can be installed

from NuGet.

Listing 6-13.  Installing the MVVM Toolkit

Add-Package Microsoft.Toolkit.Mvvm

The MVVM Toolkit is based on MVVM Light by Laurent Bugnion. There’s been quite

some renaming and rethinking of what the API surface of the toolkit looks like. Let’s look

at a simple example: a master-detail app that lists some Apress books.

For the sake of the example, I’ve created a service that fetches a list of five books. The

implementation of the service goes beyond the scope of this example; feel free to have a

look in the source code that accompanies this book, but it’s mostly hard coded data. The

interface is shows in Listing 6-14.

Chapter 6 MAUI

171

Listing 6-14.  The book service used in the example

public interface IBookService

{

 Task<BookForList[]> FetchAllBooks();

 Task<BookForDetail> FetchBookDetails();

}

We will use this sample service to build a viewmodel-backed page. We will start by

creating the page. Add a new class to the ViewModels folder called BooksViewModel.

Listing 6-15 shows the viewmodel.

Listing 6-15.  BooksViewModel

public class BooksViewModel : ObservableObject

{

 private readonly IBookService _bookService;

 private ObservableCollection<BookForList> _books;

 public ObservableCollection<BookForList> Books

 {

 get => _books;

 set => SetProperty(ref _books, value);

 }

 public BooksViewModel(IBookService bookService)

 {

 _bookService = bookService;

 _ = LoadBooks();

 }

 private async Task LoadBooks()

 {

 BookForList[] books = await _bookService.FetchAllBooks();

 Books = new ObservableCollection<BookForList>(books);

 }

}

Chapter 6 MAUI

172

This viewmodel is using the MVVM Toolkit we have just installed. It

inherits from ObservableObject, which is a base class that already implements

INotifyPropertyChanged and gives us some helper methods to keep the code in our

own viewmodel smaller. An example of this is the SetProperty method used in the

Books property’s setter. This method will check if the new value is different from the old

one, set the new value, and fire the PropertyChanged event, something we did manually

in the MainViewModel.

Few things to note in this class. We are using an ObservableCollection. This type of

collection will fire a CollectionChanged event whenever an item is added or removed

from the list. UI elements like a CollectionView in MAUI listen to this event and update

their list whenever it fires.

In the constructor of the viewmodel, we see _ = LoadBooks(). This underscore is

called a discardable in C#. Discardables are throw-away variables that you can assign a

value to that you will never use. I am using a discardable here because we are calling an

async method from the constructor. We cannot await it so the compiler will complain

that we are not awaiting an async operation. By assigning the task to a discardable we

clear that compiler warning.

Moving on to the view. Add a new ContentPage to the project. Listing 6-16 shows the

code-behind.

Listing 6-16.  Code-behind for BooksPage

public partial class BooksPage : ContentPage

{

 public BooksPage(BooksViewModel viewModel)

 {

 InitializeComponent();

 BindingContext = viewModel;

 }

}

The code-behind is quite empty. The most noteworthy thing here is that we are

receiving our viewmodel through the constructor and setting it to the BindingContext.

This will all get wired up through dependency injection in a minute.

Chapter 6 MAUI

173

Listing 6-17 shows the XAML for this page.

Listing 6-17.  BooksPage XAML code

<ContentPage x:Class="MauiDemo.BooksPage"

 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

 <CollectionView ItemsSource="{Binding Books}">

 <CollectionView.ItemTemplate>

 <DataTemplate>

 <Grid RowDefinitions="30, auto">

 <Label FontSize="24" Text="{Binding Name}" />

 <Label Grid.Row="1"

 Text="{Binding Author}"

 TextColor="Gray" />

 </Grid>

 </DataTemplate>

 </CollectionView.ItemTemplate>

 </CollectionView>

</ContentPage>

We are using a CollectionView in this page. In MAUI a CollectionView is an

element that can show collections of data. By default, this is in a vertical list, but this

can be changed to a horizontal list or even a grid layout. More information on the

CollectionView can be found at https://docs.microsoft.com/en-us/xamarin/

xamarin-forms/user-interface/collectionview/.

A CollectionView needs a template to know what an item in its collection should

look like visually. An ItemTemplate is a property of type DataTemplate. This property

contains a XAML snippet that gets inflated for every object in the collection. The

bindings in the template have a single collection item as bindingcontext. The template

is a grid with two rows; the first row has a height of 30 pixels; this will contain the book’s

title. The second row has a height of auto, meaning it will calculate its size based on its

contents, in this case a label containing the author’s name. The first label in the template

does not have a property set to place it in a specific grid row, meaning it will default to

the first row, or row index 0. The second one is using what is called an attached property

to place it in the second row, or row index 1. Attached properties are properties that

belong to a parent element but are set on a child.

Chapter 6 MAUI

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/collectionview/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/collectionview/

174

Final piece of the puzzle is wiring everything up using the built-in dependency

injection. We do this in MauiProgram.cs. Listing 6-18 shows its contents.

Listing 6-18.  MauiProgram.cs

public static class MauiProgram

{

 public static MauiApp CreateMauiApp()

 {

 var builder = MauiApp.CreateBuilder();

 builder

 .UseMauiApp<App>()

 .ConfigureFonts(fonts =>

 {

 �fonts.AddFont("OpenSans-Regular.ttf",

"OpenSansRegular");

 });

 builder.Services.AddSingleton<BooksPage>();

 builder.Services.AddSingleton<BooksViewModel>();

 builder.Services.AddSingleton<IBookService, BookService>();

 return builder.Build();

 }

}

We have seen this class before, but now we have added some services. We are

registering the pages, viewmodels, and services as singletons in our dependency

injection system. Don’t forget to add the Microsoft.Extensions.DependencyInjection

namespace to get access to the Add* methods.

We are registering pages, viewmodels, and services as singletons, meaning that we

will use one instance of each over the lifetime of the app.

The final step is changing App.xaml.cs to make use of dependency injection as well.

Listing 6-19 shows the updated class.

Chapter 6 MAUI

175

Listing 6-19.  Updated App.xaml.cs

public partial class App : Application

{

 public App(BooksPage page)

 {

 InitializeComponent();

 MainPage = page;

 }

}

The change we made here is that we are injecting the page we want to use as startup

page in the constructor. That page is set to the MainPage property.

Let’s list what will happen in order.

•	 The platform native application starts.

•	 MAUI gets bootstrapped.

•	 Pages, viewmodels, and services are registered.

•	 BooksPage gets created to inject in App.xaml.cs.

•	 BooksPage needs a BooksViewModel in its constructor so that is

instantiated.

•	 BooksViewModel needs an IBookService in its constructor;

IBookService is known in our DI system as the interface for

BookService, so a new BookService is created and injected.

•	 The page loads and bindings are resolved on the viewmodel.

Chapter 6 MAUI

176

Figure 6-8 shows the result when running on Windows.

Figure 6-8.  Running MAUI MVVM application

�Wrapping Up
MAUI is the next iteration of Xamarin, Microsoft’s native cross-platform framework. As

we have seen in this chapter, Microsoft is doing a lot of work to have a similar way of

working across all of .NET 6. This is clearly visible in the startup class when comparing

MauiProgram with Program in ASP.NET. Similar startup structure, the same built-in

dependency injection with ServiceCollection, and so on.

Next to unifying the way applications load across .NET, they have also greatly

simplified the project structure when compared with Xamarin Forms. Instead of

three projects in a brand new solution, we now have a single project structure. In that

structure, we have platform-specific folders for all supported platforms, iOS, Android,

MacOS through MacCatalyst, and Windows through WinUI 3.

Chapter 6 MAUI

177
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_7

CHAPTER 7

ASP.NET Core
ASP.NET is the successor of Active Server Pages or ASP. ASP was a classic server-side

framework from Microsoft that was released in 1996. The first version of ASP.NET was

released in 2002. It was, and still is, built on the .NET Framework CLR, allowing .NET

developers to write web applications with .NET.

ASP.NET Core is a complete rewrite of ASP.NET meant to modernize the platform

using the latest programming techniques. It greatly increased speed and ease-of-use.

As of ASP.NET Core, the framework is open sourced; the source code can be found at

https://github.com/dotnet/aspnetcore.

For the rest of this chapter, I will be using the term ASP.NET instead of ASP.NET Core.

Remember when you read ASP.NET, I mean the latest .NET 6-based version.

�Model-View-Controller
Model-View-Controller, or MVC, was first described in SmallTalk back in the 1970s.

It did take until the late 1980s for the MVC pattern to be described in an article by

which it started to gain adoption across languages. Today MVC is a well-known design

pattern that has a default implementation in quite a lot of languages. Besides being

well adopted, it also became the base of many other design patterns like Model-View-

Presenter and Model-View-ViewModel. ASP.NET comes with its own implementation of

the MVC pattern.

Just like with any framework within .NET, ASP.NET also ships with a couple of project

types and templates. One of the most used templates is the Model-View-Controller, or

MVC, template. The MVC template is built around the Model-View-Controller design

pattern. The core strength of the MVC project template in ASP.NET lies in its great

tooling, base classes, and convention-based way of working. But before we dive into the

template itself, let’s look at the design pattern.

https://doi.org/10.1007/978-1-4842-7319-7_7#DOI
https://github.com/dotnet/aspnetcore

178

The MVC pattern consists of three building blocks: the view, the controller, and the

model. By splitting an application into these blocks, we can separate the concerns of the

applications and apply loose coupling. By doing this, we create a code base that is easier

to read, easier to maintain, and easier to learn for developers who are new to the team.

•	 View: the view renders the UI to the user.

•	 Controller: the controller responds to user input and acts as the glue

between the view and the model.

•	 Model: maintaining state, storing, and retrieving data.

Our view consists of HTML pages since we are developing web applications. HTML

is still to this day a very static markup language that cannot understand data and how to

shape it, unless modified by JavaScript libraries or when generated by server-side logic.

That is where the controller layer comes into play. The controller takes data that was

requested by the user, and it takes a form of HTML template that optionally contains

some C#-based logic. The controller executes the logic contained in the template using

the data as datasource; this is called inflating the template. The result is an HTML page

with hard coded data. That snippet is sent back to the client and rendered in the browser.

Now that we know what the Model-View-Controller design pattern is about, let’s

explore how Microsoft implemented this in ASP.NET.

Figure 7-2 shows the different templates available for ASP.NET:

Figure 7-1.  The MVC pattern

Chapter 7 ASP.NET Core

179

Figure 7-2.  ASP.NET Core templates

ASP.NET offers different templates for different purposes, and there are many more

than the ones we see here. Since we can’t talk about all of them, we’ll go over the Model-

View-Controller, the Web API, and the minimal Web API templates. We’ll start with ASP.

NET Core Web App (Model-View-Controller). Visual Studio might also show ASP.NET

templates without the Core moniker. These are the templates for the traditional .NET

framework up to version 4.8; the templates for .NET Core, .NET 5, or .NET 6 are all called

ASP.NET Core.

After selecting the ASP.NET Core Web App (Model-View-Controller) template,

Visual Studio asks for some extra information. We can select the version of .NET to

use, .NET 6 in this case. We can specify an authentication type; the options are None,

Microsoft Identity Platform, or Windows. By default, None is selected, but when an

option is selected for Authentication Type, the project will be bootstrapped with a

login/registration system based on ASP.NET Identity. You can find more information

Chapter 7 ASP.NET Core

180

on that topic on https://docs.microsoft.com/en-us/aspnet/core/security/

authentication/identity?view=aspnetcore-6.0&tabs=visual-studio. Configure

for HTTPS is selected by default; this will add redirect logic so that all HTTP requests

are automatically redirected to HTTPS. Enable Docker adds a Docker file containing

everything needed to run this application in a Docker container. Both Windows and

Linux Docker containers are supported since .NET 6 also has a Linux runtime: https://

docs.microsoft.com/en-us/dotnet/core/install/linux.

Figure 7-3.  Project wizard

After creating a project with all default settings, we get the project structure shown in

Figure 7-4.

Chapter 7 ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/dotnet/core/install/linux
https://docs.microsoft.com/en-us/dotnet/core/install/linux

181

Figure 7-4.  MVC project

The folder structure in the project clearly shows the Model-View-Controller

structure. We’ll go over the project folder by folder but just like with every .NET 6 project,

everything starts with Program.cs.

Program.cs is another top-level class. Just like before, we are using implicit usings

and top-level statements, new features in C#10. It combines what used to be two

methods in previous versions of ASP.NET, Configure and ConfigureServices. Not only

that, but it also combines Startup.cs and Program.cs, no more trying to remember what

goes where. The entire application startup and configuration happens in these less than

30 lines of code.

Listing 7-1.  Configuring the WebApplication builder

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddControllersWithViews();

var app = builder.Build();

The first part of the class is what used to be Program.cs. It configures a

WebApplicationBuilder. A WebApplicationBuilder is a factory for creating

a WebApplication instance; a WebApplication contains the pipeline and

routing configuration for the running application. ASP.NET Core comes with

a lot of helper methods to get everything up and running fast; one of those

is AddControllersWithViews. This method registers all MVC controllers

Chapter 7 ASP.NET Core

182

and views in the built-in Inversion of Control (IoC) container. Methods like

this that help configure the application are usually extension methods on

IServiceCollection or IApplicationBuilder. Listing 7-2 shows the signature of the

AddControllersWithViews method.

Listing 7-2.  AddControllersWithViews method

public static IMvcBuilder AddControllersWithViews(this IServiceCollection

services)

The IServiceCollection is the Inversion of Control mechanism in .NET 6 and lives in

the Microsoft.Extensions.DependencyInjection namespace.

After the AddControllersWithViews call where we can register dependencies

ourselves, we will dive into an example soon but for now we keep everything default. The

final thing that happens is calling the Build method on the WebApplicationBuilder; this

will create the WebApplication instance.

Now that the WebApplication is configured, we are ready to configure the HTTP

request pipeline.

ASP.NET Core works with a pipeline. Every request that comes in gets routed through

a series of connected middleware systems that we call a pipeline. The middlewares pass

the request forward until it reaches the end of the pipeline or gets short-circuited by

a middleware. Once it reaches the end, the result is passed back through the pipeline

the other way around. Once finished, the request is handled and the result passed back

to the user. Examples of these middlewares are authentication, authorization, routing,

and so on.

Chapter 7 ASP.NET Core

183

Figure 7-5.  HTTP Request pipeline

Listing 7-3 shows the default pipeline configuration in an MVC project.

Listing 7-3.  Pipeline configuration

// Configure the HTTP request pipeline.

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Home/Error");

 �// The default HSTS value is 30 days. You may want to change this for

production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

Chapter 7 ASP.NET Core

184

app.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

app.Run();

The first configuration is configuring the default exception page, but only when not

running in development. This is an example of where we use middleware components

in the pipeline. Whether or not we are running in development mode depends on the

profile we use for launching the application. In our MVC project is a Properties folder

containing a launchsettings.json file. This file holds the configuration for every profile. By

default there are two profiles, one to launch our application using IIS and one for Kestrel.

These profiles are reflected in Visual Studio’s Debug target selector.

Listing 7-4.  Profile configuration

"MvcDemo": {

 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "applicationUrl": "https://localhost:7033;http://localhost:5033",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

}

As you can see in Listing 7-4, we can set whatever value we want to the

ASPNETCORE_ENVIRONMENT variable. “Development” is by convention the value

used when running locally. When running or debugging locally, we usually want to see

the stack trace when an unexpected exception occurs, but when running on a deployed

environment we want to hide that information from our users, hence the difference in

registering error handlers.

After setting the exception handler, we configure HTTP Strict Transport Security,

or HSTS when not in development. HSTS is an optional security enhancement. It adds

a specific response header to a web application. The browser sending requests to that

application will receive the header; from that moment on, all traffic will happen over

HTTPS without the possibility to use untrusted or invalid certificates. By using HSTS,

we can effectively prevent man-in-the-middle attacks since traffic can no longer be

Chapter 7 ASP.NET Core

185

intercepted by using an invalid certificate. The default template only enables HSTS

when not running in development; that is because when we want to debug an ASP.

NET application, we use a development certificate that HSTS would deem invalid. After

configuring environment-specific options, we enable HTTPS redirection by calling

app.UseHttpsRedirection, meaning that all requests sent to HTTP will automatically

redirect to HTTPS. UseStaticFiles enables the web server to serve files without trying

to interpret them, not calling this method means that the web server will interpret

everything and won’t be able to serve static files. UseRouting enables the routing system,

more about that in the next section. UseAuthorization allows us to secure specific pieces

of the application by hiding it behind a login system; we have mentioned ASP.NET

Identity in the beginning of the chapter. More information can be found here https://

docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view

=aspnetcore-6.0&tabs=visual-studio. MapControllerRoute sets the default route; we

can add more routes here if needed. And finally we run the application to execute the

request. The pipeline is now configured, and every request that comes in will be piped

through the pipeline before being executed. Keep in mind that the order we configure

the middleware components is exactly the order they will be executed in whenever a

request passes through the pipeline.

�Routing
As mentioned before, ASP.NET MVC works by convention; this is particularly visible in

the routing system. Routing is not done on a file bases as it is in default HTML; instead, it

is done by the concept of controllers and actions. Listing 7-3 showed us a default routing

path; Listing 7-5 repeats that path.

Listing 7-5.  Mapping a route

app.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

This is the default routing set bij ASP.NET, but we are always free to change it when

needed. For now let’s keep it at default. Let’s take https://localhost:5001/Employees/

Detail/5 as an example. When routing this URL into our ASP.NET MVC application, it

will break it apart and try to map it onto a controller route. The route called “default”

is the one it will usually try, unless we specify a specific one. The pattern in the route

Chapter 7 ASP.NET Core

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-6.0&tabs=visual-studio

186

breaks into three parts, controller/action/optional id. If we look at the URL, passed

the base address, we also notice three parts, Employees/Detail/5. The route will map

Employees as a controller, meaning it will search for an EmployeesController class. It

will do this because, by convention, a controller ends in “Controller.” The second part

is the action, in our case Detail. The system will look for a public function called Detail

that returns an IActionResult and lives in the EmployeesController. Finally, because we

pass in an id, the Detail method also needs to accept a parameter. Figure 7-6 shows the

code for our Detail method and that the parameter of the method gets filled in through

the routing system. We are getting an integer into our parameter; note that this is not

a nullable int even though it looks like one in the routing template. Marking it with

a question mark in the routing template just means that it is optional; the methods

receiving the parameter do not need to match the optional or nullable notation; as long

as the datatype matches, we should be fine.

Figure 7-6.  Parameter passed from url to variable

From here, the matching view is found and inflated and passed back to the user in

the form of HTML.

�Views
The views in an MVC scenario are the actual pages that a user gets to see on his monitor.

In ASP.NET, views are built using an HTML-like syntax called Razor. Figure 7-7 shows the

views in a default ASP.NET MVC template.

Chapter 7 ASP.NET Core

187

Figure 7-7.  Views in ASP.NET MVC

Another one of ASP.NET MVC’s conventions dictates that for every controller, there is

a folder containing its views. By default, we get a HomeController, so we also get a Home

folder containing the views. Views are files with the *.cshtml, or *.vbhtml extensions,

depending on the language we are using to write the application in. The Shared folder

contains components that are reused across multiple views. Those shared components

are usually prefixed with an underscore.

Razor works with master layouts; the default one is in the Shared folder and is

called _Layout.cshtml. In the _Layout.cshtml file, we can declare our root html element,

include the necessary CSS and JS files, and set up the navigation and structure of our

application. In .NET 6, the ASP.NET team has also added scoped CSS files, meaning that

the _Layout.cshtml file looks like it has a sort of code-behind file in the tree structure

visible in the Solution Explorer in Visual Studio. This is a partial CSS file where the styles

defined are only applied to the content of the file they are attached to. Adding a scoped

CSS file to a cshtml file is as simple as creating a new CSS file with the same name as the

cshtml file. Somewhere in the layout file you can find the snippet shown in Listing 7-6.

Listing 7-6.  Rendering the body of the application

<div class="container">

 <main role="main" class="pb-3">

 @RenderBody()

 </main>

</div>

Chapter 7 ASP.NET Core

188

Razor might look like generic HTML but we can add .NET code to it by prefixing a one

line statement with an @ or an entire code block with @{ //code here }. The @RenderBody

method is the place where your Razor views will be rendered inside of the template.

Putting some labels around the RenderBody method shows exactly what I mean.

Listing 7-7.  Labels around RenderBody

<main role="main" class="pb-3">

 <h2>My Components</h2>

 @RenderBody()

 <h2>/My Components</h2>

</main>

Figure 7-8.  Rendering components in the template

As you can tell from the placement of the h2 elements, it really is only the actual

content that comes from the different views. The general styling and layout of the

application is done from the main layout file. Listing 7-8 shows the default Index.cshtml

view. This is the Index.cshtml file in the Home folder.

Listing 7-8.  Home/Index view

@{

 ViewData["Title"] = "Home Page";

}

<div class="text-center">

 <h1 class="display-4">Welcome</h1>

 �<p>Learn about <a href="https://docs.microsoft.com/aspnet/

core">building Web apps with ASP.NET Core.</p>

</div>

Chapter 7 ASP.NET Core

189

The default home component does little more than welcome the user to the

application and link to the ASP.NET documentation. But, it does start with a code block

setting a value in the ViewData. ViewData is a specific sort of typed dictionary that can

transfer data for a specific model type from the controller to the view, but not the other

way around. It lives for the duration for the request; for any next requests, new ViewData

instances are created. In this example, we are setting the KeyValue pair with key “Title”

to what we want to be the title of this page. We do want that value to be reflected in

the main layout, in the Title tag. All of this ViewData code then gets executed when a

controller method is creating an HTML response to a request. Remember that ASP.NET

MVC always creates the entire page as a response, and while creating the static HTML for

a page, the system has time to evaluate all the ViewData logic.

Listing 7-9.  Rendering the title through ViewData in _Layout.cshtml

<head>

 <meta charset="utf-8" />

 �<meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - MvcDemo</title>

 �<link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.

min.css" />

 �<link rel="stylesheet" href="~/css/site.css" asp-append-version="true" />

</head>

The rest of Index.cshtml is basic HTML code; we’ll go through some more exciting

views in a minute.

�Controllers
Controllers are the glue in an MVC application; they are the connector between the data

and the view. As we have seen, the routing system brings us from a url straight into a

controller method. In general, that method will load data from somewhere, optionally

using any parameters passed into the method; it will inflate a view, execute all .NET code

in that Razor view so that we end up with static generated HTML code, and send that

back to the user. ASP.NET is a client-server framework; all .NET-based logic is executed

on a server, and only the result, in the shape of HTML, is sent back to the client. This is

simply because browsers do not understand .NET by default. Silverlight fixed this by

installing an add-in in browsers so they could run compiled .NET code, but the add-in

Chapter 7 ASP.NET Core

190

system is not ideal in today’s world of mobile browsers and devices. The next best

thing is running the code on the server and sending only the result back. In short, it is

very important to realize that everything in ASP.NET MVC runs on the server; only the

result of a request, which is generated HTML code based on Razor files, is sent back to

the client.

Let’s go through the flow of creating a new controller, method, and view to clear

up how MVC and its built-in tooling work. We’ll build a controller for the Apress book

collection.

First we start with the model. Listing 7-10 shows the Book class.

Listing 7-10.  The Book class

public class Book

{

 public Book(int id, string title, string description, string author)

 {

 Id = id;

 Title = title;

 Description = description;

 Author = author;

 }

 public int Id { get; set; }

 public string Title { get; set; }

 public string Description { get; set; }

 public string Author { get; set; }

}

We’re keeping things pretty basic for sake of the example. I’ve created a dummy

BookCatalogService that returns a hardcoded list of books. We won’t go into the code

for that specific service, but if you are interested you can find it on the book’s GitHub

repository. For now it is just important to know that the service is registered in ASP.NET’s

DI container by calling builder.Services.AddSingleton<IBookCatalogService,

BookCatalogService>() in Program.cs. Now that we have our data source and DI setup,

it’s time to add the controller. A controller is a class that inherits from Controller. Keep

in mind that we are registering the service as singleton so that we can abuse it as an in-

memory datastore.

Chapter 7 ASP.NET Core

191

Be very careful with this in real applications; singleton means not only that you will
get the same instance every time but that same instance is also shared across all
your users.

Listing 7-11.  The BookController

public class BookController : Controller

{

 private readonly IBookCatalogService _bookCatalogService;

 public BookController(IBookCatalogService bookCatalogService)

 {

 _bookCatalogService = bookCatalogService;

 }

 public async Task<IActionResult> Index()

 {

 Book[] books = await _bookCatalogService.FetchBookCatalog();

 return View(books);

 }

}

Listing 7-11 shows the implementation of the BookController. The constructor takes

the dummy BookCatalogService as a parameter. The parameter will be filled in by ASP.

NET’s ServiceCollection. The Index method fetches an array of books from the service

and passes that array into a method called View.

The method called Index will be called by ASP.NET MVC’s routing system when we

navigate to https://<url>:<port>/book. In case you are wondering why we don’t have to

specify Index in the url, that is because Index is set as the default action when no action

is provided.

Listing 7-12.  Setting the route defaults in Program.cs

app.MapControllerRoute(

 name: "default",

 pattern: "{controller=Home}/{action=Index}/{id?}");

Chapter 7 ASP.NET Core

192

The View method that is called in the Index method comes from the Controller

base class. It is used to select the correct view, depending on the name of the controller

and the action method, and inflate it.

Now that we have a controller, it is time to add a view. Visual Studio provides tooling

to easily add views. Adding a view can be done through right-clicking the call to View and

selecting Add View.

Figure 7-9.  Adding a view through tooling

Second step is selecting what type of view we want to generate, an empty Razor

View or a scaffolded one. Scaffolding in ASP.NET is done by the Microsoft.VisualStudio.

Web.CodeGeneration.Design NuGet package. The first time you launch a scaffolding

command in Visual Studio this package will get added to the project. With scaffolding,

we can easily generate entire parts of the application, from controller to view, including

all the actions and even database operations. We will select the Razor View template.

A dialog pops up where we can specify what model class we want to generate a view for,

what it should be called, and what template to use. The name for the view is prefilled

with the same name of the method we were just working on; the template is basically a

list of basic create–read–update–delete or CRUD screens that we can take as a base for

our view. Figure 7-10 shows the settings that we used for this example.

Chapter 7 ASP.NET Core

193

Figure 7-10.  Scaffolding a view using a template

When scaffolding is done, you will notice a new folder in the Views folder called

Book, containing an Index.cshtml file.

Listing 7-13.  Model declaration and ASP tags

@model IEnumerable<MvcDemo.Models.Book>

@{

 ViewData["Title"] = "Index";

}

<h1>Index</h1>

<p>

 <a asp-action="Create">Create New

</p>

Chapter 7 ASP.NET Core

194

Listing 7-13 shows the top of the generated page. A Razor view can specify a model

class, in this case an IEnumerable of Book. I would advise to switch from IEnumerable to

a more specific interface as soon as possible, since having it as an IEnumerable has no

added value whatsoever. In this case we can go with an ICollection<Book> if we

wanted to. With this model attribute set, we get access to a property called Model, which

is of the type we just specified using the model attribute. The anchor tag contains an

asp-action attribute. It is not the default HTML anchor tag; in this case, it is an ASP.NET

tag helper, an extension of existing HTML tags. The asp-action attribute takes the name

of a controller action and transforms that into a correct url using the routing system in

ASP.NET MVC.

The generated view is meant to be a list of books. In the Razor view template, this is

an HTML table. But tables are static, just like HTML is. Using Razor we can, on the server,

generate all static HTML and send it back to the client. Listing 7-14 shows how it is done

for a table. As I just mentioned, we get a Model property that is an IEnumerable<Book>;

we can loop over that IEnumerable and generate a table row for every book in the

collection.

Listing 7-14.  Generating a table in Razor

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Id)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Title)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Description)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Author)

 </td>

 <td>

 �@Html.ActionLink("Edit", "Edit", new { /* id=item.

PrimaryKey */ }) |

Chapter 7 ASP.NET Core

195

 �@Html.ActionLink("Details", "Details", new { /* id=item.

PrimaryKey */ }) |

 �@Html.ActionLink("Delete", "Delete", new { /* id=item.

PrimaryKey */ })

 </td>

 </tr>

}

For the book information, we use the Html.DisplayFor tag helper. This helper

generates HTML content based on the model property we specify using a lambda.

The generated HTML from DisplayFor is based on a default template that could be

overwritten if needed, but that goes beyond the scope of this book. The Razor template

also specifies action links to edit or delete the book or to load the details of a specific

book. Those links are generated using Html.ActionLink, which is quite similar to the

ASP.NET anchor TagHelper we just saw. An action link takes in a label that it will show

on the actual page, a controller action, and an optional controller name for when the

action we want to execute is in another controller than the one this view is linked to and

some optional parameters like, for example, the id of the entity we want to delete. In the

generated view code, the id is not set in the route values as the system can’t decide for

us what the unique identifier is. There is commented code in the Details and Delete links

that we can use to set our id.

Let’s have a look at the result of the generated page.

Figure 7-11.  The generated list view

The generated Razor view uses the default CSS from the ASP.NET MVC template

and looks rather nice. We get a good looking table, nicely listing our books and showing

the generated actions. Do note that the scaffolding does not include any logic to hide

Chapter 7 ASP.NET Core

196

primary keys or IDs from the user. So always adjust the scaffolded code to hide that

information. In our case the first column in the table is the book IDs, that is, internal

information that should not be leaked on screen.

Listing data on screen is quite easy; we only need to pull data from the datastore,

shape it according to what we need on screen, and display it. There is a bit more work

involved if we want to edit or create data. For example, let’s create the logic to add extra

books to the list.

We’ll start by adding two methods to the BookController. We need two methods this

time, one to prepare a book instance to ready the fields on the create form and one to

actually receive the entered data and store it in our data store.

Listing 7-15.  Creating a new Book

[HttpGet]

public IActionResult Create()

{

 return View(new Book());

}

[HttpPost]

public async Task<IActionResult> Create(Book book)

{

 await _bookCatalogService.AddBook(book);

 return RedirectToAction("Index");

}

Both methods have the same name, but they have different purposes. The Create

method without parameters is the one that will be called to open the form in the

application. It is decorated with an HttpGet attribute, telling the MVC pipeline that this

method can only be reached with a GET request. GET is the default for controller actions

in MVC; however, I like to explicitly decorate the method in this case to avoid confusion.

The second Create method is decorated with the HttpPost attribute so that it will only

be reached via a POST method that will receive the data entered on the form. Since our

form is in the shape of a book, data-wise, the ASP.NET MVC pipeline can safely bind

the received value to a Book instance. If we inspect the request, we can see that the only

thing that is going over the wire is basic HTML form data.

Chapter 7 ASP.NET Core

197

Figure 7-12.  Inspecting a create request

As you can see, the data going over the wire is in the shape of a book, but there is no

notice of it being a book. The _RequestVerificationToken is an extra security token

added by ASP.NET to verify that the received data on the server was not manipulated by

a man-in-the-middle attack.

If we inspect the POST Create method, we can see that the parameter is filled in with

an instance of Book, containing all the values we just entered on the form.

Figure 7-13.  Parsed data in the controller method

In a real application, we of course need to do data validation before storing the data

in the datastore. For the sake of the demo, we can assume that this validation happens

in the service. Once the book is added in the datastore, we redirect from the Create

action to the Index action so that we end up on the list of books, including our freshly

created book.

Once again, we can let ASP.NET generate a view for us. This time we are selecting the

Create template. I have already removed the entry for ID since we are not allowing our

users to choose their own primary keys.

Chapter 7 ASP.NET Core

198

Listing 7-16.  Generated Create form

<form asp-action="Create">

 <div asp-validation-summary="ModelOnly" class="text-danger"></div>

 <div class="form-group">

 <label asp-for="Title" class="control-label"></label>

 <input asp-for="Title" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Description" class="control-label"></label>

 <input asp-for="Description" class="form-control" />

 </div>

 <div class="form-group">

 <label asp-for="Author" class="control-label"></label>

 <input asp-for="Author" class="form-control" />

 </div>

 <div class="form-group">

 <input type="submit" value="Create" class="btn btn-primary" />

 </div>

</form>

A form is a basic HTML form containing an action where the data in the form can be

posted to. We are once again using ASP.NET taghelpers to generate the correct url based

on controller and action names. For every property we want our users to fill in, three

elements are generated, one that serves as the label. By default, the property name is

shown as label but this can be overwritten. The second element is the actual input field;

ASP.NET’s source generation will try to pick the correct input field based on the datatype.

For a string we’ll get a text field, Boolean will give us a checkbox and so on. The third

element is a placeholder for when client-side validation fails. Figure 7-14 shows the form

with failed validations.

Chapter 7 ASP.NET Core

199

Figure 7-14.  Failed validations

So, where are these validations coming from? There are some basic validations based

on datatype such as fields being required if they are not nullable. However, in this case,

I have added validation rules directly on the Book class using data annotations from the

System.ComponentModel.DataAnnotations namespace. Listing 7-17 shows these data

annotations, together with a way to make the validation error message a bit more user-

friendly instead of bombarding our users with terms like string and array.

Listing 7-17.  Book class with validation rules

public class Book

{

 public Book(int id, string title, string description, string author)

 {

 Id = id;

 Title = title;

 Description = description;

 Author = author;

 }

Chapter 7 ASP.NET Core

200

 public int Id { get; set; }

 �[MinLength(5, ErrorMessage = "The title needs to have at least 5

characters")]

 public string Title { get; set; }

 public string? Description { get; set; }

 [Required]

 public string Author { get; set; }

}

Using data annotations, we can specify required fields, minimum and maximum

length, and much more.

The rest of the operations that can be generated by ASP.NET work in a very similar

way so we won’t go into any more detail here. Instead, let’s have a look at another

member of the ASP.NET family.

�Web API
ASP.NET WebAPI is Microsoft’s version of a REST-based service. API is an industry term

that stands for Application Programming Interface. In short, an API provides endpoints

that, instead of HTML, return just a set of data. The collection of endpoints that provide

data we call a contract. WebAPI is a RESTful API, meaning that it conforms to a set of

guidelines. The term guidelines is very important here. REST is not set in stone, the rules

of a REST service are not enforced in any way, and it is up to the developer to comply to

the guidelines according to their skills and needs. ASP.NET WebAPI provides us with a

set of helper methods and classes to guide us through the guidelines of REST to help us

provide an API that complies to the guidelines as much as possible.

Before .NET 6, WebAPI was largely based on the MVC principle. We had models and

controllers, but no view. Instead of inflating an HTML template and returning HTML,

the controllers took the data, serialized them into JSON, and returned that. It gave us a

very familiar way to build RESTful services. Meanwhile, the world of APIs evolved, and

setting up a quick and easy API to consume some data became very easy in technologies

like NodeJS but was often found bloated and involved in ASP.NET WebAPI. To counter

this, the .NET team introduced minimal APIs in .NET 6. Figure 7-15 shows both a default

WebAPI project next to a minimal API project to show the difference in project structure.

Chapter 7 ASP.NET Core

201

Figure 7-15.  Minimal API vs. WebApi

As you can tell, the minimal APIs are, well, more minimal. The entire API, which

consists of one demo call in the default template, is set in Program.cs. Before we dig

deeper into minimal APIs, let’s start with the traditional WebAPI project.

�Controller-Based APIs
The type of project that you end up with depends on a specific checkbox during project

creation. The project type we need is ASP.NET Core Web API. Once selected, we get a

popup similar to the one we got when creating an ASP.NET MVC application.

Chapter 7 ASP.NET Core

202

Figure 7-16.  Creating a new WebAPI project

Figure 7-16 shows the checkbox that will determine whether or not we end up with

a minimal API project. By checking that we want to use controllers, we end up with an

MVC-like template, except for the views. Listing 7-18 shows a snippet from the demo

controller that is part of the template.

Listing 7-18.  API controller

[ApiController]

[Route("[controller]")]

public class WeatherForecastController : ControllerBase

{

 [HttpGet(Name = "GetWeatherForecast")]

 public IEnumerable<WeatherForecast> Get()

 {

 return Enumerable.Range(1, 5).Select(index => new WeatherForecast

 {

 Date = DateTime.Now.AddDays(index),

 TemperatureC = Random.Shared.Next(-20, 55),

Chapter 7 ASP.NET Core

203

 Summary = Summaries[Random.Shared.Next(Summaries.Length)]

 })

 .ToArray();

 }

Our REST controller inherits from ControllerBase; an MVC controller inherits from

Controller, which in turn inherits from ControllerBase. So both flavors of ASP.NET are

using the same base classes. The difference is that the Controller class from MVC inflates

the HTML templates, something we do not need in WebAPI, so there is no need for an

extra layer in between.

REST controllers are decorated with the ApiController attribute. This attribute

enables a couple of things:

•	 Controllers need to explicitly define their routes; classic routing

by convention like in ASP.NET MVC does not work here. Some

conventions, like ending a controller name with Controller, are

still valid.

•	 The framework will automatically validate incoming data and request

and generate HTTP 400 responses where needed. We talk more about

HTTP responses a bit further in this chapter.

•	 Incoming data can be bound to parameters in the action methods.

The third bullet is one of the things that make WebAPI easy to use. The framework

can automatically parse incoming request data to parameters. Let’s clarify with an

example. We will take the book example we used in the MVC part of this chapter and

build a REST service for the books. I have copied the BookCatalogService and Book

model to a WebAPI project. The Program.cs looks very similar to the Program.cs from

MVC with a few important differences.

Listing 7-19.  Program.cs in a WebAPI controller-based project

builder.Services.AddControllers();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

builder.Services.AddSingleton<IBookCatalogService, BookCatalogService>();

var app = builder.Build();

Chapter 7 ASP.NET Core

204

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

Listing 7-19 shows a snippet from Program.cs. The differences with MVC are

AddEndpointsApiExplorer, AddSwaggerGen, UseSwagger, and UseSwaggerUI. All of these

are used to configure Swagger in the project. Swagger is a third-party tool that works

according to the OpenAPI Specification, or OAS. Let’s take a step back for a moment to

clarify some things.

The OpenAPI Initiative (OAI) is an initiative run by a consortium of industry expert.

Their aim is to describe a standardized way of how APIs should be structured. The OAI

is part of the Linux Foundation, meaning it is run out in the open and completely vendor

neutral. Their website is found at https://www.openapis.org/; the OAS itself is at

https://spec.openapis.org/oas/latest.html

The OAS describes what the response of an API should look like, what datatypes can

be used, how error messages should be structured, and so on.

Since we have an official, albeit optional, specification for our APIs, we can start

building and using tools that leverage the structure the OAS described. Swagger is one

of those tools; in fact, it was the people behind Swagger who drafted the first version of a

Swagger Specification and donated that specification to the OAI who continued to build

their version with the Swagger Specification as a solid basis. Later versions of Swagger

stepped away from their Swagger Specification and started leveraging the OAS.

So, where is the power in this specification? Why is it useful? Circling back to our

WebAPI about books, we have successfully set up and configured Swagger. If we run the

application, Swagger will go through our controllers and actions and create a JSON file

that describes our entire API surface according to the OAS. Listing 7-20 shows the JSON

for our books API.

Listing 7-20.  OAS compatible JSON

{

 "openapi": "3.1.0",

 "info": {

 "title": "WebApiDemo",

Chapter 7 ASP.NET Core

https://www.openapis.org/
https://spec.openapis.org/oas/latest.html

205

 "version": "1.0"

 },

 "paths": {

 "/api/Book": {

 "get": {

 "tags": [

 "Book"

],

 "responses": {

 "200": {

 "description": "Success"

 }

 }

 }

 }

 },

 "components": {}

}

The JSON starts with declaring what version of OAS it is using. It shows information

about our API and its title and version, and it lists the paths or endpoints. Here we can

see that we have a /api/book endpoint that is a GET operation and it can return an

HTTP 200; this information is generated from our new book controller, added in the next

paragraph. The more we work on our API, the more information will show in this JSON.

Listing 7-21.  BookController

[ApiController]

[Route("api/[controller]")]

public class BookController : ControllerBase

{

 private readonly IBookCatalogService _bookCatalogService;

 public BookController(IBookCatalogService bookCatalogService)

 {

 _bookCatalogService = bookCatalogService;

 }

Chapter 7 ASP.NET Core

206

 [HttpGet]

 public async Task<IActionResult> Index()

 {

 Book[] books = await _bookCatalogService.FetchBookCatalog();

 return Ok(books);

 }

}

Listing 7-21 shows our BookController. Notice the specified route on the controller.

That route is the path described in the JSON. The GET request maps to the Index method

in this controller by convention; if we have multiple methods decorated with the HttpGet

attribute, the system will map to the correct one based on the parameters. The Index

method fetches an array of books and calls the Ok method, passing in the array of books.

The Ok method is one of many helper methods in WebAPI. It creates a response object

containing the data and sets the HTTP response to HTTP 200 – OK. By using those

methods, we can make sure that we are respecting the OAS.

A quick sidenote about HTTP status codes. I have mentioned HTTP status codes

a few times now. Those status codes are used by browsers and application to check

what the result of an HTTP request is. The full list of HTTP status codes can be found at

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

or https://developer.mozilla.org/en-US/docs/Web/HTTP/Status for a more readable

list (do check out HTTP 418). In short, the status codes can be grouped into five groups.

•	 HTTP 100-199: informational

•	 HTTP 200-299: successful (OK, Created, …)

•	 HTTP 300-399: redirection

•	 HTTP 400-499: client error (not found, bad request, …)

•	 HTTP 500-599: server error

The most famous status code is no doubt HTTP 404 – Not Found. The 500 range

usually means that there was an unexpected error on the backend that should be

handled by the developers.

Let’s get some more information in our generated JSON API description. We can

decorate the Index method with an attribute detailing what we can expect as an HTTP

status code and what the return type will be.

Chapter 7 ASP.NET Core

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

207

Listing 7-22.  Expanding openAPI information with attributes

[HttpGet]

[ProducesResponseType(typeof(Book[]), (int)HttpStatusCode.OK)]

public async Task<IActionResult> Index()

{

 Book[] books = await _bookCatalogService.FetchBookCatalog();

 return Ok(books);

}

Looking at the JSON now, we can find some extra information; Listing 7-23 shows a

snippet.

Listing 7-23.  Extended JSON information

"/api/Book": {

 "get": {

 "tags": [

 "Book"

],

 "responses": {

 "200": {

 "description": "Success",

 "content": {

 "text/plain": {

 "schema": {

 "type": "array",

 "items": {

 "$ref": "#/components/schemas/Book"

 }

 }

 },

Chapter 7 ASP.NET Core

208

 "application/json": {

 "schema": {

 "type": "array",

 "items": {

 "$ref": "#/components/schemas/Book"

 }

 }

 }

Notice the $ref that refers to a book? Our JSON schema knows what a book is now

and describes it.

Listing 7-24.  Model in JSON

"components": {

 "schemas": {

 "Book": {

 "required": [

 "author",

 "title"

],

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "format": "int32"

 },

 "title": {

 "minLength": 5,

 "type": "string"

 },

 "description": {

 "type": "string",

 "nullable": true

 },

Chapter 7 ASP.NET Core

209

 "author": {

 "type": "string"

 }

 },

 "additionalProperties": false

 }

 }

 }

This JSON can be imported in different tools to, for example, generate client

implementations that consume this API. There are even tools that do this as part of

the build pipeline process. A tool included in .NET 6 is Swagger UI. Swagger UI takes

the JSON and generates a visual test client for testing the API endpoints. Enabling

Swagger UI in ASP.NET Core 6 is done in Program.cs by calling app.UseSwaggerUI()

after app.UseSwagger().

Figure 7-17.  Testing a REST call with Swagger UI

Using Swagger UI can really speed up the dev cycle; it gives a nice overview of all

endpoints, allows entering parameters, and shows the status code and errors.

Chapter 7 ASP.NET Core

210

Let’s look at another example. Listing 7-25 shows the controller method for fetching

a book detail.

Listing 7-25.  Fetching a book detail

[HttpGet]

[Route("{id}")]

[ProducesResponseType(typeof(Book), (int)HttpStatusCode.OK)]

[ProducesResponseType((int)HttpStatusCode.NotFound)]

public async Task<IActionResult> Details(int id)

{

 Book? book = await _bookCatalogService.FetchBookById(id);

 if (book == null)

 {

 return NotFound(id);

 }

 return Ok(book);

}

We once again have a GET method; there is a route attribute on the Details method.

This route will combine with the route set on the controller to get, for example,

https://<hostname>:<port>/api/book/5. The 5 will be inserted as value into the id

parameter of the method; it is very important to have same name for the parameter

and the placeholder in the route. The method can produce two expected response

types, an HTTP 200 – OK or an HTTP 404 – NOT FOUND. According to the logic in the

BookCatalogService, when passing in the id, we get either a book instance or NULL back.

We create the correct HTTP response using the NotFound or Ok helper methods. Swagger

UI picks these changes up quite nicely, based on the two ProducesResponseType

attributes we have added.

Chapter 7 ASP.NET Core

211

Figure 7-18.  Parameters in Swagger UI

As a final example, let’s see what a POST request looks like. Listing 7-26 shows the

controller action for adding a book to the collection.

Chapter 7 ASP.NET Core

212

Listing 7-26.  Adding a book

[HttpPost]

[ProducesResponseType(typeof(Book), (int)HttpStatusCode.Created)]

[ProducesResponseType((int)HttpStatusCode.BadRequest)]

public async Task<IActionResult> Create([FromBody] Book book)

{

 await _bookCatalogService.AddBook(book);

 return Created($"/{book.Id}", book);

}

A couple of new things here. Instead of a GET request, we are now doing a POST,

which is the typical verb to create a new record. The HTTP status code to return is

HTTP 201 – Created, which is generated by calling the Created method. The Created

method needs an endpoint where the details of the newly created book can be requested

and it sends the created book back as the response body, according to the OpenAPI

Specification. The parameter of the method is decorated with the FromBody attribute.

The attribute ApiController on controller level enables these attributes. The FromBody

attribute parses the form data in the request body to the type of the parameter.

Figure 7-19 shows the resulting entry in Swagger UI.

Chapter 7 ASP.NET Core

213

Figure 7-19.  POST request in Swagger UI

Notice the color? POSTs are green, GETs are blue, DELETE will be red, and so on.

Every HTTP verb is color coded in Swagger UI. Table 7-1 shows the complete list of

HTTP verbs.

Chapter 7 ASP.NET Core

214

Table 7-1.  List of HTTP verbs

Verb Description

GET Fetch data

POST Create new data

PUT Update data by sending back a complete, updated object

PATCH Update data by sending back a patch document with only the updated properties

DELETE Delete data

If we fill in some values in Swagger UI, set a breakpoint in the Create action on the

controller; hit the Execute button and you will see that the breakpoint is hit and the

parameter is nicely filled in with the values we entered in Swagger.

Figure 7-20.  HTTP Request captured by the browser

Figure 7-21.  ID generated and parameter parsed from HTTP form data

Chapter 7 ASP.NET Core

215

�Minimal APIs
As mentioned in the introduction of this chapter, minimal APIs are Microsoft’s answer

to fast REST API development as can be found in frameworks like NodeJS, where you

can put the entire API surface in one file. Looking at minimal APIs, we effectively have

one file containing everything. From application setup to the actual endpoints, and even

better: Swagger and Swagger UI know how to interpret this new style of .NET REST APIs.

I have implemented the same book API in minimal API; a quick count of lines of

code shows the following result:

•	 Controller-based API: 78 lines of code

•	 Minimal API: 57 lines of code

Lines of code are the bootstrap logic in Program.cs and the book endpoints, so not

counting any models or services. That is 25% less code. But less code is not always better.

Listing 7-27 shows the first part of Program.cs that sets up the application.

Listing 7-27.  Bootstrapping a minimal API project

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

// Learn more about configuring Swagger/OpenAPI at https://aka.ms/

aspnetcore/swashbuckle

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

builder.Services.AddSingleton<IBookCatalogService, BookCatalogService>();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

app.UseHttpsRedirection();

Chapter 7 ASP.NET Core

216

Almost identical to controller-based APIs, except for the builder.Services.

AddControllers call, we have no controllers in a minimal API, so no need to add them to

the ServiceCollection.

The next part of Program.cs is the endpoints; after defining the endpoints, there is a

small line of code that says app.Run(). These few characters make the API launch and be

useful. Do not remove this call or nothing will work.

Listing 7-28 shows the action to fetch an array of books.

Listing 7-28.  Creating a GET request in a minimal API

app.MapGet("/api/book", async ([FromServices] IBookCatalogService

bookCatalogService) =>

{

 Book[] books = await bookCatalogService.FetchBookCatalog();

 return Results.Ok(books);

})

.WithName("GetBooks")

.Produces<Book[]>();

Creating API endpoints is done on the WebApplication object that is also used for

configuring the application as seen in Listing 7-27. WebApplication has different Map

methods depending on the type of HTTP verb you want to create an endpoint for. In

this example, we are creating a GET request. The first parameter of the method is the

path on which the endpoint is reachable. The second parameter is the delegate that

is called whenever the endpoint is called. This delegate can be placed in a separate

method, but I personally prefer the anonymous method style. In a minimal API, we

can’t do constructor injection since we don’t have a constructor. Instead, we can use the

FromServices attribute to decorate a parameter in the delegate. The ServiceCollection

will inject the instance right there. In controller-based APIs, we could use helper

methods like Ok and NotFound from the controller base class. We don’t have a base class

in a minimal API, but we can use the static class Results that exposes the same methods.

Finally we have some configuration methods; these are mostly used for generating the

OpenAPI JSON and for Swagger UI. WithName sets a name for this endpoint. Produces

sets the possible HTTP status codes and the type of data we can expect. In this example,

we are not explicitly setting a status code; HTTP 200 will be used as default.

Chapter 7 ASP.NET Core

217

Listing 7-29.  Parameters in a minimal API endpoint

app.MapGet("/api/book/{id}", async ([FromServices] IBookCatalogService

bookCatalogService, int id) =>

{

 Book? book = await bookCatalogService.FetchBookById(id);

 if (book == null)

 {

 return Results.NotFound(id);

 }

 return Results.Ok(book);

})

.WithName("GetBookById")

.Produces<Book>()

.Produces((int)HttpStatusCode.NotFound);

The API call for fetching book details looks very similar. The major difference is

that we are expecting a parameter, the book ID, to be passed in. Passing parameters is

done by setting a placeholder between curly braces in the route and creating a method

parameter in the delegate with the same name as the placeholder. The framework will

take care of mapping the passed in parameter to the .NET parameter, very similar to the

way routing works as we have seen in ASP.NET MVC. This example also shows defining

two possible results. The method can either produce a book with HTTP 200 – OK or it

can produce an empty result with HTTP 404 – Not Found.

Listing 7-30.  Posting data to a minimal API

app.MapPost("/api/book", async ([FromServices] IBookCatalogService

bookCatalogService, [FromBody] Book book) =>

{

 await bookCatalogService.AddBook(book);

 return Results.Created($"/api/book/{book.Id}", book);

})

.WithName("AddBook")

.Produces<Book>((int)HttpStatusCode.Created);

Chapter 7 ASP.NET Core

218

Creating a POST endpoint is very similar; we just use the MapPost method instead of

MapGet. Using the FromBody attribute, we can get the posted HTTP form data as a .NET

object passed into the delegate. The return type is HTTP 201 – Created.

If you like this style of API programming but you don’t want a large Program.cs once

all your endpoints are defined, you can use extension methods to split your endpoint

definitions in separate files.

Listing 7-31.  Extension methods for defining book endpoints

public static class BookEndpoints

{

 public static void MapBookEndpoints(this WebApplication app)

 {

 �app.MapGet("/api/book", async ([FromServices] IBookCatalogService

bookCatalogService) =>

 {

 Book[] books = await bookCatalogService.FetchBookCatalog();

 return Results.Ok(books);

 })

 .WithName("GetBooks")

 .Produces<Book[]>();

 }

}

I have only added one endpoint in Listing 7-31 for brevity. The full method with the

three endpoints can be found on the book’s GitHub page. With this extension method in

place, we can shorten Program.cs by calling app.MapBookEndpoints instead of defining

all endpoints there.

Chapter 7 ASP.NET Core

219

�Wrapping Up
ASP.NET has been a popular choice for building enterprise web applications or services

for years, and the framework keeps evolving. MVC is easy to use and familiar for those

coming from other languages since it largely depends on the Model-View-Controller

pattern. WebAPI uses the same design pattern to provide easy to build and use RESTful

APIs. In .NET 6, we got minimal APIs, which is a brand-new member of the ASP.NET

family. With minimal APIs, we can start building APIs faster than ever before, but we

do give up a bit of structure. It is a trade-off. Controller-based APIs are built using a

very well-known design pattern, but for smaller APIs, it is easy to get lost in the large

amount of files in a project. With minimal APIs, there is a minimal amount of files or

code required, but structure might get lost quickly. So choose wisely and use extension

methods to group your endpoints together.

Chapter 7 ASP.NET Core

221
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_8

CHAPTER 8

Microsoft Azure
Over the past couple of years, cloud computing has grown to gigantic proportions, and it

is not hard to see why. Companies can potentially save tons of money by not buying and

maintaining their own server hardware; instead, they can opt for a pay-per-use model

that can scale from one server to hundreds and back to one in mere minutes. Cloud

providers like Microsoft make it very easy to get your software up and running on a

cloud service and at the same time give you power tools to fully configure a cloud-based

network that can even be an extension to your on-premise network.

Microsoft Azure, or just Azure for short, is Microsoft’s public cloud platform.

Everyone with a credit card can create an account and start creating and publishing

cloud services. The entire breadth of Azure is too big to describe in one chapter of a

book, so I have selected much used services where .NET 6 can be important.

Configuring Azure services can be done in multiple ways. When starting with Azure,

you will most likely first encounter the Azure portal https://portal.azure.com.

A second popular approach is through the CLI. The Azure SDK ships with its own

command line tools; these tools can be used to automate Azure actions, for example, to

include them in a CI/CD pipeline. Visual Studio also ships with some Azure integrations,

for example, to publish web applications to Azure. These integrations are very useful for

a quick start but are quite limited in the end. The examples in this chapter are all done

through the Azure portal. Keep in mind that the Azure portal is a web application that

evolves very fast, so by the time you read this, things might look slightly different but the

concepts will remain the same.

In this chapter, we’ll walk through some of the Azure services. To follow along, you

will need an Azure account; costs may be involved depending on the services and tiers

selected. Free Azure trials are available at https://azure.microsoft.com/en-us/free.

https://doi.org/10.1007/978-1-4842-7319-7_8#DOI
https://portal.azure.com
https://azure.microsoft.com/en-us/free

222

�Web Apps
Azure Web Apps are easiest described as your basic web hosting that you can get from

thousands of providers all over the world. The difference being that since this is a cloud

service this can scale to huge scales. By default, web apps support applications in:

•	 .NET

•	 .NET Classic

•	 Java

•	 Ruby

•	 NodeJS

•	 PHP

•	 Python

Let’s start building our first web app. As mentioned before, there are several ways to

create Azure resources, but for now we will use the portal. The portal greets you with a

list of recent resources and a list of resource types that are commonly created.

�Creating an App Service
To be able to follow along with this demo, you will need to have an ASP.NET Core 6

project checked into a GitHub repository.

Chapter 8 Microsoft Azure

223

Figure 8-1.  Azure portal start page

There is a button with a big + icon to create a new resource. This will once again

bring up a page with some quick options for resource types but also a search to search

through the extensive catalog of Azure services. It is important to know that not every

service in the Azure services catalog is a Microsoft product. There are tons of third-party

services in there as well. Some examples are MariaDB, SendGrid, several Linux distros

for virtual machines, and many more. For this example, we need a web app. After we find

it in the catalog and click Create, we enter into a setup wizard.

Make sure to select Web App, not Static Web App. Those are for the next section.

Chapter 8 Microsoft Azure

224

Figure 8-2.  Web App creation wizard

First we need to select a subscription. Being an Azure user means you have a

subscription. Azure has a lot of free services, but depending on how much flexibility,

scale, or redundancy you need, you will quickly get into paid territory. To track what you

use, Microsoft requires you to have a subscription. You can have several subscription

Chapter 8 Microsoft Azure

225

tied to the same email address. As a Visual Studio customer, you get monthly Azure

credits that you can spend. The amount depends on the type of Visual Studio license

you have.

A Resource Group is a functional group that you can place your services in. Resource

Groups are mostly meant for customers to order their services. Azure resources in the

same resource group share the same lifecycle, permissions, and policies. Click Create

New and give your resource group a name.

Next step is configuring the resource itself. Most important is how you want to

call this. This name needs to be unique across all Azure customers since the name

will be used as a url. As an Azure Web App user, you get a free domain in the form of

https://<your web app name>.azurewebsites.net. This makes your web application

easily reachable across the Internet, and you can make use of the SSL certificate for

*.azurewebsites.net free of charge. It is of course possible to attach your own domain

name to a web app instance, but that also means that you are responsible for the SSL

certificate.

After selecting a name, we can choose if we want to deploy our project as code

or as a Docker container. Azure supports multiple ways of deploying containerized

applications; this is one of the more basic versions. When deploying as a container,

Azure assumes that the container contains a web application that exposes ports 80 (http)

or 443 (https). Deploying as code means that we publish our generated binaries onto the

file system and the web server interprets and serves the response, just like in a shared

hosting with any hosting provider. For now, we will stick to deploy as code and we will

get into Docker later on in this chapter.

The runtime stack is where we define the technology that we used for building our

application. As mentioned in the start of this chapter, we have quite a lot of options.

Since this book is about .NET 6, we will select .NET 6 (LTS) as runtime stack. Depending

on the option you select in the runtime stack dropdown, the option for selecting an

operating system might light up. That is because not all runtime stack options support

both Linux and Windows, for example, classic ASP.NET 4.x can only run on Windows

hosts. Ever since .NET Core, .NET became cross-platform so we can run on Linux as well.

There are several differences between running an app service on Linux or Windows;

most of them have to do with pricing. Running a Windows service is more expensive

than running a Linux service. Figure 8-3 shows the difference using the Azure pricing

calculator.

Chapter 8 Microsoft Azure

226

Figure 8-3.  Price difference Linux – Windows

The pricing shown in Figure 8-3 is monthly cost calculated for a basic instance

estimating 730 hours of usage. Looking at the pricing in the calculator, Windows is four

times as expensive as Linux. However, Linux does not have a free tier in web app while

Windows does. So there is more to it than just selecting the cheapest option. Make sure

that you know very well what the different options are.

The next option is the region. Azure has datacenters across the world, but a region

is not just one datacenter. A region is a collection of datacenters that are relatively close

to each other. When you deploy a service to a region, you know that your application

is running in one or more of the datacenters in that region but you do not know which

one. The reason for this is redundancy; should one datacenter loose connection, one

of the others in the same region can take over. There are several assurances of where

data is stored and how data is transferred. These were put in place to comply to privacy

regulations like GDPR in Europe. The list of regions is constantly extending as Azure

is growing. At the time of writing, Azure has 33 regions. Do note that not every region

supports every resource type. Newer resource types are usually available in US regions

first and are gradually rolled out across the entire Azure network.

Chapter 8 Microsoft Azure

227

Final option to set is the App Service Plan. App Service Plans are another grouping

method, but while resource groups go about lifecycle, permissions, and policies, App

Service Plans are about location, features, cost, and resources. A service plan is tied to a

region, so if you want all of your services in the same service plan, they also need to be

in the same region. The SKU is the computing power you want this service to have. More

power comes with a higher cost.

Figure 8-4.  Selecting an SKU

The selection screen groups the available SKUs according to workloads and

immediately shows estimated monthly cost. The selected SKU can be adjusted later on,

for example, when your application usage is on the rise. If you switch to the Dev/Test tab

at the top, you can select the Free tier; this will be sufficient for the demo and will keep

you from spending Azure credits. After selecting the right SKU for your project, we can

advance to step 2 of the wizard: Deployment.

Chapter 8 Microsoft Azure

228

Azure App Services can integrate with GitHub Actions to automatically set up a

CI/CD pipeline. With CI/CD, we can automatically build and deploy our application.

Connect the Azure portal to the GitHub account that has access to the GitHub repository

we mentioned in the beginning of this section. Once connected, you can select the right

organization, repository, and branch.

Figure 8-5.  Automatically configure CI/CD from Azure

Setting this up will generate a YAML file that is added to the code repository for a

GitHub action. That action can automatically build and deploy your application to the

newly created Azure Web App. A preview of the YAML file can be seen here in the Azure

portal before it is added to your repository on GitHub. For more information on setting

up the connection between Azure and GitHub Action, go checkout the documentation

https://docs.microsoft.com/en-us/azure/app-service/deploy-github-

actions?tabs=applevel.

The next step in setting up an Azure App Service instance is Monitoring.

Chapter 8 Microsoft Azure

https://docs.microsoft.com/en-us/azure/app-service/deploy-github-actions?tabs=applevel
https://docs.microsoft.com/en-us/azure/app-service/deploy-github-actions?tabs=applevel

229

Figure 8-6.  Configuring monitoring

Application Insights is another Azure service that provides extensive logging and

monitoring capabilities. Enabling it here will provide error and crash logging; for further

logging, you will need to add the Application Insights SDK to your project.

The final step in the wizard allows for tagging your resources. With these tags,

you can create categories for your services to allow for easier filtering when searching

through your Azure services.

Figure 8-7.  Tagging the resources

Right before the Azure resource is created, you will get a final overview of all the

selected options. If everything looks okay, we can click Create and Azure will work

its magic.

Chapter 8 Microsoft Azure

230

Figure 8-8.  Deployment status

Azure will keep you informed about the deployment status. You are free to leave this

page and come back later; deployment will continue just fine.

For this demo, I have checked in the ASP.NET MVC demo project from the previous

chapter. I have selected the GitHub repository and branch that point to this project. Now

that Azure is creating the resource, it will also deploy our project. After a few minutes, we

get the result shown in Figure 8-9.

Figure 8-9.  Deployment complete

To summarize, the following things just happened. Azure created an App Service

instance to host our .NET 6 web application. Azure also generated a YAML file for a

GitHub Build/Deploy pipeline. GitHub Actions compiled our application and deployed

it to the newly generated Azure App Service. From now on, whenever new changes are

committed to the main branch of the GitHub repository, the GitHub Action will compile

and deploy a new version.

On the portal side of things, we get a dashboard with some analytics, if we kept

Application Insights enabled.

Chapter 8 Microsoft Azure

231

Figure 8-10.  Dashboard on the Azure portal

From here we can stop, start, or restart our application server, look into our

application logs, change the configuration, change service plans, and so on.

We can also download a publish profile that we can import in Visual Studio to deploy

directly from the IDE to the cloud. The publish profile is a configuration file that we

can import in Visual Studio from the Deploy option that we will use in a minute. In the

Deploy wizard, we can either create a new publish profile or import a downloaded one.

To summarize, we have created an Azure App Service instance to host our .NET

6-based web application. We deploy this code directly from GitHub using its built-in CI/

CD pipeline (more about CI/CD in the architecture chapter). Deploying directly from

GitHub is optional; we can deploy directly from Visual Studio using publishing profiles

or connect to Azure using the Visual Studio right-click on a project ➤ publish tooling. In

the publish wizard, we select publish to Azure and an Azure App Service.

Chapter 8 Microsoft Azure

232

Figure 8-11.  Deploying to Azure from Visual Studio

When publishing from within Visual Studio, we can login with our Microsoft

account that has an Azure subscription attached to it. After authenticating, we can

publish directly to an existing resource or create a new one. The publish wizard allows

for filtering on resource type to easily find the existing resource you want to publish to.

Finishing this wizard will generate a publish profile in the form of a pubxml file. This

publishing profile serves the same purpose as the one you can download from the Azure

portal, but it is in a different format. The publishing profile from the portal contains three

nodes for three different publishing methods, zip deploy, web deploy, and FTP upload.

Listings 8-1 and 8-2 compare both publishing profiles. I have removed two of the three

publishing methods from the publishing profile from the portal for brevity.

Chapter 8 Microsoft Azure

233

Listing 8-1.  Publishing profile from Azure portal

<?xml version="1.0" encoding="UTF-8"?>

<publishData>

 <publishProfile

 profileName="ApressDotNetSix - Web Deploy"

 publishMethod="MSDeploy"

 publishUrl="apressdotnetsix.scm.azurewebsites.net:443"

 msdeploySite="ApressDotNetSix"

 userName="$ApressDotNetSix"

 userPWD="***"

 destinationAppUrl="http://apressdotnetsix.azurewebsites.net"

 SQLServerDBConnectionString=""

 mySQLDBConnectionString=""

 hostingProviderForumLink=""

 controlPanelLink="http://windows.azure.com"

 webSystem="WebSites">

 <databases />

 </publishProfile>

</publishData>

Listing 8-2.  Publishing profile from Visual Studio

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/

msbuild/2003">

 <PropertyGroup>

 <WebPublishMethod>MSDeploy</WebPublishMethod>

 <ResourceId>/subscriptions/**/ApressDotNetSix</ResourceId>

 <ResourceGroup>ApressBookDemo</ResourceGroup>

 <PublishProvider>AzureWebSite</PublishProvider>

 <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>

 <LastUsedPlatform>Any CPU</LastUsedPlatform>

 �<SiteUrlToLaunchAfterPublish>http://apressdotnetsix.azurewebsites.net

</SiteUrlToLaunchAfterPublish>

 <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>

 <ExcludeApp_Data>False</ExcludeApp_Data>

 <ProjectGuid>cab9ed7b-f056-4849-98aa-db947b3cd09e</ProjectGuid>

Chapter 8 Microsoft Azure

234

 �<MSDeployServiceURL>apressdotnetsix.scm.azurewebsites.net:443

</MSDeployServiceURL>

 <DeployIisAppPath>ApressDotNetSix</DeployIisAppPath>

 <RemoteSitePhysicalPath />

 <SkipExtraFilesOnServer>True</SkipExtraFilesOnServer>

 <MSDeployPublishMethod>WMSVC</MSDeployPublishMethod>

 <EnableMSDeployBackup>True</EnableMSDeployBackup>

 <EnableMsDeployAppOffline>True</EnableMsDeployAppOffline>

 <UserName>$ApressDotNetSix</UserName>

 <_SavePWD>True</_SavePWD>

 <_DestinationType>AzureWebSite</_DestinationType>

 </PropertyGroup>

</Project>

Very different files that serve the same function. The reason these are different is that

the publishing profile from the Azure portal is catered especially to cloud deployments,

while the version from Visual Studio is more generic and can do deploys to other

endpoints like the Windows filesystem, Docker, or any IIS server, for example.

Azure Web Apps or App Service is a great resource for publishing web-based

applications. But there might be a better option if your application is pure HTML, CSS,

and JavaScript based.

�Static Web Apps
Static apps are becoming more and more the norm on frontend web development.

Frameworks like Angular, Vue, React, and Blazor all generate client-side logic, relying

heavily on RESTful APIs for the heavy lifting and data access. Since everything is

executed client-side, we need a way to get the application on the client. In case of

JavaScript-based frameworks like Angular, React, and Vue, those are all HTML, CSS,

and JavaScript files, something a browser on the client can work with. In case of Blazor,

this will be HTML, CSS, JavaScript, and DLL files, something browsers that support

WebAssembly can work with. For more information on Blazor, see the Blazor chapter in

this book. To get those files onto the client, we need a webserver that serves those files.

This is where static web apps on Azure can help. Static web apps are a cloud service that

serves files. Static apps can distribute the assets globally so that your application is in the

Azure region closest to your customers for minimal delay.

Chapter 8 Microsoft Azure

235

Setting up a static web app is very similar to setting up a default web app. The first

step in the creation of wizard should look familiar with a few specific fields.

Figure 8-12.  Creating a static web app

First static web app-specific field is the hosting plan. Static web apps provide a free

version for personal projects and a standard plan for professional projects.

Chapter 8 Microsoft Azure

236

Second part is the deployment details. Unlike Azure Web Apps, there is no support

for publishing profiles in static apps. Static apps work solely with CI/CD integration,

meaning that we need to link our Azure resource to a source repository. The wizard in

the portal has a very good GitHub integration as you can see in Figure 8-12. There is

support for any source repository, but it will need to be configured from the build server

itself instead of here on the Azure portal. For this demo, I have created a default Blazor

WebAssembly project.

After creating the resource, a new YAML file will be pushed to the source repository

and a GitHub Action will trigger, building and deploying the Blazor application. When

checking GitHub Actions, we should see Figure 8-13.

Figure 8-13.  GitHub Action successfully completed

After successfully compiling and zipping the Blazor output, the zip file is uploaded

to Azure. Once uploaded, the static web app service will unzip everything; while that is

happening, our GitHub Action will poll the service for completion. Static web apps don’t

allow us to choose our own hostname like Azure Web Apps did; instead, it generates

Chapter 8 Microsoft Azure

237

a unique url that we can find on the portal. We did have to enter an application name

when creating the static web app resource, but that is purely an administrative name

used for our purposes. Of course, we can still buy a custom domain and hook that up.

Once everything is finished, we can go to the generated domain name.

Figure 8-14.  Blazor app running on Azure static web apps

We have successfully configured a Blazor app on static web apps. There is nothing

happening server-side besides serving of files, client download everything and executes

everything locally. The Blazor app shown here as a demo is compiled by GitHub

using .NET 6 on an Ubuntu build host. Other supported frameworks include Angular,

Vue, React, or static site generators like Gatsby. For a full up-to-date list of supported

frameworks, see https://docs.microsoft.com/en-us/azure/static-web-apps/front-

end-frameworks.

�Web App for Containers
Web apps support a second hosting model as we have seen in the deployment wizard.

Besides just deploying code, we can deploy our application as a Docker container. The

ins-and-outs of Docker are way beyond the scope of this book, but just to get everyone

on the same page, here is a quick primer of what Docker is.

Chapter 8 Microsoft Azure

https://docs.microsoft.com/en-us/azure/static-web-apps/front-end-frameworks
https://docs.microsoft.com/en-us/azure/static-web-apps/front-end-frameworks

238

�Docker
Docker is a set of tools build upon the containerd runtime to create containerized

applications. Containers are basically an evolution of virtual machines. Virtual machines

emulate full hardware devices where containers are on the operating system level.

A container bundles software, libraries, and configuration for running on a specific

operating system. This means that a container is a fully isolated, self-configured unit of

work that runs on top of the underlying operating system of the Docker host. This means

that containers have less overhead than virtual machines, allowing more containers to

run on one physical device than virtual machines.

Using containerized applications simplifies a lot of things. Moving from one cloud

host to another, let’s say from Amazon AWS to Microsoft Azure, can be very easy since

no configuration changes to the application are needed. Updating an application is as

simple as restarting the container and so on. The majority of the work is in setting up

an application for containerization. To get an application in a Docker container up and

running, we need:

•	 A Docker file describing entry points, ports, and configuration.

•	 Docker image, a containerized application, ready to startup and

being used.

•	 A Docker registry, this is like a package repository (NuGet, NPM,

etc.) but for containers. It contains the container images we want

to deploy.

•	 A Docker runtime.

•	 Docker runner, a system that pulls an image from a Docker registry

and deploys it to a Docker runtime.

The Docker registry is needed as this is where Docker runners pull their images from.

Let’s try to dockerize our MVC demo application.

First thing we need is to install Docker Desktop on our system. The installer can

be downloaded from their website https://hub.docker.com/editions/community/

docker-ce-desktop-windows. The installer will guide you through the process of

installing WSL2 and making sure the right updates are installed, after which Docker and

Docker Desktop will be installed. Docker Desktop is the Windows version of Docker. It

provides a UI to configure Docker and a CLI. Most importantly, it connects the Docker

engine to Visual Studio for debugging.

Chapter 8 Microsoft Azure

https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://hub.docker.com/editions/community/docker-ce-desktop-windows

239

After Docker Desktop is installed, we can open our solution, right-click the project

we want to containerize, and select Add > Docker Support. Note that you can already

generate the file without installing Docker first, but you won’t be able to run your

containerized application.

Figure 8-15.  Adding Docker support to an application

Selecting this will ask if we want a Linux- or Windows-based container. Select

Linux and continue. Visual Studio will generate a Docker file. This file contains all the

instructions needed to build and run our .NET 6-based application in a container.

After adding the Docker file, Visual Studio will show Docker as a new debug

target. If Docker is selected as debug target, Visual Studio will take the Dockerfile into

account and follow its instructions to build the application whenever we launch the

Build command. When we launch the app in debug, a container will spin up in Docker

Desktop and a debugger will attach to that container. The first time you do this you might

see some command line windows pop up. These are the Docker tooling downloading

the correct images for this type of project.

Figure 8-16.  Downloading Docker images for ASP.NET

Chapter 8 Microsoft Azure

240

Visual Studio provides us with a container pane showing us all running containers

and their environment configuration.

Figure 8-17.  Running containers in Visual Studio

To be able to use this container for deployment, we first need to upload it to a

container repository. Docker has a public repository where we can upload containers

called Docker Hub, but Azure also has a service that allows us to create private container

registries. This service is called the Azure Container Registry, or ACR.

An ACR instance can be created through the portal, similar to web apps.

Chapter 8 Microsoft Azure

241

Figure 8-18.  Creating an ACR instance

Creating an ACR instance is quite easy; the most important thing is the name. We

need the <hostname>.azurecr.io domain in our commands to upload our containers to

the correct registry.

The next step would be to use the Docker CLI to buildour container; unfortunately, if

we try to do this with the Dockerfile that was generated by Visual Studio, we get an error.

Chapter 8 Microsoft Azure

242

Figure 8-19.  Error on Docker build

The reason is that this Dockerfile is used by the Visual Studio tooling to enable

debugging and integrations. The Docker tooling internally uses different relative paths,

assuming that the Docker file is on solution level, but Visual Studio places it on project

level. The fastest solution is to copy the Docker file and duplicate it on solution level. In

this way, both the Visual Studio tooling and Docker CLI tooling will work.

Once that is done, we are ready to build our container. Make sure your command

line is in the solution directory, not the project directory.

Listing 8-3.  Docker build command

docker build . -t dotnetsix.azurecr.io/mvcdemo

The Docker build command takes a path, which we define relatively by “. ”; it will look

for a Docker file and build according to the info in that file. The tag, or t, command is

what you want to tag the container image as. A tag is in the form of repositoryname:tag.

Chapter 8 Microsoft Azure

243

Figure 8-20.  Building the container

We now have successfully created our container image; it is fully ready to be

uploaded to our Azure Container Registry. However, since the ACR instance is private,

we need to authenticate to Azure and ACR first. Make sure to have the Azure CLI

installed for authenticating with the cloud platform. The CLI can be found at https://

docs.microsoft.com/en-us/cli/azure/install-azure-cli.

Once the Azure CLI is installed, we can authenticate against Azure with a simple

command.

Listing 8-4.  Authenticating with Azure

az login

This command will open a browser window to authenticate you with the correct

Azure account. Once authenticated, a token will be set that can be accessed by the CLI.

The next step is authenticating against the ACR instance.

Listing 8-5.  Authenticating against ACR

az acr login --name dotnetsix.azurecr.io

If everything is set up correctly, we will get a Login Succeeded message. With this,

authentication is set and we can push our container image to the registry.

Listing 8-6.  Pushing container images to the ACR

docker push dotnetsix.azurecr.io/mvcdemo

Chapter 8 Microsoft Azure

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

244

We are not explicitly setting a tag so our image will automatically be tagged with

:latest.

After upload we can inspect our image on the Azure portal in the ACR instance by

going to Repositories, selecting the repository and the correcting tag.

Figure 8-21.  Container image on ACR

The final step is creating a new Azure Web Apps instance and selecting Docker

instead of code. The second step of the wizard will be the Docker setup.

Figure 8-22.  Setting up an Azure Web App using ACR

The wizard can connect to our ACR instance and read the list of images and tags.

Azure will create a new instance, pull in the image from ACR, and create a container.

Note that browsing to a Docker-based web app might take time; the container needs to

be generated and spun up on first browse.

Chapter 8 Microsoft Azure

245

I have shown you the manual steps involved in building and deploying a

Docker-based application. A next step would be to automate this entire process

in your CI/CD pipeline.

�Azure Functions
The final part in our discovery of Microsoft Azure brings us to serverless computing.

Serverless computing means you have a piece of code running in the cloud without

needing to worry about maintenance of the server, updating the operating system,

scaling, containers, all of those classic overhead units of work are not needed in

serverless systems. Obviously we still use servers to run our code in the cloud, but the

fact that we can just build something and deploy it and it just works is where the term

serverless computing comes from.

Serverless computing on Azure is done through a service called Azure Functions.

Think back to RESTful APIs for a second. Remember how we created controllers with

GET and POST requests? Imagine that you isolate one of those requests, the GET

requests that load the list of books, for example. Now imagine that you can take that one

request and deploy it to the cloud without any ASP.NET overhead, just the bare request,

nothing else. That is what an Azure Function is. There is going to be a small overhead to

define how the function is called as we will see, but it is much smaller than the overhead

of setting up the entire ASP.NET environment.

Azure Functions are called by a trigger. Triggers are like events. These triggers can

originate from different places; there are HTTP triggers that are called by doing an HTTP

request to the function endpoint, very similar to a REST call. There are also numerous

triggers that originate from other Azure resources, like a blob trigger that fires whenever

a blob is added to a Blob Storage Container or a service bus queue trigger that fires

whenever a message is received by a service bus.

Azure Functions can be written in different languages such as JavaScript and C#

and different IDEs such as Visual Studio Code and Visual Studio 2022. Since this book

is about .NET 6, we will focus on writing Functions with C# in Visual Studio 2022. When

we select Azure Functions as a project type in Visual Studio 2022, the wizard lists the

available triggers for us.

Chapter 8 Microsoft Azure

246

Figure 8-23.  Function triggers in Visual Studio

There are two modes for Azure Functions. By default an Azure Function runs

in-process with the Functions runtime, meaning that the class library containing our

Function code is executed on the same runtime as the Functions process is running on.

Chapter 8 Microsoft Azure

247

This means that our code is tightly coupled to the runtime version of Azure Functions

itself. This is fine for now since the Azure Functions runtime is currently running on

.NET 6, but back when .NET 5 was released, this really was a problem. That is when

support for out of process functions was added. That way the function itself can run in

its own process, with its own self-contained runtime. For .NET 6 we can choose between

.NET 6, which is in-process, or .NET 6 (isolated) which is out of process.

Figure 8-24.  In-proc vs. out-proc projects

There are a few differences in template availability between both modes, and there

is a small difference in template as well; the out-of-process version needs a Program.cs

to serve as a starting point for the function. For now we will continue with the in-process

function. To get Azure Functions support in Visual Studio, you will need to add the Azure

workload using the Visual Studio Installer.

For this demo, I have selected a function with HttpTrigger and OpenAPI support.

When running the generated project, we get a result very similar to an ASP.NET WebAPI,

a Swagger UI with an endpoint we can call.

Chapter 8 Microsoft Azure

248

Figure 8-25.  Swagger UI for Azure Functions

This function is running locally using the Azure Functions tools; since we have

an HTTP trigger, it behaves exactly like a REST API. Let’s dive into the function code.

Listing 8-7 shows the code for this function.

Listing 8-7.  A default Azure Function

[FunctionName("Function1")]

[OpenApiOperation(operationId: "Run", tags: new[] { "name" })]

[OpenApiSecurity("function_key", SecuritySchemeType.ApiKey, Name = "code",

In = OpenApiSecurityLocationType.Query)]

[OpenApiParameter(name: "name", In = ParameterLocation.Query, Required =

true, Type = typeof(string), Description = "The **Name** parameter")]

[OpenApiResponseWithBody(statusCode: HttpStatusCode.OK, contentType: "text/

plain", bodyType: typeof(string), Description = "The OK response")]

public async Task<IActionResult> Run(

 �[HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)]

HttpRequest req)

{

 string name = req.Query["name"];

Chapter 8 Microsoft Azure

249

 string requestBody = await new StreamReader(req.Body).ReadToEndAsync();

 dynamic data = JsonConvert.DeserializeObject(requestBody);

 name = name ?? data?.name;

 �string responseMessage = $"Hello, {name}. This HTTP triggered function

executed successfully.";

 return new OkObjectResult(responseMessage);

}

We start with a couple of attributes. The first one gives the function its name. The

name is used in Swagger UI and the Azure Portal. The other attributes are all used to

describe the function according to the OpenAPI spec so that Swagger UI can generate a

great experience; we have looked at Swagger and OAS in detail in the previous chapter.

The HttpTrigger attribute configures the trigger for this function. It registers the function

as an HTTP endpoint with specific verbs, in this case GET and POST, in the Azure

Functions runtime. The HttpRequest comes in through the req parameter; from this

request, we can fetch the request body, deserialize it, and use the request parameters to

build the response. We will go a bit deeper with a more clear example.

For this example, we will port the book service we have created in the ASP.NET

WebAPI chapter over to Azure Functions. In the WebAPI version, we use dependency

injection to inject the IBookService into our controller or minimal API. We need to add

some extra configuration to our Azure Function since an in-process function does not

have a startup class by default. To add a startup object to an Azure Function, we first

need to add the Microsoft.Azure.Functions.Extensions NuGet package to the project.

Once that is added, we can create a startup object to configure Dependency Injection in

our Function.

Listing 8-8.  Custom startup object in an Azure Function

[assembly: FunctionsStartup(typeof(FunctionsDemo.Startup))]

namespace FunctionsDemo;

public class Startup : FunctionsStartup

{

Chapter 8 Microsoft Azure

250

 public override void Configure(IFunctionsHostBuilder builder)

 {

 �builder.Services.AddSingleton<IBookCatalogService,

BookCatalogService>();

 }

}

The class name itself is not important; it is important that the class inherits

from FunctionsStartup and that the namespace is decorated with an assembly-level

FunctionsStartup attribute. We need to override the Configure method from

the FunctionsStartup base class. The IFunctionsHostBuilder object that is

passed in serves the same function as the WebApplicationBuilder from ASP.NET.

We use the builder to register our service as a singleton, and that is all we need to do

here. Listing 8-9 shows the class declaration, constructor, and a field to hold our injected

service for our Azure Function that we will write.

Listing 8-9.  BookFunctions class

public class BookFunctions

{

 private readonly IBookCatalogService _bookCatalogService;

 public BookFunctions(IBookCatalogService bookCatalogService)

 {

 _bookCatalogService = bookCatalogService;

 }

}

In our functions class, we can now inject the IBookCatalogService, just like we did

in previous chapters. Listing 8-10 is the actual Function that we add to the class we just

defined.

Listing 8-10.  Fetching a list of books through an Azure Function

[FunctionName("FetchBooks")]

[OpenApiOperation(operationId: "FetchAll", tags: new[] { "Books" })]

[OpenApiResponseWithBody(statusCode: HttpStatusCode.OK, contentType:

"application/json", bodyType: typeof(Book[]), Description = "A list of books")]

Chapter 8 Microsoft Azure

251

public async Task<IActionResult> Run([HttpTrigger("get", Route = "books")]

HttpRequest req)

{

 Book[] books = await _bookCatalogService.FetchBookCatalog();

 return new OkObjectResult(books);

}

The first function will fetch a list of all books, hence the function name “FetchBooks.”

The OpenApiOperation specifies the name of this operation and what group it belongs to.

This grouping of operations can be clearly seen in Swagger UI. OpenApiResponseWithBody

specifies the response type, HTTP status code, and content type. The method parameter

specifies that we have an HTTP Trigger using a GET verb.

Figure 8-26.  Fetching books in Swagger UI

Chapter 8 Microsoft Azure

252

Listing 8-11.  Fetching a specific book by ID

[FunctionName("FetchBookByID")]

[OpenApiOperation(operationId: "FetchBookByID", tags: new[] { "Books" })]

[OpenApiParameter("id", Description = "The ID of a specific book",

Type = typeof(int))]

[OpenApiResponseWithBody(statusCode: HttpStatusCode.OK, contentType:

"application/json", bodyType: typeof(Book), Description =

"A specific book")]

public async Task<IActionResult> FetchBookById([HttpTrigger("get",

Route = "books/{id:int}")] HttpRequest req, int id)

{

 Book book = await _bookCatalogService.FetchBookById(id);

 return new OkObjectResult(book);

}

The second operation is fetching a book by ID. We specify an OpenApiParameter

via an attribute to light up the input field in Swagger UI. The route specifies {id:int}

as a parameter; this way we can add an extra id parameter to the method. Using that

parameter, we can fetch the correct result from our datastore and pass it back to the

requester.

Figure 8-27.  Parameter filled in through routing

The final operation we are going to implement is a POST request to create a

new book.

Chapter 8 Microsoft Azure

253

Listing 8-12.  HTTP Trigger with POST

[FunctionName("AddBook")]

[OpenApiOperation(operationId: "AddBook", tags: new[] { "Books" })]

[OpenApiRequestBody("application/json", typeof(Book), Required = true)]

[OpenApiResponseWithBody(statusCode: HttpStatusCode.Created, contentType:

"application/json", bodyType: typeof(Book), Description = "A newly

added book")]

public async Task<IActionResult> AddBook([HttpTrigger("post", Route =

"books")] HttpRequest req)

{

 var book = await JsonSerializer.DeserializeAsync<Book>(req.Body);

 await _bookCatalogService.AddBook(book);

 return new CreatedResult($"/books/{book.Id}", book);

}

The major difference with the GET requests is that we specify the trigger to be of type

POST and that we need to fetch the request body from the HttpRequest object. The Body

property is a stream; fortunately, the JsonSerializer in System.Text.Json can accept a

stream and deserialize it to any type.

�Deploying Azure Functions
Finally we need to get these Functions in the cloud. We can do this straight from Visual

Studio 2022 by right-clicking the project and selecting Publish. In the first step of the

wizard, we specify that we want to publish to Azure. In the second step, we can choose if

we want to create an Azure Function running on Windows or Linux or in a container.

Chapter 8 Microsoft Azure

254

Figure 8-28.  Choosing a Function type

For this demo, we will choose a Windows-based Function, but other options work

just as well. In the next step of the wizard, we can click the + sign to start creating a new

Function. The Function Name we choose here needs to be unique across Azure. The

Plan Type has three options, Consumption, Premium, and Dedicated (App Service).

What you choose here has an impact on scaling, resources per instance, and support

for advanced functionality such as virtual network connectivity. More information on

the different plan types is found at https://docs.microsoft.com/en-us/azure/azure-

functions/functions-scale. Azure Functions also require a Storage account because

they rely on storage for managing Triggers and logging.

Chapter 8 Microsoft Azure

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

255

Figure 8-29.  Creating a new Function

After the function is created, we can go to the API Management step. This is an

option to integrate Functions into an API management resource, but that goes beyond

the scope of this book, so we can safely skip this step by selecting the Skip this step

option that will enable the Create button. Once all steps are done, we can hit the Publish

button and Visual Studio will work its magic creating Azure resources and pushing our

Function to it.

Looking at the Azure Portal, we can find our newly created Azure Functions resource,

with the three Functions that we defined in code.

Chapter 8 Microsoft Azure

256

Figure 8-30.  Functions on the portal

Opening the details of a function gives us the option to copy the url. The url is more

than the route we defined in code; it needs to include a code for security reasons.

Figure 8-31.  Function url with function key

Executing a GET request to this URL using Postman gives the result in Figure 8-32.

Chapter 8 Microsoft Azure

257

Figure 8-32.  Calling a Function from Postman

�Wrapping Up
Microsoft Azure is a powerful, globally distributed, versatile platform. The vast majority

of available resources is large enough to fill multiple books on its own, so we have only

scratched the surface here. I do hope that it has triggered you enough to go explore

further and dive into the wonderous world of cloud-native applications and hybrid

applications. With .NET being a first-class citizen in the Microsoft world, and .NET 6

being an important major release, it comes as no surprise that Azure was day 1 ready for

.NET 6. Multiple services have supported it even back when .NET 6 was in preview. All of

this is made complete with great Azure integration in Visual Studio 2022, allowing us to

create resources and publish new code to them without leaving the IDE.

Chapter 8 Microsoft Azure

259
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_9

CHAPTER 9

Application Architecture
Together with .NET 6 came tooling to help developers build better architectures. Projects

like Dapr and example project like eShop On Containers help tremendously with

building well-designed and well-architected platforms.

So where can .NET 6 help in building great architectures? There are a few concepts

in .NET that help simplify some things; but not to worry, .NET is not pushing you into

any direction. We still have full flexibility to architect our applications however we see

fit. What we do have is numerous syntax concepts that help keep our code small and

readable.

�Record Types
The quickest win is Data Transfer Objects, or DTOs. DTOs are a representation of an

entity that will be passed over the wire over a data transfer protocol such as HTTP. DTOs

are important because they prevent leaking nonpublic, internal information about

entities to foreign systems. In most cases, they are a basic class containing auto-

properties that map in a straightforward way onto the entity that they represent.

Listing 9-1 shows an example of an entity.

Listing 9-1.  The entity

public class Event : Entity, IAggregateRoot

{

 private readonly List<Attendee.Attendee> _attendees;

 public string Title { get; private set; }

 public DateTime StartDate { get; private set; }

 public DateTime EndDate { get; private set; }

 public decimal Price { get; private set; }

https://doi.org/10.1007/978-1-4842-7319-7_9#DOI

260

 public int? AddressId { get; private set; }

 public Address Address { get; private set; }

 �public virtual IReadOnlyCollection<Attendee.Attendee> Attendees =>

_attendees;

 �public Event(string title, DateTime startDate, DateTime endDate,

decimal price)

 {

 _attendees = new List<Attendee.Attendee>();

 Title = title;

 StartDate = startDate;

 EndDate = endDate;

 Price = price;

 }

 public void SetAddress(Address address)

 {

 AddressId = address.Id;

 Address = address;

 }

}

This is a very basic example of an entity from an application build using the Domain-

Driven-Design principles. It inherits from Entity, which has an Id property to give us a

uniquely identifiable property, and it is an IAggregateRoot, which means that this object

can be stored and retrieved on its own. Entities who are not an IAggregateRoot are not

meant to exist by themselves; they depend on other objects to be a member of.

Let’s say we need to fetch a list of events to show in our frontend; not using DTOs

would mean that we could possibly fetch hundreds of events with all Attendee and

Address details, while maybe all we want to do is show a list of upcoming events. To

simply, list all events that would be too much data. Instead, we use a DTO to simplify the

object that goes over the wire according to the use case we need.

Listing 9-2 shows an example what a DTO could look like for when we want a list

of events.

Chapter 9 Application Architecture

261

Listing 9-2.  DTO for listing events

public class EventForList

{

 public int Id { get; set; }

 public string Title { get; set; }

 public DateTime StartDate { get; set; }

 public DateTime EndDate { get; set; }

}

Way less data to send over the wire, and just enough. When needing to fetch the

details for an Event, we of course need another DTO containing all the info an event

detail page might need. You may realize that this can become tedious quite fast, writing

DTO after DTO, mapping them to the entity, and so on. A neat compiler trick that came

with .NET 5 can help speed this process up; that trick is called records. Listing 9-3 shows

the DTO from Listing 9-2 again but written as a record.

Listing 9-3.  DTO as a record

public record ActivityForListRecord (int Id, string Title, DateTime

StartDate, DateTime EndDate);

That is one line of code to replace all the auto-properties. A record is a shorthand

for writing a class, but there is more to it. Equality, for example, in a normal class, two

variables of the same reference type are equal when they point to the same reference.

With a record, they are equal when they have the same value. In this case, a class that

only contains properties. Another difference is that a record is immutable. The complete

documentation on records can be found here https://docs.microsoft.com/en-us/

dotnet/csharp/language-reference/builtin-types/record.

The values between the brackets are not parameters; they are properties, hence the

Pascal Casing. As for the output, records are nothing more than a clever compiler trick, a

pinch of syntactic sugar. Listing 9-4 compares the intermediate language definition of the

EventForList class with the EventForList record. I have renamed them EventForListClass

and EventForListRecord for convenience.

Chapter 9 Application Architecture

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/record

262

Listing 9-4.  IL output for a record and a class

.class public auto ansi beforefieldinit ActivityForListRecord

 extends [System.Runtime]System.Object

.class public auto ansi beforefieldinit ActivityForListClass

 extends [System.Runtime]System.Object

As you can see, the outputs are identical, meaning records are known to the C#

compiler but not to the runtime.

New to the C# language since C# 10 is value-type records. Up until now, records

could only be reference types, classes. C# 10 introduces record structs which are value-

type records. Listing 9-5 shows the earlier record example as a value type; notice the

struct keyword.

Listing 9-5.  Value-type records

public record struct ActivityForListRecord (int Id, string Title, DateTime

StartDate, DateTime EndDate);

Let’s have a look at the IL again. Listing 9-6 shows the generated IL code.

Listing 9-6.  IL output for a record struct and a class

.class public sequential ansi sealed beforefieldinit ActivityForListRecord

extends [System.Runtime]System.ValueType

.class public auto ansi beforefieldinit ActivityForListClass

 extends [System.Runtime]System.Object

Struct records follow the same rules as normal structs. Structs are often used because

they are cheaper and memory-wise because they are value-typed. This often results in

better performance. They do have limitations when compared to classes, for example,

structs don’t allow inheritance. A major difference between records and record structs

is that record structs are not immutable by default; they can be if we mark them as

readonly.

Chapter 9 Application Architecture

263

�Monolith Architecture
Monolith applications are applications that contain everything in one or two services.

Usually a frontend and a backend. Before Microservices, which we will talk about next,

monoliths were very common. Figure 9-1 describes what a monolith architecture

looks like.

Figure 9-1.  Monolith architecture

In this example, we have a web client and a mobile client; both speak to the same

API that in turn is connected to a data store. Depending on the size of the application,

this API can potentially be huge. Let’s say there is one part of the API that is seeing

intense usage and is slowing the entire API down. To solve this, we would need to scale

the entire API or move it to a server with more power. Even worse, the entire system can

go down because of a bottleneck in one place.

Another disadvantage of monolith services is maintainability. One big service

containing all business logic is hard to maintain or even to keep an overview of what is

where in the source code.

However, not everything is bad about monolith architecture. Depending on the

size and complexity of your application, this might still be the right choice for you as

microservices create extra layers of complexity besides the advantages they bring.

Chapter 9 Application Architecture

264

�Microservices
Microservice architecture is a variation on service-oriented architecture. Creating a

Microservices-based application means that the backend is split up into different loosely

coupled services. Each service has its own responsibility and has no knowledge of the

other services. Communication between services usually happens over a message bus.

To prevent applications having to implement multiple endpoints, we can implement a

gateway per application or type of application should we need to. That gateway knows

the endpoints of the Microservices the application needs. Figure 9-2 shows a high-level

architecture schema for a Microservices-based application.

Figure 9-2.  Microservices architecture

There is a lot to like about a Microservices-oriented architecture. The split

responsibilities mean that we can scale the parts where scaling is needed instead of

just pumping more memory into the virtual server. We can create gateways per client

so that only the absolute necessary parts of the backend platform are exposed and so

on. It also brings with it added complexity and cost; since each service is basically its

own application, we need a lot of application servers; all of those servers need to be

maintained. Even if we went with a container orchestration system like Kubernetes, we get

extra overhead, and exactly this is the danger of overengineering or over-architecting an

application. Microservices are a great architecture pattern, but they are not the silver bullet

for all applications; depending on your use case, a monolith application might be just fine.

Chapter 9 Application Architecture

265

Microservices work great in a Domain-Driven-Design (DDD) or Clean Architecture

(CA) scenario. The scope of a microservice can, in most cases, map to a bounded

context. Domain-Driven-Design and Clean Architecture are widely popular design

patterns for enterprise applications. They both give the domain model responsibility for

changes and nicely decouple read and write requests. Both are really great patterns to

add to your arsenal as a developer.

A bounded context is a functional block of your application that can be isolated.

For example, the orders of a webshop can contain products, customers, purchases, and

so on. That isolated block of orders functionality can be a bounded context. However,

just like with Microservices, DDD and CA have their place in larger applications. Don’t

overengineer; use the right tool for the job instead of using a sledgehammer to drive a

nail in a wooden board.

If you are interested in learning more about Clean Architecture or Domain-Driven-

Design, I can advise you to take a look at the e-book of eshop on containers or the

Practical Event-Driven Microservices Architecture book available from Apress.

�Container Orchestration
We have talked about containers, specifically Docker-based containers, in the ASP.NET

chapter. Containers and Microservices are a great match, if there is an orchestrator. A

container orchestrator is a tool that manages a set of different container images and how

they relate to each other. Can they communicate? Over what port? Which containers

get exposed outside of the cluster? And so on. The most common orchestrators are

Kubernetes and Docker Compose.

�Kubernetes
Kubernetes, or k8s for short (https://kubernetes.io), is a container orchestrator. It

can automatically deploy and scale your containerized applications. A set of containers

deployed on a Kubernetes instance is called a cluster. To explore the capabilities of

Kubernetes, I can advise you to install Minikube via https://minikube.sigs.k8s.io/.

Minikube is a local Kubernetes cluster installation that you can use for development. It is

available for Windows, Linux, and Mac OS. The installer and install instructions can be

downloaded at https://minikube.sigs.k8s.io/docs/start/.

Chapter 9 Application Architecture

https://kubernetes.io
https://minikube.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/start/

266

Figure 9-3.  Running Minikube on WSL2

Once Minikube is installed, we can use the Kubernetes CLI through the kubectl

command.

Figure 9-4.  Kubernetes CLI

Time for some terminology. Kubernetes is a cluster consisting of Nodes. Nodes are

actual machines, virtual or physical servers, that have Kubernetes installed and are

added to the cluster. Running kubectl gets nodes list the available nodes in the cluster;

a local installation of Minikube is a cluster with one node.

Figure 9-5.  Nodes in a Minikube cluster

One of the nodes is the control plane: the node that controls the cluster.

Communication to and from the control plane happens over the Kubernetes API.

A deployed container on a node is called a Pod. For this example, we will create a

Pod from one of the services in eShop On Containers. eShop On Containers is an open

source reference architecture by Microsoft; it can be found at https://github.com/

dotnet-architecture/eShopOnContainers. The reason we are using this as an example

is because the eShop is a container-ready Microservices architecture. It fits quite right

with the topic we are dealing with at the moment.

Chapter 9 Application Architecture

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

267

Time to create a Pod. Listing 9-7 shows the command to create a deployment on our

local Kubernetes cluster.

Listing 9-7.  Creating a new deployment to Kubernetes

kubectl create deployment apresseshop --image=eshop/catalog.api

The deployment, and the pod, gets created. The image will start pulling in the

background and the container will spin up when ready. To check the status of the nodes,

we can use kubectl get pods.

Figure 9-6.  1 Pod running on local cluster

Of course, this is a very basic example and complete overkill of what Kubernetes

is intended for. As a more elaborate example, I have deployed the entire eShop On

Container example on my local cluster.

Figure 9-7.  Deploying a larger Kubernetes cluster

Chapter 9 Application Architecture

268

I didn’t have to manually create each container that would defeat the purpose of a

container orchestrator. Instead, the project contains yaml files that Kubernetes can use

to deploy and configure a set of services.

Listing 9-8.  An example Kubernetes file

apiVersion: apps/v1

kind: Deployment

metadata:

 name: catalog

 labels:

 app: catalogApi

spec:

 replicas: 1

 selector:

 matchLabels:

 app: catalog

 template:

 metadata:

 labels:

 app: catalog

 spec:

 containers:

 - name: catalog

 imagePullPolicy: IfNotPresent

 image: eshop/catalog.api

Listing 9-8 shows an example of a Kubernetes file that spins up a pod of the

catalog API.

�Docker Compose
Docker Compose is a popular alternative to Kubernetes. It is more designed to work on a

single node, while Kubernetes really shines in big enterprise, multi-server environments.

This also means that the learning curve for Docker Compose is much smaller. Using

Docker Compose is simple: make sure your applications have their own Docker file,

create a docker-compose.yml, and run the up command on the Docker Compose CLI.

Chapter 9 Application Architecture

269

We should already have Docker installed since we have installed Docker Desktop in

the previous chapter. Docker is packaged together with Docker Desktop on Windows.

On Linux it can be installed through Python’s package manager PIP or by downloading

the binary from GitHub. Detailed instructions can be found in the Docker Compose

documentation https://docs.docker.com/compose/install/. Listing 9-9 shows a

simple example of a Docker Compose file using two of the eshop images.

Listing 9-9.  Example of Docker Compose file

version: "3"

services:

 catalogapi:

 container_name: catalogApi

 image: eshop/catalog.api

 restart: unless-stopped

 webmvc:

 container_name: webmvc

 image: eshop/webmvc

 restart: unless-stopped

To run this, we execute docker-compose up in a command line window.

Figure 9-8.  Running two containers in Docker Compose

Chapter 9 Application Architecture

https://docs.docker.com/compose/install/

270

From this point on, the CLI will start printing the debug output from the different

running containers. If you want to run your containers in the background, you can use

the -d flag.

Listing 9-10.  Running Docker Compose in the background

docker-compose up -d

The Docker Compose file can be further expanded by adding volumes for persistent

storage or network capabilities; all the information on how to do that can be found at the

official Docker Compose documentation.

�Dapr
The Distributed Application Runtime (Dapr) provides APIs that simplify microservice

connectivity. The complete documentation for Dapr is found at https://docs.dapr.io/.

It is a Microsoft-owned open-source project that can help simplify the management

of large distributed systems. Consider it a “Microservices toolkit.” Dapr provides

capabilities such as service-to-service communication, state management, publish/

subscribe messaging pattern, observables, secrets, and so on. All these capabilities

are abstracted away by Dapr’s building blocks. Dapr by itself is large enough to fill an

entire book; what I want to do here is give you an idea of what Dapr is about so you can

determine for yourself if you can use it in your project.

�Installing Dapr
First step is installing the Dapr CLI. Dapr provides scripts that download the binaries

and updates path variables. The easiest way is to execute the script in Listing 9-11. Other

ways to install can be found on https://docs.dapr.io/getting-started/install-

dapr-cli/.

Listing 9-11.  Installing Dapr CLI

powershell -Command "iwr -useb https://raw.githubusercontent.com/dapr/cli/

master/install/install.ps1 | iex"

Chapter 9 Application Architecture

https://docs.dapr.io/
https://docs.dapr.io/getting-started/install-dapr-cli/
https://docs.dapr.io/getting-started/install-dapr-cli/

271

Once the CLI is installed, we need to initialize our Dapr environment by calling dapr

init on the command line. Make sure to have Docker installed before Dapr, as Dapr

relies on containers to get its components up and running locally.

Figure 9-9.  Setting up Dapr

Once initialized, we can find some new containers running in our local

Docker setup.

Figure 9-10.  Dapr containers running on Docker

Now we have everything set up, we can get to work. Dapr works according to the

sidecar pattern. Meaning that we don’t have to include all components and code in

our own application; we only need to make Dapr API calls that go to the sidecar that is

attached to our application. That sidecar abstracts all logic away from us.

The sidecar pattern is a design pattern where components of an application
are deployed into separate processes or containers. This provides isolation and
encapsulation.

Chapter 9 Application Architecture

272

�Dapr State Management
Let’s use the Dapr state management component as an example. State management

in Dapr is done by default through Redis Cache. Dapr abstracts the logic of setting up

Redis and calling its APIs away from us. We only need to call Dapr APIs to get state

management up and running.

For this example, I have created a blank Console application using .NET 6.

Listing 9-12.  Calling Dapr state management

using Dapr.Client;

const string storeName = "daprstate";

const string key = "counter";

var daprClient = new DaprClientBuilder().Build();

var counter = await daprClient.GetStateAsync<int>(storeName, key);

while (true)

{

 Console.WriteLine($"Counter state: {counter++}");

 await daprClient.SaveStateAsync(storeName, key, counter);

 await Task.Delay(1000);

}

We need to add the Dapr.Client NuGet package to the project and make sure Dapr is

up and running. Once everything is set up correctly, we can start Dapr and run our .NET

6 application inside the Dapr environment with the Redis sidecar. Listing 9-13 shows the

command that we can use to launch our application.

Listing 9-13.  Launching the application using Dapr CLI

dapr run --app-id DaprCounter dotnet run

Chapter 9 Application Architecture

273

The output will be the counter increasing. If we stop and relaunch the application,

you will notice that the counter did not start from zero again; it saved its state in Redis

across restarts.

Figure 9-11.  The Dapr sidecar model

This was just one very simple example of Dapr. The major advantage is that Dapr

takes a bunch of components and principles and bundles them into one developer

model. We only need to develop against the Dapr API; everything else is handled by the

runtime.

�Wrapping Up
.NET has always been a framework that promotes good, clean architectures, and

it continues that trend with .NET 6. Open-source reference projects like eShop On

Containers help guide developers and application architects in finding the best

architecture for their projects. Frameworks like Dapr can help ease the struggles of

managing all the different building blocks in distributed applications. But as always,

there is no one-size-fits-all. Look at the project you want to build from a higher,

abstracter place, and choose the right architecture for the job. Not everything is suited

for a complex DDD setup; don’t overengineer but keep things simple.

Chapter 9 Application Architecture

275
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_10

CHAPTER 10

.NET Compiler Platform
A part of the strength and flexibility of .NET comes from its compiler platform. Most

people have known it under its project name Roslyn. With the compiler platform,

developers can analyze their code, enforce coding guidelines, and more. Besides Roslyn,

Microsoft has also introduced source generators. Source generators leverage Roslyn to

generate code at compile time and include that generated code into the compilation.

�Roslyn
Developers rely heavily on their tools to help their development. Just look at what Visual

Studio does to help you write better code, or look at the rich ecosystem of Visual Studio

extensions. IDE features like IntelliSense and Find All References need an understanding

of the current code base; this is typically information that a compiler can provide.

Compilers used to be black boxes that took your source code and transformed it into, in

our case, intermediate language. With Roslyn, Microsoft aimed to open up the compiler

platform and provide it with an API set for everyone to use to write code enhancing tools.

With Roslyn, we can write analyzers and code fixes. Analyzers look at your code

and notify you when you write a piece of code that is not according to what the analyzer

knows. .NET even ships with a default set of Analyzers; just open a new .NET 6 project

and use solution explorer to have a look at Dependencies ➤ Analyzers, as shown in

Figure 10-1.

https://doi.org/10.1007/978-1-4842-7319-7_10#DOI

276

Figure 10-1.  Built-in analyzers

As you can see, Roslyn can provide numerous checks for best practices. The different

icons point to the different severity levels of the checks. Some are warnings; others are

errors and will cause builds to fail. Code fixes on the other hand provide proposals to

the developer on how to refactor the code to fix an analyzer warning. A code fix can, for

example, turn a For Each block into a simple LINQ statement by the push of a button.

Figure 10-2 shows an example of this.

Chapter 10 .NET Compiler Platform

277

Figure 10-2.  Using an analyzer to convert a For Each to LINQ

Roslyn ships with an SDK. That SDK provides us with all the tools we need to

hook into the compiler pipeline. From the SDK we get compiler APIs, diagnostic APIs,

scripting APIs, and workspace APIs.

�Compiler API
The Compiler API contains the actual language-specific code compiler; in case of

C#, this would be csc.exe. The API itself contains object models for each phase in the

compiler pipeline. Figure 10-3 shows a diagram of the compiler pipeline.

Figure 10-3.  Compiler pipeline (Source: Microsoft)

Chapter 10 .NET Compiler Platform

278

�Diagnostic API
The diagnostic API is what gives us the “squiggly lines” in our code. It’s an API that

analyzes syntax, assignments, and semantics based on Roslyn analyzers. It generates

warnings or errors. This API can be used by linting tools to, for example, fail a build when

certain team guidelines are not respected in a pull request.

�Scripting API
This is part of the compiler layer and can be used to run code snippets as scripts. This is

used by, for example, the C# Read, Evaluate, Print Loop, or REPL to run snippets of C#

against a running assembly.

�Workspace API
The workspace API provides the entry point for code analysis and refactorings over

entire solutions. It powers IDE functions like Find All References and Formatting.

�Syntax Tree
The syntax tree is a data structure exposed by the compiler API. It’s a representation of

the syntax structure of your code. The syntax tree enables tools to process and analyze

the structure of your code. Using the syntax tree add-ins and IDE software can detect

patterns in your code and change it when deemed necessary. A syntax tree has three

characteristics:

•	 It contains the full information of the code that was typed by the

developers, including comments, compiler pre-directives, and

whitespaces.

•	 The exact original code can be reconstructed from a syntax tree.

A syntax tree is an immutable construct that was parsed from the

original source code. In order to provide the full power of analytics

and code refactoring, the syntax tree needs to be able to reproduce

the exact code it was parsed from.

Chapter 10 .NET Compiler Platform

279

•	 Syntax trees are thread-safe and immutable. A syntax tree is a state

snapshot of the code. In-framework factory methods make sure that

requested changes are pushed back to the code and a new syntax tree

is generated based on the latest state of the source code. Syntax trees

have a lot of optimalizations in place so that new instances of a tree

can be generated very fast with little memory use.

�Roslyn SDK
As mentioned before, Roslyn is extendable. To be able to develop your own Roslyn

analyzers, you need to install the Roslyn SDK. The SDK is part of the Visual Studio

installer; it’s available as an optional item as seen in Figure 10-4.

Figure 10-4.  Installing the .NET Compiler Platform SDK

With the SDK comes the Syntax Visualizer. The Syntax Visualizer is an extra window

in Visual Studio, under View ➤ Other Windows ➤ Syntax Visualizer, that lays out the

syntax tree of the current open code file in Visual Studio. Its position synchronizes with

your cursor in the source file. Figure 10-5 shows the visualizer docked to the side in

Visual Studio 2022.

Chapter 10 .NET Compiler Platform

280

Figure 10-5.  Syntax Visualizer

Chapter 10 .NET Compiler Platform

281

Figure 10-6.  Roslyn project templates

The Syntax Visualizer is a great visual aid when working with the syntax tree.

After installing the .NET Compiler Platform SDK, you will have access to new project

templates in Visual Studio.

With these templates, you can build your own analyzers, code fixes, or code

refactorings, both as a stand-alone console application and as a Visual Studio extension

in the VSIX format. These templates are available for both C# and Visual Basic.

Chapter 10 .NET Compiler Platform

282

�Creating an Analyzer
Let’s create a stand-alone code analysis. Notice that the code analysis tools need to be

written in .NET Framework; don’t worry about that; they do support analyzing .NET 6

code. The default template queries the available version of MSBuild on your system and

lists them to select which version you want to analyze code against. Figure 10-7 shows

the default output when we run the unchanged template; this list might be different for

you depending on what is installed on your system.

Figure 10-7.  Listing the available MSBuild instances

The logic of detecting MSBuild instances is abstracted away by the Roslyn SDK; all

we need to do is call MSBuildLocator.QueryVisualStudioInstances().ToArray() to

get a list of versions installed. Let’s empty the Main method and start implementing a

code analyzer ourselves.

When analyzing code, we will need a SyntaxTree object. A SyntaxTree holds a

parsed representation of a code document. In our example, we will inspect a piece

of code and print the using statements in the console. Once we have our syntax tree

parsed, we can extract a CompilationUnitSyntax object. This object represents our code

document, divided into members, using directives and attributes.

Listing 10-1 shows how to get the syntax tree and compilation unit from a piece

of code.

Chapter 10 .NET Compiler Platform

283

Listing 10-1.  Generating the syntax tree and compilation unit

static Task Main(string[] args)

{

 �const string code = @"using System; using System.Linq; Console.

WriteLine(""Hello World"");";

 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);

 CompilationUnitSyntax root = tree.GetCompilationUnitRoot();

We are using a very simple code example to get the point across. We parse the code

into a SyntaTree and extract the CompilationUnitRoot from there.

Next we will need a CSharpSyntaxWalker object. A syntax walker is an

implementation of the Visitor design pattern. The Visitor pattern describes a way to

decouple an object structure from an algorithm; more information on the pattern is

found at https://en.wikipedia.org/wiki/Visitor_pattern.

The CSharpSyntaxWalker class is an abstract class so we will need to create our own

class that inherits from CSharpSyntaxWalker. For this example, we add a class called

UsingDirectivesWalker. Listing 10-2 shows the code for this class.

Listing 10-2.  Custom using directive syntax walker

class UsingDirectivesWalker : CSharpSyntaxWalker

{

 public override void VisitUsingDirective(UsingDirectiveSyntax node)

 {

 Console.WriteLine($"Found using {node.Name}.");

 }

}

In this example, we are overriding the VisitUsingDirective method from the

CSharpSyntaxWalker base class. The base class comes with many override methods

that each visits a specific type of syntax nodes. The VisitUsingDirective method

visits all using directives in our syntax tree. The complete list of methods that can be

overwritten is found at https://docs.microsoft.com/en-us/dotnet/api/microsoft.

codeanalysis.csharp.csharpsyntaxwalker.

For each using node we visit, we print its name. All there is left now is to use this

custom syntax walker. Listing 10-3 shows the complete Main method.

Chapter 10 .NET Compiler Platform

https://en.wikipedia.org/wiki/Visitor_pattern
https://docs.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker
https://docs.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.csharpsyntaxwalker

284

Listing 10-3.  Using the UsingDirectivesWalker

static Task Main(string[] args)

{

 �const string code = @"using System; using System.Linq; Console.

WriteLine(""Hello World"");";

 SyntaxTree tree = CSharpSyntaxTree.ParseText(code);

 CompilationUnitSyntax root = tree.GetCompilationUnitRoot();

 var collector = new UsingDirectivesWalker();

 collector.Visit(root);

 Console.Read();

 return Task.CompletedTask;

}

We instantiate our new syntax walker class and call its Visit method, passing in the

CompilationUnitSyntax. This triggers the methods in the CSharpSyntaxWalker base

class, from which one is overwritten in our own syntax walker class. This results in the

output visible in Figure 10-8.

Figure 10-8.  Analyzer output

This has been a very simple example of how to extract a specific piece of code from

a code snippet. This should help you get started with Roslyn. If you want to read more

and dive deeper into Roslyn, the complete Roslyn documentation is a great resource:

https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/.

Chapter 10 .NET Compiler Platform

https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/

285

�Source Generators
A recent addition to the Compiler Platform is source generators. Source generators

run during the compilation of your code. They can generate extra code files based on

analysis of your code and include them in the compilation.

Source generators are written in C#; they can retrieve an object that is a representation

of the code you have written. That object can be analyzed and used to generate extra

source files based on the syntax and semantic models that are in the compilation object.

Figure 10-9 shows where in the compilation pipeline the source generators live.

Figure 10-9.  Compiler pipeline (image by Microsoft)

Source generators can be used to prevent the use of reflection. Instead of generating

runtime classes, it might be possible to generate extra classes at compile time, of course

depending on your use case. Being able to generate extra classes at compile time instead

of runtime almost always means a performance increase. It is important to know, and

remember, that source generators can only generate and inject extra code; they cannot

change the code that was written by the developer.

�Writing a Source Generator
Let us look at an example. For the example, we are going to write a source generator that

takes any class that is decorated with a certain attribute and generate a record-type DTO

from that class; DTOs are explained in more detail in the previous chapter. We will keep

it quite simple for this demo generator, so do not worry about violating any DTO best

practices in the generated code.

Chapter 10 .NET Compiler Platform

286

Source generators work with .NET 6 projects, but they need to be defined in a .NET

Standard 2.0 library at the time of writing. After creating a .NET Standard 2.0 class

library, we add a class that implements ISourceGenerator. To get the ISourceGenerator,

we first need to install the Microsoft.CodeAnalysis NuGet package. Listing 10-4 shows

the interface with its members.

Listing 10-4.  ISourceGenerator interface

public interface ISourceGenerator

{

 void Initialize(GeneratorInitializationContext context);

 void Execute(GeneratorExecutionContext context);

}

ISourceGenerator consists of two methods. The Initialize method sets up the

generator, while the Execute method does the actual generating of code.

For testing our generator, we will create a .NET 6 console application. After creating

the project, we start by defining a very simple attribute. Listing 10-5 shows the attribute

declaration.

Listing 10-5.  Defining the attribute to filter on

internal class GenerateDtoAttribute : Attribute

{

}

We only need this attribute to do filtering at the time of generating, so no extra

implementation is needed on the attribute class. Finally we add some classes and

decorate them with the GenerateDto attribute, as shown in Listing 10-6.

Listing 10-6.  Example of a decorated class

[GenerateDto]

public class Product

{

 public string Name { get; set; }

 public string Description { get; set; }

 public double Price{ get; set; }

}

Chapter 10 .NET Compiler Platform

287

Next we turn to the .NET Standard 2.0 project to implement our source generator.

First thing we need to do is identify what classes are decorated with the GenerateDto

attribute. To do this, we need to traverse the syntax tree and inspect the class nodes;

this is done by an object called a Syntax Receiver. Syntax Receivers are objects that visit

nodes and allow us to inspect them and save them to a collection that can be used for

generating code. The Syntax Receivers are configured in GeneratorExecutonContext’s

SyntaxReceiver property. The GeneratorExecutonContext is an object that gets passed

into the Initialization of a source generator, which we will get to in a moment. Every

time the source generator runs, it creates exactly one instance of its Syntax Receiver,

meaning that every inspected node is done by the same receiver instance. Listing 10-7

demonstrates a Syntax Receiver that filters out class nodes that are decorated with our

GenerateDto attribute.

Listing 10-7.  SyntaxReceiver

internal class SyntaxReceiver : ISyntaxReceiver

{

 �public List<ClassDeclarationSyntax> DtoTypes { get; } =

new List<ClassDeclarationSyntax>();

 public void OnVisitSyntaxNode(SyntaxNode syntaxNode)

 {

 �if (!(syntaxNode is ClassDeclarationSyntax classDeclaration) ||

!classDeclaration.AttributeLists.Any())

 {

 return;

 }

 �bool requiresGeneration = classDeclaration.AttributeLists.

Count > 0 &&

 classDeclaration.AttributeLists

 �.SelectMany(_ => _.Attributes.Where(a => (a.Name as

IdentifierNameSyntax).Identifier.Text == "GenerateDto"))

 .Any();

Chapter 10 .NET Compiler Platform

288

 if (requiresGeneration)

 {

 DtoTypes.Add(classDeclaration);

 }

 }

}

A Syntax Receiver is a class that implements the ISyntaxReceiver interface.

The interface contains one member, an OnVisitSyntaxNode method. This

method will be executed for every node in the syntax tree build by the Compiler

Platform SDK. In this implementation, we inspect every node to see if it is of type

ClassDeclarationSyntax. There are declaration syntax types for every type of node

we can expect, including ClassDeclarationSyntax, InterfaceDeclarationSyntax,

PropertyDeclarationSyntax, and so on. Once we have a ClassDeclarationSyntax that

contains attributes, we use LINQ to check if the class contains our custom attribute.

Once we have the IdentifierNameSyntax, we can verify if it has the name of the

attribute we are filtering on, in this case GenerateDto. At this point, we have successfully

detected a class that was decorated with the GenerateDto attribute, but we are not

generating code yet; we are just traversing the syntax tree; that is why we save the found

class nodes in an immutable property. The syntax receiver is single instance for every

generator run anyway, so we can safely use properties to bring data from the receiver to

the generator.

Let’s have a look at implementing the actual generator. We’ll start with the Initialize

method that is part of the ISourceGenerator contract.

Listing 10-8.  Initializing a source generator

[Generator]

public class MySourceGenerator : ISourceGenerator

{

 public void Initialize(GeneratorInitializationContext context)

 {

 context.RegisterForSyntaxNotifications(() => new SyntaxReceiver());

 }

Chapter 10 .NET Compiler Platform

289

In a source generator, a GeneratorInitializationContext object is passed into

the Initialize method and a GeneratorExecutionContext is passed into the Execute

method; this allows the Initialize method to, well, initialize the source generator. In

this example, we use it to register our SyntaxReceiver into the generator pipeline. From

this point on, whenever the generator runs, it will pass every syntax node through the

receiver. The Execute method runs as part of the compilation pipeline whenever a

source generator is installed into a project.

Listing 10-9.  Checking for the receiver

public void Execute(GeneratorExecutionContext context)

{

 if (!(context.SyntaxReceiver is SyntaxReceiver receiver))

 {

 return;

 }

Our Execute method only works when the context contains the correct receiver. A

quick typecheck makes sure everything is in order.

Listing 10-10.  Grabbing properties and using statements

foreach (ClassDeclarationSyntax classDeclaration in receiver. DtoTypes)

{

 �var properties = classDeclaration.DescendantNodes().OfType<Property

DeclarationSyntax>();

 �var usings = classDeclaration.DescendantNodes().OfType<UsingDirective

Syntax>();

Next we loop over the list of class declarations we have captured in the receiver.

By the time we get to this point in the code, the receiver will have done its work and

the list will be filled with class declarations of classes that are decorated with the

GenerateDto attribute. From every class declaration, we grab the properties, by looking

for nodes of type PropertyDeclarationSyntax and the using directives by looking for

UsingDirectiveSyntax. We need these because if we are going to generate records for

every class, we need to know the properties so we can copy them and the using directives

so that all the types can be resolved in their namespaces.

Chapter 10 .NET Compiler Platform

290

Listing 10-11.  Generating the using directives

var sourceBuilder = new StringBuilder();

foreach (UsingDirectiveSyntax usingDirective in usings)

{

 sourceBuilder.AppendLine(usingDirective.FullSpan.ToString());

}

In Listing 10-11, we finally start generating code. We are using a StringBuilder

to write out the entire code file before inserting it into the code base. First things to

generate are the using directives. We already have a collection containing them, so we

simply loop over the directives and call the AppendLine method to write it out. We use

the FullSpan property on the UsingDirectiveSyntax; that property contains the entire

instruction the node was parsed from, for example, using System.Linq.

Listing 10-12.  Generating namespace and class declarations

var className = classDeclaration.Identifier.ValueText;

var namespaceName = (classDeclaration.Parent as

NamespaceDeclarationSyntax).Name.ToString();

sourceBuilder.AppendLine($"namespace {namespaceName}.Dto");

sourceBuilder.AppendLine("{");

sourceBuilder.Append($"public record {className} (");

The next things we need are namespace and record declarations. We can get those

from the class declaration we are currently processing. The class name can be found

in the Identifier property of the ClassDeclarationSyntax object. In this example, we are

assuming that there are no nested classes, so the parent object of a class should always

be a namespace object. By casting the parent object as a NamespaceDeclarationSyntax

object, we can get to the Name property. Using the StringBuilder from Listing 10-11

and some string interpolation, we add the needed code. Be careful with the brackets,

try to envision what the generated code will look like, and make sure that all necessary

brackets are there and properly closed when needed. We are building code as a simple

string, so no intellisense here.

Chapter 10 .NET Compiler Platform

291

Listing 10-13.  Generating parameters and injecting the code

foreach (PropertyDeclarationSyntax property in properties)

{

 string propertyType = property.Type.ToString();

 string propertyName = property.Identifier.ValueText;

 sourceBuilder.Append($"{propertyType} {propertyName}, ");

}

//remove the final ', '

sourceBuilder.Remove(sourceBuilder.Length - 2, 2);

sourceBuilder.Append(");");

sourceBuilder.AppendLine("}");

context.AddSource(classDeclaration.Identifier.ValueText, SourceText.

From(sourceBuilder.ToString(), Encoding.UTF8));

Finally we use the list of properties we have from the class declaration to generate the

record parameters. We can grab the datatype from the property’s Type property and the

name from the Identifier property. We use the StringBuilder’s Append method to make

sure that all parameters are appended on one line instead of adding a line break between

each one. The parameters are separated with a comma, and the final comma is removed.

Finally we close the brackets and our code is finished. We can use the AddSource

method on the GeneratorExecutionContext object to inject the source into the codebase

right before the code gets compiled. Our generated code is now part of the user code and

will be treated as such by the compiler.

The final step in the process is linking the source generator to the project where we

want to use it. Source generators are added as analyzers into the csproj file.

Listing 10-14.  Adding a source generator to a project

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net6.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 </PropertyGroup>

Chapter 10 .NET Compiler Platform

292

 <ItemGroup>

 �<ProjectReference Include="..\SourceGeneratorLibrary\

SourceGeneratorLibrary.csproj" OutputItemType="Analyzer"

ReferenceOutputAssembly="false" />

 </ItemGroup>

</Project>

The ItemGroup node in Listing 10-14 shows how to add a source generator. From

this moment on, the source generator will run every time the project gets build. We

can see if it works by loading the generated assembly in a decompiler like ILSpy. Upon

inspection, we immediately see the Dto namespace appearing.

When we inspect the namespace, we’ll see generated records for every class that was

decorated with the GenerateDto attribute.

Since we have these objects available now, we can also instantiate them from code.

Listing 10-15.  Using the generated DTO objects

var product = new Product("Introducing .NET 6", "Book by Apress about .NET

6", 50.0);

Figure 10-11.  Generated record

Figure 10-10.  Dto namespace in ILSpy

Chapter 10 .NET Compiler Platform

293

Note that you might need to restart Visual Studio before Intellisense recognizes the

generated objects.

�Debugging Source Generators
As you might have guessed, debugging source generators is not as simple as setting a

breakpoint and hitting the run button, but it is not much harder either. Instead of placing

breakpoints, we can use the Debugger class from the System.Diagnostics namespace

to programmatically pause the generator’s execution. Listing 10-16 shows the statement

right at the start of code generation.

Listing 10-16.  Debugging a source generator

public void Execute(GeneratorExecutionContext context)

{

 Debugger.Launch();

If we trigger the source generator again, by rebuilding the program that uses the

generator, the message in Figure 10-12 will pop up.

Chapter 10 .NET Compiler Platform

294

Figure 10-12.  Selecting a debugger

Select New instance of Visual Studio 2022. VS2022 will start up, load in the source file

for the generator, and pause right at the Debugger.Launch statement, just like if it was

a breakpoint. From this point on, we are in debug mode; we can inspect variables, step

over or into statements, and so on. The Debugger.Launch call can be placed anywhere in

the generator, even in a syntax receiver.

Chapter 10 .NET Compiler Platform

295

�Wrapping Up
.NET’s compiler platform is a powerful platform that does so much more than just

compiling code. It is a complete inspection and linting tool. The platform ships with

an SDK that allows us to write our own inspections and fixes; this helps when working

in teams to guard team agreements on code style but also for detecting bugs and anti-

patterns.

Since .NET 5 the platform also has source generators. With source generators, we can

generate code at compile time that gets injected into the compiler pipelines as if it was

user-written code. Source generators can be a great help and can often replace places

where previously we would have used reflection, for example, to generate DTO types like

we have seen.

Chapter 10 .NET Compiler Platform

297
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7_11

CHAPTER 11

Advanced .NET 6
A lot of the things in .NET that we use on a daily bases are often taken for granted. We

reserve memory to store data, and we just assume that that memory gets released at

some point. We ask the framework for a thread and we get one, but where does that

thread come from? And how does async work again? Let’s go into some more detail and

explore how these concepts actually work.

�Garbage Collector
One of the greater advantages of writing managed code is the access to a garbage

collector, or GC. A garbage collector manages memory usage for you; it allocates

memory when requested and releases memory automatically when no longer in use.

This helps greatly in preventing out of memory issues; it does not eliminate the risk

completely; we as developers need to be smart about memory allocation as well, but it is

a great help.

Before we dive into the garbage collector, let’s refresh our memory about memory.

Memory consists of two pieces, a stack and a heap. A misconception that has been

going around is that one is for value types and the other is for reference types; that is not

entirely correct. Reference types do always go on the heap, but value types go where they

are declared. Let me clarify.

Every time we call a method, a frame is created; that frame is placed on the stack.

A stack is a tower of frames and we only have access to the top most one; once that frame

is finished, it gets removed from the stack and we can continue with the next one. When

an error occurs in one of the methods, we often get a StackTrace in Visual Studio; this is

an overview of what was on the stack the moment the error occurred. Variables declared

in a method usually go on the stack. Let’s use Listing 11-1 as an example to illustrate

what happens.

https://doi.org/10.1007/978-1-4842-7319-7_11#DOI

298

Listing 11-1.  A simple method with local variables

public int Sum(int number1, int number2)

{

 int result = number1 + number2;

 return result;

}

When calling the method, the Stack will look like Figure 11-1.

Figure 11-1.  Stack when calling Sum method

Let’s expand our example.

Listing 11-2.  Calling a method on a class instance

Math math = new Math();

int result = math.Sum(5, 6);

public class Math

{

 public int Sum(int number1, int number2)

 {

Chapter 11 Advanced .NET 6

299

 int result = number1 + number2;

 return result;

 }

}

This time we are instantiating a class and calling a method on that class. That results

in the memory in Figure 11-2.

Figure 11-2.  Stack and heap

The class instance lives on the heap with the stack containing a pointer to the

instance. The call to the class member Sum() results in a second frame on the stack

where the variables live as well.

�The Heap
There are two object heaps in .NET. The large object heap and the small object heap. The

small object heap contains objects that are smaller than 85K in size; all the others go on

the large object heap. The reason for this split is performance. Smaller objects are faster

to inspect so the garbage collector works faster on the small object heap. Objects on the

heap contain an address that can be used to point to this object from the stack, hence the

name Pointers. What determines the size of an object is beyond the scope of this book,

so we won’t go into detail here.

Chapter 11 Advanced .NET 6

300

�The Stack
The stack is used to track data from every method call. For every method a frame is

created and placed on top of the stack. A frame can be visualized as a box or container,

containing all objects, or pointers to those objects, the method creates or encapsulates.

After a method returns, its frame is removed from the stack.

�Garbage Collection
Back to the garbage collector. The garbage collector is a piece of software included in

the .NET runtime that will inspect the heap for allocated objects that are no longer

referenced by anyone. If it finds any, it will remove them from the heap to free up

memory. This is just one place where the garbage collector works; other places are, for

example, global references or CPU registers. These are called GC Roots.

The garbage collection consists of several passes. First the GC will list all GC Roots.

It will then traverse all reference trees of the roots, marking the objects that still have

references. A second pass will update the references to objects that will be compacted.

The third pass reclaims memory from dead objects. During this phase, live objects are

moved closer together to minimize fragmentation of the heap. This compacting usually

only happens on the small object heap because the large object on the large object heap

takes too much time to move. However, compacting can be triggered on the large object

heap manually when needed.

The garbage collector runs automatically in a .NET application. There are three

possible scenarios in which garbage collection is triggered:

•	 Low memory. Whenever the physical memory is low, the operating

system can trigger an event. The .NET runtime hooks into this event

to trigger garbage collection to help restore memory.

•	 Threshold on the heap is passed. Every managed heap, there is a

managed heap per .NET process, has an acceptable threshold. This

threshold is dynamic and can change while the process is running.

Once the threshold is crossed, garbage collection is triggered.

•	 GC.Collect() is triggered. System.GC is a static wrapper around the

garbage collector. Its Collect method triggers garbage collection.

We can call this manually for testing purposes or in very specific

scenarios, but usually we do not need to worry about this

Chapter 11 Advanced .NET 6

301

�A Look at the Threadpool
The threadpool in .NET is a pool of background threads that we can schedule work

on. Depending on the system your application is running on, the runtime will create

a set of background workers. Should we request more threadpool threads than the

amount available, it will create extra background threads and keep those alive for

future use. Since the threadpool threads are background threads, they cannot keep the

process alive. Once all foreground threads have exited, the application will close and all

background threads will terminate.

The threadpool has been favored over creating threads manually ever since .NET 4.

The main reason is performance; threadpool threads already exist; they just need to be

given a unit of work, while manual threads still need to be created and that creation is an

expensive operation. An easy example of using the threadpool can be created by using

the Task Parallel Library, or TPL.

Listing 11-3.  Using the Task Parallel Library

var strings = new List<string>();

for (int i = 0; i < 1000; i++)

{

 strings.Add($"Item {i}");

}

Parallel.ForEach(strings, _ =>

{

 Console.WriteLine(_);

 Thread.Sleep(1000);

});

We have a list of 1000 strings. Using the TPL, we can loop over this in a parallel way

with Parallel.ForEach. For each item in the list, work will be scheduled on a threadpool

thread. The Thread pane in Visual Studio can visualize this.

Chapter 11 Advanced .NET 6

302

Running a foreach loop in parallel also means that the order of the outcome can be

unpredictable.

A different way to loop over a collection in a parallel manner is using the

AsParallel extension method. AsParallel is a method in the LINQ library. It returns

a ParallelQuery object. By itself it does not do any parallelization; we need to execute

a LINQ query on the ParallelQuery object it returns. Listing 11-4 shows how to use

this method.

Figure 11-3.  Visualizing threadpool threads

Figure 11-4.  Parallel ForEach output

Chapter 11 Advanced .NET 6

303

Listing 11-4.  Using the AsParallel method

var strings = new List<string>();

for (int i = 0; i < 1000; i++)

{

 strings.Add($"Item {i}");

}

foreach (string item in strings.AsParallel().Select(_ => _))

{

 Console.WriteLine(item);

 Thread.Sleep(1000);

}

There is no major difference in using Parallel.ForEach versus AsParallel. The way

to use it differs, but the results are similar.

The static ThreadPool class in .NET can tell us how many threadpool workers we can

have simultaneously. Listing 11-5 shows how; Figure 11-5 shows the result on my Intel i7

device with 32GB of RAM.

Listing 11-5.  Listing ThreadPool information

ThreadPool.GetMaxThreads(out int workerthreads, out int completionports);

Console.WriteLine($"Max number of threads in the threadpool:

{workerthreads}");

Console.WriteLine($"Max number of completion ports in the threadpool:

{completionports }");

Figure 11-5.  Max number of workers in the threadpool

The threadpool consists of two types of threads: worker threads and completion

ports. Completion ports are used for handling asynchronous I/O requests. Using

completion ports for I/O requests can be much more performant than creating your own

Chapter 11 Advanced .NET 6

304

threads for I/O work. There are not that many cases where we want to use completion

ports. The usage of these types of threads usually happens in the .NET libraries

themselves; the parts that handle I/O interrupt and request.

Most of the time, it is better to use worker threads from the threadpool, but there are

a few scenarios where it might be useful to create your own threads.

•	 Change priority of a thread.

•	 Create a foreground thread.

•	 Work that takes a long time.

Threadpool threads cannot be made into foreground threads, so if that is what you

need, for example, to keep the process open when the main thread exits, then you need

to create your own thread. Same with thread prioritization that also requires a new

thread. Long running tasks can be scheduled on threadpool threads, but the number of

threads there is limited before the system starts creating new ones, which is something

we want to avoid if possible because of performance reasons. So if we schedule a lot of

long running tasks, we might run out of threadpool threads; for that, we might switch to

creating our own threads. As always this is very dependent on your situation, so handle

with care.

�Async in .NET 6
Async/Await has been around for a while now in .NET, and most .NET developers should

be familiar with how to use it. .NET 6 comes with a few new additions to the await/async

pattern, but let’s explore the basics before we dive into the new stuff.

�Await/Async

Listing 11-6.  Async operation

public async Task<string> FetchData()

{

 var client = new HttpClient();

 �HttpResponseMessage response = await client.GetAsync("https://www.

apress.com").ConfigureAwait(false);

Chapter 11 Advanced .NET 6

305

 �string html = await response.Content.ReadAsStringAsync().

ConfigureAwait(false);

 return html;

}

As an example, Listing 11-6 shows a simple method that uses HttpClient to fetch a

web endpoint. We notice a couple of different things; first we have marked the method as

async; we can only use the await keyword in a method, lambda or anonymous method

that is modified with the async keyword. Await/async does not work in synchronous

functions, in unsafe contexts, or in lock statement blocks. The return type of the method

is Task<string>. Task is one of the go-to return types of asynchronous methods. Task

comes from the Task Parallel Library in .NET and symbolizes a unit of work and its

status; whenever we await a Task we wait for its status to become complete before

continuing executing the rest of the method. When we await GetAsync, for example, the

method execution stops there, scheduling the rest of the method as a continuation. Once

the HTTP call completes, the result is passed into the continuation and the rest of the

method executes. If we decompile this using a decompiler like ILSpy, we can clearly see

how the framework is introducing statemachines into our code to keep track of the state

of Tasks.

Listing 11-7.  State machines

.class nested private auto ansi sealed beforefieldinit '<FetchData>d__0'

 extends [System.Runtime]System.Object

 �implements [System.Runtime]System.Runtime.CompilerServices.

IAsyncStateMachine

{

.override method instance void [System.Runtime]System.Runtime.

CompilerServices.IAsyncStateMachine::SetStateMachine(class [System.

Runtime]System.Runtime.CompilerServices.IAsyncStateMachine)

Listing 11-8 shows more intermediate language; this is the part where the HTTP calls

and the reading of the data happens.

Chapter 11 Advanced .NET 6

306

Listing 11-8.  Async calls in IL

// num = (<>1__state = 0);

IL_004d: ldarg.0

IL_004e: ldc.i4.0

IL_004f: dup

IL_0050: stloc.0

IL_0051: stfld int32 Foo/'<FetchData>d__0'::'<>1__state'

// <>u__1 = awaiter2;

IL_0056: ldarg.0

IL_0057: ldloc.2

IL_0058: stfld valuetype [System.Runtime]System.Runtime.CompilerServices.

ConfiguredTaskAwaitable`1/ConfiguredTaskAwaiter<class [System.Net.

Http]System.Net.Http.HttpResponseMessage> Foo/'<FetchData>d__0'::'<>u__1'

// <FetchData>d__0 stateMachine = this;

IL_005d: ldarg.0

IL_005e: stloc.s 4

// <>t__builder.AwaitUnsafeOnCompleted(ref awaiter2, ref stateMachine);

IL_0060: ldarg.0

IL_0061: ldflda valuetype [System.Runtime]System.Runtime.CompilerServices.

AsyncTaskMethodBuilder`1<string> Foo/'<FetchData>d__0'::'<>t__builder'

IL_0066: ldloca.s 2

IL_0068: ldloca.s 4

IL_006a: call instance void valuetype [System.Runtime]System.Runtime.

CompilerServices.AsyncTaskMethodBuilder`1<string>::AwaitUnsafeOnCo

mpleted<valuetype [System.Runtime]System.Runtime.CompilerServices.

ConfiguredTaskAwaitable`1/ConfiguredTaskAwaiter<class [System.

Net.Http]System.Net.Http.HttpResponseMessage>, class

Foo/'<FetchData>d__0'>(!!0&, !!1&)

// return;

IL_006f: nop

IL_0070: leave IL_01a3

As you can tell, a lot of code is generated when using await/async. That is why I want

to advise you to use this carefully; async is not always better or faster than synchronous

development.

Chapter 11 Advanced .NET 6

307

The Task object generated when awaiting an action captures the context it was called

from. When you await an async method, and don’t specify ConfigureAwait(false), the

method will do its work on the thread pool and switch back to the caller’s context when

finished. This is exactly the behavior that you want when you request a webresult and

immediately put the data into a property that is bound against, since binding happens

on the UI thread. But this is not what we want when we’re executing code in a library or

in a service class, so that’s where we’ll use ConfigureAwait(false).

In ASP.NET, ever since .NET Core 3.1, we do not need to call ConfigureAwait(false)

because there is no SynchronizationContext to return to. Blazor on the other hand does

have a SynchronizationContext.

Listing 11-9 shows an example of where to use ConfigureAwait(false) and where not

to. The example is done in a WinForms application.

Listing 11-9.  Usage of ConfigureAwait(false)

private async Task FetchData()

{

 var service = new ResourcesService();

 var result = await service.FetchAllResources();

 //textblock is bound against Json

 JsonTextbox.Text = result

}

Figure 11-6.  Captured context in a Task

Chapter 11 Advanced .NET 6

308

public class ResourcesService

{

 public async Task<string> FetchAllResources()

 {

 var client = RestClient.GetClientInstance();

 �var result = await client.GetAsync(“/api/data”).

ConfigureAwait(false);

 �string json = await result.Content.ReadAsStringAsync().

ConfigureAwait(false);

 return json;

 }

}

The FetchAllResources method has two calls that are awaited and uses

ConfigureAwait(false) because we do not need to switch back to the caller context. By

not returning to caller context in that method, we prevent two context switches to occur.

The FetchData method doesn’t use ConfigureAwait(false) because it needs to return

to the caller context. The caller context here is the UI thread. The property that the

returned value is being set to will trigger a change notification, so we need to be on the

UI thread.

�Cancellations
In Async operations, we often make use of CancellationTokens to cancel long running

tasks. These tokens are used quite a lot across the base class library as well. However,

cancelling tasks does not happen that often so it would be interesting to be able to reuse

CancellationTokenSource, the object that generates CancellationTokens. Up until

now, we couldn’t do this safely because we couldn’t be certain that some tasks were

still referencing this token. In .NET 6, CancellationTokenSource was extended with a

TryReset method. Listing 11-10 shows the use of the TryReset method.

Chapter 11 Advanced .NET 6

309

Listing 11-10.  Try to reset a cancellation token

CancellationTokenSource _cancellationTokenSource = new

CancellationTokenSource();

private void CancelButton_OnClick(object sender, EventArgs args)

{

 _cancellationTokenSource.Cancel();

}

public async Task DoWork()

{

 if (!_cancellationTokenSource.TryReset())

 {

 _cancellationTokenSource = new CancellationTokenSource();

 }

 Task<string> data = FetchData(_cancellationTokenSource.Token);

}

public async Task<string> FetchData(CancellationToken token)

{

 token.ThrowIfCancellationRequested();

 var client = new HttpClient();

 �HttpResponseMessage response = await client.GetAsync("https://www.

apress.com", token).ConfigureAwait(false);

 �string html = await response.Content.ReadAsStringAsync(token).

ConfigureAwait(false);

 return html;

}Once a token was actually cancelled it cannot be recycled and the

TryReset method will return false.

The example shown here comes from a WinForms application where we can load

data and cancel it using a cancel button. When calling the DoWork method, we try to

reset the CancellationTokenSource; if we don’t succeed, we instantiate a new one.

Chapter 11 Advanced .NET 6

310

The CancellationTokenSource's CancellationToken is passed to the LoadData

method. LoadData checks if the token is not cancelled and uses it for loading and

deserializing the data. As long as the token was not cancelled, we can keep resetting the

CancellationTokenSource for reuse.

�WaitAsync
In .NET 6, Microsoft is giving us more control over when to cancel or timeout

asynchronous operations by adding WaitAsync methods to Task. With WaitAsync, we

can specify a cancellation token or a timeout to a task.

Listing 11-11.  WaitAsync with a cancellation token

CancellationToken token = _cancellationTokenSource.Token;

var client = new HttpClient();

Task<HttpResponseMessage> response =

client.GetAsync("https://www.apress.com", token)

 .WaitAsync(token);

await response;

Listing 11-12 shows the three different options.

Listing 11-12.  All WaitAsync overloads

Task<HttpResponseMessage> taskWithToken = client

 .GetAsync("https://www.apress.com", token)

 .WaitAsync(token);

Task<HttpResponseMessage> taskWithTimeout = client

 .GetAsync("https://www.apress.com", token)

 .WaitAsync(new TimeSpan(0, 0, 10));

Task<HttpResponseMessage> taskWithBoth = client

 .GetAsync("https://www.apress.com", token)

 .WaitAsync(new TimeSpan(0, 0, 10), token);

Chapter 11 Advanced .NET 6

311

Do not mistake WaitAsync with Wait. Wait is an actual blocking operation; it will

block the thread until the Tasks completes and should only be used in very specific cases.

WaitAsync is a way to add cancellation or timeout configuration to an asynchronous task

that will run non-blocking.

�Conclusion
.NET is an easy-to-use framework. It abstracts a lot of difficult concepts away from us

as developers. While it does abstract these concepts away, we still have the possibility

to dive deeper and actually use the more advanced concepts. We can get full control of

the garbage collector and even implement our own garbage collectors should we really

want to.

.NET 6 comes with big improvements on performance, on I/O-based operations,

but also in general. Await/async is extended to give more fine-grained control to us

developers; CancellationTokenSource is extended to allow more reuse of tokens. The

examples in this chapter are just a few examples. There are some very good resources out

there that dive deep into .NET.

•	 Async/Await - Best Practices in Asynchronous Programming -

https://docs.microsoft.com/en-us/archive/msdn-magazine/

2013/march/async-await-best-practices-in-asynchronous-

programming

•	 Pro .NET Memory Management - https://link.springer.com/

book/10.1007/978-1-4842-4027-4

•	 Task Parallel Library (TPL) - https://docs.microsoft.com/

en-us/dotnet/standard/parallel-programming/task-parallel-

library-tpl

Chapter 11 Advanced .NET 6

https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/march/async-await-best-practices-in-asynchronous-programming
https://link.springer.com/book/10.1007/978-1-4842-4027-4
https://link.springer.com/book/10.1007/978-1-4842-4027-4
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl

313
© Nico Vermeir 2022
N. Vermeir, Introducing .NET 6, https://doi.org/10.1007/978-1-4842-7319-7

Index

A
Active Server Pages (ASP), 177
AppendLine method, 290
Application architecture

microservices application, 264, 265
monolith application, 263
record types, 259–262

Application.EnableVisualStyles
method, 80

Application Programming Interface
(API), 200

AsParallel extension method, 302
AsParallel method, 303
ASP.NET Core

source code, 177
templates, 178, 179

Await/async pattern, 304–306, 311
Azure Container Registry (ACR), 240
Azure functions

attributes, 249
BookFunctions class, 250
book service, 249
code, 248, 249
deployment

API Management step, 255
create function, 254, 255
function type, 254
Plan Type, 254
portal, 255, 256
Postman, 256, 257
publishing, 253
url, 256

FetchBooks, 251
by ID, 252
Swagger UI, 251

FunctionsStartup, 250
GET request, 253
IBookCatalogService, 250, 251
In-proc vs. out-proc projects, 247
languages, 245
modes, 246, 247
parameter, 252
POST request, 252, 253
startup object, 249, 250
Storage account, 254
Swagger UI, 247, 248
template, 247
triggers, 245, 246

Azure integrations, 221
Azure portal, 221
Azure SDK ships, 221
Azure trials, 221

B
Blazor, 15, 234

definition, 125
desktop, 148–152
server

definition, 144
SignalR, 144–148

WebAssembly
client project, 129–132
client/server architecture, 127
component system, 134, 135

https://doi.org/10.1007/978-1-4842-7319-7#DOI

314

creating Wasm project, 126, 127
definition, 125
.NET 6, 132, 133
pages, 136–139
progressive web

application, 127–129
Razor component lifecycle, 140
running app, 140–143

Blazor Wasm, 126
Blazor WebAssembly, 4
BooksViewModel, 171

C
CancellationTokens, 308
Clean Architecture (CA), 265
Cloud providers, 221
Command line interface (CLI) tools, 8

commands, 31, 32, 63, 64
Dotnet build, 46–51
dotnet new command, 33–35, 37, 38
Dotnet publish, 52–56
dotnet restore command, 38–43
Dotnet run, 56, 57
Dotnet test, 58, 59
GitHub actions, 60–63
.NET CLI commands, 33
nuget.config file, 43–45
toolset, 31

Compiler platform
anti-patterns, 295
creating analyzer, 282–284
source generators

compiler pipeline, 285
debugging, 293, 294
definition, 285
writing, 285–292

Containerized applications, 238
Container orchestrator

Dapr, 270
definition, 265
docker compose, 268, 270
k8s, 265–268

Containers, 238
CoreCLR, 23
CoreFX, 23
CreateMauiApp method, 160

D
Dapr.Client NuGet package, 272
DataGridView’s DataSource

property, 89
Design patterns, 177
Desktop development

mobile apps, 65
WinAPI, 66–68
WPF application, 65

Distributed Application Runtime (Dapr)
definition, 270
installation, 270, 271
State management, 272, 273

Docker Compose, 268
Docker container

ACR, 240, 241, 243
authentication, 243
building, 243
CLI, 243
debug target, 239
definition, 238
Docker build command, 242
Docker Desktop, 238
Dockerfile, 242
Docker registry, 238
Docker Support, 239

Blazor (cont.)

Index

315

error, 241, 242
images, 239
images, ACR, 244
Linux, 239
pushing images, 243
repository, 240
requirements, 238
running containers, 240
Visual Studio, 239
wizard, 244

Domain-Driven-Design (DDD), 265
dotnet new command, 33
DotnetSixWinForms, 10
DoWork method, 309

E
Execute method, 286
eXtended Application Markup Language

(XAML), 91

F
FetchAllResources method, 308
foreach loop, 302
Frameworks, 234
FullSpan property, 290

G
Garbage collector (GC), 297, 300
GenerateDto attribute, 287, 289

H
Heap, 299
HTTP Strict Transport Security

(HSTS), 184

I, J
IncrementCount method, 131
Initialize method, 286
Inversion of Control (IoC), 182

K
Kubernetes (k8s), 265

L
Long Term Support release (LTS), 2

M
Microservice architecture, 264
Microsoft Azure, 221
Microsoft’s cross-platform strategy, 21
Microsoft’s Xamarin framework, 153
Model-View-Controller (MVC)

AddControllersWithViews method, 182
app.UseHttpsRedirection, 185
ASP.NET

templates, 178, 179
Visual Studio, 179

authentication type, 179
building blocks, 178
controllers

adding view, 192
attributes, 196
BookCatalogService, 190
Book class, 190
BookController, 191
create Book, 196
create form, 198
creation, 190
data annotations, 199, 200
datastore, 196

Index

316

definition, 189
elements, 198
generated view, 194, 195
Html.ActionLink, 195
Html.DisplayFor tag, 195
Index method, 191
inspecting request, 196, 197
methods, 196, 197
model declaration/ASP tags, 193
.NET-based logic, 189
parsed data, 197
Razor template, 192, 195
Razor view, 194
route defaults, 191
routing system, 189
scaffolding, 192
singleton, 190
table creation, 194, 195
token, 197
validation rules, 199, 200
validations, 197–199
View method, 192
view type, 192

core strength, 177
design pattern, 177, 178
development, 184
Docker container, 180
HSTS, 184
HTML pages, 178
HTTPS, 180
IServiceCollection, 182
launchsettings.json file, 184
MapControllerRoute, 185
middleware components, 184
.NET 6, 179
pipeline, 182, 183, 185
pipeline configuration, 183

profile configuration, 184
Program.cs, 181
project structure, 180, 181
project wizard, 180
routing

default, 185
mapping, 185
parameter, 186
parts, 186
URL, 185

UseAuthorization, 185
UseRouting, 185
UseStaticFiles, 185
views, 186, 187

CSS file, 187
extensions, 187
h2 elements, 188
home component, 189
HTML response, 189
Index.cshtml file, 188
_Layout.cshtml file, 187
Razor, 187, 188
@RenderBody method, 187, 188
scaffolding, 193
Shared folder, 187
title, rendering, 189
ViewData, 189

WebApplication instance, 182
WebApplicationBuilder, 181

Model-View-ViewModel (MVVM), 164
Mono, 23
Multi-Application User Interface (MAUI)

application lifecycle, 161–163
ASP.net, 156
cross platform world, 159, 160
definition, 153
iOS application, 157–159
MVVM, 164–170

Model-View-Controller (MVC) (cont.)

Index

317

MVVM toolkit, 170–176
project structure, 154, 156
Xamarin forms, 153, 157

N
nameof() method, 169
.NET 6

architecture, 21, 22
Blazor, 15–17, 20
CLI, 8, 9, 11
definition, 1
desktop development, 12, 14, 15
desktop packs, 25–29
framework, 1
libraries, 1
managed execution process, 24, 25
MAUI, 17–19
Migration, 119–121
operating systems, 6–8
platform, 4, 5
platform-native APIs, 29
roadmap, 5, 6
supported versions, 3
types, 2
upgrade assistant, 122
version support, 2, 3

Ngen, 25
NuGet packages, 12
NuGet references, 120

O, P, Q
OnParametersSet, 139
OpenAPI Initiative (OAI), 204

R
Roslyn

built-in analyzers, 276
compiler API, 277
compilers, 275
diagnostic API, 278
IDE features, 275
LINQ, 277
scripts, 278
SDK, 279–281
syntax tree, 278
workspace API, 278

Run method, 82
Runtime identifier (RID), 49
Runtimes

CoreCLR or Mono, 23
CoreFX, 23
languages, 22
WinRT, 24

S
Serverless computing, 245
ServerPrerendered, 147
SetCompatibleTextRenderingDefault

method, 82
SignalR, 144
Single-threaded apartment (STA), 71
Stack, 298–300
StackPanel, 101
StackTrace, 297
StartupUri property, 95
Statemachines, 305
STAThread attribute, 71

Index

318

Static apps
application name, 237
Blazor app, 237
creation, 235
deployment details, 236
domain name, 237
frameworks, 237
GitHub Actions, 236
hosting plan, 235
hostname, 236
zip file, 236

SynchronizationContext, 307
SyntaxReceiver property, 287
Syntax tree, 278

T, U
TargetFramework, 10
Threadpool, 301–304

V
Virtual machines, 238
Visual Studio, 221

W
WaitAsync methods, 310
WebAPI

API controller, 202, 203
checkbox, 202
controller-based APIs

adding book, 211, 212
attribute, 203
BookController, 205, 206
book detail, 210
client implementations, 209
framework, 203

FromBody attribute, 212
HTTP form data, 214
HTTP request, 214
HTTP status codes, 206
HTTP verbs, 213
JSON, 204, 205, 207–209
lines of code, 215
methods, 206, 210, 212
OAI, 204
OAS, 204
openAPI information, 207
parameters, 211
POST request, 212, 213
Program.cs, 203, 204
REST controller, 203
specification, 204
Swagger, 204
testing, 209

creation, 202
definition, 200
guidelines, 200
minimal APIs

book details, 217
bootstrapping, 215
vs. controller-based APIs, 216
endpoints, 216, 218
extension methods, 218
framework, 217
GET request, 216
helper methods, 216
lines of code, 215
NodeJS, 215
parameters, 217
posting data, 217
Program.cs, 216

MVC principle, 200
project type, 201

Index

319

Web Apps
applications, 222
App Service

Application Insights, 229
application logs, 231
App Service Plan, 227
Azure portal, 230, 231
Azure pricing calculator, 225, 226
CI/CD, 228
configuration, 225
deployment, 225, 230–232
GitHub Actions, 228, 230
monitoring, 228, 229
publish profile, 231–234
publish wizard, 232
region, 226
Resource Group, 225
runtime stack, 225
selection screen

groups, 227
SKU, 227
subscription, 224
tagging, 229
third-party services, 223
Visual Studio, 232
YAML file, 228

ASP.NET Core 6, 222
Azure portal, 223
containers (see Docker container)
creation, 224
setting, 244

WinAPI, 66
Windows App SDK

building, 110–113

definition, 109
features, 110
packaging, 115–118
Windows API, 113–115

Windows Forms (WinForms), 4
Windows Presentation Foundation

(WPF), 4
AssemblyInfo, 92
data binding, 106–109
definition, 91
layout, 95–103
startup, 93, 94
visual tree, 103–106
XAML, 91

Windows Runtime (WinRT), 24
WinForms

API set, 69
application, 309
default Program class, 70
definition, 69
designer, 70
form designer, 83–86, 88–91
message loop, 82
STA, 71, 72
startup

configuration, 72
DPI mode, 72, 73, 75, 76
scale events, 76–79
text rendering, 81
visual styles, 79–81

X, Y, Z
Xamarin, 5

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: A Tour of .NET 6
	.NET 6
	Version Support
	Supported Versions
	A Unified Platform
	Roadmap
	Supported Operating Systems
	Command Line Interface
	Desktop Development
	Blazor
	MAUI
	Wrapping Up

	Chapter 2: Runtimes and Desktop Packs
	.NET 6 Architecture
	Runtimes
	CoreCLR
	Mono
	WinRT

	Managed Execution Process
	Desktop Packs
	Wrapping Up

	Chapter 3: Command Line Interface
	Dotnet New
	Dotnet Restore
	NuGet.config

	Dotnet Build
	Dotnet Publish
	Dotnet Run
	Dotnet Test
	Using the CLI in GitHub Actions
	Other Commands
	Wrapping Up

	Chapter 4: Desktop Development
	WinAPI
	WinForms
	STAThread
	WinForms Startup
	DPI Mode
	Responding to Scale Events
	Visual Styles
	Text Rendering

	The Message Loop
	The Form Designer
	Responding to Events

	WPF
	WPF Startup
	XAML Layout
	Visual Tree
	Data Binding

	Windows App SDK
	Building a Windows App SDK application
	Using Windows APIs with Windows App SDK
	Packaging

	Migrating to .NET 6
	Upgrade Assistant

	Wrapping Up

	Chapter 5: Blazor
	Blazor WebAssembly
	Creating a Blazor Wasm Project
	Blazor Progressive Web Apps
	Exploring the Blazor Client Project
	Blazor in .NET 6
	Blazor Component System
	Creating Blazor Pages
	Running a Blazor App

	Blazor Server
	SignalR

	Blazor Desktop
	Wrapping Up

	Chapter 6: MAUI
	Project Structure
	Exploring MAUI
	The Cross-Platform World

	Application Lifecycle
	MVVM
	MVVM Toolkit
	Wrapping Up

	Chapter 7: ASP.NET Core
	Model-View-Controller
	Routing
	Views
	Controllers

	Web API
	Controller-Based APIs
	Minimal APIs

	Wrapping Up

	Chapter 8: Microsoft Azure
	Web Apps
	Creating an App Service

	Static Web Apps
	Web App for Containers
	Docker

	Azure Functions
	Deploying Azure Functions

	Wrapping Up

	Chapter 9: Application Architecture
	Record Types
	Monolith Architecture
	Microservices
	Container Orchestration
	Kubernetes
	Docker Compose

	Dapr
	Installing Dapr
	Dapr State Management

	Wrapping Up

	Chapter 10: .NET Compiler Platform
	Roslyn
	Compiler API
	Diagnostic API
	Scripting API
	Workspace API
	Syntax Tree
	Roslyn SDK

	Creating an Analyzer
	Source Generators
	Writing a Source Generator
	Debugging Source Generators

	Wrapping Up

	Chapter 11: Advanced .NET 6
	Garbage Collector
	The Heap
	The Stack
	Garbage Collection

	A Look at the Threadpool
	Async in .NET 6
	Await/Async
	Cancellations
	WaitAsync

	Conclusion

	Index

