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Introduction

Thanks for picking this book. This will introduce you to the wonderful world of machine 

learning via Microsoft’s open source cross-platform framework ML.NET.

That means if you master this framework, you can write machine learning (a.k.a. ML) 

applications or applications that use ML and run it on all platforms (Windows, Linux, 

MacOS).

Here is a brief introduction to the chapters.

Chapter 1: Meet ML.NET (Nothing is magical, but a few things seem so)

This chapter introduces you to the ML.NET framework and gives a very brief 

overview of tasks that are possible via ML.NET.

Chapter 2: The Pipeline (Great Machine Learning requires great plumbing)

This chapter introduces you to the plumbing that needs to happen in order for your 

ML tasks to be successful.

Chapter 3: Handling Data (Cleansing is engineering)

Data come in different formats and mostly are messy when they are onboarded in a 

system. This chapter shows how to clean data using several transformations offered by 

ML.NET.

Chapter 4: Regressions (How much will our dream home cost?)

This chapter shows how to use regression algorithms to predict prices of things in 

the future.

Chapter 5: Classifications (Helping computers tell chalk and cheese apart)

Classifying one object from another (a.k.a. binary classification) and classifying 

many objects in different categories (a.k.a. multiclass classification) are two classic ML 

tasks that are solved using ML.NET in this chapter.

Chapter 6: Clustering (Birds of a feather flock together)

Grouping things automatically into different groups is called clustering, and this 

is a classic unsupervised learning algorithm. This chapter shows how to solve these 

problems using ML.NET framework.
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Chapter 7: Sentiment Analysis (Are you happy or not, that's the question!)

Automatically detecting polarity (positive or negative) from phrases is really 

important business and is an active research area. This chapter shows how to do 

sentiment analysis using ML.NET and some other techniques that are yet to appear in 

ML.NET but will sure do soon.

Chapter 8: Product Recommendation (You might be interested in this movie)

Product recommendation boosts product sales, and this chapter shows how you 

can use popular techniques like collaborative filtering and matrix factorization using 

ML.NET for product recommendations.

Chapter 9: Anomaly Detection (That doesn't look normal. Does it?)

Detecting odd ones from a pool of products is key to the success of a manufacturing 

business at this time because it is inhuman to expect that human employees can monitor 

everything. That’s where anomaly detection comes in to help. This chapter is dedicated 

to those algorithms and how to do those using ML.NET.

Chapter 10: Object Detection (Can you spot the cat in the photo?)

Detecting objects, faces from a photo or video frame is all the trend these days and 

has many applications. This chapter shows how to use ML.NET to do object detection 

using deep learning via ML.NET and ONNX.

InTroduCTIon
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CHAPTER 1

Meet ML.NET

Machine learning is nothing but a means of enabling the computer to have a 

sophisticated sense of proximity between several things. Let me elaborate that point for 

you with a few examples. Human vision is very advanced. So much so that we hardly 

realize what is going on in our brain when we recognize something. For example, do you 

think about the complex processes running in your brain when you read a handwritten 

note and recognize that is a letter "a"? Consider the pictures of the letter “a” in Figure 1-1.

Figure 1-1. “a” written in multiple fonts

We recognize each of these as the letter “a” because although they look different, they 

are within a permissible range of proximity from the “ideal” (if you will) “a” that we were 

taught in our childhood. Teaching a computer to recognize things is no different. We 

must provide the algorithm several examples with labels, and eventually the algorithm 

will start to spot similar things with better results. This approach is called supervised 

learning and will be explained in more detail in further chapters.

https://doi.org/10.1007/978-1-4842-6543-7_1#DOI
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Another type of learning that we develop without realizing is the capability of 

segregating things (also known as clustering) without much input from outside. For 

example, if you present the shapes shown in Figure 1-2 to a toddler and tell them to 

determine how many different types of things are there, the answer will be 6. I urge 

you to look at the picture and determine the number yourself. The problem of this is 

you know the result, but how did you arrive at that is difficult to convey. This makes me 

remember this great quote (Figure 1-3).

Throughout the book, we will consider more examples like this where the task will 

be to identify different types of things automatically without being told how many there 

are. The task they have in common is that these sorts of questions don’t have a correct 

Figure 1-3. Quotation of Lord Kelvin

Figure 1-2. Different types of wooden shapes

Chapter 1  Meet ML.Net
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answer known ahead of time (e.g., how many different shapes are there). This is known 

as “unsupervised learning.”

For the first group, you can think of it like a class with pupils and a teacher that is 

asking questions and telling the kids if they are correct or not. And that’s why it is called 

“Supervised.” In the second case, we don’t know the answer – we don’t have a supervisor.

There is another kind of learning that is reinforced by the experience of good and 

bad outcomes of the tasks performed. Do you remember how you learned to walk? 

Can you teach a baby or a robot to walk? We learn to walk because our brain had been 

continuously taking cues from the bad and good steps we took. Teaching a computer 

to do similar things is similar. All we must do is provide the computer with several 

opportunities to do mistakes and learn from the outcomes. Good outcomes will 

reinforce the belief of the algorithm that the steps taken were good, and bad outcomes 

will reinforce the fact that the steps taken were bad and therefore advisable to avoid. 

This type of learning is called “reinforcement learning” in machine learning literature. 

This is a little hard to follow along just by reading text. This is something to feel. I 

urge you to watch this video of a robotic arm throwing objects: www.youtube.com/

watch?v=JJlSgm9OByM.

 Abstraction matters
What is your favorite concept in object-oriented programming? Mine is abstraction. A 

good abstraction makes everything look easy. Achieving good abstraction over complex 

things/domains like machine learning, for example, is very hard because identifying 

which part would be a great choice for a building block is difficult at best and impossible 

at worst; but ML.NET does a great job striking a balance.

Note as you know, this book is about ML.Net, Microsoft’s new ML framework for 
.Net developers released in 2019. It allows developers to enhance their application 
with ML capabilities, but the best thing about it is that you don't need to learn data 
science and math to be able to use it.

ML.NET democratizes machine learning by bringing it to .NET developers who have 

been developing line-of-business applications for enterprises, web pages, applications, 

and what-have-you since ages and now facing the challenge to solve machine learning 

Chapter 1  Meet ML.Net
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problems because enterprises have gargantuan amount of data and they want their 

existing staff to help them turn these data into actionable insights – fast. It’s a tall order. 

Not an easy task at all, but a good framework like ML.NET can help.

ML.NET encapsulates machine learning algorithms such that most of the time 

using the algorithm merely becomes calling a function. This can seem to be an 

oversimplification, but this makes it easy for developers who don’t really need to 

understand how the algorithm works internally, to consume the algorithm, thereby 

removing/reducing the barrier of entry – if you will, into the machine learning arena. 

Using an algorithm and assessing its performance based on some preset matrices 

is one thing, and understanding how the algorithm works internally is a completely 

different thing. For the most part, however, it is enough for developers to know how to 

use an algorithm and how to measure its performance for the task at hand, so that the 

parameters can be changed for optimization and they (developers) can do away with 

requiring to acquire the knowledge of really understanding what goes under the hood.

Consider the example of linear regression. Don’t worry if you don’t understand what 

linear regression is. For now, it is enough to know that it is a way to fit a few points to a 

given straight line so that predictions can be made about new input points.

The preceding equation is a generic form of linear regression. There are however 

several varieties, and knowing all the details about them is beyond the reach of 

affordable time commitment that a .NET developer can spend keeping their day job. 

This is just an example of how complex machine learning models can be. But a good 

framework like ML.NET can save all the details except the ones that are absolutely 

required to tune the algorithm. Also, developers can learn how to use a framework if it is 

presented well.

For a second, compare these two things side by side.

 
y x x i ni i p ip i i i= + + + + = + = ¼b b b e b e0 1 1 1 xT , , , ,  

var model = pipeline.Fit(dataView);

Figure 1-4. General equation for regression

Chapter 1  Meet ML.Net
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The call of the Fit method on the right will look immediately known to .NET 

developers, and they seemingly don’t need a mathematical background (tall claim but 

true) to understand what is happening behind the scene. Moreover, depending on the 

input, the Fit method can choose to use different regression algorithm and therefore be 

more efficient than the hard-coded model. Also these models will need to evolve, and 

it will be difficult for the average .NET developer (with all due respect to them) to keep 

up with all the advances, and therefore if hard-coded, sooner or later the model will be 

missing out on the enhancements made in Machine Learning theory by the scientists. 

However, if a framework like ML.NET is used, then these enhancements are expected to 

make their move in the framework, and without knowing, the developers will be able to 

take the benefits. Therefore, abstraction matters, and a good abstraction makes almost 

anything look very simple.

So while the actual equation on the left will appeal to mathematicians, the calls to 

the framework on the right will make developers happy, and that’s the motivation of 

the framework. In a nutshell, the goal of ML.NET is “To make the cliché that Machine 

Learning is a niche.”

The framework provides functionalities for all parts of the machine learning pipeline 

starting from data acquisition to model evaluation and cross-validation (checking 

how the algorithm did). The framework also encapsulates several feature engineering 

techniques in the form of generic methods that eases the process of data preparation in a 

really efficient and clean way.

 What type of problems can be solved with ML.NET?
ML.NET supports “supervised learning” and “unsupervised learning” as of now 

(September 2020). This will surely change in the future, but this is a good start because 

many useful projects are relying on supervised /unsupervised learning.

The following is a list of some very common machine learning types of problems 

along with their class of problem domain:

• Supervised Learning

• Regression (predicting real values)

• Predicting prices of houses

• Predicting temperature on a specific day

• Classification

Chapter 1  Meet ML.Net
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• Binary classification (telling chalk and cheese apart)

• Telling cancer and non-cancer cells apart

• Telling chalk and cheese apart

• Multiclass classification (autocategorization, more than one)

• Identifying flowers by sizes of petals and sepals as their 

features

• Tagging GitHub issues with corresponding labels

• Product recommendation

• Unsupervised Learning

• Clustering (segmenting buyers in supermarket)

 The Pipeline

 

The goal of most (or should I say all) of the machine learning activity is to come up with 

a model that maps a set of inputs to a predefined set of outputs as neatly as possible. 

Also, most of the time, data comes in messy ways unconsumable for machine learning 

algorithms.

 Parts of ML.NET

ML.NET is built around a central type called “MLContext”. Almost all operations 

performed using ML.NET use one or the other part of MLContext type. It is almost 

semantically like that of a DataContext. This class has several functionalities offered 

through different members:

• Data Loading

• Data Transformation

• Prediction

• Measuring Accuracy

Chapter 1  Meet ML.Net
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Data Loading
ML.NET offers functionalities to load data from several different formats through 

several static methods. Here, some of them are shown.

As you can see, there are methods to load data from a few different formats. This is 

an incremental list. Soon many other data loaders may be supported.

Data Transformation
MLContext offers data transformation functionalities via Transforms property of 

MLContext class. Transforms is of type TransformCatalog. All these transformations are 

provided as extension method. So, if required we can also build our own transformation.

Prediction
Using the MLContext and related classes in ML.NET, we need to build a pipeline 

which represents the machine learning pipeline with components to do data loading, 

transformation, and prediction. A pipeline is used to create what is known as an 

estimator. The estimator is used to generate the model.

Measuring Accuracy
The performance of a machine learning model is measured by so many ways. 

ML.NET offers several metrics (depending on the task performed) to measure this 

performance, like confusion matrix and cross-validation accuracy.

 Introduction to Model Builder (Automatic ML)
ML.NET is designed with absolute beginners of machine learning in mind. So apart from 

several APIs to create a custom ML model, ML.Net also offers a fantastic UI-driven utility 

that helps beginners locate the best algorithm for solving a machine learning problem. 

Figure 1-5. Several ways to load/create data for machine learning problems

Chapter 1  Meet ML.Net
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It runs several models and keeps track of accuracies and time taken to complete the 

training. This tool is very helpful in locating the algorithms.

In the next few sections, just a quick sample shows how to use this utility to solve a 

real-world machine learning problem.

 Solving a simple problem with Model Builder
In this example, the Iris flower dataset will be used. You can get the data from https://

archive.ics.uci.edu/ml/datasets/iris.

Go to the “Data Folder” as shown in Figure 1-6.

Once you clicked the link for Data Folder, you shall see this (Figure 1-7).

Figure 1-6. Locating data for multiclass classification problem (Iris flower)

Figure 1-7. Locating the data in UCI database for machine learning

Chapter 1  Meet ML.Net
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From here, click “iris.data” to download this file. This file will look like this (the first 

few rows and columns are shown in Figure 1-8).

The first column is the ID of the patient, and the second column denotes the 

diagnosis (either M for Malignant cancer or B for Benign cancer). The rest of the 

columns denote several values for several test results. The actual names for each of these 

columns are not important.

If you don’t already have the Model Builder, then you can download it from the 

following link:

https://marketplace.visualstudio.com/items?itemName=MLNET.07

After installation, create a console app called “Iris”, and the project will look like 

Figure 1-9.

Figure 1-8. Menu to add “Machine Learning” using Model Builder in Visual 
Studio

Chapter 1  Meet ML.Net
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The first step is to understand that identifying a flower is a case of multiclass 

classification problem because we have three different classes of iris: versicolor, sentosa, 

and virginica. In other words, it is more like GitHub issue classification problem. So 

to identify flowers from data, we need to select that scenario. Once the button “Issue 

Classification” is clicked, the wizard presents the next screen to load the data and for 

setting parameters.

Figure 1-9. Creating app “Iris”

Figure 1-10. Model Builder wizard interface (select “Text Classification”)

Clicking the Machine Learning menu will bring up the UI of Model Builder as shown 

in Figure 1-10.

Chapter 1  Meet ML.Net
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Once the input data is loaded, the wizard shows the data in preview as shown in 

Figure 1-12. Be aware that you need to rename the iris.data to iris.csv; otherwise, you 

won’t be able to open it in the Model Builder.

Figure 1-11. Model Builder wizard interface for loading training data

Chapter 1  Meet ML.Net
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The next step is to tell the wizard which column we want to use for the Labeling, 

the column we want to predict. In this case, we shall need to use the “variety” column. 

Once this is done, the wizard marks the variety column as “Label” as shown in the data 

preview. The remaining columns are used for predicting the label. However, we can 

choose the columns to be used by selecting/unselecting the check boxes that appear 

before each column name.

Figure 1-12. Model Builder wizard interface for loading data and previewing and 
setup

Chapter 1  Meet ML.Net
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The next step is to train to obtain a model. The more time is given for the wizard to 

train, the better. This is because the wizard under the hood uses automatic machine 

learning to figure out which model is the best.

Figure 1-13. Setting up which field is to be predicted (Label)
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The default training time given by the wizard is 10 seconds. Ten seconds is enough 

for datasets less than 10Mb. But it is strongly recommended that we use at least 90 

seconds for the training for really small dataset.

Figure 1-14. Model Builder Wizard: Train Model interface

Figure 1-15. Showing progress of Model Builder Training Wizard

Once the time is set to train the model, clicking “Start Training” will start the 

training, and the performance of the algorithms tried so far will be listed as shown.

Once the training is complete, the results of the algorithms tried can be viewed from 

the Evaluate tab.

Chapter 1  Meet ML.Net
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Figure 1-16. Model Builder Training Model completed

The Evaluate tab shows the details of the performance of the algorithms.

Chapter 1  Meet ML.Net
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Figure 1-17. Model Builder Wizard Model Evaluate interface

Interestingly, the Evaluate tab presents a nice interface to try out the model. This 

interface is autogenerated from the fields that were used to generate the model.

Chapter 1  Meet ML.Net
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The last step is to add the code for the generated model in the solution.

Figure 1-19. Model Builder Wizard interface to add generated projects to solution

Figure 1-18. Showing on-the-fly generated UI for testing the prescribed model by 
Model Builder

By clicking the “Add to solution”, the projects generated can be added to the solution. 

After the projects are added, the solution explorer will show these new projects as shown 

in Figure 1-20.

Chapter 1  Meet ML.Net
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 Walkthrough of the generated code
The Model Builder Wizard generates the ModelInput and ModelOutput class.

// This file was autogenerated by ML.NET Model Builder.

using Microsoft.ML.Data;

namespace IrisML.Model

{

    public class ModelInput

    {

        [ColumnName("sepallength"), LoadColumn(0)]

        public float Sepallength { get; set; }

        [ColumnName("sepalwidth"), LoadColumn(1)]

        public float Sepalwidth { get; set; }

        [ColumnName("petallength"), LoadColumn(2)]

        public float Petallength { get; set; }

        [ColumnName("petalwidth"), LoadColumn(3)]

        public float Petalwidth { get; set; }

        [ColumnName("variety"), LoadColumn(4)]

        public string Variety { get; set; }

    }

}

Figure 1-20. Showing generated projects added to solution

Chapter 1  Meet ML.Net
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ModelInput class represents each row of the input dataset. The index of the column 

name is taken as the value of the LoadColumn attribute, and the name of the column is 

taken as the value of the ColumnName attribute. Here is one row taken from the input irisi.

csv file. As you can see, the column indexing starts from 0.

 

public class ModelOutput

{

     // ColumnName attribute is used to change the column name from

     // its default value, which is the name of the field.

     [ColumnName("PredictedLabel")]

     public String Prediction { get; set; }

     public float[] Score { get; set; }

}

ModelOutput class represents the prediction result. The score represents the score for 

all possible classes. Values of this Score array are shown on the test UI as percentage of 

confidence as shown in Figure 1-21.

Figure 1-21. Showing on-the-fly generated UI to test the prescribed model by 
Model Builder
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This means that for these set of test data, the model had 86% confidence that the 

flower is a Setosa, 14% confidence that it is a Versicolor, and less than 1% (or negligible) 

confidence that it is a Virginica. In code, these data can be represented as 0.86, 0.14, 

and 0.0034 as the elements of the Score array.

This line uses the Predict method of the ConsumeModel class (which is OK 

to remain as a black box for now) to return the output of the trained model as a 

ModelOutput instance.

// Make a single prediction on the sample data and print results

ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

To make sure that the model code can’t use the variety at all to predict (which will be 

obvious after looking at the code that it doesn’t) the variety of the flower, “Unknown” is 

set to it. After that if you set the IrisML.ConsoleApp as the startup project and run the 

program, by putting a breakpoint as shown, you shall see a similar result (Figure 1-22).

 Summary
In this chapter, we just scratched the surface of what’s possible with ML.NET. The 

framework does a lot under the hood. It provides functionality to load and transform 

data for the learning. Then, it also does several things internally to prepare the data that 

is consumable by the machine learning algorithms. These techniques are called feature 

engineering, and Model Builder really helps to learn about different algorithms and 

how to use these and how to use several features for this.

Figure 1-22. Debug view of the generated code via Model Builder
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The framework is very modular and open for extension. More generally said, there 

are several extensions in the framework itself that build around core types.

In the next chapter, we shall use ML.NET to classification problems. You shall learn 

how to pose a classification problem as a binary or multiclass classification problems 

and how to use ML.NET to solve those.

Chapter 1  Meet ML.Net
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CHAPTER 2

The Pipeline
 

 Introduction
The goal of all machine learning (ML) activity is to turn raw data into some prediction or 

classification or insight. Raw data appears on the left or at the beginning of this pipeline, 

and on the right or at the end comes the insight/prediction/classification and so on. 

Although each machine learning task will require a different pipeline, the basic structure 

or the building blocks remain the same. ML.NET offers several types/interfaces to make 

the creation of this pipeline easier. A broad understanding of these concepts will help 

you understand how ML.NET works under the hood.

 Objective of this chapter
After finishing this chapter, you shall be able to identify different building blocks of a 

machine learning pipeline and see that all ML.NET pipelines are essentially similar in 

nature although their purpose or the actual body is very different from one another. You 

shall learn to identify and tune all parts of all such machine learning pipelines.

 The parts of the pipeline (in ML.NET)
• The context

• Data loaders

• Transformers

• Trainers

https://doi.org/10.1007/978-1-4842-6543-7_2#DOI
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Every machine learning operation in ML.NET is started by creating a machine 

learning context. The context is conceptually like the starting of the pipeline. It provides 

a way to create every part of the pipeline. The context is encapsulated in MLContext type.

The type has several properties to offer capabilities to start a specific machine 

learning task. At the beginning of each ML task in ML.NET, we must create a context 

object as shown in Listing 2-1.

Listing 2-1. Instantiating MLContext is easy

MLContext mlContext = new MLContext(seed: 1);

If seed is set, MLContext becomes deterministic and the same random numbers will 

be generated every time you run your app, so results will be repeatable across different 

runs. It can be helpful, if you are repeating a tutorial sample and want to get the same 

results. If you don’t set seed, MLContext will use random numbers generator, and results 

will be slightly different for each run (for operation that use random numbers, not all of 

them do). In real life, I recommend keep random components nondeterministic, which 

means not setting seed.

Different kinds of machine learning activities are based on the pipelines created 

from MLContext properties. Here is the MLContext class.

Figure 2-1. The overall definition of the MLContext class

As mentioned earlier, MLContext acts as the root of the machine learning pipeline. 

Table 2-1 shows how different properties of this class are used for different types of 

machine learning problems.

Chapter 2  the pipeline
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mlContext is an object of the MLContext class in the preceding table.

 Data loaders

Table 2-1. Showing meaning of different properties of MLContext class

Type of machine learning Start the pipeline as

Binary Classification mlContext.BinaryClassification

Multiclass Classification mlContext.MultiClassClassification

Regression mlContext.Regression

Clustering mlContext.Clustering

Anomaly Detection mlContext.AnomalyDetection

Forecasting (Time Series Data) mlContext.Forecasting

Figure 2-2. Representation of training data as bunch of files to process

Data comes in several formats and sometimes it resides in memory collection. ML.NET 

offers features to load data from multiple sources easily. All these loaders can be 

accessed via mlContext.Data property as shown in Figure 2-3.

Chapter 2  the pipeline



26

Data in the pipeline travels inside IDataView type, introduced to .NET specifically 

for ML.NET. This is the input and output of Query Operators (Transforms). This is the 

fundamental data pipeline type, comparable to IEnumerable<T> for LINQ. This interface 

is required to be able to seamlessly integrate several data loading capabilities and for 

integrating with other machine learning frameworks.

Table 2-2 shows which function to be used to load data.

Figure 2-3. Showing IntelliSense availability on MLContext instance

Table 2-2. Showing several ways to load data

Data Type/Purpose Function to Load Data

Binary LoadFromBinary

Data is in memory collection LoadFromEnumerable

Loading data from text file as an IDataView LoadFromTextFile

Loading data from text file in a strongly 
typed manner. The type of the data to be 
loaded is passed as the generic attribute

LoadFromTextFile<T>

Loading data from databases mlContext.CreateDatabaseLoader<T>().

Load(...)

This is how loading from file looks like. So, if you have a CSV file, first create a 

ModelInput class representing each row of the CSV. Then, use this class as a generic 

parameter in LoadFromTextFile<T> as shown in the following example.

Chapter 2  the pipeline

https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.ienumerable-1


27

Listing 2-2. Loading training data to IDataView

IDataView trainingDataView =

                mlContext.Data.LoadFromTextFile<ModelInput>

          (path: TRAIN_DATA_FILEPATH,

           hasHeader: true,

           separatorChar: ',',

           allowQuoting: true,

           allowSparse: false);

If you don’t like typing this class by hand every time you create an ML model, you 

can use the script (Listing 2-3) that automates this work for you.

The following C# script takes a CSV file and emits the ModelInput class.

Listing 2-3. Script to automatically generate code to load data 

string csvFile = @"C:\MLDOTNET\iris.csv";

var columns = File.ReadLines(csvFile)

                 .Take(1)

                 .First()

                 .Split(new char[]{','});

var firstLine = File.ReadLines(csvFile)

                    .Skip(1)

                    .Take(1)

                    .First()

                    .Split(new char[] { ','});

StringBuilder propertyBuilder = new StringBuilder();

for (int i = 0; i < columns.Length; i++)

{

      string column = columns[i];

      propertyBuilder.AppendLine($"[ColumnName(\"{column},LoadColumn({i})]");

      if(firstLine.ElementAt(i).ToCharArray()

          .All(m => Char.IsDigit(m) || m == '.'))

      {
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            propertyBuilder

              .AppendLine($"public float {column.Substring(0, 1).ToUpper()

                     + column.Substring(1)}");

      }

      else

      {

            propertyBuilder.AppendLine($"public string

            {column.Substring(0,1).ToUpper() + column.Substring(1)}");

      }

      propertyBuilder.AppendLine("{ get; set;}");

}

string classCode = @"public class ModelInput " + Environment.NewLine

                + "{" + Environment.NewLine + propertyBuilder.ToString()

                      + Environment.NewLine + "}";

Console.WriteLine(classCode);

For the following CSV file, (first two rows of the data)

It generates the following class. This script will save you countless hours typing your 

way to create the ModelInput to be just able to load the data and start your experiments.

Listing 2-4. ModelInput for the Iris dataset

public class ModelInput

{

      [ColumnName("sepallength"), LoadColumn(0)]

       public float Sepallength { get; set; }

      [ColumnName("sepalwidth"), LoadColumn(1)]

       public float Sepalwidth  { get; set; }

      [ColumnName("petallength"), LoadColumn(2)]

       public float Petallength { get; set; }

      [ColumnName("petalwidth"), LoadColumn(3)]

Figure 2-4. Showing the first couple of rows of the Iris training dataset
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       public float Petalwidth  { get; set; }

      [ColumnName("variety"), LoadColumn(4)]

       public string Variety  { get; set; }

}

LoadColumn attribute specifies your properties’ column indices and is required only 

when you load the data from file.

MLContext.Data also offers functionality to filter and shuffle data too apart from 

loading data from multiple sources.

Loading data from text files is a very common activity, and ML.NET is well equipped 

with it. It provides a couple of generic ways to load data from a text file, with or without 

headers.

The following code reads data from a Tab-separated file without headers where 

there are three numeric columns. Tab (‘\t’) is the default value of the separatorChar 

parameter.

Listing 2-5. Creating a TextLoader

var loader =

mlContext.Data.CreateTextLoader(

columns: new[]

{

  new TextLoader.Column("Feature1", DataKind.Single, 0)

  new TextLoader.Column("Feature2", DataKind.Single, 1)

  new TextLoader.Column("Feature3", DataKind.String, 2)

},

hasHeader: false

);

If you want to read a CSV without header, then you shall have to mention the 

separatorChar is ‘,’ as highlighted Listing 2-6.

Listing 2-6. Creating another custom TextLoader

var loader =

mlContext.Data.CreateTextLoader(

columns: new[]

{
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  new TextLoader.Column("Feature1", DataKind.Single, 0)

  new TextLoader.Column("Feature2", DataKind.Single, 1)

  new TextLoader.Column("Feature3", DataKind.String, 2)

},

separatorChar: ',',

hasHeader: false

);

Now to read the data, you shall have to call the Load method on the loader just 

created like loader.Load(<path_to_file>).

Since training data can sometimes be present in multiple files, it is required to create 

a loader and pass in the file paths as parameters.

Since data can be quite messy when it comes along, filtering could prove to be very 

useful to provide some initial cleansing that the data needs. MLContext.Data provides 

the following filtering capabilities.

Figure 2-5. Showing overload of Load to read from multiple files

Figure 2-6. Showing filtering capabilities on IntelliSense

Table 2-3. Methods to perform filtering based on different criteria

Filtering What it does

FilterRowsByColumn Filters data based on value ranges of a given column

FilterRowsByKeyColumnFraction Filters rows by the value of a KeyDataViewType column

FilterRowsByMissingValues Filters the data by dropping rows where any of the column in 

the passed list of columns have a missing value

Chapter 2  the pipeline



31

 Loading data from databases
To load data from a database into a IDataView, the following steps are required.

Listing 2-7. Loading training data from a database

//Name of the provider has to be given as "System.Data.SqlClient"

DbProviderFactory factory =

                     DbProviderFactories.GetFactory("System.Data.

SqlClient");

DatabaseSource = new DatabaseSource(factory,

                                 "<connection string>",

                                 "select * from IRIS");

IDataView trainingView = mlContext.Data.CreateDatabaseLoader<ModelInput>()

                                                   .Load(databaseSource);

 Transformers
As a caterpillar transforms into a butterfly, data must be transformed before using those 

in machine learning algorithms/models. Because if the data is fed directly to machine 

learning algorithms without proper prior cleaning, scaling, and normalizing, it will leave 

the algorithm confused, and the output of it will be biased, if not totally off, and that is 

absolutely unacceptable.

ML.NET offers several transformers to transform the data from messy to clean. Clean 

data means data that is free from any distortion and probably looks a lot like generated 

data in terms of clarity. Clean data don’t have missing values, values out of permissible 

range for numeric columns, or impossible values for enumerations. For example, a 

Figure 2-7. Symbolic representation of data transformation for machine 
learning
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messy dataset for an insurance survey might have negative values for the age column 

or impossible age values like 923 and so on. Similarly for the gender column of the 

customer, the data can be outside the permissible enumeration like {M,F}. Clean data 

is very important, and ML.NET offers several ways to clean the data via stages called 

transformers. These transformations can be glued to one another to create a chain of 

transformations or a pipeline if you will. The following is an example of such a pipeline 

transformation.

Listing 2-8. Gluing transformations with Append

 var pipeLine = context.Transforms.NormalizeMinMax("crim","crim")

                .Append(context.Transforms.NormalizeMinMax("zn","zn"))

                 .Append(context.Transforms.NormalizeMinMax("indus", 

"indus"))

                 .Append(context.Transforms.NormalizeMinMax("indus", 

"chas"))

                .Append(context.Transforms.NormalizeMinMax("indus", "nox"))

                .Append(context.Transforms.NormalizeMinMax("indus", "rm"))

                .Append(context.Transforms.NormalizeMinMax("indus", "age"))

                .Append(context.Transforms.Concatenate("Features",

                "crim", "zn", "indus", "chas", "nox", "rm", "age"))

Don’t worry too much about the actual transformations. These will be explained 

later in the book. For now, please note how transformations are glued to one another by 

Append() method.

The first transformation context.Transforms.NormalizeMinMax("crim","crim") 

returns a NormalizingEstimator as shown in this Listing 2-8.

The first Append() call on the pipeline earlier is an extension method created 

on NormalizingEstimator. This extension method returns EstimatorChain<N

ormalizingTransformer>. Append() is also defined as an extension method on 

EstimatorChain<T>().

ML.NET heavily relies on extension methods to make things glue together nicely. In 

the next chapter, you shall learn about several transformations in detail.
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 Trainers
Good trainers train the body; great ones train the mind. And finding a great trainer is 

hard at best, impossible at worst.

The body is like the infrastructure of a machine learning system and the mind is like 

the actual model. If you have a great model and bad infrastructure, then it is bad, but if 

you have great infrastructure but bad model, it is worse, because in this setting you won’t 

be able to use the full potential of the infrastructure, just as an untrained mind in a solid 

physique does.

ML.NET provides several trainers to train for different machine learning needs.

For each algorithm/task combination, ML.NET provides a component that 

executes the training algorithm and does the interpretation. These components 

are called trainers. For example, the SdcaRegressionTrainer uses the 

StochasticDualCoordinatedAscent algorithm applied to the Regression task.

All these trainers are in their respective types. For example, the binary classification 

trainers are located at mlContext.BinaryClassification.Trainers.

Figure 2-8. Symbolic representation of a trainer
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You shall learn more about the trainers later in the respective chapters of the book. 

However, it will be enough to know now that a trainer is added as the last step in the 

machine learning pipeline. Consider the example shown in Listing 2-9.

Listing 2-9. Adding trainer to the pipeline

 

The last Append() call creates an EstimatorChain<RegressionPredictionTransformer>.

So basically, a trainer is an algorithm that takes a data view and provides a model 

that can be applied to create a model, which in turn can be used to predict future values.

In Listing 2-9, the last Append call adds the trainer:

.Append(context.Regression.Trainers.OnlineGradientDescent(labelColumnName:"

medv",lossFunction:null, learningRate:0.24f, decreasingLearningRate:true));

This line sets hyperparameters (parameters that help the trainer to converge and are 

set before the iterative process begins) for the selected trainer OnlineGradientDescent.

Don’t worry too much about the exact working of this code. This is to illustrate how 

common interface allows the trainer to be plugged into the pipeline as the last step. In 

later chapters, you shall learn how to pick a trainer for your machine learning task and 

how to evaluate their performances.
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 Model Builder (the wizard)

It can be quite challenging for newbies and practitioners who are new to ML.NET 

to locate the right method for transformations or training. To address this problem, 

Microsoft created a wizard called Model Builder. This wizard can do all the data science 

decision-making part for you, suggesting you the best trainer with the best parameters 

for your particular case. As an input, you provide your dataset and the task (for instance, 

predict a house price), and as a result, you will see all the trainers that the wizard tried 

for your task with evaluations for each one. The results will be ranked showing you “the 

winner”. If you are satisfied with the result, then the wizard can add generated code to 

the existing solution if the user wants.

Model Builder is the first step to locate a model/trainer that is suitable for the job. 

Throughout the book, you shall learn how to use Model Builder to your advantage.

Note Besides helping locate the best algorithm/model for the current dataset, 
Ml.net generates very clean code, so that it almost feels like that some expert 
has written the code.

Figure 2-9. Symbolic representation of the Model Builder
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 Summary
This is a short chapter, but I hope it gave you some very top-level view of the ML.NET 

framework and the rationale behind all kinds of things that are there in the framework. 

These concepts will be even clearer in the upcoming chapters when we actually create 

these by hand. In the book, ML and machine learning can be interchangeably used. 

However, when ML.NET is mentioned, it is specially mentioned with the .NET extension.
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CHAPTER 3

Handling Data
 

 Introduction
Data that are generally available in the real world are not ready for consumption for machine 

learning activities. A crude but real-life analogy is depicted by the following picture.

Figure 3-1. Showing data transformation analogy

However hilarious or not you find this analogy, this is true. The data that are 

available in the wild need repetitive modifications before it can be fed to a machine 

learning algorithm; otherwise, the algorithm’s performance will take a serious hit and 

probably be unusable.

The topic of this chapter is to make you acquainted with common practices to deal 

with different kinds of data to transform those into something that can be given as input 

to a machine learning algorithm. Some of these techniques are nicely packaged inside 

the ML.NET library, so you can use it without implementing it yourself.

https://doi.org/10.1007/978-1-4842-6543-7_3#DOI
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Before we go deep diving into data transformation, we must know how many types 

(broad categories) of data are available.

 Objective of this chapter
After reading this chapter, you should be able to understand the need for transforming 

data before feeding those to a machine learning model. You shall also learn how to use 

several transformations on different kinds of data that ML.NET offers and which one to 

pick when.

 Types of data
Data comes in all different types. Broadly, those are

• Numerical data

• Textual data

• Categorical data

• Location data

• Date and time data (this is also sometimes represented as time series 

data)

• And so on like images and videos

Numerical data
As the name suggests, numerical data refers to data that are just numbers. Integers 

and floats are numbers and are thus numerical data. Age of a person, number of visits to 

the local supermarket per week, number of times someone refuels their car, the amount 

spent at the movie theater during weekends, and your income are all examples of 

numerical data.

Textual data
Names, addresses, phone numbers with country codes, email addresses, review 

comments, feedback messages, comments on social media sites, reviews on movie 

review sites, and so on are all examples of textual data.
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Categorical data
Categorical data is just an enumeration over a preset list. For people like us who 

are familiar with programming, categorical data is just an incarnation of the Enums 

in the real world. Names of the blocks in a city, gender (M/F), and postal codes are all 

examples of categorical data.

The basic difference between textual and categorical data is that textual data is a free 

form, while categorical data can take one of the many predefined categories as its value.

Location data
As the name suggests, location data is just that; it is data about someone’s or some 

place’s location, either expressed in terms of latitude and longitude or via geocodes. It 

can also be a set of coordinates.

Date and time data
Data about on which day and what time some event occurred.

 Transformation of numerical data
Several transformations are available to be performed on numerical data. The goal of 

all these transformations is to bring data for a given column or columns of numerical 

data between 0 and 1, which is ideal for the input to a machine learning algorithm that 

employs some kind of regression; otherwise, the model can be confused because of 

different scales of different features, and the predicted results will be wrong, more often 

than acceptable.

Table 3-1. Showing different normalizing estimators available in ML.NET

Transformation Encapsulated as

Mean Normalization Transforms.NormalizeMeanVariance

Log Mean Normalization Transforms.NormalizeLogMeanVariance

Unit Norm Normalization Transforms.NormalizeLpNorm

Global Contrast Normalization Transforms.NormalizeGlobalContrast

Density Normalization Transforms.NormalizeBinning

Density Normalization Transforms.NormalizeSupervisedBinning

Rescaling (min-max normalization) Transforms.NormalizeMinMax
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The strategy used in all these normalizations is to dampen/(subtract) the input by 

the mean (or any other measure) and then normalize the dampened values by variance 

of any other value, like the maximum value in case of NormalizeMinMax.

All these normalization schemes are essentially an estimator that transforms the 

input data to transformed data as an IDataView.

All of these functions have two overloads: one takes an array of 

InputOutputColumnPair, so that you can pass several column names to run the 

transformation on at one single call. Otherwise, you can run the normalization 

on a single column once and then use Append method to get to the next possible 

transformations in your pipeline.

Figure 3-2. Showing how to call a normalizing estimator

One thing to note that although the name of the type is InputOutputColumnPair, 

the parameters for the constructor take the names of the columns in reverse order. The 

first string passed will be used as the name of the output column, while the second 

string represents the name of the input column to be transformed. Input column name 

is droppable, and if dropped, the name of the output column will be used as the input 

column.

One way to think about normalization is that it is the same as damping. Damping 

is a physical process where the magnitude of an oscillation reduces with time when no 

more force is given from outside. Each normalization technique can be thought of as a 

multiplication of a damping factor to each of the value that produces a new value.

For example, a very common normalization technique is min-max normalization 

where each value is dampened by the following factor. The first minimum values are 

subtracted from each value, and then the result is multiplied by the damping factor 1/

(max-min).

Figure 3-3. Showing min-max normalization equation
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In the equation, xi is the value and min and max are the minimum and maximum 

values of the column values.

 Transformation of categorical data
Machine learning algorithms prefer numeric inputs, and one way to transform 

categorical data to numeric input is to encode the categorical data to generate a vector. 

Here is the list of all categorical transformations available in ML.NET.

Table 3-2. Showing categorical transformation estimators in ML.NET

Transformation Encapsulated as

One-hot encoding mlContext.transforms.Categorical.Onehotencoding

One-hot hash encoding mlContext.transforms.Categorical.Onehothashencoding

Table 3-3. Showing a sample dataset

CategoricalVal1 Numerical1

A 1.344

B 3.45

M 0.134

 One-hot encoding
Encoding categorical variables is a bit tricky. It is tempting to transform a categorical 

value to a numeric value because it is assumed that machine learning models deal with 

numeric values. However, this technique will add a bias to the model, and thus resultant 

predictions will be wrong. Let’s say we have a dataset like this.

If we use Label Encoding and assign one numerical label for each category in 

Categorical column, then the dataset will look like this.
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But the problem with this is that suddenly for no apparent reason, category “M” will 

be recognized as a better category than category “A” or “B”. If the model performs average 

internally, then the average of 1 and 3 (representation of “A” and “M”) will be category 

“B”, which doesn’t make any sense whatsoever. Therefore, we need to transform this 

dataset to change the rows to columns like this.

Table 3-4. Showing the same 

dataset with Label Encoding

CategoricalVal1 Numerical1

1 1.344

2 3.45

3 0.134

Table 3-5. Table showing result of one-hot encoding 

applied to sample dataset

Is_A Is_B Is_M Numerical1

1 0 0 1.344

0 1 0 3.45

0 0 1 0.134

As you can see that now for each category, we have a column that represents the 

presence of that column in the input dataset. Value of 1 in that column means the 

presence of that category in the data and value of 0 indicates the absence. So, the first 

row in the newly created dataset indicates that it is representing category “A” (the hot 

category, because for this category we have a 1). For the second row, we have B as the hot 

category. Since in this newly created dataset each row will have exactly one category as 

set and all others not set, it is known as “one-hot encoding.”

 One-hot hash encoding
This is the same as the hot encoding, but before the categories are hot encoded, they 

are hashed using a hash function – thus, the name. Sometimes, there can be multiple 

incarnations of the same data in categorical data, and using one-hot encoding directly will 
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create more columns in the resultant data than needed and will further confuse the system 

instead of helping it. In such situations, it is generally a great idea to use a hash function 

to produce the same hash code for all different looking yet same categorical value. One 

example of such situation is when we have surnames with slightly different spellings.

 Transformation of textual data
Textual data is different than categorical data although it might look similar. Textual data 

is the free-form text captured as value of a column, while categorical data is the string 

representation of an enumeration.

Here is the list of all textual data transformations available in ML.NET.

Table 3-6. Showing different text transformation estimators available in ML.NET

Transformation Encapsulated as

FeaturizeText transforms.text.Featurizetext

TokenizeIntoWords transforms.text.tokenizeintoWords

TokenizeIntoCharacterAsKeys transforms.text.tokenizeintoCharacterasKeys

NormalizeText transforms.text.normalizetext

ProduceNgrams transforms.text.producengrams

ProduceWordBags transforms.text.produceWordBags

ProduceHashedNgrams transforms.text.producehashedngrams

RemoveDefaultStopWords transforms.text.removedefaultStopWords

RemoveStopWords transforms.text.removeStopWords

LatentDirichletAllocation transforms.text.latentdirichletallocation

ApplyWordEmbedding transforms.text.applyWordembedding

Here are brief details about some of these transformations.

FeaturizeText: This estimator transforms the given input text to a vector of floating- 

point numbers representing the text. This takes a column name and emits a list of 

floating-point numbers representing the feature depicted by that column.
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NormalizeText: Normalizing the text can among many things mean changing the 

case of the text, removing punctuations and numbers, and so on. Normalizing texts is 

required for reconciliation. One example of a sample normalization performed on text is 

shown as follows:

“Samuel2345.” and “Samuel1123;” normalized to remove the numbers and 

punctuation and lowercased would be “samuel”. Reconciliation of addresses and names 

is quite a challenge and this estimator will be helpful there.

Here is another example of normalizing; this time we remove the space and all 

punctuations and change the case to uppercase.

“abc def 1234” will become “ABCDEF1234”; so will “abd cef 1234”

 The mental map about data handling, cleansing, 
and augmenting

Figure 3-4. Data scrubbing
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As the saying goes a picture is worth 1000 words, it is easy to get lost in the literature 

of these many different functions let alone remember. The following sections attempt 

to give you some visual clues with some pictures that will possibly strike a chord and 

remain with you longer than just plain word explanations. Good analogies are really hard 

to come by; but they are proved to be immensely helpful when trying to grasp difficult/

new concepts. Here are some analogies about different techniques to handle data.

In a nutshell, handling data falls into four major different categories.

Table 3-7. Showing different broad categories of handling data

Category of operation Purpose

Normalization to make every data point in the same range for regressive algorithms

Removal to remove bad data points

Featurization to create numerical representation of the data

Missing Value Handling to augment missing values

 Normalization

Figure 3-5. Showing a pictorial mind-map image for normalization
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Normalizing is almost akin to wood chopping. The proverb size doesn’t matter is not 

appropriate when it comes to feature magnitudes. Analogically speaking, you can 

imagine the features of the problem domain that you want to feed to your machine 

learning algorithm, as the wooden logs to be used in a fence. If some of your wooden 

logs are way too big or way too small than the rest, the fence wouldn’t hold off nicely or 

probably be impossible to build in the first place. Similarly, in a machine learning setting 

if the scales/magnitudes of the features are way off than others, then the regression- 

based machine learning models can be really confused and can lead to false/wrong 

decisions.

Normalizing rightly done always brings down the scale of a feature between 0 and 

1. And generally normalization is applicable to numerical data which has a magnitude. 

Here is the sample of applying min-max normalization before and after:

Before (Input) => 1000,2000,1350,2400,1840,1230

After    (Output) => 0, 0.4166667, 0.1458333, 0.5833333, 0.35, 0.09583333

As you can see, all the values in the input are normalized to be between 0 and 1.

 Removing

Removing data is like lawn mowing. You just have to get rid of useless weeds (if you will) 

from your data. Sometimes things to remove could be bad words (a.k.a. stop words) from 

the textual data. Sometimes it can be removing punctuations or special characters or 

Figure 3-6. Showing a pictorial mind-map image for removal of bad data
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numbers from textual data. Removing unwanted data (a.k.a. noise) from the data leaves 

the data in the form that is good for machine learning algorithms to consume.

Sometimes removing is a preparatory step performed on textual data before they can 

be transformed to numerical representations, and later those numerical representations 

can be normalized. ML.NET as you have seen in the chapter provides quite some 

features to remove such things from the data (textual data mostly).

Nowhere other than the search engine, the usage of stop word removal (as a 

particular form of removal technique) could be seen so effectively. To prove the point 

that stop words (words that appear way more frequently in every context in a human 

language than other words, making them least relevant as per information theory) are 

not important in search, I have searched using these two phrases “Capital of India” and 

“Capital India”. The word “of” is a stop word in English language as it appears almost 

everywhere without any regard to the context as it is a glue word. So the idea is to show 

that machine learning algorithms won’t be affected if these stop words are dropped; they 

could be otherwise confused if those words are left as is.

Figure 3-7 shows the search results of “Capital of India” and “Capital India”.

Figure 3-7. Showing results side by side to show that stop words don’t affect search 
results

You can see that stop words won’t have any effect on the result of the machine 

learning algorithm. Therefore, those can be safely dropped.
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 Featurization

Featurization is like giving a numeric value to the raw data. Unless we could do that, it 

is impossible to use any machine learning algorithm as you know, and techniques for 

extracting features from the raw data are a whole new discipline in its own right. Word 

cloud is a very good way to create a memory map for what featurization really is. As in a 

word cloud, we give a number (most often the frequency of occurrence) to each word; 

similarly, we can create numerical representation for all kind of data and that is all 

featurization is about.

As you have seen, the FeaturizeText method returns a vector of floating-point 

numbers that represents a text. This is a good example of what featurization can do to 

data that seemingly have no features except a raw content (for the string in textual data) 

and the length.

The benefits of featurization are manyfold. The first one is that it really helps in 

comparison with other seemingly similar things in the world. Comparing two strings 

for proximity match character by character is a much more computationally involved 

endeavor than understanding the proximity of two vectors representing those two 

tokenized strings in N dimension via cosine similarity or any other similarity measure. 

This also has another benefit in that this way, the algorithm becomes scalable.

Figure 3-8. Showing a sample word cloud that symbolizes featurization
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 Handling missing values

Missing values are the real challenge when trying to clean the data to be usable in a 

machine learning algorithm, because missing values are hard to fill justifiably and with 

them left as is the performance of the model can be really bad.

There are several strategies to handle missing data. They can be broadly classified 

into two different categories:

 1. Augmenting missing data

 2. Removing rows/columns with missing data

Augmenting missing data is a difficult task, primarily because it is difficult to assume 

what could possibly be a good substitute. There are ways to lamely substitute it with the 

Maximum, Minimum, or the Default of the column type. ML.NET also provides these in 

terms of enumerations in ReplacementMode.

Figure 3-9. Representative image of missing value in a dataset

Figure 3-10. Showing estimator for handling missing data

If the column with missing values is numeric, then we can use mean, median, or 

mode or even an extreme (maximum or minimum) value. However, the decision to 

replace it with a value will affect the performance, and since one advice is not good for 

all situation, it is required to do a trial and error analysis to see which missing value 

replacement strategy is working the best.
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For missing values in categorical columns, it is a good idea to mark it with a special 

value and then use OneHotEncoder.

 Handy guide to pick the right transformer/estimator
As the saying goes that if all you have is a hammer, every problem would seem like a nail.

Locating the right function to use can be quite challenging to do the right thing with 

your data. Table 3-8 tries to ease that a bit.

Table 3-8. A small cheat sheet to locate the right method for handling your data

Category What example best describes your situation Which function to use

Normalizing i have features with huge scale differences. here 

is an example:

one column is number of bedrooms: 1–10, and 

another is house price “$100000–10000000”

Use any of the normalizing 

techniques like 

NormalizeMinMax

Removing i have textual data with lot of glue words like “if”, 

“of”, “for”, etc.

removeStopWords

removedefaultStopWords

Featurize i have a bunch of movie reviews and i want to 

make sure how close each one is with the other 

in terms of their sentiment

Featurizetext

Normalize i have a bunch of categorical data. how do i 

transform them to numeric one?

don’t. Use OneHotEncoding

i have a bunch of words and i want to extract 

ngrams from those words. ngram is nothing but a 

list of substring produced by a moving window of 

a given size over a given string. So for the string 

“aBCd” and moving window size of 2, ngram will 

produce [“aB”,”BC”,”Cd”]

tokenizeintoWords

i have a bunch of ngrams and i want to featurize 

those ngrams

(continued)
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Category What example best describes your situation Which function to use

i have few different addresses for the same 

person. all of these addresses are almost the 

same, and i need to reconcile them to be one

Missing 
Value

i need to mark missing values indicateMissingValues

i need to fill in missing values with the minimum/

maximum/default values

MissingValuereplacingestimator

i need to fill in missing values with custom values CustomMapping

 Summary
In this chapter, you learned about several data handling and cleansing techniques that 

ML.NET offers. However, the discussion is kept short here only for the most common 

type of data encountered in machine learning tasks, namely, numerical and categorical 

data types. ML.NET offers several other data transformation tasks for image processing, 

deep learning, and for time series data type. Those are deliberately kept out of this 

chapter, but I hope that this chapter gives you an essence of what ML.NET provides in 

terms of data transformations and cleansing and also how these are all glued together 

using the same estimator, estimator chain, and fitting methods discussed earlier in the 

book.

ML.NET also offers capabilities to join and drop columns and other related features, 

but since those were being used throughout the book thus far and will continue to 

appear in the next chapters, it was not shown again here to save you from boredom.

Table 3-8. (continued)
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CHAPTER 4

Regressions
 

 Introduction
Ever wondered how can we predict the gasoline price in upcoming months? How the 

projected exchange rates of currencies are determined? The crux of these problems is the 

ability to predict a value in a continuous range. The algorithms that solve those problems 

are called regression algorithms. The name regression suggests that these algorithms are 

mostly iterative in nature. This is different than classification because in classification we 

need to predict either one of the two values (in case of binary classification) or one of the 

many (a set of finite labels, in case of multiclass classification) labels. On the other hand, 

in these situations the predicted value will have to be real value and that’s regression. In 

this chapter, you shall learn about several types of regression algorithms that ML.NET 

provides and how to measure performance of these algorithms. In some literature, these 

algorithms are termed as curve fitting algorithms.

 Objective
By the end of this chapter, you should be able to identify which problems belong to 

regression type of problems and solve them using one of the many regression trainers 

provided by ML.NET. You will also be able to evaluate how good did the algorithm do 

based on several performance monitoring measures.

Note For the purpose of this book, the terms “Trainers” and “algorithms” are 
used interchangeably throughout this ML.NET context.

https://doi.org/10.1007/978-1-4842-6543-7_4#DOI
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 What regression does?
Simple regression is the process of fitting several points in a line. When the line we 

came up with goes very close to most of the points, this solution is considered good. 

If the line “misses” many points, we say that the solution is not good. However, there 

are downsides of both. When almost all the points from the input make their way on 

the predicted extrapolated (the line that doesn’t exist in the input data but projected) 

line, we guess that we have probably given way too much clue to the model, and thus 

the model becomes an oracle to give away exact answers for all points from the input 

dataset. This situation is called overfitting, and the reverse when almost no point makes 

it to the predicted extrapolated line, we call it underfitting.

Regression algorithm tries to predict the value of a parameter for a dataset looking 

at other values. Unlike classification where the label can take either of the two values 

(binary classification) or many values (multiclass classification), in regression the 

predicted value is always a real value.

In the simplest case of regression problem, we will have a known parameter (e.g., 

a number of bedrooms for the house) and a value we want to predict (the price for this 

house). To do so, the algorithm will have to come up with a formula – an equation, where 

by setting the known parameter (bedrooms), you will get the value (price). It’s logical to 

expect that the more bedroom a house has, the higher goes the price. So the formula for 

this relationship can be as follows.

Figure 4-1. Showing equation for the simplest regression

In real life, we usually have more than one parameter that influences the value we 

are looking for. For the house price, other parameters could be a safety index of the 

neighbourhood, total carpet area, age of the property etc. In this case, the equation will 

look like this.

Figure 4-2. Generic linear regression
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So the task of a regression algorithm/model is to emit the coefficients or the weights 

of the input variables. This is still linear regression as the nature of the curve is a straight 

line. However, sometimes a linear model is not enough, and then the following generic 

equation depicts the nonlinear regression models, also known as polynomial regression.

where b is also known as the regularization term.

 Predicting MPG (miles per gallon) for cars
When buying a car, one of the parameters people usually take into consideration is the 

MPG (miles per gallon of fuel) value. A higher MPG means all other things remaining 

similar a vehicle is more worth than others. In this experiment, we shall see how we can 

use Model Builder wizard to find the best regression algorithm to predict the MPG value 

from a dataset.

Figure 4-3. Polynomial form

Figure 4-4. Representative image of fueling a car

In this experiment, you shall see how regression can be used to predict the MPG of a 

used car. You can get the data from www.kaggle.com/uciml/autompg-dataset.

The data looks like Figure 4-5.
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We shall use Model Builder wizard to get to a decently working model. Follow these 

steps to get it:

Step 1: In Visual Studio, add machine learning to an existing console app project 

(Figure 4-6).

Step 2: Select the scenario (Value prediction) for the regression (Figure 4-7).

Figure 4-5. Showing few lines from the mpg dataset

Figure 4-6. Showing prompt to add Machine Learning to existing project
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Step 3: Select the file to train the model (Figure 4-8).

Figure 4-7. Select “Value prediction”
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Step 4: Start the training. Leaving the training phase in Model Builder for longer 

really gives better results (I recommend 2 minutes at least). The official documentation 

says the following.

Figure 4-8. Showing the training data loaded

Figure 4-9. Recommended time required for training by Microsoft
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Even though the suggested time according to the documentation is 10 seconds, I 

would recommend to run the training for longer around 2 minutes (this is found from 

my personal experience, could vary depending on your PC hardware) because that gives 

the time to find the best possible algorithm.

Step 5: As the program (Model Builder wizard) runs, it will show the status (progress) 

of the execution (Figure 4-10).

Figure 4-10. Final result of the training

At the end, the program reports the final performance and the best algorithm/model 

for this dataset.

Step 6: Check out the evaluation report provided by the wizard (Figure 4-11).

ChapTEr 4  rEgrEssioNs



60

The evaluation table here shows several performance measurement metrics for the 

model.

Step 7: The generated code will be automatically added to the host solution.

Step 8: The current version of ML.NET offers a way to read more and deploy the 

model as ASP.NET service.

Figure 4-11. Evaluating the model
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Step 9: Look at the generated code.

If you choose to add the generated projects, the wizard will add a couple of projects 

to the solution as shown in Figure 4-13.

Figure 4-12. Next steps wizard

Figure 4-13. Autogenerated code added to the existing solution

The ML.Model project holds types to represent one row of the input data 

(ModelInput.cs) and the prediction ModelOutput.cs. Here are these two generated 

types (Listings 4-1 and 4-2).
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Listing 4-1. Generated ModelInput.cs that represents one row of the input data

 

Listing 4-2. Showing the type to represent the output of the model

Notice that since the output of a regression model is real value, the property Score 

represents that.
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 Code walkthrough
The magic happens in the BuildPipeline method. Here is the code after a bit of 

formatting to make it more readable (Listing 4-3).

Listing 4-3. Showing how the pipeline is being built

 

ML.NET model builder wizard really does quite an impressive job. It not only creates 

the model but also generates code that is highly readable and maintainable by future 

programmers who would otherwise be scratching their heads. I must admit for 

generated code, ML.NET generated code looks really nice.

The “horsepower” column had some missing values, and ML.NET figures that out 

and applies a couple of transformations:

IndicateMissingValues: To mark the column “horsepower” to 

have missing values

ReplaceMissingValues: To replace the missing values with a 

predefined value
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At the end of the pipeline, FastTreeTweedie trainer is used, which performs well if 

there are many zeros or missing values.

 Predicting house prices in Boston suburbs
In the following experiment, you shall learn about the steps to use ML.NET to predict 

house prices in Boston suburbs. The example might be a toyish one, but the learning is 

transferable to a more production-ready environment.

Figure 4-14. Representative aerial view of Boston

The Boston Housing Dataset is a derived from information collected by the US 

Census Service concerning housing in the area of Boston MA. The following describes 

the dataset columns (this list is taken from the description on Kaggle):

• CRIM: Per capita crime rate by town

• ZN: Proportion of residential land zoned for lots over 25,000 sq. ft.

• INDUS: Proportion of nonretail business acres per town
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• CHAS: Charles River dummy variable (1 if tract bounds river; 0 

otherwise)

• NOX: Nitric oxides concentration (parts per 10 million)

• RM: Average number of rooms per dwelling

• AGE: Proportion of owner-occupied units built prior to 1940

• DIS: Weighted distances to five Boston employment centers

• RAD: Index of accessibility to radial highways

• TAX: Full-value property-tax rate per $10,000

• PTRATIO: Pupil-teacher ratio by town

• B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

• LSTAT: % lower status of the population

• MEDV Median value of owner-occupied homes in $1000's

And this time we shall not use Model Builder wizard but hand code our model, 

changing one trainer at a time.

Step 1: Create a new console project.

Step 2: Create the following class BostonHouse.cs (this is the Model input).

Listing 4-4. ModelInput for Boston housing problem

   public class BostonHouse

    {

        /// <summary>

        /// CRIM - per capita crime rate by town

        /// </summary>

        [LoadColumn(0), ColumnName("crim") ]

        public float CRIM { get; set; }

        /// <summary>

        ///  proportion of residential land zoned for lots over  

25,000 sq. ft.

        /// </summary>

        [LoadColumn(1), ColumnName("zn")]

        public float ZN { get; set; }
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        /// <summary>

        /// proportion of nonretail business acres per town

        /// </summary>

        [LoadColumn(2), ColumnName("indus")]

        public float INDUS { get; set; }

        /// <summary>

         /// Charles River dummy variable (1 if tract bounds river; 0 

otherwise)

        /// </summary>

        [LoadColumn(3),ColumnName("chas")]

        public float CHAS { get; set; }

        /// <summary>

        /// nitric oxides concentration (parts per 10 million)

        /// </summary>

        [LoadColumn(4), ColumnName("nox")]

        public float NOX { get; set; }

        /// <summary>

        /// average number of rooms per dwelling

        /// </summary>

        [LoadColumn(5), ColumnName("rm")]

        public float RM { get; set; }

        /// <summary>

        /// proportion of owner-occupied units built prior to 1940

        /// </summary>

        [LoadColumn(6), ColumnName("age")]

        public float Age { get; set; }

        /// <summary>

        /// weighted distances to five Boston employment centers

        /// </summary>

        [LoadColumn(7), ColumnName("dis")]

        public float DIS { get; set; }

        /// <summary>

        /// index of accessibility to radial highways

        /// </summary>

        [LoadColumn(8),ColumnName("rad")]

ChapTEr 4  rEgrEssioNs



67

        public float RAD { get; set; }

        /// <summary>

        /// full-value property-tax rate per $10,000

        /// </summary>

        [LoadColumn(9), ColumnName("tax")]

        public float TAX { get; set; }

        /// <summary>

        /// pupil-teacher ratio by town

        /// </summary>

        [LoadColumn(10) , ColumnName("ptratio")]

        public float PTRATIO { get; set; }

        /// <summary>

        /// 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

        /// </summary>

        [LoadColumn(11), ColumnName("b")]

        public float B { get; set; }

        /// <summary>

        /// % lower status of the population

        /// </summary>

        [LoadColumn(12), ColumnName("lstat")]

        public float LSTAT { get; set; }

        [LoadColumn(13), ColumnName("medv")]

        public float Medv { get; set; }

    }

Step 3: Create the following class BostonHousePrice.cs (this is the Model output).

Listing 4-5. ModelOutput for Boston housing problem

public class BostonHousePrice

{

     public float MEDV { get; set; }

}

Step 4: Add the following lines in the Program.cs.
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Listing 4-6. Consuming the Boston housing price prediction regression model

//change your path accordingly

string DATA_FILEPATH = @"C:\MLDOTNET\housing.csv";

MLContext context = new MLContext(seed: 1);

IDataView trainingDataView = context.Data.LoadFromTextFile<BostonHouse>(

                                            path: DATA_FILEPATH,

                                            hasHeader: true,

                                            separatorChar: ',',

                                            allowQuoting: true,

                                            allowSparse: false);

var pipeLine = context.Transforms.NormalizeMinMax("crim", "crim")

                .Append(context.Transforms.NormalizeMinMax("zn", "zn"))

                . Append(context.Transforms.NormalizeMinMax("indus", 

"indus"))

                .Append(context.Transforms.NormalizeMinMax("chas", "chas"))

                .Append(context.Transforms.NormalizeMinMax("nox", "nox"))

                .Append(context.Transforms.NormalizeMinMax("rm", "rm"))

                .Append(context.Transforms.NormalizeMinMax("age", "age"))

                .Append(context.Transforms.Concatenate("Features",

                "crim", "zn", "indus", "chas", "nox", "rm", "age"));

            // Set the training algorithm

var trainer = context.Regression.Trainers.Sdca(labelColumnName: "medv");

var trainingPipeline = pipeLine.Append(trainer);

var model = trainingPipeline.Fit(trainingDataView);

var engine = context.Model

    .CreatePredictionEngine<BostonHouse, BostonHousePrice>(model);

var input = CreateSingleDataSample(DATA_FILEPATH);

var result = engine.Predict(input);

Console.WriteLine($"Actual MEDV is {sampleData.Medv}");

Console.WriteLine($"Predicted MEDV is {result.Medv}");
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This produces the following output:

Actual MEDV is 24

Predicted MEDV is 26.32589

This program uses NormalizeMinMax transformations on the numeric columns.

 Performance metrics
All performance metrics are available in RegressionMetrics class of Microsoft.ML.Data 

namespace as shown in Figure 4-15.

Figure 4-15. Showing evaluation matrices

Figure 4-16. Sum of squares equation

R-squared is a statistical measure that represents the goodness of fit of a regression 

model. The ideal value for r-squared is 1. The closer the value of R-square to 1, the better 

is the model fitted. This metric is available as “RSquared” in the ML.Data.

R-square is a comparison of residual sum of squares (SSres) with total sum of 

squares (SStotal). The total sum of squares is calculated by summation of squares of 

perpendicular distance between data points and the average line (Figure 4-16).
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Joining this together, R-squared is given by the formula shown in Figure 4-18.

Figure 4-18. R-squared equation

Figure 4-19. Mean squared error equation 

Figure 4-17. Residual sum of total equation

If the value of R-squared error approaches 1, then the regression is achieving good 

result.

 Mean squared error
This is the average of the squared differences between actual and predicted values. 

All the negatives are dampened because of the square. In other words, due to a square 

negative values become positive which allows to track the accumulative difference. 

Therefore, the actual amplitude of the error is considered.

The residual sum of squares is calculated by the summation of squares of 

perpendicular distance between data points and the best fitted line (Figure 4-17).
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 Normalized root mean square
This error metric is really useful for comparison of several models which have features 

on different scales. This is not readily available from ML.NET, but as you can see from the 

formula, it can be easily calculated (Figure 4-21).

Regression Trainer Encapsulated as

Fast Tree regression.Trainers.FastTree

Fast Forest regression.Trainers.FastForest

Fast Tree Tweedie regression.Trainers.FastTreeTweedie

Generalized Additive Models regression.Trainers.gam

Limited-Memory BFGSPoissonRegression regression.Trainers.Lbfsgpoissionregression

Online Gradient Descent regression.Trainers.onlinegradientDescent

Sdc regression.Trainers.sdca

Figure 4-21. Equation of NRMSD

Figure 4-20. Root mean square error equation

 Root mean square
As the name suggests, it is the root of the mean squared difference of the predicted and 

actual value. This is further damped or regularized error and generally leaves less room 

for getting more errors. This error makes big errors not to confuse the model.

ChapTEr 4  rEgrEssioNs



72

 Ideas of using regression to improve your daily life
Predict time to reach work/school depending on when you leave your home.

 

 Summary
In this chapter, you have learned about how to use ML.NET for regressions and how to 

check the performance of the model arrived. In the next chapter, you shall learn about 

classification algorithms that ML.NET offers. I hope this chapter is leaving you with 

enough motivation to try different algorithms to address regression problems in your 

job/life.
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CHAPTER 5

Classifications

 Introduction
One of the major supervised machine learning class of problems is to classify things 

from a set of given things, by learning from previously labeled data. This is like proverbial 

“Telling chalk and cheese apart” from several examples of labeled data. In this chapter, 

we shall go through an example of classification problem and will solve it using ML.NET.

 Objective of this chapter
The objective is to give you a good understanding of classification type of problems and 

introduce several trainers/classifiers available in ML.NET for this type of problems. I’ll 

demonstrate how to solve a classification problem in ML.NET Model Builder and how to 

configure and use the classification trainers.

By the end of this chapter, you shall be able to view a problem presented as a 

classification problem and use any of the available classifier to solve it. You shall also be 

able to evaluate the performance of the classifier and tune it if required before deploying 

in production environment.

 Types of classifications
There are two types of classification problems that can manifest in the wild. When the 

task is to tag an unknown entry with one of the two possible classes/types from the 

previously presented labeled data, then that task is called binary classification. On the 

https://doi.org/10.1007/978-1-4842-6543-7_5#DOI
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other hand, if the task is to predict the confidence of the model as to which of the many 

different types the unknown entry possibly belongs to, it is called multiclass classification 

for obvious reasons.

For example, predicting whether the animal in each image is a dog or a cat is an 

example of binary classification, while identifying handwritten digits to be one of 0 to 9 

is a case of multiclass classification problem. As you might imagine rightly, binary 

classification is a generalization of multiclass classification problem where there are just 

two types or classes that an unknown entry can belong to.

 Terminologies of data
In all supervised algorithm, we need data to train the system and data to test the 

performance of the system.

Training data: Data that is used to create the model that will predict the result

Test data: Data that is used to check the performance of the model

Ideally, training and test data should be sourced differently and shouldn’t overlap 

intentionally. However, most of the time data is not available to test the performance of 

the system, and in these occasions, one can use a part of the training data as test data. 

This split between training and test is often called train-test-split.

 Example case studies
In the following sections, several example situations of case study of classifications are 

presented. And ML.NET is used to craft a solution.

 Using ML.NET for predicting whether income will be more than 50K USD.

The task is to predict whether a given individual will be able to earn more than 50K or 

not based on other demographic features. The data can be downloaded from https://

archive.ics.uci.edu/ml/machine-learning-databases/adult/.

Here are the first few rows of the dataset (Figure 5-1).
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The dataset doesn’t come with headers. The headers are available in the adult.names 

as shown in the highlighted box in Figure 5-2.

Figure 5-1. Showing raw data of salary segregation

Figure 5-2. The download page for the dataset with salary information

The content of the adult.names files has the headers. Here are the headers. For 

space constraint, I have not shown the values of each column or their types.

• age

• workclass

• fnlwgt

• education

• education-num

• marital-status

• occupation

• relationship

• race

• sex
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• capital-gain

• capital-loss

• hours-per-week

• native-country

The dataset is very interesting as an example, because it has everything you want 

to try out a machine learning algorithm for classification. It has missing data (marked 

with “?” symbols). It has quite a good mix of numeric and categorical data in the mix 

to be used in the classification task. It has quite a range for numeric variables requiring 

normalization. It has many categorical columns requiring doing several one-hot 

encodings.

After including the header, I have named the header “Salary” for the label to be 

predicted.

The value of Salary can be either “<=50K” or “>50K”. The first few rows with the 

headers are shown in Figure 5-3.

Figure 5-3. Salary data annotated with their headers

This dataset along with headers is now ready for ML.NET model builder. The 

following section shows how to feed this data to model builder to get the initial sketch of 

the learning system.

Step 1: Add a machine learning to an existing project (Figure 5-4).
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Step 2: Select the scenario for which you want to train. In this case, you can select 

Issue Classification (Figure 5-5).

Figure 5-4. Creating a new Machine Learning project

Figure 5-5. Interface for selecting the type of Machine Learning
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Here, we select Issue Classification, but we could have also selected Sentiment 

Analysis but it is possible to use a multiclass classification model to train to identify a 

binary dataset where there are only two possible labels. Therefore, this selection is good 

for use.

Step 4: Locate the file to train (Figure 5-6).

Once you do so, the Model builder will load the data from the file as shown, and then 

you can select which columns you want to use to train your model.

Step 4: Let the system train for about 2 minutes and click the “Start training” button 

(Figure 5-7).

Figure 5-6. Data loaded in the Model Builder wizard (Configuration pane for the 
training)
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Step 5: Wait for the system to train and check the progress as shown in Figure 5-8.

Figure 5-7. Configuration for training duration in Model Builder wizard

Figure 5-8. Showing progress of the training (still in progress)

The model builder shows the performance of the classifiers tried on so far.

Once the model builder is successfully completed running, it will show the result of 

the finalized model as shown in Figure 5-9.
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In this current model, the FastTreeOva algorithm provides the best performance.

The next step is to add the generated code to the solution. Also, you can evaluate the 

model using the on-the-fly generated UI (Figure 5-10).

Figure 5-9. Final result of the evaluation from the Model Builder wizard showing 
the performance of the top performing algorithm

Figure 5-10. Evaluate tab on Model Builder showing the overall accuracy of the 
best discovered model
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This is a very nice dashboard showing

• The final score of the model’s accuracy

• An interface generated on-the-fly to try out the model

• Total number of models tried (43 in this case; imagine how long it 

would have taken to try those manually)

The logical next step (if you are mostly satisfied) with the model is to add the 

generated projects to the solution as indicated by step 5 on the wizard (Figure 5-11).

Once done, a couple of projects will get added to the solution as explained by the 

wizard (Figure 5-12).

Figure 5-11. Model Builder generated code add prompt interface

Figure 5-12. Showing explanation of the generated code to be added
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Here, a couple of projects are shown that get added to your existing solution 

(Figure 5-13).

The .ConsoleApp is the client application that shows how to consume the model that 

is generated.

 Evaluating the model
There is also a class generated called ModelBuilder.cs and that has all the logic to see 

how good or bad the current model performed. There are several matrices to determine 

that.

Figure 5-13. Showing a couple of generated projects added by the Model Builder 
wizard
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 Confusion matrix
As the name suggests, the confusion matrix is a measure of how confused or not the 

algorithm while predicting the labels of the inputs. Confusion matrix consists of basically 

four values:

• TP (true positives)

• FP (false positives)

• TN (true negatives)

• FN (false negatives)

This picture nicely captures the essence of confusion matrix (Figure 5-14).

• TP: The set of predictions where the classification labels an actual 

true label as true.

• TN: The set of predictions where the classification labels an actual 

false label as false.

• FP: The set of predictions where the classification labels an actual 

false label as true. This is known as Type I error.

• FN: The set of predictions where the classification labels an actual 

true label as false. This is known as Type II error.

Figure 5-14. A sample confusion matrix of a classification task that tries to 
identify cats, dogs, and rabbits
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Two very important measures are calculated from the confusion matrix. These are 

called precision and recall. These are calculated as per the following formulae:

 
precision

TP

TP FP
=

+  

 
recall

TP

TP FN
=

+  

It is difficult to compare multiple models with obviously different precision and 

recall. Therefore, their harmonic mean is calculated, and this is a very popular measure 

to determine the performance of the model. This measure is called the F1 score. The 

formula is given as follows:

 
F Score

precision recall

precision recall
1

2
_ =

* *
+  

The higher the F1 score, the better. To see the confusion matrix for the problem  

solved, add the following lines in the PrintMulticlassClassification 

FoldsAverageMetrics method:

var confusionMatrices = crossValResults.Select(r => r.Metrics.

ConfusionMatrix);

foreach (var confusionMat in confusionMatrices)

{

     Console.WriteLine(confusionMat.GetFormattedConfusionTable());

}

This will print all the confusion matrix as shown in Figure 5-15 (only two are shown 

for space constraint).

Chapter 5  ClassifiCations



85

The second confusion matrix shows that it predicted 4631 entries as <= 50 and that 

is actually true, and 1035 entries are predicted as >50K and which is also actually right. 

Therefore, TP = 4631 and >50K is identified as <=50K in 578 cases and FP = 578 and FN = 254. 

Using the formula, recall is TP/(TP+FN) => 0.9480 and precision is TP/(FP+TP) => 0.8890.

I have annotated the boxes in the image with TP and so on in yellow as a memory 

map. It is easy to remember that the parts of the matrix are given in four quadrants 

available in a counterclockwise manner starting from top left with TP, FP, TN, and 

FN. The first two quadrants belong to the positive results, while the last two to the 

negative results, and it is true cases followed by the false cases in both occasions.

Micro Accuracy: How often we get the right answer from the 

model. If you want to calculate only one metric for checking the 

performance of your classification algorithm, then use this metric.

Macro Accuracy: This is basically the average of micro accuracies 

computed for each class/label in the dataset.

Figure 5-15. Showing formatted confusion matrices for the salary prediction 
problem solved
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 Log loss
Logarithmic loss (related to cross-entropy) measures the performance of a classification 

model where the prediction input is a probability value between 0 and 1. The goal of our 

machine learning models is to minimize this value. A perfect model would have a log 

loss of 0. Log loss increases as the predicted probability diverges from the actual label. 

So, predicting a probability of .012 when the actual observation label is 1 would be bad 

and result in a high log loss.

Formulae for log loss:

For binary classification

 
- * ( )+ -( ) -( )( )y p y plog log1 1  

For multiclass classification

 
- ( )

=
å
c

M

c cy p
1

0 0, ,log
 

To see how the model performed, a call to the CreateModel method from the 

ML.ConsoleApp application can be made as this

ModelBuilder.CreateModel();

And this will generate results like this for you (Figure 5-16).

As you can see, the model does considerably well because Micro Accuracy is close to 

1 and Log Loss is very small. The default generated code doesn’t have the code to print 

the details of the confusion matrix. However, you can easily get to that by adding the 

following code:

Figure 5-16. Showing formatted confusion matrices for the salary prediction 
problem solved
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var confusionMatrices = crossValResults.Select(r => r.Metrics.

ConfusionMatrix);

in

public static void PrintMulticlassClassificationFoldsAverageMetrics 

(IEnumerable<TrainCatalogBase.CrossValidationResult<MulticlassClassificati

on 

Metrics>> crossValResults)

All of these matrices are available as properties of MulticlassClassification 

Metrics as shown here:

 

 ML.NET trainers for classification
ML.NET provides several trainers for binary and multiclass classifications.
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 Binary classifiers
Table 5-1 shows several binary classifiers available in ML.NET and where they are in the 

framework.

 Multiclass classifiers
Table 5-2 shows several multiclass classifiers available in ML.NET and where they are in 

the framework.

Table 5-1. Binary classifiers and their location in the framework

Classifier name Encapsulated as

AvergePerceptron BinaryClassification.Trainers.AveragedPerceptron

FieldAwareFactorization 

Machine

BinaryClassification.Trainers. 

FieldAwareFactorizationMachine

LbfgsLogisticRegression BinaryClassification.Trainers. 

LbfgsLogisticRegression

LinearSvm BinaryClassification.Trainers.LinearSvm

Prior BinaryClassification.Trainers.Prior

SdcaLogisticRegression BinaryClassification.Trainers. 

SdcaLogisticRegression

SdcaNonCalibrated BinaryClassification.Trainers.SdcaNonCalibrated

SgdCalibrated BinaryClassification.Trainers.SgdCalibrated

SgdNonCalibrated BinaryClassification.Trainers.SgdNonCalibrated

FastTree BinaryClassification.Trainers.FastTree

FastForest BinaryClassification.Trainers.FastForest

Chapter 5  ClassifiCations



89

 Setting up options for the classifier
If you take a close look at the generated code, you shall see that the arguments of 

OneVersusAll are set up like this. The code is pretty-printed here to make it more 

readable. The generated code is not pretty-printed.

var trainer = mlContext.MulticlassClassification.Trainers.OneVersusAll

(

mlContext.BinaryClassification.Trainers.FastTree

 (new FastTreeBinaryTrainer.Options()

        {

                NumberOfLeaves = 26,

                MinimumExampleCountPerLeaf = 1,

                NumberOfTrees = 20,

                LearningRate = 0.05887203f,

                Shrinkage = 3.070639f,

                LabelColumnName = "Salary",

              FeatureColumnName = "Features"

        }),

        labelColumnName: "Salary"

)

Table 5-2. Multiclass classifiers and their location in the framework

Classifier name Encapsulated as

LbfgsMaximumEntropy MulticlassClassification.Trainers.

LbfgsMaximumEntropy

NaiveBayes MulticlassClassification.Trainers.NaiveBayes

OneVersusAll MulticlassClassification.Trainers.OneVersusAll

PairwiseCoupling MulticlassClassification.Trainers.

PairwiseCoupling

SdcaMaximumEntropy MulticlassClassification.Trainers.

SdcaMaximumEntropy

SdcaNonCalibrated MulticlassClassification.Trainers.

SdcaNonCalibrated
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In this call, a multiclass classifier “OneVersusAll” is being configured. It takes two 

parameters. The first one is the binary classifier that it needs to use to differentiate one 

class from all other and the name of the label column (in this case “Salary”).

The following screenshots show how you can explore different options that these 

classifiers can take (Figure 5-17).

Normally, there are two overloads for most of the trainers. The first one takes an 

Option type which can store all the configuration values, and the other one generally 

allows to pass all the configurations as literals and numeric values.

Here are the two overloads of this particular trainer:

public static SdcaMaximumEntropyMulticlassTrainer SdcaMaximumEntropy(this 

MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, 

SdcaMaximumEntropyMulticlassTrainer.Options options);

public static SdcaMaximumEntropyMulticlassTrainer SdcaMaximumEntropy(this 

MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, 

string labelColumnName = "Label", string featureColumnName = "Features", 

string exampleWeightColumnName = null, float? l2Regularization = null, 

float? l1Regularization = null, int? maximumNumberOfIterations = null);

So we can configure such a trainer like this (this one uses the second overload)

var trainer = mlContext.MulticlassClassification.Trainers.

SdcaMaximumEntropy("Salary", "Features", null, 0.2334f, 0.454f, 100);

or like this

var trainer =

mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy

 (

new Microsoft.ML.Trainers.SdcaMaximumEntropyMulticlassTrainer.Options()

            {

Figure 5-17. Showing how to set up the trainer options for 
SdcaMaximumEntropy
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                BiasLearningRate = 0.35f,

                ConvergenceCheckFrequency = null,

                ConvergenceTolerance = 0.23f,

                FeatureColumnName = "Features",

                ExampleWeightColumnName = string.Empty,

                L1Regularization = 0.12f,

                L2Regularization = 0.22f,

                LabelColumnName = "Salary"

            });

All other trainers can be configured this way.

 Summary
In this chapter, you have learned how to use ML.NET model builder to your advantage to 

locate/discover the perfect or near perfect classifier for the dataset in question. You have 

also learned how to evaluate the model. The flow is always to prepare the data, feed that 

to model builder to locate/discover the best model, and then run several experiments on 

that model to make its performance better.
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CHAPTER 6

Clustering
 

 Introduction
Sometimes, we prepare a long list of grocery items and go to the supermarket well 

prepared to buy what we want. However, sometimes the midday sugar trigger can send 

us to the supermarket like a dart for picking up a chocolate. People who prepare list 

of items generally spend way more time in the store than those who do not. From the 

perspective of the store buyers, spending more time in the store is a great thing. These 

buyers are what we can call “Organized Buyers”. They know what they want and how 

much of it that they want. On the flip side, we have those buyers who just drop in the 

store for picking one or two items on a real physical/mental need trigger. These people 

are what we can call “Disorganized Buyers”. Clustering is an unsupervised machine 

learning technique to automatically categorize datasets like these customers/buyers are 

for the store. In more general terms, clustering can be thought of as automatic grouping 

of things, behaviors, and so on. There is obviously a known right answer to the number 

of groups present in a dataset, but it is impossible to be known for each and every dataset 

in prior.

 Objective of this chapter
In this chapter, you shall learn about a couple of algorithms to cluster/segregate a dataset 

into multiple clusters. The example we just discussed has two groups or clusters – one 

encompassing the organized buyers and other the disorganized ones. After reading this 

chapter, you shall have a thorough understanding of how popular clustering algorithms 

work and how to measure their performance using ML.NET.

https://doi.org/10.1007/978-1-4842-6543-7_6#DOI
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 Intuition behind K-Means
One of the most popular algorithms used in clustering is K-Means clustering algorithm. 

It relies on the fact that anything can be represented as a vector in N-dimensional space. 

This may sound very complex at first, but it is not. It is just a special use of geometry. I 

shall explain it here.

In high school mathematics, you learned about coordinate geometry. Now we shall 

go through a geometrical interpretation of the clustering problem, and it’s based on the 

theory you learned in coordinate geometry. Trust me!

As you can see in the following texts, each customer can be represented by a point 

in a two-dimensional plane where the X coordinate denotes the hours spent in the store 

and Y coordinate denotes the average number of items they purchased. So you can now 

see from the imaginary plot in Figure 6-1 that the dots at the lower corner denote buyers 

who spent less time in the store (low X value) and bought fewer items (low Y value). 

These are the people who the store wants to label as “Disorganized Buyers” – not on 

their face but in the store’s database!

On the other extreme, we have people who spent more time in the store and bought 

more than average items for all other buyers. These are the people the store wants to 

label as “Organized Buyers”.

The encompassing bubble around the points drawn as broken lines in circular shape 

denote the cluster/group. You can think of these bubbles as the border or outline of 

the cluster. If you like analogies, these are more like the boundary walls that protect the 

cluster inside. So any point that falls between this encompassing circle is thought to be a 

member of the cluster.
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The main goal of a clustering algorithm is to move closely related data points (in the 

case of this example, the data of each customer) in the same cluster such that their distance 

(also known as intra-cluster distance) is as less as possible and the distance between 

clusters (also known as inter-cluster distance) is as big as possible. Later in the chapter, you 

shall see how to use several matrices to quantify the performance of a clustering algorithm.

 A bit of mathematics

The act of segregating customers into several clusters is called “Customer Segmentation”, 

and it is a popular application of clustering algorithm. Moreover, it is easy to start with 

few dimensions of the data that makes sense already and gradually move to make the 

representation more detailed.

Each customer is represented in two dimensions as a point. Let us say we denote ith 

customer as Custi.

Then, we can write

 Cust x yi i i= ( ),  

where xi denotes the amount of time spent in the store and yi denotes the number of 

items purchased.
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Figure 6-1. Showing two clusters of customers in customer segmentation
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 The third axis and beyond

So far, we have represented data for each customer as a two-dimensional point where 

the two axes were the amount of time spent in the store and the average number of items 

purchased. However, as you can probably imagine, it could be extended to have more 

details. For example, the number of visits per month could be the third value if we want to 

represent the data for the customers in three dimensions.

 Cust x y zi i i i= ( ), ,  

Extrapolating on this, you can imagine that a customer can be represented by a m 

point in m-dimensional space like this:

 Cust x y mi i i i= ¼( ), ,  

 The notion of proximity

Now that we have successfully represented each customer as a data point, we can find 

their distance between one another using Euclidean distance function that you learned 

in coordinate geometry. This distance will give us a sense of proximity between two data 

points (in this case two customers). This will be the clue needed to put two customers 

in close proximity in the same cluster or group. The following illustration (Figure 6-2) 

attempts to make a visualization.

Figure 6-2. Showing a couple of clusters and an unknown data point
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d_U_Center_1 is the Euclidean/Manhattan distance between the cluster centroid 

Center_1 (which is the cluster centroid for cluster 1) and the unknown data point.

d_U_Center_2 is the Euclidean/Manhattan distance between the cluster centroid 

Center_2 (which is the cluster centroid for cluster 2) and the unknown data point.

If d_U_Center_1 < d_U_Center_2, then the unknown data point should be attached 

to the first cluster as the centroid for that is nearer than the other centroid. Otherwise, it 

should be attached to the second cluster.

This process of cluster assignment is iterative, and it continues for the whole part 

of K-Means clustering where the initial guesses for the clusters shift and finally settle to 

become the final centroids of the clusters.

The distance metric used is generally the Euclidean distance or the Manhattan 

distance (a.k.a. city block distance). The following section provides a refresher for you for 

these distance matrices.

 The Euclidean distance

If there are two points denoted by p(x, y) and q(x, y), Euclidean distance between these 

two points is represented by the following formula:

 
D q p q pp q x x y y, = -( ) + -( )2 2

 

Here, px denotes the value of x coordinate for the point p and so on.

Figure 6-3. Euclidean distance
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 Euclidean distance in more dimension

As you can see, extrapolating on the previous equation, we can get the general equation 

for calculating Euclidean distance between two points in m dimension as follows:

 
D q p q p q pp q x x y y m m, = -( ) + -( ) +¼+ -( )2 2 2

 

Sometimes it could be needed to use other distances metrics like Manhattan or 

city block distance because calculating Euclidean distance can be computationally 

expensive. Here is the equation for Manhattan or city block distance:

 
d p qcityblock

i

n

i ip q×( ) = -
=
å

1  

 Centroid, the center of the cluster

Centroid in mathematics and physics denotes the point which is the mean of all the 

points on a given shape of any contour. Figure 6-4 shows the calculation formula for a 

centroid of a concave polygonal shape. The shape is deliberately drawn like this because 

in the real life example data points can be scattered like this. The centroid is the mean of 

all the coordinates as shown in Figure 6-4.

Figure 6-4. Explaining centroid
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So in m-dimensional place, the centroid can be represented by the following 

formulae, where Cx denotes the X coordinate value and so on and Cm denotes the value 

of the centroid at mth coordinate:
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So you can see that centroid coordinates are nothing but the mean or average of the 

projected coordinates of all the points on the shape at a given axis. The following C# 

function finds the centroid:

List<double> CentroidLocations(List<List<double>> points)

=> Enumerable.Range(0,points[0].Count)

  .Select(z =>  points.Select(p =>p[z]).ToList())

  .Select(z => z.Average())

  .ToList();

The following function calculates Euclidean distance between any two points 

represented in N dimension:

double EuclideanDistance(List<double> p, List<double> q)

  => Math.Sqrt(p.Zip(q,(px,qx) =>

               Math.Pow(px - qx,2)).Sum());

Here is a client code that uses these two functions to make some of the points, made 

thus far, more clear for you:

void Main()

{

            var p = new List<double>(){1,2,3};

            var q = new List<double>() { 1, 3, 4 };

            var r = new List<double>() { 1, 2, 31 };

Chapter 6  Clustering



100

            var s = new List<double>() { 1, 3, 41 };

            var t = new List<double>() { 11, 2, 3 };

            var u = new List<double>() { 1, 31, 4 };

            var centroid = CentroidLocations(new List<List<double>>()

            {

                    p, q, r, s, t

            });

            var distance_centroid_p = EuclideanDistance(centroid,p);

            var distance_centroid_q = EuclideanDistance(centroid,q);

            Console.WriteLine($"distance p and centroid =

                       {distance_centroid_p}");

           Console.WriteLine($"distance q and centroid =

                       {distance_centroid_q}");

}

Although you shall use ML.NET to do clustering, it is always good to know the details 

of the internals.

 Keep moving the centroid until it’s not moving much

The reason it is called K-Means because it takes an initial guess of K for the number of 

clusters. These settled centroids are then declared as the cluster centroids and count of 

such centroids becomes the count of the clusters available in the dataset.

The algorithm has these major steps:

 1. Initialization (guessing the initial centroid locations).

 2. Update centroid at each step (shifting the centroids as calculated 

per iteration).

 3. Verify if there is need to continue; if not, stop and report the 

clusters.
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Figure 6-5 attempts to show how the centroids move in a step in the iterative process 

of K-Means clustering. The image shows only a couple of imaginary iterations. In a real 

case obviously, there will be more iterations. In ML.NET K-Means option, you can set the 

number of maximum iterations by setting

KMeansTrainer.Options.MaximumNumberOfIterations

Note that point P1 initially belonged to the first cluster (with centroid located at C1), 

but later due to the shift of the cluster coordinates belonged to the second cluster (for 

which centroid is located at C2).

Also K-Means needs the number of clusters as a parameter, and unsurprisingly 

you can find that too in the K-Means option provided by ML.NET at KMeansTrainer.

Options.NumberOfClusters.

 Initialization
There are several kinds of initialization possible in K-Means clustering. You can 

either choose any random points as the initial clusters or use either of a couple of 

optimizations available to make a smarter guess of the initial clusters.

The three variations of initialization provided by ML.NET are

 1. PlusPlus (this is an implementation of K-Means++ algorithm)

 2. Yinyang (this is an implementation of the Yinyang optimization)

 3. Random (random points are picked as centroids)

Figure 6-5. Showing shifting centroids in an imaginary dataset
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Table 6-1. Showing options to initialize K-Means via ML.NET options

Algorithm Encapsulated as

K-Means++ KMeansTrainer.InitializationAlgorithm.KMeansPlusPlus

Yinyang KMeansTrainer.InitializationAlgorithm.KMeansYinyang

random KMeansTrainer.InitializationAlgorithm.Random

PlusPlus: If the initial centroids are picked at random, then 

there is a probability of getting poorly defined clusters which are 

way too close to each other. This is a disadvantage of randomly 

assigning initial centroids.

Yinyang: This optimization technique relies on double filters 

except one and thereby reduces the number of distance 

calculations required. This scheme gets its name from the Chinese 

philosophy Yin and Yang, which are two opposing forces that 

create harmony.

Random: This is the naïve option to choose centroids at random.

All these initialization strategies are available as option of K-Means trainer as 

KMeansTrainer.InitializationAlgorithm.

 Update of centroids
At each step of the iterative process, the centroids associated with the points get 

changed. Gradually toward the end, when the algorithm converges, the centroids 

become more still; in other words, their coordinates do not shift much anymore.

 Clustering Iris flowers using ML.NET
This is the easy part. The reason is as follows:

Step 1: Create a new .NET core console application (Figure 6-6).
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Step 2: Configure the project.

Figure 6-6. Showing the console application

Figure 6-7. Provide a name
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Step 3: Get the NuGet Package.

 

Step 4: Get the package.

 

Step 5: After the NuGet is installed.
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Step 6: Once the package is installed, the IntelliSense will figure out the paths.

 

Step 7: Add the path to the Iris flower dataset file.

string _dataPath = @"C:\Users\Sudipta\Downloads\iris.data";

Step 8: Add code to read the Iris dataset in a IDataView instance.

IDataView dataView = mlContext.Data.LoadFromTextFile<IrisData>

(_dataPath, hasHeader: true, separatorChar: ',');

Figure 6-8. Showing the successful installation of ML.NET NuGet Package
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Step 9: Add feature column name.

string featuresColumnName = "Features";

Step 10: Add code to customize options for K-Means.

var options = new Microsoft.ML.Trainers.KMeansTrainer.Options

{

   InitializationAlgorithm =

             Microsoft.ML.Trainers.KMeansTrainer.

              InitializationAlgorithm.KMeansYinyang,

   MaximumNumberOfIterations = 100,

   NumberOfThreads = 4,

   NumberOfClusters = 3,

   OptimizationTolerance = 0.002F,

   FeatureColumnName = featuresColumnName

};

Step 11: Create the pipeline.

var pipeline =

mlContext.Transforms

.Concatenate(featuresColumnName,

 "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")

.Append(mlContext.Clustering.Trainers.KMeans(options));

Step 12: Fit the model.

var model = pipeline.Fit(dataView);

At this point, the model is created and the training is completed, and now you can 

use this model to predict what cluster a new data point should belong to. The following 

steps show how to predict that for a given data point:

Step 13: Create an example instance.

IrisData Setosa = new IrisData

            {

                SepalLength = 5.1f,

                SepalWidth = 3.5f,
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                PetalLength = 1.4f,

                PetalWidth = 0.2f

            };

Step 14: Create the prediction engine from the model and perform the prediction.

var predictor = mlContext.Model

.CreatePredictionEngine<IrisData, ClusterPrediction>(model);

var prediction = predictor.Predict(Setosa);

Console.WriteLine($"Cluster:{prediction.PredictedClusterId}");

Console.WriteLine($"Distances: {string.Join(" ",

prediction.Distances)}");

This prints the following output:

Cluster: 2

Distances: 16.87281 0.03447342 0.630455

The distances denote the distances of this given data point from the calculated 

centroids of the clusters. As the distance from the second cluster is minimal, thus the 

algorithm determines that the given data point should belong to this cluster.

 Getting centroid locations
To get the locations of the centroid, add the following code:

VBuffer<float>[] centroids = default;

var modelParams = model.LastTransformer.Model;

modelParams.GetClusterCentroids(ref centroids, out int k);

//Printing coordinates of the centroids

for (int i = 0; i < centroids.Length; i++)

{

  Console.WriteLine($"Centroid #{i + 1} is located at " +

                    $@"({centroids[i].GetValues()

                                     .ToArray()
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                          .Select(t => t.ToString("F2"))

                    .Aggregate((f, s) => f + "," + s)})");

}

For this Iris flowers, we get the following result:

Cluster: 1

Distances: 0.02159119 11.69127 25.59897

Centroid #1 is located at (5.01,3.42,1.46,0.24)

Centroid #2 is located at (5.90,2.75,4.39,1.43)

Centroid #3 is located at (6.85,3.07,5.74,2.07)

At a second run, you can get the following result (this may vary at your end):

Cluster: 2

Distances: 11.64523 0.02159119 25.31428

Centroid #1 is located at (5.88,2.74,4.39,1.43)

Centroid #2 is located at (5.01,3.42,1.46,0.24)

Centroid #3 is located at (6.85,3.08,5.72,2.05)

That is because the MLContext is created without a seed, and therefore the results 

obtained are nondeterministic. If you want to make sure that you get the same result 

from the machine learning pipelines in ML.NET, then create MLContext with a seed like 

this (as shown in Figure 6-9).

After the initialization is set to seed : 1, then a couple of runs produce the following 

output, and as you can run the script as many times as you would like and every time, it 

will be exactly the same.

Cluster: 1

Distances: 0.02159119 25.59896 11.69127

Centroid #1 is located at (5.01,3.42,1.46,0.24)

Centroid #2 is located at (6.85,3.07,5.74,2.07)

Centroid #3 is located at (5.90,2.75,4.39,1.43)

Figure 6-9. Showing declaration of MLContext with a seed to ensure deterministic 
behavior
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 Validating the model with ground truths
In the current setting of the experiment, we have an undue advantage, which for the 

most part won’t be present in real-life clustering experiments. We have the original 

labels or the cluster information each flower should belong to; and we can use this 

information to validate how the clustering model worked. The more number of flowers 

belonged to the right cluster, the better.

In the dataset, the tags “Iris-Setosa”, “Iris-Versicolor”, and “Iris-Virginica” occur 

in succession. And if you use deterministic model, then the clusters would be placed 

accordingly. In other words, the first cluster will denote cluster of “Iris-Setosa” flowers 

and so on.

Add the following code to check ground truth for the model:

//Ground truth verification

string[] labels = new string[]

{ "Iris-setosa","Iris-versicolor", "Iris-virginica" };

var sepalLengths = dataView.GetColumn<float>("SepalLength");

var petalLengths = dataView.GetColumn<float>("PetalLength");

var sepalWidths  = dataView.GetColumn<float>("SepalWidth");

var petalWidths  = dataView.GetColumn<float>("PetalWidth");

Func<string, int> toIndex = p => Array.IndexOf(labels, p) + 1;

var groundTruths = File.ReadAllLines(@"iris.data")

                       .Skip(1)//Skip header

                       .Select(t => toIndex( t.Split(',')[4]));

int count = 0;

for (int index = 0; index < sepalLengths.Count(); index++)

{

       IrisData temp = new IrisData

       {

                    SepalLength = sepalLengths.ElementAt(index),

                    SepalWidth = sepalWidths.ElementAt(index),

                    PetalLength = petalLengths.ElementAt(index),

                    PetalWidth = petalWidths.ElementAt(index)

       };
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var predicted = predictor.Predict(temp);

//Ground truth check

if (predicted.PredictedClusterId !=

           groundTruths.ElementAt(index))

                    count++;

}

var totalRows = sepalLengths.Count();

double correctlyClustered =

  Math.Round( 100*(double)(totalRows - count) / totalRows,2);

Console.WriteLine($"{correctlyClustered}% belong to the right cluster");

When run with KMeansPlusPlus strategy, Iris dataset proved to be very nicely 

clustered. Using KMeansPlusPlus, 89.33% records were correctly clustered. For random 

initialization, only 2% were rightly clustered. So you can see the initialization has a 

drastic effect on the performance of the clustering algorithm.

 Evaluating the model in the wild
In the absence of ground truth, the model is generally evaluated on two factors:

 1. How densely the elements/data points in the cluster are packed.

 2. How far different clusters are from one another?

ML.NET provides these three metrics in the ClusteringMetrics class.

 Average distance (AD)
Average score. For the K-Means algorithm, the “score” is the distance from the centroid 

to the example. The average score is, therefore, a measure of proximity of the examples 

to cluster centroids. In other words, it is a measure of “cluster tightness”. Note, however, 

that this metric will only decrease if the number of clusters is increased, and in the 

extreme case (where each distinct example is its own cluster), it will be equal to zero. The 

lower this distance is, the better – depicting closely knit clusters.
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 Davies-Bouldin index (DBI)
Davies-Bouldin index is a measure of how much scatter is in the cluster and the cluster 

separation. The higher the number, the better – representing the cluster centroids are 

really scattered far from each other.

 Normalized mutual information (NMI)
Normalized mutual information is a measure of the mutual dependence of the variables. 

This metric is only calculated if the Label column is provided.

For the current example strategies, these are calculated along with time to complete 

the clustering process. These details are captured in Table 6-2.

To get these data about performance, use the following code:

ClusteringMetrics metrics =  mlContext.Clustering.Evaluate(model.

Transform(dataView)

,"PredictedLabel", "Score", "Features");

Console.WriteLine(metrics.AverageDistance);

Console.WriteLine(metrics.DaviesBouldinIndex);

Console.WriteLine(metrics.NormalizedMutualInformation);

Table 6-2. Results

Strategy Metrics Time taken (100 iterations)

Random 0.968531201680501(aD)

0.952212697058903 (DBi)

1 (nMi)

525 ms

Yinyang 0.526269976298014

0.662323100264084

1

522 ms

PlusPlus 0.526271146138509

0.662323100264084

1

471 ms
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As you can see from the table, KMeansPlusPlus is the fastest and also probably the 

best choice you can make because it performed the best in ground truth validation also.

 Summary
You have learned how K-Means works and how to measure its performance. Sometimes 

when the ground truth labels are known, it may seem that clustering is basically 

classification. But clustering is generally done with datasets for which ground truth 

labels are not known. And it may make sense to realize that there is not an exact right 

answer to a clustering problem, but a close-enough approximation to validate any 

hypothesis is sufficient as an outcome of a clustering experiment. For example, the store 

might guess that there are three types of buyers and a clustering experiment is required 

to validate this hypothesis and then the store can find those customers and give away 

customized offers which will lure them more than a blanket one. However, there are 

other kinds of clustering algorithm like density-based clustering algorithm DBSCAN, 

which may outperform K-Means because K-Means for the most part starts with an 

unassuming set of clusters (even with KmeansPlusPlus). The disadvantage of K-Means 

is that you have to supply the value of K. But domain knowledge or hypothesis can help 

supply an initial guess.
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CHAPTER 7

Sentiment Analysis
 

 Introduction
Sentiment about a product or a service offered by a company is all too valuable in this 

era than ever before. Knowing whether their established customer base and potential 

customers are showing a positive or negative sentiment (as shown in Figure 7-1) toward 

their product or service can be game-changing for companies. However, extracting 

the true sentiment from a phrase written in English is a challenge, let alone in all 

the languages. That’s because human languages could be ambiguous, and we can 

be sarcastic at time and understanding sarcasm is a huge challenge for computers. 

Although we are getting better with each passing year, but it is still a long way to go.

Figure 7-1. Interpreting sentiment

https://doi.org/10.1007/978-1-4842-6543-7_7#DOI
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In this chapter, you shall see how ML.NET can help you to do sentiment analysis 

from textual sources of data. So ideally after finishing this chapter, you should be able 

to perform sentiment analysis tasks (bipolar, either positive or negative) on your data in 

your domain.

 Basic ideas
There are two basic approaches to solving sentiment analysis tasks. The following 

section walks you through these two and shows the pros and cons of both approaches.

Consider these two statements:

“The plot of the movie was truly unpredictable”.

“The steering wheel of this new car is rather unpredictable”.

A movie plot being unpredictable makes it desirable. A car with unpredictable 

steering wheel makes it dangerous at best. So the first statement shows a positive 

sentiment about a new play, while the second one displays a really stark negative 

sentiment about the new car.

 First idea
Sentiment analysis works with a simple algorithm. The main idea is simple. Every word 

either expresses a positive or a negative sentiment for each domain. For example, the 

word “unpredictable” may be rated to have a higher positive sentiment while being used 

in movie reviews. The same word has to have a high negative sentiment score when used 

in the context for car reviews.

The idea to calculate overall sentiment score for a given phrase/sentence is simple. 

All you have to do is to keep adding the positive and negative scores of each of the 

tokens/words from the phrase/sentence.

If the overall positive score is more than the overall negative score, then we claim 

that the phrase/sentence in question might be expressing a positive attitude. On the 

contrary, if the overall negative score beats out overall positive score, then we can 

conclude that the sentence/phrase probably expresses a negative sentiment.

The words are called “Lexicons” in this context.

For each lexicon/word, there is a positive score and a negative score representing 

its expressed positive and negative sentiment. These numbers are available in a few 

specialized dictionary-like structures. One such structure is SentiWordNet.

Chapter 7  Sentiment analySiS



115

You can download it from

 

One entry in this dictionary looks like this:

"able#" "0.125" 0

where “able” is the word or lexicon, and it expresses a positive sentiment score of 

0.125 and it is generally not used in negative sentiment; thus, the score for negative 

sentiment score is zero.

The following code helps to read and create an in-memory representation of the 

SentiWordNet dictionary:

void Main()

{

           var sentiWordList = System.IO.File.ReadAllLines

           (@"SentiWordNet_3.0.0.txt")

.Where(line => !line.StartsWith("#"))

.Select(line => line.Split('\t'))

.Where(tokens => tokens.Length >= 5)

.Select(lineTokens => new

                       {

                          POS = lineTokens[0],

                          ID = lineTokens[1],

                          PositiveScore = lineTokens[2].Trim(),

                          NegativeScore = lineTokens[3].Trim(),

                          Words = lineTokens[4]

                       })

.Select(item => new string[]

           {

                        item.Words.Substring(0, item.Words.LastIndexOf('#') 

+ 1),

                        item.PositiveScore,

                       item.NegativeScore

         });
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            foreach (var element in sentiWordList.Take(5))

            {

             //The following line should be in a single line

                  Console.WriteLine($@"{element.Lexicon}

              {element.PositiveScoe} {element.NegativeScore}");

         }

This produces the following output:

able#  0.125 0

unable#  0 0.75

dorsal#2 abaxial#  0 0

ventral#2 adaxial#  0 0

acroscopic#  0 0

POS stands for Parts of Speech.

The following function gets the polarity (positive and negative sentiment expressed 

by a given word) from the sentiment dictionary:

private Tuple<float, float> GetPolarity(IEnumerable<string[]> 

sentiWordNetList, string word)

{

          var matchedItem = sentiWordNetList

           .FirstOrDefault(item => item.ElementAt(0).Contains(word));

          if (matchedItem != null)

          {

                   return new Tuple<float,

                   float>(Convert.ToSingle(matchedItem[1]),//positive

                    Convert.ToSingle(matchedItem[2]));//negative

         }

         else

                  return new Tuple<float, float>(0F, 0F);

}

This produces the following when called for the word “good”:

A tuple with 0.625 and 0

Extrapolating on this method, the following method calculates the polarity (either 

positive or negative) of a complete sentence:
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private int GetPolarityScore(string sentence, IEnumerable<string[]> 

sentiWordNetList)

{

         var words = sentence.Split (' ');

var polarities = words.Select( word => GetPolarity (sentiWordNetList, 

word));

var totalPositivity = polarities.Sum(p => p.Item1);

var totalNegativity = polarities.Sum(p => p.Item2);

Console.WriteLine($"Positive polarity of this sentence is 

{totalPositivity}");

Console.WriteLine($"Negative polarity of this sentence is 

{totalNegativity}");

if (totalPositivity > totalNegativity) return 1;

else if( totalNegativity == totalPositivity) return 0;

else return -1;

}

When called with the following arguments,

GetPolarityScore("I love this awesome product I thought the camera will be 

great much better though", sentiWordList)

it returns 1 and prints the following lines about polarity:

 Positive polarity of this sentence is 3.5 Negative polarity 
of this sentence is 1.5
However, there is a caveat with this approach. It might not be easily evident, but if you 

think about it, it becomes really easy to spot. That’s about handling negations in input 

phrases.
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 Handling negations
Sometimes, we use negative words to describe positive mood and vice versa, like the two 

example sentences in Figure 7-2.

The idea to get past these is to create two set of combos by extracting positive 

and negative words from SentiWordNet. A positive word is one for which the positive 

sentiment score is more than the negative sentiment score. A negative word is a word for 

which the negative sentiment score is more than the positive sentiment score.

Then, create two pairs of combos. One with positive words and negations and 

another with negations and negative words. The first pair of such combos will help 

extract cases that are truly bad (like “not good”), and the second pairs of such combos 

will help extract cases that are not as bad (like “not bad”).

And here is the list of negations you can use:

• No

• Not

• Never

• Seldom

• Neither

• Nor

Figure 7-2. Words explain moods
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 Generalization of sentiment analysis…
Another idea is to view sentiment analysis as a classic binary classification problem, 

where “Positive” and “Negative” are two classes, as seen in Figure 7-3.

However, describing the sentiment analysis problem as a classical classification 

problem has its advantage. When expressed this way, the problem can be extended to 

extract sentiments that are beyond bipolar sentiments (positive/negative). Analyzing 

sentiment (not just polarity) is identifying the true sentiment like “Happiness”, “Ecstasy”, 

“Sadness”, “Grumpiness”, “Arrogance”, “Anger”, and “Indifference”, to name a few.

When the sentiment analysis is capable of extracting emotions from data sources 

(textual, visual, videos), then it is called “Emotion Detection” or “Emotion Analysis”.

Expressing sentiment analysis problem as a classic classification problem makes 

it easy to present itself as a supervised learning problem of classification of emotions 

(not binary but more). Imagine if you have labeled data from several people where their 

feeling/emotion/sentiment is tagged based on few input feature, it will be easy to feed 

this data to a supervised learning algorithm to get the predicted label of a newly arrived 

dataset entry.

Step 1: Create a console project in Visual Studio 2019. The community edition is 

free and can be downloaded from here https://visualstudio.microsoft.com/vs/

community/.

Step 2: Right-click to add Machine Learning to this project.

Step 3: Select “Text classification” for sentiment analysis task as seen in Figure 7-4.

Figure 7-3. Positive and negative classes
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This is because sentiment analysis is basically a text classification.

Step 4: Select the data file to start the training as seen in Figure 7-5.

At the time of this writing, this is supported only on local.

Data to be used in this application is from Sentiment140.

http://help.sentiment140.com/for-students

You can get the data from Google Drive by following the links on this URL.

Here are a few points about the data (taken from the preceding website).

The data is a CSV with emoticons removed. The data file format has six fields:

0: The polarity of the tweet (0 = negative, 2 = neutral, 4 = positive).

1: The ID of the tweet (2087).

2: The date of the tweet (Sat May 16 23:58:44 UTC 2009).

Figure 7-5. Select the training environment

Figure 7-4. Select a scenario
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3: The query (lyx). If there is no query, then this value is NO_

QUERY.

4: The user that tweeted (robotickilldozr).

5: The text of the tweet (Lyx is cool).

Once the file is located, then the details are listed as follows.

In this information, the first column “col0” denotes the label of the sentiment 

analysis task. Remember that 0 indicates negative and 4 indicates positive. The last 

column “col5” denotes the text of the tweet. When the header row is skipped, then the 

program produces these autogenerated column names as seen in Figure 7-6.

Note you may notice that we are not including the rest of the columns. Keep in 
mind that it is the task of a data scientist to choose which data input to use in the 
model.

Select the col0 as the data label column and the col5 as the input column as shown 

in Figure 7-7.

Figure 7-6. Autogenerated column names
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At this stage, we are ready to train to obtain the model.

Click the Train button as seen in Figure 7-8. Although the recommended time 

range for training is in seconds range, my observation is that if you let it run a bit over 2 

minutes, it generally reaches a plateau in terms of performance, because it gets enough 

time to evaluate each model along the way to reach the optimal model that it proposes.

Note Clicking the link "how long should i train for?" will take you to the doc 
explaining the time needed depending on the size of the dataset.

Figure 7-7. Add the data

Figure 7-8. The training for the sentiment analysis model in progress
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At the end of the training, the wizard shows the training for the sentiment analysis 

model finalizing as seen in Figure 7-9.

Step 5: The result of running the training for exactly 2 minutes produces this, as seen 

in Figure 7-10.

And there you have it.

For comparison purposes, Figure 7-11 shows the result of running the training for 10 

seconds.

Figure 7-9. The training for the sentiment analysis model in finalizing mode

Figure 7-10. Training complete
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As you can see, there is an obvious improvement in performance for training longer 

periods. But be warned that it will be hitting a plateau unless some other modifications 

are made to the data.

For the final attempt for training on this example dataset, I chose to run it for 200 

seconds, as seen in Figure 7-12, and the performance of the resultant model is even better.

Figure 7-11. Training results after 10 seconds

Figure 7-12. Training results after 200 seconds
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The Model Builder wizard allows us to try the trained model via a generated UI 

(that is generated from the data on-the-fly). The following screenshot, Figure 7-13, 

shows this UI.

You can add this generated model as the starting point to enhance the model. To 

add the generated code for the trained model, hit the “Add Projects” button as seen in 

Figure 7-14.

Figure 7-13. Showing the result of the trained model

Figure 7-14. Add Projects button
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Once the generated projects are added, it will have the following types:

public class ModelInput

{

        [ColumnName("col0"), LoadColumn(0)]

        public string Col0 { get; set; }

        [ColumnName("col1"), LoadColumn(1)]

        public float Col1 { get; set; }

        [ColumnName("col2"), LoadColumn(2)]

        public string Col2 { get; set; }

        [ColumnName("col3"), LoadColumn(3)]

        public string Col3 { get; set; }

        [ColumnName("col4"), LoadColumn(4)]

        public string Col4 { get; set; }

        [ColumnName("col5"), LoadColumn(5)]

        public string Col5 { get; set; }

}

public class ModelOutput

{

      // ColumnName attribute is used to change the column name from

      // its default value, which is the name of the field.

      [ColumnName("PredictedLabel")]

      public String Prediction { get; set; }

      public float[] Score { get; set; }

}

Then, this model can obviously be saved, loaded, and consumed to predict the 

sentiment of the new-coming entry like this:

var sampleData = new ModelInput()

{

  Col5 = @"@stellargirl I loooooooovvvvvveee my Kindle2.

      Not that the DX is cool, but the 2 is fantastic in its own right.",

 };

// Make a single prediction on the sample data and print results

var predictionResult = ConsumeModel.Predict(sampleData);
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As you can probably guess, this particular text in question reflects a positive emotion. 

Therefore, the value will be 4.

 Summary
The infrastructure provided by ML.NET allows you to do sentiment analysis as a special 

case of text analysis, but as you saw in the chapter, it is not that trivial and handling 

negations was just one of the caveats. As of this writing, ML.NET is continually evolving, 

and I hope to see a more in-depth categorization of feelings and emotions that extend 

beyond positive and negative for sentiment analysis. Although, you can use a deep 

learning model specially trained to do that and that is a workaround for now.
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CHAPTER 8

Product Recommendation
 

 

 Introduction
It’s highly likely for individuals to look at similar product while shopping before 

purchasing what captures their imagination. Product recommendation is highly useful 

because it boosts sales. A few examples of recommendations are as follows:

https://doi.org/10.1007/978-1-4842-6543-7_8#DOI
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• Netflix recommends movies you might like based on what you 

watched and rated thus far.

• Spotify recommends music/songs based on users’ preferences.

• Amazon recommends products that you can possibly be interested.

• Visual Studio IntelliCode offers code completion candidates based 

on previous examples written by other developers across different 

projects.

• Microsoft PowerPoint offers several design ideas based on the 

content. This design decision is the output of a recommender system 

that learns what appeals to users over time based on historical input 

and output.

These are just some examples of where a recommender system hide itself behind 

carefully crafted UIs, which sometimes is indistinguishable from magic. Recommender 

Systems is a very useful, and fortunately not so difficult to understand, application of 

supervised machine learning.

This chapter will introduce you to some key ideas of implementing recommender 

system and in particular will walk you through an example of product recommendation 

using a very popular algorithm called “matrix factorization”. Along the way, you shall 

discover how ML.NET hides the complexities of such a system from the application 

developer.

 Jargons of the trade…
Recommender systems recommend (quite obviously) something to people to consider 

(potential dates), ponder (potential job offers), buy (for purchasing stocks), listen (to 

songs the system thinks they would love), watch (movies the system believes they would 

resonate with), accept a suggestion (to change a phrase to what the recommender system 

thinks would sound more professional), and so on.

In all these contexts, a system is offering some help to people. The audience of 

recommender systems is referred to as Users in technical literature. And whatever the 

recommender system offers/recommends is called as items.
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 Users
Users are denoted by the word U, and for denoting m users, the subscript notation is 

used like this Ui…. . Um.

 Items
Items are denoted by the word I, and for denoting n items, the subscript notation is used 

like this Ii…. . Im.

 Ratings
Users rate items based on their experience, and then these ratings become available for 

collaborative filtering technique, predictions that are made based on existing ratings 

from others who have ratings in common with the active user to recommend an item 

based on previous preferences. Ratings given by users are generally denoted by Ri … Rn.

So you can imagine that a previously rated item gallery would look like this:

Users Items Ratings … Other Data

U1 I1 3.5

U2 I2 ?

U2 I1 5

The challenge of the product recommendation algorithm is to fill the missing blocks 

like in this case the rating for second item is missing from the second user.

 Type of recommender systems…
There are two major ways recommender systems are designed. The first set is called CBF 

(content-based filtering), and the second family of algorithms is called CF (collaborative 

filtering).
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CBF relies on the fact that people generally like similar products, and this type of 

technique helps locate similar items or users who share the same preferences and then 

these information can be used to find the missing ratings of items.

However, in this chapter, we shall discuss about a popular algorithm called matrix 

factorization for performing collaborative filtering, a means of making automated 

predictions.

Normally in a recommender system, the number of users is way more (generally 

in the range of millions) and the number of items is less (generally in the range of 

thousands), but the total number of ratings is very sparse because not all users have 

rated all items.

 Matrix factorization
Factorization means breaking a big number into two or more smaller numbers or 

expressions. Matrix factorization is a process to break a big matrix into two smaller 

matrices. In our case, we will represent the big matrix as a product of two smaller 

matrices. The first smaller matrix is the matrix between customers and their preferences 

for movies, and the second smaller matrix is the movies and their features (how comic 

the movie is, how much action is there in the movie, etc.). Elements in the bigger matrix 

are the dot product of a row and column of these two smaller matrices. The following 

table depicts it well.

Persons Movie1 Movie2 Movie3 Movie4 Movie5

Dana 3 1 1 3 1

Ana 1 2 4 2 3

Sam 3 ? 4 3 1

 Hans 4 3 ? 4 4

The size of this matrix is m × n, where m is the number of users and n is the number 

of movies.

This is what the whole table will look if we store all the data in a single matrix. But 

storing the data this way won’t be efficient because the matrix will have very large 

dimension (use a lot of machine memory), and at the same time, many elements in that 
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matrix will be zero, because users didn’t eat in every single movie. When a matrix has 

many zero elements, it is called a sparse matrix.

The two question marks on the table denote two ratings that we need to predict. 

What do you think Sam will rate “Movie2”? Looking at the table, it seems like Sam’s 

preferences really are a close match to that of Dana’s. So probably he will also hate the 

movie. So we can we can mark it as 1, Sam would not like the movie. Similarly, Han’s 

expected Movie3 rating will be close to 4 because Han’s preference is almost the same as 

Sam’s. This approach of adjusting the predicted rating based on preferences of similar 

neighbors is called “Collaborative Filtering”. It can be assumed as a process where all the 

similar neighbors (who have similar preferences) collaborate to filter out weeds and help 

produce the best possible recommendations for the new user.

Each element in this matrix is calculated from the dot product between the row and 

column of those two matrices. The first matrix is the preferences of the users. Users have 

preferences of several movie genres. Some users like comedy movies, some like action 

movies, few like thrillers, and if you are anything like me, you also like documentaries 

and mystery thrillers. So the preferences of users can be encoded by this binary 

representation as shown in the following matrix:

Persons Comedy Action Documentary Thrillers Biopic

Dana Yes No No No Yes

Ana No Yes No Yes No

Sam Yes No Yes No No

 Hans Yes No No No Yes

The size of this matrix is m × k, where m is the number of users and k is the number 

of features identified for movies. In this case, k is 5 (because there are 5 features, 

“Comedy”, …, “Biopic”).
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So if “Yes” and “No” are replaced with 1 and 0, then the preferences of users/persons 

will look more like a vector that can be used in a dot product.

Persons Comedy Action Documentary Thrillers Biopic

dana 1 0 0 0 1

Ana 1 1 0 1 0

Sam 1 0 1 0 0

 hans 0 0 0 0 1

Now, let’s imagine we somehow figure out that a movie has a few frames of comedy, 

a few frames of action, and so on. So each movie can be expressed as a row in this matrix:

Movie Genres Movie1 Movie2 Movie3 Movie3 Movie5

Comedy 1 0 0 1 0

Action 0 1 0 1 0

Documentary 0 0 1 0 1

 Thrillers 0 1 0 0 1

Biopic 0 0 1 0 0

This matrix has the size k × n (where n is the number of movies).

 Space advantage…
To see how much space benefit this scheme brings, just assign some realistic number to 

all variables m, n, k.

Let’s say you are doing this for some really popular platform like Amazon Prime; 

then the number of users m will be in the range of a million. Let’s assume in a realistic 

scale there are 1000 movies to start with. There can be more but this is a good ballpark 

number. Also assume that we can distribute the preferences of users and genres of 

movies in some 20ish features. That makes m = 1 Million, n = 1000, and k = 20.
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Now if we had stored the numbers in a big matrix number of elements, it would 

have been a gargantuan 1 Billion. But storing them in two separate matrices makes that 

number come down to only 20 Million.

 Let’s predict…
Movies are generally categorized to be in multiple genres. In these examples, “Movie3” is 

an action comedy, while “Movie5” is a thrilling documentary.

To know whether we should recommend “Movie1” for “Dana”, if she had not already 

watched it, we needed to find out the dot product of the first row of the first matrix and 

the first column of the second matrix. This will be [1, 0, 0, 0, 1 ] · [ 1 0 0 0 0], which is 1.

Ana loves comedy and action, so for Movie5, her rating will be [11010] · [11000], 

which sums to 2.

Just to remind you, dot product is the summation of entries calculated from index- 

wise multiplication. So [1, 1, 0, 1, 0] · [1, 1, 0, 0, 0] = 1 × 1 + 1 × 1 + 0 × 0 + 1 × 0 + 0 × 0 = 2.

All these sound good, but it is too good to expect such data to be available for real-life 

scenarios where in most occasions the data itself must be procured in first few months/

years.

 Finding the right factorization of the big matrix
Finding the right set of factor matrices is an iterative process. Two matrices (one for the 

user-feature and another for the item-feature) are initialized with random values, and 

then a chosen algorithm goes back and forth many times over until the weights in these 

two matrices produce close-enough approximation of the true ratings provided by the 

big matrix.

The algorithm needs a way to measure whether it is approaching the right value or 

going farther from it. It does so trying to minimize the following function (also called a 

loss function):
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In this case, x represents users and y represents items. rui denotes rating for item i 

given by user u. So the computer tries to minimize the squared error. 
u i S, Î
å -( )rui u

Tx yi·
2

 

is the squared error. The part on the right of the equation is called regularization. This is 

used for preventing the system from overfitting the data.

So conceptually, the algorithm takes a set of randomized entry populated vectors for 

feature matrices (factor matrices) and then keeps on iterating until it hits an aggregable 

approximation of the true ratings (ratings provided by some user for some items).

Gradient descent family of algorithms are generally used to solve for the weights in 

the factor matrices.

 Modifying hyperparameters in ML.NET
You can modify all these hyperparameters, a parameter whose value is used to control 

the learning process, for tuning the algorithm via MatrixFactorizationTrainer.Options 

class from the code.

SquareLossRegression is the default, and SquareLossOneClass is used for implicit 

recommender systems where it is to recommend whether the user will click, buy, watch 

an advert, and so on.

Figure 8-1. Showing how the Loss function can be set

Figure 8-2. Showing how the regularization parameter can be set
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 Doing matrix factorization using Model Builder
Step 1: Select the scenario as Recommendation (Figure 8-3).

Step 2: Select where you want to train the model (Figure 8-4).

Figure 8-3. Locating the scenario

Figure 8-4. Selecting the training environment

At the time of this writing (August 2020), this is only possible to train it locally.
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The wizard can read the data either from a flat file or from a SQL Server database.

Step 4: Verify your data (Figure 8-6).

Figure 8-5. Finding the training data

Step 3: Select the training file (Figure 8-5).
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Figure 8-6. Previewing and verifying data
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Step 5: Locate the column which you want to predict and the column to use for 

training. Once you do that, those columns will be shown within brackets.

Step 6: Leave the default time of 10 secs to train (Figure 8-8).

Figure 8-7. Annotating the data for training the model
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Step 7: Wait for the training to finish. Once done, it will show the results like this 

(Figure 8-9).

Figure 8-8. Training the model

Figure 8-9. Training the model is done
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Step 8: You can optionally verify the result of the trained model by visiting the 

Evaluate tab (Figure 8-10).

Here, the predicted rating for user 14 for movie 8477 is shown on the right side as 

5.24. It also lists the top 5 recommendations for the movie. In a real-life application 

though, we must limit the upper and lower predicted rating between 1 and 5. So 5.24 will 

be capped to 5.

Step 9: The next step is to use this generated code to the solution. Once confirmed, 

Model Builder adds these couple of projects to the solution.

Figure 8-10. Evaluation of the model
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Figure 8-12. ModelInput class

Figure 8-11. Showing added projects in solution

Here is the ModelInput class (Figure 8-12).
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The output will only produce the score measured as R-Squared:

public class ModelOutput

{

     public float Score { get; set; }

}

This can be used as shown in the generated code.

// Create single instance of sample data from

//first line of dataset for model input

ModelInput sampleData = new ModelInput()

{

        UserId = 1F,

        MovieId = 1F,

};

// Make a single prediction on the sample data and print results

var predictionResult = ConsumeModel.Predict(sampleData);

To produce a recommended list of movies, scores for all movies have to be calculated 

and then sorted in descending order.

 Summary
At this moment, ML.NET offers matrix factorization as the recommender system trainer. 

There are several other memory-based models that work well for recommendation 

problems, which are not available as a part of ML.NET APIs but you can import them as 

an ONNX models and consume in your .Net applications via ML.NET.

Recommendation can also be approached as a similarity measure problem as in 

information retrieval. In that approach, users are recommended movies/items that have 

similar attributes.
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CHAPTER 9

Anomaly Detection

 Introduction
Detecting anomalous situations early can be a lifesaver. Imagine the catastrophes 

saved being able to spot a manufacturing defect in a car engine before being shipped 

in a million cars. The manufacturer can save huge on the potential damage control for 

recalling all the cars, let alone the embarrassment caused.

During some stage of pregnancy, an anomaly scan is done to predict the stage of 

the fetus. The motive of this scan is to abort pregnancies that will cause premature or 

terminally ill babies.

Anomaly detection algorithms also play a huge part in fraudulent transaction 

detection. The computer can spot smelly/fishy transactions (if you will) from others by 

measuring several aspects/features of the transaction. The time of the transaction, the 

amount, the speed at which the login credentials were entered by the user, and so on 

give all the necessary clues to the anomaly detection algorithm to be able to tell chalk 

(the fraudulent) and cheese (the real legitimate transaction) apart.

 Objective
In this chapter, you shall learn how ML.NET can be used to spot anomalies in different 

datasets. After reading this chapter, you should be able to write anomaly detection 

algorithm for your own datasets derived from your own domain models.

https://doi.org/10.1007/978-1-4842-6543-7_9#DOI
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 What’s an anomaly anyway?
It’s the odd one out from a group of similar items. Imagine that a person has historically 

(for the last 5 years) spent between $1 and $2000 per transaction on her credit card. 

One evening the server of the bank saw an incoming debit request of $9000 on a single 

transaction. This is beyond the historical limits. It might very well be legit. Maybe she 

got extravagant and spent more than she ever did that evening, but this is enough for the 

anomaly detection algorithm at the bank server to attempt to flag this as an anomaly. 

This is because $9000 is well beyond the max she ever spent on a single transaction 

for a considerable time to be used to create a profile as a representative of her buying 

behavior.

So, in a nutshell, anomaly means anything out of the ordinary. Anything that is so 

obvious that it will catch the eye.

 Different types of anomalies…
There are mostly three different types of anomalies:

• Point anomaly

• Contextual anomaly

• Collective anomaly

 Point anomaly
When a data point is farther from all others in the input dataset, then it is probably 

anomalous. In this context, the point anomalies are also called outliers. Imagine that 

we store the area of a house and its price in a list of tuples, and the general assumption 

is that if the house is big, it will be expensive. However, if we spot a really big house with 

really cheap asking price, then that’s too good to be true and represents an outlier or a 

point anomaly.
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 Contextual anomaly
Sometimes depending on the season, what seems anomalous otherwise may sound 

normal. For example, during the X-mas/New Year holiday season, a person from 

New York may spend more every day than her average spending value otherwise. This 

is normal, but when the same person seems to spend more even after the holidays, 

something might be potentially wrong. It could be that the card is stolen. As you can see, 

it is really hard to determine that whether we are dealing with a contextual anomaly or 

a point anomaly. The knowledge of the seasonal events has to be reconciled together to 

get to something useful.

 Collective anomaly
Sometimes data points are not considered anomalous by themselves. But with the 

context of other points in the dataset, they can be anomalous. A missing heartbeat in an 

ECG, as seen in Figure 9-1, is an example of collective anomaly.

Here, the points (highlighted by circles) themselves are not anomalous, but in the 

context of all points in the ECG, they are.

 Different approaches to detect anomalies…
Based on how they are poised, anomaly detection problems can be represented as 

supervised or unsupervised/clustering problem.

Figure 9-1. Showing anomalous ECG
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 As simple statistical problem
Anomaly detection can be thought of as a simple statistical problem where we need to 

find elements below or above the quartile range (IQR: interquartile range) as seen in 

Figure 9-2.

Data points below the minimum and maximum as shown in the figure are outliers/

anomalous data instances.

 As supervised learning problem
Anomaly detection can be thought of as a supervised machine learning problem if 

we had several labeled examples of data which are either anomalous and normal 

(nonanomalous). If presented like this, then several supervised machine learning 

classification/clustering techniques can be used to detect anomaly in the data, if there 

exists any.

Figure 9-2. Showing IQR range
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The rationale behind supervised approaches is that it is thought that general, 

normal, and typical data points appear in close proximity to each other, while the 

anomalous instances are isolated farther apart. Because of this reason, density-based 

models like nearest neighbors work.

 As clustering learning problem
K-Means clustering works to detect anomalies. Elements not really attached to a centroid 

are claimed to be anomalous. However, the challenge of anomaly detection lies in 

novelty. Sometimes anomalous entries appear that look nowhere near their previous 

incarnations. This is one of the major motivations to think of anomaly detection as 

unsupervised/clustering learning problem.

 ML.NET offers
What ML.NET offers is various ways to locate anomalies in time series data. As shown 

in Figure 9-3, these are available via Microsoft.ML.Timeseries 1.5.1 NuGet package or 

beyond.

Time series anomaly detection algorithms are implemented as extension method on 

TransformsCatalog. Table 9-1 shows these extension functions and their purposes.

Figure 9-3. Showing NuGet Package required
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 SRCNN algorithm…
The goal of this algorithm is to predict a score for each input data point. More formally, 

if the input data is represented as x1, x2, x3, …, xn, then this algorithm tries to predict the 

anomaly score for each point in the input data represented as y1, y2, y3, …, yn ∈ (0, 1) as 

seen in Figure 9-4.

Table 9-1. Showing methods to detect point anomalies

Function Name Description

DetectChangePointBySsa Create SsaChangepointestimator, which predicts change points in 

time series using singular spectrum analysis (SSa).

DetectEntireAnomalyBySrCnn Create microsoft.ml.timeSeries.SrCnnentireanomalyDetector, 

which detects time series anomalies for entire input using SrCnn 

algorithm.

DetectIidChangePoint Create iidChangepointestimator, which predicts change points in 

an independent identically distributed (i.i.d.) time series based on 

adaptive kernel density estimations and martingale scores.

DetectSpike Create iidSpikeestimator, which predicts spikes in independent 

identically distributed (i.i.d.) time series based on adaptive kernel 

density estimations and martingale scores.

C#

DetectSpikeBySsa Create SsaSpikeestimator, which predicts spikes in time series 

using singular spectrum analysis (SSa).

Figure 9-4. Representation of SRCNN algorithm
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So, each point in the input either represents a time series anomaly or not. It is 1 if the 

point represents an anomaly and 0 otherwise.

SRCNN first uses Spectral Residual of the input data and then uses the output of this 

as the input of a CNN (convolutional neural net) to calculate if the point is anomalous or not.

For more pointers about the inner workings of the algorithm, follow the original 

post at https://techcommunity.microsoft.com/t5/ai-customer-engineering-team/

overview-of-sr-cnn-algorithm-in-azure-anomaly-detector/ba-p/982798.

 ML.NET encapsulation…
You can use this from ML.NET via the encapsulated method on AnomalyDetection 

transformer as shown in Figure 9-5.

Table 9-2 shows all the parameters this method takes and their purposes.

Figure 9-5. Showing tooltip on the SRCNN method in ML.NET
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Table 9-2. Details of the parameters of the SRCNN method

Parameter Purpose

OuputColumnName name of the column resulting from data processing of 

inputColumnName. the column data is a vector of Double. the length 

of this vector varies depending on detectMode.

InputColumnName name of column to process. the column data must be Double.

Threshold the threshold to determine an anomaly. an anomaly is detected when the 

calculated Sr raw score for a given point is more than the set threshold. 

this threshold must fall between [0,1], and its default value is 0.3.

batchSize Divide the input data into batches to fit srcnn model. When set to -1, 

use the whole input to fit model instead of batch by batch; when set to a 

positive integer, use this number as batch size. must be -1 or a positive 

integer no less than 12. Default value is 1024.

sensitivity Sensitivity of boundaries, only useful when srCnnDetectMode is 

AnomalyAndMargin. must be in [0,100]. Default value is 99.

detectMode an enum type of SrCnnDetectMode.

When set to AnomalyOnly, the output vector would be a 3-element 

Double vector of (IsAnomaly, RawScore, Mag).

When set to AnomalyAndExpectedValue, the output vector would 

be a 4-element Double vector of (IsAnomaly, RawScore, Mag, 

ExpectedValue).

When set to AnomalyAndMargin, the output vector would be a 

7-element Double vector of (IsAnomaly, AnomalyScore, mag, 

ExpectedValue, BoundaryUnit, UpperBoundary, LowerBoundary). 

the rawScore is output by Sr to determine whether a point is an 

anomaly or not; under anomalyandmargin mode, when a point is an 

anomaly, an AnomalyScore will be calculated according to sensitivity 

setting. Default value is AnomalyOnly.
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 Using anomaly detection to spot spikes in sales 
data…
We can use the preceding method to detect spikes (which are essentially anomalies) 

in the input sales data. The next example will show how we can tweak several of the 

parameters discussed in Table 9-2 to spot anomalies.

Step 1: Create a console app in Visual Studio 2019.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace AnomalyDetect

{

    class Program

    {

        static void Main(string[] args)

        {

        }

    }

}

Step 2: Get the necessary NuGet packages.

Go to Tool ➤ NuGet Package Manager ➤ Package Manager Console (Figure 9-6).
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When the console appears, get the two packages as seen in Figures 9-7 and 9-8.

Figure 9-6. Showing Package Manager Console menu

Figure 9-7. Showing the NuGet Package is installed
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Once successful, these references will be shown on the References of the project as 

shown in Figure 9-9.

Figure 9-9. Showing all these dlls in the References

Figure 9-8. Showing that ML.Timeseries NuGet package is also installed
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At this stage, you are ready to use the data.

Step 3: Add the necessary using directive.

using Microsoft.ML;

Step 4: Create an ML context.

MLContext ml = new MLContext();

Step 5: Add the following classes to the solution:

private class TimeSeriesData

{

      public double Value { get; set; }

}

private class SrCnnAnomalyDetection

{

             [VectorType]

             public double[] Prediction { get; set; }

}

Step 6: Load the data from text file by the following method:

private static List<TimeSeriesData> LoadDataFromFile(string fileName)

{

             return File.ReadAllLines(fileName)

            .Skip(1)

            .Select(f => new TimeSeriesData()

       { Value = Convert.ToDouble(f.Split(new char[] { ',' },

              StringSplitOptions.RemoveEmptyEntries)[1])

       })

             .ToList();

}

Step 7: Load the data from the file.

You can download the data from https://raw.githubusercontent.com/

dotnet/machinelearning-samples/master/samples/csharp/getting-started/

AnomalyDetection_Sales/SpikeDetection/Data/product-sales.csv.
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After that from the Main method, you can load this into a list:

var data = LoadDataFromFile(@"D:\product-sales.csv");

Step 8: Convert the data to an IDataView instance.

var dataView = ml.Data.LoadFromEnumerable(data);

Step 9: Prepare the input and output column.

string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);

string inputColumnName = nameof(TimeSeriesData.Value);

Step 10: Perform the batch anomaly detection for each input data point.

// Do batch anomaly detection

var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn

  (dataView,

   outputColumnName,

   inputColumnName,

   threshold: 0.30,

   batchSize: -1,

   sensitivity: 91,

   detectMode: SrCnnDetectMode.AnomalyAndExpectedValue);

Step 11: Get the newly created column.

var predictionColumn = ml.Data.CreateEnumerable<SrCnnAnomalyDetection>(

                outputDataView, reuseRowObject: false);

Step 12: Loop through the predicted column to find the spikes.

  foreach (var prediction in predictionColumn)

   {

              if(prediction.Prediction[2]>0.3)

      {

              Console.WriteLine($"Detected spike at {data[k].Value}");

      }

     k++;

   }
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This prints the following. And obviously, the first entry has to be ignored as this is the 

beginning of the data values.

Detected spike at 271

Detected spike at 150.9

Detected spike at 341.5

Detected spike at 426.6

Detected spike at 687

 Summary
ML.NET offers anomaly detection for time series analysis, but as mentioned in the 

beginning of the chapter, anomalies can occur in any data. Hopefully, other statistical 

methods like IQR and related methods will be incorporated in the framework.
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CHAPTER 10

Object Detection
 

 Introduction
Automatically detecting objects in an image either static or derived from a constant 

video capturing source has numerous applications as you can imagine. Here are just a 

very few of them:

Improved photo search capability

We all search for photographs by things like phrases. Sometimes those phrases can 

be used to look up already tagged photos from the Internet. However sometimes nothing 

is available, and search engines go find them from frames of videos or from photo 

archives using image search algorithms that employ some kind of object detection and 

classification. And if these returned images are useful to the end user, they get tagged 

with the search phrases accordingly so that the future lookups become faster.

Video surveillance (real-time object detection)

With modern really fast algorithms like YOLO and its variations, it is now very easy 

and fast (more importantly) to run an object detection on real-time video frames. I 

encourage you to see the video on YOLO site: https://pjreddie.com/darknet/yolov2/.

Object counting

It is often required to find out an approximate count (within a tolerable loss/gain 

of percentage) of objects present in a photo. One example is to count the number of 

heads; this can be helpful in estimating crowd density automatically in an event to find 

out popularity or measuring the social success of an event. Another example could 

be automatic medical diagnosis. Another example of object counting is the process 

https://doi.org/10.1007/978-1-4842-6543-7_10#DOI
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to improve the number counting learning experience for toddlers. Imagine a photo 

with some bottles and a toddler is asked to count the bottles. If the count given by 

the kid matches with that of the model, then the kid gets a score and a suggestion or 

a hint otherwise. This kind of self-teaching capabilities can be easily built and can be 

personalized for better reach.

Automatic captioning of photographs

Imagine a photo with multiple bikes, few trains, and lots of people; this photo can be 

captioned “At the busy station”.

 Objective
ML.NET offers the capability to run pretrained models from ONNX and TensorFlow 

that allow to detect objects from photos/images. Since object detection is a very 

computation-heavy activity to train the models on, you shall require lot of data and time 

to train a model. However, consuming pretrained model for detecting several objects 

from your images can be simple. In this chapter, you shall see how you can use YOLO 

from ONNX model zoo to detect objects in images. I hope the chapter will leave you with 

enough inspiration and knowledge to use other models from ONNX model zoo.

 How YOLO works
YOLO stands for You Only Look Once (YOLO). The algorithm takes an input image 

(known as “image” and is represented by 3 ✕ 416 ✕ 416 tensor). The output of the 

algorithm is a tensor with 125 ✕ 13 ✕ 13 dimension and is called “grid”.
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YOLO splits the given image into 13 ✕ 13 (or 169 cells). Each cell produces or 

is bound to produce five bounding boxes. Each bounding box is represented by 25 

variables.

Figure 10-1. Showing how YOLO splits the input image into 13 ✕ 13 cells

Figure 10-2. (taken from ML.NET documentation from Microsoft)
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• x is the x position of the bounding box center relative to the grid cell 

it’s associated with.

• y is the y position of the bounding box center relative to the grid cell 

it’s associated with.

• w is the width of the bounding box.

• h is the height of the bounding box.

• o is the confidence value that an object exists within the bounding 

box, also known as objectness score.

• p1-p20 is the class probabilities for each of the 20 classes predicted 

by the model.

A bounding box is the area of interest in which an object is detected. Each bounding 

box gets a probability distribution of 20 values that represent the confidence score 

for each class/type. By default, the algorithm ignores anything that has a confidence 

score of less than 0.3 or 30%. And it is the job of the callee (you as the caller of YOLO) to 

determine the bounding boxes and types.

Predicted bounding boxes might look like this. The fatter the bounding box, the 

higher is the confidence that some predefined object is there in that area.

Figure 10-3. Showing bounding boxes
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The next step after obtaining the bounding box details is to sort the bounding boxes 

by a calculated score by somehow gluing together the confidence score (objectness 

score) and the probability distribution score. For example, the following image shows 

that the YOLO algorithm is almost certain that the left-bottom bounding box colored 

“yellow” has the object “dog” in it (Figure 10-4).

From this obviously, the top three bounding boxes (that have the fattest boundaries) 

stand out (Figure 10-5).

Figure 10-5. Showing the final result of a YOLO model

Figure 10-4. Showing all bounding boxes
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There are 169 cells and for each cell there are 5 bounding boxes so there are in total 

845 bounding boxes. Most of these bounding boxes have a very low objectness score (or 

confidence score if you will). But the neural network saw and predicted results for each 

of these bounding boxes together and at once. That’s why the name is YOLO (You only 

look once!).

 Removing overlapping boxes…
As you can see from the example earlier, there will be so many overlapping boxes in the 

prediction. But obviously, we need a way to cancel out the ones that are not as good. 

The algorithm to remove overlapping bounding boxes is “Non-maximum Suppression” 

(a.k.a. NMS).

As they say, a picture is worth a hundred words, so here is what NMS does to a bunch 

of overlapping bounding boxes. It eliminates the overlapping bounding boxes with lesser 

confidences.

Figure 10-6. What NMS does to overlapping bounding boxes
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 Non-maximum-suppression algorithm steps
Step 1
First, the bounding box with the highest confidence score is selected, and it is added 

to the final list of proposed bounding boxes. And this box is removed from the list of 

suggestion provided by YOLO.

Step 2
For this current bounding box, calculate the IOU (intersection over union) with all 

the other proposed bounding boxes by YOLO. And if the calculated IOU is greater than 

the threshold, then the other bounding boxes need to be removed from the set of boxes.

Step 3
Pick the next bounding box with the highest confidence score and continue step 2 

until all the bounding boxes are touched or removed. At the end, you shall be left with 

only those bounding boxes that are of interest.

 What’s IOU of two bounding boxes?
IOU is the ratio of area of intersection and union of two bounding boxes. Figure 10-7 

shows this visually.

Figure 10-7. Showing the ratio of intersection and union visually
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 NMS pseudocode…
Here, B means the set of bounding boxes, c is the confidence score threshold, and λnms is 

the threshold for overlap.

 Consume the tiny YOLO V2 model via ML.NET
The easiest way to experiment with YOLO using ML.NET is to download the samples 

from GitHub. The best possible way to download is to clone the repo.

Go to

https://github.com/dotnet/machinelearning-samples.

Clone it via git as

git clone https://github.com/dotnet/machinelearning-samples.git

Once you have it on disk, go to the \machinelearning-samples\samples\csharp\

end-to-end-apps\ObjectDetection-Onnx folder and open the solution using Visual 

Studio 2019.

Once the project loads, try to build it. Ensure that you are connected to the Internet 

because it will have to restore several NuGet packages.

Once everything runs smoothly, you should expect to see the solution explorer like 

this (Figure 10-9).

Figure 10-8. NMS pseudocode
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Figure 10-9. What the solution will look like
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Notice that two end-to-end apps (one desktop and one web) rely on the 

OnnxObjectDetection project.

If you want to see how the model performs on real-time setting, choose the 

OnnxDetectionApp as the startup project.

Here is a screen capture of my experiment (Figure 10-10).

Here, I am sitting at my desk with a Dalmatian toy puppy. The model correctly 

identifies me as a person and the toy dog as a dog.

 Experimenting with images offline
Tiny YOLOV2 is much faster (about five times). Tiny YOLOV2 achieves up to 244 FPS 

(frames per second), while YOLOV2 does about 45 FPS. Tiny YOLOV2 achieves this by 

sacrificing some of the accuracy.

This experiment shows how the model misses the cat on the dog’s head.

 Always remember, size matters…
To use images, always remember that the input dimension has to be 416 ✕ 416. So 

whatever image you want to try the tiny YOLOV2 model on, open that in MS Paint and 

change the dimension to 416 ✕416. Remember to uncheck “Maintain aspect ratio”.

Figure 10-10. Result of object detection
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Now, select the OnnxObjectDetectionWeb as the startup project. It brings up a page 

where you can upload your image. And as soon as the upload finishes, the model takes 

over and draws the bounding boxes along with confidence scores. For my cat and dog 

picture, it totally misses the cat on top of the dog’s head.

Figure 10-11. Setting the input dimensions

Figure 10-12. Example of uploading image for object detection
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 Experimenting with a different model…
If you want to use a different model, you can simply find the model in ONNX Model 

Zoo (https://github.com/onnx/models) and remember to replace the one in the 

ONNXModels folder.

 Summary
ML.NET offers features to use pretrained ONNX and TensorFlow models, so you can 

easily experiment with several deep learning models for numerous different types of 

machine learning activity. I hope, in the future, ML.NET will also provide capabilities to 

train a model and transform it to an ONNX model.
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