
Mastering
Azure API
Management

A Practical Approach to Designing and
Implementing an API-Centric
Enterprise Architecture
—
Sven Malvik

Mastering Azure
API Management

A Practical Approach to Designing
and Implementing an API-Centric

Enterprise Architecture

Sven Malvik

Mastering Azure API Management: A Practical Approach to Designing and
Implementing an API-Centric Enterprise Architecture

ISBN-13 (pbk): 978-1-4842-8010-2 ISBN-13 (electronic): 978-1-4842-8011-9
https://doi.org/10.1007/978-1-4842-8011-9

Copyright © 2022 by Sven Malvik

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Printed on acid-free paper

Sven Malvik
Fjerdingby, Norway

https://doi.org/10.1007/978-1-4842-8011-9

Hi boys, Even and Emil.

v

Table of Contents

Part I: Getting Started ��� 1

Chapter 1: Quick Start �� 3

Create an Azure Account ��� 3

Provision Azure API Management ��� 4

Add API �� 7

Test API ��� 9

API Management Portal ��� 9

Command Line ��� 11

Summary��� 11

Chapter 2: Overview ��� 13

Unlocking Digital Assets with APIs �� 13

Payments ��� 14

Manufacturing ��� 14

Automotive �� 15

Understanding the Basics of web APIs ��� 16

SOAP �� 16

REST �� 18

HTTP Clients for Testing RESTful web APIs �� 21

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Foreword ��xix

Introduction ��xxi

vi

Enterprise API Platform in Essence ��� 22

Consistent Documentation �� 23

Comprehensible Capabilities ��� 23

Common Design Guidelines ��� 24

API User Onboarding �� 24

User Management ��� 24

Health Monitoring �� 25

Governance and Compliance ��� 25

Versioning and Revisioning ��� 25

Scalability and Resiliency �� 26

Security ��� 26

DevOps �� 26

Performance �� 27

Stability ��� 27

Introducing Azure API Management �� 27

Azure Portal ��� 29

Developer Portal �� 31

API Gateway��� 32

Summary��� 33

Part II: Key Concepts �� 35

Chapter 3: APIs and Products ��� 37

APIs ��� 38

Create Blank API with Azure CLI �� 39

Manage APIs with Azure PowerShell ��� 44

Create API from Azure Resources �� 46

Products �� 49

Create APIs �� 50

Create Products ��� 52

Add APIs to Products ��� 53

Summary��� 54

Table of ConTenTs

vii

Chapter 4: Users and Groups �� 55

Groups ��� 56

System Groups �� 57

Create a Group ��� 57

Associate Groups to Products �� 58

Users ��� 59

Create a User ��� 60

Deactivate and Reactivate a User �� 61

Add a User to a Group �� 61

Summary��� 62

Chapter 5: Versions and Revisions ��� 63

Versions �� 64

Version Scheme ��� 65

Add a New Version��� 66

Revisions ��� 67

Add a New Revision ��� 68

Make Revision Current �� 69

Summary��� 69

Chapter 6: Subscriptions �� 71

Creating a Subscription ��� 73

Revealing Subscription Keys ��� 74

Calling API with Subscription Key ��� 75

Summary��� 76

Chapter 7: Policies and Named Values ��� 77

Policies �� 78

Simple Policy ��� 79

Scoping �� 82

Calculating Effective Policy ��� 85

Expressions ��� 86

Table of ConTenTs

viii

Named Values ��� 90

Plaintext ��� 90

Secrets �� 93

Secrets from Azure Key Vault �� 94

Examples��� 99

Validations ��� 99

Canary Backend APIs ��� 103

Summary��� 105

Chapter 8: Developer Portal �� 107

Overview ��� 107

Customization ��� 113

Styling ��� 114

Notifications and Templates �� 115

Self-hosting �� 117

Running the Developer Portal Locally �� 117

Summary��� 120

Part III: Workflow �� 121

Chapter 9: API Development in Context �� 123

Centralized API Repository �� 124

Internal Repository �� 124

External Repository ��� 125

Application Repositories ��� 127

Product Deployment with Azure Pipeline �� 129

Summary��� 132

Table of ConTenTs

ix

Chapter 10: Developing Policies ��� 133

Azure Portal��� 133

Visual Studio Code Extension �� 136

Installation ��� 136

Developing a Policy ��� 139

Testing an API �� 141

Debugging a Policy �� 143

Summary��� 146

Chapter 11: Deploying APIs �� 147

ARM Templates ��� 147

Bicep ��� 154

REST �� 156

Terraform �� 160

Summary��� 162

Chapter 12: Power Apps ��� 165

Creating a Connection ��� 166

Creating a Power App�� 169

Summary��� 172

Part IV: Enterprise Integration �� 173

Chapter 13: Networking �� 175

Internal Virtual Network (VNET) ��� 176

External VNET �� 179

No VNET �� 180

Backend Integration with AKS ��� 182

Summary��� 186

Table of ConTenTs

x

Chapter 14: Self-hosted API Gateway ��� 187

Creating a Self-hosted API Gateway ��� 189

Deploying a Self-hosted API Gateway ��� 191

Configuration ��� 191

Deployment ��� 194

Updating the Self-hosted API Gateway ��� 195

Summary��� 195

Part V: Maintenance ��� 197

Chapter 15: Security ��� 199

Authentication ��� 199

HTTP Basic Authentication to Backend Web Services ��� 199

Authentication with OAuth 2�0 ��� 202

Other Security Aspects �� 214

Subscriptions ��� 215

Protecting Against Path Traversal Attacks ��� 216

Summary��� 218

Chapter 16: Logging and Monitoring �� 219

Logging via Event Hub �� 220

Deploy an Azure Event Hub�� 221

Set Event Hub Logger to Azure API Management �� 222

Add Event Hub Logger to Policy ��� 223

Observing Logs with VS Code �� 224

Logging to Azure Log Analytics ��� 226

Azure Application Insights ��� 228

Summary��� 231

Table of ConTenTs

xi

Chapter 17: Administration �� 233

High Availability ��� 233

Scaling in Regions ��� 234

Preparing for a Disaster with Backup and Restore ��� 236

Configuring External Caching �� 239

Adding Custom Domains ��� 242

Monetizing Your APIs with User Reports ��� 246

Azure Automation �� 249

Creating an Azure Automation Account ��� 250

Connecting to Azure API Management �� 253

Azure Logic Apps��� 255

Summary��� 260

 Index ��� 261

Table of ConTenTs

xiii

About the Author

Sven Malvik is an experienced Azure expert. He specializes

in compliancy and digital transformation, most recently

in the financial industry. He has decades of experience in

software development, DevOps, and cloud engineering.

Sven is a Microsoft MVP in Azure and a speaker, presenting

sessions and tutorials at a number of global conferences,

user group meetings, and international companies.

xv

About the Technical Reviewer

Martin Ehrnst is a speaker and technical writer within

Azure and surrounding Microsoft- related technologies.

With 15 years of experience in the IT industry, he has

gained significant competency from working with countless

customers and technical implementations around the globe.

He believes sharing knowledge is key to success internally

and for the broader community. A recognized Microsoft

MVP in Azure since 2019, he holds several technology

certifications.

xvii

Acknowledgments

Thank you so much Nina, my awesome wife and friend for over 26 years. When I first

asked you whether I should sign the contract for this book, you said “You should sign,”

and I signed. You never doubted that I would write this book. When I hadn’t written for

some days, you carefully reminded me without putting any pressure on me, so I never

felt any pressure. Many evenings when I was behind my desk writing this book being

selfish in a way, you took care of our boys, made dinner, and walked our dog. I love you!

I want to also thank Vipps AS, my employer, for being so supportive of this endeavor

and especially my manager Kristian Skønberg Løvik. You started all this when you

first asked me if I would like to speak at Microsoft Build and talk about our journey

with Azure API Management. You made this book happen in the first place and always

supported me on the way.

Finally, I thank all who I have been working together with. You helped me to get

where I am today: Helge Tesdal, Evgeny Borzenin, Per Reidar Bøhler, Maxim Salnikov,

and Miao Jiang.

xix

Foreword

Over the course of my technical career, and as a full-stack developer, I have dedicated

many years to building web applications. I learned that when we developers manage

multiple parts of a solution, the need for a well-architected, precisely implemented,

tested, and documented API is crucial. It is the "glue" for the application components or

even for the multiple heterogeneous applications. I recognized that the closer you get

to the launch date, you have to have solutions for API security, performance, scalability,

reliability, and monitoring. Multiply it by the number of APIs in the project, add support

for the cloud and on-premise target environments, onboard new developer teams

(sometimes external, with limited access) - and the need for a solid API management

solution becomes crystal clear. I learned to understand and respect API layer complexity

far beyond the requirement for having a well-architected “communication” protocol.

I met Sven Malvik, the author of this book, for the first time a few years ago at a

developer community meetup I hosted at the Microsoft office in Norway. We got talking

and I was shocked when he mentioned how many APIs he and his team support and add

on monthly basis to Vipps (Norway’s largest mobile payment provider, and an ecosystem

where Sven leads Cloud Platform). Knowing that Vipps runs on Azure, I immediately

thought, this level of knowledge and expertise with Azure API Management service

should be shared with the developer community! And now my hopes have been realized.

Sven is a natural-born technical communicator, trainer, and community organizer who

is extremely passionate about sharing his Azure cloud experience with the developers.

He was a guest (presenting on Azure API Management) on my video show “Cloud Stories

from Norway,” and with great pleasure, I nominated and guided Sven on his way to

becoming a Microsoft MVP.

Fast-forward to today. After our countless joint events and collaborations focused

on the technical audience, Sven kindly invited me to write the foreword to his book,

Mastering Azure API Management. It is a culmination of his aspirations to share proven

knowledge and expertise with the goal of teaching developers how to efficiently build

great solutions.

xx

From the very first chapter, you dive deep into the technical demos, examples, and

expert how-to guidance. And it's reassuring to know that everything you learn from this

book is based on Sven's experience with building the enormous scale ecosystem reliably

serving millions of the users in Nordics every day. All of his findings, recommendations,

and insights about Azure API Management are 100% real world!

Skills in Azure API Management service provide a strong foundation for cloud

developers. It allows them to build projects faster and better, use fewer resources on

management after the proper initial setup, and be ready for future innovations in cloud

technologies. I recommend you read this book and keep it on your desk. You will revisit

particular chapters during the building of your API management strategy for your

current and future projects.

Enjoy reading and learning from Sven!

Maxim Salnikov

Azure Developer Engagement Lead at Microsoft

Technical Communities Organizer

Keynote Speaker

December 2021

foreword

xxi

Introduction

Have you ever tried to program in two languages at the same time? When I started

working with Azure API Management, I learned about the concept of policies,

which happens to be XML files with C# code statements. Many API developers

and administrators struggle with policies because of that but also because of its

enormous power.

Many engineers that I helped to understand Azure API Management in

conversations and during workshops experience this Azure service as a smarter reverse

proxy compared to other services such as Azure Application Gateway and Azure Front

Door. However, they find it somehow hard to grasp the details of it such as how products

and subscriptions fit into APIs or when, where, and how to develop policies. Others look

for ways to integrate Azure API Management into an existing architecture, be it hybrid

or cloud native, and want to ensure secure end-to-end communication between API

consumers and API backend web services.

This book will help you to understand why Azure API Management is more than

a reverse proxy but a service for managing an API-centric enterprise architecture. You

will learn about its core concepts and how you can work with them in a productive way

such as publishing APIs, creating API versions, and developing policies. You will also

dive into setting up a developer portal for your users, the API consumers, that they can

use to learn about your APIs and subscribe to them so they can call an API while the

API backend web service is protected in a secure way. If you are an administrator or

architect, this book will teach you different networking modes so you can integrate Azure

API Management into your hybrid or cloud native architecture. You will then learn how

to log and monitor the traffic that is going through Azure API Management besides other

typical administration tasks such as automatic backups and caching.

I have worked with Azure API Management since 2018. As I was the responsible

engineer for Azure API Management in the company I work for, I made API deployments

simpler for our developers than they often are described in blog posts. Microsoft liked

the approach and invited me to Microsoft Build to talk about our journey. I have written

this book to teach you Azure API Management in detail and everything that’s important

to integrate it into your architecture, so you won’t need to read endless blog posts and

spend hundreds of hours in testing everything out. Have fun!

PART I

Getting Started

3
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_1

CHAPTER 1

Quick Start
Let’s get right down to business and have some fun in the meantime. In this first chapter,

we will focus on getting you onboard and up to speed with Azure API Management as

quickly as possible, so that you can get the most out of it.

In this chapter, you will learn how to provision API Management from the

Azure portal and then add a first API that you will try out directly from the API

Management portal.

In order to get started, you will need an Azure account. If you already have an Azure

account and a subscription that you can create resources in, then great! Feel free to

skip the following section and head directly to the section on provisioning Azure API

Management.

 Create an Azure Account
If you are new to Azure or just want to have your own Azure account other than the one

you may use at work, this section will help you to get started. If you already have an

Azure account, feel free to skip this section and sign in to the Azure portal directly.

Azure provides students with a credit for creating a free Azure for Students account.

The amount of the credit may vary from country to country. You find all details on the

following website: https://azure.microsoft.com/en- us/free/students/.

Please visit the Azure website https://azure.microsoft.com/en- us/free/ and sign

in with your Microsoft credentials. In case you don’t have a Microsoft account yet, follow

the instructions for creating one. A Microsoft account is free of charge.

Once you have signed in with your Microsoft credentials, you will be presented with

a form for creating an Azure account. Besides your name and email address, Microsoft

will ask you to identify yourself by phone and by card. There is no charge involved.

Microsoft just wants to verify your identity.

https://doi.org/10.1007/978-1-4842-8011-9_1#DOI
https://azure.microsoft.com/en-us/free/students/
https://azure.microsoft.com/en-us/free/

4

After having signed up for an Azure account, you can sign in to the Azure portal

where you can find a pay-as-you-go subscription. An Azure subscription logically

associates your user account and the resources that you will create.

Once you have an Azure account, you can start using its services. New Azure

accounts start with 12 months of some free services. You will find more information on

the Azure website.

Note You started a 12-month free trial of Azure. However, Azure API Management
is not free of charge and you will still be paying for this service depending on the
pricing tier.

You might be discouraged now knowing that you can’t try Azure API Management

without spending money. Let me assure you that there is a pricing tier that will work

without spending money. We will discuss this in more detail in the next section.

 Provision Azure API Management
Now let’s provision an API Management resource. You have plenty of options and

technologies to choose from when it comes to managing Azure resources, including

Azure Bicep, Azure PowerShell, and Azure CLI, just to name a few. We will work in the

Azure portal which, in my opinion, is the simplest way to get started to learn Azure API

Management.

Before we begin though, I want to briefly mention costs before you actually create

an Azure resource so you won’t be surprised later, but also understand when you might

have to pay for Azure API Management. In the previous section, we created a free

Azure account. However, Azure API Management is not a free service, which means

that at some point you will have to choose the optimal pricing tier in order to minimize

costs. Fortunately, there is one pricing tier called Consumption that has some free

calls per month before users get charged. This can of course change over time, and so I

recommend checking the documentation about API Management pricing.

If you have skipped the previous section about creating an Azure account and

haven’t signed into the Azure portal yet, please do so by visiting the following address:

https://portal.azure.com/.

CHAPter 1 QuICk StArt

https://portal.azure.com/
https://azure.microsoft.com/en-us/pricing/details/api-management/
https://portal.azure.com/

5

Figure 1-1 shows how to create an API Management resource from the Azure portal.

Click “Create a resource” on the left side, and search in the list of all Azure resources for

“API Management.” Once the service appears in the result list, select it, and you will be

presented the API Management resource. Click now on “Create” for configuring your API

Management resource.

Figure 1-1. Creating an API Management resource

We will now configure our first API Management resource. The configuration of

API Management is split into multiple tabs, “Basics,” “Monitoring,” “Scale,” “Managed

Identity,” “Virtual network,” “Protocol settings,” and “Tags.” If you are not familiar with

Azure yet, you might find this overwhelming. Be assured that we will discuss every

corner of API Management throughout this book. In this chapter, we will focus on the

first tab of the configuration, “Basics.”

The first four fields of the basic configuration of an API Management resource are

common for almost all resources in Azure. That is the subscription this resource shall

be associated with in case you got more than one. If you are not familiar with Azure

subscriptions, please read the previous section where we created a new Azure account.

The seconds field describes the resource group that you want to put this resource in. It

serves as a logical container for all resources that may share the same lifecycle. In the

third field, you will set the region where you want this resource to be provisioned in. I set

it to “West Europe” where I live, so API calls would have a shorter distance to travel and

CHAPter 1 QuICk StArt

6

probably be quicker than if I had chosen the United States or Asia. The last field is the

resource name. The name of an API Management resource must be unique and can’t be

changed later as it serves as part of the domain that you will need to access the service.

Figure 1-2 shows the basic configuration of an API Management resource where

you can see the four configurations that are common for almost all Azure resources.

Additionally, there are three more fields that we need to look at and that are special to

API Management. The “Organization name” is used in several places, including the title

of the developer portal and the sender of notification emails. The “Administrator email”

is the email address to which all notification emails will be sent. Finally, we set the

“Pricing tier.” I have already mentioned that we will use the “Consumption” pricing tier

in this chapter as it gives us some free calls. It also suits our purpose of getting quickly a

high-level overview of API Management.

Figure 1-2. Configuring the basics

We will skip the remaining configuration tabs for now, so click directly on “Review

+ create” at the bottom. This step will verify all your input fields. In case you forgot to

set a field, it will be highlighted with an error message. Once all fields are set correctly,

you can continue by clicking “Create.” The process of provisioning API Management

with the “Consumption” pricing tier takes about 2 minutes. Once the deployment is

CHAPter 1 QuICk StArt

7

complete, please click the “Go to resource” button for visiting the overview dashboard

of API Management. You will also find your newly created resource inside the deployed

resource group.

 Add API
Now that we have an API Management resource up and running, we will continue and

add a first API. If you haven’t navigated to your API Management resource yet, please

do so now. You can also search for the resource name in the upper search bar in the

Azure portal.

Your API Management resource will look similar to mine that is shown in Figure 1-3.

It shows the overview of the resource with all of the essentials that we provided during

the basic configuration in the previous section about creating an API Management

resource. Click in the menu on the left side on “APIs” for adding a new API.

Figure 1-3. Overview of API Management dashboard

Figure 1-4 shows multiple options of adding an API. We will discuss all of them in

detail in the following chapter. For now, we will focus on the OpenAPI specification,

formerly known as Swagger specification. It is an API description format for REST APIs.

Click “OpenAPI” for adding a REST API.

CHAPter 1 QuICk StArt

8

Figure 1-4. Adding new API

We won’t create an API from scratch here as it is not the focus of this book. Instead,

we will add an existing backend API to API Management by importing the public

available “Demo Conference API,” which is provided by Microsoft and hosted in Azure.

This API Management API will become a façade for the backend API.

Figure 1-5 shows the configuration for creating an API from an OpenAPI

specification, where we can set the URL of the Demo Conference API. The following two

fields, “Display name” and “Name,” will be automatically extracted from the specification

once the URL is set. The only remaining information we will need is the context path

under which we want to make this API available for the users. In this example, I set

the field “API URL suffix” to “conferenceapi,” so the base URL of this API will become

https://mastering- api- management.azure- api.net/conferenceapi. You should now

be able to click “Create” for adding API to your API Management resource.

CHAPter 1 QuICk StArt

https://conferenceapi.azurewebsites.net/?format=json
https://mastering-api-management.azure-api.net/conferenceapi

9

Figure 1-5. Create API from OpenAPI specification

Congratulations! You have just added your first API to API Management. You should

see “Demo Conference API” in the list of all APIs on the left side of Figure 1-4. In the next

section, we will test one endpoint from the API Management portal and from the local

machine using cURL.

 Test API
We are finally ready to test the new API. There are several options to choose from: the

local machine using cURL, PowerShell, Postman or Visual Studio Code plugin, and from

the API Management portal directly. To get you onboarded and to bring you up to speed

as quickly as possible, I suggest continuing in the API Management portal and call our

new API directly from there.

 API Management Portal
Figure 1-6 shows the three steps we will go through to test the “Demo Conference API.”

I will first mention all three steps before I will go into the details and explain what we see

on the right side.

CHAPter 1 QuICk StArt

10

 1. Click “Test” in the top menu of the “Demo Conference API” for

opening the test tab. I have marked the step with number 1.

 2. Select the “GetSpeakers” endpoint in the list of all API endpoints.

This endpoint doesn’t require any parameters and is easy to test.

 3. Click “Send” for calling the API backend of the Demo

Conference API.

Let’s discuss each step in more detail. In the “Test” tab, we create a call by setting

headers, parameters, and body, in case we would send a POST http request. The request

URL is set automatically based on the service name, the context path, and the endpoint

you selected in step 2. In our case, the request URL is set to https://mastering- api-

management.azure- api.net/conferenceapi/speakers.

You might have noticed that there are already set two headers in the request, Ocp-

Apim- Subscription-Key and Ocp-Apim-Trace. In case you want to try to send a request

from outside the API Management portal, that is, with cURL, you will need the first

header which is a subscription key. We will discuss API Management subscriptions and

subscription keys in a later chapter.

Figure 1-6. Testing Demo Conference API

CHAPter 1 QuICk StArt

https://mastering-api-management.azure-api.net/conferenceapi/speakers
https://mastering-api-management.azure-api.net/conferenceapi/speakers

11

We have seen how we can use the API Management portal to test an API in its

simplest way. It’s a good way of quickly checking whether an API works or not.

 Command Line
Another option for testing an API quickly is by sending the request from the command

line by using cURL. We have seen in our example that we need a subscription key to

access this API. Click the eye icon you can see in Figure 1-6 and copy the entire header

Ocp-Apim-Subscription-Key: <SUBSCRIPTION KEY>.

Listing 1-1 shows the cURL command for accessing the same endpoint as in our

previous example. Remember that the service name is unique. You will have created

your service with a different service name, so please make sure to replace both the

subscription key and the service name.

Listing 1-1. Calling an API Management endpoint with cURL

curl -H "Ocp-Apim-Subscription-Key: <SUBSCRIPTION KEY>" -X GET \

https://<SERVICE NAME>.azure-api.net/conferenceapi/speakers

 Summary
In this chapter, you learned about a core element of Azure API Management.

Congratulations, you now understand how to add an API and then call it directly from

the API Management portal and from your local machine using cURL. In the next

chapter, we will discuss what it is that makes API Management so powerful by discussing

today’s challenges and how API Management addresses them.

CHAPter 1 QuICk StArt

13
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_2

CHAPTER 2

Overview
Before we dive into the details of Azure API Management and learn how to integrate this

service into an organization, let’s take a step back and talk about the value of having an

enterprise API platform. A typical use case of Azure API Management in organizations

is to make digital assets available that otherwise would be hidden in legacy systems.

Another example of why you would want to use Azure API Management in your

organization is the possibility to create new products by bundling APIs from different

systems into one common accessible unit.

In the first part of this chapter, I want to briefly highlight why APIs are the biggest

differentiator for success and give you some examples. Once you understand what

makes APIs so powerful, we will discuss them in more detail and learn the basics of web

APIs. Finally, you will learn how to manage web APIs with an enterprise API platform

and take a look at Azure API Management by discussing its core components.

 Unlocking Digital Assets with APIs
In the 2021 Connectivity Benchmark Report published by MuleSoft, 800 global IT leaders

were asked about the state of connectivity and digital transformation. It states that an

average enterprise has about 900 applications, whereas only a third of those applications

are integrated together, making it very difficult for organizations to deliver a connected

experience. Digital assets are locked in hundreds of systems making organizations slow

to innovate and being agile.

The demand from business for integration projects is increasing. The ability to

unlock, analyze, and act on data has become foundational to growth.

IT leaders report that integration via APIs is critical to their digital transformation

strategy. Well-designed APIs add new possibilities like controlling access to digital assets,

combining legacy applications with new applications, and empowering professional

developers and citizen developers to experiment, innovate, and react to changing

customer needs.

https://doi.org/10.1007/978-1-4842-8011-9_2#DOI
https://www.mulesoft.com/lp/reports/connectivity-benchmark

14

APIs let developers access and combine systems, even if those systems were never

intended to interoperate. One developer may use an API to look up customer data for a

new application, while another developer is using the same API for adding a new feature

to another application. Connectivity via APIs is not only a critical enabler of digital

transformation but also the biggest differentiator of success. Let me illustrate through the

following three examples from three different industries.

 Payments
Vipps is a Norwegian payment service that provides an app to its four million users for

ordering items online, making purchases in stores, and splitting up lunch checks with

friends. It lets users pay invoices across almost every bank in Norway directly in the

Vipps app. Considering Norway’s population of about 5.3 million, this app is used by

three out of four people and makes Vipps a critical part of the financial infrastructure

in Norway.

Norwegian’s love Vipps because it simplifies the way they do payments. Especially

during the pandemic, partners and merchants can easily adopt Vipps and let their

customers do financial transactions in a very convenient way. It follows an API strategy

that lets partners, merchants, and its own developers easily use Vipps’ services.

Initially, it migrated its application infrastructure directly to virtual machines

in Azure. To upgrade its data structure and get the most out of Azure services, it

also migrated from Oracle to Azure SQL Database. It then began using Azure API

Management to publish Vipps microservices to internal developers along with partners

and merchants. Today, Vipps builds new services using these APIs in API Management,

like the Vipps “Mobilapponnement,” which is a cell phone plan which Vipps’ users can

order directly in the app. This new product was built in a very short amount of time and

has become a great success. That’s the power of APIs.

Manufacturing
ZEISS is a German manufacturer and international leader in the fields of optical systems

and optoelectronics. ZEISS maintained a 20-year-old back-end system with hard-coded

business rules. Its developers couldn’t easily update, reroute, or track orders without

reconfiguring the system. Changes were very costly and time-consuming. ZEISS needed

a more agile order management and processing system. They started to follow an API-

strategy and started to decouple front-end interfaces from back-end systems. They also

Chapter 2 Overview

15

wanted to go global and distribute the order-processing environment across multiple

Azure datacenters to provide faster service to customers around the world. Azure API

Management serves as the gateway to the regional resources, giving ZEISS a single place

for efficiently managing its APIs hosted on-premises and on Azure.

ZEISS customers benefit today from faster order fulfillment and timely notifications

of progress, something the existing system couldn’t do.

You can read the full technical story about Carl Zeiss AG on https://customers.

microsoft.com/en- us/story/1336089737047375040- zeiss- accelerates- cloud-

first-development- on- azure- and- streamlines- order- processing. Thanks for

sharing Microsoft.

 Automotive
Mercedes-Benz is a German automotive marque that has built over two million luxury

and commercial passenger cars. The research and development teams jokingly call

these passenger cars “Container-driven cars,” as its microservices-based architecture

relies on containers for updating the head unit computer in a car’s dashboard. The head

unit computer runs the infotainment system, navigation system, steering wheel audio

control, handsfree calling system, parking system, and other apps. Until recently, this

unit was designed as a monolith. Changes were time-consuming to implement as apps

were developed by several development teams in North America and Germany.

The way they solved these challenges was to break the monolith into a microservice-

based platform that is based on Azure Kubernetes Service (AKS). They use APIs for

connecting apps, data, and back-end services, thus, decoupling back-end APIs from the

microservices.

Microservices that one team is implementing can already be used by another team

and vendors using APIs and by mocking back-end services that are being implemented.

This approach enables all teams and vendors to build products together and

simultaneously by sharing their APIs.

Thanks so much to Microsoft and Mercedes- Benz Research & Development

North America for sharing this story. You can read the full technical story on https://

customers.microsoft.com/ja- jp/story/784791- mercedes- benz- r- and- d- creates-

container-driven- cars- powered- by- microsoft- azure

Chapter 2 Overview

https://customers.microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-first-development-on-azure-and-streamlines-order-processing
https://customers.microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-first-development-on-azure-and-streamlines-order-processing
https://customers.microsoft.com/en-us/story/1336089737047375040-zeiss-accelerates-cloud-first-development-on-azure-and-streamlines-order-processing
https://mbrdna.com/
https://mbrdna.com/
https://customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure
https://customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure
https://customers.microsoft.com/ja-jp/story/784791-mercedes-benz-r-and-d-creates-container-driven-cars-powered-by-microsoft-azure

16

 Understanding the Basics of web APIs
Throughout this book, we will learn how to manage an API-centric enterprise using

Azure API Management as our enterprise API platform. Before we dive into the details of

Azure API Management, we need to understand APIs.

API is the acronym for Application Programming Interface which let applications

communicate with each other by abstracting the underlying implementation and

provide access to digital assets such as documents, pictures, or other digital content and

to interact with logic such as turning on the lights in a smart home. A web API is an API

over the Internet using the HTTP(S) protocol. As Azure API Management only supports

HTTP(S), we will focus on web APIs in this book.

Web APIs can receive requests from web browsers, mobile applications, desktop

applications, IoT, and also from back-end services that run in the cloud or on-premises.

Some publicly available and popular web APIs are Google Map APIs, YouTube APIs, and

Twitter APIs. Access to web APIs can also be restricted to internal systems only. Other

web APIs are available also for partners.

A web API exposes endpoints that are digital locations to digital assets and logic.

In Azure API Management, an API endpoint is represented by an API operation. When

working with web APIs in the context of this book, there are two terms that are essential,

SOAP and REST. Both describe how to access a web service and what operations they

perform. Let us discuss them briefly in the following sections as they are both supported

by Azure API Management.

 SOAP
SOAP is an acronym and stands for Simple Object Access Protocol. It is an XML- based

messaging protocol for exchanging information among computers over the Internet

and is widely used by older APIs. SOAP enables client applications to connect to remote

services and invoke remote methods. It is platform and operating system independent,

so client and server applications that want to communicate with each other can be

implemented in different programming languages and with different technologies

using SOAP as an intermediate language. For example, a .NET application running

on one computer can invoke a method in a Java application that is running on a

different computer using the SOAP messaging protocol making it very lightweight to

communicate. The functionality of a SOAP-based web service is described in a WSDL

document.

Chapter 2 Overview

17

 WSDL

WSDL is also an acronym and stands for Web Services Description Language. It

describes the contract between a web service and a client in XML-format. A client that

connects to a web service will read its WSDL document to determine what functionality

it exposes.

Listing 2-1 shows a fraction of a simple example of a WSDL document which is taken

from the WSDL document specification. We see three main elements in this example.

The first element <message> defines the data for an operation being communicated

and is used to describe the data being exchanged between a web service and the client

application. We see two messages, an input message for the request and an output

message for the response. The second element, <portType>, defines a complete

operation that is exposed by a web service and the messages that it involves. The third

element, <binding>, defines the protocol and data format for each port type.

Listing 2-1. A simple WSDL document

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

<binding type="glossaryTerms" name="b1">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

Chapter 2 Overview

https://www.w3schools.com/xml/xml_wsdl.asp

18

 <operation>

 <soap:operation soapAction="http://example.com/getTerm"/>

 <input><soap:body use="literal"/></input>

 <output><soap:body use="literal"/></output>

 </operation>

</binding>

SOAP with WSDL is centered around passing documents. Requests and responses

are typically very well structured, which makes it a great candidate for two parties that

would need a very strict contract such as inter-bank communication. The downside of

SOAP is its very verbose XML structure. However, SOAP was widely used some years ago

and you will find it for older APIs. Today, most APIs use a RESTful approach that we will

discuss in the following section.

 REST
It was his call to defend the design choices to engineers from all over the world. Dr. Roy

Thomas Fielding, an American computer scientist, had worked on the foundation of the

World Wide Web, HTTP 1.1. Input came from distinguished engineers with decades of

experience, and every detail had to be explained to them. It was a very important and

challenging process. The result of many discussions was a model that led to some core

principles that we now call REST (REpresentational State Transfer). The principles of

REST are as follows:

• Client-server architecture: Client and server are decoupled from

each other and live in their own bounded contexts.

• Statelessness: The client is responsible for providing all information

in all requests so that a server can understand the context as it

doesn’t store state.

• Catchability: The data in a response is required to be implicitly

or explicitly labeled as cacheable or non-cacheable, so a client

eventually reuses the data.

• Layered system: A request might go through other systems, such

as a security system or load-balancing system, before it reaches the

responding web service.

Chapter 2 Overview

19

• Code on demand: A client’s functionality can be extended to

download and execute code from the server.

• Uniform interface: As all components follow the same constraints, it

simplifies and decouples the interactions between them.

You might have noticed that REST is a software architectural style, not an

implementation. It defines how web standards, such as HTTP and URI, are supposed

to be used. We call web services that follow this architectural style as RESTful. Azure

API Management supports two formats that describe RESTful web services, WADL and

OpenAPI.

 WADL

WADL means Web Application Description Language and describes a web service to its

requesting clients. It defines a contract between a client and a server. A contract might

not always be necessary. Development teams who work closely together and who can

communicate clearly how a web service needs to be called and a response be interpreted

might find introducing a contract with WADL as an unnecessary overhead. On the other

hand, there might be one or many development teams who integrate complex enterprise

systems with each other. It might also be the case that you need to integrate with a legacy

system that is not actively maintained anymore. A strict contract makes it in such a case

easier for all parties to communicate and integrate their systems with each other.

The WADL contract is an XML document that describes the resources of a web

service that can be accessed by a client. Listing 2-2 shows a simple example of a WADL

document which represents a resource for listing and adding books.

Listing 2-2. A simple WADL document

<application xmlns="http://wadl.dev.java.net/2009/02">

 <resources base="http://example.com/api">

 <resource path="books">

 <method name="GET"/>

 <method name="POST"/>

 </resource>

 </resources>

</application>

Chapter 2 Overview

20

A WADL document is often used to create client-side code and it appeals therefore to

developers that have a strong SOAP background where it is common to generate client-

side code from a WSDL document.

It is not a widely adopted description language, as it is very time-consuming to

describe a web service manually using this format. A simpler and more adopted format

in the developer community is the OpenAPI specification that we will discuss in the

following section.

 OpenAPI

If you have developed and used RESTful APIs during your IT career, chances are that

you already are familiar with the term “Swagger.” Today, Swagger is a set of tools for

implementing the OpenAPI specification. The name “OpenAPI” was actually donated in

2015. Before that, we called today’s OpenAPI specification the Swagger specification. It

is a very popular specification and open source format for describing and documenting

modern RESTful APIs. While description languages such as WSDL and WADL describe

web services in the XML format, OpenAPI documents are represented in either YAML or

JSON, which makes these documents less verbose and more human-readable.

Listing 2-3 shows a simple OpenAPI document in the YAML format for listing cars.

You may notice that this document includes descriptions which allow us to generate API

documentations. It is very convenient for a developer to immediately know what this API

and the endpoints are doing. It simplifies how we can integrate our systems with each other.

Listing 2-3. A simple OpenAPI document in the YAML format

openapi: 3.0.0

info:

 version: 1.0.0

 title: Simple car API

 description: A simple API for listing cars

paths:

 /cars:

 get:

 description: Returns a list of cars

 responses:

 '200':

 description: Successful response

Chapter 2 Overview

21

Throughout the book, we generally use examples that are based on OpenAPI

documents as these are the most common in today’s organizations. However, there are

scenarios where we have to integrate to older web APIs that are described in WSDL or

WADL. The behavior of Azure API Management is the same, as we will see in a later

chapter when we will import various web APIs.

 HTTP Clients for Testing RESTful web APIs
We send a lot of requests to Azure API Management and we can test APIs directly from

the Azure portal. However, this is not always practical when we develop our APIs on our

local machine. We would need to switch back and forth from our local machine to the

Azure portal whenever we want to test a change. There are two HTTP clients that I like

very much and that I will use throughout this book, cURL and Postman.

 cURL

cURL is an open source command-line tool that is well suited for sending HTTP

requests. We have seen it in action in the example (Listing 1-1) where we called an API

endpoint for listing all speakers of a demo conference API. It can be downloaded for

almost any operating system and architecture. You can either download the sources

and binary directly from the curl website, or you can follow the instructions for installing

cURL on Linux, Windows, or Mac from the curl documentation pages.

 Postman

The Postman app is another HTTP client that is a great tool for interacting with web APIs.

It’s an especially great tool for an author, as it makes it possible for me to share all the

requests that I perform throughout the book with you. You can simply use the import

feature, as highlighted in Figure 2-1.

Figure 2-1 demonstrates how to send a request with Postman to the same API

operation as in the first chapter when testing the Demo Conference API. I set the

URL for the API operation and the subscription key that I got from the Azure portal.

As mentioned earlier, Postman allows for sharing of requests with its parameters and

headers in the form of collections.

Chapter 2 Overview

https://curl.se/
https://everything.curl.dev/get

22

Figure 2-1. Sending a simple request from Postman

 Enterprise API Platform in Essence
The center of an enterprise API platform is its consumable APIs. You might be already

familiar with the API-first approach which talks about creating an API first before its

implementation to ensure that its consumers get the best possible experience. Similar to

this approach is the API as a product strategy which takes this one step further.

An API as a product strategy is a customer-oriented strategy that focuses on the

demand of solving a digital problem rather than the supply of a digital asset. While it is

true that a company’s developers and partners benefit from having convenient access to

digital assets, an enterprise API platform looks beyond.

As companies unlock their digital assets and make them accessible through

web APIs, it is important to look at the overall experience across all web APIs from a

developer’s perspective for achieving the best possible adoption. A good developer

experience is influenced by many factors such as consistent documentations,

comprehensible capabilities, and common design guidelines. As these are important

factors for creating successful API products, there are other important factors that need

Chapter 2 Overview

23

to be taken into account and that otherwise might lead to a bad experience. Among

these factors are developer onboarding, user management, cost management, API

security and governance, versioning and revisioning, performance, stability, scalability

and resiliency, health monitoring, and a great DevOps experience.

We have briefly discussed the benefits of following an API as a product strategy and

how an enterprise API platform takes this one step further. However, the following parts

go into more detail and explain the main aspects of an enterprise API platform that are

useful for understanding Azure API Management.

 Consistent Documentation
One major success factor of an API is its documentation. Great API documentation

can create a great developer experience. While this is an important ingredient for a

successful API, it does not guarantee the success of an enterprise API platform. Such

platforms host usually many different APIs that were developed by many different teams

and many different people. Some of the APIs might even be several years old and either

lack documentation completely or be inconsistent in their appearance and functionality

because they were out of sync with the latest changes. A successful enterprise API

platform delivers consistent documentations across all its hosted web APIs.

 Comprehensible Capabilities
Comprehensible API capabilities that do not overlap are another important ingredient

of a successful enterprise API platform. As an example, it might easily happen that

two teams in an organization build each a web service that require user information

as part of their services. As there is no user information web service available yet, one

team decides to create a new user information web service along with the actual web

service. The second team builds only one web service and integrated user information

capabilities into it which they also exposed in the web API. There exist now three new

web APIs where two of them expose the same user information capabilities. An API user

who needs to access user information might find it difficult to choose between one of

these two web APIs.

Chapter 2 Overview

24

 Common Design Guidelines
API design involves many aspects such as API governance, developer experience,

performance, and, most important, a value proposition, to name a few. There are many

constraints to take into account when designing an API. While all these aspects are

important, an API user cares first and foremost about solving a problem that might

require using several APIs. An enterprise API platform supports an API user by providing

common design guidelines across all APIs it hosts. These users benefit from such an API

platform as they do not have to learn and understand different API styles and instead

experience an API platform that supports common design guidelines.

 API User Onboarding
The main purpose of an enterprise API platform is to serve its API users with information

and capabilities. To get API users to this point of using an API product and providing

value to them, there are important steps to take first such as registering, finding the

documentation, getting API keys, but also understanding code examples. A good way to

help API users is to allow them to register instantly via a self-service and also providing

them with everything necessary in one place so they do not need to search for what they

need. An enterprise API platform such as Azure API Management provides a developer

portal for this purpose, making it very simple for its API users to get started immediately

and providing them with value.

 User Management
Users of any platform must be managed. Resetting a password is just one example. In

case of an enterprise API platform, there are additional examples and use cases such as

reactivating or deactivating a user. A certain user might not work for a partner anymore,

so this user does not have the same relation to your organization at this point. Another

use case is where you might want to withdraw an API subscription key because a certain

user might not be eligible to use a particular API product anymore. This can be the case

when an API user did not pay its bill, which might be based on a monthly usage report

that you generated through the API platform.

Chapter 2 Overview

25

 Health Monitoring
When a backend service is not responding in the same way as it is intended to, we must

know about it quickly, so we can respond and mitigate a possible incident. An enterprise

API platform is a façade to backend services and a great place to monitor the health of

the backend services that are behind this façade. Response codes, response times, but

also API’s usage are all important measures that should be considered for monitoring.

These data help not only to mitigate a problem more quickly, but also to learn from

them, so improvements can be made before something unforeseen happens.

 Governance and Compliance
APIs are the doors to capabilities and assets through web services. As these doors

are supposed to be open for some developers and closed to others, APIs can expose

considerable risk to an enterprise where it is undocumented or somehow unclear

who, when, where, and how often APIs can be accessed. Many enterprises follow

internal or external governance and compliance regulations such as the Payment

Card Industry Data Security Standard (PCI DSS), which is a set of security standards

designed to ensure that all companies that accept, process, store, or transmit credit card

information maintain a secure environment. Enterprises that have to comply with such

a regulation are required to document the techniques and practices used to secure the

access, execution, and the management of these APIs and services in the form of rules,

policies, and reports. An enterprise API platform that supports this can apply them on a

companywide level and thus, contribute to be compliant to regulations.

 Versioning and Revisioning
We build this great web API, expose it to the world to be used by our API users, and then

realize that we made a mistake and need to introduce a breaking change in the web

API. As this scenario might be rare, changes in APIs are not. Not all changes are major

breaking changes and require a new version, many changes in web APIs are of a minor

nature, where a new revision just needs to be tested before being officially published.

The goal behind versions is to decouple API producers from API consumers. An

enterprise API platform that supports versions and revisions helps API developers to let

APIs evolve in a backward compatible way.

Chapter 2 Overview

26

 Scalability and Resiliency
When a user base grows and a company’s web APIs receive more traffic than ever, there

will be a point where limits are reached, and resources exhausted. While there is a

number of techniques that should be considered for increasing the number of requests

that can be handled such as caching and throttling, scaling the web API façade itself is

one of them. When there is no other option than increasing the limits of requests that

can be handled by one unit, a good enterprise API platform should be easily scalable.

This is also important the other way around. Two different instances of an enterprise

API platform, one in the test environment and one in production, will handle different

traffic volumes. The test instance might only need to be scaled to a minimum while the

production instance requires some more units.

 Security
Companies that expose APIs are vulnerable to exploitation as they provide access to

web services. While it is important to monitor and analyze the traffic, it is also necessary

to shift the focus toward API security management and ensuring that capabilities and

digital assets are protected against potential security challenges that might disrupt a

business or even compromise an entire architecture. API security is a wide term and

there are many strategies that a successful enterprise API platform should support

such as backend authentication, excessive usage prevention, and watching abnormal

activities.

 DevOps
A great developer experience is an important ingredient for success. This is likewise true

for API users and for API developers. As API developers, we expect short feedback loops

to be able to work efficiently and for being productive which further helps us to deliver

faster but also to stay motivated. As an example, as I expect a CI/CD pipeline for my

RESTful web service, I expect the same automation for my web API and without the need

to switch context. An enterprise API platform that supports API developers through an

agile strategy for developing and operating APIs will contribute positively to the success

of API products.

Chapter 2 Overview

27

 Performance
As an enterprise attracts more API users, the number of requests that web services

must handle will probably increase as well. Depending on the capabilities, some APIs

might return very individual and specific information such as user information. Those

responses can be well stored on the client side if necessary and improve the performance

by leveraging a client cache. Other requests may expect information that are the same for

many clients such as the weather forecast for a specific location. It is advisable that those

kinds of responses that are sent many times to many clients during a period of time are

being cached on the server site and thus, improve the overall performance on the client’s

site and decrease the traffic on the server site.

 Stability
An enterprise API platform decouples the APIs from the backend services. This opens for

a couple of use cases in the context of API stability such as throttling and load balancing.

As an example, when we understand the throughput of our traffic, we can easily throttle

the throughput to a backend service by introducing rate limiting that is based on

certain criteria such as an IP address from where we receive an unusually high number

of requests. Another use case where a decoupled API might be useful is balancing

high load between multiple backend services and thus, ensuring a stable web API. In

both examples, an enterprise API platform helps to reduce the likelihood of eventual

disturbances and increase the overall stability of a web API.

 Introducing Azure API Management
Azure API Management is an enterprise API platform that helps to unlock digital assets

and capabilities to its API consumers by routing incoming traffic to backend services

no matter where they are resided, on-premises, in Azure, or at another cloud provider.

Azure API Management creates an API façade for web services and serves as a front door

and a single point of ingress.

Figure 2-2 shows Azure API Management as the API façade to its API consumers.

The clients can be smartphone apps, desktop applications, developers, partners, or

systems running on other cloud solutions. The API façade routes the incoming traffic

from the clients to internal backend services such as Azure Virtual Machines, Azure

Chapter 2 Overview

28

Functions Apps, Azure Kubernetes Service (AKS), but also to external services no matter

if those services run on-premises or at another cloud provider. As long as Azure API

Management has connectivity to the backend services, it can route the traffic. The other

way around is of course also possible. Internal services running on AKS or other Azure

runtime environments such as Azure Function Apps can send requests to Azure API

Management if the connection allows it. We will discuss networking and how to integrate

Azure API Management into different IT architectures in a later chapter.

Figure 2-2. Azure API Management as API façade

Since all the traffic goes through Azure API Management, the scope of applications

goes beyond the aspects we discussed in the previous section where we talked about the

essence of enterprise API platforms. Here are some examples of what we can configure:

Telemetry can be collected so requests can be traced to meter the usage, XML bodies

can be transformed into JSON before being sent back to the clients, and APIs can be

monetized for certain API consumers. We will discuss all these examples and more in

detail throughout this book as they are important to learn for mastering this service.

Before we dive into these details, we will take a look at Azure API Management

from a higher level and learn about its three main components, Azure portal,

developer portal, and API gateway. It is these components that we use for configuring,

administrating, managing, onboarding, security, networking, monitoring, etc., and

that at the end make the traffic between API consumers and API producers flow in a

predetermined and secure way.

Chapter 2 Overview

29

 Azure Portal
The Azure portal is an administrative web interface for provisioning and configuring

Azure resources such as Azure API Management. You used the Azure portal already

in the first chapter and also added your first web API. Furthermore, the Azure portal

lets you manage users, APIs, and API products. We can configure the right level of

API security or monitor the usage of your APIs. Most importantly, we can change the

behavior of API endpoints by implementing policies. A behavior can be altering a

request and response by adding a new header, setting the URL for the backend service,

or validating a Json Web Token (JWT) for securely transmitting information between two

parties. We will cover everything in detail throughout this book.

 Interacting with Azure API Management

While the Azure portal is a great interface for getting started, checking values and doing

minor changes, many companies automated their environments using Azure API

Management’s comprehensive REST API. Interactions with Azure API Management

can be done in various ways and with many different tools and technologies such as the

Azure CLI, PowerShell cmdlets, Azure Resource Manager (ARM) templates, Bicep, or

the Visual Studio Code extension for Azure API Management. I will perform most of the

examples in this book from the Azure Cloud Shell with PowerShell and the Azure CLI as

they provide a great level of abstraction over the REST API. However, some examples will

use some of the other tools and technologies depending on the use case. For example, as

an API developer, the Visual Studio Code extension might be better suited for validating

and testing code changes because we can do everything in the same IDE.

Before I continue and introduce the developer portal, I want to show you how to use

the Azure CLI to provision a new instance of Azure API Management. Instead of using

the consumption pricing tier that we have chosen the last time when we provisioned an

instance directly from the Azure poral, we will this time use the developer pricing tier, as

this allows us to use the developer portal.

Note the developer pricing tier comes with a fixed cost per month. it is therefore
recommended to delete the resource when it is not in use anymore. we will cover
api Management pricing in a later chapter.

Chapter 2 Overview

30

Figure 2-3 shows how to access the Azure Cloud Shell which is a browser-accessible

shell for managing Azure resources and comes with various preinstalled tools and

languages which makes it very convenient to work with from anywhere. I selected the

PowerShell mode as this allows using the Azure CLI and the PowerShell cmdlets at the

same time.

Figure 2-3. Opening the Azure Cloud Shell in PowerShell mode

We created already a resource group in the first chapter that we named mastering-

azure- api-management-rg. I will reuse this resource group and deploy the new instance

in this group.

Listing 2-4 shows the Azure CLI command az apim create for provisioning Azure

API Management. The sku-name parameter is set to “developer” which is also the default

value for the pricing tier in case you did not set it. The following parameter no-wait

will, as the name suggests, not wait for long-running operations as it is the case in this

example. Provisioning with the developer pricing tier can take up to one hour. Besides

other parameters such as publisher-name and publisher-email, which both are

mandatory, I also explicitly set the subscription parameter to ensure the right one in

case you have more than one, like I have.

Chapter 2 Overview

31

Listing 2-4. Provisioning Azure API Management with the Azure CLI

az apim create \

 --name "mastering-apim" \

 --resource-group "azure-api-management-rg" \

 --subscription "Pay-As-You-Go" \

 --no-wait \

 --sku-name "developer" \

 --publisher-name "Sven Malvik" \

 --publisher-email "sven@malvik.de" \

After about an hour, your instance will be up and running. We will use this instance

when learning about the developer portal.

 Developer Portal
One success criterion for an enterprise API platform such as Azure API Management

is how it onboards its API consumers. Ideally, they sign up, select the APIs they need

for solving their problems, and are then ready to go. What they typically need in the

beginning when using an API for the first time is a good documentation and some

examples that explain how to use an API, so they do not spend too much time figuring

everything out on their own. Azure API Management supports the API consumers by

providing everything an API consumer needs to know in one place and in a consistent

way across all APIs.

Figure 2-4 shows the start page of the Azure API Management developer portal

when visiting it the first time as an administrator. It shows that the look and feel of

the developer portal can be customized, which makes it possible to style it according

to a corporate brand. In this figure, I highlighted the menu so you can see one way of

changing the content and style of the developer portal. Almost everything can be re-

styled either in this “What You See Is What You Get” (WYSIWYG) editor or by changing

the templates and stylesheets directly.

Chapter 2 Overview

32

Figure 2-4. Customizing the developer portal

The developer portal is a website that is shipped with Azure API Management and

needs to be published explicitly.

Note the developer portal is not available in the consumption pricing tier.

Besides customizing the look and feel of the developer portal, it is also possible to

add new functionality in the form of widgets. We will deep dive into the developer portal

in a later chapter and learn how to administrate and customize it.

 API Gateway
Azure API Management is an enterprise API platform that supports cloud-native, multi-

cloud and hybrid API management. Its API gateway can be placed almost anywhere with

the benefit of optimizing the API traffic flow, but also to address security and compliancy

requirements. As an example, there are cases where regulations require traffic between

two services to not leave the country as it could be the case where an Azure region does

not exist.

Chapter 2 Overview

33

Figure 2-5 shows Azure API Management and its three main components including

the managed API gateway. This managed API gateway is located close to the Azure API

Management instance which is not always an ideal place because of several possible

reasons. Therefore, APIs can be deployed anywhere as containers making it possible to

have direct communication between two services.

Figure 2-5. Managed and self-hosted API gateways

Wherever a self-hosted API gateway might be deployed, connectivity to the Azure

API Management instance is still required as matrices will be uploaded and possible API

changes will be applied. We will discuss how this works in detail in a later chapter.

 Summary
I hope this chapter gave you a good overview of why Azure API Management can add

value to your organization. This chapter started by introducing three companies and

how they benefit from an enterprise API platform by making their web APIs easily

consumable. You learned then the basics of web APIs, especially about SOAP and

REST, as they are both supported in Azure API Management, but also because both are

widely used in the industry. However, making web APIs just consumable is often not

enough. Today’s developers and API consumers often look at the overall experience of

Chapter 2 Overview

34

web APIs and want to use them right away and be productive instead of spending hours

understanding them first, one by one. That’s really the essence of an enterprise API

platform, to create a consistent experience across many web APIs, which this chapter

covered in detail. Finally, this chapter provided you with a basic introduction of Azure

API Management by introducing its core components.

Chapter 2 Overview

PART II

Key Concepts

37
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_3

CHAPTER 3

APIs and Products
In this chapter you will learn how to manage APIs and products so you can get started

building your own API-centric organization with Azure API Management. Furthermore,

you will learn how both APIs and products relate to each other as this explains how API

consumers will experience your API-powered digital ecosystem from the outside.

Before we dive into each of them, APIs and products, let me briefly introduce the

term “Product” in the context of Azure API Management to you. A product bundles

related APIs together in the sense that an API consumer can solve a problem by using

a product. As an example, a bank’s payments service product may contain APIs that

feature digital payments assets and capabilities such as “account balance,” “money

transfer,” and “refund charge.” A retailer may have a shop service which contains a

Catalog API, an Order API, and a Cart API.

Figure 3-1 shows the relationship between products and APIs in Azure API

Management. A product can be associated with many APIs as both examples

demonstrated. APIs on the other side can also be associated with many products.

Assume a bank that has two products, a domestic payments service and a foreign

payments service. Both payments services contain the Bank API as both services need

details such as the bank’s name and unique identification number (BIC/SWIFT). We

will discuss this in greater detail and how to set up a relation between APIs and products

throughout this chapter.

Figure 3-1. Relation between products and APIs

We start by discussing APIs and how to manage them from the Azure portal and from

the Cloud shell with Azure CLI and Azure PowerShell before we dive into products. As

the Azure CLI and Azure PowerShell for Azure API Management are based on the REST

https://doi.org/10.1007/978-1-4842-8011-9_3#DOI

38

API of Azure API Management, it may happen that those abstractions fall behind and are

missing features such as tagging APIs. In those cases, we will use the REST API directly.

Other ways of managing APIs are by defining Bicep or ARM templates. ARM

templates are often challenging for the web service developers who create the backend

APIs. Ideally, it is those developers that deploy their own APIs to Azure API Management.

Using ARM templates, they would need to write those ARM templates which is often not

their main technical domain and therefore harder to implement. However, we will cover

deploying APIs with ARM templates when discussing policies in a later chapter.

In comparison, Bicep templates are easier to implement and maintain by most

developers as they abstract away many of the more cumbersome concepts of ARM

templates. Bicep is also where Microsoft puts its effort and has become quite popular

among cloud engineers who define Azure infrastructure as code.

You remember from the previous chapters that we already provisioned two instances

of Azure API Management, one with the consumption pricing tier and the other with

the developer pricing tier. Both are identical when it comes to managing APIs and

products. The same is true for all the other pricing tiers. However, the following chapters

build upon the APIs and products we will create in this chapter where the consumption

pricing tier is not always sufficient. The developer portal is one example that we will

discuss in a later chapter where we can’t use the consumption pricing tier. For that

reason, I will use the developer pricing tier in this chapter. In case you would like to

go with the consumption pricing tier, remember that you will need to recreate some

products and APIs in a later chapter.

 APIs
In the first chapter, you already created the Conference API by importing an OpenAPI

definition file to gain some first experience. Before we dive deeper into how we

can create and configure APIs, let me briefly explain what other options of creating

APIs exist:

• Blank API: This is an empty API that does not reflect any backend

API. It can be useful for scenarios where a backend API is not in place

yet and need to be mocked.

• OpenAPI: This is for modern RESTful backend APIs that are defined

by this specification either in YAML or JSON format.

Chapter 3 apIs and produCts

39

• WADL: An XML representation of a contract between a client and

a server.

• WSDL: This is an XML description format for SOAP-based web

services used primarily by older APIs.

• Logic App: An Azure resource type for defining interactions and

workflows.

• App Service: This is a web-hosted service for building RESTful web

services.

• Function App: Azure’s serverless solution for building various types

of applications such as web APIs.

In the following sections, we will learn to manage APIs. We start by creating a blank

API with the Azure CLI and discuss all details. From there, we will learn how to manage

APIs with PowerShell. Finally, we will see how to create APIs from backend Azure

resources such as Logic App, App Service, and Function App.

 Create Blank API with Azure CLI
In this section, we will use the Azure CLI from the Azure Cloud Shell to create a blank

API and then add operations to it that map endpoints to a backend API. As we don’t

have a backend API yet, we will use this API later when we talk about policies to mock a

backend web service.

We start by repeating the steps from the first chapter where we logged into the

Azure Cloud Shell. Alternatively, you can install the Azure CLI on your local machine by

following the steps in the Azure documentation. As we are using the Azure CLI for now,

you can either select the “Bash” or “PowerShell” mode, both will work in the same way.

Listing 3-1 shows how to ensure that you are using the current subscription that

contains the provisioned Azure API Management instance that you want to use. If you

just created an account, you won’t have more than the “Pay-As-You-Go” subscription, so

you might skip this step. Otherwise, you will need to set the correct subscription. Verify

at the end that your Azure API Management instance does exist by running the az apim

list command.

Chapter 3 apIs and produCts

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

40

Listing 3-1. Verify and set the correct subscription

Verify the current subscription

az account show

Set the correct subscription

az account set –subscription <YOUR_SUBSCRIPTION_ID>

List the name of all instances in the current subscription

az apim list --query [].name

Now that you are in the correct subscription and have verified that your Azure API

Management instance exists, you are able to create a new API by using the az apim api

create command.

Listing 3-2 uses this command with some main parameters for creating an API. We

will discuss the remaining optional parameters in later chapters, where we will learn

about different aspects such as subscriptions and security.

• The service-name parameter is the name of the Azure API

Management instance. You retrieved it from the previous command

where you listed all instances.

• The resource-group is the container that holds your instance.

• You can set the api-id by yourself. It is a unique API identifier across

an Azure API Management instance.

• The display-name is what the API consumer will see in the developer

portal for an API.

• The description tells the API consumers what this API is about and

makes it an important part of an API. As this will be displayed in the

developer portal, it supports HTML tags.

• The path parameter is the context-path that follows a URI.

• You used the master subscription key in the first chapter. Now, we set

the subscription-key-required parameter to false so we can access

it directly.

Chapter 3 apIs and produCts

41

Listing 3-2. Create API with Azure CLI

az apim api create `

 --service-name mastering-apim `

 --resource-group mastering-apim-rg `

 --api-id my-demo-api `

 --display-name "My Demo API" `

 --description "This is an API for testing" `

 --path "demo" `

 --subscription-key-required false

As a result, you will get a JSON object with all settings that confirms a successful

operation. This newly created API does, of course, nothing yet as we have not added any

operation to it that we could use for mocking a backend API endpoint. We will change

that now and add a simple GET operation with the az apim api operation create

command.

 Add API Operation

Listing 3-3 uses this command with the parameters necessary for creating an operation

that we will then use for mocking a backend API endpoint. We have already discussed

some parameters in the previous example where we created an API. The following

parameters are special for creating an operation:

• The api-id that the operation will be added to.

• You can set the operation-id by yourself. It is a unique identifier

across an Azure API Management instance.

• The display-name is what the API consumer will see in the developer

portal for this operation.

• The description tells the API consumers what this operation is

about and makes it an important part of an operation. As this will be

displayed in the developer portal, it supports HTML tags.

• The url-template parameter is part of the URL and can contain

parameters in curly braces.

• In case you set parameters in the “url-template” parameter, you must

set the params parameter and with the same name and the type.

Chapter 3 apIs and produCts

42

Listing 3-3. Create an operation with Azure CLI

az apim api operation create `

 --method GET `

 --service-name mastering-apim `

 --resource-group mastering-apim-rg `

 --api-id my-demo-api `

 --operation-id my-demo-operation `

 --display-name "My Demo Operation" `

 --description "This is a Operation for testing" `

 --url-template "/demo-operation/{pname}/{pvalue}" `

 --params name=pname description="Test1" type=paramType `

 --params name=pvalue description="Test 2" type=string

Even though we were able to add an operation to the API, we won’t be able to use

it yet as it does not process requests in any way. We will change this by adding a mock

response for this operation and by defining a simple policy. Policies will be discussed in

detail in a separate chapter, so we won’t go into the details here.

Figure 3-2 shows an easy way of adding a mock response for an API operation by

selecting the newly added operation “My Demo Operation” and clicking “+ Add policy”

in the “Inbound processing” section within the Azure portal.

Chapter 3 apIs and produCts

43

Figure 3-2. Adding a policy to an API operation

You will now be presented a list of options for changing the behavior of incoming

traffic through policies for this API operation only. Select the option mock-response and

confirm the setting “API Management response” with the value “200 OK, application/

json” by clicking the “Save” button. All incoming traffic for this API operation will now

return an HTTP status code 200. As mentioned previously, we will discuss policies

in great detail in a later chapter. Try to access the API operation now by sending the

following request, remember to change the service-name “mastering-apim” to yours:

curl -i https://mastering-apim.azure-api.net/demo/demo-operation/testkey/

testvalue

If you have done everything right, you will retrieve a HTTP/1.1 200 OK response

back, which means you have done everything right.

 Update API Operation

You may have noticed in the previous example that we have not included headers

or query parameters. We will do this in the next example, where we will update the

API operation that we already created by using the az apim api operation update

command. This command works exactly the same way as if we would create an API

Chapter 3 apIs and produCts

44

operation with one exception. It provides the --add parameter which allows for adding a

path and a key-value pair, where a value can be either a string or JSON object.

Listing 3-4 shows how to add a header and query parameter. As we already have

discussed most parameters in the previous example, I will only cover the new add

parameter. It expects a path and a key-value pair. A path can be request.headers or

request.queryParameters.

Listing 3-4. Update API operation with headers and query parameters

az apim api operation update `

 --service-name mastering-apim `

 --resource-group mastering-apim-rg `

 --api-id my-demo-api `

 --operation-id my-demo-operation `

 --add request.headers name="my-header" type="string" `

 --add request.queryParameters name="qparam" type="string"

Updating an API operation lets you add and change properties as we have seen but

also change the other settings such as description, display-name, method, and the url-

template.

 Manage APIs with Azure PowerShell
Now that you have gained some experience with the az apim api command, I want

to briefly introduce you to the Azure PowerShell module. Azure PowerShell is already

preinstalled in the Azure Cloud Shell, so you can start immediately using it. In case you

prefer to work from your local machine, follow the instructions to install the Azure Az

PowerShell module.

When performing a change on an instance of Azure API Management with Azure

PowerShell, you will need to provide a context. A context is saying where and on

what instance you want to perform a change. You might have already set the correct

subscription with the az command in the previous examples; however, the Azure

PowerShell module has its own context. If you have only one subscription because you

just created a new Azure account, you might skip this step. Otherwise, you need to get

the right subscription first and then loading into a variable:

$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ID>

Chapter 3 apIs and produCts

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-5.7.0
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-5.7.0

45

You can then set the context as follows:

Set-AzContext $context

Finally, you will use the New-AzApiManagementContext cmdlet to set the context for

working on the correct instance.

Listing 3-5 shows the complete example of setting the context for an instance of

Azure API Management. After executing both cmdlets, Get-AzSubscription and Set-

AzContext, you set the context for your Azure API Management instance by loading it

into a variable. You will need this context variable whenever you run a cmdlet on your

Azure API Management instance. As you already have set the correct subscription,

you need to set the resource group (-ResourceGroupName) and the service name

(-ServiceName) as parameters. Remember to change both variables to your values.

Listing 3-5. Setting the context of your Azure API Management instance

Get subscription

$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ID>

Set subscription by setting the context

Set-AzContext $context

Set context for Azure API Management instance

$apimContext = New-AzApiManagementContext `

 -ResourceGroupName mastering-apim-rg `

 -ServiceName mastering-apim

It is now time to perform changes on this context. You might remember the Demo

Conference API that we imported in the first chapter. The PowerShell cmdlet for this

operation is Import-AzApiManagementApi. The parameters are the same as you have set

in the Azure portal.

• The Context which tells what Azure API Management instance to

perform changes on.

• The ApiId is a unique identifier across this instance. If not set, Azure

API Management will assign a random string.

Chapter 3 apIs and produCts

46

• The specification format (SpecificationFormat) accepts “Swagger,”

“WADL,” “WSDL,” “OpenApi,” and “OpenApiJson.” As the Conference

Demo API is in JSON format, I set it to “OpenApiJson.”

• The Path is the context path of the URL. In this example, I set it

to “conf,” which results in this URL: https://conferenceapi.

azurewebsites.net/conf

Import-AzApiManagementApi `

 -Context $apimContext `

 -ApiId conf-api `

 -SpecificationFormat "OpenApiJson" `

 -SpecificationUrl "https://conferenceapi.azurewebsites.net/?format=json" `

 -Path "conf"

Running this API import cmdlet will add the Demo Conference API to your instance

the same way as you did from the Azure portal. Even though it is a convenient way to

perform changes from the Azure portal, PowerShell enables to automate repetitive tasks

such as import and delete. We will cover this topic in detail in a later topic.

Let us now clean up and delete this API by executing the following Remove-

AzApiManagementApi cmdlet. It requires two parameters, the context (Context) and the

API identifier (ApiId):

Remove-AzApiManagementApi `

 -Context $apimContext `

 -ApiId conf-api

The Azure PowerShell module provides many more cmdlets. Many of them will be

covered throughout this book in detailed chapters. For now, we have covered the basics

of managing APIs with PowerShell.

 Create API from Azure Resources
You have learned how to define an API from the Azure portal and how to create an API

from a definition file such as OpenAPI. Another way of creating an API is by creating

a link to an existing Azure resource that exposes a web API. Azure API Management

provides three resource types for that purpose that can be linked directly from the Azure

Chapter 3 apIs and produCts

https://conferenceapi.azurewebsites.net/conf
https://conferenceapi.azurewebsites.net/conf

47

portal, Logic App, Function App, and App Service. The way you create an API from an

existing Azure resource is the same for all three resource types.

In the following section, you will learn how to create an API from an Azure

App Service web application. Furthermore, you will learn why there are additional

configurations necessary to ensure that incoming traffic to your web application is

coming from your Azure API Management instance and from anywhere else.

 Create Web Application in Azure App Service

Before you create an API from an Azure resource in the Azure portal, let us create a

basic Azure App Service web application in three simple steps by using the Azure CLI

again from the Azure Cloud shell. An Azure App Service plan defines a set of compute

resources for a web application to run. You will use the free pricing tier as you will use it

only for the purpose of this example.

Listing 3-6 shows the complete example of creating an Azure App Service web

application. You will first create a resource group by using the az group create

command with the location and name as parameters. Secondly, you will need an App

Service plan which can be created with az appservice plan create. The command

requires a name, the resource group, and the pricing tier, SKU, which you can set to

“FREE.” Finally, you will create the web application itself by executing the az webapp

create command. Additional to the name and resource group, it requires the App

Service plan. In this example, I called the App Service plan “mywebappplan” and the

web application “mywebapp.”

Listing 3-6. Creating an Azure App Service web application

Create a resource group

az group create --location westeurope --name mywebapp-rg

Create an App Service plan in FREE tier

az appservice plan create --name mywebappplan --resource-group

mywebapp-rg --sku FREE

Create a web app

az webapp create --name mywebapp0815 --resource-group mywebapp-rg --plan

mywebappplan

Chapter 3 apIs and produCts

48

The web application that is created by default comes with a static website and a web

API. You can now test your web application in a browser by using the URL <WEBAPP_

NAME>.azurewebsites.net, as shown in Figure 3-3.

Figure 3-3. Publicly accessible web application

If you created successfully a web application with Azure App Service,

congratulations. Otherwise, you can create a web app by follow the steps in the official

documentation.

 Create API from Azure App Service Web Application

Now that you have an App Service web application in place, let us create an API directly

from the Azure portal. Repeat the steps from the first chapter where you imported an

API from an OpenAPI definition file. This time, you will select the “App Service” option

instead of the “OpenAPI” option.

The last time when you imported the OpenAPI file, you set the URL of the Demo

Conference API definition file. This time, you will click the browse button and select an

Azure resource, your web application. The display-name and name will be automatically

set. As API URL suffix, set the context-path for this API as you have done with the Demo

Conference API.

Chapter 3 apIs and produCts

https://azure.microsoft.com/en-us/get-started/web-app/

49

Figure 3-4 shows a successfully created API for the Azure App Service web

application. The default web application comes already with some API operations.

Click on “All operations” to see the policy for it. As mentioned earlier, policies will be

discussed in detail in a later chapter. I just wanted to show how the API and the web

application are linked with each other.

Figure 3-4. An API policy is linking to an Azure resource

Another way of creating an API from an Azure resource is by defining a Bicep or ARM

template. We will discuss the topic of deploying APIs with Bicep and ARM templates in

a later chapter, where you will learn about API development in the context of Azure API

Management.

 Products
In the beginning of this chapter, we discussed briefly the term “product” in the context of

Azure API Management. In this section, we will discuss them in greater detail and learn

how to manage them and how to add related APIs to a product that API consumers then

can subscribe to.

Chapter 3 apIs and produCts

50

Note a product bundles a set of apIs that apI consumers can gain access to
through subscriptions.

Before we dive into technical discussions, let us briefly repeat how APIs and products

relate to each other by looking at an example. Figure 3-5 shows a fictive web store that

has three APIs. The Cart API contains the product items a user has selected and wants

to buy, the Products API gives details about a product item and the Sales API gives

information about how many products have been sold. The users of the fictive store

may only access the Cart API and the Products API through the web store. The store

administrators of the web store may only access the Products API and the Sales API. To

make this work in Azure API Management, we create two products, one that we call

“Shopping Service,” and which includes the Cart API and the Products API, and another

that we call “Administration Service,” which contains the Products API and the Sales API.

Figure 3-5. Example of a products to APIs relation

API consumers such as the website of the web store and the administrators of the

web store will subscribe to either the Shopping Service or the Administrator Service. We

will use the following three subsections to demonstrate how to implement the example

of Figure 3-5.

 Create APIs
Before we look into how to create products and add APIs, we need to create those APIs.

You can do this in the same way as you did with the “My Demo API,” where you used

the az apim api create command with the Azure CLI. Run this command three times

Chapter 3 apIs and produCts

51

for each API. Alternatively, you can use Azure PowerShell, as the example in Listing 3-7

shows. Before you can run the example from the Azure Cloud Shell, execute the code

from Listing 3-5 for setting the context for Azure API Management.

Listing 3-7 shows how to use Azure PowerShell for creating the three APIs in a

Foreach loop with the New-AzApiManagementApi cmdlet. The cmdlet for creating an API

uses the following parameters:

• The Context parameter informs the cmdlet what Azure API

Management instance to use. Follow the code example of Listing 3-5

for how to set the context.

• ApiId is a unique API identifier across an Azure API Management

instance.

• The Name and the Description is what an API consumer will be

displayed in the developer portal.

• The Path parameter is the context path of the URL.

• The ServiceUrl tells where a request to route to. It is the URL of the

backend web service. As this is just an example for learning about

products, you can set this to a random URL for now.

• As protocols, you can set http or https.

Listing 3-7. Creating three APIs with Azure PowerShell

$apis = "cart", "products", "sales"

Foreach ($currentApi in $apis) {

 New-AzApiManagementApi `

 -Context $apimContext `

 -ApiId $currentApi-api `

 -Name $currentApi `

 -Description "$currentApi API for testing" `

 -Path "$currentApi" `

 -ServiceUrl "http://$currentApi.xyz/backend" `

 -Protocols @("http", "https")

}

Chapter 3 apIs and produCts

52

You should see three new APIs, “cart-api,” “products-api,” and “sales-api.” Verify this

by running the Get-AzApiManagementApi cmdlet and then pipe the output for filtering

the ApiId, as the following code shows:

Get-AzApiManagementApi -Context $apimContext | Select-Object ApiId

Now that you have all three APIs, we can continue and create the products so we can

add the APIs to them.

 Create Products
The next step in implementing Figure 3-5 is to create two products, “Shopping

Service” and “Administrator Service.” You can do this in almost the same way as you

did when you created the APIs. This time, you will use the PowerShell cmdlet New-

AzApiManagementProduct surrounded by a Foreach loop for both products.

Listing 3-8 shows how to use the Foreach loop for creating two products in Azure API

Management with Azure PowerShell. The example reuses the Context parameter from

Listing 3-5. This cmdlet requires the Title and Description parameters for displaying

in the developer portal. It also sets the unique identifier for the product, ProductId. The

last parameter, State, indicates whether the product is discoverable in the developer

portal or just visible for an administrator.

Listing 3-8. Creating two products with Azure PowerShell

$products = "shopping", "administrator"

Foreach ($currentProduct in $products) {

 New-AzApiManagementProduct -Context $apimContext `

 -Title "$currentProduct service" `

 -Description "This is the $currentProduct service" `

 -ProductId $currentProduct-service `

 -State published

}

You might want to verify if both products were created by executing the

following code:

Get-AzApiManagementProduct -Context $apimContext | Select-Object ProductId

Chapter 3 apIs and produCts

53

You might have expected two new products. Instead, the response listed two

additional products: “Starter” and “Unlimited.” Both products are built in and shall

help to get started. Both products also have subscriptions that are associated. As

we have not yet discussed subscriptions, you can delete them as well by running

the Remove-AzApiManagementProduct cmdlet with the parameters “ProductId” and

“DeleteSubscriptions,” as shown in the following:

Deletes the product: Unlimited

Remove-AzApiManagementProduct -Context $apimContext `

 -ProductId Unlimited `

 -DeleteSubscriptions

Deletes the product: Starter

Remove-AzApiManagementProduct -Context $apimContext `

 -ProductId Starter `

 -DeleteSubscriptions

Executing the Get-AzApiManagementProduct cmdlet again should now result in only

the two products that you created by yourself.

 Add APIs to Products
As products bundle APIs, the final step for implementing Figure 3-5 is to add the right

APIs to the right products. We do this by using the Add-AzApiManagementApiToProduct

cmdlet of Azure PowerShell. The cmdlet requires three parameters: “Context,” “ApiId,”

and “ProductId.”

• You set the Context of the current Azure API Management instance

by following the example of Listing 3-5.

• The ApiId of the API to be added to the product.

• The ProductId of the product that you want to add the API to.

Listing 3-9 shows an example of implementing the relations between APIs and

products, as shown in Figure 3-5. The example defines two Foreach loops, one for each

product, and iterates through $apis which in case of the Shopping Service are the Cart

API and Products API. It then calls the mentioned cmdlet for adding the current API to

the product.

Chapter 3 apIs and produCts

54

Listing 3-9. Example of adding APIs to products

Add APIs to Shopping Service

$product = "shopping-service"

$apis = "cart-api", "products-api"

Foreach ($currentApi in $apis) { `

 Add-AzApiManagementApiToProduct -Context $apimContext `

 -ApiId $currentApi `

 -ProductId $product

}

Add APIs to Administrator Service

$product = "administrator-service"

$apis = "products-api", "sales-api"

Foreach ($currentApi in $apis) { `

 Add-AzApiManagementApiToProduct -Context $apimContext `

 -ApiId $currentApi `

 -ProductId $product

}

 Summary
Congratulations, you have learned how to manage APIs and products in the context of

Azure API Management. You have also learned how to create a relation between them

so API consumers can access only the APIs that are added to the products they have

subscribed to. Even though you have not learned about the concept of subscriptions

yet, you have already seen parts of it. Some Azure PowerShell cmdlets such as

Remove-AzApiManagementProduct require subscription-related information such as

DeleteSubscriptions. You will learn about subscriptions in a later chapter when you

learn how to manage users and groups.

Chapter 3 apIs and produCts

55
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_4

CHAPTER 4

Users and Groups
We have talked about APIs and products and how to manage them in the previous

chapter. In this chapter, you will learn how to manage the consumers of the APIs, the

users. You will learn to group the users so you can simplify the access to APIs and how

the users and groups relate to the products and APIs. As you have already learned the

relation between APIs and products in the previous chapter, we will skip this discussion.

Users relate to groups like APIs to products. As products bundle related APIs together

in the sense that an API consumer can solve a problem by using a product, groups

bundle related users together in the sense that the users of a group can access the same

APIs within products.

As an example, users that belong to the same partner organization could reside in

one group. As you have many partner organizations that want to use your APIs, you

will have many groups. Products that can be accessed by certain groups will then be

associated with these groups.

Figure 1-4 shows the relation between users, groups, products, and APIs in more

detail. A user can be part of many groups that can be associated to many products. Users

that are within a group can see only those products in the developer portal and subscribe

to them that have associated accessible groups to them. You will learn everything about

subscriptions and the developer portal in separate chapters.

https://doi.org/10.1007/978-1-4842-8011-9_4#DOI

56

As you now understand the relation between users, groups, products, and APIs, we

will use the following two sections to learn how to manage users and groups and how

to associate them to products. You will use Azure PowerShell from within the Azure

Cloud Shell.

Note Users and groups are not part of the Consumption pricing tier.

Follow the steps in Listing 3-5 to set the context of your Azure API Management

instance that you want to use. Remember that you will need an Azure API Management

instance with one of the other pricing tiers and not the consumption pricing tier. In

Listing 2-4, you learned how to provision Azure API Management with the developer

pricing tier by using the Azure CLI.

 Groups
In Azure API Management, groups are used to manage the visibility of products in the

developer portal. Users who are in a group that is associated to a certain product can

see and subscribe to this product. There exist already three immutable system groups,

administrators, developers, and guests. You can also create custom groups such as

groups for partner organizations or groups for your internal developers who need access

to an internal Azure API Management product. Furthermore, groups can also be created

from an external identity provider like Azure Active Directory.

Figure 4-1. Relation between groups, users, products, and APIs

Chapter 4 Users and GroUps

57

 System Groups
System groups are immutable. They can neither be changed nor deleted, and users get

added and removed automatically by the system. Listing 4-1 shows how to list all groups

by running the Azure PowerShell cmdlet Get-AzApiManagementGroup.

Listing 4-1. List all groups

Get-AzApiManagementGroup -Context $apimContext | Select-Object GroupId,Type

As we have not created a custom group yet, the result of Get-AzApiManagementGroup

lists three groups, administrators, developers, and guests. These groups are of type

“System.”

• Administrators include the Azure subscription owners.

• Developers include all users that have signed up in the developer

portal or have been invited.

• Guests include unauthenticated users. Products that are associated

to this group should either not require a subscription or the products

associated to it will serve as documentation only.

 Create a Group
A group can be created by using the Azure PowerShell cmdlet New-

AzApiManagementGroup. As mentioned at the beginning of this section (“Groups”), there

are three different types of groups, system, custom, and external. A custom group is a

type of group that has no dependencies to other Azure resources or systems and can be

created by setting the parameter “type” to “Custom.”

Listing 4-2 shows how to create a custom group. The cmdlet uses the following

parameters:

• The Context which tells what Azure API Management instance to

perform changes on.

• The GroupId is a unique identifier across this instance. If not set,

Azure API Management will assign a random string.

Chapter 4 Users and GroUps

58

• The Name and the description are what a user will be displayed in

the developer portal.

• The Type can either be “Custom” or “External.”

Listing 4-2. Create a custom group

New-AzApiManagementGroup `

 -Context $apimContext `

 -GroupId internal `

 -Name Internal `

 -Description "Internal developers" `

 -Type Custom

You can see your new custom group in the Azure portal or by running the code of

Listing 4-1. It lists all group identifiers and their types. If you have followed this book, you

should see three system groups and one custom group.

External groups can be created by setting the parameter “Type” to “External” and the

parameter “ExternalId” to the identifier of the group from the external identity provider.

An external identity provider can be added with the Azure PowerShell cmdlet New- AzA

piManagementIdentityProvider. As of writing of this book, Azure Active Directory is

the only external provider that should be used. Other external identity providers such

as Facebook, Twitter, Google, and Microsoft are deprecated and might disappear in the

near future. We will not use Azure Active Directory as an identity provider and will use

system and custom groups throughout this book.

 Associate Groups to Products
Even though we have created groups and products, the users within the groups can’t

see any of the products in the developer portal yet, so they can’t use them yet. We can

change that by associating groups to products. A group that has access to a product can

be seen by the users in the developer portal, so they can subscribe to the product. You

will learn about the developer portal and subscriptions in a later chapter.

The Azure PowerShell cmdlet Add-AzApiManagementProductToGroup adds a group

to a product by using the “groupId” and the “productId” parameters. Listing 4-3 shows

an example of adding the product “shopping-service” to the system group “guests” in

the Azure API Management instance that is provided by the “Context” parameter from

Listing 3-5.

Chapter 4 Users and GroUps

59

Listing 4-3. Associating a group to a product

Add-AzApiManagementProductToGroup `

 -Context $apimContext `

 -GroupId guests `

 -ProductId shopping-service

Only unauthenticated users will be able to see the shopping-service with its APIs in

the developer portal. In case an API within this product requires a subscription for using,

a user must sign in first. As authenticated users are not guests anymore, users will not

see this product anymore which means that at least a second group, “Developers,” needs

to be added.

Try also to add your new internal group to the product “Administrator Service”

by running the same code from Listing 4-3 with a different GroupId and ProductId

parameter.

Add-AzApiManagementProductToGroup `

 -Context $apimContext `

 -GroupId internal `

 -ProductId administrator-service

We will use this association in the next section where we will discuss users.

 Users
Users are the consumers of the APIs. Some APIs might not require a subscription and

can be accessed directly by authenticated and unauthenticated users. In this section,

you will learn how to create users with Azure PowerShell. Furthermore, you will learn

to deactivate and reactivate a user account. Lastly, you will add a user to a group, so

products can be made visible to them in the developer portal. The developer portal is

also the place where users normally would sign up or reset their password. You will learn

about the developer portal in a later chapter.

Before we start and create a new user, let us see what users already exist by using the

Azure PowerShell cmdlet Get-AzApiManagementUser. As you will list all users, the only

parameter that is necessary is the context parameter.

Listing 4-4 pipes the result to the Select-Object cmdlet to print out the first name,

email, user identifier, and the state of the user.

Chapter 4 Users and GroUps

60

Listing 4-4. Listing all users

Get-AzApiManagementUser -Context $apimContext | Select-Object FirstName,Email,

UserId,State

If you have not yet created any user either from the Azure portal or

programmatically, the result lists only one user, the Administrator, with the email

address and the UserId of 1. The administrator is by default an active user who is already

in the “Administrator” group.

 Create a User
You will now create a new user with Azure PowerShell. As previously mentioned, the

self-service of the developer portal lets API users create users by themselves where they

fill out a form and then confirm an email they will receive to the address they provided

in the form. This is different with Azure PowerShell. By using the latest version of Azure

PowerShell, a user won’t receive an email. However, this can be achieved by using the

Azure REST API for Azure API Management.

Listing 4-5 shows how to create a user with the Azure PowerShell cmdlet

New- AzApiManagementUser. Besides the parameters such as a unique “UserId” which

is optional, “FirstName,” “LastName,” “Email,” and the “Context” (see Listing 3-5), this

cmdlet requires a secure password. A password can be secured by reading text from the

console with the cmdlet Read-Host and setting the parameter AsSecureString.

Listing 4-5. Creating a user

$securePassword = Read-Host -AsSecureString

New-AzApiManagementUser `

 -Context $apimContext `

 -UserId jon-falk-0815 `

 -FirstName Jon `

 -LastName Falk `

 -Email mastering-apim@malvik.de `

 -Password $securePassword

Chapter 4 Users and GroUps

61

After you have successfully executed the code of Listing 4-5, run the

Get- AzApiManagementUser of Listing 4-4 once again. Even though we have not set the

state of this new user, it is active by default. This is different to the developer portal where

a new user will first be in state “Pending” until a confirmation mail was confirmed.

 Deactivate and Reactivate a User
Let us now assume that this user has not paid the bill for the last month and you want

to block the user for now. This can be achieved by changing the state of this user from

Active to Blocked by using the Azure PowerShell cmdlet Set-AzApiManagementUser.

Set-AzApiManagementUser `

 -Context $apimContext `

 -UserId jon-falk-0815 `

 -State Blocked

After executing this cmdlet, the user will neither be able to access the developer

portal nor call any API. Once the user has started paying bills again, you would execute

the same code with the state Active. The user can now use the developer portal again

and call the APIs the user has access to.

 Add a User to a Group
You learned previously that products are made visible to groups in the developer portal.

It is therefore necessary to add a user to one or several groups, so that a user is able to

subscribe to a product. We will discuss subscriptions and the developer portal in later

chapters.

The following code shows how to add a user to a group by using the

Add- AzApiManagementUserToGroup cmdlet of Azure PowerShell. Run the code from

Listing 3-5 first for setting the context of the Azure API Management instance you will

use. The cmdlet requires, in addition to the context, also the GroupId and the UserId

parameters as shown in the following:

Chapter 4 Users and GroUps

62

Add-AzApiManagementUserToGroup `

 -Context $apimContext `

 -GroupId internal `

 -UserId jon-falk-0815

The user “Jon Falk” is now in the internal group that is associated to the product

“Administrator Service.” Jon Falk can now see the product and its APIs in the developer

portal and is able to subscribe to it, which we will discuss in detail in later chapters.

 Summary
In this chapter, you learned not only how to manage users and groups with Azure

PowerShell but also how they relate to products and APIs in Azure API Management.

Chapter 4 Users and GroUps

63
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_5

CHAPTER 5

Versions and Revisions
As we change and improve our backend applications over time, add new features and

remove some others, we might come to a point where we have to make changes to the

backend APIs as well. Some of them might be breaking changes and require an API

consumer to change code on the client side, while other changes are non-breaking

changes where API consumers can decide whether they want to change the client side

and eventually use a new feature or not.

Azure API Management supports both breaking and non-breaking changes by using

the concepts of versions and revisions. Versions can be used for breaking changes while

revisions can be used for non-breaking changes.

In this chapter, we will learn the concepts of both in the context of Azure API

Management and how to create and use them. Before we delve into each of them, let us

look at how they relate to each other.

Figure 5-1 shows three entities, Versions Set, Version, and Revision. A version set is

a representation of a set of versions for a single API, in this example, API v1 and API v2.

A version set defines how a version can be requested. A version on the other side is its

own API with its own API identifier. Each version has at least one revision, the current

revision with the identifier of 1 that is shown as r1 in this example. Other revisions can be

requested by appending ;rev=<ID> at the end of the URL.

https://doi.org/10.1007/978-1-4842-8011-9_5#DOI

64

Figure 5-1. Relation between API versions and API revisions

In the following sections, we will delve into both of them, versions and revisions, and

learn how to create them with Azure PowerShell and how to request them individually.

 Versions
Versions can be used for communicating breaking changes to the API consumers. An

example of a breaking change could be as simple as changing an endpoints URI from

/getcustomer/<ID> to /customer/<ID>. Clients that still call the old URI would receive

the HTTP status code 404, resource not found. There are at least two options of attacking

a breaking change:

 1. Leverage the power of policies in Azure API Management and

rewrite a request to the new URI of the backend API.

 2. Introduce a new version in Azure API Management with the

changed URI and communicate it to the API consumers.

The first option is saying that an API consumer won’t notice any change because the

API façade did not change. Instead, Azure API Management would rewrite the request

and call the backend API with the new URI. This approach increases the complexity

because a policy needs to be implemented that makes this rewrite happen. We will

discuss Azure API Management policies in detail in a later chapter and focus in this

chapter on API versions, option 2.

Chapter 5 Versions and reVisions

65

In option 2, an API consumer would choose between different API versions where

each version is a new API that has its own unique identifier.

 Version Scheme
Before we create a new version of an API, let us discuss how to call a new version. Azure

API Management offers three different version schemes for that matter:

 1. Path-based where the version is part of the URL

 2. Header-based where the version is set as a header

 3. Query-based where the version is set as a query parameter

in the URL

Listing 5-1 shows how to define a version scheme by creating a Version Set with the

Azure PowerShell cmdlet New-AzApiManagementApiVersionSet. A version set represents

a set of API versions for a single logical API like the Demo Conference API. Besides the

parameters such as the context of Azure API Management and a name, Listing 5-1 sets

the mandatory version scheme Scheme and an optional identifier ApiVersionSetId. I set

the version scheme to Segment, which means that I went for the path-based scheme.

The other options would be Header for header-based scheme and Query for query-

based scheme.

Listing 5-1. Creating a version set

New-AzApiManagementApiVersionSet `

 -Context $apimContext `

 -Name "Demo Conference API" `

 -Scheme Segment `

 -ApiVersionSetId conf-api-vs

An API that we want to be represented by this version set requires the

ApiVersionSetId. Let us see how to do this when adding the Demo Conference API as a

version.

Chapter 5 Versions and reVisions

66

 Add a New Version
A prerequisite for creating an API version is a version set, as Listing 5-1 showed. As

mentioned at the beginning of this section (“Versions”), a version is a unique API

with its own unique identifier. You can therefore create a version in the same way

as you did when you created an API, by using the Azure PowerShell cmdlet Import-

AzApiManagementApi. The difference now is that you must add the ApiVersionSetId

parameters from Listing 5-1 and a version number, ApiVersion that you choose yourself.

Note When adding a new api version in the azure portal, a version set is added
automatically.

Before you create a new version, let us re-import the Demo Conference API from

Chapter 3 and add this API to your version set, as the following example demonstrates:

Import-AzApiManagementApi `

 -Context $apimContext `

 -ApiId conf-api `

 -SpecificationFormat "OpenApiJson" `

 -SpecificationUrl "https://conferenceapi.azurewebsites.

net/?format=json" `

 -Path "conf" `

 -ApiVersionSetId conf-api-vs

The way you would call this API has not changed in any way as it is still your

original API. Let us now add a new version v1 by creating a copy of this API with the

Azure PowerShell cmdlet New-AzApiManagementApi. There are two parameters that

are interesting: SourceApiId which is the API identifier of the API that you want to

copy from, and ApiVersion that I set to v1. Notice that the parameter Path is still the

same, conf.

New-AzApiManagementApi `

 -Context $apimContext `

 -ApiId conf-api-v1 `

 -Name "Demo Conference API" `

 -ServiceUrl http://YOUR_NEW_BACKEND_API `

 -Path conf `

Chapter 5 Versions and reVisions

67

 -Protocols @("http", "https") `

 -ApiVersionSetId conf-api-vs `

 -SourceApiId conf-api `

 -ApiVersion v1

The URL of this new path-based version (/v1) has changed to http(s):

// mastering- apim.azure-api.net/conf/v1/topics.

Note Calling this endpoint will respond with an http status code 401 as it
requires a subscription key. We will discuss subscriptions in the following chapter.

As every new version has its own unique API identifier (ApiId), it can be added to

products in the same way as un-versioned APIs by using the Azure PowerShell cmdlet

AzApiManagementApiToProduct, as Listing 3-9 shows.

 Revisions
Revisions are a way of communicating non-breaking changes to API consumers. Adding

an endpoint to an existing version would, for example, not require a client side to change

its code because no existing endpoint has changed. As Figure 5-1 shows, every API and

every version has at least one revision with the ApiRevision of 1.

Listing 5-2 uses the Azure PowerShell cmdlet Get-AzApiManagementApiRevision to

demonstrate this. It uses the new version of the Demo Conference API conf-api-v1.

Listing 5-2. Get all revisions of an API.

Get-AzApiManagementApiRevision `

 -Context $apimContext `

 -ApiId conf-api-v1

Let us now create a new revision and see how we can call it.

Chapter 5 Versions and reVisions

68

 Add a New Revision
Revisions share the same API identifier (ApiId) in the sense that you provide the same

identifier for all revisions as a parameter. As you will see after you have created a new

revision, the API identifier has slightly changed. In the following example, you will

use the Azure PowerShell cmdlet New-AzApiManagementApiRevision to create a new

revision. It has four parameters:

• Context for identifying the instance of Azure API Management.

• ApiId which identifies the API that you will create a new revision of.

• ApiRevision which can be a numeric value or a string.

• SourceApiRevision which identifies the revision you want to copy

from. Without this parameter, you would get a revision without any

operations.

New-AzApiManagementApiRevision `

 -Context $apimContext `

 -ApiId conf-api-v1 `

 -ApiRevision 2 `

 -SourceApiRevision 1

After you have executed this cmdlet, you will have two revisions that can be

individually changed and tested in any way. An API consumer would still hit revision 1

unless it is called by adding the following string to the URL ;rev=2. The complete URL

would like this: https://mastering- apim.azure- api.net/conf/v1;rev=2/topics. As

mentioned previously, the API identifier has changed slightly. Running the cmdlet of

Listing 5-2 will return two revisions, one with the API identifier conf-api-v1 and the

other conf-api-v1;rev=2.

In the following section, you will learn how to make revision 2 as the current revision

where an API consumer won’t need to add the revision number ;rev=2.

Chapter 5 Versions and reVisions

https://mastering-apim.azure-api.net/conf/v1;rev=2/topics

69

 Make Revision Current
At some point, when you have developed and tested a new revision, you want

your API consumers to call it without being specific in the URL. You can do this

by making a revision as current. The Azure PowerShell cmdlet for this is New-

AzApiManagementApiRelease. It requires the context, ApiId, and ApiRevision

parameters.

New-AzApiManagementApiRelease `

 -Context $apimContext `

 -ApiId conf-api-v1 `

 -ApiRevision 2

Now that revision is flagged as current, it can be called without specifying the

revision number, as this URL demonstrates: https://mastering- apim.azure- api.net/

conf/v1/topics.

 Summary
In this chapter, you learned how to use API versions and revisions in the context of

Azure API Management. This concept is often overseen by developers who simply

want to deploy their APIs to Azure API Management. They end up creating a new API

with a slightly different path using a suffix such as -v2. The new path of the not-so-new

API – same API but a new version – is /conf-v2, which results then in the URL https://

mastering- apim.azure- api.net/conf- v2/topics.

A good practice of using the concept of versions and revisions in Azure API

Management is by including it as part of an API deployment pipeline or routine that you

as the Azure API Management engineer or administrator provide to the developers, so

they don’t have to know these details of Azure API Management.

Chapter 5 Versions and reVisions

https://mastering-apim.azure-api.net/conf/v1/topics
https://mastering-apim.azure-api.net/conf/v1/topics
https://mastering-apim.azure-api.net/conf-v2/topics
https://mastering-apim.azure-api.net/conf-v2/topics

71
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_6

CHAPTER 6

Subscriptions
An important part of managing APIs in Azure API Management is to govern their usage.

In some cases, an API will be open for the public and can be called by anyone and from

any client without any restrictions, like the original Demo Conference API that you

imported early on. In other cases, you might want to be specific about who can call what

API. This is where subscriptions come into play.

Subscriptions describe the APIs that a user can call by including a subscription key

in the request. Furthermore, subscription keys can be used within policies to restrict or

change the behavior of APIs. In this chapter, you will learn how to manage subscriptions

with Azure PowerShell and understand how subscriptions fit into the context of API

security. Before we start, let us first take a look at how subscriptions fit into the bigger

picture of Azure API Management.

Figure 6-1 shows how subscriptions relate to users, products, and APIs. Both,

products and APIs, can be configured in a way that they require a caller to include a

subscription key to the request. As users might want to call many APIs across many

products, many subscriptions might be associated to a single user. Products on the other

side can also be associated to many subscriptions because many users might want to use

the same product. Compared to APIs, products allow for an upper limit of subscriptions.

Since Azure API Management introduced the consumption pricing tier, a subscription

can also be associated with either one or all APIs, which means a product is not a

requirement for using subscriptions.

https://doi.org/10.1007/978-1-4842-8011-9_6#DOI

72

Figure 6-1. Relation between users, products, APIs, and subscriptions

Let us look at what subscriptions already exist in your Azure API Management

instance by using the Azure PowerShell cmdlet Get-AzApiManagementSubscription

and then piping the result for printing some of the attributes. Obtain the context of your

Azure API Management instance from Listing 3-5.

Get-AzApiManagementSubscription -Context $apimContext | `

 Select-Object SubscriptionId,Name,ProductId,UserId

If you have followed the examples in this book, you will get a list of three

subscriptions, as shown in Table 6-1. The Master subscription is the only subscription

that can’t be deleted. As its name suggests, it is a built-in all-access subscription

that you should never share. It was introduced to simplify API testing. The other two

subscriptions are each associated with a product and the administrator user. They were

automatically created when you created the products.

Table 6-1. Example list of subscriptions

SubscriptionId Name ProductId UserId

Master Built-in all-access subscription

607d4035d613890b4497801b shopping-service 1

607d4036d613890b4497801d administrator-service 1

Chapter 6 SuBSCriptionS

73

Before we continue and use one of the subscriptions in a request, let us create one

subscription in the following section.

 Creating a Subscription
You saw in Figure 6-1 that you do not need to associate a user to a subscription. However,

you might want to know what user is calling what API. Maybe it is important to you for

statistical reasons or because you intend to monetize your APIs. Whatever your reason

is, it can be a good idea to have user-specific subscriptions, so you are able to suspend

specific users if you must.

You create a subscription with the Azure PowerShell cmdlet New-

AzApiManagementSubscription. Besides the context of your Azure API Management

instance that you want to use (see Listing 3-5), I set the following parameters:

• SubscriptionId is an identifier that you can choose yourself.

• Name is displayed in the developer portal and often the same as the

SubscriptionId.

• ProductId is the product a user can use by this subscription.

• UserId is the user that is identified in a request.

• State can be “Suspended,” “Active,” “Expired,” “Submitted,”

“Rejected,” “Cancelled.”

New-AzApiManagementSubscription `

 -Context $apimContext `

 -SubscriptionId jon-falk-0815_shopping-service `

 -Name jon-falk-0815_shopping-service `

 -ProductId shopping-service `

 -UserId jon-falk-0815 `

 -State Active

When you execute this cmdlet, you will add a new subscription that user Jon Falk can

use to call APIs that are associated with the Shopping Service. Let us see how we can do

this in the following section.

Chapter 6 SuBSCriptionS

74

 Revealing Subscription Keys
You will now send a request by using the subscription that you just created. Before you

do this, I want to briefly talk about subscription keys that come with a subscription.

Subscriptions come always with two keys, a primary key and a secondary key. Both

keys work in the same way, and you can use either of them. The reason there are two of

them is in case you must regenerate a key. A user or a client application can simply try

the other key.

Listing 6-1 shows how to reveal the subscription keys that you created for Jon Falk by

using the Azure PowerShell cmdlet Get-AzApiManagementSubscriptionKey. This cmdlet

expects at least two parameters, the context (see Listing 3-5) and the identifier of the

subscription.

Listing 6-1. Reveal subscription keys.

Get-AzApiManagementSubscriptionKey `

 -Context $apimContext `

 -SubscriptionId jon-falk-0815_shopping-service

If you have followed the examples in this book, you won’t have an API in the

shopping service that you can call. Import therefore the Petstore API and add it to the

shopping-service product as shown in the following:

#Import API

Import-AzApiManagementApi `

 -Context $apimContext `

 -ApiId petstore-api `

 -SpecificationFormat "OpenApiJson" `

 -SpecificationUrl "https://petstore.swagger.io/v2/swagger.json" `

 -Path "petstore"

Add API to product

Add-AzApiManagementApiToProduct `

 -Context $apimContext `

 -ApiId petstore-api `

 -ProductId shopping-service

Chapter 6 SuBSCriptionS

75

As a last step, I recommend renaming the subscription key that you will send in

the header, so it is not obvious to others what API management tool you are using. The

default key for a header is Ocp-Apim-Subscription-Key and for a query parameter

subscription-key. Execute the Azure PowerShell cmdlet Set-AzApiManagementApi to

rename the subscription header key to ApiKey.

Set-AzApiManagementApi `

 -Context $apimContext `

 -ApiId petstore-api `

 -SubscriptionKeyHeaderName ApiKey

 Calling API with Subscription Key
As you have all the necessary entities such as user, product, API, and subscription set up,

let us look at Figure 6-2 and see how they relate to each other in detail. The Petstore API

is associated to the Shopping Service product that the user Jon Falk has subscribed to.

He can now use one of the subscription keys to call an operation of the Petstore API.

Figure 6-2. User Jon Falk subscribes to Shopping Service product to call Petstore
API with the ApiKey

Use the following cURL command to call the /petstore/store/inventory operation

within the Petstore API. Use the primary key that you revealed in Listing 6-1 and replace

it with <PrimaryKey>.

curl -iH "ApiKey: <PrimaryKey>" https://mastering-api-management.azure-api.

net/petstore/store/inventory

If everything went well, you should get an HTTP status code 200.

Chapter 6 SuBSCriptionS

76

 Summary
In this chapter, you have learned about the concept of subscriptions in Azure API

Management. You understand now how they relate to users, products, and APIs, but also

how you create and manage them with Azure PowerShell.

You might assume that subscription keys contribute to the overall security of the

backend APIs as users can get individual subscription keys that only they know about.

This is partly true and partly wrong.

Firstly, subscription keys are sent in plaintext, which makes them vulnerable to

man-in-the-middle attacks. Secondly, in many organizations that I have seen, Azure

API Management is a shared instance. Developers across many different teams and

units have access to the same instance and can reveal all subscription keys. As many

cyberattacks come from the inside, subscription keys might easily be accessible. They

are also observable in logs to those that have access.

Treat subscription keys to govern what API consumers can access what APIs, but

not to secure your backend web services. Those should ideally have their own security

concepts implemented.

Chapter 6 SuBSCriptionS

77
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_7

CHAPTER 7

Policies and Named
Values
In the previous chapters, we focused on how to manage APIs, products, users, groups,

and subscriptions. While all these entities are necessary for describing who can call what

API, we have not talked about how Azure API Management can help to alter the behavior

of an API. Let me give you three examples of why this might be interesting for you:

• API migration: Instead of sending all petstore requests to the same

legacy petstore backend API, you might want to send the requests

of one operation to a new and modern Azure Function App that you

have created.

• XML to JSON: You have a legacy web service that sends XML

responses, and you use Azure API Management to convert those XML

responses to JSON before returning them to the API consumer.

• Logging to Event Hub: You want to log all API calls to Azure Event

Hub so that you are more flexible in terms of the consumers of

the logs.

As policies are very flexible, and you will learn why in the following sections, the use

cases are endless. I like to say that policies are the heart of Azure API Management. It

is where you can change the behavior of one operation, an entire API, a product that is

affecting many APIs, or all of them.

Named Values in comparison are the properties of the policies and being used

within. They are managed independently because they can be used in all policies.

In this chapter, you will learn how to change the behavior of your APIs. We will start

by discussing policies from a high level before we make some minor changes to an

https://doi.org/10.1007/978-1-4842-8011-9_7#DOI

78

API. You will then learn how to scope a policy to a certain API operation, API, product, or

all APIs. Finally, we will look at some policy examples, some are more common; others

are more interesting.

 Policies
With Azure API Management policies, we can change the behavior of any API. Instead of

just accepting an incoming request and routing it to the right backend web service, we

can validate the request first and check whether it has the correct headers, we can reply

with an alternative response message in case a backend web service does not work as

expected, or we can return a result from a cache; the possibilities are endless. The reason

for this flexibility is policy expressions that we can apply on a request and the response

by using a subset of .NET Framework types which we express in the C# language. Azure

API Management provides already many predefined policy statements such as validating

the content, setting usage quota, or rewriting URLs. Those predefined policy statements

are expressed in XML. Before we dive into a policy and implement a behavioral change

in an API, let us first understand the inner working of a policy.

You might ask yourself, why should I want to code in C# within XML. The simple

answer is: “You don’t.” Microsoft bought this service with this concept already in place

and as of now, there are no plans to change this. Obviously, this is a drawback of Azure

API Management. However, there are utilities that help you to implement policies that

you will learn about.

Figure 7-1 shows an API consumer (Client) that sends a request to an API with

a policy. The policy describes four sections. Behavioral changes that you will make

on an incoming request goes into the inbound section. You might remember when

you mocked an API operation (see Figure 3-2), you did this in the inbound section of

the policy.

Changes can also be made right before a request is being forwarded to the backend

web service. Later in this chapter, you will learn how to change the backend web service

of an API operation in the backend section of a policy.

Before you send a response back to the client, you might want to make a behavioral

change there as well. As an example, you might need to add a certain header to all

responses across all APIs. Maybe you want to transform an XML response from a certain

legacy web service into JSON. You do this in the outbound section of a policy.

Chapter 7 poliCies and named Values

79

Finally, whenever an error occurs, like a timeout from a backend web service, you

can catch this in the on-error section and add a good and consistent error message

across all APIs to the response.

Figure 7-1. Policy statements and expressions flow

What you have seen now is how one policy works from a high-level perspective.

What you have not seen and learned yet is how to implement a policy and how to scope

a policy to what operation, API, or product you want. Before we discuss each of these

questions, let us look at a default policy from the inside, the XML code.

 Simple Policy
In this section, I will show you a policy from the inside, talk about the XML code, and

implement a minor behavioral change; limiting the rate that an API can be called. Before

you continue and implement this, let us look at a default policy by navigating to the

policy editor in the Azure portal for one API operation, as shown in Figure 7-2.

Chapter 7 poliCies and named Values

80

Figure 7-2. Navigating to the policy editor

You will now see the policy editor for the GetTopics endpoint. Listing 7-1 shows the

default policy that describes the implementation of Figure 7-1. It shows the four sections,

inbound, backend, outbound, and on-error. Within these sections, you find the <base />

definition which inserts a policy that is scoped one level above. We will discuss scoping

in the following section. For now, pretend that it is not there, as we will only deal with

one policy in this section.

Listing 7-1. Default policy

<policies>

 <inbound>

 <base />

 </inbound>

 <backend>

 <base />

 </backend>

 <outbound>

 <base />

 </outbound>

Chapter 7 poliCies and named Values

81

 <on-error>

 <base />

 </on-error>

</policies>

The default policy does not change behavior in any way. We will change this now by

adding the predefined policy statement <rate-limit-by-key> to the inbound section

as Listing 7-2 shows. The attributes tell that we can call the GetTopics operation five

times (calls) within one minute (renewal-period). The numbers are based on a key

(counter-key) which is an IP address that is stored in context.Request.IpAddress. We

will dive into the syntax and expressions in a later section.

Listing 7-2. Limiting the number of calls per IP address

<inbound>

 <base />

 <rate-limit-by-key calls="5" renewal-period="60" counter-key="@

(context.Request.IpAddress)" />

</inbound>

After clicking Save, you can test this policy by calling the GetTopics operation six

times. I used a simple for-loop in Bash and printed only the HTTP status code separated

with a comma.

for i in $(seq 1 6); do

 curl -s -o /dev/null -w "%{http_code}," -H "ApiKey: <YOUR_SUBSCRIPTION_

KEY>" https://mastering-apim.azure-api.net/conf/topics

done

The result is as expected; it went well five times before we received the HTTP status

code 429 (Too many requests). Remember that the policy is based on the IP address.

Clients with other IP addresses can still call this operation and receive an HTTP status

code 200 (OK).

200,200,200,200,200,429

You have learned how to change a policy on API operation level by making a simple

change in the policy editor of the Azure portal. In the following section, you will learn

how to scope policies for operations, APIs, products, and all APIs.

Chapter 7 poliCies and named Values

82

 Scoping
Policies can be scoped on different levels, global, product, API, and operation. They can

be mixed or stand-alone. In the previous section, you implemented a change in a policy

of one operation. You noticed the policy statement <base />. It tells where an upper-

level policy will be inserted. Before we will implement an example to demonstrate this,

let us look at how policies depend on each other

Figure 7-3 shows a global policy at the top that can be inserted in all policies in the

levels that are below. I say “can” because it depends on whether you set <base /> or not,

and so, will be inserted in a policy below or not. The same is true for all other policies.

At the end, you will have an effective policy that might include a combination of policies

from each level. I marked policies on each level with a star to highlight those that would

be part of an effective policy.

Figure 7-3. Policy scoping

You learned where to implement a policy for an operation. As there is a policy on

each level, I want to show you where to access the other policies in the Azure portal.

Chapter 7 poliCies and named Values

83

Figure 7-4 shows where to click in the Azure portal to access the policy editor for

each level despite the product level policy. You find the policy editor for products by

selecting a product in the Azure portal and then clicking Policies. We will deploy policies

in a different way in a later chapter.

Figure 7-4. Policies in different scopes

You will now implement a policy on the global level and prevent the use of the

master subscription key “Built-in-all-access subscription” for all calls no matter what

product, API, or operation is called. This can be useful to prevent calls that accidentally

have been shared with your API consumers as this key allows access to all operations in

Azure API Management.

Click on All APIs and then open the policy editor as shown in Figure 7-4. Replace

then the inbound section of this global policy with the code from Listing 7-3. The

implementation uses a control flow policy that is expressed with <choose/>. We will

discuss syntax and expressions in the following section. Inside the <choose/> element,

you must put at least one <when/> element with a condition. In this example, we check

whether the subscription is set and its Id equal’s “master”. If both evaluations are true,

we create a new response by setting the HTTP status code to 400 (Bad Request), the

Content-Type header to json, and the body with a message saying “Access denied.”

Chapter 7 poliCies and named Values

84

Listing 7-3. Deny policy for the master subscription key

<inbound>

 <choose>

 <when condition="@(context.Subscription != null && context.

Subscription.Id == "master")">

 <return-response>

 <set-status code="403" reason="Forbidden" />

 <set-header name="Content-Type" exists-action="override">

 <value>application/json;charset=UTF-8</value>

 </set-header>

 <set-body>

 {"message": "Access denied."}

 </set-body>

 </return-response>

 </when>

 </choose>

</inbound>

Test this policy by sending the following request with the master subscription key, as

Listing 7-4 demonstrates.

Listing 7-4. Calling an API with the master subscription key

curl -iH "ApiKey: <MASTER_SUBSCRIPTION_KEY>" https://mastering-apim.azure-

api.net/conf/topics

If everything went well, you should receive the following response:

HTTP/1.1 403 Forbidden

Content-Length: 75

Content-Type: application/json;charset=UTF-8

Date: Sat, 08 May 2021 16:12:25 GMT

{"message": "Access denied."}

You have implemented two policies, one on the operational level for GetTopics and one

on the global level. The response was an Access denied message. What happens if we send

the same request six times? You remember that the policy of the GetTopics operation will

return an HTTP status code 429. The answer to this question is in the following section.

Chapter 7 poliCies and named Values

85

 Calculating Effective Policy
As you implement policies on different levels, you might lose track of what an effective

policy would look like. An effective policy is a complete policy that includes policies from

all levels, global, product, API, and operation. In Listings 7-2 and 7-3, you implemented

two policies, one for an operation and then the global policy.

Figure 7-5 shows how to calculate the effective policy for an operation that a request

would call. Click Calculate effective policy. A list with all available products will appear.

As you can implement policies on product level as well, you will select the product that

the user you want to test with would use.

Figure 7-5. Calculate effective policy

As a result of the calculation, an effective policy will appear as Listing 7-5 shows.

I show only the inbound section of the effective policy here because we have not

changed any other section (backend, outbound, on-error) yet. The policy shows that

the global policy got inserted before the operation policy. Sending the same request

(see Listing 7-4) six times will always return HTTP status code 400, never 429. You

can change this by changing the sequence and setting <rate-limit-by-key> before

<base/> of Listing 7-2. As mentioned earlier, <base/> inserts the upper-level policy

(see Figure 7-3). If you remove <base/>, the upper-level policy won’t be inserted at all.

Chapter 7 poliCies and named Values

86

Listing 7-5. Effective policy

<inbound>

 <!-- base: Begin Api scope -->

 <!-- base: Begin Product scope -->

 <!-- base: Begin Global scope -->

 <choose>

 <when condition="@(context.Subscription != null && context.

Subscription.Id == "master")">

 <return-response>

 <set-status code="400" reason="Bad Request" />

 <set-header name="Content-Type" exists-action="override">

 <value>application/json;charset=UTF-8</value>

 </set-header>

 <set-body>{"message": "Access denied."}</set-body>

 </return-response>

 </when>

 </choose>

 <!-- base: End Global scope -->

 <!-- base: End Product scope -->

 <!-- base: End Api scope -->

 <rate-limit-by-key calls="5" renewal-period="60" counter-key=

"@(context.Request.IpAddress)" />

</inbound>

You have now learned how policies on different levels depend on each other and

how to calculate an effective policy. Even though that you have implemented just a few

lines of code in two policies, the effective policy has many lines, and it might get harder

to maintain policies without tools that can help us to manage them. Imagine how an

effective policy would look like if you had implemented a policy with several expressions

on each level. We will dive into how to work with policies in a later chapter.

 Expressions
An expression within a policy is well-formed C# code that has access to the implicitly

provided context variable and a subset of .NET Framework types. Before we look at

Chapter 7 poliCies and named Values

87

the context variable and the .NET Framework types, I want to show you how to write

expressions in Azure API Management policies.

There are two types of statement expressions, single statement expressions and

multi-statement expressions. Let us discuss each of them in the following two sections

by using some examples.

 Single Statement Expressions

Single statement expressions are enclosed in @(expression). You have already seen

some examples like in the example with rate-limit-by-key from Listing 7-2, where we

read the requester’s IP address.

<rate-limit-by-key calls="5" renewal-period="60" counter-key="@(context.

Request.IpAddress)" />.

Another example of a single statement expression is assigning a value to a variable

with set-value. Let us assume that we need a certain value like the requester’s IP

address at several places within an effective policy, meaning that we need the IP

address across several policy scopes, as shown in Figure 7-3. We can set the IP address

in the inbound section of GetTopics of the Demo Conference API as a single statement

expression.

<set-variable name="ip" value="@(context.Request.IpAddress)" />

Values are bound to the context variable. This means that we have access to them

across all scopes of policies. Let us try this out by setting a new header in the outbound

section of the global policy – which is a different scope – with the value of the ip variable

that we just have set.

<outbound>

 <set-header name="X-IP" exists-action="override">

 <value>@((string)context.Variables["ip"])</value>

 </set-header>

 <base />

</outbound>

The effective policy will look as is shown in Listing 7-6.

Chapter 7 poliCies and named Values

88

Listing 7-6. Variables in policies

<policies>

 <inbound>

 <!-- base: Begin Api scope -->

 <!-- base: Begin Product scope -->

 <!-- base: Begin Global scope -->

 <choose>

 <when condition="@(context.Subscription != null && context.

Subscription.Id == "master")">

 <return-response>

 <set-status code="400" reason="Bad Request" />

 <set-header name="Content-Type" exists-

action="override">

 <value>application/json;charset=UTF-8</value>

 </set-header>

 <set-body>{"message": "Access denied."}</set-body>

 </return-response>

 </when>

 </choose>

 <!-- base: End Global scope -->

 <!-- base: End Product scope -->

 <!-- base: End Api scope -->

 <set-variable name="ip" value="@(context.Request.IpAddress)" />

 <rate-limit-by-key calls="5" renewal-period="60" counter-key=

"@((string)context.Variables["ip"])" />

 </inbound>

 <backend>

 <!-- base: Begin Api scope -->

 <!-- base: Begin Product scope -->

 <!-- base: Begin Global scope -->

 <forward-request />

 <!-- base: End Global scope -->

 <!-- base: End Product scope -->

 <!-- base: End Api scope -->

 </backend>

Chapter 7 poliCies and named Values

89

 <outbound>

 <!-- base: Begin Api scope -->

 <set-header name="X-IP" exists-action="override">

 <value>@((string)context.Variables["ip"])</value>

 </set-header>

 <!-- base: End Api scope -->

 </outbound>

 <on-error />

</policies>

You can now send a request with cURL and print out only the headers to verify that it

contains the X-IP header.

curl -I -X GET -H "ApiKey: <MASTER_SUBSCRIPTION_KEY>" https://mastering-

apim.azure-api.net/conf/topics

 Multi-Statement Expressions

Multi-statement expressions are enclosed in @{expressions}. They must end with a

return statement where return null; is a valid statement.

In Listing 7-7, I added a multi-statement expression to the inbound section of the

“Add a new pet to the store” POST operation of the petstore API from Chapter 6. The

operation expects a JSON body with a name of the new pet. The example reads the name

and returns it as plaintext. We will use the return-response definition and set the pet’s

name in the body with set-body.

Listing 7-7. Multi-statement expression

<inbound>

 <return-response>

 <set-body>@{

 JObject body = context.Request.Body.As<JObject>();

 return (string)body["name"];

 }</set-body>

 </return-response>

 <base />

</inbound>

Chapter 7 poliCies and named Values

90

You can test it by sending a POST request with a JSON string, as Listing 7-8

demonstrates.

Listing 7-8. Calling POST operation

curl -X POST \

 -d "{\"name\": \"Sina the dog}]}" \

 -iH "ApiKey: <MASTER_SUBSCRIPTION_KEY>" \

 -H "Content-Type: application/json" \

 https://mastering-apim.azure-api.net/petstore/pet

The response will be Sina.

HTTP/1.1 200 OK

Content-Length: 4

Date: Sat, 15 May 2021 13:17:21 GMT

Sina

This example demonstrated how you can implement policies over multiple lines. Be

aware that multi-statement expressions lead to larger effective policies. Implementing

larger policies on different scope levels can become harder to maintain over time,

especially if you have many API developers that work within the same instance of

Azure API Management. I have seen effective policies over many hundreds of lines.

Maintaining those can become very challenging. Luckily, there are tools that can help us

and that give us debugging capabilities. We will discuss this in a later chapter.

 Named Values
Named values are key/value pairs that are used in policies. Instead of using hard coded

values in policies that might change over time, we can set placeholders (named values)

that can be changed independently from policies. There are three different types of

them, plaintext, secrets, and Azure Key Vault secrets.

 Plaintext
Until now, we have routed our requests to the original backend APIs. In case of the

petstore API, our requests were routed to https://petstore.swagger.io/v2. Let us

Chapter 7 poliCies and named Values

https://petstore.swagger.io/v2

91

now assume that we forked and changed the petstore backend API. Instead of calling

the old backend API at petstore.swagger.io, we will route all petstore requests to a new

URL https://petstore.azurecloud.no, as shown in Listing 7-9. We can do this by using

set-backend-service in the inbound section of the API policy.

Listing 7-9. Route request to backend API

<inbound>

 <base />

 <set-backend-service base-url="https://petstore.azurecloud.no" />

</inbound>

Let us also assume that we are working on a new implementation of the petstore API

and we want to change the URL in the API policy. In such a case you use named values.

Figure 7-6 visualizes the use case that we are going to implement in Azure

API Management. All clients call the petstore API by using the URL of Azure API

Management https://mastering- apim.azure- api.net/petstore. The API policy of

the petstore API changes from https://petstore.swagger.io to https://petstore.

azurecloud.no, as shown in Listing 7-9. We also know that we will change the URL

again, to a new backend API https://store.azurecloud.no.

Figure 7-6. Routing to different backend APIs

Chapter 7 poliCies and named Values

https://petstore.azurecloud.no
https://mastering-apim.azure-api.net/petstore
https://petstore.swagger.io
https://petstore.azurecloud.no.as
https://petstore.azurecloud.no.as
https://store.azurecloud.no

92

Instead of hard coding the URL of our forked petstore API https://petstore.

azurecloud.no in the API policy, we will use a named value that we can change

independently from policies, which simplifies the process of changing the backend URL

to a future petstore API.

You can use a named value by replacing the URL with the key “petstoreUrl” inside

two curly brackets.

<set-backend-service base-url="{{petstoreUrl}} " />

If you click Save, it will fail. The reason is that the petstoreUrl named value

does not exist yet. Create a new named value with the Azure PowerShell cmdlet

New- AzApiManagementNamedValue. Remember to set the $apimContext variable first by

executing the code from Listing 3-5.

New-AzApiManagementNamedValue `

 -Context $apimContext `

 -Name petstoreUrl `

 -NamedValueId petstoreUrl `

 -Value https://petstore.azurecloud.no

Once the future petstore API is implemented and you want to route all calls, you can

simply update the value of “petstoreUrl” by using Set-AzApiManagementNamedValue.

Set-AzApiManagementNamedValue `

 -Context $apimContext `

 -NamedValueId petstoreUrl `

 -Value https://store.azurecloud.no

As mentioned, a named value is replaced by the value of it. A value does not need to

be a string or a number; it can contain policy expressions, code, as well. I created a new

named value code that has the value 100+100 as the following example shows.

Get-AzApiManagementNamedValue `

 -Context $apimContext `

 -NamedValueId code | Select-Object Value

Value

100+100

Chapter 7 poliCies and named Values

https://petstore.azurecloud.no
https://petstore.azurecloud.no

93

In Listing 7-10, I replaced the inbound section of the “Add a new pet to the store”

policy, where I set a variable calculatedValue with the value of {{code}}. Sending the

same request of Listing 7-8 will result in 200.

Listing 7-10. Code as Named Value

<return-response>

 <set-body>@{

 int calculatedValue = {{code}};

 return calculatedValue.ToString();

 }</set-body>

</return-response>

Setting the value of a named value to C# code is possible. However, it is something

that you should avoid doing as maintaining such a policy can get difficult.

 Secrets
We have worked with plaintext values in the previous section. In this section, we will work

with secrets, encrypted values. Secrets are managed in a slightly different way than plaintext

values. Let us first create a secret by executing the New- AzApiManagementNamedValue

cmdlet once again. This time, we add a new parameter -Secret which tells Azure API

Management to encrypt this value.

New-AzApiManagementNamedValue `

 -Context $apimContext `

 -Name mysecret `

 -NamedValueId mysecret `

 -Value "TOP SECRET" `

 -Secret

As secrets are encrypted named values, they must be accessed with a different

PowerShell cmdlet, Get-AzApiManagementNamedValueSecretValue. Executing the

following cmdlet will decrypt the value.

Get-AzApiManagementNamedValueSecretValue `

 -Context $apimContext `

 -NamedValueId mysecret | Select-Object Value

Chapter 7 poliCies and named Values

94

Value

TOP SECRET

Listing 7-11 shows a modified example of Listing 7-10 of the inbound section where

we return the secret.

Listing 7-11. Secret in policy

<return-response>

 <set-body>@{

 return "{{mysecret}}";

 }</set-body>

</return-response>

Sending the same POST request from Listing 7-8 will result in TOP SECRET.

curl -X POST \

 -d "{\"name\": \"Sina the dog}]}" \

 -iH "ApiKey: <SUBSCRIPTION_KEY>" \

 -H "Content-Type: application/json" \

 https://mastering-apim.azure-api.net/petstore/pet

Another example where secrets are used is by importing an Azure Logic App and

using Azure API Management as the API gateway. In such a case, the shared access

signature of the Logic App is stored as a secret and used in a rewrite-uri policy

definition of the operation.

 Secrets from Azure Key Vault
Many teams in many organizations share an instance of Azure API Management. This

is necessary to bundle APIs to products. The challenge for some organizations might

be to protect certain named values such as secrets from developers that have access to

the shared instance of Azure API Management but who should not be eligible to access

certain secrets. As an example, one team works on a web service and makes it accessible

for customers that are already using some other APIs. To protect the web service from

being accessed from other channels than Azure API Management, they implemented

basic authentication which requires credentials in the header of a request. It’s therefore

common practice to store secrets not as named values but in an Azure Key Vault.

Chapter 7 poliCies and named Values

95

Figure 7-7 shows how to enable Azure API Management to read secrets from Azure

Key Vault by using its managed service identity.

Figure 7-7. Azure API Management uses its identity to access Azure Key Vault

Let us look at an example by using Azure Key Vault for storing a secret that we will

use in the policy of Listing 7-11.

 Enable Managed System Identity in Azure API Management

In Azure, a managed system identity can be assigned to a managed resource such as

an Azure Function, App Service, and also an instance of Azure API Management. A

resource with an identity has the capabilities to work with other resources that leverage

Azure Active Directory for authentication. We can enable a managed system identity

(MSI) in Azure API management either manually in the Azure portal or by using the

Azure PowerShell cmdlet Set-AzApiManagement as the following example shows. The

cmdlet requires two parameters in our case, an input object and the flag that is saying

that you want to enable a system managed identity. The input object is not the context

from Listing 3-5 that we have used throughout this book. Instead, it is the name of your

instance and the resource group. You can either set both values directly with Get-

AzApiManagement or read them from the context variable $apimContext as shown:

$apim = Get-AzApiManagement `

 -Name $apimContext.ServiceName `

 -ResourceGroupName $apimContext.ResourceGroupName

Set-AzApiManagement `

 -InputObject $apim `

 -SystemAssignedIdentity

What happens when you enable a system managed identity is that a representation

of the Azure API Management instance in the form of an application gets created in

Azure Active Directory. It is the application ID, or client ID, that you will need to tell

Azure Key Vault to allow access from there, as Figure 7-7 describes.

Chapter 7 poliCies and named Values

96

Figure 7-8 shows how to get the application (client) ID of your Azure API

Management instance. Navigate to the left-hand menu or to the search field at the top

in the Azure portal to Azure Active Directory. Choose App registration or search for the

service name, in my case master-apim. Copy the value of Application (client) ID; you

will need this ID in the next section. If you want to learn how MSI works in detail, visit

Managed identities for Azure resources | Microsoft Docs.

Figure 7-8. Obtain the application (client) ID of Azure API Management

You have now prepared Azure API Management for accessing Azure Key Vault. Let us

in the next section create first an Azure Key Vault, and then set the right access policy for

Azure API Management.

 Preparing Azure Key Vault

Until now, we have not yet created an Azure Key Vault. You can do this either by

searching for it in the Azure portal or by creating it with Azure PowerShell. As the focus

of this book is Azure API Management, we will use the simplest way and use the Azure

PowerShell cmdlet New-AzKeyVault. The cmdlet requires a name, the location, and the

resource group to deploy to, as the following example shows:

New-AzKeyVault `

 -Name MasteringApimKeyVault `

 -Location WestEurope `

 -ResourceGroupName mastering-apim-rg

Chapter 7 poliCies and named Values

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

97

You will now have a new Azure Key Vault. Figure 7-9 demonstrates how to add a new

secret mykvsecret. Click Generate/import to create a new secret with a value of your

choice; I set it to “TOP SECRET FROM KEY VAULT”.

Figure 7-9. Create secret in Azure Key Vault

The next step is to authorize Azure API Management to get secrets from this

Azure Key Vault. You will do this by setting an access policy for the managed

identity you created in the previous section. We will use the Azure PowerShell

cmdlet Set-AzKeyVaultAccessPolicy. The cmdlet requires the name of your Azure

Key Vault and the resource group it is deployed to. Furthermore, you will set the

ServicePrincipalName to the Application (client) ID from Figure 7-8 which represents

your Azure API Management instance. Lastly, you will set the access policy to at least get

and list, as the following example demonstrates:

Set-AzKeyVaultAccessPolicy `

 -VaultName MasteringApimKeyVault `

 -ResourceGroupName mastering-apim-rg `

 -ServicePrincipalName <Application (client) ID> `

 -PermissionsToSecrets get,list

Once executed, Azure API Management is authorized to read secrets from your

Azure Key Vault.

 Using Secret from Azure Key Vault in Policies

The setup of Figure 7-8 is now in place and it is time to use secrets in policies. In

comparison to encrypted values that are stored in Azure API Management, secret values

from Azure Key Vault are stored as references in Azure API Management.

Chapter 7 poliCies and named Values

98

Figure 7-10 shows how to add reference to a secret from Azure Key Vault in Azure API

Management. Open Named Values in the left-hand menu of Azure API Management

and click Add to create a new named value pair. Give it a name and select the type Key
Vault. A new plane opens where you will select your Azure Key Vault and the secret you

want to reference.

Figure 7-10. Adding a secret from Azure Key Vault

Referencing a secret from Azure Key Vault is only possible because you gave it

permission by adding an access policy for the managed system identity of your Azure

API Management instance.

From here, you can proceed as you did in Listing 7-11. In the following inbound

section of the “Add a new pet to the store” policy, I changed only the named value to

{{mykvsecret}}, as the following example shows:

<return-response>

 <set-body>@{

 return "{{mykvsecret}}";

 }</set-body>

</return-response>

Chapter 7 poliCies and named Values

99

Save your change and call this operation by using the following cURL command that

you have used before:

curl -X POST \

 -d "{\"name\": \"Sina the dog}]}" \

 -iH "ApiKey: <SUBSCRIPTION_KEY>" \

 -H "Content-Type: application/json" \

 https://mastering-apim.azure-api.net/petstore/pet

The response of this call will be your secret value, presented in plaintext. In my case,

it is TOP SECRET FROM KEY VAULT.

 Examples
You have learned the essentials of policies in Azure API Management. You also got the

tools to create and maintain these policies. In this section, we will look at two interesting

use cases and discuss how to implement them in policies.

 Validations
We have not discussed security in Azure API Management yet – we will so in a later

chapter – however, I want to give you a brief overview and introduce validation policies.

Even though validation policies are part of API security, they are not a replacement for

a Web Application Firewall (WAF), but they can help to mitigate possible attacks on

web APIs.

There are four different validation policies available in Azure API Management,

validate-content, validate-parameters, validate-headers, and validate-status-

code. I will demonstrate the first two in this section as the next two are very similar to

implement.

Note Validation policies may affect api throughput and it is recommended
to perform load tests before using them in production. more details about
performance implications.

Chapter 7 poliCies and named Values

100

Whatever you will validate, headers, query, or path parameters, there are three

different actions to choose from, ignore, prevent, and detect.

 Content Validation

The content validation policy validate-content does one thing; it checks the size of

the content against the attribute max-size. In the following inbound section of our

well-known “Add a new pet to the store” policy, I set the max size to 25 bytes, one byte

less than the payload I am going to send “Sina the dog,” the name of my dog. Payload

that exceeds 25 bytes will result in an HTTP status code 400 (Bad Request) through

setting size-exceeded-action to prevent. Setting an action as prevent will result in an

HTTP status code 400 (Bad Request) and not be forwarded to the backend web service.

Furthermore, I set unspecified-content-type-action to detect, which will log this

event; we will discuss logging in detail in a later chapter.

<inbound>

 <validate-content

 max-size="25"

 size-exceeded-action="prevent"

 unspecified-content-type-action="detect"

 errors-variable-name="err" />

 <base />

</inbound>

You can try this content validation policy by sending more than 25 bytes in the

payload as I did with “Sina the dog.”

curl -X POST \

 -d "{\"name\": \"Sina the dog}]}" \

 -iH "ApiKey: <SUBSCRIPTION_KEY>" \

 -H "Content-Type: application/json" \

 https://mastering-apim.azure-api.net/petstore/pet

The response is an HTTP status code 400 (Bad Request) and a detailed message

about this error.

{ "statusCode": 400, "message": "Request’s body is 25 bytes long and it

exceeds the configured limit of 24 bytes." }

Chapter 7 poliCies and named Values

101

 Parameter Validation

Another validation policy is parameter validation validate-parameters. This policy

validates incoming header, query, and path parameters. Before we make any change

in the policy itself, I want to show you how to change the API specification in the Azure

portal instead of re-importing the API. We will need this to demonstrate the following

example.

Figure 7-11 shows where you can change the API specification. In this case, I added

several request headers that I expect to receive in any call to this API operation “Add a

new pet to the store.”

Figure 7-11. Adding headers to the API specification

In the following example, I block all requests that contain unspecified headers.

Remember that I specified several headers in Figure 7-11. I will ignore these headers

by defining specified-parameter-action="ignore" in both validate-parameters

and headers. As a note, child definitions overwrite parent definitions which we will

do in the next policy definition unspecified-parameter-action, which I have set to

prevent. It means that all headers that are not specified will result in an HTTP status code

400 (Bad Request). The petstore API requires a subscription key so we must allow the

ApiKey header. I have set a parameter policy inside the headers policy with the name

of the header ApiKey and the action ignore. We could have added ApiKey to the API

specification itself. However, this approach would have tightly coupled the web API to

Azure API Management.

<inbound>

 <validate-parameters

 specified-parameter-action="ignore"

Chapter 7 poliCies and named Values

102

 unspecified-parameter-action="ignore"

 errors-variable-name="err ">

 <headers

 specified-parameter-action="ignore"

 unspecified-parameter-action="prevent">

 <parameter name="ApiKey" action="ignore" />

 </headers>

 </validate-parameters>

 <base />

</inbound>

Let us test this policy by adding an unspecified header X-BAD-HEADER to the request.

curl -X POST \

 -d "{\"name\": \"Sina the dog\"}]}" \

 -H "ApiKey: <SUBSCRIPTION_KEY>" \

 -H "X-BAD-HEADER: malicious info" \

 -H "Content-Type: application/json" \

 https://mastering-apim.azure-api.net/petstore/pet

The result is as expected, an HTTP status code 400 (Bad Request) with a message

saying that there is an unspecified header.

{ "statusCode": 400, "message": "Unspecified header X-BAD-HEADER is not

allowed." }

Let us take a quick look at the other two validation policies in the next section.

 Other Validations

Even though we have learned how to validate headers, these were for incoming calls

only, meaning that they were scoped to the inbound section of all policies. There is a

separate validation policy for responses that can be defined in the outbound and on-

error section for headers validate-headers.

The fourth and last validation policy is the validate-status-code policy which can

also be used in the outbound and on-error section of all policies. This policy may be

used to prevent leakage of backend errors, which can contain stack traces.

Chapter 7 poliCies and named Values

103

 Canary Backend APIs
The following example might not be a common scenario that we can find in many

organizations; however, I think it is an important scenario especially for mission-critical

workload that is running on Aure Kubernetes Service (AKS) and where Azure API

Management really can show its power.

The AKS documentation says it is a highly available, secure, and fully managed

Kubernetes service for deploying and managing containerized applications more easily.

While this might be true for the applications running on AKS themselves, upgrading

AKS can put your applications in jeopardy though. There are at least three options you

can choose from to upgrade your AKS cluster. In theory, all three options work fine. In

practice, we have seen problems with the first option. Let me explain these options in

short before we discuss how to use Azure API Management to mitigate eventual risks:

• Upgrade AKS by running the Azure CLI command az aks upgrade,

which will drain all nodes one by one and upgrade them.

• Use node pools in AKS and upgrade them individually by running the

Azure CLI command az aks nodepool upgrade.

• Provision a new AKS cluster and migrate your workload.

As this book is about Azure API Management, I will not discuss the challenges of

each AKS upgrade option. Instead, I want to mention that upgrades in general can and

will fail, and you must keep in mind that an upgrade can and will lead to downtime of

the workload running there, partially or completely. If you accept this risk, the first two

options are good alternatives as they are cheapest and let you use existing Azure CLI

commands.

Figure 7-12 shows how to use Azure API Management to support the third option

of upgrading an AKS cluster. In this case, Azure API Management acts as an API façade

in front of both AKS clusters, the current active (old) cluster that I highlighted in blue

and the new cluster that we want to switch to. Even though a new AKS cluster should

go through a regression test, we can use Azure API Management to gradually route the

traffic over to the new cluster – in this case 90%/10% – and monitor it and follow the logs

for eventual error messages. We call the technique of introducing a new AKS cluster and

slowly rolling out the change to a small subset of users before rolling it out to the entire

infrastructure and making it available to everybody as canary release.

Chapter 7 poliCies and named Values

104

Figure 7-12. Canary release of Azure Kubernetes Service (AKS)

In this example, we will focus on steps 3 and 4, testing the workload and switching

the traffic from the old, blue AKS cluster over to the new, green AKS cluster. We can do

this by implementing a canary release policy in the global policy, so all API calls can use

it. The other change we will make is in the API policies where we set the backend URL for

the AKS cluster.

Listing 7-12 shows the global policy for a canary release in the inbound section. This

policy sets a variable aksUrl for the URL of the AKS cluster – blue or green – which is

based on a percentage value canaryPercentage that is stored as a named value. It can be

gradually changed from 0 to 100 depending on how confident you are with the new AKS

cluster. Depending on this value, a variable current-slot is set to either blue or green.

This “slot” is then part of the URL http://aks-(blue|green).azurecloud.no.

Listing 7-12. Global policy for canary release

<inbound>

 <choose>

 <when condition="@(new Random().Next(100) < {{canaryPercentage}})">

 <set-variable name="currentSlot" value="{{canarySlot}}" />

 </when>

 <otherwise>

 <set-variable name="currentSlot" value="{{activeSlot}}" />

 </otherwise>

 </choose>

Chapter 7 poliCies and named Values

105

 <set-variable name="aksUrl" value="@("http://aks-" + context.

Variables.GetValueOrDefault<string>("currentSlot", "{{activeSlot}}") +

".azurecloud.no")" />

</inbound>

The one task we do in the global policy for the canary release of AKS is setting the

URL for AKS as a variable aksUrl. What is missing is setting the URL as the backend

service for an operation or an entire API.

Listing 7-13 shows the API policy of petstore that we have used throughout this book.

It uses the set-backend-service policy of Azure API Management and requires a URL

for the base-url attribute. As you can see, variables are stored in the context object.

I use the GetValueOrDefault method where I can ensure backward compatibility to a

default cluster defaultAKS and then concatenate the context path /petstore.

Listing 7-13. API policy for canary release

<set-backend-service base-url="@(context.Variables.

GetValueOrDefault("aksUrl", "{{defaultAKSurl}}") + "/petstore")" />

 Summary
I hope this chapter gave you a great overview of managing policies in Azure API

Management. You learned first the basics of policies and how they are scoped across

an operation, an API, products, and all APIs. You saw then how to calculate an effective

policy that contains all scopes for a certain operation. You learned then to implement

more complex policies by using single- and multi-statement expressions. You embedded

placeholders Named Values in your policies that you can use across multiple policies.

Those Named Values can be in plaintext, secrets, or come from an Azure Key Vault; you

tried all three options. Finally, we discussed some examples; some of them are very

common, while one of them is not widely used but very interesting as it shows how

powerful policies in Azure API Management can be.

As you might have already realized, policies provide almost endless opportunities.

This is because we can use a subset of .NET Framework types using C#. However, the

drawback is that we must embed our C# code within XML which many developers

struggle with and complain about. My advice to this is the following: Keep policies short

and simple and implement only what is necessary.

Chapter 7 poliCies and named Values

107
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_8

CHAPTER 8

Developer Portal
Throughout this book, we have mostly discussed Azure API Management from the

perspective of an administrator and API developer. In this chapter, we will begin by

focusing on the API consumers and learn how the default onboarding process works. Of

course, the default setup is not necessarily what you want for the organization you will

use Azure API Management in. Especially when it comes to corporate branding, you will

want to customize the design, texts, and maybe add some more functionality. After we

have discussed these topics, you will learn why you might want to host the developer

portal yourself instead of letting Azure manage it for you, followed by how you can

achieve this.

 Overview
Before API consumers can access the developer portal, you must first publish it. You can

do this by navigating to https://<SERVICE_NAME>.developer.azure-api.net/; in my

case, the URL for the developer portal is https://mastering- apim.developer.azure-

api.net/.

Note The developer portal is not included in the Consumption tier.

It might take some seconds before you will be presented by the administrator view of

the developer portal where you can use the WYSIWYG editor – there are other options –

to change the design and text. We will customize the developer portal in a later section of

this chapter.

Figure 8-1 shows how to publish the developer portal by clicking Publish website.

This process can take up to 30 seconds.

https://doi.org/10.1007/978-1-4842-8011-9_8#DOI
https://mastering-apim.developer.azure-api.net/
https://mastering-apim.developer.azure-api.net/

108

Figure 8-1. Publishing the developer portal

I recommend to either log out of Azure or to open a new window in Incognito mode

and visit the same IP address again, so you will experience the developer portal from the

perspective of a guest API consumer. You might want to navigate around first and find

products and APIs that are accessible for the Guests user group only as you learned in

Chapter 4.

Click Sign Up in the upper menu to start the onboarding process by filling out a form

with your name, email, and password. This and all following forms can be changed, and

we will look at it later in this chapter.

Once you have submitted the Sign Up form, you will receive a confirmation

email that looks similar to the one shown in Figure 8-2. In the background, Azure API

Management will create a new user that is in the Pending state.

ChapTer 8 Developer porTal

109

Figure 8-2. Confirmation email for a private API account

Click the link in the email for confirmation. This process will change the state of your

user account from Pending to Active and you are ready to subscribe to products.

Figure 8-3 shows the Conferences Services product that I created in a previous

chapter. It contains one API, the Demo Conference API. You remember that you had to

use a subscription key that we called ApiKey to call an API. To obtain this key, we must

subscribe to the product. Previously, we, as the administrator, have done this directly

in the Azure portal. This time, the API consumers themselves can do this by choosing a

name and clicking Subscribe.

ChapTer 8 Developer porTal

110

Figure 8-3. Subscribing to the Conferences Services product

The user administration page opens where an API consumer can change its

name, password, or even close the account. An API consumer can also reveal the API

subscription key. Figure 8-4 shows both keys, the primary subscription key and the

secondary subscription key. Make one of them visible by clicking Show.

Figure 8-4. Self-service for the API consumers

ChapTer 8 Developer porTal

111

An API consumer can use its API subscription key to call the APIs that are part of the

subscribed product. For each product an API consumer wants to subscribe to, a new pair

of keys is generated.

Figure 8-5 shows the documentation of the Demo Conference API that the API

consumer has subscribed. All information you see on this page was extracted from the

OpenAPI specification that we imported previously. You may try and learn to use this

API directly from this documentation by clicking Try on the right side. You will then

see the same information and fields that you see when you tested this API in the Azure

portal. I wrote “may try” as this will not work yet.

Figure 8-5. Demo Conference API documentation

As an example, try the getTopics operation and use your API subscription key to

gain access to it. The response you will get back is “Since the browser initiates the request,

it requires Cross-Origin Resource Sharing (CORS) enabled on the server.” Let us fix this by

adding a CORS policy to the global policy.

Figure 8-6 presents a shortcut to enable CORS for all APIs. In case you want to enable

CORS for only some APIs or products, I recommend enabling CORS manually.

ChapTer 8 Developer porTal

112

Figure 8-6. Enabling CORS for all APIs

Once you enable CORS for all APIs, a cors policy is added to the inbound section of

the global policy as the following code shows:

<inbound>

 <cors allow-credentials="true">

 <allowed-origins>

 <origin>https://mastering-apim.developer.azure-api.net</origin>

 </allowed-origins>

 <allowed-methods preflight-result-max-age="300">

 <method>*</method>

 </allowed-methods>

 <allowed-headers>

 <header>*</header>

 </allowed-headers>

 <expose-headers>

 <header>*</header>

 </expose-headers>

 </cors>

</inbound>

In case you want to enable CORS only for some APIs or products, you have two other

options. You can either move this code into an API or product policy, or you can enable a

CORS proxy for an individual API operation.

ChapTer 8 Developer porTal

113

Figure 8-7 shows how to enable a CORS proxy for one API operation only. This will

route the API calls through the Azure portal’s backend in your Azure API Management

service and will not need the CORS policy in place.

Figure 8-7. Enable CORS proxy for an individual API operation

In the following section, we will focus on making the developer portal our own by

customizing its style.

 Customization
In this section, you will learn how to customize the developer portal and to make it your

own by changing the default style to something unique like a corporate design. There are

two ways of customizing the developer portal, by using the built-in WYSIWYG editor or

by changing the code of the developer portal templates. In this section, we will focus on

the WYSIWYG editor as this is a simple approach that does not require any additional

steps. A more complex approach is to change the code of the developer portal templates.

This approach requires to host the developer portal by yourself. We will discuss this

approach in the following section.

ChapTer 8 Developer porTal

114

 Styling
To customize the developer portal, click Developer portal in the upper menu of the

Overview page of your Azure API Management instance. This opens a new tab and

opens the developer portal at https://<SERVICE_NAME>.developer.azure-api.net/, in

my case https://mastering- apim.developer.azure- api.net/.

I will not go into the details of redesigning the developer portal as this is a very

intuitive and straightforward approach. Instead, I want to show you the first page and

how you can change and remove widgets.

Figure 8-8 shows the WYSIWYG editor of the developer portal. You can change all

texts, pages, images, fonts, and a lot more. Just click on the item you want to change, and

a pen appears. When you click on a pen, a configuration box appears where you can

change the text, image, or what it is that you clicked on. I suggest that you click around at

first. The trash can will remove an item.

Figure 8-8. Styling the developer portal in the WYSIWYG editor

To change other pages, click on the link of the page you want to visit while holding

the Control key at the same time. Once you are finished, click the save icon below before

you publish the changes, as Figure 8-1 demonstrated.

The developer portal is fully managed by Azure, which means that you do not need

to care about updates.

ChapTer 8 Developer porTal

https://mastering-apim.developer.azure-api.net/

115

Note Customizing the managed developer portal templates is only possible in the
WYSIWYG editor.

In the section about hosting, you will learn another approach of customizing

the developer portal where you get full flexibility. Before we dive into the code of the

developer portal templates and make changes, let us look at how to change email texts

and how to notify important stakeholders by email.

 Notifications and Templates
In some cases, it is important to get notified about certain events. Subscription requests

that you need to approve is one example; users do not want to wait too long. An email

that notifies you as soon as a new subscription request is created will help you to act

immediately if necessary. Another example is to get notified when a user closes its

account, and you need to do some additional tasks.

Figure 8-9 shows how to add email recipients for different notifications such as for

new subscriptions, blind copies, or when a new issue or comment is submitted, which is

a feature of the developer portal.

Figure 8-9. Add email recipients for notifications

When we created a new API consumer in the developer portal, we received a

confirmation email, as shown in Figure 8-2. The sender’s email address was apimgmt-

noreply@mail.windowsazure.com. Figure 8-10 shows how to change this email address

by clicking E-mail setting under Notification templates. You can also change the name of

your organization that appears in the emails.

ChapTer 8 Developer porTal

apimgmt-noreply@mail.windowsazure.com
apimgmt-noreply@mail.windowsazure.com

116

Figure 8-10. Change the sender’s email address

Compared to the templates of the managed developer portal, where we must use the

WYSIWYG editor – not everyone’s favorite editor – we can change the template code of

the email notifications directly in the Azure portal, as Figure 8-11 shows. What you see is

HTML code, where you can use some variables that will appear on the right-hand side.

Figure 8-11. Customizing notification email templates

Another approach of making changes in the code of a notification email template

is by cloning and committing changes to the Git repository. You will learn how to work

with the Git repository of your Azure API Management instance in a later chapter as

there are some side effects that need to be discussed. Also, changes in the code of the Git

repository do not apply to the developer portal templates. In such cases, you must host

the developer portal yourself, which we will discuss in the following section.

ChapTer 8 Developer porTal

117

 Self-hosting
There are scenarios where you want to make changes in the developer portal that cannot

be done in the WYSIWYG editor. It might be the case that you need a custom widget in

the developer portal and that is integrated with an internal system of your organization.

It might also be the case that you must change the structure of the websites within the

developer portal where you need to change the HTML templates. All these changes

cannot be done in the WYSIWYG editor or the portalTemplates HTML files that you can

find in the Git repository of your Azure API Management instance. We will dive into the

Git repository in the next chapter.

In this section, you will learn how to host the developer portal in your own

environment and make some minor changes. As the developer portal is open source and

available on GitHub, it opens the possibility of making changes you need. On the flip

side, this comes with the responsibility of hosting, securing, and managing the developer

portal on your own.

 Running the Developer Portal Locally
Azure provides a detailed step-by-step guide on how to run the developer portal locally.

This section will briefly show you how to get started. You will first need a running

instance of Azure API Management so the developer portal can connect to it. As the

developer portal is a Node.js application, you will need Node.js and the package manager

npm. Download and install Node.js and npm by following the online documentation.

You can find the developer portal on GitHub. Clone the repository with

git clone https://github.com/Azure/api-management-developer-portal.git

Once you have the repository on your machine, change the directory by running

cd api-management-developer-portal

Change now from the master branch to the latest release tag of the developer portal.

In my case, it is 2.9.0.

git checkout 2.9.0

Install to download all project dependencies with

npm install

ChapTer 8 Developer porTal

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://github.com/Azure/api-management-developer-portal
https://github.com/Azure/api-management-developer-portal/releases

118

This will take a while. In the meantime, you can open the project in an IDE like

Visual Studio Code and configure it so it can connect to your Azure API Management

instance.

There are three files you must configure, config.design.json, config.publish.

json, and config.runtime.json. Change <service-name> in all three files with

the name of your Azure API Management instance, in my case “mastering-apim.”

Furthermore, change “SharedAccessSignature ...” with your access token that you can get

from the Azure portal, as shown in Figure 8-12. Navigate to Management API and click

on Enable Management REST API. Then, click Generate to get an access token that you

can copy and replace.

Figure 8-12. Creating an access token

To run the developer portal locally, you execute npm start. Before we do this, let

us make a quick change to see an actual change. I opened the signup.html file src\

components\users\signup\ko\runtime\signup.html and added a personal string at the

beginning of the file.

After I have executed npm start, I can access the developer portal on http://

localhost:8080 and navigate to Sign Up. As Figure 8-13 shows, it contains a new string

“HHEELLOO.”

ChapTer 8 Developer porTal

119

Figure 8-13. Minor change in the sign-up form

Hosting the developer portal by yourself gives you full flexibility. As the developer

portal will generate a static web app, you get some options for hosting it. Run the

following command to generate the complete static web app of the developer portal:

npm publish

This will create a new folder ./dist within your project. One option of hosting a

static web app is Azure Static Web Apps, which can be integrated with your own GitHub

repository of your own version of the developer portal. Another option for hosting a

static web app is by using an Azure Storage account and uploading the folder ./dist/

website to a blob. We will not dive further into static web apps as it is not contributing to

get a better understanding of Azure API Management.

ChapTer 8 Developer porTal

https://azure.microsoft.com/en-us/services/app-service/static/

120

 Summary
In this chapter, you learned to administrate the developer portal of Azure API

Management but also how you can change the look and feel of it. As the managed

developer portal is not fully customizable, you learned then how you can host it yourself,

so you are free to fully change its design templates.

ChapTer 8 Developer porTal

PART III

Workflow

123
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_9

CHAPTER 9

API Development
in Context
When I joined the Norwegian payment service Vipps AS three years ago, we were

about 30 developers that deployed our web services to Azure Kubernetes Service,

AKS. We used already Azure API Management as our API gateway. As we were just a

few developers, the number of API changes in a week were just a few. One developer

that knew Azure API Management well enough at that time was responsible for

maintaining and administrating our two instances, one in the test and one in the

production environment. This developer was deploying APIs, creating products, adding

named values, and did everything related to these two instances. This worked well

three years ago. As the company grew and more developers created more APIs, this

developer became a bottleneck. One day, I had worked there for about three months,

this developer suddenly left the company. As Azure API Management was a black box for

me and most of my co-workers, this was a challenge. As I was eager to learn Azure API

Management, I said Yes, not to become the next bottleneck but to remove it, somehow.

This chapter describes our journey from treating an API gateway as a monolith to

the state where developers were empowered to perform all API-related changes by

themselves. In the first section, you will learn about two options of a centralized API

repository and their advantages and their challenges. In the second section, you will

learn how to empower developers by utilizing what you have learned throughout this

book. In the third and last section, I will demonstrate how to use Azure DevOps to fully

automate an Azure API Management product deployment.

https://doi.org/10.1007/978-1-4842-8011-9_9#DOI

124

 Centralized API Repository
There exist at least two options of how to manage a centralized Git repository for APIs

that are deployed to an Azure API Management instance. The first option is by using

the internal Git repository of your instance while the other option uses an external Git

repository such as GitHub or Azure DevOps.

 Internal Repository
Before we discuss the consequences of using the internal Git repository for your APIs,

let us look at how you can clone it, make changes, but also how to keep it in sync with

eventual changes that are made in the Azure portal directly.

Figure 9-1 describes the steps for getting the repository’s URL, username, and

password. You can set the expiry date for the password to less than 30 days. To get the

password, click Generate of the password field.

Figure 9-1. Azure API Management Git repository

Run git clone <REPOSITORY_URL> from your terminal. You will be asked

for your username and password. Alternatively, run git clone https://

USERNAME:PASSWORD@<REPOSITORY_URL> directly. In some cases, you might get an error

which means that you might URL encode your password first.

Chapter 9 apI Development In Context

125

The repository contains the following folders:

• apis contains all APIs and operations in JSON format. Furthermore, it

stores descriptions that are shown in the developer portal.

• backends contains references and descriptions of Azure backend

resources. For example, it is possible to import an Azure Function

App into Azure API Management.

• groups contains system and custom groups with their descriptions.

• policies contains all policies, global, product, API, and operation in

XML format.

• portalStyles contains the stylesheets for the developer portal.

• portalTemplates contains all developer portal templates. Changes

in this folder will not have any effect, as discussed in the previous

chapter.

• products contains all products as JSON files with their descriptions.

• tags contains tags as folders that stores JSON files with references to

operations.

• templates contains the email templates that are sent to API

consumers.

Changes that you commit and push to the repository will not take effect immediately.

You need to deploy the entire repository first by clicking Deploy to API Management,

shown in Figure 9-1.

The built-in Git repository is useful in cases where you need to make multiple

changes at the same time as changing the default subscription key header for all APIs.

However, as this repository does not contain everything; subscriptions, named values,

etc. are missing; and neither are APIs stored in their original format, you might look at

alternate options for keeping configurations and APIs under version control.

 External Repository
If you work for an organization with just a few API developers that manage just a

few APIs, you might consider keeping APIs, products, named values, and everything

you need under version control in one centralized repository. As I mentioned in

Chapter 9 apI Development In Context

126

the beginning of this chapter, this worked great in my company. We treated API

management as a monolith in a sense that whenever there was a change, we deployed

the entire repository to our Azure API Management instances. However, this might come

with a challenge. Those organizations that have not fully automated their deployments

yet – like us at that time – and tend to make changes in the Azure portal directly need to

reflect those changes in the repository as well, something which is not always done.

When our Azure API Management developer left the company and we had to add

a new operation (endpoint) to an existing API, we knew that we had to deploy the

entire repository. The challenge was that the repository was not in sync with what was

deployed. There were many minor differences that we did not understand. What we

later realized was that some changes were just not deployed yet, while other changes

were forgotten to be reflected in the codebase of the repository and vice versa. For us,

deploying the entire codebase was a great risk.

Figure 9-2 shows the workflow of an API deployment using a central API repository.

As APIs are deployed from a central API repository to Azure API Management, it is

neseccary to ensure integrity through automation. Both, an application repository and

the central API repository, must have the same API changes. Otherwise, you might, in a

failure situation, debug a web service that behaves differently from what is deployed.

Figure 9-2. API deploying workflow with centralized API repository

Chapter 9 apI Development In Context

127

As we were growing, more API developers changed the codebase which led to

more deployments and more risk. Furthermore, we used Azure Resource Management

(ARM) templates to deploy our APIs and products because it is the native platform for

infrastructure as code in Azure. The challenge with ARM templates is that it is harder to

master, especially for developers that work most of their working hours with languages

such as Java, C#, or Go and that use ARM templates only for a couple of hours a month.

We will look at API deployments with ARM in a later chapter.

A centralized API repository works great for small development units where you can

gain experience with Azure API Management. For larger organizations with many API

developers, I learned that even if you maintain one Azure API Management instance in

each environment only, it is the API developers who should be responsible for the entire

API lifecycle. As you have learned throughout this book, it is possible to deploy APIs,

products, and named values individually, so there is no reason to introduce a bottleneck

other than access restrictions. You will learn how to secure your Azure API Management

instance in a later chapter.

 Application Repositories
In the previous section, we discussed two approaches of using centralized Git

repositories for your APIs. In this section, we will discuss a decentralized approach

where your APIs are kept close to the web services. Instead of copying an API from the

application repository to the central API repository before it gets deployed to Azure

API Management, this approach lets you deploy an API directly from the application

repository to Azure API Management, as Figure 9-3 shows.

Chapter 9 apI Development In Context

https://cloud.netapp.com/blog/save-time-and-headaches-with-infrastructure-as-code-on-azure-cvo-blg
https://cloud.netapp.com/blog/save-time-and-headaches-with-infrastructure-as-code-on-azure-cvo-blg

128

Figure 9-3. APIs are deployed from the application repository

Deploying directly from the application repository gives development teams strong

ownership of the entire deployment workflow. Instead of doing a hand-over to the team

that administrates the central API repository, the development teams themselves can

deploy and thus be responsible.

When my company moved from a central API repository to a setup where the

development teams got full ownership of the API lifecycles, we immediately removed a

bottleneck. Development teams could deploy their APIs when they were ready, and they

did not need to wait for the administration team anymore, which was a huge relief for

all of us.

However, this approach where development teams can use their own CI/CD

pipelines to deploy APIs to Azure API Management might require some preparation.

Not every single team in the same organization should create its own API deployment

process. Having ten development teams might result in ten different solutions, or ten

times the same solutions; both are bad, as they require more developers to implement

the same. You might also end up in a situation where developers create for your

standard’s unsecure deployment workflows. Instead, a platform team might want to

create tooling that is easy to use for the developers. You have already learned throughout

this book how to deploy APIs. You can do the same for products and named values and

create easy to use pipelines or tools.

Chapter 9 apI Development In Context

129

 Product Deployment with Azure Pipeline
In this chapter, we talked about ownership and how to theoretically deploy an API

by creating easy-to-use tooling for the developers. While API ownership can often be

mapped to individual teams, products might include APIs that are owned by several

teams, thus there is no clear ownership of a product. This should be avoided if possible.

However, as this might be a challenge, it is even more important to have an automated

deployment workflow in place. In this section, I will therefore show you how to create a

CI/CD workflow for a product with Azure pipeline with YAML syntax in Azure DevOps.

Listing 9-1 shows a JSON file that describes a single Azure API Management product

and its APIs. I named the product “Demo Services,” and it contains two APIs, petstore-

api and conference-api, that you remember from previous chapters.

Listing 9-1. Single product configuration (demo_services.json)

{

 "Demo-Services": {

 "id": "demo-services",

 "title": "Demo Services",

 "description": "Demo product",

 "apis": [

 "petstore-api",

 "conference-api"

]

 }

}

To deploy this product and to add those two APIs, I will use the PowerShell

cmdlets that you have seen in Chapter 3 - APIs and Products, so we will not discuss the

deployment process itself, but instead focus on the Azure pipeline with YAML syntax.

Listing 9-2 shows a specific product–Demo Services–pipeline with YAML syntax that

uses a template that is responsible for deploying any product. This template resides in

a different repository (mycompany/apim-tools) that a platform team might own, so all

development teams can use this template. Development teams need “simply” pass all

required parameters such as the product configuration file and the product id to this

template. You will find detailed information about Azure pipelines with YAML syntax in

Microsoft Azure's documentation.

Chapter 9 apI Development In Context

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/pipelines-get-started?view=azure-devops#define-pipelines-using-yaml-syntax

130

Listing 9-2. Azure pipeline for Azure API Management product deployment

trigger:

- main

pool:

 vmImage: 'windows-2019'

name: $(Build.SourceBranchName)-$(Date:yyyyMMdd)-$(Build.BuildId)

resources:

 repositories:

 - repository: apim-tools

 type: git

 name: mycompany/apim-tools

 ref: refs/heads/master

variables:

 productId: demo-services

steps:

- checkout: self

- checkout: apim-tools

- template: apim-product-template.yaml@apim-tools

 parameters:

 ENVIRONMENT: 'test'

 APIM_SERVICE_CONNECTION: test-sc

 PRODUCT_CONFIGPATH: .\demo-services.json

 PRODUCT_ID: '$(productId)'

 APIM_TOOLS_ARTIFACTNAME: apim-tools

Listing 9-3 shows the product deployment template. It requires five parameters:

• ENVIRONMENT references the Azure API Management instance. In case

you have several instances per environment, this needs to be more

specific.

• APIM_SERVICE_CONNECTION defines the name of a service connection

in Azure DevOps. You will find detailed information about service

connections in Azure DevOps on Microsoft Azure’s documentation.

Chapter 9 apI Development In Context

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml

131

• PRODUCT_ID specifies the product within the product configuration

file. You might want to define more than one.

• PRODUCT_CONFIGPATH defines the path of the product

configuration file.

• APIM_TOOLS_ARTIFACTNAME defines the name of the repository name

that is defined in Listing 9-2.

The template contains one step that executes a PowerShell script and passes the

required parameters.

Listing 9-3. Product deployment template (apim-product-template.yaml)

parameters:

- name: ENVIRONMENT

 type: string

- name: APIM_SERVICE_CONNECTION

 type: string

- name: PRODUCT_ID

 type: string

- name: PRODUCT_CONFIGPATH

 type: string

- name: APIM_TOOLS_ARTIFACTNAME

 type: string

steps:

- task: AzurePowerShell@5

 displayName: 'Deploy ${{ parameters.PRODUCT_ID }} product'

 inputs:

 azureSubscription: ${{ parameters.APIM_SERVICE_CONNECTION }}

 scriptType: 'FilePath'

 ScriptPath: ./${{ parameters.APIM_TOOLS_ARTIFACTNAME }}/apim-scripts/

APIM_Product.ps1

 ScriptArguments: '-Environment "${{ parameters.ENVIRONMENT }}"

-ProductConfigPath ${{ parameters.PRODUCT_CONFIGPATH }} -ProductId "${{

parameters.PRODUCT_ID }}"'

 preferredAzurePowerShellVersion: 3.5.0

Chapter 9 apI Development In Context

132

This example shall give you an idea of how you might want to set up a code-based

workflow that deploys to Azure API Management.

 Summary
I hope this chapter helped you to understand the pros and cons of having a centralized

API repository and what options Azure API Management provides you. However, storing

APIs and products in repositories is one part of the equation. The other part is how to

deploy them. I gave you an example of a product deployment that you can adapt for API

deployments as well by referencing a script APIM_API.ps1 – that you will implement –

instead of a script for product deployments APIM_Product.ps1, as in this example. We

used Azure Pipelines for this as this is YAML code which can live side-by-side with your

application in the same repository.

Chapter 9 apI Development In Context

133
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_10

CHAPTER 10

Developing Policies
Policies are the heart of Azure API Management, where you change the behavior of

APIs such as transforming backend responses from XML to JSON, routing traffic to new

backend web services, or validating headers. As developing policies in XML and C# is

not a trivial task – combining two languages in the same file is hard – it is even more

important to use tools that support you.

This chapter teaches you to be most effective in developing policies in Azure API

Management. You know already where to implement policies in the Azure portal.

However, there are a few utilities that I have not mentioned yet and that you learn about

in the first section. In the second section, you will use Visual Studio Code and install an

Azure API Management extension which improves your productivity and development

experience compared to the Azure portal. In the last section, I will show how you can test

policies with the Pester testing framework for PowerShell.

 Azure Portal
Developing policies in the Azure portal is a good way to try out ideas, but a dangerous

way to do serious coding with. Changes that you apply from the Azure portal in an Azure

API Management instance are not in any codebase, nor are they under version control

unless you apply them manually. However, the Azure portal provides ready-to-use code

snippets that can help you to get started quickly.

Figure 10-1 shows how to get started with ready-to-use policies in the Azure portal.

Navigate to an API, a product, or the global policy as shown in the figure and click

Add policy.

https://doi.org/10.1007/978-1-4842-8011-9_10#DOI

134

Figure 10-1. Adding ready-to-use policies

You see a list of inbound policies that you can choose from as Figure 10-2 shows.

When you click on one of them, you can configure it. For example, when you click on

Limit call rate, you can configure this policy by setting the numbers of calls, renewal

period, counter key, and an increment condition. Whatever ready-to-use policy you

choose, you can configure it by filling setting values in the configuration form.

Figure 10-2. List of ready-to-use policies

Chapter 10 Developing poliCies

135

Figure 10-3 shows the configuration form of the Set query parameter policy where

you can set the name, value, and action of one or many query parameters.

Figure 10-3. Setting query parameters

What happens after you saved the new policy configuration is that it is added to the

inbound section of the policy. Instead of coding a policy yourself, you used predefined

code snippets that you can change further directly within the policy editor as the

following code demonstrates:

<inbound>

 <base />

 <set-query-parameter name="city" exists-action="override">

 <value>Oslo</value>

 </set-query-parameter>

</inbound>

Another way where you can use predefined code snippets is when you click Show
snippets from within the policy editor, as shown in Figure 10-4. The list of policies to

choose from is larger than what you have seen before. When you click on a snippet, the

code for it will be inserted where you have positioned the curser. That means that you

can add code snippets in all four policy sections, </inbound>, </backend>, </outbound>,

and </on-error>.

Chapter 10 Developing poliCies

136

Figure 10-4. Policy code snippets

Most of the code snippets require parameters that you must set manually after you

have selected and inserted a code snippet.

The policy editor might be a good choice for trying out policy changes without

setting up a development environment first. I use it sometimes for exactly that, making

quick changes that I do not want to have under version control yet.

 Visual Studio Code Extension
When it comes to APIs and policies that are under development and that I have under

version control, I use Visual Studio Code (VS Code); it is free of charge and available for

all major operating systems. It comes with a marketplace where you can choose from

hundreds of extensions such as those for Azure and API Management. Download and

install VS Code by following the documentation.

 Installation
Select the extensions icon on the left-hand side or navigate to “View/Extensions” from

the top menu as Figure 10-5 shows. Type “Azure API Management” in the extensions

search field to find the extension and click on it. On the right-hand side, you find an

Install button; click on it.

Chapter 10 Developing poliCies

https://code.visualstudio.com/
https://code.visualstudio.com/download
https://code.visualstudio.com/download

137

Figure 10-5. Install Azure API Management extension for VS Code

Before we can use the Azure API Management, we need some additional extensions

that are required. Search for the following extensions in the same way as you did for the

Azure API Management extension and install them:

• Azure Account to sign in to your account and filter your

subscriptions.

• C# for syntax highlighting and IntelliSense.

• REST Client for sending test requests.

Congratulations, the installation was successful. To get an overview of all available

commands that this extension provides, open the command palette and search for

“Azure API Management.” Click Ctrl+Shift+P if you use a Windows computer and Cmd-
Shift+P if you are using a Mac computer. Figure 10-6 shows how the command palette

looks like. As the name suggests, it accepts all kinds of commands. Many of them have a

prefix followed by a colon that indicates the extension it belongs to.

Chapter 10 Developing poliCies

https://marketplace.visualstudio.com/items?itemName=ms-vscode.azure-account
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=humao.rest-client

138

Figure 10-6. Check if the extension is installed

Most of the commands that you see in Figure 10-6 are already familiar to you

as PowerShell cmdlets. This extension provides a simpler way to work with Azure

API Management without first setting the context of your instance and then writing

PowerShell cmdlets. This is especially helpful when developing policies.

You installed another extension, Azure Account. You need this extension to sign in to

your Azure account. Search for Azure Sign In and click on it, as Figure 10-7 demonstrates.

Follow the instructions to sign in to your account with your running instance of Azure

API Management.

Chapter 10 Developing poliCies

139

Figure 10-7. Sign in to your Azure account

Now that you are signed in to your Azure account, you can use extensions such as the

Azure API Management extension.

 Developing a Policy
Developing policies with the Azure API Management extension for VS Code helps

API developers to be more productive as it provides IntelliSense features such as code

completion for policy expressions.

The following example demonstrates a policy that sets a correlation ID to each

request. We will use this example to demonstrate the debugger of this extension.

Select Azure in the left-hand menu as Figure 10-8 demonstrates. You need to be

signed in in order to proceed. After a few seconds, all subscriptions that are connected

to your account appear and list your Azure API Management instances. In my case,

I selected my Visual Studio Enterprise Subscription which has one instance with the

name mastering-apim. Open the global policy. In the inbound section, start then typing

set- without the leading < character that you would usually use in XML code. A sorted

list of policy expressions appears. Select set-variable to insert the complete policy

expression.

Chapter 10 Developing poliCies

140

Figure 10-8. IntelliSense for policies

Repeat the same with set-header and set the value to corrId as Figure 10-9 shows.

The figure also shows four arrows which mark the next cursor positions when typing tab.

When you are on an attribute where only certain values are valid like in case of exists-

action, a list with valid attribute values appears.

Figure 10-9. Editing a policy in VS Code

Listing 10-1 shows the complete code for this example. It adds the identifier

of a request generated by Azure API Management to each request as the header

correlationId. There are other options to create a correlation ID that might fit your use

case better.

Chapter 10 Developing poliCies

141

Listing 10-1. Policy for adding a simple correlation ID to the request

<policies>

 <inbound>

 <set-variable name="corrId" value="@(context.RequestId.

ToString())" />

 <set-header name="correlationId" exists-action="skip">

 <value>@(context.Variables.GetValueOrDefault<string>("corr

Id"))</value>

 </set-header>

 </inbound>

 <backend />

 <outbound />

<on-error />

</policies>

The preceding example could be simplified by setting @(context.RequestId.

ToString()) of corrId directly as the value of the header. However, we will later modify

corrId, so let us stick to it for now.

 Testing an API
In this section, you will test a policy by using the Test Operation feature of this

extension. As we know from other languages such as Java and C#, the possibility to easily

test our code is an elementary part in software development. The extension for Azure

API Management provides partly this possibility. Partly because this feature does not

automatically validate the response as we know from unit tests. Testing in the context of

this extension means sending a request to an API operation.

Figure 10-10 shows how to create a request for testing an API operation. Select

one operation such as GetTopics and right-click on it. Click Test Operation to create a

request.

Chapter 10 Developing poliCies

142

Figure 10-10. Create a request in VS Code

In the editor on the right-hand side in VS Code appears the configuration for a

request, as shown in Figure 10-9. The configuration describes the request method

GET, the endpoint URL https://mastering- apim.azure- api.net/conf/topics, and

two headers. Take notice of the subscription-key header as you might have changed it

previously to ApiKey. You must now replace {{azure-api-management-subscription-

key}} with your actual key. When you have done this, click Send Request, as shown in

Figure 10-11.

Figure 10-11. Sending a request from VS Code

A second tab in the VS Code editor appears in a split window with the response of

your request showing the HTTP status, date, and headers, as Figure 10-12 shows. The

Ocp-Apim-Trace-Location header points to a Json file which contains details you might

need to trace a request and response in case of an error.

Chapter 10 Developing poliCies

https://mastering-apim.azure-api.net/conf/topics

143

Figure 10-12. Response in VS Code

Sending requests with this extension might be a convenient way for many to develop

and test their API policies from the same IDE. However, API developers often use tools

such as Postman to create and collect requests that they use to develop APIs. For those

developers, it might be easier to stick to these existing request collections instead of

creating new requests in VS Code.

 Debugging a Policy
You will now create a debugging session that connects to your remote Azure API

Management gateway. Right-click on the API operation that you want to debug. In

my case, I stick to GetTopics. As Figure 10-13 shows, you start a debugging session by

selecting Start Policy Debugging.

Chapter 10 Developing poliCies

144

Figure 10-13. Starting a policy debugging session

A new tab for the request appears as you have seen when you tested an API

operation. Click Send Request to send a call. A new tab appears that looks like the

one shown in Figure 10-14. The debugger stops at the first policy expression of the

effective policy.

Remember the effective policy includes policies from all scopes.

In this example, the curser has first stopped at line 3 of the global policy as it is

the first policy expression of the effective policy. Click the Step Over icon to get to the

second policy expression. On the left-hand side of the editor, you see a list of available

variables, context and corrId.

Chapter 10 Developing poliCies

145

Figure 10-14. Debugging a policy

You have learned to step through an effective policy by using a simple example

with two policy expressions. Imagine a policy where you define expressions in different

policies and at different scopes. Finding an error becomes very hard as the following

example will demonstrate.

Listing 10-2 defines a policy expression for setting the users email address in a

variable userEmail.

Listing 10-2. Policy expression in the GetTopics API operation

<inbound>

 <set-variable name="userEmail" value="@(context.User.Email)" />

 <base />

</inbound>

What happens when we initiate a debugging session and send a request without

signing in first is getting an error, as Figure 10-15 shows. The user does not exist, thus the

object reference for User is null.

Chapter 10 Developing poliCies

146

Figure 10-15. Policy exception in debugging session

Those kinds of errors might be hard to find, especially when you have many policy

expressions at multiple scopes. Even though debugging helps to develop more robust

policies, try to minimize the amount of policy expressions. As an example, debugging

multiline C# policy expressions is not possible with this extension. Consider therefore

if the code you are implementing makes more sense as part of the backend web service

itself. This might improve the developer experience as most API developers are more

familiar with the tools they use when developing a backend web service itself.

 Summary
In this chapter, you learned two ways of developing policies in Azure API Management.

First, you used the policy editor within the Azure portal for API Management where you

can insert policy expressions by using policy snippets. This built-in editor is a great way

to make quick changes when you only have your browser available. The second way of

developing policies is by using the Azure API Management extension for VS Code. This

extension has IntelliSense features such as code completion that help to create policies

faster than relying on documentation only. It also helps to build more robust policies as

we can start debugging sessions and follow a request through an effective policy.

Chapter 10 Developing poliCies

147
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_11

CHAPTER 11

Deploying APIs
APIs can be deployed in many ways, with the Azure CLI, PowerShell, ARM templates,

Azure Bicep, Terraform, and many other tools and technologies that are available. When

I started working in a project that involved Azure API Management, the APIs and their

policies were deployed with ARM templates. Deploying Azure resources with ARM is

a common way to manage resources in Azure and to deploy infrastructure. This does

not mean that ARM templates are a great fit when it comes to deploying APIs to Azure

API Management. I think the opposite is the case and the Azure CLI and PowerShell are

better suited where developers are involved.

This chapter will discuss several options of deploying APIs and policies to Azure API

Management and then discuss the pros and cons of each of them, so you can decide for

yourself what is the best option for you and your technology eco system.

 ARM Templates
Infrastructure as code is a common practice to automate deployments. Azure

provides the Azure Resource Manager templates (ARM templates), where you define

infrastructure as JSON-like files. Those engineers that define and deploy infrastructure

and services such as networking, storage, or Azure API Management are often not the

same as those that develop the web services and the APIs.

ARM templates are not limited to networking and services; you can also use them to

deploy APIs, products, and policies to Azure API Management. The deployment includes

three files:

• The ARM template demo-conference.json describes what Azure API

Management instance to deploy to and the location of the API and

policy files.

• The API demo-conference-api.json is a simplified OpenAPI

specification of the Demo Conference API with only one operation.

https://doi.org/10.1007/978-1-4842-8011-9_11#DOI

148

• The API policy demo-conference-api.policy.json sets an

outbound header.

Figure 11-1 illustrates how to deploy the Demo Conference API and its API policy.

In this example, I keep the ARM template on my local machine for demonstration

purposes. However, this is not a requirement; you can store your ARM template together

with your other files at a downloadable location such as an Azure Storage Account.

When referencing files such as the API and policy, the value of the URIs can't be local

files. The Azure Resource Manager must be able to access them. You must therefore

provide a URI value where the files are downloadable as HTTP or HTTPS.

Figure 11-1. API deployment with ARM

Listing 11-1 shows a simplified version of the Demo Conference API that I

downloaded to my local machine and named demo-conference.json. The API describes

one operation, GetTopics. You can use the full version of this API that is available at

http://conferenceapi.azurewebsites.net/?format=json.

Listing 11-1. Simplified Demo Conference API

{

 "swagger": "2.0",

 "info": {

 "title": "Demo Conference API",

 "description": "Demo API",

Chapter 11 Deploying apis

http://conferenceapi.azurewebsites.net/?format=json

149

 "version": "2.0.0"

 },

 "host": "conferenceapi.azurewebsites.net",

 "schemes": [

 "http",

 "https"

],

 "securityDefinitions": {

 "apiKeyHeader": {

 "type": "apiKey",

 "name": "Ocp-Apim-Subscription-Key",

 "in": "header"

 },

 "apiKeyQuery": {

 "type": "apiKey",

 "name": "subscription-key",

 "in": "query"

 }

 },

 "security": [

 {

 "apiKeyHeader": []

 },

 {

 "apiKeyQuery": []

 }

],

 "paths": {

 "/topics": {

 "get": {

 "operationId": "GetTopics",

 "responses": {

 "200": {

 "description": "OK"

 }

Chapter 11 Deploying apis

150

 },

 "produces": [

 "application/vnd.collection+json"

]

 }

 }

 }

}

Listing 11-2 describes the API policy that I also have on my local machine. It sets one

outbound header.

Listing 11-2. Demo Conference API policy

<policies>

 <inbound>

 <base />

 </inbound>

 <backend>

 <base />

 </backend>

 <outbound>

 <set-header name="X-myHeader" exists-action="override">

 <value>My header</value>

 </set-header>

 <base />

 </outbound>

 <on-error>

 <base />

 </on-error>

</policies>

I have two files, the API specification itself and the API policy, both are on my local

machine. In order to be available to the Azure Resource Manager, both files must be

downloadable which is not the case now.

As illustrated in Figure 11-1, we need an Azure Storage Account masteringapimsa

and a container where we can store both files. Listing 11-3 describes how to create an

Chapter 11 Deploying apis

151

Azure Storage Account with PowerShell. Set first the context and define the subscription

you are using. To create a new Azure Storage Account, use the Azure PowerShell cmdlet

New-AzStorageAccount.For the purpose of this demonstration, I set SkuName to the

cheapest option LRS (Local Redundancy Storage).

Listing 11-3. Creating Azure Storage Account

Set the correct context

$context = Get-AzSubscription -SubscriptionId "b0e68700-2b10-4f92-858a-36d2

a98748b8"

Set-AzContext $context

Create storage account

$storageAccount = New-AzStorageAccount `

 -ResourceGroupName "mastering-apim-rg" `

 -Name "masteringapimsa" `

 -Location "West Europe" `

 -SkuName "Standard_LRS"

We store our files in a container of our Azure Storage Account. I name the container

apis. By default, the container and any blobs in it can be accessed only by the owner

of the storage account. To provide full read access to anonymous users, we set the

permission to Container. In a production environment, you would delegate access to

containers with shared access signatures (SAS). To focus on deploying an API and its

policy with ARM, I create a container with full read access as Listing 11-4 shows.

Listing 11-4. Creating container in Azure Storage Account

Create a container

New-AzStorageContainer -Name "apis" -Context $storageAccount.Context -Permission

Container

Upload both files, demo-conference-api.json and demo-conference-api.policy.

xml into the container apis. Both files should be publicly available via https://

masteringapimsa.blob.core.windows.net/arm/demo- conference- api.json and

 https://masteringapimsa.blob.core.windows.net/arm/demo- conference- api.

policy.xml.

Chapter 11 Deploying apis

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.json
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.json
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.policy.xml
https://masteringapimsa.blob.core.windows.net/arm/demo-conference-api.policy.xml

152

What is missing is the ARM template that describes to the Azure Resource Manager

what to deploy. Listing 11-5 shows the ARM template for deploying our Demo

Conference API and its policy. Our ARM template has four sections:

• In parameters, we define the name of the Azure API Management

instance and the location of the Azure Storage Account.

• In variables, we define the API name that is used twice later in the

ARM template and the resource location within the storage account.

• In resources, we define the resources that we are deploying, the API

and its policy.

• In outputs, we do not define anything as we do not have following

steps that would require input from this deployment.

I want to highlight the two resources of this ARM template. They define both a type,

name, and two properties. For APIs, the type is Microsoft.ApiManagement/service/

apis; for API policies Microsoft.ApiManagement/service/apis/policies. We can

concatenate the resource name of both resources with apiName and resourceLocation

variable. The policy resource gets policy at the end of the name. The properties for the

API and its policy have a contentFormat that I set to swagger-link-json for the API and

xml-link for the policy. The contentValue of both properties is the downloadable URL

of the API and the policy that are stored in the storage account.

Listing 11-5. ARM template

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/

deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "apiManagementServiceName": {

 "type": "string",

 "defaultValue": "mastering-apim"

 },

 "_artifactsLocation": {

 "type": "string",

 "defaultValue": "https://masteringapimsa.blob.core.windows.net"

Chapter 11 Deploying apis

153

 }

 },

 "variables": {

 "apiName": "demo-conference-api",

 "resourceLocation": "[concat(parameters('_artifactsLocation'), '/

apis/')]"

 },

 "resources": [

 {

 "apiVersion": "2018-01-01",

 "type": "Microsoft.ApiManagement/service/apis",

 "name": "[concat(parameters('apiManagementServiceName'), '/',

variables('apiName'))]",

 "properties": {

 "contentFormat": "swagger-link-json",

 "contentValue": "[concat(variables('resourceLocation'),

variables('apiName'), '.json')]",

 "path": "conf"

 }

 },

 {

 "apiVersion": "2018-01-01",

 "type": "Microsoft.ApiManagement/service/apis/policies",

 "name": "[concat(parameters('apiManagementServiceName'), '/',

variables('apiName'), '/', 'policy')]",

 "dependsOn": [

 "[concat('Microsoft.ApiManagement/service/', parameters('apiManag

ementServiceName'), '/apis/', variables('apiName'))]"

],

 "properties": {

 "contentFormat": "xml-link",

 "policyContent": "[concat(variables('resourceLocation'),

variables('apiName'), '.policy.xml')]"

 }

 }

Chapter 11 Deploying apis

154

],

 "outputs": {

 }

 }

You can keep the ARM template locally or store it side-by-side with your API and

policy. To deploy both resources with ARM, I use the Azure CLI command az deployment

group create, as shown in Listing 11-6. The command requires two parameters, the

resource group --resource-group and the ARM template --template- file. You can

provide an URI for the ARM template instead of the local file with --template-uri.

Listing 11-6. Deploying an ARM template with Azure CLI

az deployment group create `

 --resource-group mastering-apim-rg `

 --template-file demo-conference.json

If you are not familiar with ARM templates, do not worry, there are other options

for deploying APIs and policies to Azure API Management. In fact, many developers of

web services that deploy APIs and policies occasionally find it hard to work with ARM

templates. If you are a developer that focuses primarily on writing application code, you

should consider either creating a tool that can generate ARM templates or choosing one

of the other deployment options. The reason for that is that ARM templates are often

hard to implement for developers as Azure is not their primary domain.

 Bicep
Azure Bicep is a new domain specific language (DSL) and is developed by Microsoft.

It aims to simplify the authoring experience with a cleaner syntax, improved type

safety, and better support for modularity and code reuse. Azure Bicep is a transparent

abstraction over ARM and ARM templates, which means anything that can be done in an

ARM template can be done in Bicep.

If you have already an ARM template, you can convert it to Bicep code with the Azure

CLI command az bicep decompile, as Listing 11-7 shows.

Chapter 11 Deploying apis

155

Listing 11-7. Convert an ARM template to Bicep

az bicep decompile --file demo-conference.json

The output of this command is a Bicep file demo-conference.bicep, as Listing 11-8

shows.

Listing 11-8. Bicep code of an API deployment

param apiManagementServiceName string = 'mastering-apim'

param artifactsLocation string = 'https://masteringapimsa.blob.core.

windows.net'

var apiName = 'demo-conference-api'

var resourceLocation = '${artifactsLocation}/arm/'

resource apiManagementServiceName_apiName 'Microsoft.ApiManagement/service/

apis@2018-01-01' = {

 name: '${apiManagementServiceName}/${apiName}'

 properties: {

 contentFormat: 'swagger-link-json'

 contentValue: '${resourceLocation}${apiName}.json'

 path: 'conf'

 }

}

resource apiManagementServiceName_apiName_policy 'Microsoft.ApiManagement/

service/apis/policies@2018-01-01' = {

 parent: apiManagementServiceName_apiName

 name: 'policy'

 properties: {

 contentFormat: 'xml-link'

 policyContent: '${resourceLocation}${apiName}.policy.xml'

 }

}

The Bicep code describes the same as the equivalent ARM template. Compared

to the ARM template with 44 lines of code, the Bicep code has only 23 lines of code, a

reduction by almost 50%.

Chapter 11 Deploying apis

156

To deploy the Bicep file, you execute the same command as you did with the ARM

template; this time with the demo-conference.bicep file.

az deployment group create `

 --resource-group mastering-apim-rg `

 --template-file demo-conference.bicep

What happens when you deploy a Bicep file is that it gets compiled to an ARM

template and uses this as an intermediate format to deploy Azure resources. It means

that if you already have an ARM template, you do not need to decompile it to a Bicep

file. However, from the perspective of a developer, Bicep files are better readable

and therefore easier to maintain. If you are starting out with Azure deployments, I

recommend starting with Bicep over ARM templates. This is where Microsoft has its

focus and is the de facto standard going forward. You get more information about Azure

Bicep in the official documentation.

 REST
Another option for deploying Azure resources is by using the Azure REST API. It provides

a very flexible way of managing resources in Azure as it can be used almost anywhere,

high-level languages such as Java and C#, PowerShell, or tools like Postman and

cURL. However, using REST might add some additional complexity as you as a developer

need to manage dependencies between Azure resources yourself, something that ARM

and Bicep can manage for you.

This section demonstrates how to use cURL to deploy the Demo Conference API and

its policy. Listing 11-9 shows four variables:

• SERVICE defines the name of the Azure API Management instance.

• RESOURCE_GROUP and SUBSCRIPTION_ID define what the name

suggests for the service.

• URL defines the Azure REST endpoint for deploying an API.

Listing 11-9. Defining variables for a REST API call

SERVICE="mastering-apim"

RESOURCE_GROUP="mastering-apim-rg"

Chapter 11 Deploying apis

https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview

157

SUBSCRIPTION_ID="b0e68700-2b10-4f92-858a-36d2a98748b8"

URL=https://mastering-apim.management.azure-api.net/

subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/

Microsoft.ApiManagement/service/$SERVICE

To access the endpoint URL, a user needs a valid shared access signature (SAS) token.

One way of getting a SAS token is by navigating to your Azure API Management instance

in the Azure portal and selecting the Management API pane from the left-hand menu,

as shown in Figure 11-2. Scroll down to Access token and click Generate. By default, the

SAS token is valid for 30 days.

Figure 11-2. Copy Shared Access Signature (SAS) token

Copy the SAS token and set the value as shown in the following; we need to construct

the cURL command:

SAS="YOUR_SAS_TOKEN"

The cURL command that we create expects values of the API that we set as JSON

payload. Listing 11-10 shows a minimal request payload for deploying an API.

• The value of id is the reference to this API resource.

• The value of type is the same for all API deployments.

• I set the name of this API to demo-conference-api.

Chapter 11 Deploying apis

158

• In properties, we set an array with required parameters such as the

URL to our API, format, and the path. I added some more attributes to

be consistent with the previous examples in this chapter.

Listing 11-10. Request payload for deploying an API

{

 "id": "/subscriptions/$sid/resourceGroups/$rg/providers/Microsoft.

ApiManagement/service/$service/apis/demo-conference-api",

 "type": "Microsoft.ApiManagement/service/apis",

 "name": "demo-conference-api",

 "properties": {

 "displayName": "Demo Conference API",

 "value": "http://conferenceapi.azurewebsites.net/?format=json",

 "format": "swagger-link-json",

 "description": "This is the Demo Conference API",

 "subscriptionRequired": true,

 "path": "conf"

 }

}

Store the JSON payload in a file ./api-data.json and execute the cURL command with

the HTTP request method PUT and the payload --data @api-data.json, as shown in

Listing 11-11. This will deploy the API to your Azure API Management instance.

Listing 11-11. Deploying API with cURL

curl -X PUT -H "Authorization: $SAS" -H "Content-Type: application/json"

--data @api-data.json $URL/apis/demo-conference-api?api-version=2019-12-01

To request the deployed API, run the same command with the HTTP method GET

and without the payload, as shown in the following:

curl -X GET -H "Authorization: $sas" -H "Content-Type: application/json"

$url/apis/demo-conference-api?api-version=2019-12-01

To deploy a policy with the Azure REST API, you have two options; you can either

host the policy on an HTTP endpoint accessible from the API Management service or

you can define the policy as payload as shown in Listing 11-12. I store the payload in a

Chapter 11 Deploying apis

159

file ./apipolicy-data.json that defines a properties object with two members, format

and value. As I want to define the policy as payload, the format is xml and the value the

policy itself.

Listing 11-12. Simple API policy

{

 "properties": {

 "format": "xml",

 "value": "<policies>

 <inbound>

 <base />

 </inbound>

 <backend>

 <base />

 </backend>

 <outbound>

 <set-header name=\"X-myHeader\" exists-action=\"override\">

 <value>My header</value>

 </set-header>

 <base />

 </outbound>

 <on-error>

 <base />

 </on-error>

 </policies>

 "

 }

 }

Execute the cURL command shown in Listing 11-13 for deploying the API policy.

Listing 11-13. Deploying API policy with Azure REST API

curl -X PUT -H "Authorization: $sas" -H "Content-Type: application/

json" --data @apipolicy-data.json $url/apis/demo-conference-api/policies/

policy?api-version=2019-12-01

Chapter 11 Deploying apis

160

You have learned to deploy an API and its policy by using the Azure REST

API. Compared to ARM templates and Azure Bicep, this approach is more flexible as

it can be integrated into existing source code that supports HTTP. Furthermore, many

developers are already familiar with other REST APIs. From my experience, learning the

Azure REST API is not seen as a challenge by most developers and might therefore be a

great choice for those developers that want to work with their language of choice.

 Terraform
Terraform is an open source tool to manage infrastructure in Azure and other cloud

providers. In fact, its great advantage over other infrastructure as code (IaC) tools is that

it is cloud agnostic, which makes it a very popular tool in the cloud community.

The following Terraform file deploys the Demo Conference API and its policy to

Azure API Management. It is split into three parts; part 1 sets the provider for interacting

with Azure, part 2 defines the API, and part 3 defines the API policy.

Listing 11-14 shows how to set the Azure provider azurerm. You get the latest version

of azurerm at the main directory of publicly available Terraform providers https://

registry.terraform.io/providers/hashicorp/azurerm/latest.

Listing 11-14. Part 1 of the Terraform file for setting the Azure provider

terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "=2.67.0"

 }

 }

}

provider "azurerm" {

}

Chapter 11 Deploying apis

https://registry.terraform.io/providers/hashicorp/azurerm/latest
https://registry.terraform.io/providers/hashicorp/azurerm/latest

161

Listing 11-15 shows how to define an API resource. In Terraform, a resource is the

most important element. A resource block describes one or more infrastructure objects,

in our case, an API. The type of this resource element is azurerm_api_management_api;

its local name api. The resource type and the local name together serve as the identifier

that we can use to reference it.

Listing 11-15. Part 2 of the Terraform file defines an API

resource "azurerm_api_management_api" "api" {

 name = "demo-conference-api"

 resource_group_name = "mastering-apim-rg"

 api_management_name = "mastering-apim"

 revision = "1"

 display_name = "Demo Conference API"

 path = "conf"

 protocols = ["https"]

 import {

 content_format = "swagger-link-json"

 content_value = "http://conferenceapi.azurewebsites.net/?format=json"

 }

}

In Listing 11-16, we define the API policy resource element. The features reference

the api resource element to get their values. To define the policy, it supports two options,

xml_content for defining the policy code and xml_link which expects a URL to a

publicly available policy file.

Listing 11-16. Part 3 of the Terraform file defines an API policy

resource "azurerm_api_management_api_policy" "api_policy" {

 api_name = azurerm_api_management_api.api.name

 api_management_name = azurerm_api_management_api.api.api_management_name

 resource_group_name = azurerm_api_management_api.api.resource_group_name

 xml_content = <<XML

<policies>

 <inbound>

Chapter 11 Deploying apis

162

 <find-and-replace from="xyz" to="abc" />

 </inbound>

</policies>

XML

}

To initialize a Terraform project, create a working directory where you place your

Terraform file and run the following command within the same directory:

terraform init

To see what Terraform will deploy or remove before it performs any change in

Azure, run:

terraform plan

Terraform will describe in detail what happens before applying your Terraform file.

Once you are ready to deploy your API and its policy, run:

terraform apply

You have now successfully deployed the Demo Conference API and its policy with

Terraform.

Terraform has many providers such as for Amazon Web Service (AWS), Google Cloud

Platform (GCP), Azure, and many more. It makes it a great IaC tool for organizations that

manage resources in different cloud providers. My experience with managing Azure API

Management with Terraform is that it does not support new features immediately. In

fact, it took several months before the Consumption SKU was implemented. However,

Terraform is a great choice as it is easy to get started with because of its detailed

documentation and great user adoption.

 Summary
You have learned to deploy APIs and policies in many ways, with the Azure CLI, Azure

PowerShell module, ARM templates, Azure Bicep, Azure REST API, and the Azure

provider in Terraform. You have also learned that there is no best way. A best way can

only be one that fits your people and your ecosystem. You must decide what technology

or tool works best for you, your team, or your organization. I know from my experience

Chapter 11 Deploying apis

163

working in a cloud platform team – we were responsible for Azure API Management –

that ARM templates did not work well for our application developers because they spend

most of their day with high-level languages such as Java and C#. ARM is a technology

they touch occasionally, so those developers required a lot of support from us. We

were developing most of their ARM templates, which meant that those developers did

not feel real ownership for their APIs. API ownership is something that we took very

seriously, so we decided to create PowerShell scripts that everyone could use to deploy

their APIs, policies, and products, accessible as tasks and task groups in Azure DevOps.

We empowered our application developers to deploy to Azure API Management even

though it was a black box for many of them. However, the future of infrastructure as code

in Azure is not ARM templates anymore, it is Bicep where Microsoft puts in its effort.

Other teams in our organization were already deploying their databases and

other Azure services with Terraform. Deploying APIs with the same tool might be an

obvious choice.

Chapter 11 Deploying apis

165
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_12

CHAPTER 12

Power Apps
Power Apps allow citizen developers to build mobile-friendly apps quickly and without

the need to implement traditional pro-code. While this low-code approach makes it easy

to create custom apps quickly, a citizen developer might still need some support from

you to connect the data from a web service and surface that data in a Power App.

Note Power Apps are part of a different pricing model, not related to Azure API
Management. Read the documentation about Power Apps pricing.

In this chapter, you will learn to connect Azure API Management to the Power

Platform. You will create a simple Power App from scratch and visualize a JSON response

from an API that is hosted in Azure API Management. Figure 12-1 illustrates how a

backend web service API can be altered on each level and so, create an API in Power

Apps that is best suitable for your citizen developers.

Figure 12-1. APIs from the perspective of a citizen developer

For example, an API in Power Apps might only contain a subset of all available

endpoints that the connected API in Azure API Management exposes to simplify the use

of it and to make the API more useable.

I created a simple Book API in Azure API Management with one operation Book.

Listing 12-1 demonstrates the inbound policy of this operation. To keep it simple for this

demonstration, the operation returns a JSON object with only one key/value pair.

https://doi.org/10.1007/978-1-4842-8011-9_12#DOI
https://powerapps.microsoft.com/pricing/

166

Listing 12-1. API policy for the book operation

<inbound>

 <base />

 <return-response>

 <set-header name="Content-Type" exists-action="override">

 <value>application/json</value>

 </set-header>

 <set-body>

 {"Book" : "Mastering Azure API Management"}

 </set-body>

 </return-response>

</inbound>

 Creating a Connection
To connect an API that is hosted in Azure API Management on the Power Platform can

be achieved directly from the API in Azure API Management as Figure 12-2 illustrates.

Click on the three dots on the right-hand side of the API you want to connect and select

Create Power Connector. A new dialog opens where you name your new connector.

Select a Power Apps environment that you want to use and give your API eventually a

different display name in Power Apps; this makes sense in case where there is already a

connector with the same name. Click now “Create” to create the new API connector in

Power Apps.

ChAPteR 12 PoweR APPs

167

Figure 12-2. Creating a connector to Power Apps

Switch over to your Power Apps environment https://make.powerapps.com/ to

see your new connector; it is located under Custom Connectors that you find in the

left-hand menu. Figure 12-3 shows a list of all custom connectors in your Power Apps

environment. In this example, there is only one connector, “bookapi.” To see all available

operations of this connector, click the pen icon.

Figure 12-3. List of custom connectors in Power Apps

The pen icon opens an editor where you can adjust the API in Power Apps that is

fronting your API in Azure API Management. Like policies in Azure API Management,

you can add or remove operations, add default parameters to requests, or re-route calls.

ChAPteR 12 PoweR APPs

https://make.powerapps.com/

168

To see if this API behaves the way you expect it to, select Test from the top menu to

execute a test operation, as Figure 12-4 shows. It helps you to understand the response

that we will parse when we create a Power App.

Figure 12-4. Editing a custom connector

When you execute a test operation for the first time, you might get asked to create

a connection. If not, click Connections and then Create a connection as shown in

Figure 12-5. This will open a dialog where you put in your API subscription key if

required.

Figure 12-5. Creating a connection

ChAPteR 12 PoweR APPs

169

You create a connection from a connector. There are already plenty of connectors for

many services available, such as for SharePoint, DropBox, and many more. Figure 12-6

shows where you search for your custom connector by using the search field. Then click

+ on the right-hand side of your custom connector, in my case “bookapi,” and click

Create in the following dialog.

Figure 12-6. Available connections

Great, you have now a connection from your Power Apps environment to your API in

Azure API Management, ready to use.

 Creating a Power App
In this section, I want to show you to create a Power App and print out the value from the

API response by using the connection that you created.

Click Create in the left-hand menu to create a Canvas app from blank. A dialog

opens where you set an App name and a format. I selected Tablet, but it does not matter

as we just want to print a value from an API. Click Create to open the Power App editor as

shown in Figure 12-7.

ChAPteR 12 PoweR APPs

170

Figure 12-7. Creating a Power App

In the editor for creating a Power App, we connect to our data at first by either

clicking on connect to data in the canvas of your Power App, or by clicking in the data

source icon in the left-hand menu. As shown in Figure 12-8, a dialog with possible data

sources opens. Select your “bookapi” connection.

Figure 12-8. Connecting the Power App with the API

Your data is now accessible for your Power App. Add a label to the canvas of your

Power App. We want to display the value from the Book API there. To read the value from

the response of the Book API, you must create a formula.

ChAPteR 12 PoweR APPs

171

In order to access this operation, you set the following formula for the label that you

created:

bookapi.Book().Book

The first part of the formula bookapi is your connection which represents the Book

API. The second part Book() represents the operation that we want to call, and the last

part Book represents the key of the key/value pair of the JSON response. Remember, this

is the response we have set in the policy for the Book operation:

{"Book" : "Mastering Azure API Management"}

Figure 12-9 demonstrates all steps for calling the Book API and displaying the

response of the Book API on the canvas of your Power App.

Figure 12-9. Writing a formula for reading a value from the API

Congratulations, you have created a Power App that displays data from an API by

connecting to your Azure API Management instance.

ChAPteR 12 PoweR APPs

172

 Summary
In this chapter, you learned how to expose an API in Power Apps by connecting an API

in Azure API Management to your Power Apps environment. You created then a simple

Power App and used this API to display a value from a response.

Imagine if you would expose many of your APIs in Power Apps together with other

sources such as Azure AD, SharePoint, or Excel, to mention just a few. It enables citizen

developers to truly create powerful applications by combining data from across your

entire organization.

ChAPteR 12 PoweR APPs

PART IV

Enterprise Integration

175
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_13

CHAPTER 13

Networking
When you deploy Azure API Management with the default configuration for virtual

networking, your instance will not be deployed into a virtual network (VNET), and thus

be fully accessible from the Internet. This is a great way to share your public APIs with

the world.

There are other use cases where you might not want to or can expose your APIs

publicly and where you need to share your APIs with external partners or internal users

only. You might have web APIs on-premises and want to expose them in Azure API

Management in a hybrid cloud scenario where a secure connection with other vendors

or datacenters is required. To achieve any of these use cases, you can deploy Azure API

Management into a VNET.

There are three types of VNETs, none, internal, and external. None is the default

configuration, as shown in Figure 13-1. Once deployed, you can switch from internal to

external and vice versa later.

Figure 13-1. VNET types

https://doi.org/10.1007/978-1-4842-8011-9_13#DOI

176

In this chapter, you will learn to secure Azure API Management without a VNET but

also, when you should deploy Azure API Management into an internal or external VNET,

so you understand how APIs will be exposed to your API consumers.

Note VNET integration is only available in the Developer and Premium tier.

We will also look at how to integrate backend web services into Azure API

Management as a load balancer for a multi-AKS-cluster that runs mission critical

workload where you simply can’t rely on one AKS cluster only.

 Internal Virtual Network (VNET)
When you deploy Azure API Management into an internal VNET, by default, your APIs

are inaccessible from outside this VNET because the API gateway does not have a public

facing IP address. However, when you deploy Azure API Management into an internal

VNET, you will get a public IP address. You can see this IP address in the Overview of

your instance of Azure API Management as shown in Figure 13-2. This public IP address

is only used for control plane traffic to the management endpoint which, that is, the

Azure Resource Manager uses to manage configuration. You can lock this IP address

down to the ApiManagement service tag.

Figure 13-2. Public IP address in internal VNET

To sum it up, we have a public IP address for managing configuration and we

have a private IP address for accessing the API gateway, developer portal, Git, and the

management endpoint. However, when you call an API in Azure API Management from

a virtual machine that is inside the same VNET or in a peered VNET by using the private

ChaPTEr 13 NETworkiNg

177

IP address, you receive a HTTP status code 503, service unavailable. This is because your

API Management service does not listen to requests coming from IP addresses. It only

responds to requests to the hostname configured on its service endpoints as shown in

Figure 13-3.

Figure 13-3. Calling Azure API Management in internal VNET mode

At this point, the virtual machine (VM1) does not recognize the hostname apim-

intern.azure-api, so calling an API fails at this point as Azure does not manage DNS

for an internal VNET. To resolve this, you can map the host file. I created a virtual

machine (VM1) with Ubuntu where the host file is located at /etc/hosts and added the

following entry which contains the target IP address (the private IP address of Azure API

Management) and the hostname for the API gateway:

10.0.1.69 apim-intern.azure-api.net

Another option for resolving the hostname is by configuring an Azure private DNS

zone and linking it to the VNET where your Azure API Management instance is deployed

described in the Azure documentation for private DNS.

The question you might ask is, how can I expose APIs together with the developer

portal to my external API consumers. The short answer is by sending requests via a

gateway. Azure Application Gateway is such a gateway that is commonly used in front

of Azure API Management. It is a layer-7 load balancer and acts as a reverse proxy

which has a public IP address, of course, and a built-in Web Application Firewall

(WAF); Azure API Management does not provide WAF. In a nutshell, if you run mission

critical web services that can be accessed via Azure API Management and you decide

to lock down your instance into an internal VNET, using Azure Application Gateway is a

recommended PaaS service to protect your infrastructure from malicious requests.

ChaPTEr 13 NETworkiNg

https://docs.microsoft.com/en-us/azure/dns/private-dns-getstarted-portal

178

Figure 13-4 illustrates how to protect Azure API Management in an internal VNET

with Azure Application Gateway in front. As Azure API Management does not provide

a public IP address for the API gateway, external API consumers send requests to the

external endpoint of Azure Application Gateway. Depending on the URL format you

set up, Azure Application Gateway sends the requests to your Azure API Management

instance or eventually to a different backend that you have in place such as an Azure App

Service where you run a landing website that does not need the overhead that comes

with Azure API Management such as subscriptions and API policies.

Figure 13-4. Azure API Management in an internal VNET

Internal API consumers can access the internal endpoint directly if those requests

come from a VNET that is peered with the VNET where Azure API Management is

deployed in because Azure API Management deployed in internal mode provides only a

private IP address for the API gateway.

Note aPi Management service does not listen to requests coming from iP
addresses. it only responds to requests to the hostname configured on its service
endpoints.

When you deploy Azure API Management into an existing subnet of a VNET, make

sure that your Network Security Group (NSG) – if you have one associated with the

subnet – opens for some necessary ports that Azure API Management needs. You find a

list of all required ports in the documentation for common network configuration issues.

ChaPTEr 13 NETworkiNg

https://docs.microsoft.com/en-us/azure/api-management/api-management-using-with-vnet?tabs=stv2#-common-network-configuration-issues

179

 External VNET
When you deploy Azure API Management into an external VNET, by default, your APIs

are exposed on the Internet as the API gateway provides a public facing IP address as

Figure 13-5 shows.

Figure 13-5. Public IP address in external VNET

However, even though your APIs are publicly exposed on the Internet, you can still

restrict incoming traffic by associating a Network Security Group to the subnet of your

Azure API Management instance as shown in Figure 13-6.

Figure 13-6. Azure API Management in an external VNET

For example, instead of using Azure Application Gateway in front of Azure API

Management as suggested for the internal mode, using the global Azure Front Door

gateway as a layer-7 load balancer which has near real-time failover requires a

ChaPTEr 13 NETworkiNg

180

backend – in this case Azure API Management – to provide a public IP address. With

Azure API Management in external mode, you have a public IP address where you can

configure NSG rules to restrict incoming traffic to Azure Front Door only.

 No VNET
Deploying Azure API Management without VNET integration is a less expensive

option as you can choose other pricing tiers such as consumption, basic, or standard.

However, seen from a security perspective, you are more vulnerable to cyberattacks as

your instance is publicly exposed to the Internet and can therefore not be protected

in the same way as inside a VNET/subnet with network security rules (NSGs) in place.

Fortunately, there is another option where you can restrict incoming traffic to your

instance by using Azure Front Door as a gateway. Azure Front Door is a global layer-7

load balancer and comes with a Web Application Firewall (WAF), so your Azure API

Management instance is better protected against cyber-attacks from the public Internet

than without.

Figure 13-7 illustrates how you can restrict the public endpoint of Azure API

Management without VNET integration. The idea is to implement a policy that restricts

the incoming traffic from your Azure Front Door instance by checking the identifier and

by filtering IP address ranges.

Figure 13-7. Azure Front Door as the gateway for Azure API Management

Microsoft Azure updates weekly its IP address ranges for Azure, its regions, as well

as several Azure services such as Azure Logic Apps and Azure Front Door. You can

download the JSON file and extract all IP ranges for Azure Front Door that you find in

the section with the name AzureFrontDoor.Backend. You know when there has been a

ChaPTEr 13 NETworkiNg

https://www.microsoft.com/en-us/download/details.aspx?id=56519

181

change in IP address ranges by watching the property changeNumber, as shown in the

following:

{

 "name": "AzureFrontDoor.Backend",

 "id": "AzureFrontDoor.Backend",

 "properties": {

 "changeNumber": 7,

 "region": "",

 "regionId": 0,

 "platform": "Azure",

 "systemService": "",

 "addressPrefixes": [

 "13.73.248.16/29",

 "20.21.37.40/29",

 "..."

 }

 }

The JSON file defines IP address ranges as addressPrefixes, so you must convert

them to address ranges first in order to use them in Azure API Management policies. As

an example, the address prefix 13.73.248.16/29 converts into the address range from

13.73.248.17 to 13.73.248.22.

A policy for IP address ranges looks like the following example that you can place in

the global policy of Azure API Management, so all APIs can inherit it:

<inbound>

 <ip-filter action="allow">

 <address-range from="13.73.248.17" to="13.73.248.22" />

 <address-range from="20.21.37.41" to="20.21.37.46" />

 <address-range from="..." to="..." />

 </ip-filter>

</inbound>

The second part of restricting incoming traffic to your Azure API Management

instance is by checking the identifier (ID) of your Azure Front Door instance. You can

ChaPTEr 13 NETworkiNg

182

find the Front Door ID in the overview of your Azure Front Door instance, as shown in

Figure 13-8.

Figure 13-8. Azure Front Door ID

Azure Front Door sets a header X-Azure-FDID in all requests that you can check by

using the check-header policy and setting the Front Door ID as the value, as shown in

the following:

<inbound>

 <check-header name="X-Azure-FDID" failed-check-httpcode="403"

failed- check- error-message="access denied" ignore-case="false">

 <value>{FRONTDOOR_ID}</value>

 </check-header>

</inbound>

Set the value as a named value in Azure API Management, so you can easily change it

later if you should switch to another Azure Front Door instance.

You can use Azure Front Door as a gateway toward Azure API Management also in

case where you have your instance in external mode and want to restrict the traffic.

 Backend Integration with AKS
We use Azure API Management as a façade toward our backend web services that can

come in different technologies, locations, and requirements. Some backend web services

run as containers inside an Azure Kubernetes Service (AKS); others need to be combined

ChaPTEr 13 NETworkiNg

183

in order to form a meaningful API; and some backend web services even run outside our

Azure tenant, on-premises.

Kubernetes is an open source platform for container orchestration. Azure

Kubernetes Service (AKS) is designed for organizations that want to build scalable

applications with Docker and Kubernetes while using the Azure architecture. It helps to

manage a lot of cluster management such as reducing the complexity of deployment and

management tasks, but also upgrading Kubernetes itself which you can do by executing

the following command:

az aks upgrade \

 --resource-group myResourceGroup \

 --name myAKScluster \

 --kubernetes-version KUBERNETES_VERSION

As simple as it seems, it comes with a risk. In my organization, we experienced

problems multiple times during an upgrade of AKS itself, where we had to involve

Microsoft’s support team to help us out with nodes that began to hang, one by one.

Depending on your support level, solving a problem may take some time where your

Kubernetes cluster might not process requests as it happened to us. To reduce risks

like this, you may consider deploying applications in multiple AKS clusters to improve

availability, isolation, and scalability. I want to discuss one approach of running multiple

AKS clusters behind Azure API Management that we successfully use.

Policy-managed load balancing is where a policy in Azure API Management decides

to what AKS cluster to send requests to. This approach does not introduce additional

Azure services and seems therefore to be less complex and easy to manage. However, a

policy is code that you write and maintain which adds complexity to the overall system

that you manage which itself adds risk.

Figure 13-9 illustrates Azure API Management as a load balancer in front of two AKS

clusters. The idea is to weight the amount of traffic sent to one or another AKS cluster.

Imagine that you want to upgrade the upper blue AKS cluster. To verify that the upgrade

was successful, you start routing just a small amount of traffic to the newly upgraded

AKS cluster and observe its behavior by analyzing the logs and looking for abnormal

behavior. If everything looks normal, you increase the amount of traffic until it reaches

the value that is suitable for this AKS cluster depending on the number and type of its

underlying VMs, in this case 40%.

ChaPTEr 13 NETworkiNg

https://searchitoperations.techtarget.com/definition/Docker

184

Figure 13-9. Azure API Management as a load balancer

An implementation of the weights of participating AKS clusters looks like shown in

Listing 13-1. A named value clusters defines a list of clusters where each element has at

least two values, an identifier, in this case a color, and a percentage value.

Listing 13-1. Weighted AKS clusters as named value in Azure API Management

{ {"blue","40"}, {"green","100"} }

The first element in the list that has the identifier blue receives 40% of the traffic

while the second element green receives 60%, value of element[i-1] – value of

element[i]. This allows for additional clusters by adding more elements to the list

without changing the implementation of a policy that uses those values.

Listing 13-2 shows an example of the global policy for weighted load balancing

between multiple AKS clusters that uses the named value {{clusters}}. The policy does

two things; it sets a variable aksBackendUrl in the inbound section and it forwards the

request to the backend.

Remember an effective policy is the result of the policies of all scopes,
operation, aPi, product, and global.

The policy sets a random number between 0 and 100. The idea with this number is

to match the number with an element in the list to send a request to. As an example, the

number 70 matches the second element green as it is between the two values 40 and 100.

To find this element, I iterate through the list using a linear search and check whether

ChaPTEr 13 NETworkiNg

185

the random value is between the previous and the current element; the first iteration is

a bit special as it does not have a previous element. Once I have found a match, I return

it by creating the URL of AKS using this identifier of the matched element and store it in

aksBackendUrl.

Listing 13-2. Global policy for weighted load balancing

<policies>

 <inbound>

 <set-variable name="aksBackendUrl" value="@{

 int rnd = new Random().Next(100);

 string[,] clusters = {{clusters}};

 for (int i = 0; i <= servers.GetUpperBound(0); i++) {

 if (i == 0) {

 if (rnd <= Int16.Parse(clusters[i,1])) {

 return "http://aks-" + clusters[i,0] +

".azurecloud.no";

 }

 } else if (rnd > Int16.Parse(clusters[i-1,1]) && rnd <=

Int16.Parse(clusters[i,1])) {

 return "http://aks-" + clusters[i,0] + ".

azurecloud.no";

 } else {

 // rnd is not withing the range for this cluster

 }

 }

 // Return primary clusters

 return "http://aks-" + clusters[0,0] + ". azurecloud.no";

 }" />

 </inbound>

 <backend>

 <forward-request />

 </backend>

 <outbound />

 <on-error />

</policies>

ChaPTEr 13 NETworkiNg

186

I use the variable aksBackendUrl in API policies to set the backend service URL. As

you can see in Listing 13-3, I put <base /> in the beginning of the inbound section to

insert upper scoped policies such as the global policy where I set this variable.

Listing 13-3. API policy

<inbound>

 <base />

 <set-backend-service base-url="@(context.Variables.GetValueOrDefault

("aksBackendUrl", "{{AKSBackendUrl}}") + context.Api.Path)" />

</inbound>

Let us assume that the code of the global policy does not work as intended

and aksBackendUrl is not set. In this case, I return a default value which I set as an

ordinary named value by using this context.Variables.GetValueOrDefault(VALUE,

DEVAULT_VALUE).

 Summary
In this chapter, you learned to integrate Azure API Management into a VNET. We

discussed when it makes sense to use what VNET mode, internal or external, and that

it depends on your use case. Not all use cases require a VNET integration. You might

want to expose your APIs publicly on the Internet, so all developers can subscribe to

them without any restrictions. Other uses cases may require a highly secured Azure API

Management instance where an internal VNET integration is the only option. As you

have learned in this chapter, publicly exposed APIs can be secured.

I hope that I could give you enough insight into Azure API Management and VNET

integration, so you can make good architectural decisions in the future.

ChaPTEr 13 NETworkiNg

187
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_14

CHAPTER 14

Self-hosted API Gateway
When you call an API in Azure API Management, the request is handled by the managed

API gateway component of your instance, which then forwards the requests to a backend

web service. In cases where a backend web service is hosted nearby and the traffic is

going via the Azure backbone, this is fine because latency is kept to a minimum and

security to a maximum. However, there are other cases where backend web services

are hosted outside of your Azure tenant and where the traffic to backend web services

goes via the public Internet and not via the Azure backbone. Those cases can not only

be challenging security-wise as data is sent out of the network but might also break

compliance policies of an organization where traffic must stay local.

Figure 14-1 illustrates the connectivity between API consumers and backend web

services using the managed API gateway of an Azure API Management instance. The

managed API gateway is hosted at the same location as your Azure API Management

instance. All traffic goes through this centralized component no matter where backend

web services are hosted, on-premise and far away from your Azure API Management

instance or hosted at another cloud provider where you might legally not be able to

send out requests from. If your backend web services are hosted near your Azure API

Management instance, this should be fine. For example, I worked in a project where

we hosted Azure API Management and Azure Kubernetes Service – we ran all backend

web services there – in the same VNET. A managed API gateway is everything we

needed. Latency was kept to a minimum as both services were deployed at the same

location; security was strengthened through network security rules of the subnets; and

compliancy was ensured as compliance rules were the same.

https://doi.org/10.1007/978-1-4842-8011-9_14#DOI

188

Figure 14-1. Managed API gateway

In a hybrid world where backend web services run in different locations, Azure,

on-premises, or other cloud providers, a managed API gateway might not always be a

good solution. Luckily, Azure API Management lets you run the API gateway near your

backend web services using a self-hosted API gateway.

API consumers call APIs of a self-hosted gateway instead of the managed API

gateway. Technically, this means that an API consumer can descide whether to call an

API in a self-hosted or the managed API gateway; both work at the same time.

Figure 14-2 illustrates the connectivity between API consumers and backend web

services using both, self-hosted API gateways and the managed API gateway of an Azure

API Management instance. Compared to the managed API gateway, traffic from an

API consumer to a backend web service that is hosted outside your Azure tenant can

travel directly to the backend services, which results in lower latency. The illustration

also shows two dashed lines between Azure API Management and the self-hosted API

gateways. A self-hosted API gateway uses this connection over port 443 to communicate

its status, sends request logs and metrics to Azure Monitor, but also applies configuration

updates such as adding or deleting an API to or from a self-hosted API gateway. If the

connection is broken, the self-hosted API gateway can’t start.

Chapter 14 Self-hoSted apI Gateway

189

Figure 14-2. Self-hosted API gateway

Note Self-hosted apI gateways are only available in the Developer and Premium
pricing tiers.

A self-hosted API gateway needs a container orchestration solution such as Docker

or Kubernetes to run, as self-hosted API gateways are Linux-based Docker containers.

 Creating a Self-hosted API Gateway
You can create multiple self-hosted API gateways which are useful for different backend

web services. You might have legacy backend web services running on-premises that

cover a certain domain or speaking in Azure API Management terms, product. In this

case, you might want to create an API gateway that includes only APIs that are within this

product. Once you eventually migrate a certain backend web service to another runtime

environment, you can remove this API from the self-hosted API gateway and add it

to another self-hosted API gateway where the migrated backend web services run, all

without redeploying the self-hosted API gateways.

Before we create an API gateway from an Azure API Management instance, we need

to create a $apimContext variable that describes the instance, as Listing 14-1 describes.

Chapter 14 Self-hoSted apI Gateway

190

Listing 14-1. Create the context for your Azure API Management instance.

Get subscription

$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ID>

Set subscription by setting the context

Set-AzContext $context

Set context for Azure API Management instance

$apimContext = New-AzApiManagementContext `

 -ResourceGroupName mastering-apim-rg `

 -ServiceName mastering-apim

You create a self-hosted API gateway with the Azure PowerShell cmdlet

New- AzApiManagementGateway. It requires metadata pertaining to the resource

geographic location. The cmdlet does not really need any data, a name is the only

requirement, as the following code shows:

$location = New-AzApiManagementResourceLocationObject -Name loc

Listing 14-2 lists two PowerShell cmdlets for creating a functional self-hosted

API gateway, New-AzApiManagementGateway for creating the API gateway and

Add- AzApiManagementApiToGateway for adding an API to it using the ApiId parameter.

Both cmdlets require the $apimContext variable.

Listing 14-2. Creating a self-hosted API gateway with Azure PowerShell

Creates a new self-hosted API gateway

New-AzApiManagementGateway -Context $apimContext -GatewayId

myGateway -LocationData $location

Adds an API to the gateway

Add-AzApiManagementApiToGateway -Context $apimContext -GatewayId

myGateway -ApiId ConferenceApi

You can run Add-AzApiManagementApiToGateway as many times as you have APIs

in Azure API Management. Once your self-hosted API gateway includes your APIs, it is

available from the Microsoft Container Registry. To check this, you could list all available

self-hosted API gateways by running the Get-AzApiManagementGateway cmdlet.

Get-AzApiManagementGateway -Context $apimContext -GatewayId myGateway

Chapter 14 Self-hoSted apI Gateway

191

As you created only one self-hosted API gateway for now, you see one entry with the

gateway identifier (GatewayId) myGateway.

 Deploying a Self-hosted API Gateway
You learned from the previous section that a self-hosted API gateway comes as a Docker

image mcr.microsoft.com/azure- api- management/gateway:latest. To successfully

deploy the image as a container, it depends on two configurations, the service
endpoint, and an authorization token. In this section, I will demonstrate how you can

retrieve both values and then deploy your self-hosted API gateway to a local Ubuntu

environment that has Docker already preinstalled.

 Configuration
There are at least two options for getting the configurations, manually from the Azure

portal or programmatically by using PowerShell. If you want to run the self-hosted API

gateway in a production environment, you should choose the latter as the authorization

token has a maximum lifetime of 30 days, so you need to repeat the steps after

approximately one month.

 Service Endpoint

Start off by creating a context variable $apimContext, as Listing 14-1 describes. You

might still have it in memory, so you might want to skip this. You can use the context

variable to create the first part of the first configuration, the service ID by running the

following code:

$serviceId = Get-AzApiManagement | select -expand id

Alternatively, you can set the service ID manually; it will not change later. As you

can see, it contains only static values, the subscription ID, and the service name of your

Azure API Management instance.

$serviceId = "/subscriptions/<SUBSCRIPTION_ID>/resourceGroups/mastering-

apim- rg/providers/Microsoft.ApiManagement/service/<SERVICE_NAME>"

Chapter 14 Self-hoSted apI Gateway

http://mcr.microsoft.com/azure-api-management/gateway:latest

192

The second part is the service endpoint itself. Create it by introducing a $SERVICE_

ENDPOINT variable and store its value, as shown in the following:

$SERVICE_ENDPOINT = `

 "https://mastering-apim.management.azure-api.net" + `

 $serviceId + `

 "?api-version=2021-01-01-preview"

 Authorization Token

The second configuration is the authorization token for the self-hosted API gateway. You

generate this token by sending a POST request generateToken of the gateway resource;

it is represented by its resource identifier. You can read the resource identifier $id of the

self-hosted API gateway either by using Azure PowerShell or by setting it manually. As

it is a static value, that will never change, both approaches are fine. To get the gateway

ID, use the Azure PowerShell cmdlet Get-AzApiManagementGateway together with the

context from Listing 14-1 and the gateway name myGateway. Filter the result with

select -expand to retrieve the gateway ID.

$id = Get-AzApiManagementGateway `

 -Context $apimContext `

 -GatewayId myGateway `

 | select -expand id

The gateway ID is a static string containing your subscription ID, the service name,

and the name of the self-hosted API gateway.

/subscriptions/<SUBSCRIPTION_ID>/resourceGroups/mastering-apim- rg/

providers/Microsoft.ApiManagement/service/mastering-apim/

gateways/<GATEWAY_NAME>

Use the gateway ID to create the URL for generating an authorization token and store

it in a value $url, as shown in the following:

$url = "https://management.azure.com/" + $id + "/generateToken/?

api- version=2019-12-01"

Chapter 14 Self-hoSted apI Gateway

193

As you are sending a POST request to $url, you need a payload in JSON format

which defines the key type, and an expiring date. A token cannot be valid for more than

30 days before it must be regenerated. That is why there are two key types, primary or

secondary. A self-hosted API gateway uses the secondary key when the primary key

changes after 30 days; the same is true when the secondary key must be regenerated. Set

$expiry to 30 days from now using the following code example:

$expiryDate = (Get-date).AddDays(30)

$expiry = Get-Date $expiryDate -Format s

Once $expiry contains a value like mine, 2021-10-06T09:13:59, you can set the

following JSON object to $bodyToken.

$bodyToken="{

 'keyType': 'primary',

 'expiry': '$expiry'

}"

Note Set the key type to primary or secondary depending on which key
expires first.

It is time to request the authorization token by using the Azure CLI command az

rest, as demonstrated in the following. The response of this call is in JSON format. I use

the popular command-line JSON processor jq to extract the actual token from it.

$TOKEN = az rest `

 --method POST `

 --uri "$url" `

 --body $bodyToken `

 | jq .value

Listing 14-3 shows the content of env.conf. This file contains both configurations,

the service endpoint and the authorization token. Make sure to place the file on the

same host on which you want to run your self-hosted API gateway.

Chapter 14 Self-hoSted apI Gateway

194

Listing 14-3. The env.conf file contains two configurations.

config.service.endpoint=<paste SERVICE_ENDPOINT here>

config.service.auth=GatewayKey <paste TOKEN here>

For the purpose of this demonstration, I created env.conf on an Ubuntu VM.

 Deployment
The final step for running a self-hosted API gateway is by creating a Docker container

myGateway of the image mcr.microsoft.com/azure- api- management/gateway:latest.

It requires two ports, 80 for accessing the APIs that are hosted by this gateway, and 443

as the configuration management channel where the self-hosted API gateway gets its

updates and sends metrics over. You also give it the configuration file env.conf. If you

prefer to set the configuration directly as parameters, you can do so using the

parameter --env twice of each configuration instead of --env-file.

docker run \

 --detach \

 --name myGateway \

 --publish 80:8080 \

 --publish 443:8081 \

 --env-file env.conf \

 mcr.microsoft.com/azure-api-management/gateway:latest

Once you have executed the command, check if the container started successfully

using docker ps to list all running containers and look for your container myGateway.

Until now, you have sent request to the managed API gateway using the following

URL: https://mastering- apim.azure- api.net/conf/topics. By using the self-hosted

API gateway from your machine, you can replace this with either localhost or the IP

address of your machine, as demonstrated here:

curl localhost/conf/topics

This request gives you the usual response from the Demo Conference API.

Chapter 14 Self-hoSted apI Gateway

http://mcr.microsoft.com/azure-api-management/gateway:latest
https://mastering-apim.azure-api.net/conf/topics

195

 Updating the Self-hosted API Gateway
As the development of our backend web services continues and the APIs change, we

want to keep our self-hosted API gateways in sync. To ensure that our self-hosted APIs

are in sync with the managed API gateway, Azure API Management requires a proper

connection to the service instance over port 443, the configuration management

channel. In case you deployed Azure API Management in internal VNET mode, you must

ensure that this port is open in the outbound directions so APIs can be added, deleted,

or updated. As an example, delete the Demo Conference API ConferenceApi from the

self-hosted API gateway myGateway by using the Azure PowerShell cmdlet Delete-

AzApiManagementApiToGateway as shown in the following:

Delete-AzApiManagementApiToGateway `

 -Context $apimContext `

 -GatewayId myGateway `

 -ApiId ConferenceApi

This change removes an API immediately from your self-hosted API gateway and

can’t be called by API consumers anymore.

 Summary
In this chapter, we discussed self-hosted API gateways. You learned that even though

you manage self-hosted API gateways by yourself, there are certain use cases where they

are a preferred option. For example, if your APIs are consumed by internal users only,

keeping the traffic internally within the same network makes sense for several reasons:

reduced latency, minimal bandwidth costs, and improved security.

You learned then to create a self-hosted API gateway programmatically by using

Azure PowerShell. This is the preferable option in a production environment as the

authorization token that is used to gain access to your Azure API Management instance

is time limited to a maximum of 30 days. To renew this token, you should automate the

process of generating this token using the code in this chapter.

At the end of this chapter, you deployed a Docker container for the self-hosted API

gateway on a local machine, in this case an Ubuntu VM.

Chapter 14 Self-hoSted apI Gateway

PART V

Maintenance

199
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_15

CHAPTER 15

Security
You have learned many of the most important security aspects of Azure API

Management already. However, there is at least one aspect remaining that you need to

understand, authentication. In this chapter, you will learn to authenticate a client with

a backend web service using both HTTP basic authentication and OAuth 2.0. At the end

of this chapter, you will learn about two additional security aspects that are important to

understand when working with Azure API Management.

 Authentication
In this section, you will learn two ways of authenticating a client with a backend, HTTP

basic authentication and OAuth 2.0.

 HTTP Basic Authentication to Backend Web Services
HTTP basic authentication is the simplest technique for enforcing access controls to

your backend web services as it does not require session identifiers or cookies. Instead,

HTTP basic authentication uses the Authorization HTTP header field with username

and password in plaintext, as shown in the following:

curl -H 'Authorization: Basic $(echo -n <YOUR_USERNAME>:<YOUR_PASSWORD> |

base64)' <YOUR_WEBSITE>

Username and password are base64 encoded, which can easily be decoded by an

attacker in the same way the credentials are encoded. It makes this authentication

method vulnerable in a couple of ways such as man-in-the-middle attacks and larger

attack windows as this header must be included in all requests.

Figure 15-1 illustrates an end-to-end request with Azure API Management between

an API consumer and a backend web service with HTTP basic authentication enabled.

https://doi.org/10.1007/978-1-4842-8011-9_15#DOI

200

An API consumer calls an Azure API Management hosted API – in this case, Basic

API – with its subscription key to verify if the API consumer is allowed to access this

API. The API then adds an Authorization header to the request in its policy before it gets

forwarded to the backend web service, in this example, an Nginx website that is hosted

on an Ubuntu virtual machine (VM) in Azure.

Figure 15-1. HTTP basic authentication

Let us start from the right site of Figure 15-1 and configure an Nginx web server with

HTTP basic authentication enabled. If you have not installed an Nginx web server yet but

would like to, you can follow the instructions in the official Nginx documentation.

Open your Nginx configuration file of your Nginx service /etc/nginx/sites-

available/default. We want all pages from root to be secured; define this in the location

/ section, as Listing 15-1 shows. To enable basic authentication, add two directives, auth_

basic and auth_basic_user_file. The first directive auth_basic sets the name for a dialog

window which is shown in a browser if an Authorization header is missing in the request.

The second directive auth_basic_user_file defines the path to the user/password file. All

users in this file will have access to the defined location, in this case, all pages.

Listing 15-1. Nginx with HTTP basic authentication

location / {

 try_files $uri $uri/ =404;

 auth_basic "Restricted content";

 auth_basic_user_file /etc/nginx/.htpasswd;

}

Restart your Nginx service and try to access it from a browser to verify that a dialog

window with the name “Restricted content” is shown.

Create a new API with an operation that you point to your Nginx web server; I named

this API Basic API and the operation test, as shown in Figure 15-2. Set the context path

API URL suffix to /basicapi. You can either disable the subscription key under Settings

or make sure that your user has access to one.

Chapter 15 SeCurity

http://nginx.org/en/docs/install.html

201

Figure 15-2. HTTP basic authentication API demo

Open the API policy and add the code from Listing 15-2. It defines the inbound

section where you set the IP address – or URL if you have – in your Nginx web server. Set

the address as a named value so you can change it easily later. All request to this API will

now be forwarded to the Nginx web server. What is missing is the authorization header

with the credentials. Use the predefined authentication-basic policy for this purpose

and set both a username and a password.

Listing 15-2. Inbound API policy for basic authentication

<inbound>

 <set-backend-service base-url="{{backendUrl}}" />

 <authentication-basic username="{{basicUser}}"

password="{{basicPassword}}" />

 <base />

</inbound>

As all requests will be using the same credentials, you might consider adding a

technical user to your Nginx web server that is shared across all requests.

Remember your users are still identified by their individual subscription keys, so
a shared technical user for a backend web service won’t change this.

Chapter 15 SeCurity

202

To dive a bit more into Azure API Management policies, I created a new page /

mypage.html to the Nginx web server. To access this page from the new operation, open

the policy test and add the code from Listing 15-3 to the inbound section. It contains

the predefined policy rewrite-uri where you set the path to the endpoint in Nginx.

Listing 15-3. Inbound operation policy for basic authentication

<inbound>

 <rewrite-uri template="/mypage.html" />

 <base />

</inbound>

Now that you have created a new API in Azure API Management which forwards

requests to your Nginx web server with basic authentication enabled, you might

want to try it out. You do so by sending a cURL request to the endpoint in Azure API

Management with your subscription key as you would normally do:

curl -H "Apikey: <YOUR_SUBSCRIPTION_KEY>" https://mastering-apim.azure-api.

net/basicapi/test

When a request is processed in the effective policy, an authorization header with

your base64-encoded username/password is added and forwarded to Nginx. The result

is the content of mypage.html.

 Authentication with OAuth 2.0
In the official documentation for OAuth 2.0, the following is stated: “The OAuth 2.0

authorization framework is a protocol that allows a user to grant a third-party web site

or application access to the user's protected resources, without necessarily revealing their

long-term credentials or even their identity.”

Azure API Management supports authentication with OAuth 2.0. Its protected

resources are the backend web applications that a third-party client application, such as

the developer portal in Azure API Management, wants to access through APIs.

The developer portal – or any other third-party client application – requests an

access token from the Azure Active Directory (Azure AD) using an App registration client

id and a client secret. A user signs in with their credentials. Azure AD will then issue an

access token that the user must add to an API call before an Azure API Management

policy validates it.

Chapter 15 SeCurity

https://auth0.com/docs/authorization/protocols/protocol-oauth2

203

Figure 15-3 illustrates a high-level view on how Azure AD relates to its registered

applications and APIs in Azure API Management. There are three parts involved in this

process, client, backend, and authentication server. The client – in this example, the

developer portal in Azure API Management – is represented by a registered Client App in

Azure AD. An API in Azure API Management is represented by a registered Backend App

in Azure AD. To call an API from the developer portal, the client app needs to be granted

permission to the backend app. Furthermore, the client app needs a secret so it can sign

an access token that a request must contain.

I have divided the section in three parts for configuring Azure API Management with

OAuth 2.0, Backend App, Client App, and Azure API Management.

 Backend App

An API is represented as a Backend App in Azure AD. Search for Azure Active Directory

in the Azure portal and click App registrations, as shown in Figure 15-4. Continue by

clicking New registration to register a new application and name it backend-app. You

are prompted to specify an Application ID URI like https://azurecloud.no/api

which must be globally unique. If you don’t set this value, a default value in the form

api://<application-client-id> is provided.

Figure 15-3. Azure Active Directory App registrations

Chapter 15 SeCurity

https://azurecloud.no/api

204

Depending on your environment, you may want to let user accounts from other

directories access the backend. In this example, I only support user accounts that are

within this directory. After you clicked Register, the new application gets an Application
(client) id. You will need this client id later when you implement an API policy to verify

the callers access token.

Add now a scope with a name. The Scope name is included in the access token of a

request that an API policy can verify and eventually accept or reject. A common scope

naming convention is resource.operation.constraint, so you may name the scope

like Users.Read.All; I named mine apis.full, as shown in Figure 15-5. Make sure that

you set an easy-to-understand description as users that sign in will be prompted with a

consent dialog.

Figure 15-4. Registering the Backend App in Azure AD

Chapter 15 SeCurity

205

Figure 15-5. Setting the scope of the backend app

The version of the access token for the backend-app is currently set to 1. Change the

value of accessTokenAcceptedVersion to 2 as you want to use OAuth 2.0. Click Manifest

in the left-hand menu to open the manifest of the Azure AD backend app and search for

the term, as shown in Figure 15-6.

Figure 15-6. Manifest of backend-app in Azure AD

Chapter 15 SeCurity

206

You have now created a representation of an API in the form of an application in

Azure AD.

 Client App

The developer portal, or any other client application that calls an API in Azure API

Management, is represented as a Client App in Azure AD. Register a new application

with the name client-app as shown in Figure 15-7. Depending on the context, you

select the right option of the supported account types.

In the next step, you create a Client Secret which is used to authenticate the client’s

identity. When the developer portal requests an access token from Azure AD, it passes

an authorization code along with authentication details, including the client secret, to an

API token endpoint. The access token is a Json Web Token (JWT) with a signature hash.

Create a new client secret by navigating to Certificates & secrets in your client app

client-app and click New client secret. Give it a name and set an expiration date. Click

Add to create the client secret and secret value, as shown in Figure 15-8.

Figure 15-7. Registering the Client App in Azure AD

Chapter 15 SeCurity

207

Figure 15-8. Creating a client secret

Grant the client app permission to call the backend app for signed-in users by

following the steps shown in Figure 15-9. Navigate to API permissions on the left-hand side

of your client app and click Add a permission. Select your backend app backend- app from

the list of My APIs and mark the right permission. As you only created one permission, the

list only contains apis.full. The permission is part of the access token that you send along

with an API request from the developer portal, so it can be verified in a policy.

Figure 15-9. Granting permissions to allow client-app to call backend-app

Chapter 15 SeCurity

208

You are not done with configuring the client-app yet. There is one setting missing

that you get from your Azure API Management instance.

 Azure API Management Instance Settings

In this section, you will enable user authorization with the OAuth 2.0 service in Azure

API Management from the Azure portal. Navigate to App registration in Azure AD and

click Endpoints. There are two endpoints that interest us, OAuth 2.0 authorization

endpoint (v2) and OAuth 2.0 token endpoint (v2); both are marked in Figure 15-10. Copy

both URLs and paste them into your favorite text editor, so you have them at hand. We

don’t need the other URLs, so you can just ignore them.

Figure 15-10. OAuth 2.0 endpoints

I named the OAuth 2.0 service that you will configure as apim-oauth-service.

Navigate to your Azure API Management instance and click OAuth 2.0 + OpenID Connect

in the left-hand menu followed by Add as you want to configure an OAuth 2.0 service. A

new configuration window “Add OAuth 2 service” pops up on the right side, as shown in

Figure 15-11.

I selected Authorization code as the authorization grant type. The authorization code

is obtained by using the authorization server – that you are configuring right now – as

an intermediary between the client – the developer portal – and backend-app that you

created previously. The client directs the backend-app then to the authorization server,

Chapter 15 SeCurity

209

which in turn directs the backend-app back to the client with an authorization code. The

authorization endpoint URL-field is for the OAuth 2.0 authorization endpoint (v2) that

you copied into your favorite text editor together with the OAuth 2.0 token endpoint (v2);

paste the second value (token) into the Token endpoint URL-field.

As the default scope, you set the Authorization scope of your backend-app from

Figure 15-5. This value will be part of the JWT token which is included in an API request.

As the last step in Figure 15-11 for configuring the OAuth2 service, take the

application ID of the client-app from Figure 15-7 and the client secret from Figure 15-8

and set both values accordingly.

Your OAuth 2.0 service is now configured. However, you are not done yet. Copy the

Authorization code grant flow URL; you will need it in the next step where we head back

to your client-app.

Figure 15-11. Configuring an OAuth 2.0 service

Finally, you set a callback URL in your client-app that you copied in the previous

step of Figure 15-10. The Authorization code grant flow URL is called after a user is

successfully signed in.

Navigate back to your client-app in Azure AD and select Authentication from the left-

hand menu and click Add a platform to add the Authorization code grant flow redirect

URL; then click Configure as shown in Figure 15-12.

Chapter 15 SeCurity

210

Before making calls to an API, the developer portal needs to obtain an access token

from Azure AD via your OAuth 2.0 authorization server on behalf of a user. To enable

OAuth 2.0 user authorization for your API, navigate to it in Azure API Management

and click the Settings tab; then select OAuth 2.0. Select the OAuth 2.0 server that you

previously configured; I called mine apim-oauth-service, as shown in Figure 15-13.

Figure 15-13. Setting OAuth 2.0 server for an API

Figure 15-12. Add a platform in your client-app

Chapter 15 SeCurity

211

If you have not tried out the developer portal before, make sure to enable

Cross- Origin- Resource-Sharing (CORS) for the developer portal by adding the following

code to the global policy in Azure API Management. It permits loading resources also

from other origins than its own, in this case https://mastering- apim.developer.

azure- api.net.

<inbound>

 <cors allow-credentials="true">

 <allowed-origins>

 <origin>https://mastering-apim.developer.azure-api.net</origin>

 </allowed-origins>

 <allowed-methods preflight-result-max-age="300">

 <method>*</method>

 </allowed-methods>

 <allowed-headers>

 <header>*</header>

 </allowed-headers>

 <expose-headers>

 <header>*</header>

 </expose-headers>

 </cors>

</inbound>

 Test and Validate

Before we take the last and final step in this section about authentication with OAuth

2.0, I want you to test the API that you enable OAuth 2.0 for from the developer portal.

Navigate to the developer portal and try out an API endpoint; in this example, I selected

the GetTopics endpoint of the Demo Conference API, as shown in Figure 15-14. On

the right-hand side, you select authorization_code for the authorization method.

A Microsoft sign-in window appears where you must provide your user credentials.

After successful sign-in, an authorization header is added to the request, with a base64

encoded access token from Azure AD.

Chapter 15 SeCurity

https://mastering-apim.developer.azure-api.net
https://mastering-apim.developer.azure-api.net

212

Figure 15-14. Testing an OAuth 2.0–enabled API

I mentioned briefly that an access token is a base64 encoded Json Web Token

(JWT). If you are not familiar with JWTs or want to learn about it, please visit https://

jwt.io/ for a detailed documentation. In a nutshell, JWTs are credentials which can

grant access to resources. They consist of three parts, header, payload, and signature,

and have the following format: HEADER.PAYLOAD.SIGNATURE. The first part, the header,

contains information about the algorithm and token type being used; the third and last

part, the signature, which is used for verifying the integrity of the token and to verify that

the sender of the JWT is who it says it is. Let’s discuss the second part, the payload, in

more detail.

The payload contains claims. They are statements about an entity such as a user and

some additional data. In the example of Listing 15-4, I want to demonstrate to you the

payload of my user that is signed in and authorized against the Demo Conference API.

Listing 15-4. JWT payload example

{

 "aud": "c2514ec3-987f-4a11-a2f4-743f902eabfb",

 "azp": "b6c5dbb9-34ef-404a-8181-4bb97d689ae4",

 "name": "Sven Malvik",

 "preferred_username": "sven@malvik.de",

 "oid": "810b562a-e63b-4603-a999-758e550506c1",

 "scp": "apis.full"

}

Chapter 15 SeCurity

https://jwt.io/
https://jwt.io/

213

This payload shows not a complete list of all claims but a list of important claims to

use in API policies for validating requests.

• aud represents the application ID of your backend-app.

• azp represents the application ID of your client-app.

• name represents the signed-in user.

• preferred_username represents the username for signing in user.

• oid represents the object ID of the user being signed in.

• scp represents the name of the scope of your backend-app.

You might ask yourself why you would want to validate access tokens in a request at

all. What if a client calls an API with an invalid access token or without an access token

at all? If a request does not have an authorization header, the call would still go through

because there is nothing in Azure API Management that validates an access token by

default. An authorization header with an access token would simply be passed through

Azure API Management to the backend web service and nothing would prevent such

invalid and eventual insecure requests from reaching the backend.

This is where API policies come in. You can pre-authorize requests in Azure API

Management with the Validate JWT policy by validating the access tokens of each

request. If a request does not have a valid access token and claims, your policy can

simply block the request.

Your inbound policy requires an Open ID Connect Discovery endpoint, which is

defined in an openid-config element; usually this endpoint has the following format:

https://login.microsoftonline.com/<APIM_SERVICE_NAME>.onmicrosoft.com/

v2.0/.well- known/openid- configuration. API Management will browse this endpoint

when evaluating the policy, including the URLs which are in the response that are used

to validate incoming JWTs. As you can see in Listing 15-5, I defined a required-claim

element inside openid-config where I specified one claim, aud for audience. If the claim

does not match the value defined in the policy, an error message is returned saying that

the access token is invalid.

Chapter 15 SeCurity

https://openid.net/specs/openid-connect-discovery-1_0.html
https://login.microsoftonline.com/<APIM_SERVICE_NAME>.onmicrosoft.com/v2.0/.well-known/openid-configuration
https://login.microsoftonline.com/<APIM_SERVICE_NAME>.onmicrosoft.com/v2.0/.well-known/openid-configuration

214

Listing 15-5. API policy for validating JWTs

<inbound>

 <base />

 <validate-jwt header-name="Authorization" failed-validation-

httpcode="401" failed-validation-error-message="Unauthorized. Access

token is missing or invalid.">

 <openid-config url="https://login.microsoftonline.com/svenmalvik.

onmicrosoft.com/v2.0/.well-known/openid-configuration" />

 <required-claims>

 <claim name="aud">

 <value>c2514ec3-987f-4a11-a2f4-743f902eabfb</value>

 </claim>

 </required-claims>

 </validate-jwt>

 <set-backend-service base-url="https://conferenceapi.

azurewebsites.net" />

</inbound>

Caution policies are great for pre-authorizing requests. however, backend
web services should have their own implementation of access token validation
as requests might come from other sources than your azure api Management
instance.

Depending on your use case, you can add more claims that you can verify against an

access token.

 Other Security Aspects
In this section, you will learn about some important security aspects of Azure API

Management. You might already be familiar with some of them. However, I want to give

you some more details that might not be known to you yet. Furthermore, you will learn

about one security aspect you should implement in your global policy that you have not

read about in this book.

Chapter 15 SeCurity

215

 Subscriptions
Subscriptions offer a way to secure access to APIs using subscription keys. API

consumers that are in possession of a subscription key that is tied to a certain product

or API may not be able to access other products and APIs, at least not by using the same

subscription key. However, I see subscriptions more as a first line of defense, not as

security per se, as subscription keys do not tell anything about what backend web service

a client shall have access to. Neither do subscription keys identify users, just clients that

might be represented by a group of users.

A second line of defense where you obtain an API consumer’s identity itself is an

excellent way of building an even more secure API layer. As requests may go other ways

than via Azure API Management, I recommend implementing a way to authorize a client

using JWTs. However, never rely on an external service only, such as your Azure API

Management instance, when it comes to security. Instead, rely on your own security

mechanism within your backend web services themselves, as requests may come from

other sources than Azure API Management as well. Figure 15-15 illustrates the four lines

of defense you might consider using.

Figure 15-15. Lines of defense

Chapter 15 SeCurity

216

Subscription keys offer a way to control API access for your customers. However,

they are not a security barrier against cyberattacks. In that regard, I strongly recommend

adding multiple layers of defense such as JWTs.

 Protecting Against Path Traversal Attacks
A path traversal attack aims to access files and directories that are stored outside the web

root folder. In case of web services such as API backend web services, it would mean that

an API attacker accesses a web service it has access to with a manipulated request query

parameter to gain access to a web service it has no access to. In other words, an API

attacker exploits the path traversal vulnerability.

Imagine an attacker accessing a public API endpoint like /conf/speaker/{id}. Instead

of setting a valid parameter such as the integer 1, the attacker uses the URL encoded path

traversal string of /../../petstore/pet/inventory. The URL encoded version of this path

would be /conf/speaker%2f..%2f..%2fpetstore%2fpet%2finventory where %2f is the

URL encoded character of /.

Figure 15-16 illustrates such a path traversal attack where an attacker has access to the

Demo Conference API via Azure API Management which, in this case, does not require a

subscription key, it is publicly available. The GetSession operation of this API requires the

id parameter which the attacker replaces with %2f..%2f..%2fpetstore%2fpet%2finven

tory. The Nginx ingress interprets this as /../../petstore/pet/inventory, which gives

the attacker access to the Pet store API. Apparently, Azure API Management treats almost

any query parameter input as a valid parameter. Neither does the Nginx ingress prevent

such an attack from happening as illustrated in this example.

Chapter 15 SeCurity

217

Figure 15-16. Path traversal attack

There are at least two options to protect backend web services from path traversal

attacks:

 1. Use Azure Application Gateway in front of Azure API Management

with Web Application Firewall (WAF) enabled.

 2. Block requests that include double dots, .., or %2e.

Listing 15-6 shows a global inbound policy that returns the status code 400 if the

path of a request contains either .. or %2e%2e.

Listing 15-6. Global inbound policy for path traversal attack protection

<inbound>

 <choose>

 <when condition="@(context.Request.OriginalUrl.Path.Contains("..")

|| context.Request.OriginalUrl.Path.Contains("%2e%2e"))">

 <return-response>

 <set-status code="400" reason="Bad Request" />

Chapter 15 SeCurity

218

 <set-header name="Content-Type" exists-action="override">

 <value>application/json;charset=UTF-8</value>

 </set-header>

 <set-body>{"message": "Access denied."}</set-body>

 </return-response>

 </when>

 </choose>

</inbound>

A correct configured Nginx ingress will block path traversal attacks. However, as your

organization might use Azure API Management to unlock digital assets that are hidden

in legacy systems, you might not be sure about how these systems are configured. A

policy that prevents such an attack will protect any of your digital assets no matter how

an ingress or proxy might be configured.

 Summary
This chapter focused on security aspects of Azure API Management that you have not

learned about in previous chapters, such as HTTP basic authentication and OAuth 2.0.

Furthermore, you learned why and how you can use Azure API Management policies to

prevent path traversal attacks. Lastly, you learned that subscription keys are not enough

as the only security barrier and what other lines of defense you should implement.

Chapter 15 SeCurity

219
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_16

CHAPTER 16

Logging and Monitoring
Until now, you have sent requests to APIs in Azure API Management and then received

a response. Hopefully you were lucky, and all requests were successfully right from the

beginning. However, as luck is not a concept we can rely on, we need to know exactly

what happens with our requests. This is not only true for failing requests but also for

those that were successful and return HTTP code 200 (OK), as you might have non-

functional requirements such as tight response times that you must verify.

You might already have noticed in the Azure portal for Azure API Management that

you get tracing information when you send a test request. The HTTP response shows two

parts, Message and Trace. The tracing information shows an API inspector for all policy

sections with detailed information, as Figure 16-1 shows.

Figure 16-1. Tracing information for an API request

To get the same tracing information when sending a request with cURL or Postman,

you must add the Ocp-Apim-Trace header to a request and set the value to true. The

response will contain the Ocp-Apim-Trace-Location header with an Azure Storage

Account blob location where you find the same tracing information.

In this chapter, you will first learn how to log custom data to an Azure Event Hub

that other services can consume. You will then learn about Azure Log Analytics which

provides you with insights ranging from timeline to requests and how you can run

predefined and custom Kusto queries on all the available telemetry that Azure API

https://doi.org/10.1007/978-1-4842-8011-9_16#DOI
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/

220

Management generates. Lastly, you will create an Azure Application Insights resource to

analyze requests for anomalies.

 Logging via Event Hub
Logging from Azure API Management to Azure Event Hub is useful for several reasons.

Logs can be consumed by other services, they can be analyzed with Azure Stream

Analytics, and they can be useful when developing Azure API Management policies. I

use them often to “debug” policies I develop in conjunction with VS Code as this section

will demonstrate.

In this section, you will log data from the Demo Conference API in Azure API

Management as events to Azure Event Hub, as Figure 16-2 illustrates. From there, events

can be consumed by other systems and services, such as Splunk, Azure Stream Analytics,

or others.

Figure 16-2. Streaming logs to Azure Event Hub

Azure Event Hubs is an event ingestion service and data streaming platform

managed by Microsoft Azure. You can read more about Azure Event Hub on Microsoft’s

official documentation.

As always, when you work with Azure PowerShell toward an Azure API Management

instance, you must set the right context, in this case for mastering-apim, as Listing 16-1

shows.

Chapter 16 Logging and Monitoring

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about

221

Listing 16-1. Set the context for your Azure API Management instance

Get subscription

$context = Get-AzSubscription -SubscriptionId <SUBSCRIPTION_ID>

Set subscription by setting the context

Set-AzContext $context

Set context for Azure API Management instance

$apimContext = New-AzApiManagementContext `

 -ResourceGroupName mastering-apim-rg `

 -ServiceName mastering-apim

 Deploy an Azure Event Hub
If you are already familiar with Azure Event Hubs, you know that you need a namespace

to scope events in a container. Create a namespace in the same resource group as your

Azure API Management instance and name it mastering-apim-eh-ns.

As Listing 16-2 shows, I chose the basic pricing tier SkuName with the lowest capacity

SkuCapacity for the event hub throughput, which works fine for this example. In a

production environment, you might consider the standard or premium tier which gives

you longer event retention and more features.

Listing 16-2. Create a new Event Hub namespace

Create Event Hub namespace

New-AzEventHubNamespace `

 -ResourceGroupName "mastering-apim-rg" `

 -Name "mastering-apim-eh-ns" `

 -Location "West Europe" `

 -SkuName "Basic" `

 -SkuCapacity 1

The next step is to create an Azure Event Hub for those events that come from Azure

API Management. Use the Azure PowerShell cmdlet New-AzEventHub, as Listing 16-3

shows, and give it the name mastering-apim-eh.

Chapter 16 Logging and Monitoring

222

Listing 16-3. Deploy an Azure Event Hub

Create Event Hub

New-AzEventHub `

 -ResourceGroupName "mastering-apim-rg" `

 -NamespaceName "mastering-apim-eh-ns" `

 -Name "mastering-apim-eh"

You have now deployed an Azure Event Hub that you can use to send logs to from

your Azure API Management instance.

 Set Event Hub Logger to Azure API Management
The Azure PowerShell module is a great way to automate infrastructure across

environments. Alternatively, you can create an Azure Event Hub namespace and an

Event Hub manually from the Azure portal. This is not the case for the Event Hub logger

that Azure API Management needs to log to your Azure Event Hub. Here, you must use

either the Azure REST API or Azure PowerShell.

To create a logger in Azure API Management for an Azure Event Hub, you need

a connection string from your Event Hub, which is configured with one or more

authorization rules, listen, send, and manage.

Listing 16-4 shows how to create an authorization rule for your specific Event

Hub namespace mastering-apim-eh-ns using the Azure PowerShell cmdlet New-

AzEventHubAuthorizationRule. I set Rights to listen and send as Azure API

Management does not need to manage the namespace.

Listing 16-4. Add EventHub logger

Add Access to Event Hubs namespace

New-AzEventHubAuthorizationRule `

 -ResourceGroupName "mastering-apim-rg" `

 -NamespaceName "mastering-apim-eh-ns" `

 -AuthorizationRuleName "mastering-apim-eh-auth-rule" `

 -Rights @("Listen", "Send")

Chapter 16 Logging and Monitoring

223

Use Get-AzEventHubKey to read either the primary or secondary connection string

for your Event Hub and store the value in a variable $ehConnection, as Listing 16-5

shows. Set the authorization rule mastering-apim-eh-auth-rule of Listing 16-4 for the

parameter AuthorizationRuleName.

Listing 16-5. Set the connection string for the Event Hub

Get the connectionString to the Event Hubs namespace

$ehConnection = (Get-AzEventHubKey `

 -ResourceGroupName "mastering-apim-rg" `

 -NamespaceName "mastering-apim-eh-ns" `

 -AuthorizationRuleName "mastering-apim-eh-auth-rule")

 .PrimaryConnectionString

Now that you have a valid connection string for your Event Hub, you can create

the Azure API Management logger by using the Azure PowerShell cmdlet New-

AzApiManagementLogger. Set the connections string for the ConnectionString parameter

by concatenating your connection string $ehConnection with ;EntityPath=mastering-

apim-eh, as Listing 16-6 shows. The entity path is the name of your Event Hub.

Listing 16-6. Create Event Hub logger

Create Azure API Management Event Hub logger

New-AzApiManagementLogger `

 -Context $apimCtx `

 -LoggerId "mastering-apim-logger" `

 -Name "mastering-apim-logger" `

 -ConnectionString "$ehConnection;EntityPath=mastering-apim-eh"

It is a good practice to set a name – in this case, mastering-apim-logger – shown

in Listing 16-6, so you do not get a generated name which might be hard to know the

purpose of in the future.

 Add Event Hub Logger to Policy
You can create multiple loggers in Azure API Management and use them in different

scenarios or for different products, APIs, and operations. In the example in Listing 16-7,

you add the logger mastering-apim-logger to the Demo Conference API policy by using

Chapter 16 Logging and Monitoring

224

the log-to-eventhub policy. The value is a concatenated string containing DateTime,

service name, RequestId, IP address, and the operation name. You can also log a JSON

string or other strings in other formats.

Listing 16-7. Policy for Event Hub logger

<inbound>

 <!-- Create API policy and add Event Hub logger to API -->

 <log-to-eventhub logger-id ='mastering-apim-logger'>

 @(string.Join(",", DateTime.UtcNow, context.Deployment.ServiceName,

context.RequestId, context.Request.IpAddress, context.Operation.Name))

 </log-to-eventhub>

</inbound>

All incoming requests will now log to the Azure Event Hub mastering-apim-eh and

can be consumed by other services.

 Observing Logs with VS Code
After logging in to your Event Hub, you might ask yourself, how you can see the logs.

The answer is by using the VS Code extension Azure Event Hub Explorer. Figure 16-3

demonstrates how to find the extension and then install it.

Figure 16-3. Install VC Code extension Azure Event Hub Explorer

Chapter 16 Logging and Monitoring

225

To observe your requests in VS Code, you need to configure the extension by

selecting your Azure Event Hub. Start the configuration process by choosing Select
Event Hub (shown in Figure 16-4) and follow the steps which will navigate you to set

your Even Hub mastering-apim-eh. You get asked to sign in to your Azure account,

select your subscription, Event Hub namespace, and finally your Event Hub.

Figure 16-4. Set Event Hub in VS Code

After you have successfully set your Event Hub, select Start Monitoring Event Hub
Message to start observing incoming events.

Listing 16-8 shows an example of how the extension prints log messages. As you can

see, it prints the date and time, service name, request id, IP address, and the name of the

operation that I called.

Listing 16-8. Log messages from the Azure Event Hub Explorer extension

Azure Event Hub Explorer > Start monitoring event hub

Azure Event Hub Explorer > Created partition receiver [1] for consumerGroup

[$Default]

Azure Event Hub Explorer > Created partition receiver [0] for consumerGroup

[$Default]

Azure Event Hub Explorer > Message Received:

"4/8/2020 5:33:09 PM,mastering-apim.azure-api.net,00a166ad-beb4-4b1a-bc56-

8faf699eca6e,51.175.196.188,GetTopics"

Azure Event Hub Explorer > Stop monitoring event hub

Congratulations if you have successfully followed all steps. You can stop observing

your Event Hub by selecting Stop Monitoring Event Hub Message.

Chapter 16 Logging and Monitoring

226

 Logging to Azure Log Analytics
A ready-to-use monitor capability of Azure API Management is Log Analytics. Azure Log

Analytics provides you with insights ranging from timeline to requests where you can

run predefined and custom Kusto queries on all the available telemetry that Azure API

Management generates. Kusto is a language that is used to query read-only request to

process data and return results in Azure log databases.

In order to send logs to Azure Log Analytics, you must create a Diagnostic settings in

your Azure API Management instance, as Figure 16-5 shows.

Figure 16-5. Add diagnostic settings

In the following example, I selected GatewayLogs to send those logs to a Log

Analytics workspace, as Figure 16-6 shows. Select Resource specific as the destination

table where data is written to individual tables for each category of the resource instead

of one AzureDiagnostic table.

Chapter 16 Logging and Monitoring

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/concepts/

227

Figure 16-6. Configuring diagnostic settings

All traffic that goes through an API gateway is now logged to your Azure Log

Analytics workspace. Send a few requests with cURL from your local terminal or the

Developer portal of your Azure API Management instance and click Analytics in the left-

hand menu.

Analytics shows these calls in a timeline, as Figure 16-7 shows, where nine calls

succeeded and two calls failed; I forgot to set the subscription key for those failed

requests.

Figure 16-7. Incoming traffic

Chapter 16 Logging and Monitoring

228

There is more information that might be useful and that are more specific depending

on your use case. You can click through the other tabs such as APIs, Products, or Users.

A programmatic way of retrieving gateway logs is by using KQL (Kusto query

language) in Log Analytics where you use queries. Log Analytics provides a set of

predefined queries such as Number of requests, Last 100 failed requests, or Overall

latency.

Figure 16-8 shows an example query with KQL for reading the number of requests.

Figure 16-8. A simple Kusto query in Azure Log Analytics

To learn more about log queries, I recommend reading the official documentation

at https://docs.microsoft.com/en-us/azure/azure-monitor/logs/get-

started-queries.

 Azure Application Insights
Use Azure Application Insights to analyze requests for performance anomalies or to

verify to which backend your requests are forwarded to. This is very helpful when you are

new to Azure API Management and what to find the root cause of an error.

Create an Azure Application Insights resource in the Azure portal resource, as shown

in Figure 16-9. Set your Azure subscription, resource group, and a name. As the resource

mode, select Workspace-based, as Classic is deprecated. If you have not created a Log
Analytics Workspace earlier, Azure will automatically create one. In my case, Azure

created a Log Analytics Workspace in the region West US which is not my preferred

Chapter 16 Logging and Monitoring

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/get-started-queries
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/get-started-queries

229

region, so I created a Log Analytics Workspace resource separately in the Azure portal

and selected that one instead.

Figure 16-9. Create Azure Application Insights resource in Azure portal

Navigate to your Azure API Management instance and choose Application Insight

from the left-hand menu and click Add to select your Azure Application Insights

resource. As Figure 16-10 shows, I added my newly created Application Insights resource

mastering-apim-appinsights.

Figure 16-10. Adding Application Insights to Azure API Management

Chapter 16 Logging and Monitoring

230

Requests are not automatically logged to Application Insights. Instead, you must

enable Application Insights for your APIs first. Figure 16-11 shows how to enable

Application Insights for an individual API. Click All APIs to set this globally. There is one

very important setting, Sampling. It is a value between 0 and 100% and determines how

much you want to log.

Figure 16-11. Enabling Application Insights for an API

Send a few requests to one of the APIs for which you enabled Application Insights

and navigate to this Application Insights resource.

Figure 16-12 shows the Transaction search where all requests are listed. Click on one

request to get details such as response time, called operation, and the called backend

service.

Chapter 16 Logging and Monitoring

231

Figure 16-12. Transaction search in Application Insights

Warning Logging all events has serious performance implications. Based
on internal load tests from Microsoft, logging to application insights caused a
40%–50% reduction in throughput when request rate exceeded 1000 requests
per second.

A good compromise in a production environment is to log from Azure API

Management to Application Insights only if there is a strong need as in an ongoing

incident where you need to rely on as much information as possible. When it comes to

the test environment where performance is not always an issue, you might want to set the

sampling rate to 100%, so developers have all necessary information to build great APIs.

 Summary
In this chapter, you learned how to log custom data but also how to monitor API traffic.

When logging to Azure Event Hub through policies rather than using diagnostic settings

with Azure Event Hub as destination, you have the advantage of logging custom data.

However, when logging custom data to Azure Event Hub, be careful and do not put too

much logic into policies. Policies in Azure API Management can be expensive as they are

often hard shared across multiple teams and therefore hard to maintain; this is especially

Chapter 16 Logging and Monitoring

232

true for product policies and the global policy. If you do not need to log custom data,

I recommend enabling diagnostic settings with Azure Event Hub, at least in your test

environment. For the production environment, you must be aware of a decrease in

performance. That is also the reason why you can set a sample rate from 0% to 100%

logging.

Chapter 16 Logging and Monitoring

233
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9_17

CHAPTER 17

Administration
In this chapter, you will learn about Azure API Management’s capabilities of high

availability by scaling it and deploying API gateways to multiple regions. Furthermore,

you will learn to prepare your Azure API Management instance for an event of a disaster

by taking backups that can be restored in another instance of Azure API Management.

As high availability often comes together with the non-functional requirement of

great performance, caching might be a preferable and suitable solution. Azure API

Management has, for that reason, a built-in cache which does not necessarily work

together with high availability. You will learn why this is the case and how to configure

an external cache for your Azure API Management instance.

Until this chapter, you, as an API consumer, have accessed Azure API Management

by using the default domain <SERVICE_NAME>.azure-api.net. As this is not always a

preferred domain, you will learn how to configure a custom domain with TLS/SSL.

I will also teach you to generate API usage reports. These are especially important

when you want to monetize your APIs, but also to find out what digital assets are

accessed the most.

Furthermore, you learn to use Azure Automation to make changes in your Azure

API Management instance in an automatic way. This is very useful when working with

repetitive tasks such as taking backups.

Finally, you will learn how to combine multiple Azure Logic Apps into one API and

why you would want this.

 High Availability
High availability can be achieved by using several different features in Azure API

Management such as scaling your instance depending on traffic volume, failover all

traffic to another region in case of a regional outage, and taking backups that can be

restored in another instance when necessary.

https://doi.org/10.1007/978-1-4842-8011-9_17#DOI

234

In this section, you will first learn to scale your Azure API Management instance

based on the Capacity metric. We will then discuss multi-region deployments and

availability zones for the managed API gateway. Furthermore, you will learn to take a

backup of an instance and restore it in another instance.

 Scaling in Regions
When you deploy Azure API Management with the Consumption pricing tier, you do not

need to worry about high traffic volume as your instance automatically scales. This is not

true for all the other pricing tiers, especially not the Developer pricing tier, which can’t be

scaled; its default is one unit.

A unit has no fixed number of requests that it can handle as this depends on the size

of the requests, all involved policies, the system operations such as TLS handshakes

on new connections that are executed, but also the load on the developer portal. To

determine whether you need to scale up to serve an increased amount of traffic volume

or to scale down to save costs in low traffic volume times, you use the Capacity metric.

Figure 17-1 shows the capacity of the Azure API Management instance that I use in

this book for the last 30 days.

Figure 17-1. Capacity metric in Azure API Management

The capacity reached almost 50% on the 30th of September. In preparation of a Black-

Friday event where you eventually expect high volume traffic, you might want to increase

the number of units the day before as the scaling process takes at least 20 minutes up to

45 minutes.

Chapter 17 administration

235

One option to scale the number of units is from within the Azure portal. Figure 17-2

shows how to change the number of units in Azure API Management by clicking

Locations in the left-hand menu and selecting your region.

Figure 17-2. Scaling Azure API Management

In this example, I have Azure API Management instance deployed in one region only,

West Europe. API consumers that send requests from other parts of the world would

naturally experience higher latency and the API experience would suffer. Luckily, you

can add additional, secondary regions that are closer to those API consumers. However,

secondary regions have only the managed API gateway deployed, not the developer

portal or service management component.

In case the primary region is inaccessible, all API consumers will be routed to the

closest secondary location unless you already use an Azure service such as Azure Traffic

Manager that sends API consumers to the closest API gateway locations.

Be aware that requests are routed to the same backend web services as before. An

incoming request in a secondary region West US will still forward the request to the

primary region West Europe unless you change the global policy and set a different URL

to a different backend as the following code demonstrates:

<inbound>

 <base />

 <choose>

 <when condition="@("West US".Equals(context.Deployment.Region,

StringComparison.OrdinalIgnoreCase))">

Chapter 17 administration

236

 <set-backend-service base-url="<WEST_US_URL>" />

 </when>

 <otherwise>

 <set-backend-service base-url="WEST_EUROPE_URL" />

 </otherwise>

 </choose>

</inbound>

Another option to achieve high availability of your APIs is by enabling zone

redundancy using Availability zones.

Note availability zones and multi-region deployments are only available in the
premium and standard pricing tiers of azure api management.

Availability Zones are unique physical locations within an Azure region. It protects

your APIs in case of a failure within the data center your Azure API Management

instance is deployed to. For high availability, it makes sense to deploy your instance to at

least two availability zones, as Figure 17-2 shows.

 Preparing for a Disaster with Backup and Restore
Hopefully, a serious disaster to the region where your Azure API Management instance

is located, and where all your data such as APIs, users, and subscriptions are deployed

to, will never occur. However, it is a possibility that you might want to prepare for. One

option to prepare for such an unlikely event of a disaster where you must recover fast in

separate Azure API Management instance is by taking regular backups of your primary

Azure API Management instance and restore the latest backup, if necessary, in the

secondary, target instance.

In a project I worked in, we had another use case where we emphasized immutable

infrastructure. We wanted to reduce the risk of potential traffic failures due to changes in

the infrastructure. Instead of upgrading central infrastructure components such as Azure

Kubernetes Service or routing certain traffic through a new Azure Application Gateway,

we deployed a new infrastructure cluster with all its components and changes before

we tested everything there. This includes Azure API Management. Taking backups from

Chapter 17 administration

237

the active Azure API Management instance and then restoring the backup in the new

instance was part of it.

In this section, you will learn how to take a backup from your primary Azure API

Management instance and restore it in your secondary instance, so everything works

as before. You might already have a primary instance of Azure API Management with

some APIs, users, and subscriptions. Before you begin to take a backup from it, create a

secondary instance with the same pricing tier.

Note the Consumption pricing tier is not supported.

The following Azure PowerShell cmdlet New-AzApiManagement creates a new

instance mastering-apim-dest in the North Europe region, as my primary instance is

running in the West Europe region. If you do not define the Sku parameter, the instance

will set it to the Developer tier.

New-AzApiManagement `

 -ResourceGroupName "mastering-apim-rg" `

 -Name "mastering-apim-dest" `

 -Location "North Europe" `

 -Organization "myOrg" `

 -AdminEmail "sven@malvik.de"

Create an Azure storage account and container close to the secondary Azure API

Management instance in North Europe to store your Azure API Management backups, as

the code example of Listing 17-1 shows.

Listing 17-1. Create Azure Storage for Azure API Management backups.

$storageAccount = New-AzStorageAccount `

 -ResourceGroupName "mastering-apim-rg" `

 -Name "masteringapimsa" `

 -SkuName Standard_LRS `

 -Location "North Europe"

New-AzStorageContainer `

 -Name "mastering-apim-backups" `

 -Context $storageAccount.Context `

 -Permission blob

Chapter 17 administration

238

To take a backup of your Azure API Management instance mastering-apim, use the

Azure PowerShell cmdlet Backup-AzApiManagement. The cmdlet requires the storage

account for the StorageContext parameter and the name of the container for the

TargetContainerName parameter. You created both in Listing 17-1. Choose then a name

of your backup and set it for the TargetBlobName parameter; mine is mastering-apim-

backup, but you might consider appending a timestamp to the name as you ideally will

take daily backups using an Azure Automation account.

Backup-AzApiManagement `

 -ResourceGroupName "mastering-apim-rg" `

 -Name "mastering-apim" `

 -StorageContext $storageAccount.Context `

 -TargetContainerName "mastering-apim-backups" `

 -TargetBlobName "mastering-apim-backup"

The complementary cmdlet to a backup operation is Restore-AzApiManagement.

It requires almost the same parameters. Instead of target parameters, it expects source

parameters for the storage account of the backup.

Restore-AzApiManagement `

 -ResourceGroupName "mastering-apim-rg" `

 -Name "mastering-apim-dest" `

 -StorageContext $storageAccount.Context `

 -SourceContainerName "mastering-apim-backups" `

 -SourceBlobName "mastering-apim-src-backup"

Restoring a backup will not change any values that are specific to the secondary

target Azure API Management instance. Keep both instances as alike as possible, so you

avoid doing as few post operations as possible.

Doing a backup/restore operation can take some time depending on the number

of APIs, users, subscriptions, etc., that you have deployed. In some cases where we

wanted to switch all traffic to the new infrastructure cluster, the restore operation hung.

It became such a problem for us that we excluded Azure API Management from the list

of Azure components to be redeployed to the new infrastructure cluster, so we were

not dependent on it anymore. Still, we take regular backups, so we are prepared for an

eventual disaster.

Chapter 17 administration

239

 Configuring External Caching
Caching is a way of speeding up your web service performance. Instead of forwarding all

requests to backend web services and waiting for the responses, responses that are not

expected to change over a specific time interval might be candidates for storing in a data

store with fast read access and that is closer to the API gateway. Azure API Management

provides therefore an internal cache where you control the data that goes into the cache

by using the cache-lookup policy.

Figure 17-3 demonstrates a basic example of a caching policy. Responses are cached

by the two headers, Accept and Accept-Charset. Requests with matching headers will

have the cached response returned, until the cache duration interval of ten seconds has

expired using the cache-store policy. Both, cache-lookup in the inbound section and

cache-store in the outbound section go hand in hand and must be defined together.

Figure 17-3. Simple caching policy

Note the internal cache is not available in the Consumption pricing tier. instead,
use an external cache.

An external cache is not only a must when using the Consumption pricing tier

but also when your Azure API Management instance supports multiple regions as the

internal cache uses a shared per-tenant data cache. As you scale up to multiple units, you

get access to the cached data within the same region. Caching across regions depends on

an external cache such as Azure Cache for Redis.

Chapter 17 administration

240

Search for Azure Cache for Redis in the Azure portal and click Create, as

Figure 17-4 shows.

Figure 17-4. Creating an Azure Cache for Redis

The great advantage of using an external cache is the ability of being in better control

of the cache configuration. You can find the documentation of Azure Cache for Redis at

https://docs.microsoft.com/en- us/azure/azure- cache- for- redis/.

Once you have created and configured your external cache, navigate to Access keys,

and copy one of the two connection strings, Primary connection string or Secondary

connection string, as Figure 17-5 shows.

Figure 17-5. Getting the connection string

The connections string for the cache is required by your Azure API Management

instance, so this external cache can be used instead of the internal cache.

Chapter 17 administration

https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/

241

Navigate to your Azure API Management instance and click External cache and Add

your external cache. Figure 17-6 demonstrates how to add your Azure Cache for Redis

resource as the external cache for the Azure API Management instance mastering-apim

that is currently running in the West Europe region. Paste the connection string from

Figure 17-5 into the corresponding field and click Save.

Figure 17-6. Adding the external cache to Azure API Management

To verify that responses are stored in this external cache, send a few requests to an

API such as the Demo Conference API as shown in the following:

curl -i https://mastering-apim.azure-api.net/conf/topics

Navigate then to your external cache in the Azure portal and select Metrics where

you filter for Cache Hits in the last 30 days. As you can see in Figure 17-7, I send several

requests where 24 responses came from the external cache instead of the backend web

service.

Chapter 17 administration

242

Figure 17-7. Observing cache hits in Azure Cache for Redis

This section showed you how to use an external cache for Azure API Management

and when this is a preferred option instead of using the internal cache for pricing tiers

other than Consumption.

 Adding Custom Domains
To this chapter, API consumers used the default subdomains <SERVICE_NAME>.azure-

api.net to access the API gateway and <SERVICE_NAME>.developer.azure-api.net to

access the developer portal. You can change these subdomains and the subdomains for

managing your Azure API Management instance and accessing SCM by configuring one

or more custom domains. This might be useful regarding your corporate identity.

In this section, you will learn to set a custom domain for the developer portal.

Instead of accessing the developer portal at mastering-apim.developer.azure-api.

net, I will show you how to change this subdomain to another subdomain, in this

example, to dev.svenmalvik.com.

A first step to achieve this is by creating a CNAME record on your DNS server. A

CNAME record (alias record) maps one domain or subdomain to a canonical name.

In the following example, the alias dev.svenmalvik.com maps to the canonical name

mastering-apim.developer.azure-api.net.

Alias: dev.svenmalvik.com

Canonical name: mastering-apim.developer.azure-api.net

Chapter 17 administration

243

To enable your Azure API Management instance to securely expose URLs with

HTTPS over TLS/SSL, you need a certificate where the subject matches the CNAME,

in this case dev.svenmalvik.com. You can either bring your own certificate or create

one in Azure Key Vault, either a self-signed certificate or one that is issued by a

certificate authority. I recommend using Azure Key Vault, as certificates can be renewed

automatically.

Figure 17-8 shows the Azure Key Vault MasteringApimKeyVault that you created in

Chapter 7 (section “Secrets from Azure Key Vault”). Navigate to your Azure Key Vault and

select Certificates from the left-hand menu and click Generate/Import to create a new

certificate.

Figure 17-8. Generate SSL certificate in Azure Key Vault

If you have not created an Azure Key Vault yet, make sure to create one that Azure

API Management can access by enabling managed system identity (MSI) in your

instance. Give the new created principal ID the permissions list and get for certificates

on this Azure Key Vault, so your Azure API Management instance can list and get your

certificate.

In Figure 17-9, I created a self-signed certificate. In a production environment,

you might consider creating one that is issued by a public certificate authority, so this

certificate is automatically trusted by your clients. Alternatively, you can install your

certificate at your clients. Set the Subject parameter to CN=<YOUR_CNAME>. I chose to

automatically renew the certificate. The process of creating a certificate takes up to 15

minutes.

Chapter 17 administration

244

Figure 17-9. Configure new SSL certificate

Navigate to your Azure API Management instance and select Custom domains from

the left-hand menu; then click Add and set your CNAME in the Hostname field. Also

select your certificate from your Azure Key Vault, as shown in Figure 17-10.

Figure 17-10. Add new custom domain in Azure API Management

Chapter 17 administration

245

The result of custom domains for this exercise are shown in Figure 17-11. It shows

the default domain and two custom domains that I created, dev.svenmalvik.com and

api.svenmalvik.com.

Figure 17-11. List of custom domains

When you access the developer portal in your browser and navigate to your custom

domain, you will probably get a warning Not secure, as you can see in Figure 17-12. This

happens because you created a self-signed certificate that is not in the browsers list of

trusted certificate authorities. You can solve this issue by either installing this certificate

on all known clients such as your internal API consumers, or by issuing a certificate from

a publicly trusted certificate authority.

Figure 17-12. Accessing developer portal with custom domain

Chapter 17 administration

246

 Monetizing Your APIs with User Reports
Azure API Management is an ideal service to monetize your digital assets as it can

provide you with detailed insights about the usage of products, APIs, operations,

subscriptions, and more.

In the following example, you will retrieve user reports. As Azure API Management

reports are currently not available through Azure PowerShell, you will use the REST API

to retrieve reports from your API Management instance. The data that you retrieve is in

JSON format.

Start by opening the Azure portal and navigating to your Azure API Management

instance. Click Management API in the left-hand menu and enable the management

REST API, as Figure 17-13 shows.

Figure 17-13. Enabling the management REST API

Switch to your Azure Cloud shell in Bash mode and set the following variables that

identify your Azure API Management instance.

SERVICE="mastering-apim"

RESOURCE_GROUP="mastering-apim-rg"

SUBSCRIPTION_ID="YOUR_SUBSCRIPTION_ID"

To interact with your instance, set the subscription of where your Azure API

Management instance is deployed to by using the Azure CLI and the SUBSCRIPTION_ID

variable that you declared.

az account set -s $SUBSCRIPTION_ID$

Also, set the management URL for your Azure API Management instance. This is the

base URL for managing your Azure API Management instance.

Chapter 17 administration

247

URL=https://$SERVICE.management.azure-api.net/subscriptions/$SUBSCRIPTION_

ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.ApiManagement/

service/$SERVICE

The Azure API Management REST API provides several reports operations. The

following example retrieves a report for all users /byUser. Other operations are /byApi, /

byGeo, /byOperation, /byProduct, /byRequest, /bySubscription, and /byTime.

REPORT="/reports/byUser"

Nobody can access your reports yet as you have not authorized yourself with a

Shared Access Signature (SAS) token. The simplest way of getting a SAS token is from the

Azure portal, as Figure 17-14 shows.

Figure 17-14. Generating a SAS token

Click Generate to create your SAS token and copy it. You authenticate yourself by

setting an authentication header to every request using the SAS token. Create a new

variable AUTH_HEADER in your Bash session and set your SAS token as the value, as shown

in the following:

AUTH_HEADER="Authorization: <YOUR_SAS_TOKEN>"

Note Your sas token is valid for a maximum of 30 days before you must
regenerate it.

Chapter 17 administration

248

You are almost done creating a request. As you can potentially get many data

from your Azure API Management instance, all reports operations want to know from

what date and time you are requesting data. You do this by setting a filter as a query

parameter. The filter parameter is called $filter which means that you must escape the

dollar character using %24 instead. The same is true for other special characters such as

spaces and tickers as the following example demonstrates:

$filter=timestamp ge datetime'2021-06-01T00:00:00' xx

The preceding filter defines a timeframe from a specific date and time until now

using the operator greater equal ge.

FILTER="%24filter=timestamp%20ge%20datetime%272021-06-01T00:00:00%27"

You can add an upper timestamp boundary by using the lower equal le operator. The

lower equal operator is not a requirement. What is a requirement is a lower bound for

the timestamp as the following error message says when not setting the filter parameter

with greater equal.

“At least lower bound for timestamp field should be specified.”

The complete cURL command is a GET request -X GET containing the authentication

header -H "$AUTH_HEADER", and the full URL URLREPORT?$FILTER"&api-version=

2020-12-01", which is a concatenation of the management interface of your Azure API

Management instance, the reports operation, the filter, and the API version.

curl -X GET -H "$AUTH_HEADER" URLREPORT?$FILTER"&api- version=

2020-12-01" | jq

I piped the response to jq, a popular JSON command-line processor that makes the

JSON response more readable.

The following JSON object represents the user Max Vax of the response containing

all users:

{

 "name": "Max Vax",

 "userId": "/users/maxvax",

 "callCountSuccess": 10,

 "callCountBlocked": 0,

 "callCountFailed": 0,

Chapter 17 administration

249

 "callCountOther": 0,

 "callCountTotal": 10,

 "bandwidth": 250,

 "cacheHitCount": 0,

 "cacheMissCount": 0,

 "valueCacheHitCount": 0,

 "valueCacheMissCount": 0,

 "apiTimeAvg": 323.81811000000005,

 "apiTimeMin": 0.23670000000000002,

 "apiTimeMax": 3234.5856000000003,

 "serviceTimeAvg": 0,

 "serviceTimeMin": 0,

 "serviceTimeMax": 0

}

Based on this report, you not only know how many digital assets a user has requested

but also how the overall experience was by analyzing the number of failed requests and

the average response time.

 Azure Automation
Azure Automation allows – as the name suggests – to perform actions in your (non)-

Azure environment such as automatically shutting down a VM every night at 10

pm, installing weekly updates to VMs, or triggering other necessary operations at a

predefined time.

As an example, we used Azure Automation to take a backup of an Azure API

Management instance once a day. Even though it is possible to deploy the API gateway

in different regions and protect your APIs, products, etc. from loss because of an unlikely

disaster, this feature is only available in the premium tier of Azure API Management.

Having a backup of your Azure API Management inventory might be a good idea if you

run only with one instance.

In this chapter, you will learn to connect an Azure Automation account to

change a certain named value frequently in Azure API Management. Whenever we

deployed an entirely new Azure Kubernetes Service (AKS) cluster for our backend web

Chapter 17 administration

250

services – that is how we updated AKS – we had to re-route the traffic that was going to

Azure API Management from the old AKS cluster to the new AKS cluster. We did this by

changing the backend service URL in the global policy, which was dynamically set as

a named value in Azure API Management. The change was performed automatically

by a PowerShell runbook in Azure Automation. When the URL of AKS changed in our

source code repository, the runbook in the Azure Automation account was triggered. It

then changed the URL of the AKS cluster, which was set as a named value in Azure API

Management.

 Creating an Azure Automation Account
We start by creating an Azure Automation account from the Azure portal. An Azure

Automation account serves as a container for runbooks and other assets to execute a job.

Click “Create a new resource” from the start page and search for Automation, then

click “Create,” as shown in Figure 17-15. Choose a name, subscription, resource group,

and location. Furthermore, select “Yes” in the field for creating an “Azure Run As”

account. This creates a service principal with the contributor role on the subscription

level which gives you full access to all Azure resources within the same subscription.

Read more about service principal in the Azure documentation.

Chapter 17 administration

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals#service-principal-object

251

Figure 17-15. Creating an Azure Automation account from the Azure portal

To connect to your Azure account and to use the Azure PowerShell module for Azure

API Management, you need to import two modules, Az.Account and Az.ApiManagement.

You can do this under the Modules section in the left-hand menu of your Azure

Automation account, as Figure 17-16 shows. Click “Browse gallery” and search for both

modules to import them.

Chapter 17 administration

252

Create an empty runbook by clicking “Create a runbook” in the Runbook pane, as

Figure 17-17 shows. Give it a name – I chose mastering-apim-rb – and a description.

There are six types of runbooks: PowerShell, Python 2, Python 3, Graphical, PowerShell

Workflow, and Graphical PowerShell Workflow. Select PowerShell as your runbook

type as you already have the necessary skills to understand the PowerShell cmdlets for

interacting with Azure API Management and click “Create.”

Figure 17-17. Creating an empty PowerShell runbook

Figure 17-16. Importing two Azure modules

Chapter 17 administration

253

An editor for your PowerShell runbook opens where you will put your code for

connecting to your Azure API Management instance. As Figure 17-18 shows, there is

already listed your Azure resources connection with the name AzureRunAsConnection.

Figure 17-18. PowerShell runbook editor

 Connecting to Azure API Management
Create a function setupConnection where you put your code for establishing a

connection to your Azure account. Listing 17-2 demonstrates step by step how to

implement this by using the internal PowerShell cmdlet Get-AutomationConnection.

The cmdlet expects the name of your connection as the only parameter. It returns the

service principal that was automatically created when you created an Automation

account. The following Azure PowerShell cmdlet Connect-AzAccount connects to your

Azure account as the name suggests. It requires three parameters that you get from your

service principal, TenantId, ApplicationId, and CertificateThumbprint. I have put the

code into a try-catch construct to make sure you get a proper error message in case your

code does not work as expected. Finally, call your function setupConnection.

Chapter 17 administration

254

Listing 17-2. PowerShell function to connect to Azure API Management

function setupConnection {

 $connectionName = "AzureRunAsConnection"

 try {

 $connection = Get-AutomationConnection -Name $connectionName

 Connect-AzAccount `

 -ServicePrincipal `

 -TenantId $connection.TenantId `

 -ApplicationId $connection.ApplicationId `

 -CertificateThumbprint $connection.CertificateThumbprint

 } catch {

 if (!$connection) {

 $ErrorMessage = "Connection $connectionName not found."

 throw $ErrorMessage

 } else{

 Write-Error -Message $_.Exception

 throw $_.Exception

 }

 }

}

Call the function to establish a connection

setupConnection

From here on, you can manage all your Azure resources within the same

subscription. To demonstrate this, Listing 17-3 adds a new named value “test” to your

Azure API Management instance. You understand the code already from previous

chapters.

Listing 17-3. Creating a new named value from a runbook

$apimSubscriptionId = "b0e68700-2b10-4f92-858a-36d2a98748b8"

$apimServiceName = "mastering-apim"

$rg = "mastering-apim-rg"

Chapter 17 administration

255

Set-AzContext -Subscription $apimSubscriptionId

$context = New-AzApiManagementContext -ResourceGroupName $rg -ServiceName

$apimServiceName

New-AzApiManagementNamedValue -Context $context -NamedValueId "test" -Name

"test" -Value "value"

I hard coded the value for the named value at this point to simplify the example for

you. In a production environment, you might want to get the value from the payload of a

trigger. As mentioned before, when we change a property file for Azure API Management

where we store all named values, the runbook gets automatically triggered. This

happens because we synchronize the property file with an Azure App Configuration

Service. Azure App Configuration is another Azure service for storing key/value pairs in

plain text, almost like Azure Key Vault for encrypted values. Whenever a value changes

in Azure App Configuration, an event is sent which the Azure Automation runbook

listens to.

You learned in this section to use Azure Automation to perform actions in Azure

API Management by connecting to your Azure account with an auto-generated service

principal. To get a detailed introduction to Azure Automation, visit https://docs.

microsoft.com/en- us/azure/automation/automation- intro.

 Azure Logic Apps
With Azure Logic Apps, you create and run automated workflows that integrate backend

services, data, but also on-premises systems. Logic Apps simplify the way that you can

connect legacy and modern services no matter where they are located or with what

technology they come.

A simple Logic App that I created some time ago is triggered by an HTTP request

(step 1 in the workflow), reads a CSV file from a co-located drive (step 2), extracts all

email addresses from this file (step3), and finally sends an invitation email to each email

address (step 4). What I built was essentially a simple email distribution service by using

Azure Logic Apps.

A more professional Logic App might include steps where several web APIs are called

which run at different places and with different technologies, as Figure 17-19 shows.

Chapter 17 administration

https://docs.microsoft.com/en-us/azure/automation/automation-intro
https://docs.microsoft.com/en-us/azure/automation/automation-intro
https://azure.microsoft.com/services/logic-apps
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview#workflow

256

Figure 17-19. Azure Logic Apps integrated with different technology stacks

I was involved in a project where we developed several Azure Logic Apps that

manage different aspects of managing incidents, creating Jira tickets, informing

stakeholders, etc. We had one Logic App that was listening to events that were pushed

from a monitoring system, in this case Dynatrace, and that orchestrated all steps in the

chain of managing an ongoing incident; we called the Logic app MASTER_INCIDENT_

HANDLER. It created a Jira ticket where we kept the current status and actions being

taken. The Logic App also created a Confluence page where all communication we

had in a Slack channel was stored. It then posted the links of the pages to the Slack

channel that we used as our main communication platform. Another Azure Logic App

was triggered which was watching the Slack channel and stored all communication in a

database but also updates the Confluence page at the same time. Both Azure Logic Apps

used several web APIs such as the Dynatrace API, Confluence API, Jira API, and Slack

API. Azure Logic Apps is a great PaaS service for orchestrating workflows.

In the following example, we combine two Azure Logic Apps into one API in Azure

API Management. Both Logic Apps have an HTTP endpoint. The first Logic App lists

customers, while the second Logic App creates new customers. We call the API for

Customer API, as illustrated in Figure 17-20.

Chapter 17 administration

257

Figure 17-20. Two Azure Logic Apps combined as one API

When you can create an API from an Azure resource in the Azure portal such as

from an Azure Logic App, it automatically suggests the name of the resource, in this

case ListCustomers. You can change this directly in the form for creating the API as

Figure 17-21 shows, or you can change the name later in the settings tab of the API. In

this example, I changed the suggested Display name from ListCustomers to Customer API

and set the context path (API URL suffix) to customers.

Figure 17-21. Creating an API from an Azure Logic App

Chapter 17 administration

258

The new Customer API has one API operation, the endpoint of the ListCustomers

Azure Logic App. As you can see in Figure 17-22, some values such as the display name

for the operation must be changed. You can do this by clicking the pencil in the

upper-right corner.

Figure 17-22. API operation of Azure Logic App

As you see in Figure 17-23, the API operation name is manual-invoke and might

be different from what we would expect. Change this to ListCustomers by changing the

Display name. Also change the HTTP method from POST to GET, as well as the context-

path from /manual/path/invoke to /customers.

Figure 17-23. Setting correct values for an API operation

Chapter 17 administration

259

As you already have the Customer API created with ListCustomers as its first API

operation, you must add the second Azure Logic App CreateCustomers by creating a

blank API operation. Open the Frontend dialog and set the right values accordingly:

• Display name: CreateCustomers

• Name: creatcustomers

• URL: POST as the HTTP method and customers as the context path

This API operation does not yet forward requests to the CreateCustomers Azure Logic

App. To do this, click the pencil in the Backend section for the HTTP(s) endpoint, as

shown in Figure 17-24.

Figure 17-24. Changing the backend URL for the Azure Logic App

This opens a dialog where you can select an Azure resource. Browse to your Azure

Logic App and click Save. The address that you see beneath the HTTP(s) endpoint

changes to the Azure resource that you selected.

You can change most settings for an API and API operation also with the Azure CLI,

PowerShell, or REST. However, importing an Azure Logic App is only possible from

the Azure portal. To automate the process of updating the API, you need to create an

open API definition file for the targeted Azure Logic apps that you can import with the

PowerShell cmdlet Import-AzApiManagementApi.

Chapter 17 administration

260

 Summary
In this chapter, you learned to set up and configure Azure API Management for some

typical tasks that administrators of Azure API Management often are responsible for. You

learned what you can do to set up and configure your instance for high availability but

also to improve the overall performance so you can improve the experience of requesting

digital assets. You learned also to generate reports that you can use to monetize your

APIs. Finally, I taught you to connect Azure API Management and Azure Logic Apps.

Chapter 17 administration

261
© Sven Malvik 2022
S. Malvik, Mastering Azure API Management, https://doi.org/10.1007/978-1-4842-8011-9

Index

A
Add-AzApiManagementApiToProduct

cmdlet, 53
Amazon Web Service (AWS), 162
Application Insights, 228–231
Application repositories, 127, 128
ARM templates, 29, 38, 127, 147, 154,

160, 162
Azure Kubernetes Service (AKS), 103
Authentication

HTTP, 199, 200
API demo, 201
inbound operation, 202
Nginx, 200

OAuth 2.0, 202
API, 210
Backend App, 203–205
Client App, 206, 207
configuration, 209
endpoints, 208
JWT, 212–214
test and validate, 212

az apim api command, 44
az apim api operation update

command, 43
az group create command, 47
Azure API management

account, 3
add API, 7–9
Azure portal, 29
CLI, 29
definition, 27

development portal, 31, 32
drawback, 78
gateway, 32, 33
Microsoft credentials, 3
networking, 28
PowerShell, 30
provision, 4–6
test API

command line, 11
portal, 9, 10
Studio code, 9

URL, 91
Azure Automation, 249

connect API, 253, 254
create, 250–252

Azure Bicep, API deployment, 154–156
Azure Kubernetes Service (AKS), 15, 28,

123, 182–185, 249
Azure portal

developing policies, 133
inbound policies, 134
policy code snippets, 135, 136
policy configuration, 135
policy editor, 136
query parameters, 135
ready-to-use policies, 133, 134

Azure PowerShell, 44, 220–223, 238
Azure Resource Manager templates

(ARM templates), 147
API deployment, 148
Azure CLI, 154
Azure Storage Account, 151

https://doi.org/10.1007/978-1-4842-8011-9#DOI

262

demo conference, 150
sections, 152

az webapp create command, 47

B
Bank’s name and unique identification

number (BIC/SWIFT), 37
Bicep templates, 38
Book operation, 166

C
Caching, 233, 239
Canary backend APIs

AKS, 103, 104
global policy, 104
options, 103
petstore, 105

Centralized API repository
external repository, 125–127
internal repository, 124, 125

Citizen developer, 13, 165, 172
Context parameter, 51, 52, 238
Cross-Origin-Resource-Sharing (CORS),

111, 211
cURL command, 75, 99, 157, 159, 248

D
Developer portal

API consumers, 110
Conferences Services

product, 109, 110
CORS, 111–113
customization

notifications, 115, 116
styling, 114, 115
templates, 115, 116
WYSIWYG editor, 113

Demo Conference API, 111
getTopics operation, 81, 84, 111
global policy, 82, 83, 85, 104, 105,

111, 112
portalTemplates, 117, 125
private API account, 108, 109
publishing, 107, 108
self-hosting

access token, 118
directory, 117
files, 118
folders, 119
Node.js/npm, 117
npm start, 118
project dependencies, 117
Sign Up form, 118
static web app, 119
Visual Studio Code, 118

Sign Up, 108
WYSIWYG editor, 107, 117

Digital assets, APIs
unlocking

automotive, 15
developer access, 14
payments, 14

Domain specific language (DSL), 154

E, F
Enterprise API platform

comprehensible capabilities, 23
definition, 22
design guidelines, 24
DevOps, 26

Azure Resource Manager templates
(ARM templates) (cont.)

INDEX

263

documentation, 23
governance/compliance, 25
health monitoring, 25
performance, 27
scalability/resiliency, 26
security, 26
stability, 27
user management, 24
user onboarding, 24
versioning/revisioning, 25
web APIs, 22

Event Hub
add logger, 222
API Management, 222
connection string, 223
deploy, 221
logs, 220
policy for logger, 224
VS Code, 224

External cache, 233, 239, 240

G
Get-AzApiManagementApi cmdlet, 52
Google Cloud Platform (GCP), 162
Groups

associate groups to products, 58
creating, 57
custom, 56
system, 57

H
High availability, 233

adding custom domains, 242, 243, 245
backup/restore, 236–238
configuring external caching, 239–242
scaling, 234–236
user reports, 246, 248

I
Identifier (ID), 181, 184
Infrastructure as code (IaC), 38, 127,

147, 160

J, K
Json Web Token (JWT), 29, 206, 212

L
Local Redundancy Storage (LRS), 151
Log analytics, 226–228
Logging, 219, 220, 224
Logic App, 255, 256, 258, 259

M
Managed API gateway, 33, 187,

195, 234
Managed system

identity (MSI), 95, 243

N
Named values, 77

Azure Key Vault
access, 95
creation, 96, 97
managed system identity, 95, 96
secrets, 97–99

definition, 90
plaintext

code, 92, 93
creation, 92
petstore API, 92
petstoreUrl, 92
routing, 91

INDEX

264

set-backend-service, 91
set-backend-service, 91

secrets, 93, 94
Network security rules (NSGs), 180, 187

O
OpenAPI definition file

Azure resources, 46–49
blank API, CLI

add operations, 41, 43
Cloud Shell, 39
Power Shell, 44–46
subscriptions and security, 40, 41
update API operations, 43

create/configure, 38

P, Q
Payment Card Industry Data Security

Standard (PCI DSS), 25
Path traversal attack, 216–218
Policies, 77

calls, IP address, 81
default policy, 80, 81
effective policy, 85, 86
expressions, 86

multi-statement, 89, 90
single statement, 87, 89

expressions flow, 78, 79
flexibility, 78
HTTP status codes, 81
policy editor, 79, 80
scoping, 83

All APIs, 83
global policy, 82
implementation, 83
levels, 82

master subscription key, 83, 84
message, 84
response, 84

sections, 78
statements, 78, 79
testing, 81
validation (see Validation policies)

Power Apps, 165
available connections, 169
Book API, 171
connect with API, 170
create, 169, 170
create connection, 168
create connector, 167, 168

PowerShell runbook, 250, 252, 253
Product deployment

Azure pipeline, 129, 130
Demo Services, 129
parameters, 130
PowerShell cmdlets, 129
template, 131

Products
add APIs to products, 53
create APIs, 50, 52
create parameters, 52, 53
definition, 49
example, 50

R
Remove-AzApiManagementApi

cmdlet, 46
REpresentational State Transfer

(REST), 18
REST API, 156

cURL, 158
deploy, 157
deploy API policy, 159

Named values (cont.)

INDEX

265

policy, 159
variables, 156

Revisions
API identifier, 68
definition, 67
make revision current, 69

S
Simple Object Access

Protocol (SOAP), 16
Self-hosted API gateway, 188, 189

create, 189, 190
deploy

authorization token, 192, 193
configuration, 191
service endpoint, 191

deployment, 194
update, 195

Shared access signature (SAS), 94, 157
Subscriptions, 215, 216

APIs, 71
calling API, 75
creating, 73
definition, 71
example, 72
parameters, 73
revealing keys, 74, 75

T
Terraform, 160

API, 161
Azure provider, 160

U
url-template parameter, 41
Users

add user to group, 61, 62
creating, 60
deactivate/reactivate, 61
definition, 55, 59

V
Validation policies

content validation, 100
parameter validation, 101, 102
validate-headers, 102
validate-status-code, 102

Versions
add new version, 66
definition, 64
scheme, 65
set, 63

Virtual network (VNET), 175
external, 179
internal, 176–178
types, 175

Visual Studio (VS) code extension
installation

additional extensions, 137
Azure account, 138, 139
Azure API Management, 136, 137
command palette, 137, 138
PowerShell cmdlets, 138

policies
debugging, 143–146
development, 139–141

test operation, 141–143

W, X, Y, Z
Web APIs

HTTP(S) protocol, 16
REST, 18

definition, 18

INDEX

266

HTTP clients, 21, 22
OpenAPI, 20, 21
principles, 18
WADL, 19, 20

SOAP, 16
WSDL, 18

Web Application Description
Language (WADL), 19

Web Application Firewall (WAF),
99, 177, 180, 217

Web service, 94, 217, 235
Web Services Description

Language (WSDL), 17

Web APIs (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Part I: Getting Started
	Chapter 1: Quick Start
	Create an Azure Account
	Provision Azure API Management
	Add API
	Test API
	API Management Portal
	Command Line

	Summary

	Chapter 2: Overview
	Unlocking Digital Assets with APIs
	Payments
	Manufacturing
	Automotive

	Understanding the Basics of web APIs
	SOAP
	WSDL

	REST
	WADL
	OpenAPI

	HTTP Clients for Testing RESTful web APIs
	cURL
	Postman

	Enterprise API Platform in Essence
	Consistent Documentation
	Comprehensible Capabilities
	Common Design Guidelines
	API User Onboarding
	User Management
	Health Monitoring
	Governance and Compliance
	Versioning and Revisioning
	Scalability and Resiliency
	Security
	DevOps
	Performance
	Stability

	Introducing Azure API Management
	Azure Portal
	Interacting with Azure API Management

	Developer Portal
	API Gateway

	Summary

	Part II: Key Concepts
	Chapter 3: APIs and Products
	APIs
	Create Blank API with Azure CLI
	Add API Operation
	Update API Operation

	Manage APIs with Azure PowerShell
	Create API from Azure Resources
	Create Web Application in Azure App Service
	Create API from Azure App Service Web Application

	Products
	Create APIs
	Create Products
	Add APIs to Products

	Summary

	Chapter 4: Users and Groups
	Groups
	System Groups
	Create a Group
	Associate Groups to Products

	Users
	Create a User
	Deactivate and Reactivate a User
	Add a User to a Group

	Summary

	Chapter 5: Versions and Revisions
	Versions
	Version Scheme
	Add a New Version

	Revisions
	Add a New Revision
	Make Revision Current

	Summary

	Chapter 6: Subscriptions
	Creating a Subscription
	Revealing Subscription Keys
	Calling API with Subscription Key
	Summary

	Chapter 7: Policies and Named Values
	Policies
	Simple Policy
	Scoping
	Calculating Effective Policy
	Expressions
	Single Statement Expressions
	Multi-Statement Expressions

	Named Values
	Plaintext
	Secrets
	Secrets from Azure Key Vault
	Enable Managed System Identity in Azure API Management
	Preparing Azure Key Vault
	Using Secret from Azure Key Vault in Policies

	Examples
	Validations
	Content Validation
	Parameter Validation
	Other Validations

	Canary Backend APIs

	Summary

	Chapter 8: Developer Portal
	Overview
	Customization
	Styling
	Notifications and Templates

	Self-hosting
	Running the Developer Portal Locally

	Summary

	Part III: Workflow
	Chapter 9: API Development in Context
	Centralized API Repository
	Internal Repository
	External Repository

	Application Repositories
	Product Deployment with Azure Pipeline
	Summary

	Chapter 10: Developing Policies
	Azure Portal
	Visual Studio Code Extension
	Installation
	Developing a Policy
	Testing an API
	Debugging a Policy

	Summary

	Chapter 11: Deploying APIs
	ARM Templates
	Bicep
	REST
	Terraform
	Summary

	Chapter 12: Power Apps
	Creating a Connection
	Creating a Power App
	Summary

	Part IV: Enterprise Integration
	Chapter 13: Networking
	Internal Virtual Network (VNET)
	External VNET
	No VNET
	Backend Integration with AKS
	Summary

	Chapter 14: Self-hosted API Gateway
	Creating a Self-hosted API Gateway
	Deploying a Self-hosted API Gateway
	Configuration
	Service Endpoint
	Authorization Token

	Deployment

	Updating the Self-hosted API Gateway
	Summary

	Part V: Maintenance
	Chapter 15: Security
	Authentication
	HTTP Basic Authentication to Backend Web Services
	Authentication with OAuth 2.0
	Backend App
	Client App
	Azure API Management Instance Settings
	Test and Validate

	Other Security Aspects
	Subscriptions
	Protecting Against Path Traversal Attacks

	Summary

	Chapter 16: Logging and Monitoring
	Logging via Event Hub
	Deploy an Azure Event Hub
	Set Event Hub Logger to Azure API Management
	Add Event Hub Logger to Policy
	Observing Logs with VS Code

	Logging to Azure Log Analytics
	Azure Application Insights
	Summary

	Chapter 17: Administration
	High Availability
	Scaling in Regions
	Preparing for a Disaster with Backup and Restore

	Configuring External Caching
	Adding Custom Domains
	Monetizing Your APIs with User Reports
	Azure Automation
	Creating an Azure Automation Account
	Connecting to Azure API Management

	Azure Logic Apps
	Summary

	Index

