

 [image: Cover image]
 Book cover of ML.NET Revealed

 Sudipta Mukherjee
ML.NET Revealed
Simple Tools for Applying Machine Learning to Your Applications
1st ed.
[image: ../images/489446_1_En_BookFrontmatter_Figa_HTML.png]Logo of the publisher

Sudipta MukherjeeBangalore, India

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.​apress.​com/​9781484265420. For more detailed information, please visit http://​www.​apress.​com/​source-code.

				ISBN 978-1-4842-6542-0e-ISBN 978-1-4842-6543-7
https://doi.org/10.1007/978-1-4842-6543-7
© Sudipta Mukherjee 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For you Sohan, my boy!

Introduction
Thanks for picking this book. This will introduce you to the wonderful world of machine learning via Microsoft’s open source cross-platform framework ML.NET.
That means if you master this framework, you can write machine learning (a.k.a. ML) applications or applications that use ML and run it on all platforms (Windows, Linux, MacOS).
Here is a brief introduction to the chapters.

Chapter
1
: Meet ML.NET (Nothing is magical, but a few things seem so)
This chapter introduces you to the ML.NET framework and gives a very brief overview of tasks that are possible via ML.NET.

Chapter
2
: The Pipeline (Great Machine Learning requires great plumbing)
This chapter introduces you to the plumbing that needs to happen in order for your ML tasks to be successful.

Chapter
3
: Handling Data (Cleansing is engineering)
Data come in different formats and mostly are messy when they are onboarded in a system. This chapter shows how to clean data using several transformations offered by ML.NET.

Chapter
4
: Regressions (How much will our dream home cost?)
This chapter shows how to use regression algorithms to predict prices of things in the future.

Chapter
5
: Classifications (Helping computers tell chalk and cheese apart)
Classifying one object from another (a.k.a. binary classification) and classifying many objects in different categories (a.k.a. multiclass classification) are two classic ML tasks that are solved using ML.NET in this chapter.

Chapter
6
: Clustering (Birds of a feather flock together)
Grouping things automatically into different groups is called clustering, and this is a classic unsupervised learning algorithm. This chapter shows how to solve these problems using ML.NET framework.

Chapter
7
: Sentiment Analysis (Are you happy or not, that's the question!)
Automatically detecting polarity (positive or negative) from phrases is really important business and is an active research area. This chapter shows how to do sentiment analysis using ML.NET and some other techniques that are yet to appear in ML.NET but will sure do soon.

Chapter
8
: Product Recommendation (You might be interested in this movie)
Product recommendation boosts product sales, and this chapter shows how you can use popular techniques like collaborative filtering and matrix factorization using ML.NET for product recommendations.

Chapter
9
: Anomaly Detection (That doesn't look normal. Does it?)
Detecting odd ones from a pool of products is key to the success of a manufacturing business at this time because it is inhuman to expect that human employees can monitor everything. That’s where anomaly detection comes in to help. This chapter is dedicated to those algorithms and how to do those using ML.NET.

Chapter
10
: Object Detection (Can you spot the cat in the photo?)
Detecting objects, faces from a photo or video frame is all the trend these days and has many applications. This chapter shows how to use ML.NET to do object detection using deep learning via ML.NET and ONNX.

Acknowledgments
A book like this one is not the fruit of a single person’s labor. This is a team effort although that doesn’t quite show up on the surface, where the name on the book’s jacket reflects that of the author. So I take this opportunity to express my gratitude for people without whom the book wouldn’t have hit the press at all.
Writing is hard. If you have written anything significant, you know that you shall suffer from writer’s block, feeling completely blank in your head about what to write while funnily enough have a clear understanding of what would the pretty picture look like when the writing gets completed. In these situations, you need people who understand that situation and keep backing you up and wait for the content. I am not only fortunate but would say rather blessed to work with two individuals with a great deal of patience and grit. They are my acquisitions and coordinating editors Joan Murray and Jill Balzano. They constantly waited for my contents to appear and when I failed waited again. At moments I felt like I am walking on a slippery slope and wouldn’t probably make it in any time at all, let alone soon. But miracles do happen when you have such wonderful people around you. Thanks a lot Joan and Jill. It was quite a ride and am surely looking forward to more in the future. Hopefully I shall disappoint you a little less in the future[image: ../images/489446_1_En_BookFrontmatter_Figd_HTML.gif].
The next person I am indebted to is Olia Gavrysh. She is a program manager in the .NET team and previously managed the ML.NET team. She agreed to review the text when I approached her. This is very kind of her and she was very fast and accurate in providing eye-opening feedback that really improved the quality of the book and expanded my knowledge as well. When someone like herself, who has spent quite a lot of those initial days with the ML.NET team, comes forward and reviews the text, and when she approves what I have to say about ML.NET, it means a lot to me. I can’t thank you enough Olia for doing this for the book. I seriously hope that we remain connected for future projects!
Last but not the least at all, I want to thank my wife Mou for always keeping my morale high and standing by me whenever I needed it the most. Thank you sweetheart for all the love and sweat. I know I ruined many of your evenings and dinners for the writing, and I can’t thank you enough for giving me space when I needed to focus on the book.
Finally, I want to thank the Almighty for this awesome opportunity and placing immensely kind and loving people in my life and for helping me keep dreaming. I have had enormous fun writing the book. I hope you shall love it in your journey to the wonderland of machine learning.

Table of Contents

Chapter 1:​ Meet ML.​NET
1

Abstraction matters
3

What type of problems can be solved with ML.​NET?​
5

The Pipeline
6

Introduction to Model Builder (Automatic ML)
7

Solving a simple problem with Model Builder
8

Walkthrough of the generated code
18

Summary
20

Chapter 2:​ The Pipeline
23

Introduction
23

Objective of this chapter
23

The parts of the pipeline (in ML.​NET)
23

Data loaders
25

Loading data from databases
31

Transformers
31

Trainers
33

Model Builder (the wizard)
35

Summary
36

Chapter 3:​ Handling Data
37

Introduction
37

Objective of this chapter
38

Types of data
38

Transformation of numerical data
39

Transformation of categorical data
41

One-hot encoding
41

One-hot hash encoding
42

Transformation of textual data
43

The mental map about data handling, cleansing, and augmenting
44

Normalization
45

Removing
46

Featurization
48

Handling missing values
49

Handy guide to pick the right transformer/​estimator
50

Summary
51

Chapter 4:​ Regressions
53

Introduction
53

Objective
53

What regression does?​
54

Predicting MPG (miles per gallon) for cars
55

Code walkthrough
63

Predicting house prices in Boston suburbs
64

Performance metrics
69

Mean squared error
70

Root mean square
71

Normalized root mean square
71

Ideas of using regression to improve your daily life
72

Summary
72

Chapter 5:​ Classifications
73

Introduction
73

Objective of this chapter
73

Types of classifications
73

Terminologies of data
74

Example case studies
74

Evaluating the model
82

Confusion matrix
83

Log loss
86

ML.​NET trainers for classification
87

Binary classifiers
88

Multiclass classifiers
88

Setting up options for the classifier
89

Summary
91

Chapter 6:​ Clustering
93

Introduction
93

Objective of this chapter
93

Intuition behind K-Means
94

Initialization
101

Update of centroids
102

Clustering Iris flowers using ML.​NET
102

Getting centroid locations
107

Validating the model with ground truths
109

Evaluating the model in the wild
110

Average distance (AD)
110

Davies-Bouldin index (DBI)
111

Normalized mutual information (NMI)
111

Summary
112

Chapter 7:​ Sentiment Analysis
113

Introduction
113

Basic ideas
114

First idea
114

Positive polarity of this sentence is 3.​5 Negative polarity of this sentence is 1.​5
117

Handling negations
118

Generalization of sentiment analysis…
119

Summary
127

Chapter 8:​ Product Recommendation
129

Introduction
129

Jargons of the trade…
130

Users
131

Items
131

Ratings
131

Type of recommender systems…
131

Matrix factorization
132

Space advantage…
134

Let’s predict…
135

Finding the right factorization of the big matrix
135

Modifying hyperparameters in ML.​NET
136

Doing matrix factorization using Model Builder
137

Summary
144

Chapter 9:​ Anomaly Detection
145

Introduction
145

Objective
145

What’s an anomaly anyway?​
146

Different types of anomalies…
146

Point anomaly
146

Contextual anomaly
147

Collective anomaly
147

Different approaches to detect anomalies…
147

As simple statistical problem
148

As supervised learning problem
148

As clustering learning problem
149

ML.​NET offers
149

SRCNN algorithm…
150

ML.​NET encapsulation…
151

Using anomaly detection to spot spikes in sales data…
153

Summary
158

Chapter 10:​ Object Detection
159

Introduction
159

Objective
160

How YOLO works
160

Removing overlapping boxes…
164

Non-maximum-suppression algorithm steps
165

What’s IOU of two bounding boxes?​
165

NMS pseudocode…
166

Consume the tiny YOLO V2 model via ML.​NET
166

Experimenting with images offline
168

Always remember, size matters…
168

Experimenting with a different model…
170

Summary
170

Index
171

About the Author

Sudipta Mukherjee[image: ../images/489446_1_En_BookFrontmatter_Figb_HTML.jpg]

is an electronics engineer by education and a computer scientist by profession. He holds a degree in electronics and communication engineering. He is passionate about data structure, algorithms, text processing, natural language processing tools development, programming languages, and machine learning. He is the author of several technical books. He has presented at @FuConf and other developer events, and he lives in Bangalore with his wife and son. He can be reached on Twitter @samthecoder.

About the Technical Reviewer

Olia Gavrysh[image: ../images/489446_1_En_BookFrontmatter_Figc_HTML.jpg]

is a program manager, speaker, and writer. Currently, she works at Microsoft and focuses on .NET 5 and .NET desktop. Before, she was the PM for .NET machine learning framework called ML.NET from its creation to bringing the product to open source and releasing the preview. Her background is in applied mathematics and artificial intelligence. Before becoming a PM, she was a software developer working with .NET stack. She can be reached on Twitter @oliagavrysh.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_1

1. Meet ML.NET

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Figa_HTML.gif]
Machine learning is nothing but a means of enabling the computer to have a sophisticated sense of proximity
 between several things. Let me elaborate that point for you with a few examples. Human vision is very advanced. So much so that we hardly realize what is going on in our brain when we recognize something. For example, do you think about the complex processes running in your brain when you read a handwritten note and recognize that is a letter "a"? Consider the pictures of the letter “a” in Figure 1-1.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig1_HTML.jpg]
Figure 1-1“a” written in multiple fonts

We recognize each of these as the letter “a” because although they look different, they are within a permissible range of proximity
 from the “ideal” (if you will) “a” that we were taught in our childhood. Teaching a computer to recognize things is no different. We must provide the algorithm several examples with labels, and eventually the algorithm will start to spot similar things with better results. This approach is called supervised learning
 and will be explained in more detail in further chapters.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig2_HTML.jpg]
Figure 1-2Different types of wooden shapes

Another type of learning that we develop without realizing is the capability of segregating things (also known as clustering
) without much input from outside. For example, if you present the shapes shown in Figure 1-2 to a toddler and tell them to determine how many different types of things are there, the answer will be 6. I urge you to look at the picture and determine the number yourself. The problem of this is you know the result, but how did you arrive at that is difficult to convey. This makes me remember this great quote (Figure 1-3).[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig3_HTML.jpg]
Figure 1-3Quotation of Lord Kelvin

Throughout the book, we will consider more examples like this where the task will be to identify different types of things automatically without being told how many there are. The task they have in common is that these sorts of questions don’t have a correct answer known ahead of time (e.g., how many different shapes are there). This is known as “unsupervised learning.”
For the first group, you can think of it like a class with pupils and a teacher that is asking questions and telling the kids if they are correct or not. And that’s why it is called “Supervised.” In the second case, we don’t know the answer – we don’t have a supervisor.
There is another kind of learning that is reinforced by the experience of good and bad outcomes of the tasks performed. Do you remember how you learned to walk? Can you teach a baby or a robot to walk? We learn to walk because our brain had been continuously taking cues from the bad and good steps we took. Teaching a computer to do similar things is similar. All we must do is provide the computer with several opportunities to do mistakes and learn from the outcomes. Good outcomes will reinforce the belief of the algorithm that the steps taken were good, and bad outcomes will reinforce the fact that the steps taken were bad and therefore advisable to avoid. This type of learning is called “reinforcement learning” in machine learning literature. This is a little hard to follow along just by reading text. This is something to feel. I urge you to watch this video of a robotic arm throwing objects: www.youtube.com/watch?v=JJlSgm9OByM.
Abstraction matters
What is your favorite concept in object-oriented programming? Mine is abstraction
. A good abstraction makes everything look easy. Achieving good abstraction over complex things/domains like machine learning, for example, is very hard because identifying which part would be a great choice for a building block is difficult at best and impossible at worst; but ML.NET does a great job striking a balance.
Note
 As you know, this book is about ML.NET, Microsoft’s new ML framework for .NET developers released in 2019. It allows developers to enhance their application with ML capabilities, but the best thing about it is that you don't need to learn data science and math to be able to use it.

ML.NET democratizes

 machine learning by bringing it to .NET developers who have been developing line-of-business applications for enterprises, web pages, applications, and what-have-you since ages and now facing the challenge to solve machine learning problems because enterprises have gargantuan amount of data and they want their existing staff to help them turn these data into actionable insights – fast. It’s a tall order. Not an easy task at all, but a good framework like ML.NET can help.
ML.NET encapsulates

 machine learning algorithms such that most of the time using the algorithm merely becomes calling a function. This can seem to be an oversimplification
, but this makes it easy for developers who don’t really need to understand how the algorithm works internally, to consume the algorithm, thereby removing/reducing the barrier of entry – if you will, into the machine learning arena. Using an algorithm and assessing its performance based on some preset matrices is one thing, and understanding how the algorithm works internally is a completely different thing. For the most part, however, it is enough for developers to know how to use an algorithm and how to measure its performance for the task at hand, so that the parameters can be changed for optimization and they (developers) can do away with requiring to acquire the knowledge of really understanding what goes under the hood.
Consider the example of linear regression. Don’t worry if you don’t understand what linear regression is. For now, it is enough to know that it is a way to fit a few points to a given straight line so that predictions can be made about new input points.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig4_HTML.jpg]
Figure 1-4General equation for regression

The preceding equation is a generic form of linear regression. There are however several varieties, and knowing all the details about them is beyond the reach of affordable time commitment that a .NET developer can spend keeping their day job. This is just an example of how complex machine learning models can be. But a good framework like ML.NET can save all the details except the ones that are absolutely required to tune the algorithm. Also, developers can learn how to use a framework if it is presented well.
For a second, compare these two things side by side.[image: $$ {y}_i={\beta}_0+{\beta}_1{x}_{i1}+\cdots +{\beta}_p{x}_{ip}+{\varepsilon}_i={\mathrm{x}}_i^{\mathrm{T}}\beta +{\varepsilon}_i,\kern2.5em i=1,\dots, n, $$]

var model = pipeline.Fit(dataView);

The call of the Fit method

 on the right will look immediately known to .NET developers, and they seemingly don’t need a mathematical background (tall claim but true) to understand what is happening behind the scene. Moreover, depending on the input, the Fit method can choose to use different regression algorithm and therefore be more efficient than the hard-coded model. Also these models will need to evolve, and it will be difficult for the average .NET developer (with all due respect to them) to keep up with all the advances, and therefore if hard-coded, sooner or later the model will be missing out on the enhancements made in Machine Learning theory by the scientists. However, if a framework like ML.NET is used, then these enhancements are expected to make their move in the framework, and without knowing, the developers will be able to take the benefits. Therefore, abstraction matters
, and a good abstraction makes almost anything look very simple.
So while the actual equation on the left will appeal to mathematicians, the calls to the framework on the right will make developers happy, and that’s the motivation of the framework. In a nutshell, the goal of ML.NET is “To make the cliché that Machine Learning is a niche.”
The framework provides functionalities for all parts of the machine learning pipeline starting from data acquisition to model evaluation and cross-validation (checking how the algorithm did). The framework also encapsulates several feature engineering techniques in the form of generic methods that eases the process of data preparation in a really efficient and clean way.
What type of problems can be solved with ML.NET?
ML.NET supports “supervised learning” and “unsupervised learning” as of now (September 2020). This will surely change in the future, but this is a good start because many useful projects are relying on supervised /unsupervised learning.
The following is a list of some very common machine learning types of problems along with their class of problem domain:	Supervised Learning	Regression (predicting real values)	Predicting prices of houses

	Predicting temperature on a specific day

	Classification	Binary classification (telling chalk and cheese apart)	Telling cancer and non-cancer cells apart

	Telling chalk and cheese apart

	Multiclass classification (autocategorization, more than one)	Identifying flowers by sizes of petals and sepals as their features

	Tagging GitHub issues with corresponding labels

	Product recommendation

	Unsupervised Learning	Clustering (segmenting buyers in supermarket)

The Pipeline
[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Figb_HTML.png]
The goal of most (or should I say all) of the machine learning activity is to come up with a model that maps a set of inputs to a predefined set of outputs as neatly as possible. Also, most of the time, data comes in messy ways unconsumable for machine learning algorithms.
Parts of ML.NET
ML.NET is built around a central type called “MLContext”. Almost all operations performed using ML.NET use one or the other part of MLContext type

. It is almost semantically like that of a DataContext
. This class has several functionalities offered through different members:	Data Loading

	Data Transformation

	Prediction

	Measuring Accuracy

Data Loading

ML.NET offers functionalities to load data from several different formats through several static methods. Here, some of them are shown.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig5_HTML.jpg]
Figure 1-5Several ways to load/create data for machine learning problems

As you can see, there are methods to load data from a few different formats. This is an incremental list. Soon many other data loaders may be supported.
Data Transformation

MLContext offers data transformation functionalities via Transforms property of MLContext class. Transforms is of type TransformCatalog
. All these transformations are provided as extension method. So, if required we can also build our own transformation.
Prediction

Using the MLContext and related classes in ML.NET, we need to build a pipeline which represents the machine learning pipeline with components to do data loading, transformation, and prediction. A pipeline is used to create what is known as an estimator. The estimator is used to generate the model.
Measuring Accuracy

The performance of a machine learning model is measured by so many ways. ML.NET offers several metrics (depending on the task performed) to measure this performance, like confusion matrix and cross-validation accuracy.
Introduction to Model Builder (Automatic ML)
ML.NET is designed with absolute beginners of machine learning in mind. So apart from several APIs to create a custom ML model, ML.Net also offers a fantastic UI-driven utility that helps beginners locate the best algorithm for solving a machine learning problem. It runs several models and keeps track of accuracies and time taken to complete the training. This tool is very helpful in locating the algorithms.
In the next few sections, just a quick sample shows how to use this utility to solve a real-world machine learning problem.
Solving a simple problem with Model Builder
In this example, the Iris flower dataset will be used. You can get the data from https://archive.ics.uci.edu/ml/datasets/iris.
Go to the “Data Folder” as shown in Figure 1-6.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig6_HTML.jpg]
Figure 1-6Locating data for multiclass classification problem (Iris flower)

Once you clicked the link for Data Folder, you shall see this (Figure 1-7).[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig7_HTML.jpg]
Figure 1-7Locating the data in UCI database for machine learning

From here, click “iris.data” to download this file. This file will look like this (the first few rows and columns are shown in Figure 1-8).[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig8_HTML.jpg]
Figure 1-8Menu to add “Machine Learning” using Model Builder in Visual Studio

The first column is the ID of the patient, and the second column denotes the diagnosis (either M for Malignant cancer or B for Benign cancer). The rest of the columns denote several values for several test results. The actual names for each of these columns are not important.
If you don’t already have the Model Builder, then you can download it from the following link:
https://marketplace.visualstudio.com/items?itemName=MLNET.07
After installation, create a console app called “Iris”, and the project will look like Figure 1-9.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig9_HTML.jpg]
Figure 1-9Creating app “Iris”

Clicking the Machine Learning menu will bring up the UI of Model Builder as shown in Figure 1-10.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig10_HTML.jpg]
Figure 1-10Model Builder wizard interface (select “Text Classification”)

The first step is to understand that identifying a flower is a case of multiclass classification problem because we have three different classes of iris: versicolor, sentosa, and virginica. In other words, it is more like GitHub issue classification problem. So to identify flowers from data, we need to select that scenario. Once the button “Issue Classification” is clicked, the wizard presents the next screen to load the data and for setting parameters.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig11_HTML.jpg]
Figure 1-11Model Builder wizard interface for loading training data

Once the input data is loaded, the wizard shows the data in preview as shown in Figure 1-12. Be aware that you need to rename the iris.data to iris.csv; otherwise, you won’t be able to open it in the Model Builder.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig12_HTML.jpg]
Figure 1-12Model Builder wizard interface for loading data and previewing and setup

The next step is to tell the wizard which column we want to use for the Labeling, the column we want to predict. In this case, we shall need to use the “variety” column. Once this is done, the wizard marks the variety column as “Label” as shown in the data preview. The remaining columns are used for predicting the label. However, we can choose the columns to be used by selecting/unselecting the check boxes that appear before each column name.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig13_HTML.jpg]
Figure 1-13Setting up which field is to be predicted (Label)

The next step is to train to obtain a model. The more time is given for the wizard to train, the better. This is because the wizard under the hood uses automatic machine learning to figure out which model is the best.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig14_HTML.jpg]
Figure 1-14Model Builder Wizard: Train Model interface

The default training time given by the wizard is 10 seconds. Ten seconds is enough for datasets less than 10Mb. But it is strongly recommended that we use at least 90 seconds for the training for really small dataset.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig15_HTML.jpg]
Figure 1-15Showing progress of Model Builder Training Wizard

Once the time is set to train the model, clicking “Start Training” will start the training, and the performance of the algorithms tried so far will be listed as shown.
Once the training is complete, the results of the algorithms tried can be viewed from the Evaluate tab.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig16_HTML.jpg]
Figure 1-16Model Builder Training Model completed

The Evaluate tab shows the details of the performance of the algorithms.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig17_HTML.jpg]
Figure 1-17Model Builder Wizard Model Evaluate interface

Interestingly, the Evaluate tab presents a nice interface to try out the model. This interface is autogenerated from the fields that were used to generate the model.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig18_HTML.jpg]
Figure 1-18Showing on-the-fly generated UI for testing the prescribed model by Model Builder

The last step is to add the code for the generated model in the solution.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig19_HTML.jpg]
Figure 1-19Model Builder Wizard interface to add generated projects to solution

By clicking the “Add to solution”, the projects generated can be added to the solution. After the projects are added, the solution explorer will show these new projects as shown in Figure 1-20.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig20_HTML.jpg]
Figure 1-20Showing generated projects added to solution

Walkthrough of the generated code
The Model Builder Wizard generates the ModelInput and ModelOutput class.// This file was autogenerated by ML.NET Model Builder.
using Microsoft.ML.Data;
namespace IrisML.Model
{
 public class ModelInput
 {
 [ColumnName("sepallength"), LoadColumn(0)]
 public float Sepallength { get; set; }
 [ColumnName("sepalwidth"), LoadColumn(1)]
 public float Sepalwidth { get; set; }
 [ColumnName("petallength"), LoadColumn(2)]
 public float Petallength { get; set; }
 [ColumnName("petalwidth"), LoadColumn(3)]
 public float Petalwidth { get; set; }
 [ColumnName("variety"), LoadColumn(4)]
 public string Variety { get; set; }
 }
}

ModelInput class represents each row of the input dataset. The index of the column name is taken as the value of the LoadColumn attribute, and the name of the column is taken as the value of the ColumnName attribute. Here is one row taken from the input irisi.csv file. As you can see, the column indexing starts from 0.
[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Figc_HTML.jpg]

public class ModelOutput
{
 // ColumnName attribute is used to change the column name from
 // its default value, which is the name of the field.
 [ColumnName("PredictedLabel")]
 public String Prediction { get; set; }
 public float[] Score { get; set; }
}

ModelOutput class

 represents the prediction result. The score represents the score for all possible classes. Values of this Score array are shown on the test UI as percentage of confidence as shown in Figure 1-21.[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig21_HTML.jpg]
Figure 1-21Showing on-the-fly generated UI to test the prescribed model by Model Builder

This means that for these set of test data, the model had 86% confidence that the flower is a Setosa, 14% confidence that it is a Versicolor, and less than 1% (or negligible) confidence that it is a Virginica. In code, these data can be represented as 0.86, 0.14, and 0.0034 as the elements of the Score array.
This line uses the Predict method of the ConsumeModel class (which is OK to remain as a black box for now) to return the output of the trained model as a ModelOutput instance.// Make a single prediction on the sample data and print results
ModelOutput predictionResult = ConsumeModel.Predict(sampleData);

To make sure that the model code can’t use the variety at all to predict (which will be obvious after looking at the code that it doesn’t) the variety of the flower, “Unknown” is set to it. After that if you set the IrisML.ConsoleApp
 as the startup project and run the program, by putting a breakpoint as shown, you shall see a similar result (Figure 1-22).[image: ../images/489446_1_En_1_Chapter/489446_1_En_1_Fig22_HTML.jpg]
Figure 1-22Debug view of the generated code via Model Builder

Summary
In this chapter, we just scratched the surface of what’s possible with ML.NET. The framework does a lot under the hood. It provides functionality to load and transform data for the learning. Then, it also does several things internally to prepare the data that is consumable by the machine learning algorithms. These techniques are called feature engineering, and Model Builder really helps to learn about different algorithms and how to use these and how to use several features for this.
The framework is very modular and open for extension. More generally said, there are several extensions in the framework itself that build around core types.
In the next chapter, we shall use ML.NET to classification problems. You shall learn how to pose a classification problem as a binary or multiclass classification problems and how to use ML.NET to solve those.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_2

2. The Pipeline

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Figa_HTML.png]

Introduction
The goal of all machine learning (ML) activity is to turn raw data into some prediction or classification or insight. Raw data appears on the left or at the beginning of this pipeline, and on the right or at the end comes the insight/prediction/classification and so on. Although each machine learning task will require a different pipeline, the basic structure or the building blocks remain the same. ML.NET offers several types/interfaces to make the creation of this pipeline easier. A broad understanding of these concepts will help you understand how ML.NET works under the hood.
Objective of this chapter
After finishing this chapter, you shall be able to identify different building blocks of a machine learning pipeline and see that all ML.NET pipelines are essentially similar in nature although their purpose or the actual body is very different from one another. You shall learn to identify and tune all parts of all such machine learning pipelines.
The parts of the pipeline (in ML.NET)

	The context

	Data loaders

	Transformers

	Trainers

Every machine learning operation in ML.NET is started by creating a machine learning context. The context is conceptually like the starting of the pipeline. It provides a way to create every part of the pipeline. The context is encapsulated in MLContext type

.
The type has several properties to offer capabilities to start a specific machine learning task. At the beginning of each ML task in ML.NET, we must create a context object as shown in Listing 2-1.MLContext mlContext = new MLContext(seed: 1);

Listing 2-1Instantiating MLContext is easy

If seed is set, MLContext becomes deterministic and the same random numbers will be generated every time you run your app, so results will be repeatable across different runs. It can be helpful, if you are repeating a tutorial sample and want to get the same results. If you don’t set seed, MLContext will use random numbers generator, and results will be slightly different for each run (for operation that use random numbers, not all of them do). In real life, I recommend keep random components nondeterministic, which means not setting seed.
Different kinds of machine learning activities are based on the pipelines created from MLContext properties. Here is the MLContext class.[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig1_HTML.jpg]
Figure 2-1The overall definition of the MLContext class

As mentioned earlier, MLContext acts as the root of the machine learning pipeline. Table 2-1 shows how different properties of this class are used for different types of machine learning problems.Table 2-1Showing meaning of different properties of MLContext class

	Type of machine learning
	Start the pipeline as

	Binary Classification
	mlContext.BinaryClassification

	Multiclass Classification
	mlContext.MultiClassClassification

	Regression
	mlContext.Regression

	Clustering
	mlContext.Clustering

	Anomaly Detection
	mlContext.AnomalyDetection

	Forecasting (Time Series Data)
	mlContext.Forecasting

mlContext is an object of the MLContext class in the preceding table.
Data loaders

[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig2_HTML.jpg]
Figure 2-2Representation of training data as bunch of files to process

Data comes in several formats and sometimes it resides in memory collection. ML.NET offers features to load data from multiple sources easily. All these loaders can be accessed via mlContext.Data property as shown in Figure 2-3.[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig3_HTML.jpg]
Figure 2-3Showing IntelliSense availability on MLContext instance

Data in the pipeline travels inside IDataView type

, introduced to .NET specifically for ML.NET. This is the input and output of Query Operators (Transforms). This is the fundamental data pipeline type, comparable to IEnumerable<T> for LINQ. This interface is required to be able to seamlessly integrate several data loading capabilities and for integrating with other machine learning frameworks.
Table 2-2 shows which function to be used to load data.Table 2-2Showing several ways to load data

	Data Type/Purpose
	Function to Load Data

	Binary
	LoadFromBinary

	Data is in memory collection
	LoadFromEnumerable

	Loading data from text file as an IDataView
	LoadFromTextFile

	Loading data from text file in a strongly typed manner. The type of the data to be loaded is passed as the generic attribute
	LoadFromTextFile<T>

	Loading data from databases
	mlContext.CreateDatabaseLoader<T>().Load(...)

This is how loading from file looks like. So, if you have a CSV file, first create a ModelInput class

 representing each row of the CSV. Then, use this class as a generic parameter in LoadFromTextFile<T> as shown in the following example.IDataView trainingDataView =
 mlContext.Data.LoadFromTextFile<ModelInput>
 (path: TRAIN_DATA_FILEPATH,
 hasHeader: true,
 separatorChar: ',',
 allowQuoting: true,
 allowSparse: false);

Listing 2-2Loading training data to IDataView

If you don’t like typing this class by hand every time you create an ML model, you can use the script (Listing 2-3) that automates this work for you.
The following C# script takes a CSV file and emits the ModelInput class.string csvFile = @"C:\MLDOTNET\iris.csv";
var columns = File.ReadLines(csvFile)
 .Take(1)
 .First()
 .Split(new char[]{','});
var firstLine = File.ReadLines(csvFile)
 .Skip(1)
 .Take(1)
 .First()
 .Split(new char[] { ','});
StringBuilder propertyBuilder = new StringBuilder();

for (int i = 0; i < columns.Length; i++)
{
 string column = columns[i];
 propertyBuilder.AppendLine($"[ColumnName(\"{column},LoadColumn({i})]");

 if(firstLine.ElementAt(i).ToCharArray()
 .All(m => Char.IsDigit(m) || m == '.'))
 {
 propertyBuilder
 .AppendLine($"public float {column.Substring(0, 1).ToUpper()
 + column.Substring(1)}");
 }
 else
 {
 propertyBuilder.AppendLine($"public string
 {column.Substring(0,1).ToUpper() + column.Substring(1)}");
 }
 propertyBuilder.AppendLine("{ get; set;}");
}

string classCode = @"public class ModelInput " + Environment.NewLine
 + "{" + Environment.NewLine + propertyBuilder.ToString()
 + Environment.NewLine + "}";
Console.WriteLine(classCode);

Listing 2-3Script to automatically generate code to load data

For the following CSV file, (first two rows of the data)[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig4_HTML.jpg]
Figure 2-4Showing the first couple of rows of the Iris training dataset

It generates the following class. This script will save you countless hours typing your way to create the ModelInput to be just able to load the data and start your experiments.public class ModelInput
{
 [ColumnName("sepallength"), LoadColumn(0)]
 public float Sepallength { get; set; }
 [ColumnName("sepalwidth"), LoadColumn(1)]
 public float Sepalwidth { get; set; }
 [ColumnName("petallength"), LoadColumn(2)]
 public float Petallength { get; set; }
 [ColumnName("petalwidth"), LoadColumn(3)]
 public float Petalwidth { get; set; }
 [ColumnName("variety"), LoadColumn(4)]
 public string Variety { get; set; }
}

Listing 2-4ModelInput for the Iris dataset

LoadColumn attribute specifies your properties’ column indices and is required only when you load the data from file.
MLContext.Data also offers functionality to filter and shuffle data too apart from loading data from multiple sources.
Loading data from text files is a very common activity, and ML.NET is well equipped with it. It provides a couple of generic ways to load data from a text file, with or without headers.
The following code

 reads data from a Tab-separated file without headers where there are three numeric columns. Tab (‘\t’) is the default value of the separatorChar parameter.var loader =
mlContext.Data.CreateTextLoader(
columns: new[]
{
 new TextLoader.Column("Feature1", DataKind.Single, 0)
 new TextLoader.Column("Feature2", DataKind.Single, 1)
 new TextLoader.Column("Feature3", DataKind.String, 2)

},
hasHeader: false
);

Listing 2-5Creating a TextLoader

If you want to read a CSV without header, then you shall have to mention the separatorChar is ‘,’ as highlighted Listing 2-6.var loader =
mlContext.Data.CreateTextLoader(
columns: new[]
{
 new TextLoader.Column("Feature1", DataKind.Single, 0)
 new TextLoader.Column("Feature2", DataKind.Single, 1)
 new TextLoader.Column("Feature3", DataKind.String, 2)
},
separatorChar: ',',
hasHeader: false
);

Listing 2-6Creating another custom TextLoader

Now to read the data, you shall have to call the Load method on the loader just created like loader.Load(<path_to_file>).
Since training data can sometimes be present in multiple files, it is required to create a loader and pass in the file paths as parameters.[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig5_HTML.jpg]
Figure 2-5Showing overload of Load to read from multiple files

Since data can be quite messy when it comes along, filtering could prove to be very useful to provide some initial cleansing that the data needs. MLContext.Data provides the following filtering capabilities

.[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig6_HTML.jpg]
Figure 2-6Showing filtering capabilities on IntelliSense

Table 2-3Methods to perform filtering based on different criteria

	Filtering
	What it does

	FilterRowsByColumn
	Filters data based on value ranges of a given column

	FilterRowsByKeyColumnFraction
	Filters rows by the value of a KeyDataViewType column

	FilterRowsByMissingValues
	Filters the data by dropping rows where any of the column in the passed list of columns have a missing value

Loading data from databases

To load data from a database into a IDataView
, the following steps are required.//Name of the provider has to be given as "System.Data.SqlClient"
DbProviderFactory factory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");
DatabaseSource = new DatabaseSource(factory,
 "<connection string>",
 "select * from IRIS");

IDataView trainingView = mlContext.Data.CreateDatabaseLoader<ModelInput>()
 .Load(databaseSource);

Listing 2-7Loading training data from a database

Transformers

As a caterpillar transforms into a butterfly, data must be transformed before using those in machine learning algorithms/models. Because if the data is fed directly to machine learning algorithms without proper prior cleaning, scaling, and normalizing, it will leave the algorithm confused, and the output of it will be biased, if not totally off, and that is absolutely unacceptable.[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig7_HTML.jpg]
Figure 2-7Symbolic representation of data transformation for machine learning

ML.NET offers several transformers to transform the data from messy to clean. Clean data means data that is free from any distortion and probably looks a lot like generated data in terms of clarity. Clean data don’t have missing values, values out of permissible range for numeric columns, or impossible values for enumerations. For example, a messy dataset for an insurance survey might have negative values for the age column or impossible age values like 923 and so on. Similarly for the gender column of the customer, the data can be outside the permissible enumeration like {M,F}. Clean data is very important, and ML.NET offers several ways to clean the data via stages called transformers. These transformations can be glued to one another to create a chain of transformations or a pipeline if you will. The following is an example of such a pipeline transformation

. var pipeLine = context.Transforms.NormalizeMinMax("crim","crim")
 .Append(context.Transforms.NormalizeMinMax("zn","zn"))
 .Append(context.Transforms.NormalizeMinMax("indus","indus"))
 .Append(context.Transforms.NormalizeMinMax("indus", "chas"))
 .Append(context.Transforms.NormalizeMinMax("indus", "nox"))
 .Append(context.Transforms.NormalizeMinMax("indus", "rm"))
 .Append(context.Transforms.NormalizeMinMax("indus", "age"))
 .Append(context.Transforms.Concatenate("Features",
 "crim", "zn", "indus", "chas", "nox", "rm", "age"))

Listing 2-8Gluing transformations with Append

Don’t worry too much about the actual transformations. These will be explained later in the book. For now, please note how transformations are glued to one another by Append() method.
The first transformation context.Transforms.NormalizeMinMax("crim","crim")returns a NormalizingEstimator as shown in this Listing 2-8.
The first Append() call on the pipeline earlier is an extension method created on NormalizingEstimator. This extension method returns EstimatorChain<NormalizingTransformer>. Append() is also defined as an extension method on EstimatorChain<T>().
ML.NET heavily relies on extension

 methods to make things glue together nicely. In the next chapter, you shall learn about several transformations in detail.
Trainers

Good trainers train the body; great ones train the mind. And finding a great trainer is hard at best, impossible at worst.[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig8_HTML.jpg]
Figure 2-8Symbolic representation of a trainer

The body is like the infrastructure of a machine learning system and the mind is like the actual model. If you have a great model and bad infrastructure, then it is bad, but if you have great infrastructure but bad model, it is worse, because in this setting you won’t be able to use the full potential of the infrastructure, just as an untrained mind in a solid physique does.
ML.NET provides several trainers to train for different machine learning needs.
For each algorithm/task combination, ML.NET provides a component that executes the training algorithm and does the interpretation. These components are called trainers. For example, the SdcaRegressionTrainer uses the StochasticDualCoordinatedAscent algorithm applied to the Regression task.
All these trainers are in their respective types. For example, the binary classification trainers are located at mlContext.BinaryClassification.Trainers.
You shall learn more about the trainers later in the respective chapters of the book. However, it will be enough to know now that a trainer is added as the last step in the machine learning pipeline. Consider the example shown in Listing 2-9.
[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Figb_HTML.jpg]
Listing 2-9Adding trainer to the pipeline

The last Append() call creates an EstimatorChain<RegressionPredictionTransformer>.
So basically, a trainer is an algorithm that takes a data view and provides a model that can be applied to create a model, which in turn can be used to predict future values.
In Listing 2-9, the last Append call adds the trainer

:.Append(context.Regression.Trainers.OnlineGradientDescent(labelColumnName:"medv",lossFunction:null, learningRate:0.24f, decreasingLearningRate:true));

This line sets hyperparameters (parameters that help the trainer to converge and are set before the iterative process begins) for the selected trainer OnlineGradientDescent.
Don’t worry too much about the exact working of this code. This is to illustrate how common interface allows the trainer to be plugged into the pipeline as the last step. In later chapters, you shall learn how to pick a trainer for your machine learning task and how to evaluate their performances

.
Model Builder (the wizard)
[image: ../images/489446_1_En_2_Chapter/489446_1_En_2_Fig9_HTML.jpg]
Figure 2-9Symbolic representation of the Model Builder

It can be quite challenging for newbies and practitioners who are new to ML.NET to locate the right method for transformations or training. To address this problem, Microsoft created a wizard called Model Builder

. This wizard can do all the data science decision-making part for you, suggesting you the best trainer with the best parameters for your particular case. As an input, you provide your dataset and the task (for instance, predict a house price), and as a result, you will see all the trainers that the wizard tried for your task with evaluations for each one. The results will be ranked showing you “the winner”. If you are satisfied with the result, then the wizard can add generated code to the existing solution if the user wants.
Model Builder is the first step to locate a model/trainer that is suitable for the job. Throughout the book, you shall learn how to use Model Builder to your advantage.
Note
Besides helping locate the best algorithm/model for the current dataset, ML.NET generates very clean code, so that it almost feels like that some expert has written the code.

Summary
This is a short chapter, but I hope it gave you some very top-level view of the ML.NET framework and the rationale behind all kinds of things that are there in the framework. These concepts will be even clearer in the upcoming chapters when we actually create these by hand. In the book, ML and machine learning can be interchangeably used. However, when ML.NET is mentioned, it is specially mentioned with the .NET extension.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_3

3. Handling Data

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Figa_HTML.png]

Introduction
Data that are generally available in the real world are not ready for consumption for machine learning activities. A crude but real-life analogy is depicted by the following picture.[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig1_HTML.jpg]
Figure 3-1Showing data transformation analogy

However hilarious or not you find this analogy, this is true. The data that are available in the wild need repetitive modifications before it can be fed to a machine learning algorithm; otherwise, the algorithm’s performance will take a serious hit and probably be unusable.
The topic of this chapter is to make you acquainted with common practices to deal with different kinds of data to transform those into something that can be given as input to a machine learning algorithm. Some of these techniques are nicely packaged inside the ML.NET library, so you can use it without implementing it yourself.
Before we go deep diving into data transformation, we must know how many types (broad categories) of data are available.
Objective of this chapter
After reading this chapter, you should be able to understand the need for transforming data before feeding those to a machine learning model. You shall also learn how to use several transformations on different kinds of data that ML.NET offers and which one to pick when.
Types of data
Data comes in all different types. Broadly, those are	Numerical data

	Textual data

	Categorical data

	Location data

	Date and time data (this is also sometimes represented as time series data)

	And so on like images and videos

Numerical data

As the name suggests, numerical data refers to data that are just numbers. Integers and floats are numbers and are thus numerical data. Age of a person, number of visits to the local supermarket per week, number of times someone refuels their car, the amount spent at the movie theater during weekends, and your income are all examples of numerical data.
Textual data

Names, addresses, phone numbers with country codes, email addresses, review comments, feedback messages, comments on social media sites, reviews on movie review sites, and so on are all examples of textual data.
Categorical data

Categorical data is just an enumeration over a preset list. For people like us who are familiar with programming, categorical data is just an incarnation of the Enums in the real world. Names of the blocks in a city, gender (M/F), and postal codes are all examples of categorical data.
The basic difference between textual and categorical data is that textual data is a free form, while categorical data can take one of the many predefined categories as its value.
Location data

As the name suggests, location data is just that; it is data about someone’s or some place’s location, either expressed in terms of latitude and longitude or via geocodes. It can also be a set of coordinates.
Date and time data

Data about on which day and what time some event occurred.
Transformation of numerical data
Several transformations are available to be performed on numerical data. The goal of all these transformations is to bring data for a given column or columns of numerical data between 0 and 1, which is ideal for the input to a machine learning algorithm that employs some kind of regression; otherwise, the model can be confused because of different scales of different features, and the predicted results will be wrong, more often than acceptable.Table 3-1Showing different normalizing estimators available in ML.NET

	Transformation
	Encapsulated as

	Mean Normalization
	Transforms.NormalizeMeanVariance

	Log Mean Normalization
	Transforms.NormalizeLogMeanVariance

	Unit Norm Normalization
	Transforms.NormalizeLpNorm

	Global Contrast Normalization
	Transforms.NormalizeGlobalContrast

	Density Normalization
	Transforms.NormalizeBinning

	Density Normalization
	Transforms.NormalizeSupervisedBinning

	Rescaling (min-max normalization)
	Transforms.NormalizeMinMax

The strategy used in all these normalizations is to dampen/(subtract) the input by the mean (or any other measure) and then normalize the dampened values by variance of any other value, like the maximum value in case of NormalizeMinMax
.
All these normalization schemes are essentially an estimator that transforms the input data to transformed data as an IDataView
.
All of these functions have two overloads: one takes an array of InputOutputColumnPair
, so that you can pass several column names to run the transformation on at one single call. Otherwise, you can run the normalization on a single column once and then use Append method to get to the next possible transformations in your pipeline.[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig2_HTML.jpg]
Figure 3-2Showing how to call a normalizing estimator

One thing to note that although the name of the type is InputOutputColumnPair
, the parameters for the constructor take the names of the columns in reverse order. The first string passed will be used as the name of the output column, while the second string represents the name of the input column to be transformed. Input column name is droppable, and if dropped, the name of the output column will be used as the input column.
One way to think about normalization is that it is the same as damping. Damping is a physical process where the magnitude of an oscillation reduces with time when no more force is given from outside. Each normalization technique can be thought of as a multiplication of a damping factor to each of the value that produces a new value.
For example, a very common normalization technique is min-max normalization where each value is dampened by the following factor. The first minimum values are subtracted from each value, and then the result is multiplied by the damping factor 1/(max-min).[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig3_HTML.jpg]
Figure 3-3Showing min-max normalization equation

In the equation, xi is the value and min and max are the minimum and maximum values of the column values.
Transformation of categorical data
Machine learning algorithms prefer numeric inputs, and one way to transform categorical data to numeric input is to encode the categorical data to generate a vector. Here is the list of all categorical transformations available in ML.NET.Table 3-2Showing categorical transformation estimators in ML.NET

	Transformation
	Encapsulated as

	One-hot encoding
	mlContext.Transforms.Categorical.OneHotEncoding

	One-hot hash encoding
	mlContext.Transforms.Categorical.OneHotHashEncoding

One-hot encoding
Encoding categorical variables is a bit tricky. It is tempting to transform a categorical value to a numeric value because it is assumed that machine learning models deal with numeric values. However, this technique will add a bias to the model, and thus resultant predictions will be wrong. Let’s say we have a dataset like this.Table 3-3Showing a sample dataset

	CategoricalVal1
	Numerical1

	A
	1.344

	B
	3.45

	M
	0.134

If we use Label Encoding and assign one numerical label for each category in Categorical column, then the dataset will look like this.Table 3-4Showing the same dataset with Label Encoding

	CategoricalVal1
	Numerical1

	1
	1.344

	2
	3.45

	3
	0.134

But the problem with this is that suddenly for no apparent reason, category “M” will be recognized as a better category than category “A” or “B”. If the model performs average internally, then the average of 1 and 3 (representation of “A” and “M”) will be category “B”, which doesn’t make any sense whatsoever. Therefore, we need to transform this dataset to change the rows to columns like this.Table 3-5Table showing result of one-hot encoding applied to sample dataset

	Is_A
	Is_B
	Is_M
	Numerical1

	1
	0
	0
	1.344

	0
	1
	0
	3.45

	0
	0
	1
	0.134

As you can see that now for each category, we have a column that represents the presence of that column in the input dataset. Value of 1 in that column means the presence of that category in the data and value of 0 indicates the absence. So, the first row in the newly created dataset indicates that it is representing category “A” (the hot category, because for this category we have a 1). For the second row, we have B as the hot category. Since in this newly created dataset each row will have exactly one category as set and all others not set, it is known as “one-hot encoding.”
One-hot hash encoding
This is the same as the hot encoding, but before the categories are hot encoded, they are hashed using a hash function – thus, the name. Sometimes, there can be multiple incarnations of the same data in categorical data, and using one-hot encoding directly will create more columns in the resultant data than needed and will further confuse the system instead of helping it. In such situations, it is generally a great idea to use a hash function to produce the same hash code for all different looking yet same categorical value. One example of such situation is when we have surnames with slightly different spellings.
Transformation of textual data
Textual data

 is different than categorical data although it might look similar. Textual data is the free-form text captured as value of a column, while categorical data is the string representation of an enumeration.
Here is the list of all textual data transformations available in ML.NET.Table 3-6Showing different text transformation estimators available in ML.NET

	Transformation
	Encapsulated as

	FeaturizeText
	Transforms.Text.FeaturizeText

	TokenizeIntoWords
	Transforms.Text.TokenizeIntoWords

	TokenizeIntoCharacterAsKeys
	Transforms.Text.TokenizeIntoCharacterAsKeys

	NormalizeText
	Transforms.Text.NormalizeText

	ProduceNgrams
	Transforms.Text.ProduceNgrams

	ProduceWordBags
	Transforms.Text.ProduceWordBags

	ProduceHashedNgrams
	Transforms.Text.ProduceHashedNgrams

	RemoveDefaultStopWords
	Transforms.Text.RemoveDefaultStopWords

	RemoveStopWords
	Transforms.Text.RemoveStopWords

	LatentDirichletAllocation
	Transforms.Text.LatentDirichletAllocation

	ApplyWordEmbedding
	Transforms.Text.ApplyWordEmbedding

Here are brief details about some of these transformations.
FeaturizeText
: This estimator transforms the given input text to a vector of floating-point numbers representing the text. This takes a column name and emits a list of floating-point numbers representing the feature depicted by that column.
NormalizeText
: Normalizing the text can among many things mean changing the case of the text, removing punctuations and numbers, and so on. Normalizing texts is required for reconciliation. One example of a sample normalization performed on text is shown as follows:
“Samuel2345.” and “Samuel1123;” normalized to remove the numbers and punctuation and lowercased would be “samuel”. Reconciliation of addresses and names is quite a challenge and this estimator will be helpful there.
Here is another example of normalizing; this time we remove the space and all punctuations and change the case to uppercase

.
“abc def 1234” will become “ABCDEF1234”; so will “abd cef 1234”
The mental map about data handling, cleansing, and augmenting
[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig4_HTML.jpg]
Figure 3-4Data scrubbing

As the saying goes a picture is worth 1000 words, it is easy to get lost in the literature of these many different functions let alone remember. The following sections attempt to give you some visual clues with some pictures that will possibly strike a chord and remain with you longer than just plain word explanations. Good analogies are really hard to come by; but they are proved to be immensely helpful when trying to grasp difficult/new concepts. Here are some analogies about different techniques to handle data.
In a nutshell, handling data falls into four major different categories.Table 3-7Showing different broad categories of handling data

	Category of operation
	Purpose

	Normalization
	To make every data point in the same range for regressive algorithms

	Removal
	To remove bad data points

	Featurization
	To create numerical representation of the data

	Missing Value Handling
	To augment missing values

Normalization

[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig5_HTML.jpg]
Figure 3-5Showing a pictorial mind-map image for normalization

Normalizing is almost akin to wood chopping. The proverb size doesn’t matter is not appropriate when it comes to feature magnitudes. Analogically speaking, you can imagine the features of the problem domain that you want to feed to your machine learning algorithm, as the wooden logs to be used in a fence. If some of your wooden logs are way too big or way too small than the rest, the fence wouldn’t hold off nicely or probably be impossible to build in the first place. Similarly, in a machine learning setting if the scales/magnitudes of the features are way off than others, then the regression-based machine learning models can be really confused and can lead to false/wrong decisions.
Normalizing

 rightly done always brings down the scale of a feature between 0 and 1. And generally normalization is applicable to numerical data which has a magnitude. Here is the sample of applying min-max normalization before and after:Before (Input) => 1000,2000,1350,2400,1840,1230
After (Output) => 0, 0.4166667, 0.1458333, 0.5833333, 0.35, 0.09583333

As you can see, all the values in the input are normalized to be between 0 and 1.
Removing
[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig6_HTML.jpg]
Figure 3-6Showing a pictorial mind-map image for removal of bad data

Removing data is like lawn mowing. You just have to get rid of useless weeds (if you will) from your data. Sometimes things to remove could be bad words (a.k.a. stop words) from the textual data. Sometimes it can be removing punctuations or special characters or numbers from textual data. Removing unwanted data (a.k.a. noise) from the data leaves the data in the form that is good for machine learning algorithms to consume.
Sometimes removing is a preparatory step performed on textual data before they can be transformed to numerical representations, and later those numerical representations can be normalized. ML.NET as you have seen in the chapter provides quite some features to remove such things from the data (textual data mostly).
Nowhere other than the search engine, the usage of stop word removal (as a particular form of removal technique) could be seen so effectively. To prove the point that stop words (words that appear way more frequently in every context in a human language than other words, making them least relevant as per information theory) are not important in search, I have searched using these two phrases “Capital of India” and “Capital India”. The word “of” is a stop word in English language as it appears almost everywhere without any regard to the context as it is a glue word. So the idea is to show that machine learning algorithms won’t be affected if these stop words are dropped; they could be otherwise confused if those words are left as is.
Figure 3-7 shows the search results of “Capital of India” and “Capital India”.[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig7_HTML.jpg]
Figure 3-7Showing results side by side to show that stop words don’t affect search results

You can see that stop words won’t have any effect on the result of the machine learning algorithm. Therefore, those can be safely dropped.
Featurization

[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig8_HTML.jpg]
Figure 3-8Showing a sample word cloud that symbolizes featurization

Featurization is like giving a numeric value to the raw data. Unless we could do that, it is impossible to use any machine learning algorithm as you know, and techniques for extracting features from the raw data are a whole new discipline in its own right. Word cloud is a very good way to create a memory map for what featurization really is. As in a word cloud, we give a number (most often the frequency of occurrence) to each word; similarly, we can create numerical representation for all kind of data and that is all featurization is about.
As you have seen, the FeaturizeText method returns a vector of floating-point numbers that represents a text. This is a good example of what featurization can do to data that seemingly have no features except a raw content (for the string in textual data) and the length.
The benefits of featurization are manyfold. The first one is that it really helps in comparison with other seemingly similar things in the world. Comparing two strings for proximity match character by character is a much more computationally involved endeavor than understanding the proximity of two vectors representing those two tokenized strings in N dimension via cosine similarity or any other similarity measure. This also has another benefit in that this way, the algorithm becomes scalable.
Handling missing values

[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig9_HTML.jpg]
Figure 3-9Representative image of missing value in a dataset

Missing values are the real challenge when trying to clean the data to be usable in a machine learning algorithm, because missing values are hard to fill justifiably and with them left as is the performance of the model can be really bad.
There are several strategies to handle missing data. They can be broadly classified into two different categories:	1.
Augmenting missing data

	2.
Removing rows/columns with missing data

Augmenting missing data is a difficult task, primarily because it is difficult to assume what could possibly be a good substitute. There are ways to lamely substitute it with the Maximum, Minimum, or the Default of the column type. ML.NET also provides these in terms of enumerations in ReplacementMode.[image: ../images/489446_1_En_3_Chapter/489446_1_En_3_Fig10_HTML.jpg]
Figure 3-10Showing estimator for handling missing data

If the column with missing values is numeric, then we can use mean, median, or mode or even an extreme (maximum or minimum) value. However, the decision to replace it with a value will affect the performance, and since one advice is not good for all situation, it is required to do a trial and error analysis to see which missing value replacement strategy is working the best.
For missing values

 in categorical columns, it is a good idea to mark it with a special value and then use OneHotEncoder.
Handy guide to pick the right transformer/estimator
As the saying goes that if all you have is a hammer, every problem would seem like a nail.
Locating the right function to use can be quite challenging to do the right thing with your data. Table 3-8 tries to ease that a bit.Table 3-8A small cheat sheet to locate the right method for handling your data

	Category
	What example best describes your situation
	Which function to use

	Normalizing
	I have features with huge scale differences. Here is an example:
one column is number of bedrooms: 1–10, and another is house price “$100000–10000000”
	Use any of the normalizing techniques like NormalizeMinMax

	Removing
	I have textual data with lot of glue words like “if”, “of”, “for”, etc.
	RemoveStopWords
RemoveDefaultStopWords

	Featurize
	I have a bunch of movie reviews and I want to make sure how close each one is with the other in terms of their sentiment
	FeaturizeText

	Normalize
	I have a bunch of categorical data. How do I transform them to numeric one?
	Don’t. Use OneHotEncoding

	 	I have a bunch of words and I want to extract Ngrams from those words. Ngram is nothing but a list of substring produced by a moving window of a given size over a given string. So for the string “ABCD” and moving window size of 2, Ngram will produce [“AB”,”BC”,”CD”]
	TokenizeIntoWords

	 	I have a bunch of Ngrams and I want to featurize those Ngrams
	
	 	I have few different addresses for the same person. All of these addresses are almost the same, and I need to reconcile them to be one
	
	Missing Value
	I need to mark missing values
	IndicateMissingValues

	 	I need to fill in missing values with the minimum/maximum/default values
	MissingValueReplacingEstimator

	 	I need to fill in missing values with custom values
	CustomMapping

Summary
In this chapter, you learned about several data handling and cleansing techniques that ML.NET offers. However, the discussion is kept short here only for the most common type of data encountered in machine learning tasks, namely, numerical and categorical data types. ML.NET offers several other data transformation tasks for image processing, deep learning, and for time series data type. Those are deliberately kept out of this chapter, but I hope that this chapter gives you an essence of what ML.NET provides in terms of data transformations and cleansing and also how these are all glued together using the same estimator, estimator chain, and fitting methods discussed earlier in the book.
ML.NET also offers capabilities to join and drop columns and other related features, but since those were being used throughout the book thus far and will continue to appear in the next chapters, it was not shown again here to save you from boredom.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_4

4. Regressions

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Figa_HTML.png]

Introduction
Ever wondered how can we predict the gasoline price in upcoming months? How the projected exchange rates of currencies are determined? The crux of these problems is the ability to predict a value in a continuous range. The algorithms that solve those problems are called regression algorithms
. The name regression suggests that these algorithms are mostly iterative in nature. This is different than classification because in classification we need to predict either one of the two values (in case of binary classification) or one of the many (a set of finite labels, in case of multiclass classification) labels. On the other hand, in these situations the predicted value will have to be real value and that’s regression. In this chapter, you shall learn about several types of regression algorithms that ML.NET provides and how to measure performance of these algorithms. In some literature, these algorithms are termed as curve fitting algorithms.
Objective
By the end of this chapter, you should be able to identify which problems belong to regression type of problems and solve them using one of the many regression trainers provided by ML.NET. You will also be able to evaluate how good did the algorithm do based on several performance monitoring measures.
Note
For the purpose of this book, the terms “Trainers” and “algorithms” are used interchangeably throughout this ML.NET context.

What regression does?
Simple regression is the process of fitting several points in a line. When the line we came up with goes very close to most of the points, this solution is considered good. If the line “misses” many points, we say that the solution is not good. However, there are downsides of both. When almost all the points from the input make their way on the predicted extrapolated (the line that doesn’t exist in the input data but projected) line, we guess that we have probably given way too much clue to the model, and thus the model becomes an oracle to give away exact answers for all points from the input dataset. This situation is called overfitting
, and the reverse when almost no point makes it to the predicted extrapolated line, we call it underfitting
.
Regression algorithm tries to predict the value of a parameter for a dataset looking at other values. Unlike classification where the label can take either of the two values (binary classification) or many values (multiclass classification), in regression the predicted value is always a real value.
In the simplest case of regression problem, we will have a known parameter (e.g., a number of bedrooms for the house) and a value we want to predict (the price for this house). To do so, the algorithm will have to come up with a formula – an equation, where by setting the known parameter (bedrooms), you will get the value (price). It’s logical to expect that the more bedroom a house has, the higher goes the price. So the formula for this relationship can be as follows.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig1_HTML.jpg]
Figure 4-1Showing equation for the simplest regression

In real life, we usually have more than one parameter that influences the value we are looking for. For the house price, other parameters could be a safety index of the neighbourhood, total carpet area, age of the property etc. In this case, the equation will look like this.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig2_HTML.jpg]
Figure 4-2Generic linear regression

So the task of a regression algorithm/model is to emit the coefficients or the weights of the input variables. This is still linear regression
 as the nature of the curve is a straight line. However, sometimes a linear model is not enough, and then the following generic equation depicts the nonlinear regression models, also known as polynomial regression
.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig3_HTML.jpg]
Figure 4-3Polynomial form

where b is also known as the regularization term.
Predicting MPG (miles per gallon) for cars
When buying a car, one of the parameters people usually take into consideration is the MPG (miles per gallon of fuel) value. A higher MPG means all other things remaining similar a vehicle is more worth than others. In this experiment, we shall see how we can use Model Builder wizard

 to find the best regression algorithm to predict the MPG value from a dataset.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig4_HTML.jpg]
Figure 4-4Representative image of fueling a car

In this experiment, you shall see how regression can be used to predict the MPG of a used car. You can get the data from www.kaggle.com/uciml/autompg-dataset.
The data looks like Figure 4-5.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig5_HTML.jpg]
Figure 4-5Showing few lines from the mpg dataset

We shall use Model Builder wizard to get to a decently working model. Follow these steps to get it:
Step 1: In Visual Studio, add machine learning to an existing console app project (Figure 4-6).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig6_HTML.jpg]
Figure 4-6Showing prompt to add Machine Learning to existing project

Step 2: Select the scenario (Value prediction) for the regression (Figure 4-7).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig7_HTML.jpg]
Figure 4-7Select “Value prediction”

Step 3: Select the file to train the model (Figure 4-8).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig8_HTML.jpg]
Figure 4-8Showing the training data loaded

Step 4: Start the training. Leaving the training phase in Model Builder for longer really gives better results (I recommend 2 minutes at least). The official documentation says the following.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig9_HTML.png]
Figure 4-9Recommended time required for training by Microsoft

Even though the suggested time according to the documentation is 10 seconds, I would recommend to run the training for longer around 2 minutes (this is found from my personal experience, could vary depending on your PC hardware) because that gives the time to find the best possible algorithm.
Step 5: As the program (Model Builder wizard) runs, it will show the status (progress) of the execution (Figure 4-10).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig10_HTML.jpg]
Figure 4-10Final result of the training

At the end, the program reports the final performance and the best algorithm/model for this dataset.
Step 6: Check out the evaluation report provided by the wizard (Figure 4-11).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig11_HTML.jpg]
Figure 4-11Evaluating the model

The evaluation table here shows several performance measurement metrics for the model.
Step 7: The generated code will be automatically added to the host solution.
Step 8: The current version of ML.NET offers a way to read more and deploy the model as ASP.NET service.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig12_HTML.jpg]
Figure 4-12Next steps wizard

Step 9: Look at the generated code.
If you choose to add the generated projects, the wizard will add a couple of projects to the solution as shown in Figure 4-13.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig13_HTML.jpg]
Figure 4-13Autogenerated code added to the existing solution

The ML.Model project holds types to represent one row of the input data (ModelInput.cs) and the prediction ModelOutput.cs. Here are these two generated types (Listings 4-1 and 4-2).data

Listing 4-1Generated ModelInput.cs

 that represents one row of the input

[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Figb_HTML.jpg]

model

Listing 4-2Showing the type to represent the output of the

[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Figc_HTML.jpg]

Notice that since the output of a regression model is real value, the property Score represents that.
Code walkthrough
The magic happens in the BuildPipeline method

. Here is the code after a bit of formatting to make it more readable (Listing 4-3).built

Listing 4-3Showing how the pipeline is being

[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Figd_HTML.jpg]

ML.NET model builder wizard really does quite an impressive job. It not only creates the model but also generates code that is highly readable and maintainable by future programmers who would otherwise be scratching their heads. I must admit for generated code, ML.NET generated code looks really nice.
The “horsepower” column had some missing values, and ML.NET figures that out and applies a couple of transformations:	IndicateMissingValues
: To mark the column “horsepower” to have missing values

	ReplaceMissingValues
: To replace the missing values with a predefined value

At the end of the pipeline, FastTreeTweedie trainer is used, which performs well if there are many zeros or missing values.
Predicting house prices in Boston suburbs
In the following experiment, you shall learn about the steps to use ML.NET to predict house prices in Boston suburbs. The example might be a toyish one, but the learning is transferable to a more production-ready environment.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig14_HTML.jpg]
Figure 4-14Representative aerial view of Boston

The Boston Housing Dataset is a derived from information collected by the US Census Service concerning housing in the area of Boston MA. The following describes the dataset columns (this list is taken from the description on Kaggle):	CRIM: Per capita crime rate by town

	ZN: Proportion of residential land zoned for lots over 25,000 sq. ft.

	INDUS: Proportion of nonretail business acres per town

	CHAS: Charles River dummy variable (1 if tract bounds river; 0 otherwise)

	NOX: Nitric oxides concentration (parts per 10 million)

	RM: Average number of rooms per dwelling

	AGE: Proportion of owner-occupied units built prior to 1940

	DIS: Weighted distances to five Boston employment centers

	RAD: Index of accessibility to radial highways

	TAX: Full-value property-tax rate per $10,000

	PTRATIO: Pupil-teacher ratio by town

	B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

	LSTAT: % lower status of the population

	MEDV Median value of owner-occupied homes in $1000's

And this time we shall not use Model Builder wizard but hand code our model, changing one trainer at a time.
Step 1: Create a new console project.
Step 2: Create the following class BostonHouse.cs (this is the Model input). public class BostonHouse
 {
 /// <summary>
 /// CRIM - per capita crime rate by town
 /// </summary>
 [LoadColumn(0), ColumnName("crim")]
 public float CRIM { get; set; }
 /// <summary>
 /// proportion of residential land zoned for lots over 25,000 sq. ft.
 /// </summary>
 [LoadColumn(1), ColumnName("zn")]
 public float ZN { get; set; }
 /// <summary>
 /// proportion of nonretail business acres per town
 /// </summary>
 [LoadColumn(2), ColumnName("indus")]
 public float INDUS { get; set; }
 /// <summary>
 /// Charles River dummy variable (1 if tract bounds river; 0 otherwise)
 /// </summary>
 [LoadColumn(3),ColumnName("chas")]
 public float CHAS { get; set; }
 /// <summary>
 /// nitric oxides concentration (parts per 10 million)
 /// </summary>
 [LoadColumn(4), ColumnName("nox")]
 public float NOX { get; set; }
 /// <summary>
 /// average number of rooms per dwelling
 /// </summary>
 [LoadColumn(5), ColumnName("rm")]
 public float RM { get; set; }
 /// <summary>

 /// proportion of owner-occupied units built prior to 1940
 /// </summary>
 [LoadColumn(6), ColumnName("age")]
 public float Age { get; set; }
 /// <summary>
 /// weighted distances to five Boston employment centers
 /// </summary>
 [LoadColumn(7), ColumnName("dis")]
 public float DIS { get; set; }
 /// <summary>
 /// index of accessibility to radial highways
 /// </summary>
 [LoadColumn(8),ColumnName("rad")]
 public float RAD { get; set; }
 /// <summary>
 /// full-value property-tax rate per $10,000
 /// </summary>
 [LoadColumn(9), ColumnName("tax")]
 public float TAX { get; set; }
 /// <summary>
 /// pupil-teacher ratio by town
 /// </summary>
 [LoadColumn(10) , ColumnName("ptratio")]
 public float PTRATIO { get; set; }
 /// <summary>
 /// 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
 /// </summary>
 [LoadColumn(11), ColumnName("b")]
 public float B { get; set; }
 /// <summary>
 /// % lower status of the population
 /// </summary>
 [LoadColumn(12), ColumnName("lstat")]
 public float LSTAT { get; set; }

 [LoadColumn(13), ColumnName("medv")]
 public float Medv { get; set; }
 }

Listing 4-4ModelInput for Boston housing problem

Step 3: Create the following class BostonHousePrice.cs (this is the Model output).public class BostonHousePrice
{
 public float MEDV { get; set; }
}

Listing 4-5ModelOutput for Boston housing problem

Step 4: Add the following lines in the Program.cs.//change your path accordingly
string DATA_FILEPATH = @"C:\MLDOTNET\housing.csv";
MLContext context = new MLContext(seed: 1);

IDataView trainingDataView = context.Data.LoadFromTextFile<BostonHouse>(
 path: DATA_FILEPATH,
 hasHeader: true,
 separatorChar: ',',
 allowQuoting: true,
 allowSparse: false);

var pipeLine = context.Transforms.NormalizeMinMax("crim", "crim")
 .Append(context.Transforms.NormalizeMinMax("zn", "zn"))
 .Append(context.Transforms.NormalizeMinMax("indus", "indus"))
 .Append(context.Transforms.NormalizeMinMax("chas", "chas"))
 .Append(context.Transforms.NormalizeMinMax("nox", "nox"))
 .Append(context.Transforms.NormalizeMinMax("rm", "rm"))
 .Append(context.Transforms.NormalizeMinMax("age", "age"))
 .Append(context.Transforms.Concatenate("Features",
 "crim", "zn", "indus", "chas", "nox", "rm", "age"));
 // Set the training algorithm
var trainer = context.Regression.Trainers.Sdca(labelColumnName: "medv");
var trainingPipeline = pipeLine.Append(trainer);

var model = trainingPipeline.Fit(trainingDataView);
var engine = context.Model

 .CreatePredictionEngine<BostonHouse, BostonHousePrice>(model);

var input = CreateSingleDataSample(DATA_FILEPATH);
var result = engine.Predict(input);

Console.WriteLine($"Actual MEDV is {sampleData.Medv}");
Console.WriteLine($"Predicted MEDV is {result.Medv}");

Listing 4-6Consuming the Boston housing price prediction regression model

This produces the following output:Actual MEDV is 24
Predicted MEDV is 26.32589

This program uses NormalizeMinMax transformations

 on the numeric columns.
Performance metrics
All performance metrics are available in RegressionMetrics class

 of Microsoft.ML.Data namespace as shown in Figure 4-15.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig15_HTML.jpg]
Figure 4-15Showing evaluation matrices

R-squared
 is a statistical measure that represents the goodness of fit of a regression model. The ideal value for r-squared is 1. The closer the value of R-square to 1, the better is the model fitted. This metric is available as “RSquared” in the ML.Data.
R-square is a comparison of residual sum of squares (SSres) with total sum of squares (SStotal). The total sum of squares is calculated by summation of squares of perpendicular distance between data points and the average line (Figure 4-16).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig16_HTML.jpg]
Figure 4-16Sum of squares equation

The residual sum of squares is calculated by the summation of squares of perpendicular distance between data points and the best fitted line (Figure 4-17).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig17_HTML.jpg]
Figure 4-17Residual sum of total equation

Joining this together, R-squared is given by the formula shown in Figure 4-18.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig18_HTML.jpg]
Figure 4-18R-squared equation

If the value of R-squared error approaches 1, then the regression is achieving good result.
Mean squared error
This is the average of the squared differences between actual and predicted values. All the negatives are dampened because of the square. In other words, due to a square negative values become positive which allows to track the accumulative difference. Therefore, the actual amplitude of the error is considered.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig19_HTML.jpg]
Figure 4-19Mean squared error equation

Root mean square
As the name suggests, it is the root of the mean squared difference of the predicted and actual value. This is further damped or regularized error and generally leaves less room for getting more errors. This error makes big errors not to confuse the model.[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig20_HTML.jpg]
Figure 4-20Root mean square error equation

Normalized root mean square
This error metric is really useful for comparison of several models which have features on different scales. This is not readily available from ML.NET, but as you can see from the formula, it can be easily calculated (Figure 4-21).[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fig21_HTML.jpg]
Figure 4-21Equation of NRMSD

	Regression Trainer
	Encapsulated as

	Fast Tree
	Regression.Trainers.FastTree

	Fast Forest
	Regression.Trainers.FastForest

	Fast Tree Tweedie
	Regression.Trainers.FastTreeTweedie

	Generalized Additive Models
	Regression.Trainers.Gam

	Limited-Memory BFGSPoissonRegression
	Regression.Trainers.LbfsgPoissionRegression

	Online Gradient Descent
	Regression.Trainers.OnlineGradientDescent

	Sdc
	Regression.Trainers.Sdca

Ideas of using regression to improve your daily life
Predict time to reach work/school depending on when you leave your home.
[image: ../images/489446_1_En_4_Chapter/489446_1_En_4_Fige_HTML.jpg]

Summary
In this chapter, you have learned about how to use ML.NET for regressions and how to check the performance of the model arrived. In the next chapter, you shall learn about classification algorithms that ML.NET offers. I hope this chapter is leaving you with enough motivation to try different algorithms to address regression problems in your job/life.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_5

5. Classifications

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Figa_HTML.png]

Introduction
One of the major supervised machine learning class of problems is to classify things from a set of given things, by learning from previously labeled data. This is like proverbial “Telling chalk and cheese apart” from several examples of labeled data. In this chapter, we shall go through an example of classification problem and will solve it using ML.NET.
Objective of this chapter
The objective is to give you a good understanding of classification type of problems and introduce several trainers/classifiers available in ML.NET for this type of problems. I’ll demonstrate how to solve a classification problem in ML.NET Model Builder and how to configure and use the classification trainers.
By the end of this chapter, you shall be able to view a problem presented as a classification problem and use any of the available classifier to solve it. You shall also be able to evaluate the performance of the classifier and tune it if required before deploying in production environment.
Types of classifications
There are two types of classification problems that can manifest in the wild. When the task is to tag an unknown entry with one of the two possible classes/types from the previously presented labeled data, then that task is called binary classification
. On the other hand, if the task is to predict the confidence of the model as to which of the many different types the unknown entry possibly belongs to, it is called multiclass classification
 for obvious reasons.
For example, predicting whether the animal in each image is a dog or a cat is an example of binary classification, while identifying handwritten digits to be one of 0 to 9 is a case of multiclass classification problem. As you might imagine rightly, binary classification is a generalization of multiclass classification problem where there are just two types or classes that an unknown entry can belong to.
Terminologies of data
In all supervised algorithm, we need data to train the system and data to test the performance of the system.
Training data
: Data that is used to create the model that will predict the result
Test data
: Data that is used to check the performance of the model
Ideally, training and test data should be sourced differently and shouldn’t overlap intentionally. However, most of the time data is not available to test the performance of the system, and in these occasions, one can use a part of the training data as test data. This split between training and test is often called train-test-split.
Example case studies
In the following sections, several example situations of case study of classifications are presented. And ML.NET is used to craft a solution.
Using ML.NET for predicting whether income will be more than 50K USD.
The task is to predict whether a given individual will be able to earn more than 50K or not based on other demographic features. The data can be downloaded from https://archive.ics.uci.edu/ml/machine-learning-databases/adult/.
Here are the first few rows of the dataset (Figure 5-1).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig1_HTML.jpg]
Figure 5-1Showing raw data of salary segregation

The dataset doesn’t come with headers. The headers are available in the adult.names as shown in the highlighted box in Figure 5-2.[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig2_HTML.jpg]
Figure 5-2The download page for the dataset with salary information

The content of the adult.names files has the headers. Here are the headers. For space constraint, I have not shown the values of each column or their types.	age

	workclass

	fnlwgt

	education

	education-num

	marital-status

	occupation

	relationship

	race

	sex

	capital-gain

	capital-loss

	hours-per-week

	native-country

The dataset is very interesting as an example, because it has everything you want to try out a machine learning algorithm for classification. It has missing data (marked with “?” symbols). It has quite a good mix of numeric and categorical data in the mix to be used in the classification task. It has quite a range for numeric variables requiring normalization. It has many categorical columns requiring doing several one-hot encodings.
After including the header, I have named the header “Salary” for the label to be predicted.
The value of Salary can be either “<=50K” or “>50K”. The first few rows with the headers are shown in Figure 5-3.[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig3_HTML.jpg]
Figure 5-3Salary data annotated with their headers

This dataset along with headers is now ready for ML.NET model builder. The following section shows how to feed this data to model builder to get the initial sketch of the learning system.
Step 1: Add a machine learning to an existing project (Figure 5-4).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig4_HTML.jpg]
Figure 5-4Creating a new Machine Learning project

Step 2: Select the scenario for which you want to train. In this case, you can select Issue Classification (Figure 5-5).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig5_HTML.jpg]
Figure 5-5Interface for selecting the type of Machine Learning

Here, we select Issue Classification, but we could have also selected Sentiment Analysis but it is possible to use a multiclass classification model to train to identify a binary dataset where there are only two possible labels. Therefore, this selection is good for use.
Step 4: Locate the file to train (Figure 5-6).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig6_HTML.jpg]
Figure 5-6Data loaded in the Model Builder wizard (Configuration pane for the training)

Once you do so, the Model builder will load the data from the file as shown, and then you can select which columns you want to use to train your model.
Step 4: Let the system train for about 2 minutes and click the “Start training” button (Figure 5-7).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig7_HTML.jpg]
Figure 5-7Configuration for training duration in Model Builder wizard

Step 5: Wait for the system to train and check the progress as shown in Figure 5-8.[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig8_HTML.jpg]
Figure 5-8Showing progress of the training (still in progress)

The model builder shows the performance of the classifiers tried on so far.
Once the model builder is successfully completed running, it will show the result of the finalized model as shown in Figure 5-9.[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig9_HTML.jpg]
Figure 5-9Final result of the evaluation from the Model Builder wizard showing the performance of the top performing algorithm

In this current model, the FastTreeOva algorithm

 provides the best performance.
The next step is to add the generated code to the solution. Also, you can evaluate the model using the on-the-fly generated UI (Figure 5-10).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig10_HTML.jpg]
Figure 5-10Evaluate tab on Model Builder showing the overall accuracy of the best discovered model

This is a very nice dashboard showing	The final score of the model’s accuracy

	An interface generated on-the-fly to try out the model

	Total number of models tried (43 in this case; imagine how long it would have taken to try those manually)

The logical next step (if you are mostly satisfied) with the model is to add the generated projects to the solution as indicated by step 5 on the wizard (Figure 5-11).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig11_HTML.jpg]
Figure 5-11Model Builder generated code add prompt interface

Once done, a couple of projects will get added to the solution as explained by the wizard (Figure 5-12).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig12_HTML.jpg]
Figure 5-12Showing explanation of the generated code to be added

Here, a couple of projects are shown that get added to your existing solution (Figure 5-13).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig13_HTML.jpg]
Figure 5-13Showing a couple of generated projects added by the Model Builder wizard

The .ConsoleApp is the client application that shows how to consume the model that is generated.
Evaluating the model
There is also a class generated called ModelBuilder.cs and that has all the logic to see how good or bad the current model performed. There are several matrices to determine that.
Confusion matrix
As the name suggests, the confusion matrix is a measure of how confused or not the algorithm while predicting the labels of the inputs. Confusion matrix consists of basically four values:	TP (true positives)

	FP (false positives)

	TN (true negatives)

	FN (false negatives)

This picture nicely captures the essence of confusion matrix (Figure 5-14).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig14_HTML.jpg]
Figure 5-14A sample confusion matrix of a classification task that tries to identify cats, dogs, and rabbits

	TP: The set of predictions where the classification labels an actual true label as true.

	TN: The set of predictions where the classification labels an actual false label as false.

	FP: The set of predictions where the classification labels an actual false label as true. This is known as Type I error.

	FN: The set of predictions where the classification labels an actual true label as false. This is known as Type II error.

Two very important measures are calculated from the confusion matrix. These are called precision and recall. These are calculated as per the following formulae:[image: $$ precision=\frac{TP\;}{TP+ FP} $$]

[image: $$ recall=\frac{TP\;}{TP+ FN} $$]

It is difficult to compare multiple models with obviously different precision and recall. Therefore, their harmonic mean is calculated, and this is a very popular measure to determine the performance of the model. This measure is called the F1 score. The formula is given as follows:[image: $$ F1_ Score=\frac{2\ast precision\ast recall}{precision+ recall} $$]

The higher the F1 score, the better. To see the confusion matrix for the problem solved, add the following lines in the PrintMulticlassClassificationFoldsAverageMetrics method:var confusionMatrices = crossValResults.Select(r => r.Metrics.ConfusionMatrix);

foreach (var confusionMat in confusionMatrices)
{
 Console.WriteLine(confusionMat.GetFormattedConfusionTable());
}

This will print all the confusion matrix as shown in Figure 5-15 (only two are shown for space constraint).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig15_HTML.jpg]
Figure 5-15Showing formatted confusion matrices for the salary prediction problem solved

The second confusion matrix shows that it predicted 4631 entries as <= 50 and that is actually true, and 1035 entries are predicted as >50K and which is also actually right. Therefore, TP = 4631 and >50K is identified as <=50K in 578 cases and FP = 578 and FN = 254. Using the formula, recall is TP/(TP+FN) => 0.9480 and precision is TP/(FP+TP) => 0.8890.
I have annotated the boxes in the image with TP and so on in yellow as a memory map. It is easy to remember that the parts of the matrix are given in four quadrants available in a counterclockwise manner starting from top left with TP, FP, TN, and FN. The first two quadrants belong to the positive results, while the last two to the negative results, and it is true cases followed by the false cases in both occasions.	Micro Accuracy: How often we get the right answer from the model. If you want to calculate only one metric for checking the performance of your classification algorithm, then use this metric.

	Macro Accuracy: This is basically the average of micro accuracies computed for each class/label in the dataset.

Log loss

Logarithmic loss (related to cross-entropy) measures the performance of a classification model where the prediction input is a probability value between 0 and 1. The goal of our machine learning models is to minimize this value. A perfect model would have a log loss of 0. Log loss increases as the predicted probability diverges from the actual label. So, predicting a probability of .012 when the actual observation label is 1 would be bad and result in a high log loss.
Formulae for log loss:
For binary classification[image: $$ -\left(y\ast \mathit{\log}(p)+\left(1-y\right)\;\mathit{\log}\left(1-p\right)\right) $$]

For multiclass classification[image: $$ -\sum \limits_{c=1}^M{y}_{0,c}\log \left({p}_{0,c}\right) $$]

To see how the model performed, a call to the CreateModel method from the ML.ConsoleApp application can be made as thisModelBuilder.CreateModel();

And this will generate results like this for you (Figure 5-16).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig16_HTML.jpg]
Figure 5-16Showing formatted confusion matrices for the salary prediction problem solved

As you can see, the model does considerably well because Micro Accuracy is close to 1 and Log Loss is very small. The default generated code doesn’t have the code to print the details of the confusion matrix. However, you can easily get to that by adding the following code:var confusionMatrices = crossValResults.Select(r => r.Metrics.ConfusionMatrix);

in
public static void PrintMulticlassClassificationFoldsAverageMetrics(IEnumerable<TrainCatalogBase.CrossValidationResult<MulticlassClassificationMetrics>> crossValResults)

All of these matrices are available as properties of MulticlassClassificationMetrics as shown here

:
[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Figb_HTML.jpg]

ML.NET trainers for classification
ML.NET

 provides several trainers for binary and multiclass classifications.
Binary classifiers
Table 5-1 shows several binary classifiers available in ML.NET and where they are in the framework.Table 5-1Binary classifiers and their location in the framework

	Classifier name
	Encapsulated as

	AvergePerceptron
	BinaryClassification.Trainers.AveragedPerceptron

	FieldAwareFactorizationMachine
	BinaryClassification.Trainers. FieldAwareFactorizationMachine

	LbfgsLogisticRegression
	BinaryClassification.Trainers. LbfgsLogisticRegression

	LinearSvm

	BinaryClassification.Trainers.LinearSvm

	Prior
	BinaryClassification.Trainers.Prior

	SdcaLogisticRegression
	BinaryClassification.Trainers. SdcaLogisticRegression

	SdcaNonCalibrated
	BinaryClassification.Trainers.SdcaNonCalibrated

	SgdCalibrated
	BinaryClassification.Trainers.SgdCalibrated

	SgdNonCalibrated
	BinaryClassification.Trainers.SgdNonCalibrated

	FastTree

	BinaryClassification.Trainers.FastTree

	FastForest
	BinaryClassification.Trainers.FastForest

Multiclass classifiers
Table 5-2 shows several multiclass classifiers available in ML.NET and where they are in the framework.Table 5-2Multiclass classifiers and their location in the framework

	Classifier name
	Encapsulated as

	LbfgsMaximumEntropy
	MulticlassClassification.Trainers.
LbfgsMaximumEntropy

	NaiveBayes
	MulticlassClassification.Trainers.NaiveBayes

	OneVersusAll
	MulticlassClassification.Trainers.OneVersusAll

	PairwiseCoupling
	MulticlassClassification.Trainers.PairwiseCoupling

	SdcaMaximumEntropy
	MulticlassClassification.Trainers.
SdcaMaximumEntropy

	SdcaNonCalibrated
	MulticlassClassification.Trainers.
SdcaNonCalibrated

Setting up options for the classifier
If you take a close look at the generated code, you shall see that the arguments of OneVersusAll are set up like this. The code is pretty-printed here to make it more readable. The generated code is not pretty-printed.var trainer = mlContext.MulticlassClassification.Trainers.OneVersusAll
(
mlContext.BinaryClassification.Trainers.FastTree
 (new FastTreeBinaryTrainer.Options()
 {
 NumberOfLeaves = 26,
 MinimumExampleCountPerLeaf = 1,
 NumberOfTrees = 20,
 LearningRate = 0.05887203f,
 Shrinkage = 3.070639f,
 LabelColumnName = "Salary",
 FeatureColumnName = "Features"
 }),

 labelColumnName: "Salary"
)

In this call, a multiclass classifier “OneVersusAll” is being configured. It takes two parameters. The first one is the binary classifier that it needs to use to differentiate one class from all other and the name of the label column (in this case “Salary”).
The following screenshots show how you can explore different options that these classifiers can take (Figure 5-17).[image: ../images/489446_1_En_5_Chapter/489446_1_En_5_Fig17_HTML.jpg]
Figure 5-17Showing how to set up the trainer options for SdcaMaximumEntropy

Normally, there are two overloads for most of the trainers. The first one takes an Option type which can store all the configuration values, and the other one generally allows to pass all the configurations as literals and numeric values.
Here are the two overloads of this particular trainer:public static SdcaMaximumEntropyMulticlassTrainer SdcaMaximumEntropy(this MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, SdcaMaximumEntropyMulticlassTrainer.Options options);

public static SdcaMaximumEntropyMulticlassTrainer SdcaMaximumEntropy(this MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = null, float? l2Regularization = null, float? l1Regularization = null, int? maximumNumberOfIterations = null);

So we can configure such a trainer like this (this one uses the second overload)var trainer = mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Salary", "Features", null, 0.2334f, 0.454f, 100);

or like thisvar trainer =
mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy
 (
new Microsoft.ML.Trainers.SdcaMaximumEntropyMulticlassTrainer.Options()
 {
 BiasLearningRate = 0.35f,
 ConvergenceCheckFrequency = null,
 ConvergenceTolerance = 0.23f,
 FeatureColumnName = "Features",
 ExampleWeightColumnName = string.Empty,
 L1Regularization = 0.12f,
 L2Regularization = 0.22f,
 LabelColumnName = "Salary"

 });

All other trainers can be configured this way.
Summary
In this chapter, you have learned how to use ML.NET model builder to your advantage to locate/discover the perfect or near perfect classifier for the dataset in question. You have also learned how to evaluate the model. The flow is always to prepare the data, feed that to model builder to locate/discover the best model, and then run several experiments on that model to make its performance better.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_6

6. Clustering

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Figa_HTML.png]

Introduction
Sometimes, we prepare a long list of grocery items and go to the supermarket well prepared to buy what we want. However, sometimes the midday sugar trigger can send us to the supermarket like a dart for picking up a chocolate. People who prepare list of items generally spend way more time in the store than those who do not. From the perspective of the store buyers, spending more time in the store is a great thing. These buyers are what we can call “Organized Buyers”. They know what they want and how much of it that they want. On the flip side, we have those buyers who just drop in the store for picking one or two items on a real physical/mental need trigger. These people are what we can call “Disorganized Buyers”. Clustering is an unsupervised machine learning technique to automatically categorize datasets like these customers/buyers are for the store. In more general terms, clustering can be thought of as automatic grouping of things, behaviors, and so on. There is obviously a known right answer to the number of groups present in a dataset, but it is impossible to be known for each and every dataset in prior.
Objective of this chapter
In this chapter, you shall learn about a couple of algorithms to cluster/segregate a dataset into multiple clusters. The example we just discussed has two groups or clusters – one encompassing the organized buyers and other the disorganized ones. After reading this chapter, you shall have a thorough understanding of how popular clustering algorithms work and how to measure their performance using ML.NET.
Intuition behind K-Means
One of the most popular algorithms used in clustering is K-Means clustering algorithm. It relies on the fact that anything can be represented as a vector in N-dimensional space. This may sound very complex at first, but it is not. It is just a special use of geometry. I shall explain it here.
In high school mathematics, you learned about coordinate geometry. Now we shall go through a geometrical interpretation of the clustering problem, and it’s based on the theory you learned in coordinate geometry. Trust me!
As you can see in the following texts, each customer can be represented by a point in a two-dimensional plane where the X coordinate denotes the hours spent in the store and Y coordinate denotes the average number of items they purchased. So you can now see from the imaginary plot in Figure 6-1 that the dots at the lower corner denote buyers who spent less time in the store (low X value) and bought fewer items (low Y value). These are the people who the store wants to label as “Disorganized Buyers” – not on their face but in the store’s database!
On the other extreme, we have people who spent more time in the store and bought more than average items for all other buyers. These are the people the store wants to label as “Organized Buyers”.
The encompassing bubble around the points drawn as broken lines in circular shape denote the cluster/group. You can think of these bubbles as the border or outline of the cluster. If you like analogies, these are more like the boundary walls that protect the cluster inside. So any point that falls between this encompassing circle is thought to be a member of the cluster.[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig1_HTML.png]
Figure 6-1Showing two clusters of customers in customer segmentation

The main goal of a clustering algorithm is to move closely related data points (in the case of this example, the data of each customer) in the same cluster such that their distance (also known as intra-cluster distance) is as less as possible and the distance between clusters (also known as inter-cluster distance) is as big as possible. Later in the chapter, you shall see how to use several matrices to quantify the performance of a clustering algorithm.
A bit of mathematics
The act of segregating customers into several clusters is called “Customer Segmentation
”, and it is a popular application of clustering algorithm. Moreover, it is easy to start with few dimensions of the data that makes sense already and gradually move to make the representation more detailed.
Each customer is represented in two dimensions as a point. Let us say we denote ith customer as Custi.
Then, we can write[image: $$ {Cust}_i=\left({x}_i,{y}_i\right) $$]

where xi denotes the amount of time spent in the store and yi denotes the number of items purchased.
The third axis and beyond
So far, we have represented data for each customer as a two-dimensional point where the two axes were the amount of time spent in the store and the average number of items purchased. However, as you can probably imagine, it could be extended to have more details. For example, the number of visits per month could be the third value if we want to represent the data for the customers in three dimensions.[image: $$ {Cust}_i=\left({x}_i,{y}_i,{z}_i\right) $$]

Extrapolating on this, you can imagine that a customer can be represented by a m point in m-dimensional space like this:[image: $$ {Cust}_i=\left({x}_i,{y}_i,\dots {m}_i\right) $$]

The notion of proximity

Now that we have successfully represented each customer as a data point, we can find their distance between one another using Euclidean distance function that you learned in coordinate geometry. This distance will give us a sense of proximity between two data points (in this case two customers). This will be the clue needed to put two customers in close proximity in the same cluster or group. The following illustration (Figure 6-2) attempts to make a visualization.[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig2_HTML.jpg]
Figure 6-2Showing a couple of clusters and an unknown data point

d_U_Center_1 is the Euclidean/Manhattan distance between the cluster centroid Center_1 (which is the cluster centroid for cluster 1) and the unknown data point.
d_U_Center_2 is the Euclidean/Manhattan distance between the cluster centroid Center_2 (which is the cluster centroid for cluster 2) and the unknown data point.
If d_U_Center_1 < d_U_Center_2, then the unknown data point should be attached to the first cluster as the centroid for that is nearer than the other centroid. Otherwise, it should be attached to the second cluster.
This process of cluster assignment is iterative, and it continues for the whole part of K-Means clustering where the initial guesses for the clusters shift and finally settle to become the final centroids of the clusters.
The distance metric used is generally the Euclidean distance or the Manhattan distance (a.k.a. city block distance). The following section provides a refresher for you for these distance matrices.
The Euclidean distance
[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig3_HTML.jpg]
Figure 6-3Euclidean distance

If there are two points denoted by p(x, y) and q(x, y), Euclidean distance between these two points is represented by the following formula:[image: $$ {D}_{p,q}=\sqrt{{\left({q}_x-{p}_x\right)}^2+{\left({q}_y-{p}_y\right)}^2} $$]

Here, px denotes the value of x coordinate for the point p and so on.
Euclidean distance in more dimension
As you can see, extrapolating on the previous equation, we can get the general equation for calculating Euclidean distance between two points in m dimension as follows:[image: $$ {D}_{p,q}=\sqrt{{\left({q}_x-{p}_x\right)}^2+{\left({q}_y-{p}_y\right)}^2+\dots +{\left({q}_m-{p}_m\right)}^2} $$]

Sometimes it could be needed to use other distances metrics like Manhattan or city block distance because calculating Euclidean distance can be computationally expensive. Here is the equation for Manhattan or city block distance:[image: $$ {d}_{cityblock}\left(\mathbf{p}\cdot \mathbf{q}\right)=\sum \limits_{i=1}^n\left|{p}_i-{q}_i\right| $$]

Centroid

, the center of the cluster
Centroid in mathematics and physics denotes the point which is the mean of all the points on a given shape of any contour. Figure 6-4 shows the calculation formula for a centroid of a concave polygonal shape. The shape is deliberately drawn like this because in the real life example data points can be scattered like this. The centroid is the mean of all the coordinates as shown in Figure 6-4.[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig4_HTML.jpg]
Figure 6-4Explaining centroid

So in m-dimensional place, the centroid can be represented by the following formulae, where Cx denotes the X coordinate value and so on and Cm denotes the value of the centroid at mth coordinate:[image: $$ {C}_x=\frac{1}{N}.\sum \limits_{i=0}^N{x}_i $$]

[image: $$ {C}_y=\frac{1}{N}.\sum \limits_{i=0}^N{y}_i $$]

[image: $$ {C}_m=\frac{1}{N}.\sum \limits_{i=0}^N{m}_i $$]

So you can see that centroid coordinates are nothing but the mean or average of the projected coordinates of all the points on the shape at a given axis. The following C# function finds the centroid:List<double> CentroidLocations(List<List<double>> points)
=> Enumerable.Range(0,points[0].Count)
 .Select(z => points.Select(p =>p[z]).ToList())
 .Select(z => z.Average())
 .ToList();

The following function calculates Euclidean distance between any two points represented in N dimension:double EuclideanDistance(List<double> p, List<double> q)
 => Math.Sqrt(p.Zip(q,(px,qx) =>
 Math.Pow(px - qx,2)).Sum());

Here is a client code that uses these two functions to make some of the points, made thus far, more clear for you

:void Main()
{
 var p = new List<double>(){1,2,3};
 var q = new List<double>() { 1, 3, 4 };
 var r = new List<double>() { 1, 2, 31 };
 var s = new List<double>() { 1, 3, 41 };
 var t = new List<double>() { 11, 2, 3 };
 var u = new List<double>() { 1, 31, 4 };
 var centroid = CentroidLocations(new List<List<double>>()
 {
 p, q, r, s, t
 });
 var distance_centroid_p = EuclideanDistance(centroid,p);
 var distance_centroid_q = EuclideanDistance(centroid,q);
 Console.WriteLine($"distance p and centroid =
 {distance_centroid_p}");
 Console.WriteLine($"distance q and centroid =
 {distance_centroid_q}");
}

Although you shall use ML.NET to do clustering, it is always good to know the details of the internals

.
Keep moving the centroid until it’s not moving much
The reason it is called K-Means because it takes an initial guess of K for the number of clusters. These settled centroids are then declared as the cluster centroids and count of such centroids becomes the count of the clusters available in the dataset.
The algorithm has these major steps:	1.
Initialization (guessing the initial centroid locations).

	2.
Update centroid at each step (shifting the centroids as calculated per iteration).

	3.
Verify if there is need to continue; if not, stop and report the clusters.

[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig5_HTML.jpg]
Figure 6-5Showing shifting centroids in an imaginary dataset

Figure 6-5 attempts to show how the centroids move in a step in the iterative process of K-Means clustering. The image shows only a couple of imaginary iterations. In a real case obviously, there will be more iterations. In ML.NET K-Means option, you can set the number of maximum iterations by setting
KMeansTrainer.Options.MaximumNumberOfIterations
Note that point P1 initially belonged to the first cluster (with centroid located at C1), but later due to the shift of the cluster coordinates belonged to the second cluster (for which centroid is located at C2).
Also K-Means needs the number of clusters as a parameter, and unsurprisingly you can find that too in the K-Means option provided by ML.NET at KMeansTrainer.Options.NumberOfClusters.
Initialization
There are several kinds of initialization possible in K-Means clustering. You can either choose any random points as the initial clusters or use either of a couple of optimizations available to make a smarter guess of the initial clusters.
The three variations of initialization provided by ML.NET are	1.
PlusPlus (this is an implementation of K-Means++ algorithm)

	2.
Yinyang (this is an implementation of the Yinyang optimization)

	3.
Random (random points are picked as centroids)
PlusPlus: If the initial centroids are picked at random, then there is a probability of getting poorly defined clusters which are way too close to each other. This is a disadvantage of randomly assigning initial centroids.
Yinyang: This optimization technique relies on double filters except one and thereby reduces the number of distance calculations required. This scheme gets its name from the Chinese philosophy Yin and Yang, which are two opposing forces that create harmony.
Random: This is the naïve option to choose centroids at random.

All these initialization strategies are available as option of K-Means trainer as KMeansTrainer.InitializationAlgorithm.Table 6-1Showing options to initialize K-Means via ML.NET options

	Algorithm
	Encapsulated as

	K-Means++
	KMeansTrainer.InitializationAlgorithm.KMeansPlusPlus

	Yinyang
	KMeansTrainer.InitializationAlgorithm.KMeansYinyang

	Random
	KMeansTrainer.InitializationAlgorithm.Random

Update of centroids
At each step of the iterative process, the centroids associated with the points get changed. Gradually toward the end, when the algorithm converges, the centroids become more still; in other words, their coordinates do not shift much anymore.
Clustering Iris flowers using ML.NET
This is the easy part. The reason

 is as follows:
Step 1: Create a new .NET core console application (Figure 6-6).[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig6_HTML.png]
Figure 6-6Showing the console application

Step 2: Configure the project.[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig7_HTML.png]
Figure 6-7Provide a name

Step 3: Get the NuGet Package.
[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Figb_HTML.jpg]

Step 4: Get the package.
[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Figc_HTML.jpg]

Step 5: After the NuGet is installed.[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig8_HTML.jpg]
Figure 6-8Showing the successful installation of ML.NET NuGet Package

Step 6: Once the package is installed, the IntelliSense will figure out the paths.
[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Figd_HTML.jpg]

Step 7: Add the path to the Iris flower dataset file.string _dataPath = @"C:\Users\Sudipta\Downloads\iris.data";

Step 8: Add code to read the Iris dataset in a IDataView instance.IDataView dataView = mlContext.Data.LoadFromTextFile<IrisData>
(_dataPath, hasHeader: true, separatorChar: ',');

Step 9: Add feature column name.string featuresColumnName = "Features";

Step 10: Add code to customize options for K-Means.var options = new Microsoft.ML.Trainers.KMeansTrainer.Options
{
 InitializationAlgorithm =
 Microsoft.ML.Trainers.KMeansTrainer.
 InitializationAlgorithm.KMeansYinyang,
 MaximumNumberOfIterations = 100,
 NumberOfThreads = 4,
 NumberOfClusters = 3,
 OptimizationTolerance = 0.002F,
 FeatureColumnName = featuresColumnName
};

Step 11: Create the pipeline.var pipeline =
mlContext.Transforms
.Concatenate(featuresColumnName,
 "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
.Append(mlContext.Clustering.Trainers.KMeans(options));

Step 12: Fit the model.var model = pipeline.Fit(dataView);

At this point, the model is created and the training is completed, and now you can use this model to predict what cluster a new data point should belong to. The following steps show how to predict that for a given data point:
Step 13: Create an example instance.IrisData Setosa = new IrisData
 {
 SepalLength = 5.1f,
 SepalWidth = 3.5f,
 PetalLength = 1.4f,
 PetalWidth = 0.2f
 };

Step 14: Create the prediction engine from the model and perform the prediction.var predictor = mlContext.Model
.CreatePredictionEngine<IrisData, ClusterPrediction>(model);

var prediction = predictor.Predict(Setosa);

Console.WriteLine($"Cluster:{prediction.PredictedClusterId}");
Console.WriteLine($"Distances: {string.Join(" ",
prediction.Distances)}");

This prints the following output:Cluster: 2
Distances: 16.87281 0.03447342 0.630455

The distances denote the distances of this given data point from the calculated centroids of the clusters. As the distance from the second cluster is minimal, thus the algorithm determines that the given data point should belong to this cluster.
Getting centroid locations
To get the locations of the centroid, add the following code:VBuffer<float>[] centroids = default;

var modelParams = model.LastTransformer.Model;
modelParams.GetClusterCentroids(ref centroids, out int k);

//Printing coordinates of the centroids
for (int i = 0; i < centroids.Length; i++)
{
 Console.WriteLine($"Centroid #{i + 1} is located at " +
 $@"({centroids[i].GetValues()
 .ToArray()
 .Select(t => t.ToString("F2"))
 .Aggregate((f, s) => f + "," + s)})");

}

For this Iris flowers, we get the following result:Cluster: 1
Distances: 0.02159119 11.69127 25.59897
Centroid #1 is located at (5.01,3.42,1.46,0.24)
Centroid #2 is located at (5.90,2.75,4.39,1.43)
Centroid #3 is located at (6.85,3.07,5.74,2.07)

At a second run, you can get the following result (this may vary at your end):Cluster: 2
Distances: 11.64523 0.02159119 25.31428
Centroid #1 is located at (5.88,2.74,4.39,1.43)
Centroid #2 is located at (5.01,3.42,1.46,0.24)
Centroid #3 is located at (6.85,3.08,5.72,2.05)

That is because the MLContext

 is created without a seed, and therefore the results obtained are nondeterministic. If you want to make sure that you get the same result from the machine learning pipelines in ML.NET, then create MLContext with a seed like this (as shown in Figure 6-9).[image: ../images/489446_1_En_6_Chapter/489446_1_En_6_Fig9_HTML.jpg]
Figure 6-9Showing declaration of MLContext with a seed to ensure deterministic behavior

After the initialization is set to seed : 1, then a couple of runs produce the following output, and as you can run the script as many times as you would like and every time, it will be exactly the same.Cluster: 1
Distances: 0.02159119 25.59896 11.69127
Centroid #1 is located at (5.01,3.42,1.46,0.24)
Centroid #2 is located at (6.85,3.07,5.74,2.07)
Centroid #3 is located at (5.90,2.75,4.39,1.43)

Validating the model with ground truths
In the current setting of the experiment, we have an undue advantage, which for the most part won’t be present in real-life clustering experiments. We have the original labels or the cluster information each flower should belong to; and we can use this information to validate how the clustering model worked. The more number of flowers belonged to the right cluster, the better.
In the dataset, the tags “Iris-Setosa”, “Iris-Versicolor”, and “Iris-Virginica” occur in succession. And if you use deterministic model, then the clusters would be placed accordingly. In other words, the first cluster will denote cluster of “Iris-Setosa” flowers and so on.
Add the following code to check ground truth for the model://Ground truth verification
string[] labels = new string[]
{ "Iris-setosa","Iris-versicolor", "Iris-virginica" };

var sepalLengths = dataView.GetColumn<float>("SepalLength");
var petalLengths = dataView.GetColumn<float>("PetalLength");
var sepalWidths = dataView.GetColumn<float>("SepalWidth");
var petalWidths = dataView.GetColumn<float>("PetalWidth");
Func<string, int> toIndex = p => Array.IndexOf(labels, p) + 1;

var groundTruths = File.ReadAllLines(@"iris.data")
 .Skip(1)//Skip header
 .Select(t => toIndex(t.Split(',')[4]));

int count = 0;
for (int index = 0; index < sepalLengths.Count(); index++)
{
 IrisData temp = new IrisData
 {
 SepalLength = sepalLengths.ElementAt(index),
 SepalWidth = sepalWidths.ElementAt(index),
 PetalLength = petalLengths.ElementAt(index),
 PetalWidth = petalWidths.ElementAt(index)
 };

var predicted = predictor.Predict(temp);
//Ground truth check
if (predicted.PredictedClusterId !=
 groundTruths.ElementAt(index))
 count++;
}

var totalRows = sepalLengths.Count();
double correctlyClustered =
 Math.Round(100*(double)(totalRows - count) / totalRows,2);

Console.WriteLine($"{correctlyClustered}% belong to the right cluster");

When run with KMeansPlusPlus strategy, Iris dataset proved to be very nicely clustered. Using KMeansPlusPlus, 89.33% records were correctly clustered. For random initialization, only 2% were rightly clustered. So you can see the initialization has a drastic effect on the performance of the clustering algorithm.
Evaluating the model in the wild
In the absence of ground truth, the model is generally evaluated on two factors:	1.
How densely the elements/data points in the cluster are packed.

	2.
How far different clusters are from one another?

ML.NET provides these three metrics in the ClusteringMetrics class.
Average distance (AD)
Average score. For the K-Means algorithm, the “score” is the distance from the centroid to the example. The average score is, therefore, a measure of proximity of the examples to cluster centroids. In other words, it is a measure of “cluster tightness”. Note, however, that this metric will only decrease if the number of clusters is increased, and in the extreme case (where each distinct example is its own cluster), it will be equal to zero. The lower this distance is, the better – depicting closely knit clusters.
Davies-Bouldin index (DBI)
Davies-Bouldin index is a measure of how much scatter is in the cluster and the cluster separation. The higher the number, the better – representing the cluster centroids are really scattered far from each other.
Normalized mutual information (NMI)
Normalized mutual information is a measure of the mutual dependence of the variables. This metric is only calculated if the Label column is provided.
For the current example strategies, these are calculated along with time to complete the clustering process. These details are captured in Table 6-2.
To get these data about performance, use the following code:ClusteringMetrics metrics = mlContext.Clustering.Evaluate(model.Transform(dataView)
,"PredictedLabel", "Score", "Features");

Console.WriteLine(metrics.AverageDistance);
Console.WriteLine(metrics.DaviesBouldinIndex);
Console.WriteLine(metrics.NormalizedMutualInformation);

Table 6-2Results

	Strategy
	Metrics
	Time taken (100 iterations)

	Random
	0.968531201680501(AD)
0.952212697058903 (DBI)
1 (NMI)
	525 ms

	Yinyang
	0.526269976298014
0.662323100264084
1
	522 ms

	PlusPlus
	0.526271146138509
0.662323100264084
1
	471 ms

As you can see from the table, KMeansPlusPlus
 is the fastest and also probably the best choice you can make because it performed the best in ground truth validation also.
Summary
You have learned how K-Means works and how to measure its performance. Sometimes when the ground truth labels are known, it may seem that clustering is basically classification. But clustering is generally done with datasets for which ground truth labels are not known. And it may make sense to realize that there is not an exact right answer to a clustering problem, but a close-enough approximation to validate any hypothesis is sufficient as an outcome of a clustering experiment. For example, the store might guess that there are three types of buyers and a clustering experiment is required to validate this hypothesis and then the store can find those customers and give away customized offers which will lure them more than a blanket one. However, there are other kinds of clustering algorithm like density-based clustering algorithm DBSCAN, which may outperform K-Means because K-Means for the most part starts with an unassuming set of clusters (even with KmeansPlusPlus). The disadvantage of K-Means is that you have to supply the value of K. But domain knowledge or hypothesis can help supply an initial guess.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_7

7. Sentiment Analysis

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Figa_HTML.png]

Introduction
Sentiment about a product or a service offered by a company is all too valuable in this era than ever before. Knowing whether their established customer base and potential customers are showing a positive or negative sentiment (as shown in Figure 7-1) toward their product or service can be game-changing for companies. However, extracting the true sentiment from a phrase written in English is a challenge, let alone in all the languages. That’s because human languages could be ambiguous, and we can be sarcastic at time and understanding sarcasm is a huge challenge for computers. Although we are getting better with each passing year, but it is still a long way to go.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig1_HTML.jpg]
Figure 7-1Interpreting sentiment

In this chapter, you shall see how ML.NET can help you to do sentiment analysis from textual sources of data. So ideally after finishing this chapter, you should be able to perform sentiment analysis tasks (bipolar, either positive or negative) on your data in your domain.
Basic ideas
There are two basic approaches to solving sentiment analysis tasks. The following section walks you through these two and shows the pros and cons of both approaches.
Consider these two statements:
“The plot of the movie was truly unpredictable”.
“The steering wheel of this new car is rather unpredictable”.
A movie plot being unpredictable
 makes it desirable. A car with unpredictable steering wheel makes it dangerous at best. So the first statement shows a positive sentiment about a new play, while the second one displays a really stark negative sentiment about the new car.
First idea
Sentiment analysis works with a simple algorithm. The main idea is simple. Every word either expresses a positive or a negative sentiment for each domain. For example, the word “unpredictable” may be rated to have a higher positive sentiment while being used in movie reviews. The same word has to have a high negative sentiment score when used in the context for car reviews.
The idea to calculate overall sentiment score for a given phrase/sentence is simple. All you have to do is to keep adding the positive and negative scores of each of the tokens/words from the phrase/sentence.
If the overall positive score is more than the overall negative score, then we claim that the phrase/sentence in question might be expressing a positive attitude. On the contrary, if the overall negative score beats out overall positive score, then we can conclude that the sentence/phrase probably expresses a negative sentiment.
The words are called “Lexicons
” in this context.
For each lexicon/word, there is a positive score and a negative score representing its expressed positive and negative sentiment. These numbers are available in a few specialized dictionary-like structures. One such structure is SentiWordNet.
You can download it from
[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Figb_HTML.jpg]

One entry in this dictionary looks like this:"able#" "0.125" 0

where “able” is the word or lexicon, and it expresses a positive sentiment score of 0.125 and it is generally not used in negative sentiment; thus, the score for negative sentiment score is zero.
The following code helps to read and create an in-memory representation of the SentiWordNet dictionary:void Main()
{
 var sentiWordList = System.IO.File.ReadAllLines
 (@"SentiWordNet_3.0.0.txt")
.Where(line => !line.StartsWith("#"))
.Select(line => line.Split('\t'))
.Where(tokens => tokens.Length >= 5)
.Select(lineTokens => new
 {
 POS = lineTokens[0],
 ID = lineTokens[1],
 PositiveScore = lineTokens[2].Trim(),
 NegativeScore = lineTokens[3].Trim(),
 Words = lineTokens[4]
 })
.Select(item => new string[]
 {
 item.Words.Substring(0, item.Words.LastIndexOf('#') + 1),
 item.PositiveScore,
 item.NegativeScore
 });

 foreach (var element in sentiWordList.Take(5))
 {
 //The following line should be in a single line
 Console.WriteLine($@"{element.Lexicon}
 {element.PositiveScoe} {element.NegativeScore}");
 }

This produces the following output:able# 0.125 0
unable# 0 0.75
dorsal#2 abaxial# 0 0
ventral#2 adaxial# 0 0
acroscopic# 0 0

POS stands for Parts of Speech.
The following function gets the polarity (positive and negative sentiment expressed by a given word) from the sentiment dictionary:private Tuple<float, float> GetPolarity(IEnumerable<string[]> sentiWordNetList, string word)
{
 var matchedItem = sentiWordNetList
 .FirstOrDefault(item => item.ElementAt(0).Contains(word));
 if (matchedItem != null)
 {
 return new Tuple<float,
 float>(Convert.ToSingle(matchedItem[1]),//positive
 Convert.ToSingle(matchedItem[2]));//negative
 }
 else
 return new Tuple<float, float>(0F, 0F);
}

This produces the following when called for the word “good”:
A tuple with 0.625 and 0
Extrapolating on this method, the following method calculates the polarity (either positive or negative) of a complete sentence:private int GetPolarityScore(string sentence, IEnumerable<string[]> sentiWordNetList)
{
 var words = sentence.Split (' ');

var polarities = words.Select(word => GetPolarity (sentiWordNetList, word));

var totalPositivity = polarities.Sum(p => p.Item1);

var totalNegativity = polarities.Sum(p => p.Item2);

Console.WriteLine($"Positive polarity of this sentence is {totalPositivity}");
Console.WriteLine($"Negative polarity of this sentence is {totalNegativity}");

if (totalPositivity > totalNegativity) return 1;

else if(totalNegativity == totalPositivity) return 0;
else return -1;

}

When called with the following arguments,GetPolarityScore("I love this awesome product I thought the camera will be great much better though", sentiWordList)

it returns 1 and prints the following lines about polarity:
Positive polarity of this sentence is 3.5 Negative polarity of this sentence is 1.5
However, there is a caveat with this approach. It might not be easily evident, but if you think about it, it becomes really easy to spot. That’s about handling negations in input phrases.
Handling negations

Sometimes, we use negative words to describe positive mood and vice versa, like the two example sentences in Figure 7-2.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig2_HTML.png]
Figure 7-2Words explain moods

The idea to get past these is to create two set of combos by extracting positive and negative words from SentiWordNet. A positive word is one for which the positive sentiment score is more than the negative sentiment score. A negative word is a word for which the negative sentiment score is more than the positive sentiment score.
Then, create two pairs of combos. One with positive words and negations and another with negations and negative words. The first pair of such combos will help extract cases that are truly bad (like “not good”), and the second pairs of such combos will help extract cases that are not as bad (like “not bad”).
And here is the list of negations you can use:	No

	Not

	Never

	Seldom

	Neither

	Nor

Generalization of sentiment analysis…
Another

 idea is to view sentiment analysis as a classic binary classification problem, where “Positive” and “Negative” are two classes, as seen in Figure 7-3.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig3_HTML.png]
Figure 7-3Positive and negative classes

However, describing the sentiment analysis problem as a classical classification problem has its advantage. When expressed this way, the problem can be extended to extract sentiments that are beyond bipolar sentiments (positive/negative). Analyzing sentiment (not just polarity) is identifying the true sentiment like “Happiness”, “Ecstasy”, “Sadness”, “Grumpiness”, “Arrogance”, “Anger”, and “Indifference”, to name a few.
When the sentiment analysis is capable of extracting emotions from data sources (textual, visual, videos), then it is called “Emotion Detection
” or “Emotion Analysis
”.
Expressing sentiment analysis problem as a classic classification problem makes it easy to present itself as a supervised learning problem of classification of emotions (not binary but more). Imagine if you have labeled data from several people where their feeling/emotion/sentiment is tagged based on few input feature, it will be easy to feed this data to a supervised learning algorithm to get the predicted label of a newly arrived dataset entry.
Step 1: Create a console project in Visual Studio 2019. The community edition is free and can be downloaded from here https://visualstudio.microsoft.com/vs/community/.
Step 2: Right-click to add Machine Learning to this project.
Step 3: Select “Text classification” for sentiment analysis task as seen in Figure 7-4.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig4_HTML.jpg]
Figure 7-4Select a scenario

This is because sentiment analysis is basically a text classification.
Step 4: Select the data file to start the training as seen in Figure 7-5.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig5_HTML.jpg]
Figure 7-5Select the training environment

At the time of this writing, this is supported only on local.
Data to be used in this application is from Sentiment140.
http://help.sentiment140.com/for-students
You can get the data from Google Drive by following the links on this URL.
Here are a few points about the data (taken from the preceding website).
The data is a CSV with emoticons removed. The data file format has six fields:	0: The polarity of the tweet (0 = negative, 2 = neutral, 4 = positive).

	1: The ID of the tweet (2087).

	2: The date of the tweet (Sat May 16 23:58:44 UTC 2009).

	3: The query (lyx). If there is no query, then this value is NO_QUERY.

	4: The user that tweeted (robotickilldozr).

	5: The text of the tweet (Lyx is cool).

Once the file is located, then the details are listed as follows.
In this information, the first column “col0” denotes the label of the sentiment analysis task. Remember that 0 indicates negative and 4 indicates positive. The last column “col5” denotes the text of the tweet. When the header row is skipped, then the program produces these autogenerated column names as seen in Figure 7-6.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig6_HTML.jpg]
Figure 7-6Autogenerated column names

Note
You may notice that we are not including the rest of the columns. Keep in mind that it is the task of a data scientist to choose which data input to use in the model.

Select the col0 as the data label column and the col5 as the input column as shown in Figure 7-7.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig7_HTML.jpg]
Figure 7-7Add the data

At this stage, we are ready to train to obtain the model.
Click the Train button as seen in Figure 7-8. Although the recommended time range for training is in seconds range, my observation is that if you let it run a bit over 2 minutes, it generally reaches a plateau in terms of performance, because it gets enough time to evaluate each model along the way to reach the optimal model that it proposes.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig8_HTML.jpg]
Figure 7-8The training for the sentiment analysis model in progress

Note
Clicking the link "How long should I train for?" will take you to the doc explaining the time needed depending on the size of the dataset.

At the end of the training, the wizard shows the training for the sentiment analysis model finalizing as seen in Figure 7-9.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig9_HTML.jpg]
Figure 7-9The training for the sentiment analysis model in finalizing mode

Step 5: The result of running the training for exactly 2 minutes produces this, as seen in Figure 7-10.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig10_HTML.jpg]
Figure 7-10Training complete

And there you have it.
For comparison purposes, Figure 7-11 shows the result of running the training for 10 seconds.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig11_HTML.jpg]
Figure 7-11Training results after 10 seconds

As you can see, there is an obvious improvement in performance for training longer periods. But be warned that it will be hitting a plateau unless some other modifications are made to the data.
For the final attempt for training on this example dataset, I chose to run it for 200 seconds, as seen in Figure 7-12, and the performance of the resultant model is even better.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig12_HTML.jpg]
Figure 7-12Training results after 200 seconds

The Model Builder wizard allows us to try the trained model via a generated UI (that is generated from the data on-the-fly). The following screenshot, Figure 7-13, shows this UI.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig13_HTML.jpg]
Figure 7-13Showing the result of the trained model

You can add this generated model as the starting point to enhance the model. To add the generated code for the trained model, hit the “Add Projects” button as seen in Figure 7-14.[image: ../images/489446_1_En_7_Chapter/489446_1_En_7_Fig14_HTML.jpg]
Figure 7-14Add Projects button

Once the generated projects are added, it will have the following types:public class ModelInput
{
 [ColumnName("col0"), LoadColumn(0)]
 public string Col0 { get; set; }
 [ColumnName("col1"), LoadColumn(1)]
 public float Col1 { get; set; }
 [ColumnName("col2"), LoadColumn(2)]
 public string Col2 { get; set; }
 [ColumnName("col3"), LoadColumn(3)]
 public string Col3 { get; set; }
 [ColumnName("col4"), LoadColumn(4)]
 public string Col4 { get; set; }
 [ColumnName("col5"), LoadColumn(5)]
 public string Col5 { get; set; }
}

public class ModelOutput
{
 // ColumnName attribute is used to change the column name from
 // its default value, which is the name of the field.
 [ColumnName("PredictedLabel")]
 public String Prediction { get; set; }
 public float[] Score { get; set; }
}

Then, this model can obviously be saved, loaded, and consumed to predict the sentiment of the new-coming entry like this:var sampleData = new ModelInput()
{
 Col5 = @"@stellargirl I loooooooovvvvvveee my Kindle2.
 Not that the DX is cool, but the 2 is fantastic in its own right.",
 };

// Make a single prediction on the sample data and print results
var predictionResult = ConsumeModel.Predict(sampleData);

As you can probably guess, this particular text in question reflects a positive emotion. Therefore, the value will be 4.
Summary
The infrastructure provided by ML.NET allows you to do sentiment analysis as a special case of text analysis, but as you saw in the chapter, it is not that trivial and handling negations was just one of the caveats. As of this writing, ML.NET is continually evolving, and I hope to see a more in-depth categorization of feelings and emotions that extend beyond positive and negative for sentiment analysis. Although, you can use a deep learning model specially trained to do that and that is a workaround for now.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_8

8. Product Recommendation

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Figa_HTML.png]

[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Figb_HTML.jpg]

Introduction
It’s highly likely for individuals to look at similar product while shopping before purchasing what captures their imagination. Product recommendation is highly useful because it boosts sales. A few examples of recommendations are as follows:	Netflix recommends movies you might like based on what you watched and rated thus far.

	Spotify recommends music/songs based on users’ preferences.

	Amazon recommends products that you can possibly be interested.

	Visual Studio IntelliCode offers code completion candidates based on previous examples written by other developers across different projects.

	Microsoft PowerPoint offers several design ideas based on the content. This design decision is the output of a recommender system that learns what appeals to users over time based on historical input and output.

These are just some examples of where a recommender system hide itself behind carefully crafted UIs, which sometimes is indistinguishable from magic. Recommender Systems is a very useful, and fortunately not so difficult to understand, application of supervised machine learning.
This chapter will introduce you to some key ideas of implementing recommender system and in particular will walk you through an example of product recommendation using a very popular algorithm called “matrix factorization”. Along the way, you shall discover how ML.NET hides the complexities of such a system from the application developer.
Jargons of the trade…
Recommender systems recommend (quite obviously) something to people to consider (potential dates), ponder (potential job offers), buy (for purchasing stocks), listen (to songs the system thinks they would love), watch (movies the system believes they would resonate with), accept a suggestion (to change a phrase to what the recommender system thinks would sound more professional), and so on.
In all these contexts, a system is offering some help to people. The audience of recommender systems is referred to as Users in technical literature. And whatever the recommender system offers/recommends is called as items.
Users
Users are denoted by the word U, and for denoting m users, the subscript notation is used like this Ui…. . Um.
Items
Items are denoted by the word I, and for denoting n items, the subscript notation is used like this Ii…. . Im.
Ratings
Users rate items based on their experience, and then these ratings become available for collaborative filtering technique, predictions that are made based on existing ratings from others who have ratings in common with the active user to recommend an item based on previous preferences. Ratings given by users are generally denoted by Ri … Rn.
So you can imagine that a previously rated item gallery would look like this:	Users
	Items
	Ratings
	… Other Data

	U1
	I1
	3.5
	
	U2
	I2
	?
	
	U2
	I1
	5
	

The challenge of the product recommendation algorithm is to fill the missing blocks like in this case the rating for second item is missing from the second user.
Type

 of recommender systems…
There are two major ways recommender systems are designed. The first set is called CBF (content-based filtering), and the second family of algorithms is called CF (collaborative filtering).
CBF relies on the fact that people generally like similar products, and this type of technique helps locate similar items or users who share the same preferences and then these information can be used to find the missing ratings of items.
However, in this chapter, we shall discuss about a popular algorithm called matrix factorization
 for performing collaborative filtering, a means of making automated predictions.
Normally in a recommender system, the number of users is way more (generally in the range of millions) and the number of items is less (generally in the range of thousands), but the total number of ratings is very sparse because not all users have rated all items.
Matrix factorization
Factorization means breaking a big number into two or more smaller numbers or expressions. Matrix factorization is a process to break a big matrix into two smaller matrices. In our case, we will represent the big matrix as a product of two smaller matrices. The first smaller matrix is the matrix between customers and their preferences for movies, and the second smaller matrix is the movies and their features (how comic the movie is, how much action is there in the movie, etc.). Elements in the bigger matrix are the dot product of a row and column of these two smaller matrices. The following table depicts it well.	Persons
	Movie1
	Movie2
	Movie3
	Movie4
	Movie5

	Dana
	3
	1
	1
	3
	1

	Ana
	1
	2
	4
	2
	3

	Sam
	3
	?
	4
	3
	1

	Hans
	4
	3
	?
	4
	4

The size of this matrix is m × n, where m is the number of users and n is the number of movies.
This is what the whole table will look if we store all the data in a single matrix. But storing the data this way won’t be efficient because the matrix will have very large dimension (use a lot of machine memory), and at the same time, many elements in that matrix will be zero, because users didn’t eat in every single movie. When a matrix has many zero elements, it is called a sparse matrix.
The two question marks on the table denote two ratings that we need to predict. What do you think Sam will rate “Movie2”? Looking at the table, it seems like Sam’s preferences really are a close match to that of Dana’s. So probably he will also hate the movie. So we can we can mark it as 1, Sam would not like the movie. Similarly, Han’s expected Movie3 rating will be close to 4 because Han’s preference is almost the same as Sam’s. This approach of adjusting the predicted rating based on preferences of similar neighbors is called “Collaborative Filtering
”. It can be assumed as a process where all the similar neighbors (who have similar preferences) collaborate to filter out weeds and help produce the best possible recommendations for the new user.
Each element in this matrix is calculated from the dot product between the row and column of those two matrices. The first matrix is the preferences of the users. Users have preferences of several movie genres. Some users like comedy movies, some like action movies, few like thrillers, and if you are anything like me, you also like documentaries and mystery thrillers. So the preferences of users can be encoded by this binary representation as shown in the following matrix:	Persons
	Comedy
	Action
	Documentary
	Thrillers
	Biopic

	Dana
	Yes
	No
	No
	No
	Yes

	Ana
	No
	Yes
	No
	Yes
	No

	Sam
	Yes
	No
	Yes
	No
	No

	Hans
	Yes
	No
	No
	No
	Yes

The size of this matrix is m × k, where m is the number of users and k is the number of features identified for movies. In this case, k is 5 (because there are 5 features, “Comedy”, …, “Biopic”).
So if “Yes” and “No” are replaced with 1 and 0, then the preferences of users/persons will look more like a vector that can be used in a dot product.	Persons
	Comedy
	Action
	Documentary
	Thrillers
	Biopic

	Dana
	1
	0
	0
	0
	1

	Ana
	1
	1
	0
	1
	0

	Sam
	1
	0
	1
	0
	0

	Hans
	0
	0
	0
	0
	1

Now, let’s imagine we somehow figure out that a movie has a few frames of comedy, a few frames of action, and so on. So each movie can be expressed as a row in this matrix:	Movie Genres
	Movie1
	Movie2
	Movie3
	Movie3
	Movie5

	Comedy
	1
	0
	0
	1
	0

	Action
	0
	1
	0
	1
	0

	Documentary
	0
	0
	1
	0
	1

	Thrillers
	0
	1
	0
	0
	1

	Biopic
	0
	0
	1
	0
	0

This matrix has the size k × n (where n is the number of movies).
Space advantage…
To see how much space benefit this scheme brings, just assign some realistic number to all variables m, n, k.
Let’s say you are doing this for some really popular platform like Amazon Prime; then the number of users m will be in the range of a million. Let’s assume in a realistic scale there are 1000 movies to start with. There can be more but this is a good ballpark number. Also assume that we can distribute the preferences of users and genres of movies in some 20ish features. That makes m = 1 Million, n = 1000, and k = 20.
Now if we had stored the numbers in a big matrix number of elements, it would have been a gargantuan 1 Billion. But storing them in two separate matrices makes that number come down to only 20 Million.
Let’s predict…

Movies are generally categorized to be in multiple genres. In these examples, “Movie3” is an action comedy, while “Movie5” is a thrilling documentary.
To know whether we should recommend “Movie1” for “Dana”, if she had not already watched it, we needed to find out the dot product of the first row of the first matrix and the first column of the second matrix. This will be [1, 0, 0, 0, 1] · [1 0 0 0 0], which is 1.
Ana loves comedy and action, so for Movie5, her rating will be [11010] · [11000], which sums to 2.
Just to remind you, dot product is the summation of entries calculated from index-wise multiplication. So [1, 1, 0, 1, 0] · [1, 1, 0, 0, 0] = 1 × 1 + 1 × 1 + 0 × 0 + 1 × 0 + 0 × 0 = 2.
All these sound good, but it is too good to expect such data to be available for real-life scenarios where in most occasions the data itself must be procured in first few months/years.
Finding the right factorization of the big matrix
Finding the right set of factor matrices is an iterative process. Two matrices (one for the user-feature and another for the item-feature) are initialized with random values, and then a chosen algorithm goes back and forth many times over until the weights in these two matrices produce close-enough approximation of the true ratings provided by the big matrix.
The algorithm needs a way to measure whether it is approaching the right value or going farther from it. It does so trying to minimize the following function (also called a loss function):[image: $$ \mathrm{L}=\sum \limits_{u,i\in S}{\left({\mathrm{r}}_{ui}-{\mathbf{x}}_{\mathrm{u}}^{\mathrm{T}}\cdotp {\mathbf{y}}_{\mathbf{i}}\right)}^2+{\uplambda}_{\mathrm{x}}\sum \limits_{\mathrm{u}}{\left|\left|{\mathbf{x}}_{\mathrm{u}}\right|\right|}^2+{\uplambda}_{\mathrm{y}}\sum \limits_{\mathrm{u}}{\left|\left|{\mathbf{y}}_{\mathrm{i}}\right|\right|}^2 $$]

In this case, x represents users and y represents items. rui denotes rating for item i given by user u. So the computer tries to minimize the squared error. [image: $$ \sum \limits_{u,i\in S}{\left({\mathrm{r}}_{ui}-{\mathbf{x}}_{\mathrm{u}}^{\mathrm{T}}\cdotp {\mathbf{y}}_{\mathbf{i}}\right)}^2 $$] is the squared error. The part on the right of the equation is called regularization. This is used for preventing the system from overfitting the data.
So conceptually, the algorithm takes a set of randomized entry populated vectors for feature matrices (factor matrices) and then keeps on iterating until it hits an aggregable approximation of the true ratings (ratings provided by some user for some items).
Gradient descent family of algorithms are generally used to solve for the weights in the factor matrices.
Modifying hyperparameters in ML.NET
You can modify all these hyperparameters, a parameter whose value is used to control the learning process, for tuning the algorithm via MatrixFactorizationTrainer.Options class from the code.[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig1_HTML.jpg]
Figure 8-1Showing how the Loss function can be set

SquareLossRegression
 is the default, and SquareLossOneClass is used for implicit recommender systems where it is to recommend whether the user will click, buy, watch an advert, and so on.[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig2_HTML.jpg]
Figure 8-2Showing how the regularization parameter can be set

Doing matrix factorization using Model Builder
Step 1: Select the scenario as Recommendation (Figure 8-3).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig3_HTML.jpg]
Figure 8-3Locating the scenario

Step 2: Select where you want to train the model (Figure 8-4).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig4_HTML.jpg]
Figure 8-4Selecting the training environment

At the time of this writing (August 2020), this is only possible to train it locally.
Step 3: Select the training file (Figure 8-5).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig5_HTML.jpg]
Figure 8-5Finding the training data

The wizard can read the data either from a flat file or from a SQL Server database.
Step 4: Verify your data (Figure 8-6).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig6_HTML.jpg]
Figure 8-6Previewing and verifying data

Step 5: Locate the column which you want to predict and the column to use for training. Once you do that, those columns will be shown within brackets.[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig7_HTML.jpg]
Figure 8-7Annotating the data for training the model

Step 6: Leave the default time of 10 secs to train (Figure 8-8).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig8_HTML.jpg]
Figure 8-8Training the model

Step 7: Wait for the training to finish. Once done, it will show the results like this (Figure 8-9).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig9_HTML.jpg]
Figure 8-9Training the model is done

Step 8: You can optionally verify the result of the trained model by visiting the Evaluate tab (Figure 8-10).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig10_HTML.jpg]
Figure 8-10Evaluation of the model

Here, the predicted rating for user 14 for movie 8477 is shown on the right side as 5.24. It also lists the top 5 recommendations for the movie. In a real-life application though, we must limit the upper and lower predicted rating between 1 and 5. So 5.24 will be capped to 5.
Step 9: The next step is to use this generated code to the solution. Once confirmed, Model Builder adds these couple of projects to the solution.[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig11_HTML.jpg]
Figure 8-11Showing added projects in solution

Here is the ModelInput class (Figure 8-12).[image: ../images/489446_1_En_8_Chapter/489446_1_En_8_Fig12_HTML.jpg]
Figure 8-12ModelInput class

The output will only produce the score measured as R-Squared:public class ModelOutput
{
 public float Score { get; set; }
}

This can be used as shown in the generated code.
// Create single instance of sample data from
//first line of dataset for model input

ModelInput sampleData = new ModelInput()

{
 UserId = 1F,
 MovieId = 1F,
};

// Make a single prediction on the sample data and print results
var predictionResult = ConsumeModel.Predict(sampleData);

To produce a recommended list of movies, scores for all movies have to be calculated and then sorted in descending order.
Summary
At this moment, ML.NET offers matrix factorization as the recommender system trainer. There are several other memory-based models that work well for recommendation problems, which are not available as a part of ML.NET APIs but you can import them as an ONNX models and consume in your .Net applications via ML.NET.
Recommendation can also be approached as a similarity measure problem as in information retrieval. In that approach, users are recommended movies/items that have similar attributes.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_9

9. Anomaly Detection

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Figa_HTML.gif]
Introduction
Detecting anomalous situations early can be a lifesaver. Imagine the catastrophes saved being able to spot a manufacturing defect in a car engine before being shipped in a million cars. The manufacturer can save huge on the potential damage control for recalling all the cars, let alone the embarrassment caused.
During some stage of pregnancy, an anomaly scan is done to predict the stage of the fetus. The motive of this scan is to abort pregnancies that will cause premature or terminally ill babies.
Anomaly detection algorithms also play a huge part in fraudulent transaction detection. The computer can spot smelly/fishy transactions (if you will) from others by measuring several aspects/features of the transaction. The time of the transaction, the amount, the speed at which the login credentials were entered by the user, and so on give all the necessary clues to the anomaly detection algorithm to be able to tell chalk (the fraudulent) and cheese (the real legitimate transaction) apart.
Objective
In this chapter, you shall learn how ML.NET can be used to spot anomalies in different datasets. After reading this chapter, you should be able to write anomaly detection algorithm for your own datasets derived from your own domain models.
What’s an anomaly anyway?
It’s the odd one out from a group of similar items. Imagine that a person has historically (for the last 5 years) spent between $1 and $2000 per transaction on her credit card. One evening the server of the bank saw an incoming debit request of $9000 on a single transaction. This is beyond the historical limits. It might very well be legit. Maybe she got extravagant and spent more than she ever did that evening, but this is enough for the anomaly detection algorithm at the bank server to attempt to flag this as an anomaly. This is because $9000 is well beyond the max she ever spent on a single transaction for a considerable time to be used to create a profile as a representative of her buying behavior.
So, in a nutshell, anomaly means anything out of the ordinary. Anything that is so obvious that it will catch the eye.
Different types of anomalies…
There are mostly three different types of anomalies:	Point anomaly

	Contextual anomaly

	Collective anomaly

Point anomaly
When a data point is farther from all others in the input dataset, then it is probably anomalous. In this context, the point anomalies are also called outliers. Imagine that we store the area of a house and its price in a list of tuples, and the general assumption is that if the house is big, it will be expensive. However, if we spot a really big house with really cheap asking price, then that’s too good to be true and represents an outlier or a point anomaly.
Contextual anomaly
Sometimes depending on the season, what seems anomalous otherwise may sound normal. For example, during the X-mas/New Year holiday season, a person from New York may spend more every day than her average spending value otherwise. This is normal, but when the same person seems to spend more even after the holidays, something might be potentially wrong. It could be that the card is stolen. As you can see, it is really hard to determine that whether we are dealing with a contextual anomaly or a point anomaly. The knowledge of the seasonal events has to be reconciled together to get to something useful.
Collective anomaly
Sometimes data points are not considered anomalous by themselves. But with the context of other points in the dataset, they can be anomalous. A missing heartbeat in an ECG, as seen in Figure 9-1, is an example of collective anomaly.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig1_HTML.jpg]
Figure 9-1Showing anomalous ECG

Here, the points (highlighted by circles) themselves are not anomalous, but in the context of all points in the ECG, they are.
Different approaches to detect anomalies…
Based on how they are poised, anomaly detection problems can be represented as supervised or unsupervised/clustering problem.
As simple statistical problem
Anomaly detection can be thought of as a simple statistical problem where we need to find elements below or above the quartile range (IQR: interquartile range) as seen in Figure 9-2.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig2_HTML.jpg]
Figure 9-2Showing IQR range

Data points below the minimum and maximum as shown in the figure are outliers/anomalous data instances.
As supervised learning problem

Anomaly detection can be thought of as a supervised machine learning problem if we had several labeled examples of data which are either anomalous and normal (nonanomalous). If presented like this, then several supervised machine learning classification/clustering techniques can be used to detect anomaly in the data, if there exists any.
The rationale behind supervised approaches is that it is thought that general, normal, and typical data points appear in close proximity to each other, while the anomalous instances are isolated farther apart. Because of this reason, density-based models like nearest neighbors work.
As clustering learning problem

K-Means clustering works to detect anomalies. Elements not really attached to a centroid are claimed to be anomalous. However, the challenge of anomaly detection lies in novelty. Sometimes anomalous entries appear that look nowhere near their previous incarnations. This is one of the major motivations to think of anomaly detection as unsupervised/clustering learning problem.
ML.NET offers
What ML.NET offers is various ways to locate anomalies in time series data. As shown in Figure 9-3, these are available via Microsoft.ML.Timeseries 1.5.1 NuGet package or beyond.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig3_HTML.jpg]
Figure 9-3Showing NuGet Package required

Time series anomaly detection algorithms are implemented as extension method on TransformsCatalog. Table 9-1 shows these extension functions and their purposes.Table 9-1Showing methods to detect point anomalies

	Function Name
	Description

	DetectChangePointBySsa
	Create SsaChangePointEs​timator, which predicts change points in time series using singular spectrum analysis (SSA).

	DetectEntireAnomalyBySrCnn
	Create Microsoft.ML.TimeSeries.SrCnnEntireAnomalyDetector, which detects time series anomalies for entire input using SRCNN algorithm.

	DetectIidChangePoint
	Create IidChangePointEs​timator, which predicts change points in an independent identically distributed (i.​i.​d.​) time series based on adaptive kernel density estimations and martingale scores.

	DetectSpike
	Create IidSpikeEstimato​r, which predicts spikes in independent identically distributed (i.​i.​d.​) time series based on adaptive kernel density estimations and martingale scores.
C#

	DetectSpikeBySsa

	Create SsaSpikeEstimato​r, which predicts spikes in time series using singular spectrum analysis (SSA).

SRCNN algorithm…
The goal of this algorithm is to predict a score for each input data point. More formally, if the input data is represented as x1, x2, x3, …, xn, then this algorithm tries to predict the anomaly score for each point in the input data represented as y1, y2, y3, …, yn ∈ (0, 1) as seen in Figure 9-4.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig4_HTML.jpg]
Figure 9-4Representation of SRCNN algorithm

So, each point in the input either represents a time series anomaly or not. It is 1 if the point represents an anomaly and 0 otherwise.
SRCNN first uses Spectral Residual of the input data and then uses the output of this as the input of a CNN (convolutional neural net) to calculate if the point is anomalous or not.
For more pointers about the inner workings of the algorithm, follow the original post at https://techcommunity.microsoft.com/t5/ai-customer-engineering-team/overview-of-sr-cnn-algorithm-in-azure-anomaly-detector/ba-p/982798.
ML.NET encapsulation…
You can use this from ML.NET via the encapsulated method on AnomalyDetection transformer as shown in Figure 9-5.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig5_HTML.jpg]
Figure 9-5Showing tooltip on the SRCNN method in ML.NET

Table 9-2 shows all the parameters this method takes and their purposes.Table 9-2Details of the parameters of the SRCNN method

	Parameter
	Purpose

	OuputColumnName
	Name of the column resulting from data processing of inputColumnName. The column data is a vector of Double. The length of this vector varies depending on detectMode.

	InputColumnName
	Name of column to process. The column data must be Double.

	Threshold
	The threshold to determine an anomaly. An anomaly is detected when the calculated SR raw score for a given point is more than the set threshold. This threshold must fall between [0,1], and its default value is 0.3.

	batchSize
	Divide the input data into batches to fit srcnn model. When set to -1, use the whole input to fit model instead of batch by batch; when set to a positive integer, use this number as batch size. Must be -1 or a positive integer no less than 12. Default value is 1024.

	sensitivity

	Sensitivity of boundaries, only useful when srCnnDetectMode is AnomalyAndMargin. Must be in [0,100]. Default value is 99.

	detectMode
	An enum type of SrCnnDetectMode.
When set to AnomalyOnly, the output vector would be a 3-element Double vector of (IsAnomaly, RawScore, Mag).
When set to AnomalyAndExpectedValue, the output vector would be a 4-element Double vector of (IsAnomaly, RawScore, Mag, ExpectedValue).
When set to AnomalyAndMargin, the output vector would be a 7-element Double vector of (IsAnomaly, AnomalyScore, Mag, ExpectedValue, BoundaryUnit, UpperBoundary, LowerBoundary). The RawScore is output by SR to determine whether a point is an anomaly or not; under AnomalyAndMargin mode, when a point is an anomaly, an AnomalyScore will be calculated according to sensitivity setting. Default value is AnomalyOnly.

Using anomaly detection to spot spikes in sales data…
We can use the preceding method to detect spikes (which are essentially anomalies) in the input sales data. The next example will show how we can tweak several of the parameters discussed in Table 9-2 to spot anomalies.
Step 1: Create a console app in Visual Studio 2019.using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace AnomalyDetect
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Step 2: Get the necessary NuGet packages.
Go to Tool ➤ NuGet Package Manager ➤ Package Manager Console (Figure 9-6).[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig6_HTML.jpg]
Figure 9-6Showing Package Manager Console menu

When the console appears, get the two packages as seen in Figures 9-7 and 9-8.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig7_HTML.jpg]
Figure 9-7Showing the NuGet Package is installed

[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig8_HTML.jpg]
Figure 9-8Showing that ML.Timeseries NuGet package is also installed

Once successful, these references will be shown on the References of the project as shown in Figure 9-9.[image: ../images/489446_1_En_9_Chapter/489446_1_En_9_Fig9_HTML.jpg]
Figure 9-9Showing all these dlls in the References

At this stage, you are ready to use the data.
Step 3: Add the necessary using directive.using Microsoft.ML;

Step 4: Create an ML context.MLContext ml = new MLContext();

Step 5: Add the following classes to the solution:private class TimeSeriesData
{
 public double Value { get; set; }
}

private class SrCnnAnomalyDetection
{
 [VectorType]
 public double[] Prediction { get; set; }
}

Step 6: Load the data from text file by the following method:private static List<TimeSeriesData> LoadDataFromFile(string fileName)
{
 return File.ReadAllLines(fileName)
 .Skip(1)
 .Select(f => new TimeSeriesData()
 { Value = Convert.ToDouble(f.Split(new char[] { ',' },
 StringSplitOptions.RemoveEmptyEntries)[1])
 })
 .ToList();
}

Step 7: Load the data from the file.
You can download the data from https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/AnomalyDetection_Sales/SpikeDetection/Data/product-sales.csv.
After that from the Main method, you can load this into a list:var data = LoadDataFromFile(@"D:\product-sales.csv");

Step 8: Convert the data to an IDataView instance.var dataView = ml.Data.LoadFromEnumerable(data);

Step 9: Prepare the input and output column.string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);

Step 10: Perform the batch anomaly detection for each input data point.// Do batch anomaly detection
var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn
 (dataView,
 outputColumnName,
 inputColumnName,
 threshold: 0.30,
 batchSize: -1,
 sensitivity: 91,
 detectMode: SrCnnDetectMode.AnomalyAndExpectedValue);

Step 11: Get the newly created column.var predictionColumn = ml.Data.CreateEnumerable<SrCnnAnomalyDetection>(
 outputDataView, reuseRowObject: false);

Step 12: Loop through the predicted column to find the spikes. foreach (var prediction in predictionColumn)
 {
 if(prediction.Prediction[2]>0.3)
 {
 Console.WriteLine($"Detected spike at {data[k].Value}");
 }
 k++;
 }

This prints the following. And obviously, the first entry has to be ignored as this is the beginning of the data values.Detected spike at 271
Detected spike at 150.9
Detected spike at 341.5
Detected spike at 426.6
Detected spike at 687

Summary
ML.NET offers anomaly detection for time series analysis, but as mentioned in the beginning of the chapter, anomalies can occur in any data. Hopefully, other statistical methods like IQR and related methods will be incorporated in the framework.

© Sudipta Mukherjee 2021
S. MukherjeeML.NET Revealedhttps://doi.org/10.1007/978-1-4842-6543-7_10

10. Object Detection

Sudipta Mukherjee1
(1)Bangalore, India

[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Figa_HTML.png]

Introduction
Automatically detecting objects in an image either static or derived from a constant video capturing source has numerous applications as you can imagine. Here are just a very few of them:
Improved photo search capability
We all search for photographs by things like phrases. Sometimes those phrases can be used to look up already tagged photos from the Internet. However sometimes nothing is available, and search engines go find them from frames of videos or from photo archives using image search algorithms that employ some kind of object detection and classification. And if these returned images are useful to the end user, they get tagged with the search phrases accordingly so that the future lookups become faster.
Video surveillance (real-time object detection)

With modern really fast algorithms like YOLO and its variations, it is now very easy and fast (more importantly) to run an object detection on real-time video frames. I encourage you to see the video on YOLO site: https://pjreddie.com/darknet/yolov2/.
Object counting

It is often required to find out an approximate count (within a tolerable loss/gain of percentage) of objects present in a photo. One example is to count the number of heads; this can be helpful in estimating crowd density automatically in an event to find out popularity or measuring the social success of an event. Another example could be automatic medical diagnosis. Another example of object counting is the process to improve the number counting learning experience for toddlers. Imagine a photo with some bottles and a toddler is asked to count the bottles. If the count given by the kid matches with that of the model, then the kid gets a score and a suggestion or a hint otherwise. This kind of self-teaching capabilities can be easily built and can be personalized for better reach.
Automatic captioning of photographs

Imagine a photo with multiple bikes, few trains, and lots of people; this photo can be captioned “At the busy station”.
Objective
ML.NET offers the capability to run pretrained models from ONNX and TensorFlow that allow to detect objects from photos/images. Since object detection is a very computation-heavy activity to train the models on, you shall require lot of data and time to train a model. However, consuming pretrained model for detecting several objects from your images can be simple. In this chapter, you shall see how you can use YOLO from ONNX model zoo to detect objects in images. I hope the chapter will leave you with enough inspiration and knowledge to use other models from ONNX model zoo.
How YOLO works
YOLO stands for You Only Look Once (YOLO). The algorithm takes an input image (known as “image” and is represented by 3 ✕ 416 ✕ 416 tensor). The output of the algorithm is a tensor with 125 ✕ 13 ✕ 13 dimension and is called “grid”.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig1_HTML.jpg]
Figure 10-1Showing how YOLO splits the input image into 13 ✕ 13 cells

YOLO splits the given image into 13 ✕ 13 (or 169 cells). Each cell produces or is bound to produce five bounding boxes. Each bounding box is represented by 25 variables.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig2_HTML.jpg]
Figure 10-2(taken from ML.NET documentation from Microsoft)

	x is the x position of the bounding box center relative to the grid cell it’s associated with.

	y is the y position of the bounding box center relative to the grid cell it’s associated with.

	w is the width of the bounding box.

	h is the height of the bounding box.

	o is the confidence value that an object exists within the bounding box, also known as objectness score.

	p1-p20 is the class probabilities for each of the 20 classes predicted by the model.

A bounding box

 is the area of interest in which an object is detected. Each bounding box gets a probability distribution of 20 values that represent the confidence score for each class/type. By default, the algorithm ignores anything that has a confidence score of less than 0.3 or 30%. And it is the job of the callee (you as the caller of YOLO) to determine the bounding boxes and types.
Predicted bounding boxes might look like this. The fatter the bounding box, the higher is the confidence that some predefined object is there in that area.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig3_HTML.jpg]
Figure 10-3Showing bounding boxes

The next step after obtaining the bounding box details is to sort the bounding boxes by a calculated score by somehow gluing together the confidence score (objectness score) and the probability distribution score. For example, the following image shows that the YOLO algorithm is almost certain that the left-bottom bounding box colored “yellow” has the object “dog” in it (Figure 10-4).[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig4_HTML.jpg]
Figure 10-4Showing all bounding boxes

From this obviously, the top three bounding boxes (that have the fattest boundaries) stand out (Figure 10-5).[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig5_HTML.jpg]
Figure 10-5Showing the final result of a YOLO model

There are 169 cells and for each cell there are 5 bounding boxes so there are in total 845 bounding boxes. Most of these bounding boxes have a very low objectness score (or confidence score if you will). But the neural network saw and predicted results for each of these bounding boxes together and at once. That’s why the name is YOLO (You only look once!).
Removing overlapping boxes…
As you can see from the example earlier, there will be so many overlapping boxes in the prediction. But obviously, we need a way to cancel out the ones that are not as good. The algorithm to remove overlapping bounding boxes is “Non-maximum Suppression” (a.k.a. NMS).
As they say, a picture is worth a hundred words, so here is what NMS does to a bunch of overlapping bounding boxes. It eliminates the overlapping bounding boxes with lesser confidences.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig6_HTML.jpg]
Figure 10-6What NMS does to overlapping bounding boxes

Non-maximum-suppression algorithm steps
Step 1
First, the bounding box with the highest confidence score is selected, and it is added to the final list of proposed bounding boxes. And this box is removed from the list of suggestion provided by YOLO.
Step 2
For this current bounding box, calculate the IOU (intersection over union) with all the other proposed bounding boxes by YOLO. And if the calculated IOU is greater than the threshold, then the other bounding boxes need to be removed from the set of boxes.
Step 3
Pick the next bounding box

 with the highest confidence score and continue step 2 until all the bounding boxes are touched or removed. At the end, you shall be left with only those bounding boxes that are of interest.
What’s IOU of two bounding boxes?
IOU is the ratio of area of intersection and union of two bounding boxes. Figure 10-7 shows this visually.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig7_HTML.jpg]
Figure 10-7Showing the ratio of intersection and union visually

NMS pseudocode…
Here, B means the set of bounding boxes, c is the confidence score threshold, and λnms is the threshold for overlap.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig8_HTML.jpg]
Figure 10-8NMS pseudocode

Consume the tiny YOLO V2 model via ML.NET
The easiest way to experiment with YOLO using ML.NET is to download the samples from GitHub. The best possible way to download is to clone the repo.
Go tohttps://github.com/dotnet/machinelearning-samples.

Clone it via git asgit clone https://github.com/dotnet/machinelearning-samples.git

Once you have it on disk, go to the \machinelearning-samples\samples\csharp\end-to-end-apps\ObjectDetection-Onnx folder and open the solution using Visual Studio 2019.
Once the project loads, try to build it. Ensure that you are connected to the Internet because it will have to restore several NuGet packages.
Once everything runs smoothly, you should expect to see the solution explorer like this (Figure 10-9).[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig9_HTML.jpg]
Figure 10-9What the solution will look like

Notice that two end-to-end apps (one desktop and one web) rely on the OnnxObjectDetection project.
If you want to see how the model performs on real-time setting, choose the OnnxDetectionApp as the startup project.
Here is a screen capture of my experiment (Figure 10-10).[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig10_HTML.jpg]
Figure 10-10Result of object detection

Here, I am sitting at my desk with a Dalmatian toy puppy. The model correctly identifies me as a person and the toy dog as a dog.
Experimenting with images offline
Tiny YOLOV2 is much faster (about five times). Tiny YOLOV2 achieves up to 244 FPS (frames per second), while YOLOV2 does about 45 FPS. Tiny YOLOV2 achieves this by sacrificing some of the accuracy.
This experiment shows how the model misses the cat on the dog’s head.
Always remember, size matters…
To use images, always remember that the input dimension has to be 416 ✕ 416. So whatever image you want to try the tiny YOLOV2 model on, open that in MS Paint and change the dimension to 416 ✕416. Remember to uncheck “Maintain aspect ratio”.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig11_HTML.jpg]
Figure 10-11Setting the input dimensions

Now, select the OnnxObjectDetectionWeb
 as the startup project. It brings up a page where you can upload your image. And as soon as the upload finishes, the model takes over and draws the bounding boxes along with confidence scores. For my cat and dog picture, it totally misses the cat on top of the dog’s head.[image: ../images/489446_1_En_10_Chapter/489446_1_En_10_Fig12_HTML.jpg]
Figure 10-12Example of uploading image for object detection

Experimenting with a different model…
If you want to use a different model, you can simply find the model in ONNX Model Zoo (https://github.com/onnx/models) and remember to replace the one in the ONNXModels folder.
Summary
ML.NET offers features to use pretrained ONNX and TensorFlow models, so you can easily experiment with several deep learning models for numerous different types of machine learning activity. I hope, in the future, ML.NET will also provide capabilities to train a model and transform it to an ONNX model.

Index

A

Abstraction

Anomaly detection
algorithms
clustering learning problem
methods
ML.NET offers
spot spikes, sales data
statistical problem
supervised learning problem

Automatic captioning of photographs

Average distance (AD)

B

Binary classification

Boston Housing Dataset

Boston housing price prediction regression model

Boston housing problem
ModelInput
ModelOutput

Bounding box

BuildPipeline method

C

Categorical data

Categorical transformations

Centroid
clustering Iris flowers
locations
model with ground truths

Classifications
case study
ML.NET trainers
model evaluation
confusion matrix
log loss
setting up options
trainers
types

Clustering
Iris flowers, .NET
K-Means
SeeK-Means clustering algorithm
learning problem

Collaborative filtering (CF)

Collective anomaly

Confusion matrix

Content-based filtering (CBF)

Contextual anomaly

Convolutional neural net (CNN)

Cross-entropy

Customer segmentation

D

DataContext

Data handling
categories
cheat sheet
featurization
missing values
normalization
removing

Data loaders

Data scrubbing

Data transformation analogy

Data types

Davies-Bouldin index (DBI)

E

Emotion analysis

Emotion detection

Euclidean distance

F

FastTreeOva algorithm

Featurization

FeaturizeText

Fit method

G

Generic linear regression

Grid

H

Handling missing values

Handling negations

House prices predicting in Boston suburbs

I, J

IDataView

IndicateMissingValues

InputOutputColumnPair

Intersection over union (IOU)

K

K-Means clustering algorithm
centroid
Euclidean distance
initialization
mathematics
notion of proximity
third axis and beyond

KMeansPlusPlus

L

Lexicons

Linear regression

Loading data, databases

Logarithmic loss

Log loss

M

Matrix factorization
big matrix, finding
definition
let’s predict
Model Builder
modifying hyperparameters
space advantage

Mean squared error

Miles per gallon (MPG)
code walkthrough
dataset
Model Builder wizard
add Machine Learning
autogenerated code
evaluation report
execution
generated ModelInput.cs
training data loaded
value prediction

Min-max normalization equation

MLContext

MLContext type

MLContext class

MLContext instance

ML.NET
data loading
data transformation
democratizes
encapsulation
measuring accuracy
pipeline
SeePipeline
predict house prices in Boston suburbs
prediction
problems types
“supervised learning” and “unsupervised learning”

Model Builder (automatic ML)
fly generated UI
generated code
Iris app, creation
Iris flower dataset
real-world machine learning problem
setting up
training model
training wizard, progress
train model interface
wizard interface
add generated projects to solution
loading training data
previewing and setup
wizard model evaluate interface

Model Builder (automatic ML)UCI database, data loading

Multiclass classification

Multiclass classifiers

N

Non-maximum Suppression (NMS)

Normalization

Normalized mutual information (NMI)

Normalized root mean square

NormalizeMinMax transformations

Notion of proximity

NormalizeText

Numerical data

O

Object counting

Object detection

One-hot encoding

ONNX Model

OnnxObjectDetectionWeb

Organized buyers

Overfitting

Overlapping bounding boxes

Oversimplification

P, Q

Parameters, SRCNN method

Performance metrics

Pipeline
data loaders
loading data from databases
MLContext
ModelBuilder
trainers
transformers

Point anomaly

Polynomial form

Polynomial regression

Proximity

R

Recommender systems

RegressionMetrics class

Regressions
description
equation
MPG value, predict
value prediction

Reinforcement learning

ReplaceMissingValues

Root mean square

R-squared

S

Sense of proximity

Sentiment analysis
generalization
handling negations
lexicon/word
polarity
SentiWordNet dictionary
unpredictable

SentiWordNet

SquareLossRegression

SRCNN algorithm

Supervised learning problem

T

Test data

TextLoader

Textual data

Trainers

Transformation
categorical data
numerical data
textual data

TransformCatalog

Transformers

U

Unsupervised learning

V, W, X

Video surveillance (real-time object detection)

Y, Z

You Only Look Once (YOLO)
bounding box
input dimensions
input image
V2 model via ML.NET

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig14_HTML.jpg
1. Scenario Code
Add the machine learning model and the projects and references for model consumption (ConsoleApp17ML.Model) and training/testing
(ConsoleApp17ML.ConsoleApp) to your solution.

2. Environment

v

v

v/ 3.Data
v 4.Train
v

S. Evaluate

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Figa_HTML.png
Biros of a feather flocke tooether

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig1_HTML.jpg
gofa-1
TSSO
oS

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig1_HTML.jpg
[Flnamespace Microsoft.ML
[E3] [:]public sealed class MLContext : IHostEnvironment, IChannelProvider, IExceptionContext, IProgressChannelProvider
[[---Jpublic MLContext(int? seed = null);

public BinaryClassificationCatalog BinaryClassification { get; }
public MulticlassClassificationCatalog MulticlassClassification { get; }
public RegressionCatalog Regression { get; }

public ClusteringCatalog Clustering { get; }

public RankingCatalog Ranking { get; H

public AnomalyDetectionCatalog AnomalyDetection { get; }

public ForecastingCatalog Forecasting { get; }

public TransformsCatalog Transforms { get; }

public ModelOperationsCatalog Model { get; }

public DataOperationsCatalog Data { get; }

public ComponentCatalog ComponentCatalog { get; }

O e O s O O O O = O O O s O s
()l — el —) — [— () — (e — () — () - (el

AAARAAAAAAA

&3] [:]public event EventHandler<LoggingEventArgs> Log;

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig3_HTML.jpg
@ Microsoft. ML.TimeSeries 151 @

Microsoft. ML.TimeSeries contains ML.NET Time Series prediction algorithms. Uses Intel Mkl.

Package Manager .NET CLI PackageReference Paket CLI

PM> Install-Package Microsoft.ML.TimeSeries -Version 1.5.1

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig1_HTML.jpg
’ Data in the real world Data expected by Machine Learning Algorithms

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig3_HTML.jpg
m Select a scenario

Environment " .
Train with your data

Data The following scenarios use Automated ML to train and pick the best model for your data.
Train Learn more about training with your own data in Model Builder.

Evaluate

Code -

Next steps \ s i

Text classification

Classify text data into 2+ categories,
e.g. predict if comments are positive
or negative sentiments.

Local ML

Value prediction

Predict a numeric value from your
data (regression), e.g. predict the
price of a house based on features
like size, location, etc.

Local ML

Image classification

Classify images into 2+ categories,
e.g. predict whether an image is of a
dog or a cat.

Azure ML Local ML

Recommendation

Produce a list of suggested items for
a particular user, e.g. recommend
products.

Local ML

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig14_HTML.jpg

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Figa_HTML.png
Cleansing Ls enoineering

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig11_HTML.jpg
e et
D S Dependencnes
P ¢* ModelBuilder.cs
P ¢* Program.cs

4 [c#] ConsoleApp7MLModel

«a Dependencies

P ¢* ConsumeModel.cs
Y MLModel.zip

P ¢* Modellnput.cs

P ¢* ModelOutput.cs

v

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig1_HTML.jpg
B9, state-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K

50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, <=50K

53, Private, 234721, 1lth, 7, Married-civ-spouse, Handlers-cleaners, Husband, Black, Male, 0, 0, 40, United-States, <=50K

28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, Wife, Black, Female, 0, 0, 40, Cuba, <=50K

37, Private, 284582, Masters, 14, Married-civ-spouse, Exec-managerial, Wife, White, Female, 0, 0, 40, United-States, <=50K

49, Private, 160187, 9th, 5, Married-spouse-absent, Other-service, Not-in-family, Black, Female, 0, 0, 16, Jamaica, <=50K

52, Self-emp-not-inc, 209642, HS-grad, 9, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 45, United-States, >50K
31, Private, 45781, Masters, 14, Never-married, Prof-specialty, Not-in-family, White, Female, 14084, 0, 50, United-States, >50K

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Figa_HTML.png
You mioht be interested in this movie

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Figa_HTML.gif
Thot doecsnt Looke mormaal. Doeg 12

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig1_HTML.jpg
y=ax +b

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig1_HTML.png
AVERAGE NUMBER OF ITEMS PURCHASED

/ AN
/ \
/
1
me I o
N \ ® ® PY
AN X ° ® e /
> \ ° y
\) 7
- ~N \
, - ~ \\ ~ - _ P 7
- AN -~ - -
\
° \ N x
° N
° o ; N
. . N
‘\ ® Disorganized Buyers
[] N
~ S e o 7 \
30 60 65 70 75 ~

10 15 20
L

Organized Buyers
e N

N

AVERAGE MINUTES SPENT IN STORE

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Figa_HTML.png
Ave Lou happu or nwot, that’s the guestion!

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Figa_HTML.png
Great Machine Learning veaulives great plumbing

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig11_HTML.jpg
1. Scenario Code

2.Data Add the machine learning model and the projects and references for model consumption (MLO01ML.Model) and training/testing

3. Train (MLOO1ML.ConsoleApp) to your solution.

4. Evaluate ’ Add Projects

4 N &8

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Figa_HTML.png
Helping computers tell challke ana cheese apart

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig14_HTML.jpg
Scenario
Environment
Data
Evaluate
Code

Next steps

Train

Specify a time to train for evaluating various models.
How long should | train for?

Training setup summary

Time to train (seconds):) 10

'+ 5seconds remaining...

Next step

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Figa_HTML.png
How e WLLL our oveant Wome cost?

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig12_HTML.jpg
Scenario Add data

Environment In order to build a model, you must add data and choose your column to predict.
_ How do | get sample datasets and learn more?
Train Input
Choose input data source from either SQL Server or File:
Evaluate
Code File v
Next steps Select afile: Di\iris.csv E

Supported file formats: .csv, .tsv or .txt.

Column to predict (Label): (D Select column -
Input Columns (Features): (1) SEIeet ColaTi)

Data Preview

10 of 151 rows and 5 of 5 columns.

sepallength | sepalwidth | petallength | petalwidth | variety

5.1 35 14 2 Setosa
49 3 14 2 Setosa
47 3.2 1.3 2 Setosa
4.6 3.1 1.5 2 Setosa
5 3.6 14 2 Setosa
54 3.9 1.7 4 Setosa
4.6 34 14 3 Setosa
5 34 1.5 2 Setosa
44 29 14 2 Setosa
49 3.1 15 al Setosa

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Chapter_TeX_Equa.png
yi =Bo+Bixi + -+ Bpxip + & =X, B+ &,

i=1,...

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig1_HTML.jpg

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig12_HTML.jpg
Scenario
Environment
Data

Train
Evaluate

Code

Next steps

Now that you have a trained model, here are some next steps to help you get the most out of Model Builder.

.f;',"

Deploy your model

Is your model ready to
be put into production?
Learn how to deploy
your model to Azure.

\ >4

Improve the model

Check out our docs to
learn how to to improve
your model's
performance.

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig3_HTML.jpg
mlContext.Data.LoadF
$8 LoadFromBinary |

@ LoadFromEnumerable<>
9 LoadFromTextFile
¥ LoadFromTextFile<>

® 9

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig3_HTML.jpg
age,workclass, fnlwgt, education, education-num,marital-status,occupation, relationship, race,sex,capital-gain,capital-loss, hours-per-week,native-country, Salary
39, state-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K

50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K

38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, <=50K

53, Private, 234721, 1lth, 7, Married-civ-spouse, Handlers-cleaners, Husband, Black, Male, 0, 0, 40, United-States, <=50K

28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, Wife, Black, Female, 0, 0, 40, Cuba, <=50K

37, Private, 284582, Masters, 14, Married-civ-spouse, Exec-managerial, Wife, White, Female, 0, 0, 40, United-States, <=50K

49, Private, 160187, 9th, S, Married-spouse-absent, Other-service, Not-in-family, Black, Female, 0, 0, 16, Jamaica, <=50K

52, self-emp-not-inc, 209642, HS-grad, 9, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 45, United-States, >S50K

31, Private, 45781, Masters, 14, Never-married, Prof-specialty, Not-in-family, White, Female, 14084, 0, 50, United-States, >S0K

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig3_HTML.jpg
Ti — LN

Lnormalized = ;
maxr — min.

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig3_HTML.jpg
Yy = apxo + alxl + a2x2 4 anx +b

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig3_HTML.jpg
p(ppy)

4(q%:q4)

X axis

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig3_HTML.png
AFRAID

AMUSED

ANGRY

HAPPY

ANNOYED

INSPIRED

SAD

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig1_HTML.jpg

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig5_HTML.jpg
&

Iteration |
Cl
&
¢ ®
[4 —
Rl g

Iteration Z

i o
e Cl
.0' 1
r @ .:F..
.'] P L4
s P

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig16_HTML.jpg
Scenario Tra | n

Environment Specify a time to train for evaluating various models.
How long should | train for?

Data

ECE

Train

Evaluate Time to train (seconds): @ 10

Code = = o
v/ Training complete

Next steps

Training results

Best accuracy: 97.19%
Best model: SdcaMaximumEntropyMuilti
Training time: 9.65 seconds

Models explored (total): 9

Next step

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig10_HTML.jpg
Select a scenario

Environment

Train with your data

Data The following scenarios use Automated ML to train and pick the best model for your data.
Train Learn more about training with your own data in Model Builder.
Evaluate '. .
) SRS
Code wt Yy & =
& -
. B D _ gty e

Text classification

Classify text data into 2+ categories,
e.g. predict if comments are positive
or negative sentiments.

Local ML

Value prediction

Predict a numeric value from your
data (regression), e.g. predict the
price of a house based on features
like size, location, etc.

Local ML

Image classification

Classify images into 2+ categories,
e.g. predict whether an image is of a
dog ora cat.

Azure ML Local ML

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig5_HTML.jpg
Scenario Add d ata

Environment In order to build a model, you must add data and choose your column to predict.
_ How do | get sample datasets and learn more?
Train lnput
Choose input data source from either SQL Server or File:
Evaluate
Code IFlIe .
File
Next steps SQL Server

Supported tile formats: .csv, .tsv or .txt.

Column to predict (Rating): (D Select column

User column: (D Select column

Item column: D Select column

Data Preview
Select data to see the preview.

Next step

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig3_HTML.jpg
| often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge
is of a meagre and unsatisfactory Rind: it may be the
beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the
matter may be.

(Lord Kelvin)

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig11_HTML.jpg
Resize and Skew X

Resize

By: (® Percentage O Pixels
-

D Horizontal: 416
Lt e

[JMaintain aspect ratio

Skew (Degrees)
& Horizontal: D
Q I Vertical: D

I OK | | Cancel

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig1_HTML.jpg

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig7_HTML.jpg
v 1.Scenario Add data

+/ 2 .Environment In order to build a model, you must add data and choose your column to predict.
How do | get sample datasets and learn more?
4. Train Input
Choose input data source from either SQL Server or File:
S. Evaluate
6 File -
6. Code

Select a file: C\personal2\My_Book_Writing\M|

Supported file formats: .csv, .tsv or .txt.

Column to predict {Label): (i) col0 -
Input Columns (Features): (i) 10f 5 columns selected ¥
Select all Clear
Data Preview
[colt
10 of 498 rows and 2 of & columns.
[col2

coIO (Label) | col5
@stellargirl | loooooc [coiz the DX is cool, but the 2 is fantastic in its own right.
Reading my kindle2.. [] col4
Ok, first assesment of cols
@kenburbary You'll IGve yow imves e nua e o @ few months and never looked back. The new big one is huge! No ne
@mikefish Fair enough. Buti have the Kindle2 and | think it's perfect :)
@richardebaker no. it is too big. I'm quite happy with the Kindle2.
Jquery is my new best friend.
Loves twitter
how can you not love Obama? he makes jokes about himself.
Fuck this economy. | hate aig and their non loan given asses.

a0 b nnssns

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Figa_HTML.gif
Nothing is magical, but a few things seem <o

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig7_HTML.jpg
Package source: Al - £ Delautpoject | AnomahDetect

Each package is licensed to you by its owner. NuGet is not respnnslble for, nor does it grant any licenses to, third-party packages. Some packages may include
dependencies which are governed by additional licenses. Follow the package source (feed) URL to determine any dependencies.

Package Manager Console Host Version 5.5.8.6473
Type 'get-help NuGet' to see all available NuGet commands.

PM> Install-Package Microsoft.ML

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig10_HTML.jpg
v/ 1.Scenario Tra | n

v/ 2. Environment Specify a time to train for evaluating various models.

How long should | train for?
v/ 3. Data =

Training setup summary v

5. Evaluate Time to train (seconds): (i) f@g

6. Cod
RE0E8 ‘ Train again ‘ v/ Training complete

Training results

Best accuracy: 68.89%
Best model: SgdCalibratedOva
Training time: 102.90 seconds

Models explored (total): 1

Next step: evaluate your model

‘ Evaluate

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig15_HTML.jpg
Confusion table

PREDICTED | | <=50K | >50K |
TRUTH | | ======================
<=50K || ™ 4,758 | W 256 |
>H0K || FP 569 | W™ 969 |

| | =======m==—m==———=——e-

Precision || 0.8932 | 0.7910 |

Confusion table

PREDICTED | | <=50K | >50K |
TRUTH ||======================
<=50K || 4,631 | 254 |
>50K || 578 | 1,335 |

| | ===mmmm e

Precision || 0.8890 | 0.8029 |

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig5_HTML.jpg
loader.Load())

A 2of 2 v (extension) IDataView |IDataLoader<Microsoft.ML.Data.|MultiStreamSource>.Load(params string[] path)
Loads data from one or more file path into an IDataView. Note that IDataView's are lazy, so no actual loading happens here, just schema validation.
path: One or more paths from which to load data.

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig8_HTML.jpg

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Figc_HTML.jpg
4 references

public class ModelOutput
{

1 reference

public float Score { get; set; }

OEBPS/images/489446_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig16_HTML.jpg
SStotal i Z(yz — yavg)2

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig5_HTML.jpg
mpg,cylinders, displacement, horsepower,weight,acceleration,model year,origin,car name
18,8,307,130,3504,12,70,1,chevrolet chevelle malibu
15,8,350,165,3693,11.5,70,1,buick skylark 320

18,8,318,150,3436,11,70,1,plymouth satellite

16,8,304,150,3433,12,70,1,amc rebel sst

17,8,302,140,3449,10.5,70,1, ford torino

15,8,429,198,4341,10,70,1, ford galaxie 500

14,8,454,220,4354,9,70,1,chevrolet impala

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Figc_HTML.jpg
File Edit View Project Build Debug Test Analyze Tools Extensions pel IrisClusterDemo @ = [} X

Window Help
o - B-aom@e 2 - - Debug ~ AnyCPU - P IrisClusterDemo ~ 5% — = Mg & |& Live Share &7 ADMIN
g Program.cs* Error List Pa Manager Console ® X ~ §
g - £ Default project: ' IrisClusterDemo ¥ ’é %

Package source: All
Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to,

third-party packages. Some packages may include dependencies which are governed by additional licenses. Follow the
package source (feed) URL to determine any dependencies.
Package Manager Console Host Version 5.0.0.5917

Type ‘get-help NuGet' to see all available NuGet commands.

PM> Install-Package Microsoft.ML

A Add to Source

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig10_HTML.jpg
Scenario
Environment
Data
Evaluate
Code

Next steps

Traln

Specify a time to train for evaluating various models.

How long should | train for?

Training setup summary A

Scenario: Value prediction
Environment: Local (CPU)
Data: D:\auto-mpg.csv

Time to train (seconds): (O 120

+/ Training complete

Training results

Best quality (RSquared): 0.871

Best model: LightGbmRegression
Training time: 110.10 seconds
Models explored (total): 84

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig7_HTML.jpg

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig8_HTML.jpg
v/ 1. Scenario
v/ 2 Environment
v/ 3.Data

S. Evaluate

6. Code

Train
Specify a time to train for evaluating various models.
How long should | train for?

Training setup summary v

Time to train (seconds): (i) 120

Cancel training ¢ 1 minute, 51 seconds remaining...

Next step: evaluate your model

Evaluate

OEBPS/images/489446_1_En_BookFrontmatter_Figd_HTML.gif

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig8_HTML.jpg
Dc File Edit View Project
o - B2 92 - Debug ~ AnyCPU ~ P lisClusterDemo ~ 3% - ¥g

%0q|00)

Program.cs*

Error List

Build Debug Test Apalyze Jools Extensions Window Help Search Visu

»

IrisClusterDemo

Package source: All

Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully
Successfully

installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed
installed

- $* Defaultproject IrisClusterDemo -
‘System.Reflection.Emit.Lightweight 4.3.0" to IrisClusterDemo
‘System.Reflection.Extensions 4.3.0' to IrisClusterDemo
‘System.Reflection.Primitives 4.3.0" to IrisClusterDemo
‘System.Reflection.TypeExtensions 4.3.0" to IrisClusterDemo
'System.Resources.ResourceManager 4.3.0" to IrisClusterDemo
‘System.Runtime 4.3.0' to IrisClusterDemo
‘System.Runtime.Extensions 4.3.0' to IrisClusterDemo
‘System.Runtime.Handles 4.3.0" to IrisClusterDemo
‘System.Runtime.InteropServices 4.3.0" to IrisClusterDemo
‘System.Runtime.Serialization.Formatters 4.3.0" to IrisClusterDemo
‘System.Runtime.Serialization.Primitives 4.3.0" to IrisClusterDemo
‘System.Text.Encoding 4.3.0"' to IrisClusterDemo
‘System.Text.Encoding.Extensions 4.3.0" to IrisClusterDemo
‘System.Text.RegularExpressions 4.3.0" to IrisClusterDemo
‘System.Threading 4.3.0' to IrisClusterDemo
‘System.Threading.Tasks 4.3.0" to IrisClusterDemo
‘System.Threading.Tasks.Dataflow 4.8.0' to IrisClusterDemo
‘'System.Threading.Tasks.Extensions 4.3.0" to IrisClusterDemo
‘System.Xml.ReaderWriter 4.3.0' to IrisClusterDemo
‘System.Xml.XmlDocument 4.3.0' to IrisClusterDemo

Executing nuget actions took 3.22 sec
Time Elapsed: ©0:00:27.7000917

PM>

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equi.png

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equc.png
Cust; = (x;, i, ... m;)

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equd.png
Dpq = \/ (qx = pa)* + (qy - py)2

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equa.png
Cust; = (xi,y:)

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equb.png
Cust; = (xi,yi,2i)

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig7_HTML.png
Configure your new project

Console App (.NET Core) G Linux macOS Windows Console
Project name

IrisClusterDemo

Location

C:\Users\Sudipta\source\repos

Solution name @
IrisClusterDemo

] Place solution and project in the same directory

Back

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equg.png

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equh.png

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig22_HTML.jpg
//To make sure that the label of the sample input is really unknown
sampleData.Variety = "Unknown";

// Make a single prediction on the sample data and print results
odelOutput predictionResult = ConsumeModel.Predict(sampleData);
| 4 @ predictionResult| {IrisML.Model.ModelOutput} =

 Prediction|Q ~ "Setosa”

4 f'Score {float[3]} |

@ [0] 0.998049736
@ [1]/0.0019504762
@ [2] 3.104245E-15

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig7_HTML.jpg
Google capital india

-
o

Google captal ofincia s Q
Qal Quaps @

@ ves 0 Sooks 1 More Setings

Qa Bm Quaps @

About 2,45,00,00,000 results (0.58 seconds)
About 2.36,00,00.000 results (0.83 seconds)

Indla / Capital

Indla / Capital

. “;’l‘ K\ ..Farid,]gbad i:l;g(dls’%{im ‘ J A /\ Faridabad ﬂa&a;g(sr;gm

Map cota £2020 Map data €2020
New Delhi New Delhi

- - 4 durgath zaziaba
A o o L
i ¢ qiﬁﬁﬁ\t&oida . s if J\ s " Noida
) x"\w Gumgm{/ \ﬂw F:mkhﬂnqa:cuﬂg'°4/. *'m
i U e AT
y It

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Eque.png
— 2 2
Dp,q— \/(qx—px) +(qy—py) +...+(qm_pm)2

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Chapter_TeX_Equf.png
deityplock (P - q) = Z \pi — qil

i=1

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig9_HTML.png
0-10MB =10 sec
10-100 MB = 10 min
100 - 500 MB =» 30 min

500 -1 GB = 60 min

OEBPS/images/489446_1_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig9_HTML.jpg

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig6_HTML.jpg
)] ML00T - Microsoft Visual Stucio - &7 Quick Launch (Ctrl+Q) Pl- B X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Sudipta Mukherjee ~ m
00 V-2 M D - C - Debug ~ AnyCPU ~ MLOOTML.ConsoleApp ~ P MLOOIML.ConsoleApp ~ 57 S fE| =2 | A2

g‘ MLNET Model Builder £ X ENITELVIle/Hde ModelOutput.cs Program.cs Modellnput.cs ConsumeModel.cs v
g
2
< A
v/ 1.Scenario File -
/ 2 Data
3. Train Select a file: lsers\Sudipta\DownIoads\aduIt.:svl E’
4. Evaluate Supported file formats: .csv or .tsv. i
5. Code
Column to Predict (Label): (i) Salary -
Input Columns (Features): @ 13 of 14 columns selected o

Data Preview

10 of 32,563 rows and 14 of 15 columns. (1 Label, 13 Features).

Salary (Label) | age | workclass | education | education-num | marital-status | occupation relationship |race |sex
<=50K 39 State-gov Bachelors 13 Never-married Adm-clerical ' Not-in-family White Mal
<=50K 50 Self-emp-not-inc Bachelors 13 Married-civ-spouse Exec-managerial Husband White Mal ©
<=50K 138 Private HS-grad 9 Divorced ‘Handlers-cleaners\Not-in-family White Mal
<=50K 53 Private 11th 7 Married-civ-spouse Handlers-cleaners Husband Black Mal
<=50K 28 Private Bachelors 13 Married-civ-spouse Prof-specialty Wife Black Femr
<=50K 37 Private Masters 14 Married-civ-spouse Exec-managerial Wife White Ferr

<=50K 149 Private | Gth 15 Married-snouse-ahsent | Other-cenvice ' Not-in-family Rlack Ferr ¥

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig10_HTML.jpg
Microsoft.ML.Transforms
.MissingValueReplacingEstimator
.ReplacementMode

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig18_HTML.jpg
Scenario
Environment
Data

Train

Code

Next steps

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Best model:

Accuracy: 97.19%
Model: SdcaMaximumEntropyMulti

Try your model
Sample data

The following fields below are pre-filled by row 1 of your data.

sepallength

[5.1

sepalwidth

[35

petallength

[14

petalwidth

2

Results

Setosa 100%
Versicolor <1%
Virginica <1%

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig6_HTML.jpg
mlContext.Data.Filter
o I

@ FilterRowsByKeyColumnFraction
@ FilterRowsByMissingValues

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fige_HTML.jpg
Time taken to drive to school!

If data is maintained for several months about
the traffic situation, weather, holidays, and
time taken to reach school, then a regression
model can take this data and predict the
possible time it will take to reach school

3 Grocer
’_-T:"'-’;Zi List o

Recommending grocery to buy T —
If data is maintained for several months about the [] @ Avptes
grocery ordering pattern of a family then not-too-long [])@ Fisn

after we can start predicting the quantity of D @ Eggs

food/grocery they would need beforehand using |:] —
1

regression techniques. EE

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig6_HTML.jpg
D C O O archiveics.uci.edu/ml/da “ ey w A 3 % O Paused(}

About Citation Policy Donate a Data Set Contact

O Repostory @ web ool

Machine Learning Repository

View ALL Data Sets
Center for Machine Learning and Intelligent Systems

Iris Data Set

Download: Data Folder Data Set Description

Abstract: Famous database; from Fisher, 1936

| Data Set Characteristics: | Multivariate | Number of Instances: [150 | Area: Life

L

| Attribute Characteristics: || Real Number of Attributes: | 4 Date Donated 1988-07-01
: Associated Tasks: i Classification || Missing Values? No | Number of Web Hits: | 2990621

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig9_HTML.jpg
v/ 1.Scenario

V2 Environment

v/ 3.Data
5. Evaluate
6. Code

Train

Specify a time to train for evaluating various models.

How long should | train for?

Training setup summary v

Time to train (secondsy: (i) 120

Cancel training e Finalizing model...

Next step: evaluate your model

Evaluate

OEBPS/css/envelope.png

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig3_HTML.jpg
B LA ——

-_"f :. ‘; = =1l m’.m’ ", &# ?“‘
a0 ;v'x,,-ul-“b}}ilrf,‘
S S . — a-. . i
i = 5§l

= 5 S Fiil=

== == in i = Lim

S5 i |

| il -
| [l H".“I
.1 O O 1 A1 |

:'; | i) - ——— =T rdl

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig6_HTML.png
Create a new project Search for project templates P~ Language - Platorm - Projecttype ~

Recent project templates

[E3 Console App (.NET Framework) c#
[#8] WPF App (NET Framework) c#
[E8] Console Application (NET Framework) F# @ ASP.NET Core Web Application
DV project templates for creating ASP.NET Core applications for Windows, Linux and
. macOS using .NET Core or .NET Framework. Create Razor Pages, MVC, Web API, and

[& Windows Forms App (NET Framework) c# Single Page (SPA) Applications.
[Unit Test Project (NET Framework) c* C# Windows L macOS Web

'WPF App (.NET Framework)

Windows ion F ion client

C# Windows Desktop

'WPF App (.NET Core)
Windows F ion client

C# Windows Deskiop

n&‘!" Class Library (NET Standard)
2181 A project for creating a class library that targets NET Standard.

C# Android ios Linux macOS Windows Library

<’> Azure Functions

A template to create an Azure Function project.

Back

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig20_HTML.jpg
co@i-lo-58|,=

Search Solution Explorer (Ctrl+;)

4 [IrisMLConsoleApp
b & Dependencies
b c* ModelBuilder.cs
b ¢* Program.cs

4 [IrisMLModel
b & Dependencies
b ¢ ConsumeModel.cs

O MLModelzip

b c* Modelinputcs

b ¢* ModelOutput.cs

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig9_HTML.jpg
Scenario
Environment
Data
Evaluate
Code

Next steps

Train

Specify a time to train for evaluating various models.
How long should | train for?

Training setup summary v

Time to train (seconds): @) 10

+/ Training complete

Training results

Best quality (RSquared): 0,2823

Best model: MatrixFactorization
Training time: 8,95 seconds
Models explored (total): 11

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig11_HTML.jpg
v/ 1.Scenario

v/ 2. Environment

v/ 3.Data
5. Evaluate
6. Code

Train

Specify a time to train for evaluating various models.

How long should | train for?

Training setup summary v

Time to train (seconds): (i) 10

v/ Training complete

Training results

Best accuracy: 66.67%
Best model: AveragedPerceptronOva
Training time: 2.92 seconds

Models explored (total): 1

Next step: evaluate your model

Evaluate

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig13_HTML.jpg
Solution Explorer

cCoRB- o-580Q

Search Solution Explorer (Ctrl+;)

& Solution 'ML0O01' (3 projects)
4 [c=] MLOO1

> M Properties

D =m References

¢ App.config

P ¢* Program.cs
4[] MLOOTML.ConsoleApp

P ' Dependencies

P ¢* ModelBuilder.cs

D ¢* Program.cs

4 & MLOOTMLModel

4 I3 Dependencies
b @ NuGet
b 3& SDK

P ¢* ConsumeModel.cs
) MLModel.zip

P ¢* Modellnput.cs

P ¢* ModelOutput.cs

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig5_HTML.jpg
Select a scenario

Train with your data
The followi use A

i ML to train and pick the best model for your data.

Learn more about training with your own data in Model Builder.

%

e
=
' '
Text classification

or negative sentiments,

Local ML

Classify text data into 2+ categories,
e.g. predict if comments are positive

Recommendation

Produce a list of suggested items for

a particular user, e.g. recommend
products.

Local ML

V£
B-HiH

Value prediction

Predict a numeric value from your
data (regression), e.g. predict the
price of a house based on features
like size, location, etc.

Local ML

A
A 4

Object detection

Detect and identify objects in
images, e.g. detect cars in an image
and draw bounding boxes around
each car.

Azure ML

Image classification
Classify images into 2+ categories,

e.g. predict whether an image is of a
dog ora cat.

Azure ML Local ML

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig4_HTML.jpg

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig12_HTML.jpg
v/ 1.Scenario Trai n

v/ 2. Environment Specify a time to train for evaluating various models.
How long should | train for?

v/ 3.Data
Training setup summary v

5 Evaluate Time to train (seconds): (i) 200

6. Cod
e Train again ‘ +/ Training complete

Training results

Best accuracy: 73.33%
Best model: SdcaMaximumEntropyMulti
Training time: 181.26 seconds

Models explored (total): 2

Next step: evaluate your model

‘ Evaluate

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig2_HTML.jpg
Bounding

13 Columns

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig11_HTML.jpg
Scenario
Environment
Train
Evaluate
Code

Next steps

Add data

In order to build a model, you must add data and choose your column to predict.
How do | get sample datasets and learn more?

Input

Choose input data source from either SQL Server or File:

File v

Select a file: =

Supported file formats: .csv, .tsv or .txt.

Column to predict (Label): (D Select column

Input Columns (Features): (1) Select colummie)

Data Preview
Select data to see the preview.

Next step

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig8_HTML.jpg
Non-Max Suppression

procedure NMS(B,c)
Bnms — @
for b, € B do
discard < False
for b; € B do
if same(b;,b;) > Anms then
if score(c, b;) > score(c, b;) then
discard < True
if not discard then
Bnms — Bnms U bz

return B,,,,,s

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Figd_HTML.jpg
1 reference
public static IEstimator<ITransformer> BuildTrainingPipeline(MLContext mlContext)
{
// Data process configuration with pipeline data transformations
var dataProcessPipeline = mlContext.Transforms.IndicateMissingValues(new[]
{ new InputOutputColumnPair("horsepower_MissingIndicator", "horsepower") })
.Append(mlContext.Transforms.Conversion.ConvertType(
new[] { new InputOutputColumnPair("horsepower_MissingIndicator”,
“horsepower_MissingIndicator™) }))
.Append(mlContext.Transforms.ReplaceMissingValues(
new[] { new InputOutputColumnPair(“horsepower™, “horsepower™) }))
.Append(mlContext.Transforms.Concatenate("Features”,
new[] { "horsepower_MissingIndicator",
"horsepower",
"cylinders", “displacement"”, "weight", "acceleration”, "model year", "origin" }));

// Set the training algorithm
var trainer = mlContext.Regression.Trainers.FastTreeTweedie(new FastTreeTweedieTrainer.Options()
{
NumberOfLeaves = 7,
MinimumExampleCountPerLeaf = 1,
NumberOfTrees = 100,
LearningRate = 0.1908787f,
Shrinkage = 0.3315645f,
LabelColumnName = "mpg",
FeatureColumnName = "Features"

1)

var trainingPipeline = dataProcessPipeline.Append(trainer);

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig17_HTML.jpg
Scenario
Environment
Data

Train

Code

Next steps

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Best model:

Accuracy: 97.19%
Model: SdcaMaximumEntropyMulti

Try your model
Sample data
The following fields below are pre-filled by row 1 of your data.

sepallength

[5.1

sepalwidth

[3.5

petallength

14

petalwidth

[2

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig14_HTML.jpg
Actual class

Cat Dog Rabbit
L o) Cat 5 2 0
()
S 9
5 ® Dog 3 |3 2
® ©
a Rabbit | 0 1 11

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig5_HTML.jpg
var outputDataview = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn
(dataview,
a 10f 2« (extension) Microsoft ML.IDataView TimeSeriesCatalog.DetectEntireAnomalyBySrCnn (
IDataView input,
string outputColumnName,
string inputColumnName,
[double threshold = 0.3],
[int batchSize = 1024],
[double sensitivity = 99],
) [SrCnnDetectMode detectMode = SrCnnDetectMode.AnomalyOnly])
‘| Create SrCnnEntireAnomalyDetector, which detects timeseries anomalies for entire input using SRCNN algorithm.
input: Input DataView. F1 for help

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig8_HTML.jpg
sn'aghty prodigious

2 'ﬂ

transformZ justice ‘r’y‘amp e st Y

o ers 'S Mtice Bk oppression
3 colorado jews sisters

2 o glory A > govemor
2 brothers -§Ch“dren o catholics sr'\?cys?t

beautiful brotherhood @ swelteringthough
girls mounta|n> R

= n O fi
SpackON€ © e i
s!andq, heat

beoome 317)
s freedom: i
rough g live 2> §p£;‘§

lﬂ'»cation

=

village
speed 2 2%
oountry 5
plain creed 3,

5“: Tpe hands
BoS S &ips’ S
piEe B E ;';\N| dfaithy g, 2 e
c © O
SE t entiles 5
é%’: » gg mrl n t e Smgg spalr ﬁ
3 g-g 88E GJ ; almnghtyskm
888G 00|ty jail o
£S5 2 wg S abl : created
pride four £€ allow state s | character 3
o5 25, thee ?Fhllllops =
protestants £2 8 § d Oge erlom “Catfornia
htﬂ ®ES american Byork
tomo ow g agmeanlng hill words content =
‘€ ®equal MISSISS lﬁp: face Judged 8

south lookouthamlet heightening 0asis vicious
selfevg‘dem knowing M€gro pennsylvania
Symphol slopes thank

truths

O

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig21_HTML.jpg
Scenario
Environment
Data

Train

Code

Next steps

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Best model:

Accuracy: 97.19%
Model: SdcaMaximumEntropyMulti

Try your model
Sample data

The following fields below are pre-filled by row 1 of your data.

sepallength

[5.1

sepalwidth

[35

petallength

[14

petalwidth

2

Results

Setosa 100%
Versicolor <1%
Virginica <1%

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig2_HTML.png
"The angle of the camera was not good"

This one echoes a negative sentiment

"The angle of the camera was not bad"

This one echoes an Okish (almost positive) sentiment

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig12_HTML.jpg
o}

O @

localhost:49419/

Findonpage Enter text to search No results < >

Processed Image

A

\
dog (32%)

Try uploading your own images:

‘ Browse... |VVEELEZIN

D:\catondog.jpg

Options v

Object Detection

Input Images

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig5_HTML.jpg
mlContext.Data.l|

// Load Data

IDataView train

@ GetType

@ LoadFromBinary

@ LoadFromEnumerable<>
9 LoadFromTextFile<>

9 SaveAsBinary

@ SaveAsText

@ ShuffleRows

@ SkipRows

® 9

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig2_HTML.jpg
Microsoft.ML.Transforms.NormalizingEstimator xyz
= mlContext.Transforms.NormalizeMinMax(new InputOutputColumnPair[]

{ new InputOutputColumnPair ("horsepower_norm","horsepower"),
new InputOutputColumnPair ("cylinders_norm")});

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig2_HTML.jpg
Index of /ml/machine-learning-databases/adult

Name Last modified Size Description
a Parent Directory, -
@ Index 1996-12-03 04:06 140
[3 adult.data 1996-08-10 11:14 3.8M
adult.names 2001-01-31 08:53 5.1K|
% adult.test 1996-08-10 11:14 1.9M

@ old.adult.names 1996-08-10 11:14 4.2K

Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips SVN/1.7. 14 Phusion_Passenger/4.0.53 mod_perl/2.0.11 Perl/v5.16.3 Server at archive.ics.uci.edu Port 443

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig2_HTML.jpg
d_U_center_2
d_U_cCenter_|

Center_Z

Cluster 2

Cluster 1

O

Center_|

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Chapter_TeX_Equa.png
L= 3 (= xw) + A DIl + Ay Y lyilP

u,ieS

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Figb_HTML.jpg

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig10_HTML.jpg
v/ 1.Scenario
v 2.Data
v/ 3.Train

5. Code

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Output

Overview Details

ML Task: multiclass-classification
Training Time: 118.9 seconds

Models Explored (Total): 43 | View Top 5 models explored

Try your model

Note: Fields below are pre-filled by row 1 of your data.

age a
39

workclass

Overall accuracy:

87.92%

Results

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig13_HTML.jpg
Scenario Add data

Environment In order to build a model, you must add data and choose your column to predict.
_ How do | get sample datasets and learn more?
Train Input
Choose input data source from either SQL Server or File:
Evaluate
Code File v
Next steps Select a file: D:\iris.csv B

Supported file formats: .csv, .tsv or txt.

Column to predict (Label): (D | |'|

Input Columns (Features): (1) A -aF A columns selected .

Data Preview
10 of 151 rows and 4 of 5 columns.

variety (Label) | sepallength | sepalwidth | petallength | petalwidth

Setosa 5.1 3.5 14 oL
Setosa 49 3 14 2
Setosa 47 3.2 13 2
Setosa 4.6 3.3 5 2
Setosa 5 3.6 14 &
Setosa 54 3.9 ¥ 4 4
Setosa 4.6 34 14 3
Setosa 5 34 135 &
Setosa 44 29 14 2
Setosa 49 3.1 15 5

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Figb_HTML.jpg
SentiWordNet - Cnr

sentiwordnet.isti.cnr.it/ v
Human Language Technology Group. This is the homepage of the Human Language Technology
group of NeMIS-ISTI-CNR. SentiWordNet.

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig15_HTML.jpg
namespace Microsoft.ML.Data
{
Epublic sealed class RegressionMetrics
i
.. .|public double MeanAbsoluteError { get; }
...public double MeanSquaredError { get; }
...public double RootMeanSquaredError { get; }
...lpublic double LossFunction { get; }
...lpublic double RSquared { get; }

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig4_HTML.jpg
)
w
Timeseries Input '8 Saliency Map
A 3 '
iy /v N 1" J o Output
A A ¥ = ' (Sigmoid)
N \‘ “1‘ \‘ !.
Q.
[
o
-/

1-D Convolution Fully Connected

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig4_HTML.jpg
Scenario
Environment
Data

Train
Evaluate
Code

Next steps

Select training environment

Local CPU environment
Train locally on your machine.

Local CPU environment

Processor
Memory

Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
16GB

OEBPS/css/sidebar.gif

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Figb_HTML.jpg
public class ModelInput

{

b

[ColumnName("mpg"), LoadColumn(®@)]

1 reference

public float Mpg { get; set; }
[ColumnName("cylinders™), LoadColumn(1)]
1 reference

public float Cylinders { get; set; }
[ColumnName("displacement"), LoadColumn(2)]
1 reference

public float Displacement { get; set; }
[ColumnName("horsepower"), LoadColumn(3)]
1 reference

public float Horsepower { get; set; }
[ColumnName("weight"), LoadColumn(4)]

1 reference

public float Weight { get; set; }
[ColumnName("acceleration™), LoadColumn(5)]
1 reference

public float Acceleration { get; set; }
[ColumnName("model year"), LoadColumn(6)]
1 reference

public float Model_year { get; set; }
[ColumnName("origin™), LoadColumn(7)]

1 reference

public float Origin { get; set; }
[ColumnName("car name"), LoadColumn(8)]

1 reference

public string Car_name { get; set; }

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig10_HTML.jpg

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig15_HTML.jpg
Scenario
Environment
Data
Evaluate
Code

Next steps

Train

Specify a time to train for evaluating various models.
How long should | train for?

Training setup summary

Time to train (seconds):) 10

+ 6seconds remaining...

Next step

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Meet ML.NET

 		2. The Pipeline

 		3. Handling Data

 		4. Regressions

 		5. Classifications

 		6. Clustering

 		7. Sentiment Analysis

 		8. Product Recommendation

 		9. Anomaly Detection

 		10. Object Detection

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Figb_HTML.jpg
P\ssembly Microsoft.ML.Data, Version=1.0.0.0, Culture=neutral, PublicKeyToken=cc7b13ffcd2ddd51]

using System.Collections.Generic;

-lnamespace Microsoft.ML.Data
{

L:lpublic sealed class MulticlassClassificationMetrics
1

double Logloss { get; }

double LogLossReduction { get; }

double MacroAccuracy { get; }

double MicroAccuracy { get; }

double TopKAccuracy { get; }

[-%] int TopKPredictionCount { get; }

IReadOnlylList<double> PerClassLoglLoss { get; }

ConfusionMatrix ConfusionMatrix { get; }
}

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Figb_HTML.jpg
Solution Explorer
WE- o 580 K-

Search Solution Explorer {Ctrl+;)

m File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q) el IrisClusterDen
o~ B-aomeE 92 - - Debug ~| AnyCPU Get Tools and Features... _
Android »

=
8 b4l Error List Package Manager Console i0s 5 237 Solution 'IrisClusterDemo’ (1 project)
g isClusterDemo. P 4[] IrisClusterDemo
A - rchive Manager... b e Dependencies
3 —namespace IrisClusterDemo ¥@ Connect to Database... b c* Program.cs
N ‘ { . YE Connect to Server...
0 references
5 class Program SQL Server >
6 ‘ 1 DataLake »
0 references
N = N N Code Snippets Manager... Ctrl+K, Ctrl+B
=] static void Main(string[] i g dvCal
8 { Choose Toolbox Items..
29 NuGet Package Manager % Package Manager Console
10 Console.WriteLine("He Python > @ Manage NuGet Packages for Solution...
E ; ¥ Create GUID £+ Package Manager Settings
= '} @& WCF Service Configuration Editor
14 - External Tools...

Import and Export Settings...
Customize...
£+ Options..

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig9_HTML.jpg
&@ Solution 'OnnxObjectDetection’ (3 of 3 projects)

4 &[cH)
4

OnnxObjectDetection
' Dependencies

b sl ML
b &c* BoundingBox.cs
b &c* OnnxOutputParser.cs

4 &[cH)

4

b
b &/
b a

OnnxObjectDetectionApp
<" Dependencies
P 3 Frameworks
b ‘@ Packages
4 [T Projects
b [OnnxObjectDetection
13 dil
) Appxaml
) MainWindow.xaml

4 53] OnnxObjectDetectionWeb

4

4
4
4

&p Connected Services
<i' Dependencies
b & Analyzers
D =& Frameworks
b '@ Packages
4 [T Projects
b [J OnnxObjectDetection
i dil
Appxaml
MainWindow.xaml

(l:n
(l;a

4 5] OnnxObjectDetectionWeb

4

vV vVvVvVivVvivVvivVvivVvivVvvVvVVvVvVvVVvVYVvYwY

&p Connected Services
<~i' Dependencies
b & Analyzers
b & Frameworks
b '@ Packages
4 [T Projects
b] OnnxObjectDetection
5 M Properties
a@ wwwroot
518 Assets
a1 Controllers
a1 ImageFileHelpers
a8 ImagesTemp
sl ML
518 Pages
a8 Services
a0 Utilitites
a&J appsettings.json
& C* Program.cs
& C* Startup.cs

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Figb_HTML.png
Data Acquisition Data Transformation Model Building Predictions

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Figb_HTML.jpg
var pipeline = context.Transforms.NormalizeMinMax("crim","crim"
.Append(context.Transforms.NormalizeMinMax("zn","zn"))
.Append(context.Transforms.NormalizeMinMax("indus","indus"))
.Append(context.Transforms.NormalizeMinMax("indus", "chas"))
.Append(context.Transforms.NormalizeMinMax("indus", "nox"))
.Append(context.Transforms.NormalizeMinMax("indus", "rm"))
.Append(context.Transforms.NormalizeMinMax("indus", “"age"))
.Append(context.Transforms.Concatenate("Features",

*erim"; "zn"; "indus®; “chas®,

nox", "rm", "age"))

.Append(context.Regression.Trainers.OnlineGradientDescent(labelColumnName: "medv", featureColumnName:"Features",
lossFunction: null, learningRate: ©.24f,decreaselearningRate : true));

var model = pipeline.Fit(trainingDataView);

var predEngine = context.Model.CreatePredictionEngine<BostonHouse, BostonHousePrice>(model);

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig10_HTML.jpg
Scenario
Environment
Data

Train

Code

Next steps

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Best model:

Accuracy: 0.2829
Model: MatrixFactorization

Try your model

Sample data

The following fields below are pre-filled by row 1 of your data.

userld

[14

movield

8477

Results

Predicted rating:

5.24

Top 5 recommendations for userld 14.

Rank

1
2

movield

8477

136850

26326

40491

6818

Predicted rating
524
522
4.96
4.95

4.91

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig6_HTML.jpg
Tools = Extensions Window

N
w

Fmo
=

o]

Get Tools and Features...

Connect to Database...

Connect to Server...

SQL Server

Data Lake

Code Snippets Manager...
Choose Toolbox Items...
NuGet Package Manager
Create GUID

Error Lookup
Spy++

External Tools...

Commeand Line

Import and Export Settings...

Customize...

Options...

Help

Search (Ctrl+Q) pe AnomalyDetect

Ctrl+K, Ctrl+B

M E .

>

letect.Program

b1 Package Manager Console
#8 Manage NuGet Packages for Solution...
£} Package Manager Settings

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig4_HTML.jpg
vi =PBo+ Przin + -+ BpTip + & =X B+ ey i=1,...,n,

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig7_HTML.jpg
loU =

Intersection

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig20_HTML.jpg
i — Yi)?

S |

S

RMSE = \l

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig4_HTML.jpg

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig12_HTML.jpg
8 references
public class ModelInput

{

[ColumnName("userId"), LoadColumn(®@)]
2 references

public float UserId { get; set; }

[ColumnName("movieId"), LoadColumn(1)]
2 references

public float MovieId { get; set; }

[ColumnName("rating"), LoadColumn(2)]
0 references

public float Rating { get; set; }

[ColumnName("timestamp"), LoadColumn(3)]
0 references

public float Timestamp { get; set; }

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Chapter_TeX_IEq1.png

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig4_HTML.jpg
ST\l Aan naumande

SN ol ol

4 MLOO1

New Item...

Existing Item...

New Folder

From Cookiecutter...

Container Orchestrator Support
REST API Client...

Machine Learning

Reference...

We ce.

Service Reference...

> M Properties
b =W References
¢ App.config
P ¢* Program.cs
“ MLOOTML.Con:
b & Dependenci
b c* ModelBuilde
P ¢* Program.cs
4 [E] MLOOTMLMode
D & Dependenci
b c* ConsumeMc

Caliutian Cvmlarar | Tane

Ctrl+Shift+A
Shift+Alt+A

&

&

fol: 3

Build

Rebuild

Clean

Analyze

Publish...

Sonarlint Connected Mode
Scope to This

New Solution Explorer View
Build Dependencies

Add

Manage NuGet Packages...
Set as StartUp Project
Debug

Initialize Interactive with Project

Remove
Rename

Unload Project

Arepos\MLOOT\MLOO 1,

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig4_HTML.jpg
Select a scenario

2. Environment , .
Train with your data

3.Data The following scenarios use Automated ML to train and pick the best model for your data.
R Learn more about training with your own data in Model Builder.

5. Evaluate

6. Code

Text classification Value prediction

Classify text data into 2+ categories, Predict a numeric value from your
e.g. predict if comments are positive data (regression), e.g. predict the
or negative sentiments. price of a house based on features

like size, location, etc.

Local ML Local ML

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig13_HTML.jpg
1. Scenario

2. Environment

3. Data

AN NN

4. Train

5. Evaluate

i

6. Code

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Best model:

Accuracy: 7333%
Model: SdcaMaximumEntropyhulti

Try your model

Sample data

The following fields below are pre-filled by row 1 of your data.

colS
@stellargirl | loooooooowanwweee my Kindle2. Not that the D“

Next step: get your code snippet

Code

Results

4 82%
0 15%
2 2%

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig13_HTML.jpg
4 MLOO1ML.ConsoleApp
P & Dependencies
P ¢* ModelBuilder.cs
P €* Program.cs

“ @ MLOOTML.Model
P & Dependencies
P ¢* ConsumeModel.cs
) MLModel zip
P ¢* Modellnput.cs
P ¢* ModelOutput.cs

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig2_HTML.jpg
var opt = new MatrixFactorizationTrainer.Options();
opt |

Equals -

GetHashCode

GetType

LabelColumnName :

|| | (field) double MatrixFactorizationTrainer.Options.Lambda
LearningRate Regularization parameter.

LossFunction

MatrixColumnindexColumnName

MatrixRowIndexColumnName v

var

00O OO

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig19_HTML.jpg
] = R
5;(1@ — ¥;)?

x n is the number of data points
* Y; represents observed values
x Y; represents predicted values

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig12_HTML.jpg
1. Scenario

2.Data

3.Train

4. Evaluate

Code

Add the machine learning model and the projects and references for model consumption (MLOO1ML.Model) and training/testing
(MLOO1ML.ConsoleApp) to your solution.

Adding Proje:

Next Steps

1.Try the model
Run MLOO1ML.ConsoleApp to make predictions on sample data.

2. Consume the model

In ML001, add the following using directive in the file where you will consume your model:

using MLOO1ML.Model;

Then add your input data and use ConsumeModel.Predict() to load the model and predict the output:

// add input data
var input = new ModelInput();

// Load model and predict output of sample data
ModelOutput result = ConsumeModel.Predict(input);

Check out this tutorial to learn more about how to use the model in your app.

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig19_HTML.jpg
Scenario Consume the model

Environment Let's add the model and necessary projects and references to the solution. Once added, open SpotTheCatML.C toseehowto your model. You can then copy
consume your model and make predictions.

this generated console app to the app where you want to

Data

Add to solution
Train
Evaluate

Next steps

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig2_HTML.jpg
Yy = agZTo + a1x1 + ... + @nxy + b

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig2_HTML.jpg

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig4_HTML.jpg
=
- oo
2

T :
I 4 .
3 TR v
g -
0.- A

i

.
>~ o
4 1 O-J”.o
1] g 04
- 54
4 tee s
4 I
t ¥
3 $ Dbttt
.. ..‘
. 4 .

;_;‘,‘;:%,_: %

YERD
SRR aes [A Y . |

PONES1S =

-

C4 gL IN Rukgh (pne

¥
e e

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig16_HTML.jpg
Cross-validating to get model's accuracy metrics == ==

% Metrics for Multi-class Classification model

I A Al o A
e Average MicroAccuracy: 9.87 - Standard deviation: (.803) - Confidence Interval 95%: (.003)

* Average MacroAccuracy: ©.788 - Standard deviation: (.807) - Confidence Interval 95%: (.007)

* Average Logloss: .296 - Standard deviation: (.884) - Confidence Interval 95%: (.083)

* Average LoglossReduction: .463 - Standard deviation: (.809) - Confidence Interval 95%: (.009)

OEBPS/images/978-1-4842-6543-7_CoverFigure.jpg
NAVE [

Simple Toals for Applying
Machine Learning to Your Applications

Sudipta Mukherjee

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig8_HTML.jpg
Scenario
Environment
Train
Evaluate
Code

Next steps

Add data

In order to build a model, you must add data and choose your column to predict.

How do | get sample datasets and learn more?

Input

Choose input data source from either SQL Server or File:
File

Select afile: D:\auto-mpg.csv E

Supported file formats: .csv, .tsv or .txt.

Column to predict (Label): D Impg]

Input Columns (Features): (1) 80f 8 columns selected

Data Preview
10 of 399 rows and 8 of 9 columns.

mpg (Label) | cylinders | displacement | horsepower | weight | acceleration | model year | origin

18 8 307 130 3504
15 8 350 165 3693
18 8 318 150 3436
16 8 304 150 3433
17 8 302 140 3449
15 8 429 198 4341
14 8 454 220 4354
14 8 440 215 4312
14 8 455 225 4425
15 8 390 190 3850

12
115
1
12
105
10
9
8.5
10
8.5

70
70
70
70
70
70
70
70
70
70

1

it | it | e | [| i |t [| 2

car name

chevrolet chevelle malibu
buick skylark 320
plymouth satellite
amc rebel sst

ford torino

ford galaxie 500
chevrolet impala
plymouth fury iii
pontiac catalina
amc ambassador dpl

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig8_HTML.jpg
Scenario Tr = | n

Environment Specify a time to train for evaluating various models.

How long should | train for?
Data

Training setup summary v
Train

Evaluate Time to train (seconds): (©

Next steps

Next step

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig8_HTML.jpg
+ 1.Scenario Train

Vv 2Data Specify a time to train for evaluating various models.

How long should | train for?
3. Train

4. Evaluate
Input
5. Code P
Time to train (seconds): (1) ‘120
Progress
Status: 1 minute, 36 seconds remaining...
Best Accuracy: 85.77%
Best Algorithm: AveragedPerceptronOva
utput
Show output from: Machine Learning -l e 2= 2 | s
| Trainer MicroAccuracy MacroAccuracy Duration #Iteration |
|1 AveragedPerceptronOva 0.8577 0.7677 3157, Al |

>| 2 SdcaMaximumEntropyMulti 0.8527 0.7405 2.4 2 |

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig7_HTML.jpg
v/ 1.Scenario

v 2.Data

4. Evaluate

5. Code

Train

Specify a time to train for evaluating various models.
How long should | train for?

Input

Time to train (seconds). (1) 120

Progress

Start training to see progress and results.

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig8_HTML.jpg
Package Manag: s
Package source: All - £} Default project: AnomalyDetect =

Successfully installed 'System.Threading.Tasks.Extensions 4.5.4' to AnomalyDetect

Adding package 'System.Threading.Channels.4.7.1"' to folder 'C:\Users\Sudipta\source\repos\AnomalyDetect\packages'
Added package 'System.Threading.Channels.4.7.1' to folder 'C:\Users\Sudipta\source\repos\AnomalyDetect\packages"'
Added package 'System.Threading.Channels.4.7.1' to 'packages.config'

Successfully installed 'System.Threading.Channels 4.7.1' to AnomalyDetect

Adding package 'Microsoft.ML.1.5.1' to folder 'C:\Users\Sudipta\source\repos\AnomalyDetect\packages"'

Added package 'Microsoft.ML.1.5.1' to folder 'C:\Users\Sudipta\source\repos\AnomalyDetect\packages"'

Added package 'Microsoft.ML.1.5.1' to 'packages.config'

Successfully installed 'Microsoft.ML 1.5.1' to AnomalyDetect

Executing nuget actions took 6.85 sec

Time Elapsed: ©0:00:21.4897167

PM> Install-Package Microsoft.ML.Timeseries

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig5_HTML.jpg

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig17_HTML.jpg
var trainer = mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy()

A 10f2 ¥ (extension) Mi i MulticiassCl talog.MulticlassCl

Create i advanced options, which predicts a target using a ained with a coordinate descent method.
options: Trainer options.

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig7_HTML.jpg
@ archive.ics.uci.edu/ml/machine-learning-databases/iris/

Index of /ml/machine-learning-databases/iris

Parent Directory,
Index
bezdeklris.data
iris.data
iris.names

Apache/2.4.6 (CentOS) OpenSSL/1.0.2k-fips SVN/1.7.14 Phusion_Passenger/4.0.53 mod_perl/2.0.10 Perl/v5.16.3 Server at
archive.ics.uci.edu Port 443

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig7_HTML.jpg
Select a scenario

Train with your data

The following scenarios use Automated ML to train and pick the best model for your data.
Learn more about training with your own data in Model Builder.

L |
Text classification

Classify text data into 2+ categories,
e.g. predict if comments are positive
or negative sentiments.

Local ML

Recommendation

Produce a list of suggested items for
a particular user, e.g. recommend
products.

Local ML

&2
-HiH

Value prediction

Predict a numeric value from your
data (regression), e.g. predict the
price of a house based on features
like size, location, etc.

Local ML

A
A 4

Object detection
Detect and identify objects in

images, e.g. detect cars in an image

and draw bounding boxes around
each car.

Azure ML

R
m e

Image classification

Classify images into 2+ categories,
e.g. predict whether an image is of a
dog ora cat.

Azure ML Local ML

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig6_HTML.jpg
Refresh

4 [&] ConsoleAppl
(¢

b M Properties
D =B References ¥,

€3 App.config
P c* Program.cs

> @

A

B x

Build

Rebuild

Clean

Analyze and Code Cleanup
Publish...

Publish as Azure WebJob...
Cleanup Selected Code
Collapse Recursively

Run Tests

Debug Tests

SonarlLint Connected Mode
Scope to This

New Solution Explorer View
Build Dependencies

Add

Manage NuGet Packages...
Set as Startup Project
Debug

Initialize Interactive with Project
Cut

Paste

Remove

Rename

Unload Project

1 Aaad Draicr+ Neaneandanciar

Ctrl+X
Ctrl+V
Del

F2

Koo

New Item...

Existing ltem...

New Folder

REST API Client...

C iner Orch S

Machine Learning

Reference...

Web Reference...
Service Reference...
Connected Service

a s

Ctrl+Shift+A
Shift+Alt+A

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Figa_HTML.png
Coan Uou spot the cat tn the photo?

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig6_HTML.jpg

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig9_HTML.jpg
copt-lo-5a|k=]

Search Solution Explorer (Ctrl+;)

> M Properties
b =& References

¥ App.config
b <* Program.cs

OEBPS/images/489446_1_En_10_Chapter/489446_1_En_10_Fig6_HTML.jpg

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig9_HTML.jpg
—

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig6_HTML.jpg
/' 1.Scenario Add data

/2 Environment In order to build a model, you must add data and choose your column to predict.
_ How do | get sample datasets and learn more?
4.Train Input

Eval Choose input data source from either SQL Server or File:
S. Evaluate

6 C File -
6. Code
Select a file: Cipersonal2\y_Book Writing\W [. |
Supported file formats: .csv, .tsv or .tt.
Column to predict (Label): (i) Select column w

Input Columns (Features): (i) Select column(s)

Data Preview
10 of 498 rows and 6 of 6 columns.

col0 | coll | col2 col3 col4 col5

4 3) Mon May 11 03:17:40 UTC 2009 kindle2 tpryan @stellargirl | loooooooowmwveee my Kindle2. Not that the DX is cool
4 4 Mon May 11 03:18:03 UTC 2009 kindle2 wcudS1 Reading my kindle2... Love it.. Lee childs is good read.

4 S Mon May 11 03:18:54 UTC 2009 kindle2 chadfu Ok, first assesment of the #kindle2 ..it fucking rocks!!!

4 6 Mon May 11 03:19:04 UTC 2009 kindle2 SIX15 @kenburbary You'll love your Kindle2. I've had mine for a few months &
4 7 Mon May 11 03:21:41 UTC 2009 kindle2 yamarama @mikefish Fair enough. Buti have the Kindle2 and | think it's perfect :)
4 8 Mon May 11 03:22:00 UTC 2009 kindle2 GeorgeVHulme @richardebaker no. itis too big. I'm quite happy with the Kindle2.

0 9 Mon May 11 03:22:30 UTC 2009 aig Seth937 Fuck this economy. | hate aig and their non loan given asses.

4 10 Mon May 11 03:26:10 UTC 2009 jquery dcostalis Jquery is my new best friend.

4 11 Mon May 11 03:27:15 UTC 2009 twitter PJ_King Loves twitter

4 12 Mon May 11 03:29:20 UTC 2009 obama mandanicole how can you not love Obama? he makes jokes about himself.

4 »

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig6_HTML.jpg
Scenario

Environment

Train
Evaluate
Code

Next steps

Add data

In order to build @ model, you must add data and choose your column to predict.
How do | get sample datasets and learn more?

Input

Choose input data source from either SQL Server or File:

File -
Select a file: Di\reco.csv E

Supported file formats: .csv, .tsv or .txt.
Column to predict (Rating): (D H
User column: (D Select column

Item column: (D Select column

Data Preview
10 of 99,980 rows and 0 of 4 columns.

userld | movield | rating | timestamp

1 1 4 964982703
1 3 4 964981247
1 6 4 964982224
i) 47 5 964983815
1 50 5 964982931
1 70 3 964982400
1 101 5 964980868
1 110 4 964982176
1 151 5 964984041
1 157 5 964984100

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Fig9_HTML.jpg
v/ 1.Scenario Trai n

v/ 2Data Specify a time to train for evaluating various models.

How long should | train for?

4. Evaluate
Input

5. Code P
Time to train (seconds): (i) 120
Progress
Status: v/ Finalizing model
Best Accuracy: 87.92%
Best Algorithm: FastTreeOva

Next Step: Evaluate

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig9_HTML.jpg
MLContext mlContext = new MLContext(seed : 1);

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig9_HTML.jpg
BE- o-5CIm K=
Search Solution Explorer (Ctrl+;)

4 =-m References

o Analyzers

s-B Microsoft.CShar

=8 Microsoft.ML.Core

=8 Microsoft.ML.CpuMath

=8 Microsoft.ML.Data

=8 Microsoft.ML.DataView

=B Microsoft.ML.KMeansClustering
=-B Microsoft. ML.PCA

=B Microsoft.ML.StandardTrainers
=8 Microsoft.ML.TimeSeries

s-B Microsoft.ML.Transforms

=8 Newtonsoft.Json

=8 System

=B System.Buffers

=-8 System.CodeDom

=-B System.Collections.Immutable
=B System.Core

=-8 System.Data

=B System.Data.DataSetExtensions
=B System.Memory

=-B System.Net.Http

=B System.Numerics

=-B System.Numerics.Vectors

=B System.Runtime.CompilerServices.Unsafe
=-B System.Threading.Channels

=-B System.Threading.Tasks.Extensions

=8 System.Xml

=8 System.Xml.Ling

.

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Figd_HTML.jpg
Da File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search Visual Studio {Ctrl+Q) Pl IrisClusterDemo

o - B-2o W 9 -0 - Debug ~ AnyCPU - B IrisClusterDemo ~ A7~ Mg =
§ Error List Package Manager Console
g risClusterDemo . %IrisCIusterDemo.Program

3 =namespace IrisClusterDemo

4 {
0 references
5 = class Program
6 {
0 references
y ¢ =] static void Main(string[] args)
g | {
9%~ MLContext context new MLContext(),
14)
using MicrosoftML; E] €3 £50246 The type or namespace name 'MLContext' could not be found

(are you missing a using directive or an assembly reference?)

soft.ML;

- MicrosoftMLMLContext
1 usi
1= Generate type ‘MLContext’ » ging system;

14 Use implicit type
Preview changes

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig11_HTML.jpg
Scenario
Environment
Data

Train

Code

Next steps

Evaluate

Results of training for your model can be found below.
How do | understand my model performance?

Best model:

RSquared: 0.871
Model: LightGbmRegression

Try your model
Sample data

The following fields below are pre-filled by row 1 of your data.

cylinders

8

displacement

307

horsepower

[130

weight

3504

acceleration

[12

model year

[70

origin

K]

Results
mpg:

OEBPS/images/489446_1_En_2_Chapter/489446_1_En_2_Fig4_HTML.jpg
; sepalwidth,petallength, petalwidth,variety
.2,5etosa
2 Setosa

OEBPS/images/489446_1_En_7_Chapter/489446_1_En_7_Fig5_HTML.jpg
ET Model Builder # X {{lsle1Kdd

v

1. Scenario

2. Environmen
3.Data

4. Train

S. Evaluate

6. Code

Program.cs

Select training environment
This scenario only supports a local training environment.
Local machine configuration

Local
@ Train locally on your machine. Processor Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz

Memory 8GB

Next step: get your data

OEBPS/images/489446_1_En_BookFrontmatter_Figa_HTML.png
APICSS®

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Figc_HTML.jpg
sepallength, sepalwidth, petallength,petalwidth,variety
5.1,3.5,1.4,.2,Setosa

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig17_HTML.jpg
SSres = Z(yz = y/\)2

OEBPS/images/489446_1_En_6_Chapter/489446_1_En_6_Fig4_HTML.jpg
Pl (plt ply)

> (P36 p2)
Pt (ponphd)

pZ (P20 p29)

P

(P91 P9y PS (PS5t p5Y)

Centroid ¢ (cx, cy)

(p8_xp8_y) P8

cx= () (plx+ pZx+ pB_x+ pAX+ PSA + .o + PIX)
o= (YD (PIy + pZy + pBY + pAY + PS_Y + ot PIY)

v7 7o (pb_x, pb_y)
(P76 p7y)

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig1_HTML.jpg
// Set the training algorithm
var opt = new MatrixFactorizationTrainer.Options();
opt.LossFunction = MatrixFactorizationTrainer.LossFunctionType.

& SquareLossOneClass

& |SquareLossRegression

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig18_HTML.jpg
R?2=1-

Tes

SStot

OEBPS/images/489446_1_En_8_Chapter/489446_1_En_8_Fig7_HTML.jpg
Scenario Ad d d ata

Environment In order to build a model, you must add data and choose your column to predict.
_ How do | get sample datasets and learn more?
Train In put
Choose input data source from either SQL Server or File:
Evaluate
Code File »
Next steps Select a file: Di\reco.csv El
Supported file formats: .csv, .tsv or .txt.
Column to predict (Rating): (D rating -
User column: (D userld -
Item column: F'

Data Preview
10 of 99,980 rows and 3 of 4 columns.

rating (Label) | userld (User) | movield (Iltem) | timestamp

4 1 1 964982703
4 1 3 964981247
4 1 6 964982224
5 1 47 964983815
5 1 50 964982931
3 1 70 964982400
5 1 101 964980868
4 1 110 964982176
5 1 151 964984041
5 1 157 964984100

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig8_HTML.jpg
co@E-lo-5¢8@| &=

Search Solution Explorer (Ctrl+;)
%J Solution ‘Wisconsin' (1 project)

> K Properties &t Build
b =8 References Rebuild
¥ App.config Clean
b ¢* Program.cs Analyze v
& Publish..
SonarLint Connected Mode 3
Scope to This

B New Solution Explorer View

0 Newitem.. Ctrl+Shift+A
Manage NuGet Packages.. 3 Existing ltem... Shift+Alt+A
£+ Set as StartUp Project %4 New Folder
Debug » | & From Cookiecutter...
Initialize Interactive with Project Container Orchestrator Support
¥ cut Ctrl+X REST API Client...
Paste Ctrl+V
X Remove Del Reference...
3 Rename Web Reference...
Unload Project Service Reference...
@ Open Folder in File Explorer ¥ Connected Service
> Properties Alt+Enter Analyzer...
18 Windows Form...
13 user Control...
ﬁ Component...
b

Class... Shift+Alt+C

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Chapter_TeX_Equb.png
TP

recall = ——
TP+ FN

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Chapter_TeX_Equa.png
TP

precision = —————
TP+ FP

OEBPS/images/489446_1_En_9_Chapter/489446_1_En_9_Fig2_HTML.jpg
Interquartile Range

(IQR)

Outliers Outliers
.| |..
"Minimum" "Maximum"
(Q1 - 1.5*IQR) Q1 Median Q3 (Q3 + 1.5*%IQR)
(25th Percentile) (75th Percentile)

-3 —3 -1 0 1 2 3

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Chapter_TeX_Eque.png
M
- Z Yo,c1og (po.c)
c=1

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Chapter_TeX_Equd.png
— (y*log(p) + (1 —y) log (1 — p))

OEBPS/images/489446_1_En_5_Chapter/489446_1_En_5_Chapter_TeX_Equc.png
2 x precision * recall
F1 Score =

precision + recall

OEBPS/images/489446_1_En_3_Chapter/489446_1_En_3_Fig5_HTML.jpg

OEBPS/images/489446_1_En_1_Chapter/489446_1_En_1_Fig2_HTML.jpg

OEBPS/images/489446_1_En_4_Chapter/489446_1_En_4_Fig21_HTML.jpg
NRMSD = il or NRMSD = RMSD

Ymax — Ymin (]

