
Microsof t
Blazor

Building Web Applications in .NET 6 and
Beyond
—
Third Edition
—
Peter Himschoot

Microsoft Blazor
Building Web Applications in

.NET 6 and Beyond

Third Edition

Peter Himschoot

Microsoft Blazor: Building Web Applications in .NET 6 and Beyond

ISBN-13 (pbk): 978-1-4842-7844-4 ISBN-13 (electronic): 978-1-4842-7845-1
https://doi.org/10.1007/978-1-4842-7845-1

Copyright © 2022 by Peter Himschoot

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7844-4. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Peter Himschoot
Melle, Belgium

https://doi.org/10.1007/978-1-4842-7845-1

iii

Chapter 1: Introduction to WebAssembly and Blazor ��� 1

A Tale of Two Wars �� 1

The First Browser War ��� 2

The Second Browser War �� 3

Introducing WebAssembly ��� 4

Which Browsers Support WebAssembly? �� 6

WebAssembly and Mono ��� 7

Interacting with the Browser with Blazor ��� 8

How Does It Work? �� 8

Blazor Server ��� 10

Pros and Cons of the Blazor Server ��� 11

Your First Blazor Project �� 12

Installing Blazor Prerequisites ��� 13

Using Visual Studio �� 13

Using Visual Studio Code ��� 15

Understanding the Blazor Templates for VS/Code ��� 16

Generating the Project with Dotnet CLI ��� 17

Generating Your Project with Visual Studio �� 18

Running Blazor with Visual Studio Code �� 20

Running the Generated Project ��� 20

Examining the Project’s Parts ��� 23

Table of Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

iv

The Server Project ��� 24

Using a Shared Project �� 27

Understanding the Client Blazor Project �� 28

Layout Components ��� 30

Debugging Client-Side Blazor ��� 31

Debugging with Visual Studio �� 32

Debugging with Visual Studio Code ��� 34

Developing with Hot Reload �� 36

Hot Reload with �NET CLI ��� 36

Hot Reload with Visual Studio �� 37

The Blazor WASM Bootstrap Process �� 37

The Blazor Server Bootstrap Process ��� 41

Nullable Reference Types �� 43

An Apology ��� 43

Using Null in C# ��� 43

Using References �� 46

The Null-Forgiving Operator �� 47

Nullable Reference Types and �NET Libraries �� 49

Summary��� 49

Chapter 2: Data Binding �� 51

A Quick Look at Razor ��� 51

One-Way Data Binding �� 53

One-Way Data Binding Syntax ��� 53

Attribute Binding�� 55

Conditional Attributes �� 56

Event Handling and Data Binding �� 57

Event Binding Syntax ��� 57

Event Arguments ��� 57

Using C# Lambda Functions �� 58

Two-Way Data Binding �� 59

Table of ConTenTs

v

Two-Way Data Binding Syntax ��� 59

Binding to Other Events: @bind:{event} ��� 61

Preventing Default Actions �� 62

Stopping Event Propagation �� 63

Formatting Dates ��� 66

Change Detection �� 66

The PizzaPlace Single-Page Application ��� 69

Creating the PizzaPlace Project ��� 69

Adding Shared Classes to Represent the Data �� 70

Building the UI to Show the Menu ��� 75

Converting Values �� 78

Adding Pizzas to the Shopping Basket �� 79

Displaying the Shopping Basket �� 81

Entering the Customer Information ��� 86

Debugging Tip �� 88

Blazor Validation ��� 90

Letting Entities Validate Themselves ��� 90

Using FormField and InputText to Enable Validation �� 91

Showing Validation Errors ��� 92

Customizing the Validation Feedback �� 95

Summary��� 97

Chapter 3: Components and Structure for Blazor Applications ������������������������������ 99

What Is a Blazor Component? ��� 99

Examining the SurveyPrompt Component ��� 100

Building a Simple Alert Component with Razor ��� 101

Separating View and View Model �� 105

Creating a DismissibleAlert Component �� 105

Understanding Parent-Child Communication �� 107

Adding a Timer Component ��� 107

Using Two-Way Data Binding Between Components ��� 110

Using EventCallback<T> ��� 114

Table of ConTenTs

vi

Referring to a Child Component �� 117

Communicating with Cascading Parameters �� 119

Using the CascadingValue Component �� 120

Resolving Ambiguities ��� 122

Component Life Cycle Hooks �� 123

Life Cycle Overview ��� 123

SetParametersAsync ��� 128

OnInitialized and OnInitializedAsync �� 129

OnParametersSet and OnParametersSetAsync ��� 130

ShouldRender �� 131

OnAfterRender and OnAfterRenderAsync �� 132

IDisposable �� 133

A Word on Asynchronous Methods �� 133

Refactoring PizzaPlace into Components ��� 134

Creating a Component to Display a List of Pizzas ��� 134

Showing the ShoppingBasket Component �� 138

Adding the CustomerEntry Component ��� 142

Using Cascading Properties ��� 145

Disabling the Submit Button �� 148

Summary��� 151

Chapter 4: Advanced Components �� 153

Using Templated Components ��� 153

Creating the Grid Templated Component ��� 153

Using the Grid Templated Component ��� 155

Specifying the Type Parameter’s Type Explicitly �� 159

Using Generic Type Constraints ��� 159

Razor Templates �� 160

Wig-Pig Syntax �� 162

Using Blazor Error Boundaries �� 165

Building a Component Library ��� 168

Table of ConTenTs

vii

Creating the Component Library Project ��� 168

Adding Components to the Library �� 169

Referring to the Library from Your Project ��� 170

Using the Library Components �� 170

Static Resources in a Component Library ��� 172

Virtualization ��� 173

Displaying a Large Number of Rows ��� 173

Using the Virtualize Component ��� 177

Adding Paging ��� 178

Dynamic Components ��� 182

Component Reuse and PizzaPlace �� 191

Summary��� 194

Chapter 5: Services and Dependency Injection �� 197

What Is Dependency Inversion? �� 197

Understanding Dependency Inversion ��� 198

Using the Dependency Inversion Principle �� 199

Adding Dependency Injection �� 201

Using an Inversion-of-Control Container ��� 202

Constructor Dependency Injection��� 202

Property Dependency Injection �� 203

Configuring Dependency Injection �� 204

Singleton Dependencies �� 206

Transient Dependencies �� 207

Scoped Dependencies ��� 208

Understanding Blazor Dependency Lifetime ��� 209

Blazor WebAssembly Experiment �� 211

Blazor Server Experiment �� 213

Using OwningComponentBase �� 215

The Result of the Experiment �� 217

Table of ConTenTs

viii

Building Pizza Services ��� 218

Adding the MenuService and IMenuService Abstraction ��� 219

Ordering Pizzas with a Service �� 223

Summary��� 225

Chapter 6: Data Storage and Microservices ��� 227

What Is REST? ��� 227

Understanding HTTP �� 227

Universal Resource Identifiers and Methods ��� 228

HTTP Status Codes �� 229

Invoking Server Functionality Using REST �� 229

HTTP Headers �� 230

JavaScript Object Notation �� 230

Some Examples of REST Calls ��� 231

Building a Simple Microservice Using ASP�NET Core �� 233

Services and Single Responsibility�� 233

The Pizza Service �� 234

What Is Entity Framework Core? ��� 238

Using the Code-First Approach �� 239

Preparing Your Project for Code-First Migrations �� 242

Finding Your Database Server’s Connection String ��� 244

Creating Your First Code-First Migration ��� 246

Generating the Database ��� 250

Enhancing the Pizza Microservice �� 253

Testing Your Microservice Using Postman ��� 256

Summary��� 260

Chapter 7: Communication with Microservices ��� 261

Using the HttpClient Class ��� 261

Examining the Server Project �� 261

Using a Shared Project� Why? ��� 263

Looking at the Client Project ��� 264

Emulating a Slow Network in Chrome ��� 266

Table of ConTenTs

ix

Understanding the HttpClient Class �� 269

The HttpClientJsonExtensions Methods �� 270

Customizing Serialization with JsonSerializerOptions �� 273

Retrieving Data from the Server ��� 273

Implementing the MenuService �� 275

Showing a Loading UI �� 278

Storing Changes �� 280

Updating the Database with Orders ��� 280

Building the Order Microservice �� 284

Talking to the Order Microservice ��� 286

Summary��� 288

Chapter 8: Unit Testing ��� 289

Where Can We Find Bugs? �� 289

Requirements �� 290

Coding ��� 290

Integration ��� 291

Beta Testing ��� 291

Post-release �� 292

Why Should We Use Unit Tests? �� 292

What Makes a Good Unit Test? �� 292

Unit Testing Blazor Components ��� 293

Adding a Unit Test Project �� 293

Adding bUnit to the Test Project �� 294

Write Your First Unit Test ��� 295

Writing Good Unit Test Methods �� 295

Running Your Tests �� 296

Making Your Test Pass ��� 299

Using Facts and Theories �� 300

Checking Your Sanity ��� 301

Table of ConTenTs

x

Write a bUnit Tests with C# ��� 303

Understanding bUnit? �� 303

Testing Component Interaction �� 308

Passing Parameters to Our Component ��� 311

Testing Two-Way Data Binding and Events �� 315

Testing Components that Use RenderFragment �� 317

Using Cascading Parameters �� 325

Using MOQ to Create Fake Implementations �� 327

Injecting Dependencies with bUnit �� 328

Replacing Dependencies with Fake Objects ��� 330

Using Stubs ��� 331

Using Mocks �� 333

Implementing Stubs and Mocks with MOQ ��� 336

Writing bUnit Tests in Razor �� 339

The First Razor Test ��� 339

Handling Asynchronous Re-renders �� 343

Configuring Semantic Comparison ��� 345

Why Do We Need Semantic Comparison? ��� 346

Customizing Semantic Comparison ��� 346

Summary��� 349

Chapter 9: Single-Page Applications and Routing �� 351

What Is a Single-Page Application? �� 351

Single-Page Applications ��� 352

Layout Components �� 352

Using Blazor Layout Components �� 352

Configuring the Default Layout Component ��� 355

Selecting a Layout Component �� 357

Nesting Layouts ��� 359

Blazor Routing ��� 360

Installing the Router �� 360

The NavMenu Component ��� 361

Table of ConTenTs

xi

Setting the Route Template ��� 364

Redirecting to Other Pages �� 366

Understanding the Base Tag �� 368

Lazy Loading with Routing �� 369

Lazy Loading Component Libraries ��� 369

Marking an Assembly for Lazy Loading ��� 371

Dynamically Loading an Assembly �� 372

Lazy Loading and Dependencies ��� 374

Adding Another Page to PizzaPlace �� 377

Summary��� 386

Chapter 10: JavaScript Interoperability ��� 389

Calling JavaScript from C# �� 389

Providing a Glue Function �� 389

Using IJSRuntime to Call the Glue Function �� 390

Storing Data in the Browser with Interop �� 390

Passing a Reference to JavaScript �� 393

Calling �NET Methods from JavaScript �� 395

Adding a Glue Function Taking a �NET Instance �� 396

Using Services for Interop ��� 398

Building the LocalStorage Service �� 398

Dynamically Loading JavaScript with Modules��� 403

Using JavaScript Modules ��� 403

Loading the Module into a Blazor Service ��� 404

Adding a Map to PizzaPlace �� 406

Choosing the Map JavaScript Library �� 406

Adding the Leaflet Library ��� 407

Building the Leaflet Map Razor Library ��� 408

Registering with the Map Provider �� 409

Creating the Map Component �� 409

Consuming the Map Component ��� 411

Adding Markers to the Map ��� 413

Summary��� 419

Table of ConTenTs

xii

Chapter 11: Blazor State Management ��� 421

Examining Component State ��� 421

What Not to Store �� 422

Local Storage ��� 422

The Server ��� 426

URL �� 432

Using Protected Browser Storage ��� 433

The Redux Pattern��� 434

The Big Picture �� 434

The Application Store �� 435

Actions ��� 435

Reducers ��� 436

Views ��� 436

Using Fluxor �� 436

Creating the Store ��� 437

Using the Store in Our Blazor Application �� 438

Adding an Action�� 441

Implementing the Reducer �� 441

Redux Effects �� 443

Adding the First Action �� 444

Adding the Second Action and Effect �� 446

Summary��� 448

Chapter 12: Building Real-Time Applications with Blazor and SignalR���������������� 449

What Is SignalR? ��� 449

How Does SignalR Work? �� 449

Building a WhiteBoard Application �� 450

Creating the WhiteBoard Solution �� 450

Implementing the Mouse Handling Logic �� 453

Painting the Segments on the Board ��� 455

Adding a SignalR Hub on the Server ��� 458

Implementing the BoardHub Class �� 458

Table of ConTenTs

xiii

Configuring the Server �� 459

Implementing the SignalR Client ��� 461

Making the SignalR Hub Connection ��� 461

Notifying the Hub from the Client �� 462

Cleaning Up the Hub Connection ��� 463

Summary��� 464

Chapter 13: Efficient Communication with gRPC ��� 465

What Is gRPC? ��� 465

Pros and Cons of RPC �� 465

Understanding gRPC �� 466

Protocol Buffers ��� 466

Describing Your Network Interchange with Proto Files ��� 467

Installing the gRPC Tooling �� 467

Adding the Service Contract �� 469

Implementing gRPC on the Server �� 471

Implementing the Service ��� 472

Adding gRPC �� 473

Building a gRPC Client in Blazor ��� 475

Creating the ForecastGrpcService ��� 475

Enabling gRPC on the Client �� 477

Updating the FetchData Component �� 478

Comparing REST with gRPC �� 479

Summary��� 482

Chapter 14: Supporting Multiple Languages in Your Blazor Application �������������� 483

Understanding Internationalization, Globalization, and Localization ��� 483

Representing the User’s Locale �� 484

CurrentCulture vs� CurrentUICulture �� 486

Enabling Multiple Languages �� 486

Using Request Localization ��� 486

Internationalizing Your App ��� 492

Table of ConTenTs

xiv

Localizing Your App ��� 494

Adding Your First Resource File ��� 494

Localizing SurveyPrompt ��� 496

Understanding Resource Lookup ��� 498

Adding a Language Picker in Blazor Server �� 499

Making PizzaPlace International ��� 506

Enabling Globalization Data ��� 506

Globalizing Your Components �� 507

Adding a Language Picker in Blazor WebAssembly ��� 512

Using Global Resources �� 518

Summary��� 519

Chapter 15: Deploying Your Blazor Application �� 521

Deploying Standalone Blazor WebAssembly ��� 521

Hosting on GitHub �� 521

Creating a Simple Website��� 523

Deploying a Simple Site in GitHub ��� 524

Deploying a Blazor WASM Project ��� 525

Fix the Base Tag �� 531

Disabling Jekyll ��� 533

Fixing GitHub 404s �� 534

Alternatives for GitHub �� 535

Deploying Your Site As WebAssembly ��� 535

Deploying Hosted Applications �� 536

Understanding the Deployment Models �� 536

Deploying to Microsoft Azure ��� 537

Creating the Publishing Profile �� 537

Selecting Publishing Options ��� 543

Publishing the Application ��� 545

Summary��� 546

Table of ConTenTs

xv

Chapter 16: Security with OpenId Connect ��� 547

Representing the User �� 547

Using Claims-Based Security �� 547

Understanding Token Serialization �� 549

Representing Claims in �NET ��� 550

OpenId Connect ��� 551

Understanding OpenId Connect Hybrid Flow ��� 551

Identity Providers �� 553

Implementing the Identity Provider with IdentityServer4 �� 553

Adding the Login UI to Our Identity Provider�� 558

Understanding User Consent �� 561

Protecting a Blazor Server Application with Hybrid Flow �� 562

Adding OpenId Connect to Blazor Server��� 563

Implementing Authorization in Blazor Server �� 564

Using AuthorizeView �� 572

Adding and Removing Claims �� 577

Enabling Role-Based Security ��� 580

Accessing a Secured API ��� 583

Using an Access Token �� 584

Registering the API Project with the Identity Provider ��� 587

Adding JWT Bearer Token Middleware �� 589

Enabling the Bearer Token in the Client ��� 591

Using Policy-Based Access Control ��� 595

Summary��� 603

Chapter 17: Securing Blazor WebAssembly ��� 605

Authorization Code Flow with PKCE �� 605

Understanding PKCE �� 606

Registering the WASM Client Application �� 607

Creating and Examining the Application �� 607

Registering the Client Application ��� 610

Table of ConTenTs

xvi

Implementing Authentication �� 611

Customizing the Login Experience �� 614

Accessing a Protected API �� 615

Fetching Data from the WeatherService API �� 615

Using the AuthorizationMessageHandler ��� 618

Adding Client-Side Authorization ��� 620

Using Role-Based Security�� 621

Creating the Claims Component �� 621

Enabling RBAC ��� 624

Promoting the Role Claim �� 626

Using Policy-Based Access Control ��� 628

Updating Scopes�� 628

Adding Policies �� 629

Summary��� 631

 Index ��� 633

Table of ConTenTs

xvii

About the Author

Peter Himschoot works as a lead trainer, architect,

and strategist at U2U. He has a wide interest in software

development that includes applications for the Web,

Windows, and mobile devices. He has trained thousands of

developers, is a regular speaker at international conferences,

and has been involved in many web and mobile

development projects as a software architect. He has been

a Microsoft Regional Director (from 2003 to 2019) and co-

founded the Belgian Visual Studio User Group (VISUG) in

2006, which is a group of trusted advisors to developer and

IT professional audiences and to Microsoft.

xix

About the Technical Reviewer

Gerald Versluis (@jfversluis) is a software engineer at

Microsoft from the Netherlands. With years of experience

working with Azure, ASP.NET, Xamarin (now .NET MAUI),

and other .NET technologies, he has been involved in

numerous projects and has been building several real-world

apps and solutions.

Not only does he like to code, but he is also passionate

about spreading his knowledge – as well as gaining some in

the bargain. Gerald involves himself in speaking, providing

training sessions, writing blogs or articles, recording videos for his YouTube channel,

and contributing to open source projects in his spare time.

Twitter: @jfversluis

Website: https://jfversluis.dev

https://urldefense.proofpoint.com/v2/url?u=https-3A__twitter.com_jfversluis&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=JGX1Y71ISb2IVjU003bozxvOIfwm4cEssQeNu0GdE9U&s=H26nWtIclLS_-fQtqBCiMsjjbC59cquXTAK6_M14hso&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__jfversluis.dev&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=JGX1Y71ISb2IVjU003bozxvOIfwm4cEssQeNu0GdE9U&s=FxrTQMLlU7TDTXPy1H0AbyT813oOlbCx2n_2MM1eVIQ&e=

xxi

Acknowledgments

When Jonathan Gennick from Apress asked me if I would be interested in writing a book

on Blazor, I felt honored and of course I agreed that Blazor deserves a book. Writing a

book is a group effort, so I thank Jonathan Gennick and Jill Balzano for giving me tips

on styling and writing this book, and I thank Gerald Versluis for doing the technical

review and pointing out sections that needed a bit more explaining. I also thank Magda

Thielman and Lieven Iliano from U2U, my employer, for encouraging me to write

this book.

I thoroughly enjoyed writing this book, and I hope you will enjoy reading and

learning from it.

Second Edition
As the first edition of Blazor Revealed was published (using pre-release software), the

Blazor team had made a bunch of changes to the razor syntax, stopping my examples

in the first edition of Blazor Revealed from working. Now that Blazor has been released

and is completely official (YEAH!!!!), the time has come to publish an updated version of

Blazor Revealed, now renamed as Microsoft Blazor.

Should you get stuck with an example, I invite you to consult the accompanying code

samples for comparison purposes.

Third Edition
I wrote the third edition of Microsoft Blazor using the previews of .NET 6 to get this book

in your hands right after the official release of .NET 6. This of course means that the

last-minute changes made in October 2021 could not make it to this book. However,

I have set up a repository in GitHub where you can find last-minute additions and errata

at https://github.com/PeterHimschoot/microsoft- blazor- book- 3, including every

sample and exercise using the latest version of .NET.

https://github.com/PeterHimschoot/microsoft-blazor-book-3

xxiii

Introduction

Full Stack Web Development with C#
Building modern Single-Page Application websites today typically means writing

JavaScript on the client and C# on the server when you are using the Microsoft

development stack. But with Blazor, you can build everything using C# and reuse the

knowledge and experience you gained with .NET. Porting existing C# applications like

WinForms to the Web does not involve translating some of your logic to JavaScript; you

can again reuse most of this code, resulting in less testing and bugs.

Is This Book for You?
This book assumes you know C#, and you have some experience writing applications

with it. Since this is also about web development, basic knowledge about HTML, CSS,

and JavaScript is also required. Completing this book will allow you to build professional

applications with Blazor, including mastery of some harder topics like authentication.

You will see learning Blazor is fun!

Practical Development
I wrote this book with practice in mind, so sit down next to your computer and follow

along with the examples; the best way to learn is to just do things with Blazor. I did my

best to make the code samples easy to read, but this means breaking lines of code to fit

nicely on the page. When in doubt, you can always consult the included code, which

you can download from the book's product page, located at www.apress.com/{{ISBN}}.

You can find last-minute additions and errata at https://github.com/PeterHimschoot/

microsoft- blazor- book- 3, including every sample and exercise using the latest version

of .NET.

http://www.apress.com/{{ISBN}}
https://github.com/PeterHimschoot/microsoft-blazor-book-3
https://github.com/PeterHimschoot/microsoft-blazor-book-3

1
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_1

CHAPTER 1

Introduction
to WebAssembly
and Blazor
I was attending the Microsoft Most Valued Professional and Regional Directors summit

2018 where we were introduced to Blazor for the first time by Steve Sanderson and

Daniel Roth. And I must admit I was super excited about Blazor! Blazor is a framework

that allows you to build Single-Page Applications (SPAs) using C# and allows you to run

any standard .NET library in the browser. Before Blazor, your options for building a SPA

were Angular, React, Vue.js (and others) using JavaScript, or one of the other higher-

level languages like TypeScript (which gets compiled into JavaScript anyway). In this

introduction, we will look at how browsers are now capable of running .NET assemblies

in the browser using WebAssembly and Blazor.

 A Tale of Two Wars
Think about it. The browser is one of the primary applications on your computer. You

use it every day. Companies that build browsers know that very well and are bidding for

you to use their browser. At the beginning of mainstream Internet, everyone was using

Netscape, and Microsoft wanted a share of the market, so in 1995, they built Internet

Explorer 1.0, released as part of Windows 95 Plus! pack.

https://doi.org/10.1007/978-1-4842-7845-1_1#DOI

2

 The First Browser War
Newer versions were released rapidly, and browsers started to add new features such as

<blink> and <marquee> elements. This was the beginning of the first browser war, giving

people (especially designers) headaches because some developers were building pages

with blinking marquee controls 😊. But developers were also getting sore heads because

of incompatibilities between browsers. The first browser war was about having more

HTML capabilities than the competition.

But all of this is now behind us with the introduction of HTML5 and modern

browsers like Google Chrome, Microsoft Edge, Firefox, Safari, and Opera. HTML5 not

only defines a series of standard HTML elements but also rules on how these should

render, making it a lot easier to build a website that looks the same in all modern

browsers. Then, in 1995, Brendan Eich wrote a little programming language known

as ECMAScript (initially called LiveScript) in ten days (What!?). It was quickly dubbed

JavaScript because its syntax was very similar to Java. I will be using the name JavaScript

here because that is what most people call it.

JavaScript and Java are not related. Java and JavaScript have as much in common as

ham and hamster (I don’t know who formulated this first, but I love this phrasing).

Little did Mr. Eich know how this language would impact the modern Web and

even desktop application development. In 1995, Jesse James Garrett wrote a white

paper called Ajax (Asynchronous JavaScript and XML), describing a set of technologies

where JavaScript is used to load data from the server and that data is used to update

the browser’s HTML. This avoids full page reloads and allows for client-side web

applications, which are applications written in JavaScript that run completely in the

browser. One of the first companies to apply Ajax was Microsoft when they built Outlook

Web Access (OWA). OWA is a web application almost identical to the Outlook desktop

application proving the power of Ajax. Soon other Ajax applications started to appear,

with Google Maps stuck in my memory as one of the other keystone applications. Google

Maps would download maps asynchronously and with some simple mouse interactions

allowed you to zoom and pan the map. Before Google Maps, the server would do the

map rendering and a browser displayed the map like any other image by downloading a

bitmap from a server.

Building an Ajax website was a major undertaking that only big companies like

Microsoft and Google could afford. This soon changed with the introduction of

JavaScript libraries like jQuery and knockout.js (knockout was also written by Steve

Sanderson, the author of Blazor!). Today, we build rich web apps with Angular, React,

Chapter 1 IntroduCtIon to Webassembly and blazor

3

and Vue.js. All of them are using JavaScript or higher-level languages like TypeScript

which gets transpiled into JavaScript.

Transpiling will take one language and convert it into another language. This is very

popular with TypeScript which gives you a modern high-level typed language. You need

JavaScript to run it in a browser, so TypeScript gets “transpiled” into JavaScript.

 The Second Browser War
This brings us back to JavaScript and the second browser war. JavaScript performance

is paramount in modern browsers. Chrome, Edge, Firefox, Safari, and Opera are all

competing with one another, trying to convince users that their browser is the fastest

with cool-sounding names for their JavaScript engine like V8 and Chakra. These engines

use the latest optimization tricks like Just-In-Time (JIT) compilation where JavaScript

gets converted into native code as illustrated in Figure 1-1.

Figure 1-1. The JavaScript Execution Process

This process takes a lot of effort because JavaScript needs to be downloaded into

the browser, where it gets parsed, then compiled into bytecode, and then Just-In-Time

converted into native code. So how can we make this process even faster?

The second browser war is all about JavaScript performance.

Chapter 1 IntroduCtIon to Webassembly and blazor

4

 Introducing WebAssembly
WebAssembly allows you to take the parsing and compiling to the server, before your

users even open up their browser. With WebAssembly, you compile your code in a

format called WASM (an abbreviation of WebASseMbly), which gets downloaded by the

browser where it gets Just-In-Time compiled into native code as in Figure 1-2.

Figure 1-2. The WebAssembly Execution Process

Open your browser and open https://earth.google.com. This should take you to

the Google Earth app written in WebAssembly as shown in Figure 1-3. Play around with

this a little bit and you will see that this application has excellent performance, but the

initial load takes a fair amount of time because it needs to download the whole WASM

application’s code.

Chapter 1 IntroduCtIon to Webassembly and blazor

https://earth.google.com

5

Figure 1-3. Google Earth in WebAssembly

What is WebAssembly? From the official site webassembly.org:

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based

virtual machine. Wasm is designed as a portable target for compilation of high-level

languages like C/C++/Rust, enabling deployment on the web for client and server

applications.

So WebAssembly as a new binary format optimized for browser execution, it is

NOT JavaScript. It uses a stack-based virtual machine, just like .NET does. There are

compilers for languages like C++ and Rust which compile to WASM. Some people

have compiled C++ applications to WASM, allowing to run them in the browser.

There is even a Windows 2000 operating system (https://bellard.org/jslinux/

vm.html?url=https://bellard.org/jslinux/win2k.cfg&mem=192&graphic=1&w=1024

&h=768) compiled to WASM so you can play minesweeper as shown in Figure 1-4!

Chapter 1 IntroduCtIon to Webassembly and blazor

https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/win2k.cfg&mem=192&graphic=1&w=1024&h=768
https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/win2k.cfg&mem=192&graphic=1&w=1024&h=768
https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/win2k.cfg&mem=192&graphic=1&w=1024&h=768

6

Figure 1-4. Windows 2000 Running in the Browser

 Which Browsers Support WebAssembly?
WebAssembly is supported by all major browsers: Chrome, Edge, Safari, Opera, and

Firefox, including their mobile versions. You can verify support yourself by visiting

https://caniuse.com/?search=WASM as shown in Figure 1-5.

Chapter 1 IntroduCtIon to Webassembly and blazor

https://caniuse.com/?search=WASM

7

Figure 1-5. WebAssembly Support

As WebAssembly will become more and more important, we will see other browsers

follow suit, but don’t expect Internet Explorer to support WASM.

 WebAssembly and Mono
Mono is an open source implementation of the .NET CLI specification, meaning that

Mono is a platform for running .NET assemblies. Mono is used in Xamarin (now called

Multi-platform App UI, or MAUI for short) for building mobile applications that run on

the Windows, Android, and iOS mobile operating systems. You can also use it to build

applications for macOS, Linux, Tizen, and others. Mono also allows you to run .NET on

Linux (its original purpose) and is written in C++. This last part is important because

we saw that you can compile C++ to WebAssembly. So, what happened is that the Mono

team decided to try to compile Mono to WebAssembly, which they did successfully.

There are two approaches. One is where you take your .NET code and you compile it

together with the Mono runtime into one big WASM application. However, this approach

takes a lot of time because you need to take several steps to compile everything into

WASM, not so practical for day-to-day development. The other approach takes the Mono

runtime and compiles it into WASM, and this runs in the browser where it will execute

.NET Intermediate Language just like normal .NET does. The big advantage is that you

can simply run .NET assemblies without having to compile them first into WASM.

Chapter 1 IntroduCtIon to Webassembly and blazor

8

This is the approach currently taken by Blazor. In the beginning, Blazor used the

Mono runtime, but they have now built their own .NET Core runtime for WebAssembly.

But Blazor is not the only one taking this approach. For example, there is the Ooui

project which allows you to run Xamarin.Forms applications in the browser. The

disadvantage of this is that it needs to download a lot of .NET assemblies. This can be

solved by using tree shaking algorithms which remove all unused code from assemblies.

We will look at this in Chapter 15.

 Interacting with the Browser with Blazor
WebAssembly with the .NET runtime allows you to run .NET code in the browser. Steve

Sanderson used this to build Blazor. Blazor uses the popular ASP.NET MVC approach

for building applications that run in the browser. MVC uses the razor syntax to generate

HTML on the server. With Blazor, you build razor files (Blazor = Browser + Razor) which

execute inside to browser to dynamically build a web page. With Blazor, you don’t need

JavaScript to build a web app, which is good news for thousands of .NET developers

who want to continue using C# (or F#). To use some browser features, you will still need

JavaScript, and we will discuss this in Chapter 10.

 How Does It Work?
Let’s start with a simple razor file in Listing 1-1 which you can find when you create

a new Blazor project (which we will do further on in this chapter, no need to type

anything yet).

Note each code sample has been formatted for readability, sometimes splitting
lines where this is not necessary and using less indentation. I leave it to you how
you decide to format your code.

Chapter 1 IntroduCtIon to Webassembly and blazor

9

Listing 1-1. The Counter Razor File

@page "/counter"

<h1>Counter</h1>

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary"

 @onclick="IncrementCount">

 Click me

</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

}

This file gets compiled into a .NET class (you’ll find out how later in this book)

which is then executed by the Blazor engine. The result of this execution is a tree-

like structure called the render tree. The render tree is then sent to JavaScript which

updates the DOM to reflect the render tree (creating, updating, and removing HTML

elements and attributes). Listing 1-1 will result in h1, p (with the contents set to the

value of currentCount), and button HTML elements. When you interact with the

page, for example, when you click the button, this will trigger the button’s click event

which will invoke the IncrementCount method from Listing 1-1. The render tree is

then regenerated, and any changes are sent again to JavaScript which will update the

DOM. This process is illustrated in Figure 1-6.

Chapter 1 IntroduCtIon to Webassembly and blazor

10

Figure 1-6. The Blazor WebAssembly DOM Generation Process

This model is very flexible. It allows you to build Progressive Web Apps, and your

app can be embedded in Electron desktop applications of which Visual Studio Code is a

prime example.

 Blazor Server
At the August 7, 2018, ASP.NET community standup (www.youtube.com/watch?v=7Eh_

l7jEcCo), Daniel Roth introduced a new execution model for Blazor now called Blazor

Server. In this model, your Blazor site is running on the server resulting in a way smaller

download for the browser.

We just saw that Blazor WebAssembly builds a render tree using the .NET runtime

running in the browser which then gets sent to JavaScript to update the DOM. With

Blazor Server, the render tree is built on the server using regular .NET and then gets

serialized to the browser using SignalR (we will look at SignalR in a later chapter).

JavaScript in the browser then deserializes the render tree to update the DOM. Pretty

similar to the Blazor WebAssembly model. When you interact with the site, events get

serialized back to the server which then executes the .NET code, updating the render

tree, and the changes get serialized back to the browser. I’ve illustrated this process in

Figure 1-7. The big difference is that there is no need to send the .NET runtime and your

Blazor assemblies to the browser. And the programming model stays the same! You can

switch Blazor Server-side and Blazor WebAssembly with just a couple of small changes

to your code.

Chapter 1 IntroduCtIon to Webassembly and blazor

http://www.youtube.com/watch?v=7Eh_l7jEcCo
http://www.youtube.com/watch?v=7Eh_l7jEcCo

11

Figure 1-7. Blazor Server Runtime Model

 Pros and Cons of the Blazor Server
The Blazor Server model has a couple of benefits but also some drawbacks. Let’s discuss

these here so you can decide which model fits your application’s needs.

• Smaller downloads: With Blazor Server, your application does not

need to download dotnet.wasm (the .NET runtime) nor all your .NET

assemblies. The browser downloads a small JavaScript library which

sets up the SignalR connection to the server. This means that the

application will start a lot faster, especially on slower connections,

but at the price that we continuously need a connection to the server

to exchange small messages.

• Development process: Blazor WebAssembly does not support all

modern debugging capabilities, resulting in added logging. Because

your .NET code is running on the server, you can use the regular

.NET debugger with all of its advanced features. You could start

building your Blazor application using the server-side model, and

when it is finished, switch to the client-side model by switching the

hosting model.

Chapter 1 IntroduCtIon to Webassembly and blazor

12

• .NET APIs: Because you are running your .NET code on the server,

you can use all the .NET APIs you would use with regular ASP.NET

Core MVC applications, for example, accessing the database directly.

Do note that doing this will stop you from quickly converting it into

a client-side application. You can limit this by writing service classes

and using dependency injection to inject different implementations

depending on the environment your components are hosted in.

• Online only: Running the Blazor application on the server does

mean that your users will always need access to the server. This will

prevent the application from running in Electron, nor will you be

able to run it as a Progressive Web Application (PWA). And if the

connection drops between the browser and server, your user could

lose some work because the application will stop functioning. Blazor

will try to reconnect to the server without losing any data, so most of

the time, users will not lose any work done.

• Server scalability: All your .NET code runs on the server, so if you have

thousands of clients, your server(s) will have to handle all the work. Not

only that, Blazor uses a stateful model which will require you to keep track

of every user’s state on the server. So your server will need more resources

than with Blazor WebAssembly which can use a stateless model.

 Your First Blazor Project
Getting hands-on is the best way to learn. You will first install the prerequisites to

developing with Blazor. Then you will create your first Blazor project, run the project

to see it work, and finally inspect the different aspects of the project to get a “lay of the

land” view for how Blazor applications are developed.

Note I learned an important lesson from the first edition of this book: never
underestimate the speed at which microsoft innovates! all code samples in the
first edition of Blazor Revealed became invalid quite rapidly. I do not expect this
to happen again with this edition since it is based on the release to manufacture
(rtm) version of blazor. If something does not work, simply consult the sources
that come with this book. I will keep these up to date. promise!

Chapter 1 IntroduCtIon to Webassembly and blazor

13

The source code for this book is available on GitHub via the book’s product page,

located at www.apress.com/ISBN.

 Installing Blazor Prerequisites
Working with Blazor requires you to install some prerequisites, so in this section, you will

install what is needed to get going.

Blazor runs on top of .NET, optionally providing the web server for your project

which will serve the client files that run in the browser and run any server-side APIs that

your Blazor project needs. .NET (previously known as .NET Core) is Microsoft’s cross-

platform solution for working with .NET on Windows, Linux, and OSX.

You can find the installation files at www.microsoft.com/net/download. Look for the

latest version of the .NET SDK (you’ll need at least version 6.0). Follow the installation

instructions and install it on your machine, using Windows, OSX, or Linux.

Verify the installation when the installer is done by opening a new command prompt

and typing the following command:

dotnet --version

Output should indicate that you installed the correct version. The version number

should be at least 6.0.

Should the command’s output show an older version, you will need to download

and install a more recent version of .NET SDK. These can run side by side so you will not

break other .NET projects doing this.

 Using Visual Studio
For people using Windows, Visual Studio (from now on, I will refer to Visual Studio as

VS) is one of the integrated development environments (IDE) we will use throughout

this book. If you are using OSX or Linux, you can use Visual Studio Code, and OSX users

might prefer Visual Studio for Mac. With any one, you can edit your code, compile it, and

run it all from the same application. And the code samples are also the same.

If you want to use Visual Studio, download the latest version of Visual Studio from

www.visualstudio.com/downloads/. The Community Edition is free and should allow

you to do everything done in this book.

Chapter 1 IntroduCtIon to Webassembly and blazor

http://www.apress.com/ISBN
http://www.microsoft.com/net/download
http://www.visualstudio.com/downloads/

14

Run the installer and make sure that you install the ASP.NET and web development

role as shown in Figure 1-8.

Figure 1-8. The Visual Studio Installer Workloads Selection

After installation, run Visual Studio from the Start menu. Then open the Help menu

and select About Microsoft Visual Studio. The About Microsoft Visual Studio dialog

window should specify at least version 17.0.0 as illustrated in Figure 1-9.

Figure 1-9. About Microsoft Visual Studio

Chapter 1 IntroduCtIon to Webassembly and blazor

15

 Using Visual Studio Code
Visual Studio Code (VSC) is a free, modern, cross-platform development environment

with an integrated editor, git source control, and debugger. The environment has a huge

range of extensions available allowing you to use all kinds of languages and tools directly

from VSC. So, if you don’t have access to (because you’re running a non-Windows

operating system or you don’t want to use) Visual Studio, use VSC.

Install VSC from www.visualstudio.com/. Install using the defaults.

After installation, you should install a couple of extensions for Code, especially

the C# extension. Start Code, and at the left side, select the extensions tab as shown in

Figure 1-10.

Figure 1-10. Visual Studio Code Extensions Tab

You can search for extensions, so start with C# which is the first extension from

Figure 1-11. This extension will give you IntelliSense and debugging for the C#

programming language and .NET assemblies. You will probably get a newer version

listed, so take the latest.

Click Install.

Figure 1-11. C# for Visual Studio Code

Chapter 1 IntroduCtIon to Webassembly and blazor

http://www.visualstudio.com/

16

 Understanding the Blazor Templates for VS/Code
Throughout this book, we will create several different Blazor projects. With .NET Core,

we can use the command-line interface (CLI) to create all kinds of projects, including

Blazor WebAssembly and Blazor Server.

Let us begin by looking at the installed templates; you can list all installed templates

using the following CLI command. You can execute this from a command prompt or

from the VSC Terminal.

dotnet new --list

You will see four columns. The first shows the template’s description, the second

column displays the name, the third lists the languages for which the template is

available, and the last shows the tags, a kind of group name for the template. Among

those listed are the following of interest:

Template Name Short Name

-- -------------------

Blazor Server App blazorserver

Blazor WebAssembly App blazorwasm

Class Library classlib

Razor Class Library razorclasslib

Razor Component razorcomponent

xUnit Test Project xunit

With Blazor projects, you have a couple of choices. You can create a standalone

Blazor project (using the blazorwasm template) that does not need server-side code. This

kind of project known as Blazor WebAssembly has the advantage that you can simply

deploy it to any web server which will function as a file server, allowing browsers to

download your site just like any other site. We will look at deployment in a later chapter.

Or you can create a hosted project (adding the --hosted option) with client, server,

and shared code. This kind of Blazor WebAssembly project will require you to host it

where there is .NET Core support because you will execute code on the server as well, for

example, to retrieve data from a database.

The third option is to run all Blazor code on the server (using the blazorserver

template). In this case, the browser will use a SignalR connection to receive UI updates

from the server and to send user interaction back to the server for processing.

Chapter 1 IntroduCtIon to Webassembly and blazor

17

In this book, we will use the second option (Blazor WebAssembly hosted on ASP.NET

MVC Core) most of the time, but the concepts you will learn in this book are the same

for all three options. You can even develop for Blazor WebAssembly and Blazor Server

at the same time! Why? Because debugging support for Blazor WebAssembly is limited,

so you develop with Blazor Server using all debugger features you know and love. But

you can test everything with Blazor WebAssembly ensuring you can run everything in

the browser later. This is the way I like to work. However, to pull this off, you need some

experience with Blazor first, so keep reading.

 Generating the Project with Dotnet CLI
To generate the project with dotnet CLI, which works on any machine, start by opening

a command line, and change the current directory to wherever you want to create the

project. Now execute the following command to create a new Blazor WebAssembly

project. The dotnet is the command line, taking the new instruction, with the template

being blazorwasm. The --hosted option will generate the server project as well. Finally,

we tell it to generate everything in the MyFirstBlazor directory.

dotnet new blazorwasm --hosted -o MyFirstBlazor

This command will take a little while because it will download a bunch of

NuGet packages from the Internet. When the command is ready, you can build your

project using

cd MyFirstBlazor

dotnet build

This should build without any errors.

Now we can run the project from the command line using

cd MyFirstBlazor/Server

dotnet run

This will show you some output, including the URL of the Blazor application:

Building...

info: Microsoft.Hosting.Lifetime[14]

 Now listening on: https://localhost:5001

info: Microsoft.Hosting.Lifetime[14]

Chapter 1 IntroduCtIon to Webassembly and blazor

18

 Now listening on: http://localhost:5000

info: Microsoft.Hosting.Lifetime[0]

 Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

 Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0]

 Content root path: C:\Code\GitHub\Microsoft.Blazor.3rd\Ch01\MyFirstBlazor

Open your browser on this address (here https://localhost:5001), and you are

ready to play!

Generating Your Project with Visual Studio
Start Visual Studio and select Create a new project.

Type Blazor in the search box, and select the Blazor WebAssembly App project

template as illustrated in Figure 1-12.

Figure 1-12. Visual Studio New Project Dialog

Chapter 1 IntroduCtIon to Webassembly and blazor

19

Click Next.

Name your project MyFirstBlazor, choose the location where the project should be

generated, and click Next.

On the next screen, you can select the framework to use. Choose the latest version

(at the time of writing, that is .NET 6.0), leave Authentication type set to None, check the

ASP.NET Core hosted checkbox, and click Create. An example is shown in Figure 1-13.

Figure 1-13. New ASP.NET Core Web Application

Wait for Visual Studio to complete. Then build and run your solution by pressing F5.

After a little while, the browser will open and display the Blazor application.

Chapter 1 IntroduCtIon to Webassembly and blazor

20

 Running Blazor with Visual Studio Code
After creating the project as we did with the CLI, open your solution’s folder (where the

MyFirstBlazor.sln file sits) with VSC. You can do this from the command prompt

code .

Or you can open VSC and then select File ➤ Open Folder….

When Code has loaded everything (be patient), it will pop a question as in

Figure 1-14. Answer Yes. This will add a folder called .vscode with configuration files

adding support for building and running the project from Code. If you already have a

.vscode folder (because you copied an existing project, for example), you will not get this

question.

Figure 1-14. Code Asking to Add Build and Debug Assets

Thanks to this integration with Visual Studio Code, you can simply press F5 to build

and run your project.

Note VsC now uses Workspace trust which might pop up a dialog asking if you
trust the authors of a project. When opening the provided code download, you will
probably encounter this.

 Running the Generated Project
Press F5 or Ctrl-F5 (no debugger) to run (this should work for both VS and VSC). Your

(default) browser should open and display the home page as shown in Figure 1-15.

Chapter 1 IntroduCtIon to Webassembly and blazor

21

Figure 1-15. Your First Application – Home Screen

This generated Single-Page Application (SPA) has on the left side a navigation

menu allowing you to jump between different pages. On the right side, you will see the

selected component; in Figure 1-15, it is showing the Index component. And in the top

right corner, there is an About link to https://blazor.net/ which is the official Blazor

documentation website.

The Index component shows the mandatory “Hello, world!” demo, and it also

contains a survey component you can click to fill out a survey (this is a real survey, so

please let Microsoft know you like Blazor!). The SurveyPrompt is the first example of a

custom Blazor component. We will discuss building components like SurveyPrompt in

Chapters 3 and 4.

Chapter 1 IntroduCtIon to Webassembly and blazor

https://blazor.net/

22

In the navigation menu, click the Counter link. Doing so opens a simple screen with

a number and a button as illustrated in Figure 1-16. Clicking the button will increment

the counter. Try it!

Figure 1-16. Your First Application – Counter Screen

In the navigation menu, click the Fetch data link. Here, you can watch a (random and

fake) weather forecast as shown in Figure 1-17. This forecast is generated on the server

when asked by the client. This is very important because the client (which is running

in the browser) cannot access data from a database directly, so many times, you need a

server that can access databases and other data storage. Of course, if this was a Blazor

Server application, you can access the database directly because you are running on

the server.

Chapter 1 IntroduCtIon to Webassembly and blazor

23

Figure 1-17. Your First Application – Fetch data Screen

 Examining the Project’s Parts
Now being able to play with these pages is all nice, but let us have a look at how all this

works. We will look starting with the server project which hosts our Blazor website. Then

we will look at the shared project which contains classes used by both server and client.

Finally, we will examine the client project which is the actual Blazor implementation.

Visual Studio, Visual Studio Code, and Visual Studio for Mac use solution files to

group projects that will form an application. So, a typical Blazor WebAssembly project

consists of a server, a client, and a shared project grouped into a single solution. This

simplifies building everything since the solution allows tools to figure out in which order

Chapter 1 IntroduCtIon to Webassembly and blazor

24

to compile everything. Hey, you could even switch between Visual Studio, VS for Mac,

and VSC because they all use the same project and solution files!

 The Server Project
Web applications are a bunch of files that get downloaded by the browser from a server.

It is the server’s job to provide the files to the browser upon request. There is a whole

range of existing servers to choose from, for example, IIS on Windows or Apache on

Linux. ASP.NET Core has a built-in server known as Kestrel that you generated with

the --hosted option, which you can then run on Windows, Linux, or OSX. This is the

preferred option to use during development.

The topic of this book is Blazor, so we’re not going to discuss all the details of the

server project that got generated (Microsoft has very good documentation on .NET Core

at https://docs.microsoft.com/aspnet/core), but I do want to show you an important

thing. In the server project (MyFirstBlazor.Server), look for Program.cs. Open this file

and scroll down to the Configure section (look for the comment) shown in Listing 1-2.

Listing 1-2. The Server Project’s Program Class

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseDeveloperExceptionPage();

 app.UseWebAssemblyDebugging();

}

else

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseBlazorFrameworkFiles();

app.UseStaticFiles();

app.UseRouting();

Chapter 1 IntroduCtIon to Webassembly and blazor

https://docs.microsoft.com/aspnet/core

25

app.MapRazorPages();

app.MapControllers();

app.MapFallbackToFile("index.html");

The Configure section is responsible for installing middleware. Middleware objects

are little .NET components that each have a clear responsibility. When you type in a

URL, the browser sends an HTTP request to the server, which then passes it on to the

middleware components in the listed order. Some of these will take the request and

return a response, and some of them take the response and do something with it. Look at

the first lines in Listing 1-3.

Listing 1-3. The UseDeveloperExceptionPage Middleware

if (app.Environment.IsDevelopment())

{

 app.UseDeveloperExceptionPage();

 app.UseWebAssemblyDebugging();

}

else

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

Would you like to see a detailed error page when the server has an uncaught

exception? The UseDeveloperExceptionPage method which installs some error handling

middleware takes care of that. Of course, you don’t need that in production (you

should handle all exceptions correctly <grin>), so this middleware is only used when

running in a development environment. How does the server know if you are running in

development or release? The if statement you see here checks an environment variable

called ASPNETCORE_ENVIRONMENT, and if the environment variable is set to Development,

it knows you are running in development mode.

Open the launchSettings.json file in the server project’s Properties folder, as shown

in Listing 1-4. Look at the MyFirstBlazor.Server profile. One of the settings in the profile

sets this environment variable to Development which is the proper choice to use while

writing your Blazor application.

Chapter 1 IntroduCtIon to Webassembly and blazor

26

Listing 1-4. The launchSettings.json File

{

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:39361",

 "sslPort": 44358

 }

 },

 "profiles": {

 "MyFirstBlazor.Server": {

 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/

debug/ws-proxy?browser={browserInspectUri}",

 "applicationUrl": "https://localhost:5001;http://localhost:5000",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/

debug/ws-proxy?browser={browserInspectUri}",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

Chapter 1 IntroduCtIon to Webassembly and blazor

27

The Blazor bootstrap process requires a bunch of special files, especially dotnet.

wasm (dotnet.wasm is the .NET runtime compiled as WebAssembly). This is served by

the Blazor middleware, which is installed by the UseBlazorFrameworkFiles instruction.

Later in this chapter, you will see why.

Look at the end of Listing 1-2. Here is another important middleware installed. The

MapFallbackToFile("index.html") will return the index.html file which takes care of

loading everything your Blazor application needs.

 Using a Shared Project
The FetchData component downloads weather information from the server. These kinds

of requests will be handled by the MVC middleware (MapControllers). We will discuss

this in more detail in Chapter 6.

The shape of the forecast data needs to be described in detail (computers are picky

things), and in classic projects, you would describe this model’s shape twice, once for the

client and again for the server because these would use different languages – C# on the

server and JavaScript on the client. Not with Blazor! In Blazor, both client and server use

C#, so we can describe the model once and share it between client and server as shown

in Listing 1-5. As you can see, this is a simple C# class you could easily find in other kinds

of projects.

Listing 1-5. The Shared WeatherForecast Class

namespace MyFirstBlazor.Shared;

public class WeatherForecast

{

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string? Summary { get; set; }

 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

}

Chapter 1 IntroduCtIon to Webassembly and blazor

28

 Understanding the Client Blazor Project
Open the client project’s wwwroot folder and look for index.html. The contents of that

file should appear as shown in Listing 1-6. To be honest, this looks mostly like a normal

HTML page. But on closer inspection, you’ll see that there is a div tag there with id app.

This is where your Blazor application will go.

<div id="app">Loading...</div>

After this, there is another div; this is used to display errors in case your Blazor

application has an uncaught exception.

<div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 🗙

</div>

You will also find an <script> element near the end.

<script src="_framework/blazor.webassembly.js"></script>

This script will install Blazor by downloading dotnet.wasm. A little further we will

look at this in more detail.

Listing 1-6. The index.html File

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport"

 content="width=device-width, initial-scale=1.0, maximum-scale=1.0,

user-scalable=no" />

 <title>MyFirstBlazor</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

 <link href="css/app.css" rel="stylesheet" />

 <link href="MyFirstBlazor.Client.styles.css" rel="stylesheet" />

</head>

Chapter 1 IntroduCtIon to Webassembly and blazor

29

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 🗙

 </div>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

Open Program.cs from the MyFirstBlazor.Client project as in Listing 1-7. Here, you

see that the App component is associated with the app div from index.html. The #app

string is a CSS selector which will find that div, and the Blazor runtime will replace it

with the App component’s render tree.

builder.RootComponents.Add<App>("#app");

Listing 1-7. The Main Method

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using MyFirstBlazor.Client;

var builder = WebAssemblyHostBuilder.CreateDefault(args);

builder.RootComponents.Add<App>("#app");

builder.Services.AddScoped(sp => new HttpClient { BaseAddress = new

Uri(builder.HostEnvironment.BaseAddress) });

await builder.Build().RunAsync();

The main thing the App component does is to install the Router component as in

Listing 1-8. You can find this code in the App.razor file in the client project. The router is

responsible for loading a Blazor component depending on the URL in the browser. When

the route is not found, it will display the <NotFound> content, which currently shows a

simple not found message. For example, if you browse to the “/” URL, the router will look

for a component with a matching @page directive.

Chapter 1 IntroduCtIon to Webassembly and blazor

30

Listing 1-8. The App Component

<Router AppAssembly="@typeof(App).Assembly">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 <FocusOnNavigate RouteData="@routeData" Selector="h1" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p role="alert">Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

In our current MyFirstBlazor project, this will match the Index component which you

can find in the Index.razor file from the Pages folder. This component has the matching

@page "/" directive so the router will display it for the / URL. This component displays a

Hello World message and the survey link as in Listing 1-9.

Listing 1-9. The Index Component

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

 Layout Components
Look at Figures 1-15, 1-16, and 1-17. All have the same menu. This menu is shared

among all our Blazor components and is known as a layout component. We will discuss

layout components in Chapter 9. But how does Blazor know which component is the

layout component? Look again at Listing 1-8. When the route is found, it uses a default

layout component called MainLayout. In our project, the layout component can be

found in MainLayout.razor from the Shared folder, which I’ve listed in Listing 1-10.

Chapter 1 IntroduCtIon to Webassembly and blazor

31

Listing 1-10. The MainLayout Component

@inherits LayoutComponentBase

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <main>

 <div class="top-row px-4">

About

 </div>

 <article class="content px-4">

 @Body

 </article>

 </main>

</div>

This component contains a div HTML element with two nested divs. The first

nested div with class sidebar contains a single Blazor component: NavMenu. This is

where your navigation menu gets defined. The sidebar will display a menu, allowing

you to navigate between Home, Counter, and Fetch data. We will look in more detail at

navigation and routing in Chapter 9.

The next nested div with class main has two parts. The first is the About link you see

on every page. The second part contains the @Body; this is where the selected page will

be shown. For example, when you click the Counter link in the navigation menu, the @

Body will be replaced with the Counter component.

This is all for now, but the rest of the book will explain each part as we go along.

 Debugging Client-Side Blazor
Of course, while building your Blazor app, you will encounter unexpected behavior

from time to time. Debugging Blazor Server can be done just like any .NET project

using Visual Studio or Code. But with Blazor WebAssembly, your code will be running

in the browser. You will be happy to learn that the VS/VSC debugger works with Blazor,

Chapter 1 IntroduCtIon to Webassembly and blazor

32

although limited. You can put breakpoints in your code, step through your code, and

observe variables holding simple types like bool, int, and string. At the time of writing,

debugging Blazor WebAssembly only works for Chrome or Edge, both Chromium-based

browsers.

 Debugging with Visual Studio
To enable debugging with Visual Studio, open the launchSettings.json file from the

project you will use as your startup project. With hosted Blazor WebAssembly, this is

normally the server project. You will need to set the inspectUri property in here, like in

Listing 1-11 (the template normally will configure this for you). This property enables the

IDE to detect that this is a Blazor WebAssembly app and instructs the script debugging

infrastructure to connect to the browser through the Blazor’s debugging proxy.

Listing 1-11. The launchSettings.json File for Debugging (Excerpt)

"MyFirstBlazor.Server": {

 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/debug/

ws-proxy?browser={browserInspectUri}",

 "applicationUrl": "https://localhost:5001;http://localhost:5000",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

},

Now run your application in VS with the debugger by pressing F5. Be patient while

your Blazor site starts to run (in Edge or Chrome!). Now you can put a breakpoint in

your code, for example, on the IncrementCount method of the Counter component as

in Figure 1-18, line 17. Simply click in the gray area left to your code (also known as the

gutter) and a red dot will appear, indicating that the debugger will stop at this code.

Chapter 1 IntroduCtIon to Webassembly and blazor

33

Figure 1-18. Setting a Breakpoint in the IncrementCount Method

Go back to your Blazor application and click the Counter’s Click Me button. The

debugger should stop on the IncrementCount method. You can now examine the

content of simple variables in the Locals window, like in Figure 1-19.

Figure 1-19. Using the Locals Debugger Window to Inspect Simple Variables

Chapter 1 IntroduCtIon to Webassembly and blazor

34

 Debugging with Visual Studio Code
Start VSC. Ensure you have the Microsoft.AspNetCore.Razor.VSCode.

BlazorWasmDebuggingExtension debugging extensions installed as in Figure 1-20.

Figure 1-20. The Blazor WASM Debugging Extension

You will also have to ensure that the JavaScript Preview Debugger has been enabled

(by the time you are reading this, it might no longer be a preview feature). You can find

this setting in VSC Settings like in Figure 1-21.

Figure 1-21. Enable the JavaScript Preview Debugger

Open the folder containing the solution file. If it is the first time you open this

folder with VSC, be patient, after a while, Figure 1-14 will pop up. Answer Yes. Also

ensure Listing 1-11 is set up correctly like Visual Studio (this is actually independent of

your IDE).

Now run your application in VSC with the debugger by pressing F5. Be patient

while your Blazor site starts to run (in Chrome!). Now you can put a breakpoint in your

code, for example, on the IncrementCount method of the Counter component as in

Figure 1-22, line 16. Simply click in the area left to your code (also known as the gutter)

and a red dot will appear, indicating that the debugger will stop at this code.

Chapter 1 IntroduCtIon to Webassembly and blazor

35

Figure 1-22. Adding a Breakpoint in VSC

Go back to your Blazor application and click the Counter’s Click Me button. The

debugger should stop on the IncrementCount method. You can now examine the

content of simple variables in the Locals window, like in Figure 1-23.

Chapter 1 IntroduCtIon to Webassembly and blazor

36

Figure 1-23. Inspecting Variables in VSC

 Developing with Hot Reload
With .NET Core 6.0, Microsoft introduces a really nice feature called hot reload. This

allows you to make changes to your code and markup while your application is running.

As soon as you make the change, your application will update (hot reloads), even

keeping the existing state of the application.

 Hot Reload with .NET CLI
Let us start using hot reload using the command-line interface. Open a command

prompt and change the directory to the MyFirstBlazor Server project and run

dotnet watch

This should start the server project (which is hosting the Blazor WebAssembly

project), and the browser should also open with your application.

watch : Hot reload enabled. For a list of supported edits, see https://aka.

ms/dotnet/hot-reload. Press "Ctrl + Shift + R" to restart.

Chapter 1 IntroduCtIon to Webassembly and blazor

37

Open the Counter component and increment the counter a couple of times. Now

make a change to the Counter component, for example, Listing 1-12.

Listing 1-12. A Simple Change

<h1>My First Counter</h1>

As soon as you make the change, the browser will update itself, keeping the

current count!

You can also change the code, for example, Listing 1-13.

Listing 1-13. Another Simple Change

private void IncrementCount()

{

 currentCount+=3;

}

Save. Clicking the Increment button will not add 3 to the counter.

If you want to restart again, go back to the command line and press Ctrl-Shift-R.

 Hot Reload with Visual Studio
At the time of writing this chapter, hot reload does not work yet for Blazor WebAssembly

application with Visual Studio. But, by the time you are reading this, it should work.

 The Blazor WASM Bootstrap Process
At the bottom of Listing 1-14, you will find the <script> element responsible for

bootstrapping Blazor in the browser. Let’s look at this process in detail.

Listing 1-14. The index.html File

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no" />

Chapter 1 IntroduCtIon to Webassembly and blazor

38

 <title>MyFirstBlazor2</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

 <link href="css/app.css" rel="stylesheet" />

 <link href="MyFirstBlazor2.Client.styles.css" rel="stylesheet" />

</head>

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 🗙

 </div>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

Run the Blazor application. Open the browser’s developer tools (most browsers will

open the developer tools when you press F12). We will have a look at what happens at

the network layer.

Note In all screenshots, I will be using the edge browser which is very similar
to Chrome. If you prefer to use another browser, go right ahead since all modern
desktop browsers have debugging support.

First, open the browser debugger’s Application tab, and press the Clear site data

button as in Figure 1-24. This will clear the browser’s cache and will give you a better

view what happens when someone visits a Blazor WebAssembly application for the

first time.

Chapter 1 IntroduCtIon to Webassembly and blazor

39

Figure 1-24. Clearing the Browser’s Storage

Now open the browser debugger’s Network tab. Refresh your browser (empty

cache and hard refresh) to see what gets downloaded from the server as in Figure 1-25.

First, you will see index.html (shown as localhost) being downloaded, which in turn

downloads bootstrap.min.css and app.css, and then blazor.webassembly.js. A little lower,

you will see that blazor.boot.js gets downloaded, which in turn will download dotnet.

wasm. This is the .NET Core runtime compiled to run on WebAssembly!

Chapter 1 IntroduCtIon to Webassembly and blazor

40

Figure 1-25. Examining the Bootstrap Process Using the Network Log

Now that the .NET runtime is running, you will see (scroll down?) that MyFirstBlazor.

Client.dll gets downloaded, followed by all its dependencies, including mscorlib.dll and

system.dll. These files contain the .NET libraries containing classes such as string used

to execute all kinds of things, and they are the same libraries you use on the server. This

is very powerful because you can reuse existing .NET libraries in Blazor you or others

built before!

At the bottom of the Network tab, you will see the total download size as in

Figure 1-26. Almost 10 MB! This is because we are using an empty cache; the next

download will show a lot less as shown in Figure 1-27 because now Blazor can retrieve

most of the files from the cache. We will look at reducing the full download size for

production applications in Chapter 15.

Figure 1-26. Total Download Size with Empty Cache

Chapter 1 IntroduCtIon to Webassembly and blazor

41

Figure 1-27. Total Download Size with Filled Cache

Let us now compare this with Blazor Server.

 The Blazor Server Bootstrap Process
Let’s look at the bootstrapping process of a Blazor Server project.

Open a command line and run the following command which will create a new

Blazor Server project and solution:

dotnet new blazorserver -o BlazorServerBootstrap

Now we can build and run this application:

cd .\BlazorServerBootstrap\

dotnet run

Should you get an error like the following line, it means another project is still

running. Stop that project first and retry.

Failed to bind to address https://127.0.0.1:5001: address already in use

Open the browser, and go to https://localhost:5001. The Blazor application

should be shown. Now open the browser’s debugger on the Network tab, disable the

cache (on the Network tab, you have a checkbox to disable the cache), and make your

page refresh. Now compare what gets downloaded as in Figure 1-28. As you can see, the

total download size is a lot smaller, resulting in your page getting loaded faster. You can

also see that a WebSocket is opened between server and browser, allowing the Blazor

runtime to exchange UI changes and events.

Chapter 1 IntroduCtIon to Webassembly and blazor

42

Figure 1-28. Looking at Server-Side Blazor Network Activity

Now click the Counter link in the navigation menu and select the websocket link in

the network debugger tab. Each time you click, you will see a couple of SignalR messages

appear as in Figure 1-29. These binary messages are all tiny because only changes are

transmitted this way. For example, when you click the Increment button in the Counter

component, the browser only needs to update the number in the browser.

Figure 1-29. The SignalR Messages

Chapter 1 IntroduCtIon to Webassembly and blazor

43

 Nullable Reference Types
Throughout this book, I will be using modern C# with some of the latest features. But

there is one C# feature I want to discuss right now. Every developer, from time to time,

will encounter a NullReferenceException, which is a real bug because you can always

avoid it. What if the compiler can help you with this and warn you about a possible

NullReferenceException? This is what the section “Nullable Reference Types” is

all about.

 An Apology
Who invented the null pointer? Tony Hoare did, and he apologized in 2009 and denoted

this as his billion-dollar mistake (www.infoq.com/presentations/Null- References-

The- Billion- Dollar- Mistake- Tony- Hoare/):

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At

that time, I was designing the first comprehensive type system for references in an object

oriented language (ALGOL W). My goal was to ensure that all use of references should be

absolutely safe, with checking performed automatically by the compiler. But I couldn't

resist the temptation to put in a null reference, simply because it was so easy to implement.

This has led to innumerable errors, vulnerabilities, and system crashes, which have

probably caused a billion dollars of pain and damage in the last forty years.

Many object-oriented programming languages still use the null pointer, and C# is no

exception. Some languages even treated null differently. For example, in Objective-C,

when a pointer is null, the compiler would not invoke a method on it. And it would do

this silently! Of course, you would not get a NullReferenceException, but it did skip an

important piece of functionality.

 Using Null in C#
Let us start with the basics. In .NET, there are two different kinds of types: reference types

and value types. A reference type uses a reference to point to an object, and a value type

holds the value of an object. Because of this, value types cannot be null. But in databases,

you can have a column holding a number (a value type) which can be nil. So how do you

represent this in C#? For this, we can denote a nullable value type by adding a question

mark after the type, for example, in Listing 1-15.

Chapter 1 IntroduCtIon to Webassembly and blazor

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

44

Listing 1-15. A Nullable Value Type

int? i = null;

Now in C#, we can tell the compiler to treat reference types in the same way,

meaning that we will get a warning if we assign a null value to a reference type, except

when we add a question mark after the type. Listing 1-16 shows both examples.

Listing 1-16. Nullable Reference Types

// No warning

string? canBeNull = null;

// Warning:

// Converting null literal or possible null value to non-nullable type

string cannotBeNull = null;

Of course, this would break every existing C# application out there, so we need to

enable this in our project properties. You can do this in Visual Studio using your project

properties as shown in Figure 1-30.

Figure 1-30. Setting the Nullable Compiler Option

You can also do this directly in your project as shown in Listing 1-17.

Chapter 1 IntroduCtIon to Webassembly and blazor

45

Listing 1-17. Enabling Nullable Reference Types in the Project File

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net5.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

</Project>

This causes the compiler to set a nullable flag for every field, property, and method

that is of (or returns) a reference type. You can inspect this flag in VS by hovering over it

as shown in Figure 1-31.

Figure 1-31. Inspecting the Nullable Flag

The compiler then uses that flag to issue warnings if you would attempt to use a

nullable reference type, for example, by getting the length of the string. Figure 1-32 will

display a warning because the canBeNull reference can be null.

Figure 1-32. Possible Null Reference

Chapter 1 IntroduCtIon to Webassembly and blazor

46

However, if we nest this in a condition as in Figure 1-33 where we check against null,

the compiler will no longer issue a warning.

Figure 1-33. No Possible Null Reference

So the whole idea of nullable reference types is to make the compiler do the analysis

and to issue a warning when we can have a possible null being used which would result

in a NullReferenceException.

 Using References
In C#, we can declare a class with an example in Listing 1-18. But when you do this with

nullable reference types enabled, you will get compiler warnings. Why? Because you can

create a new instance of a Person with a null FirstName and/or a null LastName. So

again, the compiler will warn about this.

Listing 1-18. A Person Class

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

}

There are a couple of ways we can make the compiler stop issuing warnings. We can

use a constructor as in Listing 1-19. Now we cannot create a Person instance with a null

property. Should someone call this constructor with a null argument, the compiler will

again issue a warning.

Chapter 1 IntroduCtIon to Webassembly and blazor

47

Listing 1-19. Using a Constructor

public class Person

{

 public Person(string firstName, string lastName)

 {

 FirstName = firstName;

 LastName = lastName;

 }

 public string FirstName { get; set; }

 public string LastName { get; set; }

}

Sometimes you simply cannot use a constructor to silence the compiler. For

example, you might want to use this Person class with Entity Framework Core. In this

case, you could make FirstName and LastName nullable as in Listing 1-20.

Listing 1-20. Person with Nullable Name

public class Person

{

 public string? FirstName { get; set; }

 public string? LastName { get; set; }

}

However, this does not mimic real life. There is another technique we can use.

 The Null-Forgiving Operator
Sometimes you just know that a nullable reference is not null, and you want to tell the

compiler about this. For this, we can use the null-forgiving operator by appending the

nullable reference with an exclamation mark as in Figure 1-34. This sets the nullable flag

to false, and the compiler is happy.

Chapter 1 IntroduCtIon to Webassembly and blazor

48

Figure 1-34. The Null-Forgiving Operator

We can even use this to have a null value with the nullable flag set to false! What?!

Let us look at the Person class again. When we want to use this class with a library such

as Entity Framework Core and we trust this library to always provide us with non-null

values, we can silence the compiler as in Listing 1-21. This looks weird. Here, we assign

the null! value, whose nullable flag is set to false so the compiler does not give us

warnings.

Listing 1-21. Using the Null-Forgiving Operator with Types

public class Person

{

 public string? FirstName { get; set; } = null!;

 public string? LastName { get; set; } = null!;

}

This is exactly the technique we will use to create Blazor components that have

reference properties that we cannot initialize using a constructor.

Of course, with string properties, we can also assign them an empty string instead of

null as in Listing 1-22. But for other reference types, this is not always possible.

Listing 1-22. The Person Class with Empty Name.

public class Person

{

 public string? FirstName { get; set; } = string.Empty;

 public string? LastName { get; set; } = string.Empty;

}

Chapter 1 IntroduCtIon to Webassembly and blazor

49

 Nullable Reference Types and .NET Libraries
Microsoft has gone through a lot of effort to make all their libraries support nullable

reference types. I want you to realize that this is all compiler meta-data, so you can use

the new libraries supporting nullable reference types with older projects; the compiler

will simply ignore this meta-data. You can also use libraries that do not support this

meta-data, but you will need to use the null-forgiving operator with a lot of methods. But

do yourself a favor – get to use nullable reference types and your code will be shipped

with a lot less bugs! You can learn more at https://docs.microsoft.com/en- us/

dotnet/csharp/nullable- references.

 Summary
In this chapter, we looked at the history of the browser wars and how this resulted in

the creation of WebAssembly. The .NET runtime allows you to run .NET assemblies,

and because it can now also run on WebAssembly, we can now run .NET assemblies

in the browser! All of this resulted in the creation of Blazor, where you build razor files

containing .NET code which update the browser’s DOM, giving us the ability to build

Single-Page Applications in .NET, instead of JavaScript.

First, we installed the prerequisites needed for developing and running Blazor

applications. We then created our first Blazor project. This project will be used

throughout this book to explain all the Blazor concepts you need to know about. We

examined this solution, looking at the server-side project, the shared project, and the

Blazor project, and compared the bootstrap process for both Blazor WebAssembly and

Blazor Server.

Finally, we looked at using nullable reference types and how this can help writing

better code with less bugs.

Chapter 1 IntroduCtIon to Webassembly and blazor

https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references
https://docs.microsoft.com/en-us/dotnet/csharp/nullable-references

51
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_2

CHAPTER 2

Data Binding
Imagine an application that needs to display data to the user, and capture changes made

by that user to save the modified data. One way you could build an application like this is

to, once you got the data, iterate over each item of data. For example, for every member

of a list, you would generate the same repeating element, and then inside that element,

you would generate text boxes, drop-downs, and other UI elements that present data.

Later, after the user has made some changes, you would iterate over your generated

elements, and for every element, you would inspect the child elements to see if their data

was changed. If so, you copy the data back into your objects that will be used for saving

that data.

This is an error-prone process and a lot of work if you want to do this with something

like jQuery (jQuery is a very popular JavaScript framework which allows you to

manipulate the browser’s Document Object Model (DOM)).

Modern frameworks like Angular and React have become popular because they

simplify this process greatly through data binding. With data binding, most of this work

for generating UI and copying data back into objects is done by the framework.

 A Quick Look at Razor
Blazor is the combination of Browser + Razor (with a lot of artistic freedom). So, to

understand Blazor, we need to understand browsers and the Razor language. I will

assume you understand what a browser is since the Internet has been very popular for

over more than a few decades. But Razor (as a computer language) might not be that

clear (yet). Razor is a markup syntax that allows you to embed code in a template. Razor

can be used to dynamically generate HTML, but you can also use it to generate code and

other formats. For example, at the company I work, we generate emails using Razor.

Razor made its appearance in ASP.NET MVC. In ASP.NET Core MVC, razor is

executed at the server side to generate HTML which is sent to the browser. But in

https://doi.org/10.1007/978-1-4842-7845-1_2#DOI

52

Blazor, this code is executed inside your browser (with Blazor WebAssembly) and will

dynamically update the web page without having to go back to the server.

Remember the MyFirstBlazor solution we generated from the template in the

previous chapter? Open it again with Visual Studio or Code and have a look at

SurveyPrompt.razor as shown in Listing 2-1.

Listing 2-1. Examining SurveyPrompt.razor

<div class="alert alert-secondary mt-4" role="alert">

 @Title

 Please take our

 <a target="_blank" class="font-weight-bold" href="https://go.microsoft.

com/fwlink/?linkid=2148851">brief survey

 and tell us what you think.

</div>

@code {

 // Demonstrates how a parent component can supply parameters

 [Parameter]

 public string Title { get; set; }

}

As you can see, razor mainly consists of HTML markup. But if you want to have some

C# properties or methods, you can embed them in the @code section of a razor file. This

works because the razor file is used to generate a .NET class and everything in @code is

embedded in that class.

For example, the SurveyPrompt component allows you to set the Title property,

which is set in Index.razor as in Listing 2-2.

Listing 2-2. Setting the SurveyPrompt’s Title (Excerpt from Index.razor)

<SurveyPrompt Title="How is Blazor working for you?" />

Chapter 2 Data BinDing

53

Because the public Title property can be set in another component, the property

becomes a parameter, and because of that, you need to apply the [Parameter] attribute,

as in Listing 2-1. SurveyPrompt can then embed the contents of the Title property in

its HTML markup using the @ syntax (third line in Listing 2-1). This syntax tells razor

to switch to C#, and this will get the property as an expression and embed its value in

the markup.

 One-Way Data Binding
One-way data binding is where data flows from the component to the DOM or vice versa,

but only in one direction. Data binding from the component to the DOM is where some

data, like the customer’s name, needs to be displayed. Data binding from the DOM to

the component is where a DOM event took place, like the user clicking a button, and we

want some code to run.

 One-Way Data Binding Syntax
Let’s look at an example of one-way data binding in razor. Open the solution we built in

Chapter 1 (MyFirstBlazor.sln), and open Counter.razor, repeated here in Listing 2-3.

Listing 2-3. Examining One-Way Data Binding with Counter.razor

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">

 Click me

</button>

@code {

 private int currentCount = 0;

Chapter 2 Data BinDing

54

 private void IncrementCount()

 {

 currentCount++;

 }

}

On this page, you get a simple counter, which you can increment by clicking the

button as illustrated in Figure 2-1.

Figure 2-1. The Counter Page

Let’s look at the workings of this page. The currentCount field is defined in the @code

section in Counter.razor. This is not a field that can be set from outside, so there is no

need for the [Parameter] attribute, and we can keep it private.

To display the value of the counter in razor, we use the @currentCount razor syntax

as shown in Listing 2-4.

Chapter 2 Data BinDing

55

Listing 2-4. Data Binding from the Component to the DOM

<p>Current count: @currentCount</p>

Any time you click the button, the Blazor runtime sees that currentCount may

have been updated, and it will automatically update the DOM with the latest value of

currentCount.

 Attribute Binding
You can also use this same syntax to bind the value of an HTML attribute.

Open app.css which you can find in the wwwroot/css folder and add these two CSS

classes from Listing 2-5.

Listing 2-5. Some Simple Styles

.red-background {

 background: red;

 color: white;

}

.yellow-background {

 background: yellow;

 color: black;

}

Wrap the currentCount in an as in Listing 2-6. Every time you change

the value of currentCount by clicking the button, it changes the currentCount’s

background color.

Listing 2-6. Binding an HTML Attribute

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

Chapter 2 Data BinDing

56

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

 private string BackgroundColor

 => (currentCount % 2 == 0) ? "red-background" : "yellow-background";

}

 Conditional Attributes
Sometimes you can control the browser by adding some attributes to DOM elements. For

example, in Listing 2-7, to disable a button, you can simply use the disabled attribute.

Listing 2-7. Disabling a Button Using the disabled Attribute

<button disabled>Disabled Button</button>

With Blazor, you can data bind an attribute to a Boolean expression (e.g., a field,

property, or method of type bool), and Blazor will hide the attribute if the expression

evaluates to false (or null) and will show the attribute if it evaluates to true. Go back to

the Counter.razor and add the code from Listing 2-8.

Listing 2-8. Disabling the Click Me Button

<button class="btn btn-primary"

 disabled="@(currentCount > 10)"

 @onclick="IncrementCount">

 Click me

</button>

Try it. Clicking the button until the currentCount becomes 10 will disable the button

by adding the disabled attribute to the button. As soon as currentCount falls below 10,

the button will become enabled again (except there is no way you can do this for the

moment).

Chapter 2 Data BinDing

57

 Event Handling and Data Binding
We update currentCount using the IncrementCount() method from Listing 2-3. This

method gets called by clicking the “Click Me” button. This again is a one-way data

binding, but in the other direction, from the button to your component. Blazor allows

you to react to DOM events (like the DOM’s click event) this way, instead of using

JavaScript. You can also build your own components that have events, where you can use

the same syntax to react to them. This will be discussed in Chapter 3.

 Event Binding Syntax
Look at Listing 2-9. Now we are using the @on<event> syntax; in this case, we want to

bind to the button’s click DOM event, so we use the @onclick attribute on the button

element, and we pass it the name of the method we want to call.

Listing 2-9. Data Binding from the DOM to the Component

<button class="btn btn-primary" @onclick="IncrementCount">

 Click me

</button>

Clicking the button will trigger the DOM’s click event, which then will call the

IncrementCount method, which will cause the UI to be updated with the new value

of the currentCount field. Whenever the user interacts with the site, for example, by

clicking a button, Blazor assumes that the event will have some side effect because

a method gets called, so it will update the UI with the latest values. Simply calling a

method will not cause Blazor to update the UI. We will discuss this later in this chapter.

 Event Arguments
In regular .NET, event handlers of type EventHandler can find out more information

about the event using the sender and EventArgs arguments. In Blazor, event handlers

don’t follow the strict event pattern from .NET, but you can declare the event handler

method to take an argument of some type derived from EventArgs, for example,

MouseEventArgs, as shown in Listing 2-10. Here, we are using the MouseEventArgs

instance to see if the Ctrl key is being pressed and, if so, to decrement the

currentCount field.

Chapter 2 Data BinDing

58

Each event uses a specific kind of EventArgs, so please refer to online

documentation at https://docs.microsoft.com/aspnet/core/blazor/components/

event- handling for more information about a specific event.

Listing 2-10. A Blazor Event Handler Taking Arguments

private void IncrementCount(MouseEventArgs e)

{

 if (e.CtrlKey)

 {

 currentCount--;

 }

 else

 {

 currentCount++;

 }

}

 Using C# Lambda Functions
Data binding to an event does not always require you to write a method. You can also use

C# lambda function syntax with an example shown in Listing 2-11.

Listing 2-11. Event Data Binding with Lambda Syntax

<button class="btn btn-primary"

 disabled="@(currentCount > 10)"

 @onclick="@(() => currentCount++)">

 Click me

</button>

If you want to use a lambda function to handle an event, you need to wrap it in

round braces.

Chapter 2 Data BinDing

https://docs.microsoft.com/aspnet/core/blazor/components/event-handling
https://docs.microsoft.com/aspnet/core/blazor/components/event-handling

59

 Two-Way Data Binding
Sometimes you want to display some data to the user, and you want to allow the user to

make changes to this data. This is common in data entry forms. Here, we will explore

Blazor’s two-way data binding syntax.

 Two-Way Data Binding Syntax
With two-way data binding, we will have the DOM update whenever the component

changes, but the component will also update because of modifications in the DOM. The

simplest example is with an <input> HTML element.

Let’s try something. Modify Counter.razor by adding an increment field and an

<input> element using the @bind attribute as shown in Listing 2-12. Also modify the

IncrementCount method to use the increment when you click the button.

Listing 2-12. Adding an Increment and an Input

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<p>

 <input type="number" @bind="@increment" />

</p>

<button class="btn btn-primary"

 disabled="@(currentCount > 10)"

 @onclick="IncrementCount">

 Click me

</button>

@code {

 private int currentCount = 0;

 private int increment = 1;

 private void IncrementCount(MouseEventArgs e)

 {

Chapter 2 Data BinDing

60

 if (e.CtrlKey)

 {

 currentCount -= increment;

 }

 else

 {

 currentCount += increment;

 }

 }

 private string BackgroundColor

 => (currentCount % 2 == 0) ? "red-background" : "yellow-background";

}

Build and run.

Change the value of the input, for example, 3. You should now be able to increment

the currentCount with other values as in Figure 2-2.

Figure 2-2. Adding an Increment with Two-Way Data Binding

Chapter 2 Data BinDing

61

Look at the <input> element you just added, repeated here in Listing 2-13.

Listing 2-13. Two-Way Data Binding with the @bind Syntax

<input type="number" @bind="@increment" />

Here, we are using the @bind syntax which is the equivalent of two different one-way

bindings as shown in Listing 2-14.

Here, we use one-way data binding (value="@increment") to set the input’s value

property to the increment variable. When the user modifies the contents of the input

element, the change event (@onchange) will trigger and will set the increment variable to

the input’s value (increment = int.Parse($"{e.Value}")). So when one side changes,

the other will be updated.

Listing 2-14. Data Binding in Both Directions

<input type="number"

 value="@increment"

 @onchange="@((ChangeEventArgs e)

 => increment = int.Parse($"{e.Value}"))" />

This alternative syntax is very verbose and not that handy to use. Using @bind is way

more practical. However, don’t forget about this technique; using the more verbose

syntax can sometimes be a more elegant solution!

 Binding to Other Events: @bind:{event}
Blazor will update the value in two-way data binding when the DOM’s onchange event

occurs. This means that the increment field of the Counter component will be updated

when the user changes the focus to another element, for example, the button. But maybe

this is too late for you. Let’s look at how you can change the event that triggers data

binding.

Add a second input by copying the line from Listing 2-14. Run this example and

change the value of one input by typing a number into it (don’t use the increment/

decrement buttons that browsers add for number inputs). The other input’s value will

not update immediately. Clicking the other input will update it. This is because we’re

using the onchange event, which triggers when the input loses focus! If you want data

binding to occur immediately, you can bind to the oninput event by using the explicit

Chapter 2 Data BinDing

62

@bind:event syntax. The oninput event triggers after each change in the input. Update

the second input element to match Listing 2-15. Typing in the second input will update

the first input after each keystroke.

Listing 2-15. Explicit Binding to Events

<input type="number" @bind="@increment" @bind:event="oninput" />

 Preventing Default Actions
In Blazor, you can react to events, and the browser will also react to these. For example,

when you press a key with the focus on an <input> element, the browser will react by

adding the keystroke to the <input>.

But what if you don’t want the browser to behave as normal? Let’s say you want to allow

the user to increment and decrement an input’s value simply by pressing “+” or “-”. Change

the <input> from Listing 2-12 to react to the keypress event as in Listings 2-16 and 2-17.

Listing 2-16. Handling keypress Events

<p>

 <input type="number"

 @bind="@increment"

 @onkeypress="KeyHandler" />

</p>

Listing 2-17. The KeyHandler Method

private void KeyHandler(KeyboardEventArgs e)

{

 if (e.Key == "+")

 {

 increment += 1;

 }

 else if (e.Key == "-")

 {

 increment -= 1;

 }

}

Chapter 2 Data BinDing

63

Build and run. Pressing “+” and “-” will increment and decrement the value in

the input, but you will also see any key you just pressed added to the <input> HTML

element because this is the default behavior for an input. To stop this default behavior,

we can add @{event}:preventDefault like in Listing 2-18. Here, we use a bool field

shouldPreventDefault (set to true) to stop the default behavior of the input, but you

can use any Boolean expression.

Listing 2-18. Stopping the Default Behavior of the Input

<p>

 <input type="number"

 @bind="@increment"

 @onkeypress="KeyHandler"

 @onkeypress:preventDefault="@shouldPreventDefault" />

</p>

// add this next to the KeyHandler method

private bool shouldPreventDefault = true;

Build and run again. Now pressing “+” will increment the input’s value as expected.

You can also leave out the value for preventDefault, and then it will always prevent

the default action as in Listing 2-19.

Listing 2-19. Shorter Notation

<p>

 <input type="number"

 @bind="@increment"

 @onkeypress="KeyHandler"

 @onkeypress:preventDefault />

</p>

 Stopping Event Propagation
In a browser, events propagate to the parent element, then to that parent element’s

parent, etc. Again, generally this is desirable, but not always.

Let’s look at an example. Start by adding two nested div elements to the Counter

component which each handles the @onmousemove event as in Listing 2-20.

Chapter 2 Data BinDing

64

Listing 2-20. Event Propagation Example

@page "/counter"

<h1>Counter</h1>

<p>Current count:

 @currentCount

</p>

<p>

 <input type="number"

 @bind="@increment"

 @onkeypress="KeyHandler"

 @onkeypress:preventDefault="@shouldPreventDefault" />

</p>

<div style="width: 400px; height: 400px; background: yellow"

 @onmousemove="OuterMouseMove">

 @outerPos

 <div style="width: 300px; height: 300px;

 background: green; margin:50px"

 @onmousemove="InnerMouseMove">

 @innerPos

 </div>

</div>

<button class="btn btn-primary"

 disabled="@(currentCount > 10)"

 @onclick="IncrementCount">

 Click me

</button>

Also add code from Listing 2-21. These event handlers simply show the mouse

position in the element.

Chapter 2 Data BinDing

65

Listing 2-21. The Event Handlers

private void KeyHandler(KeyboardEventArgs e)

{

 if (e.Key == "+")

 {

 increment += 1;

 }

 else if (e.Key == "-")

 {

 increment -= 1;

 }

}

private string outerPos = "Nothing yet";

private void OuterMouseMove(MouseEventArgs e)

 => outerPos = $"Mouse at {e.ClientX}x{e.ClientY}";

private string innerPos = "Nothing yet";

private void InnerMouseMove(MouseEventArgs e)

 => innerPos = $"Mouse at {e.ClientX}x{e.ClientY}";

Build and run.

Move the mouse pointer around in the yellow square. Now do the same for the green

rectangle. However, moving the mouse in the green square also updates the yellow one!

This is because the mousemove event (and others) gets sent to the element where the

event occurs and also to its parent element all the way up to the root element! If you want

to avoid this, you can stop this propagation by adding the {event}:stopPropagation

attribute. Add it to the inner square as in Listing 2-22. From now on, moving the mouse

in the inner square does not update the outer square.

Listing 2-22. Stopping the Event from Propagating to the Parent

<div style="width: 400px; height: 400px; background: yellow"

 @onmousemove="OuterMouseMove">

 @outerPos

 <div style="width: 300px; height: 300px;

Chapter 2 Data BinDing

66

 background: green; margin:50px"

 @onmousemove="InnerMouseMove"

 @onmousemove:stopPropagation>

 @innerPos

 </div>

</div>

If you want to be able to turn this on and off from code, assign a bool expression to

this attribute, just like preventDefault.

 Formatting Dates
Data binding to a DateTime value can be formatted with the @bind:format attribute as

shown in Listing 2-23. If you need to format the date depending on the user’s language

and culture, keep on reading. This is discussed in Chapter 14.

Listing 2-23. Formatting a Date

<p>

 <input @bind="@Today" @bind:format="yyyy-MM-dd" />

</p>

@code {

 private DateTime Today { get; set; } = DateTime.Now;

}

Currently, DateTime values are the only ones supporting the @bind:format attribute.

 Change Detection
The Blazor runtime will update the DOM whenever it thinks changes have been made to

your data. One example is when an event executes some of your code, it assumes you’ve

modified some values as a side effect and renders the UI. However, Blazor is not always

capable of detecting all changes, and in this case, you will have to tell Blazor to apply the

changes to the DOM. A typical example is with background threads, so let us look at an

example of this.

Chapter 2 Data BinDing

67

Open Counter.razor and add another button that will automatically increment the

counter when pressed as in Listing 2-24. The AutoIncrement method uses a .NET Timer

instance to increment the currentCount every second. A timer instance will run on a

background thread, executing the callback delegate at intervals (just like setInterval

with JavaScript).

Listing 2-24. Adding Another Button

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary"

 disabled="@(currentCount > 10)"

 @onclick="IncrementCount">

 Click me

</button>

<button class="btn btn-secondary"

 @onclick="AutoIncrement">

 Auto Increment

</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount += 1;

 Console.WriteLine("++");

 }

 private string BackgroundColor

 => (currentCount % 2 == 0) ? "red-background"

 : "yellow-background";

Chapter 2 Data BinDing

68

 private void AutoIncrement()

 {

 var timer = new System.Threading.Timer(

 callback: (_) => IncrementCount(),

 state: null,

 dueTime: TimeSpan.FromSeconds(1),

 period: TimeSpan.FromSeconds(1));

 }

}

You might find the lambda function argument in the Timer’s constructor a little

strange. I use an underscore when I need to name an argument that is not used in the

body of the lambda function. Call it anything you want, for example, ignore – it does not

matter. I simply like to use underscore because then I don’t have to think of a good name

for the argument. C# 7 made this official; it is called discards, and you can find more at

https://docs.microsoft.com/dotnet/csharp/discards.

Run this page. Clicking the “Auto Increment” button will start the timer, but the

currentCount will not update on the screen. Why? Try clicking the “Increment” button.

The currentCount has been updated, so it is a UI problem. If you open the browser’s

debugger, you will see in the console tab a ++ appear every second, so the timer

works! That’s because I’ve added a Console.Writeline, which sends the output to the

debugger’s console. Sometimes an easy way to see if things are working.

Blazor will re-render the page whenever an event occurs. It will also re-render the

page in case of asynchronous operations. However, some changes cannot be detected

automatically. In this case, because we are making some changes on a background

thread, you need to tell Blazor to update the page by calling the StateHasChanged

method which every Blazor component inherits from its base class.

Go back to the AutoIncrement method and add a call to StateHasChanged as in

Listing 2-25. StateHasChanged tells Blazor that some state has changed (who would have

thought!) and that it needs to re-render the page.

Listing 2-25. Adding StateHasChanged

private void AutoIncrement()

{

 var timer = new System.Threading.Timer(

 callback: (_) => { IncrementCount(); StateHasChanged(); },

Chapter 2 Data BinDing

https://docs.microsoft.com/dotnet/csharp/discards

69

 state: null,

 dueTime: TimeSpan.FromSeconds(1),

 period: TimeSpan.FromSeconds(1));

}

Run again. Now pressing “Auto Increment” will work.

As you can see, sometimes we will need to tell Blazor manually to update the

DOM. In general, the Blazor runtime will detect when to update the UI. When the user

interacts with your application, events get triggered which will make change detection

happen. When an async method completes, change detection will occur. It is only when

we go outside the Blazor runtime, for example, using a .NET Timer, that we need to

trigger change detection ourselves. More on this when we look at building components

in the next two chapters.

 The PizzaPlace Single-Page Application
Let us apply this newfound knowledge and build a nice Pizza ordering website.

Throughout the rest of this book, we will enhance this site with all kinds of features.

 Creating the PizzaPlace Project
Create a new Blazor hosted project, either using Visual Studio or dotnet CLI. Refer to

the explanation on creating a project in the first chapter if you don’t recall how. Call the

project PizzaPlace. You get a similar project to the MyFirstBlazor project. Now let’s

apply some changes!

First, enable the nullable reference type feature for each project (you might find that

the Blazor template has already enabled nullable reference types):

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

With Visual Studio, you can also open your project’s properties like in Figure 2-3.

Chapter 2 Data BinDing

70

Figure 2-3. Enable Nullable Reference Types

Out of the box, Blazor uses the popular Bootstrap 4 layout framework

(https://getbootstrap.com/), including open-iconic fonts. Expect to see bootstrap and

open- iconic (oi) CSS classes in the code samples. However, you can use any other layout

framework, because Blazor uses standard HTML and CSS. This book is about Blazor, not

fancy layouts, so we’re not going to spend a lot of time choosing nice colors and making

the site look great. Focus!

In the server project, throw away WeatherForecastController.cs. We don’t need

weather forecasts to order pizzas. In the shared project, delete WeatherForecast.cs. Same

thing. In the client project, throw away the Counter.razor and FetchData.razor files from

the Pages folder and SurveyPrompt.razor from the Shared folder.

 Adding Shared Classes to Represent the Data
In Blazor, it is best to add classes holding data to the Shared project (unless you are

building a Blazor application without a back-end server). These classes are used to send

the data from the server to the client and later to send the data back. You might know

these kinds of classes as models, or Data Transfer Objects (DTO).

What do we need? Since we will build a site around pizzas, creating a class to

represent this makes sense.

Chapter 2 Data BinDing

https://getbootstrap.com/

71

Start with classes representing a Pizza and how spicy it is as in Listings 2-26 and 2-27.

Listing 2-26. The Spiciness Class

namespace PizzaPlace.Shared

{

 public enum Spiciness

 {

 None,

 Spicy,

 Hot

 }

}

Listing 2-27. The Pizza Class

namespace PizzaPlace.Shared

{

 public class Pizza

 {

 public Pizza(int id, string name, decimal price,

 Spiciness spiciness)

 {

 this.Id = id;

 this.Name = name;

 this.Price = price;

 this.Spiciness = spiciness;

 }

 public int Id { get; }

 public string Name { get; }

 public decimal Price { get; }

 public Spiciness Spiciness { get; }

 }

}

Chapter 2 Data BinDing

72

Our application is NOT about editing pizzas yet, so I’ve made this class immutable,

that is, nothing can be changed once a pizza object has been created. In C#, this is easily

done by creating properties with only a getter. You can still set these properties, but only

in the constructor.

Next, we will need a class representing the menu we offer. Add a new class to the

Shared project called Menu with the implementation from Listing 2-28.

Listing 2-28. The Menu Class

using System.Collections.Generic;

using System.Linq;

namespace PizzaPlace.Shared

{

 public class Menu

 {

 public List<Pizza> Pizzas { get; set; }

 = new List<Pizza>();

 public void Add(Pizza pizza)

 => Pizzas.Add(pizza);

 public Pizza? GetPizza(int id)

 => Pizzas.SingleOrDefault(pizza => pizza.Id == id);

 }

}

As in real life, a restaurant’s menu is a list of meals, in this case, a pizza meal.

We will also need a Customer class in the Shared project with implementation

from Listing 2-29. In this case, the Customer class is a normal, mutable class unlike the

Pizza class. The user will enter some information which we will store in an instance

of Customer. And because we are using nullable reference types, we need to remove

the compiler’s warning when we don’t initialize our properties. This is easily done by

assigning default! to them. Chapter 1 talks more about this.

Chapter 2 Data BinDing

73

Listing 2-29. The Customer Class

namespace PizzaPlace.Shared

{

 public class Customer

 {

 public int Id { get; set; }

 public string Name { get; set; } = default!;

 public string Street { get; set; } = default!;

 public string City { get; set; } = default!;

 }

}

Each customer has a shopping basket, so add the Basket class to the Shared project

as in Listing 2-30.

Listing 2-30. The Basket Class, Representing the Customer’s Order

using System.Collections.Generic;

namespace PizzaPlace.Shared

{

 public class ShoppingBasket

 {

 public Customer Customer { get; set; } = new Customer();

 public List<int> Orders { get; set; } = new List<int>();

 public bool HasPaid { get; set; }

 }

}

Please note that we just keep the pizza id in the Orders collection. You will learn

why later.

One more class before we group them all together. We’ll use a UI class to keep track

of some UI options, so add this class to the Shared project as in Listing 2-31.

Chapter 2 Data BinDing

74

Listing 2-31. The UI Options Class

namespace PizzaPlace.Shared

{

 public class UI

 {

 public bool ShowBasket { get; set; } = true;

 }

}

Finally, we group all these classes into a single State class, again in the Shared

project with implementation from Listing 2-32.

Listing 2-32. The State Class

namespace PizzaPlace.Shared

{

 public class State

 {

 public Menu Menu { get; } = new Menu();

 public ShoppingBasket Basket { get; } = new ShoppingBasket();

 public UI UI { get; set; } = new UI();

 }

}

There is another good reason to put all these classes into the Shared project. There

is limited debugging for Blazor. By putting these classes into the Shared project, we can

apply unit testing best practices on the shared classes because it is a regular .NET project

and even use the Visual Studio debugger to examine weird behavior. The Shared project

can also be used by other projects since it is a .NET Standard project, for example, a

Windows or MAUI client!

Chapter 2 Data BinDing

75

 Building the UI to Show the Menu
With these classes in place to represent the data, the next step is to build the user

interface that shows the menu. We will start by displaying the menu to the user, and then

we will enhance the UI to allow the user to order one or more pizzas.

The problem of displaying the menu is twofold: first, you need to display a list

of data. The menu can be thought of as a list, like any other list. Secondly, in our

application, we’ll need to convert the spiciness choices from their numeric values into

URLs leading to the icons used to indicate different levels of hotness.

Open Index.razor. Remove the <SurveyPrompt> element. Add the @code section to

hold our restaurant’s (limited) menu with code from Listing 2-33 by initializing the State

instance. We also override the OnInitialized method to add our menu items to our

State Menu. This method allows you to make some changes to the component before it

is rendered for the first time.

Listing 2-33. Building Our Application’s Menu

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

}

Chapter 2 Data BinDing

76

If you compile now, you will get a bunch of compiler errors. These will tell you that

the compiler cannot find the class State. What would you do if this was a C# file? You

would add a using statement at the top. We can do the same in a razor file, with an

example shown in Listing 2-34.

Listing 2-34. Adding a using Statement to a Razor Component

@page "/"

@using PizzaPlace.Shared

<h1>Hello, world!</h1>

However, with razor, we can do even better. We can add this using statement to all

the components at once!

Open the _Imports.razor file and add a @using like in Listing 2-35. All razor files in

the directory (and child directories) of _Imports.razor will now automatically recognize

the PizzaPlace.Shared namespace.

Listing 2-35. Add using Statements to _Imports.razor

@using System.Net.Http

@using System.Net.Http.Json

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.AspNetCore.Components.Web.Virtualization

@using Microsoft.AspNetCore.Components.WebAssembly.Http

@using Microsoft.JSInterop

@using PizzaPlace.Client

@using PizzaPlace.Client.Shared

@using PizzaPlace.Shared

The PizzaPlace menu is a list like any other list. You can display it by adding some

razor markup in Index.razor to generate the menu as HTML as shown in Listing 2-36. I

like to use comments to show the start and end of each section on my page. This makes

it easier to find a certain part of my page when I come back to it later. In the next chapter,

we will convert each section in its own Blazor component, making future maintenance a

lot easier to do.

Chapter 2 Data BinDing

77

What we are doing here is iterating over each pizza in the menu and generate a row

with four columns, one for the name, one for the price, one for the spiciness, and finally

one for the order button. There are still some compiler errors which we will fix next.

Listing 2-36. Generating the HTML with Razor

@page "/"

<!-- Menu -->

<h1>Our selection of pizzas</h1>

@foreach (var pizza in State.Menu.Pizzas)

{

 <div class="row">

 <div class="col">

 @pizza.Name

 </div>

 <div class="col text-right">

 @($"{pizza.Price:0.00}")

 </div>

 <div class="col"></div>

 <div class="col">

 <img src="@SpicinessImage(pizza.Spiciness)"

 alt="@pizza.Spiciness" />

 </div>

 <div class="col">

 <button class="btn btn-success pl-4 pr-4"

 @onclick="@(() => AddToBasket(pizza))">

 Add

 </button>

 </div>

 </div>

}

Chapter 2 Data BinDing

78

<!-- End menu -->

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

}

 Converting Values
We still have a little problem. We need to convert the spiciness value to an URL, which is

done by the SpicinessImage method as shown in Listing 2-37. Add this method to the

@code area of the Index.razor file.

Listing 2-37. Converting a Value with a Converter Function

private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

This converter function simply converts the name of the enumeration’s value from

Listing 2-26 into the URL of an image file which can be found in the Blazor project’s

images folder as shown in Figure 2-4. Add this folder (which can be found in this book’s

download) to the wwwroot folder.

Chapter 2 Data BinDing

79

Figure 2-4. The Content of the Images Folder

 Adding Pizzas to the Shopping Basket
Having the menu functioning leads naturally to the adding of pizzas to the shopping

basket. When you click the Add button, the AddToBasket method will be executed with

the chosen pizza. You can find the implementation of the AddToBasket method in

Listing 2-38 which is part of Index.razor.

Listing 2-38. Ordering a Pizza

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

}

Chapter 2 Data BinDing

80

Our ShoppingBasket class now needs an Add method as in Listing 2-39.

Listing 2-39. The Basket’s Add Method

using System.Collections.Generic;

namespace PizzaPlace.Shared

{

 public class ShoppingBasket

 {

 public Customer Customer { get; set; } = new Customer();

 public List<int> Orders { get; set; } = new List<int>();

 public bool HasPaid { get; set; }

 public void Add(int pizzaId)

 => Orders.Add(pizzaId);

 }

}

Look at the @onclick event handler (@onclick="@(() => AddToBasket(pizza))")

for the button from Listing 2-36. Why is this event handler using a lambda? When you

order a pizza, you want of course to have your chosen pizza added to the basket. So how

can we pass the pizza to AddToBasket from Listing 2-38? By using a lambda function,

we can simply pass the pizza variable used in the @foreach loop to it. Using a normal

method wouldn’t work because there is no easy way to send the selected pizza. This is

also known as a closure (very similar to JavaScript closures) and can be very practical!

Chapter 2 Data BinDing

81

Run the application. You should see Figure 2-5.

Figure 2-5. Our PizzaPlace’s Menu

When you click the Add button, you’re adding a pizza to the shopping basket. But

how can we be sure (since we’re not displaying the shopping basket yet)?

We can use the debugger, just like any other .NET project! Add a breakpoint to

the AddToBasket method as in Figure 2-6, and run your project with the debugger.

Wait for the browser to display the PizzaPlace page and click one of the Add buttons.

The debugger should stop the breakpoint. Now you can inspect the argument of the

AddToBasket method, which should be the selected pizza. Most of the usual debugging

stuff works with Blazor!

Figure 2-6. Adding a Breakpoint to Your Component

 Displaying the Shopping Basket
The next thing on the menu (some pun intended) is displaying the shopping basket. We

are going to use a feature from C# called tuples. I will explain tuples in a moment.

Add Listing 2-40 after the menu from Listing 2-36 (the comments should make this

quite easy to find).

Chapter 2 Data BinDing

82

Listing 2-40. Displaying the Shopping Basket

<!-- End menu -->

<!-- Shopping Basket -->

@if (State.Basket.Orders.Any())

{

 <h1 class="">Your current order</h1>

 @foreach (var (pizza, pos) in State.Basket.Orders.Select(

(id, pos) => (State.Menu.GetPizza(id), pos)))

 {

 <div class="row mb-2">

 <div class="col">

 @pizza.Name

 </div>

 <div class="col text-right">

 @($"{pizza.Price:0.00}")

 </div>

 <div class="col"></div>

 <div class="col"></div>

 <div class="col">

 <button class="btn btn-danger"

 @onclick="@(() => RemoveFromBasket(pos))">

 Remove

 </button>

 </div>

 </div>

 }

 <div class="row">

 <div class="col"></div>

 <div class="col"><hr /></div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

Chapter 2 Data BinDing

83

 <div class="row">

 <div class="col"> Total:</div>

 <div class="col text-right font-weight-bold"> @($"{State.

TotalPrice:0.00}") </div>

 <div class="col"> </div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

}

<!-- End shopping basket -->

Most of this stuff is very similar, but now we are iterating over a list of tuples (keep reading,

a very handy new feature in C# https://docs.microsoft.com/dotnet/csharp/tuples).

Tuples are very similar to anonymous types from C#, in that they let you store and

return intermediate multi-part results without you having to build a helper class.

Let’s look at this code in a little more detail:

@foreach (var (pizza, pos) in State.Basket.Orders.Select(

 (id, pos) => (State.Menu.GetPizza(id), pos)))

We are using LINQ’s Select to iterate over the list of orders (which contain pizza

ids). To display the pizza in the shopping basket, we need a pizza, so we convert the id to

a pizza with the GetPizza method from the Menu.

Let’s look at the lambda function used in the Select:

(id, pos) => (State.Menu.GetPizza(id), pos))

The LINQ Select method has two overloads, and we’re using the overload taking an

element from the collection (id) and the position in the collection (pos). We use these to

create tuples. Each tuple represents a pizza from the basket and its position in the basket!

We could have done the same, creating a little helper class with the pizza and position,

but this is now done for us! And it is efficacious, using less memory than a class because

it is a value type!

The pizza is used to display its name and price, while the position is used in the

Delete button. This button invokes the RemoveFromBasket method from Listing 2-41.

Chapter 2 Data BinDing

https://docs.microsoft.com/dotnet/csharp/tuples

84

Listing 2-41. Removing Items from the Shopping Basket

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

 private void RemoveFromBasket(int pos)

 => State.Basket.RemoveAt(pos);

}

And of course, we need to add the RemoveAt method to the ShoppingBasket class as

in Listing 2-42.

Listing 2-42. The Basket Class’s RemoveAt Method

using System.Collections.Generic;

namespace PizzaPlace.Shared

{

 public class ShoppingBasket

 {

 public Customer Customer { get; set; } = new Customer();

 public List<int> Orders { get; set; } = new List<int>();

Chapter 2 Data BinDing

85

 public bool HasPaid { get; set; }

 public void Add(int pizzaId)

 => Orders.Add(pizzaId);

 public void RemoveAt(int pos)

 => Orders.RemoveAt(pos);

 }

}

At the bottom of the shopping basket, the total order amount is shown. This is

calculated by the State class. Add the TotalPrice method from Listing 2-43 to the State

class. Please note the use of the null-forgiving operator (!) because I am assuming that

the ShoppingBasket will always contain valid pizza ids.

Listing 2-43. Calculating the Total Price in the State Class

using System.Linq;

namespace PizzaPlace.Shared

{

 public class State

 {

 public Menu Menu { get; } = new Menu();

 public ShoppingBasket Basket { get; } = new ShoppingBasket();

 public UI UI { get; set; } = new UI();

 public decimal TotalPrice

 => Basket.Orders.Sum(id => Menu.GetPizza(id)!.Price);

 }

}

Chapter 2 Data BinDing

86

Run the application and order some pizzas. You should see your current order

similar to Figure 2-7.

Figure 2-7. Your Shopping Basket with a Couple of Pizzas

 Entering the Customer Information
Of course, to complete the order, we need to know a couple of things about the customer,

especially we need to know the customer’s name and address because we need to

deliver the order.

Start by adding the following razor to your Index.razor page as in Listing 2-44.

Listing 2-44. Adding Form Elements for Data Entry

<!-- End shopping basket -->

<!-- Customer entry -->

<h1>Please enter your details below</h1>

<fieldset>

 <div class="row mb-2">

 <label class="col-2" for="name">Name:</label>

 <input class="col-6" id="name"

 @bind="State.Basket.Customer.Name" />

 </div>

 <div class="row mb-2">

 <label class="col-2" for="street">Street:</label>

Chapter 2 Data BinDing

87

 <input class="col-6" id="street"

 @bind="State.Basket.Customer.Street" />

 </div>

 <div class="row mb-2">

 <label class="col-2" for="city">City:</label>

 <input class="col-6" id="city"

 @bind="State.Basket.Customer.City" />

 </div>

 <button @onclick="PlaceOrder">Checkout</button>

</fieldset>

<!-- End customer entry -->

This adds three <label>s and their respective <input>s for name, street, and city.

You will also need to add the PlaceOrder method to your @code as shown in

Listing 2-45.

Listing 2-45. The PlaceOrder Method

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

Chapter 2 Data BinDing

88

 private void RemoveFromBasket(int pos)

 => State.Basket.RemoveAt(pos);

 private void PlaceOrder()

 {

 Console.WriteLine("Placing order");

 }

}

The PlaceOrder method doesn’t do anything useful yet; we’ll send the order to the

server later. This does however show a valid debugging technique in Blazor, where we

place Console.WriteLine statements to see what gets executed.

Run the application and enter your details, for example, as in Figure 2-8.

Figure 2-8. Filling Out the Customer Detail

 Debugging Tip
Even with modern debuggers, you want to see the State object because it contains the

customer’s details and order as you are interacting with the application. Will we send the

correct information to the server when we press the Checkout button? For this, we’ll use

a simple trick by displaying the State on our page, so you can review it at any time.

Start by adding a new static class DebuggingExtensions to your Blazor client project

as in Listing 2-46.

Chapter 2 Data BinDing

89

Listing 2-46. The DebuggingExtensions Class

using System.Text.Json;

namespace PizzaPlace.Client

{

 public static class DebuggingExtensions

 {

 private static JsonSerializerOptions options = new

JsonSerializerOptions { WriteIndented = true };

 public static string ToJson(this object obj)

 => JsonSerializer.Serialize(obj, options);

 }

}

And at the bottom of Index.razor, add a simple paragraph as in Listing 2-47.

Listing 2-47. Showing State

<!-- End customer entry -->

@State.ToJson()

@code {

Run your project. As you interact with the page, you’ll see State change with an

example shown in Figure 2-9.

Figure 2-9. Watching State Changes

It should be obvious that we remove this debugging feature when the page is ready 😊.

For example, you could add an #if DEBUG inside the ToJson method to only make it

work outside release builds.

Chapter 2 Data BinDing

90

 Blazor Validation
But wait! Clicking the Checkout button works, even while there is no customer name,

address, or city! We need to do some validation! So, let’s start with an introduction to

Blazor validation.

 Letting Entities Validate Themselves
Classes like Customer should validate themselves because they have the best

knowledge about the validity of their properties. .NET has a couple of built-in validation

mechanisms, and here we are going to use the standard System.ComponentModel.

DataAnnotations. In Chapter 3, we will look at using other validation mechanisms. With

data annotations, you add attributes to your entity's properties, indicating what kind of

validation is required.

Start by adding the System.ComponentModel.Annotations package to the

PizzaPlace.Shared project.

Now add [Required] attributes to the Customer class as in Listing 2-48. These

annotations make the Name, Street, and City properties mandatory. Use the

ErrorMessage property to set the validation error message. You can add other attributes

like [CreditCard], [EmailAddress], [MaxLength], [MinLength], [Phone], [Range],

[RegularExpression], [StringLength], and [Url] for further validation.

Listing 2-48. Adding Annotations for Validation

using System.ComponentModel.DataAnnotations;

namespace PizzaPlace.Shared

{

 public class Customer

 {

 public int Id { get; set; }

 [Required(ErrorMessage = "Please provide a name")]

 public string Name { get; set; } = default!;

 [Required(ErrorMessage = "Please provide a street with house number.")]

 public string Street { get; set; } = default!;

Chapter 2 Data BinDing

91

 [Required(ErrorMessage = "Please provide a city")]

 public string City { get; set; } = default!;

 }

}

 Using FormField and InputText to Enable Validation
Blazor comes with some built-in components that will perform validation for you.

Replace the customer entry UI with Listing 2-49. Here, we replace the <input> HTML

elements with built-in editing components. The EditForm component wraps around all

the InputText components and will render as the HTML <form> element. The EditForm

component has a Model property which you set to the instance you need to validate.

When the user clicks the Submit button, the EditForm component performs validation,

and when there are no validation errors, it will call the OnValidSubmit event.

Use the InputText component for each field, binding one to each property of the

model using the @bind-Value attribute. This is the syntax used to tell the component to

use two-way data binding between the Value property of the InputText component and

the property of the model. Listing 2-49 has three such InputText components, one for

Name, Address, and City.

Other input components also exist for other types, such as InputTextArea, InputRadio,

InputRadioGroup, InputDate, InputCheckbox, InputSelect, and InputNumber. You can

even build your own.

Listing 2-49. Using EditForm and InputText

<!-- Customer entry -->

<h1 class="mt-2 mb-2">Please enter your details below</h1>

<EditForm Model="@State.Basket.Customer"

 OnValidSubmit="PlaceOrder">

 <fieldset>

 <div class="row mb-2">

 <label class="col-2" for="name">Name:</label>

 <InputText class="form-control col-6"

 @bind-Value="@State.Basket.Customer.Name" />

 </div>

Chapter 2 Data BinDing

92

 <div class="row mb-2">

 <label class="col-2" for="street">Street:</label>

 <InputText class="form-control col-6"

 @bind-Value="@State.Basket.Customer.Street" />

 </div>

 <div class="row mb-2">

 <label class="col-2" for="city">City:</label>

 <InputText class="form-control col-6"

 @bind-Value="@State.Basket.Customer.City" />

 </div>

 <div class="row mb-2">

 <button class="mx-auto w-25 btn btn-success"

 @onclick="PlaceOrder">Checkout</button>

 </div>

 </fieldset>

</EditForm>

<!-- End customer entry -->

 Showing Validation Errors
If you run the application right now, you will see that there is no validation yet. Why?

Because Blazor allows you to choose between different validation systems (and even

build your own), and we did not pick one! Here, we want to use data annotations for

validation, so add the DataAnnotationsValidator component to the EditForm as in

Listing 2-50.

Listing 2-50. Adding DataAnnotationsValidator

<EditForm Model="@State.Basket.Customer"

 OnValidSubmit="PlaceOrder">

 <DataAnnotationsValidator />

 <fieldset>

Chapter 2 Data BinDing

93

Run the application again, and click the Checkout button. You will see that the inputs

now receive a red border, because of validation errors. As a user, you would now wonder

what you did wrong. So we need to show some error as feedback.

To show the validation message for each input, you add a ValidationMessage

component and you set the For property to a delegate that returns the field to show

validation messages for as in Listing 2-51.

Listing 2-51. Showing Validation Messages

<EditForm Model="@State.Basket.Customer"

 OnValidSubmit="PlaceOrder">

 <DataAnnotationsValidator />

 <fieldset>

 <div class="row mb-2">

 <label class="col-2" for="name">Name:</label>

 <InputText class="form-control col-6"

 @bind-Value="@State.Basket.Customer.Name" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage

 For="@(() => State.Basket.Customer.Name)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="street">Street:</label>

 <InputText class="form-control col-6"

 @bind-Value="@State.Basket.Customer.Street" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage

 For="@(() => State.Basket.Customer.Street)" />

 </div>

 </div>

Chapter 2 Data BinDing

94

 <div class="row mb-2">

 <label class="col-2" for="city">City:</label>

 <InputText class="form-control col-6"

 @bind-Value="@State.Basket.Customer.City" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage

 For="@(() => State.Basket.Customer.City)" />

 </div>

 </div>

 <div class="row mb-2">

 <button class="mx-auto w-25 btn btn-success"

 @onclick="PlaceOrder">Checkout</button>

 </div>

 </fieldset>

</EditForm>

Build and run the PizzaPlace project. Click the Checkout button. You should get

validation errors as shown in Figure 2-10. Blazor validation also adds some styles, and by

default, this will put a red border around inputs with validation errors.

Figure 2-10. Showing Validation Errors

Chapter 2 Data BinDing

95

Note that the Checkout button does not invoke the PlaceOrder method if there are

validation errors.

Now enter a name, street, and city. You should see the validation errors go away. You

will also see green borders appear since the inputs are now valid.

You can also use a ValidationSummary component which shows all the validation

errors together as an unordered list. For example, you can add the ValidationSummary

component below the DataAnnotationsValidator as in Listing 2-52. This will show all

validation errors as in Figure 2-11.

Listing 2-52. Using the ValidationSummary Component

<EditForm Model="@State.Basket.Customer"

 OnValidSubmit="PlaceOrder">

 <DataAnnotationsValidator />

 <ValidationSummary/>

Figure 2-11. The ValidationSummary’s Output

 Customizing the Validation Feedback
When you enter a value in an InputText element (or one of the other input

components), Blazor validation gives you feedback about the validity of the value

by adding certain CSS classes. Let us have a look at how this is implemented. Run

the PizzaPlace project, right-click one of the inputs, and then select Inspect from the

browser’s menu.

Initially, an untouched input will have the valid class, as in Listing 2-53 (the other

classes come from the class attribute in Listing 2-51).

Chapter 2 Data BinDing

96

Listing 2-53. Validation Uses the Valid CSS Class

<input class="form-control col-6 valid" ...>

When you make a valid change to an input, the modified class is added as in

Listing 2-54.

Listing 2-54. Validation Adds the Modified Class After a Change

<input class="form-control col-6 modified valid" ...>

With an invalid input, you get the invalid class, as in Listing 2-55.

Listing 2-55. Bad Input Uses the Invalid CSS Class

<input class="form-control col-6 modified invalid" ...>

Finally, validation messages get the validation-message CSS class, as in

Listing 2-56.

Listing 2-56. Validation Messages Use the validation-message Class

<div class="validation-message">Please provide a name</div>

Out of the box, Blazor uses the following CSS styling for validation, as shown in

Listing 2-57. You can find these CSS rules in wwwroot/css/app.css. Simply put, these add

a green outline to an input if it has valid modifications and a red outline when the input

has an invalid value.

Listing 2-57. Blazor’s built-in CSS Validation Rules

.valid.modified:not([type=checkbox]) {

 outline: 1px solid #26b050;

}

.invalid {

 outline: 1px solid red;

}

.validation-message {

 color: red;

}

Chapter 2 Data BinDing

97

So, if you want to customize how your feedback looks like, you customize these

CSS rules. For example, you can use the following CSS to wwwroot/css/app.css from

Listing 2-58 to make validation look like Figure 2-12.

Listing 2-58. Some Custom CSS Rules to Change Validation Feedback

.valid.modified:not([type=checkbox]) {

 border-left: 5px solid #42A948; /* green */

}

.invalid {

 border-right: 5px solid #a94442; /* red */

}

.validation-message {

 color: #a94442;

}

Figure 2-12. Customized Validation Feedback

 Summary
In this chapter, we looked at data binding in Blazor. We started with one-way data

binding where we can embed the value of a property or a field in the UI using the @

SomeProperty syntax. We then looked at event binding where you bind an element’s

event to a method using the on<event>="@SomeMethod" syntax. Blazor also has support

for two-way data binding where we can update the UI with the value of a property and

vice versa using the @bind="SomeProperty" syntax. Finally, we examined validation

where we can use standard .NET validation techniques.

Chapter 2 Data BinDing

99
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_3

CHAPTER 3

Components and
Structure for Blazor
Applications
In the previous chapter on data binding, you have built a single monolithic application

called PizzaPlace with Blazor. After a while, this will become harder and harder to

maintain because everything is in one place, resulting in one big razor file.

In modern web development, we build applications by constructing them from

components, which typically are again built from smaller components. A Blazor

component is a self-contained chunk of user interface. Blazor components are classes

built from razor and C# with one specific purpose (also known as single responsibility

principle) and are easier to understand, debug, and maintain. And of course, you can

reuse the same component in different pages, which can be a huge advantage.

In this chapter, we will explore how to build Blazor components.

 What Is a Blazor Component?
To put it in a simple manner, each razor file in Blazor is a component. It’s that simple!

A razor file in Blazor contains markup and has code in the @code section. Each page we

have been using from the MyFirstBlazor project is a component! And components can be

built by adding other components as children.

Any class that derives from the ComponentBase class becomes a Blazor component; a

little later, we will build an example of this. When you use a razor file, the generated class

will also derive from ComponentBase.

Remember the MyFirstBlazor project from the previous chapter? Create a new one

just like it in Visual Studio (or Code), and let’s have a look at some of the components

in there.

https://doi.org/10.1007/978-1-4842-7845-1_3#DOI

100

Open Index.razor as in Listing 3-1. See SurveyPrompt? That is one of the components

that are part of the Blazor template. It takes one parameter Title which we can set where

we want to use the component. Let us have a good look at the SurveyPrompt component.

Listing 3-1. The Index Page

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

 Examining the SurveyPrompt Component
Open SurveyPrompt.razor as in Listing 3-2, which can be found in the Shared folder of

the client project. The component is called SurveyPrompt because a component gets

named after the razor file it is in.

Listing 3-2. The SurveyPrompt Component

<div class="alert alert-secondary mt-4" role="alert">

 @Title

 Please take our

 <a target="_blank" class="font-weight-bold"

 href="https://go.microsoft.com/fwlink/?linkid=2148851">

 brief survey

 and tell us what you think.

</div>

Chapter 3 Components and struCture for Blazor appliCations

101

@code {

 // Demonstrates how a parent component can supply parameters

 [Parameter]

 public string Title { get; set; }

}

Look at the Razor markup. This is a simple Blazor component that displays an icon

in front of the Title as shown in Figure 3-1 and then displays a link to the survey (a real

survey which you should take 😊 – this will show Microsoft that you’re interested in

Blazor).

Figure 3-1. The SurveyPrompt Component

The @code section simply contains a property Title that uses one-way data binding

for rendering in the component. Do note the [Parameter] attribute on the Title

property. This is required for components that want to expose their public properties to

the parent component. This way, we can pass data to nested components, for example,

how the Index component passes the Title to the SurveyPrompt component.

 Building a Simple Alert Component with Razor
Let us build our own Blazor component that will show a simple alert. Alerts are used to

draw the attention of the user to some message, for example, a warning.

 Creating a New Component with Visual Studio

Open the MyFirstBlazor solution. Right-click the Pages folder and select Add ➤ New

Item…. The Add New Item window should open as in Figure 3-2.

Chapter 3 Components and struCture for Blazor appliCations

102

Figure 3-2. The Add New Item Window

Select Razor Component and name it Alert.razor. Click Add.

 Creating a New Component with Code

Right-click the Pages folder of the client project and select New File. Name it Alert.razor.

Unlike Visual Studio, this will not generate any code in this file. There are extensions

available for creating Blazor components. I will let you explore which one you like

best (e.g., https://visualstudiomagazine.com/articles/2020/04/08/vs- code-

blazor.aspx).

 Implementing the Alert Component

Remove all existing content from Alert.razor and replace it with Listing 3-3. Let us have a

look at this component.

The first line in the Alert component uses an @if to hide or show its inner content.

This is a common technique if you want to conditionally display content. So, if the Show

public property (actually parameter) is false, the whole component is not shown. This

allows us to “hide” the component until needed.

Our Alert component will show some content in a <div> element as an alert

(using bootstrap styles), so how do we pass this content to the Alert component?

Chapter 3 Components and struCture for Blazor appliCations

https://visualstudiomagazine.com/articles/2020/04/08/vs-code-blazor.aspx
https://visualstudiomagazine.com/articles/2020/04/08/vs-code-blazor.aspx

103

Inside the @if, there is a <div> element with @ChildContent as its child. You use

@ChildContent if you want to access the nested element in the Alert component, as

you’ll see when we use the Alert component in Listing 3-4.

Blazor dictates that this property/parameter should be named @ChildContent and

it needs to be of type RenderFragment because this is the way the Blazor engine passes it

(we will look at this later in this chapter).

Listing 3-3. The Alert Component

@if (Show)

{

 <div class="alert alert-secondary mt-4" role="alert">

 @ChildContent

 </div>

}

@code {

 [Parameter]

 public bool Show { get; set; }

 [Parameter]

 public RenderFragment ChildContent { get; set; } = default!;

}

Note the default Blazor templates use Bootstrap 4 for styling. Bootstrap
(http://getbootstrap.com) is a very popular Css framework, originally built
for twitter, giving an easy layout for web pages. however, Blazor does not require
you to use bootstrap, so you can use whatever styling you prefer. in that case,
you would have to update all the razor files in the solution using the other styles,
just like in regular web development. in this book, we will use bootstrap, simply
because it is there.

Go back to Index.razor to add the element.

As you start to type, Visual Studio and Code are smart enough to provide you with

IntelliSense, as illustrated in Figure 3-3, for the Alert component and its parameters!

Chapter 3 Components and struCture for Blazor appliCations

http://getbootstrap.com

104

Figure 3-3. Visual Studio IntelliSense Support for Custom Blazor Components

Complete the Alert and add a button as in Listing 3-4.

Listing 3-4. Using Our Alert Component in Index.razor

@page "/"

<h1>Hello, world!</h1>

<Alert Show="@ShowAlert">

 Blazor is so cool!

</Alert>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

@code {

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert() => ShowAlert = !ShowAlert;

}

Inside the <Alert> tag, there is a displaying a checkmark icon using the

open-iconic font and a element displaying a simple message. These will be set

as the @ChildContent property of the Alert component.

Build and run your project. When you click the <button>, it calls the ToggleAlert

method which will hide and show the Alert as in Figure 3-4.

Chapter 3 Components and struCture for Blazor appliCations

105

Figure 3-4. Our Simple Alert Component Before Clicking the Toggle Button

 Separating View and View Model
You might not like this mixing of markup (view) and code (view model). If you like, you

can use two separate files, one for the view using razor and another for the view model

using C#. The view will display the data from the view model, and event handlers in the

view will invoke methods from the view model.

Some people prefer this way of working because it’s more like the MVVM pattern.

Each Blazor razor file gets generated into a C# partial class. If you want to separate

the code from the razor file, put the code in a partial class with the same name as the

component. The C# compiler will merge code from both files into a single class. Let’s

try this!

 Creating a DismissibleAlert Component
If you haven’t done so yet, open the MyFirstBlazor solution. With Visual Studio,

right-click the Pages folder and select Add ➤ New Item…. The Add New Item dialog

should open as shown in Figure 3-2. This time, select Razor Component and name

it DismissibleAlert.razor. Also, add a new C# class, and call the file DismissibleAlert.

razor.cs.

With Visual Studio Code, right-click the Pages folder, select New File, and name it

DismissibleAlert.razor. Do this again to create a new file called Dismissible.razor.cs.

A Dismissible is an alert with a little x button, which the user can click to dismiss

the alert. It is quite similar to the previous Alert component. Replace the markup in the

razor file with Listing 3-5.

Chapter 3 Components and struCture for Blazor appliCations

106

Listing 3-5. The Markup for Dismissible.razor

@if (Show)

{

 <div class="alert alert-secondary alert-dismissible fade show mt-4"

role="alert">

 @ChildContent

 <button type="button" class="close" data-dismiss="alert"

 aria-label="Close" @onclick="Dismiss">

 & times;

 </button>

 </div>

}

There is no @code section, because you will write this in the .cs file.

Replace the C# code in Dismissible.razor.cs with Listing 3-6.

Listing 3-6. The Code for Dismissible.razor.cs

using Microsoft.AspNetCore.Components;

namespace Components.Pages

{

 public partial class Dismissible

 {

 [Parameter]

 public bool Show { get; set; }

 [Parameter]

 public RenderFragment ChildContent { get; set; } = default!;

 public void Dismiss()

 => Show = false;

 }

}

Do note that this is a partial class with the same name as the Blazor component! So

instead of putting your code in the @code section of a razor file, you can put the code in a

partial class.

Chapter 3 Components and struCture for Blazor appliCations

107

Which model is best? I don’t think either one is better than the other; it is more a

matter of taste. Choose the one you like. I do like the code separation model a little more

(my personal opinion) because I think the C# editor has better features for keeping my

code maintainable and clean.

 Understanding Parent-Child Communication
Parent and child components typically communicate through data binding. For

example, in Listing 3-7, we are using our Dismissible, which communicates with the

parent component through the parent’s ShowAlert property. Clicking the Toggle button

will hide and show the alert. You can try this by replacing the contents of Index.razor

(simply replace Alert with Dismissible) with Listing 3-7.

Listing 3-7. Using Dismissible

@page "/"

<h1>Hello, world!</h1>

<Dismissible Show="@ShowAlert">

 Blazor is so cool!

</Dismissible>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

@code {

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert() => ShowAlert = !ShowAlert;

}

 Adding a Timer Component
Start by adding a new class called Timer to the Pages folder as shown in Listing 3-8. The

timer will not have any visual part, so we don’t even need a .razor file to build the view.

A Blazor component is a class that inherits the ComponentBase class. Since we want

to use the Timer class as a Blazor component, we need to inherit from ComponentBase.

Chapter 3 Components and struCture for Blazor appliCations

108

This Timer class will invoke a delegate (Tick) after a certain number of seconds

(TimeInSeconds) have expired. The Tick parameter is of type Action, which is one of the

built-in delegate types of .NET. An Action is simply a method returning a void with no

parameters. There are other generic Action types, such as Action<T> which is a method

returning void with one parameter of type T. This allows the parent component to set

the Action, so the child will execute the Action (in this case, after TimeInSeconds has

expired).

Listing 3-8. The Timer Class

using Microsoft.AspNetCore.Components;

using System;

using System.Threading;

namespace Components.Pages

{

 public class Timer : ComponentBase

 {

 [Parameter]

 public double TimeInSeconds { get; set; }

 [Parameter]

 public Action Tick { get; set; } = default!;

 protected override void OnInitialized()

 {

 var timer = new System.Threading.Timer(

 callback: (_) => InvokeAsync(() => Tick?.Invoke()),

 state: null,

 dueTime: TimeSpan.FromSeconds(TimeInSeconds),

 period: Timeout.InfiniteTimeSpan);

 }

 }

}

Now add the Timer component to the Index page as in Listing 3-9. With this change,

the Timer component will invoke the ToggleAlert method after 5 seconds.

Chapter 3 Components and struCture for Blazor appliCations

109

Listing 3-9. Adding the Timer Component to Dismiss the Alert

@page "/"

<h1>Hello, world!</h1>

<Dismissible Show="@ShowAlert">

 Blazor is so cool!

</Dismissible>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

<Timer TimeInSeconds="5" Tick="ToggleAlert"/>

@code {

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert()

 {

 Console.WriteLine("*** Toggle ***");

 ShowAlert = !ShowAlert;

 }

}

Run the application and wait at least 5 seconds. The alert does not hide! Why?!

Look at the markup, which is in Listing 3-9, for Dismissible. It shows the component

based on the Show parameter, and this one gets set through data binding. Does the

ToggleAlert method get called? Run the Blazor website again, and immediately open

the browser’s debugger on the console tab. After a little while, you should see the

Console.WriteLine output appear. So the ToggleAlert method does get called.

Think about this. We invoke a method asynchronously using a Timer. When

the timer fires, we set the Index component ShowAlert property to false. But we

still need to update the UI. You can manually trigger the UI to update by calling the

StateHasChanged method.

This is very important! The Blazor runtime updates the UI automatically when an

event triggers, like the button click. The Blazor runtime also updates the UI for its own

asynchronous methods, but not for other asynchronous methods like Timer.

Chapter 3 Components and struCture for Blazor appliCations

110

Time to fix our application. Add a call to StateHasChanged in the ToggleAlert

method as in Listing 3-10.

Listing 3-10. Adding StateHasChanged

public void ToggleAlert()

{

 ShowAlert = !ShowAlert;

 StateHasChanged();

}

Run again and wait, and after 5 seconds, the alert disappears!

To be honest, I don’t like the previous solution to our problem. Because a child

component calls the ToggleAlert method, we manually need to call StateHasChanged.

Is there no better way? And we haven’t even solved another problem. When the user

dismissed the alert before the timer triggered the Tick method, it should reappear after 5

seconds because it will set ShowAlert back to true!

We will fix both problems, but first, we need to understand two-way data binding

between components.

 Using Two-Way Data Binding Between Components
When the user clicks the Dismissible component’s close button, it sets its own Show

property to false, as intended. The problem is that the parent Index component’s

ShowAlert stays true. Changing the value of the Dismissible local Show property will

not update the Index component’s ShowAlert property. What we need is two-way data

binding between components, and Blazor has that.

With two-way data binding, changing the value of the Show parameter will update the

value of the ShowAlert property of the parent and vice versa.

You can use the @bind-<<NameOfProperty>> syntax (which we already used with

the InputTitle component in the previous chapter) to data bind any property of a child

component. This will use two-way data binding. So update the Index page to use two-

way data binding as in Listing 3-11.

Chapter 3 Components and struCture for Blazor appliCations

111

Listing 3-11. Using Two-Way Data Binding

<Dismissible @bind-Show="ShowAlert">

 Blazor is so cool!

</Dismissible>

Run the website. However, you will not see any valid page. The Blazor runtime

encountered a problem. You can discover the problem by opening the browser’s debugger.

Check the console. You will see a bunch of red messages, one of which is stating:

Object of type 'Components.Pages.Dismissible' does not have a property

matching the name 'ShowChanged'.

Properties that support two-way data binding need a way to tell the parent that

the property has changed. The child component uses for that a delegate, so the parent

component through the Blazor runtime can install its own change handler (just like an

event) when the property has changed. This change handler will then update the parent

component’s data bound property. The child component is responsible for invoking the

Changed delegate when the property changes.

Open the Dismissible class and its implementation to match Listing 3-12. There

are two changes. First of all, the Show property now uses the “full” implementation of

a property, because we need to implement the setter that it will call the ShowChanged

delegate when its value changes.

Second we add an extra parameter which should be called

<<yourproperty>>Changed of type Action<<typeofyourproperty>>. For example, the

property is named Show of type bool, so we add ShowChanged of type Action<bool>.

Listing 3-12. The Dismissible Class with Two-Way Binding Support

using Microsoft.AspNetCore.Components;

using System;

namespace Components.Pages

{

 public partial class Dismissible

 {

 private bool show;

Chapter 3 Components and struCture for Blazor appliCations

112

 [Parameter]

 public bool Show

 {

 get => show;

 set

 {

 if (value != show)

 {

 show = value;

 ShowChanged?.Invoke(show);

 }

 }

 }

 [Parameter]

 public Action<bool>? ShowChanged { get; set; }

 [Parameter]

 public RenderFragment ChildContent { get; set; } = default!;

 public void Dismiss()

 => Show = false;

 }

}

Whenever someone or something changes the Show property’s value, the property’s

setter triggers the ShowChanged delegate. This means the parent component can

inject some code (which it does for you when you use two-way data binding) into

the ShowChanged delegate property which will invoke when the property is changed

(internally or externally).

Note the property setter checks if the value has changed. only trigger the
Changed delegate when there is an actual change. this will avoid a possible
endless loop of Changed handling.

Now, when the Dismissible Show property changes, Blazor will update the parent's

ShowAlert property because we are using two-way data binding.

Chapter 3 Components and struCture for Blazor appliCations

113

We still need to fix the problem when the Timer fires.

One way (but there is a better way) is in Listing 3-13. Here, we call StateHasChanged

whenever the ShowAlert property gets a new value. This is better because anywhere we

update the ShowAlert property, we update the UI.

Listing 3-13. Update the UI when ShowAlert Changes the Value

@page "/"

<h1>Hello, world!</h1>

<DismissibleAlert @bind-Show="ShowAlert">

 Blazor is so cool!

</DismissibleAlert>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

<Timer TimeInSeconds="5" Tick="ToggleAlert" />

@code {

 private bool showAlert = true;

 public bool ShowAlert

 {

 get => showAlert; set

 {

 if (value != showAlert)

 {

 showAlert = value;

 StateHasChanged();

 }

 }

 }

 public void ToggleAlert()

 {

 ShowAlert = !ShowAlert;

 }

}

Chapter 3 Components and struCture for Blazor appliCations

114

Run. Wait 5 seconds.

The Alert should automatically hide as illustrated in Figures 3-5 and 3-6.

Figure 3-5. The Alert Being Shown

Figure 3-6. The Alert Automatically Hides After 5 Seconds

Should your project still not update, you can debug a client-side Blazor project by

adding breakpoints or some Console.WriteLine statements. These will appear in the

browser’s console window. You can see examples of this in the book’s code which you

can download from the Apress site.

 Using EventCallback<T>
Now, with the DismissibleAlert component from the previous section, we have been

using two-way data binding between components with the @bind-Show syntax, and we

used the ShowChanged callback to notify the parent component that the Show property

has changed. To make the parent update its UI, we also added a call to StateHasChanged

when the parent’s ShowAlert property gets modified. But there is a better way!

Blazor has the EventCallback type for this, which was added to Blazor in .NET

Core 3.0 Preview 3 (https://github.com/aspnet/AspNetCore/issues/6351). The

big difference between Action<T> and EventCallback<T> is that the latter will invoke

StateHasChanged for you!

Chapter 3 Components and struCture for Blazor appliCations

https://github.com/aspnet/AspNetCore/issues/6351

115

Update the DismissibleAlert component’s ShowChanged as in Listing 3-14.

Listing 3-14. Using EventCallback<T>

using Microsoft.AspNetCore.Components;

using System;

namespace Components.Pages

{

 public partial class DismissibleAlert

 {

 private bool show;

 [Parameter]

 public bool Show

 {

 get => show;

 set

 {

 if (value != show)

 {

 show = value;

 ShowChanged?.InvokeAsync(show);

 }

 }

 }

 [Parameter]

 public EventCallback<bool>? ShowChanged { get; set; }

 [Parameter]

 public RenderFragment ChildContent { get; set; } = default!;

 public void Dismiss()

 => Show = false;

 }

}

Chapter 3 Components and struCture for Blazor appliCations

116

So instead of using an Action<T> delegate, we use the EventCallback<T> type. First

of all, this type is a value type, so we don’t need to check for null. And instead of an

Invoke method, it has an InvokeAsync method which solves some special problems

which are not important at this point in time.

If you want to learn more about these problems, open your browser on https://

github.com/dotnet/aspnetcore/issues/6351.

You should also update the Timer component to use an EventCallback as in

Listing 3-15.

Listing 3-15. The Improved Timer Component

using Microsoft.AspNetCore.Components;

using System;

using System.Threading;

namespace Components.Pages

{

 public class Timer : ComponentBase

 {

 [Parameter]

 public double TimeInSeconds { get; set; }

 [Parameter]

 public EventCallback Tick { get; set; } = default!;

 protected override void OnInitialized()

 {

 var timer = new System.Threading.Timer(

 callback: (_) => InvokeAsync(() => Tick.InvokeAsync()),

 state: null,

 dueTime: TimeSpan.FromSeconds(TimeInSeconds),

 period: Timeout.InfiniteTimeSpan);

 }

 }

}

Finally, update the Index component’s ShowAlert property by removing the call to

StateHasChanged as in Listing 3-16 (we can use an automatic property again).

Chapter 3 Components and struCture for Blazor appliCations

https://github.com/dotnet/aspnetcore/issues/6351
https://github.com/dotnet/aspnetcore/issues/6351

117

Listing 3-16. Index with Simple ShowAlert Property

@page "/"

<h1>Hello, world!</h1>

<DismissibleAlert @bind-Show="ShowAlert">

 Blazor is so cool!

</DismissibleAlert>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

<Timer TimeInSeconds="5" Tick="ToggleAlert" />

@code {

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert()

 {

 ShowAlert = !ShowAlert;

 }

}

Build and run. Wait 5 seconds. The alert should hide!

In general, you should prefer EventCallback<T> over normal delegates for parent-

child communication, such as events and two-way data binding. There are exceptions to

the rule (e.g., the fact that EventCallback triggers component, re-rendering might be a

problem, and then using a delegate can be the solution).

 Referring to a Child Component
Generally, you should prefer data binding to have components communicate with

one another. This way, one component does not need to know anything about another

component, except the data bindings. It also makes the Blazor runtime take care of

updating components with changes.

Chapter 3 Components and struCture for Blazor appliCations

118

However, you can also directly interact with a child component. Let’s look

at an example: we want the dismissible alert to disappear by calling its Dismiss

method. Update your code to match Listing 3-17, where we use the @ref syntax

to place a reference to a component in a field. Please make sure that field is of the

component’s type.

Listing 3-17. Referring to a Child Component

@page "/"

<h1>Hello, world!</h1>

<DismissibleAlert @bind-Show="ShowAlert" @ref="alert">

 Blazor is so cool!

</DismissibleAlert>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

<Timer TimeInSeconds="5" Tick="@(() => alert.Dismiss())" />

@code {

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert()

 {

 ShowAlert = !ShowAlert;

 }

 private DismissibleAlert alert = default!;

}

In this example, the Blazor runtime will put a reference to the DismissibleAlert

component in the alert field. You can instruct Blazor to do this using the @ref syntax.

When the timer calls its Tick parameter after 5 seconds, we use this reference to call the

DismissibleAlert’s Dismiss method.

Chapter 3 Components and struCture for Blazor appliCations

119

 Communicating with Cascading Parameters
When a higher-level component wants to pass data to an immediate child, life is easy.

Simply use data binding. But when a higher-level component needs to share some

data with a deeper nested component, passing data using data binding requires each

intermediate component to expose that data through a parameter and pass it down to

the next level. Not only is this inconvenient when you have several levels of components,

but who says that you are in control of these components? Blazor solves this problem

with cascading values and parameters. Let us look at an example.

Open MyFirstBlazor and add the CounterData class from Listing 3-18.

Listing 3-18. The CounterData Class

using System;

namespace Components

{

 public class CounterData

 {

 private int count;

 public int Count

 {

 get => this.count;

 set

 {

 if (value != count)

 {

 this.count = value;

 CountChanged?.Invoke(this.count);

 }

 }

 }

 public Action<int>? CountChanged { get; set; }

 }

}

Chapter 3 Components and struCture for Blazor appliCations

120

 Using the CascadingValue Component
Our top-level component (called GrandMother) wants to pass this data as a cascading

value to any descendant component. You can use the Blazor built-in CascadingValue

component for this. Look at Listing 3-19 for an example of using the CascadingValue

component. Here, we pass GrandMother’s data field (of type CounterData) as a cascading

value. Any component which is part of the ChildContent will now be able to access the

CounterData instance from GrandMother.

Listing 3-19. Use the CascadingValue Component to Pass Data to Descendants

<h3>GrandMother</h3>

@data.Count

<CascadingValue Value="@this.data">

 @ChildContent

</CascadingValue>

@code {

 public CounterData data = new CounterData { Count = 10 };

 protected override void OnInitialized()

 {

 this.data.CountChanged += (newCount) =>

 this.StateHasChanged();

 }

 [Parameter]

 public RenderFragment ChildContent { get; set; } = default!;

}

Open Index.razor and add the GrandMother component as in Listing 3-20. This

component has two child components, one is a direct GrandChild component

(which we will build after this) and another is a GrandChild component wrapped in a

DismissibleAlert component. This last component knows nothing about CounterData

or GrandMother. Still, the GrandMother component will be able to pass its cascading

value to the GrandChild component.

Chapter 3 Components and struCture for Blazor appliCations

121

Listing 3-20. Using the GrandMother Component

@page "/"

<h1>Hello, world!</h1>

<DismissibleAlert @bind-Show="ShowAlert" @ref="alert">

 Blazor is so cool!

</DismissibleAlert>

<button @onclick="ToggleAlert" class="btn btn-success">Toggle</button>

<Timer TimeInSeconds="5" Tick="@(() => alert.Dismiss())" />

<GrandMother>

 <GrandChild/>

 <DismissibleAlert Show="true">

 <GrandChild/>

 </DismissibleAlert>

</GrandMother>

@code {

 public bool ShowAlert { get; set; } = true;

 public void ToggleAlert()

 {

 ShowAlert = !ShowAlert;

 }

 private DismissibleAlert alert = default!;

}

The GrandChild component can be found in Listing 3-21 (please add this as another

component in the Pages folder). This component has a property of type CounterData,

and it will receive it from GrandMother by adding the CascadingParameter attribute.

Both GrandMother and GrandChild(ren) now are sharing the same instance of

CounterData. If this looks like magic, the CascadingParameter will search all cascading

properties of the CascadingParameter’s type. If there are multiple cascading properties,

you can add a name to get a more specific match, as we will discuss next.

Chapter 3 Components and struCture for Blazor appliCations

122

Listing 3-21. Receiving the Cascading Value

<h3>GrandChild</h3>

<button @onclick="Increment">Inc</button>

@code {

 [CascadingParameter()]

 public CounterData gmData { get; set; } = default!;

 private void Increment()

 {

 gmData.Count += 1;

 }

}

When you click the Inc button of GrandChild, the CounterData’s Count property

increments. The GrandMother component wants to display this value every time it gets

incremented, so CounterData notifies the GrandMother of changes. The GrandMother

component subscribes to these changes and calls StateHasChanged to update itself.

How the shared object handles this notification is up to you; for example, CounterData

uses a delegate. You could also use INotifyPropertyChanged. If you’re not familiar

with this interface, it is used in a lot of .NET applications to notify interested parties

that a property has changed. For example, Windows Presentation Foundation (WPF)

heavily relies on this interface. If you would like to learn more, any good book on WPF

will explain this, or you can find more information at https://docs.microsoft.com/

dotnet/api/system.componentmodel.inotifypropertychanged.

 Resolving Ambiguities
What if there are several components exposing the same type of cascading value? In this

case, you can name the cascading value. For example, you can name the GrandMother’s

cascading value like in Listing 3-22.

Chapter 3 Components and struCture for Blazor appliCations

https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged

123

Listing 3-22. Use a Named Cascading Value in GrandMother

<CascadingValue Value="@this.data" Name="gm">

 @ChildContent

</CascadingValue>

The GrandChild component should then receive the cascading value like in

Listing 3-23.

Listing 3-23. Receive the Named Cascading Value

[CascadingParameter(Name = "gm")]

public CounterData gmData { get; set; } = default!;

 Component Life Cycle Hooks
A Blazor component has a life cycle just like any other .NET object. A component is born,

goes through a couple of changes, and then dies. A Blazor component has a couple of

methods you can override to capture the life cycle of the component. In this section, we

will look at these life cycle hooks because it's very important to understand them well.

Putting code in the wrong life cycle hook will likely break your component.

You should also remember that each life cycle method gets called at least once

for every component. Even a component with no parameters will see methods like

SetParametersAsync and OnParametersSetAsync called at least once.

 Life Cycle Overview
Let us start with the big picture. I have created a LifeCycle component from

Listings 3-24 and 3-25 to experiment with and that shows each life cycle hook on the

browser’s console. So every life cycle method is listed, except the asynchronous versions

of two life cycle methods: OnInitializedAsync and OnParametersSetAsync. If you want

to follow along, you can use the sample code that comes with the book.

Chapter 3 Components and struCture for Blazor appliCations

124

Listing 3-24. The LifeCycle Component’s Code

using Microsoft.AspNetCore.Components;

using System;

using System.Threading.Tasks;

namespace Components.Pages

{

 public partial class LifeCycle

 {

 public LifeCycle()

 {

 Console.WriteLine("Inside constructor");

 }

 private int counter;

 [Parameter]

 public int Counter

 {

 get => counter;

 set

 {

 counter = value;

 Console.WriteLine($"Counter set to {counter}");

 }

 }

 public override Task SetParametersAsync(ParameterView parameters)

 {

 Console.WriteLine("SetParametersAsync called");

 return base.SetParametersAsync(parameters);

 }

 protected override void OnParametersSet()

 => Console.WriteLine("OnParametersSet called");

Chapter 3 Components and struCture for Blazor appliCations

125

 protected override void OnInitialized()

 => Console.WriteLine("OnInitialized called");

 protected override void OnAfterRender(bool firstRender)

 => Console.WriteLine($"OnAfterRender called with firstRender =

{firstRender}");

 protected override bool ShouldRender()

 {

 Console.WriteLine($"ShouldRender called");

 return true;

 }

 public void Dispose()

 => Console.WriteLine("Disposed");

 }

}

Listing 3-25. The LifeCycle Component’s Markup

@implements IDisposable

<h3>LifeCycle @Counter</h3>

Listing 3-25 also shows how you can implement an interface in a component using

the @implements syntax. I also added this component to the Index component as in

Listing 3-26. Let us run this and examine the output.

Listing 3-26. Using the LifeCycle Component

@page "/"

...

 <LifeCycle Counter="@counter" />

<button class="btn btn-primary" @onclick="Increment">Increment</button>

@code {

 private int counter = 1;

Chapter 3 Components and struCture for Blazor appliCations

126

 public void Increment()

 {

 counter += 1;

 }

 ...

}

When the Index component gets created, it will create the nested LifeCycle

component, resulting in this output:

Inside constructor

SetParametersAsync called

Counter set to 1

OnInitialized called

OnParametersSet called

OnAfterRender called with firstRender = True

The LifeCycle component gets constructed (constructor called), and then

Blazor calls the SetParametersAsync method. This method normally will result in the

parameter setters being called, and that is why we see the Counter property’s output.

Then the Blazor runtime calls the OnInitialized method (and the asynchronous

OnInitializedAsync which I left out for simplicity). After this, the OnParametersSet

method is called (and also the asynchronous OnParametersSetAsync method). Now the

component is ready to be rendered, and the Blazor runtime renders it. Finally, rendering

the OnAfterRender method is called which gets passed a Boolean which is true on the

first render.

Chapter 3 Components and struCture for Blazor appliCations

127

This whole process is illustrated in Figure 3-7.

Figure 3-7. The Component Life Cycle Overview

My Index component has an Increment button, and when I click this button, this is

the output:

SetParametersAsync called

Counter set to 2

OnParametersSet called

ShouldRender called

OnAfterRender called with firstRender = False

Because I clicked the Increment button of the Index component, it invokes

the click handler and then re-renders itself. But first it sets the parameters on the

LifeCycle component which results in the SetParametersAsync method being called

again (which sets the Counter parameter). After this, it invokes the OnParametersSet

method to indicate all parameters have been updated (and also the asynchronous

OnParametersSetAsync method).

Chapter 3 Components and struCture for Blazor appliCations

128

Now, should the Blazor runtime render the component? For this, it calls the

ShouldRender method, and if this returns true, it will render the LifeCycle component

(and then the OnAfterRender method).

Clicking the Increment button results in that sequence again.

Now switching to the FetchData component results in the LifeCycle component

being destroyed, which results in the following output:

Disposed

Now let us look at each of these methods individually.

 SetParametersAsync
If you need to execute some code before the parameters are set, you can override the

SetParametersAsync method. The default implementation of the SetParametersAsync

method will set each [Parameter] and [CascadingParameter] that has a value in the

ParameterView argument. Other parameters (that don’t have a value in ParameterView)

are left unchanged.

You can find the parameters in the ParameterView argument which behaves

like a dictionary. Let’s look at an example in Listing 3-27. This example uses the

SetParametersAsync method to inspect the parameters, looking for a “Counter”

parameter. If this parameter is even, we call the base method; otherwise, we don’t do

anything, resulting in an even valued Counter.

There is one snag; when you don’t call the base method, the UI doesn’t update,

so you should call StateHasChanged if you want the component to update. Initially,

our LifeCycle component could receive an odd value, and that is why we call

StateHasChanged for the first time.

One more remark: should the LifeCycle component have other parameters, your

implementation is still responsible for setting these parameters since we don’t call the

base SetParametersAsync method in every case.

Listing 3-27. Overriding SetParametersAsync

private bool firstParametersSet = true;

public override Task SetParametersAsync(ParameterView parameters)

{

 Console.WriteLine("SetParametersAsync called");

Chapter 3 Components and struCture for Blazor appliCations

129

 if (parameters.TryGetValue(nameof(Counter), out int counter))

 {

 // ignore odd values

 if (counter % 2 == 0)

 {

 return base.SetParametersAsync(parameters);

 }

 if(firstParametersSet)

 {

 firstParametersSet = false;

 StateHasChanged(); // Force render

 }

 }

 return Task.CompletedTask;

}

 OnInitialized and OnInitializedAsync
When your component has been created and the parameters have been set, the

OnInitialized and OnInitializedAsync methods are called. Implement one of these

methods if you want to do some one-time extra initialization after the component

has been created, for example, fetching some data from a server like the FetchData

component from the project. The OnInitialized methods are only called once, right

after the creation of the component.

Use OnInitialized for synchronous code as in Listing 3-28. Here, we execute

synchronous code like fetching the current DateTime.

Listing 3-28. The OnInitialized Life Cycle Hook

DateTime created;

protected override void OnInitialized()

{

 created = DateTime.Now;

}

Chapter 3 Components and struCture for Blazor appliCations

130

Use OnInitializedAsync (Listing 3-29) to call asynchronous methods, for example,

making asynchronous REST calls (we will look at making REST calls in further chapters).

Listing 3-29. The OnInitializedAsync Life Cycle Hook

protected override async Task OnInitializedAsync()

{

 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>

 ("sample-data/weather.json");

}

 OnParametersSet and OnParametersSetAsync
When you need one or more parameters to look up data after a change to the

parameters, you use OnParametersSet or OnParametersSetAsync instead of the On

Initialized/OnInitializedAsync methods. Every time data binding updates one

or more of your parameters, these methods get called again, so they are ideal for

calculated properties, filtering, etc. For example, you could have a DepartmentSelector

component that allows the user to select a department from a company and another

EmployeeList component that takes the selected department as a parameter. The

EmployeeList component can then fetch the employees for that department in its

OnParametersSetAsync method.

Use OnParametersSet (Listing 3-30) if you are only calling synchronous methods.

Listing 3-30. The OnParametersSet Method

DateTime lastUpdate;

protected override void OnParametersSet()

{

 lastUpdate = DateTime.Now;

 Console.WriteLine("OnParametersSet called");

}

Use OnParametersSetAsync (Listing 3-31) if you need to call asynchronous methods.

For example, retrieving values from a database that depend on a parameter value should

be done in an asynchronous way. In general, any use of methods that take longer than 60

milliseconds should be done asynchronously.

Chapter 3 Components and struCture for Blazor appliCations

131

Listing 3-31. The OnParametersSetAsync Method

[Parameter]

public DateTime Date { get; set; }

protected override async Task OnParametersSetAsync()

{

 forecasts = await weatherService.GetForcasts(Date);

}

 ShouldRender
The ShouldRender method returns a Boolean value, indicating if the component should

be re-rendered. Do realize that the first render ignores this ShouldRender method, so a

component will render at least once. The default implementation always returns true.

You want to override this method to stop the component from re-rendering.

Let’s make a change to the LifeCycle component as in Listing 3-32. We only want it

to show odd values. So when counter is even, we tell the Blazor engine not to render this

component.

Listing 3-32. Implementing the ShouldRender Method

public override Task SetParametersAsync(ParameterView parameters)

{

 shouldRender = true;

 if (parameters.TryGetValue(nameof(Counter), out int counter))

 {

 // ignore odd values

 if (counter % 2 == 0)

 {

 shouldRender = false;

 }

 }

 return base.SetParametersAsync(parameters);

}

Chapter 3 Components and struCture for Blazor appliCations

132

private bool shouldRender;

protected override bool ShouldRender()

{

 return shouldRender;

}

 OnAfterRender and OnAfterRenderAsync
The OnAfterRender and OnAfterRenderAsync methods are called after Blazor has

completely rendered the component. This means that the browser’s DOM has been

updated with changes made to your Blazor component. Use these methods to invoke

JavaScript code that needs access to elements from the DOM (which we will cover in

the JavaScript chapter 10). This method takes a Boolean firstRender argument, which

allows you to attach JavaScript event handlers only once.

Note avoid calling statehasChanged in this method, as it can cause an
infinite loop.

Use OnAfterRender shown in Listing 3-33 to call synchronous methods, for example,

in JavaScript.

Listing 3-33. The OnAfterRender Life Cycle Hook

protected override void OnAfterRender(bool firstRender)

{

}

Use OnAfterRenderAsync as shown in Listing 3-34 to call asynchronous methods, for

example, JavaScript methods that return promises or observables.

Listing 3-34. The OnAfterRenderAsync Life Cycle Hook

protected override Task OnAfterRenderAsync(bool firstRender)

{

}

Chapter 3 Components and struCture for Blazor appliCations

133

 IDisposable
If you need to run some cleanup code when your component is removed from the UI,

implement the IDisposable interface. You can implement this interface in razor using

the @implements syntax, for example, in Listing 3-25. Normally, you put the @implements

at the top of the .razor file, but if you use code separation, you can also declare it on the

partial class.

Most of the time, dependency injection will take care of calling Dispose, so

generally, you won’t need to implement IDisposable if you only need to dispose of your

dependencies.

The IDisposable interface requires you to implement a Dispose method as in

Listing 3-35.

Listing 3-35. Implementing the Dispose Method

public void Dispose()

{

 // Cleanup code here

}

 A Word on Asynchronous Methods
When the Blazor runtime calls asynchronous methods like OnInitializedAsync and

OnParametersSetAsync, it will await this method and will also render the component.

The only exception to this is the OnAfterRenderAsync method, which will not trigger a

render (otherwise, this will cause an infinite render loop).

This is the reason you should always check variables that get initialized in an

asynchronous method for null values. A nice example of this is the FetchData

component as in Listing 3-36. The forecasts field gets initialized in the

OnInitializedAsync method, so until this method completes, the forecast field is null.

This means that we should check this field for null values as in Listing 3-37.

Chapter 3 Components and struCture for Blazor appliCations

134

Listing 3-36. Initializing forecasts

private WeatherForecast[]? forecasts;

protected override async Task OnInitializedAsync()

{

 forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>("sample-data/

weather.json");

}

Listing 3-37. Checking forecasts for Null

@if (forecasts == null)

{

 <p>Loading...</p>

}

 Refactoring PizzaPlace into Components
In the previous chapter on data binding, we built a website for ordering pizzas. This used

only one component with three different sections. Let us split up this component into

smaller, easier to understand components and try to maximize reuse.

 Creating a Component to Display a List of Pizzas
Open the PizzaPlace Blazor project from the previous chapter. You can also start with the

code examples from this book; look for Chapter 2 which contains the finished version.

Start by reviewing Index.razor. This is our main component, and you can say that it has

three main sections: a menu, a shopping basket, and customer information.

The menu iterates over the list of pizzas and displays each one with a button to order.

The shopping basket also displays a list of pizzas (but now from the shopping basket)

with a button to remove it from the order. Looks like both have something in common;

they need to display pizzas with an action you choose by clicking the button. So let’s

create a component to display a list of pizzas, using a nested component to display a

pizza’s details.

We have also seen that we can split components into a razor file with the markup and

a C# file with the code. Let us do that here!

Chapter 3 Components and struCture for Blazor appliCations

135

Add a new component to the Pages folder called PizzaItem.razor. Also create a new

class called PizzaItem.razor.cs. Replace this class with the code from Listing 3-38. You

should be able to copy most of the code from Index.

Listing 3-38. The Code for the PizzaItem Component

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

namespace PizzaPlace.Client.Pages

{

 public partial class PizzaItem

 {

 [Parameter]

 public Pizza Pizza { get; set; } = default!;

 [Parameter]

 public string ButtonTitle { get; set; } = default!;

 [Parameter]

 public string ButtonClass { get; set; } = default!;

 [Parameter]

 public EventCallback<Pizza> Selected { get; set; }

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

 }

}

Now replace the razor file with contents from Listing 3-39. You can copy most of

the markup from the Index component (the part within the first @foreach) with some

changes.

Listing 3-39. The PizzaItem Component

<div class="row">

 <div class="col">

 @Pizza.Name

 </div>

Chapter 3 Components and struCture for Blazor appliCations

136

 <div class="col text-right">

 @($"{Pizza.Price:0.00}")

 </div>

 <div class="col"></div>

 <div class="col">

 <img src="@SpicinessImage(Pizza.Spiciness)"

 alt="@Pizza.Spiciness" />

 </div>

 <div class="col">

 <button class="@ButtonClass"

 @onclick="@(() => Selected.InvokeAsync(Pizza))">

 Add

 </button>

 </div>

</div>

The PizzaItem component will display a pizza, so it should not come as a

surprise that it has a Pizza parameter. This component also displays a button, but

how this button looks and behaves will differ where we use it. And that is why it has a

ButtonTitle and ButtonClass parameter to change the button’s look, and it also has

a Selected event callback of type EventCallback<Pizza> which gets invoked when

you click the button. Do you remember why we are using EventCallback<T> instead

of Action<T>? Do note that this component does one thing well, and only one thing:

display the pizza and allow an action on the pizza by clicking the button.

We can now use this component to display the menu (a list of pizzas). Add a new

component to the Pages folder called PizzaList.razor (and PizzaList.razor.cs) as in

Listings 3-40 and 3-41.

Listing 3-40. The PizzaList Component’s Code

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

using System.Collections.Generic;

namespace PizzaPlace.Client.Pages

{

 public partial class PizzaList

Chapter 3 Components and struCture for Blazor appliCations

137

 {

 [Parameter]

 public string Title { get; set; } = default!;

 [Parameter]

 public IEnumerable<Pizza> Items { get; set; } = default!;

 [Parameter]

 public string ButtonClass { get; set; } = default!;

 [Parameter]

 public string ButtonTitle { get; set; } = default!;

 [Parameter]

 public EventCallback<Pizza> Selected { get; set; }

 }

}

Listing 3-41. The PizzaList Component’s Markup

@if (Items is null || !Items.Any())

{

 <div>Loading...</div>

}

else

{

 <h1>@Title</h1>

 @foreach (var pizza in Items)

 {

 <PizzaItem Pizza="@pizza"

 ButtonClass="@ButtonClass"

 ButtonTitle="@ButtonTitle"

 Selected="@Selected" />

 }

}

Chapter 3 Components and struCture for Blazor appliCations

138

First note the use of the @if. Here, we need to decide what to do should the Items

property (which is an IEnumerable<Pizza>) be null of empty. In that case, we will

display a loading UI, assuming the Items collection will be filled in later.

Otherwise, the PizzaList component displays a Title and all the pizzas from the

Items collection, so it takes these as parameters. It also takes a Selected event callback

which you invoke by clicking the button next to a pizza. Note that the PizzaList

component reuses the PizzaItem component to display each pizza and that the

PizzaList Selected event callback is passed directly to the PizzaItem Selected event

callback. Same thing for the button parameters. The Index component will set this

callback, and it will be executed by the PizzaItem component.

With the PizzaItem and PizzaList components ready, we can use them in Index,

which you can find in Listing 3-42.

Listing 3-42. Using the PizzaList Component in Index.razor

<!-- Menu -->

<PizzaList Title="Our Selection of Pizzas"

 Items="@State.Menu.Pizzas"

 ButtonTitle="Order"

 ButtonClass="btn btn-success pl-4 pr-4"

 Selected="@AddToBasket" />

<!-- End menu -->

Run the application and try to order a pizza. Your selected pizza should be added

to the shopping basket. Thanks to the EventCallback<T> type, there is no need to call

StateHasChanged. Had we used an Action<T> or Func<T>, the UI would not update,

and you would need to call StateHasChanged whenever you receive events from a child

component!

 Showing the ShoppingBasket Component
Add a new razor component called ShoppingBasket.razor (and code behind file) to the

Pages folder and change its contents to Listings 3-43 and 3-44.

Chapter 3 Components and struCture for Blazor appliCations

139

Listing 3-43. The ShoppingBasket Component’s Code

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

using System;

using System.Collections.Generic;

using System.Linq;

namespace PizzaPlace.Client.Pages

{

 public partial class ShoppingBasket

 {

 [Parameter]

 public IEnumerable<int> Orders { get; set; } = default!;

 [Parameter]

 public EventCallback<int> Selected { get; set; } = default!;

 [Parameter]

 public Func<int, Pizza> GetPizzaFromId { get; set; }

 = default!;

 private IEnumerable<(Pizza pizza, int pos)> Pizzas

 { get; set; } = default!;

 private decimal TotalPrice { get; set; } = default!;

 protected override void OnParametersSet()

 {

 Pizzas = Orders.Select((id, pos)

 => (pizza: GetPizzaFromId(id), pos: pos));

 TotalPrice = Pizzas.Select(tuple

 => tuple.pizza.Price).Sum();

 }

 }

}

Chapter 3 Components and struCture for Blazor appliCations

140

Listing 3-44. The ShoppingBasket Component’s Markup

@if (Orders is not null && Orders.Any())

{

 <h1 class="">Your current order</h1>

 @foreach (var (pizza, pos) in Pizzas)

 {

 <div class="row mb-2">

 <div class="col">

 @pizza.Name

 </div>

 <div class="col text-right">

 @($"{pizza.Price:0.00}")

 </div>

 <div class="col"></div>

 <div class="col"></div>

 <div class="col">

 <button class="btn btn-danger"

 @onclick="@(() => Selected.InvokeAsync(pos))">

 Remove

 </button>

 </div>

 </div>

 }

 <div class="row">

 <div class="col"></div>

 <div class="col"><hr /></div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

 <div class="row">

 <div class="col"> Total:</div>

 <div class="col text-right font-weight-bold">@

($"{TotalPrice:0.00}")</div>

Chapter 3 Components and struCture for Blazor appliCations

141

 <div class="col"> </div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

}

The ShoppingBasket component is similar to the PizzaList component, but there

are some big differences (and that is why we are not reusing the PizzaList component.

We will do this in the next chapter). The ShoppingBasket class (the one from the

shared project) keeps track of the order using only ids of pizzas, so we need something

to get the pizza object. This is done through the GetPizzaFromId delegate (again, we

don’t want this component to know a lot about the other classes). Another change is

the OnParametersSet method. The OnParametersSet method gets called when the

component’s parameters have been set. Here, we override it to build a list of (pizza,

position) tuples which we need during data binding and to calculate the total price of

the order.

Tuples are just another type in C#. But with modern C#, we get this very convenient

syntax; for example, IEnumerable<(Pizza pizza, int pos)> means we have a type that

is a list of pizza and position pairs. Think of tuples as a nice replacement for anonymous

types, which allow you to quickly have compiler-generated types.

Using the ShoppingBasket component in Index is easy, as you can see in

Listing 3-45.

Listing 3-45. Using the ShoppingBasket Component

<!-- Shopping Basket -->

<ShoppingBasket Orders="@State.Basket.Orders"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@RemoveFromBasket" />

<!-- End shopping basket -->

Run your project again. Everything should still work (and look the same).

Chapter 3 Components and struCture for Blazor appliCations

142

 Adding the CustomerEntry Component
Add a new CustomerEntry component to the Pages folder as in Listings 3-46 and 3-47.

Listing 3-46. The CustomerEntry Component’s Code

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

namespace PizzaPlace.Client.Pages

{

 public partial class CustomerEntry

 {

 [Parameter]

 public string Title { get; set; } = default!;

 [Parameter]

 public string ButtonTitle { get; set; } = default!;

 [Parameter]

 public string ButtonClass { get; set; } = default!;

 [Parameter]

 public Customer Customer { get; set; } = default!;

 [Parameter]

 public EventCallback ValidSubmit { get; set; } = default!;

 }

}

Listing 3-47. The CustomerEntry Component’s Markup

<h1 class="mt-2 mb-2">@Title</h1>

<EditForm Model="@Customer"

 OnValidSubmit="@ValidSubmit">

 <DataAnnotationsValidator />

 <fieldset>

 <div class="row mb-2">

Chapter 3 Components and struCture for Blazor appliCations

143

 <label class="col-2" for="name">Name:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Customer.Name" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Customer.Name)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="street">Street:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Customer.Street" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Customer.Street)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="city">City:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Customer.City" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Customer.City)" />

 </div>

 </div>

 <div class="row mb-2">

 <button class="@ButtonClass">@ButtonTitle</button>

 </div>

 </fieldset>

</EditForm>

Chapter 3 Components and struCture for Blazor appliCations

144

The CustomerEntry component uses a <label>, InputText, and ValidationMessage

for each customer property.

Now we are ready to complete the Index component. Listing 3-48 shows you the

whole Index.razor file.

Listing 3-48. The Index Component

@page "/"

<!-- Menu -->

<PizzaList Title="Our Selection of Pizzas"

 Items="@State.Menu.Pizzas"

 ButtonTitle="Order"

 ButtonClass="btn btn-success pl-4 pr-4"

 Selected="@AddToBasket" />

<!-- End menu -->

<!-- Shopping Basket -->

<ShoppingBasket Orders="@State.Basket.Orders"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@RemoveFromBasket" />

<!-- End shopping basket -->

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 Customer="@State.Basket.Customer"

 ButtonTitle="Checkout"

 ButtonClass="mx-auto w-25 btn btn-success"

 ValidSubmit="PlaceOrder" />

<!-- End customer entry -->

@State.ToJson()

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

Chapter 3 Components and struCture for Blazor appliCations

145

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

 private void RemoveFromBasket(int pos)

 => State.Basket.RemoveAt(pos);

 private void PlaceOrder()

 {

 Console.WriteLine("Placing order");

 }

}

Build and run the PizzaPlace application. Things should work like before, except for

one thing. Remember the debugging tip from the previous chapter? When you change

the name of the customer, this tip does not update correctly. Only after pressing the

button will this update. Let’s fix this.

 Using Cascading Properties
The problem is as follows. Whenever the user edits properties from the customer, we

want the CustomerEntry component to trigger a CustomerChanged event callback. This

way, other components in the UI will update because of changes to the customer. But

how can we detect these changes? If we were using <input> elements, we could use the

onchanged event, but unfortunately, the InputText component does not have this event.

It does have the ValueChanged event, but I don’t want to use that here (otherwise, I could

not show you the use of a cascading property for this).

Look at the CustomerEntry component again. You see an EditForm with nested

InputText components. The EditForm provides a cascading value of type EditContext,

and the InputText components use this EditContext for things like validation.

Chapter 3 Components and struCture for Blazor appliCations

146

Note if you like, all of the source code for the inputtext and other components
in Blazor is available on Github (https://github.com/dotnet/aspnetcore/
tree/master/src/Components) since Blazor is open source. that is what i did
to figure out the solution to the problem.

Whenever one of the Input components changes, it calls the EditContext.

NotifyFieldChanged method. And here is where things get interesting because

EditContext has an OnFieldChanged event, which triggers every time a model’s property

changes.

Let us build a component that uses the EditContext’s OnFieldChanged event to

notify us of changes. This way, we don’t have to implement the ValueChanged event for

each Input.

Add a new class to the client project’s Pages folder, and name it InputWatcher with

the implementation shown in Listing 3-49. The InputWatcher class has one parameter

FieldChanged, of type EventCallback<string>. The InputWatcher receives the same

EditContext instance (as a cascading parameter) as the one used by the InputText

component. By subscribing to the EditContext’s FieldChanged event, all the work will

be done by the EditContext instance.

Listing 3-49. The InputWatcher Component

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Forms;

namespace PizzaPlace.Client.Pages

{

 public class InputWatcher : ComponentBase

 {

 private EditContext editContext = default!;

 [CascadingParameter]

 public EditContext EditContext

 {

 get => this.editContext;

 set

 {

Chapter 3 Components and struCture for Blazor appliCations

https://github.com/dotnet/aspnetcore/tree/master/src/Components
https://github.com/dotnet/aspnetcore/tree/master/src/Components

147

 this.editContext = value;

 EditContext.OnFieldChanged += async (sender, e) =>

 {

 await FieldChanged.InvokeAsync(e.FieldIdentifier

 .FieldName);

 };

 }

 }

 [Parameter]

 public EventCallback<string> FieldChanged { get; set; }

 public bool Validate()

 => EditContext?.Validate() ?? false;

 }

}

When the EditContext property gets set, the InputWatcher simply registers for the

FieldChanged event and calls its own FieldChanged event callback.

Let’s use the InputWatcher in our CustomerEntry component. Add the InputWatcher

component inside the EditForm component, and add a FieldChanged event callback

as in Listings 3-50 and 3-51. The InputWatcher component invokes the FieldChanged

method, which triggers the CustomerChanged callback.

Listing 3-50. Make the Customer Parameter Two-Way Bindable

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

namespace PizzaPlace.Client.Pages

{

 public partial class CustomerEntry

 {

 ...

 [Parameter]

 public EventCallback<Customer> CustomerChanged { get; set; }

 private void FieldChanged(string fieldName)

Chapter 3 Components and struCture for Blazor appliCations

148

 {

 CustomerChanged.InvokeAsync(Customer);

 }

 }

}

Listing 3-51. The CustomerEntry Component with CustomerChanged Callback

<EditForm Model="@Customer"

 OnValidSubmit="@ValidSubmit">

 <DataAnnotationsValidator />

 <InputWatcher FieldChanged="@FieldChanged" />

To complete the story, use two-way data binding in the Index component for the

Customer property as in Listing 3-52.

Listing 3-52. Use Two-Way Data Binding for the Customer

<CustomerEntry Title="Please enter your details below"

 @bind-Customer="@State.Basket.Customer"

 ButtonTitle="Checkout"

 ButtonClass="mx-auto w-25 btn btn-success"

 ValidSubmit="PlaceOrder" />

Build and run. When you make a change to the customer, you should see the

customer update in the debugging tip when you tab out of a control. Hey, this was not

hard at all!

 Disabling the Submit Button
You might want to disable the Submit button as long as there are validation errors. Our

freshly introduced InputWatcher allows us to do that. Look for the Validate method in

Listing 3-49. This method calls the EditContext.Validate method. We are going to use

this to enable/disable the Submit button.

Start by making the changes from Listings 3-53 and 3-54. First, we add a reference

to the InputWatcher because we need to call the Validate method every time a field

Chapter 3 Components and struCture for Blazor appliCations

149

changes. Also, add a Boolean field isInvalid, and use it to disable the button by binding

it to the button’s disabled attribute. Finally, every time a field changes, we update the

isInvalid by calling the Validate method.

Listing 3-53. Disabling the Submit Button

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

namespace PizzaPlace.Client.Pages

{

 public partial class CustomerEntry

 {

 ...

 private void FieldChanged(string fieldName)

 {

 CustomerChanged.InvokeAsync(Customer);

 isInvalid = !inputWatcher.Validate();

 }

 private InputWatcher inputWatcher = default!;

 bool isInvalid = true;

 }

}

Listing 3-54. Disabling the Submit Button

<h1 class="mt-2 mb-2">@Title</h1>

<EditForm Model="@Customer"

 OnValidSubmit="@ValidSubmit">

 <DataAnnotationsValidator />

 <InputWatcher FieldChanged="@FieldChanged" @ref="@inputWatcher" />

 <fieldset>

 <div class="row mb-2">

 <label class="col-2" for="name">Name:</label>

Chapter 3 Components and struCture for Blazor appliCations

150

 <InputText class="form-control col-6"

 @bind-Value="@Customer.Name" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Customer.Name)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="street">Street:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Customer.Street" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Customer.Street)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="city">City:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Customer.City" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Customer.City)" />

 </div>

 </div>

 <div class="row mb-2">

 <button class="@ButtonClass" disabled="@isInvalid">

 @ButtonTitle

 </button>

 </div>

 </fieldset>

</EditForm>

Chapter 3 Components and struCture for Blazor appliCations

151

Run your application, and leave some of the Customer properties invalid (that is to

say blank). When you press the Submit button (a.k.a. Checkout), you will get validation

errors and the button will disable itself. When you fix the validation errors, the Submit

button will again be enabled. If you want the button to be enabled right away, change the

initial value of isInvalid to false.

 Summary
In this chapter, we covered building Blazor components. We discussed how components

can communicate with each other through parameters and data binding. We look at

how a component can reference a child component. Cascading values are a very nice

way of sharing data between components in a hierarchy. Finally, we saw the life cycle

hooks that Blazor components have and allow us to intercept the important events in a

component’s life.

We applied this by dividing the monolithic Index component of the PizzaPlace

application into smaller components.

Chapter 3 Components and struCture for Blazor appliCations

153
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_4

CHAPTER 4

Advanced Components
In Chapter 3, we looked at building components for Blazor. But we are not done yet.

There is still a lot more we need to discuss about components. One of the things we

really need to look at is templated components and Razor templates. Then we will look

at component libraries, virtualization, and dynamic components.

 Using Templated Components
Components are Blazor’s building block for reuse. In C#, generics are heavily used for

reuse; just think about all the collections like List<T> you use with generics. Would it not

be cool if Blazor had something like generic components? Yes, Blazor does!

Blazor supports templated components where you can specify one or more UI

templates as parameters, making templated components even more reusable! For

example, your application could be using grids all over the place. You can now build a

templated component for a Grid taking the type used in the grid as a parameter (very

much like you can build a generic type in .NET) and specify the UI used for each item

separately! Let’s look at an example.

 Creating the Grid Templated Component
Create a new Blazor project; call it Components.Advanced. Now add a new razor

component to the project’s Pages folder and name it Grid as in Listings 4-1 and 4-2.

This is a templated component because it states the TItem as a type parameter

using the @typeparam TItem syntax in the razor file. Look at the partial Grid<TItem>

class for this from Listing 4-1. This is a generic type stated in C#. Compare this with class

List<T> where T is a type parameter. You can have as many type parameters as you like;

simply list each type parameter using the @typeparam syntax, but for this Grid<TITem>

component, we only need one.

https://doi.org/10.1007/978-1-4842-7845-1_4#DOI

154

Listing 4-1. The Templated Grid Component’s Code

using Microsoft.AspNetCore.Components;

using System.Collections.Generic;

namespace Components.Advanced.Pages

{

 public partial class Grid<TItem>

 {

 [Parameter]

 public RenderFragment Header { get; set; } = default!;

 [Parameter]

 public RenderFragment<TItem> Row { get; set; } = default!;

 [Parameter]

 public RenderFragment Footer { get; set; } = default!;

 [Parameter]

 public IReadOnlyList<TItem> Items { get; set; } = default!;

 }

}

Listing 4-2. The Templated Grid Component’s Markup

@typeparam TItem

<table border="1">

 <thead>

 <tr>@Header</tr>

 </thead>

 <tbody>

 @foreach (var item in Items)

 {

 <tr>@Row(item)</tr>

 }

 </tbody>

Chapter 4 advanCed Components

155

 <tfoot>

 <tr>@Footer</tr>

 </tfoot>

</table>

The Grid component has four parameters. The Header and Footer parameters are

of type RenderFragment which represents some markup (HTML, Blazor components)

which we can specify when we use the Grid component (we will look at an example

right after explaining the Grid component further). Look for the <thead> element in

Listing 4-2 in the Grid component. Here, we use the @Header razor syntax telling the Grid

component to put the markup for the Header parameter here. Same thing for the Footer.

The Row parameter is of type RenderFragment<TItem> which is a generic version of

RenderFragment. In this case, you can specify markup with access to the TItem instance

allowing you access to properties and methods of the TItem. The Items parameter

here is an IReadOnlyList<TItem> which can be data bound to any class with the

IReadOnlyList<TItem> interface, for example, a List<T>. Look for the <tbody> element

in Listing 4-2. We iterate over all the items (of type TItem) of the IReadOnlyList<TItem>

using a foreach loop, and we use the @Row(item) razor syntax to apply the Row

parameter, passing the current item as an argument.

 Using the Grid Templated Component
Now let’s look at an example of using the Grid templated component. Open the

FetchData component in the Components.Advanced project. Replace the <table> with

the Grid component as in Listing 4-3.

Note the FetchData component uses a couple of things such as @page and @
inject we will discuss in later chapters, so bear with the example.

The FetchData component uses the Grid component specifying the Items parameter

as the forecasts array of WeatherForecast instances. Look again at the type of Items

in the Grid component: IReadOnlyList<TItem>. The compiler is smart enough to infer

from this that the Grid’s type parameter (TItem) is the WeatherForecast type. I love type

inference!

Chapter 4 advanCed Components

156

Listing 4-3. Using the Grid Templated Component in the FetchData Component

@page "/fetchdata"

@inject HttpClient Http

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

{

 <Grid Items="forecasts">

 <Header>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </Header>

 <Row>

 <!-- by default called context -->

 <td>@context.Date</td>

 <td>@context.TemperatureC</td>

 <td>@context.TemperatureF</td>

 <td>@context.Summary</td>

 </Row>

 <Footer>

 <td colspan="4">Spring is in the air!</td>

 </Footer>

 </Grid>

}

@code {

 private WeatherForecast[] forecasts;

Chapter 4 advanCed Components

157

 protected override async Task OnInitializedAsync()

 {

 forecasts =

 await Http.GetFromJsonAsync<WeatherForecast[]>

 ("sample-data/weather.json");

 }

 public class WeatherForecast

 {

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string Summary { get; set; }

 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

 }

}

Now look at the Header parameter of the Grid component in Listing 4-3. This syntax

will bind whatever is inside the <Header> element to the Grid’s Header parameter which

is of type RenderFragment. In this example, we specify some HTML table headers (<th>).

The grid will put these inside the table row (<tr>) element from Listing 4-2. The Footer

parameter is similar.

Examine the Row parameter in Listing 4-3. Inside the <Row> element, we want to use

the current item from the iteration in Listing 4-2. But how should we access the current

item? By default, Blazor will pass the item as the context argument (of type TItem), so

you would access the date of the forecast instance as @context.Date.

You can override the name of the argument as shown in Listing 4-4. This is what we

do with the Context parameter (provided by Blazor) using <Row Context="forecast">.

Now the item from the iteration can be accessed using the forecast argument. Can you

guess what the output of the Grid will be?

Listing 4-4. Overriding the Context Argument

<Grid Items="forecasts">

 <Header>

 <th>Date</th>

 <th>Temp. (C)</th>

Chapter 4 advanCed Components

158

 <th>Temp. (F)</th>

 <th>Summary</th>

 </Header>

 <Row Context="forecast">

 <!-- by default called context, but now called forecast -->

 <td>@forecast.Date</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </Row>

 <Footer>

 <td colspan="4">Spring is in the air!</td>

 </Footer>

</Grid>

Run your solution and select the Fetch data link from the navigation menu. Admire

your new templated component as in Figure 4-1!

Figure 4-1. Showing Forecasts with the Grid Templated Component

Now we have a reusable Grid component that we can use to show any list of items

passing the list to the Items parameters and specifying what should be shown in the

Header, Row, and Footer parameters! But there is more!

Chapter 4 advanCed Components

159

 Specifying the Type Parameter’s Type Explicitly
Normally, the compiler can infer the type of the TItem type parameter, but if this does

not work as you expect, you can specify the type explicitly. Please note that this is the

name of the type parameter, same as List<TItem>. You can use any name that makes

sense. Simply specify the type of your type parameter by specifying it as TItem (the name

of the type parameter used in the templated component) when you use the component

as in Listing 4-5.

Listing 4-5. Explicitly Specifying the Type Parameter

<Grid Items="forecasts" TItem="WeatherForecast">

 <Header>

 Using Generic Type Constraints
With C# generics, you can specify constraints on a generic type using the where syntax.

Listing 4-6 shows an example using plain C#. A constraint states that whatever type will

be used for T should implement the IDisposable interface. You can learn more about

it at https://docs.microsoft.com/dotnet/csharp/programming- guide/generics/

constraints- on- type- parameters.

Listing 4-6. Generics Using a Constraint

public class DisposableList<T> where T : IDisposable

We can do the same for templated components. For example, we could state that

TItem should implement IDisposable for the Grid templated component as shown in

Listing 4-7.

Listing 4-7. Using Constraints with a Templated Component

@typeparam TItem where TItem: IDisposable

Chapter 4 advanCed Components

https://docs.microsoft.com/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://docs.microsoft.com/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters

160

 Razor Templates
In templated components, you can have parameters of type RenderFragment, which

can then be given a value using markup. You can also give a RenderFragment or

RenderFragment<TItem> a value using a Razor template.

A Razor template is a way to define a UI snippet, for example, @Hello!</

span>, which you can then pass into a RenderFragment. A Razor template generally

uses the @<element>...</element> syntax. In the example’s case, we specify a

RenderFragment without any arguments, for example, to use in the Grid’s Header

parameter. But if you need to pass an argument to the RenderFragment<TItem>, you

create a Razor template using a syntax that looks a lot like a lambda function.

Think of a Razor template as special C# syntax for creating a RenderFragment.

Let’s look at an example. Start by adding a new component called ListView as in

Listings 4-8 and 4-9. This will show an unordered list of items (of type TItem) using

and HTML elements.

Listing 4-8. The Template ListView Component’s Code

using Microsoft.AspNetCore.Components;

using System.Collections.Generic;

namespace Components.Advanced.Pages

{

 public partial class ListView<TItem>

 {

 [Parameter]

 public RenderFragment<TItem> ItemTemplate { get; set; }

 = default!;

 [Parameter]

 public IReadOnlyList<TItem> Items { get; set; }

 = default!;

 }

}

Chapter 4 advanCed Components

161

Listing 4-9. The Templated ListView Component’s Markup

@typeparam TItem

 @foreach (var item in Items)

 {

 @ItemTemplate(item)

 }

Now add the ListView to the FetchData component as in Listing 4-10 (I have

left out most of the unchanged parts). The ItemTemplate parameter now uses the

forecastTemplate RenderFragment which is specified in the @code section. Look at

the forecastTemplate in Listing 4-10. This uses a syntax very similar to a C# lambda

function taking the forecast as an argument and returns a RenderFragment<TItem>

using the (forecast) => @@forecast.Summary razor syntax.

In the ListView component’s ItemTemplate, we simply invoke the template as if

it was a lambda function. So you could say that a Razor template is like an invokable

function returning a RenderFragment!

Listing 4-10. Using the ListView Component with a RenderFragment

@page "/fetchdata"

 ...

 <ListView Items="forecasts">

 <ItemTemplate>

 @forecastTemplate(context)

 </ItemTemplate>

 </ListView>

}

Chapter 4 advanCed Components

162

@code {

 private RenderFragment<WeatherForecast> forecastTemplate =

 (forecast) => @@forecast.Summary;

 ...

 Wig-Pig Syntax
Let’s go wild: can we have a RenderFragment<RenderFragment>? Currently, our

ListView<TItem> is using an to wrap the items, but what if the user of the

ListView<TItem> wants to use an or something different?

Looking at Listing 4-9, this means that we want to be able to replace the outer

() markup with a template, loop over the items, and use another template to render

each item.

Create a new component called ListView2 as in Listings 4-11 and 4-12 (kind of

enhanced version of ListView). Note that in Listing 4-11 the ListTemplate parameter is

of type RenderFragment<RenderFragment>. Why would we want this? Because we want

to use the ListTemplate as a wrapper around another RenderFragment, so RenderFragm

ent<RenderFragment> makes sense!

Listing 4-11. Using a RenderFragment<RenderFragment>

using Microsoft.AspNetCore.Components;

using System.Collections.Generic;

namespace Components.Advanced.Pages

{

 public partial class ListView2<TItem>

 {

 [Parameter]

 public RenderFragment<RenderFragment>? ListTemplate

 { get; set; }

 [Parameter]

 public RenderFragment<TItem> ItemTemplate

 { get; set; } = default!;

Chapter 4 advanCed Components

163

 [Parameter]

 public IReadOnlyList<TItem> Items

 { get; set; } = default!;

 }

}

Listing 4-12. The ListView2 Component

@typeparam TItem

@if(ListTemplate is null)

{

 @foreach (var item in Items)

 {

 @ItemTemplate(item)

 }

} else

{

}

The markup for ListView2 currently will use a default list in case the

ListTemplate is not used (and that is why it is set as nullable). But now we need to talk

about using the ListTemplate. What do we want? We want the ListTemplate to wrap the

foreach loop which then calls the ItemTemplate. So we need to pass a RenderFragment

to it that will contain the foreach loop. But how can we do this in our component?

Let me introduce you to the pig-wig syntax: @:@{. It is called like that because it looks

like a grumpy pig with a wig (not my invention!).

Inside our ListView2 component, we will invoke the ListTemplate as in Listing 4-13,

which uses the pig-wig syntax passing a RenderFragment that loops over each item and

calls the ItemTemplate. The pig-wig syntax consists of two parts. The @: part tells razor to

switch to C# mode, and the @{ tells the C# compiler to create a Razor template.

Chapter 4 advanCed Components

164

Listing 4-13. Using the Pig-Wig Syntax

@typeparam TItem

@if(ListTemplate is null)

{

 ...

} else

{

 @ListTemplate(

 @:@{

 foreach(var item in Items)

 {

 @ItemTemplate(item)

 }

 }

)

}

Time to use the ListView2 component as in Listing 4-14. Please add this to the

FetchData component below the first ListView. Since the ListTemplate takes a

RenderFragment as an argument, we call the context (called innerTemplate) here,

wrapped in the markup for the list. This will call the foreach loop which will call

the ItemTemplate. So as the consumer of a ListView2 component, you provide the

ListTemplate, but also call the innerTemplate to allow the ListView2 component to

render its pig-wig template. Phew…

Listing 4-14. Using a Templated Component with ListTemplate

<ListView2 Items="forecasts">

 <ListTemplate Context="innerTemplate">

 @innerTemplate

 </ListTemplate>

Chapter 4 advanCed Components

165

 <ItemTemplate Context="forecast">

 @forecast.Summary

 </ItemTemplate>

</ListView2>

 Using Blazor Error Boundaries
With reusable components like templated components, you allow the user of your

component to inject their own logic. But what is that logic is flawed and starts throwing

exceptions?

Blazor error boundaries allow you to handle exceptions within your component and

to provide some nice UI indicating the problem, without the exception taking the rest of

the page down with it.

Let us use an example: start by updating the class to throw an exception when it is

too cold as in Listing 4-15.

Listing 4-15. Emulating Some Flawed Logic

public class WeatherForecast

{

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string? Summary { get; set; }

 public int TemperatureF

 => TemperatureC > 0 ? 32 + (int)(TemperatureC / 0.5556)

 : throw new DivideByZeroException();

}

Running the application and choosing the FetchData component will crash the

whole page. Not a nice user experience.

Update the Grid templated component to use the ErrorBoundary component as

in Listing 4-16. To protect any place where you want to display an error UI if the inner

element throws an exception, wrap it with an ErrorBoundary.

Chapter 4 advanCed Components

166

Listing 4-16. Using an ErrorBoundary

@typeparam TItem

<table border="1">

 <thead>

 <tr>@Header</tr>

 </thead>

 <tbody>

 @foreach (var item in Items)

 {

 <ErrorBoundary>

 <tr>@Row(item)</tr>

 </ErrorBoundary>

 }

 </tbody>

 <tfoot>

 <tr>@Footer</tr>

 </tfoot>

</table>

Running the application and choosing the FetchData component will now result in

errors being shown as in Figure 4-2.

Chapter 4 advanCed Components

167

Figure 4-2. Using the ErrorBoundary

By default, the ErrorBoundary’s error UI uses an empty div with the blazor-error-

boundary CSS class. You can customize this CSS class to change the error UI for the

whole application.

You can also customize the error UI of a specific ErrorBoundary component using its

ErrorContent parameter, with an example shown in Listing 4-17.

Listing 4-17. Customizing an ErrorBoundary

<ErrorBoundary>

 <ChildContent>

 <tr>@Row(item)</tr>

 </ChildContent>

 <ErrorContent>

 <div>Too cold!</div>

 </ErrorContent>

</ErrorBoundary>

Chapter 4 advanCed Components

168

 Building a Component Library
Components should be reusable. But you don’t want to reuse a component between

projects by copy-pasting the component between them. In this case, it is much better

to build a component library, and as you will see, this is not hard at all! By putting your

Blazor components into a component library, you can include it into different Blazor

projects, use it both for client-side Blazor and server-side Blazor, and even publish it as a

NuGet package!

What we will do now is to move the Grid and ListView2 component to a library, and

then we will use this library in our Blazor project.

 Creating the Component Library Project
Depending on your development environment, creating a component library is

different. We will look at using Visual Studio and the dotnet CLI (which is development

environment agnostic, so this works no matter your choice of IDE).

With Visual Studio, right-click your solution, and select Add New Project. Look for

the Razor Class Library project template as in Figure 4-3.

Figure 4-3. Add a New Component Library Project

Click Next. Name this project Components.Library, select the folder next to your

other project, and click Next. In the next screen, click Create.

With dotnet CLI, open a command prompt or use the integrated terminal from

Visual Studio Code (you can use Ctrl-` as a shortcut to toggle the terminal in Code).

Chapter 4 advanCed Components

169

Change the current directory to the folder where your other projects are. Type in the

following command:

dotnet new razorclasslib -n Components.Library

The dotnet new command will create a new project based on the razorclasslib

template. If you want the project to be created in a subdirectory, you can specify it using

the -o <<subdirectory>> parameter.

Executing this command should show you output like

The template "Razor Class Library" was created successfully.

Change to the solution’s directory. Add it to your solution by typing in the next

command (with <<path-to>> a place holder for you to replace):

dotnet sln add <<path-to>>Components.Library

 Adding Components to the Library
First, open the Components.Library project file and add support for nullable

reference types:

<Project Sdk="Microsoft.NET.Sdk.Razor">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

Also remove all existing files (except the _Imports.razor file and wwwroot folder) in

the library project.

Previously, we built a couple of templated components. Some of these are very

reusable, so we will move them to our library project. Start with Grid.

Move (you can use Shift-Drag-and-Drop) the Grid.razor and Grid.razor.cs files from

your Components.Advanced project to the Components.Library project.

Do the same for ListView2 component. Both components are still using the client’s

namespace, so update their namespace to Components. Library.

Chapter 4 advanCed Components

170

Building the library project should succeed. Building the solution will still get

compiler errors from the client project because we need to add a reference from the

client project to the component library, which we will fix in the next part.

 Referring to the Library from Your Project
Now that our library is ready, we are going to use it in our project. The way the library

works means we can also use it in other projects (just like any other library project in

.NET). Hey, you could even make it into a NuGet package (if you want more information,

look at https://docs.microsoft.com/dotnet/core/deploying/creating- nuget-

packages) and let the rest of the world enjoy your work!

To use our component library in a project, we have two options.

Using Visual Studio, start by right-clicking the client project and select Add ➤ Project

Reference. Make sure you check Components.Library and click OK. Blazor component

libraries are just another kind of library/assembly.

Using the project file (e.g., with Visual Studio Code), open the Components.

Advanced.csproj file and add the <ProjectReference> element to it as in Listing 4-18.

Listing 4-18. Add a Reference to Another Project

<Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">

 ...

 <ItemGroup>

 <ProjectReference Include="..\Components.Library\Components.Library.

csproj" />

 </ItemGroup>

</Project>

 Using the Library Components
Now that you have added the reference to the component library, you can use these

components like any other component, except that these components live in another

namespace. Just like in C#, you can use the fully qualified name to refer to a component

like in Listing 4-19.

Chapter 4 advanCed Components

https://docs.microsoft.com/dotnet/core/deploying/creating-nuget-packages
https://docs.microsoft.com/dotnet/core/deploying/creating-nuget-packages

171

Listing 4-19. Using the Fully Qualified Component Name

<Components.Library.Grid>

 ...

</Components.Library.Grid>

And like in C#, you can add a @using statement so you can use the component’s

name as in Listing 4-20. Add @using statements to the top of the razor file.

Listing 4-20. Add a @using Statement in Razor

@page "/fetchdata"

@inject HttpClient Http

@using Components.Library

...

 <Grid Items="forecasts">

...

With razor, you can add the @using statement to the _Imports.razor file as in Listing 4-21

which will enable you to use the namespace in all the .razor files which are in the same

directory or subdirectory. The easiest way to think about this is that Blazor will copy

the contents of the _Imports.razor file to the top of every .razor file in that directory and

subdirectory.

Listing 4-21. Add a @using to _Imports.razor

@using System.Net.Http

@using System.Net.Http.Json

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.AspNetCore.Components.Web.Virtualization

@using Microsoft.AspNetCore.Components.WebAssembly.Http

@using Microsoft.JSInterop

@using Components.Advanced

@using Components.Advanced.Shared

@using Components.Library @* Added using *@

Chapter 4 advanCed Components

172

Your solution should compile now and run just like before.

Why did we move our components into a component library? To make the

components in the component library reusable for other projects. Simply add a

reference to the library and its components can be used!

 Static Resources in a Component Library
Maybe you want to use an image (or some other static file like CSS or JavaScript) in

your component library. The Blazor runtime requires you to put static resources in the

project’s wwwroot folder. If you want static resources in your application instead of the

library, you should put these resources in the wwwroot folder of the application’s project.

For both cases, you need to put these in the wwwroot folder; the only difference is that

for library projects, you need to use a different URL.

I downloaded an image of a cloud from https://openclipart.org/ and copied it

into the wwwroot folder (any image will do). You can then refer to this static resource

using a URL that uses the content path to the resource. If your resource is in the Blazor

application’s project, the path starts at the wwwroot folder, but for library projects, the

URL should start with _content/{LibraryProjectName} and refers to the wwwroot

folder from your library project. For example, to refer to the cloud.png file in the

Components.Library project, open Index.razor and add the image from Listing 4-22.

Listing 4-22. Referring to a Static Resource in a Component Library

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

Run your project. You should see your image.

You can also refer to this static content inside the component library from your main

project using the same URL.

Chapter 4 advanCed Components

https://openclipart.org/

173

 Virtualization
Sometimes you need to display a lot of data, maybe thousands of rows. If you are going

to use a simple foreach loop to create the UI for each row, you will get a noticeable delay

between loading the data and the rendering of the data, because the Blazor runtime will

have to create the UI for each row. Here, we will look at the built-in virtualization which

will only render visible rows.

 Displaying a Large Number of Rows
Let us start by building the class for the data and a class that will generate large number

of instances of this data.

Add a new Data folder to the Components.Advanced project and add the

Measurement class from Listing 4-23. You can also copy this class from the book’s sources

to save some typing.

Listing 4-23. The Measurement Class

using System;

namespace Components.Advanced.Data

{

 public class Measurement

 {

 public Guid Guid { get; set; }

 public double Min { get; set; }

 public double Avg { get; set; }

 public double Max { get; set; }

 }

}

Now add the MeasurementsService class from Listing 4-24 to the Data folder. The

MeasurementsService class has a single GetMeasurements method that returns many

rows. You can change the nrOfRows constant to play with the number of rows. So why

does the GetMeasurements method return a ValueTask<T>? Because this allows me

later to change my mind and call some asynchronous method, for example, to retrieve

the data using a REST call. Think of ValueTask<T> as the union of T and Task<T>, giving

Chapter 4 advanCed Components

174

the choice whether to implement a method synchronously or asynchronously. You

can learn more about ValueTask<T> at https://devblogs.microsoft.com/dotnet/

understanding- the- whys- whats- and- whens- of- valuetask/.

Listing 4-24. The MeasurementsService Class

using System;

using System.Collections.Generic;

using System.Threading.Tasks;

namespace Components.Advanced.Data

{

 public class MeasurementsService

 {

 public ValueTask<List<Measurement>> GetMeasurements()

 {

 const int nrOfRows = 5000;

 var result = new List<Measurement>();

 var rnd = new Random();

 for (int i = 0; i < nrOfRows; i += 1)

 {

 result.Add(new Measurement()

 {

 Guid = Guid.NewGuid(),

 Min = rnd.Next(0, 100),

 Avg = rnd.Next(100, 300),

 Max = rnd.Next(300, 400),

 });

 }

 return new ValueTask<List<Measurement>>(result);

 }

 }

}

Add a razor component called NonVirtualMeasurements from Listing 4-25 to the

Pages folder. Again, you can copy this from the provided sources. This component looks

a lot like the FetchData component where we fetch the data, and then iterate over it with

Chapter 4 advanCed Components

https://devblogs.microsoft.com/dotnet/understanding-the-whys-whats-and-whens-of-valuetask/
https://devblogs.microsoft.com/dotnet/understanding-the-whys-whats-and-whens-of-valuetask/

175

a foreach loop. The NonVirtualMeasurements component also has some logic to display

the amount of time it took to render the component using the .NET Stopwatch class. This

class has a Start and Stop method and will measure the amount of time between them.

Listing 4-25. Component Displaying Many Rows

@using Components.Advanced.Data

@using System.Diagnostics

@if (measurements is null)

{

<p>Loading...</p>

}

else

{

<table class="table">

 <thead>

 <tr>

 <th>Guid</th>

 <th>Min</th>

 <th>Avg</th>

 <th>Max</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var measurement in measurements)

 {

 <tr>

 <td>@measurement.Guid.ToString()</td>

 <td>@measurement.Min</td>

 <td>@measurement.Avg</td>

 <td>@measurement.Max</td>

 </tr>

 }

 </tbody>

</table>

}

Chapter 4 advanCed Components

176

@code {

 private List<Measurement>? measurements;

 private Stopwatch timer = new Stopwatch();

 protected override async Task OnInitializedAsync()

 {

 MeasurementsService measurementService =

 new MeasurementsService();

 measurements = await measurementService.GetMeasurements();

 timer.Start();

 }

 protected override void OnAfterRender(bool firstRender)

 {

 timer.Stop();

 Console.WriteLine($"Full rendering took {timer.

ElapsedMilliseconds} ms.");

 }

}

To complete this part of the demo, add the NonVirtualMeasurements component to

your Index.razor file as in Listing 4-26.

Listing 4-26. Using the NonVirtualMeasurements Component

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<NonVirtualMeasurements/>

Build and run the application. Depending on the speed of your computer, you will

see a noticeable delay while Blazor is building the UI (you might even run out of memory

or crash the browser!). We can also look at the browser’s debugging console to see how it

took to render. On my machine, I got the following output:

Full rendering took 746 ms.

This is not so bad thinking about the number of rows being created.

Chapter 4 advanCed Components

177

 Using the Virtualize Component
So how can we lighten the load? Blazor has a Virtualize component just for this! The

Virtualize component will only create the UI for visible rows, and depending on

the height of your screen, the rendered rows in this demo should be about 20 rows.

Way better than 5000 rows! When you scroll, the Virtualize component will then

dynamically render the new rows which become visible. There are some limits to this.

First, all rows should have the same height; otherwise, the Virtualize component

cannot calculate which row to render without rendering all other preceding rows. You

should only use this component when there are many rows which are not visible. Time

to see this in action. Copy-paste the NonVirtualMeasurements.razor file and name it

VirtualMeasurements.razor. Replace the foreach loop as in Listing 4-27. The Virtualize

component is a templated component that receives its items through the Items

parameter and uses the Virtualize.ItemContent parameter to render each item. Think

of <ItemContent> as the body of a for loop.

Listing 4-27. Replace the foreach with the Virtualize Component

<Virtualize Items="@measurements" Context="measurement">

 <ItemContent>

 <tr>

 <td>@measurement.Guid.ToString()</td>

 <td>@measurement.Min</td>

 <td>@measurement.Avg</td>

 <td>@measurement.Max</td>

 </tr>

 </ItemContent>

</Virtualize>

Replace the NonVirtualMeasurements component in Index.razor with the

VirtualMeasurements component.

Build and run. Now the UI renders almost instantly, and when I look in my browser’s

debugger console, I see

Full rendering took 28 ms.

This is way faster! Try scrolling. It scrolls smoothly! With the Virtualize component,

you get a lot of features with almost no work. But that is not all of it!

Chapter 4 advanCed Components

178

 Adding Paging
There is more we can do. Our component is loading all the data from the service, while

we are only displaying a tiny fraction of rows. With the Virtualize component, we can

change the service, so it only returns rows that are being displayed. We do this by setting

the ItemsProvider parameter on the Virtualize component, which is an asynchronous

delegate taking an ItemsProviderRequest and returns an ItemsProviderResult<T>.

Let us change our measurements to do this. First, implement the

GetMeasurementsPage method in the MeasurementsService class as in Listing 4-28. This

method returns a tuple containing the segment of rows and the total number of rows (all

of them, not just the segment size).

Listing 4-28. Adding Paging to the MeasurementsService

public ValueTask<(List<Measurement>, int)> GetMeasurementsPage

 (int from, int count, CancellationToken cancellationToken)

{

 const int maxMeasurements = 5000;

 var result = new List<Measurement>();

 var rnd = new Random();

 count = Math.Max(0, Math.Min(count, maxMeasurements - from));

 for (int i = 0; i < count; i += 1)

 {

 result.Add(new Measurement()

 {

 Guid = Guid.NewGuid(),

 Min = rnd.Next(0, 100),

 Avg = rnd.Next(100, 300),

 Max = rnd.Next(300, 400),

 });

 }

 return new ValueTask<(List<Measurement>, int)>((result, maxMeasurements));

}

Chapter 4 advanCed Components

179

Copy-paste the VirtualMeasurements.razor file and name it

PagedVirtualMeasurements.razor. Update the Virtualize component with the

ItemsProvider parameter as in Listing 4-29. Now the Virtualize component will ask

the ItemsProvider to fetch several rows. Of course, it has to do an estimate on how many

rows fit on the screen, and that is why I also provide the ItemSize parameter.

The ItemsProvider is an async method taking an ItemsProviderRequest which

has three properties, a StartIndex, a Count, and a CancellationToken. We use these

properties to call the GetMeasurementPage method which returns a collection of rows

and the total number of rows. This is then returned as an ItemsProviderResult.

Listing 4-29. Using the ItemsProvider

@using Components.Advanced.Data

@using System.Diagnostics

<table class="table">

 <thead>

 <tr>

 <th>Guid</th>

 <th>Min</th>

 <th>Avg</th>

 <th>Max</th>

 </tr>

 </thead>

 <tbody>

 <Virtualize ItemsProvider="@LoadMeasurements"

 ItemSize="25"

 Context="measurement">

 <ItemContent>

 <tr>

 <td>@measurement.Guid.ToString()</td>

 <td>@measurement.Min</td>

 <td>@measurement.Avg</td>

 <td>@measurement.Max</td>

 </tr>

 </ItemContent>

Chapter 4 advanCed Components

180

 <Placeholder>

 <tr><td colspan="4">Loading...</td></tr>

 </Placeholder>

 </Virtualize>

 </tbody>

</table>

@code {

 private async ValueTask<ItemsProviderResult<Measurement>>

 LoadMeasurements(ItemsProviderRequest request)

 {

 MeasurementsService measurementService =

 new MeasurementsService();

 var (measurements, totalItemCount) =

 await measurementService.GetMeasurementsPage

 (request.StartIndex, request.Count,

 request.CancellationToken);

 return new ItemsProviderResult<Measurement>(

 measurements, totalItemCount);

 }

 private Stopwatch timer = new Stopwatch();

 protected override void OnInitialized()

 {

 timer.Start();

 }

 protected override void OnAfterRender(bool firstRender)

 {

 timer.Stop();

 Console.WriteLine($"Full rendering took {timer.

ElapsedMilliseconds} ms.");

 }

}

Chapter 4 advanCed Components

181

Replace the VirtualMeasurements component with the PagedVirtualMeasurements

component in Index.razor. Now we are ready to run. Again the experience is pretty

smooth. The UI renders instantaneously and scrolling is very fast. Of course, there is

a little cheat going on. We don’t have a delay to fetch the rows we would have if we

were to retrieve the rows over a network connection. Let’s emulate this. Slow down the

GetMeasurementsPage method by adding the delay from Listing 4-30. Here, we add a call

to Task.Delay to emulate a delay. You can play with the delay constant to make things

even more slow.

Listing 4-30. Emulating a Slow Fetch with Task.Delay

public async ValueTask<(List<Measurement>, int)> GetMeasurementsPage

 (int from, int count, CancellationToken cancellationToken)

{

 const int maxMeasurements = 5000;

 // Start Add delay

 const int delay = 50;

 await Task.Delay(delay, cancellationToken);

 // End Add delay

 var result = new List<Measurement>();

 var rnd = new Random();

 count = Math.Max(0, Math.Min(count, maxMeasurements - from));

 for (int i = 0; i < count; i += 1)

 {

 result.Add(new Measurement()

 {

 Guid = Guid.NewGuid(),

 Min = rnd.Next(0, 100),

 Avg = rnd.Next(100, 300),

 Max = rnd.Next(300, 400),

 });

 }

 return (result, maxMeasurements);

}

Chapter 4 advanCed Components

182

Run this and start scrolling. Because of the delay, the Virtualize component might

not have the row to render, so there is a Placeholder parameter which is displayed in its

place. Of course, the moment the row is loaded, it gets replaced with the ItemContent.

 Dynamic Components
Sometimes you might not know the component which you need to render a UI. Maybe

you need to wait for the user to make a choice, and then you display the component,

depending on the user’s choice. How would you do that? You could use an elaborate

if statement for each choice, but this will become a maintenance nightmare soon!

However, Blazor now has the DynamicComponent component that makes it easy to

select a component at runtime. Imagine you want to open a pet hotel, so people need

to be able to register their pet(s). Initially, you will board cats and dogs, but in the long

run, you might want to board other animals. So you start with the following enum from

Listing 4-31.

Listing 4-31. An AnimalKind Enumeration

namespace Components.Advanced.Data

{

 public enum AnimalKind

 {

 Unknown,

 Dog,

 Cat

 }

}

Next, you add classes from Listing 4-32 for each kind of Animal, using inheritance to

make it easier to reuse some of the properties.

Chapter 4 advanCed Components

183

Listing 4-32. Different Kinds of Animals

namespace Components.Advanced.Data

{

 public class Animal

 {

 public string Name { get; set; } = string.Empty;

 }

 public class Dog : Animal

 {

 public bool IsAGoodDog { get; set; }

 }

 public class Cat : Animal

 {

 public bool Scratches { get; set; }

 }

}

You also need some components, one for each kind of animal. Let us start with the

base component for Animal which is in Listing 4-33. Yes, you can also use inheritance

with Blazor components if they somehow inherit from ComponentBase!

Listing 4-33. The Base AnimalComponent

using Components.Advanced.Data;

using Microsoft.AspNetCore.Components;

namespace Components.Advanced.Pages

{

 public partial class AnimalComponent : ComponentBase

 {

 [Parameter]

 public EventCallback ValidSubmit { get; set; }

 }

}

Chapter 4 advanCed Components

184

Now we derive from this the CatComponent as in Listings 4-34 and 4-35. All of this

should be familiar by now, except that in the markup you will see the syntax to inherit

from another component: the @inherits AnimalComponent tells the compiler to derive

from AnimalComponent instead of ComponentBase.

Listing 4-34. The CatComponent Code

using Components.Advanced.Data;

using Microsoft.AspNetCore.Components;

namespace Components.Advanced.Pages

{

 public partial class CatComponent

 {

 [Parameter]

 public Cat Instance { get; set; } = default!;

 }

}

Listing 4-35. The CatComponent Markup

@inherits AnimalComponent

<EditForm Model="@Instance"

 OnValidSubmit="@ValidSubmit">

 <DataAnnotationsValidator />

 <fieldset>

 <div class="row mb-2">

 <label class="col-2" for="name">Name:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Instance.Name" />

 </div>

Chapter 4 advanCed Components

185

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Instance.Name)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="scratches">Scratches</label>

 <div class="col-1 pl-0 w-auto">

 <InputCheckbox class="form-control col-6"

 @bind-Value="@Instance.Scratches" />

 </div>

 </div>

 <div class="row mb-2">

 <div class="col-2">

 <button class="btn btn-success">Save</button>

 </div>

 </div>

 </fieldset>

</EditForm>

In a very similar fashion (meaning you can copy-paste most of this), we have the

DogComponent in Listings 4-36 and 4-37.

Listing 4-36. The DogComponent’s Code

using Components.Advanced.Data;

using Microsoft.AspNetCore.Components;

namespace Components.Advanced.Pages

{

 public partial class DogComponent

 {

 [Parameter]

 public Dog Instance { get; set; } = default!;

 }

}

Chapter 4 advanCed Components

186

Listing 4-37. The DogComponent’s Markup

@inherits AnimalComponent

<EditForm Model="@Instance"

 OnValidSubmit="@ValidSubmit">

 <DataAnnotationsValidator />

 <fieldset>

 <div class="row mb-2">

 <label class="col-2" for="name">Name:</label>

 <InputText class="form-control col-6"

 @bind-Value="@Instance.Name" />

 </div>

 <div class="row mb-2">

 <div class="col-6 offset-2">

 <ValidationMessage For="@(() => Instance.Name)" />

 </div>

 </div>

 <div class="row mb-2">

 <label class="col-2" for="isagooddog">Is a good dog</label>

 <div class="col-1 pl-0 w-auto">

 <InputCheckbox class="form-control col-6"

 @bind-Value="@Instance.IsAGoodDog" />

 </div>

 </div>

 <div class="row mb-2">

 <div class="col-2">

 <button class="btn btn-success">Save</button>

 </div>

 </div>

 </fieldset>

</EditForm>

Chapter 4 advanCed Components

187

Now add a new component called AnimalSelector as in Listing 4-38. This is the

component where we will use the DynamicComponent. Why? Because we will ask the

user to select a kind of animal, and then we will display the component that matches

that animal.

Listing 4-38. The AnimalSelector Markup

<div class="row">

 <div class="col-2">

 Please select:

 </div>

 <div class="col-6 pl-0 pr-0">

 <select class="form-control"

 @onchange="@((ChangeEventArgs e)

 => AnimalSelected(e.Value))">

 @foreach (AnimalKind kind in

 Enum.GetValues(typeof(AnimalKind)))

 {

 <option value="@kind">@kind.ToString()</option>

 }

 </select>

 </div>

</div>

Now when the user selects a kind of animal, we call the AnimalSelected method

which is in Listing 4-39. This method gets passed a string instance containing an

AnimalKind value, so we parse this string into an AnimalKind and we use this value to

select an instance of the ComponentMetaData class.

Listing 4-39. The AnimalSelector’s Code

using Components.Advanced.Data;

using System;

namespace Components.Advanced.Pages

{

 public partial class AnimalSelector

 {

Chapter 4 advanCed Components

188

 ComponentMetaData? MetaData;

 private void AnimalSelected(object? value)

 {

 string? val = value?.ToString();

 if (Enum.TryParse<AnimalKind>(val, out AnimalKind kind))

 {

 MetaData = kind.ToMetaData();

 }

 }

 }

}

What does ComponentMetaData from Listing 4-40 contain? It contains a Type property

(yes, of type Type) and a Parameters property called Dictionary<string,object>.

These are used by DynamicComponent to select a Component to display (e.g., when Type

is CatComponent, the DynamicComponent will replace itself with the CatComponent). Now

CatComponent has a [Parameter] property (called Instance), so DynamicComponent

needs to provide this parameter. The ComponentMetaData’s Parameters dictionary will

contain a key called Instance, with the value set for the Instance parameter.

Listing 4-40. The ComponentMetaData Class

using System;

using System.Collections.Generic;

namespace Components.Advanced.Data

{

 public class ComponentMetaData

 {

 public ComponentMetaData(Type type,

 Dictionary<string, object> parameters)

 {

 Type = type;

 Parameters = parameters;

 }

Chapter 4 advanCed Components

189

 public Type Type { get; set; }

 public Dictionary<string, object> Parameters { get; }

 }

}

One more thing to complete this example: look at the AnimalSelected method from

Listing 4-39. How do we convert the AnimalKind to a ComponentMetaData instance? For

this, I have a ToMetaData extension method in class AnimalMetaData from Listing 4-41.

This method uses the new C# pattern matching switch statement which is ideal for

this kind of thing. Here, we switch on the AnimalKind value. If it is a Dog, we return the

ComponentMetaData for a dog, similar for a Cat, and for all the rest (using the _ discard

syntax), we return a null value.

Listing 4-41. The AnimalMetaData Class

using Components.Advanced.Pages;

using System.Collections.Generic;

namespace Components.Advanced.Data

{

 public static class AnimalMetaData

 {

 private static Dictionary<string, object> ToParameters

 (this object instance)

 => new Dictionary<string, object>

 {

 { "Instance", instance }

 };

 public static ComponentMetaData? ToMetaData

 (this AnimalKind animal)

 => animal switch

 {

 AnimalKind.Dog =>

 new ComponentMetaData(typeof(DogComponent),

 new Dog().ToParameters()),

 AnimalKind.Cat =>

Chapter 4 advanCed Components

190

 new ComponentMetaData(typeof(CatComponent),

 new Cat().ToParameters()),

 _ => null

 };

 }

}

To complete the AnimalSelector component, we will look at the value of the

MetaData property (in Listing 3-39) and use a DynamicComponent to select the

appropriate component for the selected animal and set its parameters as in Listing 4-42.

Listing 4-42. Completing the AnimalSelector Component

<div class="row">

 <div class="col-2">

 Please select:

 </div>

 <div class="col-6 pl-0 pr-0">

 <select class="form-control" @onchange="@((ChangeEventArgs e)

 => AnimalSelected(e.Value))">

 @foreach (AnimalKind kind in Enum.GetValues(typeof(AnimalKind)))

 {

 <option value="@kind">@kind.ToString()</option>

 }

 </select>

 </div>

</div>

@if (MetaData is not null)

{

 <div class="mt-2">

 <DynamicComponent

 Type="@MetaData.Type" Parameters="@MetaData.Parameters" />

 </div>

}

Add the AnimalSelector to your Index component (as in Listing 4-43).

Chapter 4 advanCed Components

191

Listing 4-43. The Index Component with AnimalSelector

@page "/"

<div>

 <AnimalSelector />

</div>

Run the application. Now when you select a kind of animal, the appropriate editor is

shown as in Figure 4-4.

Figure 4-4. The AnimalSelector After Selecting a Dog

 Component Reuse and PizzaPlace
In Chapter 3, we built a couple of components for the PizzaPlace application. There was

an opportunity to have more reuse, and we are going to take that here. We will build a

templated component for showing lists of pizza and then reuse it to show the menu and

the shopping basket. Open the PizzaPlace solution from the previous chapter (or the

sources that come with this book).

Let’s first refresh out memory. We have a PizzaItem component to show the details

of a Pizza. We also have the PizzaList component that shows the pizzas from the

menu, and we have the ShoppingBasket component to list the pizzas from the order.

Both PizzaList and ShoppingBasket iterate over a list, so there is an opportunity here

for reuse. Create a new component called ItemList from Listings 4-44 and 4-45. Here,

we have a Header and Footer of type RenderFragment? and a RowTemplate parameter of

Chapter 4 advanCed Components

192

type RenderFragment<TItem>. The Header and Footer parameters are optional, and that

is why we use an @if. There is also the Items parameter of type IEnumerable<TItem>,

and this parameter allows the compiler to infer the type of TItem when we assign it a

collection. We iterate over this parameter using a @foreach, and we call the RowTemplate

RenderFragment.

Listing 4-44. The ItemList Component’s Code

using Microsoft.AspNetCore.Components;

using System.Collections.Generic;

namespace PizzaPlace.Client.Pages

{

 public partial class ItemList<TItem>

 {

 [Parameter]

 public RenderFragment? Header { get; set; }

 [Parameter]

 public RenderFragment<TItem> RowTemplate { get; set; } = default!;

 [Parameter]

 public RenderFragment? Footer { get; set; }

 [Parameter]

 public IEnumerable<TItem> Items { get; set; } = default!;

 }

}

Listing 4-45. The ItemList Component’s Markup

@typeparam TItem

@if (Header is not null)

{

 @Header

}

@foreach (TItem item in Items)

{

Chapter 4 advanCed Components

193

 @RowTemplate(item)

}

@if (Footer is not null)

{

 @Footer

}

Now that we have this templated component, we can use it for both the PizzaList

and ShoppingBasket components.

Update the markup for the PizzaList component as in Listing 4-46.

Listing 4-46. The PizzaList Component Using the ItemList

<ItemList Items="@Items">

 <Header>

 <h1>@Title</h1>

 </Header>

 <RowTemplate Context="pizza">

 <PizzaItem Pizza="@pizza"

 ButtonClass="@ButtonClass"

 ButtonTitle="@ButtonTitle"

 Selected="@Selected" />

 </RowTemplate>

</ItemList>

And replace the ShoppingBasket markup with Listing 4-47.

Listing 4-47. The ShoppingBasket Component Using the ItemList

@if (Pizzas.Any())

{

 <ItemList Items="@Pizzas">

 <Header>

 <h1 class="">Your current order</h1>

 </Header>

 <RowTemplate Context="tuple">

 <PizzaItem Pizza="@tuple.pizza"

 ButtonClass="btn btn-danger"

Chapter 4 advanCed Components

194

 ButtonTitle="Remove"

 Selected="@(() =>

 Selected.InvokeAsync(tuple.pos))" />

 </RowTemplate>

 <Footer>

 <div class="row">

 <div class="col"></div>

 <div class="col"><hr /></div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

 <div class="row">

 <div class="col"> Total:</div>

 <div class="col text-right font-weight-bold">

 @($"{TotalPrice:0.00}")

 </div>

 <div class="col"> </div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

 </Footer>

 </ItemList>

}

Now we have enhanced our PizzaPlace application by adding a templated

component which we reuse for both the PizzaList and ShoppingBasket components.

Compile and run. The PizzaPlace application should work as before.

 Summary
In this chapter, we saw that in Blazor you can build templated components, which

resemble generic classes. These templated components can be parameterized to render

different UIs, which makes them quite reusable! We discussed Razor templates, which

allows us to write markup in C# and had a look at the weird pig-wig syntax. We can

build component libraries to maximize reuse of our components. Finally, we looked at

Chapter 4 advanCed Components

195

virtualization which is a great way to work with large lists and how dynamic components

give flexibility at runtime.

We applied this knowledge by building a simple templated component for showing

lists of pizzas which we need in several places.

Chapter 4 advanCed Components

197
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_5

CHAPTER 5

Services and Dependency
Injection
Dependency inversion is one of the basic principles of good object-oriented design.

The big enabler is dependency injection. In this chapter, we will discuss dependency

inversion and injection and why it is a fundamental part of Blazor. We will illustrate this

by building a Service that encapsulates where the data gets retrieved and stored.

 What Is Dependency Inversion?
Currently, our Blazor PizzaPlace app retrieves its data from hard-coded sample data.

But in a real-life situation, this data will probably be stored in a database on the server.

Retrieving and storing this data could be done in the component itself, but this is a bad

idea. Why? Because technology changes quite often, and different customers for your

application might want to use their specific technology, requiring you to update your

app for every customer.

Instead, we will put this logic into a Service object. A Service object’s role is to

encapsulate specific business rules or how data is communicated between the client and

the server. A Service object is also a lot easier to test since we can write unit tests that run

on their own, without requiring a user to interact with the application for testing.

But first, let’s talk about the dependency inversion principle and how dependency

injection allows us to apply this principle.

https://doi.org/10.1007/978-1-4842-7845-1_5#DOI

198

 Understanding Dependency Inversion
Imagine a ProductList component that uses a service class, and the component creates

the service using the new operator, as in Listing 5-1.

Listing 5-1. A Component Using a ProductsService

@using Dependency.Inversion.Shared

 @foreach (var product in productsService.GetProducts())

{

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.Price</div>

}

@code {

 private ProductsService productsService =

 new ProductsService();

}

This component is now completely dependent on the ProductsService! This is

known as tight coupling; see Figure 5-1.

Figure 5-1. Tight Coupling

Now you want to test the ProductList component, and ProductsService requires

a server on the network to talk to. In this case, you will need to set up a server just to

run the test. And if the server is not ready yet (the developer in charge of the server

hasn’t come around to it), you cannot test your component! Or you are using the

ProductsService in several places in your location, and you need to replace it with

another class. Now you will need to find every use of the ProductsService and replace

the class. What a maintenance nightmare!

Chapter 5 ServiCeS and dependenCy injeCtion

199

 Using the Dependency Inversion Principle
The dependency inversion principle states:

A. High-level modules should not depend on low-level modules. Both should

depend on abstractions.

B. Abstractions should not depend on details. Details should depend on

abstractions.

What this means is that the ProductsList component (the higher-level module) should

not directly depend on the ProductsService (the lower-level module). Instead, it should

rely on an abstraction. Using C# terminology: it should rely on an interface describing what

a ProductsService should be able to do, not a class describing how it should work.

The IProductsService interface would look like Listing 5-2.

Listing 5-2. The Abstraction As Described in an Interface

public interface IProductsService

{

 IEnumerable<Product> GetProducts();

}

And we change the ProductsList component to rely on this abstraction, as in

Listing 5-3. Please note that we still need to assign an instance to the productService

variable.

Listing 5-3. The ProductList Component Using the IProductsService Interface

@using Dependency.Inversion.Shared

 @foreach (var product in productsService.GetProducts())

{

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.Price</div>

}

@code

{

 private IProductsService productsService;

}

Chapter 5 ServiCeS and dependenCy injeCtion

200

Now the ProductList component (the high-level module from earlier) only relies on

the IProductsService interface, an abstraction. And the abstraction does not reveal how

we will implement the GetProducts method.

Of course, now we make the ProductsService (which is the low-level module)

implement the IProductsService interface as in Listing 5-4.

Listing 5-4. The ProductsService Implementing the IProductsService Interface

public class ProductsService : IProductsService

{

 public IEnumerable<Product> GetProducts()

 => ...

}

If you want to test the ProductList component implemented using dependency

inversion, you build a hard-coded version of the IProductsService and run the test

without needing a server, for example, in Listing 5-5. We will discuss some of these

techniques for testing in a later chapter.

Listing 5-5. A Hard-Coded IProductsService Used for Testing

public class HardCodedProductsService : IProductsService

{

 public IEnumerable<Product> GetProducts()

 {

 yield return new Product

 {

 Name = "Isabelle's Homemade Marmelade",

 Description = "...",

 Price = 1.99M

 };

 yield return new Product

Chapter 5 ServiCeS and dependenCy injeCtion

201

 {

 Name = "Liesbeth's Applecake",

 Description = "...",

 Price = 3.99M

 };

 }

}

If you are using the IProductsService interface in different places in your

application (instead of the ProductsService class), all you need to do to replace its

implementation is to build another class that implements the IProductsService

interface and tell your application to use the other class!

By applying the dependency inversion principle (see Figure 5-2), we gained a lot more

flexibility.

Figure 5-2. Loosely Coupled Objects Through Dependency Inversion

 Adding Dependency Injection
If you were to run this application, you would get a NullReferenceException. Why?

Because the ProductsList component from Listing 5-3 still needs an instance of a

class implementing IProductsService! We could pass the ProductsService in the

constructor of the ProductList component, for example, in Listing 5-6.

Listing 5-6. Passing the ProductsService in the Constructor

new ProductList(new ProductsService())

But if the ProductsService also depends on another class, it quickly becomes like

Listing 5-7. This is of course not a practical way of working! Because of that, we will use

an Inversion-of-Control Container (I didn’t invent this name!).

Chapter 5 ServiCeS and dependenCy injeCtion

202

Listing 5-7. Creating a Deep Chain of Dependencies Manually

new ProductList(new ProductsService(new Dependency()))

 Using an Inversion-of-Control Container
An Inversion-of-Control Container (IoCC) is just another object, which specializes in

creating objects for you. You simply ask it to create for you an instance of a type, and it

will take care of creating any dependencies it requires.

It is a little bit like in a movie where a surgeon, in the middle of an operation, needs

a scalpel. The surgeon in the movie holds out his (or her) hand and asks for “Scalpel

number 5!”. The nurse (the Inversion-of-Control Container) who is assisting simply

hands the surgeon the scalpel. The surgeon doesn’t care where the scalpel comes from

or how it was built.

So, how can the IoCC know which dependencies your component needs? There are

a couple of ways, heavily depending on the IoCC.

 Constructor Dependency Injection
Classes that need a dependency can simply state their dependencies in their constructor.

The IoCC will examine the constructor and instantiate the dependencies before calling

the constructor. And if these dependencies have their own dependencies, then the IoCC

will also build them! For example, if the ProductsService has a constructor that takes

an argument of type Dependency, as in Listing 5-8, then the IoCC will create an instance

of type Dependency and will then call the ProductsService’s constructor with that

instance. The ProductsService constructor then stores a reference to the dependency

in some field, as in Listing 5-8. Should the ProductsService’s constructor take multiple

arguments, then the IoCC will pass an instance for each argument. Constructor injection

is normally used for required dependencies.

Chapter 5 ServiCeS and dependenCy injeCtion

203

Listing 5-8. The ProductsService’s Constructor with Arguments

public class ProductsService

{

 private readonly Dependency dep;

 public ProductsService(Dependency dep)

 {

 this.dep = dep;

 }

}

 Property Dependency Injection
If the class that the IoCC needs to build has properties that indicate a dependency, then

these properties are filled in by the IoCC. The way a property does that depends on

the IoCC (in .NET, there are a couple of different IoCC frameworks; some of these use

an attribute on the property), but in Blazor, you can have the IoCC inject an instance

with the @inject directive in your razor file, for example, the second line of code in

Listing 5-9.

Listing 5-9. Injecting a Dependency with the @inject Directive

@using Dependency.Inversion.Shared

@inject IProductsService productsService

 @foreach (var product in productsService.GetProducts())

{

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.Price</div>

}

@code

{

}

Chapter 5 ServiCeS and dependenCy injeCtion

204

If you’re using code separation, you can add a property to your class and apply the

[Inject] attribute as in Listing 5-10. Since this listing is using nullable reference types,

we need to assign a default! to remove the compiler warning.

Listing 5-10. Using the Inject Attribute for Property Injection

public partial class ProductList

{

 [Inject]

 public IProductsService ProductsService { get; set; }

 = default!;

}

You can then use this property directly in your razor file, as in Listing 5-11.

Listing 5-11. Using the ProductsService Property that Was Dependency Injected

@foreach (var product in productsService.GetProducts())

{

 <div>@product.Name</div>

 <div>@product.Description</div>

 <div>@product.Price</div>

}

 Configuring Dependency Injection
There is one more thing we need to discuss. When your dependency is a class, then

the IoCC can easily know that it needs to create an instance of the class with the class’s

constructor. But if your dependency is an interface, which it generally needs to be if

you are applying the principle of dependency inversion, then which class does it use to

create the instance? Without your help, it cannot know.

An IoCC has a mapping between interfaces and classes, and it is your job to

configure this mapping. You configure the mapping in your Blazor WebAssembly

project’s Program class (and in the Startup class for Blazor Server). So open Program.cs,

as in Listing 5-12.

Chapter 5 ServiCeS and dependenCy injeCtion

205

Listing 5-12. The Program Class

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using System;

using System.Net.Http;

using System.Threading.Tasks;

namespace Dependency.Inversion.Client

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress =

 new Uri(builder.HostEnvironment.BaseAddress)

 });

 await builder.Build().RunAsync();

 }

 }

}

The Program class creates a builder instance, which has a property Services of type

IServiceCollection. It is this IServiceCollection we need to configure. If you are

familiar with ASP.NET Core, it is the same type used in the ConfigureServices method

from the Startup class.

To configure the mapping for the IoCC, you use extension methods on the

IServiceCollection instance. Which extension method you call depends on the

lifetime you want to give the dependency. There are three options for the lifetime of an

instance which we will discuss next.

Chapter 5 ServiCeS and dependenCy injeCtion

206

Note the lifetime of instances is different for Blazor Webassembly and Blazor
Server. it is even different from the lifetime you know from aSp.net Core!

 Singleton Dependencies
Singleton classes are classes that only have one instance (in the application’s scope).

These are typically used to manage some global state. For example, you could have a

class that keeps track of how many times people have clicked a certain product. Having

multiple instances of this class would complicate things because they will have to start

communicating with each other to keep track of the clicks. Singleton classes can also

be classes that don’t have any state and that only have behavior (utility classes such as

one that does conversions between imperial and metric units). In this case, you could

have multiple instances, but this is just wasteful and will make the garbage collector

work harder.

You configure dependency injection to reuse the same instance all the time with

the AddSingleton extension method, for example, Listing 5-13. Every time the IoCC

needs an instance of the IProductsService interface, it will use an instance of the

ProductService class.

Listing 5-13. Adding a Singleton to Dependency Injection

builder.Services

 .AddSingleton<IProductsService, ProductsService>();

There is an overload available (Listing 5-14) that allows you to create the singleton

instance yourself and then tell IoCC to use that instance.

Listing 5-14. Create the Singleton Yourself

ProductsService productsService = new ProductsService();

builder.Services

 .AddSingleton<IProductsService>(productsService);

Chapter 5 ServiCeS and dependenCy injeCtion

207

In case your class does not have an interface, you can also use Listing 5-15.

Listing 5-15. Adding a Singleton to Dependency Injection

builder.Services

 .AddSingleton<ProductsService>();

Why not use static methods instead of singletons you say? Static methods and

properties are very hard to replace with fake implementations during testing (have you

ever tried to test a method that uses a date with DateTime.Now, and you want to test it

with February 29 of some quantum leap year?). During testing, you can easily replace the

real class with a fake class because it implements an interface!

Now about the difference between Blazor WebAssembly and Blazor Server. In

Blazor WebAssembly, your application is running in a browser’s tab. You can even have

multiple copies of the same Blazor application running in different tabs of your browser

(even different browsers). Each tab will have its own singleton instance, in the memory

of that browser tab. So you cannot use singletons to share state between tabs with

Blazor WASM. And when you refresh the tab, the application will re-initialize with a new

instance for the singleton.

With Blazor Server, the application is running on the server. So here the singleton is

actually shared among every user running the Blazor application on the same server! But

even here your application can be hosted with several servers, and each server will have

its own singleton!

 Transient Dependencies
Transient means short lived. In .NET, there are a lot of objects which are short lived,

which might not even survive beyond a single method call. For example, when you

are concatenating a couple of strings, the intermediate strings are thrown away almost

instantly after being created. Using transient objects makes a lot of sense when you don’t

want to be affected by the previous state of an object. Instead, you start with a fresh slate

by creating a new instance.

When you configure dependency injection to use a transient lifetime for a class, each

time an instance is needed by the IoCC, it will create a fresh instance.

You configure dependency injection to use transient instances with the

AddTransient extension method, as in Listing 5-16.

Chapter 5 ServiCeS and dependenCy injeCtion

208

Listing 5-16. Adding a Transient Class to Dependency Injection

builder.Services

 .AddTransient<IProductsService, ProductsService>();

However, in Blazor we are working client side, and in that case, the UI stays put for

the entire interaction. This means that you will have components that only have one

created instance and only one instance of the dependency. You might think in that case

transient and singleton will do the same thing. But there can be another component that

needs the same type of dependency. If you are using a singleton, then both components

will share the same instance of the dependency, while transient each gets a unique

instance! You should be aware of this.

 Scoped Dependencies
When you configure dependency injection to use a scoped dependency, the IoCC will

reuse the same instance per scope but uses new instances between different scopes. But

what does a scope mean?

Again there is a difference between Blazor WASM and Blazor Server. In Blazor

WASM, the scope is the application (running in the browser) itself. With Blazor WASM, a

scoped instance will have the same lifetime as a singleton.

Blazor Server uses a circuit which is the SignalR connection to keep track of a single

user’s application (somewhat like a session). This circuit spans across HTTP requests but

not across the SignalR connection used with Blazor Server.

You configure the dependency to use scoped lifetime with the AddScoped extension

method as in Listing 5-17.

Listing 5-17. Registering a Class to Use Scoped Lifetime

builder.Services

 .AddScoped<IProductsService, ProductsService>();

builder.Services

 .AddScoped<ProductsService>();

Chapter 5 ServiCeS and dependenCy injeCtion

209

 Understanding Blazor Dependency Lifetime
Let’s look at the lifetime of the injected dependencies in Blazor. For this, I have written a

demo app which you can find in the included sources for this book.

The source code for this book is available on GitHub via the book’s product page,

located at www.apress.com/ISBN.

I started by building three services, each one with a different lifetime (determined

through the configuration of dependency injection). For example, see Listing 5-18. Every

time an instance gets created, it gets assigned a GUID. By displaying the instance’s GUID,

it becomes easy to see which instance gets replaced with a new instance. These classes

also implement IDisposable so we can see when they get disposed by looking in the

browser’s debugger console.

Listing 5-18. One of the Dependencies Used for the Experiment

using System;

namespace Blazor.LifeTime.Shared

{

 public class SingletonService : IDisposable

 {

 public Guid Guid { get; set; } = Guid.NewGuid();

 public void Dispose()

 => Console.WriteLine("ScopedService Disposed");

 }

}

Then I added these three services to the service collection, as in Listing 5-19 (Blazor

WASM) and Listing 5-20 (Blazor Server).

Listing 5-19. Adding the Dependencies for Blazor WASM

using Blazor.LifeTime.Shared;

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using System;

using System.Net.Http;

using System.Threading.Tasks;

Chapter 5 ServiCeS and dependenCy injeCtion

http://www.apress.com/ISBN

210

namespace Blazor.Wasm.LifeTime

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress = new Uri(builder.HostEnvironment.BaseAddress)

 });

 builder.Services.AddSingleton<SingletonService>();

 builder.Services.AddTransient<TransientService>();

 builder.Services.AddScoped<ScopedService>();

 await builder.Build().RunAsync();

 }

 }

}

Listing 5-20. Adding the Dependencies for Blazor Server (Excerpt)

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

 services.AddSingleton<SingletonService>();

 services.AddTransient<TransientService>();

 services.AddScoped<ScopedService>();

}

And finally, I consume these services in the Index component from Listing 5-21.

This will display GUIDs for each dependency (don’t forget to add the proper @using to

_Imports.razor).

Chapter 5 ServiCeS and dependenCy injeCtion

211

Listing 5-21. The Component Consuming the Dependencies

@page "/"

@inject SingletonService singletonService

@inject TransientService transientService

@inject ScopedService scopedService

<div>

 <h1>Singleton</h1>

 Guid: @singletonService.Guid

 <h1>Transient</h1>

 Guid: @transientService.Guid

 <h1>Scoped</h1>

 Guid: @scopedService.Guid

</div>

 Blazor WebAssembly Experiment
Run the Blazor.Wasm.Lifetime project, which will start Blazor WebAssembly. We get

Figure 5-3 on the first page (your GUIDs will be different). Switching to the Counter page

and back shows Figure 5-4.

Figure 5-3. Displaying Client-Side Blazor Dependencies

Chapter 5 ServiCeS and dependenCy injeCtion

212

Figure 5-4. The Dependencies from the Other Page

Each time the Index component gets created, it will ask dependency injection

for instances of the SingletonService, TransientService, and ScopedService.

The SingletonService instance gets reused all the time because we see the same

GUID. The TransientService instance gets replaced each time (because each time

we get a different GUID). We also see the same instance for the ScopedService. In

Blazor WebAssembly, scoped instances are scoped by default to the browser’s tab (the

application); they behave like singletons, so there is no difference.

And what if we open another tab? Since we have a fresh copy of the Blazor

application running in the other tab, we get a new instance for the singleton, and

because the scope is the connection, we get another instance of the scoped instance. If

you expected to see the same instance for the singleton in both tabs, please remember

that here each tab holds another copy of the Blazor application.

When do our instances get disposed? Both the singleton and scoped instance will

live as long as your application is running, so these are not disposed. But what about

the transient instance? If you really need to have a transient instance disposed when

the component gets disposed, you need to implement the IDisposable interface as in

Listing 5-22 on the component and call Dispose on the transient instance yourself! Or

use OwningComponentBase (later).

Chapter 5 ServiCeS and dependenCy injeCtion

213

Listing 5-22. Implementing IDisposable on a Component

@page "/"

@inject SingletonService singletonService

@inject TransientService transientService

@inject ScopedService scopedService

@implements IDisposable

<div>

 <h1>Singleton</h1>

 Guid: @singletonService.Guid

 <h1>Transient</h1>

 Guid: @transientService.Guid

 <h1>Scoped</h1>

 Guid: @scopedService.Guid

</div>

@code {

 public void Dispose()

 => transientService.Dispose();

}

 Blazor Server Experiment
Now run the Blazor.Server.LifeTime project; make sure you are running the server using

Kestrel and not IIS. Your browser should open on the Index page as in Figure 5-5. Select

the Counter page and back to the Index page to see Figure 5-6 (again, you will have

different GUIDs).

Chapter 5 ServiCeS and dependenCy injeCtion

214

Figure 5-5. Displaying Server-Side Dependencies

Figure 5-6. After Clicking the Other Link

Here, we see similar behavior like the one we saw for Blazor WASM. But don’t get

fooled. This is not the same, and we can see that by opening another tab. You should see

the same GUID for the singleton instance as in Figure 5-7. Now we are running on the

server, and the server will have one instance of the singleton for all users. Open the page

in another browser; again, you will see the same GUID.

Chapter 5 ServiCeS and dependenCy injeCtion

215

Figure 5-7. Opening Another Tab with Server-Side on the Home Page

 Using OwningComponentBase
What if you want a service instance that belongs to your component and you want this

instance to be disposed automatically when the component gets disposed? You can

make your component create its own scope by deriving from the OwningComponentBase

class. Look at Listing 5-23 which is the OwningComponent which you can find in the

provided project. Here, we inherit from OwningComponentBase. Instead of using regular

dependency injection, the OwningComponentBase class has the ScopedServices property

which is an IServiceProvider. Any scoped instances should be created through

the ScopedServices’ GetService or GetRequiredService method. These instances

now belong to the component’s scope and will automatically be disposed when the

component is disposed.

Listing 5-23. A Component Deriving from OwningComponentBase

@using Microsoft.Extensions.DependencyInjection

@inherits OwningComponentBase

<h1>OwningComponent</h1>

Guid: @scopedService.Guid

@code {

Chapter 5 ServiCeS and dependenCy injeCtion

216

 private ScopedService scopedService;

 protected override void OnInitialized()

 => scopedService = ScopedServices.GetRequiredService<ScopedService>();

}

If you only need one scoped instance, you can also use the generic

OwningComponentBase<T> base class, which has a Service property of type T which will

hold the scoped instance of type T. Listing 5-24 shows an example of this. You can still

use the ScopedServices property if you need to create additional scoped instances.

Listing 5-24. Using OwningComponentBase<T>

@inherits OwningComponentBase<ScopedService>

<h1>OwningComponent2</h1>

Guid: @Service.Guid

Now add both these components to the Index component as in Listing 5-25. You can

choose between Blazor Server and Blazor WebAssembly.

Listing 5-25. Using OwningComponentBase Derived Components

@page "/"

@inject SingletonService singletonService

@inject TransientService transientService

@inject ScopedService scopedService

<div>

 <h1>Singleton</h1>

 Guid: @singletonService.Guid

 <h1>Transient</h1>

 Guid: @transientService.Guid

 <h1>Scoped</h1>

 Guid: @scopedService.Guid

 <OwningComponent/>

 <OwningComponent2/>

</div>

Chapter 5 ServiCeS and dependenCy injeCtion

217

Run your project and make sure you have the console open. Now click the Counter

component. The console should show the ScopedService instances being disposed. Also

note that each time the OwningComponent and OwningComponent2 get instantiated, they

receive a new instance of the ScopedService.

Note don’t implement IDisposable on components deriving from
OwningComponentBase because this will cease the automatic disposal of the
scoped instances!

 The Result of the Experiment
Now the experiment is complete, let us draw some conclusions about the lifetime of the

injected dependencies. Every time an instance gets created, it gets a new GUID. This

makes it easy to see if a new instance gets created or the same instance gets reused.

Transient lifetime is easy. Transient lifetime means you get a new instance every

time. This is the same for both Blazor WASM and Blazor Server.

Singleton lifetime means that in Blazor WASM you get one instance for the entire

duration of the application. If you really need to share an instance between all the uses

and tabs, you need to put this on the server and access it through calls to the server. But

with Blazor Server, everyone uses the same instance. Please make sure you don’t put any

user’s information in a singleton because this will bleed to other users (bad!).

Scoped lifetime with Blazor WASM means the same as singleton lifetime. But with

Blazor Server, we need to be careful. Blazor Server uses a SignalR connection (called

a circuit) between the browser and the server, and scoped instances are linked to the

circuit. You can derive from the OwningComponentBase class if you need scoped behavior

for a specific component.

For both Blazor WebAssembly and Blazor Server, if you need to have the same

instance, no matter which tab the user is using, you cannot rely on dependency injection

to do this for you. You will need to do some state handling yourself! More about this in

Chapter 11.

Chapter 5 ServiCeS and dependenCy injeCtion

218

 Building Pizza Services
Let’s go back to our PizzaPlace project and introduce it to some services. I can think of

at least two services, one to retrieve the menu and one to place the order when the user

clicks the Order button. For the moment, these services will be very simple, but later we

will use these to set up communication with a server.

Start by reviewing the Index component, which is Listing 5-26 with the markup left

out for conciseness.

Listing 5-26. The Index Component

@code {

 private State State { get; } = new State();

 protected override void OnInitialized()

 {

 State.Menu.Add(

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy));

 State.Menu.Add(

 new Pizza(2, "Margarita", 7.99M, Spiciness.None));

 State.Menu.Add(

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot));

 }

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

 private void RemoveFromBasket(int pos)

 => State.Basket.RemoveAt(pos);

 private void PlaceOrder()

 {

 Console.WriteLine("Placing order");

 }

}

Pay special attention to the State property. We will initialize the State.Menu

property from the MenuService service (which we will build next), and we will use

dependency injection to pass the service.

Chapter 5 ServiCeS and dependenCy injeCtion

219

 Adding the MenuService and IMenuService Abstraction
If you are using Visual Studio, right-click the PizzaPlace.Shared project and select Add ➤

New Item. If you are using Code, right-click the PizzaPlace.Shared project and select Add

File. Add a new interface class IMenuService and complete it as in Listing 5-27.

Listing 5-27. The IMenuService Interface

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public interface IMenuService

 {

 ValueTask<Menu> GetMenu();

 }

}

This interface allows us to retrieve a menu. Note that the GetMenu method returns

a ValueTask<Menu>; that is because we expect the service to retrieve our menu from a

server (we will build this in the following chapters) and we want the method to support

an asynchronous call.

Let’s elaborate on this. First, update the Index component’s OnInitializedAsync

method (don’t forget the @inject at the top) as in Listing 5-28. This is an asynchronous

method using the async keyword in its declaration.

never call asynchronous services in your Blazor component’s constructor; always
use OnInitializedAsync or OnParametersSetAsync.

Inside the OnInitializedAsync method, we call the GetMenu method using the await

keyword which requires GetMenu to return a Task<Menu> or ValueTask<T>. But why a

ValueTask<T> and not Task<T>? Because I don’t know how someone will implement the

GetMenu method. They may do this synchronously, for example, by retrieving it from a cache,

and then using a Task<T> is more expensive than a ValueTask<T>. Also, the ValueTask<T> is

a value type, meaning that this one does not end up on the heap in the synchronous case.

If you want to learn more about this, Apress has an excellent book about all of this called

Pro .NET Memory Management: For Better Code, Performance, and Scalability.

Chapter 5 ServiCeS and dependenCy injeCtion

220

Listing 5-28. Using the IMenuService

@page "/"

@inject IMenuService MenuService

<!-- Menu -->

<PizzaList Title="Our Selection of Pizzas"

 Items="@State.Menu.Pizzas"

 ButtonTitle="Order"

 ButtonClass="btn btn-success pl-4 pr-4"

 Selected="@AddToBasket" />

<!-- End menu -->

<!-- Shopping Basket -->

<ShoppingBasket Orders="@State.Basket.Orders"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@RemoveFromBasket" />

<!-- End shopping basket -->

<!-- Customer entry -->

<CustomerEntry Title="Please enter your details below"

 @bind-Customer="@State.Basket.Customer"

 ButtonTitle="Checkout"

 ButtonClass="mx-auto w-25 btn btn-success"

 ValidSubmit="PlaceOrder" />

<!-- End customer entry -->

@State.ToJson()

@code {

 private State State { get; } = new State();

 protected override async Task OnInitializedAsync()

 {

 Menu menu = await MenuService.GetMenu();

Chapter 5 ServiCeS and dependenCy injeCtion

221

 foreach(Pizza pizza in menu.Pizzas)

 {

 State.Menu.Add(pizza);

 }

 }

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

 private void RemoveFromBasket(int pos)

 => State.Basket.RemoveAt(pos);

 private void PlaceOrder()

 {

 Console.WriteLine("Placing order");

 }

}

We are not ready to run this application yet because we still not to configure

dependency injection. But run it anyway! When you get the error, look at the browser’s

debugger console. You should see the following error:

Unhandled exception rendering component: Cannot provide a value for

property 'MenuService' on type 'PizzaPlace.Client.Pages.Index'. There is no

registered service of type 'PizzaPlace.Shared.IMenuService'.

Dependency injection could not provide an instance for IMenuService. Of course, it

can’t! We did implement this interface.

Add a new HardCodedMenuService class to the PizzaPlace.Shared project, as in

Listing 5-29. The GetMenu method returns a new ValueTask<Menu> containing three

different kinds of pizza.

Listing 5-29. The HardCodedMenuService Class

using System.Collections.Generic;

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public class HardCodedMenuService : IMenuService

Chapter 5 ServiCeS and dependenCy injeCtion

222

 {

 public ValueTask<Menu> GetMenu()

 => new ValueTask<Menu>(

 new Menu

 {

 Pizzas = new List<Pizza> {

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

 new Pizza(2, "Margarita", 7.99M, Spiciness.None),

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

 }

 });

 }

}

Now we are ready to use the IMenuService in our Index component.

Open Program.cs from the client project. We’ll use a transient object as stated in

Listing 5-30.

Listing 5-30. Configuring Dependency Injection for the MenuService

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Shared;

using System;

using System.Net.Http;

using System.Threading.Tasks;

namespace PizzaPlace.Client

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

Chapter 5 ServiCeS and dependenCy injeCtion

223

 BaseAddress = new Uri(

 builder.HostEnvironment.BaseAddress)

 });

 builder.Services

 .AddTransient<IMenuService, HardCodedMenuService>();

 await builder.Build().RunAsync();

 }

 }

}

Run your Blazor project. Everything should still work! In the next chapters, we will

replace this with a service to retrieve everything from a database on the server.

 Ordering Pizzas with a Service
When the user makes a selection of pizzas and fulfills the customer information, we want

to send the order to the server, so they can warm up the oven and send some nice pizzas

to the customer’s address. Start by adding an IOrderService interface to the PizzaPlace.

Shared project as in Listing 5-31.

Listing 5-31. The IOrderService Abstraction As a C# Interface

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public interface IOrderService

 {

 ValueTask PlaceOrder(ShoppingBasket basket);

 }

}

To place an order, we just send the basket to the server. In the next chapter, we

will build the actual server-side code to place an order; for now, we will use a fake

implementation that simply writes the order to the browser’s console. Add a class called

ConsoleOrderService to the PizzaPlace.Shared project as in Listing 5-32.

Chapter 5 ServiCeS and dependenCy injeCtion

224

Listing 5-32. The ConsoleOrderService

using System;

using System.Threading.Tasks;

namespace PizzaPlace.Shared

{

 public class ConsoleOrderService : IOrderService

 {

 public ValueTask PlaceOrder(ShoppingBasket basket)

 {

 Console.WriteLine($"Placing order for {basket.Customer.Name}");

 return new ValueTask();

 }

 }

}

The PlaceOrder method simply writes the basket to the console. However, this

method implements the asynchronous pattern from .NET, so we need to return a new

ValueTask instance.

Inject the IOrderService into the Index component as in Listing 5-33.

Listing 5-33. Injecting the IOrderService

@page "/"

@inject IMenuService MenuService

@inject IOrderService orderService

And use the order service when the user clicks the Order button by replacing

the implementation of the PlaceOrder method in the Index component. Since the

orderService returns a ValueTask (same with Task), we need to invoke it using the

await syntax, as in Listing 5-34.

Listing 5-34. The Asynchronous PlaceOrder Method

private async Task PlaceOrder()

{

 await orderService.PlaceOrder(State.Basket);

}

Chapter 5 ServiCeS and dependenCy injeCtion

225

As the final step, configure dependency injection. Again, we will make the

IOrderService transient as in Listing 5-35.

Listing 5-35. Configuring Dependency Injection for the OrderService

builder.Services

 .AddTransient<IMenuService, HardCodedMenuService>();

builder.Services

 .AddTransient<IOrderService, ConsoleOrderService>();

Think about this. How hard will it be to replace the implementation of one of the

services? There is only one place that says which class we will be using, and that is in

Program (or Startup with Blazor Server). In a later chapter, we will build the server-side

code needed to store the menu and the orders, and in the chapter after that, we will

replace these services with the real deal!

Build and run your project again, open your browser’s debugger, and open the

console tab. Order some pizzas and click the Order button. You should see some

feedback being written to the console.

 Summary
In this chapter, we discussed dependency inversion, which is a best practice for

building easily maintainable and testable object-oriented applications. We also saw that

dependency injection makes it very easy to create objects with dependencies, especially

objects that use dependency inversion. Then we looked at the dependency injection that

comes with Blazor. When you configure dependency injection, you need to be careful

with the lifetime of your instances, so let’s repeat that.

Transient objects are always different; a new instance is provided to every component

and every service.

Scoped objects are the same for a user’s connection, but different across different

users and connections. You can derive from the OwningComponentBase class if you need

scoped behavior for a specific component.

Singleton objects are the same for every object and every request, but still have

different lifetime between Blazor WebAssembly and Blazor Server.

Chapter 5 ServiCeS and dependenCy injeCtion

227
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_6

CHAPTER 6

Data Storage
and Microservices
In general, client-side browser applications need to store some of their data. In some

cases, such as games, the application can store its data in the browser itself, using

browser local storage. But in most cases, storage will happen on the server, which has

access to database engines such as SQL Server. In this chapter, you will learn the basics

of storing data using Entity Framework Core and exposing that data using REST and

microservices built on top of ASP.NET Core.

 What Is REST?
Storing data on the Web is ubiquitous. But how can applications communicate with

one another? Representational State Transfer (REST) is a protocol built on top of the

HTTP protocol for invoking functionality on servers, such as retrieving and storing data

from/in a database.

 Understanding HTTP
Before talking about REST, you should have a good understanding of the Hypertext

Transfer Protocol, better known as HTTP. HTTP was created by Tim Berners-Lee

at CERN in 1989. CERN is a center for elementary physics research, and what do

researchers do when they have completed their research? They publish papers with

their research findings. Before the Internet, publishing a paper was done literally on

paper (hence the name), and it took a lot of time between writing the paper and getting

it published in a research magazine. Instead, Tim Berners-Lee devised a way to put

papers on a server and allow users to read these papers using a program, now known as

a browser.

https://doi.org/10.1007/978-1-4842-7845-1_6#DOI

228

Also, scientific papers contain a lot of references, and when you want to read a paper

like this, it helps to be able to access the referenced papers. The Internet facilitates

reading papers through the use of HyperText Markup Language (HTML). Hypertext is an

electronic document format that can contain links to other documents. You simply click

the link to read the other paper, and you can go back to the first paper simply by clicking

the back button in your browser.

 Universal Resource Identifiers and Methods
Browsers are applications that know how to talk HTTP, and the first thing you do after

opening a browser is you type in a Universal Resource Identifier (URI). A URI allows a

browser to talk to a server, but more is needed. As the name suggests, a URI identifies

a resource universally, but you also need to use an HTTP method to instruct the server

to do something with the URI. The most common method is GET. As Figure 6-1 shows,

when you type in a URI in the browser, it will do a GET on the server.

Figure 6-1. The Browser Uses the GET Method to Retrieve a Document

Each time you click a hyperlink in the HTML document, the browser repeats this

process with another URI.

Chapter 6 Data Storage anD MiCroServiCeS

229

But there are other methods. If you want to publish a new paper, you can use the

POST method to send the paper to the server, supplying it with a URI. In this case, the

server will store the paper at the requested URI. If you want to make a change to your

paper, for example, to correct a spelling mistake, you can use the PUT method. Now the

server will overwrite the contents identified by the URI. And finally, you can delete the

paper using the DELETE method and its URI.

Note Using the get, poSt, pUt, and DeLete methods like this is a convention.
nothing states that you have to do things like this, and there are reSt services out
there that use different methods and status codes.

 HTTP Status Codes
What happens when you ask a server about something it doesn’t have? What should

the server return? Servers not only return HTML, but they also return a status code

about the result. When the server can process the request successfully, it will in general

return status code 200 (other successful status codes exist – you can find the full list at

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes). When the server can’t

find the resource, it will return a status code 404. Status code 404 simply means “Not

Found”. The client will receive this status code and can react appropriately. When the

browser receives a status code 200 (“OK”), it displays the HTML; when it receives a 404,

it displays a not found screen; etc.

 Invoking Server Functionality Using REST
Think about these methods we just talked about. With POST, you can CREATE

something on a server; with GET, you can READ it back; with PUT, you can UPDATE

something on the server; and with DELETE, you can DELETE things on the server.

They are also known as CRUD operations (CREATE-READ-UPDATE-DELETE). Roy

Fielding, the inventor of REST, realized that using the HTTP protocol you can also use

HTTP to work with data stored in a database. For example, if you use the GET method

with a URI http://someserver/categories, the server can execute some code to retrieve

data from the categories relational table and return it. Of course, the server would use a

Chapter 6 Data Storage anD MiCroServiCeS

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

230

format more appropriate for transferring data, such as XML or JSON. Because there are

many different formats for data, the server also needs a way to convey which format it is

sending. (At the beginning of the Web, only HTML was used as the format.) This is done

through HTTP headers.

 HTTP Headers
HTTP headers are instructions exchanged between the client and the server. Headers

are key/value pairs, where the client and server agree on the key. Many standard HTTP

headers exist which you can find at https://en.wikipedia.org/wiki/List_of_HTTP_

header_fields. For example, a server can use the Content-Type header to tell the client

to expect a specific format. Another header is the Accept header, which is sent by the

client to the server to politely ask the server to send the content in that format; this is also

known as content negotiation. Currently, the most popular format is JavaScript Object

Notation (JSON). And this is the exchange format you will use with Blazor.

 JavaScript Object Notation
JSON is a compact format for transferring data. Look at the example in Listing 6-1.

Listing 6-1. An Example of JSON

{ "book" : {

 "title" : "Microsoft Blazor",

 "chapters" : ["Your first Blazor project", "Data Binding"]

 }

}

This JSON format describes a book, which can easily be transformed into an object

in memory. The simplest JSON object is a string, for example, “Hello world!”, but we can

also create complex objects and arrays of JSON objects.

Objects are denoted using curly braces, and inside the curly braces, you will see

a comma-separated list of properties. Each property uses a key : value notation.

Listing 6-1 contains a single book object with as value another nested JSON object. This

nested JSON object contains two properties: title and chapters. The title is a string

"Microsoft Blazor". Note that the property name is also transferred as a string. And

Chapter 6 Data Storage anD MiCroServiCeS

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

231

finally, the chapters property is an array of strings, where you use square brackets to

indicate an array.

The JSON format is used for transferring data between two machines but today is

also heavily used for configuring tools, such as ASP.NET Core (just look at appsettings.

json in an ASP.NET server project). JSON today is way more popular on the Web than

XML, probably because of its simplicity.

 Some Examples of REST Calls
You need a list of pizzas from a server, and the server exposes the pizzas at URI http://

someserver/pizza. To get a list of pizzas, you use the GET method, and you use the

Accept header with value application/json to request the JSON format. Look at

Figure 6-2 for this example.

Figure 6-2. Using REST to Retrieve a List of Pizzas

Maybe your client wants to display the details of a pizza with id number 5. In this

case, it can append the id to the URI and perform a GET. Should the server not have any

pizza with that id, it can return a status code 404, as illustrated in Figure 6-3.

Chapter 6 Data Storage anD MiCroServiCeS

232

Figure 6-3. Using REST to Retrieve a Specific Pizza Through Its Unique Id

As the last example, let’s send some data from the client to the server. Imagine that

the customer has filled in all the details for the order and clicks the Order button. You

then send the order as JSON to the server using the POST method (remember POST

means insert). The server can then process the order in any way it likes; for instance,

it can insert the order into its database and return a 201: Created status code, as in

Figure 6-4. REST recommends returning a status code 201 with the Location header set

to the URI for the newly created resource.

Chapter 6 Data Storage anD MiCroServiCeS

233

Figure 6-4. POSTing an Order to the Server

 Building a Simple Microservice Using ASP.NET Core
So, how do you build a REST service? Your (hosted) Blazor project uses ASP.NET Core

for hosting the Blazor client, and adding a REST service to your server project is easy. But

first, let’s do a little intro to microservices.

 Services and Single Responsibility
A service is something (here, it will be a piece of software) that listens for requests; when

it receives a request, the service handles the request and returns with a response. In

Chapter 5, we built a menu service which can return a list of pizzas. In real life, you also

encounter services, and they are very similar. Consider a bank. You step into a bank,

and you give the teller your account number, some ID, and request $100. The teller will

check your account; if you have enough money in your account, the teller will deduct the

money and give you the cash. Should your account be too low, the teller will refuse. In

both cases, you got a response.

Services should also adhere to the principle of single responsibility. They should

do one thing very well, and that’s it. For example, the pizza service will allow clients

Chapter 6 Data Storage anD MiCroServiCeS

234

to retrieve, add, update, and delete pizzas. That’s it. A single responsibility, in this

case, PIZZAS.

You can have other services too, each with their own responsibility. Services that take

care of one thing are known as microservices.

 The Pizza Service
Open the PizzaPlace solution you worked on in previous chapters. In this chapter, you

will focus on the PizzaPlace.Server project. The only role this project currently has is to

host your Blazor client application, but now you will enhance this role by adding some

microservices.

Note With .net 6, you can also choose the minimal api approach, which uses a
terse C# syntax to accomplish the same thing. in this case, you will need to look
inside the program.cs file instead of Startup.cs.

Open Startup.cs and look at the Configure method, as in Listing 6-2.

Listing 6-2. The Startup Class’s Configure Method

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 app.UseWebAssemblyDebugging();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 // The default HSTS value is 30 days. ...

 app.UseHsts();

 }

Chapter 6 Data Storage anD MiCroServiCeS

235

 app.UseHttpsRedirection();

 app.UseBlazorFrameworkFiles();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapRazorPages();

 endpoints.MapControllers();

 endpoints.MapFallbackToFile("index.html");

 });

}

The last line with the endpoints.MapFallbackToFile("index.html") method

takes care of your Blazor client project. But right before it, you see the endpoints.

MapControllers() method that is used for hosting your services.

How the MapControllers method works is not the topic of this book, but I will cover

what you need to know. If you want to learn more about ASP.NET Core, there are many

good books about this topic, such as Pro ASP.NET Core MVC by Adam Freeman

(www.apress.com/gp/book/9781430265290).

In a nutshell, ASP.NET MVC will give the HTTP request to a controller class which

should inherit the ControllerBase class, and then the controller will execute one of its

methods. How does it decide? The MapControllers method will take the request’s URL,

for example, /pizzas, and use the first segment of the URL to search for a controller

with a matching name, for example, PizzasController. Because we are using REST, the

chosen controller will pick the method that matches the verb, for example, GET. If your

method is called Get(), it will be invoked, but you can also use the HttpGet attribute on

a method. In that case, the method’s name is not important. With the HttpGet attribute,

you can specify what the URL should look like, which allows you to pass arguments in

the URL to the method. We will look at an example shortly.

Next in line is the Controllers folder of the server project. Initially, this folder is

empty, and the idea is that you put your service classes here. In ASP.NET, service classes

are known as controllers, hence the name of the folder.

If you are using Visual Studio, right-click this folder and select Add ➤ Controller.

Select API Controller - Empty from Figure 6-5 and click Add.

Chapter 6 Data Storage anD MiCroServiCeS

https://www.apress.com/gp/book/9781430265290

236

Figure 6-5. Adding a New Controller

Type PizzasController and click Add again.

If you are using Code, simply right-click the Controllers folder and select Add File.

Name it PizzasController.cs. Now complete the class as in Listing 6-3.

This will add a new class called PizzasController, inheriting from ControllerBase,

which you can see in Listing 6-3. This class also has two attributes on it. The

[ApiController] attribute tells the ASP.NET runtime that this is a controller for a REST

service. The [Route] attribute tells the ASP.NET runtime that the URI where it will

expose itself is “api/pizzas”. The “[controller]” part of the route is a placeholder for the

name of the controller (Pizzas), but without the “Controller” part.

Listing 6-3. The Empty PizzasController

using Microsoft.AspNetCore.Mvc;

namespace PizzaPlace.Server.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class PizzasController : ControllerBase

 {

 }

}

Let’s add a GET method to retrieve a list of pizzas. For the moment, you will hard-

code the list, but in the next section, you will retrieve it from a database. Modify the

PizzasController as shown in Listing 6-4.

Chapter 6 Data Storage anD MiCroServiCeS

237

Listing 6-4. Adding a Method to the PizzaController to Retrieve a List of Pizzas

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

using System.Collections.Generic;

using System.Linq;

namespace PizzaPlace.Server.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class PizzasController : ControllerBase

 {

 private static readonly List<Pizza> pizzas = new List<Pizza>

 {

 new Pizza(1, "Pepperoni", 8.99M, Spiciness.Spicy),

 new Pizza(2, "Margarita", 7.99M, Spiciness.None),

 new Pizza(3, "Diabolo", 9.99M, Spiciness.Hot)

 };

 [HttpGet("/pizzas")]

 public IQueryable<Pizza> GetPizzas()

 => pizzas.AsQueryable();

 }

}

Let’s walk through this implementation. First, you declare a hard-coded static list of

pizzas. Next is the GetPizzas method, which has attribute HttpGet("/pizzas"). This

attribute says that when you perform a GET HTTP method on the server with the /pizzas

URI, the server should call the GetPizzas method. This attribute overrides the Route

attribute on the class, so the default api/pizzas will not invoke the GetPizzas method.

The GetPizzas method returns an IQueryable<Pizza>, and ASP.NET Core will send

this result back to the client as a list of pizzas. The IQueryable<Pizza> interface is used

in .NET to represent data that can be queried, such as database data, and is returned

by LINQ queries. Why IQueryable<Pizza>? Because later in this chapter, we will return

data from a database which is exposed as this type.

Chapter 6 Data Storage anD MiCroServiCeS

238

Note that the GetPizzas method contains nothing about HOW the data will be

transferred to the client. This is all taken care of for you by ASP.NET Core! By default,

your implementation in ASP.NET Core will use JSON, which is what you want. ASP.NET

Core allows you to pick other formats, including your custom format. The client can

request a certain format, such as XML or JSON using the Accept header in the request.

Here, we will be using the default JSON format.

Time to see if it works. First, ensure that the PizzaPlace.Server project is the startup

project (with Visual Studio, right-click the PizzaPlace.Server project and select Set as

Startup Project from the drop-down menu. The PizzaPlace.Server project should be

shown as bold).

Now run your project and wait for the browser to open because you will perform a

GET; you can use the browser for the GET method, but for other methods, you will use a

nice tool called Postman.

Change the URI in the browser to http://localhost:xxxx/pizzas where xxxx is the

original port number in your browser (the port number gets selected by the host and

might be different than mine). You should see the result shown in Figure 6-6.

Figure 6-6. The Results of Getting a List of Pizzas from the Pizza Service

A JSON-encoded list of pizzas! It works! So here we see an array of objects, and each

object has the properties of our Pizza class (except the properties use lowercase which is

the convention with JSON).

Now you are ready to retrieve the data from a real database using Entity

Framework Core.

 What Is Entity Framework Core?
Entity Framework Core is the framework Microsoft recommends for working with

databases. Entity Framework Core (EF) is an Object-Relational Mapper which allows

you to write classes as normal C# classes and then store and retrieve .NET objects from

a database without having to be an SQL expert. It will take care of querying, inserting,

updating, and deleting objects in the database for you. This is also known as persistence

Chapter 6 Data Storage anD MiCroServiCeS

239

ignorance, where your code does not need to know how and where data gets stored!

Entity Framework Core has support for SQL Server, SQLite, and more.

 Using the Code-First Approach
But of course, you need to explain to Entity Framework Core what kind of data you want

to store. Entity Framework Core uses a technique called Code First, where you write code

to describe the data and how it should be stored in the database. Then, you can use this

to generate the database, the tables, and the constraints. If you want to make changes to

the database, you can update the database schema with code-first migrations.

If you already have a database, you can also generate the code from the database,

also known as EF Database First, but this is not the target of this book.

With code-first approach, you describe the classes (also known as entities) that will

map to database tables. You already have the Pizza class (which you can find in the

PizzaPlace.Shared project) to describe the Pizza table in the database. But you need to

do more.

In this part, you will be using SQL Server, or SQLite if you don’t have access to

SQL Server. If you installed Visual Studio on your Windows machine, SQL Server was

installed too.

You can check if SQL Server was installed as follows: start Visual Studio and select

View ➤ SQL Server Object Explorer from the menu. Now click Add SQL Server. Expand

the local node. If you have SQL Server, locally it should be listed.

If you don’t have SQL Server on your machine, you can install a free version of SQL

Server or use a SQL Server instance in the cloud, for example, SQL Server on Azure

(https://azure.microsoft.com/get- started). You can even install SQL Server on

Linux and OSX! There are some nice articles on the Web (e.g., https://database.guide/

how- to- install- sql- server- on- a- mac/) that explain how. And if you don’t want to

bother installing SQL Server, you can also use SQLite, which is available out of box with

.NET Core, so you don’t need to install anything for SQLite.

Let us start by adding Entity Framework Core to the PizzaPlace.Server project. If you

are using Visual Studio, right-click the server project and select Manage NuGet Packages.

The NuGet window will open in Visual Studio. NuGet is a very practical way for installing

dependencies such as Entity Framework Core to your project. It will not only install the

Microsoft.EntityFrameworkCore.SqlServer library but also all its dependencies.

Chapter 6 Data Storage anD MiCroServiCeS

https://azure.microsoft.com/get-started
https://database.guide/how-to-install-sql-server-on-a-mac/
https://database.guide/how-to-install-sql-server-on-a-mac/

240

Select the Browse tab and type Microsoft.EntityFrameworkCore.SqlServer in the

search box (or Microsoft.EntityFrameworkCore.Sqlite if you are using that). You should

see this library as the top search result (if not, look at the top right corner of the NuGet

window where you will see Package Source; select nuget.org as the source). Select it, then

select the Latest stable version from the Version drop-down, and click the Install button.

With Code, you open the command prompt with the current folder set to where the

PizzaPlace.Server project is, and type in the following command:

dotnet add package Microsoft.EntityFrameworkCore.SqlServer

If you opted to use SQLite, use this command:

dotnet add package Microsoft.EntityFrameworkCore.Sqlite

Add a new class called PizzaPlaceDbContext to the PizzaPlace.Server project,

as shown in Listing 6-5. This class represents the database, and you do need to give a

couple of hints about how you want your data to be stored in SQL Server (or some other

database engine; this uses the same code).

Note the whole idea of using entity Framework is to abstract away the
underlying database. in general, to switch to a different database engine, you
install a different nuget package which will take care of communicating with the
database. the code stays the same and eF is really efficient!

Listing 6-5. The PizzaPlaceDbContext Class

using Microsoft.EntityFrameworkCore;

using PizzaPlace.Shared;

namespace PizzaPlace.Server

{

 public class PizzaPlaceDbContext : DbContext

 {

 public PizzaPlaceDbContext(DbContextOptions<PizzaPlaceDbContext> options)

 : base(options) { }

 public DbSet<Pizza> Pizzas { get; set; } = default!;

Chapter 6 Data Storage anD MiCroServiCeS

241

 protected override void OnModelCreating(

 ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 var pizzaEntity = modelBuilder.Entity<Pizza>();

 pizzaEntity.HasKey(pizza => pizza.Id);

 pizzaEntity.Property(pizza => pizza.Name)

 .HasMaxLength(80);

 pizzaEntity.Property(pizza => pizza.Price)

 .HasColumnType("money");

 pizzaEntity.Property(pizza => pizza.Spiciness)

 .HasConversion<string>();

 }

 }

}

First, you need to create a constructor for the PizzaPlaceDbContext class taking a Db

ContextOptions<PizzaPlaceDbContext> argument. This is used to pass some options

and the connection to the database server, which you will do later in this section.

Next, you add a table to the database to represent your pizzas using a public property

of type DbSet<Pizza>. DbSet<T> is the collection class used by Entity Framework Core

to represent a table in the database, but you can think of it as a List<T> (one of the cool

things with Entity Framework Core is that you work with collections instead of using SQL

to talk to the database). Entity Framework Core will use the DbSet<T> to interact with a

database table, in this case, the Pizzas table.

Finally, you override the OnModelCreating method, which takes a modelBuilder

argument. In the OnModelCreating method, you describe how each DbSet<T> should

be mapped to the database; for example, you can tell it which table to use, how each

column should be called, which type to use in the database, etc. In this case, you tell

the modelBuilder that the Pizza table should have a primary key, the Id property of

the Pizza class. We tell it to make the Name maximum 80 characters and how the Price

property should be mapped to a SQL type. You will use the MONEY type for that. Finally,

we tell EF that the Spiciness enumeration should be mapped to a string using the

HasConversion<string>() method. This way, we end up with nice readable entries

for spiciness, instead of a number. For the moment, this is enough for your current

Chapter 6 Data Storage anD MiCroServiCeS

242

implementation. You don’t have to explain everything about every property because

there are a lot of defaults available. For example, the string type from .NET will be

mapped to a type used for strings in the database.

 Preparing Your Project for Code-First Migrations
Now you are ready to tell the PizzaPlaze.Server project to use SQL Server (or SQLite) as

the database. You do this with dependency injection. In ASP.NET Core, you configure

dependency injection in the Startup class’s ConfigureServices method. Let’s have a

look at this method which is shown in Listing 6-6.

Listing 6-6. The Startup.ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews();

 services.AddRazorPages();

}

Remember IServiceCollection from Chapter 5? Here, dependencies for ASP.

NET Core are added, such as dependencies for Controllers and razor pages, which are

required for your service.

The Startup class also comes with a constructor as in Listing 6-7.

Listing 6-7. The Startup Class’s Constructor

public class Startup

{

 public Startup(IConfiguration configuration)

 {

 Configuration = configuration;

 }

 public IConfiguration Configuration { get; }

You need this constructor to have access to the project's configuration file. The

configuration will contain the connection string for the database to talk to.

Chapter 6 Data Storage anD MiCroServiCeS

243

Now we will provide the PizzaPlaceDbContext class as a dependency in the

ConfigureServices method. If you are using SQL Server, add the following code from

Listing 6-8 at the end of the ConfigureServices method.

Listing 6-8. Adding Entity Framework Dependencies

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews();

 services.AddRazorPages();

 services.AddDbContext<PizzaPlaceDbContext>(options =>

 options.UseSqlServer(

 Configuration.GetConnectionString("PizzaPlaceDb")));

}

This single statement tells ASP.NET Core that you will be using the

PizzaPlaceDbContext and that you will be storing it in SQL Server. This code also looks

up the connection string for the database in configuration, which you still need to add.

Should you opt for SQLite, you need to add the code from Listing 6-9.

Listing 6-9. Using SQLite As the Database

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews();

 services.AddRazorPages();

 services.AddDbContext<PizzaPlaceDbContext>(options =>

 options.UseSqlite(

 Configuration.GetConnectionString("PizzaPlaceDbLite"))

);

}

ASP.NET Core allows you to place your configuration settings in many different

places, such as a JSON configuration file, environment variables, etc. Our server project

already has a configuration file called appsettings.json, so open it.

You need to add a connection string that will allow access to the database. A database

connection string tells your code where to find the database server, which database to use,

and which credentials should be used to log in. Update the appsettings.json configuration

Chapter 6 Data Storage anD MiCroServiCeS

244

file as in Listing 6-10. This actually contains two connection strings, one for SQL Server

and one for SQLite. The SQL Server connection string uses the (localdb)\\MSSQLLocalDB

server, which is the server installed with Visual Studio. Of course, if you are using another

database server, you will also have to change the server name. There are a lot of examples

on www.connectionstrings.com/, or read on to find out how to get the connection string

with Visual Studio. The SQLite connection string is a lot simpler, containing the name of

the file where we will store the data using SQLite.

Listing 6-10. The appsettings.json Configuration File

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "ConnectionStrings": {

 "PizzaPlaceDb": "Server=(localdb)\\MSSQLLocalDB;Database=PizzaPlaceDb;

Trusted_Connection=True;MultipleActiveResultSets=true",

 "PizzaPlaceDbLite": "Data Source=PizzaPlace.db"

 }

}

 Finding Your Database Server’s Connection String
If you are not sure which connection string to use, you can find the connection string for

SQL Server in Visual Studio by selecting View ➤ SQL Server Object Explorer.

You can connect to a database by clicking the server icon with the little green + sign,

shown in Figure 6-7.

Figure 6-7. SQL Server Object Explorer

Chapter 6 Data Storage anD MiCroServiCeS

http://www.connectionstrings.com/

245

You can look for available database servers by expanding the Local, Network, or

Azure expanders as in Figure 6-8. I recommend that you try to find the MSSQLLocalDB

database server. If you use another database server, you might need to change how to log

in to your database. When you’re ready, click Connect.

Figure 6-8. Finding the Connection String for a Database

Chapter 6 Data Storage anD MiCroServiCeS

246

Next, expand SQL Server in SQL Server Object Explorer from Figure 6-9 and select

your server. Right-click it and select Properties. Now copy the connection string from

the properties window, paste it in appsettings.json, and change the database name to

PizzaPlaceDb.

Figure 6-9. Getting the Database’s Properties

 Creating Your First Code-First Migration
You are almost ready to generate the database from the code. Start by adding the

Microsoft.EntityFrameworkCore.Design NuGet package to the PizzaPlace.Server project.

You need this package to perform code-first migrations.

Now you need to create a code-first migration. A migration is a C# class that contains

the changes that need to be made to the database to bring it up (or down) to the

database schema your application needs. This is done through a tool called dotnet-ef.

Start by selecting from the Visual Studio menu View ➤ Other Windows ➤ Package

Manager Console. Or use the command line (cmd.exe) if you prefer. If you are using

Code, use the integrated terminal or open a command prompt.

You must run the next command in the PizzaPlace.Server directory, so make sure

you are in the correct directory (the one with the PizzaPlace.Server.csproj file).

You might need to install the global dotnet-ef command-line tool as well. This is the

tool you use to generate the migration from your code and to update the database once

you are happy with the generated migration. Run the following command to install the

migration tool. You only need to install this tool once.

dotnet tool install --global dotnet-ef

Chapter 6 Data Storage anD MiCroServiCeS

247

Now execute the following command to create the migration:

dotnet-ef migrations add CreatingPizzaPlaceDb

Here, you use the dotnet-ef tool to add a new migration called

CreatingPizzaPlaceDb. You can pick any name you want for the migration; do pick one

that makes sense. You should see the following output:

Build started...

Build succeeded.

Done. To undo this action, use 'ef migrations remove'

Should you get an error or warnings, please review the code for the Pizza and the

PizzaPlaceDbContext classes (and maybe compare with the provided sources for the

book), ensure that all the Entity Framework packages are using the same version, and

try again.

This tool created a new Migrations folder in the PizzaPlace.Server project with two

files similar to Figure 6-10 but with a different timestamp.

Figure 6-10. The Result of Adding the First Migration

Open the CreatingPizzaDb.cs file from Listing 6-11 and look at what the tool did. If

you have been using SQLite, consult Listing 6-12.

Chapter 6 Data Storage anD MiCroServiCeS

248

Listing 6-11. The CreatingPizzaDb.cs File for SQL Server

using Microsoft.EntityFrameworkCore.Migrations;

namespace PizzaPlace.Server.Migrations

{

 public partial class CreatingPizzaPlaceDb : Migration

 {

 protected override void Up(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.CreateTable(

 name: "Pizzas",

 columns: table => new

 {

 Id = table.Column<int>(type: "int", nullable: false)

 .Annotation("SqlServer:Identity", "1, 1"),

 Name = table.Column<string>(type: "nvarchar(80)",

 maxLength: 80, nullable: false),

 Price = table.Column<decimal>(type: "money",

 nullable: false),

 Spiciness = table.Column<string>(type:

 "nvarchar(max)", nullable: false)

 },

 constraints: table =>

 {

 table.PrimaryKey("PK_Pizzas", x => x.Id);

 });

 }

 protected override void Down(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.DropTable(

 name: "Pizzas");

 }

 }

}

Chapter 6 Data Storage anD MiCroServiCeS

249

A migration class has two methods: Up and Down. The Up method will upgrade the

database schema. In this case, it will create a new table called Pizzas with Id, Name,

Price, and Spiciness columns.

The Down method downgrades the database schema, in this case, by dropping the

column. As you are developing, you will make small changes to the database schema;

each change becomes a migration. We can then use these migrations to update the

database or go back to a previous schema of the database. You can also apply a whole

series of changes when you want to update your production database to match the

development database’s schema.

Listing 6-12. The Migration Class for SQLite

using Microsoft.EntityFrameworkCore.Migrations;

namespace PizzaPlace.Server.Migrations

{

 public partial class Created : Migration

 {

 protected override void Up(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.CreateTable(

 name: "Pizzas",

 columns: table => new

 {

 Id = table.Column<int>(type: "INTEGER",

 nullable: false)

 .Annotation("Sqlite:Autoincrement", true),

 Name = table.Column<string>(type: "TEXT",

 maxLength: 80,

 nullable: false),

 Price = table.Column<decimal>(type: "money",

 nullable: false),

 Spiciness = table.Column<string>(type: "TEXT",

 nullable: false)

 },

Chapter 6 Data Storage anD MiCroServiCeS

250

 constraints: table =>

 {

 table.PrimaryKey("PK_Pizzas", x => x.Id);

 });

 }

 protected override void Down(

 MigrationBuilder migrationBuilder)

 {

 migrationBuilder.DropTable(

 name: "Pizzas");

 }

 }

}

 Generating the Database
Now you are ready to generate the database from your migration. With Visual Studio,

go back to the Command Line or Package Manager Console window (View ➤ Other

Windows ➤ Package Manager Console), or with Code, open the integrated terminal

(View ➤ Terminal). Ensure you are in the folder that contains the PizzaPlace.Server

project and type the following command:

dotnet-ef database update

This just created the database for you! Let’s have a look at the database. First, let’s

look at SQL Server.

From Visual Studio, open View ➤ SQL Server Object Explorer and expand the tree

for the PizzaPlaceDb database as in Figure 6-11 (you might need to refresh the database:

right- click Databases and select Refresh).

Chapter 6 Data Storage anD MiCroServiCeS

251

Figure 6-11. SQL Server Object Explorer Showing the PizzaPlaceDb Database

If you don’t have Visual Studio, you can download Azure Data Studio from https://

docs.microsoft.com/sql/azure- data- studio/download- azure- data- studio. After

installation ends, start Azure Data Studio and create a new connection. Enter your server

name and select PizzaPlaceDb from the drop-down list, as shown in Figure 6-12.

Chapter 6 Data Storage anD MiCroServiCeS

https://docs.microsoft.com/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15

252

Figure 6-12. Connection with SQL Operations Studio

To look at the SQLite database, you will need to download and install the SQLite

database browser from https://sqlitebrowser.org/.

Now run DB Browser, and open the PizzaPlace.db. You can now use this tool to

explore the database as in Figure 6-13.

Chapter 6 Data Storage anD MiCroServiCeS

https://sqlitebrowser.org/

253

Figure 6-13. Using DB Browser for SQLite

 Enhancing the Pizza Microservice
Let’s add some functionality to the Pizza microservice so it uses the database instead of

hard-coded data and add a method to insert a pizza in your database.

Open the PizzaController class, which sits in the Controllers folder of

the PizzaPlace.Server project. Start by adding a constructor that takes the

PizzaPlaceDbContext as an argument, as in Listing 6-13.

Listing 6-13. Injecting a PizzaPlaceDbContext Instance into the Controller

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

using System.Collections.Generic;

using System.Linq;

Chapter 6 Data Storage anD MiCroServiCeS

254

namespace PizzaPlace.Server.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class PizzasController : ControllerBase

 {

 private readonly PizzaPlaceDbContext db;

 public PizzasController(PizzaPlaceDbContext db)

 {

 this.db = db;

 }

 ...

 }

}

To talk to the database, the PizzasController needs a PizzaPlaceDbContext

instance, and as you learned in Chapter 5, you can use a constructor to do this. The

constructor only needs to save the reference in a local field (for now).

You don’t need the hard-coded list of pizzas, so remove the static field, and update

the GetPizza method to use the PizzaPlaceDbContext instead, as in Listing 6-14. To

get all the pizzas, you can simply use the Pizzas property of the PizzaPlaceDbContext.

The Entity Framework will access the database when it accesses the Pizzas property

and return all the rows in the Pizza table. Also remove the Route attribute, since the

GetPizzas method specifies its URL.

Listing 6-14. Retrieving the Pizzas from the Database

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

using System.Collections.Generic;

using System.Linq;

namespace PizzaPlace.Server.Controllers

{

 [ApiController]

 public class PizzasController : ControllerBase

Chapter 6 Data Storage anD MiCroServiCeS

255

 {

 private readonly PizzaPlaceDbContext db;

 public PizzasController(PizzaPlaceDbContext db)

 {

 this.db = db;

 }

 [HttpGet("/pizzas")]

 public IQueryable<Pizza> GetPizzas()

 => db.Pizzas;

 }

}

Now let’s add a method to insert a new pizza in the database. Add the InsertPizza

method from Listing 6-15 to the PizzasController class. This method will receive a

pizza instance from the client as part of the POST request body, so you add the HttpPost

attribute with the URI that you should post to. The pizza object will be posted in the

request body, and this is why the InsertPizza method’s pizza argument has the

FromBody attribute to tell ASP.NET MVC Core to convert the body of the request to a

pizza instance. The method adds the pizza to the PizzaPlaceDbContext Pizzas table and

then saves it to the database using the SaveChanges method. The InsertPizza method

then returns a 201 Created status code with the URI of the pizza as the response, as is

the convention with REST. There are many possible HTTP status codes that you could

return from a controller’s method. But the most common of them have special helper

methods that make it easy to return a certain status code, for instance, Ok(), NotFound().

In this case, you return a 201 – Created status code. You will examine this response with

Postman in the next part of this chapter.

Listing 6-15. The InsertPizza Method

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

using System.Collections.Generic;

using System.Linq;

namespace PizzaPlace.Server.Controllers

{

Chapter 6 Data Storage anD MiCroServiCeS

256

 [Route("api/[controller]")]

 [ApiController]

 public class PizzasController : ControllerBase

 {

 private readonly PizzaPlaceDbContext db;

 public PizzasController(PizzaPlaceDbContext db)

 {

 this.db = db;

 }

 [HttpGet("/pizzas")]

 public IQueryable<Pizza> GetPizzas()

 => db.Pizzas;

 [HttpPost("/pizzas")]

 public IActionResult InsertPizza([FromBody] Pizza pizza)

 {

 db.Pizzas.Add(pizza);

 db.SaveChanges();

 return Created($"pizzas/{pizza.Id}", pizza);

 }

 }

}

This is an introduction to REST services. Building real services with all the different

approaches and best practices can take up a whole book. The idea of this chapter is to

get you up and running.

 Testing Your Microservice Using Postman
So now you have your first microservice. But how do you test it? Previously, you used the

browser to test the GetPizzas method, which uses the GET method. For other methods,

such as POST, PUT, and DELETE, you need a better tool. Here, you will use Postman,

which is a tool specifically for testing REST services.

Open your favorite browser and go to www.getpostman.com. Download the

application and install it. By the time you read this book, the installation procedure may

have changed a bit, so please follow the instructions from the installer.

Chapter 6 Data Storage anD MiCroServiCeS

http://www.getpostman.com

257

After it has installed, run Postman.

Postman will open, and it will ask you what you want to do. Select Create New, as

shown in Figure 6-14.

Figure 6-14. Select Create New to Get Started with Postman

Now select Create a request as in Figure 6-15.

Figure 6-15. Create a Request with Postman

Now run the PizzaPlace solution and copy the URI from the browser. Paste it in

Postman’s URL field and append /pizzas as in Figure 6-16. Don’t forget that you most

likely will have a different port number!

Figure 6-16. Making a GET Request with Postman

Chapter 6 Data Storage anD MiCroServiCeS

258

Before you click Send, let’s add the Accept header. Click the Headers tab and enter

Accept as the key and application/json as the value. Please refer to Figure 6-17 for

reference.

Figure 6-17. Adding Headers to the Request in Postman

Now you can click Send. You should receive an empty list as in Figure 6-18. Also note

the 200 OK status code, meaning the method was executed successfully! We simply don’t

have any pizzas in our database yet.

Figure 6-18. Receiving an Empty List of Pizzas from the Server

Let’s add a couple of pizzas to the database. At the top of Postman, you will find a tab

with a plus sign. Click it to add another tab. Select POST as the method and copy the URI

from the previous tab, as shown in Figure 6-19.

Figure 6-19. Starting with the POST Request

Now select the Headers section and add a new header with key Content-Type and

value application/json like in Figure 6-20.

Chapter 6 Data Storage anD MiCroServiCeS

259

Figure 6-20. Adding the Content-Type Header for the POST Request

Now select the Body section, select the raw format using the drop-down, and enter

a pizza object using JSON. Please refer to Figure 6-21. Note that this raw string contains

the pizza’s properties serialized as JSON and that you don’t need to send the Id property

because the server will generate the id when it gets inserted into the database.

Figure 6-21. Entering a Pizza Using JSON

Ensure your PizzaPlace application is still running, and then click the Send button.

If all is well, you should receive a positive 201 Created response as in Figure 6-22. In the

response area of Postman, select the Headers tab. Look for the Location header. It will

show the new URI given to this pizza. This Location header is returned by the Created

method you called as the last line of Listing 6-15.

Figure 6-22. The POST Response in Postman

Chapter 6 Data Storage anD MiCroServiCeS

260

Click the first tab where you created the GET request and click Send again. Now

you should have a list of pizzas (a list of one). Try creating a couple of other pizzas.

Figure 6-23 is my result after adding three pizzas.

Figure 6-23. A List of Pizzas Stored in the Database

 Summary
In this chapter, you had a look at how to store data on the server using Entity Framework

Core and how to expose that data using Web API, REST, and microservices. You added a

pizza service to the PizzaPlace application and then went on testing it with Postman.

In the next chapter, you will learn how to talk to your service(s) from Blazor.

Chapter 6 Data Storage anD MiCroServiCeS

261
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_7

CHAPTER 7

Communication
with Microservices
In the previous chapter, you built a microservice using ASP.NET Core and Entity

Framework Core to retrieve the menu of pizzas from the server. In this chapter, you will

add support to the Blazor client to talk to that microservice. You will also complete the

project by adding support for completing the order.

 Using the HttpClient Class
Start by creating a fresh Blazor WASM project (with hosting enabled) just like you created

in the first chapter (call it Blazor.Communication). You will use this project to examine

the template that was created for you. You will start by looking at the server side of the

solution, then the shared project’s code, and then the client side.

 Examining the Server Project
Look at the Blazor.Communication.Server project and look for the

WeatherForecastController class, which is in Listing 7-1.

Listing 7-1. The WeatherForecastController Class

using Blazor.Communication.Shared;

using Microsoft.AspNetCore.Mvc;

namespace Blazor.Communication.Server.Controllers;

[ApiController]

[Route("[controller]")]

public class WeatherForecastController : ControllerBase

https://doi.org/10.1007/978-1-4842-7845-1_7#DOI

262

{

 private static readonly string[] Summaries = new[]

 {

 "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm",

 "Balmy", "Hot", "Sweltering", "Scorching"

 };

 private readonly ILogger<WeatherForecastController> _logger;

 public WeatherForecastController(

 ILogger<WeatherForecastController> logger)

 {

 _logger = logger;

 }

 [HttpGet]

 public IEnumerable<WeatherForecast> Get()

 {

 return Enumerable.Range(1, 5)

 .Select(index => new WeatherForecast

 {

 Date = DateTime.Now.AddDays(index),

 TemperatureC = Random.Shared.Next(-20, 55),

 Summary = Summaries[Random.Shared.Next(Summaries.Length)]

 })

 .ToArray();

 }

}

Does this look somewhat familiar? Of course, it does; this is an API controller

like we saw in the previous chapter. What URL you should use to access the list of

WeatherForecasts?

The WeatherForecastController class exposes one REST endpoint at

URI /WeatherForecast to retrieve a list of WeatherForecast objects. This time, the

WeatherForecastController uses the [Route("[controller]")] attribute to set up the

endpoint to generically listen to an URI that contains the name of the controller (without

the suffix “Controller”) and then uses the [HttpGet] attribute to expect the GET method.

Chapter 7 CommuniCation with miCroserviCes

263

To invoke this method, you should use a GET on the /weatherforecast URI, which

you can try with your browser (or if you prefer, Postman). Run the solution and type the

URI in your browser (don’t forget you might have a different port number) which will

result in Figure 7-1 (expect different weather; it is random).

Figure 7-1. Invoking the Service Using the Browser

The Get method from Listing 7-1 uses a random choice of temperatures and

summaries to generate these forecasts, which is great for a demo.

 Using a Shared Project. Why?
Now open the WeatherForecast class from the Blazor.Communication.Shared project,

which is in Listing 7-2.

Listing 7-2. The Shared WeatherForecast Class

namespace Blazor.Communication.Shared;

public class WeatherForecast

{

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string? Summary { get; set; }

 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);

}

Chapter 7 CommuniCation with miCroserviCes

264

This WeatherForecast class is straightforward, containing the Date of the forecast,

the temperature in Celsius and Fahrenheit, and a Summary, but I want to draw your

attention to the fact that this class lives in the Shared project. This shared project is used

both by the server and the client project.

If you ever created a web app with JavaScript, you should be familiar with the

experience of building a data exchange class for the server project, for example, in C#,

and building another class in JavaScript (or TypeScript) for the client. You must make

sure that both classes serialize to the same JSON format; otherwise, you will get runtime

errors or, even worse, lose data! If the model grows, you must update both classes again.

This is a HUGE maintenance problem in these kinds of projects, because you run the risk

of updating only one side on a busy workday.

With Blazor, you don’t suffer from this because both server and client use C#. And

that is why there is a Shared project. You put your classes here, and they are shared

between the server and client, and then you use them by simply adding a reference to

the Shared project. Adding another piece of data means updating a shared class, which

works easily! No longer must you update two pieces of code.

 Looking at the Client Project
Now look at the Blazor.Communication.Client project. Inside the Pages folder, you will

find the FetchData component from Listing 7-3.

Listing 7-3. The FetchData Component

@page "/fetchdata"

@using Blazor.Communication.Shared

@inject HttpClient Http

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

Chapter 7 CommuniCation with miCroserviCes

265

else

{

 <table class="table">

 <thead>

 <tr>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var forecast in forecasts)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

 </table>

}

@code {

 private WeatherForecast[]? forecasts;

 protected override async Task OnInitializedAsync()

 {

 forecasts = await Http

 .GetFromJsonAsync<WeatherForecast[]>("WeatherForecast");

 }

}

Chapter 7 CommuniCation with miCroserviCes

266

Let’s look at this line by line. The first line adds the path for routing. You will look

at routing in a later chapter. For the moment, you should know that when the URI is /

fetchdata, the FetchData component will be shown in the browser.

The second line in Listing 7-3 adds a Razor @using statement for the Shared project’s

namespace to the component. You need this because you use the WeatherForecast class

from the Shared project. Just like in C#, you use using statements in Razor to refer to

classes from another namespace.

On the third line, you inject the HttpClient instance using the @inject syntax from

Razor. The HttpClient class is the one you will use to talk to the server. You will learn

about the HttpClient class in more detail later in this chapter.

I do want to point out that you should never instantiate an instance of the

HttpClient class yourself. Blazor sets up the HttpClient class in a special way, and if

you create an instance yourself, it simply will not work as expected! Another reason not

to create an instance yourself is that this is a dependency of the FetchData component,

and we learned in Chapter 5 that classes and components should never create

dependencies themselves!

A little lower down in Listing 7-3, you will find an @if statement. Because you fetch

the data from the server using an asynchronous way, the forecasts field will initially

hold a null reference. So, if the forecasts field has not been set, you tell the user to wait.

If you have a slow network, you can see this happening. When you test your Blazor

application on your own machine, the network is fast, but you can emulate a slow

network using the browser (in this case, using Google Chrome).

 Emulating a Slow Network in Chrome
Start your Blazor project so the browser opens the Index page. Now open the debugger

tools from the browser (on Windows with Chrome, you do this by pressing F12) and

select the Network tab as in Figure 7-2. On the right side, you should see a drop-down list

that allows you to select which kind of network to emulate. Select Slow 3G.

Chapter 7 CommuniCation with miCroserviCes

267

Figure 7-2. Using the Chrome Browser Debugger to Emulate a Slow Network

Next, select the Fetch data tab on your Blazor site (should you already be on this

tab, select another tab and then the Fetch data tab). Because you now are using a slow

network, the Loading… feedback will appear, as shown in Figure 7-3.

After testing your Blazor website with a slow network, don’t forget to select

No throttling from the drop-down from Figure 7-2 to restore your network to its

normal speed.

Chapter 7 CommuniCation with miCroserviCes

268

Figure 7-3. The Loading… Feedback with a Slow Network

When the OnInitializedAsync method finished, the forecasts field holds data, and

your razor file will show a table with the forecasts by iterating over them, as you can see

in the else part of Listing 7-3.

Onto the @code section of the FetchData razor file. First, you declare a field called

forecasts to hold an array of WeatherForecast instances. You then override the

OnInitializedAsync life cycle method. Because you fetch the data from the server

using an asynchronous API, you need to put your code in OnInitializedAsync. The

OnInitializedAsync method is prefixed with C#’s async keyword, which makes it a

breeze to call async APIs with the await keyword.

Asynchronous communication means that the client might need to wait a fair

amount (for a computer) for the result to be returned. Asynchronous calls might take a

long time, and we don’t want to block the application so we use an asynchronous call.

Instead of using a call that will stop Blazor from completing other request (freezing

the user interface), you use the OnInitializedAsync method, which will wait in the

background for the result.

Chapter 7 CommuniCation with miCroserviCes

269

You use the Http.GetFromJsonAsync<WeatherForecast[]>("WeatherForecast") to

invoke the server’s GET endpoint at the URI, and you tell the GetFromJsonAsync method

(using generics) to expect an array of WeatherForecast objects. When the result comes

back from the server, you put the result into the forecasts field, and Blazor will take care

of re-rendering the UI with your new data, as shown in Figure 7-4.

Figure 7-4. Displaying the WeatherForecast Objects

 Understanding the HttpClient Class
All communication between the client and server passes through the HttpClient

class. This is the same class other applications in .NET use, and its role is to make the

HTTP request to the server and to expose the result from the server. It also allows you to

exchange binary or other formatted data, but in Blazor, we normally use JSON. With Blazor

WASM, the HttpClient class uses the browser’s network stack to talk on the network.

Chapter 7 CommuniCation with miCroserviCes

270

 The HttpClientJsonExtensions Methods
To make it a lot easier to talk to JSON microservices, .NET provides you with a bunch of

handy extension methods that take care of converting between .NET objects and JSON,

which you can find in the HttpClientJsonExtensions class. This class lives in the

System.Net.Http.Json namespace. I advise you use these methods, so you don’t have to

worry about serializing and deserializing JSON.

The GetFromJsonAsync extension method makes an asynchronous GET request

to the specified URI. Its signature is in Listing 7-4. There are a couple of overloads

available too.

Listing 7-4. The GetFromJsonAsync Extension Method Signature

public static Task<TValue?> GetFromJsonAsync<TValue>(this HttpClient

client, string? requestUri, JsonSerializerOptions? options,

CancellationToken cancellationToken = default);

Because it is an extension method, you call it as a normal instance method on the

HttpClient class, as shown in Listing 7-5.

This is also true for the other extension methods.

Listing 7-5. Using the GetJsonAsync Extension Method

forecasts = await Http.GetFromJsonAsync<WeatherForecast[]>("WeatherF

orecast");

GetFromJsonAsync<T> will expect the response to contain JSON as specified by the

generic argument. For example, in Listing 7-5, it expects an array of WeatherForecast

instances. You normally invoke the GetFromJsonAsync method by prefixing it with the

await keyword. Don’t forget that you can only use the await keyword in methods and

lambda functions that are async.

As you can see in Listing 7-4, there are additional arguments which we discuss later

in this section.

You can always inspect the request and response using your browser’s debugger. Run

your Blazor project and open the browser’s debugger on the Network tab. Now select the

Fetch data tab in your Blazor website to make it load the data and look at the browser’s

Network tab as in Figure 7-5.

Chapter 7 CommuniCation with miCroserviCes

271

You can always clear the Network tab from previous requests before making the

request using the clear button, which in Chrome looks like a circle with a slash through it

(the forbidden sign).

Figure 7-5. Inspecting the Network Using the Browser’s Debugger

See the WeatherForecasts entry in Figure 7-5? Now you can click that entry to look at

the request and response. Let’s start with the request preview shown in Figure 7-6. Using

the Preview tab, you can see the server’s response.

Figure 7-6. Using the Preview Tab to Look at the Response

If you want to look at the request and response headers, you can click the Headers

tab, as shown in Figure 7-7.

Chapter 7 CommuniCation with miCroserviCes

272

Figure 7-7. Using the Headers Tab to Look at the Request and the Request/
Response Headers

Here, you can see the request’s URL and GET verb (the request method). It also

shows the HTTP status code 200 OK. Scroll down to look at the headers. One of the

response headers is Content-Type with a value of application/json, which was set by the

server telling the client to expect JSON.

The PostAsJsonAsync extension method makes a POST request with the content

argument serialized in the request body as JSON to the specified URI. Its signature is in

Listing 7-6.

Listing 7-6. The PostAsJsonAsync Method’s Signature

public static Task<HttpResponseMessage> PostAsJsonAsync<TValue>(this

HttpClient client, string? requestUri, TValue value, JsonSerializerOptions?

options = null, CancellationToken cancellationToken = default);

The PutAsJsonAsync extension method makes a PUT request with the content

argument serialized as JSON in the request body to the specified URI. Its signature is in

Listing 7-7. Its usage is very similar to PostJsonAsync; the only difference is that it uses

the PUT verb.

Listing 7-7. The PutAsJsonAsync Method’s Signature

public static Task<HttpResponseMessage> PutAsJsonAsync<TValue>(this

HttpClient client, string? requestUri, TValue value, JsonSerializerOptions?

options = null, CancellationToken cancellationToken = default);

Chapter 7 CommuniCation with miCroserviCes

273

 Customizing Serialization with JsonSerializerOptions
Each of these methods takes an optional JsonSerializerOptions which allows you to

control how JSON serialization works. For example, the default options will serialize the

property names with the casing of the property name. However, there are services that

require camel casing for properties. Let us see how we can control this with

Listing 7-8. To change the casing, you can set the PropertyNamingPolicy property.

Here, we set it to JsonNamingPolicy.CamelCase. This example also shows how you can

control the serialization of enumerations. Normally, enumerations get serialized with

their int value. For example, Spiciness.Spicy will get serialized as 1. But if you like, you

can also use the name of the enumeration value, so Spiciness.Spicy will get serialized

as “Spicy”. Do this by using the JsonStringEnumConverter as in Listing 7-8. Don’t

forget you will have to pass the JsonSerializerOptions as an extra argument using the

GetFromJsonAsync and similar methods.

Listing 7-8. Controlling Casing with JsonSerializerOptions

protected readonly JsonSerializerOptions options =

 new JsonSerializerOptions

 {

 PropertyNamingPolicy = JsonNamingPolicy.CamelCase,

 Converters =

 {

 new JsonStringEnumConverter()

 }

 };

 Retrieving Data from the Server
So now you are ready to implement the client-side IMenuService you introduced earlier.

Open the PizzaPlace solution and look in the PizzaPlace.Client project for Program.cs,

which is shown in Listing 7-9.

Chapter 7 CommuniCation with miCroserviCes

274

Listing 7-9. Your Blazor Project’s Program Class

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Shared;

using System;

using System.Net.Http;

using System.Threading.Tasks;

namespace PizzaPlace.Client

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress =

 new Uri(builder.HostEnvironment.BaseAddress)

 });

 builder.Services

 .AddTransient<IMenuService, HardCodedMenuService>();

 builder.Services

 .AddTransient<IOrderService, ConsoleOrderService>();

 await builder.Build().RunAsync();

 }

 }

}

I would like to point out the third line of the Main method. Previously, I told you that

you should never create the HttpClient instance yourself. But here we do! This method

makes it very easy to configure your HttpClient instance so the service does not have to

set the BaseAddress property. This works for other HttpClient properties too.

Chapter 7 CommuniCation with miCroserviCes

275

In the Main method, you added two services, HardCodedMenuService and

ConsoleOrderService. Let’s replace these fake implementations with real services that

talk to the server.

 Implementing the MenuService
With Visual Studio, right-click the PizzaPlace.Client project and select Add ➤ New

Folder from the drop-down menu. With Code, right-click the PizzaPlace.Client project

and select New Folder. Name this folder Services. Now add a new class to this folder

called MenuService, which can be found in Listing 7-10.

Again, you are applying the principle of single responsibility where you

encapsulate how you talk to the server in a service. This way, you can easily replace this

implementation with another one should the need occur.

Listing 7-10. The MenuService Class

using PizzaPlace.Shared;

using System.Linq;

using System.Net.Http;

using System.Net.Http.Json;

using System.Threading.Tasks;

namespace PizzaPlace.Client.Services

{

 public class MenuService : IMenuService

 {

 private readonly HttpClient httpClient;

 public MenuService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public async ValueTask<Menu> GetMenu()

 {

 var pizzas = await httpClient

Chapter 7 CommuniCation with miCroserviCes

276

 .GetFromJsonAsync<Pizza[]>("/pizzas");

 return new Menu { Pizzas = pizzas!.ToList() };

 }

 }

}

You start by adding a constructor to this class taking the MenuService’s dependency

on HttpClient, and you store it in a field named httpClient. Then you implement

the IMenuService interface’s GetMenu method where you talk to the server calling the

GetFromJsonAsync on the server’s /pizza endpoint. Note that the /pizza endpoint is

relative to the site’s base (<base href="/" />), which can be found in the index.html

file. You can change this base address in Program.cs (see Listing 7-11). Because the

MenuService service returns a menu and not a list of pizzas, you wrap the list of pizzas

you got from the server into a Menu object. That’s it!

Note using the principle of single responsibility results in many small classes,
which are easier to understand, maintain, and test.

You have the service; now you need to tell dependency injection to use the

MenuService. In the Program class’s Main method, replace it as shown in Listing 7-11.

Listing 7-11. Replacing the HardCodedMenuService with the MenuService

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Client.Services;

using PizzaPlace.Shared;

using System;

using System.Net.Http;

using System.Threading.Tasks;

namespace PizzaPlace.Client

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

Chapter 7 CommuniCation with miCroserviCes

277

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress = new Uri(builder.HostEnvironment

 .BaseAddress)

 });

 builder.Services

 .AddTransient<IMenuService, MenuService>();

 builder.Services

 .AddTransient<IOrderService, ConsoleOrderService>();

 await builder.Build().RunAsync();

 }

 }

}

Run your project. You should see the list of pizzas (retrieved from your database)

as in Figure 7-8! To switch between two implementations (a fake and a real one), all we

have to do is to reconfigure dependency injection! Unlimited power!!!

Figure 7-8. The PizzaPlace App Showing the Pizzas from the Database

Chapter 7 CommuniCation with miCroserviCes

278

 Showing a Loading UI
You will probably first see an empty menu, especially on a slow network. This might

confuse some customers, so let’s add some UI to tell the customer to wait a bit. Update

Index.razor to look like Listing 7-12. Here, we use an @if to check if the menu has been

loaded, and as long as there are no pizzas on the menu, we use a bootstrap spinner in the

else part. You can replace this with any kind of “loading” UI if you like. For example, you

could use https://tobiasahlin.com/spinkit/.

Listing 7-12. Adding a Loading UI to the Index Component

@page "/"

@inject IMenuService MenuService

@inject IOrderService orderService

@if (State.Menu.Pizzas.Any())

{

 <!-- Menu -->

 <PizzaList Title="Our Selection of Pizzas"

 Items="@State.Menu.Pizzas"

 ButtonTitle="Order"

 ButtonClass="btn btn-success pl-4 pr-4"

 Selected="@AddToBasket" />

 <!-- End menu -->

 <!-- Shopping Basket -->

 <ShoppingBasket Orders="@State.Basket.Orders"

 GetPizzaFromId="@State.Menu.GetPizza"

 Selected="@RemoveFromBasket" />

 <!-- End shopping basket -->

 <!-- Customer entry -->

 <CustomerEntry Title="Please enter your details below"

 @bind-Customer="@State.Basket.Customer"

 ButtonTitle="Checkout"

 ButtonClass="mx-auto w-25 btn btn-success"

Chapter 7 CommuniCation with miCroserviCes

https://tobiasahlin.com/spinkit/

279

 ValidSubmit="PlaceOrder" />

 <!-- End customer entry -->

 @State.ToJson()

}

else

{

 <div class="mx-auto text-center mb-3 mt-3">

 <div class="spinner-border text-danger" role="status">

 Loading...

 </div>

 </div>

}

@code {

 private State State { get; } = new State();

 protected override async Task OnInitializedAsync()

 {

 Menu menu = await MenuService.GetMenu();

 foreach (Pizza pizza in menu.Pizzas)

 {

 State.Menu.Add(pizza);

 }

 }

 private void AddToBasket(Pizza pizza)

 => State.Basket.Add(pizza.Id);

 private void RemoveFromBasket(int pos)

 => State.Basket.RemoveAt(pos);

 private async Task PlaceOrder()

 {

 await orderService.PlaceOrder(State.Basket);

 }

}

Chapter 7 CommuniCation with miCroserviCes

280

If the menu has not been loaded yet, it will display a spinner like in Figure 7-9.

Figure 7-9. Showing a Loading Progress Bar While Loading the Menu

 Storing Changes
Now onto storing the order from the customer. Because you don’t have a microservice

yet for storing the order, you will build this first, and then you will implement the client

service to send the order to the server.

 Updating the Database with Orders
What is an order? Every order has a customer, and an order has one or more pizzas.

A pizza can belong to more than one order, which can result in a specific problem: you

need a many-to-many relation between pizzas and orders, as illustrated in Figure 7-10.

But with Entity Framework Core, this is easy; again, this is taken care of for you.

Figure 7-10. Modeling the Relationships

Chapter 7 CommuniCation with miCroserviCes

281

Add a new class to the PizzaPlace.Shared project called Order, as shown in Listing 7-13.

As expected, we have a property to store the Customer and a collection of Pizza instances.

There is also an Id property because a database always needs an identifying field, known as

the primary key.

Listing 7-13. The PizzaOrder Class

using System.Collections.Generic;

namespace PizzaPlace.Shared

{

 public class Order

 {

 public int Id { get; set; }

 public Customer Customer { get; set; } = default!;

 public ICollection<Pizza> Pizzas { get; set; } = default!;

 }

}

Next, update the Pizza class, as shown in Listing 7-14. Here, we are adding a

collection to hold the orders. However, we don’t need to retrieve the orders from

the server, and that is why we add the [JsonIgnore] attribute. This tells the JSON

serialization to ignore it when converting to JSON.

Listing 7-14. The Pizza Class

using System.Collections.Generic;

using System.Text.Json.Serialization;

namespace PizzaPlace.Shared

{

 public class Pizza

 {

 public Pizza(int id, string name, decimal price,

 Spiciness spiciness)

 {

 this.Id = id;

Chapter 7 CommuniCation with miCroserviCes

282

 this.Name = name;

 this.Price = price;

 this.Spiciness = spiciness;

 }

 public int Id { get; }

 public string Name { get; }

 public decimal Price { get; }

 public Spiciness Spiciness { get; }

 [JsonIgnore]

 public ICollection<Order>? Orders { get; set; }

 }

}

Now you can add these tables to the PizzaPlaceDbContext class, which can be found

in Listing 7-15.

Listing 7-15. The Updated PizzaPlaceDbContext Class

using Microsoft.EntityFrameworkCore;

using PizzaPlace.Shared;

namespace PizzaPlace.Server

{

 public class PizzaPlaceDbContext : DbContext

 {

 public PizzaPlaceDbContext(

 DbContextOptions<PizzaPlaceDbContext> options)

 : base(options) { }

 public DbSet<Pizza> Pizzas { get; set; } = default!;

 public DbSet<Order> Orders { get; set; } = default!;

 public DbSet<Customer> Customers { get; set; } = default!;

 protected override void OnModelCreating(

 ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

Chapter 7 CommuniCation with miCroserviCes

283

 var pizzaEntity = modelBuilder.Entity<Pizza>();

 pizzaEntity.HasKey(pizza => pizza.Id);

 pizzaEntity.Property(pizza => pizza.Name)

 .HasMaxLength(80);

 pizzaEntity.Property(pizza => pizza.Price)

 .HasColumnType("money");

 pizzaEntity.Property(pizza => pizza.Spiciness)

 .HasConversion<string>();

 var ordersEntity = modelBuilder.Entity<Order>();

 ordersEntity.HasKey(order => order.Id);

 ordersEntity.HasOne(order => order.Customer);

 ordersEntity.HasMany(order => order.Pizzas)

 .WithMany(pizza => pizza.Orders);

 var customerEntity = modelBuilder.Entity<Customer>();

 customerEntity.HasKey(customer => customer.Id);

 customerEntity.Property(customer => customer.Name)

 .HasMaxLength(100);

 customerEntity.Property(customer => customer.Street)

 .HasMaxLength(50);

 customerEntity.Property(customer => customer.City)

 .HasMaxLength(50);

 }

 }

}

Here you have added the Customers and Orders tables, and in the OnModelCreating

method, you explain to Entity Framework Core how things should be mapped.

A Customer has a primary key Id and its string properties which we limit in length. An

Order has a primary key Id and a single Customer, and it has a many-to-one relationship

with Pizza (one Order can have many Pizzas, and each Pizza can belong to many

Orders).

Build your project and fix any compiler error(s) you might have.

Chapter 7 CommuniCation with miCroserviCes

284

Now it is time to create another migration. This migration will update your database

with your new tables. In Visual Studio, open the Package Manager Console (which you

can find via View ➤ Other Windows ➤ Package Manager Console). With Code, open the

integrated terminal. Or use the command line if you prefer (I really like the new terminal

in Windows 10). Change the directory to the PizzaPlace.Server project.

Now type the following command:

dotnet-ef migrations add Orders

This will create a migration for your new database schema.

Apply the migration to your database by typing the following command:

dotnet-ef database update

This concludes the database part.

 Building the Order Microservice
Time to build the microservice for taking orders. With Visual Studio, right-click the

Controllers folder of the PizzaPlace.Server project and select New ➤ Controller. Select

an Empty API Controller and name it OrdersController. With Code, right-click the

Controllers folder of the PizzaPlace.Shared project and select New File, naming it

OrdersController. This class can be found in Listing 7-16.

Listing 7-16. The OrdersController Class

using Microsoft.AspNetCore.Http;

using Microsoft.AspNetCore.Mvc;

using PizzaPlace.Shared;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace PizzaPlace.Server.Controllers

{

 [Route("api/[controller]")]

 [ApiController]

 public class OrdersController : ControllerBase

 {

Chapter 7 CommuniCation with miCroserviCes

285

 private readonly PizzaPlaceDbContext db;

 public OrdersController(PizzaPlaceDbContext db)

 {

 this.db = db;

 }

 [HttpPost("/orders")]

 public IActionResult InsertOrder([FromBody] ShoppingBasket basket)

 {

 Order order = new Order();

 order.Customer = basket.Customer;

 order.Pizzas = new List<Pizza>();

 foreach (int pizzaId in basket.Orders)

 {

 var pizza = db.Pizzas.Single(p => p.Id == pizzaId);

 order.Pizzas.Add(pizza);

 }

 db.Orders.Add(order);

 db.SaveChanges();

 return Created("/orders", order.Id);

 }

 }

}

The OrdersController needs a PizzaPlaceDbContext, so you add a constructor

taking the instance and you let dependency injection take care of the rest. To create a

new order, you use the POST verb for the InsertOrder method taking a ShoppingBasket

instance in the request body.

Upon receipt of a basket instance, you create the order, and then set the order’s

customer. Next, you fill up the order’s Pizzas collection with pizzas. We receive the

Ids for the Pizzas, so we look them up with it. Then we add the new order instance to

the PizzaPlaceDbContext Orders collection. Now when we call SaveChanges, Entity

Framework will INSERT it in the Orders table. That’s it. Entity Framework Core does all

the work of storing the data!

Chapter 7 CommuniCation with miCroserviCes

286

 Talking to the Order Microservice
Add a new class called OrderService to the Services folder of the PizzaPlace.Client

project. This OrderService uses a POST request to the server, as shown in Listing 7-17.

Listing 7-17. The OrderService Class

using PizzaPlace.Shared;

using System.Net.Http;

using System.Net.Http.Json;

using System.Threading.Tasks;

namespace PizzaPlace.Client.Services

{

 public class OrderService : IOrderService

 {

 private readonly HttpClient httpClient;

 public OrderService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public async ValueTask PlaceOrder(ShoppingBasket basket)

 {

 await httpClient.PostAsJsonAsync("/orders", basket);

 }

 }

}

First, you add a constructor to the OrderService class, taking the HttpClient

dependency, which you store in the httpClient field of the OrderService class. Next,

you implement the IOrderService interface by adding the PlaceOrder method, taking a

ShoppingBasket as a parameter. Finally, you invoke the asynchronous PostAsJsonAsync

method using the await keyword.

Now open the Program class from the PizzaPlace.Client project and replace the

ConsoleOrderService class with your new OrderService class, as shown in Listing 7-18.

Chapter 7 CommuniCation with miCroserviCes

287

Listing 7-18. Configuring Dependency Injection to Use the OrderService Class

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Client.Services;

using PizzaPlace.Shared;

using System;

using System.Net.Http;

using System.Threading.Tasks;

namespace PizzaPlace.Client

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress = new Uri(builder.HostEnvironment

 .BaseAddress)

 });

 builder.Services.AddTransient<IMenuService,

 MenuService>();

 builder.Services.AddTransient<IOrderService,

 OrderService>();

 await builder.Build().RunAsync();

 }

 }

}

Run your PizzaPlace application and place an order for a couple of pizzas. Now open

SQL Server Object Explorer in Visual Studio (or SQL Operations Studio) and examine

the Customers and Orders tables. They should contain your new order. You will also see

Chapter 7 CommuniCation with miCroserviCes

288

another table in the database, the OrderPizza table. This table was generated by Entity

Framework to store the many-to-many relationship between Orders and Pizzas.

 Summary
In this chapter, you learned that in Blazor you talk to the server using the HttpClient

class, calling the GetFromJsonAsync and PostAsJsonAsync extension methods. You

also learned that you should encapsulate calling the server using a client-side service

class so you can easily change the implementation by switching the service type using

dependency injection.

Chapter 7 CommuniCation with miCroserviCes

289
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_8

CHAPTER 8

Unit Testing
In previous chapters, we have been building a PizzaPlace application, which contains a

number of components. We have tested these components by running the application

and interacting with it. Here, we will look at writing unit tests for Blazor components

using bUnit and MOQ.

 Where Can We Find Bugs?
When building software, what are the causes of bugs? As it turns out, in every step of

building software, bugs can be introduced. So let us walk over the lifetime of a software

project as shown in Figure 8-1. Figure 8-1 also illustrates another obvious fact: the

sooner you can find a bug, the cheaper it is to fix it.

Figure 8-1. The Cost of Fixing Bugs

https://doi.org/10.1007/978-1-4842-7845-1_8#DOI

290

 Requirements
Sometimes bugs are introduced even before a single line of code is written. Writing good

requirements is hard, because these need to explain business concepts to developers

who are typically not well versed in this domain. The same thing counts for advanced

engineering concepts, like rocket building. Let’s look at an example. NASA lost its

$125,000,000 Mars Climate Orbiter because of a simple missing piece of information

in the requirements: which units to use. One team was using metric units (meters,

kilogram), while another team was using imperial units (inch, pounds), and there was no

conversion in place because each team thought the other team was using the same units!

You can read more about it here: www.latimes.com/archives/la- xpm- 1999- oct- 01-

mn- 17288- story.html.

This bug could easily be averted! Since the specifications never mentioned the units,

if someone had asked which units to use and add this to the specifications, this Mars

Climate Orbiter would probably be spinning around Mars right now! So as a developer, if

you think something is confusing or ambiguous, ask! Never assume anything!

 Coding
It is easy to introduce bugs during coding. That is part of developing software. Code that

was working very well can become buggy by a benign change. So how can we discover

these bugs? We should automate our testing. By writing a piece of code (a unit test) that

checks if another piece of code is behaving as expected, we can run this test every day

and discover the bug hours after it was written. Have you ever received a bug report

about some functionality you wrote three months ago? You will probably rub your head

wondering what you were trying to do (and you write this code!). After studying your

code for a while, understanding kicks in and you fix the bug (let us say a simple one-off

bug). Now imagine the bug is discovered an hour after you made the change. Do you

need to figure out what your code was doing? No, it is still fresh in your memory. That

makes unit testing so efficient. And when you finish your code and all your unit tests are

green (meaning check out OK), you can go home and sleep soundly!

Same thing counts for refactoring code. I mean, cleaning up some code and keeping

the same functionality. How do you know if you introduced bugs while refactoring when

there are no unit tests? If there are unit tests and they all pass before refactoring, it is

easy to see after refactoring if you broke something. Just run the unit tests, and if they all

pass, you did not break anything that was known to be working! Again, you can go home

Chapter 8 Unit testing

http://www.latimes.com/archives/la-xpm-1999-oct-01-mn-17288-story.html
http://www.latimes.com/archives/la-xpm-1999-oct-01-mn-17288-story.html

291

and sleep knowing you made your code more maintainable and did not introduce any

new bugs!

 Integration
Your code works on your machine. And your colleague’s code also works on their

machine. But will your code work together with your colleague’s code? That is what

integration is all about. A long time ago, teams would integrate code from different

teams at the end of the project. Guess what!? This never went well, resulting in project

overruns, sometimes by months. So development teams started to integrate at the end of

each month and then at the end of the week. Integrations started to become automated

using build systems. Now we can do continuous integration where we integrate changes

to the code after each commit in source code. And when we have unit tests, we can run

these after the compilation ends and use that to catch breaking changes. Again, this

should illustrate the role of good unit tests. You use them to see if your code is working

and also to see if everyone’s code keeps on working.

 Beta Testing
At a certain point in time, you should expose end users to your application. Why?

Because developers are not normal people. End users want things to be as simple as

possible. For example, look at google.com. This site only has one text box where you

type your question and a button to do the search. This simplicity made Google the most

used search engine (sorry Microsoft). Developers are control freaks; they want power,

not simplicity! Just open the options screen in Visual Studio. You can tweak just about

anything! And most end users are not as proficient using computers as developers,

sometimes resulting in surprises. Let me tell you about a personal experience I once had.

We had built software that runs in a factory, and on a Sunday (they work in that factory

continuously), I get a call from an end user. He told me “The button does not work!”. After

half an hour on the phone, I decided to drive over there and see for myself. I get there

and I click the button, and it works! So what was the problem? The button was small

because we needed to cram a lot on the screen, and the end user has a bit of a tremor

and moved the mouse when clicking, resulting in a click outside of the button. So we

fixed the bug by making the button bigger. This is a nice example of a usability problem,

where we as developers are not always aware of. So expose your software to your users

often, and gain their feedback. We are building it for our end users, right?

Chapter 8 Unit testing

292

 Post-release
Perfect software does not exist. Have you ever writing an application that is bug-free?

No? I have! It is called “Hello World!”. Anything beyond that is impossible. But having an

end user discover a bug is bad news. It will lower the trust in the development team and

in the quality of the software. So how do we stop bugs from making it into production?

You can’t! The only thing you can do is to test as much as possible and warn the users

that they may encounter bugs, especially early after release.

 Why Should We Use Unit Tests?
So how do you test your Blazor application? Hit run and interact with the UI? No

problem there, except every time you make a change to your application, you should test

everything again. Who has time for that? Can’t someone else do it? Yes, that machine in

front of you can! With unit testing, we automate this unit testing process.

 What Makes a Good Unit Test?
When you practice unit testing, your development life cycle looks like this: make some

change to the code, build, fix compiler errors, build again, and then run all your tests.

Then fix the bugs discovered by your tests. And then you start again. How long does

building your application take? A couple of seconds? Now imagine that your unit tests

take 5 minutes. Would you want to wait for that? Would you be tempted to disable

running the unit tests? A good unit test should be fast so we don’t have to wait very long.

What makes unit tests slow? Typically, this is caused by accessing slow resources, like

databases, disks, and the network. So with a unit test, we will avoid using slow resources.

What if your unit tests need some setup? Every time you need to run the tests, you would

have to prepare some things manually. Again, we don’t have time for that. A good unit

test should also be automatic and repeatable, meaning that the test should report on

success or failure and that again we avoid things that need some manual setup. What

could that be? Again databases, files on disk, and the network! Another aspect of a good

unit test is consistency. If your unit test fails, this should be because of a bug in your code,

not because someone tripped over a network cable making the database or network

inaccessible! So again, we should avoid things like databases, file shares, and networks.

Chapter 8 Unit testing

293

Tests which do not have all the aspects from earlier do exist. You will have to write

a test to interact with the database (but don’t start testing the framework used to access

the database; that is the framework’s author’s job!). Their tests are known as integration

tests, because we will run them during the build, not during the development life cycle.

 Unit Testing Blazor Components
Let us create a couple of tests for a Blazor application. In the code download for this

chapter, you can find the testing solution. Open it with your favorite editor. Everything

in the project should look familiar. There is the Counter component and the FetchData

component which uses an IWeatherService to retrieve the weather forecasts from

a server.

 Adding a Unit Test Project
Let us look at an example using xUnit, which is a popular testing library for .NET which

we will also use for testing our Blazor components.

When you are using Visual Studio, right-click the test folder and select Add new

project. In the Add New Project dialog, search for the xUnit Test Project template. Now

click Next. Set the Location to the test folder and name it Testing.ComponentTests.

If you are using Code, open the command prompt to the test folder and execute the

following command:

dotnet new xunit -n Testing.ComponentTests

Now change the directory to the parent directory and execute

dotnet sln add .\test\Testing.ComponentTests

No matter which tool you are using, add project references to the client and the

Shared project. The test project file should look like Listing 8-1, where I also enabled

nullable reference types. Since I will test components that have nullable reference types

enabled, I think the unit test project should too.

Chapter 8 Unit testing

294

Listing 8-1. The Testing.ComponentTests Project

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 <IsPackable>false</IsPackable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.8.3" />

 <PackageReference Include="xunit" Version="2.4.1" />

 <PackageReference Include="xunit.runner.visualstudio" Version="2.4.3">

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 <PrivateAssets>all</PrivateAssets>

 </PackageReference>

 <PackageReference Include="coverlet.collector" Version="1.3.0">

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 <PrivateAssets>all</PrivateAssets>

 </PackageReference>

 </ItemGroup>

 <ItemGroup>

 <ProjectReference Include="..\..\src\Client\Testing.Client.csproj" />

 <ProjectReference Include="..\..\src\Shared\Testing.Shared.csproj" />

 </ItemGroup>

</Project>

 Adding bUnit to the Test Project
With the current unit test project, we can test our services and other non-Blazor classes.

In order to test Blazor components, we need to add bUnit. So use your favorite method

to add the bUnit package (choose latest stable version).

You also need to change the SDK for your project as in Listing 8-2. We need to do this

because we will use razor syntax to build unit tests for Blazor components.

Chapter 8 Unit testing

295

Listing 8-2. bUnit Projects

<Project Sdk="Microsoft.NET.Sdk.Razor">

 Write Your First Unit Test
Now that we have everything in place, we can write our first unit test. We will start by

writing a simple unit test and see how this works with Visual Studio and Code.

 Writing Good Unit Test Methods
Every unit test will consist of three phases: Arrange, Act, and Assert, also known as the

triple A of unit testing. The Arrange phase will set up the unit test by creating the subject

under test (SUT), by which I mean the class we want to test and its dependencies. The

Act phase will perform the call on the method we want to test, and the Assert will verify if

the outcome is successful.

Add a new class called Utils to the Shared project as in Listing 8-3. The Square

method should return the square of a number (and it has a bug).

Listing 8-3. A Simple Utils Class

namespace Testing.Shared

{

 public class Utils

 {

 public int Square(int i)

 {

 return i;

 }

 }

}

Let us write a simple unit test for this method, as in Listing 8-4. With xUnit, a unit

test is a public method with the [Fact] attribute on it. As this attribute says, the result

of the test should be a fact! In the Arrange phase, we set up the subject under test which

I like to call sut. This way, it is easy for me to identify the instance that I want to test

(just a convention, name it as you like). Then in the Arrange phase, we call the Square

Chapter 8 Unit testing

296

method, storing the result in the actual variable. Next comes the Assert phase, where I

am using the Assert class from xUnit, to verify if the result matches the expected result.

The Assert class has a whole range of methods to check if the outcome of the test is the

expected outcome. Here, we are using the Equals method to see if the outcome equals 9,

which should be the square of 3.

Listing 8-4. Testing the Square Method

using Testing.Shared;

using Xunit;

namespace Testing.ComponentTests

{

 public class SquareShould

 {

 [Fact]

 public void Return9For3()

 {

 // Arrange

 var sut = new Utils();

 // Act

 var actual = sut.Square(3);

 // Assert

 Assert.Equal(expected: 9, actual: actual);

 }

 }

}

 Running Your Tests
With Visual Studio, open the Test Explorer window (Test ➤ Test Explorer) as in

Figure 8-2. With Visual Studio, Test Explorer is the place to run unit tests and review the

results. After opening Test Explorer, it will scan your solution for unit tests and list them.

Now click the left green arrow in this window to run all your tests.

Chapter 8 Unit testing

297

The test will run and fail as shown in Figure 8-3.

Figure 8-2. The Test Explorer

Figure 8-3. The Test Fails

You can also run unit tests from Visual Studio Code, but you will have to install the

.NET Core Test Explorer extension as shown in Figure 8-4.

Figure 8-4. The .NET Core Test Explorer Extension

Chapter 8 Unit testing

298

VSC Test Explorer will display a couple of buttons as shown in Figure 8-6. From left

to right, you have a button to run the tests, refresh the list of available tests, stop test

execution, and show the log with the test results.

Figure 8-6. The VSC Test Explorer Controls

Figure 8-7. Reviewing Failed Tests

Now you can run your tests by clicking the Test Explorer icon in the left side of VSC

as shown in Figure 8-5.

Figure 8-5. Test Explorer in VSC

Click the refresh button. This will scan your project for available tests. Should Test

Explorer fail to find any tests, you can set the dotnet-test-explorer.testProjectPath

setting, for example:

"dotnet-test-explorer.testProjectPath": "**/*Tests.csproj"

Click the play icon to run the test. The test will run and fail. To see the result of the

test, click the log button and then check out the PROBLEMS tab as shown in Figure 8-7.

Chapter 8 Unit testing

299

 Making Your Test Pass
Why did the test fail? If you put a breakpoint in the Square method and click the arrow

in Test Explorer again, you will see that Visual Studio does not stop on the breakpoint.

Same thing for VSC. Why? Debugging needs some special setup, and this takes time.

Remember that we want our tests to complete as short as possible? With Visual Studio,

you can enable the debugger as follows. Right-click the test in the Test Explorer window

and select Debug (similar in VSC). Now the debugger will stop on your breakpoint.

When you step in the Square method, you should see the bug (duh!). Fix it as in

Listing 8-5.

Listing 8-5. The Corrected Square Method

namespace Testing.Shared

{

 public class Utils

 {

 public int Square(int i)

 {

 return i*i;

 }

 }

}

Now run the test again (with or without the debugger). Now it should pass as in

Figures 8-8 and 8-9.

Figure 8-8. The Test Passes in VS

Chapter 8 Unit testing

300

 Using Facts and Theories
But what about other values? With xUnit, we can write a whole series of tests without

having to copy-paste a ton of them (copy-pasting to duplicate code is generally bad, also

known as Don’t Repeat Yourself (DRY)). Add another unit test to the SquareShould class

as in Listing 8-6. Here, we are using the [Theory] attribute to tell xUnit to run this with

different arguments. And we use the [InlineData] attribute to pass the arguments to the

test method.

Listing 8-6. Using Theories

[Theory]

[InlineData(1,1)]

[InlineData(2,4)]

[InlineData(-1,1)]

public void ReturnSquareOfNumber(int number, int square)

{

 // Arrange

 var sut = new Utils();

 // Act

 var actual = sut.Square(number);

 // Assert

 Assert.Equal(expected: square, actual: actual);

}

Now when we run our tests, you will see in Figures 8-10 and 8-11 that xUnit runs

three tests, one for each [InlineData] attribute.

Figure 8-9. The Test Passes in VSC

Chapter 8 Unit testing

301

 Checking Your Sanity
Have you ever had a piece of code that did things differently than what you expected?

Personally, I start to doubt my sanity then, like “Am I going crazy?” Or have you used

someone’s method that was badly documented and did not do as it should? With unit

testing, you can set up checks to see if a method does what you think it should do. And

if it does not, maybe you need to talk to the author and see what makes more sense.

When you have a unit test, you can attach it to a bug report, making it easy for the

author to reproduce the bug. Let us look at an example again. Now I want to see if the

Square method throws an error when we pass a big integer to it (and not every squared

integer is another integer because it is limited in range). Add another test method like

in Listing 8-7. So here we call Square with the largest int possible. The result can never

fit into an int, so we expect this to throw an OverflowException.

Figure 8-10. VS Test Results with Theories

Figure 8-11. VSC Test Results with Theories

Chapter 8 Unit testing

302

Listing 8-7. Testing Exceptional Cases

[Fact]

public void ThrowOverflowForBigNumbers()

{

 // Arrange

 var sut = new Utils();

 // Act & Assert

 Assert.Throws<OverflowException>(() =>

 {

 int result = sut.Square(int.MaxValue);

 });

}

But when we run, the test fails as in Figure 8-12.

Why does this fail? Let us put a breakpoint on the Square method. Maybe we are

doing something wrong here? Run the test with the debugger. When the debugger

stops, look at the value of the argument: 2147483647. This is the largest signed int.

Now step out of the method until after the result is set. What is its value? It is 1. Now

2147483647*2147483647 is not 1! So again, what is happening? It turns out that C# works

like C++ and C. These programming languages do not throw exceptions by default when

a calculation overflows! They even use this to create hashing and encryption algorithms.

So how can we fix this? You can turn on overflow checking using the C# checked keyword

as in Listing 8-8.

Figure 8-12. Sanity Check Please?

Chapter 8 Unit testing

303

Listing 8-8. Enabling Overflow Checking

namespace Testing.Shared

{

 public class Utils

 {

 public int Square(int i)

 {

 checked

 {

 return i * i;

 }

 }

 }

}

Run your test again. Now it passes. Whew! This was actually normal behavior.

Unit testing is great to discover these weird behaviors and allows you to catch

modifications that cause bugs later.

 Write a bUnit Tests with C#
We have seen how we can write unit tests for .NET classes and their methods. Here, we

will look at how we can write tests for Blazor components on top of xUnit.

Note all tests written here use xUnit, but you can also use nUnit or Mstest. all of these
are test frameworks that apply the same principles. You can even mix these frameworks
so you don’t have to rewrite old tests when moving to another test framework.

 Understanding bUnit?
bUnit is a testing library for Blazor components, written by Egil Hansen, and the sources

can be found in GitHub at https://github.com/bUnit- dev/bUnit. With bUnit, you can

easily write unit tests for Blazor components. Why should we write unit tests for Blazor

components? Same reason you write unit tests for regular classes: to ensure they work

Chapter 8 Unit testing

https://github.com/bUnit-dev/bUnit

304

as expected and that they keep on working in case some dependency gets updated. Of

course, most of your testing should be on the service classes that implement business

logic. For example, you want to make sure your Blazor component calls a certain method

on a service when the user interacts with that component. With bUnit, we can automate

that so no user has to actually click a button! And we can run these tests continuously so

we will know when we break a component minutes after the change.

Part of testing a Blazor component is to render and examine the output of a

component. But it goes way beyond this. You can interact with the component and see

the changes, replace dependencies, etc.

Let us start with the Counter component, as in Listing 8-9. This now familiar

component displays a currentCount field which is initially 0. So a very simple unit test

would be to see if the component’s output matches the expected output.

Listing 8-9. The Counter Component

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">

 Click me

</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

}

Add a new class called CounterShould to the unit test project. You can name this

class anything you want, but I like the naming convention where I use the method or

component name and then the word “Should”. Derive this class from the TestContext

base class, which will give you access to all the handy methods from bUnit. We

will be using these methods as we go along, and by deriving your test class from

Chapter 8 Unit testing

305

TestContext, they become available through inheritance. Implement the first unit test

RenderCorrectlyWithInitialZero as in Listing 8-10.

Listing 8-10. The CounterShould Class

using Bunit;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class CounterShould : TestContext

 {

 [Fact]

 public void RenderCorrectlyWithInitialZero()

 {

 var cut = RenderComponent<Counter>();

 Assert.Equal(@"

 <h1>Counter</h1>

 <p>Current count: 0</p>

 <button class=""btn btn-primary"" >

 Click me

 </button>

 ", cut.Markup);

 }

 }

}

Here, we are using xUnit together with bUnit, so our unit test has the [Fact]

attribute. First, we do the Arrange phase, where we create the component under test

(which I name cut, similar to sut) by calling the RenderComponent<Counter> method.

This will create the component and render it in one go. So this also takes care of the Act

phase. Next, we do the Assert phase, where we want to see if the component generated

the right kind of output.

This test will fail. Why? Just run the test, and look at the test output as in Figure 8-13.

Look again at the Assert statement in Listing 8-10. Here, we expect the markup of our

component to match the literal string. And it does match in a way, except for whitespace

Chapter 8 Unit testing

306

and newlines. We could now do the work and update our string to the real output, but

this is too sensitive to little changes we might make later to our component.

Let us improve the test as in Listing 8-11. Now we are using the MarkupMatches

method, which will perform a semantic comparison between the component’s markup

and our string. This will ignore whitespace, newlines, comments, and other irrelevant

things during the comparison, and now we should see the test pass! Now our test will no

longer break when we add a newline or a comment in the component that changes the

markup’s formatting!

Listing 8-11. Improving Our Unit Test with Semantic Comparison

using Bunit;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class CounterShould : TestContext

 {

 [Fact]

 public void RenderCorrectlyWithInitialZero()

 {

Figure 8-13. Our Test Fails

Chapter 8 Unit testing

307

 var cut = RenderComponent<Counter>();

 cut.MarkupMatches(@"

 <h1>Counter</h1>

 <p>Current count: 0</p>

 <button class=""btn btn-primary"" >

 Click me

 </button>

 ");

 }

 }

}

We can even do better and focus on the relevant part of the component. We know

that our Counter component uses a <p> element to render the currentCount variable,

but how do we access this part of the render tree? The bUnit library has a Find method

that takes a CSS selector and returns the result of the query. Add another test method

to the ShouldRender class as in Listing 8-12. We Find the <p> element, and we can see

if it matches the expected output using the MarkupMatches method, which ignores

whitespace.

Listing 8-12. Using the Find Method

[Fact]

public void RenderParagraphCorrectlyWithInitialZero()

{

 var cut = RenderComponent<Counter>();

 cut.Find(cssSelector: "p")

 .MarkupMatches("<p>Current count: 0</p>");

}

Run your tests and see if they pass, which they should.

What happens when the test fails?

In the RenderParagraphCorrectlyWithInitialZero method, replace the 0 with

a 1. Run the test. It fails! Select the test and you should see the following output as in

Figure 8-14. This output shows us what is wrong, and now we can change the component

(or the test) until the test passes. Fix the test.

Chapter 8 Unit testing

308

 Testing Component Interaction
Our Counter component has a button, and when you click the button, it should

increment the currentCount by 1 and render the new value. Let us look at how we can

perform a test on a Blazor component by interacting with it and see if the component

was updated correctly. Add a new unit test to the ShouldRender class as in Listing 8-13.

The second line in the test uses the Find method to retrieve the button and then uses

the Click method to perform the @onclick event on it. This should have the expected

side effect, which we test on the next line to see if the component re-rendered with the

expected value. Run the test, which should pass. Hey, this was easy!

Listing 8-13. Interacting with the Counter Component

[Fact]

public void IncrementCounterWhenButtonIsClicked()

{

 var cut = RenderComponent<Counter>();

 cut.Find(cssSelector: "button")

 .Click();

 cut.Find(cssSelector: "p")

 .MarkupMatches(@"<p>Current count: 1</p>");

}

Figure 8-14. Our bUnit Test Fails

Chapter 8 Unit testing

309

The bUnit library comes with many dispatch methods that make it possible to trigger

events on your component. Retrieve the element in the component using the Find

method, and then call the appropriate dispatch method on it, for example, Click. These

dispatch methods also allow you to pass event arguments. So let us look at an example.

Start by adding a new component to your Blazor project called MouseTracker with

markup from Listing 8-14.

Listing 8-14. The MouseTracker Component’s Markup

<div style="width: 300px; height: 300px;

 background: green; margin:50px"

 @onmousemove="MouseMove">

 @pos

</div>

This component has a MouseMove event handler as shown in Listing 8-15.

Listing 8-15. The MouseTracker Component’s Code

using Microsoft.AspNetCore.Components.Web;

namespace Testing.Client.Pages

{

 public partial class MouseTracker

 {

 private string pos = "";

 private void MouseMove(MouseEventArgs e)

 => pos = $"Mouse at {e.ClientX}x{e.ClientY}";

 }

}

In the unit test project, add a new class called MouseTrackerShould with a single unit

test as in Listing 8-16. During the Arrange phase of the bUnit test, we create an instance

of MouseEventArgs with ClientX and ClientY set to some value. We then create an

instance of the MouseTracker component using the TestContext’s RenderComponent

method. Now we Find the div from the component and store it in the theDiv reference.

Chapter 8 Unit testing

310

Now we can perform the Act phase of the test by triggering the MouseMove event,

passing the MouseMoveEventArgs instance we created before. This will re-render the

component, so we are ready for the Assert phase where we check if the theDiv has

the expected content using the MarkupMatches method. Do note that we use semantic

comparison again, and here we can tell the compare to also ignore the style attribute

using the style:ignore attribute. We will talk more about this in a later section of this

chapter.

Listing 8-16. The MouseTrackerShould Unit Test

using Bunit;

using Microsoft.AspNetCore.Components.Web;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net.Http.Headers;

using System.Text;

using System.Threading.Tasks;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class MouseTrackerShould : TestContext

 {

 [Fact]

 public void ShowCorrectMousePosition()

 {

 var eventArgs = new MouseEventArgs()

 {

 ClientX = 100,

 ClientY = 200

 };

 var cut = RenderComponent<MouseTracker>();

 var theDiv = cut.Find(cssSelector: "div");

 theDiv.MouseMove(eventArgs);

Chapter 8 Unit testing

311

 theDiv.MarkupMatches($"<div style:ignore>Mouse at {eventArgs.ClientX}

x{eventArgs.ClientY}");

 }

 }

}

Run the test; it should pass.

 Passing Parameters to Our Component
With data binding, we can pass parameters from the parent component to a child

component. How do we pass parameters with bUnit? Start by copying the Counter

component in the Blazor project, rename it to TwoWayCounter, and change it to look like

Listing 8-17. This TwoWayCounter component has a couple of parameters, including the

CurrentCount and the Increment parameter.

Listing 8-17. The TwoWayCounter Component

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

 [Parameter]

 public int CurrentCount

 {

 get => currentCount;

 set

 {

 if (value != currentCount)

 {

 currentCount = value;

Chapter 8 Unit testing

312

 CurrentCountChanged.InvokeAsync(currentCount);

 }

 }

 }

 private int increment = 1;

 [Parameter]

 public int Increment {

 get => increment;

 set

 {

 if(value != increment)

 {

 increment = value;

 IncrementChanged.InvokeAsync(increment);

 }

 }

 }

 [Parameter]

 public EventCallback<int> CurrentCountChanged { get; set; }

 [Parameter]

 public EventCallback<int> IncrementChanged { get; set; }

 private void IncrementCount()

 {

 CurrentCount+=Increment;

 }

}

Add another unit test to the test project called TwoWayCounterShould, and add the first

bUnit test as in Listing 8-18. We want to pass two parameters to this component, and we

can do this by using an overload of the RenderComponent method as shown in Listing 8-18.

This takes a delegate which has a parameters argument of type ComponentParameterColle

ctionBuilder<TComponent>. This class has an Add method with two arguments: expression

where you pass the name of the parameter and the value for the parameter.

Chapter 8 Unit testing

313

Listing 8-18. The TwoWayCounterShould Test Class

using Bunit;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class TwoWayCounterShould : TestContext

 {

 [Fact]

 public void IncrementCounterWhenClicked()

 {

 var cut = RenderComponent<TwoWayCounter>(

 parameters =>

 parameters.Add(counter => counter.CurrentCount, 0)

 .Add(counter => counter.Increment, 1)

);

 cut.Find("button").Click();

 cut.Find("p")

 .MarkupMatches("<p>Current count: 1</p>");

 }

 }

}

This way of passing parameters to a component is very convenient, since we can

use IntelliSense to choose the parameter’s name. There are other ways to pass the

parameters, as shown in Listing 8-19. Here, we use xUnit’s Theory to pass different

parameters to the component, and each parameter is passed as a ValueTuple,

containing the name and value of each parameter (that is why these are wrapped in an

opening and closing parenthesis).

However, I personally don’t like this way of working, because now we are passing the

argument’s name as a string. The compiler will not check the contents of a string to see

if it is actually the name of a parameter. What happens when you make a mistake (or you

Chapter 8 Unit testing

314

decide later to rename the parameter)? The compiler will not complain, and you will get

a failing test with the following message:

Message:

 System.InvalidOperationException : Object of type 'Testing.Client.Pages.

TwoWayCounter' does not have a property matching the name 'CurrentCuont'.

Using hard-coded strings in code that contain names of classes, properties, and

other code constructs is an anti-pattern which I call “string-based programming” and

should be avoided.

Listing 8-19. Using a Theory to Test Different Cases

[Theory]

[InlineData(3)]

[InlineData(-3)]

public void IncrementCounterWithIncrementWhenClicked(int increment)

{

 var cut = RenderComponent<TwoWayCounter>(

 ("CurrentCount", 0),

 ("Increment", increment)

);

 cut.Find("button").Click();

 cut.Find("p")

 .MarkupMatches($"<p>Current count: {increment}</p>");

}

Of course, with modern C#, we can fix this and still use this style as in Listing 8-20.

Here, we use the nameof operator, which takes the name of a property and returns the

string representation of that property. You can also use nameof with classes, methods,

and other things.

Chapter 8 Unit testing

315

Listing 8-20. Using nameof to Pass Property Names

[Theory]

[InlineData(3)]

[InlineData(-3)]

public void IncrementCounterWithIncrementWhenClickedWithNameOf(

 int increment)

{

 var cut = RenderComponent<TwoWayCounter>(

 (nameof(TwoWayCounter.CurrentCount), 0),

 (nameof(TwoWayCounter.Increment), increment)

);

 cut.Find("button").Click();

 cut.Find("p")

 .MarkupMatches($"<p>Current count: {increment}</p>");

}

 Testing Two-Way Data Binding and Events
Our TwoWayCounter has parameters to implement two-way data binding. Let us see if this

component implements this correctly. We can use the same technique as before to pass

handlers to the CurrentCountChanged and IncrementChanged parameters. But before

we do this, add the FluentAssertions package to your test project. FluentAssertions

allows you to write your assert statements in a more readable and concise way, and

we will use it here (although this is not required). You can find out more about fluent

assertions at https://fluentassertions.com.

Look at the bUnit test from Listing 8-21. We are adding four parameters, where two

of them are of type EventCallback<int>. We assign a value to the EventCallback<int>

using a delegate, and this delegate increments a local variable. This way, we count

the number of invocations of the CurrentCountChanged and IncrementChanged event

callback.

Note You can also use this technique to test regular delegates like Action
and Func.

Chapter 8 Unit testing

https://fluentassertions.com

316

After clicking the button, we expect the CurrentCountChanged to have been invoked,

and we test this using the FluentAssertions Should().Be(1) method call. But we also

want to test the Increment property’s changed handler, and we can do this by accessing

the component using the cut.Instance property and directly assigning a new value

to Increment. Should your compiler issue a warning on this statement, that is normal

because you are normally not allowed to access a component’s parameters directly

from code.

Listing 8-21. Testing Two-Way Changed Handlers

[Fact]

public void TriggerChangedEventForCurrentCounter()

{

 int nrOfCurrentCountChanged = 0;

 int nrOfIncrementChanged = 0;

 var cut = RenderComponent<TwoWayCounter>(parameters =>

 parameters.Add(counter => counter.CurrentCount, 0)

 .Add(counter => counter.Increment, 1)

 .Add(counter => counter.CurrentCountChanged,

 () => nrOfCurrentCountChanged++)

 .Add(counter => counter.IncrementChanged,

 () => nrOfIncrementChanged++)

);

 cut.Find("button").Click();

 cut.Instance.Increment = 2;

 nrOfCurrentCountChanged.Should().Be(1);

 nrOfIncrementChanged.Should().Be(1);

}

You can also change a parameter value after the first render of your component.

Look for an example in Listing 8-22, where we use the SetParametersAndRender method

to modify the value of the Increment parameter.

Chapter 8 Unit testing

317

Listing 8-22. Modifying the Value of a Parameter

[Fact]

public void TriggerChangedEventForCurrentCounter2()

{

 int nrOfIncrementChanged = 0;

 var cut = RenderComponent<TwoWayCounter>(parameters =>

 parameters.Add(counter => counter.CurrentCount, 0)

 .Add(counter => counter.Increment, 1)

 .Add(counter => counter.IncrementChanged,

 () => nrOfIncrementChanged++)

);

 cut.SetParametersAndRender(parameters =>

 parameters.Add(counter => counter.Increment, 2));

 nrOfIncrementChanged.Should().Be(1);

}

 Testing Components that Use RenderFragment
What about components that use RenderFragment such as ChildContent and templated

components? RenderFragment is a special Blazor type, so it needs some special care.

Start by adding an Alert component to your Blazor project, such as Listing 8-23.

Listing 8-23. The Alert Component

<div class="alert alert-secondary mt-4" role="alert">

 @ChildContent

</div>

@code {

 [Parameter]

 public RenderFragment ChildContent { get; set; } = default!;

}

Now add the AlertShould class from Listing 8-24 to your test project. As you can see,

the ChildContent is just another parameter but comes with some convenience methods

to make it easy to add.

Chapter 8 Unit testing

318

Listing 8-24. The AlertShould Test Class

using Bunit;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class AlertShould : TestContext

 {

 [Fact]

 public void RenderSimpleChildContent()

 {

 var cut = RenderComponent<Alert>(parameters =>

 parameters.AddChildContent("<p>Hello world!</p>"));

 cut.MarkupMatches(@"

 <div class=""alert alert-secondary mt-4"" role=""alert"">

 <p>Hello world!</p>

 </ div >

 ");

 }

 }

}

Should the Alert component have additional parameters, we can pass the just like in

Listing 8-18.

In Listing 8-24, we pass some simple HTML as the ChildContent, but we can

do more complex things. For example, in Listing 8-25, we pass the Counter as the

ChildContent.

Listing 8-25. Passing a Counter As ChildContent

[Fact]

public void RenderCounterAsChildContent()

{

 var cut = RenderComponent<Alert>(parameters =>

 parameters.AddChildContent<Counter>());

Chapter 8 Unit testing

319

 var p = cut.Find("p");

 p.MarkupMatches("<p>Current count: 0</p>");

}

We can even pass parameters to the ChildContent, for example, when using the

TwoWayCounter as in Listing 8-26.

Listing 8-26. Passing the TwoWayCounter As ChildContent

[Fact]

public void RenderTwoWayCounterWithParametersAsChildContent()

{

 var cut = RenderComponent<Alert>(parameters =>

 parameters.AddChildContent<TwoWayCounter>(parameters =>

 parameters.Add(counter=>counter.CurrentCount, 3)));

 var p = cut.Find("p");

 p.MarkupMatches("<p>Current count: 3</p>");

}

You can even call AddChildContent multiple times to add more than one fragment.

Listing 8-27 illustrates this where we add both an HTML string and a Counter. Also

note the use of a const string so we don’t need to sync the content used in the

AddChildContent and MarkupMatches methods (Don’t Repeat Yourself Principle (DRY)).

Listing 8-27. Calling AddChildContent Multiple Times

[Fact]

public void RenderTitleAndCounterAsChildContent()

{

 const string header = "<h1>This is a counter</h1>";

 var cut = RenderComponent<Alert>(parameters =>

 parameters.AddChildContent(header)

 .AddChildContent<Counter>());

 var h1 = cut.Find("h1");

 h1.MarkupMatches(header);

 var p = cut.Find("p");

 p.MarkupMatches("<p>Current count: 0</p>");

}

Chapter 8 Unit testing

320

What about templated components? Start by adding (or copy from the provided

code download with this book) the templated component from Listings 8-28 and 8-29

(markup and code). This templated component uses two RenderFragments and one

RenderFragment<TItem>. It also has a parameter to pass a Loader which is a function

that grabs the items for this component. First, we will look at the RenderFragment and

then the RenderFragment<TItem>.

Listing 8-28. The TemplatedList Component’s Markup

@typeparam TItem

@if (items is null)

{

 @LoadingContent

}

else if (items.Count() == 0)

{

 @EmptyContent

}

else

{

 <div class="list-group @ListGroupClass">

 @foreach (var item in items)

 {

 <div class="list-group-item">

 @ItemContent(item)

 </div>

 }

 </div>

}

Listing 8-29. The TemplatedList Component’s Code

using Microsoft.AspNetCore.Components;

using System;

using System.Collections.Generic;

using System.Diagnostics.CodeAnalysis;

Chapter 8 Unit testing

321

using System.Threading.Tasks;

namespace Testing.Client.Pages

{

 public partial class TemplatedList<TItem>

 {

 IEnumerable<TItem>? items;

 [Parameter]

 public Func<ValueTask<IEnumerable<TItem>>>? Loader { get; set; }

 [Parameter]

 public RenderFragment LoadingContent { get; set; } = default!;

 [Parameter]

 public RenderFragment? EmptyContent { get; set; } = default!;

 [Parameter]

 public RenderFragment<TItem> ItemContent { get; set; } = default!;

 [Parameter]

 public string ListGroupClass { get; set; } = string.Empty;

 protected override async Task OnParametersSetAsync()

 {

 if (Loader is not null)

 {

 items = await Loader();

 }

 }

 }

}

Now add the TemplatedListShould class to your test project from Listing 8-30. Here,

we add two parameters, one for the Loader parameter and one for the LoadingContent

template. As you can see, we can use the same Add method, just like normal parameters.

Chapter 8 Unit testing

322

Listing 8-30. Using a RenderFragment in a Test

using Bunit;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class TemplatedListShould : TestContext

 {

 [Fact]

 public void RenderLoadingTemplateWhenItemsIsNull()

 {

 const string loading =

 "<div class=\"loader\">Loading...</div>";

 Func<ValueTask<IEnumerable<string>?>> loader =

 () => new ValueTask<IEnumerable<string>?>(result:null);

 var cut = RenderComponent<TemplatedList<string>>(

 parameters =>

 parameters.Add(tl => tl.Loader, loader)

 .Add(tl => tl.LoadingContent, loading)

);

 cut.Find("div.loader")

 .MarkupMatches(loading);

 }

 }

}

But what about the ItemContent parameter which uses the more complex

RenderFragment<TItem>? Add a new unit test as in Listing 8-31. Here, we will pass

five strings using the loader Func<ValueTask<IEnumerable<string>>>. Do note the

use of the Enumerable.Repeat method to create a collection of elements. We pass the

Chapter 8 Unit testing

323

loader as a parameter to the TemplatedList<string> component, and we also pass

the ItemContent, which is a RenderFragment<string>. Since this takes an argument,

we use a Func<string, string> delegate which will return a RenderFragment<string>

(because the Add method takes care of this).

Now we want to check if it has used the ItemContent for each item from our

collection (of five “A” strings). There is a FindAll method taking a CSS selector that will

return all elements that match the selector. The ItemContent RenderFragment uses a p,

so we use this as the CSS selector. First, we check if the number of paragraph matches

the number of items, and then we iterate over each of these and check if the markup

matches the expected output.

Listing 8-31. Passing a RenderFragment<T>

[Fact]

public void RenderItemsCorrectly()

{

 const int count = 5;

 Func<ValueTask<IEnumerable<string>>> loader =

 () => new ValueTask<IEnumerable<string>>(

 Enumerable.Repeat("A", count));

 var cut = RenderComponent<TemplatedList<string>>(

 parameters =>

 parameters.Add(tl => tl.Loader, loader)

 .Add(tl => tl.ItemContent,

 (context) => $"<p>{context}</p>"));

 var ps = cut.FindAll("p");

 ps.Should().NotBeEmpty();

 foreach (var p in ps)

 {

 p.MarkupMatches("<p>A</p>");

 }

}

Run this test; it should normally pass. And if it does not, we will discuss this in the

section “Handling Asynchronous Re-renders,” so keep reading.

Chapter 8 Unit testing

324

One final example. Let us use another component as the ItemContent and pass the

context as a parameter. Add a new component called ListItem from Listing 8-32 (which

is a copy-paste of the ItemContent from Listing 8-31).

Listing 8-32. The ListItem Component

<p>@Item</p>

@code {

 [Parameter]

 public string Item { get; set; } = default!;

}

Now copy and paste the RenderItemsCorrectly method, renaming it as in

Listing 8-33. The only other part of this listing that needs some modification is where

we pass the ItemContent parameter. If you want to use a component to pass as a

RenderFragment<TItem>, you need to use the Add<ComponentType, TItem> overload,

where the first generic argument is the type of the component to use and the second

is the type of the generic argument for RenderFragment<TItem>. So in this specific

case, the ComponentType is ListItem, and the TItem is string (because we pass an

IEnumerable<string> to the TemplatedList).

Listing 8-33. Passing a Component As a RenderFragment<TItem>

[Fact]

public void RenderItemsWithListItemCorrectly()

{

 const int count = 5;

 Func<ValueTask<IEnumerable<string>?>> loader =

 () => new ValueTask<IEnumerable<string>?>(

 Enumerable.Repeat("A", count));

 var cut = RenderComponent<TemplatedList<string>>(

 parameters =>

 parameters.Add(tl => tl.Loader, loader)

 /*component*//*TItem*/

 .Add<ListItem, string>(tl => tl.ItemContent,

 context => itemParams

 => itemParams.Add(p => p.Item,

Chapter 8 Unit testing

325

 context)

));

 var ps = cut.FindAll("p");

 ps.Should().NotBeEmpty();

 foreach (var p in ps)

 {

 p.MarkupMatches("<p>A</p>");

 }

}

This Add<ListItem, string> overload takes two expressions: the first returns

the parameter to set (ItemContent), and the second expression needs some deeper

explanation. Let us have a look at this somewhat hard to read piece of code:

Add<ListItem, string>(

 tl => tl.ItemContent,

 context => itemParams

 => itemParams.Add(p => p.Item, context)

));

So the first argument is tl => tl.ItemContent which returns the parameter to

set. The second argument is a lambda function, which takes the value for TItem (so

in our case, a string), and returns another lambda function which takes a Componen

tParameterCollectionBuilder<TComponent>. Does this sound familiar? Yes. It is the

same type we have used to pass parameters to a component from the beginning of this

section (Listing 8-18 example). Here, we add parameters to the ListItem component

by calling Add.

Run this test (and the others if you like). All tests should pass. Phew!

 Using Cascading Parameters
Some components use one or more cascading parameters, so to test these components,

we will need to pass a value for the cascading parameter. Start by making a copy of the

Counter component, and rename it to CounterWithCV. Add an Increment cascading

parameter as in Listing 8-34.

Chapter 8 Unit testing

326

Listing 8-34. The CounterWithVC Component

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">

 Click me

</button>

@code {

 [CascadingParameter]

 public int Increment { get; set; }

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount += Increment;

 }

}

Add a new test class called CounterWithCVShould and implement the test as in

Listing 8-35. As you can see, since cascading properties are identified through their type,

you only need to pass the value.

Listing 8-35. Testing a Component with a Cascading Parameter

using Bunit;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Testing.Client.Pages;

using Xunit;

Chapter 8 Unit testing

327

namespace Testing.ComponentTests

{

 public class CounterWithVCShould : TestContext

 {

 [Fact]

 public void ShouldUseCascadingIncrement()

 {

 var cut = RenderComponent<CounterWithCV>(parameters =>

 parameters.AddCascadingValue(3));

 cut.Find(cssSelector: "button")

 .Click();

 cut.Find(cssSelector: "p")

 .MarkupMatches(@"<p>Current count: 3</p>");

 }

 }

}

You can also have named cascading values, so try this: First name the Increment

cascading parameter, as in Listing 8-36, and update the test as in Listing 8-37.

Listing 8-36. Using a Named Cascading Parameter

[CascadingParameter(Name = "Increment")]

public int Increment { get; set; }

Listing 8-37. Passing a Named Cascading Parameter

var cut = RenderComponent<CounterWithCV>(parameters =>

 parameters.AddCascadingValue("Increment", 3));

 Using MOQ to Create Fake Implementations
We have seen that components should do one thing very well (the single responsibility

principle) and that we should use services to implement logic, such as retrieving data

using REST, or to implement business logic. We pass these services to the component

using dependency injection. Here, we will look at how to pass dependencies to

components using bUnit and how to replace your services with fake implementations to

better drive your unit tests.

Chapter 8 Unit testing

328

 Injecting Dependencies with bUnit
Let us start by reviewing the FetchData component from Listing 8-38. This component

takes one dependency, an IWeatherService.

Listing 8-38. The FetchData Component

@page "/fetchdata"

@using Testing.Shared

@inject IWeatherService WeatherService

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

{

 <table class="table">

 <thead>

 <tr>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var forecast in forecasts)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

Chapter 8 Unit testing

329

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

 </table>

}

@code {

 private IEnumerable<WeatherForecast>? forecasts;

 protected override async Task OnInitializedAsync()

 {

 forecasts = await WeatherService.GetForecasts();

 }

}

When you use this component in a Blazor application, the Blazor runtime will take

care of injecting this dependency. When you use the component in a bUnit test, the

bUnit runtime will take care of injecting the dependency. The only thing we need to tell

is which class to use to instantiate the instance.

Add a new test class to the test project, call it FetchDataShould, and complete it

as in Listing 8-39. To configure dependency injection in a bUnit test, you add your

dependencies to the Services property, using the same methods as regular dependency

injection, AddSingleton, AddTransient, and AddScoped.

Listing 8-39. Testing the FetchData Component

using Bunit;

using FluentAssertions;

using Microsoft.Extensions.DependencyInjection;

using Testing.Client.Pages;

using Testing.Shared;

using Xunit;

namespace Testing.ComponentTests

{

 public class FetchDataShould : TestContext

 {

Chapter 8 Unit testing

330

 [Fact]

 public void UseWeatherService()

 {

 // Use Services for dependency injection

 Services.AddSingleton<IWeatherService,

 Testing.Shared.WeatherService>();

 var cut = RenderComponent<FetchData>();

 var rows = cut.FindAll("tbody tr");

 rows.Count.Should().Be(5);

 }

 }

}

Try running this test. It fails? Look at the output of the failed test. As it turns out,

the WeatherService from the shared project has a dependency of its own, an ILogger.

Should we add another dependency? In this case, we should build a class implementing

the ILogger interface or find an existing one. We won’t. Let us talk about fake objects.

Message:

 System.InvalidOperationException : Unable to resolve service for type

'Microsoft.Extensions.Logging.ILogger`1[Testing.Shared.WeatherService]'

while attempting to activate 'Testing.Shared.WeatherService'.

 Replacing Dependencies with Fake Objects
When you are testing a component, you want full control over dependencies. This means

in many cases that you cannot use the real dependency. First of all, remember that tests

should be fast and automatic? If the real dependency uses a database or a REST call

to fetch data, this will make your test slow. Networks, disks, and databases are several

factors slower than accessing data from memory. So we want to avoid these things. Also,

databases and disks have memory, so when a test makes modifications to the data, the

next time the test runs, it is using different data and will probably fail. So we don’t want

to use the real dependency (we are testing the component, not the dependency!). So we

will use a fake implementation of the dependency, and that is why it is so important to

have your dependencies implement an interface. Building another class with the same

interface is easy and practical.

Chapter 8 Unit testing

331

And there are different kinds of fake objects. Let us discuss stubs and mocks as

shown in Figure 8-15. As you can see, both stubs and mocks are special cases of fake

objects. The terminology (stub, mock, fake) used here unfortunately is not consistent

in the testing community. Some people classify fake object using different names, and

some people even use taxonomies containing seven different kinds of stubs!

 Using Stubs
Let us start with stubs. A stub is a fake implementation of a dependency that is just

there to assist in a test. Our FetchData component will fetch a couple of forecasts from

the IWeatherService dependency. But how many forecasts will this return? If we use

the real service, this might depend on a bunch of things which are out of our control.

So we use a stub implementation of the IWeatherService where we have full control.

The stub is just there to assist in the test, and we will perform our Assert phase on the

subject under test, not the stub. Let me use another example. Imagine you work for a

car company, and you want to test your new type of car for safety. You want to run this

car into a wall and see if it will explode (like in the movies). Will you run the car into a

real wall? Someone’s house? No. You will have someone build a fake wall in a controlled

environment so no one will risk getting hurt. You drive the car into the wall, and then the

wall has served its purpose. You will examine the car to see the outcome of the test; the

wall is no longer important. This is illustrated in Figure 8-16.

Figure 8-15. Fake, Stub, and Mock Objects for Testing

Chapter 8 Unit testing

332

Tests that use stubs are also known as state verification tests.

Let us build a stub for the IWeatherService. Start by adding a new class called

WeatherServiceStub to the test project.

Implement the interface like Listing 8-40. Our stub has a property that will hold the

data that will be returned from the service.

Listing 8-40. Implementing an IWeatherService Stub

private class WeatherServiceStub : IWeatherService

{

 public IEnumerable<WeatherForecast> FakeForecasts { get; set; }

 = default!;

 public ValueTask<IEnumerable<WeatherForecast>> GetForecasts()

 => new ValueTask<IEnumerable<WeatherForecast>>(

 FakeForecasts);

}

Now update the UseWeatherService test as in Listing 8-41. We create an instance of

the stub, initialize it with the data we want, and then pass it to dependency injection as a

singleton. When the FetchData component gets initialized, we will use the stub, and we

are sure that our service returns five rows of data (or a different number; that is why I use

a const for easy update).

Figure 8-16. Using a Stub During a Test

Chapter 8 Unit testing

333

Listing 8-41. Testing the FetchData Component with a Stub

[Fact]

public void UseWeatherService()

{

 const int nrOfForecasts = 5;

 var stub = new WeatherServiceStub

 {

 FakeForecasts = Enumerable.Repeat(new WeatherForecast(),

 nrOfForecasts)

 };

 Services.AddSingleton<IWeatherService>(stub);

 var cut = RenderComponent<FetchData>();

 var rows = cut.FindAll("tbody tr");

 rows.Count.Should().Be(nrOfForecasts);

}

Run the test. It should pass.

 Using Mocks
So what is a mock? A mock is a fake implementation where we want to verify if the

subject under test called certain methods and properties on the mock. A mock therefore

works a little like a data recorder, remembering which methods were called, even

recording the values of the arguments in the method call. It should not come as a

surprise that building a mock is a lot more work! When you use a mock in a test, you will

do your Assert phase through the mock, with questions like “Did the subject under test

call this method?” Let us use the car example again. Now we want to see if the driver of

the car gets hurt in a frontal crash into a wall. We already have a wall, but now we need

a driver. Any volunteers? No? Of course, not. We will mimic the driver (a mock object)

using a crash test dummy. These dummies look a lot like a human (if you are Homer

Simpson) and are crammed full of sensors. You let the car crash into the wall. After the

crash, you are not interested in the wall, neither the car. You will ask the dummy (the

mock remember) where it hurts. Again, this is illustrated in Figure 8-17.

Chapter 8 Unit testing

334

Tests like these are known as object interaction tests.

Let us update the FetchData component to perform some logging, so add an

@inject for an ILogger, and use it in the OnInitializedAsync as in Listing 8-42.

Listing 8-42. Update the FetchData Component to Use Logging

@page "/fetchdata"

@using Microsoft.Extensions.Logging

@using Testing.Shared

@inject IWeatherService WeatherService

@inject ILogger logger

...

 protected override async Task OnInitializedAsync()

 {

 logger.LogInformation("Fetching forecasts");

 forecasts = await WeatherService.GetForecasts();

 }

}

So we want to test if the ILogger is used during the OnInitializedAsync. We need a

mock implementation because we don’t want to have to parse log files. Add a new class

to your test project called LoggerMock as in Listing 8-43. Implementing this class alone

takes some work! We will next look at how we can make this easier. Our mock logger

simply records a couple of arguments in the Journal list.

Figure 8-17. Using a Mock During Testing

Chapter 8 Unit testing

335

Listing 8-43. Implementing an ILogger Mock

private class LoggerMock : ILogger

{

 public List<(LogLevel logLevel, object? state)> Journal

 { get; set; } = new List<(LogLevel,object?)>();

 public IDisposable BeginScope<TState>(TState state)

 => throw new NotImplementedException();

 public bool IsEnabled(LogLevel logLevel)

 => true;

 public void Log<TState>(LogLevel logLevel, EventId eventId,

 TState state, Exception? exception,

 Func<TState, Exception?, string> formatter)

 {

 Journal.Add((logLevel, state));

 }

}

Add a new unit test to the FetchDataShould class like in Listing 8-44.

Listing 8-44. Testing the FetchData Component Using a Mock

[Fact]

public void UseProperLogging()

{

 const int nrOfForecasts = 5;

 var stub = new WeatherServiceStub

 {

 FakeForecasts = Enumerable.Repeat(new WeatherForecast(),

 nrOfForecasts)

 };

 Services.AddSingleton<IWeatherService>(stub);

 LoggerMock logger = new LoggerMock();

 Services.AddSingleton<ILogger>(logger);

 var cut = RenderComponent<FetchData>();

Chapter 8 Unit testing

336

 logger.Journal.Count.Should().Be(1);

 logger.Journal.First().state.Should().NotBeNull();

 logger.Journal.First().state!.ToString().Should().Contain("Fetching

forecasts");

}

So we create a stub for the IWeatherService, a mock for the ILogger, and then we

render the component. Now we want to check the Journal of the LoggerMock. There

should be one call to the logger, so we check the length of the Journal. Then we check

the entry’s state to see if it contains the message. All straight forward but a lot of work!

Run all your tests. The UseWeatherService test breaks! Why? Because we introduced

another dependency, so we need to dependency inject a logger in this test too. I will

leave the fixing in your capable hands.

 Implementing Stubs and Mocks with MOQ
How can we implement stubs and mocks with a lot less work? Other people have been

asking the same question, and some of them built libraries that make this possible.

Generally, these libraries are known as isolation frameworks. Isolation frameworks

allow you to quickly generate stubs and mocks for classes and interfaces, where you

implement just the methods you need for the test, and verify if the subject under test

invoked methods with certain arguments a certain number of times. Here, we will

look at MOQ which is currently one of the most popular in the testing community. We

will cover a lot of features of MOQ here, but if you want to learn more, you can visit

https://documentation.help/Moq.

Start by adding the MOQ NuGet package to the test project. Now copy the

UseWeatherServices method and rename it to UseWeatherServicesMOQ. Change its

implementation like Listing 8-45. First, we create the forecasts data we want the

IWeatherService to return. Next, we create an instance of Mock<IWeatherService>

which is a class from MOQ. This class allows us to Setup methods from the interface and

Returns a certain result. It is that simple to provide a stub implementation. But MOQ

allows you to go further and makes the method return different results, depending on the

arguments, for example.

Next, we configure bUnit’s dependency injection to inject a singleton instance,

passing the stub.Object, which is an instance implementing the IWeatherService

interface. No need to build our own class to create a stub.

Chapter 8 Unit testing

https://documentation.help/Moq

337

Our FetchData component also needs a logger, but here we are not interested in the

interaction between the component and the logger, so we create another stub. The rest

of the test remains unchanged.

Listing 8-45. Implementing a Stub with MOQ

[Fact]

public void UseWeatherServiceMOQ()

{

 const int nrOfForecasts = 5;

 var forecasts = Enumerable.Repeat(new WeatherForecast(), nrOfForecasts);

 Mock<IWeatherService> stub = new Mock<IWeatherService>();

 stub.Setup(s => s.GetForecasts())

 .Returns(new ValueTask<IEnumerable<WeatherForecast>>(forecasts));

 Services.AddSingleton<IWeatherService>(stub.Object);

 Mock<ILogger> loggerStub = new Mock<ILogger>();

 Services.AddSingleton<ILogger>(loggerStub.Object);

 var cut = RenderComponent<FetchData>();

 var rows = cut.FindAll("tbody tr");

 rows.Count.Should().Be(nrOfForecasts);

}

Run the test; it should pass.

Now it is time to implement a mock, where we want to see if the FetchData

component will invoke the logger. Copy the UseProperLogging method and name it

UseProperLoggingMOQ as in Listing 8-46. Here, you should focus on the Verify method.

Here, we verify if the Log method got called, and we can state how many times. You can

choose between Never, Once, AtLeast, AtMost, Exactly, and more. The Log method

takes a bunch of arguments, and the way this Log method works is somewhat awkward.

The first argument is of type LogLevel, which we check if the LogLevel.Information

value was used with

It.Is<LogLevel>(l => l == LogLevel.Information)

Each argument is represented with a check of the arguments’ value. You can also

ignore the value of the argument with It.IsAny<T>, specifying the type of the argument.

This type of argument is needed to disambiguate overloading. Other arguments work in

Chapter 8 Unit testing

338

a similar way, even generic arguments. For example, if an argument is of type List<T>

and you cannot know T, you use It.Is<List<It.IsAnyType>>. We need to use that here

because of specific implementation details of ILogger.

Listing 8-46. Implementing a Mock Using MOQ

[Fact]

public void UseProperLoggingMOQ()

{

 const int nrOfForecasts = 5;

 var forecasts = Enumerable.Repeat(new WeatherForecast(), nrOfForecasts);

 Mock<IWeatherService> stub = new Mock<IWeatherService>();

 stub.Setup(s => s.GetForecasts())

 .Returns(new ValueTask<IEnumerable<WeatherForecast>>(forecasts));

 Services.AddSingleton<IWeatherService>(stub.Object);

 Mock<ILogger> loggerMock = new Mock<ILogger>();

 Services.AddSingleton<ILogger>(loggerMock.Object);

 var cut = RenderComponent<FetchData>();

 loggerMock.Verify(

 l => l.Log(

 It.Is<LogLevel>(l => l == LogLevel.Information),

 It.IsAny<EventId>(),

 It.Is<It.IsAnyType>(

 (msg,t) => msg.ToString()!

 .Contains("Fetching forecasts")),

 It.IsAny<Exception>(),

 It.Is<Func<It.IsAnyType, Exception?, string>>(

 (v,t)=>true))

 , Times.Once);

}

Run the test. It should pass.

Chapter 8 Unit testing

339

 Writing bUnit Tests in Razor
When you build unit tests with bUnit, you sometimes end up with long tests because of

all the markup that gets generated. Also, the MarkupMatches method takes a string, and

if your markup uses HTML attributes, you need to escape your quotes with \. For these

kinds of tests, we can also use razor to author tests. Writing unit tests with razor requires

two things: the project needs to reference the razor SDK, meaning your test project

should set the SDK type to razor:

<Project Sdk="Microsoft.NET.Sdk.Razor">

Second, you should add an _Imports.razor file to the test project for easy reference,

as in Listing 8-47.

Listing 8-47. The _Imports.razor File for Test Projects

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.JSInterop

@using Microsoft.Extensions.DependencyInjection

@using AngleSharp.Dom

@using Bunit

@using Bunit.TestDoubles

@using Xunit

I do advise to add your project’s namespaces here too.

 The First Razor Test
In your test project, add a new razor component called RCounterShould as in Listing 8-48.

Here, I will prefix the razor unit tests with an R, so we don’t get a name conflict with our

other CounterShould test class. We will make the test inherit from TestContext, just

like our test classes written in C#. Then we add a @code section and put our xUnit test

method in there. Because this is a razor file, we can write the test’s markup using razor

inside the Render method.

And inside the MarkupMatches method, we can also write the markup using plain

razor. This makes writing tests like these simpler and agreeable.

Chapter 8 Unit testing

340

Listing 8-48. Writing a Simple Unit Test with Razor

@inherits Bunit.TestContext

@code {

 [Fact]

 public void RenderCorrectlyWithInitialZero()

 {

 var cut = Render(@<Counter />);

 cut.Find("p")

 .MarkupMatches(@<p>Current count: 0</p>);

 }

 [Fact]

 public void IncrementCounterWhenButtonIsClicked()

 {

 var cut = RenderComponent<Counter>();

 cut.Find(cssSelector: "button")

 .Click();

 cut.Find(cssSelector: "p")

 .MarkupMatches(@"<p>Current count: 1</p>");

 }

}

What about passing parameters? Add a new component called RTwoWayCounterShould

like in Listing 8-49. Since we can render our component using plain razor, we can pass

parameters inside the razor syntax as shown in the first test method! The second test method

illustrates how we can test two-way data binding, again using the same familiar razor syntax.

Listing 8-49. Passing Parameters in a Razor Test

@inherits Bunit.TestContext

@code {

 [Fact]

 public void IncrementCounterWhenButtonIsClicked()

 {

 var cut = Render(@<TwoWayCounter CurrentCount="1" Increment="2"/>);

 cut.Find("button").Click();

Chapter 8 Unit testing

341

 cut.Find("p")

 .MarkupMatches(@<p>Current count: 3</p>

);

 }

 [Fact]

 public void TriggerChangedEventForCurrentCounter2()

 {

 int currentCount = 1;

 var cut = Render(@<TwoWayCounter

 @bind-CurrentCount="currentCount"

 Increment="2"/>

);

 cut.Find(cssSelector: "button")

 .Click();

 currentCount.Should().Be(3);

 }

}

Let us look at an example that uses ChildContent. Add a new razor component

called RAlertShould to the test project as in Listing 8-50. The Alert component uses

ChildContent, and we can pass this by nesting the child content inside the Alert markup.

And to see if the component gets rendered as expected, we can use simple HTML

markup inside the MarkupMatches method.

Listing 8-50. Testing a Component with ChildContent

@inherits Bunit.TestContext

@code {

 [Fact]

 public void RenderSimpleChildContent()

 {

 var cut = Render(

 @<Alert>

 <h1>Hello world!</h1>

 </Alert>

);

Chapter 8 Unit testing

342

 cut.MarkupMatches(

 @<div class="alert alert-secondary mt-4" role="alert">

 <h1>Hello world!</h1>

 </div>

);

 }

}

Add another razor component, called RTemplatedListShould from Listing 8-51.

Again, we want to see if the component displays the loading RenderFragment when the

items are null. Passing a RenderFragment is again done using razor.

Listing 8-51. Using a Razor Test for a Templated Component

@inherits Bunit.TestContext

@code {

 [Fact]

 public void RenderLoadingTemplateWhenItemsIsNull()

 {

 RenderFragment loading =

 @<div class="loader">Loading...</div>;

 Func<ValueTask<IEnumerable<string>?>> loader =

 () => new ValueTask<IEnumerable<string>?>(

 result: null);

 var cut = Render(

 @<TemplatedList Loader="@loader">

 <LoadingContent>

 <div class="loader">Loading...</div>

 </LoadingContent>

 </TemplatedList>

);

 cut.Find("div.loader")

 .MarkupMatches(loading);

 }

}

Chapter 8 Unit testing

343

 Handling Asynchronous Re-renders
When you build a component that overrides OnInitializedAsync or

OnParametersSetAsync, your component will at least render itself twice – first, when

the component gets created and after completion of the OnInitializedAsync and again

after completion of each OnParametersSetAsync.

Inside a bUnit test, this can give you issues. Let us look at an example.

Add the following unit test from Listing 8-52 to the RTemplatedListShould class. In

this test, we make the loader really asynchronous using the TaskCompletionSource<T>

class. Instances of this class have a Task<T> which will continue execution by calling the

SetResult method. Until then the Task will block any awaiter. This allows us to render

the component, see the loading UI, then make the Task complete by calling SetResult,

and then see if the items get rendered.

Listing 8-52. Testing Asynchronous Re-renders

[Fact]

public void RenderItemsAftersItemsLoadedAsyncCorrectly()

{

 const int count = 5;

 var tcs = new TaskCompletionSource<IEnumerable<string>?>();

 Func<ValueTask<IEnumerable<string>?>> loader =

 () => new ValueTask<IEnumerable<string>?>(tcs.Task);

 var cut = Render(

 @<TemplatedList Loader="@loader">

 <LoadingContent>

 <div class="loader">Loading...</div>

 </LoadingContent>

 <ItemContent Context="item">

 <ListItem Item="@item" />

 </ItemContent>

 </TemplatedList>

);

 cut.Find("div.loader")

Chapter 8 Unit testing

344

 .MarkupMatches(@<div class="loader">Loading...</div>);

 // Complete the loader task,

 // this should rerender the component asynchronously

 tcs.SetResult(Enumerable.Repeat("A", count));

 var ps = cut.FindAll("p");

 ps.Should().NotBeEmpty();

 foreach (var p in ps)

 {

 p.MarkupMatches(@<p>A</p>);

 }

}

Run the test. It will fail! Why? Because our component will render the UI on another

thread, and the test will check the UI before rendering completes. So we need to wait a

bit till the UI rendering completes. How can we do this? Add this line of code after the

SetResult call, with the complete method in Listing 8-53.

cut.WaitForState(() => cut.FindAll("p").Any());

The WaitForState method will wait till the condition returns true. We know that

the UI will render a bunch of paragraphs, so we wait till we see them. The WaitForState

also has a parameter (not shown here) to set the timeout, which has a default value of 1

second. If the cut does not pass the condition within the timeout, the test will fail with

the WaitForFailedException.

Listing 8-53. Testing Asynchronous Re-renders

[Fact]

public void RenderItemsAftersItemsLoadedAsyncCorrectly()

{

 const int count = 5;

 var tcs = new TaskCompletionSource<IEnumerable<string>?>();

 Func<ValueTask<IEnumerable<string>?>> loader =

 () => new ValueTask<IEnumerable<string>?>(tcs.Task);

 var cut = Render(

Chapter 8 Unit testing

345

 @<TemplatedList Loader="@loader">

 <LoadingContent>

 <div class="loader">Loading...</div>

 </LoadingContent>

 <ItemContent Context="item">

 <ListItem Item="@item" />

 </ItemContent>

 </TemplatedList>

);

 cut.Find("div.loader")

 .MarkupMatches(@<div class="loader">Loading...</div>);

 // Complete the loader task,

 // this should rerender the component asynchronously

 tcs.SetResult(Enumerable.Repeat("A", count));

 // Wait for rendering to complete

 cut.WaitForState(() => cut.FindAll("p").Any());

 var ps = cut.FindAll("p");

 ps.Should().NotBeEmpty();

 foreach (var p in ps)

 {

 p.MarkupMatches(@<p>A</p>);

 }

}

 Configuring Semantic Comparison
The bUnit testing library uses the AngleSharp Diffing library to compare the generated

markup with the expected markup in the MarkupMatches method. You can find

AngleSharp on GitHub at https://github.com/AngleSharp/AngleSharp.Diffing. To

make your tests more robust, you can configure how the semantic comparison works; for

example, we can tell it to ignore certain HTML attributes and elements.

Chapter 8 Unit testing

https://github.com/AngleSharp/AngleSharp.Diffing

346

 Why Do We Need Semantic Comparison?
Using strings to compare markup is too sensitive to small changes in the markup. For

example, formatting your code might add some whitespace, and since string comparison

will compare each character, a working test will suddenly fail. And there are many more

innocent changes that will break a test, for example, changing the order of attributes, or

reordering the classes in the class attribute, or adding comments. Semantic comparison

will ignore all of these changes, resulting in tests that will not break because of a

simple change.

 Customizing Semantic Comparison
Remember one of our previous tests, where we told the MarkupMatches method to ignore

the attribute (Listing 8-16). The AngleSharp Diffing library allows us to use special

attributes to ignore certain elements and attributes; for example, <div style:ignore>

will ignore the style attribute’s contents. We can also make it ignore certain HTML

elements; for example, add the test from Listing 8-54 to the AlertShould class.

Listing 8-54. Ignoring an Element with Semantic Comparison

[Fact]

public void RenderCorrectly()

{

 var cut = RenderComponent<Alert>(parameters =>

 parameters.AddChildContent("<p>Hello world!</p>"));

 cut.MarkupMatches(@"

 <div class=""alert alert-secondary mt-4"" role=""alert"">

 <p diff:ignore></p>

 </div>

 ");

}

We can do the same with razor tests, for example, Listing 8-55, which should be

added to the RAlertShould razor file.

Chapter 8 Unit testing

347

Listing 8-55. Ignoring an Element with a Razor Test

[Fact]

public void RenderCorrectly()

{

 var cut = Render(

 @<Alert>

 <h1>Hello world!</h1>

 </Alert>

);

 cut.MarkupMatches(

 @<div class="alert alert-secondary mt-4" role="alert">

 <h1 diff:ignore></h1>

 </div>

);

 }

By default, semantic comparison will ignore whitespace, but in some cases,

you want to verify if the component actually renders some whitespace. Do this with

diff:whitespace="preserve".

You can also tell semantic comparison to ignore case or use a regular expression for

your comparison.

Note regular expressions allow you to test for complex patterns in strings with a
concise syntax. regular expressions were invented in 1951, and we are still using
them. What else was invented more than half a century ago that we are still using
in it? Learning regular expressions is something worthwhile investing in for your
future in it!

Let us test the simple Card component from Listing 8-56.

Chapter 8 Unit testing

348

Listing 8-56. A Simple Card Component

<h3 id="card-@Id">Card @Id</h3>

@code {

 [Parameter]

 public int Id { get; set; }

}

A unit test that will check if the id attribute matches card- followed by one to four

digits and the content matches Card with one to four digits looks like Listing 8-57. We

also want the test to ignore the casing on the card’s contents.

Listing 8-57. Ignore Casing and Using Regular Expressions

using Bunit;

using Testing.Client.Pages;

using Xunit;

namespace Testing.ComponentTests

{

 public class CardShould : TestContext

 {

 [Fact]

 public void RenderCorrectlyWithProperId()

 {

 var cut = RenderComponent<Card>();

 cut.MarkupMatches(@"<h3 diff:ignorecase diff:regex id:regex=""card-

\d{1,4}"">card \d{1,4}</h3>");

 }

 }

}

Chapter 8 Unit testing

349

 Summary
In this chapter, we had a look at unit testing. With unit testing, you can see if your code

and components behave as expected, and also it allows you to test if they continue

behaving, so small changes that cause bugs are found as fast as possible. Good unit

tests are fast, consistent, repeatable, and automatic. We have seen that testing Blazor

components becomes very practical with bUnit, and we can author tests using

C# or Razor. And with MOQ, we can quickly generate stubs and mocks to replace

dependencies in our tests.

Chapter 8 Unit testing

351
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_9

CHAPTER 9

Single-Page Applications
and Routing
Blazor is a .NET framework you use for building Single-Page Applications (SPA), just like

you can use popular JavaScript frameworks, such as Angular, React, and Vue.js. But what

is a SPA? In this chapter, you will use routing to jump between different sections of a SPA

and send data between different components.

 What Is a Single-Page Application?
At the beginning of the Web, there were only static pages. A static page is an HTML

file somewhere on the server that gets sent back to the browser upon request. Here,

the server is really nothing but a file server, returning HTML pages to the browser. The

browser renders the HTML. The only interaction with the browser then was that you

could click a link (the anchor <a> HTML element) to get another page from the server.

Later came the rise of dynamic pages. When a browser requests a dynamic page,

the server runs a program to build the HTML in memory and sends the HTML back

to the browser (this HTML never gets stored to disk; of course, the server can store

the generated HTML in its cache for fast retrieval later, also known as output caching).

Dynamic pages are flexible in the way that the same code can generate thousands of

different pages by retrieving data from a database and using it to construct the page. Lots

of commercial websites like amazon.com use this. But there is still a usability problem.

Every time your user clicks a link, the server must generate the next page from scratch

and send it to the browser for rendering. This results in a noticeable wait period, and of

course, the browser re-renders the whole page.

In 1995, Brendan Eich invented JavaScript (today known as ECMAScript) to allow

simple interactions in the browser. Web pages started to use JavaScript to retrieve parts of

the page when the user interacts with the UI. One of the first examples of this technique

https://doi.org/10.1007/978-1-4842-7845-1_9#DOI
http://amazon.com

352

was Microsoft’s Outlook Web Application. This web application looks and feels like Outlook,

a desktop application, with support for all user interactions you expect from a desktop

application. Google’s Gmail is another example. They are now known as Single-Page

Applications. SPAs contain sections of the web page that are replaced at runtime depending

on the user’s interaction. If you click an email, the main section of the page is replaced by the

email’s view. If you click your inbox, the main section gets replaced by a list of emails; etc.

 Single-Page Applications
A SPA is a web application that replaces certain parts of the UI without reloading the

complete page. SPAs use JavaScript to implement this manipulation of the browser’s

control tree, also known as the Document Object Model (DOM), and most of them

consist of a fixed UI and a placeholder element where the contents are overwritten

depending on where the user clicks. One of the main advantages of using a SPA is that

you can make a SPA stateful. This means that you can keep information loaded by the

application in memory, just like when you build a desktop application. You will look at

an example of a SPA, built with Blazor, in this chapter.

 Layout Components
Let’s start with the fixed part of a SPA. Every web application contains UI elements that

you can find on every page, such as a header, footer, copyright, menu, etc. Copy-pasting

these elements to every page would be a lot of work and would require updating every

page if one of these elements needed to change. Developers don’t like to do that, so

every framework for building websites has had a solution for this. For example, ASP.NET

WebForms uses master pages, and ASP.NET MVC has layout pages. Blazor also has a

mechanism for this called layout components.

 Using Blazor Layout Components
Layout components are Blazor components. Anything you can do with a regular

component you can do with a layout component, like dependency injection, data

binding, and nesting other components. The only difference is that they must inherit

from the LayoutComponentBase class.

The LayoutComponentBase class adds a Body property to ComponentBase as in

Listing 9-1.

Chapter 9 Single-page appliCationS and routing

353

Listing 9-1. The LayoutComponentBase Class (Simplified)

namespace Microsoft.AspNetCore.Components

{ public abstract class LayoutComponentBase : ComponentBase

 {

 [Parameter]

 public RenderFragment? Body { get; set; }

 }

}

As you can see from Listing 9-1, the LayoutComponentBase class inherits from the

ComponentBase class. This is why you can do the same thing as with normal components.

Let’s look at an example of a layout component. Open the SinglePageApplications

solution from the code provided with this chapter. Now, look at the MainLayout.razor

component in the SPA.Client’s Shared folder, which you’ll find in Listing 9-2. Since

layout components are used by more than one component, it makes sense to place your

layout components in the Shared folder, although there is not technical requirement

to do so.

Listing 9-2. MainLayout.razor from the Template

@inherits LayoutComponentBase

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <div class="main">

 <div class="top-row px-4">

 <a href="http://blazor.net" target="_blank"

 class="ml-md-auto">About

 </div>

 <div class="content px-4">

 @Body

 </div>

 </div>

</div>

Chapter 9 Single-page appliCationS and routing

354

On the first line, the MainLayout component declares that it inherits from

LayoutComponentBase. Then you see a sidebar and main <div> element, with the

main element data binding to the inherited Body property. Any component that uses

this layout component will end up where the @Body property is, so inside the <div

class="content px-4">.

In Figure 9-1, you can see the sidebar on the left side (containing links to the different

components of this Single-Page Application) and the main area on the right side with

the @Body emphasized with a black rectangle (which I added to the figure). Clicking the

Home, Counter, or Fetch Data link in the sidebar will replace the Body property with the

selected component, updating the UI without reloading the whole page.

Figure 9-1. The MainLayout Component

You can find the CSS style used by this layout component in the MainLayout.razor.

css file.

Chapter 9 Single-page appliCationS and routing

355

 Configuring the Default Layout Component
So how does a component know which layout component to use? A component can

change the layout component for itself, and an application can set a default layout

component which will be used for all components that do not explicitly set their layout.

Let us start with the application. Open the App.razor file as in Listing 9-3. The first thing

to notice here is the RouteView component, which has a DefaultLayout property of type

Type. This is where the default layout for this application is set. Any component selected

by this RouteView component will use the MainLayout by default. And should no suitable

component be found to display, the App component uses a LayoutView to display an

error message. Again, this LayoutView uses the MainLayout, but of course you can

change this to any layout you like.

Listing 9-3. The App.razor Component

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

Internally, the RouteView component uses the LayoutView component to select the

appropriate layout component. LayoutView allows you to change the layout component

for any part of your component.

Let us create a simple error layout component, which will display the error

horizontally centered. Start by adding a new razor component called ErrorLayout with

markup from Listing 9-4 to the Shared folder.

Chapter 9 Single-page appliCationS and routing

356

Listing 9-4. The ErrorLayout Component

@inherits LayoutComponentBase

<div class="error">

 @Body

</div>

Now add a CSS file called ErrorLayout.razor.css from Listing 9-5 to the Shared folder.

This tells the error layout to place the body centered in the browser’s window.

Listing 9-5. The ErrorLayout Style

.error {

 position: relative;

 display: flex;

 justify-content: center;

 align-items: center;

 height: 100vh;

}

Now replace the LayoutView’s Layout property from App.razor with Listing 9-6.

Listing 9-6. The Updated App.razor File

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(ErrorLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

Chapter 9 Single-page appliCationS and routing

357

Run the Blazor application and manually change the browser’s URL by appending /x.

Because there is nothing associated with this URL, the error layout will be used to display

the error, as shown in Figure 9-2.

 Selecting a Layout Component
Every component can select which layout to use by stating the name of the layout

component with the @layout razor directive. For example, start by copying the

MainLayout.razor file to MainLayoutRight.razor (this should also make a copy of the CSS

file). This will generate a new layout component called MainLayoutRight, inferred from

the filename (you might need to rebuild the project to force this). Inside the CSS file for

this component, change both flex-direction properties to their reverse counterpart as

shown in Listing 9-7.

Listing 9-7. A Second Layout Component

.page {

 position: relative;

 display: flex;

 flex-direction: column-reverse;

}

...

Figure 9-2. The ErrorLayout in Action

Chapter 9 Single-page appliCationS and routing

358

@media (min-width: 641px) {

 .page {

 flex-direction: row-reverse;

 }

...

}

Now open the Counter component and add a @layout razor directive as in Listing 9-8.

Listing 9-8. Choosing a Different Layout with @layout

@page "/counter"

@layout MainLayoutRight

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

}

Run the application and watch the layout change as you alternate between Home

and Counter.

Note You can also use the LayoutAttribute if you’re building your component
completely in code.

Most components will use the same layout. Instead of copying the same @layout

razor directive to every page, you can also add a _Imports.razor file to the same folder

as your components. Open the Pages folder from the SPA.Client project and add a new

_Imports.razor file. Replace its content with Listing 9-9.

Chapter 9 Single-page appliCationS and routing

359

Listing 9-9. _Imports.razor

@layout MainLayoutRight

Any component in this folder (or subfolder) that does not explicitly declare a

@layout component will use the MainLayoutRight layout component.

 Nesting Layouts
Layout components can also be nested. You could define the MainLayout to contain

all the UI that is shared between all components and then define a nested layout to

be used by a subset of these components. For example, add a new razor view called

NestedLayout.razor to the Shared folder and replace its contents with Listing 9-10.

Listing 9-10. A Simple Nested Layout

@inherits LayoutComponentBase

@layout MainLayout

<div class="paper">

 @Body

</div>

To build a nested layout, you @inherit from LayoutComponentBase and set its

@layout to another layout, for example, MainLayout. Our nested layout uses a paper

class, so add a NestedLayout.razor.css file next to the component and add Listing 9-11.

Listing 9-11. The NestedLayout Component’s Style

.paper {

 background-image: url("images/paper.jpg");

 padding: 1em;

}

This style uses the paper.jpg background from the images folder.

Now add a layout directive to the _Imports.razer file within the Pages folder as in

Listing 9-12.

Chapter 9 Single-page appliCationS and routing

360

Listing 9-12. Nested Layout

@layout NestedLayout

Run your application; now you have the Index component inside the nested layout

which is inside the main layout, as shown in Figure 9-3.

 Blazor Routing
Single-Page Applications use routing to select which component gets picked to fill in

the layout component’s Body property. Routing is the process of matching the browser’s

URI to a collection of route templates and is used to select the component to be shown

on screen. That is why every component in as Blazor SPA uses a @page directive to define

the route template to tell the router which component to pick.

 Installing the Router
When you create a Blazor solution from scratch, the router is already installed, but let’s

have a look at how this is done. Open App.razor. This App component only has one

component, the Router component, as shown in Listing 9-13.

Figure 9-3. The Index Component Using the Nested Layout

Chapter 9 Single-page appliCationS and routing

361

Listing 9-13. The App Component Containing the Router

<Router AppAssembly="@typeof(Program).Assembly">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(ErrorLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

The Router component is a templated component with two templates. The Found

template is used for known routes, and the NotFound is shown when the URI does not

match any of the known routes. You can replace the contents of the last to show a nice

error page to the user.

The Found template uses a RouteView component which will render the selected

component with its layout (or default layout). When the Router component gets

instantiated, it will search its AppAssembly property for all components that have the

RouteAttribute (the @page razor directive gets compiled into a RouteAttribute) and

pick the component that matches the current browser’s URI. For example, the Counter

component has the @page "/counter" razor directive, and when the URL in the browser

matches /counter, it will display the Counter component in the MainLayout component.

 The NavMenu Component
Review the MainLayout component from Listing 9-2. On the fourth line, you will see

the NavMenu component. This component contains the links to navigate between

components. This component comes with the template; feel free to use another

component for navigation. We will use this component here to explore some of the

concepts. Open the SPA.Client project and look for the NavMenu component in the

Shared folder, which is repeated in Listing 9-14.

Chapter 9 Single-page appliCationS and routing

362

Listing 9-14. The NavMenu Component

<div class="top-row pl-4 navbar navbar-dark">

 SPA

 <button class="navbar-toggler" @onclick="ToggleNavMenu">

 </button>

</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">

 Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 Counter

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 Fetch data

 </NavLink>

</div>

@code {

 private bool collapseNavMenu = true;

 private string NavMenuCssClass

 => collapseNavMenu ? "collapse" : null;

Chapter 9 Single-page appliCationS and routing

363

 private void ToggleNavMenu()

 {

 collapseNavMenu = !collapseNavMenu;

 }

}

The first part of Listing 9-14 contains the Toggle button which allows you to hide

and show the navigation menu. This button is only visible on displays with a narrow

width (e.g., mobile displays). If you want to look at it, run your application and make the

browser width smaller until you see the hamburger button in the top right corner, as in

Figure 9-4. Click the button to show the navigation menu and click it again to hide the

menu again.

The remaining markup contains the navigation menu, which consists of NavLink

components. Let’s look at the NavLink component.

The NavLink component is a specialized version of an anchor element <a/> used for

creating navigation links, also known as hyperlinks. When the browser’s URI matches

the href property of the NavLink, it applies a CSS style (the active CSS class if you

want to customize it) to itself to let you know it is the current route. For example, look at

Listing 9-15.

Listing 9-15. The Counter Route’s NavLink

<NavLink class="nav-link" href="counter">

 Counter

</NavLink>

When the browser’s URI ends with /counter (ignoring things like query strings), this

NavLink will apply the active style. Let’s look at another one in Listing 9-16.

Figure 9-4. Your Application on a Narrow Display Shows the Toggle Button

Chapter 9 Single-page appliCationS and routing

364

Listing 9-16. The Default Route’s NavLink

<NavLink class="nav-link" href="" Match="NavLinkMatch.All">

 Home

</NavLink>

When the browser’s URI is empty (except for the site’s URL), the NavLink from

Listing 9-16 will be active. But here you have a special case. Normally, NavLink

components only match the end of the URI. For example, /counter matches the NavLink

from Listing 9-15. But with an empty URI, this would match everything! This is why in the

special case of an empty URI you need to tell the NavLink to match the whole URI. You

do this with the Match property, which by default is set to NavLinkMatch.Prefix. If you

want to match the whole URI, use NavLinkMatch.All as in Listing 9-16.

 Setting the Route Template
The Routing component from Blazor examines the browser’s URI and searches for

a component’s route template to match. But how do you set a component’s route

template? Open the Counter component shown in Listing 9-8. At the top of this file is the

@page "/counter" razor directive. It defines the route template. A route template is a

string matching a URI, and that can contain parameters, which you can then use in your

component.

You can change what gets displayed in the component by passing parameters in

the route. You could pass the id of a product, look up the product’s details with the id,

and use it to display the product’s details. Let’s look at an example. Change the Counter

component to look like Listing 9-17 by adding another route template which will set the

CurrentCount parameter. This listing illustrates a couple of things. First, you can have

multiple @page razor directives, so the /counter and /counter/55 will both route to the

Counter component. The second @page directive will set the CurrentCount parameter

property from routing, and the name of the parameter is case-insensitive in the @page

directive. Of course, parameters need to be encased in curly brackets so the router can

identify it.

Chapter 9 Single-page appliCationS and routing

365

Listing 9-17. Defining a Route Template with a Parameter

@page "/counter"

@page "/counter/{currentCount:int?}"

@layout MainLayoutRight

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 [Parameter]

 public int CurrentCount { get; set; }

 private void IncrementCount()

 {

 CurrentCount++;

 }

}

Just like routes in ASP.NET MVC Core, you can use route constraints to limit the type

of parameter to match. For example, if you were to use the /counter/Blazor URI, the

route template would not match because the parameter does not hold an integer value

and the router would not find any component to match.

Constraints are even mandatory if you’re not using string typed parameters;

otherwise, the router does not cast the parameter to the proper type. You specify

the constraint by appending it using a colon, for example, @page "/counter/

{currentCount:int}". You can also make the parameter optional by appending a

question mark after the constraint as shown in Listing 9-17.

A list of other routing constraints can be found in Table 9-1. Each of these maps to

the corresponding .NET type.

Chapter 9 Single-page appliCationS and routing

366

If you are building your components as pure C# components, apply the

RouteAttribute to your class with the route template as an argument. This is what the

@page directive gets compiled into.

 Redirecting to Other Pages
How do you navigate to another component using routing? You have three choices: use a

standard anchor element, use the NavLink component, and use code. Let’s start with the

normal anchor tag.

Using an anchor (the <a/> HTML element) is effortless if you use a relative href. For

example, add Listing 9-18 below the button of Listing 9-17.

Listing 9-18. Navigation Using an Anchor Tag

Home

This link has been styled as a button using Bootstrap 4. Run your application and

navigate to the Counter component. Click the Home button to navigate to the Index

component whose route template matches “/”.

The NavLink component uses an underlying anchor, so its usage is similar. The only

difference is that a NavLink component applies the active class when it matches the

route. Generally, you only use a NavLink in the NavMenu component, but you are free to

use it instead of anchors.

Table 9-1. Routing Constraints

Route Constraints

bool

datetime

decimal

double

float

guid

int

long

Chapter 9 Single-page appliCationS and routing

367

Navigating in code is also possible, but you will need an instance of the

NavigationManager class through dependency injection. This instance allows you to

examine the page’s URI and has a helpful NavigateTo method. This method takes a

string that will become the browser’s new URI.

Let’s try an example. Modify the Counter component to look like Listing 9-19.

Listing 9-19. Using the NavigationManager

@page "/counter"

@page "/counter/{currentCount:int?}"

@layout MainLayoutRight

@inject NavigationManager navigationManager

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

Home

<button class="btn btn-primary" @onclick="StartFrom50">Start from 50</button>

@code {

 [Parameter]

 public int CurrentCount { get; set; }

 private void IncrementCount()

 {

 CurrentCount++;

 }

 private void StartFrom50()

 {

 navigationManager.NavigateTo("/counter/50");

 }

}

Chapter 9 Single-page appliCationS and routing

368

You tell dependency injection with the @inject razor directive to give you an

instance of the NavigationManager and put it in the navigationManager field. The

NavigationManager is one of the types that Blazor provides out of the box through

dependency injection. Then you add a button that calls the StartFrom50 method when

clicked. This method uses the NavigationManager to navigate to another URI by calling

the NavigateTo method. Run your application and click the “Start from 50” button. You

should navigate to /counter/50.

 Understanding the Base Tag
Please don’t use absolute URIs when navigating. Why? Because when you deploy your

application on the Internet, the base URI will change. Instead, Blazor uses the <base/>

HTML element and all relative URIs will be combined with this <base/> tag. Where is the

<base/> tag? With Blazor WebAssembly, open the wwwroot folder of your Blazor project

and open index.html, shown in Listing 9-20.

Listing 9-20. index.html

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no" />

 <title>SPA</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

 <link href="css/app.css" rel="stylesheet" />

 <link href="SPA.Client.styles.css" rel="stylesheet" />

</head>

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

Chapter 9 Single-page appliCationS and routing

369

 🗙

 </div>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

If you are using Blazor Server, the base tag can be found in _Host.cshtml.

When you deploy in production, all you need to do is to update the base tag.

For example, you might deploy your application to https://online.u2u.be/

selfassessment. In this case, you would update the base element to <base href="/

selfassessment" />. So why do you need to do this? If you deploy to https://online.

u2u.be/selfassement, the Counter component’s URI becomes https://online.

u2u.be/selfassessment/counter. Routing will ignore the base URI so it will match

the counter as expected. You only need to specify the base URI once, as shown in

Listing 9-20.

You can also access the base URI (with a trailing slash) using the NavigationManager

BaseUri property. This can be useful for passing absolute URIs, for example, to certain

JavaScript libraries. We will discuss JavaScript interoperability in the next chapter.

 Lazy Loading with Routing
Some components in your Blazor application might not be used frequently. But even

then, Blazor will need to load these components into the browser before running your

application. For large applications, this can mean that your application will take even

longer to load. However, with Blazor, we can load components the moment we need

them. This is called lazy loading.

 Lazy Loading Component Libraries
Lazy loading works by moving your infrequently used components into one or more

component libraries, and then download right before you need them. We discussed

building component libraries in Chapters 3 and 4. But let us start with a project, move

these components and their dependencies into libraries, and then lazy load them.

In the book’s download, you should find a solution called lazy loading. Open it. This

project should look familiar. You should be able to build and run this application. Now,

Chapter 9 Single-page appliCationS and routing

https://online.u2u.be/selfassessment
https://online.u2u.be/selfassessment
https://online.u2u.be/selfassement
https://online.u2u.be/selfassement
https://online.u2u.be/selfassessment/counter
https://online.u2u.be/selfassessment/counter

370

for the sake of the example, assume that the Counter and FetchData components are

components we want to lazy load.

Let us start with the Counter component. Create a Razor Class Library project called

LazyLoading.Library. Move the Counter component to this library. Now add a project

reference to this library in the client project, and add a @using directive to the _Imports.

razor (the one in the client project).

Build and run your solution. Click the Counter link. Hmm. No Counter has been

found. Why?

When the Router component gets initialized, it searches the assembly from its

AppAssembly parameter for components that have a @page razor directive. Before

we moved the Counter component to the razor library, the Counter was part of this

assembly. But now we have moved it to the razor library. So we need to tell the Router

component to search this library for routable components. We can easily do this by

setting the router’s AdditionalAssemblies parameter. Open App.razor and update it as

in Listing 9-21. Here, we set the AdditionalAssemblies parameter to a List<Assembly>,

which contains the Assembly for the Counter component. Now the application should

show the Counter component.

Listing 9-21. Using AdditionalAssemblies

@using System.Reflection

<Router AppAssembly="@typeof(Program).Assembly"

 AdditionalAssemblies="@additionalAssemblies">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

Chapter 9 Single-page appliCationS and routing

371

@code {

 private List<Assembly> additionalAssemblies =

 new List<Assembly>

 {

 typeof(Counter).Assembly

 };

}

We moved the Counter component to a razor library, but we still load the Counter

component when the application is loaded. Time to enable lazy loading for the razor

library.

First, we will tell the runtime not to load the assembly automatically, and then we

will load it when needed.

 Marking an Assembly for Lazy Loading
Open the client project file using the editor and add the BlazorWebAssemblyLazyLoad

element as in Listing 9-22. This tells the runtime not to load the LazyLoading.Library.dll

automatically.

Listing 9-22. Turning on Lazy Loading

<Project Sdk="Microsoft.NET.Sdk.BlazorWebAssembly">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 ...

 </ItemGroup>

 <ItemGroup>

 <BlazorWebAssemblyLazyLoad

 Include="LazyLoading.Library.dll" />

 </ItemGroup>

</Project>

Chapter 9 Single-page appliCationS and routing

372

If you would try to run the application, you will get a runtime error:

Could not load file or assembly 'LazyLoading.Library, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=null' or one of its dependencies.

 Dynamically Loading an Assembly
Now we need to load this assembly when needed. When do we load this assembly?

When we navigate to a component that needs components from this assembly. How

do we know we are navigating? The Router component has an event for this called

OnNavigateAsync, and we will use it to detect when we navigate to a component

that uses a lazy loaded component. Then we will download the assembly using the

LazyAssemblyLoader so it is ready for use.

Update App.razor as in Listing 9-23. First, we get an instance of the

LazyAssemblyLoader using dependency injection. Then we implement the

OnNavigateAsync event using the OnNavigate method. This method receives a

NavigationContext instance, and we check the Path if we are navigating to the Counter

component. If so, we load the assembly for the Counter component (LazyLoading.

Library.dll), and we add it to the additionalAssemblies collection, so the Router

component can scan it for route templates.

Listing 9-23. Loading an Assembly when Needed

@using System.Reflection

@using Microsoft.AspNetCore.Components.WebAssembly.Services

@inject LazyAssemblyLoader assemblyLoader

<Router AppAssembly="@typeof(Program).Assembly"

 AdditionalAssemblies="@additionalAssemblies"

 OnNavigateAsync="OnNavigate">

 <Found Context="routeData">

 <RouteView RouteData="@routeData" DefaultLayout="@typeof

(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

Chapter 9 Single-page appliCationS and routing

373

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

@code {

 private List<Assembly> additionalAssemblies =

 new List<Assembly>

 {

 };

 private async Task OnNavigate(NavigationContext context)

 {

 if(context.Path == "counter")

 {

 var assembliesToLoad = new List<string>

 {

 "LazyLoading.Library.dll"

 };

 var assemblies = await assemblyLoader.LoadAssembliesAsync

(assembliesToLoad);

 additionalAssemblies.AddRange(assemblies);

 }

 }

}

Before we can run, we need to configure dependency injection

builder.Services.AddScoped<LazyAssemblyLoader>();

Build and run the application. It should start, and when we click Counter, the

browser will download it and then render it.

What if we are on a slow network? Maybe we want to show some loading UI while

the assembly downloads? The router has a Navigating RenderFragment which it

shows while loading. So update the App.razor file again as in Listing 9-24, adding the

Navigating UI.

Chapter 9 Single-page appliCationS and routing

374

Listing 9-24. Showing a Navigating UI

<Router AppAssembly="@typeof(Program).Assembly"

 AdditionalAssemblies="@additionalAssemblies"

 OnNavigateAsync="OnNavigate">

 <Found Context="routeData">

 <RouteView RouteData="@routeData" DefaultLayout="@typeof

(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

 <Navigating>

 Loading additional components...

 </Navigating>

</Router>

 Lazy Loading and Dependencies
Let us now try to lazy load the FetchData component. This component uses an

IWeatherService instance, implemented by the WeatherService class (the one in the

Blazor project). We will move both into the component library.

Start moving the FetchData component and WeatherService class to the component

library. Add a project reference to the library project for the shared project since the

WeatherService uses the Shared project’s IWeatherService.

Your library project should compile now.

Update the OnNavigate method from App.razor to check for the FetchData URI as in

Listing 9-25.

Listing 9-25. The OnNavigate Method for FetchData

private async Task OnNavigate(NavigationContext context)

{

 if (context.Path == "counter" || context.Path == "fetchdata")

 {

Chapter 9 Single-page appliCationS and routing

375

 var assembliesToLoad = new List<string>

 {

 "LazyLoading.Library.dll"

 };

 var assemblies = await assemblyLoader

 .LoadAssembliesAsync(assembliesToLoad);

 additionalAssemblies.AddRange(assemblies);

 }

}

After fixing a couple of namespaces in C#, the project should build. But running will

fail. Why? In Program.cs, you are adding the WeatherService class from the lazy loaded

library, but that has not been loaded (because you told the runtime not to load it).

Maybe we could postpone registering the WeatherService? Sorry, that will not

work. After initialization, dependency injection becomes immutable so you cannot

add dependencies later. Of course, we could keep the WeatherService in the Blazor

client project, but let us pretend it is worth our while to lazy load it. Time to introduce

a little layer. We will use a factory method to create the dependency, and we will use

dependency injection to inject the factory method. This will require a couple of changes.

Note a factory is a class that has a method that will create an instance of
some class, hiding the creation process. For example, a factory could create an
instance, where the class of the instance depends on some business rule. of
course, all instances returned should have some common base class or interface.
actually, IServiceProvider used by dependency injection is also a factory,
but we cannot use it here because it does not know about the existence of the
WeatherService. use your favorite search engine and search “Factory pattern in
C#” to learn more about this.

Both the component library and Blazor client application will need to share the

factory interface, so add the IWeatherServiceFactory to the Shared project as in

Listing 9-26.

Chapter 9 Single-page appliCationS and routing

376

Listing 9-26. The IWeatherServiceFactory Interface

namespace LazyLoading.Shared

{

 public interface IWeatherServiceFactory

 {

 IWeatherService Create();

 }

}

Update the FetchData component to use the IWeatherService factory to create the

IWeatherService instance as in Listing 9-27.

Listing 9-27. Update the FetchData Component

@page "/fetchdata"

@using LazyLoading.Shared

@inject IWeatherServiceFactory weatherServiceFactory

...

@code {

 private IEnumerable<WeatherForecast> forecasts;

 protected override async Task OnInitializedAsync()

 {

 IWeatherService weatherService = weatherServiceFactory.Create();

 forecasts = await weatherService.GetForecasts();

 }

}

Finally, we will implement the IWeatherServiceFactory interface in the client

project as in Listing 9-28 to create the actual WeatherService. Because we only need

WeatherService implementation when we use the factory, this will work because the

library containing the WeatherService will be loaded through lazy loading. However, the

WeatherService has its own dependencies, so we will request these in the factory and

pass them to the actual service. The factory is a tiny class, and when the actual service

with its dependencies is large, this technique becomes interesting.

Chapter 9 Single-page appliCationS and routing

377

Listing 9-28. Implementing the IWeatherServiceFactory

using LazyLoading.Library.Services;

using LazyLoading.Shared;

using System.Net.Http;

namespace LazyLoading.Client

{

 public class WeatherServiceFactory : IWeatherServiceFactory

 {

 private readonly HttpClient httpClient;

 public WeatherServiceFactory(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public IWeatherService Create() => new WeatherService(httpClient);

 }

}

 Adding Another Page to PizzaPlace
Let us add a detail page to the PizzaPlace application. This will allow the customer to

check the ingredients and nutritional information about pizzas.

When you navigate between different Blazor components with routing, you will

probably encounter the need to send information from one component to another.

One way to accomplish this is by setting a parameter in the destination component

by passing it in the URI. For example, you could navigate to /pizzadetail/5 to tell the

destination component to display information about the pizza with id 5. The destination

component can then use a service to load the information about pizza #5 and then

display this information. But in Blazor, there are other ways to pass information from one

component to another. If both components share a common parent component, we can

use data binding. Otherwise, we can use a State class (most developers call this State,

but this is just a convention and you can call it anything you want; State just makes

sense) and then use dependency injection to give every component the same instance

of this class. This single State class contains the information that components need. We

Chapter 9 Single-page appliCationS and routing

378

have seen this before in Chapter 5: this is known as the singleton pattern. Our PizzaPlace

application is already using a State class, so it should not be too much work to use this

pattern.

Start by opening the PizzaPlace solution. Open the Index component from the Pages

folder (in the PizzaPlace.Client project) and look for the private State field. Remove this

field (I’ve made it a comment) and replace it with an @inject directive as in Listing 9-29.

Listing 9-29. Using Dependency Injection to Get the State Singleton Instance

@page "/"

@inject IMenuService MenuService

@inject IOrderService orderService

@inject State State

...

@code {

 // private State State { get; } = new State();

 ...

}

Now configure dependency injection in Program.cs to inject the State instance as a

singleton, as in Listing 9-30.

Listing 9-30. Configuring Dependency Injection for the State Singleton

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using PizzaPlace.Client.Services;

using PizzaPlace.Shared;

using System;

using System.Net.Http;

using System.Threading.Tasks;

namespace PizzaPlace.Client

{

 public class Program

 {

Chapter 9 Single-page appliCationS and routing

379

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress = new Uri(builder.HostEnvironment

 .BaseAddress)

 });

 builder.Services.AddTransient<IMenuService,

 MenuService>();

 builder.Services.AddTransient<IOrderService,

 OrderService>();

 builder.Services.AddSingleton<State>();

 await builder.Build().RunAsync();

 }

 }

}

Run the application. Everything should still work! What you’ve done is to use the

singleton pattern to inject the State singleton into the Index component. Let’s add

another component that will use the same State instance.

You want to display more information about a pizza using a new component, but

before you do this, you need to update the State class. Add a new property called

CurrentPizza to the State class, as shown in Listing 9-31.

Listing 9-31. Adding a CurrentPizza Property to the State Class

using System.Linq;

namespace PizzaPlace.Shared

{

 public class State

 {

 public Menu Menu { get; } = new Menu();

Chapter 9 Single-page appliCationS and routing

380

 public ShoppingBasket Basket { get; } = new ShoppingBasket();

 public UI UI { get; set; } = new UI();

 public Pizza? CurrentPizza { get; set; }

 public decimal TotalPrice

 => Basket.Orders.Sum(id => Menu.GetPizza(id)!.Price);

 }

}

Now when someone clicks a pizza on the menu, it will display the pizza’s

information. Update the PizzaItem component by wrapping the pizza name in an

anchor, like in Listing 9-32. In the PizzaItem class from Listing 9-33, we add a new

ShowPizzaInformation parameter, and if this is non-null, we wrap it in an anchor which

invokes the ShowPizzaInformation action.

Listing 9-32. Adding an Anchor to Display the Pizza’s Information

<div class="row">

 <div class="col">

 @if (ShowPizzaInformation is not null)

 {

 <a href=""

 @onclick="@(() => ShowPizzaInformation?.Invoke(Pizza))">

 @Pizza.Name

 }

 else

 {

 @Pizza.Name

 }

 </div>

 <div class="col text-right">

 @($"{Pizza.Price:0.00}")

 </div>

 <div class="col"></div>

 <div class="col">

Chapter 9 Single-page appliCationS and routing

381

 <img src="@SpicinessImage(Pizza.Spiciness)"

 alt="@Pizza.Spiciness" />

 </div>

 <div class="col">

 <button class="@ButtonClass"

 @onclick="@(() => Selected.InvokeAsync(Pizza))">

 @ButtonTitle

 </button>

 </div>

</div>

Listing 9-33. Add the ShowPizzaInformation Parameter

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

using System;

namespace PizzaPlace.Client.Pages

{

 public partial class PizzaItem

 {

 [Parameter]

 public Pizza Pizza { get; set; } = default!;

 [Parameter]

 public string ButtonTitle { get; set; } = default!;

 [Parameter]

 public string ButtonClass { get; set; } = default!;

 [Parameter]

 public EventCallback<Pizza> Selected { get; set; }

 [Parameter]

 public Action<Pizza>? ShowPizzaInformation { get; set; }

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

 }

}

Chapter 9 Single-page appliCationS and routing

382

Update the PizzaList component to set the PizzaItem component’s

ShowPizzaInformation parameter as in Listings 9-34 and 9-35.

When someone clicks this link, it should set the State instance’s CurrentPizza property.

But you don’t have access to the State object. One way to solve this would be by injecting

the State instance in the PizzaItem component. But you don’t want to overburden this

component, so you add a ShowPizzaInformation callback delegate to tell the containing

PizzaList component that you want to display more information about the pizza. Clicking

the pizza name link simply invokes this callback without knowing what should happen.

You are applying a pattern here known as “Dumb and Smart Components.” A

dumb component is a component that knows nothing about the global picture of the

application. Because it doesn’t know anything about the rest of the application, a dumb

component is easier to reuse. A smart component knows about the other parts of the

application (such as which service to use to talk to the database) and will use dumb

components to display its information. In our example, the PizzaList and PizzaItem are

dumb components because they receive all their data through data binding, while the

Index component is a smart component which talks to services.

Listing 9-34. Adding a PizzaInformation Callback to the PizzaList Component

<ItemList Items="@Items">

 <Loading>

 <div class="spinner-border text-danger" role="status">

 Loading...

 </div>

 </Loading>

 <Header>

 <h1>@Title</h1>

 </Header>

 <RowTemplate Context="pizza">

 <PizzaItem Pizza="@pizza"

 ButtonClass="@ButtonClass"

 ButtonTitle="@ButtonTitle"

 Selected="@Selected"

 ShowPizzaInformation="@ShowPizzaInformation"/>

 </RowTemplate>

</ItemList>

Chapter 9 Single-page appliCationS and routing

383

Listing 9-35. Add the ShowPizzaInformation Callback Parameter

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

using System;

using System.Collections.Generic;

namespace PizzaPlace.Client.Pages

{

 public partial class PizzaList

 {

 [Parameter]

 public string Title { get; set; } = default!;

 [Parameter]

 public IEnumerable<Pizza> Items { get; set; } = default!;

 [Parameter]

 public string ButtonClass { get; set; } = default!;

 [Parameter]

 public string ButtonTitle { get; set; } = default!;

 [Parameter]

 public EventCallback<Pizza> Selected { get; set; }

 [Parameter]

 public Action<Pizza>? ShowPizzaInformation { get; set; }

 }

}

You added a ShowPizzaInformation callback to the PizzaList component, and you

simply pass it to the PizzaItem component. The Index component will set this callback,

and the PizzaList will pass it to the PizzaItem component.

Update the Index component to set the State instance’s CurrentPizza and navigate

to the PizzaInfo component, as shown in Listing 9-36. The Index component tells the

PizzaList component to call the ShowPizzaInformation method when someone clicks

the information link from the PizzaItem component. The ShowPizzaInformation

Chapter 9 Single-page appliCationS and routing

384

method then sets the State’s CurrentPizza property (which we need in the PizzaInfo

component) and navigates using the NavigationManager’s NavigateTo method to

the /PizzaInfo route.

If you call NavigateTo as part of a callback, Blazor returns to the original route. That

is why I use a background Task so Blazor will navigate after the callback.

Listing 9-36. The Index Component Navigates to the PizzaInfo Component

@page "/"

@inject IMenuService MenuService

@inject IOrderService orderService

@inject State State

@inject NavigationManager NavigationManager

@if (State.Menu.Pizzas.Any())

{

 <!-- Menu -->

 <PizzaList Title="Our Selection of Pizzas"

 Items="@State.Menu.Pizzas"

 ButtonTitle="Order"

 ButtonClass="btn btn-success pl-4 pr-4"

 Selected="@AddToBasket"

 ShowPizzaInformation="@ShowPizzaInformation"/>

 <!-- End menu -->

 <!-- Shopping Basket -->

 ...

@code {

 ...

 private void ShowPizzaInformation(Pizza selected)

 {

 this.State.CurrentPizza = selected;

 Task.Run(() => this.NavigationManager.NavigateTo("/pizzainfo"));

 }

}

Chapter 9 Single-page appliCationS and routing

385

Right-click the Pages folder and add a new razor component called PizzaInfo, as

shown in Listings 9-37 and 9-38 (to save you some time and to keep things simple,

you can copy most of the PizzaItem component). The PizzaInfo component shows

information about the State’s CurrentPizza. This works because you share the

same State instance between these components. The Index component will set the

CurrentPizza property in State, which is then displayed by the PizzaInfo component.

Because State’s CurrentPizza property can be null, I also added a helper property to

the PizzaInfo component that always returns a non-nullable CurrentPizza (using the

null-forgiving operator) to avoid compiler warnings.

Listing 9-37. Adding a PizzaInfo Component

@page "/PizzaInfo"

<h2>Pizza @CurrentPizza.Name Details</h2>

<div class="row">

 <div class="col">

 @CurrentPizza.Name

 </div>

 <div class="col">

 @CurrentPizza.Price

 </div>

 <div class="col">

 <img src="@SpicinessImage(CurrentPizza.Spiciness)"

 alt="@CurrentPizza.Spiciness" />

 </div>

</div>

<div class="row">

 <div class="col">

 Back to Menu

 </div>

</div>

Chapter 9 Single-page appliCationS and routing

386

Listing 9-38. The PizzaInfo Class

using Microsoft.AspNetCore.Components;

using PizzaPlace.Shared;

namespace PizzaPlace.Client.Pages

{

 public partial class PizzaInfo

 {

 [Inject]

 public State State { get; set; } = default!;

 public Pizza CurrentPizza

 => State.CurrentPizza!;

 private string SpicinessImage(Spiciness spiciness)

 => $"images/{spiciness.ToString().ToLower()}.png";

 }

}

At the bottom of the markup, you add an anchor (and made it look like a button

using bootstrap styling) to return to the menu. It’s an example of changing the route

with anchors. Of course, in a real-life application, you would show the ingredients of the

pizza, a nice picture, and nutritional information. I leave this as an exercise for you.

 Summary
In this chapter, we looked at Single-Page Applications, layouts, routing, and lazy loading

components. Single-Page Applications avoid navigating to another URLs because the

browser will wipe its memory before loading the next page. By staying on the same

page, we can keep data in memory, and to update the UI, we use code to replace part

of the page. Layouts allow you to avoid replicating markup in your application and

help keep your applications look consistent. We also saw that layouts can be nested.

Routing is an important part of building Single-Page Applications and takes care of

picking the component to show based on the browser’s URI. You define route templates

using the @page syntax where you use route parameters and constraints. Navigation in

your Single-Page Application can be done using anchor tags and from code using the

Chapter 9 Single-page appliCationS and routing

387

NavigationManager class. We also saw that you can lazy load components by moving

them into a component library and then dynamically load the library just when you need

it. Finally, we modified the PizzaPlace application to show how to share information

between different routes in a Blazor application.

Chapter 9 Single-page appliCationS and routing

389
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_10

CHAPTER 10

JavaScript Interoperability
Sometimes there is just no escape from using JavaScript. For example, Blazor itself uses

JavaScript to update the browser’s DOM from your Blazor components. In this chapter,

you will look at interoperability with JavaScript and, as an example, you will build a

Blazor component library to display a map using a popular open source JavaScript

library. This chapter does require you to have some basic JavaScript knowledge.

 Calling JavaScript from C#
Browsers have a lot of capabilities you might want to use in your Blazor website. For

example, you might want to use the Browser’s local storage to keep track of some data.

Thanks to Blazor’s JavaScript interoperability, this is easy.

 Providing a Glue Function
To call JavaScript functionality, you start by building a glue function in JavaScript.

I like to call these functions glue functions (my own naming convention) because they

become the glue between .NET and JavaScript.

Glue functions are regular JavaScript functions. A JavaScript glue function can take

any number of arguments, on the condition that they are JSON serializable (meaning

that you can only use types that are convertible to JSON, including classes whose

properties are JSON serializable). This is required because the arguments and return

type are sent as JSON between .NET and JavaScript runtimes.

You then add this function to the JavaScript global scope object, which in the browser

is the window object. You will look at an example a little later, so keep reading. You can

then call this JavaScript glue function from your Blazor component.

https://doi.org/10.1007/978-1-4842-7845-1_10#DOI

390

 Using IJSRuntime to Call the Glue Function
Back to .NET land. To invoke your JavaScript glue function from C#, you use the .NET

IJSRuntime instance provided through dependency injection. This instance has the

InvokeAsync<T> generic method, which takes the name of the glue function and its

arguments and returns a value of type T, which is the .NET return type of the glue

function. If your JavaScript method returns nothing, there is also the InvokeVoidAsync

method. If this sounds confusing, you will look at an example right away.

The InvokeAsync method is asynchronous to support all asynchronous

scenarios, and this is the recommended way of calling JavaScript. If you need to

call the glue function synchronously, you can downcast the IJSRuntime instance to

IJSInProcessRuntime and call its synchronous Invoke<T> method. This method takes

the same arguments as InvokeAsync<T> with the same constraints.

Using synchronous calls for JavaScript interop is not recommended! Server-side

Blazor requires the use of asynchronous calls because the calls will be serialized over

SignalR to the client.

 Storing Data in the Browser with Interop
It’s time to look at an example and you will start with the JavaScript glue function. Open

the provided JSInterop solution (or you can create a new Blazor WebAssembly project

from scratch). Open the wwwroot folder from the JSInterop project and add a new

subfolder called scripts. Add a new JavaScript file to the scripts folder called interop.

js and add the glue functions from Listing 10-1. This will add the blazorLocalStorage

object to the global window object, containing three glue functions. These glue functions

allow you to access the localStorage object from the browser, which allows you to store

data on the client’s computer so you can access it later, even after the user has restarted

the browser or computer.

Listing 10-1. The blazorLocalStorage Glue Functions

window.blazorLocalStorage = {

 get: key => key in localStorage ? JSON.parse(localStorage[key]) : null,

 set: (key, value) => { localStorage[key] = JSON.stringify(value); },

 delete: key => { delete localStorage[key]; },

};

Chapter 10 JavaSCript interoperability

391

Your Blazor website needs to include this script, so open the index.html file from

the wwwroot folder and add a script reference after the Blazor script, as shown in

Listing 10-2.

Visual Studio Tip you can drag and drop the interop.js file from Solution explorer
into the index.html file, and visual Studio will do the rest.

Listing 10-2. Including the Script Reference in Your HTML Page

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no" />

 <title>JSInterop</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

 <link href="css/app.css" rel="stylesheet" />

 <link href="JSInterop.styles.css" rel="stylesheet" />

</head>

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 🗙

 </div>

 <script src="_framework/blazor.webassembly.js"></script>

 <script src="scripts/interop.js"></script>

</body>

</html>

Chapter 10 JavaSCript interoperability

392

Now let’s look at how to call these set/get/delete glue functions. Open the Counter.

razor Blazor component and modify it to look like Listing 10-3. The Counter component

now will use local storage to remember the last value of the counter. Even restarting

your browser will not lose the value of the counter because local storage is permanent.

To do this, you use a CurrentCount property, which invokes your glue functions in

the property setter to store the last value. The Counter component overrides the

OnInitializedAsync method to retrieve the last stored value from local storage using

the window.blazorLocalStorage.get glue function. It is possible that there is no value

yet, and that is why we need to catch the exception that gets thrown in this case. I tried

using a nullable int, but the IJSRuntime throws an error when converting a JavaScript

null to a value type.

Listing 10-3. Invoking the Glue Functions from a Blazor Component

@page "/counter"

@inject IJSRuntime js

<h1>Counter</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

 public int CurrentCount

 {

 get => currentCount;

 set

 {

 if (currentCount != value)

 {

 currentCount = value;

 js.InvokeVoidAsync("blazorLocalStorage.set",

 nameof(CurrentCount), currentCount);

 }

 }

 }

Chapter 10 JavaSCript interoperability

393

 private void IncrementCount()

 {

 CurrentCount++;

 }

 protected override async Task OnInitializedAsync()

 {

 try

 {

 int c = await js.InvokeAsync<int>(

 "blazorLocalStorage.get", nameof(CurrentCount));

 currentCount = c;

 }

 catch { }

 }

}

Run the solution and modify the Counter’s value. Now when you refresh your

browser, you will see the last value of Counter. The Counter is now persisted between

sessions! You can exit your browser and open it again, and you will see the Counter again

with the last value.

 Passing a Reference to JavaScript
Sometimes your JavaScript needs to access one of your HTML elements. You can do this

by storing the element in an ElementReference and then pass this ElementReference to

the glue function.

Note never use JavaScript interop to modify the DoM because this will interfere
with the blazor rendering process! if you need to modify the browser’s DoM, use a
blazor component.

You should use this ElementReference as an opaque handle, meaning you can only

pass it to a JavaScript glue function, which will receive it as a JavaScript reference to the

element. You cannot even pass the ElementReference to another component. This is by

Chapter 10 JavaSCript interoperability

394

design, because each component gets rendered independently, and this might make the

ElementReference point to a DOM element that is no longer there.

Let’s look at an example by setting the focus on an input element using interop.

To be honest, there is a built-in method in Blazor to do this, but I want to use this as a

simple example. Keep on reading; I will show you how to focus an input element without

interop.

Start by adding a property of type ElementReference to the @code area in the

Counter component as in Listing 10-4.

Listing 10-4. Adding an ElementReference Property

private ElementReference? inputElement;

Then add an input element with a @ref attribute to set the inputElement field as in

Listing 10-5. We have seen this @ref syntax before; you can use it to get a reference to a

Blazor component and also to an HTML element.

Listing 10-5. Setting the inputElement

<div>

 <input @ref="inputElement" @bind="@CurrentCount" />

</div>

Now add another JavaScript file focus.js with the glue function from Listing 10-6.

Don’t forget to add the script reference to index.html.

Listing 10-6. Adding the blazorFocus.set Glue Function

window.blazorFocus = {

 set: (element) => { element.focus(); }

}

Now comes the “tricky” part. Blazor will create your component and then call the

life cycle methods, such as OnInitializedAsync. If you invoke the blazorFocus.set

glue function in OnInitializedAsync, the DOM has not been updated with the input

element so this will result in a runtime error because the glue function will receive a null

reference. You need to wait for the DOM to be updated, which means that you should

only pass the ElementReference to your glue function in the OnAfterRender/OnAfter

RenderAsync method!

Chapter 10 JavaSCript interoperability

395

Override the OnAfterRenderAsync method as in Listing 10-7. Since rendering is

complete, we can expect the inputElement to be set, and we call the blazorFocus.set

glue function. But just to be on the safe side, I check if inputElement is not null.

Listing 10-7. Passing the ElementReference in OnAfterRenderAsync

protected override async Task OnAfterRenderAsync(bool firstRender)

{

 if (inputElement is not null)

 {

 await js.InvokeVoidAsync("blazorFocus.set", inputElement);

 }

}

Run your solution, and you should see that the input element receives focus

automatically, as in Figure 10-1.

 Calling .NET Methods from JavaScript
You can also call .NET methods from JavaScript. For example, your JavaScript might want

to tell your component that something interesting has happened, like the user clicking

something in the browser. Or your JavaScript might want to ask the Blazor component

about some data it needs. You can call a .NET method, but with a couple of conditions.

First, your .NET method’s arguments and return value need to be JSON serializable, the

method must be public, and you need to add the JSInvokable attribute to the method.

The method can be a static or instance method.

Figure 10-1. The Counter Input Element Receives Focus Automatically

Chapter 10 JavaSCript interoperability

396

To invoke a static method, you use the JavaScript DotNet.invokeMethodAsync or

DotNet.invokeMethod function, passing the name of the assembly, the name of the

method, and its arguments. To call an instance method, you pass the instance wrapped

as a DotNetObjectRef to a JavaScript glue function, which can then invoke the .NET

method using the DotNetObjectRef’s invokeMethodAsync or invokeMethod function,

passing the name of the .NET method and its arguments. If you want your component to

work in Blazor Server, you need to use the asynchronous functions.

 Adding a Glue Function Taking a .NET Instance
Let’s continue with the previous example. When you make a change to local storage, the

storage triggers a JavaScript storage event, passing the old and new value (and more).

This allows you to register for changes in other browser tabs or windows and use it to

update the page with the latest data in localStorage.

Open interop.js from the previous example and add a watch function, as in

Listing 10-8. The watch function takes a reference to a DotNetObjectRef instance

and invokes the UpdateCounter method on this instance when storage changes. You

can detect changes in storage by registering for the JavaScript storage event.

Listing 10-8. The watch Function Allows You to Register for Local

Storage Changes

window.blazorLocalStorage = {

 get: key => key in localStorage ? JSON.parse(localStorage[key]) : null,

 set: (key, value) => { localStorage[key] = JSON.stringify(value); },

 delete: key => { delete localStorage[key]; },

 watch: async (instance) => {

 window.addEventListener('storage', (e) => {

 instance.invokeMethodAsync('UpdateCounter');

 });

 }

};

When anyone or anything changes the local storage for this web page, the browser

will trigger the storage event, and our JavaScript interop will invoke the UpdateCounter

method (which we will implement next) in our C# Blazor component.

Chapter 10 JavaSCript interoperability

397

Time to add the UpdateCounter method. Open Counter.razor and add the

UpdateCounter method to the @code area, as shown in Listing 10-9.

Listing 10-9. The UpdateCounter Method

[JSInvokable]

public async Task UpdateCounter()

{

 int c = await js.InvokeAsync<int>("blazorLocalStorage.get",

nameof(CurrentCount));

 currentCount = c;

 this.StateHasChanged();

}

This method triggers the UI to update with the latest value of CurrentCounter. Please

note that this method follows the .NET async pattern returning a Task instance because

the JavaScript interop will call this asynchronously using the invokeMethodAsync

function from Listing 10-8. To complete the example, add the OnAfterRenderAsync

life cycle method shown in Listing 10-10. The OnAfterRenderAsync method wraps

the Counter component’s this reference in a DotNetObjectRef and passes it to the

blazorLocalStorage.watch glue function.

Listing 10-10. The OnAfterRenderAsync Method

protected override async Task OnAfterRenderAsync(

 bool firstRender)

{

 if (inputElement is not null)

 {

 await js.InvokeVoidAsync("blazorFocus.set", inputElement);

 }

 var objRef = DotNetObjectReference.Create(this);

 await js.InvokeVoidAsync("blazorLocalStorage.watch", objRef);

}

Chapter 10 JavaSCript interoperability

398

To see this in action, open two browser tabs side by side on your website. When

you change the value in one tab, you should see the other tab update to the same value

automatically! You can use this to communicate between two tabs in the same browser

like we do here.

 Using Services for Interop
The previous example is not the way I would recommend doing interop with JavaScript

because our components are tightly coupled to the IJSRuntime. There is a better

way, and that is encapsulating the IJSRuntime code in a service. This will hide all the

dirty details of interacting with JavaScript and allow for easier maintenance. In future

generations of Blazor, some of this functionality might just be included, and then we only

need to update the service implementation. Services can also easily be replaced during

unit testing.

 Building the LocalStorage Service
Add a new Services folder to the client project. Add a new interface inside this folder,

name it ILocalStorage, and add the three methods from Listing 10-11 to it.

Listing 10-11. Building the ILocalStorage Service Interface

using System.Threading.Tasks;

namespace JSInterop.Services

{

 public interface ILocalStorage

 {

 ValueTask<T> GetProperty<T>(string propName);

 ValueTask SetProperty<T>(string propName, T value);

 ValueTask WatchAsync<T>(T instance) where T : class;

 }

}

These methods correspond with the glue functions from interop.js.

Chapter 10 JavaSCript interoperability

399

Now add a new class to the same Services folder and name it LocalStorage. This

class should implement the ILocalStorage interface as in Listing 10-12. See how

this class hides away all the details of performing JavaScript interop? And this is a

simple case!

Listing 10-12. Implementing the LocalStorage Service Class

using Microsoft.AspNetCore.Components;

using Microsoft.JSInterop;

using System.Threading.Tasks;

namespace JSInterop.Services

{

 public class LocalStorage : ILocalStorage

 {

 private readonly IJSRuntime js;

 public LocalStorage(IJSRuntime js)

 {

 this.js = js;

 }

 public ValueTask<T> GetProperty<T>(string propName)

 => js.InvokeAsync<T>("blazorLocalStorage.get", propName);

 public ValueTask SetProperty<T>(string propName, T value)

 => js.InvokeVoidAsync("blazorLocalStorage.set", propName, value);

 public ValueTask WatchAsync<T>(T instance) where T : class

 => js.InvokeVoidAsync("blazorLocalStorage.watch",

 DotNetObjectReference.Create(instance));

 }

}

Components will receive this service through dependency injection, so add it as a

singleton as in Listing 10-13.

Chapter 10 JavaSCript interoperability

400

Listing 10-13. Registering the LocalStorage Service in Dependency Injection

using JSInterop.Services;

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using System.Net.Http;

using System.Text;

using System.Threading.Tasks;

namespace JSInterop

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services

 .AddScoped(sp => new HttpClient

 {

 BaseAddress =

 new Uri(builder.HostEnvironment.BaseAddress)

 });

 builder.Services

 .AddSingleton<ILocalStorage, LocalStorage>();

 await builder.Build().RunAsync();

 }

 }

}

Go back to the Counter component and replace each call of IJSRuntime using

blazorLocalStorage with the LocalStorage service. Start by adding the inject directive

for the ILocalStorage service as in Listing 10-14.

Chapter 10 JavaSCript interoperability

401

Listing 10-14. Injecting the ILocalStorage Service into the Counter Component

@page "/counter"

@inject JSInterop.Services.ILocalStorage localStorage

Now onto the OnInitialiazedAsync method, where we retrieve the value from local

storage. Replace the IJSRuntime calls with LocalStorage calls, as in Listing 10-15.

Listing 10-15. Implementing OnInitializedAsync

protected override async Task OnInitializedAsync()

{

 try

 {

 await localStorage.WatchAsync(this);

 int c = await localStorage

 .GetProperty<int>(nameof(CurrentCount));

 currentCount = c;

 }

 catch { }

}

Do the same for the UpdateCounter method from Listing 10-16.

Listing 10-16. The UpdateCounter Method Using the LocalStorage Service

[JSInvokable]

public async Task UpdateCounter()

{

 int c = await localStorage

 .GetProperty<int>(nameof(CurrentCount));

 currentCount = c;

 this.StateHasChanged();

}

Update the setter for the CurrentCount property as in Listing 10-17.

Chapter 10 JavaSCript interoperability

402

Listing 10-17. Remembering the Counter’s Value

private int currentCount = 0;

public int CurrentCount

{

 get => currentCount;

 set

 {

 if (currentCount != value)

 {

 currentCount = value;

 localStorage

 .SetProperty<int>(nameof(CurrentCount), currentCount);

 }

 }

}

And finally, update the OnAfterRenderAsync method as in Listing 10-18. This

method now also uses the built-in FocusAsync method to set the focus on the input. No

need for JavaScript interop. This method does require you to add a @using statement

because FocusAsync is an extension method:

@using Microsoft.AspNetCore.Components

Listing 10-18. The Counter’s OnAfterRenderAsync Method

private ElementReference inputElement = default!;

protected override async Task OnAfterRenderAsync(bool firstRender)

{

 if (firstRender)

 {

 await inputElement.FocusAsync();

 }

}

This was not so hard, was it?

Chapter 10 JavaSCript interoperability

403

 Dynamically Loading JavaScript with Modules
Our application has added some JavaScript to the application, and we have added this

to the index.html page. This means that our JavaScript gets downloaded, even if we

don’t use it (because no one clicked the Counter link). This is not so good. Also, our

JavaScript is adding yet another identifier to the JavaScript window object. Again not so

good, because another component might accidentally pick the same name. Here, we will

examine how we can download JavaScript dynamically using modules, so only when we

need it.

 Using JavaScript Modules
Early use of JavaScript was for small and straightforward functionality. Then JavaScript

usage started to explode making programs complex and hard to maintain. Since

then, there have been attempts at introducing “libraries” in JavaScript which could be

included in your program. Today, JavaScript has a module mechanism that we can use

in Blazor. You can compare a JavaScript module like a .NET library, which you can load

dynamically. In the current JSInterop Blazor application we have been building, copy the

interop.js file, name it localstorage.js, and modify it to look like Listing 10-19. Instead of

adding the get, set, and watch functions to the global window object, we export these

functions (similar to the C# public keyword being used to make classes available outside

the library) using a JavaScript module. A module also acts like a namespace, making the

get, set, and watch functions relative to the module and not contaminating the global

JavaScript window object.

Listing 10-19. The localStorage JavaScript Module

let get = key => key in localStorage ? JSON.

parse(localStorage[key]) : null;

let set = (key, value) => { localStorage[key] = JSON.stringify(value); };

let watch = async (instance) => {

 window.addEventListener('storage', (e) => {

 instance.invokeMethodAsync('UpdateCounter');

 });

};

export { get, set, watch };

Chapter 10 JavaSCript interoperability

404

 Loading the Module into a Blazor Service
Once the module is ready, we can import it into a Blazor component or a service using

the IJSRuntime instance. It works just like any other JavaScript interop by using the

InvokeAsync<T> method, but now we use the IJSObjectReference type for T, calling the

import function which is provided by Blazor.

First, add an Init method to the ILocalStorage interface as in Listing 10-20.

Listing 10-20. The Updated ILocalStorage Interface

using System.Threading.Tasks;

namespace JSInterop.Services

{

 public interface ILocalStorage

 {

 ValueTask Init();

 ValueTask<T> GetProperty<T>(string propName);

 ValueTask SetProperty<T>(string propName, T value);

 ValueTask WatchAsync<T>(T instance) where T : class;

 }

}

Implement this method in the LocalStorage class as in Listing 10-21. This method

does absolutely nothing here, but we will implement it in another class.

Listing 10-21. LocalStorage’s Init Method

public ValueTask Init() => new ValueTask();

Create a copy of the LocalStorage.cs service, and name it LocalStorageWithModule.

cs. Modify it to look like Listing 10-22. Most of this class is similar to the implementation

of the LocalStorage class, but note the Init method. Here, we invoke the “import”

method, passing the path to the JavaScript module. Blazor dynamically loads it and

returns an IJSObjectReference, which we use to invoke the get, set, and watch

JavaScript functions. Why not do this in the constructor? Because InvokeAsync<T> is an

asynchronous method, and we should not call these in the constructor.

Chapter 10 JavaSCript interoperability

405

Listing 10-22. Loading a JavaScript Module

using Microsoft.AspNetCore.Components;

using Microsoft.JSInterop;

using System.Threading.Tasks;

namespace JSInterop.Services

{

 public class LocalStorageWithModule : ILocalStorage

 {

 private readonly IJSRuntime js;

 private IJSObjectReference? module;

 public LocalStorageWithModule(IJSRuntime js)

 {

 this.js = js;

 }

 public async ValueTask Init()

 {

 module = module ?? await js.InvokeAsync<IJSObjectReference>

 ("import", "./scripts/localstorage.js");

 }

 public ValueTask<T> GetProperty<T>(string propName)

 => module!.InvokeAsync<T>("get", propName);

 public ValueTask SetProperty<T>(string propName, T value)

 => module!.InvokeVoidAsync("set", propName, value);

 public ValueTask WatchAsync<T>(T instance) where T : class

 => module!.InvokeVoidAsync("watch",

 DotNetObjectReference.Create(instance));

 }

}

Use this new class in the Counter component as shown in Listing 10-23. Actually, the

only thing we need to change is to call the Init method on the localStorage service.

Chapter 10 JavaSCript interoperability

406

Listing 10-23. The Counter Component Using the JavaScript Module

protected override async Task OnInitializedAsync()

{

 try

 {

 await localStorage.Init();

 await localStorage.WatchAsync(this);

 int c = await localStorage.GetProperty<int>(nameof(CurrentCount));

 currentCount = c;

 }

 catch { }

}

Build and run; everything should still work. The big advantage is that we don’t need

to add the JavaScript to the index.html page. This becomes even more interesting for

component libraries.

 Adding a Map to PizzaPlace
Many physical businesses use a map to show to people where they are located. Wouldn’t

it be nice to embellish the PizzaPlace application with a map, showing where you are

and where the PizzaPlace restaurant is? That is what we will do next.

 Choosing the Map JavaScript Library
Which map library will we use? There are many JavaScript libraries to choose from,

for example, Google maps, Bing maps, etc. Author’s prerogative is to choose the maps

library, and I have chosen the Leaflet open source library, which is lightweight, has many

customization options, and is used by some of the leading companies such as GitHub,

Flickr, Etsy, and Facebook. You can find the library’s website at https://leafletjs.com.

Chapter 10 JavaSCript interoperability

https://leafletjs.com/

407

 Adding the Leaflet Library
Open the index.html page, and add the Leaflet styling and JavaScript script to it as in

Listing 10-24. The easiest way to do this is by copying this from the Leaflet QuickStart

page at https://leafletjs.com/examples/quick- start/. This will also ensure you use

the latest version (at the risk of breaking changes).

Listing 10-24. Adding the Leaflet Library

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no" />

 <title>PizzaPlace</title>

 <base href="/" />

 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

 <link href="css/app.css" rel="stylesheet" />

 <link href="PizzaPlace.Client.styles.css" rel="stylesheet" />

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.7.1/dist/

leaflet.css"

 integrity="sha512- xodZBNTC5n17Xt2atTPuE1HxjVMSvLVW9ocqUKLsCC5CXdbqC

mblAshOMAS6/keqq/sMZMZ19scR4PsZChSR7A=="

 crossorigin="" />

</head>

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 🗙

 </div>

 <script src="_framework/blazor.webassembly.js"></script>

 <script src="https://unpkg.com/leaflet@1.7.1/dist/leaflet.js"

Chapter 10 JavaSCript interoperability

https://leafletjs.com/examples/quick-start/

408

 integrity="sha512- XQoYMqMTK8LvdxXYG3nZ448hOEQiglfqkJs1NOQV44cWnUr

Bc8PkAOcXy20w0vlaXaVUearIOBhiXZ5V3ynxwA=="

 crossorigin=""></script>

</body>

</html>

Note We use SubResource Integrity (SRI) Checking to download this library to
ensure we are using the correct library. recently, british airways (ba) got hacked
(https://gbhackers.com/british- airways- hacked/), and more than
380,000 payment cards got compromised. So how could this have happened?
imagine that ba uses some external JavaScript library. if a hacker can change this
external source and add his/her own code to the library, it is a piece of cake to
steal any information that the user enters on the website. So how can you avoid
this hack? SubResource Integrity (SRI) Checking adds a hash value (a checksum of
the file) to the <script> tag, so if the external source gets modified, the browser
will refuse to load and execute it.

 Building the Leaflet Map Razor Library
You can use a map in many applications, so I think it makes a lot of sense to build this as

a razor library. You can find Blazor component libraries that give you a Map component

(e.g., https://github.com/fis- sst/BlazorMaps), but here we will build one as an

exercise. Add a new Razor Class Library to your solution and name it Leaflet.Map.

Remove all the files from this project except the _Imports.razor file and wwwroot

folder. Add a new map.js JavaScript file as in Listing 10-25 inside wwwroot. To save on

typing (and typos), I suggest you copy this from the provided sources.

Listing 10-25. The Map JavaScript Module

let showOrUpdate = (elementId, zoom, markers) => {

 let elem = document.getElementById(elementId);

 if (!elem) {

 throw new Error('No element with ID ' + elementId);

 }

Chapter 10 JavaSCript interoperability

https://gbhackers.com/british-airways-hacked/
https://github.com/fis-sst/BlazorMaps

409

 // Initialize map if needed

 if (!elem.map) {

 elem.map = L.map(elementId).setView([50.88022, 4.29660], zoom);

 L.tileLayer('https://api.mapbox.com/styles/v1/{id}/tiles/{z}/{x}/

{y}?access_token=***ACCESSTOKEN***', {

 attribution: 'Map data © <a href="https://www.openstreetmap.org/

copyright">OpenStreetMap contributors, Imagery © <a href="https://www.

mapbox.com/">Mapbox',

 maxZoom: 18,

 id: 'mapbox/streets-v11',

 tileSize: 512,

 zoomOffset: -1,

 accessToken: '***ACCESSTOKEN***'

 }).addTo(elem.map);

 }

export { showOrUpdate };

There is one more thing we need to do to complete Listing 10-25. This is the

ACCESSTOKEN placeholder which you need to replace with your own token, which

we will do next.

 Registering with the Map Provider
Leaflet will download its maps from a map provider, and here, we will use MapBox

which you can use for free for development. You can find their site at www.mapbox.com/

maps. You will need to sign up with this site to get your access token. So after signing up,

you should go to your account and create an access token. Copy this token and replace

ACCESSTOKEN with your token in Listing 10-25 (twice).

 Creating the Map Component
Now add a new razor component to the Leaflet.Map library project and call it Map.

Implement the component as shown in Listing 10-26. This component uses a div, which

Leaflet will replace with the map. This div needs a unique id, which we generate using

Chapter 10 JavaSCript interoperability

http://www.mapbox.com/maps
http://www.mapbox.com/maps

410

the Guid type from .NET, and we set its style to fill the parent element. The JavaScript

module from Listing 10-25 uses the id to retrieve the div from the DOM:

let elem = document.getElementById(elementId);

The Map component then loads the map.js module using a path to the static

map.js resource from wwwroot. We only need to do this once, so we do this in the

OnInitializedAsync method.

Finally, when the Map component has been rendered, we call the Leaflet

library using our module in the OnAfterRenderAsync method. However, since the

OnInitializedAsync method has not completed yet, we need to check if the module has

been loaded. When the OnInitializedAsync method completes, the component will

render again, and then the showOrUpdate JavaScript method will get invoked.

Listing 10-26. The Map Component

@using Microsoft.JSInterop

@inject IJSRuntime JSRuntime

<div id="@elementId" style="height: 100%; width: 100%;"></div>

@code {

 string elementId = $"map-{Guid.NewGuid().ToString("D")}";

 [Parameter] public double Zoom { get; set; } = 17.0;

 private IJSObjectReference leaflet;

 protected override async Task OnInitializedAsync()

 {

 leaflet = await JSRuntime.InvokeAsync<IJSObjectReference>

 ("import", "./_content/Leaflet.Map/map.js");

 }

 protected async override void OnAfterRender(bool firstRender)

 {

 if (leaflet is not null)

 {

 await leaflet.InvokeVoidAsync(

Chapter 10 JavaSCript interoperability

411

 "showOrUpdate",

 elementId, Zoom/*, Markers*/);

 }

 }

}

 Consuming the Map Component
In the PizzaPlace.Client project, add a project reference to the Leaflet.Map component

library.

Add a @using Leaflet.Map to your PizzaPlace.Client project’s _Imports.razor file as

in Listing 10-27. This will facilitate using the library.

Listing 10-27. Add a @using to _Imports.razor

@using System.Net.Http

@using System.Net.Http.Json

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.AspNetCore.Components.Web.Virtualization

@using Microsoft.AspNetCore.Components.WebAssembly.Http

@using Microsoft.JSInterop

@using PizzaPlace.Client

@using PizzaPlace.Client.Shared

@using PizzaPlace.Shared

@using Leaflet.Map

Open Index.razor, and below the CustomerEntry component, add the Map

component as in Listing 10-28. We also need to set the Zoom parameter, and I have found

that Zoom 17 will show the location in sufficient detail to see roads. You can experiment

with this parameter if you like.

Chapter 10 JavaSCript interoperability

412

Listing 10-28. Adding the Map Component

<!-- End customer entry -->

<!-- Map -->

<div class="map">

 <Map Zoom="17" />

</div>

<!-- End Map -->

Add a new file called Index.razor.css to the client project in the Pages folder and add

the map class as in Listing 10-29.

Listing 10-29. Styling the map Container

.map {

 width: 550px;

 height: 550px;

}

Run the PizzaPlace application. You should see a map like in Figure 10-2. As you

can see, the map shows the location of where I work. If you like, you can change the

coordinates in Listing 10-25 to suit where you live or work.

Chapter 10 JavaSCript interoperability

413

 Adding Markers to the Map
Showing just a map is not enough. Let us add some markers to show the PizzaPlace

location and your location. First, add a new class Marker to the Leaflet.Map project as in

Listing 10-30. The class will serialize to a JavaScript object used by the Leaflet library. On

the Leaflet library website, you can find more information to add circles, polygons, and

popups. We will not do that since this is very similar to markers.

Figure 10-2. The Map Showing a Location

Chapter 10 JavaSCript interoperability

414

Listing 10-30. The Marker Class

namespace Leaflet.Map

{

 public class Marker

 {

 public string Description { get; set; }

 public double X { get; set; }

 public double Y { get; set; }

 public bool ShowPopup { get; set; }

 }

}

Add a new parameter to the Map component called Markers as in Listing 10-31.

Listing 10-31. The Map’s Markers Parameter

[Parameter] public List<Marker> Markers { get; set; }

 = new List<Marker>();

Update the showOrUpdate method to pass the Markers parameter as in Listing 10-32.

Listing 10-32. Passing the Markers Parameter to JavaScript

protected async override void OnAfterRender(bool firstRender)

{

 if (leaflet is not null)

 {

 await leaflet.InvokeVoidAsync(

 "showOrUpdate",

 elementId, Zoom, Markers);

 }

}

Our JavaScript is not doing anything with these markers yet, so we will have to

update the JavaScript module. Update map.js as in Listing 10-33. This is a lot to type,

so you may want to copy this from the provided sources. Don’t forget to update the

ACCESSTOKEN placeholder.

Chapter 10 JavaSCript interoperability

415

Listing 10-33. The Updated map.js Module

let showOrUpdate = (elementId, zoom, markers) => {

 let elem = document.getElementById(elementId);

 if (!elem) {

 throw new Error('No element with ID ' + elementId);

 }

 // Initialize map if needed

 if (!elem.map) {

 elem.map = L.map(elementId).setView([50.88022, 4.29660], zoom);

 elem.map.addedMarkers = [];

 L.tileLayer('https://api.mapbox.com/styles/v1/{id}/tiles/{z}/{x}/

{y}?access_token=***ACCESSTOKEN***', {

 attribution: 'Map data © <a href="https://www.openstreetmap.org/

copyright">OpenStreetMap contributors, Imagery © <a href="https://www.

mapbox.com/">Mapbox',

 maxZoom: 18,

 id: 'mapbox/streets-v11',

 tileSize: 512,

 zoomOffset: -1,

 accessToken: '***ACCESSTOKEN***'

 }).addTo(elem.map);

 }

 // Add markers

 let map = elem.map;

 if (map.addedMarkers.length !== markers.length) {

 // Markers have changed, so reset

 map.addedMarkers.forEach(marker => marker.removeFrom(map));

 map.addedMarkers = markers.map(m => {

 return L.marker([m.y, m.x]).bindPopup(m.description).addTo(map);

 });

 // Auto-fit the view

 var markersGroup = new L.featureGroup(map.addedMarkers);

 map.fitBounds(markersGroup.getBounds().pad(0.3));

Chapter 10 JavaSCript interoperability

416

 // Show applicable popups. Can't do this until after the view was

auto-fitted.

 markers.forEach((marker, index) => {

 if (marker.showPopup) {

 map.addedMarkers[index].openPopup();

 }

 });

 } else {

 // Same number of markers, so update positions/text without changing

view bounds

 markers.forEach((marker, index) => {

 animateMarkerMove(

 map.addedMarkers[index].setPopupContent(marker.description),

 marker,

 4000);

 });

 }

};

let animateMarkerMove = (marker, coords, durationMs) => {

 if (marker.existingAnimation) {

 cancelAnimationFrame(marker.existingAnimation.callbackHandle);

 }

 marker.existingAnimation = {

 startTime: new Date(),

 durationMs: durationMs,

 startCoords: { x: marker.getLatLng().lng, y: marker.getLatLng().lat },

 endCoords: coords,

 callbackHandle: window.requestAnimationFrame(() => animateMarker

MoveFrame(marker))

 };

}

let animateMarkerMoveFrame = (marker) => {

 var anim = marker.existingAnimation;

Chapter 10 JavaSCript interoperability

417

 var proportionCompleted = (new Date().valueOf() - anim.startTime.

valueOf()) / anim.durationMs;

 var coordsNow = {

 x: anim.startCoords.x + (anim.endCoords.x - anim.startCoords.x) *

proportionCompleted,

 y: anim.startCoords.y + (anim.endCoords.y - anim.startCoords.y) *

proportionCompleted

 };

 marker.setLatLng([coordsNow.y, coordsNow.x]);

 if (proportionCompleted < 1) {

 marker.existingAnimation.callbackHandle = window.requestAnimationFrame(

 () => animateMarkerMoveFrame(marker));

 }

}

export { showOrUpdate };

Now let us add some markers to our PizzaPlace application. Add a new to the Index.

razor component as in Listing 10-34. Feel free to update the coordinates to a place

near you.

Listing 10-34. Adding Some Markers

private List<Marker> Markers = new List<Marker> {

 new Marker {

 X = 4.29660,

 Y = 50.88022,

 Description = "Pizza Place" },

 new Marker {

 X = 4.27638,

 Y = 50.87136,

 Description = "You",

 ShowPopup = true },

};

Data bind this to the Map component’s Markers parameter as in Listing 10-35.

Chapter 10 JavaSCript interoperability

418

Listing 10-35. Passing the Markers to the Map Component

<!-- Map -->

<div class="map">

 <Map Zoom="17" Markers="@Markers"/>

</div>

<!-- End Map -->

Build and run the PizzaPlace application. You should now see markers on the map as

in Figure 10-3. When you click the marker, it will show a popup.

Figure 10-3. The Map Showing Markers

Chapter 10 JavaSCript interoperability

419

 Summary
In this chapter, you saw how you can call JavaScript from your Blazor components using

the IJSRuntime.InvokeAsync<T> method. This requires you to register a JavaScript

glue function by adding this function to the browser’s window global object. Or you can

expose a JavaScript module and then load this module dynamically.

You can call your .NET static or instance method from JavaScript. Start by adding

the JSInvokable attribute to the .NET method. If the method is static, you use the

JavaScript DotNet.invokeMethodAsync function (or DotNet.invokeMethod if the call

is synchronous), passing the name of the assembly, the name of the method, and its

arguments. If the method is an instance method, you pass the .NET instance wrapped

in a DotNetObjectRef to the glue function, which can then use the invokeMethodAsync

function to call the method, passing the name of the method and its arguments.

Finally, you applied this knowledge by adding a map to the PizzaPlace application.

You built a Blazor component library which uses a JavaScript module to call the Leaflet

library and added a class to pass markers to the map.

When should we use JavaScript interop? Whenever you need to use a feature of

the browser, such as local storage or the geolocation API, which is not supported by

WebAssembly, you will have to resort to JavaScript interop. There are a lot of nice people

out there who already did the work and provide their implementation as a Blazor

component library, saving you a lot of time. So google around a bit first!

Chapter 10 JavaSCript interoperability

421
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_11

CHAPTER 11

Blazor State Management
Blazor is used to build Single-Page Applications and has a stateful programming model,

meaning that a Blazor application keeps its state in memory, as long as the user does not

refresh the browser. Refreshing the browser will restart your Blazor application, losing all

state in memory. How can you keep the application’s state? In this chapter, we will look

at how your application can manage its state and pass data between pages, browser tabs,

and even different browsers. Some of these techniques we have been using before, and

we will also look at building complex Blazor applications using the redux pattern.

 Examining Component State
This chapter comes with a prepared demo, because it reviews some of the techniques

we have seen before. So start Visual Studio and open the StateManagement demo

solution. Now start the StateManagementWASM project. Your browser should open.

Navigate to the Counter page by clicking the Counter link in the navigation column of the

application. A familiar component should render.

Click the button a couple of times and then refresh your browser. The Counter goes

back to 0! The same thing happens when you click another link in the navigation menu.

Imagine that this is your application and the user just spent a couple of minutes entering

their data. Your user clicks another page, maybe to look at some references the user needs,

the user comes back, and all the painstakingly entered data is gone! Should I encounter an

application like this, I will most likely vow to never use this application again!

In a Blazor WebAssembly application, your component is running in the browser,

and data gets stored in the memory of the browser. With Blazor Server, all the work is

done on the server with a thin SignalR connection to update the DOM. The application’s

data gets stored in a circuit, which is the way Blazor Server differentiates between data

of different users. Data in a circuit gets stored in the server’s memory. But when the

browser refreshed, the Blazor runtime creates a new circuit, losing all data stored in the

original circuit.

https://doi.org/10.1007/978-1-4842-7845-1_11#DOI

422

All of this means that you should do some extra things to keep your user’s data.

What kind of data does Blazor store in the browser’s memory/circuit?

• Render tree: Each time Blazor renders your components, it stores

this in the render tree, which is an in-memory representation of all

the HTML markup. This allows Blazor to calculate the difference

between the previous render tree, so it only updates the DOM with

the changes.

• Component’s fields and properties.

• Dependency injection instances.

• JavaScript interop data.

Where can we store data so it does not get lost, even after a browser refresh?

Options are not to store the data, use local storage, use a server, or use the URL.

 What Not to Store
First of all, I would like to note that you only need to save the data that is being created

by the user. All other data can easily be reconstructed; for example, it is useless to store

the render tree yourself. Blazor can always recreate this from scratch, provided your

components still have their state. Data retrieved using a service, for example, the weather

forecasts, can also be retrieved by revisiting the server. You only need to store changes

made by the application user, for example, shopping carts, registration information for

new users, etc.

 Local Storage
All modern browsers allow you to persist data in the browser. You can choose between

local storage and session storage, and their use is similar. The main difference is that

local storage is kept even when you shut down your machine, while session storage will

be lost when you close the application’s browser tab or the browser. Another advantage

of local storage is that you can easily share data between browser tabs.

With the StateManagementWASM application running, click the Local Storage link

in the navigation menu. Click the button to increment the counter. Now navigate to the

Counter page, and back to the Local Storage page. Your counter keeps its value! Refresh

your browser. Again, the counter keeps its value. You can even restart the browser.

Chapter 11 Blazor State ManageMent

423

How does this work? In Chapter 10, we built a local storage service which uses

JavaScript interop to store values in local storage. Let us review this again.

Start with the service, which you can find in Listing 11-1. Here, we use the

IJSRuntime to load the JavaScript module from Listing 11-2. It has methods to store

values in local storage.

Listing 11-1. The LocalStorage Service

using Microsoft.JSInterop;

using System.Threading.Tasks;

namespace JSInterop.Services

{

 public class LocalStorageWithModule : ILocalStorage

 {

 private readonly IJSRuntime js;

 private IJSObjectReference? module;

 public LocalStorageWithModule(IJSRuntime js)

 => this.js = js;

 public async ValueTask Init()

 => this.module = this.module ?? await this.js.InvokeAsync<IJSObject

Reference>

 ("import", "./scripts/localstorage.js");

 public ValueTask<T> GetProperty<T>(string propName)

 => this.module!.InvokeAsync<T>("get", propName);

 public ValueTask SetProperty<T>(string propName, T value)

 => this.module!.InvokeVoidAsync("set", propName, value);

 public ValueTask WatchAsync<T>(T instance) where T : class

 => this.module!.InvokeVoidAsync("watch",

 DotNetObjectReference.Create(instance));

 }

}

Chapter 11 Blazor State ManageMent

424

Listing 11-2. The JavaScript LocalStorage Module

let get = key => key in localStorage ? JSON.

parse(localStorage[key]) : null;

let set = (key, value) => { localStorage[key] = JSON.stringify(value); };

let watch = async (instance) => {

 window.addEventListener('storage', (e) => {

 instance.invokeMethodAsync('UpdateCounter');

 });

};

export { get, set, watch };

The CounterLocalStorage component from Listing 11-3 uses the local storage

service to get the value when it initializes and again to store the value whenever the user

changes it by clicking the button.

Listing 11-3. The CounterLocalStorage Component

@page "/localStorage"

@inject JSInterop.Services.ILocalStorage localStorage

@using Microsoft.AspNetCore.Components

<h1>Counter With Local Storage</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">

 Click me

</button>

@code {

 public int CurrentCount { get; set; }

 private void IncrementCount()

 {

 CurrentCount++;

 localStorage.SetProperty<int>(nameof(CurrentCount), CurrentCount);

 }

Chapter 11 Blazor State ManageMent

425

 protected override async Task OnInitializedAsync()

 {

 try

 {

 await localStorage.Init();

 await localStorage.WatchAsync(this);

 int c =

 await localStorage.GetProperty<int>(nameof(CurrentCount));

 CurrentCount = c;

 }

 catch { }

 }

 [JSInvokable]

 public async Task UpdateCounter()

 {

 int c =

 await localStorage.GetProperty<int>(nameof(CurrentCount));

 CurrentCount = c;

 this.StateHasChanged();

 }

}

You do need to be careful with the value retrieved from local storage. When this

value gets corrupted, it might crash the component, and since this value is persisted, the

user cannot simply restart the application to fix the problem. That is why there is a try-

catch block around this code. Worst case, the counter will start from 0 again. That is why

in some cases using session storage is a better alternative, because this will clear once

the user closes the tab in the browser.

You can use the browser’s debugger to examine data stored in local and session

storage. Open the browser’s debugger and open the debugger’s application tab. Select

Local Storage, and click the application’s URL (e.g., https://localhost:5001). This will

display all the local storage keys and values as in Figure 11-1. You might have other keys

here, especially when developing because other applications you are building might

have data stored here.

Chapter 11 Blazor State ManageMent

426

One disadvantage of this is that tech savvy users can open local storage in the

browser debugger and see or modify the value. So do not store secrets here! With Blazor

Server, you can use protected storage, which we discuss later in this chapter.

Local storage can also be used to communicate between two or more tabs in your

browser. With the Local Storage page open, copy the URL and open a new tab to it. Select

the Local Storage page, and increment the counter. You will see the counter update in

the other tab! Every time a value in local storage is modified, the browser will trigger the

storage event, and you can register for this using the WatchAsync method from the local

storage service. This will invoke the UpdateCounter method from the component, as in

Listing 11-3.

 The Server
What if the user decides to switch to another browser? Local storage does not work

across browsers, so in that case, you will need to store your state on a server. The server

can then decide where to persist this data, for example, in a database.

The demo solution has a StateService project, which you will need to run before

running the StateManagementWASM project. Use the command line and set your

current folder to the StateService project’s folder. Then type dotnet run. This should

start the server (I have kept this server as minimal as possible, so it only keeps the data in

memory, but with a little work, you can store the data wherever you want). It does mean

that restarting the server will reset all of its data.

Figure 11-1. The Browser’s Local Storage

Chapter 11 Blazor State ManageMent

427

Start the StateManagementWASM project and now select the State Service page from

the navigation menu. Increment the counter a couple of times. Now open the page from

another browser (or use another tab). You will now see that this other application will

use the counter’s value you set in the first browser!

So how does this work? Open the StateService project, and look for the StateService

class in the Services folder, as in Listing 11-4. This generic class allows you to store and

retrieve a state using a key (user). Why user? Because this state service can and will be

used by everyone, so we need to have some user identifying property. Since we will look

at identifying the user in Chapter 16 later, I decided to simply hard-code the user in the

client application, but you can substitute this easily with a string identifying the user

obtained through authentication.

Listing 11-4. The StateService Class

using System.Collections.Generic;

namespace StateService.Services

{

 public class StateService<T>

 {

 private readonly Dictionary<string, T> counters

 = new Dictionary<string, T>();

 public T? GetState(string user)

 {

 if (this.counters.TryGetValue(user, out T? state))

 {

 return state;

 }

 return default;

 }

 public void SetState(string user, T state)

 => this.counters[user] = state;

 }

}

Chapter 11 Blazor State ManageMent

428

The StateService instance is exposed using the StateController from Listing 11-5.

Nothing new here, except the [FromRoute] and [FromBody] attributes. With Web API,

the controller tries to insert the correct value for its arguments, and it will look at the

route, query strings, the body, and other places. Using the [FromRoute] and [FromBody]

attribute on arguments will limit where the data comes from. For example, the user

argument should always come from routing, so we use [FromRoute]. We will post the

new state value in the body of the request, so we tell the controller to only accept this

value from the body of the request. You can find more information at https://docs.

microsoft.com/aspnet/core/mvc/models/model- binding.

Listing 11-5. The StateController Class

using Microsoft.AspNetCore.Mvc;

using StateService.Services;

namespace StateService.Controllers

{

 [ApiController]

 public class StateController : ControllerBase

 {

 private readonly StateService<int> stateService;

 public StateController(StateService<int> stateService)

 => this.stateService = stateService;

 [HttpGet("state/{user}")]

 public ActionResult<int> Get([FromRoute] string user)

 => Ok(this.stateService.GetState(user));

 [HttpPost("state/{user}")]

 public void Post([FromRoute] string user, [FromBody] int state)

 => this.stateService.SetState(user, state);

 }

}

One more thing, our service will run on another URL than the application (we could

host the state service and our application using the same ASP.NET project, but I want

to show you something important), and in that case, we need to configure Cross-Origin

Chapter 11 Blazor State ManageMent

https://docs.microsoft.com/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/aspnet/core/mvc/models/model-binding

429

Requests (CORS). Browsers do not allow you to access services that run on another URL

(Cross-Origin) without some extra work. This is a security feature, known as same-origin

policy, and prevents a malicious site from reading data from another site.

Servers can enable browsers to access their data from another origin (so from

another URL), but then we need to enable this explicitly on the server using CORS. You

can learn more about CORS at https://docs.microsoft.com/aspnet/core/

security/cors.

Open the Startup class and examine the ConfigureServices method as in Listing 11-6.

Here, we add a CORS policy that allows localhost:5001 (our Blazor application) to access

this service. We also need to enable the content-type header (used with REST) and the

HTTP methods we need.

Listing 11-6. The ConfigureServices Method

public void ConfigureServices(IServiceCollection services)

{

 services.AddCors(options =>

 {

 options.AddPolicy(name: "CORS",

 builder =>

 {

 builder.WithOrigins("https://localhost:5001");

 builder.WithHeaders("content-type");

 builder.WithMethods("GET", "POST");

 });

 });

 services.AddControllers();

 services.AddSingleton<StateService<int>>();

}

Finally, we enable the CORS middleware in the Startup class’s Configure

method as in Listing 11-7 that will allow the browser to query our service about

CORS. Documentation states that we need to put the UseCors method between the

UseRouting and UseEndpoints methods. We pass the policy name with the UseCors call.

Chapter 11 Blazor State ManageMent

https://docs.microsoft.com/aspnet/core/security/cors
https://docs.microsoft.com/aspnet/core/security/cors

430

Listing 11-7. The Configure Method

app.UseRouting();

app.UseCors("CORS");

app.UseAuthorization();

app.UseEndpoints(endpoints =>

{

 endpoints.MapControllers();

});

This concludes our discussion about the state service. Time to look at the

implementation in the Blazor application.

We are using a service in the Blazor WASM application to talk to the server as in

Listing 11-8. This service uses the HttpClient to talk to the StateService server.

Listing 11-8. The Client’s StateService Class

using System.Net.Http;

using System.Net.Http.Json;

using System.Threading.Tasks;

namespace StateManagementWASM.Services

{

 public class StateService<T>

 {

 private readonly HttpClient httpClient;

 public StateService(HttpClient httpClient)

 {

 this.httpClient = httpClient;

 }

 public async Task<int?> GetState(string user)

 => await httpClient.GetFromJsonAsync<int>($"state/{user}");

 public async Task SetState(string user, T state)

 => await httpClient.PostAsJsonAsync($"state/{user}", state);

 }

}

Chapter 11 Blazor State ManageMent

431

The CounterState component in Listing 11-9 uses this service to retrieve the state’s

value in its OnInitializedAsync method and updates the state in the IncrementCount

method. Almost identical to the local storage case.

Listing 11-9. The CounterState Component

using Microsoft.AspNetCore.Components;

using StateManagementWASM.Services;

using System.Threading.Tasks;

namespace StateManagementWASM.Pages

{

 public partial class CounterState

 {

 [Inject]

 public StateService<int> counterStateService { get; set; }

 = default!;

 public int CurrentCount { get; set; }

 private async Task IncrementCount()

 {

 CurrentCount++;

 await counterStateService.SetState("peter", CurrentCount);

 }

 protected override async Task OnInitializedAsync()

 {

 int? state = await counterStateService.GetState("peter");

 if (state.HasValue)

 {

 CurrentCount = state.Value;

 }

 }

 }

}

Chapter 11 Blazor State ManageMent

432

 URL
In some cases, it might make a lot of sense to store your navigation data, for example, the

step count in a wizard, or the product ID being shown, in the URL of the page. This has the

advantage that users can add this page to their favorites, and data stored in the URL will

survive a browser refresh and work across different browsers. Let us look at an example.

Using the StateManagementWASM demo, click the URL link in the navigation

column. This will show the counterURL component. Now increment the counter using

the button and watch the URL. This is where we store the current value of the counter.

Look at the counterURL component in Listing 11-10. Here, we use routing to put

the value of the CurrentCount in the parameter with the same name. I have also used

the int? constraint to make this parameter an optional integer. When the button

gets clicked, we use the NavigationManager to navigate to the same URL, but with an

incremented value. That’s it.

Listing 11-10. The counterURL Component

@page "/counterURL/{CurrentCount:int?}"

@inject NavigationManager navigationManager

<h1>Counter in URL</h1>

<p>Current count: @CurrentCount</p>

<button class="btn btn-primary"

 @onclick="IncrementCount">

 Click me

</button>

@code {

 [Parameter]

 public int CurrentCount { get; set; }

 private void IncrementCount()

 {

 navigationManager.NavigateTo($"/counterURL/{CurrentCount + 1}");

 }

}

Chapter 11 Blazor State ManageMent

433

 Using Protected Browser Storage
You can use the same techniques to store your state with Blazor Server, but there is one

more possibility. We can have our data stored in local or session storage, but now using

encryption. This uses the ASP.NET Core Data Protection API which will encrypt your

data on the server which will then store the encrypted data in the browser’s local storage

(or session storage). This only works with Blazor Server because the data protection API

requires the server to provide encryption.

In the demo solution, you can find the StateManagementServer project. Run this

project and click the Local Storage navigation link. Increment the counter and now open

the browser’s debugger. Choose the application tab, and click the application’s URL

in local storage. Look at the counter key (again, other keys might show up from other

projects since every project uses localhost:5001 by default). The counter key is clearly

encrypted here (containing some integer value).

Let us look at the CounterProtectedStorage component as in Listing 11-11. To use

protected storage, you use the ProtectedLocalStorage (or ProtectedSessionStorage)

instance which you request using dependency injection. This instance allows you to get,

set, and delete a key asynchronously.

In the OnInitializedAsync method, use the GetAsync method to retrieve the value.

This might not succeed, so this method returns a ProtectedBrowserStorageResult,

which has a Success property. When this property is true, you can access the value

using the Value property.

When the button gets clicked, use the SetAsync method to update the value.

Listing 11-11. The CounterProtectedStorage Component

@page "/localStorage"

@inject ProtectedLocalStorage localStorage

<h1>Counter With Protected Local Storage</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

Chapter 11 Blazor State ManageMent

434

 private async Task IncrementCount()

 {

 currentCount++;

 await localStorage.SetAsync("counter", currentCount);

 }

 protected override async Task OnInitializedAsync()

 {

 var state = await localStorage.GetAsync<int>("counter");

 if (state.Success)

 {

 currentCount = state.Value;

 }

 }

}

 The Redux Pattern
Building complex applications with Blazor can become challenging. Single-Page

Applications have to manage a lot more state than traditional web pages because some

of this state is shared among different pages. Sometimes customers might also want

advanced features, such as undo/redo functionality. Redux is a pattern used to reduce

an application’s complexity. With redux, we will apply a couple of principles which are

based on a minimal API and giving us predictable behavior using immutability. With

redux, state mutability becomes predictable. Let us start with a couple of building blocks

in redux.

 The Big Picture
With redux, we have an application store which we modify through actions and reducers.

When the user interacts with the application, we dispatch an action which holds the

changes we need to apply. Then the reducer applies these changes to the store, resulting

in a new store instance. Our components (the view) will then update themselves

from the store. This process then repeats itself, as illustrated in Figure 11-2. Note the

unidirectional flow of changes.

Chapter 11 Blazor State ManageMent

435

 The Application Store
With redux, we will store all our state in a single object hierarchy, known as the application

store. We will consider this store to be the “Single Source of Truth.” To keep things

manageable, the store is immutable, meaning that every change to the store will result in a

new instance. Please realize that this does not mean that we will create a deep clone of the

store instance after every change; no, a single object in the hierarchy will be replaced with

a new instance when it needs a change. For example, with the PizzaPlace application, the

store would contain three pieces of data, the menu, the shopping basket, and the customer

information. When we add something to the shopping basket, we will get a new store

instance, with the same menu and customer; only the shopping basket will be replaced with

a new instance. Note that this allows us to keep track of each state change and easily undo

this, opening up features like undo/redo. To undo a change, we simply restore the previous

state from our tracked states! The application store allows the views (Blazor components) to

access its data and uses reducers to modify it (by creating new immutable fragments).

There is another pattern called flux; the only difference between these two is that

with flux we have multiple stores, while redux chooses to put everything in a single store.

 Actions
Whenever the application wants to trigger a state change, for example, because of the

user clicking a button, a timer expiring, etc., we dispatch an action. The action contains

the data needed so the dispatcher knows what to do. For example, with the Counter

component, we can have an IncrementCounterAction class, which does not contain any

data because the Type of the instance is enough for the dispatcher to handle it. Should

we want to set the Counter to a specific value, we can have the UpdateCounterAction

which would contain the desired value. Actions describe what happened in the

application and are used by the dispatcher to apply the desired change.

Figure 11-2. Redux Overview

Chapter 11 Blazor State ManageMent

436

 Reducers
The responsibility of a reducer is to apply an action to the store. Reducers must be

pure functions. A pure function is a function that always returns the same result for its

parameters. For example, adding two numbers together is a pure function, calling add

on 2 and 3 will always return 5. Getting the time is not, since calling this function returns

a different value at different points in time.

 Views
Views (in our case, Blazor components) access the store to render the data and subscribe

for changes in the store so they can update themselves when the data has been changed

through a reducer.

 Using Fluxor
Time to look at an actual implementation using the redux pattern. We will use Fluxor,

which was written by Peter Morris and the GitHub community and which is an amazing

implementation of the flux pattern (of which redux is a special case).

Start by creating a new hosted Blazor WebAssembly project; call it UsingRedux. Do

enable the nullable reference type C# option in the shared project as in Listing 11-12.

Listing 11-12. Enabling Nullable Reference Types

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <SupportedPlatform Include="browser" />

 </ItemGroup>

</Project>

Chapter 11 Blazor State ManageMent

437

Let us first implement the Counter component using the Fluxor library, so add the

NuGet package Fluxor to the UsingRedux.Shared project. I like putting the store, actions,

and reducers in a shared library, which makes it easy to use with other application types.

 Creating the Store
Add a new folder called Stores to the shared project.

Add a new class called AppStore as in Listing 11-13. Here, I am using the new C#

record type, which is a very practical way to build an immutable reference type. With

its convenient syntax, we can create the AppStore type and add three immutable

properties. Because of that, the parameters of the AppStore type use Pascal casing.

These parameters will get compiled into public read-only properties on the AppStore

type, so we should use the naming convention for properties. You can learn more about

record types at https://docs.microsoft.com/dotnet/csharp/whats- new/tutorials/

records. The ClickCounter property holds the Counter’s data, and the IsLoading and

Forecasts properties hold the data used by the FetchData component.

Listing 11-13. Our Application’s Store

namespace UsingRedux.Shared.Stores

{

 // AppStore is an immutable reference type!

 public record AppStore(

 int ClickCounter,

 bool IsLoading,

 WeatherForecast[]? Forecasts

);

}

The AppStore instance will be initialized using the generic Feature<T> type that

comes with the Fluxor library. Add a new folder called Features to the shared project,

and add the AppFeature class as in Listing 11-14. The AppFeature will initialize our

AppStore instance, since Fluxor will call the GetInitialState method and use the result

as the initial store’s value.

Chapter 11 Blazor State ManageMent

https://docs.microsoft.com/dotnet/csharp/whats-new/tutorials/records
https://docs.microsoft.com/dotnet/csharp/whats-new/tutorials/records

438

Listing 11-14. The AppFeature Class

using Fluxor;

using System;

using UsingRedux.Shared.Stores;

namespace UsingRedux.Shared.Features

{

 public class AppFeature : Feature<AppStore>

 {

 public override string GetName()

 => nameof(AppStore);

 protected override AppStore GetInitialState()

 => new AppStore(

 ClickCounter: 0,

 IsLoading: false,

 Forecasts: Array.Empty<WeatherForecast>()

);

 }

}

 Using the Store in Our Blazor Application
Now enable nullable reference types in the UsingRedux.Client project and add the

Fluxor.Blazor.Web NuGet package to it. We also need to add some JavaScript, so open

your index.html page and add the <script> tag from Listing 11-15 to the end of the

<head> section.

Listing 11-15. The Fluxor Script

<script src="_content/Fluxor.Blazor.Web/scripts/index.js">

</script>

Open Program.cs and add support for Fluxor by configuring dependency injection

as in Listing 11-16. Fluxor uses dependency injection to find our redux classes, such as

the reducers. Since these are defined in the shared project, we use the AppStore class to

retrieve the appropriate assembly.

Chapter 11 Blazor State ManageMent

439

Listing 11-16. Enabling Fluxor in Blazor

using Fluxor;

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using System;

using System.Net.Http;

using System.Reflection;

using System.Threading.Tasks;

using UsingRedux.Shared.Stores;

namespace UsingRedux.Client

{

 public class Program

 {

 public static async Task Main(string[] args)

 {

 var builder = WebAssemblyHostBuilder.CreateDefault(args);

 builder.RootComponents.Add<App>("#app");

 builder.Services.AddScoped(sp => new HttpClient

 {

 BaseAddress =

 new Uri(builder.HostEnvironment.BaseAddress) });

 Assembly storeAssembly = typeof(AppStore).Assembly;

 builder.Services

 .AddFluxor(options =>

 options.ScanAssemblies(storeAssembly));

 await builder.Build().RunAsync();

 }

 }

}

Open the App.razor class and add the StoreInitializer component to the top as

in Listing 11-17. This component will initialize the store for the current user using the

AppFeature class.

Chapter 11 Blazor State ManageMent

440

Listing 11-17. Adding the Store Initializer

<Fluxor.Blazor.Web.StoreInitializer/>

Add a new file called Counter.razor.cs to the Pages folder of the client project.

Implement this class as in Listing 11-18. Our counter needs access to the store, so we use

dependency injection to retrieve an instance of IState<AppStore>. This interface wraps

our AppState and can be retrieved using the Value property. To simplify access, I have

also added a helper property AppStore.

Listing 11-18. The Counter’s Code

using Fluxor;

using Microsoft.AspNetCore.Components;

using UsingRedux.Shared.Stores;

namespace UsingRedux.Client.Pages

{

 public partial class Counter

 {

 [Inject]

 public IState<AppStore> State { get; set; } = default!;

 public AppStore AppStore => State.Value;

 }

}

Now update the Counter.razor file as in Listing 11-19. Each component that uses the

store should subscribe to changes in the store. The FluxorComponent takes care of that

so we need to derive our component from this base class. Our counter needs to display a

counter, which is in the store so we use the @AppStore.ClickCounter to display its value.

Listing 11-19. The Counter’s Markup

@inherits Fluxor.Blazor.Web.Components.FluxorComponent

@page "/counter"

<h1>Counter</h1>

<p>Current count: @AppStore.ClickCounter</p>

<button class="btn btn-primary">Click me</button>

Chapter 11 Blazor State ManageMent

441

Build and run the application. Select the Counter link. You get a Counter with initial

value 0, but the button does not do anything yet. Time to add an action and reducer.

 Adding an Action
In the shared project, add a folder called Actions and add the IncrementCounterAction

class from Listing 11-20. Again, I use a record type, since the action should not be

mutable (and I like the conciseness). This action does not need any data, since the type

of the action is enough to allow the reducer to do its work.

Listing 11-20. The IncrementCounterAction

namespace UsingRedux.Shared.Actions

{

 public record IncrementCounterAction;

}

We will add more actions later in this chapter, so let us proceed to the reducer.

 Implementing the Reducer
Add a new folder called Reducers to the shared project and add the AppReducer class

to it from Listing 11-21. Reducers should be pure functions, so calling a reducer with

the same arguments should result in the same result. I know I am repeating myself, but

this is very important. Since reducers should be pure, they normally do not require any

data except what they can find in the AppStore and Action class. So not to be tempted,

I advise you make reducer methods static, and you add it to a static class. This

should not limit the testability of your reducers. Fluxor also requires you to add the

[ReducerMethod] attribute to the method, enabling it to detect reducers with reflection.

In general, using reflection is slow, but if you just do reflection once, especially during

the initialization of your application, this is no problem. So don’t worry about this. This

reducer should return a new AppStore instance, with the ClickCounter incremented

by 1. Again, C# records are very practical for this because we can make a full copy (a

shallow clone) of the AppStore using the with syntax and listing the properties that need

to change. This syntax will return new instance of the store, with new values for the listed

properties.

Chapter 11 Blazor State ManageMent

442

Listing 11-21. The AppReducer Static Class

using Fluxor;

using UsingRedux.Shared.Actions;

using UsingRedux.Shared.Stores;

namespace UsingRedux.Shared.Reducers

{

 public static class AppReducer

 {

 [ReducerMethod]

 public static AppStore ReduceIncrementCounterAction

 (AppStore state, IncrementCounterAction action)

 => state with { ClickCounter = state.ClickCounter + 1 };

 }

}

We have an action and a reducer, so now we can update the Counter component to

make the button work.

First update the Counter’s code as in Listing 11-22. We need a dispatcher so we ask

dependency injection to supply one. And in the IncrementCounter method, we create

the IncrementCounterAction and use the Dispatcher to dispatch it. That is all! With

redux, your component knows the action, but not how this will be implemented, again

keeping this logic out of your component!

Listing 11-22. The Counter’s Code with Action and Dispatch

using Fluxor;

using Microsoft.AspNetCore.Components;

using UsingRedux.Shared.Actions;

using UsingRedux.Shared.Stores;

namespace UsingRedux.Client.Pages

{

 public partial class Counter

 {

 [Inject]

 public IState<AppStore> State { get; set; } = default!;

Chapter 11 Blazor State ManageMent

443

 [Inject]

 public IDispatcher Dispatcher { get; set; } = default!;

 public AppStore AppStore => State.Value;

 public void IncrementCounter()

 {

 var action = new IncrementCounterAction();

 Dispatcher.Dispatch(action);

 }

 }

}

Update the Counter so the button calls the IncrementCounter method when clicked

as in Listing 11-23.

Listing 11-23. Making the Counter Button Work

@inherits Fluxor.Blazor.Web.Components.FluxorComponent

@page "/counter"

<h1>Counter</h1>

<p>Current count: @AppStore.ClickCounter</p>

<button class="btn btn-primary" @onclick="IncrementCounter">

 Click me

</button>

Run the application and click the button on the Counter component. It should

increment!

 Redux Effects
What if we need to call an asynchronous method? Do we call it in the reducer? No! Since

reducers are synchronous, calling the asynchronous method would either block the

reducer or return without the required result. To solve this, redux uses effects, which are

asynchronous and function through use of actions and reducers. With effects, we will

use two actions, one to start the effect asynchronously, and when the effect is done, it

Chapter 11 Blazor State ManageMent

444

uses another action to dispatch the result. The best way to understand effects is with an

example, so let us implement the FetchData component with redux.

 Adding the First Action
Start by adding another action which will initiate the asynchronous call to fetch

the weather forecasts. Inside the Actions folder of the shared project, add the

FetchDataAction record from Listing 11-24.

Listing 11-24. The FetchDataAction Record

namespace UsingRedux.Shared.Actions

{

 public record FetchDataAction;

}

Add a new FetchData.razor.cs file to the Pages folder of the client project to

implement the FetchData component as in Listing 11-25. Again, we inject the store

and dispatcher, and we dispatch the FetchDataAction in the OnInitialized life cycle

method. Don’t forget to call the base class’s OnInitialized method!

Listing 11-25. The FetchData Component’s Code

using Fluxor;

using Microsoft.AspNetCore.Components;

using UsingRedux.Shared.Actions;

using UsingRedux.Shared.Stores;

namespace UsingRedux.Client.Pages

{

 public partial class FetchData

 {

 [Inject]

 public IState<AppStore> State { get; set; } = default!;

 [Inject]

 public IDispatcher Dispatcher { get; set; } = default!;

 public AppStore AppStore => State.Value;

Chapter 11 Blazor State ManageMent

445

 protected override void OnInitialized()

 {

 Dispatcher.Dispatch(new FetchDataAction());

 base.OnInitialized();

 }

 }

}

Update the FetchData.razor file to inherit from FluxorComponent and use the store

instance as in Listing 11-26. We don’t need the HttpClient (or service) here, so please

remove it. We also check the store’s IsLoading property to show the loading UI while

we are fetching the data. Finally, we will iterate over the Forecasts property to show the

weather forecasts.

Listing 11-26. The FetchData Component’s Markup

@inherits Fluxor.Blazor.Web.Components.FluxorComponent

@page "/fetchdata"

@using UsingRedux.Shared

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</p>

@if (AppStore.IsLoading)

{

 <p>Loading...</p>

}

else

{

 <table class="table">

 <thead>

 <tr>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

Chapter 11 Blazor State ManageMent

446

 <tbody>

 @foreach (var forecast in AppStore.Forecasts!)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()</td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

 </table>

}

We also need to add a reducer for this action, so add the ReduceFetchDataAction

method to the AppReducer static class from Listing 11-27. This will simply set the

IsLoading property on our store, so the FetchData component will show the loading UI.

Listing 11-27. The ReduceFetchDataAction Reducer Method

[ReducerMethod]

public static AppStore ReduceFetchDataAction

 (AppStore state, FetchDataAction action)

=> state with { IsLoading = true };

 Adding the Second Action and Effect
Add another action called FetchDataResultAction to the Actions folder of the shared

project as in Listing 11-28. This type has one property holding the forecasts which we

will use in the reducer.

Chapter 11 Blazor State ManageMent

447

Listing 11-28. The FetchDataResultAction Record

namespace UsingRedux.Shared.Actions

{

 public record FetchDataResultAction(WeatherForecast[]? Forecasts);

}

Add a new Effects folder to the Shared project and also add the System.Net.Http.

Json package. We need this package to access the HttpClient class and its extension

methods.

Now implement the effect as in Listing 11-29. Our effect needs to inherit from the

Effect<T> base class, where T is the action that will trigger the effect. So when the

FetchData component dispatches the FetchDataAction, this effect gets instantiated

and the HandleAsync method will be invoked by Fluxor. When your effect needs some

dependency, it can just ask using the effect’s constructor. Dependency injection will

provide! Inside the HandleAsync method, we call the asynchronous method, in this

case, the GetFromJsonAsync, and when that returns, we dispatch the result using the

FetchDataResultAction.

Listing 11-29. The FetchDataActionEffect Class

using Fluxor;

using System.Net.Http;

using System.Net.Http.Json;

using System.Threading.Tasks;

using UsingRedux.Shared.Actions;

namespace UsingRedux.Shared.Effects

{

 public class FetchDataActionEffect : Effect<FetchDataAction>

 {

 private readonly HttpClient httpClient;

 public FetchDataActionEffect(HttpClient http)

 => this.httpClient = http;

 public override async Task HandleAsync

 (FetchDataAction action,

 IDispatcher dispatcher)

Chapter 11 Blazor State ManageMent

448

 {

 WeatherForecast[]? forecasts =

 await this.httpClient

 .GetFromJsonAsync<WeatherForecast[]>("WeatherForecast");

 dispatcher.Dispatch(new FetchDataResultAction(forecasts));

 }

 }

}

Now we need another reducer, so add the method to the AppReducer class as in

Listing 11-30. This will set the store’s IsLoading to false and sets our Forecasts store

property to the forecasts that were fetched by the effect.

Listing 11-30. The ReduceFetchDataResultAction Reducer

[ReducerMethod]

public static AppStore ReduceFetchDataResultAction

 (AppStore state, FetchDataResultAction action)

 => state with { IsLoading = false, Forecasts = action.Forecasts };

Build and run. You should be able to fetch the forecasts now!

Think of effects as an interception mechanism that gets triggered by dispatching a

certain action.

 Summary
In this chapter, we looked at state management, so how do we keep state around even

when the user refreshes the browser? We can store our application state in local storage,

the server, and the URL. Then we looked at the redux pattern, which is used to build

complex applications. Redux makes this easier by applying a couple of principles.

Components data bind to the Store object, which you mutate by dispatching actions

that contain the required change. Then a reducer applies this change to the store which

will trigger an update of your components, completing the circle. Redux and flux have

the advantage that you end up with a lot of little classes which are easier to maintain,

applying the single responsibility principle.

Chapter 11 Blazor State ManageMent

449
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_12

CHAPTER 12

Building Real-Time
Applications with Blazor
and SignalR
What if your application needs some real-time communication between client and

server and even between clients? In this case, you can use SignalR. In this chapter, we

will explore how we can use SignalR in Blazor to build real-time applications.

 What Is SignalR?
SignalR is a library that allows you to build real-time applications and allows the server

and clients to send messages to each other. You can use SignalR in desktop applications,

mobile applications, and of course websites. There is an implementation for .NET and

also one for JavaScript. A typical application that should use SignalR is a chat application,

where clients communicate with each other over a server. When the server receives a

chat message from the client, it can send this message back to the other clients. SignalR is

especially useful for applications that need high-frequency updates, such as multi- player

games, social networks, auctions, etc.

 How Does SignalR Work?
SignalR uses WebSockets, which, unlike HTTP, use a full-duplex connection between

client and server, meaning that clients and server keep the TCP connection open and

thus can send messages to each other without the classic model where the client has

to start the conversation. To implement this, WebSockets set up a TCP connection

https://doi.org/10.1007/978-1-4842-7845-1_12#DOI

450

between client and server over the existing HTTP connection, which is way more

efficient to send small messages. All modern browsers support WebSockets, as shown

on https://caniuse.com/?search=websockets and in Figure 12-1.

SignalR takes care of the connection and allows you to send messages to all clients

simultaneously or to specific groups of clients or even to a single specific client.

 Building a WhiteBoard Application
Let us build a WhiteBoard application, in which you will have a white board (such as you

can find in many offices) on which you can draw. After this, we will add SignalR so all

users can interact with the white board and can see what others are drawing in real time.

 Creating the WhiteBoard Solution
Start by creating a new server-hosted Blazor WebAssembly solution, and name it

WhiteBoard. Remove all Blazor components from the Pages and Shared folder. We don’t

need these. Also remove all contents of the App component. Finally, remove the @using

WhiteBoard.Client statement from _Imports.razor.

Start by adding a new C# struct called LineSegment from Listing 12-1 to the shared

project. We will use this struct in both the server and the client to represent the drawing,

segment by segment.

Figure 12-1. Supporting Browsers

Chapter 12 Building real-time appliCations with Blazor and signalr

https://caniuse.com/?search=websockets

451

Listing 12-1. The LineSegment Class

using System.Drawing;

namespace WhiteBoard.Shared

{

 public struct LineSegment

 {

 public LineSegment(PointF start, PointF end)

 {

 Start = start;

 End = end;

 }

 public PointF Start { get; set; }

 public PointF End { get; set; }

 }

}

Add a new component to the Pages folder and name it Board. Complete the markup

as in Listing 12-2. Our Board component will use an HTML <canvas> element to show

the drawing and handle the user interaction with the board.

Listing 12-2. The Board Component

<canvas width="600" height="600"

 @onmousedown="MouseDown"

 @onmouseup="MouseUp"

 @onmousemove="MouseMove"

 @ref="board">

</canvas>

Add a new C# file called Board.razor.cs as in Listing 12-3. For the moment, this class

does not do a lot of useful stuff, except making the project compile, but we will get to

this next.

Chapter 12 Building real-time appliCations with Blazor and signalr

452

Listing 12-3. The Board Component’s Implementation

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Web;

using Microsoft.JSInterop;

using System;

using System.Collections.Generic;

using System.Drawing;

using System.Threading.Tasks;

using WhiteBoard.Shared;

namespace WhiteBoard.Client.Pages

{

 public partial class Board

 {

 [Parameter]

 public List<LineSegment> LineSegments { get; set; }

 = default!;

 [Parameter]

 public Func<LineSegment, Task> AddSegment { get; set; }

 = default!;

 public ElementReference board = default!;

 private void MouseDown(MouseEventArgs e)

 {

 }

 private void MouseUp(MouseEventArgs e)

 {

 }

 private void MouseMove(MouseEventArgs e)

 {

 }

 }

}

Chapter 12 Building real-time appliCations with Blazor and signalr

453

Now update the App component’s markup from Listing 12-4 with code behind from

Listing 12-5. The App component will keep track of the line segments, so it passes the

segments as an argument and passes the AddLineSegment callback to the board.

Listing 12-4. The App Component

<Board LineSegments="@LineSegments"

 AddSegment="@AddLineSegment" />

Listing 12-5. The App Component’s Implementation

using System.Collections.Generic;

using System.Threading.Tasks;

using WhiteBoard.Shared;

namespace WhiteBoard.Client

{

 public partial class App

 {

 private readonly List<LineSegment> LineSegments

 = new List<LineSegment>();

 private Task AddLineSegment(LineSegment segment)

 {

 List<LineSegment> segments =

 new List<LineSegment>() { segment };

 this.LineSegments.Add(segment);

 return Task.CompletedTask;

 }

 }

}

 Implementing the Mouse Handling Logic
Now we can implement the Board component’s mouse handling logic. When the user

clicks and drags the mouse, we will add a new segment. Start by adding the MouseButton

enumeration next to the Board class as shown in Listing 12-6. This abstracts the numbers

used for mouse buttons by the mouse events (I hate using “mystery” numbers in code).

Chapter 12 Building real-time appliCations with Blazor and signalr

454

Listing 12-6. The MouseButton Enumeration

public enum MouseButton

{

 Left, Middle, Right

}

Now update the Board’s mouse handling methods as in Listing 12-7. The

trackMouse field is used to track whether the left mouse button is down. It is set to

true in the MouseDown event handling method and back to false in the MouseUp event

handling method.

The MouseMove event handling method calls the AddSegment callback when the

trackMouse field is true. But we need another thing. Mouse events can easily trigger

tens of times per second, so we need to throttle these events. That is why the lastEvent

field tracks the difference between the mouse moves and will only call the AddSegment

callback with at least 200 milliseconds between them. Of course, we need to know the

mouse position, and for that, this implementation uses the lastPos field. We initialize

this to the current mouse position in the MouseDown method when the left mouse button

is pressed. We then use this field to invoke the AddSegment callback with lastPos and

currentPos. Finally, we reset the lastPos to the current mouse position because this will

become the starting point for the next segment.

Listing 12-7. Implementing Mouse Tracking

private PointF lastPos = new PointF(0, 0);

private DateTime lastEvent;

private bool trackMouse = false;

private void MouseDown(MouseEventArgs e)

{

 if (e.Button == (int)MouseButton.Left)

 {

 this.trackMouse = true;

 this.lastPos =

 new PointF((float)e.ClientX, (float)e.ClientY);

 }

}

Chapter 12 Building real-time appliCations with Blazor and signalr

455

private void MouseUp(MouseEventArgs e)

 => this.trackMouse = false;

private void MouseMove(MouseEventArgs e)

{

 var currentPos =

 new PointF((float)e.ClientX, (float)e.ClientY);

 DateTime currentEvent = DateTime.Now;

 TimeSpan time = currentEvent - this.lastEvent;

 if (this.trackMouse && time.TotalMilliseconds > 200)

 {

 AddSegment.Invoke(new LineSegment(this.lastPos, currentPos));

 this.lastEvent = currentEvent;

 this.lastPos = currentPos;

 }

}

 Painting the Segments on the Board
Running the application will not yield the proper result. We need to paint the segments.

And since we are using a <canvas> element, we need some JavaScript.

Add a new scripts folder below the wwwroot folder, and add a new JavaScript file

called canvas.js as in Listing 12-8. This JavaScript module exports a single drawLines

function, which draws each line segment on the canvas.

To draw on a canvas, we need a reference to it, so we pass the ElementReference as

the first argument and the segments as the second argument. Next, we ask the canvas

element to give us a 2D content by calling the getContext method. Then we iterate over

each segment, calling the drawLine method. This method then uses the 2D context to

draw the line.

Listing 12-8. JavaScript to Draw on Canvas

let drawLine = (context, x1, y1, x2, y2, strokeStyle) => {

 context.beginPath();

 context.moveTo(x1, y1);

 context.lineTo(x2, y2);

 context.strokeStyle = strokeStyle || "black";

Chapter 12 Building real-time appliCations with Blazor and signalr

456

 context.stroke();

 context.closePath();

}

let drawLines = (board, segments) => {

 let context = board.getContext('2d');

 for (let i = 0; i < segments.length; i += 1) {

 let segment = segments[i];

 drawLine(context, segment.start.x, segment.start.y,

 segment.end.x, segment.end.y)

 }

}

export { drawLines };

We now should import this module in our Blazor component. Use dependency

injection to get a reference to the IJSRuntime instance as in Listing 12-9.

Listing 12-9. Use the Inject Attribute to Inject the JSRuntime

public partial class Board

{

 [Inject]

 public IJSRuntime JSRuntime { get; set; } = default!;

Override the OnInitializedAsync method as in Listing 12-10. This code should be

familiar from Chapter 10, and it loads a JavaScript module into an IJSObjectReference.

Listing 12-10. Importing the JavaScript Module

private IJSObjectReference? canvas = default;

protected override async Task OnInitializedAsync()

{

 this.canvas =

 await JSRuntime.InvokeAsync<IJSObjectReference>

 ("import", "./scripts/canvas.js");

 await base.OnInitializedAsync();

}

Chapter 12 Building real-time appliCations with Blazor and signalr

457

Where should we call the JavaScript module? We can only do this after the

Blazor runtime has updated the browser’s DOM, so we should override the

OnAfterRenderAsync method from Listing 12-11 as described in Chapter 3. There is

one more problem. We are loading the JavaScript module in OnInitializedAsync, and

because this is an asynchronous method, the module will not be loaded in the first call to

OnAfterRenderAsync, so we need to check if the canvas field has been set.

Listing 12-11. Calling the drawLines JavaScript Function

protected override async Task OnAfterRenderAsync(bool firstRender)

{

 if (this.canvas is not null)

 {

 await this.canvas

 .InvokeVoidAsync("drawLines", this.board, LineSegments);

 }

}

Build and run. Now you can make some abstract art like I did in Figure 12-2.

Figure 12-2. The WhiteBoard Application in Action

Chapter 12 Building real-time appliCations with Blazor and signalr

458

 Adding a SignalR Hub on the Server
Our WhiteBoard application is currently single user. Let us make this an application

where everyone can draw on the same white board using SignalR.

With SignalR, we need to create a Hub on the server, which will have methods we can

call from the clients. On the client, we will implement methods that we will invoke from

the hub. A hub sits at the heart of SignalR and runs on the server. The clients will send

messages to the central hub, which can then notify the other clients. So we need a hub.

 Implementing the BoardHub Class
In the server project, add a new Hubs folder and add the BoardHub class from Listing 12-12.

We need to derive this class from the Hub base class (or strongly typed Hub<T> class).

Currently, it has the allSegments list, containing the segments of the Board.

Listing 12-12. The BoardHub Class

using Microsoft.AspNetCore.SignalR;

using Microsoft.Extensions.Logging;

using System.Collections.Generic;

using System.Threading.Tasks;

using WhiteBoard.Shared;

namespace WhiteBoard.Server.Hubs

{

 public class BoardHub : Hub

 {

 private static readonly List<LineSegment> allSegments

 = new List<LineSegment>();

 private readonly ILogger<BoardHub> logger;

 public BoardHub(ILogger<BoardHub> logger)

 => this.logger = logger;

}

Our BoardHub needs two methods, GetAllSegments and SendSegments. The

GetAllSegments method from Listing 12-13 is used by a new client to retrieve the already

present segments from other clients. So how does the server know who the clients are?

Chapter 12 Building real-time appliCations with Blazor and signalr

459

The Hub base class has a Clients property of type IHubCallerClients. This interface

has three properties: All, Caller, and Others. The All property gives you access to

all the clients connected to the Hub, the Caller property returns the client calling the

BoardHub, and the Others returns all clients except the caller. Since the GetAllSegments

method needs to return its allSegments collection to the client, we use Clients.Caller

and call the client’s InitSegments method. This method also performs some server-side

logging using the ILogger.

Listing 12-13. The BoardHub’s GetAllSegments Method

public async Task GetAllSegments()

{

 this.logger.LogInformation(

 $"{nameof(GetAllSegments)} - {allSegments.Count}");

 await Clients.Caller.SendAsync("InitSegments", allSegments);

}

The SendSegments method from Listing 12-14 is used by a client to notify the other

clients. Here, the server adds the client’s segments to its collection and notifies the other

clients by calling their AddSegments method.

Listing 12-14. The SendSegments Method

public async Task SendSegments(IEnumerable<LineSegment> segments)

{

 this.logger.LogInformation(nameof(SendSegments));

 allSegments.AddRange(segments);

 await Clients.Others.SendAsync("AddSegments", segments);

}

 Configuring the Server
Open Startup.cs on the server project and update the ConfigureServices method in

Listing 12-15 to configure dependency injection for SignalR. To really make the SignalR

messages as small as possible, we also add the response compression middleware.

Chapter 12 Building real-time appliCations with Blazor and signalr

460

Listing 12-15. Adding the Required SignalR Dependencies

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews();

 services.AddRazorPages();

 services.AddSignalR();

 services.AddResponseCompression(opts =>

 {

 opts.MimeTypes = ResponseCompressionDefaults.MimeTypes

 .Concat(new[] { "application/octet-stream" });

 });

}

Update Startup’s Configure method as in Listing 12-16. The response compression

middleware should come first, and we need to add our BoardHub to the server’s

endpoints. Our BoardHub can now receive messages from clients using the /board URL.

Listing 12-16. Adding SignalR Middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 app.UseResponseCompression();

 ...

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapRazorPages();

 endpoints.MapControllers();

 endpoints.MapHub<BoardHub>("/board");

 endpoints.MapFallbackToFile("index.html");

 });

}

Chapter 12 Building real-time appliCations with Blazor and signalr

461

 Implementing the SignalR Client
Start by adding the Microsoft.AspNetCore.SignalR.Client package to the client project.

Our Board component does not need to know we are using SignalR, so we will add

the SignalR logic to the App component.

 Making the SignalR Hub Connection
Start by adding the NavigationManager through dependency injection and a

HubConnection field as in Listing 12-17.

Listing 12-17. Adding Some Dependencies

public partial class App

{

 [Inject]

 public NavigationManager navigationManager { get; set; } = default!;

 private HubConnection hubConnection = default!;

We need to create the HubConnection in the OnInitializedAsync method as in

Listing 12-18. First, we use the HubConnectionBuilder to create the HubConnection,

passing the URL of our server’s SignalR endpoint. To retrieve the SignalR server’s URL,

we use the navigationManager.ToAbsoluteUri method.

Then we define the AddSegments method (which the server will call) which simply

adds the segments to the App component’s segments. Since this call is asynchronous, we

need to call StateHasChanged so the App component will perform change detection and

render itself.

We also add the InitSegments method, which by some weird coincidence does the

same as the AddSegments method (but this may change in the future).

Now our hubConnection is ready, so we call StartAsync, and when this returns, the

connection has been made, and we ask the server to send its segments (which could

have been modified by other clients) using the GetAllSegments method.

Chapter 12 Building real-time appliCations with Blazor and signalr

462

Listing 12-18. Creating the HubConnection

protected override async Task OnInitializedAsync()

{

 this.hubConnection = new HubConnectionBuilder()

 .WithUrl(navigationManager.ToAbsoluteUri("/board"))

 .Build();

 this.hubConnection.On<IEnumerable<LineSegment>>("AddSegments",

 segments =>

 {

 this.LineSegments.AddRange(segments);

 StateHasChanged();

 });

 this.hubConnection.On<List<LineSegment>>("InitSegments",

 allSegments =>

 {

 this.LineSegments.AddRange(allSegments);

 StateHasChanged();

 });

 await this.hubConnection.StartAsync();

 await this.hubConnection.SendAsync("GetAllSegments");

}

 Notifying the Hub from the Client
Our App component should notify the server when the user added a segment, so we call

the hubConnection’s SendSegments method, passing the extra segment. This will update

any other client out there. Add the AddLineSegment method from Listing 12-19.

Chapter 12 Building real-time appliCations with Blazor and signalr

463

Listing 12-19. Updated AddLineSegment Method

private async Task AddLineSegment(LineSegment segment)

{

 List<LineSegment> segments =

 new List<LineSegment>() { segment };

 await this.hubConnection.SendAsync("SendSegments", segments);

 this.LineSegments.Add(segment);

}

 Cleaning Up the Hub Connection
Finally, we should not forget to notify the server that we are not interested in other

messages.

Start by declaring the IAsyncDisposable interface on the App component as in

Listing 12-20.

Listing 12-20. Declaring the IAsyncDisposable Interface

public partial class App : IAsyncDisposable

Implement the DisposeAsync method in the App component as in Listing 12-21.

Here, we call DisposeAsync on the hubConnection, which will unregister this client with

the server’s hub.

Listing 12-21. Implementing IAsyncDisposable

public async ValueTask DisposeAsync()

{

 if (this.hubConnection is not null)

 {

 await this.hubConnection.DisposeAsync();

 }

}

Build and run. Open another browser tab on the same URL (or another browser).

Drawing in one tab will automatically draw in another tab. Again, open another tab or

browser; the current drawing should be shown as in Figure 12-3.

Chapter 12 Building real-time appliCations with Blazor and signalr

464

 Summary
In this chapter, we looked at using SignalR for building real-time applications. Who

is using SignalR out there? First of all, Blazor Server uses SignalR to set up the two-

way communication between the server and the browser. Microsoft Azure also

uses SignalR. It is also used by lots of companies. Any time you need real-time

communication, SignalR is the choice to make. We could integrate SignalR in our

PizzaPlace application to notify the customers when their pizza enters the oven, then

when it is put in the pizza box, and when delivery is estimated to arrive. They could even

see where delivery is in traffic!

You start by adding a Hub to the server, and then you make clients connected to this

hub using a HubConnection. Once this connection has been established, both client

and server can send messages to each other. We only scratched the surface of what is

possible with SignalR, but as we have seen, using SignalR is easy!

Figure 12-3. The WhiteBoard Application in Action

Chapter 12 Building real-time appliCations with Blazor and signalr

465
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_13

CHAPTER 13

Efficient Communication
with gRPC
Blazor WebAssembly applications that have the need to exchange large amounts of data

will probably run into communication overhead when using REST. With gRPC, you can

use a more efficient way to exchange data with the back end.

 What Is gRPC?
Before we were using SOAP and REST, developers were using Remote Procedure

Calls (RPC) to invoke methods in another process. We've seen how to communicate

with REST APIs between two applications, but the serialization to and from JSON

causes some overhead. This is mostly done to make messages human-readable. If the

communication only needs to happen between applications and there is no need to have

a human-readable form, we can use gRPC. Because the serialized data does not have to

be readable by humans, it can be more compact and efficient and thus more performant.

 Pros and Cons of RPC
With RPC, you can expose a method in another process and call it just like a normal

method, using the same syntax. Behind the scenes, the client method serializes the

method call itself with its arguments and sends it to another process, for example, using

a network stack. The other process would then call the actual server method and return

the return value back over the network, after which the client method deserializes

the return value and returns it. With RPC, developers at the client end do not see the

difference between a normal method call and a remote call. This is of course quite

convenient but comes at a price. Imagine you are talking to some other person directly,

or you would have to talk to someone using a fax machine (remember?) or good old

https://doi.org/10.1007/978-1-4842-7845-1_13#DOI

466

mail. Talking directly to another person allows for a chatty interface where small

messages get exchanged, like “How are you?” and “Good, and you?”, while using a letter

over mail or fax would use a chunky interface, where you would write down everything

at once because you know the answer will take a long time. Just ask your parents 😊. The

dream of RPC was that you would not be able to see the difference. But making calls over

a network for a computer has the same efficiency as using a fax machine or mail for us.

So designing RPC calls requires some thought and should use chunky interfaces.

 Understanding gRPC
What is gRPC? This framework gives us a modern and highly efficient way to

communicate with the same principles of RPC. It works for languages, such as C#,

Java, JavaScript, Go, Swift, C++, Python, Node.js, and other languages. It provides

interoperability between different languages through the use of an Interface Definition

Language (IDL) described in .proto files. These files are then used to generate the

necessary code used by both server and client.

Using gRPC is highly performant and very lightweight. A gRPC call can be up to eight

times faster than the equivalent REST call. Because it uses binary serialization, messages

can be 60 to 80 percent smaller than JSON. Some of you might be familiar with Windows

Communication Foundation (WCF). In that case, think of gRPC as the equivalent of

using the NetTcpBinding in WCF.

 Protocol Buffers
The gRPC framework uses an open source technology called Protocol Buffers which was

created by Google. With Protocol Buffers, we use an IDL specified in a text-based .proto

file to allow us to communicate with other languages. With this IDL, you create service

contracts, each containing one or more RPC methods, and each method takes a request

and a response message.

Chapter 13 effiCient CommuniCation with grpC

467

 Describing Your Network Interchange
with Proto Files
Let us update an existing application that currently uses REST to use gRPC. The source

code that comes with this book contains a starter solution called BlazorWithgRPC.

Starter. Open this solution. You can run it if you like, but to keep things simple and

familiar, it uses the same components from before. Here, the FetchData component uses

a WeatherService to request a list of WeatherForecast instances using REST. We will

make this use gRPC now.

Let us now describe the contract between the server and client. Since we are using

Blazor, we can use the Shared project to generate the code for both.

 Installing the gRPC Tooling
The first thing that we should do to use gRPC is to add a couple of packages to the Shared

project (take the latest stable version of each):

• Google.Protobuf

• Grpc.Net.Client

• Grpc.Net.Client.Web

• Grpc.Tools

Now add a new text file called WeatherForecast.proto. When you are using Visual

Studio, you should set the Build Action to Protobuf compiler as in Figure 13-1.

Figure 13-1. Proto File Settings

Chapter 13 effiCient CommuniCation with grpC

468

When you are using another tool like Visual Studio Code, you can directly set the

build action in the project file as in Listing 13-1.

Listing 13-1. Setting the Build Action in the Project File

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Google.Protobuf" Version="3.17.3" />

 <PackageReference Include="Grpc.Net.Client" Version="2.38.0" />

 <PackageReference Include="Grpc.Net.Client.Web" Version="2.38.0" />

 <PackageReference Include="Grpc.Tools" Version="2.38.1">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

 <ItemGroup>

 <None Remove="WeatherForecast.proto" />

 </ItemGroup>

 <ItemGroup>

 <Protobuf Include="WeatherForecast.proto" />

 </ItemGroup>

 <ItemGroup>

 <SupportedPlatform Include="browser" />

 </ItemGroup>

</Project>

When you build, the .proto file will generate C# code for the service contract.

Chapter 13 effiCient CommuniCation with grpC

469

 Adding the Service Contract
Update the .proto file as in Listing 13-2. First, we choose the syntax to be proto3 syntax.

Then we tell it which C# namespace we want the generated code to use.

Listing 13-2. The Initial Proto File

syntax = "proto3";

option csharp_namespace = "BlazorWithgRPC.Shared.Protos";

So what should the service contract look like? A service contract consists of at least

one method, a mandatory request message and mandatory response message. When

declaring a contract, you should focus on the messages first, so let us think about the

request message. We don’t have any arguments for the getForecasts method, but we

still need to declare the request message with zero parts as in Listing 13-3. Should we

decide later that we need an extra argument, we can easily add it to this message.

Listing 13-3. Declaring the Request Message

message getForecastsRequest {

}

The response message does contain data: a list of weatherForecast instances. First,

we declare the weatherForecast message as in Listing 13-4. This message has four

fields: the date using the google.protobuf.Timestamp type – kind of like DateTime,

the temperatureC using the int32 type, a summary of string type, and finally the image

which is of bytes type, representing a collection of byte. As you can see, the types used

in the proto IDL kind of match with .NET types (but other language mappings such as

Java exist too).

Listing 13-4. The WeatherForecast Message IDL

message weatherForecast {

 google.protobuf.Timestamp date = 1;

 int32 temperatureC = 2;

 string summary = 3;

 bytes image = 4;

}

Chapter 13 effiCient CommuniCation with grpC

470

To use the google.protobuf.Timestamp type, we do need to import this as in

Listing 13-5.

Listing 13-5. Using the Timestamp Type

import "google/protobuf/timestamp.proto";

As Listing 13-4 illustrates, each field also has a unique number which is used to

identify the field during serialization and deserialization. With JSON and REST, each

field is identified through its name; with Protobuf, the unique number is used which

results in faster and more compact serialization.

The getForecastResponse message from Listing 13-6 is declared as a list of

weatherForecast instances, using the repeated keyword. In C#, this will generate a

Google.Protobuf.Collections.RepeatedField<T> type which implements IList<T>.

Listing 13-6. The getForecastResponse Message

message getForecastsResponse {

 repeated weatherForecast forecasts = 1;

}

Now that we have the request and response message, we can create the service

contract as in Listing 13-7. Here, we define the protoWeatherForecasts service with just

one getForecasts method. Of course, you can add more than one RPC method here.

Listing 13-7. The Service Contract

service protoWeatherForecasts {

 rpc getForecasts(getForecastsRequest) returns (getForecastsResponse);

}

Listing 13-8 contains the whole .proto file just to allow you to check on the order of

each statement.

Listing 13-8. The Whole Proto File

syntax = "proto3";

option csharp_namespace = "BlazorWithgRPC.Shared.Protos";

Chapter 13 effiCient CommuniCation with grpC

471

import "google/protobuf/timestamp.proto";

service protoWeatherForecasts {

 rpc getForecasts(getForecastsRequest) returns (getForecastsResponse);

}

message getForecastsRequest {

}

message getForecastsResponse {

 repeated weatherForecast forecasts = 1;

}

message weatherForecast {

 google.protobuf.Timestamp date = 1;

 int32 temperatureC = 2;

 string summary = 3;

 bytes image = 4;

}

Build the Shared project; this should compile without errors.

If you are interested, you can look at the generated C# code inside the

obj/Debug/net6.0 folder. Look for the protoWeatherForecastsBase and

protoWeatherForecastsClient classes inside the WeatherForecastGrpc.cs file.

 Implementing gRPC on the Server
With the Shared project ready, we can implement the server side of the gRPC service.

Start by adding the following packages to the BlazorWithgRPC.Server project (take the

last stable version for each):

• Grpc.AspNetCore

• Grpc.AspNetCore.Web

Chapter 13 effiCient CommuniCation with grpC

472

 Implementing the Service
Inside the Services folder, add a new WeatherForecastProtoService class as

in Listing 13-9 which inherits from the generated protoWeatherForecasts.

protoWeatherForecastsBase class.

Listing 13-9. The WeatherForecastProtoService Class

using BlazorWithgRPC.Shared.Protos;

namespace BlazorWithgRPC.Server.Services

{

 public class WeatherForecastProtoService

 : protoWeatherForecasts.protoWeatherForecastsBase

 {

 }

}

Our service needs the ImageService through dependency injection, so add a

constructor as in Listing 13-10. We also need some Summaries.

Listing 13-10. Adding Dependencies

public class WeatherForecastProtoService

 : protoWeatherForecasts.protoWeatherForecastsBase

{

 private static readonly string[] Summaries = new[]

 {

 "Freezing", "Cool", "Warm", "Hot", "Sweltering", "Scorching"

 };

 private readonly ImageService imageService;

 public WeatherForecastProtoService(ImageService imageService)

 => this.imageService = imageService;

We also need to implement the service; this is done by overriding the getForecasts

method from the base class as in Listing 13-11. This implementation will generate a

couple of random forecasts.

Chapter 13 effiCient CommuniCation with grpC

473

Listing 13-11. Implementing the getForecasts Service Method

public override Task<getForecastsResponse> getForecasts(

 getForecastsRequest request, ServerCallContext context)

{

 IEnumerable<weatherForecast>? forecasts =

 Enumerable.Range(1, 5).Select(index => new weatherForecast

 {

 Date = Timestamp.FromDateTime(

 DateTime.UtcNow.AddDays(index)),

 TemperatureC = Random.Shared.Next(-20, 55),

 Summary = Summaries[Random.Shared.Next(Summaries.Length)],

 Image = ByteString.CopyFrom(this.imageService.RandomImage())

 });

 var response = new getForecastsResponse();

 response.Forecasts.AddRange(forecasts);

 return Task.FromResult(response);

}

A couple of remarks about this implementation. Protobuf uses the Timestamp type,

so we need to convert our DateTime using the FromDateTime method. The Timestamp

type is provided through the Google.Protobuf.WellKnownTypes namespace from the

Google.Protobuf NuGet package. The Image property is of type ByteString, and we

can use the ByteString.CopyFrom method to convert from a byte[]. The base class’s

getForecasts method is asynchronous, so we need to return the result as a Task using

the Task.FromResult method. In real life, this service would read the data from a

database, so it makes a lot of sense that this method is asynchronous.

 Adding gRPC
With the service implemented, all that rests (some pun here!) is to add gRPC support to

the server. Start by configuring dependency injection as in Listing 13-12.

Chapter 13 effiCient CommuniCation with grpC

474

Listing 13-12. Configuring Dependency Injection in Startup

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllersWithViews();

 services.AddRazorPages();

 services.AddSingleton<ImageService>();

 services.AddGrpc();

}

Then add the gRPC middleware to the Configure method as in Listing 13-13.

Because Blazor uses the JavaScript library for gRPC, we need to use GrpcWeb

implementation instead of regular gRPC. Because gRPC uses the HTTP/2 stack in a

way that is not supported by browsers, we need to use a proxy to take care of the proper

message format, and that is what gRPC Web does. Regular gRPC clients can still talk to

our service, so using gRPC Web does not break regular gRPC.

Listing 13-13. Adding the gRPC Middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 app.UseWebAssemblyDebugging();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseBlazorFrameworkFiles();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseGrpcWeb();

Chapter 13 effiCient CommuniCation with grpC

475

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapGrpcService<WeatherForecastProtoService>()

 .EnableGrpcWeb();

 endpoints.MapRazorPages();

 endpoints.MapControllers();

 endpoints.MapFallbackToFile("index.html");

 });

}

Build the server project.

Think about this. What you had to do was quite simple: inherit from a base class,

override the base method, and use Protobuf types with some conversions. No need to

think about headers, deserialization, etc.

 Building a gRPC Client in Blazor
Now we can add gRPC support to the client project. First, we need to install these

packages (take the last stable version for each):

• Google.Protobuf

• Grpc.Net.Client

• Grpc.Net.Client.Web

• Grpc.Tools

 Creating the ForecastGrpcService
Now add a new class called ForecastGrpcService to the Services folder as in Listing 13-14.

To use gRPC, we first need a GrpcChannel which we request through dependency injection.

Inside the getForecasts method, we create the gRPC protoWeatherForecastsClient

client (generated from the .proto file) passing it the GrpcChannel instance. Then we

create the request message and invoke the getForecastsAsync method. This returns a

getForecastsResponse instance containing a RepeatedField<weatherForecast>. Now we

need to convert these to the regular WeatherForecast instances our FetchData component

uses which we do using a LINQ Select.

Chapter 13 effiCient CommuniCation with grpC

476

Listing 13-14. The ForecastGrpcService Class

using BlazorWithgRPC.Shared;

using BlazorWithgRPC.Shared.Protos;

using Grpc.Net.Client;

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

namespace BlazorWithgRPC.Client.Services

{

 public class ForecastGrpcService

 {

 private readonly GrpcChannel grpcChannel;

 public ForecastGrpcService(GrpcChannel grpcChannel)

 => this.grpcChannel = grpcChannel;

 public async Task<IEnumerable<WeatherForecast>?> GetForecasts()

 {

 var client =

 new protoWeatherForecasts

 .protoWeatherForecastsClient(this.grpcChannel);

 var request = new getForecastsRequest();

 getForecastsResponse? response =

 await client.getForecastsAsync(request);

 return response.Forecasts.Select(f =>

 new WeatherForecast

 {

 Date = f.Date.ToDateTime(),

 TemperatureC = f.TemperatureC,

Chapter 13 effiCient CommuniCation with grpC

477

 Summary = f.Summary,

 Image = f.Image.ToByteArray()

 });

 }

 }

}

 Enabling gRPC on the Client
Now we need to configure dependency injection for the GrpcChannel instance. This

instance requires a URL to talk to the server, and we will put this in configuration. Add

a new appsettings.json file to the client project’s wwwroot folder and complete it as in

Listing 13-15.

Listing 13-15. The GrpcChannel Configuration

{

 "gRPC": {

 "weatherServices": "https://localhost:5001"

 }

}

Now we can read configuration while instructing dependency injection how to create

a valid GrpcChannel as in Listing 13-16. First, we add a scoped ForecastGrpcService.

Then we add a scoped GrpcChannel using a lambda function which reads the

configuration and creates a GrpcChannel using the ForAddress method. Because we are

using gRPC Web, we need to tell the GrpcChannel to use the GrpcWebHandler.

Listing 13-16. Configuring Dependency Injection

builder.Services.AddScoped<ForecastGrpcService>();

builder.Services

 . AddScoped(services =>

 {

 IConfiguration config =

 services.GetRequiredService<IConfiguration>();

 string backEndUrl = config["gRPC:weatherServices"];

Chapter 13 effiCient CommuniCation with grpC

478

 var httpHandler =

 new GrpcWebHandler(GrpcWebMode.GrpcWebText,

 new HttpClientHandler());

 return GrpcChannel.ForAddress(backEndUrl,

 new GrpcChannelOptions { HttpHandler = httpHandler });

 });

 Updating the FetchData Component
One more thing before we can try this. Update the FetchData component to use the

ForecastGrpcService as in Listing 13-17.

Listing 13-17. Updating the FetchData Component

@page "/fetchdata"

@inject ForecastGrpcService forecastService

Build and run. Choose the Fetch data link. You should get forecasts like in

Figure 13-2.

Figure 13-2. Displaying Forecasts

Chapter 13 effiCient CommuniCation with grpC

479

 Comparing REST with gRPC
Let us see how REST compares to gRPC. Let us try REST first, so restore the

WeatherService in the FetchData component as in Listing 13-18.

Listing 13-18. Updating the FetchData Component

@page "/fetchdata"

@inject ForecastService forecastService

In the server project, update the WeatherForecastController as in Listing 13-19 to

return 250 rows instead of 5.

Listing 13-19. Returning 250 Forecasts

[HttpGet]

public IEnumerable<WeatherForecast> Get()

 => Enumerable.Range(1, 250)

 .Select(index => new WeatherForecast

 {

 Date = DateTime.Now.AddDays(index),

 TemperatureC = Random.Shared.Next(-20, 55),

 Summary = Summaries[Random.Shared.Next(Summaries.Length)],

 Image = this.imageService.RandomImage()

 })

.ToArray();

Run the application and open the browser’s debugger on the Network tab. Now

select the Fetch data link. This will make the REST call, and the Network tab should

display the amount of data sent and how long this took. Figure 13-3 displays what I got.

Figure 13-3. Using a REST Call

Chapter 13 effiCient CommuniCation with grpC

480

You can click the request row to see what the serialized data looks like, for example,

Figure 13-4.

Restore Listing 13-17 and update the WeatherForecastProtoService to also return

250 rows as in Listing 13-20.

Listing 13-20. Returning 250 Rows Using gRPC

public override Task<getForecastsResponse> getForecasts(

 getForecastsRequest request, ServerCallContext context)

{

 IEnumerable<weatherForecast>? forecasts =

 Enumerable.Range(1, 250)

 .Select(index => new weatherForecast

 {

 Date = Timestamp.FromDateTime(

 DateTime.UtcNow.AddDays(index)),

 TemperatureC = Random.Shared.Next(-20, 55),

 Summary = Summaries[Random.Shared.Next(Summaries.Length)],

 Image = ByteString.CopyFrom(this.imageService.RandomImage())

 });

 var response = new getForecastsResponse();

 response.Forecasts.AddRange(forecasts);

 return Task.FromResult(response);

}

Run again and use the browser’s debugger to capture the network traffic when

visiting the Fetch data link. Figure 13-5 shows what I got.

Figure 13-4. REST Using JSON

Chapter 13 effiCient CommuniCation with grpC

481

Not the expected result. This is slower!?! Why? Let us look at the response of the

getForecasts request as in Figure 13-6. This is clearly not using binary encoding.

OK. Time to fix this. We need to use gRPC Web with binary encoding. Modify the

client’s program to use GrpcWebMode.GrpcWeb as in Listing 13-21.

Listing 13-21. Using Binary Encoding

builder.Services

 .AddSingleton(services =>

 {

 IConfiguration config =

 services.GetRequiredService<IConfiguration>();

 string backEndUrl = config["gRPC:weatherServices"];

 var httpHandler =

 new GrpcWebHandler(GrpcWebMode.GrpcWeb,

 new HttpClientHandler());

 return GrpcChannel.ForAddress(backEndUrl,

 new GrpcChannelOptions

 {

 HttpHandler = httpHandler,

 MaxReceiveMessageSize = null

 });

 });

Run the application again. Now we can see a nice decrease in network traffic size and

time as in Figure 13-7. Compare this to Figure 13-3.

Figure 13-5. Using gRPC with Text Encoding

Figure 13-6. The Base-64 Encoded Response

Chapter 13 effiCient CommuniCation with grpC

482

We can also see that we are using binary encoding as in Figure 13-8.

 Summary
In this chapter, we looked at using gRPC with Blazor. We started with a discussion what

RPC means and that gRPC is a modern implementation of RPC. We then created our

service contract using a .proto file and generated the code for the messages and service

contract. Implementation of the server is easy because we can derive from the generated

server base class and override the service contract method. Client side allows us to

call the server using again the generated code; we only need to supply the configured

GrpcChannel. We then verified if performance was actually better, and we changed

encoding to use binary encoding getting the promised performance increase.

Figure 13-7. Using gRPC with Binary Encoding

Figure 13-8. The Binary Encoded Response

Chapter 13 effiCient CommuniCation with grpC

483
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_14

CHAPTER 14

Supporting Multiple
Languages in Your Blazor
Application
The Web is a big place. So your Blazor application will probably be used by people who

speak different languages. I live in Belgium, where people speak Dutch, French, and

German, and even if you live in a country where there is one official language, there are

no borders on the Web. So if you want to enlarge your application’s reach and be more

inclusive, you should consider supporting multiple languages. So how do you do this?

 Understanding Internationalization, Globalization,
and Localization
Let us first get a couple of definitions cleared out. Internationalization is the process

of making an application support a range of languages. This means changing your

application to support different languages but also taking into consideration things like

decimal points and data formats. When users enter numbers and dates, you will have

to take special support, for example, giving people a data picker. Internationalization is

often abbreviated as I18n. Expect internalization to take a certain amount of time and

effort. It is actually better to implement this as soon as possible.

After internationalizing your application, you can start localization. Localization is

the process (probably repeated several times) to make the application support a specific

language or locale. Localization is often abbreviated as L10n. The difference between a

language and a locale is the country where a certain language is spoken. For example,

in French as spoken in France, people use “petit déjeuner” to mean breakfast, while in

https://doi.org/10.1007/978-1-4842-7845-1_14#DOI

484

French-speaking Belgium, the same word “déjeuner” is used. You have to take this into

account, because some words have a completely different meaning. Dutch-speaking

people may know what I am talking about!

Globalization, abbreviated as g11n, is the combination of internationalization and

localization.

Note If you have experience with globalization in ASP.NET Core, you will see that
the concepts and implementation are very similar.

 Representing the User’s Locale
In .NET programs, the user’s locale is stored in an instance of the CultureInfo class. You

can create a CultureInfo instance passing the locale string in the constructor. A locale

string uses two lowercase characters to represent the language, a hyphen, and two/three

uppercase characters to represent the country. For example, American English uses

“en- US”, while Canadian English used “en-CA”. You can also create a CultureInfo

instance by just passing the two-character language as a string. CultureInfo has all

kinds of capabilities; for example, you can ask what Monday means in the current locale

or what the decimal separator is.

Create a new console application called UserLocales, and complete it as in Listing 14-1.

Here, we create two CultureInfo instances, one for American English and one for Belgian

Dutch (you can change this to your locale if you like). Then we print the localized name for

Monday and the decimal separator.

Listing 14-1. Using CultureInfo

using System;

using System.Globalization;

namespace UserLocales

{

 internal class Program

 {

 private static void Main(string[] args)

 {

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

485

 var enUS = new CultureInfo("en-US");

 Console.WriteLine(enUS.DateTimeFormat

 .GetDayName(DayOfWeek.Monday));

 Console.WriteLine(enUS.NumberFormat

 .NumberDecimalSeparator);

 var nlBE = new CultureInfo("nl-BE");

 Console.WriteLine(nlBE.DateTimeFormat

 .GetDayName(DayOfWeek.Monday));

 Console.WriteLine(nlBE.NumberFormat

 .NumberDecimalSeparator);

 }

 }

}

The program’s output will look something like the following. It prints out “Monday”

as the name of the English Monday and a “ . ” as the decimal separator. For Belgian

Dutch, it prints “maandag” and a “ , ” as the decimal separator.

Monday

.

maandag

,

Some .NET methods allow you to pass a CultureInfo, especially the DateTime.class’s

ToString method. Update the UserLocales application by adding Listing 14-2 to the end.

This will print out today’s date in Belgian Dutch.

Listing 14-2. Print the Localized Date

Console.WriteLine(DateTime.Now.ToString("D", nlBE));

A lot of people like to use C#’s string interpolation. If you want this to use a certain

locale, you need to set CultureInfo.CurrentCulture to the appropriate CultureInfo as

in Listing 14-3.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

486

Listing 14-3. Using String Interpolation with Another CultureInfo

CultureInfo.CurrentCulture = nlBE;

Console.WriteLine($"{DateTime.Now:D}");

This will again print today’s date as a localized string:

zaterdag 17 juli 2021

You can set the current CultureInfo explicitly, but you can have your Blazor

application automatically detect the user’s language as we will see shortly.

 CurrentCulture vs. CurrentUICulture
You will see that the CultureInfo class has two static properties, CurrentCulture

and CurrentUICulture, to represent the current CultureInfo. What is the difference

between these? The CurrentCulture property is used as the default for formatting

values as we just saw in Listing 14-3. The CurrentUICulture is used by the runtime to

look up the values from resource files which we will discuss in depth when we look at

localization. Most of the time, you will keep both properties set to the same CultureInfo.

But when you want to display numbers and dates in a different language than the UI, you

would set these to different cultures.

 Enabling Multiple Languages
Internationalizing your Blazor application is different between using Blazor

WebAssembly and Blazor Server. Luckily, most concepts stay the same, so we will start

with Blazor Server and continue with Blazor WebAssembly by internationalizing the

PizzaPlace application.

 Using Request Localization
Create a new Blazor Server application and name it L10nBlazorServer.

Open appsettings.json and add the “Cultures” configuration as in Listing 14-4.

These are the languages our application will support. You can of course choose to

hard- code the supported languages in your application, but I like the flexibility of

putting the supported languages in configuration. I have put in this configuration a

series of cultures (some of which are region independent) because some browsers do

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

487

not allow me to set a region for certain languages, and Dutch is one of them. Feel free to

replace these cultures with your own, which will make a lot more sense when you don’t

understand Dutch or French.

Listing 14-4. Configuring the Supported Languages

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "Cultures": {

 "en-US": "English",

 "nl-BE": "Nederlands (BE)",

 "nl": "Nederlands",

 "fr-BE": "Français (BE)",

 "fr": "Francais"

 }

}

Add a new folder called Globalization to your project (next to Pages) and add

the ConfigurationExtensions class to it from Listing 14-5. This class contains a single

GetCulturesSection extension method which will hide how configuration looks like by

creating a Dictionary<string,string>.

Listing 14-5. The ConfigurationExtensions Class

using Microsoft.Extensions.Configuration;

using System.Collections.Generic;

using System.Linq;

namespace L10nBlazorServer.Globalization

{

 public static class ConfigurationExtensions

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

488

 {

 public static Dictionary<string, string> GetCulturesSection

 (this IConfiguration configuration)

 => configuration.GetSection("Cultures")

 .GetChildren()

 .ToDictionary(k => k.Key, v => v.Value);

 }

}

We will use this method in the Startup class to retrieve our configuration

and convert it into a RequestLocalizationOptions. We need this to configure

the request localization middleware which will set the current culture. Add a new

GetLocalizationOptions method from Listing 14-6 to the Startup class. Here, we do a

couple of things. We need to set the supported cultures, and we need to set the culture

which everything will default to in case someone visits with an unsupported culture.

Listing 14-6. Retrieving the RequestLocalizationOptions

private RequestLocalizationOptions GetLocalizationOptions()

{

 // This site gets the list of supported languages

 // from configuration. Open appsettings.json to add more...

 Dictionary<string, string> cultures =

 Configuration.GetCulturesSection();

 string[] supportedCultures =

 cultures.Keys.ToArray();

 RequestLocalizationOptions localizationOptions =

 new RequestLocalizationOptions()

 .SetDefaultCulture(supportedCultures[0])

 .AddSupportedCultures(supportedCultures)

 .AddSupportedUICultures(supportedCultures);

 localizationOptions.RequestCultureProviders.Clear();

 localizationOptions.RequestCultureProviders

 .Add(new AcceptLanguageHeaderRequestCultureProvider());

 return localizationOptions;

}

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

489

How does our Blazor Server application determine what language the user speaks?

We could ask the user what language they prefer upon first use, use a cookie, or use

the query string, or we could use the IP address to figure out the country the user is

visiting our site from. There is a better option in my humble opinion. Most people use a

localized version of Windows. I cannot imagine my parents using an English Windows;

no, they use a Dutch Windows. Same thing for the browser. Browsers actually send the

language of the browser to the server using the Accept-Language header. For example,

when I start the Blazor Server application and the browser opens the page, I can use the

browser’s debugger to look at this header, which displays on my machine as

accept-language:

en-US,en;q=0.9,nl-BE;q=0.8,nl;q=0.7,fr-BE;q=0.6,fr;q=0.5

I prefer English (I am a developer), and I configured my browser to also support

Dutch and French because I am from Belgium, so this header lists these locales in order of

preference. This means we can simply look at this header to figure out the user’s preferred

language. And in .NET, there is the request localization middleware that does exactly this!

To choose the Accept-Language header for localization, we need to configure

the RequestCultureProviders. Initially, there will be three configured providers,

one using the query string from the URL, one using cookies, and one using

the Accept-Language header. As shown at the end of Listing 14-6, since we

only want to use the last, we clear the list of providers and add the required

AcceptLanguageHeaderRequestCultureProvider provider.

Open the Startup class, and update the ConfigureServices method by adding the

services.AddLocalization method call as in Listing 14-7.

Listing 14-7. Enabling Request Localization

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

 services.AddLocalization();

}

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

490

Now add the request localization middleware to your ASP.NET pipeline by calling

the UseRequestLocalization method in the Configure method as in Listing 14-8. This

method requires a RequestLocalizationOptions instance which we retrieve from

configuration (containing the list of supported cultures).

Listing 14-8. Enable the Request Localization Middleware

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 // This middleware uses a couple of approaches to determine

 // the language used. More in documentation.

 app.UseRequestLocalization(GetLocalizationOptions());

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapBlazorHub();

 endpoints.MapFallbackToPage("/_Host");

 });

}

Time to see if all of this works. Open the Index.razor page and update it to display the

current culture as in Listing 14-9.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

491

Listing 14-9. Displaying the Current Culture

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

Current culture : @CultureInfo.CurrentCulture.Name

<SurveyPrompt Title="How is Blazor working for you?" />

Running this should show the current culture as in Figure 14-1. Of course, depending

on your browser’s settings, the culture might be different.

When I want to test my application’s localization, I change the Accept-Language

header from the browser. I want to show you how to do this using Edge; other browsers

like Chrome and Firefox have similar settings.

Open Settings and search for the Languages tab. You can add additional languages

by clicking the Add languages button, and you can reorder the languages using the

ellipsis (…) buttons as in Figure 14-2.

Figure 14-1. Testing Request Localization

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

492

 Internationalizing Your App
Now that we have the proper CultureInfo in place, we can start to internationalize

our application. You should start examining each Blazor component and determine

which output might vary by language; this means strings, numbers, and dates.

Generally, numbers and dates will automatically format correctly when you use APIs

such as string interpolation that uses the CurrentCulture. But what about strings? In

this case, we need to replace these with a call to the IStringLocalizer<T> interface’s

GetString method.

Start by adding the Microsoft.Extensions.Localization namespace to

your _Imports.razor file as shown in Listing 14-10.

Listing 14-10. Enabling the Microsoft.Extensions.Localization Namespace

@using System.Net.Http

@using Microsoft.AspNetCore.Authorization

@using Microsoft.AspNetCore.Components.Authorization

@using Microsoft.AspNetCore.Components.Forms

@using Microsoft.AspNetCore.Components.Routing

@using Microsoft.AspNetCore.Components.Web

@using Microsoft.AspNetCore.Components.Web.Virtualization

@using Microsoft.JSInterop

Figure 14-2. Changing the Preferred Languages in Edge

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

493

@using L10nBlazorServer

@using L10nBlazorServer.Shared

@using System.Globalization

@using Microsoft.Extensions.Localization

Now update the Index.razor file as in Listing 14-11. As you can see, we use

dependency injection to get an instance for the IStringLocalizer<Index> interface,

and then we call the localizer.GetString method, passing the string we want to

localize. You can also use the indexer property of this interface instead of GetString.

Both work the same way, so the choice is a matter of taste.

Listing 14-11. Using the IStringLocalizer<T> Interface

@page "/"

@inject IStringLocalizer<Index> localizer

<h1>@localizer.GetString("Hello, world!")</h1>

<p>@localizer["Welcome to your new app."]</p>

<p>@localizer["Current culture :"] @CultureInfo.CurrentCulture.Name</p>

<p>Pi = @Math.PI</p>

<p>@localizer["Today's date is"] @DateTime.Now.ToLongDateString()</p>

<SurveyPrompt Title="@localizer["How is Blazor working for you?"]" />

The IStringLocalizer<T> interface allows you to internationalize your application

without any translation effort on your parts. Hey, you are still busy developing things, so

putting effort in translations is way too early. This interface will simply return the string

passed as an argument when there is no translation available yet!

Running an application will render as in Figure 14-3. Again, this might vary

depending on the culture you use. Both PI and today’s date are rendered according to

the CultureInfo.CurrentCulture, and the strings returned are the strings we passed to

the localizer since we still have to localize these.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

494

 Localizing Your App
The IStringLocalizer<T> interface will try to find a localized version of each string by

searching the resources for that component. Resources are stored in a .resx file, and if

you have localized other applications, this will be familiar because Blazor uses the same

mechanism used in .NET.

 Adding Your First Resource File
Right-click the Pages folder and select Add ➤ New Item…. Search for the Resources File

item as in Figure 14-4. Fill in Index.nl-BE.resx as the name (you might want to replace

nl-BE with your locale) and click Add.

Figure 14-3. The Index Component with the nl-BE Culture

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

495

This will open the resource editor. Now copy each string from the localizer as the

key, and translate it into the locale as in Figure 14-5. The comment is used to give more

meaning to the translator, which is real life is probably not you.

Figure 14-4. Add a New Resource

Figure 14-5. The Localized Resource for nl-BE

Tip Modern Windows allows you to copy a series of strings which it puts on a
clipboard ring. You can then paste items from this clipboard ring using Windows
key-V, instead of Ctrl-V.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

496

Running the application (keep going even if this does not work; there is more)

should now render as Figure 14-6.

 Localizing SurveyPrompt
Why does the survey from Figure 14-6 still contain English? Because this is a different

component of course! You should also internationalize and then localize this component

too! However, the SurveyPrompt brings some challenges: It uses a couple of strings to

build the prompt. Do not be tempted to internationalize each string individually because

the structure of sentences (grammar) is different for different languages, and you don’t

want to end up using Yoda (assuming you know Star Wars here) sentences!

First, we need to update the SurveyPrompt component as in Listing 14-12. Instead

of using two string segments with an anchor in the middle, we should use a single string

with a placeholder for the anchor. That is why we use a Prompt property, which will use

string.Format to place the anchor somewhere as our translation will require. And the

anchor also contains some text, so we should also internationalize the anchor, again

using the same technique.

One other important thing. The Prompt property cannot return a string, because

Blazor will HTML encode this string, replacing characters like “<” with “<”. With ASP.

NET, you could use Html.Raw, but Blazor uses the MarkupString type to indicate that

no HTML encoding is required. Bypassing HTML encoding is dangerous, so only use it

where you are sure what the output will be like; otherwise, you may open your site for

hacks like cross-site scripting!

Figure 14-6. The Localized Index Page

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

497

Listing 14-12. The Internationalized SurveyPrompt

@inject IStringLocalizer<SurveyPrompt> localizer

<div class="alert alert-secondary mt-4">

 @Title

 @Prompt

</div>

@code {

 // Demonstrates how a parent component can supply parameters

 [Parameter]

 public string Title { get; set; }

 private const string anchor =

 "<a target=\"_blank\" class=\"font-weight-bold\" href=\"https://

go.microsoft.com/fwlink/?linkid=2149017\">{0}";

 private string Anchor

 => string.Format(anchor, localizer["brief survey"]);

 private MarkupString Prompt

 => (MarkupString)string.Format(

 localizer["Please take our {0} and tell us what you think."],

 Anchor

);

}

Add the SurveyPrompt.nl-BE.resx resource file (or use your own locale) to the Shared

folder, and complete it as in Figure 14-7.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

498

Running the application should now give you a completely localized Index

component. The other components are left as an exercise because this is just repeating

what we have learned.

 Understanding Resource Lookup
When I run the application in Edge, everything looks fine, but when I open this with

Firefox, I still get English! Why? Because Firefox does not support my locale – it only

supports Dutch, not Belgian Dutch. So the Accept-Language header contains the

following contents:

Accept-Language nl,en-US;q=0.7,en;q=0.3

This means that the Dutch CultureInfo instance will be installed for this browser, and

Blazor will not find my nl-BE resource. What happens when the IStringLocalizer<Index>

searches for localized content? It will start with the CurrentUICulture and look for a

resource for it, so when the current culture is nl-BE, it will find the Index.nl-BE.resx

resource. But now the culture is just nl, and I don’t have a resource file for that! Let us

fix this. Copy the Index.nl-BE.resx file and rename it to Index.nl.resx. When I run the

application, it displays Dutch again. So did we fix it? Yes, but at a price. Now we have

two copies of each string in our application; what a waste! Twice as much to maintain…

Is there a way to reuse the nl.resx file for the nl-BE locale? Yes! IStringLocalizer<Index>

uses a resource lookup mechanism that will first search the nl-BE.resx file, and if it

cannot find it, it will look for the language resource file, this time nl.resx. And if it cannot

find it there, it will look for a .resx file. This means that we can remove any duplicates

from the more specific nl-BE resource file. Remove all strings except the “Hello World!”

key as in Figure 14-8. Why? As it turns out this greeting is different for people living in the

Netherlands and this is the Dutch localization for Belgium.

Figure 14-7. Localizing the SurveyPrompt Component

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

499

Update the nl resource file as in Figure 14-9 (the “Hello World!” key).

Running the app in Edge will now give me the Belgian greeting, and running it in

Firefox will give me the greeting for the Netherlands. Mission accomplished!

 Adding a Language Picker in Blazor Server
Many professional applications allow the user to pick the language for the UI in case the

Accept-Language header is wrong, so let us do that. Of course, we will also need a way

for the browser to remember that choice, and since all our logic is running on the server

(we are still discussing Blazor Server), we will use a cookie to store the culture. This

requires us to add another localization provider: the CookieRequestCultureProvider.

Open the Startup class and add this provider with code from Listing 14-13.

Listing 14-13. Adding the CookieRequestCultureProvider

private RequestLocalizationOptions GetLocalizationOptions()

{

 // This site gets the list of supported languages

 // from configuration. Open appsettings.json to add more...

Figure 14-8. The nl-BE Resource File

Figure 14-9. The nl Resource File

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

500

 Dictionary<string, string> cultures =

 Configuration.GetCulturesSection();

 string[] supportedCultures =

 cultures.Keys.ToArray();

 RequestLocalizationOptions localizationOptions =

 new RequestLocalizationOptions()

 .SetDefaultCulture(supportedCultures[0])

 .AddSupportedCultures(supportedCultures)

 .AddSupportedUICultures(supportedCultures);

 localizationOptions.RequestCultureProviders.Clear();

 localizationOptions.RequestCultureProviders

 .Add(new CookieRequestCultureProvider());

 localizationOptions.RequestCultureProviders

 .Add(new AcceptLanguageHeaderRequestCultureProvider());

 return localizationOptions;

}

Now add a new Blazor component called LanguagePicker with markup from

Listing 14-14 to the Shared folder. This will show a drop-down with the different

available locales which we will read from configuration.

Listing 14-14. The LanguagePicker Component’s Markup

@if (cultures != null)

{

 <form class="form-inline">

 <select class="form-control mr-2" @bind="selectedCulture">

 <option>@Localizer.GetString("Select...")</option>

 @foreach(var culture in cultures)

 {

 <option value="@culture.Key">@culture.Value</option>

 }

 </select>

 <button class="btn btn-outline-primary"

 @onclick="RequestCultureChange">

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

501

 @Localizer.GetString("Change")

 </button>

 </form>

}

Also add a new LanguagePicker class as code-beside as in Listing 14-15. This will

read the cultures from Configuration in the OnInitialized method and redirects to a

CultureController when the user clicks the button, passing the component’s URI to it.

Listing 14-15. The LanguagePicker Class

using L10nBlazorServer.Globalization;

using Microsoft.AspNetCore.Components;

using Microsoft.Extensions.Configuration;

using Microsoft.Extensions.Localization;

using System;

using System.Collections.Generic;

using System.Globalization;

namespace L10nBlazorServer.Shared

{

 public partial class LanguagePicker

 {

 [Inject]

 public IConfiguration Configuration

 { get; set; }

 [Inject]

 public IStringLocalizer<LanguagePicker> Localizer

 { get; set; }

 [Inject]

 public NavigationManager NavigationManager

 { get; set; }

 private string selectedCulture =

 CultureInfo.CurrentUICulture.Name;

 private Dictionary<string, string> cultures;

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

502

 protected override void OnInitialized()

 => this.cultures = Configuration.GetCulturesSection();

 // Navigate to the CultureController,

 // passing new culture and redirecturi back to this page

 private void RequestCultureChange()

 {

 if (string.IsNullOrWhiteSpace(this.selectedCulture))

 {

 return;

 }

 string uri = new Uri(NavigationManager.Uri)

 .GetComponents(UriComponents.PathAndQuery,

 UriFormat.Unescaped);

 string query = $"?culture={Uri.EscapeDataString(this.

selectedCulture)}

 &redirectUri={Uri.EscapeDataString(uri)}";

 NavigationManager

 .NavigateTo($"/Culture/SetCulture/{query}",

 forceLoad: true);

 }

 }

}

Now add a new Controllers folder to your project and inside it add the

CultureController class from Listing 14-16 to it. This controller will set

the cookie holding the selected culture, which gets picked up again by the

CookieRequestCultureProvider and which will set the CurrentCulture and

CurrentUICulture.

Listing 14-16. The CultureController Class

using Microsoft.AspNetCore.Localization;

using Microsoft.AspNetCore.Mvc;

namespace L10nBlazorServer.Controllers

{

 public class CultureController : Controller

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

503

 {

 // This action sets the culture cookie used by the

 // UseRequestLocalization middleware

 [HttpGet("/Culture/SetCulture")]

 public IActionResult SetCulture(string culture, string redirectUri)

 {

 if (culture != null)

 {

 HttpContext

 .Response

 .Cookies

 .Append(CookieRequestCultureProvider.DefaultCookieName,

 CookieRequestCultureProvider.MakeCookieValue(

 new RequestCulture(culture)));

 }

 return LocalRedirect(redirectUri);

 }

 }

}

Our Blazor project does not support controllers yet, so update Startup’s

ConfigureServices method as in Listing 14-17 and the Configure method as in

Listing 14-18.

Listing 14-17. Enabling Support for Controllers

public void ConfigureServices(IServiceCollection services)

{

 services.AddRazorPages();

 services.AddServerSideBlazor();

 services.AddSingleton<WeatherForecastService>();

 services.AddLocalization();

 services.AddControllers();

}

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

504

Listing 14-18. Adding Endpoint Routing for Controllers

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

{

 ...

 app.UseRouting();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapControllers();

 endpoints.MapBlazorHub();

 endpoints.MapFallbackToPage("/_Host");

 });

}

To complete the application, we need to add the LanguagePicker to our layout page,

so update MainLayout as in Listing 14-19.

Listing 14-19. Adding the LanguagePicker to the Layout Page

@inherits LayoutComponentBase

@inject IStringLocalizer<MainLayout> Localizer

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <main>

 <div class="top-row px-4">

 @Localizer.GetString

("SiteLanguage")

 <LanguagePicker />

About

 </div>

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

505

 <article class="content px-4">

 @Body

 </article>

 </main>

</div>

Both LanguagePicker and MainLayout use an IStringLocalizer, so we need to add

resource files for both of them. Add a new resource file called MainLayout.nl.resx with

contents matching Figure 14-10. Or even better, use your own language (except when

you are English speaking 😊).

And another resource called LanguagePicker.nl.resx as in Figure 14-11.

Run the application. The user can now select their preferred language from the

drop- down as in Figure 14-12. When the user clicks the change button, the page will

reload with the new language in place. And when they revisit the page, this choice will

remain as long as the user does not clear the cookies. Our application now works in

English and Dutch, and to support French, we need to provide additional resource files,

for example, Index.fr.resx and Index.fr-BE.resx.

Figure 14-10. The MainLayout Resource

Figure 14-11. The LanguagePicker Resource

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

506

 Making PizzaPlace International
Now it is time to look at Blazor WebAssembly. Most of the things we have seen will

still work, but we do need to change our approach. For example, we can read the

CultureInfo directly from the browser, and this is actually automatically done by the

Blazor runtime.

This chapter’s accompanying code contains a starter solution, but you can continue

if you want with the solution you got at the end of Chapter 10.

 Enabling Globalization Data
To keep things small during the initial loading of your application, Blazor does not

fully support globalization. But with a globalized application, we need these additional

resources. Please add the BlazorWebAssemblyLoadAllGlobalizationData element from

Listing 14-20 to the client project.

Note Be careful to place everything in the BlazorWebAssemblyLoadAll
GlobalizationData element on one single line; otherwise, you will receive
compile errors (own experience).

Figure 14-12. The LanguagePicker in Action

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

507

Listing 14-20. Enabling Globalization Data

<PropertyGroup>

 <BlazorWebAssemblyLoadAllGlobalizationData>True</BlazorWebAssemblyLoad

AllGlobalizationData>

</PropertyGroup>

You also need to add the Microsoft.Extensions.Localization package to the

client project. This adds about 0.2 MB to the initial download.

 Globalizing Your Components
Let us examine each PizzaPlace component and see if it needs globalization. Start with

the PizzaItem component as repeated in Listing 14-21. This component has no strings,

so we don’t need to add the IStringLocalizer<T> interface. And the price for the pizza

will automatically be localized by the runtime.

Listing 14-21. The PizzaItem Component

<div class="row">

 <div class="col">

 @if (ShowPizzaInformation is not null)

 {

 <a href=""

 @onclick="@(() => ShowPizzaInformation?.Invoke(Pizza))">

 @Pizza.Name

 }

 else

 {

 @Pizza.Name

 }

 </div>

 <div class="col text-right">

 @($"{Pizza.Price:0.00}")

 </div>

 <div class="col"></div>

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

508

 <div class="col">

 <img src="@SpicinessImage(Pizza.Spiciness)"

 alt="@Pizza.Spiciness" />

 </div>

 <div class="col">

 <button class="@ButtonClass"

 @onclick="@(() => Selected.InvokeAsync(Pizza))">

 @ButtonTitle

 </button>

 </div>

</div>

The ItemList templated component from Listing 14-22 also does not have any

localization needs.

Listing 14-22. The ItemList Component

@typeparam TItem

@if (Header is not null)

{

 @Header

}

@foreach (TItem item in Items)

{

 @RowTemplate(item)

}

@if (Footer is not null)

{

 @Footer

}

The ItemList component from Listing 14-23 does show a loading UI which we can

localize.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

509

Listing 14-23. The PizzaList Component

<ItemList Items="@Items">

 <Loading>

 <div class="spinner-border text-danger" role="status">

 Loading...

 </div>

 </Loading>

 <Header>

 <h1>@Title</h1>

 </Header>

 <RowTemplate Context="pizza">

 <PizzaItem Pizza="@pizza"

 ButtonClass="@ButtonClass"

 ButtonTitle="@ButtonTitle"

 Selected="@Selected"

 ShowPizzaInformation="@ShowPizzaInformation"/>

 </RowTemplate>

</ItemList>

First, add the Microsoft.Extensions.Localization namespace to your _Imports.

razor file as in Listing 14-24. This way, we don’t have to place a @using statement for

each localized component.

Listing 14-24. Updating _Imports.razor

@using Microsoft.Extensions.Localization

Add an IStringLocalizer<PizzaList> and use it in the loading UI, as in

Listing 14-25.

Listing 14-25. Internationalizing the PizzaList Component

@inject IStringLocalizer<PizzaList> localizer

<ItemList Items="@Items">

 <Loading>

 <div class="spinner-border text-danger" role="status">

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

510

 @localizer["Loading..."]

 </div>

 </Loading>

Add a new resource file PizzaList.nl.resx next in the same folder as the PizzaList

component with contents from Figure 14-13. This resource file here is provided as an

example; feel free to replace this with a language you know.

We should configure dependency injection to provide the IStringLocalizer<T>

instances, so add the last line of Listing 14-26 to Program.cs.

Listing 14-26. Configure Dependency Injection

builder.Services.AddTransient<IMenuService, MenuService>();

builder.Services.AddTransient<IOrderService, OrderService>();

builder.Services.AddSingleton<State>();

builder.Services.AddLocalization();

Next is the ShoppingBasket component. Update this component as in Listing 14-27.

Listing 14-27. The ShoppingBasket Component

@inject IStringLocalizer<ShoppingBasket> localizer

@if (Pizzas.Any())

{

 <ItemList Items="@Pizzas">

 <Header>

 <h1>@localizer["Your current order"]</h1>

 </Header>

Figure 14-13. The PizzaList Resource

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

511

 <RowTemplate Context="tuple">

 <PizzaItem Pizza="@tuple.pizza"

 ButtonClass="btn btn-danger"

 ButtonTitle="@localizer["Remove"]"

 Selected="@(() => Selected.InvokeAsync(tuple.pos))" />

 </RowTemplate>

 <Footer>

 <div class="row">

 <div class="col"></div>

 <div class="col"><hr /></div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

 <div class="row">

 <div class="col"> @localizer["Total"]:</div>

 <div class="col text-right font-weight-bold">

 @($"{TotalPrice:0.00}")

 </div>

 <div class="col"> </div>

 <div class="col"> </div>

 <div class="col"> </div>

 </div>

 </Footer>

 </ItemList>

}

Add a new ShoppingBasket.nl.resx resource file and update as in Figure 14-14.

Figure 14-14. The ShoppingBasket Resource

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

512

For the other components, you are on your own. Update the three labels in the

CustomerEntry component to use the localizer and build a resource file for these. The

Index component has a couple of titles in it, so replace this with the localizer. Again,

provide a resource file.

You should be ready to run the application, but first ensure your browser has been

set to the language you have been using for the resource files before running. Your

PizzaPlace should now support another language!

 Adding a Language Picker in Blazor WebAssembly
Just like in the “Enabling Globalization Data” section, we will add a language picker so

users can select the language they prefer. Except now we will not use a cookie to store the

user’s choice. Instead, we will store it in local storage.

Let us start with configuration. With Blazor WebAssembly, we need to store our

client-side configuration in the wwwroot folder, so add new App Settings file to the

wwwroot folder and complete it as in Listing 14-28.

Listing 14-28. The appsettings.json File

{

 "Cultures": {

 "en-US": "English",

 "nl-BE": "Nederlands (BE)",

 "nl": "Nederlands",

 "fr-BE": "Francais (BE)",

 "fr": "Francais"

 }

}

Add a new class called ConfigurationExtensions to the client project as in

Listing 14-29. Yes, this is the same class we use in the Blazor Server project!

Listing 14-29. The ConfigurationExtensions Class

using Microsoft.Extensions.Configuration;

using System.Collections.Generic;

using System.Linq;

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

513

namespace PizzaPlace.Client

{

 public static class ConfigurationExtensions

 {

 public static Dictionary<string, string> GetCulturesSection(

 this IConfiguration configuration)

 => configuration.GetSection("Cultures")

 .GetChildren()

 .ToDictionary(k => k.Key, v => v.Value);

 }

}

We will store the user’s choice in local storage, so add the script element from

Listing 14-30 to the bottom of index.html.

Listing 14-30. Storing the CultureInfo in localStorage

<script>

 window.blazorCulture = {

 get: () => localStorage['BlazorCulture'],

 set: (value) => localStorage['BlazorCulture'] = value

 };

</script>

When the PizzaPlace application starts, we will attempt to read the culture from local

storage, so add a new class called WebAssemblyHostExtension from Listing 14-31.

Listing 14-31. Reading the Culture from Local Storage

using Microsoft.AspNetCore.Components.WebAssembly.Hosting;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.JSInterop;

using System.Globalization;

using System.Threading.Tasks;

namespace PizzaPlace.Client

{

 public static class WebAssemblyHostExtension

 {

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

514

 public static async Task SetDefaultCulture(this WebAssemblyHost host)

 {

 IJSRuntime? jsInterop =

 host.Services.GetRequiredService<IJSRuntime>();

 string? result =

 await jsInterop.InvokeAsync<string>("blazorCulture.get");

 CultureInfo culture;

 if (result != null)

 {

 culture = new CultureInfo(result);

 CultureInfo.DefaultThreadCurrentCulture = culture;

 CultureInfo.DefaultThreadCurrentUICulture = culture;

 }

 }

 }

}

We now need to update our Program class to use this extension method when the

application starts, so replace the last line in Program.cs with Listing 14-32.

Listing 14-32. Modifying Program

WebAssemblyHost? host = builder.Build();

await host.SetDefaultCulture();

await host.RunAsync();

Now we are ready to create the LanguagePicker component. Add a new component

called LanguagePicker with markup from Listing 14-33 and code-beside class from

Listing 14-34. This will display a drop-down for the language, and when the user changes

the selected language, we update local storage and install the correct culture. Then we

use the NavigationManager to reload the page, which is necessary to update the page

with the correct resource.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

515

Listing 14-33. The LanguagePicker Component’s Markup

@if (cultures != null)

{

 <form class="form-inline">

 <select class="form-control mr-2" @bind="Culture">

 @foreach (var culture in cultures)

 {

 <option value="@culture.Key">@culture.Value</option>

 }

 </select>

 </form>

}

Listing 14-34. The LanguagePicker Class

using Microsoft.AspNetCore.Components;

using Microsoft.Extensions.Configuration;

using Microsoft.JSInterop;

using System.Collections.Generic;

using System.Globalization;

namespace PizzaPlace.Client.Shared

{

 public partial class LanguagePicker

 {

 [Inject]

 public NavigationManager NavManager { get; set; } = default!;

 [Inject]

 public IJSRuntime JSRuntime { get; set; } = default!;

 [Inject]

 public IConfiguration Configuration { get; set; } = default!;

 private Dictionary<string, string>? cultures;

 protected override void OnInitialized()

 => this.cultures = Configuration.GetCulturesSection();

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

516

 private string Culture

 {

 get => CultureInfo.CurrentCulture.Name;

 set

 {

 if (Culture != value)

 {

 var js = (IJSInProcessRuntime)JSRuntime;

 js.InvokeVoid("blazorCulture.set", value);

 var culture = new CultureInfo(value);

 CultureInfo.DefaultThreadCurrentCulture = culture;

 CultureInfo.DefaultThreadCurrentUICulture = culture;

 // Force the page to reload

 NavManager.NavigateTo(NavManager.Uri, forceLoad: true);

 }

 }

 }

 }

}

To complete the application, we need to use the LanguagePicker in the MainLayout

component. So update the MainLayout component from Listing 14-35.

Listing 14-35. The MainLayout Component

@inherits LayoutComponentBase

@inject IStringLocalizer<MainLayout> Localizer

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <div class="main">

 <div class="top-row px-4">

 @Localizer["Language"]

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

517

 <LanguagePicker />

 @Localizer["About"]

 </div>

 <div class="content px-4">

 @Body

 </div>

 </div>

</div>

Finally, we need to add a MainLayout.nl.resx file as in Figure 14-15.

You should now be able to run the PizzaPlace application and pick the language

from the LanguagePicker. Switch between US English and a language you provided the

resources for. In Figure 14-16, I switched to Belgian Dutch (Nederlands). The drop-down

menu also allows you to select French, but until we provide the proper resources for this

language, it will display the default which is English.

Figure 14-15. The MainLayout Resource

Figure 14-16. Running the PizzaPlace Application in Dutch

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

518

 Using Global Resources
You might have noticed something: can we reuse resources? Both Index and PizzaList

components need a resource for the loading UI. Could we put this somewhere as a

common resource? Yes, we can!

The IStringLocalizer<T> interface will look up resources for a certain type;

whether this is a component or a simple class does not differ its behavior. So add

a new folder to the PizzaPlace client project called Resources, and add a new class

called CommonResources. Leave this class as it is and now add a new resource file called

CommonResources.nl.resx. Put the common resources in this file, and now update

the PizzaList component to use another IStringLocalizer<CommonResources> as

in Listing 14-36. Now you can use the same type for other components that need a

common resource.

Listing 14-36. The PizzaList Component Using Common Resources

@inject IStringLocalizer<PizzaList> localizer

@inject IStringLocalizer<Resources.CommonResources> commonLocalizer

<ItemList Items="@Items">

 <Loading>

 <div class="spinner-border text-danger" role="status">

 @commonLocalizer["Loading"]

 </div>

 </Loading>

 <Header>

 <h1>@Title</h1>

 </Header>

 <RowTemplate Context="pizza">

 <PizzaItem Pizza="@pizza"

 ButtonClass="@ButtonClass"

 ButtonTitle="@ButtonTitle"

 Selected="@Selected"

 ShowPizzaInformation="@ShowPizzaInformation"/>

 </RowTemplate>

</ItemList>

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

519

 Summary
In this chapter, we reviewed terms like internationalization (I18n) and localization (L10n).

Then we looked at internationalizing a Blazor Server application using the

IStringLocalizer<T> interface, and we added the proper resource files (.resx) to

localize this application to another language. After this, we proceeded to support

multiple languages for our PizzaPlace application, and we built a LanguagePicker so

users can choose the language from a menu. We also looked at using the same resources

in multiple components.

ChAPTEr 14 SuPPorTINg MulTIPlE lANguAgES IN Your BlAzor APPlICATIoN

521
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_15

CHAPTER 15

Deploying Your Blazor
Application
At a certain point in time, your Blazor application will be ready for the big public. Yeah!

But the work is not yet done. We need to take our application and copy it to a server

connected to the network so other people can use their browser to admire your work! Let

us look at how we can deploy our Blazor application.

 Deploying Standalone Blazor WebAssembly
When your Blazor application does not require any server support, you can host the

application just like any other static website. In this case, the host just needs to serve the

files to the browser since everything is executed on the browser.

 Hosting on GitHub
GitHub is a free service that allows you to collaborate with others on a development

project. It has support for git source control, builds automation, and allows you to host

static websites, all free of charge.

Note If you are not familiar with git source control, there is an excellent book
available for free digitally at https://git- scm.com/book/en/v2.

Here, we will host our Blazor application on GitHub, and the process is similar for

other static hosting platforms. There are many other excellent hosting solutions out

there, but I had to pick one, and GitHub is widely known in the developer community.

https://doi.org/10.1007/978-1-4842-7845-1_15#DOI
https://git-scm.com/book/en/v2

522

Using GitHub requires some knowledge about git. If all of this is familiar, great. If not,

the walk-through gives you the git commands you need to execute.

If you don’t have a GitHub account, you will need to create one on https://github.com/.

Because modern websites have the tendency to change how they look, I won’t be using

screenshots here, but the process should explain itself.

Once you have an account, you should create an organization at https://github.

com/settings/organizations. GitHub allows you to have multiple organizations, and

each can host a static website. Select a unique name for your organization; here, I will

use the MicrosoftBlazorBook organization. After creating the organization, select it.

Your browser will show the organization’s page, for example, https://github.com/

MicrosoftBlazorBook.

Here, you can find a list of repositories. A repository will host all your sources and

their history as you make changes to files using git source control. Since you just created

the organization, you will have to create a new repository. Click the New button; give

your repository a nice name and description. You should also choose if you want the

repository to be public (anyone can see your code) or private. The deployment process is

the same for either, so pick one. Complete creating the repository, but don’t add any files

like README.

After completion, GitHub will show you a page that displays the command-line

commands you can use to create the repository locally.

Note I will be using Windows Terminal here, which has built-in support for
PowerShell commands. All commands should work well with Linux and OSX
command line.

On your local machine, create a folder where you want your project to go, open a

command line on that folder, and execute the commands shown in GitHub there (just

use copy-paste). For example, my organization is called MicrosoftBlazorBook and the

repository is StandAloneWASM:

echo "# StandAloneWASM" >> README.md

git init

git add README.md

git commit -m "first commit"

git branch -M main

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://github.com/
https://github.com/settings/organizations
https://github.com/settings/organizations
https://github.com/MicrosoftBlazorBook
https://github.com/MicrosoftBlazorBook

523

git remote add origin https://github.com/MicrosoftBlazorBook/

StandAloneWASM.git

git push -u origin main

First, this will create a README.md file in the current folder, and then this will

create a git repository in the current folder. Next, this adds the README.md file to the

repository, creates a new commit with a comment, and finally pushes the repository to

the GitHub server. Now we are ready to deploy a static website.

 Creating a Simple Website
Add a new index.html file in your folder with some simple content like Listing 15-1.

Listing 15-1. A Basic HTML File

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 <h1>Hello world!</h1>

</body>

</html>

Since we made a change to your site, we will upload these changes into GitHub using

git in the command line.

First, you need to add the modifications to git by executing the git add . command.

Don’t forget the . which will make git add all changes in the current folder and

subfolders to the commit when we create it, so make sure you are in the project’s folder

where the README.md file is.

git add .

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

524

Now we need to take all these changes and group them into a commit with

git commit -m "Step 1"

A git commit is all the changes grouped with meta-data, including a mandatory

message which we set using the -m parameter. And finally, we can send our changes to

the GitHub repository using

git push

When you refresh the GitHub repository page, you should see index.html.

 Deploying a Simple Site in GitHub
To host your simple website in GitHub, we need to select a specific branch it should

host. Think of a branch like a separate copy of your files with its own history. Branches

are normally used so developers can work on new features without bothering other

developers. When the feature is complete, we can take the changes and apply it to the

main branch where everyone will merge their changes. You can select the branch using

the https://github.com/MicrosoftBlazorBook/StandAloneWASM/settings/pages

page, but there is another way. If the branch is named gh-pages, then GitHub picks that

branch automatically. Run the following commands to create a gh-pages branch locally,

choose the gh-pages as the current branch using the checkout command, and push it to

the GitHub repository on the server:

git branch gh-pages

git checkout gh-pages

git push --set-upstream origin gh-pages

After executing these commands, the deployment process will start, and by

refreshing the pages page (the preceding URL), you can see the status. Refresh until

GitHub tells you it is ready.

Click the link (e.g., https://microsoftblazorbook.github.io/StandAloneWASM/),

and you should see your static website in action!

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://github.com/MicrosoftBlazorBook/StandAloneWASM/settings/pages
https://microsoftblazorbook.github.io/StandAloneWASM/

525

 Deploying a Blazor WASM Project
Let us create and deploy a standalone Blazor WASM project now. First, we need to use

the main branch:

git checkout main

Using the command line, create a new Blazor WASM project:

dotnet new blazorwasm

When we compile our Blazor project, two new folders will be created: obj and bin.

We don’t need to keep these folders in source control, and an easy way to do this is by

telling git to ignore these. Since this is a common scenario, we can use

dotnet new gitignore

Finally, we don’t need the index.html file from the previous part:

rm index.html

Now we can commit all our changes to GitHub with

git add .

git commit -m "Step 2"

git push

Now we are ready to publish our project. We will tell dotnet to create a release

version using the -c option and put it into a release folder using the -o option.

Publishing will optimize our Blazor WASM project by removing all unneeded code

and assemblies, making the initial download smaller. This will take longer to build and

shorter to load the Blazor site in the browser.

dotnet publish -c Release -o release

In the next step, we will copy the release folder into the gh-pages branch. Start by

moving the release folder to a temporary folder outside our local repository:

mv release ../temp

Now check out the gh-pages branch:

git checkout gh-pages

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

526

Let us look at the files in our gh-pages branch:

ls

You will see that we have a bin and obj folder which we don’t need:

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 8/21/2021 12:03 PM bin

d----- 8/21/2021 12:03 PM obj

-a---- 8/21/2021 12:11 PM 285 index.html

-a---- 8/21/2021 11:13 AM 38 README.md

Remove these folders:

rm -r bin

rm -r obj

We can now inspect the publish folder using the tree command:

tree ../temp /F

This will show us all the files that make up our application:

Folder PATH listing for volume Local Disk

Volume serial number is 1044-BB65

C:\CODE\GITHUB\MICROSOFT.BLAZOR.3RD\CH15\TEMP

│ web.config
│
└───wwwroot
 │ favicon.ico
 │ icon-192.png
 │ index.html
 │ StandAlone.styles.css
 │
 ├───css
 │ │ app.css
 │ │
 │ ├───bootstrap
 │ │ bootstrap.min.css

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

527

 │ │ bootstrap.min.css.map
 │ │
 │ └───open-iconic
 │ │ FONT-LICENSE
 │ │ ICON-LICENSE
 │ │ README.md
 │ │
 │ └───font
 │ ├───css
 │ │ open-iconic-bootstrap.min.css
 │ │
 │ └───fonts
 │ open-iconic.eot
 │ open-iconic.otf
 │ open-iconic.svg
 │ open-iconic.ttf
 │ open-iconic.woff
 │
 ├───sample-data
 │ weather.json
 │
 └───_framework
 blazor.boot.json

 blazor.boot.json.br

 blazor.boot.json.gz

 blazor.webassembly.js

 blazor.webassembly.js.br

 blazor.webassembly.js.gz

 dotnet.6.0.0-preview.7.21377.19.js

 dotnet.6.0.0-preview.7.21377.19.js.br

 dotnet.6.0.0-preview.7.21377.19.js.gz

 dotnet.timezones.blat

 dotnet.timezones.blat.br

 dotnet.timezones.blat.gz

 dotnet.wasm

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

528

 dotnet.wasm.br

 dotnet.wasm.gz

 icudt.dat

 icudt.dat.br

 icudt.dat.gz

 icudt_CJK.dat

 icudt_CJK.dat.br

 icudt_CJK.dat.gz

 icudt_EFIGS.dat

 icudt_EFIGS.dat.br

 icudt_EFIGS.dat.gz

 icudt_no_CJK.dat

 icudt_no_CJK.dat.br

 icudt_no_CJK.dat.gz

 Microsoft.AspNetCore.Components.dll

 Microsoft.AspNetCore.Components.dll.br

 Microsoft.AspNetCore.Components.dll.gz

 Microsoft.AspNetCore.Components.Web.dll

 Microsoft.AspNetCore.Components.Web.dll.br

 Microsoft.AspNetCore.Components.Web.dll.gz

 Microsoft.AspNetCore.Components.WebAssembly.dll

 Microsoft.AspNetCore.Components.WebAssembly.dll.br

 Microsoft.AspNetCore.Components.WebAssembly.dll.gz

 Microsoft.Extensions.Configuration.Abstractions.dll

 Microsoft.Extensions.Configuration.Abstractions.dll.br

 Microsoft.Extensions.Configuration.Abstractions.dll.gz

 Microsoft.Extensions.Configuration.dll

 Microsoft.Extensions.Configuration.dll.br

 Microsoft.Extensions.Configuration.dll.gz

 Microsoft.Extensions.Configuration.Json.dll

 Microsoft.Extensions.Configuration.Json.dll.br

 Microsoft.Extensions.Configuration.Json.dll.gz

 Microsoft.Extensions.DependencyInjection.Abstractions.dll

 Microsoft.Extensions.DependencyInjection.Abstractions.dll.br

 Microsoft.Extensions.DependencyInjection.Abstractions.dll.gz

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

529

 Microsoft.Extensions.DependencyInjection.dll

 Microsoft.Extensions.DependencyInjection.dll.br

 Microsoft.Extensions.DependencyInjection.dll.gz

 Microsoft.Extensions.Logging.Abstractions.dll

 Microsoft.Extensions.Logging.Abstractions.dll.br

 Microsoft.Extensions.Logging.Abstractions.dll.gz

 Microsoft.Extensions.Logging.dll

 Microsoft.Extensions.Logging.dll.br

 Microsoft.Extensions.Logging.dll.gz

 Microsoft.Extensions.Options.dll

 Microsoft.Extensions.Options.dll.br

 Microsoft.Extensions.Options.dll.gz

 Microsoft.Extensions.Primitives.dll

 Microsoft.Extensions.Primitives.dll.br

 Microsoft.Extensions.Primitives.dll.gz

 Microsoft.JSInterop.dll

 Microsoft.JSInterop.dll.br

 Microsoft.JSInterop.dll.gz

 Microsoft.JSInterop.WebAssembly.dll

 Microsoft.JSInterop.WebAssembly.dll.br

 Microsoft.JSInterop.WebAssembly.dll.gz

 StandAlone.dll

 StandAlone.dll.br

 StandAlone.dll.gz

 StandAlone.pdb.gz

 System.Collections.Concurrent.dll

 System.Collections.Concurrent.dll.br

 System.Collections.Concurrent.dll.gz

 System.Collections.dll

 System.Collections.dll.br

 System.Collections.dll.gz

 System.ComponentModel.dll

 System.ComponentModel.dll.br

 System.ComponentModel.dll.gz

 System.Linq.dll

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

530

 System.Linq.dll.br

 System.Linq.dll.gz

 System.Memory.dll

 System.Memory.dll.br

 System.Memory.dll.gz

 System.Net.Http.dll

 System.Net.Http.dll.br

 System.Net.Http.dll.gz

 System.Net.Http.Json.dll

 System.Net.Http.Json.dll.br

 System.Net.Http.Json.dll.gz

 System.Net.Primitives.dll

 System.Net.Primitives.dll.br

 System.Net.Primitives.dll.gz

 System.Private.CoreLib.dll

 System.Private.CoreLib.dll.br

 System.Private.CoreLib.dll.gz

 System.Private.Runtime.InteropServices.JavaScript.dll

 System.Private.Runtime.InteropServices.JavaScript.dll.br

 System.Private.Runtime.InteropServices.JavaScript.dll.gz

 System.Private.Uri.dll

 System.Private.Uri.dll.br

 System.Private.Uri.dll.gz

 System.Runtime.CompilerServices.Unsafe.dll

 System.Runtime.CompilerServices.Unsafe.dll.br

 System.Runtime.CompilerServices.Unsafe.dll.gz

 System.Runtime.dll

 System.Runtime.dll.br

 System.Runtime.dll.gz

 System.Text.Encodings.Web.dll

 System.Text.Encodings.Web.dll.br

 System.Text.Encodings.Web.dll.gz

 System.Text.Json.dll

 System.Text.Json.dll.br

 System.Text.Json.dll.gz

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

531

The web.config file is used for Internet Information Services (IIS) deployments, but

we don’t need it for GitHub. We only need the files from the wwwroot folder, so copy this

folder in our gh-pages branch:

mv ..\temp\wwwroot*

Git works for both Windows- and Unix-based operating systems. However, these use

different file endings, and we don’t want git to change these. Why? Because the Blazor

runtime will check if our files have been changed after deployment, and it will refuse to

load these files. We can tell git not to make changes using a .gitattributes file, so add

one using the following command:

"* binary" >> .gitattributes

This tells git to treat all our files as binary so it will not try to fix file endings. Commit

these files and push them to the git repository on GitHub:

git add .

git commit -m "Step 3"

git push

Now you can reload the site (which will not work yet); for example, in my case, this

would be https://microsoftblazorbook.github.io/StandAloneWASM/.

This will display Figure 15-1.

 Fix the Base Tag
Why is this not loading correctly? Open the browser debugger’s console, as shown in

Figure 15-2.

Figure 15-1. Our Blazor Site Does Not Load Correctly (Yet)

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://microsoftblazorbook.github.io/StandAloneWASM/

532

As you can see, the browser is trying to load the JavaScript and CSS files from the

root of https://microsoftblazorbook.github.io, but our files are hosted at https://

microsoftblazorbook.github.io/StandAloneWASM/. What we need to do is to instruct

the browser to prefix each file’s URL with StandAloneWASM. This is done through the

index.html’s base tag. And if you remember from Chapter 9, routing also used this base

tag to figure out which component to show! So use your favorite editor to update the

base tag in index.html to use your repository’s name as in Listing 15-2.

Listing 15-2. Update the index.html’s Base Tag

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no" />

 <title>StandAlone</title>

 <!-- Start change, use your repository's name! -->

 <base href="/StandAloneWASM/" />

 <!-- End change -->

 <link href="css/bootstrap/bootstrap.min.css" rel="stylesheet" />

 <link href="css/app.css" rel="stylesheet" />

 <link href="StandAlone.styles.css" rel="stylesheet" />

</head>

Figure 15-2. The Browser Debugger’s Console

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://microsoftblazorbook.github.io
https://microsoftblazorbook.github.io/StandAloneWASM/
https://microsoftblazorbook.github.io/StandAloneWASM/

533

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 🗙

 </div>

 <script src="_framework/blazor.webassembly.js"></script>

</body>

</html>

Now we can push our change to GitHub with the following commands:

git add .

git commit -m "Fix base tag"

git push

Wait for the deployment to complete and refresh your site’s page. You can review the

deployment process at https://github.com/MicrosoftBlazorBook/StandAloneWASM/

deployments/activity_log?environment=github- pages, replacing your organization

and repository name in the URL.

 Disabling Jekyll
Still not working. Again, let us look at the browser debugger’s console as shown

in Figure 15-3. It is loading the JavaScript and CSS files, but it cannot find the _

framework files.

Figure 15-3. Blazor Does Not Find the _framework Files

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://github.com/MicrosoftBlazorBook/StandAloneWASM/deployments/activity_log?environment=github-pages
https://github.com/MicrosoftBlazorBook/StandAloneWASM/deployments/activity_log?environment=github-pages

534

Why? GitHub uses Jekyll (https://github.com/jekyll) which is a static site

generator. Jekyll stores its files in folders that start with an underscore, and GitHub will

not host files inside folders that start with an underscore. We can disable Jekyll by adding

an empty .nojekyll file in the root folder. So use your favorite editor again to add this

file and use the following commands to send this to GitHub:

git add .

git commit -m "Fix Jekyll"

git push

Wait for the deployment to complete and refresh your site’s page. Your Blazor site

should work! Great!

 Fixing GitHub 404s
There is still one problem we need to fix. Navigate in your Blazor site to the Counter route

and make the browser refresh by hitting F5. It will display a 404 page! This is because

GitHub will try to load the Counter file from the URL. We can fix this by copying our root

index.html file to a 404.html file, which GitHub will then send back to the browser.

First, copy index.html to 404.html using this command:

cp index.html 404.html

Now we need to push this change back to the GitHub with these commands:

git add .

git commit -m "Fix 404 page"

git push

Now refreshing the counter route will work.

Note here, we have been deploying our standalone Blazor WebAssembly
application by pushing changes in source control to github. Some other hosts also
allow you to do this too; for example, you can deploy your application using Azure
DevOps. If you want to host your Blazor application on a host that does not have
source control integration, you will have to upload the publish folder using the host
its own tools; this might even be with FTP!

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://github.com/jekyll

535

 Alternatives for GitHub
There are many alternatives to deploy your Blazor Standalone WebAssembly project;

each will have its own little quirks to make it work, but everyone will require you to set

the base tag in index.html correctly. For example, you could also deploy your project

as an Azure Static Website. For more information about deploying your project as an

Azure Static Website, visit https://docs.microsoft.com/azure/static- web- apps/

deploy- blazor.

 Deploying Your Site As WebAssembly
With .NET 6, we can now compile our complete solution as a WASM file and run

everything as WebAssembly. By default, you will run .NET assemblies in the browser

where the WASM .NET runtime will interpret IL instructions. By compiling everything

into WASM, you can get significant performance improvements! However, the WASM file

is larger than the .NET assembly equivalent, so compiling everything as WASM will come

at the cost of a longer initial download. This is also known as Ahead-Of-Time (AOT)

compilation. AOT mainly benefits applications that are CPU intensive, so you might not

even need this for your application.

To enable AOT compilation, you should add the RunAOTCompilation flag to your

project as shown in Listing 15-3.

Listing 15-3. Enabling AOT Compilation

<PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 <RunAOTCompilation>true</RunAOTCompilation>

</PropertyGroup>

Now you can publish your application just like before with the publish command

dotnet publish -c Release -o release

This will take some time, so grab something to drink. While you are developing, AOT

is not used because compiling takes so much longer.

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://docs.microsoft.com/azure/static-web-apps/deploy-blazor
https://docs.microsoft.com/azure/static-web-apps/deploy-blazor

536

Once deployment is ready, look inside the release/_framework folder and search for

dotnet.wasm. This file on my machine is around 12 MB! Without OAT, this file is around

2 MB. Do note that the actual download is a lot smaller due to the compression used

by Blazor. You will also find the original .dll files in the release folder. Sometimes your

application might use reflection; in that case, the necessary .dll files are still downloaded.

So we still need to deploy these.

We can now deploy our AOT compiled release just like before.

 Deploying Hosted Applications
For both the hosted Blazor WebAssembly and Blazor Server applications, you will need

to deploy to a host that supports executing .NET on the server. You can deploy this to

Windows Internet Information Services (IIS) or to Linux Apache.

 Understanding the Deployment Models
With ASP.NET Core hosted applications, we have a number of choices for deploying our

application.

One option is to use a framework-dependent deployment. In this case, the

deployment files only contain your application files with their dependencies. No

runtime is deployed, so this will only work on a server where the .NET runtime has been

deployed before. One advantage of using framework-dependent deployment is that your

deployment will work everywhere since portable .NET assemblies are used.

The other option is to use a self-contained deployment. In this case, the deployment

contains all the files that are needed to run the application, including the runtime.

Because of this, you need to specify which platform you want to target, for example, 64-

bit Windows, and it will only deploy to that platform. The main advantage of this is that

there is no dependency on what has been installed on the server, except for the platform

of course. Another advantage is that you can use any version of .NET, even previews.

Most commercial hosts will only give you long-term support versions of the .NET

runtime.

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

537

To create a deployment, you use the dotnet publish command. For example, to

create a self-contained deployment for 64-bit Linux, you use

dotnet publish -c Release -o release --self-contained --runtime linux-x64

And if you want to create a portable framework-dependent deployment:

dotnet publish -c Release -o release –no-self-contained

 Deploying to Microsoft Azure
Most of us don’t have a server lying around to deploy to, so here we will deploy to an

Azure web app. If you don’t have an Azure account, you can get one for free. Open your

browser and visit https://azure.microsoft.com/. Here, you can create a free account,

and you even get $200 credit.

An Azure web app is a hosting service that makes it very easy to deploy and run your

Blazor application.

We will use Visual Studio to create a release and deploy it into Azure. Create a new

hosted Blazor WebAssembly project (or Blazor Server, your choice). Before we can

deploy to Azure, we need to add our Azure account to Visual Studio. So open File ➤

Account Settings…. Click Add as in Figure 15-4 to add your Azure account.

 Creating the Publishing Profile
Right-click the server project and select Publish… from the drop-down menu. The

Publish wizard will open, which gives you the choices of deployment targets. Choose

Azure as in Figure 15-5.

Figure 15-4. Add Your Azure Account

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://azure.microsoft.com/

538

Click Next. Now you are presented with deploying to an Azure web app, a container,

or a virtual machine as shown in Figure 15-6.

Figure 15-5. Deploy to Azure

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

539

Select Azure App Service (Windows) and click Next. Now the Select existing or create

a new Azure App Service dialog from Figure 15-7 appears. You can either select an

existing App Service or create a new one.

Figure 15-6. Azure Deployment Choices

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

540

Click the + button to add a new Azure App Service. Figure 15-8 will be shown. Enter

a unique name, select your Azure subscription if you have more than one, and create a

new resource group and hosting plan.

Figure 15-7. Select Azure App Service

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

541

A resource group groups together a bunch of Azure resources, such as a web app and

its database, and allows you to manage and delete all of them as one. To create a new

resource group, click New… and enter a new resource group name.

A hosting plan will select what kind of hardware your site will run on and the data

center where the hardware resides. Click New… and enter a name, select a data center

near you, and select the Free size (shown here as F1 in Figure 15-8) as in Figure 15-9. You

can have up to ten free hosting plans per region for your subscription.

Figure 15-8. Create an App Service Dialog

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

542

Click Next again and select the Publish option as in Figure 15-10. The other option

will set up for you a Continuous Integration and Deployment using GitHub Actions

which actually is a better option. With GitHub Actions, you can have your site deployed

automatically every time you push new features into your repository. If you would like

to learn more about GitHub Actions, visit https://github.com/features/actions, or if

you prefer a book, read www.apress.com/gp/book/9781484264638.

Figure 15-9. Create a Hosting Plan

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

https://github.com/features/actions
http://www.apress.com/gp/book/9781484264638

543

Select Finish.

 Selecting Publishing Options
VS will now display the Publish profile as in Figure 15-11, and you can change some of

the deployment options before proceeding.

Figure 15-10. Publish or Use CI/CD

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

544

Click the Show all settings link, which will display the publish options as in

Figure 15-12. With the Deployment Mode drop-down, you can choose between

 Framework- dependent or Self-Contained as discussed previously in this chapter. Please

select Self- Contained and Save.

Figure 15-11. The Publish Profile

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

545

Figure 15-12. Publish Options

 Publishing the Application
Now you can click the Publish button as shown in the top right corner of Figure 15-11.

Visual Studio will build a release version and deploy it to Azure.

When publishing completes, an alert as in Figure 15-13 will be shown. Click the

link to look at the result of the publish. Now everyone with an Internet connection can

admire your work!

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

546

 Summary
In this chapter, we looked at deploying a Blazor application. With a standalone Blazor

WebAssembly application, all we need is a file server so the browser can download

the html, CSS, JavaScript, and DLL files. As an example, we used GitHub to deploy to.

Remember to set the base tag in the html page to match the location where the files are

downloaded from.

Deploying a Blazor Server or Blazor WebAssembly hosted project is just like

deploying an ASP.NET Core site. As an example, we deployed our application to Azure

as a web app. Visual Studio takes care of most of the work. Without Visual Studio, we can

still create a deployment using the command line, and then we would need to upload

the files onto the server. Each hosting provider has their own specific way of doing this.

Figure 15-13. Publish Complete

ChAPTer 15 DePLOyIng yOur BLAzOr APPLICATIOn

547
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_16

CHAPTER 16

Security with OpenId
Connect
Many web applications need some way to identify the user, also known as

authentication. Sometimes this is only to show the user what they were looking at

before, so we need an identity to retrieve the user’s state from the server. Sometimes we

need to protect certain resources, also known as authorization, which can be personal

information, or contents that the user has paid for, or because of some legal requirement.

In this chapter, we will look at OpenId Connect and how we can use this to identify the

user and decide what the current user can do.

 Representing the User
Let us first discuss how we can represent users. You might think that we just need to

know the user’s name, but this is not true. We will represent the user as a collection of

properties about the user, which can include the user’s name and also information like

age and which department the user works for. We call this claims-based security. Some

claims can represent things the user can do; these are known as roles. For example, one

claim could state that the user has the admin role, allowing our software to check the role

instead of the name. Users can move around in an organization, and then you simply

change the role claims to give users more or less things they can do with the software.

 Using Claims-Based Security
Claims-based security uses a token to represent the user, and this token is a collection

of claims about the user. Claims represent statements about the user; for example, one

claim could be that the user’s first name is Peter. In real life, we also have tokens; for

example, your passport is a nice example of a token, containing claims such as your

https://doi.org/10.1007/978-1-4842-7845-1_16#DOI

548

nationality, name, date of birth, etc. If this was all there about a token, they would be

worthless because anyone could create a token. Why does the airport security trust your

passport? Because it was issued by a trusted party, also known as an identity provider. In

my case, the airport security trusts the claims on my passport because it was issued by

the Belgian government. Passports use all kinds of nifty protections such as holograms

to make it hard to create a passable fake passport. Tokens used by computers work in the

same manner; they are issued by a trusted party, which uses a digital signature so that

the relying party (the application) can verify to see if the token was issued by a trusted

party known to the application. Of course, the identity provider will need a way to

verify who the user actually is. They can use any means they want, a user and password

combination, or some smart card you need to insert in a card reader. This whole process

is illustrated in Figure 16-1.

One more aspect about tokens is that once a user has received a token, the user can

use it again and again without the need to go back to the identity provider. Of course,

there needs to be a limit to this, and that is why tokens have a valid period, and after this

period, the user will need to get a new token. My passport was issued to me a couple of

years ago, but I can still use it until it expires. Then I will have to go back to city hall and

get a new one. Of course, software tokens will not last that long, because it is easy to get a

new one over the network.

Figure 16-1. The Authentication Process

Chapter 16 SeCurity with Openid COnneCt

549

 Understanding Token Serialization
How are tokens serialized over a network? Modern applications using REST use the

JSON Web Token (JWT) open standard. This allows us to transmit tokens in a secure way

in the form of a JSON object.

JWT tokens are serialized as a base-64 encoded string, and each token consists of

three parts, a header, a payload containing the claims, and a signature. Listing 16-1

shows an example of a serialized token.

Listing 16-1. A Serialized Token

eyJhbGciOiJSUzI1NiIsImtpZCI6InVibTdLa1BjQXZ5Z0NXYlR1djRVQWciLCJ0eXAiOiJKV1Q

ifQ.eyJuYmYiOjE2MjY5NTIzMDAsImV4cCI6MTYyNjk1MjYwMCwiaXNzIjoiaHR0cHM6Ly9sb2

NhbGhvc3Q6NTAwMCIsImF1ZCI6ImJsYXpvciIsImlhdCI6MTYyNjk1MjMwMCwiYXRfaGFzaCI6I

k9oMFRJdXExZVh6S2pDaXExdVpKdGciLCJzX2hhc2giOiJOaWwwcmllZzUwdlBTdU45TVNnTzl3

Iiwic2lkIjoibXBqODROWkdNa0lORGtXUWgwR0FNQSIsInN1YiI6IjZkOTY4NjIxLTI3ZTAtND

ZkYS1iNzNiLTlkNWNjODc4ZGIwYSIsImF1dGhfdGltZSI6MTYyNjk1MjI5OSwiaWRwIjoibG9

jYWwiLCJhbXIiOlsicHdkIl19.f0Rm_sVFlwc2PnJwFmufrDLY9h1HJ6VnejdouMKhMYOwfyK

LukUa6D3Zum5gRw- 4jJQvevaBQe5dGFmZzN24nS8bzTOC3UxSLUTtdNIajiQ5SpHOdkuM5HDO9

A0mdKygy5MizAsXTiClOymXFXun- gS1YfM2mezrvjJbhgY- gRAxCyOnnPaIDs1M6gQ_zMuyb

lwznj5ovo-Hh_tWD3qHE_ttEsDJe6KR9aM1- Qyz87sKn-wL_oo6DKiyCimG_y6qe27hjmuSg- B5

BDOeOUEaHEpSHXwrdJCTuYAY88Jx2k5W_fDnqwWPFx9Yvtkycp- nrBoOlbs0EzByj8QHOCoTBg

This token is not human-readable, but using a tool like https://jwt.io, you

can easily inspect the token’s content. Doing this reveals that this token contains the

following header with the type of the token (JWT) and the signing algorithm:

{

 "alg": "RS256",

 "kid": "ubm7KkPcAvygCWbTuv4UAg",

 "typ": "JWT"

}

Chapter 16 SeCurity with Openid COnneCt

https://jwt.io

550

Generally, you should ignore the header, but the payload contains the

following claims:

{

 "nbf": 1626952300,

 "exp": 1626952600,

 "iss": "https://localhost:5000",

 "aud": "blazor",

 "iat": 1626952300,

 "at_hash": "Oh0TIuq1eXzKjCiq1uZJtg",

 "s_hash": "Nil0rieg50vPSuN9MSgO9w",

 "sid": "mpj84NZGMkINDkWQh0GAMA",

 "sub": "6d968621-27e0-46da-b73b-9d5cc878db0a",

 "auth_time": 1626952299,

 "idp": "local",

 "amr": [

 "pwd"

]

}

The issuer claim (iss) states that this token was issued by my development identity

provider with URL https://localhost:5000, and the not before claim (nbf) together

with the expiry claim (exp) gives this token a validity period. The audience claim (aud)

states that this token is intended for the application called Blazor. Finally, the subject

claim (sub) contains a unique identifier for the current user. There are a lot of other

official claims you can find in a token, and you can find their meaning on the IANA JSON

Web Token Registry’s site at www.iana.org/assignments/jwt/jwt.xhtml.

The payload of the token is not encrypted, so never include sensitive information

in here!

The signature allows our software to check if the token has been modified, and again

you should ignore this (but not our software!).

 Representing Claims in .NET
So how are claims represented in .NET? From the start, Microsoft has provided us with

two interfaces to represent the user, IPrincipal and IIdentity.

Chapter 16 SeCurity with Openid COnneCt

http://www.iana.org/assignments/jwt/jwt.xhtml

551

The IPrincipal interface represents the security context for the current user,

including the user’s identity (the IIdentity interface) and roles. It is implemented by

the ClaimsPrincipal class which holds a collection of Claim instances in its Claims

property. Our code will use the ClaimsPrincipal instance to see if a user holds a certain

claim. For example, we can retrieve the user’s name using the implementation from

Listing 16-2. Here, we use the AuthenticationState class (more details later) with the

User property of type ClaimsPrincipal. The ClaimsPrincipal class has the FindFirst

method which will search the collection of Claims and returns the claim with given key

or returns a null if there is no claim with the given key. Here, I use the ClaimTypes class

which holds the name of most standard claims.

Listing 16-2. Retrieving the Name of the User from ClaimsPrincipal

Claim givenNameClaim =

 authState.User.FindFirst(ClaimTypes.GivenName);

 OpenId Connect
OpenId Connect is a standard protocol that allows us to secure our applications,

including websites, mobile applications, server, and desktop applications. Because of

differences in application types, OpenId Connect describes a number of flows, such as

Resource Owner Password Credential, Client Credential, Implicit, Authorization Code,

and Hybrid flows. With Blazor, we will use the Hybrid and Authorization Code flows.

 Understanding OpenId Connect Hybrid Flow
In Blazor Server, we will use the Hybrid flow, so let us review how this flow works as

illustrated in Figure 16-2. Figure 16-2 shows the identity provider, our Blazor Server

application, and the user using a browser. When we look at Blazor WebAssembly, we will

review Authorization Code flow.

Chapter 16 SeCurity with Openid COnneCt

552

When the not yet authenticated user visits a protected resource (Step 1), the Blazor

Server will return an HTTP redirect result (Step 2) which will make the browser visit

the identity provider, also known as an authorization server (AS). The URL contains

credential information about the client (the ClientId and ClientSecret) together with a

redirect URI. The identity provider identifies the client application through its ClientId

and verifies if the redirect URI matches its list of registered client redirect URIs. The

identity provider will then present the user with some kind of login UI (Step 3), for

example, to enter the username and password. The identity provider is free how this

login process works, and after a successful login, the identity provider will return an

HTTP redirect to the browser (Step 4) so the browser will visit the redirect URI (the

Blazor Server application) with the request containing a code and identity token. The

redirect URI is then processed by the Blazor application, the identity token is turned

into a ClaimsPrincipal, and the user has been authenticated. The Blazor application is

also responsible for storing the ClaimsPrincipal, and with Blazor Server, this is done by

storing the ClaimsPrincipal in a cookie, so the next request containing that cookie can

deserialize it again. For the moment, we don’t need the code, but we will use it later.

A couple of remarks: an identity provider will only send tokens to known redirect

URIs, so these have to be registered with the identity provider. This prevents unknown

parties (hackers!) from hijacking requests. When you deploy your application, you

should not forget to register the new redirect URI in the identity provider. There can

be several registered redirect URIs, so you can keep developing locally and run the

application in production using the same identity provider.

Figure 16-2. The OpenId Connect Hybrid Flow

Chapter 16 SeCurity with Openid COnneCt

553

 Identity Providers
There are many identity providers out there. For example, there is Microsoft Azure Active

Directory, Google, Facebook, etc. Each of these identity providers comes with their own

UI, but as long as they use OpenID Connect, the implementation works on the same

principles.

Here, I want to use IdentityServer4 (www.identityserver.com/) which allows you

to build your own identity provider for free (however, identity server is not free for

commercial use). These people need to eat too!

 Implementing the Identity Provider with IdentityServer4
Let us start by creating the project that we will use as our identity provider, using

IdentityServer4. Create a new AspNet .NET Core Web App project and name it

IdentityProvider.

Modify the ports in launchSettings.json as in Listing 16-3. Our identity provider

needs to run on another URI, and changing the port is the easiest way. Here, we will use

HTTPS port 5011.

Listing 16-3. Changing the Port

{

 ...

 "profiles": {

 "IdentityProvider": {

 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "applicationUrl": "https://localhost:5011;http://localhost:5010",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 ...

 }

}

Chapter 16 SeCurity with Openid COnneCt

http://www.identityserver.com/

554

Use NuGet to add the latest stable version of IdentityServer4, or modify your project

directly as in Listing 16-4.

Listing 16-4. Use NuGet to Add IdentityServer4

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="IdentityServer4" Version="4.1.2" />

 </ItemGroup>

</Project>

Configure dependency injection for IdentityServer by modifying the Startup class’s

ConfigureServices method as in Listing 16-5.

Listing 16-5. Configuring Dependency Injection

public void ConfigureServices(IServiceCollection services)

{

 services.AddIdentityServer();

}

And use IdentityServer in the ASP.NET pipeline with the Configure method as in

Listing 16-6.

Listing 16-6. Adding IdentityServer to the Pipeline

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseIdentityServer();

}

Chapter 16 SeCurity with Openid COnneCt

555

IdentityServer4 can be configured using a database or an in-memory configuration.

We will use the latter because it is easier for learning and experimentation. Add a new

class called Config to the project next to Program.cs. This Config class will contain the

configuration for IdentityServer4.

First, we need a couple of users, so add the GetUsers method from Listing 16-7. We

use IdentityServer’s TestUser class which allows us to set the SubjectId unique key,

Username, Password, and Claims. We also add a couple of standard identifying claims

which belong to the Profile scope. Scopes are used to group a number of claims and can

be requested during the authentication process.

Listing 16-7. Adding Users to IdentityServer

public static List<TestUser> GetUsers()

=> new List<TestUser>

{

 new TestUser

 {

 SubjectId = "{223C9865-03BE-4951-8911-740A438FCF9D}",

 Username = "peter@u2u.be",

 Password = "u2u-secret",

 Claims = new List<Claim>

 {

 new Claim("given_name", "Peter"),

 new Claim(JwtClaimTypes.Name, "Peter Himschoot"),

 new Claim("family_name", "Himschoot"),

 }

 },

 new TestUser

 {

 SubjectId = "{34119795-78A6-44C2-B128-30BFBC29139D}",

 Username = "student@u2u.be",

 Password = "u2u-secret",

 Claims = new List<Claim>

 {

 new Claim("given_name", "Student"),

Chapter 16 SeCurity with Openid COnneCt

556

 new Claim(JwtClaimTypes.Name, "Student Blazor"),

 new Claim("family_name", "Blazor"),

 }

 }

};

Next, we need to add a couple of identity resources with the GetIdentityResources

method from Listing 16-8. These map to scopes that will give us access to certain claims

from configuration. Scopes are used to group claims and provide an easy way to request

claims. The OpenId method will give us access to the subject id (sid) which is a unique

identifier of the current user, and the Profile method gives us access to claims about the

user, such as given_name and family_name.

Listing 16-8. Adding Identity Resources

public static IEnumerable<IdentityResource> GetIdentityResources()

=> new List<IdentityResource>

{

 new IdentityResources.OpenId(),

 new IdentityResources.Profile(),

};

We will also need to add the client applications that our identity provider will

support. For the moment, we will only have one client, so implement the GetClients

method as in Listing 16-9. Here, we added the ClientId and ClientSecrets which the

client will use to prove itself. We will use the Hybrid flow as described before, and we set

the RedirectUris to include the client’s URI. We also need to configure which scopes

our client application will get. The Profile and OpenId scopes are provided by default,

but we will add more scopes later, and it does not hurt to be explicit.

Listing 16-9. Adding Clients

public static IEnumerable<Client> GetClients()

=> new List<Client>

{

 new Client

 {

 ClientName = "Blazor Server",

Chapter 16 SeCurity with Openid COnneCt

557

 ClientId = "BlazorServer",

 AllowedGrantTypes = GrantTypes.Hybrid,

 RedirectUris = new List<string>{

 "https://localhost:5001/signin-oidc"

 },

 RequirePkce = false,

 AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile

 },

 ClientSecrets = { new Secret("u2u-secret".Sha512()) },

 RequireConsent = true

 }

};

Now we are ready to complete the configuration as in Listing 16-10. Here, we are

adding our users, identity resources, and clients. We also need a valid certificate for

signing, and when developing, we can use the AddDeveloperSigningCredentials.

When you move to production, you will have to get a valid certificate and use the

AddSigningCredentials method.

Listing 16-10. Adding Users, Identity Resources, and Clients

public void ConfigureServices(IServiceCollection services)

=> services.AddIdentityServer()

 .AddInMemoryIdentityResources(

 Config.GetIdentityResources())

 .AddTestUsers(Config.GetUsers())

 .AddInMemoryClients(Config.GetClients())

 .AddDeveloperSigningCredential();

You can now run your identity provider if you like. However, you will not get any UI until

we complete the next step. IdentityServer4 will emit logging in the console, for example:

info: IdentityServer4.Startup[0]

 Starting IdentityServer4 version

4.1.2+997a6cdd643e46cd5762b710c4ddc43574cbec2e

info: IdentityServer4.Startup[0]

Chapter 16 SeCurity with Openid COnneCt

558

 You are using the in-memory version of the persisted grant store.

This will store consent decisions, authorization codes, refresh

and reference tokens in memory only. If you are using any of those

features in production, you want to switch to a different store

implementation.

info: IdentityServer4.Startup[0]

 Using the default authentication scheme idsrv for IdentityServer

info: Microsoft.Hosting.Lifetime[14]

 Now listening on: https://localhost:5011

info: Microsoft.Hosting.Lifetime[14]

 Now listening on: http://localhost:5010

info: Microsoft.Hosting.Lifetime[0]

 Application started. Press Ctrl+C to shut down.

info: Microsoft.Hosting.Lifetime[0]

 Hosting environment: Development

info: Microsoft.Hosting.Lifetime[0]

 Content root path: C:\Code\GitHub\Microsoft.Blazor.3rd\Ch16\Blazor.

OpenIdConnect\src\IdentityProvider

 Adding the Login UI to Our Identity Provider
When our users want to log in to the identity provider, the identity provider will present a

login screen to the user. IdentityServer4 comes with a built-in UI, so here we will add this

to the IdentityProvider project.

Getting everything installed is pretty easy with dotnet CLI.

You can get all files installed using dotnet CLI using the following command from

your project’s folder:

dotnet new -i identityserver4.templates

dotnet new is4ui

This will install two new folders called QuickStart and Views and will also install

some CSS and scripts in the wwwroot folder.

Of course, we need to add support for MVC in the IdentityProvider project so it

can render the login and consent pages. Add support for controllers and views in the

ConfigureServices method as in Listing 16-11.

Chapter 16 SeCurity with Openid COnneCt

559

Listing 16-11. Configure Services for MVC

public void ConfigureServices(IServiceCollection services)

{

 services.AddIdentityServer()

 .AddInMemoryIdentityResources(

 Config.GetIdentityResources())

 .AddTestUsers(Config.GetUsers())

 .AddInMemoryClients(Config.GetClients())

 .AddDeveloperSigningCredential();

 services.AddControllersWithViews();

}

And use the middleware from Listing 16-12 in the pipeline.

Listing 16-12. Adding MVC Middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseStaticFiles();

 app.UseRouting();

 app.UseIdentityServer();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapDefaultControllerRoute();

 });

}

Chapter 16 SeCurity with Openid COnneCt

560

Running the application will show the UI similar to Figure 16-3.

Click the second link (see the claims); you will be asked to log in (with one of our

users from Listing 16-7), after which it will display the claims just like Figure 16-4.

Figure 16-3. The Identity Server Home Page

Chapter 16 SeCurity with Openid COnneCt

561

 Understanding User Consent
OpenId Connect is used to authenticate users, but it is also used to allow an application

to access another application’s resources. Facebook, for example, uses this to allow

third-party applications to use Facebook’s identity provider as an authentication

mechanism and then to post things on your Facebook page. When the user logs in for

the first time, an identity provider should tell the user which claims will be used by the

application, and a user can then decide which claims it will allow. IdentityServer4’s

default UI will look somewhat like Figure 16-5. This will list the personal information

that the application will be able to access and also any APIs that the application can

access on the user’s behalf. Users can then click the “Yes, Allow” button after optionally

unchecking any claims they don’t want to share. Next time, the identity provider

will not ask this question again because this information is stored by the identity

Figure 16-4. Displaying the User’s Claims

Chapter 16 SeCurity with Openid COnneCt

562

provider. Because we are running IdentityServer4 in memory, every time we rerun the

IdentityProvider project, we will be asked for consent. Listing 16-9 has enabled this user

consent, and while developing, you can use this to temporarily test stuff by unchecking

claims and see how your application reacts to this missing claim. Feel free to disable user

consent during development if you find it annoying.

 Protecting a Blazor Server Application
with Hybrid Flow
Now that we have our own identity provider, we can build a Blazor Server application

and secure it. Later, we will do the same for Blazor WebAssembly.

Add a new Blazor Server application to the existing solution and name it Blazor.

Server.OpenIdConnect. If you are using Visual Studio, leave the Authentication Type set

Figure 16-5. The User Consent Screen

Chapter 16 SeCurity with Openid COnneCt

563

to None. This will generate the project without any authentication components. In the

next chapter on using OpenId Connect with Blazor WebAssembly, you will use a more

practical approach that will generate the authentication components for you using the

Authentication Type set to Individual Accounts.

 Adding OpenId Connect to Blazor Server
Add the Microsoft.AspNetCore.Authentication.OpenIdConnect package to the Blazor.

Server.OpenIdConnect project.

Now add Listing 16-13 to the Startup class’s ConfigureServices method of your

Blazor Server project. This tells authentication to retrieve and store the ClaimsPrincipal

in a cookie and use it as the DefaultScheme. You can also configure the cookie’s

name and expiry period here, but we will go with the defaults. We are also telling the

middleware that when the user is not yet authenticated, it should use OpenId Connect

through the DefaultChallengeScheme property.

Listing 16-13. Configuring Authentication

services.AddAuthentication(options =>

{

 options.DefaultScheme =

 CookieAuthenticationDefaults.AuthenticationScheme;

 options.DefaultChallengeScheme =

 OpenIdConnectDefaults.AuthenticationScheme;

})

.AddCookie(CookieAuthenticationDefaults.AuthenticationScheme);

Next, we should add the authentication/authorization middleware in the Configure

method as shown in Listing 16-14.

Listing 16-14. Add Authentication Middleware

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

We still need to tell the OpenIdConnect middleware where it should go if there

is no valid cookie containing the ClaimsPrincipal. So add Listing 16-15 to the

Chapter 16 SeCurity with Openid COnneCt

564

ConfigureServices method right after the AddCookie method. Here, we set the Authority

property to the URL of the identity provider (which runs on port 5011), and we pass the

ClientId and ClientSecret of the Client we configured in Listing 16-9. We also tell it

to use the Hybrid flow (code id_token) and that it should get the profile claims such as

given_name from the userinfo endpoint which will result in a smaller initial id token.

Listing 16-15. Configuring OpenId Connect

.AddOpenIdConnect(OpenIdConnectDefaults.AuthenticationScheme,

 options =>

{

 options.SignInScheme =

 CookieAuthenticationDefaults.AuthenticationScheme;

 options.Authority = "https://localhost:5011";

 options.ClientId = "BlazorServer";

 options.ClientSecret = "u2u-secret";

 // When set to code, the middleware will use PKCE protection

 options.ResponseType = "code id_token";

 // It's recommended to always get claims from the

 // UserInfoEndpoint during the flow.

 options.GetClaimsFromUserInfoEndpoint = true;

});

 Implementing Authorization in Blazor Server
Before running the application, we should also protect one of our resources; otherwise,

there is no need to authenticate using the identity provider. But first we need to

understand how authentication works in Blazor using the AuthenticationState

and AuthenticationStateProvider classes. The AuthenticationState class allows

access to the current user’s claims with the User property of type ClaimsPrincipal,

and the AuthenticationStateProvider abstracts away how we retrieve the current

AuthenticationState, because the process is different in Blazor Server and Blazor

WebAssembly. So you should always use the AuthenticationStateProvider in

your Blazor components if you want these to work in both Blazor Server and Blazor

WebAssembly. Listing 16-16 contains a nice example of how you do this.

Chapter 16 SeCurity with Openid COnneCt

565

In Blazor Server, the user’s ClaimsPrincipal is stored in the HttpContext.User

property so AuthenticationStateProvider retrieves it there.

Let us update the Index component to show the list of claims of the current user. Add

a new class called Index as the code-beside class (so use the Index.razor.cs filename)

and implement it as in Listing 16-16. Here, we use the AuthenticationStateProvider

received through dependency injection and call its GetAuthenticationStateAsync

asynchronous method. When we receive a non-null AuthenticationState instance, we

set the Claims and UserName properties for use in the component.

Listing 16-16. Using the AuthenticationState in a Component

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Authorization;

using System.Collections.Generic;

using System.Linq;

using System.Security.Claims;

using System.Threading.Tasks;

namespace Blazor.Server.OpenIdConnect.Pages

{

 public partial class Index

 {

 [Inject]

 public AuthenticationStateProvider

 AuthenticationStateProvider { get; set; }

 private IEnumerable<Claim> Claims { get; set; }

 public string UserName { get; set; } = "Unknown";

 protected override async Task OnInitializedAsync()

 {

 AuthenticationState authState =

 await AuthenticationStateProvider

 .GetAuthenticationStateAsync();

 if (authState is not null)

 {

 Claims = authState.User.Claims;

Chapter 16 SeCurity with Openid COnneCt

566

 Claim givenNameClaim =

 authState.User.FindFirst(“given_name”);

 if(givenNameClaim is not null)

 {

 UserName = givenNameClaim.Value;

 }

 }

 }

 }

}

Update the Index component’s markup as in Listing 16-17. Here, we display the

UserName property, and we iterate over each Claim and display it. We also protect the

Index component using the Authorize attribute, so only authenticated users can see it.

Listing 16-17. The Index Component

@page "/"

@attribute [Authorize]

<h1>Hello, world!</h1>

Welcome @UserName

@if(Claims is not null)

{

 foreach(Claim claim in Claims)

 {

 <p>@claim.Type - @claim.Value</p>

 }

}

But wait, there is more. We need routing to check the Authorize attribute, so we

will need to make same changes to routing. In our application, the App component

contains the router. When we want to redirect the user to the identity provider so he or

she can log in, we need to use the AuthorizeRouteView. This templated component has

a NotAuthorized property that allows us to show some UI if the user is not authorized to

view the protected component. Update the App component as in Listing 16-18.

Chapter 16 SeCurity with Openid COnneCt

567

First, we wrap the Router component in a CascadingAuthenticationState component,

which provides the current AuthenticationState as a cascading parameter. This

component is required for the AuthorizeRouteView. In the NotAuthorized property of

the AuthorizeRouteView, we first check if the user has been authenticated. If not, we use

the RedirectToLogin component (to follow) to redirect the user to the identity provider

so he or she can log in. Otherwise, it means that the user tried to access a protected

resource that this user is not allowed to use, so we show some unauthorized UI.

Listing 16-18. Update App Component

<CascadingAuthenticationState>

 <Router AppAssembly="@typeof(Program).Assembly"

 PreferExactMatches="@true">

 <Found Context="routeData">

 <AuthorizeRouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)">

 <NotAuthorized>

 @if (!context.User.Identity.IsAuthenticated)

 {

 <RedirectToLogin />

 }

 else

 {

 <p>

 You are not authorized to access this resource.

 </p>

 }

 </NotAuthorized>

 </AuthorizeRouteView>

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

 </Router>

</CascadingAuthenticationState>

Chapter 16 SeCurity with Openid COnneCt

568

Let us see how we can redirect the user to the identity provider and back. Add a

new component called RedirectToLogin with contents from Listing 16-19. This Blazor

component tells the browser to navigate to the login page. We are running as a Blazor

Server application, so we need to tell the ASP.NET application to perform the login,

which requires a couple of hoops to jump through.

Listing 16-19. Add RedirectToLogin

@inject NavigationManager Navigation

@code {

 protected override void OnInitialized()

 {

 Navigation.NavigateTo(

 $"/login?returnUrl={Uri.EscapeDataString(Navigation.Uri)}");

 }

}

Add a new razor page (NOT a razor component!) and name it Login.cshtml.

Complete its markup as in Listing 16-20 and model as in Listing 16-21. Its major purpose

it to redirect the browser to the identity provider using the OpenId Connect middleware.

The way to do this is to return a Challenge ActionResult, passing the OpenId Connect

option and the redirect URI, so after the user has been successfully authenticated, we

end up at the protected component. When the user has been already authenticated, it

immediately redirects back to the redirectUri.

Listing 16-20. Add the Login.cshtml Razor Page

@page

@model Blazor.Server.OpenIdConnect.LoginModel

@{

}

Listing 16-21. The Login Page’s Model

using Microsoft.AspNetCore.Authentication;

using Microsoft.AspNetCore.Authentication.OpenIdConnect;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

Chapter 16 SeCurity with Openid COnneCt

569

using System.Threading.Tasks;

namespace Blazor.Server.OpenIdConnect

{

 public class LoginModel : PageModel

 {

 public async Task<IActionResult> OnGetAsync(

 string redirectUri)

 {

 // just to remove compiler warning

 await Task.CompletedTask;

 if (string.IsNullOrWhiteSpace(redirectUri))

 {

 redirectUri = Url.Content("~/");

 }

 // If user is already logged in, we can redirect directly...

 if (HttpContext.User.Identity.IsAuthenticated)

 {

 Response.Redirect(redirectUri);

 }

 return Challenge(

 new AuthenticationProperties

 {

 RedirectUri = redirectUri

 },

 OpenIdConnectDefaults.AuthenticationScheme);

 }

 }

}

Let us walk through the authentication process step by step. First, start the

IdentityProvider project; next, start the Blazor.Server.OpenIdConnect project.

Note please do not forget to always start the identityprovider project; the easiest
way with Visual Studio is to set up multiple startup projects.

Chapter 16 SeCurity with Openid COnneCt

570

On the Browser tab for the localhost:5001 URL, open the browser debugger on the

Network tab and navigate to https://localhost:5001 again to get a fresh network

log. You should see Figure 16-6. This shows that visiting the Index page (first line) will

redirect to the login page (second line), which will then cause the middleware to redirect

to the identity provider (third line), which will show its login page (fourth line). Should

your browser immediately show the Index component, you need to clear your cookies

and try again.

Figure 16-6. Redirecting to the Identity Provider

After completing the login process, you will be redirected to the Blazor Server’s

signin-oidc URL which will be handled by the OpenId Connect middleware. This

middleware will convert the identity token into a ClaimsPrincipal and redirect to the

original URI that initiated the login process. The Cookie middleware will serialize the

ClaimsPrincipal into a cookie (actually, it might use multiple cookies because of the

limited length of cookies). The browser then will process the original URI and convert

the cookie into the ClaimsPrincipal and because now the user is authenticated will give

access to the Index component.

Select the signin-oidc URL in the browser’s debugger and scroll down. You will see

that this will return the code and the identity token as in Figure 16-7.

Chapter 16 SeCurity with Openid COnneCt

571

You can inspect the id token by copying its value, open another browser tab on

https://jwt.io, and paste the value as shown in Figure 16-8.

Figure 16-7. Receiving the Code and Id Token

Chapter 16 SeCurity with Openid COnneCt

https://jwt.io

572

Congratulations. You have just added authentication to your Blazor Server

application!

 Using AuthorizeView
Let us add some UI so the user can log in and log out explicitly. Of course, we

should only show the Login link when the user has not yet authenticated and only

show the Logout link otherwise. For this, Blazor comes with the AuthorizeView

templated component, which has three properties – Authorized, NotAuthorized, and

Authorizing – which will render a UI when the user is authorized, not authorized, and in

the process of authorizing. We can use this to modify our navigation menu to either show

a Login link or the normal page links with an additional Logout link as in Listing 16-22.

Do note that the AuthorizeView requires a CascadingAuthenticationState, which we

added in the App component.

Figure 16-8. Using jwt.io to Inspect a Token

Chapter 16 SeCurity with Openid COnneCt

573

Listing 16-22. Modifying the NavMenu Component

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <nav class="flex-column">

 <AuthorizeView>

 <Authorized>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href=""

 Match="NavLinkMatch.All">

 <span class="oi oi-home"

 aria-hidden="true">

 Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 <span class="oi oi-plus"

 aria-hidden="true">

 Counter

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Fetch data

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="logout">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Logout

 </NavLink>

 </Authorized>

Chapter 16 SeCurity with Openid COnneCt

574

 <NotAuthorized>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="login">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Login

 </NavLink>

 </NotAuthorized>

 </AuthorizeView>

 </nav>

</div>

We already have a login razor page, but we still need one for logout. Again, add

a new razor page (NOT a razor component) and name it Logout.cshtml. Update

the LogoutModel as in Listing 16-23. Here, we return a SignOutResult which will

cause the middleware to log out. There are two middlewares involved (Cookie and

OpenIdConnect), so we need to pass both as the authenticationSchemes parameter.

Listing 16-23. The LogoutModel Class

using Microsoft.AspNetCore.Authentication.Cookies;

using Microsoft.AspNetCore.Authentication.OpenIdConnect;

using Microsoft.AspNetCore.Mvc;

using Microsoft.AspNetCore.Mvc.RazorPages;

using System.Threading.Tasks;

namespace Blazor.Server.OpenIdConnect.Pages

{

 public class LogoutModel : PageModel

 {

 public async Task<IActionResult> OnGetAsync()

 {

 // just to remove compiler warning

 await Task.CompletedTask;

 return SignOut(

 OpenIdConnectDefaults.AuthenticationScheme,

Chapter 16 SeCurity with Openid COnneCt

575

 CookieAuthenticationDefaults.AuthenticationScheme);

 }

 }

}

Let us test this, but first comment the Index component’s Authorize attribute as in

Listing 16-24.

Listing 16-24. Remove the Authorize Attribute

@page "/"

@*@attribute [Authorize]

*@

<h1>Hello, world!</h1>

Run the application, and log in. Then click the Logout link which will take you to the

identity server logout page as shown in Figure 16-9.

The problem here is that this page will stay put; now the user has to manually

navigate to the site in order to log in back again. We can change this by setting the

client application’s PostLogoutRedirectUris property in our identity provider as in

Listing 16-25.

Listing 16-25. Setting the PostLogoutRedirectUris Property

public static IEnumerable<Client> GetClients()

=> new List<Client>

{

 new Client

 {

Figure 16-9. The Logout Page

Chapter 16 SeCurity with Openid COnneCt

576

 ...

 RequireConsent = true,

 PostLogoutRedirectUris = new List<string>

 {

 "https://localhost:5001/signout-callback-oidc"

 }

 }

};

When this property is set, IdentityServer will add a hyperlink in its logout page as

shown in Figure 16-10. Clicking this link will take us back to the Blazor Server site.

If you like, you can skip the logout page and immediately redirect to the Blazor

application. Look for the AccountOptions class in the QuickStart folder, and set the

AutomaticRedirectAfterSignOut property to true as in Listing 16-26.

Listing 16-26. Enable Automatic Redirect After Signing Out

public class AccountOptions

{

 public static bool AllowLocalLogin = true;

 public static bool AllowRememberLogin = true;

 public static TimeSpan RememberMeLoginDuration =

 TimeSpan.FromDays(30);

 public static bool ShowLogoutPrompt = true;

 public static bool AutomaticRedirectAfterSignOut = true;

Figure 16-10. IdentityServer4 Showing the LogoutRedirectUri

Chapter 16 SeCurity with Openid COnneCt

577

 public static string InvalidCredentialsErrorMessage =

 "Invalid username or password";

}

 Adding and Removing Claims
Let us add another claim for our users; let’s say we need to know the address of the

user. First, we will need to add a scope to the identity provider, and then we will need

to request this scope in the client. Start by adding the address claim to each user as in

Listing 16-27.

Listing 16-27. Adding an Additional Claim to the Users

public static List<TestUser> GetUsers()

=> new List<TestUser>

{

 new TestUser

 {

 SubjectId = "{223C9865-03BE-4951-8911-740A438FCF9D}",

 Username = "peter@u2u.be",

 Password = "u2u-secret",

 Claims = new List<Claim>

 {

 new Claim("given_name", "Peter"),

 new Claim(JwtClaimTypes.Name, "Peter Himschoot"),

 new Claim("family_name", "Himschoot"),

 new Claim("address", "Melle"),

 }

 },

 new TestUser

 {

 SubjectId = "{34119795-78A6-44C2-B128-30BFBC29139D}",

 Username = "student@u2u.be",

 Password = "u2u-secret",

 Claims = new List<Claim>

 {

Chapter 16 SeCurity with Openid COnneCt

578

 new Claim("given_name", "Student"),

 new Claim(JwtClaimTypes.Name, "Student Blazor"),

 new Claim("family_name", "Blazor"),

 new Claim("address", "Zellik"),

 }

 }

};

Now we need to add a new scope (using an IdentityResource) for address to the

GetIdentityResources method as in Listing 16-28.

Listing 16-28. Adding an IdentityResource for Address

public static IEnumerable<IdentityResource> GetIdentityResources()

=> new List<IdentityResource>

{

 new IdentityResources.OpenId(),

 new IdentityResources.Profile(),

 new IdentityResources.Address(),

};

And we should allow this scope for our client application as in Listing 16-29.

Listing 16-29. Allowing the Address Scope for a Client

public static IEnumerable<Client> GetClients()

=> new List<Client>

{

 ...

 AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 IdentityServerConstants.StandardScopes.Address

 },

 ...

};

Chapter 16 SeCurity with Openid COnneCt

579

Now we can request this claim in our client application by adding the address scope

as in Listing 16-30.

Listing 16-30. Requesting the Address Scope

.AddOpenIdConnect(OpenIdConnectDefaults.AuthenticationScheme,

 options =>

{

 ...

 // We should add mappings for additional claims

 // (not openid and profile)

 options.Scope.Add("address");

});

Running the application will show that the claim has been returned to the client.

We can see this in IdentityServer4’s logging (which should be easy to find in the

IdentityProvider application’s console):

info: IdentityServer4.ResponseHandling.UserInfoResponseGenerator[0]

 Profile service returned the following claim types: given_name name

family_name address

However, we will not find the address claim in the Index component. Why? Because

we need to explicitly map this additional claim using ClaimActions.

Add Listing 16-31 to your Blazor Server Startup’s ConfigureServices. The

MapUniqueJsonKey will retrieve the address from the JWT and create the address claim.

The DeleteClaims method will remove the sid and s_hash claim.

Listing 16-31. Add and Remove Claims with ClaimActions

options.Scope.Add("address");

options.ClaimActions

 .MapUniqueJsonKey("address", "address");

options.ClaimActions

 .DeleteClaims("sid", "s_hash");

Running the application and logging in again (!) will show the address claim.

Chapter 16 SeCurity with Openid COnneCt

580

 Enabling Role-Based Security
Currently, we have claims that allow us to identify the user. We have the user’s name

and address. But what if we would like to protect certain parts of our application so

only certain users can access it? Should we check a long list of user names? No, in this

case, we will define a number of roles, assign these roles to some of our users, and

only allow access when the user has a specific role. This is known as role-based access

control (RBAC).

Start by adding some role claims to each user as in Listing 16-32. Here, Peter will

have the admin role, while Student will have the tester role.

Listing 16-32. Adding User Roles

new TestUser

{

 ...

 Claims = new List<Claim>

 {

 new Claim("given_name", "Peter"),

 new Claim(JwtClaimTypes.Name, "Peter Himschoot"),

 new Claim("family_name", "Himschoot"),

 new Claim("address", "Melle"),

 new Claim("role", "admin"),

 }

},

new TestUser

{

 ...

 Claims = new List<Claim>

 {

 new Claim("given_name", "Student"),

 new Claim(JwtClaimTypes.Name, "Student Blazor"),

 new Claim("family_name", "Blazor"),

 new Claim("address", "Zellik"),

 new Claim("role", "tester"),

 }

}

Chapter 16 SeCurity with Openid COnneCt

581

This also means we need to add a roles scope, so update the GetIdentityResources

method as in Listing 16-33. This also illustrates how we can add a custom

IdentityResource. The displayName property is used during user consent.

Listing 16-33. Adding a Roles Scope

public static IEnumerable<IdentityResource> GetIdentityResources()

=> new List<IdentityResource>

{

 new IdentityResources.OpenId(),

 new IdentityResources.Profile(),

 new IdentityResources.Address(),

 new IdentityResource(name: "roles",

 displayName: "User role(s)",

 userClaims: new List<string> { "role" }),

};

And in our client configuration, we add the roles scope as in Listing 16-34.

Listing 16-34. Adding the Roles Scope

new Client

{

 ClientName = "Blazor Server",

 ...

 AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 IdentityServerConstants.StandardScopes.Address,

 "roles"

 },

 ...

}

All similar to adding the address scope. Guess what we need to do in our Blazor

application? Same steps as for address, but with one additional piece of code as in

Listing 16-35 that declares the “role” claim to be used for RBAC.

Chapter 16 SeCurity with Openid COnneCt

582

Listing 16-35. Declaring the Roles Scope and Role Claim

options.Scope.Add("roles");

options.ClaimActions.MapUniqueJsonKey("role", "role");

options.TokenValidationParameters = new TokenValidationParameters

{

 RoleClaimType = "role"

};

Run the application, and log in again; the user’s role should be shown.

Now we can protect one of our routes. Add the Authorize attribute to the Counter

component as in Listing 16-36. With the Authorize attribute, we can verify if the user has

a certain role.

Listing 16-36. Using the Authorize Attribute for RBAC

@page "/counter"

@attribute [Authorize(Roles = "admin")]

<h1>Counter</h1>

<p role="status">Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">Click me</button>

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

 currentCount++;

 }

}

We can also use the AuthorizeView component to show certain content based on a

user’s role; for example, add Listing 16-37 to the Index component.

Listing 16-37. Using AuthorizeView to Show Additional Content

<AuthorizeView Roles="admin">

Chapter 16 SeCurity with Openid COnneCt

583

 <Authorized>

 Hey, you're an admin!

 </Authorized>

</AuthorizeView>

We can do the same in the NavMenu component as in Listing 16-38 to hide the

Counter component when the user does not have the proper role.

Listing 16-38. Hiding NavLinks in the NavMenu

<AuthorizeView Roles="admin">

 <Authorized>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 Counter

 </NavLink>

 </Authorized>

</AuthorizeView>

Run and log in with a user who has the admin role; you should see the Counter

link in the navigation bar, and it should appear when you click it. Do the same for a

user without the admin role; now there should be no Counter link in the navigation

bar, and even manually modifying the browser’s URL to /counter will show a not

authorized screen.

 Accessing a Secured API
Where are we? We can use OpenId Connect to implement the authentication for our

Blazor Server site, and we can use roles to protect certain sections of our application,

either by writing code using the AuthenticationState or declaratively using the

Authorize and AuthorizeView classes. This is enough when your Blazor Server accesses

data itself. There is one more thing. Your Blazor application might need to access a

protected API running in another application. How do we do this? The answer is of

course more claims!

Chapter 16 SeCurity with Openid COnneCt

584

 Using an Access Token
Access tokens are just ordinary tokens, but they don’t contain information about

the user; they contain information about the client application and what the current

user can do with the API. Because the API is yet another application, both should use

the same identity provider. The client application (Blazor) can then use an OpenId

Connect flow to request an access token from the identity provider and use it to access

the API. Let us look at this process using the OpenId Connect Hybrid flow as shown in

Figure 16-11.

Figure 16-11. API Authorization with OpenId Connect Hybrid Flow

Steps 1–4 are the same as before, and our Blazor Server application receives an

identity token and a code (which we ignored until now). This code can then be used

together with the Blazor Server application’s identifying information to retrieve an

access token (Step 5) from the identity provider. The identity provider will then use the

code to verify which claims it should give to the Blazor Server application (Step 6). Once

our application has an access token, it can send it along with the API request (Step 7)

using a header to the API application, which can then use the claims in the access token

to determine how is should behave.

Let us create an API application and register it with our identity provider. Add a new

ASP.NET Core Web API project and name it WeatherServices. Change its launchSettings

to run HTTPS at port 5005 as in Listing 16-39.

Chapter 16 SeCurity with Openid COnneCt

585

Listing 16-39. Change the API Project’s Port

{

 "$schema": "https://json.schemastore.org/launchsettings.json",

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:7628",

 "sslPort": 44310

 }

 },

 "profiles": {

 "WeatherServices": {

 "commandName": "Project",

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "launchUrl": "swagger",

 "applicationUrl": "https://localhost:5005;http://localhost:5004",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "launchUrl": "swagger",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

Run the API project. By default, it will open the browser and show the Swagger UI as

in Figure 16-12. This will allow you to test the API (which is currently unprotected).

Chapter 16 SeCurity with Openid COnneCt

586

Click the GET button, then click Try It Out, and then Execute. You should see some

forecasts.

Since our client will come from another origin, we also need to enable CORS. Add

Listing 16-40 to the API’s Startup.ConfigureServices method. Here, we allow any

origin because we will use an access token to protect our services.

Listing 16-40. Creating the CORS Policy

public void ConfigureServices(IServiceCollection services)

{

 services.AddControllers();

 services.AddSwaggerGen(c =>

 {

 c.SwaggerDoc("v1", new OpenApiInfo

 {

 Title = "WeatherServices", Version = "v1"

 });

 });

 services.AddCors(options =>

 {

 options.AddPolicy("CorsPolicy",

 builder =>

Figure 16-12. The Swagger UI

Chapter 16 SeCurity with Openid COnneCt

587

 builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader());

 });

}

Now add the CORS middleware to the API project’s middleware as in Listing 16-41.

Listing 16-41. Adding the CORS Middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 app.UseSwagger();

 app.UseSwaggerUI(

 c => c.SwaggerEndpoint("/swagger/v1/swagger.json",

 "WeatherServices v1"));

 }

 app.UseHttpsRedirection();

 app.UseCors("CorsPolicy");

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapControllers();

 });

}

 Registering the API Project with the Identity Provider
Now we are ready to register the WeatherService API client with our identity provider. To

do this, we create an APIScope, so add Listing 16-42 after the GetClients method in the

identity provider’s Config class. This APIScope will be included in the scope claim and is

used to verify if the client has access.

Chapter 16 SeCurity with Openid COnneCt

588

Listing 16-42. Adding an APIScope

public static IEnumerable<ApiScope> GetApiScopes()

 => new List<ApiScope>

 {

 new ApiScope("u2uApi", "U2U API")

 };

We also need to create an ApiResource, so add Listing 16-43 below the

GetApiScopes method.

Listing 16-43. Creating an ApiResource

public static IEnumerable<ApiResource> GetApiResources()

 => new List<ApiResource>

 {

 new ApiResource("u2uApi", "U2U API")

 {

 Scopes = { "u2uApi" }

 }

 };

We can now grant our Blazor Server application access to this API resource by adding

the API scope to the client’s AllowedScopes as in Listing 16-44.

Listing 16-44. Allowing the Client to Access an API

AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 IdentityServerConstants.StandardScopes.Address,

 "roles",

 "u2uApi"

},

Finally, we should invoke the Config.GetApiScopes and Config.GetApiResources

methods as in Listing 16-45.

Chapter 16 SeCurity with Openid COnneCt

589

Listing 16-45. Registering the ApiScopes and ApiResources

public void ConfigureServices(IServiceCollection services)

{

 services.AddIdentityServer()

 .AddInMemoryApiScopes(Config.GetApiScopes())

 .AddInMemoryApiResources(Config.GetApiResources())

 .AddInMemoryIdentityResources(

 Config.GetIdentityResources())

 .AddTestUsers(Config.GetUsers())

 .AddInMemoryClients(Config.GetClients())

 .AddDeveloperSigningCredential();

 services.AddControllersWithViews();

}

 Adding JWT Bearer Token Middleware
A client application will send the access token using an HTTP Authorization

Bearer header, and we need our API project to look for this header and install the

ClaimsPrincipal from the access token. Use NuGet to install the Microsoft.

AspNetCore.Authentication.JwtBearer package in the WeatherServices project.

Now we can register this JWT handling using dependency injection, so add

Listing 16-46 to the API project’s ConfigureServices method. Authentication will

look for the Bearer header, convert the JWT access token into a ClaimsPrincipal,

and then process the request. We need to set the Authority property to the trusted

identity provider’s URL (which in our case uses port 5011), and we use the Audience

property, so set the u2uApi scope to use. Do note that we are hard-coding everything

here; for a real production application, we should read this from configuration.

Listing 16-46. Adding JWT Authentication

services

 .AddAuthentication("Bearer")

 .AddJwtBearer("Bearer", opt =>

 {

 opt.RequireHttpsMetadata = false; // for development purposes, disable

in production!

Chapter 16 SeCurity with Openid COnneCt

590

 opt.Authority = "https://localhost:5011";

 opt.Audience = "u2uApi";

 });

And don’t forget to add the Authentication and Authorization middleware as in

Listing 16-47.

Listing 16-47. Adding the Authentication Middleware

public void Configure(IApplicationBuilder app,

 IWebHostEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 app.UseSwagger();

 app.UseSwaggerUI(

 c =>

 c.SwaggerEndpoint("/swagger/v1/swagger.json",

 "WeatherServices v1"));

 }

 app.UseHttpsRedirection();

 app.UseCors("CorsPolicy");

 app.UseRouting();

 app.UseAuthentication();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>

 {

 endpoints.MapControllers();

 });

}

That’s all for the moment for our API.

Chapter 16 SeCurity with Openid COnneCt

591

 Enabling the Bearer Token in the Client
Our client application should now use the received code to request an access token from

the identity provider and use it in its API requests.

Update the Blazor Server WeatherForecastService as in Listing 16-48. This class

uses the IHttpClientFactory interface to create an HttpClient instance. We do this so

we can configure it to automatically use the access token.

Listing 16-48. The WeatherForecastService

using System;

using System.Net.Http;

using System.Net.Http.Json;

using System.Threading.Tasks;

namespace Blazor.Server.OpenIdConnect.Data

{

 public class WeatherForecastService

 {

 private readonly IHttpClientFactory httpClientFactory;

 public WeatherForecastService(

 IHttpClientFactory httpClientFactory)

 => this.httpClientFactory = httpClientFactory;

 public async ValueTask<WeatherForecast[]> GetForecastAsync(

 DateTime startDate)

 {

 HttpClient httpClient =

 this.httpClientFactory

 .CreateClient(nameof(WeatherForecastService));

 var result =

 await httpClient

 .GetFromJsonAsync<WeatherForecast[]>("weatherforecast");

 return result;

 }

 }

}

Chapter 16 SeCurity with Openid COnneCt

592

We also need to configure dependency injection in the Blazor Server project to give

us an instance of the IHttpClientFactory. The IHttpClientFactory will give us an

HttpClient that will be configured for us to include the access token and which will send

it as a Bearer token to the API.

Proceed by adding the new API scope to our list of scopes as in Listing 16-49.

Listing 16-49. Adding the API Scope to the Client

options.Scope.Add("u2uApi");

Add the IdentityModel.AspNetCore package to the client project. This package

will take care of things like exchanging the code for an access token and attaching

it to the HttpClient request. Now we can add this to dependency injection, so add

Listing 16-50 to the end of the ConfigureServices method of the client project.

Now when the WeatherForecastService creates the HttpClient instance for the

WeatherForecastService through the IHttpClientFactory, it will be configured with

the access token.

Listing 16-50. Add Token Management

services.AddAccessTokenManagement();

services.AddUserAccessTokenHttpClient(

 nameof(WeatherForecastService), null, client =>

 {

 client.BaseAddress = new Uri("https://localhost:5005");

 });

Start the IdentityProvider project, next the WeatherServices project, and finally the

Blazor.Server.OpenIdConnect project. Log out (if you’re still logged in) and log in again.

This will refresh our tokens.

Now we can use the debugger to inspect the ClaimsPrincipal in the

WeatherServices project. Put a breakpoint on the GetForecastAsync method and now

use the client to fetch the forecasts. The debugger should stop, and now we can use the

watch window to inspect the this.User property as in Figure 16-13.

Chapter 16 SeCurity with Openid COnneCt

593

If the results view is empty, you will need to review your code because you forgot

something. You should see the scope: u2uApi claim.

Now we can protect our WeatherForecastController’s Get method by adding the

Authorize attribute as in Listing 16-51.

Listing 16-51. Protecting the WeatherForecastController

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using System.Linq;

namespace WeatherServices.Controllers

{

 [ApiController]

Figure 16-13. The WeatherServices ClaimsPrincipal

Chapter 16 SeCurity with Openid COnneCt

594

 [Route("[controller]")]

 public class WeatherForecastController : ControllerBase

 {

 ...

 public WeatherForecastController(

 ILogger<WeatherForecastController> logger)

 => this._logger = logger;

 [HttpGet]

 [Authorize]

 public IEnumerable<WeatherForecast> Get()

 {

 ...

 }

 }

}

Run everything again; you should be able to retrieve the weather forecasts, but when

you use the Swagger UI, you will get a 401 Undocumented as in Figure 16-14.

Chapter 16 SeCurity with Openid COnneCt

595

 Using Policy-Based Access Control
What if we want to use one or more claims to determine if the user can access a

certain resource? For example, we might only want to allow authenticated users that

live in Belgium to access the forecasts. In that case, we can use policy-based access

control (PBAC).

Policies allow us to combine claims to determine if the user can access a certain

component or API resource. You can even build complex policies that can, for example,

Figure 16-14. Accessing a Protected API with Swagger

Chapter 16 SeCurity with Openid COnneCt

596

check the age of a user by using the birthdate claim. We could accomplish the same just

with roles, but this requires a lot more maintenance of the user’s roles. And we don’t like

maintenance, do we? With PBAC, we need to create a policy instance and then apply

this policy to the protected resource using the Authorize attribute. Let us enhance our

application with this as an example. First, we need to add a “country” claim to each user

as in Listing 16-52.

Listing 16-52. Adding the Country Claim

public class Config

{

 public static List<TestUser> GetUsers()

 => new List<TestUser>

 {

 new TestUser

 {

 SubjectId = "{223C9865-03BE-4951-8911-740A438FCF9D}",

 Username = "peter@u2u.be",

 Password = "u2u-secret",

 Claims = new List<Claim>

 {

 new Claim("given_name", "Peter"),

 new Claim(JwtClaimTypes.Name, "Peter Himschoot"),

 new Claim("family_name", "Himschoot"),

 new Claim("address", "Melle"),

 new Claim("role", "admin"),

 new Claim("country", "Belgium"),

 }

 },

 new TestUser

 {

 SubjectId = "{34119795-78A6-44C2-B128-30BFBC29139D}",

 Username = "student@u2u.be",

 Password = "u2u-secret",

 Claims = new List<Claim>

 {

Chapter 16 SeCurity with Openid COnneCt

597

 new Claim("given_name", "Student"),

 new Claim(JwtClaimTypes.Name, "Student Blazor"),

 new Claim("family_name", "Blazor"),

 new Claim("address", "Zellik"),

 new Claim("role", "tester"),

 new Claim("country", "France"),

 }

 }

 };

Of course, we will also need a scope using an IdentityResource for this as in

Listing 16-53.

Listing 16-53. Adding the Country IdentityResource

public static IEnumerable<IdentityResource> GetIdentityResources()

=> new List<IdentityResource>

{

 new IdentityResources.OpenId(),

 new IdentityResources.Profile(),

 new IdentityResources.Address(),

 new IdentityResource(name: "roles",

 displayName: "User role(s)",

 userClaims: new List<string> { "role" }),

 new IdentityResource(name: "country",

 displayName: "User country",

 userClaims: new List<string> { "country" })

};

And finally, we make this scope available to our client application as in Listing 16-54.

Listing 16-54. Allowing the Country Scope

public static IEnumerable<Client> GetClients()

=> new List<Client>

{

 new Client

 {

Chapter 16 SeCurity with Openid COnneCt

598

 ...

 AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 IdentityServerConstants.StandardScopes.Address,

 "roles",

 "u2uApi",

 "country"

 },

 ...

 }

};

This completes the identity provider. Now we need to retrieve the country scope in

our client application, so add Listing 16-55 to the AddOpenIdConnect method.

Listing 16-55. Requesting the Country Scope in the Client

options.Scope.Add("country");

options.ClaimActions.MapUniqueJsonKey("country", "country");

Next, we should add the policy configuration to the end of the client’s

ConfigureServices method as in Listing 16-56. Here, we add a policy named

FromBelgium, requiring the user to be authenticated and having the country claim set to

BE (which the peter@u2u.be user has).

Listing 16-56. Adding the FromBelgium Policy

services.AddAuthorization(options =>

{

 options.AddPolicy("FromBelgium", policyBuilder =>

 {

 policyBuilder.RequireAuthenticatedUser();

 policyBuilder.RequireClaim("country", "Belgium");

 });

});

Chapter 16 SeCurity with Openid COnneCt

599

We also need to hide the navigation menu to not show the Fetch link. How can we

do this? We have seen the AuthorizeView component which allows us to show content

when the user has been authenticated or when the user has a certain role. We can also

use this to show content when a user passes a certain policy. Modify the NavMenu

component as in Listing 16-57 (just move the Fetch data NavLink to the bottom and

wrap it into an AuthorizeView).

Listing 16-57. Using Policies with the AuthorizeView

<div class="top-row pl-4 navbar navbar-dark">

 Blazor.Server.OpenIdConnect

 <button title="Navigation menu" class="navbar-toggler"

 @onclick="ToggleNavMenu">

 </button>

</div>

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <nav class="flex-column">

 <AuthorizeView>

 <Authorized>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href=""

 Match="NavLinkMatch.All">

 Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="logout">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Logout

 </NavLink>

 </Authorized>

 <NotAuthorized>

Chapter 16 SeCurity with Openid COnneCt

600

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="login">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Login

 </NavLink>

 </NotAuthorized>

 </AuthorizeView>

 <AuthorizeView Roles="admin">

 <Authorized>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 <span class="oi oi-plus"

 aria-hidden="true">

 Counter

 </NavLink>

 </Authorized>

 </AuthorizeView>

 <AuthorizeView Policy="FromBelgium">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true">

 Fetch data

 </NavLink>

 </AuthorizeView>

 </nav>

</div>

@code {

 private bool collapseNavMenu = true;

 private string NavMenuCssClass

 => collapseNavMenu ? "collapse" : null;

Chapter 16 SeCurity with Openid COnneCt

601

 private void ToggleNavMenu()

 {

 collapseNavMenu = !collapseNavMenu;

 }

}

Running the application and logging in as student@u2u.be will not show the link

because this user is from France, while logging in as peter@u2u.be will show the link

since the FromBelgium policy passed. This completes the client.

We want to use this policy with the API project as well, so we could copy this code.

Let us do the proper thing and move the policy into a library project so we can use the

same policy in our Blazor and API projects.

Start by adding a new library project to the solution called Blazor.Shared.

OpenIdConnect. Add the Microsoft.AspNetCore.Authorization package. Now add the

Policies class from Listing 16-58. This class will create a new AuthorizationPolicy

which will check if the user has been authenticated and is from Belgium.

Listing 16-58. The Policies Class

using Microsoft.AspNetCore.Authorization;

namespace Blazor.Shared.OpenIdConnect

{

 public static class Policies

 {

 public const string FromBelgium = "FromBelgium";

 public static AuthorizationPolicy FromBelgiumPolicy()

 => new AuthorizationPolicyBuilder()

 .RequireAuthenticatedUser()

 .RequireClaim("country", "Belgium")

 .Build();

 }

}

Add the shared project as a project reference to API project. Now we can add

this as an authorization policy in the API project’s ConfigureServices method as in

Listing 16-59. Now do the same instead of Listing 16-56 for the client project.

Chapter 16 SeCurity with Openid COnneCt

602

Listing 16-59. Enabling the FromBelgium Policy in the API Project

services.AddAuthorization(options =>

{

 options.AddPolicy(Policies.FromBelgium,

 Policies.FromBelgiumPolicy());

});

In the API project, modify the Authorize attribute on the

WeatherForecastController’s Get method to use this policy as in Listing 16-60.

Listing 16-60. Using a Policy to Protect an API

[HttpGet]

[Authorize(Policy = Policies.FromBelgium)]

public IEnumerable<WeatherForecast> Get()

However, there is one more thing we need to do. The access token will not contain

the user’s country claim by default, and that is why we need to update the ApiResource

to include this claim as in Listing 16-61.

Listing 16-61. Including the Country Claim in the Access Token

public static IEnumerable<ApiResource> GetApiResources()

 => new List<ApiResource>

 {

 new ApiResource("u2uApi", "U2U API")

 {

 // To use user's country claim we need to add it here

 Scopes = { "u2uApi" }, UserClaims = new [] { "country"}

 },

 };

Run all three projects, and log in with the peter@u2u.be user; the Fetch data link

should be shown, and when you click the link, you should get a list of forecasts.

Congratulations. You just completed authentication and authorization for Blazor

Server applications! Now let us look at Blazor WebAssembly in the next chapter.

Chapter 16 SeCurity with Openid COnneCt

603

 Summary
In this chapter, we looked at protecting a Blazor Server application using OpenId

Connect. In our modern world, applications use claims to allow applications to identify

the current user and to protect resources. We then learned about the OpenId Connect

Hybrid flow and used it for authentication, getting an identity token containing user’s

claims. We then used the AuthenticationState class to access these claims. We updated

routing to check the Authorize attribute and used the AuthorizeView component

to conditionally render a UI according to the user’s claims. After this, we looked at

retrieving an access token and used it to protect an API. This allows us to use different

applications with the same Web API, each given different levels of access to our API. All

of this using IdentityServer4 as the identity provider.

Chapter 16 SeCurity with Openid COnneCt

605
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1_17

CHAPTER 17

Securing Blazor
WebAssembly
In the previous chapter, we looked at securing a Blazor Server application using OpenId

Connect with identity and access tokens. Here, we will do the same but for Blazor

WebAssembly. This time, we will use another OpenId Connect flow: Authorization

Code flow with PKCE (pronounced pixie). I do recommend that you read the previous

chapter before this one because it builds on top of some of the topics we saw there, and it

continues with the code example from that chapter.

 Authorization Code Flow with PKCE
When comparing the Authorization Code flow from Figure 17-1 and Hybrid flow, you

will see a lot of similarities. The big difference is that the identity token is only returned

when the client application sends the code to the identity provider. Since the code is sent

using the browser, there is a chance of this code being intercepted by a malicious user

using an “Authorization Code Interception Attack,” so to protect this code, we will use

Proof Key for Code Exchange (PKCE). This is to prevent another party of using the code to

gain an access token.

https://doi.org/10.1007/978-1-4842-7845-1_17#DOI

606

 Understanding PKCE
How does PKCE work? It is all about proving ownership. Imagine the user wants to log in.

The browser will generate a cryptographically random code verifier and then use a code
challenge method to turn the code verifier into a code challenge (Step 1). The code

challenge is then sent to the identity provider together with the code challenge method

(Step 2). The identity provider will then make the user log in (with optional consent),

save the code challenge with code challenge method, and return the code that allows the

token retrieval back to the application (Step 3). The application can then

use the code with the code verifier (Step 4) to prove that it was the client requesting

the code (assuming a third party is unable to retrieve the code verifier from the code

challenge – that is why generally a cryptographic hash method is used because it is

practically impossible to retrieve reverse a hash). After the identity provider checks that

the code verifier and code challenge match by applying the code challenge method to the

code verifier and then comparing the results, it returns the requested tokens. Of course,

this only works over HTTPS; otherwise, figuring out the code verifier is a piece of cake.

Figure 17-1. Authorization Code Flow with PKCE

Chapter 17 SeCuring Blazor WeBaSSemBly

607

 Registering the WASM Client Application
Let’s start by adding authentication to a Blazor WebAssembly application. Start with the

solution from the previous chapter (which you can find in the provided sources should

you want).

 Creating and Examining the Application
Add a new Blazor WebAssembly project called Blazor.Wasm.OpenIdConnect. No need to

choose the Hosted option here, but you need to choose the Individual Accounts option

as in Figure 17-2.

Using the dotnet CLI, you can use the following command:

dotnet new blazorwasm -au Individual -o Blazor.Wasm.OpenIdConnect

Figure 17-2. Creating the Blazor WebAssembly Project

Chapter 17 SeCuring Blazor WeBaSSemBly

608

The Individual Accounts option will automatically add the Microsoft.AspNetCore.

Components.WebAssembly.Authentication package to your project and will also register

a JavaScript library in index.html as in Listing 17-1. This library is used by Blazor to take

care of talking to the identity provider.

Listing 17-1. The Authentication JavaScript Library

<script src="_content/Microsoft.AspNetCore.Components.WebAssembly.

Authentication/AuthenticationService.js"></script>

In the Pages folder, you will also find the Authentication component as in

Listing 17-2 which handles the /authentication/{action} URL. This component

delegates the action to the RemoteAuthenticatorView which takes care of the

OpenIdConnect authentication process.

Listing 17-2. The Authentication Component

@page "/authentication/{action}"

@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action" />

@code{

 [Parameter] public string Action { get; set; }

}

To allow the user to log in, there is also the LoginDisplay component from

Listing 17-3. When the user has been authorized, this will display a Log out button, and

when clicked, it will redirect with the logout action to the Authentication component.

When the user is not authorized, this component displays a Log in link which will take us

to the login action. Using the AuthorizeView component makes this easy.

Listing 17-3. The LoginDisplay Component

@using Microsoft.AspNetCore.Components.Authorization

@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

@inject NavigationManager Navigation

@inject SignOutSessionStateManager SignOutManager

<AuthorizeView>

Chapter 17 SeCuring Blazor WeBaSSemBly

609

 <Authorized>

 Hello, @context.User.Identity.Name!

 <button class="nav-link btn btn-link" @onclick="BeginSignOut">Log out

</button>

 </Authorized>

 <NotAuthorized>

 Log in

 </NotAuthorized>

</AuthorizeView>

@code{

 private async Task BeginSignOut(MouseEventArgs args)

 {

 await SignOutManager.SetSignOutState();

 Navigation.NavigateTo("authentication/logout");

 }

}

The App component is the same as the one in the Blazor Server component which

will redirect us to the login page when the user is not yet authenticated.

Update the applicationUrl in the launchSettings.json file as in Listing 17-4 to

change the port number to 5003 for HTTPS.

Listing 17-4. launchSettings for Blazor.Wasm.OpenIdConnect

{

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:38381",

 "sslPort": 44357

 }

 },

 "profiles": {

 "Blazor.Wasm.OpenIdConnect": {

 "commandName": "Project",

Chapter 17 SeCuring Blazor WeBaSSemBly

610

 "dotnetRunMessages": true,

 "launchBrowser": true,

 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/

debug/ws-proxy?browser={browserInspectUri}",

 "applicationUrl": "https://localhost:5003;http://localhost:5002",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "inspectUri": "{wsProtocol}://{url.hostname}:{url.port}/_framework/

debug/ws-proxy?browser={browserInspectUri}",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

Now we are ready to register this Blazor WASM application in our identity provider.

 Registering the Client Application
Add a new client called BlazorWasm to the Config class in the IdentityProvider project

as shown in Listing 17-5. Here, we specify the client’s name and Id, we choose the

Authorization Code flow with PKCE, and we pass it the redirectUris for our client

application. Finally, we also list the required scopes. Since we first will implement

authentication, we only need the OpenId and Profile scopes. Optionally, you can also

enable client consent, but I left this out for practicality.

Chapter 17 SeCuring Blazor WeBaSSemBly

611

Listing 17-5. Registering the Blazor WASM Client

new Client

{

 ClientName = "BlazorWasm",

 ClientId = "BlazorWasm",

 AllowedGrantTypes = GrantTypes.Code,

 RequirePkce = true,

 RequireClientSecret = false,

 RedirectUris = new List<string>{

 "https://localhost:5003/authentication/login-callback"

 },

 PostLogoutRedirectUris = new List<string> {

 "https://localhost:5003/authentication/logout-callback"

 },

 AllowedCorsOrigins = {

 "https://localhost:5003"

 },

 AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 }

 // RequireConsent = true

}

 Implementing Authentication
In the Blazor Server application, we hard-coded all the options for OpenId Connect;

here, we will use configuration. Look for appsettings.json in the wwwroot and replace it

as in Listing 17-6. Here, we specify the identity provider’s URL in the Authority property,

and we set the remaining properties to the same values as in Listing 17-5.

Chapter 17 SeCuring Blazor WeBaSSemBly

612

Listing 17-6. The Application Settings

{

 "oidc": {

 "Authority": "https://localhost:5011/",

 "ClientId": "BlazorWasm",

 "ResponseType": "code",

 "DefaultScopes": [

 "openid",

 "profile"

],

 "PostLogoutRedirectUri": "authentication/logout-callback",

 "RedirectUri": "authentication/login-callback"

 }

}

Open the Blazor.Wasm.OpenIdConnect project’s Startup class and replace

the configuration section name as in Listing 17-7. This will read all options from

configuration.

Listing 17-7. Binding to the OIDC Configuration

builder.Configuration.Bind("oidc", options.ProviderOptions);

Now we are ready to test our solution. Start the IdentityProvider project and then

your Blazor WASM application. After a little while, your browser should show the Blazor

application as shown in Figure 17-3 with a Log in link in the top right corner.

Chapter 17 SeCuring Blazor WeBaSSemBly

613

Click the Log in link and then complete the login procedure with a registered user,

for example, peter@u2u.be and password u2u-secret. After this, the Blazor application

will display the user’s name as in Figure 17-4.

Figure 17-3. The Blazor Application Before Logging In

Chapter 17 SeCuring Blazor WeBaSSemBly

614

 Customizing the Login Experience
There are still a couple of things we can do. Let us first remove the alert in Listing 17-8

from the Index component warning us about the need to configure our provider details.

Since authentication works, we don’t need this anymore.

Listing 17-8. Remove the Provider Details Alert

<div class="alert alert-warning" role="alert">

 Before authentication will function correctly, you must configure your

provider details in <code>Program.cs</code>

</div>

Next, we can customize the RemoteAuthenticatorView. This has a series of

RenderFragment properties that allow you to display a UI during the process of logging in

and out. Listing 17-9 shows a couple of simple examples.

Figure 17-4. The Blazor Application After Logging In

Chapter 17 SeCuring Blazor WeBaSSemBly

615

Listing 17-9. Customizing the Login and Logout Process

@page "/authentication/{action}"

@using Microsoft.AspNetCore.Components.WebAssembly.Authentication

<RemoteAuthenticatorView Action="@Action">

 <LoggingIn>

 <p>Logging in...</p>

 </LoggingIn>

 <LogInFailed>

 <p>Login failed.</p>

 </LogInFailed>

 <LogOutSucceeded>

 <p>You have successfully logged out.</p>

 </LogOutSucceeded>

</RemoteAuthenticatorView>

@code {

 [Parameter] public string Action { get; set; }

}

Congratulations! You have just completed the process of authentication with Blazor

WASM. Here, most of the code was generated by the application’s template, so this was

not a lot of work!

 Accessing a Protected API
Time to implement the Fetch data link. Currently, this uses some sample data, and of

course, we want to access this data from the WeatherService API just like in the previous

chapter.

 Fetching Data from the WeatherService API
Start by installing the Microsoft.Extensions.Http package. Add a new folder called

Services to the Blazor.Wasm.OpenIdConnect project, and inside it, add a new

WeatherForecastService class as in Listing 17-10. Just like with Blazor Server, this uses

an IHttpClientFactory instance to create the configured HttpClient.

Chapter 17 SeCuring Blazor WeBaSSemBly

616

Listing 17-10. The WeatherService Class

using System;

using System.Net.Http;

using System.Net.Http.Json;

using System.Threading.Tasks;

using static Blazor.Wasm.OpenIdConnect.Pages.FetchData;

namespace Blazor.Wasm.OpenIdConnect.Services

{

 public class WeatherForecastService

 {

 private readonly IHttpClientFactory httpClientFactory;

 public WeatherForecastService(

 IHttpClientFactory httpClientFactory)

 => this.httpClientFactory = httpClientFactory;

 public async ValueTask<WeatherForecast[]>

 GetForecastAsync(DateTime startDate)

 {

 HttpClient httpClient =

 this.httpClientFactory

 .CreateClient(nameof(WeatherForecastService));

 WeatherForecast[] result =

 await httpClient

 .GetFromJsonAsync<WeatherForecast[]>("weatherforecast");

 return result;

 }

 }

}

Now we are ready to configure dependency injection, so add Listing 17-11 to the

client project’s Startup.ConfigureServices method.

Chapter 17 SeCuring Blazor WeBaSSemBly

617

Listing 17-11. Configuring Dependency Injection

builder.Services

 .AddHttpClient<WeatherForecastService>(

 client =>

 client.BaseAddress = new Uri("https://localhost:5005")

);

builder.Services.AddSingleton<WeatherForecastService>();

Append Listing 17-12 to your _Imports.razor.

Listing 17-12. Adding the Services Namespace

@using Blazor.Wasm.OpenIdConnect.Services

Update the FetchData component as in Listing 17-13 to use the

WeatherForecastService.

Listing 17-13. The FetchData Component Using the WeatherForecastService

@page "/fetchdata"

@inject WeatherForecastService weatherService

...

@code {

 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()

 {

 forecasts =

 await weatherService.GetForecastAsync(DateTime.Now);

 }

 public class WeatherForecast

 {

 ...

 }

}

Chapter 17 SeCuring Blazor WeBaSSemBly

618

First, let us see if all of this works by first removing the Authorize attribute from the

WeatherForecastController.Get method. Run the IdentityProvider, WeatherService,

and Blazor.Wasm.OpenIdConnect projects. Click the Fetch data link, and you should get

the forecasts from the WeatherService. Nice!

 Using the AuthorizationMessageHandler
Add the Authorize attribute again, now without a policy like in Listing 17-14. Later, we

will enable the policy.

Listing 17-14. Protecting the WeatherService API

[HttpGet]

[Authorize()]

// [Authorize(Policy = Policies.FromBelgium)]

public IEnumerable<WeatherForecast> Get()

However, clicking the Fetch data link will not work! We need to retrieve an access

token and pass it using a Bearer header to the WeatherService API which requires the

u2uApi scope. So first we need to tell IdentityService4 to grant access to this scope by

adding it to the list of AllowedScopes as in Listing 17-15.

Listing 17-15. Adding the Scope to the Client Configuration

AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 "u2uApi",

}

We should also add this to the client configuration as in Listing 17-16.

Listing 17-16. Requesting the u2uApi Scope in Configuration

{

 "oidc": {

 "Authority": "https://localhost:5011/",

 "ClientId": "BlazorWasm",

 "ResponseType": "code",

Chapter 17 SeCuring Blazor WeBaSSemBly

619

 "DefaultScopes": [

 "openid",

 "profile",

 "u2uApi"

],

 "PostLogoutRedirectUri": "authentication/logout-callback",

 "RedirectUri": "authentication/login-callback"

 }

}

When accessing the API, we will need to attach the proper access token. For this, we

need to use the AuthorizationMessageHandler. With an HttpMessageHandler, you can

configure the request, so here we retrieve the AuthorizationMessageHandler and make it

attach the access token for the u2uApi scope. Update dependency injection by adding an

HttpMessageHandler as in Listing 17-17 which will do just that. We do need to pass the base

URI to which access tokens need to be attached by setting the authorizedUrls property.

Listing 17-17. Adding the AuthorizationMessageHandler

builder.Services

 .AddHttpClient<WeatherForecastService>(

 client

 => client.BaseAddress = new Uri("https://localhost:5005")

)

 .AddHttpMessageHandler(handlerConfig =>

 {

 AuthorizationMessageHandler handler =

 handlerConfig.GetService<AuthorizationMessageHandler>()

 .ConfigureHandler(

 authorizedUrls: new[] { "https://localhost:5005" },

 scopes: new[] { "u2uApi" }

);

 return handler;

 });

Run your solution again. Now you should be able to access the WeatherService API.

Whohoo!

Chapter 17 SeCuring Blazor WeBaSSemBly

620

 Adding Client-Side Authorization
Should the user be able to click the Fetch data link when they’re not authorized? Of

course, not. First, we should protect the FetchData component. Add the Microsoft.

AspNetCore.Authorization namespace to your _Imports.razor file as in Listing 17-18.

Listing 17-18. Using Microsoft.AspNetCore.Authorization

@using Microsoft.AspNetCore.Authorization

Now apply the Authorize attribute to the FetchData component as in Listing 17-19.

Listing 17-19. Protecting the FetchData Component

@page "/fetchdata"

@inject WeatherForecastService weatherService

@attribute [Authorize]

Any unauthorized user will now be redirected to the login page when they click the

Fetch data link in the navigation menu. I do think it is better to hide the link using the

AuthorizeView in the NavMenu component as in Listing 17-20.

Listing 17-20. Hiding the Fetch data Link

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <nav class="flex-column">

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">

 <span class="oi oi-home"

 aria-hidden="true"> Home

 </NavLink>

 </div>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 <span class="oi oi-plus"

 aria-hidden="true"> Counter

 </NavLink>

 </div>

Chapter 17 SeCuring Blazor WeBaSSemBly

621

 <AuthorizeView>

 <Authorized>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Fetch data

 </NavLink>

 </div>

 </Authorized>

 </AuthorizeView>

 </nav>

</div>

Run the solution again. When you’re not logged in, the Fetch data link should be

hidden, and then when you log in, it will show.

Again, congratulations are in order. You added support for calling a protected

API. The next thing we will do is to use roles to protect our API even further.

 Using Role-Based Security
Time to add some role-based access control. We can assign role claims to users and then

use a role to give certain users access to components and resources, and others will be

denied access although they have been authenticated. Here, we will add a component to

review the user’s claims, and then we will use the user’s role to protect it.

 Creating the Claims Component
Let us start by adding a route to view the user’s claims. Add Listing 17-21 to the _Imports.

razor file. This will give us access to the Claim type.

Listing 17-21. Using System.Security.Claims

@using System.Security.Claims

Now add a new Blazor component called Claims and modify it to match

Listing 17-22. Here, we inject the AuthenticationStateProvider which allows us to

access the AuthenticationState. In the OnInitializedAsync method, we call the

Chapter 17 SeCuring Blazor WeBaSSemBly

622

GetAuthenticationStateAsync method and use it to fill the UserName and UserClaims

properties (just like in the previous chapter).

Listing 17-22. Listing the User’s Claims

@page "/claims"

@inject AuthenticationStateProvider AuthenticationStateProvider

@attribute [Authorize]

<h3>Claims</h3>

<h2>Hi @UserName</h2>

@foreach(var claim in UserClaims)

{

 <p>@claim.Type - @claim.Value</p>

}

@code {

 private IEnumerable<Claim> UserClaims { get; set; }

 private string UserName { get; set; } = "Unknown";

 protected override async Task OnInitializedAsync()

 {

 AuthenticationState authState =

 await AuthenticationStateProvider.GetAuthenticationStateAsync();

 if (authState is not null)

 {

 UserName = authState.User.Identity.Name;

 UserClaims = authState.User.Claims;

 }

 }

}

Now add a new navigation link to the NavMenu component as in Listing 17-23.

We only give access to users that have been authenticated, so we wrap this inside an

AuthorizeView we added before to protect the Fetch data link.

Chapter 17 SeCuring Blazor WeBaSSemBly

623

Listing 17-23. Adding the Claims Link to the NavMenu

<AuthorizeView>

 <Authorized>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Fetch data

 </NavLink>

 </div>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="claims">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Claims

 </NavLink>

 </div>

 </Authorized>

</AuthorizeView>

Run your solution (IdentityProvider, WeatherServices, and Blazor.Wasm.

OpenIdConnect). After logging in with peter@u2u.be, you should see the user’s claims

as in Figure 17-5.

Chapter 17 SeCuring Blazor WeBaSSemBly

624

Hmm. No roles claim. Let us fix this.

 Enabling RBAC
Let us first look at the IdentityProvider project’s Config.GetClients method. As you can

see, this client does not have the roles scope in the AllowedScopes property. Add it as in

Listing 17-24.

Listing 17-24. Adding the Roles Scopes to the Client

new Client

{

 ClientName = "BlazorWasm",

 ...

Figure 17-5. The User’s Claims

Chapter 17 SeCuring Blazor WeBaSSemBly

625

 AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 "u2uApi",

 "roles",

 }

 // RequireConsent = true

}

Our client should also require the roles scope, so update the appsettings.json from

the Blazor.Wasm.OpenIdConnect project as in Listing 17-25.

Listing 17-25. Updating the appsettings.json File

{

 "oidc": {

 "Authority": "https://localhost:5011/",

 "ClientId": "BlazorWasm",

 "ResponseType": "code",

 "DefaultScopes": [

 "openid",

 "profile",

 "u2uApi",

 "roles"

],

 "PostLogoutRedirectUri": "authentication/logout-callback",

 "RedirectUri": "authentication/login-callback"

 }

}

Run again. Now you should see the role claim (if not, try logging out and then log in

again since the claims are stored in a cookie and you need to refresh that cookie).

Viewing a user’s claims should only be possible for people who have sufficient rights

to do so, so let us protect the Claims route so only users with an admin role can see it.

This is quite simple: update the Authorize attribute to include the admin role as in

Listing 17-26.

Chapter 17 SeCuring Blazor WeBaSSemBly

626

Listing 17-26. Requiring the Admin Role

@attribute [Authorize(Roles = "admin")]

Run again. However, you will not be allowed to access the Claims component as

shown in Figure 17-6. Why?

 Promoting the Role Claim
Which claim represents the user’s role? Using claims is very flexible, so you could use any

claim. That is why we need to tell the OIDC middleware which claim represents the role, so

in the Blazor project, we need to set the userOptions.RoleClaim property as in Listing 17-27.

Listing 17-27. Specifying the Role Claim

builder.Services.AddOidcAuthentication(options =>

{

 builder.Configuration.Bind("oidc", options.ProviderOptions);

Figure 17-6. Unauthorized User

Chapter 17 SeCuring Blazor WeBaSSemBly

627

 // Explain which claim contains the roles of the user

 options.UserOptions.RoleClaim = "role";

});

Run again. Log in with peter@u2u.be who has the admin role. You should be

able to see the Claims route. Log in again with student@u2u.be, and you will see the

unauthorized message. Maybe we should hide the Claims link when the user is not

an admin? Update the NavMenu component by wrapping the claims NavLink with a

<AuthorizeView Roles="admin"> as in Listing 17-28 which should take care of that.

Listing 17-28. Using AuthorizeView with Roles

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <nav class="flex-column">

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="" Match="NavLinkMatch.All">

 <span class="oi oi-home"

 aria-hidden="true"> Home

 </NavLink>

 </div>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 <span class="oi oi-plus"

 aria-hidden="true"> Counter

 </NavLink>

 </div>

 <AuthorizeView>

 <Authorized>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Fetch data

 </NavLink>

 </div>

 </Authorized>

 </AuthorizeView>

 <AuthorizeView Roles="admin">

Chapter 17 SeCuring Blazor WeBaSSemBly

628

 <Authorized>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="claims">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Claims

 </NavLink>

 </div>

 </Authorized>

 </AuthorizeView>

 </nav>

</div>

 Using Policy-Based Access Control
Let us change our mind a little and decide that forecasts can only be seen by users with

the country claim set to Belgium. For this, we will reuse the FromBelgium policy we

created in the previous chapter. First, we need to enable the country scope in both the

identity provider project and the Blazor project.

 Updating Scopes
Update the GetClients method in the IdentityProvider project by adding an additional

scope to the AllowedScopes property as in Listing 17-29.

Listing 17-29. Adding the Country Scope to the Identity Provider

AllowedScopes = {

 IdentityServerConstants.StandardScopes.OpenId,

 IdentityServerConstants.StandardScopes.Profile,

 "u2uApi",

 "roles",

 "country"

}

Update the Blazor project’s appsettings.json as in Listing 17-30.

Chapter 17 SeCuring Blazor WeBaSSemBly

629

Listing 17-30. Adding the Country Scope to the Blazor Client.

{

 "oidc": {

 "Authority": "https://localhost:5011/",

 "ClientId": "BlazorWasm",

 "ResponseType": "code",

 "DefaultScopes": [

 "openid",

 "profile",

 "u2uApi",

 "roles",

 "country"

],

 "PostLogoutRedirectUri": "authentication/logout-callback",

 "RedirectUri": "authentication/login-callback",

 }

}

If you like, you can run the solution again to verify that you got the country claim.

 Adding Policies
Time to add the FromBelgium policy to your Blazor WASM project. Add the

Blazor.Shared.OpenIdConnect project as a project reference to the Blazor.Wasm.

OpenIdConnect project. Then add Listing 17-31 to the end of Program.Main, but before

await builder.Build().RunAsync();. This will enable the FromBelgium policy in our

client project.

Listing 17-31. Enabling Policy Authorization

builder.Services.AddAuthorizationCore(options =>

{

 options.AddPolicy(Policies.FromBelgium,

 Policies.FromBelgiumPolicy());

});

Chapter 17 SeCuring Blazor WeBaSSemBly

630

Now enable this policy in the WeatherService API. We did most of the work in the

previous chapter, so we only need to protect the WeatherForecastController.Get

method using the FromBelgium policy as in Listing 17-32.

Listing 17-32. Using a Policy to Protect an API

[Authorize(Policy = Policies.FromBelgium)]

public IEnumerable<WeatherForecast> Get()

Run your project and log in with peter@u2u.be. You should be able to access the

forecasts because this user has the country claim with value Belgium. Now try again with

user student@u2u.be whose country claim has a different value. You will get an error.

You can review this error by opening the browser’s debugger, and on the console tab, just

like in Figure 17-7, you should see status code 403 (Forbidden).

Again, we can prevent users from accessing this resource by hiding the Fetch data

link in the NavMenu as in Listing 17-33.

Listing 17-33. Hiding the NavLink

<AuthorizeView Policy="FromBelgium">

 <Authorized>

 <div class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Fetch data

 </NavLink>

 </div>

 </Authorized>

</AuthorizeView>

Figure 17-7. Accessing the API with the Wrong Claims

Chapter 17 SeCuring Blazor WeBaSSemBly

631

 Summary
In this chapter, we used OpenId Connect to protect a Blazor WebAssembly project.

We configured our identity provider for this application and then went on to use

authentication. Then we used the AuthorizationMessageHandler to attach an access

token so we can invoke a protected API. We also used role-based access control and

policy-based access control to protect some of our components and resources.

Chapter 17 SeCuring Blazor WeBaSSemBly

633
© Peter Himschoot 2022
P. Himschoot, Microsoft Blazor, https://doi.org/10.1007/978-1-4842-7845-1

Index

A
Access tokens, 584
AccountOptions class, 576
Actions, 435
AddCookie method, 564
AddLineSegment method, 462
AddOpenIdConnect method, 598
AddSegments method, 461
AddSigningCredentials method, 557
AddSingleton, 206
AddTransient, 207
Ahead-Of-Time (AOT), 535
AngleSharp Diffing library, 345
AnimalSelected method, 187, 189
AnimalSelector component, 190
AppFeature class, 439
ASP.NET application, 568
ASP.NET Core, 233

PizzasController, 236
service, 233
URI, 236

ASP.NET Core MVC, 51
Asynchronous communication, 268
Asynchronous JavaScript and XML

(Ajax), 2
Asynchronous methods, 133, 134
Asynchronous re-renders, 343–345
async pattern, 397
Authentication, 547
AuthenticationStateProvider class, 564
Authorization, 547
Authorization Code flow, 605

AuthorizationMessageHandler, 619
AuthorizeView, 620
AuthorizeView templated component, 572
Azure Data Studio, 251

B
Blazor, 51

browser’s memory/circuit, 422
browser storage, 433
definition, 421
local storage, 422–426
Razor effects, 443–448
Redux, 434
server, 426–429, 431
URL, 432

Blazor application
hosted application

deployment models, 536
Microsoft Azure, 537, 539, 540,

542, 543
publishing application, 545, 546
publish profile, 543, 545

WebAssembly
base tag, 532, 533
creating website, 523
fixing GitHub 404s, 534
GitHub, 521, 522
Jekyll, disabling, 533, 534
simple site, GitHub, 524
site, 535
WASM project, 525–529, 531

https://doi.org/10.1007/978-1-4842-7845-1#DOI

634

Blazor bootstrap process, 27
Blazor.Communication.Client project, 264
Blazor.Communication.Shared

project, 263
Blazor components, 99, 408

add item, VS, 101, 102
Alert component, 103

@ChildContent, 103, 104
@if, 102
Index.razor, 104
<div> element, 102
RenderFragment, 103
ToggleAlert method, 104, 105
VS IntelliSense, 103, 104

@code, 99
ComponentBase class, 99
extensions, 102
index page, 100
simple alert, 101
SurveyPrompt, 100, 101

Blazor error boundaries, 165, 167
Blazor project

client project
App component, 29, 30
div tag, 28
Index component, 30
index.html, 28
<script> element, 28
main method, 29

Counter screen, 22
create project, 18, 19
dotnet CLI, 17, 18
Fetch data screen, 22, 23
home page, 20, 21
Index component, 21
layout components, 30, 31
prerequisites, 13
run, VSC, 20

server project
ASPNETCORE_ENVIRONMENT, 25
Configure section, 25
launchSettings.json file, 25, 26
Middleware, 25
Program.cs., 24, 25
UseDeveloperExceptionPage

Middleware, 25
shared project, 27
SPA, 21
SurveyPrompt, 21
templates, 16, 17
VS, 13, 14
VSC, 15

Blazor routing
base tag, 368, 369
hamburger button, 363
navigation, 366, 368
NavLink component, 363, 364
NavMenu component, 361, 362
Router installation, 360, 361
Route template, 364–366
Toggle button, 363

Blazor Server
benefits/drawbacks, 11, 12
render tree, 10
runtime model, 10, 11

Blazor Server application, 489, 562, 611
API, 615
login, 614

Blazor Server component, 609
Blazor Server experiment, 213, 214
BlazorWasm, 610
Blazor WebAssembly, 10, 52, 211, 212,

506, 607
Bootstrap, 103
Bootstrap 4, 70
Browser, 1

INDEX

635

Bugs
coding, 290
fixing, 289
integration, 291
post release, 292
requirements, 290
testing, 291

bUnit tests
Blazor components, 303
cascading parameters, 325, 327
component interaction

Act phase, 310
Assert phase, 310
Counter component, 308
library, 309
MouseTracker component, 309
MouseTrackerShould

class, 309–311
Counter component, 304
CounterShould class, 304, 305
definition, 303
Find method, 307
MarkupMatches method, 306, 307
passing parameters

compiler, 313
IntelliSense, 313
message, 314
nameof to Pass Property Names,

314, 315
string-based programming, 314
Theory to Test Different Cases,

313, 314
TwoWayCounter component,

311, 312
TwoWayCounterShould test class,

312, 313
razor

ChildContent, 341, 342

_Imports.razor file, 339
MarkupMatches method, 339
passing parameters, 340, 341
RCounterShould component, 339
requirements, 339
RTemplatedListShould

component, 342
writing tests, 339, 340

RenderFragment
AddChildContent multiple

times, 319
Add<ListItem, string>, 325
Alert component, 317
AlertShould class, 317, 318
ChildContent, 318, 319
Enumerable.Repeat method, 322
ItemContent parameter, 322, 323
lambda function, 325
ListItem component, 324
RenderFragment<TItem>, 324, 325
RenderItemsCorrectly method, 324
TemplatedList component, 320, 321
TemplatedListShould class, 321, 322
TwoWayCounter, 319

RenderParagraphCorrectly
WithInitialZero
method, 307

semantic comparison, 306, 307
test output, 305–308
two-way data binding/events

FluentAssertions, 315
Increment property, 316
SetParametersAndRender

method, 316
testing, 315, 316

and xUnit, 305
ByteString.CopyFrom method, 473

INDEX

636

C
Caller property, 459
CascadingAuthentication

State component, 567
Cascading Properties

changes, 145
CustomerEntry component, 145,

147, 148
customer parameter, 147, 148
EditContext property, 147
EditContext.NotifyField

Changed method, 146
InputWatcher class, 146, 147
two-way data binding, 148

Cascading values and parameters
ambiguities, 122
CascadingParameter attribute, 121
CascadingValue component, 120
CounterData class, 119, 122
GrandChild component, 121, 122
GrandMother component, 120, 121
INotifyPropertyChanged, 122

C# generics, 159
Changing detection

add button, 67, 68
Auto Increment, 68
Blazor runtime, 69
currentCount, 68
discards, 68
lambda function, 68
re-render, 68
StateHasChanged method, 68, 69
.NET Timer, 69

Child component, 118
Circuit, 208
Claims based security, 547
ClaimsPrincipal instance, 551

Code challenge method, 606
Code First, 239
Code-first migration, 239, 246
Command Line Interface (CLI), 16
Component library, 168

add components, 169, 170
create, 168, 169
refer, 170
static resources, 172
using, 170, 172

ComponentMetaData class, 187
Component under test, 305
ConfigurationExtensions class, 487
Configure method, 234, 474
ConfigureServices method, 242, 243, 429,

459, 489, 503, 554, 564, 589, 592,
598, 601

ConsoleOrderService class, 286
Content negotiation, 230
Context argument, 157
Context parameter, 157
CORS middleware, 587
CounterLocalStorage component, 424
Cross-Origin Requests, 428
CRUD operations, 229
CultureController class, 502
CultureInfo class, 486
CultureInfo instances, 484
CurrentCount property, 392
CurrentCulture property, 486

D
Database, 197
Database-First, 239
Data binding, 51

one-way (see One-way data binding)
two-way (see Two-way data binding)

INDEX

637

Data Transfer Objects (DTO), 70
Debugging client-side Blazor

VS
IncrementCount method, 32, 33
launchSettings.json File, 32
Locals debugger window, 33

VSC
breakepoint, 34, 35
inspecting variables, 35, 36
JavaScript Preview Debugger, 34
WASM Debugging Extension, 34

DeleteClaims method, 579
Dependency injection, 197, 399

adding, 201
constructor, 202
property, 203

Dependency Inversion, 197, 198, 201
configure, 204
using, 199

Document Object Model (DOM), 51,
352, 389

Don’t Repeat Yourself (DRY), 300, 319
Dotnet-ef tool, 246, 247
DotNet.invokeMethod, 396
DotNet.invokeMethodAsync function,

396, 419
DotNetObjectRef, 396, 397
drawLine method, 455
Dumb and Smart Components, 382
DynamicComponent component, 182, 187
Dynamic page, 351

E
EcmaScript, 2
Eich, B., 351
ElementReference, 393
Entities, 239

Entity Framework Core (EF), 238
code-first migration, 246, 247, 249
database connection, 244
generate database, 250–252

Event handling
arguments, 57
data binding, 57
IncrementCount() method, 57

Extension methods, 270

F
Factory, 375
Fake implementations

dependencies
fake objects, 330, 331
FetchData component, 328, 329
FetchDataShould class, 329
output, 330
runtime, 329

mock
Assert phase, 333
definition, 333
dummies, 333
FetchData component, 334
FetchDataShould class, 335
ILogger, 334, 335
IWeatherService, 336
MOQ, 336, 338
testing, 333, 334
UseWeatherService, 336

stubs
definition, 331
FetchData component, 332, 333
IWeatherService, 331, 332
MOQ, 337
testing, 331, 332
UseWeatherService, 332

INDEX

638

FetchData component, 155, 161, 264,
266, 334

FetchDataResultAction, 446
FindFirst method, 551
Flux, 435
Fluxor

adding action, 441
Blazor, 438–440
creating store, 437
definition, 436
implementing reducer, 441–443

FocusAsync method, 402
ForAddress method, 477
ForecastGrpcService, 475
Forecasts property, 445
Framework-dependent deployment, 536
FromDateTime method, 473
FromRoute/FromBody attribute, 428

G
Generic type, 153
GetAllSegments method, 458, 461
GetAsync method, 433
GetAuthenticationStateAsync

method, 622
GetClients method, 556, 587
getContext method, 455
GetForecastAsync method, 475, 592
getForecasts method, 469, 470, 472,

473, 475
GetFromJsonAsync method, 269, 270
GetIdentityResources method, 556,

578, 581
GetLocalizationOptions method, 488
GetMeasurementsPage method, 181
GetMenu method, 276
GetPizzas method, 237, 254, 256

GetRequiredService method, 215
GetUsers method, 555
Git, 521
GitHub, 146, 521
Globalization, 484, 506
Global scope, 389
Google Maps, 2
Grid templated component, 155
gRPC, 465

client project
enabling client, 477
ForecastGrpcService, 475, 477
packages, 475
updating FetchData

component, 478
definition, 465
IDL, 466
pros/cons, 465, 466
protocol buffers, 466
proto files, network interchange

installing, 467, 468
service contract, 469–471

REST, 479–481
server implementation, 472–475

H
HandleAsync method, 447
HardCodedMenuService class, 221, 275
HasConversion<string>() method, 241
Hello World, 292
Hot reload, 36

NET CLI, 36, 37
VS, 37

HttpClient class, 266, 269
HttpClientJsonExtensions class, 270
HTTP headers, 228, 230
HTTP Status Codes, 229

INDEX

639

hubConnection’s SendSegments
method, 462

Hybrid flow, 551, 552
Hypertext Transfer Protocol (HTTP),

227, 228

I
IAsyncDisposable interface, 463
Identity provider, 548, 553

access token, 591, 592
adding clients, 556
adding login, 558
API, 587, 588
JWT, 589

IdentityServer4, 553, 557
IDisposable, 133
IIS, 24
IJSInProcessRuntime, 390
IJSRuntime instance, 390, 404
Image property, 473
IncrementCounter method, 431, 442, 443
Init method, 404
InitSegments method, 459, 461
@inject, 203
InsertOrder method, 285
InsertPizza method, 255
Integrated development environments

(IDE), 13
Integration tests, 293
Interface Definition Language (IDL), 466
Internationalization, 483
Internet Information Services (IIS), 536
Inversion-of-Control Container

(IoCC), 202
InvokeAsync<T> method, 390, 404
invokeMethodAsync function, 397, 419
IPrincipal interface, 551

IsLoading property, 445, 446
Isolation frameworks, 336
ItemList component, 508

J
JavaScript, 351, 389

C#
glue functions, 389
Interop, 390–392
.NET IJSRuntime, 390
passing reference, 393–395

Interop, local storage service,
398, 400–402

modules, 403–405
.NET methods, calling, 395–398

JavaScript Object Notation (JSON),
230, 231

jQuery, 51
JSInterop Blazor application, 403
JSInvokable attribute, 395, 419
JSON serialization, 273, 281, 389, 395
JsonSerializerOptions, 273
JSON Web Token (JWT), 549
JSRuntime, 398, 401
Just-In-Time (JIT), 3

K
Kestrel, 24

L
Lambda Functions, 58
Language picker, 500, 501, 505

adding users, 512
MainLayout, 516, 517
markup, 514

INDEX

640

Layout components, 352
configuration

App.razor, 355, 356
ErrorLayout, 355, 357
ErrorLayout.razor.css, 356
RouteView, 355

LayoutComponentBase, 352
MainLayout, 354
MainLayout.razor, 353
setting

_Imports.razor, 358
@layout, 357, 358
MainLayoutRight, 357
reverse, 357, 358

Lazy loading
assembly

App.razor, 372, 373
BlazorWebAssemblyLazyLoad, 371
dependency injection, 373
loading, 372
Navigating UI, 373, 374
OnNavigate method, 372
OnNavigateAsync, 372
runtime error, 372

dependencies
FetchData component, 374, 376
IWeatherServiceFactory, 375–377
OnNavigate method, 374, 375
WeatherService class, 375

libraries, 369–371
Life Cycle Hooks

asynchronous methods, 133, 134
cleanup, 133
IDisposable, 133
LifeCycle component

Blazor runtime, 126
code, 123
FetchData component, 128

@implements syntax, 125
Index component, 127
markup, 125
OnParametersSet method, 126, 127
output, 126
process, 127
SetParametersAsync method,

126, 127
ShouldRender method, 128

LifeCycle component
code, 124, 125

OnAfterRender method, 132
OnAfterRenderAsync method, 132
OnInitialized, 129, 130
OnInitializedAsync, 129, 130
OnParametersSet, 130, 131
OnParametersSetAsync, 130, 131
SetParametersAsync method, 128, 129
ShouldRender method, 131, 132

Lifetime dependency, 209
ListView2 component, 164
Loading UI, 278
Locale, 483
Localization, 483
Localized version

first resource file, 494, 495
resource lookup, 498, 499
SurveyPrompt, 496, 497

localizer.GetString method, 493
localStorage service, 405
LocalStorage service, 389, 400
<base/> element, 368

M
MapBox, 409
MapControllers method, 235
Mars Climate Orbiter, 290

INDEX

641

MenuService service, 276
MenuService Class, 275, 284
MicrosoftBlazorBook, 522
Microsoft.Extensions.Localization

namespace, 492
Mock, 333
Mono, 7, 8
MOQ, 336
MSSQLLocalDB database server, 245
Multi-platform App UI (MAUI), 7
MVVM, 105

N
Navigate, 366
NavigationManager, 367
navigationManager.ToAbsoluteUri

method, 461
NavLink, 363
NavLinkMatch.All, 364
NavLinkMatch.Prefix, 364
NavMenu, 361
Nested layouts

_Imports.razer, 359
Index component, 360
NestedLayout.razor, 359
style, 359

.NET methods, 13, 485
NonVirtualMeasurements component,

175, 176
NuGet package, 168, 437
Nullable reference types

C#
flag, 45
Nullable Compiler Option, 44
project file, 44, 45
reference, 45, 46

constructor, 46, 47

libraries, 49
.NET, 43
nullable name, 47
null-forgiving operator, 47, 48
null pointer, 43
person class, 46

Nullable value types, 44
Null forgiving operator, 47

O
Object interaction tests, 334
Object-Relational Mapper, 238
OnAfterRender, 132, 394
OnAfterRenderAsync method,132, 394,

397, 402, 457
One-way data binding, 53

attribute binding, 55, 56
conditional attributes, 56
Counter page, 54
Counter.razor, 53
@currentCount razor, 54

OnInitialiazedAsync, 401
OnInitialized method, 444, 501
OnInitialized, 129, 130
OnInitializedAsync method, 129, 130, 268,

392, 410, 431, 433, 456, 621
OnModelCreating method, 241, 283
OnParametersSet, 130, 131
OnParametersSetAsync, 130, 131
OpenId method, 556
OpenId Connect, 547, 551

access tokens, 584
API, 583
app component, 567
Blazor server, 563
claims, 577
configure, 564

642

id token, 571
index component, 566
URI, 568
URL, 570
user consent, 561, 562

OrderService class, 286
Outlook Web Access (OWA), 2
Outlook Web Application, 352
Output caching, 351
OwningComponentBase class, 215

P, Q
Parent-child communication

Blazor runtime, 109
ComponentBase, 107
Dismissible, 107
EventCallback<T>

InvokeAsync method, 116
ShowAlert property, 116, 117
ShowChanged, 115
Timer component, 116

StateHasChanged method, 109, 110
Timer class, 108
Timer component, 108, 109
ToggleAlert method, 109, 110
Two-way data binding

Alert, 114
Dismissible class, 111, 112
Dismissible Show property, 112
Index page, 110, 111
messages, 111
properties, 111
ShowAlert property, 110
ShowChanged delegate

property, 112
updating UI, 113

Passing parameters in the route, 364
Persistence ignorance, 238
Pig-Wig syntax, 163
PizzaController class, 253
PizzaItem component, 191, 507
PizzaList component, 518
Pizza microservice, 253, 254

POST, 260
testing, 257, 258

PizzaPlace
anchor, 380, 381
CurrentPizza property, 379
dependency injection, 378, 379
dumb component, 382
Index component, 383, 384
navigation, 377
PizzaInfo class, 386
PizzaInfo component, 385
PizzaInformation, 382
PizzaItem component, 382
PizzaList component, 382
ShowPizzaInformation, 381, 383
smart component, 382
state class, 377
state singleton instance, 378

PizzaPlace application, 191, 259, 277, 513
leaflet library, 407
map component, 409–411, 413
map JavaScript library, 406
map provider, register, 409
map Razor library, 408, 409
markers, 413, 414, 416–418

PizzaPlace.Client project, 286
PizzaPlace component, 507
PizzaPlaceDbContext class, 241, 282
PizzaPlace into components

CustomerEntry component
code, 142

OpenId Connect (cont.)

643

Index component, 144, 145
markup, 142, 143

disable the Submit button, 148–151
menu, 134
PizzaItem component

code, 135
Index component, 135, 136
parameters, 136

PizzaList component
Index.razor, 138
markup, 137
PizzaItem component, 138
PizzaList.razor, 136, 137

ShoppingBasket Component
code, 138, 139
Index, 141
markup, 140, 141
vs. PizzaList component, 141
tuples, 141

PizzaPlace.Server project, 234
PizzaPlace single-page application

AddToBasket method
Add method, 80
breakpoint, 81
debugger, 81
lambda function, 80
@onclick event handler, 80
ordering Pizza, 79
PizzaPlace’s menu, 81

AddToBasket method
ordering Pizza, 79

Basket class, 73
converting values, 78, 79
Customer class, 72, 73
customer information

adding elements, 86, 87
enter details, 88
PlaceOrder method, 87, 88

debugging
DebuggingExtensions class, 88, 89
showing state, 89
State change, 89

Menu Class, 72
open-iconic, 70
Pizza Class, 71
PizzaPlace project, 69, 70
Shared project, 74
shopping basket

current order, 86
displaying, 81, 82
GetPizza method, 83
RemoveAt method, 84
RemoveFromBasket method, 83, 84
LINQ Select method, 83
State class, 85
tuples, 83

Spiciness Class, 71
State class, 74
UI options class, 73, 74
user interface (UI)

HTML, 76, 77
iteration, 77
menu, 75
PizzaPlace menu, 76
using statement, 76

Policy Based Access Control (PBAC),
595, 596

adding policies, 629, 630
update scopes, 628

PostAsJsonAsync extension method, 272
PostLogoutRedirectUris property, 575
POST method, 232
ProductList component, 198, 200
Proof Key for Code Exchange (PKCE),

605, 606
Protocol Buffers, 466

644

pure function, 436
PutAsJsonAsync extension method, 272
PUT method, 229

R
Razor

@code section, 52
definition, 51
SurveyPrompt.razor, 52
Title property, 52

Razor page, 574
Razor Template, 160
Real-time applications, 449
RedirectToLogin component, 567
ReduceFetchDataAction

method, 446
Redux pattern

actions, 435
application, 434, 435
definition, 434
reducers, 436
views, 436

@ref attribute, 394
@ref, 118
Regular expressions, 347
Release To Manufacture (RTM), 12
Remote Procedure Calls (RPC), 465
RenderFragment, 155, 160
RenderFragment<TItem>, 160
Render tree, 9
repeated keyword, 470
Representational State Transfer

(REST), 227
Role-based access control, 621

claims, 621
RBAC, 624, 625
role claim, 626, 627

Role based access control (RBAC),
580, 581

Route constraints, 365, 366
Route templates, 360

S
Same-origin policy, 429
Scoped dependency, 208
Scoped lifetime, 217
Scopes, 555
Self-contained deployment, 536
Semantic comparison, 306

customization
ignore casing/using, 348
ignore elements, 346
razor tests, 346, 347
regular expression, 347
simple Card component, 347, 348
unit test, 348

strings to compare markup, 346
SendSegments method, 459
Server bootstrap process, 41, 42
Service object, 197
Services, 197, 218, 398

IMenuService, 219, 221, 222
ordering pizzas, 223, 224

set/get/delete glue functions, 392
SetAsync method, 433
SetParametersAsync, 128, 129
ShoppingBasket component, 193, 510
ShouldRender, 131, 132
SignalR, 449

browsers, 450
client

cleaning hub connection, 463, 464
implementation, 461, 462
notifying hub, 462

645

definition, 449
hub

BoardHub class, 458, 459
configuring server, 459, 460
methods, 458

WhiteBoard application, 450–452
action, 457
mouse handling logic, 453, 454
painting segment, 455–457

Single-page applications (SPA), 1, 21,
351, 352

Single Responsibility Principle, 99
Singleton, 206, 399
Singleton lifetime, 217
Singleton Pattern, 378
Slow network, 267
SQLite connection, 239, 244
SQL Server, 239
Stack-based virtual machine, 5
Startup’s Configure method, 460
State, 377
Stateful programming, 421
StateHasChanged, 109, 110, 114, 128
StateManagementWASM application, 422
State verification tests, 332
Static page, 351
StoreInitializer component, 439
Stub, 331
Subject under test (SUT), 295
SubResource Integrity Checking, 408
Success property, 433
Swagger, 385, 586

T
Task.FromResult method, 473
Templated components, 153, 361
Tight-coupling, 198

TItem, 159
Token, 547
Transient, 207
Transient lifetime, 217
Transpiling, 3
Triple A of unit testing, 295
Tuples, 81, 83
Two-way data binding

add increment, 60
@bind:event syntax, 62
binding to events, 61
@bind syntax, 61
both directions, 61
event propagation, 64

event handlers, 64, 65
mousemove event, 65
stopping, 65, 66

formatting dates, 66
IncrementCount method, 59, 60
preventing default actions, 62, 63

@typeparam, 153

U
Unit testing, 197

automatic/repeatable, 292
Blazor components

bUnit, 294
xUnit, 293, 294

consistency, 292
life cycle, development, 292
run/review

.NET Core Test Explorer
extension, 297

result, 298
setting, 298
Test Explorer, 296–298
test fails, 297

646

VSC, 298
sanity, 301–303
slow resources, 292
test methods, 295, 296
test pass, 299, 300
theories, 300

Universal Resource Identifier (URI), 228
UpdateCounter method, 396, 397
UseCors method, 429
UseRequestLocalization method, 490
UseRouting and UseEndpoints

methods, 429
@using statement, 509
@using WhiteBoard.Client statement, 450

V
Validation, 90

add annotations, 90
CSS rules, 96
CSS styling, 96
DataAnnotationsValidator

component, 92
EditForm, 91
errors, 94, 95
feedback

customized, 97
invalid class, 96
modified class, 96
valid class, 95
validation-message class, 96

InputText, 91
System.ComponentModel.

Annotations, 90
ValidationMessage, 93, 94
ValidationSummary component, 95

Value property, 433, 440

View and View Model
DismissibleAlert component

code, 106
markup, 105, 106
partial class, 106

partial class, 105
Virtualization

add paging, 178, 179
display rows, 173, 174
Virtualize component, 177

Virtualize component, 177
VirtualMeasurements component, 181
Visual Studio Code, 168
Visual Studio Code (VSC), 15
Visual Studio (VS), 14

W
Wars

first browser, 2
second browser, 3

WASM bootstrap process
browser’s developer tools, 38
browser’s storage, 38, 39
download size, 40, 41
index.html File, 37, 38
.NET runtime, 40
network log, 39, 40
Network tab, 40

WeatherForecast class, 264
WeatherForecastController class, 261, 262
WeatherForecastController.Get

method, 618
WeatherForecastService, 617
Web applications, 24
WebAssembly (WASM), 52

Blazor
DOM generation process, 9, 10

Unit testing (cont.)

647

IncrementCount method, 9
razor file, 8, 9
render tree, 9

browsers, 6, 7
compilers, 5
definition, 5
execution process, 4
Google Earth, 4, 5
Mono, 7, 8
Windows 2000, 5, 6

WebSockets, 449
Window, 389
Windows Communication Foundation

(WFC), 466
Windows Presentation Foundation

(WPF), 122

X, Y, Z
xUnit, 293, 305

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to WebAssembly and Blazor
	A Tale of Two Wars
	The First Browser War
	The Second Browser War

	Introducing WebAssembly
	Which Browsers Support WebAssembly?
	WebAssembly and Mono

	Interacting with the Browser with Blazor
	How Does It Work?
	Blazor Server
	Pros and Cons of the Blazor Server

	Your First Blazor Project
	Installing Blazor Prerequisites
	Using Visual Studio
	Using Visual Studio Code
	Understanding the Blazor Templates for VS/Code
	Generating the Project with Dotnet CLI
	Generating Your Project with Visual Studio
	Running Blazor with Visual Studio Code

	Running the Generated Project
	Examining the Project’s Parts
	The Server Project
	Using a Shared Project
	Understanding the Client Blazor Project
	Layout Components

	Debugging Client-Side Blazor
	Debugging with Visual Studio
	Debugging with Visual Studio Code

	Developing with Hot Reload
	Hot Reload with .NET CLI
	Hot Reload with Visual Studio

	The Blazor WASM Bootstrap Process
	The Blazor Server Bootstrap Process
	Nullable Reference Types
	An Apology
	Using Null in C#
	Using References
	The Null-Forgiving Operator
	Nullable Reference Types and .NET Libraries

	Summary

	Chapter 2: Data Binding
	A Quick Look at Razor
	One-Way Data Binding
	One-Way Data Binding Syntax
	Attribute Binding
	Conditional Attributes

	Event Handling and Data Binding
	Event Binding Syntax
	Event Arguments
	Using C# Lambda Functions

	Two-Way Data Binding
	Two-Way Data Binding Syntax
	Binding to Other Events: @bind:{event}
	Preventing Default Actions
	Stopping Event Propagation
	Formatting Dates

	Change Detection
	The PizzaPlace Single-Page Application
	Creating the PizzaPlace Project
	Adding Shared Classes to Represent the Data
	Building the UI to Show the Menu
	Converting Values
	Adding Pizzas to the Shopping Basket
	Displaying the Shopping Basket
	Entering the Customer Information
	Debugging Tip

	Blazor Validation
	Letting Entities Validate Themselves
	Using FormField and InputText to Enable Validation
	Showing Validation Errors
	Customizing the Validation Feedback

	Summary

	Chapter 3: Components and Structure for Blazor Applications
	What Is a Blazor Component?
	Examining the SurveyPrompt Component
	Building a Simple Alert Component with Razor
	Creating a New Component with Visual Studio
	Creating a New Component with Code
	Implementing the Alert Component

	Separating View and View Model
	Creating a DismissibleAlert Component

	Understanding Parent-Child Communication
	Adding a Timer Component
	Using Two-Way Data Binding Between Components
	Using EventCallback<T>

	Referring to a Child Component
	Communicating with Cascading Parameters
	Using the CascadingValue Component
	Resolving Ambiguities

	Component Life Cycle Hooks
	Life Cycle Overview
	SetParametersAsync
	OnInitialized and OnInitializedAsync
	OnParametersSet and OnParametersSetAsync
	ShouldRender
	OnAfterRender and OnAfterRenderAsync
	IDisposable
	A Word on Asynchronous Methods

	Refactoring PizzaPlace into Components
	Creating a Component to Display a List of Pizzas
	Showing the ShoppingBasket Component
	Adding the CustomerEntry Component
	Using Cascading Properties
	Disabling the Submit Button

	Summary

	Chapter 4: Advanced Components
	Using Templated Components
	Creating the Grid Templated Component
	Using the Grid Templated Component
	Specifying the Type Parameter’s Type Explicitly
	Using Generic Type Constraints

	Razor Templates
	Wig-Pig Syntax

	Using Blazor Error Boundaries
	Building a Component Library
	Creating the Component Library Project
	Adding Components to the Library
	Referring to the Library from Your Project
	Using the Library Components

	Static Resources in a Component Library
	Virtualization
	Displaying a Large Number of Rows
	Using the Virtualize Component
	Adding Paging

	Dynamic Components
	Component Reuse and PizzaPlace
	Summary

	Chapter 5: Services and Dependency Injection
	What Is Dependency Inversion?
	Understanding Dependency Inversion
	Using the Dependency Inversion Principle
	Adding Dependency Injection

	Using an Inversion-of-Control Container
	Constructor Dependency Injection
	Property Dependency Injection

	Configuring Dependency Injection
	Singleton Dependencies
	Transient Dependencies
	Scoped Dependencies

	Understanding Blazor Dependency Lifetime
	Blazor WebAssembly Experiment
	Blazor Server Experiment
	Using OwningComponentBase
	The Result of the Experiment

	Building Pizza Services
	Adding the MenuService and IMenuService Abstraction
	Ordering Pizzas with a Service

	Summary

	Chapter 6: Data Storage and Microservices
	What Is REST?
	Understanding HTTP
	Universal Resource Identifiers and Methods
	HTTP Status Codes

	Invoking Server Functionality Using REST
	HTTP Headers
	JavaScript Object Notation
	Some Examples of REST Calls

	Building a Simple Microservice Using ASP.NET Core
	Services and Single Responsibility
	The Pizza Service

	What Is Entity Framework Core?
	Using the Code-First Approach
	Preparing Your Project for Code-First Migrations
	Finding Your Database Server’s Connection String
	Creating Your First Code-First Migration
	Generating the Database

	Enhancing the Pizza Microservice
	Testing Your Microservice Using Postman

	Summary

	Chapter 7: Communication with Microservices
	Using the HttpClient Class
	Examining the Server Project
	Using a Shared Project. Why?
	Looking at the Client Project
	Emulating a Slow Network in Chrome

	Understanding the HttpClient Class
	The HttpClientJsonExtensions Methods
	Customizing Serialization with JsonSerializerOptions

	Retrieving Data from the Server
	Implementing the MenuService
	Showing a Loading UI

	Storing Changes
	Updating the Database with Orders
	Building the Order Microservice
	Talking to the Order Microservice

	Summary

	Chapter 8: Unit Testing
	Where Can We Find Bugs?
	Requirements
	Coding
	Integration
	Beta Testing
	Post-release

	Why Should We Use Unit Tests?
	What Makes a Good Unit Test?

	Unit Testing Blazor Components
	Adding a Unit Test Project
	Adding bUnit to the Test Project

	Write Your First Unit Test
	Writing Good Unit Test Methods
	Running Your Tests
	Making Your Test Pass
	Using Facts and Theories
	Checking Your Sanity

	Write a bUnit Tests with C#
	Understanding bUnit?
	Testing Component Interaction
	Passing Parameters to Our Component
	Testing Two-Way Data Binding and Events
	Testing Components that Use RenderFragment
	Using Cascading Parameters

	Using MOQ to Create Fake Implementations
	Injecting Dependencies with bUnit
	Replacing Dependencies with Fake Objects
	Using Stubs
	Using Mocks
	Implementing Stubs and Mocks with MOQ

	Writing bUnit Tests in Razor
	The First Razor Test

	Handling Asynchronous Re-renders
	Configuring Semantic Comparison
	Why Do We Need Semantic Comparison?
	Customizing Semantic Comparison

	Summary

	Chapter 9: Single-Page Applications and Routing
	What Is a Single-Page Application?
	Single-Page Applications

	Layout Components
	Using Blazor Layout Components
	Configuring the Default Layout Component
	Selecting a Layout Component
	Nesting Layouts

	Blazor Routing
	Installing the Router
	The NavMenu Component
	Setting the Route Template
	Redirecting to Other Pages
	Understanding the Base Tag

	Lazy Loading with Routing
	Lazy Loading Component Libraries
	Marking an Assembly for Lazy Loading
	Dynamically Loading an Assembly
	Lazy Loading and Dependencies

	Adding Another Page to PizzaPlace
	Summary

	Chapter 10: JavaScript Interoperability
	Calling JavaScript from C#
	Providing a Glue Function
	Using IJSRuntime to Call the Glue Function
	Storing Data in the Browser with Interop
	Passing a Reference to JavaScript

	Calling .NET Methods from JavaScript
	Adding a Glue Function Taking a .NET Instance

	Using Services for Interop
	Building the LocalStorage Service

	Dynamically Loading JavaScript with Modules
	Using JavaScript Modules
	Loading the Module into a Blazor Service

	Adding a Map to PizzaPlace
	Choosing the Map JavaScript Library
	Adding the Leaflet Library
	Building the Leaflet Map Razor Library
	Registering with the Map Provider
	Creating the Map Component
	Consuming the Map Component
	Adding Markers to the Map

	Summary

	Chapter 11: Blazor State Management
	Examining Component State
	What Not to Store
	Local Storage
	The Server
	URL

	Using Protected Browser Storage
	The Redux Pattern
	The Big Picture
	The Application Store
	Actions
	Reducers
	Views

	Using Fluxor
	Creating the Store
	Using the Store in Our Blazor Application
	Adding an Action
	Implementing the Reducer

	Redux Effects
	Adding the First Action
	Adding the Second Action and Effect

	Summary

	Chapter 12: Building Real-Time Applications with Blazor and SignalR
	What Is SignalR?
	How Does SignalR Work?

	Building a WhiteBoard Application
	Creating the WhiteBoard Solution
	Implementing the Mouse Handling Logic
	Painting the Segments on the Board

	Adding a SignalR Hub on the Server
	Implementing the BoardHub Class
	Configuring the Server

	Implementing the SignalR Client
	Making the SignalR Hub Connection
	Notifying the Hub from the Client
	Cleaning Up the Hub Connection

	Summary

	Chapter 13: Efficient Communication with gRPC
	What Is gRPC?
	Pros and Cons of RPC
	Understanding gRPC
	Protocol Buffers

	Describing Your Network Interchange with Proto Files
	Installing the gRPC Tooling
	Adding the Service Contract

	Implementing gRPC on the Server
	Implementing the Service
	Adding gRPC

	Building a gRPC Client in Blazor
	Creating the ForecastGrpcService
	Enabling gRPC on the Client
	Updating the FetchData Component

	Comparing REST with gRPC
	Summary

	Chapter 14: Supporting Multiple Languages in Your Blazor Application
	Understanding Internationalization, Globalization, and Localization
	Representing the User’s Locale
	CurrentCulture vs. CurrentUICulture

	Enabling Multiple Languages
	Using Request Localization

	Internationalizing Your App
	Localizing Your App
	Adding Your First Resource File
	Localizing SurveyPrompt
	Understanding Resource Lookup

	Adding a Language Picker in Blazor Server
	Making PizzaPlace International
	Enabling Globalization Data
	Globalizing Your Components
	Adding a Language Picker in Blazor WebAssembly

	Using Global Resources
	Summary

	Chapter 15: Deploying Your Blazor Application
	Deploying Standalone Blazor WebAssembly
	Hosting on GitHub
	Creating a Simple Website
	Deploying a Simple Site in GitHub
	Deploying a Blazor WASM Project
	Fix the Base Tag
	Disabling Jekyll
	Fixing GitHub 404s
	Alternatives for GitHub

	Deploying Your Site As WebAssembly
	Deploying Hosted Applications
	Understanding the Deployment Models
	Deploying to Microsoft Azure
	Creating the Publishing Profile
	Selecting Publishing Options
	Publishing the Application

	Summary

	Chapter 16: Security with OpenId Connect
	Representing the User
	Using Claims-Based Security
	Understanding Token Serialization
	Representing Claims in .NET

	OpenId Connect
	Understanding OpenId Connect Hybrid Flow

	Identity Providers
	Implementing the Identity Provider with IdentityServer4
	Adding the Login UI to Our Identity Provider

	Understanding User Consent
	Protecting a Blazor Server Application with Hybrid Flow
	Adding OpenId Connect to Blazor Server
	Implementing Authorization in Blazor Server
	Using AuthorizeView
	Adding and Removing Claims
	Enabling Role-Based Security

	Accessing a Secured API
	Using an Access Token
	Registering the API Project with the Identity Provider
	Adding JWT Bearer Token Middleware
	Enabling the Bearer Token in the Client
	Using Policy-Based Access Control

	Summary

	Chapter 17: Securing Blazor WebAssembly
	Authorization Code Flow with PKCE
	Understanding PKCE

	Registering the WASM Client Application
	Creating and Examining the Application
	Registering the Client Application
	Implementing Authentication
	Customizing the Login Experience

	Accessing a Protected API
	Fetching Data from the WeatherService API
	Using the AuthorizationMessageHandler
	Adding Client-Side Authorization

	Using Role-Based Security
	Creating the Claims Component
	Enabling RBAC
	Promoting the Role Claim

	Using Policy-Based Access Control
	Updating Scopes
	Adding Policies

	Summary

	Index

