
.NET Developer’s
Guide to
Augmented
Reality in iOS

Building Immersive Apps Using Xamarin,
ARKit, and C#
—
Lee Englestone

.NET Developer’s Guide to
Augmented Reality in iOS

Building Immersive Apps Using
Xamarin, ARKit, and C#

Lee Englestone

.NET Developer’s Guide to Augmented Reality in iOS: Building Immersive Apps
Using Xamarin, ARKit, and C#

ISBN-13 (pbk): 978-1-4842-6769-1			 ISBN-13 (electronic): 978-1-4842-6770-7
https://doi.org/10.1007/978-1-4842-6770-7

Copyright © 2021 by Lee Englestone

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484267691. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Lee Englestone
Offerton, UK

https://doi.org/10.1007/978-1-4842-6770-7

This book is dedicated to my family.

To my amazing wife who is the kindest person you could ever hope to
meet and my children, Holly and Aaron, who bring me so much joy.

v

Table of Contents

Chapter 1: ��Setting Up Your Environment��� 1

Apple ID�� 1

Suitable iOS Device�� 2

Install Xcode�� 2

Install Visual Studio for Mac�� 3

Create a New Project in Xcode�� 4

Step 1. Choose a project template��� 5

Step 2. Provide project details��� 6

Step 3. Provide a project location��� 7

Step 4. View the new project�� 8

Step 5. Select a Team or sign in with an Apple ID�� 9

Step 6. Change the deployment target��� 10

Step 7. Trust the developer��� 11

Step 8. Done��� 13

Create a New Project in Visual Studio for Mac��� 13

Step 1. Create a new project and select a project type�� 13

Step 2. Provide app details��� 14

Step 3. Provide project details��� 15

Step 4. Choose a deployment device and run�� 16

Set Camera Permissions�� 17

Summary��� 18

About the Author�� xi

About the Technical Reviewer�� xiii

Preface���xv

Introduction��xvii

vi

Chapter 2: ��Basic Concepts��� 19

Scene View�� 19

Session�� 20

SceneKit��� 21

Positioning��� 21

World Origin��� 23

World Alignment��� 24

Gravity�� 25

GravityAndHeading��� 25

Camera��� 25

Size�� 26

Configuration��� 28

Summary��� 29

Chapter 3: ��Nodes, Geometries, Materials, and Anchors�� 31

Nodes��� 31

Opacity��� 32

Geometries��� 33

Built-in Geometry Shapes�� 33

Materials�� 35

Solid Color Material�� 35

Image Material��� 36

Material Fill Mode�� 37

Anchors�� 38

Things to Try��� 38

Summary��� 39

Chapter 4: ��Built-in AR Guides�� 41

Show Feature Points�� 41

Show World Origin and Coordinate Axis��� 42

Show Statistics�� 44

Table of Contents

vii

Coaching Overlay��� 45

Summary��� 48

Chapter 5: ��Animations��� 49

Animating Opacity�� 49

Animating Scale��� 50

Animating Position��� 51

Animating Orientation�� 51

Repeat Behavior��� 52

Animation Easing��� 53

Combining Animations��� 54

Waiting��� 54

Summary��� 55

Chapter 6: ��Constraints��� 57

BillboardConstraint�� 57

LookAtConstraint�� 57

Other Constraints��� 59

Things to Try��� 59

Summary��� 59

Chapter 7: ��Lighting�� 61

Automatically Add Default Lighting�� 61

Automatically Update Default Lighting��� 61

Light Types��� 62

Adding Shadows�� 63

Things to Try��� 67

Summary��� 68

Chapter 8: ��Video and Sound�� 69

Playing Sound�� 69

Playing Video�� 70

Things to Try��� 72

Summary��� 72

Table of Contents

viii

Chapter 9: ��Plane Detection�� 73

Detecting Planes�� 73

Remembering Planes��� 73

ARSCNViewDelegate (Scene View Delegate)��� 74

Plane Detection Example��� 76

Turning Off Plane Detection�� 81

Possible Applications�� 82

Things to Try��� 82

Summary��� 83

Chapter 10: ��Image Detection��� 85

Adding Images as App Resources�� 85

Detecting the Images��� 88

Dynamically Adding Images to Detect�� 91

Things to Try��� 92

Summary��� 93

Chapter 11: ��Face Tracking and Expression Detection��� 95

Tracking Faces��� 95

Recognize Facial Expressions�� 99

Things to Try��� 105

Summary��� 105

Chapter 12: ��Touch Gestures and Interaction��� 107

Gesture Recognizers�� 107

Hooking Up Gesture Recognizers��� 108

Tapping�� 109

Pinching��� 110

Rotating�� 111

Panning�� 112

Swiping�� 113

Table of Contents

ix

Long Press��� 113

Things to Try��� 114

Summary��� 115

Chapter 13: ��3D Models�� 117

Importing 3D Models�� 117

Creating Your Own 3D Models in Blender�� 119

Add Shadows, Animations, and Make Interactive�� 121

Things to Try��� 121

Summary��� 121

Chapter 14: ��Physics��� 123

Giving an Item a Rigid Structure�� 123

Applying Gravity to an Object��� 124

Combining Gravity and Solid Objects��� 125

Applying Force��� 128

Things to Try��� 132

Summary��� 133

Chapter 15: ��Object Detection��� 135

Scanning and Saving Object Spatial Data�� 135

Recognizing Scanned Objects�� 137

Things to Try��� 139

Summary��� 140

Chapter 16: ��Body Tracking�� 141

Detecting a Body in a Scene�� 141

Capturing Body Motion��� 148

Potential Applications�� 149

Things to Try��� 150

Summary��� 150

Table of Contents

x

Chapter 17: ��Publishing to the App Store��� 151

App Store Submission To-Do List��� 151

Set Up Icons for the App�� 152

Set Up Launch Screen Image��� 153

Set Up App ID and Entitlements��� 154

Create and Install an App Store Provisioning Profile�� 158

Update Build Release Configuration�� 162

Set Up the App in App Store Connect��� 164

Build the App and Submit It to Apple��� 169

Summary��� 178

�Index�� 179

Table of Contents

xi

About the Author

Lee Englestone is an innovative, hands-on software

development manager and technical lead, based in

Stockport, England. He has been a .NET developer for many

years, writing code for Windows, web, mobile, cloud, and

Augmented Reality (AR) applications in his spare time. He

believes that there are many new exciting opportunities for

developers in the area of Augmented Reality and is excited to

share them with his fellow .NET developers. In recognition

of his community contributions, he has been awarded

a Microsoft MVP in Developer Technologies. He can be

contacted through LinkedIn at https://www.linkedin.com/in/leeenglestone/ or on

Twitter at https://twitter.com/LeeEnglestone.

http://www.apress.com/source-code
https://twitter.com/LeeEnglestone

xiii

About the Technical Reviewer

Nishith Pathak is India’s first and only Artificial Intelligence

(AI) Most Valuable Professional (MVP), a Microsoft

Regional Director (RD), and a lead architect, speaker, AI

thinker, innovator, and strategist. Nishith’s expertise lies in

helping Fortune 100 companies design and architect next-

generation solutions that incorporate AI, ML, cognitive

services, Blockchain, and many more. He also laid his

expertise in defining and strategizing technology road maps

for customers and companies using emerging technologies.

He sits on several technical advisory boards across the globe.

He has also authored more than half a dozen international

books for Springer Publication, United States. The last three books were on Artificial

Intelligence (AI). Earlier, Nishith has also played the role of a PAN account enterprise

architect where he was responsible for the overall architecture to design in multiple

projects. He is an internationally acclaimed speaker on technologies like AI, IOT, and

Blockchain and regularly speaks at various technical conferences. He advices and

mentors a lot of startups as a community initiative. 

For his expertise on Artificial Intelligence, Microsoft have awarded him the first

Most Valuable Professional (MVP) from India in the Artificial Intelligence category. He

is the only Artificial Intelligence MVP in India to date. Globally, he is among 19 MVPs

on AI, recognized by Microsoft for their sheer expertise on AI. He has also received

the “Microsoft Regional Director” award which is awarded to 150 of the world’s top

technology visionaries chosen specifically for their proven cross-platform expertise.

Nishith is a gold member and sits on the advisory board of various national and

international computer science societies and organizations. Nishith is currently working

as Global Chief Technologist for Emerging Technologies and Advanced Analytics

for DXC Technology where he is focused on using emerging technologies helping

companies architect solutions based on these technologies, laying out technology road

maps, and curating the startup ecosystem. He can be contacted at nispathak@gmail.com

or through LinkedIn at www.linkedin.com/in/nishithpathak/.

http://www.linkedin.com/in/nishithpathak/

xv

Preface

I have always loved futuristic science fiction films and TV series. As a child, I remember

fondly watching Star Trek and Star Wars with my dad most evenings after school. You

name it, if it was set in the future, I probably watched it.

But these days, it is not the lasers or spaceships that I marvel at. Being a software

developer, it is the glowing, floating futuristic-looking computer interfaces that spark my

imagination. It seems in some distant future we are destined to shed our monitors, mice,

and keyboards and replace them with floating transparent holograms using only our

hands to interact with them.

Having followed Augmented Reality very closely for some time, I believe that future

is already here, and to prove it, I will show you how to build the interfaces of tomorrow,

today. As .NET developers, we have the enviable ability to develop apps for a wide range

of uses including Windows, web, console, cloud, serverless, ML, AI, mobile, and now

Augmented Reality.

I’m very excited to share how you and fellow .NET developers can use .NET and

C# to create amazing apps that use Augmented Reality to open up a new world of

possibilities, to be at the forefront of unique AR experiences that will take the world by

storm.

xvii

Introduction

Welcome to the start of your journey into the exciting world of Augmented Reality

development.

Being a .NET developer and iPhone user for many years, I was shocked when I

accidentally stumbled onto the Augmented Reality functionality that .NET developers

can target and leverage to create fantastic user experiences; I was amazed that more

.NET developers weren’t using the techniques outlined in this book to create their

own AR apps for their own iOS devices, especially at a time when Augmented Reality

is becoming increasingly popular in our society and adopted by a growing number of

industries and markets.

In fact, I was so impressed by the possibilities that Augmented Reality offers .NET

developers that I started experimenting with it as much as possible, as well as discussing

it at .NET user groups around the country to show fellow .NET developers the kind of

experiences they could achieve.

But I didn’t stop there, I wondered how else I could reach even more .NET

developers to share with them this new way of creating immersive user experiences. I

even wondered if I could write a book introducing the concept of .NET: this book. And if

you are reading this, you are interested in learning how to create the next generation of

Augmented Reality user experiences and have come to the right place.

Before we get stuck into coding and creating, it is worth giving you an overview of

Augmented Reality and how to use this book.

�What Is Augmented Reality?
Augmented Reality (or AR for short) is the process of a computer program or mobile

app making something appear in your immediate (real-world) environment that isn’t

actually there. That object’s position is maintained in the real world and as you move

around and change your perspective.

xviii

All of the major technology companies are finding uses for Augmented Reality including

Facebook, Apple, Google, and Microsoft. At the time of writing, if you Google “tiger” on a

mobile device, you are presented with a screen where if you press “View in 3D,” you can

view the animal in Augmented Reality as shown in the image on the right in Figure 1.

Augmented Reality isn’t to be confused with Virtual Reality (or VR for short), where

you wear a headset that completely occludes your vision and everything you see is a

product of the running computer program or mobile app.

One of the most popular VR devices on the market is Facebook’s Oculus range of

devices with perhaps their most popular VR game being Beat Saber where one must use

slice cubes that are approaching the player in VR to the rhythm of the music.

For completion, you may also have heard the terms XR (Extended Reality) and MR

(Mixed Reality) previously. These terms are generally referring to both Augmented and

Virtual Reality. We won’t use or discuss the terms XR and MR further in this book; you

may just be interested to know that those terms encompass both AR and VR.

Figure 1.  Augmented reality is becoming increasingly popular

Introduction

xix

�Who Is This Book For?
This book is for .NET developers that want to use C# and Xamarin to create Augmented

Reality apps for their iOS devices. While experience with Xamarin cross-platform apps

and Visual Studio for Mac is helpful, it is not necessary, as we will cover the environment

setup and basic concepts early on.

You may already be familiar with Augmented Reality, you may just be curious

to learn more about what is possible with it, or you may already have an idea for an

Augmented Reality app that you wish to create.

The only thing you need is your imagination.

�How to Read This Book
This book has been written to introduce you to the fundamental building blocks and

concepts used to create Augmented Reality experiences, then show how these can be

combined together, then move on to explain more advanced concepts. At each stage,

code samples are provided to allow you to experiment for yourself the concept being

described.

While I encourage you to understand each topic before moving on to the next, rest

assured most code samples are stand-alone and can be run without previous code

samples. So if you want to try out image detection before fully understanding how to

work with simple geometries, feel free to do so.

�Code Samples
Code samples in this book have been written with clarity in mind. I’m sure in most

cases the code could be optimized or better structured. They have been written to aid

understanding and may not be the same code I would necessarily recommend be used

for production.

Code samples can also be found in the source code for the companion app on

GitHub.

Introduction

xx

�Companion App
All of the example functionality described in this book including face detection, 3D

models, and so on can be experienced using the free companion app available in the iOS

App Store as shown in Figure 2. The code for the companion app itself is in GitHub so

that you can clone it to your computer and play around with the code yourself.

Figure 2.  Example ARKit functionality is shown in the companion app

Introduction

xxi

�The Rise of Augmented Reality
The rise of Augmented Reality has been a slow but steady one. That’s not necessarily a

bad thing given how Virtual Reality has suffered from being overhyped for over a decade

and only recently delivering what it originally promised.

The slow adoption of Augmented Reality on the other hand has been relative to the

increasing sophistication of our mobile devices, especially their processors and cameras. It

is not uncommon for some mobile phones to boast three or four different cameras, some

of which can determine the depth of field of what they are being directed at. Those cameras

along with increasingly powerful processors are continually helping make Augmented

Reality environments more accurate and allowing increasingly advanced experiences.

It isn’t surprising then that a number of Augmented Reality frameworks allowing

developers to leverage these devices have sprung up, the most common being ARCore

for Android and ARKit for iOS.

You need only look at the popularity of one of the very first Augmented Reality

games, Pokémon Go, that launched in 2016 which made over 30 billion (yes, billion)

dollars for evidence that the general public are not only willing to embrace Augmented

Reality but they desire to and are willing to pay to do so.

�ARKit
In 2017, Apple introduced its Augmented Reality framework ARKit to the world and has

been improving it every year since. ARKit makes use of your device’s camera, gyroscope,

and accelerometer to determine the direction your device is pointing and the differences

between camera frames so it can maintain the Augmented Reality experience.

�ARKit 1.0 (September 2017)
ARKit was first introduced in iOS 11.0 with the ability to track the world and environment

around the user. This initial release also allowed for face tracking and horizontal plane

detection.

�ARKit 1.5 (March 2018)
In their first ARKit update in iOS 11.3, Apple added the much requested ability to detect

vertical planes such as walls as well as simple image recognition.

Introduction

xxii

�ARKit 2.0 (September 2018)
Later that year in iOS 12 ARKit was extended to allow 3D object recognition as well as

scene persistence and sharing.

�ARKit 3.0 (September 2019)
In iOS 13 Apple added support for people occlusion, multiple face tracking, as well as

human body tracking.

�ARKit 3.5 (March 2020)
In iOS 13.4 Apple added LiDAR scanning to iPad Pro devices improving plane detection

as well as introducing Scene Geometry allowing users to create topological maps of their

surroundings and even use semantic classification which can identify everyday objects

such as chairs and tables. Though this is just for iPad Pro at the time of writing, it may be

supported by future versions of iPhone and is rumored to be in iPhone 12.

�Augmented Reality for .NET Developers Using
Xamarin
Until fairly recently, if you wanted to create a native Augmented Reality app for iOS using

ARKit, you would have to write it in Objective-C or Swift using Xcode.

Note: This book covers Augmented Reality development using Xamarin and ARKit

which is Apple’s Augmented Reality framework. This is not to be confused with ARCore

which is Android’s Augmented Reality framework.

A company called Xamarin (founded in 2011), seeing how people wanted to develop

mobile apps for different platforms, created a framework called Mono which allowed C#

developers to write C# code and produce apps able to run on macOS, Linux, Android,

and iOS.

So popular was Xamarin in fact that in February 2016 Microsoft came along and

acquired them and ported ARKit (among other frameworks) to .NET. Soon after that

Microsoft made it possible for .NET developers to use Visual Studio for Mac, Xamarin,

and ARKit to create Augmented Reality applications and deploy them to iOS devices.

Introduction

xxiii

Interestingly while this is a fantastic way to allow .NET developers to create

Augmented Reality iOS apps using C#, there aren’t many people doing it just yet. On the

upside, you can be one of the first .NET developers to create and share some amazing AR

experiences; on the downside, most of the ARKit code samples you will find online will

be in Objective-C or Swift, and it can take a slight bit of head-scratching to work out how

to do the same thing in .NET.

This is where this book comes in (I have spent many an hour translating Swift ARKit

examples to C# so you don’t have to). You’re welcome.

�The Future of Augmented Reality
We are on the verge of an Augmented Reality revolution. While we are currently

addicted to our little black screens to get our daily dose of news, social interaction, and

entertainment, they will soon be replaced by Augmented Reality experiences.

Admittedly these Augmented Reality experiences are currently predominantly on

our mobile devices; however, there are an ever-increasing number of manufacturers

producing Augmented Reality headsets that will soon flood the market. It is therefore

only logical that there will be a large demand of Augmented Reality software

development and experiences needed to operate on these headsets.

Once businesses, marketers, and entrepreneurs start to realize the potential and

leverage the power of Augmented Reality, we will see a gold rush of Augmented Reality

experiences. Believe me, you want to be on the ground floor, build your AR skills, and

ride the rocket that will be Augmented Reality development.

�Summary
We discussed Augmented Reality and how you can use your existing knowledge of

C# and .NET along with the ARKit framework to create your own Augmented Reality

experiences. We discussed just how exciting the future of Augmented Reality is going to

be, especially for us .NET developers who get to create experiences for them.

So now that you can’t wait to start producing Augmented Reality experiences, you’ll

want to check out the next chapter, “Setting Up Your Environment,” which will tell you

exactly what you need to do to get started as quickly as possible.

Introduction

1
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_1

CHAPTER 1

Setting Up Your
Environment
First, we need to start by making sure you have a few things installed that you will need;

after that, we can begin writing and deploying basic Augmented Reality apps to your iOS

device.

Here is a list of the things you are going to need:

–– An Apple ID

–– A suitable iOS device

–– A computer running macOS

–– Xcode

–– Visual Studio for Mac

�Apple ID
Good news, you do not need to enroll in the paid Apple Developer Program to deploy

apps to your iOS devices; you just need your Apple ID to get started. However, should

you wish to eventually publish an app to the App Store, you will need to join and pay

for the Apple Developer Program. You can find more information about the Apple

Developer Program at https://developer.apple.com/programs/.

https://doi.org/10.1007/978-1-4842-6770-7_1#DOI
https://developer.apple.com/programs/

2

�Suitable iOS Device
While ARKit has been around since iOS 11, older phones may not have sophisticated

enough cameras or CPUs to use some of the newer features of ARKit such as body

occlusion at all. You will need at least an iPhone 6s or newer iPhone to use Augmented

Reality examples in this book.

It’s also worth mentioning that you will need the appropriate cable to connect your

device to your PC or laptop so that you can deploy the app from Xcode and Visual Studio

for Mac to it. It is worth noting that after a little setup it is also possible to deploy your

app to your device from your computer over Wi-Fi without the need for a cable.

�Install Xcode
While we will predominantly be using Visual Studio for Mac to create the Augmented

Reality apps throughout this book, Xcode is required among other reasons to provision

and install code signing certificates for our app onto your iOS device.

If you don’t already have Xcode installed, you can install it from the App Store

(Figure 1-1).

Chapter 1 Setting Up Your Environment

3

�Install Visual Studio for Mac
You will also need the latest version of Visual Studio for Mac, which at the time of writing

is 2019, and you’ll be glad to hear we will be spending most of our time in it. I have found

that as Visual Studio for Mac is a fairly new product, it is constantly being updated with

improvements.

If you are a user of Visual Studio on Windows, you will notice that while Visual Studio

for Mac is similar to Visual Studio for Windows, it does have some differences; they are

not 100% equivalent.

There are a number of requirements for Visual Studio for Mac, the main one being

Xcode (https://docs.microsoft.com/en-us/visualstudio/productinfo/vs2019-

system-requirements-mac).

You can install Visual Studio for Mac from https://visualstudio.microsoft.com/

vs/mac/ as can be seen in Figure 1-2.

Figure 1-1.  Download and install Xcode from the App Store

Chapter 1 Setting Up Your Environment

https://docs.microsoft.com/en-us/visualstudio/productinfo/vs2019-system-requirements-mac
https://docs.microsoft.com/en-us/visualstudio/productinfo/vs2019-system-requirements-mac
https://visualstudio.microsoft.com/vs/mac/
https://visualstudio.microsoft.com/vs/mac/

4

�Create a New Project in Xcode
Once you have Xcode and Visual Studio for Mac installed, let’s start creating our very first

project. If you are wondering why we are starting with a project in Xcode, it is because

we need to create a blank app in Xcode and deploy it to our device, in order to deploy the

relevant code signing certificates to the device.

Launch Xcode and choose “Create a new Xcode project” as shown in Figure 1-3.

Figure 1-2.  Download and install Visual Studio for Mac

Chapter 1 Setting Up Your Environment

5

�Step 1. Choose a project template
On the next screen titled “Choose a template for your new project:” when you come

to choose a template, choose “Single View App” and then click “Next” as shown in

Figure 1-4.

Figure 1-3.  Create a new project in Xcode

Chapter 1 Setting Up Your Environment

6

�Step 2. Provide project details
On the next screen titled “Choose options for your new project:” provide a name for your

app in the “Product Name” field. In Figure 1-5, you can see I have made up some details.

If you have signed into Xcode before using your Apple ID, you may already have a

(Personal Team) entry in the Team field. If not, don’t worry. We will sign in to generate a

Team later.

You can leave Language and User Interface as the default; also, we won’t be using

Unit Tests or UI Tests so you might as well untick them.

Figure 1-4.  Choose “Single View App” as the project template

Chapter 1 Setting Up Your Environment

7

Note P ay particular attention to the Bundle Identifier that is created as we will
need this when we create our Augmented Reality app in Visual Studio for Mac.

In this example, it is AwesomeCompany.HelloWorldAR.

Click Next.

�Step 3. Provide a project location
Choose a location for your project. I generally create a new folder for this.

Figure 1-5.  Provide project option details

Chapter 1 Setting Up Your Environment

8

Click Create.

�Step 4. View the new project
You should see the newly created Swift project in Xcode as in Figure 1-7. Don’t worry

about this too much. We won’t be changing any of this Swift code!

Figure 1-6.  Choose a location for your project

Chapter 1 Setting Up Your Environment

9

We will however be deploying that project to our device to generate and deploy the

required code signing certificates that we need later.

You’ll be glad to hear this is the final step in the hoop jumping required before we

can concentrate on working in Visual Studio for Mac with C# code.

If you click the Play button or run the project now and didn’t provide a Team earlier,

the build will fail. So let’s go and choose a Team.

�Step 5. Select a Team or sign in with an Apple ID
Double-click the project name to open the project settings, and then go to the Signing &

Capabilities section.

If a Team isn’t already in the list, select “Add an Account...” from the list and sign in

with your Apple ID as shown in Figure 1-8.

Figure 1-7.  Your newly created Swift project

Chapter 1 Setting Up Your Environment

10

�Step 6. Change the deployment target
If you run the project now, it will launch the Device Simulator. We don’t want that, so

make sure your computer is connected to your device via an appropriate cable, and then

change the deployment target to your device name (as shown in Figure 1-9) and click

play or run (making sure your device is unlocked).

Note I t is possible to set up debugging and deployment over Wi-Fi, removing the
need for a cable between your computer and device.

Figure 1-8.  Choose a development Team

Chapter 1 Setting Up Your Environment

11

�Step 7. Trust the developer
If you run the project now, it will deploy the app to the device; however, you may see

the following message shown in Figure 1-10 if you have not deployed to your device

previously. Don’t worry. This just means that there is a simple security step we need to

do on your device.

Figure 1-9.  Change deployment target

Chapter 1 Setting Up Your Environment

12

In order to trust the developer and your app on your iOS device, you have to go to

Settings ➤ General ➤ Device Management and select the Developer App.

And press the Trust button and confirm as shown in Figure 1-11.

Figure 1-10.  Trust developer

Figure 1-11.  Trust developer in device management

Chapter 1 Setting Up Your Environment

13

If you run the app now from Xcode and all has gone to plan, you should see the

default Hello world screen on your phone.

�Step 8. Done
Congratulations. For some this may be the first time you have ever deployed an

application to your device. And you’ll be pleased to know we won’t be doing anything

else with this project. However, you may need this project to redeploy certificates to your

device so I wouldn’t delete it. Just keep it around on your machine.

Note P ersonal code signing only lasts for 7 days, after which you will need to
redeploy your app to your device to make it work again.

Reminder M ake sure you make a note of the Bundle Identifier in step 2 as we
will need this when we create our app in Visual Studio for Mac.

�Create a New Project in Visual Studio for Mac
Next, we are going to create our app which will contain our Augmented Reality

experiments in Visual Studio for Mac and deploy it to our iOS device.

Launch Visual Studio for Mac and choose New Project.

�Step 1. Create a new project and select a project type
From the list of template categories, select iOS, and then select Single View App as

shown in Figure 1-12.

Chapter 1 Setting Up Your Environment

14

�Step 2. Provide app details
You will want to use the same App Name and Organization Identifier that you used in

your Xcode app so that the Bundle Identifier is Identical to the Xcode one as shown in

Figure 1-13. This is so that the same code signing certificates can be used to provision

and deploy the app to your iOS device.

Figure 1-12.  Choose a project type

Chapter 1 Setting Up Your Environment

15

�Step 3. Provide project details
Now you need to provide the project name, solution name, and location for your project

as shown in Figure 1-14. These can be whatever you want, but make sure you provide a

different location to the Xcode app.

Figure 1-13.  Provide app details

Chapter 1 Setting Up Your Environment

16

Click Create.

�Step 4. Choose a deployment device and run
After creating your project in the previous step, you should see the newly created project

skeleton as in Figure 1-15.

Figure 1-14.  Provide project details

Chapter 1 Setting Up Your Environment

17

Make sure you change the deployment destination to the connected iOS device and

that the device is unlocked, then run the project. The device should run the app which is

a rather boring blank white screen.

Congratulations! You have deployed your first .NET iOS project to your device.

It’s worth noting that there is nothing Augmented Reality about this app yet; we

haven’t written the code for this yet. The project that you have created and the app that

you have deployed will host all of the Augmented Reality functionality that we will cover

in this book.

�Set Camera Permissions
Your new app that we will use for Augmented Reality will need to use your camera, so

you will need to explicitly declare this permission in the projects Info.plist file.

You do this by choosing “Privacy – Camera Usage Description” from the drop-down

list and providing any message you like as shown in Figure 1-16. This message will be

shown the first time the app is ran to ask the user to grant the app permissions to use the

camera.

Figure 1-15.  View the new project

Chapter 1 Setting Up Your Environment

18

�Summary
You should now have your local environment all set up and ready to start experimenting

with Augmented Reality. And that is exactly what we will do, but first let’s discuss some

of the basic concepts of Augmented Reality and ARKit in the next chapter.

Figure 1-16.  Set camera permissions

Chapter 1 Setting Up Your Environment

19
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_2

CHAPTER 2

Basic Concepts
In this chapter, we look at a few basic concepts that make mobile Augmented Reality

experiences using ARKit possible and that you will use to build your Augmented Reality

apps very soon.

It is important to gain a good understanding of the basics before continuing as this

will put you in good stead before moving on to further topics in the book where we will

refer back to some of these basics. Only after gaining an appreciation of these basic

concepts will we move on to exploring more advanced concepts.

�Scene View
In ARKit, the Augmented Reality SceneView (ARSCNView) is where all the magic happens.

When the session of an ARSCNView runs, it sets the camera to be the background of the

View and shows anything we have added to the scene overlaid on top.

In Listing 2-1, you can see that the Scene View is created in the ViewController

constructor and that it is possible to set some initial properties (that we will discuss

later). This SceneView is then added as a subview of the current view.

In the ViewDidLoad event, we are also setting the SceneView’s Frame to be this view’s

Frame.

You will be using this basic setup/boilerplate code in all of the AR examples

throughout the book.

Listing 2-1.  Creating the Scene View

private readonly ARSCNView sceneView;

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView();

https://doi.org/10.1007/978-1-4842-6770-7_2#DOI

20

 {

 AutoenablesDefaultLighting = true

 };

 this.View.AddSubview(this.sceneView);

}

public override void ViewDidLoad()

{

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

}

�Session
Nothing happens in your SceneView until you call the Session.Run() method. Once the

session starts running, it does a number of things.

First, it sets the camera as the background for the view.

Then as you move your device/camera around, it starts trying to understand your

immediate environment, noting points of interest and their relative positions between

camera frames while using the device’s gyroscope and accelerometer to understand the

orientation of the device. The fancy name for this is Visual Inertial Odometry, and this

is how it is able to understand the environment and persist the location of things we put

into the scene when we move the camera around.

It starts placing invisible Anchors at points of interest it finds as well as overlaying

any 3D objects you have placed into the scene at the locations you placed them. Anchors

(which we will discuss more of in Chapter 3, “Nodes, Geometries, Materials, and

Anchors”) are points of reference in our AR scene that are either automatically detected

or manually placed in the scene.

When calling the Session.Run() method, you must provide a type of

ARConfiguration which defines the type of AR functionality you want to use in the scene

as shown in Listing 2-2. Depending on the configuration type and settings used in the

session, it may behave differently depending on what it has detected in the scenes, such

as planes, images, or faces.

Chapter 2 Basic Concepts

21

Listing 2-2.  Starting the SceneView Session

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(

 new ARWorldTrackingConfiguration());

}

�SceneKit
While ARKit makes possible the Augmented Reality capabilities mentioned in this book,

we will actually be using SceneKit (which is Apple’s 3D graphics framework) extensively

including to place objects into our AR scenes. The following sections “Size” and

“Positioning” are all from SceneKit as are Nodes, Geometries, and Materials which will

be discussed in the next chapter and Animations that we will be discussing in Chapter 5,

“Animations.”

If you are wondering where ARKit ends and SceneKit begins, the following may help.

You can usually tell which code types come from ARKit or SceneKit as they are

generally prefixed with AR or SCN, respectively. For example, ARSCNView is from ARKit

and SCNNode is from SceneKit.

�Positioning
It is important to know how the coordinates system works in SceneKit so that you can

orientate yourself around an AR scene, as well as being able to place multiple objects

around your environment in three-dimensional space.

There are three dimensions you need to remember and get used to, X, Y, and Z

illustrated by Figure 2-1. Where X is left to right, Y is down to up and Z is front to back.

Fortunately, there is a built-in feature you can turn on that shows the coordinate axis

actually within your app. We will cover this in Chapter 4, “Built-in AR Guides.”

Chapter 2 Basic Concepts

22

In Listing 2-3, we can see that when setting the position of an object, we use an

instance of SCNVector3 and provide values for the X, Y, and Z coordinates which are

floating point values where 1f is effectively 1 meter, 0.1f 10 centimeters, and 0.01f 1

centimeter.

Once we have created an instance of SCNVector3, effectively declaring a position in

3D space, we can set a nodes position to it using a nodes Position property.

Figure 2-1.  Coordinates system

Chapter 2 Basic Concepts

23

Listing 2-3.  Setting the position of an object in 3D space

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(new

 ARWorldTrackingConfiguration());

 // Creates and assigns a position to a node

 // In this case it is setting it 1m above and 1m in front

 // of the devices initial position

 var position = new SCNVector3(0, 1f, -1f);

 var node = new SCNNode();

 node.Position = position;

 // Adds the node to the scene

 // (will be invisible as we haven't told it what

 // to look like yet)

 this.sceneView.Scene.RootNode.AddChildNode(node);

}

It is probably worth noting that you can always change an object’s position after you

have placed it in the scene by simply updating its Position property with an instance of

SCNVector3 with different X, Y, and Z coordinate values.

Hint I t took me a while to remember that to place an object in front of me, I had
to place it with a negative Z value (which is in front of you). Placing an item in the
positive Z axis actually places it behind you. Doh! Many a time I have been left
confused looking for an object I placed in the scene in front of me, when actually it
was behind me!

�World Origin
By default, when you start your AR app, your world origin is the point that your device was

located when the app is started. This position of your default world origin will be (0,0,0)

where X, Y, and Z are all 0. Regardless of where you physically move your device in relation

Chapter 2 Basic Concepts

24

to the world origin, all objects you place in your scene will be relative to that world origin,

not the current position of your device. That said, it is possible to programmatically change

the position of the world origin after your app has started if you need to.

So accurate is the position of the world origin in the AR experiences you create, that

you will even notice different perspectives depending on whether you are sitting down or

standing when you launch your app.

It is worth noting that if you don’t explicitly set the position of an object when you

add it to a scene, it will be placed at this world origin (0,0,0).

Hint I f you place a fairly large object at the world origin, you may not see it
because unless you have changed your physical position, you are effectively
occupying the same space as (or are inside) the virtual object. In this scenario,
you may have to physically take a step back to see something that is placed at
the world origin, as it will then be in front of you. Or alternatively when placing
something in the scene, give it a -Z value to place it in front of you.

As you can imagine, the world origin is important because it becomes almost a tether

or central reference point for your scene or AR experience.

�World Alignment
When your ARSession starts, its ARWorldTrackingConfiguration will use a particular

WorldAlignment value to determine by default the setup and behavior of the axis within

your app as well as its initial orientation.

It is important because it will determine which way is forward (-Z) and therefore

which way is left (-X) and right (+X), as well as which way is up (Y) and therefore which

way is down (-Y).

If we desire, we are able to change the default WorldAlignment property of the

ARWorldTrackingConfiguration which is WorldAlignment.Gravity.

As well as Gravity, there are three different WorldAlignment settings you can use

which make your axis work in different ways.

Chapter 2 Basic Concepts

25

�Gravity
The Y axis is parallel to gravity, that is, straight down; the other axes are aligned to the

initial orientation of the device when the app is started. That is, -Z is the direction the

device was facing when the app was launched, -X to the left, X the right, and +Z behind.

For example, using this option and placing an object into the scene with the

coordinates (0, 0, -1f) will place it 1 m from the world origin in the direction the app was

facing when it started. If you closed the app, turned the direction you were facing, then

launched the app again, and again placed an object into the scene at (0, 0, -1f), it will

appear 1 m from the world origin in the direction you are now facing.

In most cases, WorldAlignment = ARWorldAlignment.Gravity will give your axis the

behavior you desire, so I’d recommend you stick with using this for the time being.

�GravityAndHeading
Again, the Y axis is parallel to gravity, though this time the Z axis is aligned to North and

South and the X axis to East and West. That is, -Z is always the direction of North, +Z

South, -X West, and +X East.

I imagine you may want to use this setting if you are building some sort of navigation

functionality. Using this setting effectively turns your axis into a compass which will

always make your axis orientated to North, South, East, and West.

For example, using this option and placing an object into the scene with the

coordinates (0, 0, -1f) will place it 1 m from the world origin in the direction of magnetic

North, and therefore placing something at (-1f, 0, 0) will place it 1 m West of your current

location, and so forth.

For both Gravity and GravityAndHeading, any position along the Y axis is aligned

with gravity with -Y going straight down toward the center of the earth and +Y straight up

away from the center of the earth.

�Camera
This setting works very differently to both Gravity and GravityHeading. Using

WorldAlignment.Camera sets the coordinates system of the scene to match the

orientation of the camera at all times, therefore making -Z always aligned to the direction

you are facing, -X always to your left, and Y upward from the camera. How you orientate

Chapter 2 Basic Concepts

26

the camera will have an effect on the axis system, including which direction the Y axis is

aligned to.

If these World Alignments seem confusing right now, do not worry too much. One

great way of getting used to them is by turning on a debug flag which places a visual

representation of the X, Y, and Z axes into the scene at the world origin, something that is

very useful when experimenting with your first AR experiences. We will look at how to do

this in Chapter 4, “Built-in AR Guides.”

�Size
Sizes in ARKit (well, actually SceneKit remember?) are stored as float data types where a

value of 1f is equivalent to 1 meter, which means 0.1f is the equivalent of 10 centimeters

and 0.01f is 1 centimeter. It is useful to bear this in mind as it is easy to make something

too big (and you cannot see it because you are inside it!) or too far away. Coincidentally

animating the size and position of something in AR scenes can produce a nice effect,

something we will learn how to do in Chapter 5, “Animations.”

In Figure 2-2, we can see the relative sizes of boxes that are 1 cm, 10 cm, 50 m, and 1 m,

respectively, and the code that created them in Listings 2-4 and 2-5.

Figure 2-2.  Virtual objects with different sizes

Chapter 2 Basic Concepts

27

This time as shown in Listing 2-4 in the ViewDidAppear method (where we will

implement most of our AR code throughout this book), we are creating four different

instances of CubeNode (a custom class that we have inherited from SCNNode that can

be seen in Listing 2-5) of varying sizes and adding them to the scene using the important

method called this.sceneView.Scene.RootNode.AddChildNode().

We will look at SCNNodes in more detail in the next chapter, “Nodes, Geometries,

Materials, and Anchors.”

Listing 2-4.  Adding objects of different sizes

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(

 new ARWorldTrackingConfiguration());

 // 1cm

 var cubeNode1 = new CubeNode(0.01f, UIColor.Red);

 cubeNode1.Position = new SCNVector3(0, 0, 0);

 // 10cm

 var cubeNode2 = new CubeNode(0.1f, UIColor.Green);

 cubeNode2.Position = new SCNVector3(0.1f, 0, 0);

 // 50cm (0.5m)

 var cubeNode3

 = new CubeNode(0.5f, UIColor.Orange);

 cubeNode3.Position = new SCNVector3(0.5f, 0, 0);

 // 100cm (1m)

 var cubeNode4 = new CubeNode(1f, UIColor.Yellow);

 cubeNode4.Position = new SCNVector3(1.5f, 0, 0);

 this.sceneView.Scene.RootNode

 .AddChildNode(cubeNode1);

 this.sceneView.Scene.RootNode

 .AddChildNode(cubeNode2);

Chapter 2 Basic Concepts

28

 this.sceneView.Scene.RootNode

 .AddChildNode(cubeNode3);

 this.sceneView.Scene.RootNode

 .AddChildNode(cubeNode4);

}

Listing 2-5.  CubeNode class

public class CubeNode : SCNNode

{

 public CubeNode(float size, UIColor color)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = color;

 var geometry = SCNBox.Create(size, size, size,0);

 geometry.Materials = new[] { material };

 var rootNode = new SCNNode();

 rootNode.Geometry = geometry;

 AddChildNode(rootNode);

 }

}

�Configuration
When you start an ARSession with ARSession.Run(), you provide an instance of

ARConfiguration. The sort of capabilities you want your AR app to have and how you

want it to behave will determine the type of configuration you use.

For example, if you want to do face detection, you pass it an instance of

ARFaceTrackingConfiguration along with some configuration variable such as the

number of faces to track.

Here is a list of the configurations we will look at later in this book.

•	 ARWorldTrackingConfiguration enables world tracking including

plane, image, and object detection, and we use it in the majority of

examples in this book.

Chapter 2 Basic Concepts

29

•	 ARFaceTrackingConfiguration enables face tracking, and we will

look at this in Chapter 11, “Face Tracking and Expression Detection.”

•	 ARBodyTrackingConfiguration enables body tracking, and we will

look at this in Chapter 16, “Body Tracking.”

�Summary
You should now have a good understanding of the basic concepts of what is necessary to

start an Augmented Reality Session to set up your AR scene and understand how to find

your way around the scene once it is running including sizing and the axis, coordinates,

and positioning system.

In the next chapter, we will look at the kinds of things you can place in your scene

including Nodes, Geometries, Materials, and Anchors.

Chapter 2 Basic Concepts

31
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_3

CHAPTER 3

Nodes, Geometries,
Materials, and Anchors
In this chapter, we will look at the building blocks that go together to create everything

we can see and interact with in our Augmented Reality experiences. Let’s start adding

things to our AR scenes.

�Nodes
In your AR scene, you are almost certainly going to have one or more nodes (instances of

SCNNode). By default, these nodes do not have any shape or form, so therefore don’t look

like anything. We give them form by applying a geometry and a visual appearance by

applying materials to that geometry.

What might you use a node for you wonder? Well, almost everything. It may be as

simple as placing a colored 3D sphere or a 2D plane showing an image into a scene, for

example. Both of those items will be nodes.

We can specify the position of a node using SCNVector3 as we saw in Chapter 2,

“Basic Concepts”; otherwise, its default position will be the WorldOrigin (0,0,0) when

added to a scene.

A node can have many child nodes, and those child nodes have child nodes of

their own, and so on. Why might you want to have child nodes you wonder? Well, if

you placed 50 nodes in a scene and then want to change the position of all 50 nodes,

you would have to change the position of each node in turn. Unless that is, you create

a single node, then add those 50 nodes as children of that node, then you need only

change the position of the parent node and the relative position of the child nodes will

more accordingly.

https://doi.org/10.1007/978-1-4842-6770-7_3#DOI

32

I like to think of nodes like Lego bricks, each individual piece with its own shape,

size, appearance, and function, which by themselves aren’t useful, but by putting them

together, we can make something greater, something far more complex and useful.

�Opacity
It is possible to set several properties on a node including Opacity, which is something I

love to use, even if just subtly. By changing a node’s opacity, we are able to make it more

or less opaque and conversely therefore more or less transparent.

Opacity is a float value that ranges from 0f (completely transparent) to 1f (completely

opaque), and by default, a node’s opacity value will be 1f (completely opaque).

In Listing 3-1, you can see how we can declare a new material (SCNMaterial), in this

case a solid blue color. Then we create a new Geometry (a type of 2D or 3D shape), in

this case a box (SCNBox) which is 1m in height, width, and depth and assign the material

to the box, making a blue box. Then we create a new node (SCNNode) and set its

geometry to be the new box. After which, we are setting the node’s opacity to 0.5f,

effectively making it 50% opaque. Then finally we add the node to the scene by calling

this.sceneView.Scene.RootNode.AddChildNode().

Listing 3-1.  Creating a simple node with shape, size, and color

// Create the Material

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Blue;

// Create the Box Geometry and set its Material

var geometry = SCNBox.Create(1f, 1f, 1f, 0);

geometry.Materials = new[] { material };

// Create the Node and set its Geometry

var cubeNode = new SCNNode();

cubeNode.Geometry = geometry;

// Make the cube 50% opaque

cubeNode.Opacity = 0.5f;

Chapter 3 Nodes, Geometries, Materials, and Anchors

33

// Add the Node to the Scene

// Remember, as we are not explicitly setting a position,

// The Node will appear at the WorldOrigin (0,0,0)

this.sceneView.Scene.RootNode.AddChildNode(cubeNode);

Worry not, Materials and Geometries are discussed in the upcoming sections.

�Geometries
The geometry is the shape or mesh that a node can have, and without them, our scenes

would be very boring; indeed, as without them, we would just have a bunch of invisible

formless nodes. Geometries can be simple shapes or complex meshes. In the following

section, you can see the different types of basic built-in geometry shapes available for us

to use.

�Built-in Geometry Shapes
There are a number of built-in geometry shapes that you can use for your nodes.

But don’t worry. You aren’t limited by these basic shapes; you can provide a custom

geometry or build a 3D model in another tool and import it into your app, something we

will discuss in Chapter 13, “3D Models.”

The following code in Listing 3-2 creates a simple box geometry for the node which is

10 cm in width, height, and depth which is then given a red material before being added

to the scene.

Listing 3-2.  Creating a simple 10 cm red cube

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Red;

var boxNode = new SCNNode();

boxNode.Geometry = SCNBox.Create(0.1f, 0.1f, 0.1f, 0);

boxNode.Geometry.Materials = new SCNMaterial[] { material };

this.sceneView.Scene.RootNode.AddChildNode(boxNode);

Chapter 3 Nodes, Geometries, Materials, and Anchors

34

Here are the built-in geometry shapes we can use:

•	 SCNPlane – This is a 2D four-sided rectangle or square; they can be

very useful for placing images onto show images in a scene or as

surfaces on which to place other objects. It’s worth noting that you

can adjust the CornerRadius property of a plane to turn those sharp

corners into softer, rounder corners.

•	 SCNBox – If you choose to use the same value for width, depth, and

height, your box will be like a regular cube, or by using different

values, it may be more like a flatter postal package. Similar to a

SCNPlane, you can change your sharp box corners into softer,

rounder corners, but this time by changing the box’s ChamferRadius

property.

•	 SCNSphere – A sphere, useful for depicting things like planets.

•	 SCNCylinder – A solid cylindrical shape.

•	 SCNTorus – A Torus is just a fancy word for a doughnut or ring shape.

•	 SCNCone – A solid cone shape with a circular base at one end and a

point at the other.

•	 SCNTube – Similar to the SCNCylinder, except this is a hollow tube,

like a pipe.

•	 SCNText – 3D text you can place in the scene, as like most text, you are

able to set its Font and Size.

•	 SCNPyramid – Just like the Egyptians built, well kind of.

Each geometry requires a different set of parameters when calling its .Create()

method to define different aspects of the shape. For example, SCNSphere.Create() only

takes one parameter which is the radius of the sphere, whereas SCNBox.Create() takes

three to define its width, height, and depth.

Figure 3-1 shows the aforementioned different types of geometry shapes we can use.

But even after creating a geometry and assigning it to a node, you won’t be able

to see it until you create and assign a material to it. So we had best look at how to use

materials.

Chapter 3 Nodes, Geometries, Materials, and Anchors

35

�Materials
You apply one or more materials (instances of SCNMaterial) to a geometry to give it a

visual appearance. We will specifically be looking at how to give an item a solid color or

wrap it in an image.

�Solid Color Material
One of the most basic materials you can give a geometry is a solid color as shown in

Listing 3-3 where we set the Contents property of the Material’s Diffuse property to be

UIColor.Red.

Listing 3-3.  Setting a material to be a solid color

// Create the Material

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Red;

// Create the Box Geometry and set its Material

var geometry = SCNBox.Create(1f, 1f, 1f, 0);

geometry.Materials = new[] { material };

Figure 3-1.  The different types of built-in geometries

Chapter 3 Nodes, Geometries, Materials, and Anchors

36

// Create the Node and set its Geometry

var cubeNode = new SCNNode();

cubeNode.Geometry = geometry;

You may be wondering why a geometry accepts an array of materials; this is because

we can use different materials on different sides of the geometry. For example, if we

declared six different materials each using a different color and provided those six

materials in the array for a box geometry, then we would get a box with six different-

colored sides.

�Image Material
Another type of material you can give a geometry is an image. This can be useful if we

want to wrap a geometry in an image or place an image on a 2D plane. Notice this time,

we are setting a UIImage to the Materials Diffuse Contents property as shown in

Listing 3-4. This Contents property accepts a few different types including UIColor and

UIImage as we have already seen.

Listing 3-4.  Setting a material to be an image

// Load the image

var image = UIImage.FromFile("Images/pineapple.jpg");

// Create the Material

var material = new SCNMaterial();

material.Diffuse.Contents = image;

material.DoubleSided = true;

// Create the Plane Geometry and set its Material

var geometry = SCNPlane.Create(1f, 1f);

geometry.Materials = new[] { material };

// Create the Node and set its Geometry

var rootNode = new SCNNode();

rootNode.Geometry = geometry;

// Add the Node to the Scene

this.sceneView.Scene.RootNode.AddChildNode(rootNode);

Chapter 3 Nodes, Geometries, Materials, and Anchors

37

Hint I f you do not use material.DoubleSided = true, then your geometry
may only be visible when viewed from certain angles.

It is worth mentioning that PNG images containing transparency can be used as well

and the transparency will be maintained. For example, if you created a transparent PNG

that contained some text and used that image as a material on a SCNPlane, you would

just see floating text. This is quite a useful and nice effect.

�Material Fill Mode
By default, the fill mode of a material is solid. However, you can always change the fill

mode to lines to see a kind of mesh that makes up the shape. In Listing 3-5 and Figure 3-2,

you can see how the fill mode of the sphere geometry can be solid or lines.

Listing 3-5.  Material fill modes

var material = new SCNMaterial();

material.Diffuse.Contents = colour;

material.FillMode = SCNFillMode.Lines;

Figure 3-2.  Different material fill modes

Chapter 3 Nodes, Geometries, Materials, and Anchors

38

�Anchors
Anchors are points of reference that are either automatically detected or manually

placed in the scene. For example, when doing image detection like we do in Chapter 10,

“Image Detection,” an ImageAnchor is automatically placed in the scene at the location

of the detected image. They help tether our virtual objects to the real world.

The kinds of Anchors we will use in this book include

•	 ARPlaneAnchor – Represents a detected horizontal or vertical plane

in a scene which we will use in Chapter 9, “Plane Detection,” to help

visualize walls, floors, and surfaces.

•	 ARImageAnchor – Represents a detected image in a scene which we

will use in Chapter 10, “Image Detection,” when detecting predefined

images in a scene.

•	 ARFaceAnchor – Represents a detected face in a scene which we will

use in Chapter 11, “Face Tracking and Expression Detection,” where

we can add other nodes to the detected face geometry and even

detect a range of facial expressions.

•	 ARObjectAnchor – Represents a detected object in a scene which

we will use in Chapter 15, “Object Detection,” when the shape of a

predefined “scanned” 3D object is detected in the scene.

•	 ARBodyAnchor – Represents a detected body in a scene which we

will use in Chapter 16, “Body Tracking,” to track the location and

orientation of a body in the scene.

Anchors are crucial for keeping track of the presence and locations of points of

interest to our AR experience.

�Things to Try
Using the concepts discussed in this chapter such as nodes, geometries, and materials

and combining them with things discussed in Chapter 2, “Basic Concepts,” such as

positioning and sizes, you should now be able to try a few things yourself.

Chapter 3 Nodes, Geometries, Materials, and Anchors

39

Here are some ideas to get you started.

Create a snowman out of basic geometries and materials.

Start by creating a single node and then adding other nodes with basic geometries to it

with different positions, sizes, and materials to create a basic snowman. You could start

with white spheres for the body and head, black spheres for eyes, brown spheres for

buttons, and black cylinders for the hat.

See how many items you can place in the scene and in different places.

Now that you know how to place items in different places, see how many you can place

in the scene at different positions with a large for or do while loop. You could even use

Random, to place them at random positions.

Place items of different sizes in the scene.

Get a feel for how large a virtual 1 cm, 10 cm, and 1 m item is when placed in

your scene.

Place items of different colors and opacities in the scene.

Using different colored materials, create different colored nodes, and see what they look

like with different opacity values.

Create transparent PNGs and use them as a geometries material.

Create a transparent PNG, add some large thick text to it and use that image as the

material of a SCNPlane, see how effective it is using transparent PNGs in this manner.

See how big or small you can make nodes.

See how small an item you can place in the scene and still see it; then see how large an

item you can place in a scene (for the latter, you may need to place it far away from you;

else, you run the risk of being inside the item, if you occupy the same space as it).

�Summary
We’ve discussed nodes which are the physical building blocks of Augmented Reality in

ARKit that we will use a great deal, how to make use of built-in geometry shapes, how to

give them a visual appearance, and how to place them in the scene.

In the next chapter, we will look at some of the built-in tools and guides we can use to

help develop and understand our Augmented Reality scenes.

Chapter 3 Nodes, Geometries, Materials, and Anchors

41
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_4

CHAPTER 4

Built-in AR Guides
ARKit comes with a few useful built-in guides and tools that can help when developing

your first Augmented Reality experiences. We can enable some of these by setting their

flag in the SCNDebugOptions when setting up our scene.

�Show Feature Points
Toggling on the flag to show feature points is something I recommend you do when

creating your first app. It helps show you how dependent the app and camera are on

lighting conditions and surfaces. However, in later apps, you will seldom need to turn

this feature on.

You enable it by setting a DebugOptions flag as shown in Listing 4-1.

Listing 4-1.  Enabling feature points in the code

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView

 {

 DebugOptions = ARSCNDebugOptions.ShowFeaturePoints

 };

 this.View.AddSubview(this.sceneView);

}

When the ShowFeaturePoints DebugOption is enabled, you will see yellow dots

appearing on surfaces within your scene like those shown in Figure 4-1. An abundance

of feature points means that ARKit can detect many feature points in the scene. This is

good because ARKit uses feature points to help maintain the position of virtual objects in

a scene.

https://doi.org/10.1007/978-1-4842-6770-7_4#DOI

42

You will notice that when turning ShowFeaturePoints on and running your app

in a poorly lit environment or against featureless surfaces (such as plain walls or glass

surfaces), there will be far fewer yellow dots. This helps confirm that in order for your

app to run optimally, it should be used in a well-lit, feature-filled environment.

�Show World Origin and Coordinate Axis
As briefly mentioned when we introduced the concept of position in Chapter 2, “Basic

Concepts,” it is possible to turn on a guide which shows the X, Y, and Z coordinate axes at

the world origin as shown in Listing 4-2. This can help us orientate ourselves, reminding

us which direction the X, Y, and Z axes are as seen in Figure 4-2.

Figure 4-1.  Showing feature points in a scene helps us understand how the app is
looking for points of interest in the scene

Chapter 4 Built-in AR Guides

43

As the axis is shown at the world origin, it indicates the location of the device when

the session started, where position 0,0,0 is. Remember a node added to the scene that

hasn’t been given a specific location will appear at the world origin.

Listing 4-2.  Enabling WorldOrigin helper

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView

 {

 DebugOptions = ARSCNDebugOptions.ShowWorldOrigin

 };

 this.View.AddSubview(this.sceneView);

}

Figure 4-2.  Showing coordinate axis at the WorldOrigin

Chapter 4 Built-in AR Guides

44

Note that you can enable multiple debug options at the same time. For example, in

Listing 4-3, you can see that we are showing both feature points and the world origin/

axis in the scene.

Listing 4-3.  Enabling multiple debug options

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView

 {

 DebugOptions

 = ARSCNDebugOptions.ShowFeaturePoints |

 ARSCNDebugOptions.ShowWorldOrigin

 };

 this.View.AddSubview(this.sceneView);

}

�Show Statistics
By turning on the ShowStatistics option as shown in Listing 4-4 and pressing the +

button on the bottom bar, additional information is shown at the bottom of the screen

while your app is running as can be seen in Figure 4-3. The statistics view shows some

useful information especially if your app is a bit sluggish or not performing as smoothly

as you would like.

Listing 4-4.  Enabling Statistics in the code

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView {

 ShowsStatistics = true

 };

 this.View.AddSubview(this.sceneView);

}

Chapter 4 Built-in AR Guides

45

The statistics view shows the framerate as frames per second (fps) as well as the GPU

usage of the view. You will want to keep an eye on the fps if it starts dropping too low;

60 fps is the maximum, and values above 30 are acceptable. It also shows the number of

Nodes (diamond) and number of Polygons (triangle) on the scene. If your app is starting

to suffer from performance problems, you may want to show statistics to investigate what

might be causing the slowdown.

�Coaching Overlay
As it is important for your app to understand its surroundings to function and place

things accurately in your scene, to help with this, you can use a built-in coaching overlay

which encourages the user to move their camera around until the app has gathered

sufficient information to be able to understand the scene accurately. You can add a

coaching overlay to your app as shown in Listing 4-5.

Figure 4-3.  Showing Statistics gives information about how much effort the scene
is taking to render

Chapter 4 Built-in AR Guides

46

Listing 4-5.  Enabling coaching overlay in code

public partial class ViewController : UIViewController,

IARCoachingOverlayViewDelegate

{

 private readonly ARSCNView sceneView;

 ARCoachingOverlayView coachingOverlay;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView();

 this.View.AddSubview(this.sceneView);

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(new

 ARWorldTrackingConfiguration {

 PlaneDetection = ARPlaneDetection.Horizontal,

 });

 coachingOverlay = new ARCoachingOverlayView();

 coachingOverlay.Session = sceneView.Session;

 coachingOverlay.Delegate = this;

 coachingOverlay.ActivatesAutomatically = true;

 coachingOverlay.Goal = ARCoachingGoal.HorizontalPlane;

 coachingOverlay.TranslatesAutoresizingMaskIntoConstraints = false;

 sceneView.AddSubview(coachingOverlay);

Chapter 4 Built-in AR Guides

47

 // Keeps the coaching overlay in the center of the screen

 var layoutConstraints = new NSLayoutConstraint[]

 {

 coachingOverlay.CenterXAnchor.ConstraintEqualTo(

 View.CenterXAnchor),

 coachingOverlay.CenterYAnchor.ConstraintEqualTo(

 View.CenterYAnchor),

 coachingOverlay.WidthAnchor.ConstraintEqualTo(

 View.WidthAnchor),

 coachingOverlay.HeightAnchor.ConstraintEqualTo(

 View.HeightAnchor),

 };

 NSLayoutConstraint.ActivateConstraints(

 layoutConstraints);

 }

 public override void ViewDidDisappear(bool animated)

 {

 base.ViewDidDisappear(animated);

 this.sceneView.Session.Pause();

 }

 public override void DidReceiveMemoryWarning()

 {

 base.DidReceiveMemoryWarning();

 }

}

The result can be seen in Figure 4-4; a transparent animated image overlays the

screen encouraging the user to move the phone around; after it understands the scene

sufficiently, it disappears.

Chapter 4 Built-in AR Guides

48

�Summary
Some of these built-in guides can be useful when first starting out creating and

familiarizing yourself with Augmented Reality experiences, but when you come to

publishing and distributing your app, you will almost certainly want to disable them.

In the next chapter, we will look at one of my favorite and impressive features for

creating engaging experiences which is Animations which are crucial to give your

experience a dynamic feel.

Figure 4-4.  Coaching overlays can help guide users to achieve a goal (such as
detect a plane)

Chapter 4 Built-in AR Guides

49
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_5

CHAPTER 5

Animations
An easy way of making your Augmented Reality apps look impressive is by adding a

little bit of movement to it by animating one or more nodes. Otherwise, it can look a bit

static and artificial. This may be as simple as fading nodes in and out or animating their

position or size, and fortunately, it is easy to do.

Technically, in SceneKit, we will be using something called a SCNAction. But because

the actions we will look at are enabling our animations, I will refer to SCNActions as

animations in this chapter.

�Animating Opacity
By animating the opacity of one or more objects in the Scene, nice effects like fading in

and fading out their appearance can be achieved. Listing 5-1 shows how to animate the

opacity of a node from 0f (zero opacity) to 1f (full opacity).

Listing 5-1.  Fading in a node from 0% opacity to 100% opacity over 3 seconds

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Blue;

var geometry = SCNSphere.Create(0.5f);

geometry.Materials = new[] { material };

var opacityAction = SCNAction.FadeOpacityTo(1f, 3);

var sphereNode = new SCNNode();

sphereNode.Geometry = geometry;

sphereNode.Opacity = 0f;

sphereNode.RunAction(opacityAction);

this.sceneView.Scene.RootNode.AddChildNode(sphereNode);

https://doi.org/10.1007/978-1-4842-6770-7_5#DOI

50

Animating an item into the scene is a great way to introduce items into your virtual

environment as can be seen in Figure 5-1. It feels a lot more natural than something

suddenly appearing in the blink of an eye.

�Animating Scale
While animating an object’s scale (size) is possible, I recommend that only minor, subtle

changes in scale be used to achieve the required effect. It is possible to animate an

object’s scale in its X, Y, and Z axis (or all) directions. Listing 5-2 shows how to scale a

nodes size to 10% of its original size over a second.

Listing 5-2.  Decreasing a nodes size by 90% over a second

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Yellow;

var geometry = SCNSphere.Create(0.2f);

geometry.Materials = new[] { material };

var scaleAction = SCNAction.ScaleBy(0.1f, 1);

var sphereNode = new SCNNode();

sphereNode.Geometry = geometry;

sphereNode.RunAction(scaleAction);

this.sceneView.Scene.RootNode.AddChildNode(sphereNode);

And Figure 5-2 shows the shrinking sphere animation.

Figure 5-1.  Changing the opacity from 0f to 1f over 3 seconds

Chapter 5 Animations

51

�Animating Position
It is possible to animate the position of a node from one position to another and this can

be achieved using the code in Listing 5-3. You may want to use this animation to make a

node move closer or further away from you.

Listing 5-3.  Moving a node’s position 0.5 meter in the Y axis over 3 seconds

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Blue;

var geometry = SCNSphere.Create(0.5f);

geometry.Materials = new[] { material };

var positionAction = SCNAction.MoveBy(new SCNVector3(0, 0.5f, 0f), 3);

var sphereNode = new SCNNode();

sphereNode.Geometry = geometry;

sphereNode.RunAction(positionAction);

this.sceneView.Scene.RootNode.AddChildNode(sphereNode);

Animating the position of our nodes helps us change them from being boring static

objects in our scene to dynamic moving objects.

�Animating Orientation
Want to rotate a node? Either by a few degrees or to make it spin? Well, you can, as

shown in Listing 5-4. Rotating objects in our scene can help show that they have certain

degrees of freedom and not completely static.

Figure 5-2.  Changing the scale of a node to 10% of its original size over 1 second

Chapter 5 Animations

52

Listing 5-4.  Rotating a node by 360 degrees over 3 seconds

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Green;

var geometry = SCNBox.Create(0.1f, 0.1f, 0.1f, 0);

geometry.Materials = new[] { material };

var rotateAction = SCNAction.RotateBy(

 0, (float)(Math.PI), 0, 3);

var cubeNode = new SCNNode();

cubeNode.RunAction(rotateAction);

this.sceneView.Scene.RootNode.AddChildNode(cubeNode);

The result is a slowly spinning cube as shown in Figure 5-3.

�Repeat Behavior
In the previous examples, the animations will by default run once. If you wish, it is easy

to make them run a predefined number of times as shown in Listing 5-5 or repeatedly as

shown in Listing 5-6.

Listing 5-5.  Repeating a rotate action five times

var rotateAction = SCNAction.RotateBy(

 0, (float)(Math.PI), 0, 3);

Figure 5-3.  Rotating a cube by 360 degrees over 3 seconds

Chapter 5 Animations

53

var repeatRotationFiveTimes =

 SCNAction.RepeatAction(rotateAction, 5);

sphereNode.RunAction(repeatRotationFiveTimes);

Listing 5-6.  Repeating a rotate action indefinitely

var rotateAction = SCNAction.RotateBy(

 0, (float)(Math.PI), 0, 3);

var repeatRotationForever =

 SCNAction.RepeatActionForever(rotateAction);

sphereNode.RunAction(repeatRotationForever);

�Animation Easing
I like to liken easing to acceleration and deceleration when driving a car. From a stand

still, it takes some time to get to your desired speed and some time to slow the car to a

stop as well. That is easing. The animation is happening at different speeds at different

times. The alternative to easing is Linear animation where the speed of the animation is

constant from beginning to end. Listing 5-7 shows how to use easing in your animations.

You may wonder when you may want to use easing. Personally, I think it gives

animations a more “natural” look than the default Linear. The options for easing are

EaseIn, EaseOut, EaseInEaseOut, and Linear.

Listing 5-7.  Easing animations can make them look more natural than their

linear counterparts

var opacityAction = SCNAction.FadeOpacityTo(1f, 3);

opacityAction.TimingMode = SCNActionTimingMode.EaseInEaseOut;

sphereNode.Opacity = 0f;

sphereNode.RunAction(opacityAction);

Chapter 5 Animations

54

�Combining Animations
To create even more interesting animations, you can combine them in a couple of ways.

For example, you could fade in a node while you move it toward you (along the Z axis)

while making it grow (scale up).

And you can either combine these animations so that they happen simultaneously or

in sequence as shown in Listing 5-8.

Listing 5-8.  You can group animations to play simultaneously or sequentially

var opacityAction = SCNAction.FadeOpacityTo(1f, 1);

var scaleAction = SCNAction.ScaleBy(1.2f, 1);

var positionAction = SCNAction.MoveBy(

 new SCNVector3(0, 0, -0.1f), 1);

// Would run the actions all at the same time

var simultaneousActions = SCNAction.Group(new SCNAction[] {

 opacityAction, scaleAction, positionAction });

sphereNode.RunAction(simultaneousActions);

// Would run the actions one after another

var sequentialActions = SCNAction.Sequence(new SCNAction[] {

 opacityAction, scaleAction, positionAction });

sphereNode.RunAction(sequentialActions);

Because SCNAction.Group() and SCNAction.Sequence() return SCNAction, you can

go on to group or sequence those groups and sequences into “other” groups and sequences.

�Waiting
If you want to wait a little before or between animations, you can use SCNAction.

Wait(numberOfSeconds) to put a delay into your sequence of animations. The code for

this is simple as shown in Listing 5-9.

Chapter 5 Animations

55

Listing 5-9.  You can use wait actions to have even greater control over the timing

of your animations

var waitAction = SCNAction.Wait(1);

�Summary
So by now your mind should be racing with ways of moving, scaling, and fading nodes

in your scene to create engaging, dynamic, and interesting AR experiences. Just bear in

mind that while animations are powerful when used subtly, too many animations can be

easily overwhelming. It’s up to you to learn how to strike a balance.

In the next chapter, we will look at Constraints which can make it easier to get nodes

to behave in particular ways. Sounds cryptic, right? Well, turn the page and let’s look at

what constraints can do for us.

Chapter 5 Animations

57
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_6

CHAPTER 6

Constraints
Using constraints on our nodes allows us to restrict their behavior in a certain way. Using

them, you can make nodes, for example, always face the camera or always face another

node if you wish.

�BillboardConstraint
I presume this effect is named after the experience you have as a passenger in a car when

you look at a billboard as you go past it.

If you apply this constraint to a node, it always faces the camera. If you are

wondering why you might ever need this, imagine if you have a sign or a label providing

information that you want the user to always be able to see. That would be a good

use case for the SCNBillboardConstraint. As you can see from Listing 6-1, adding a

constraint to a node is very simple.

Listing 6-1.  Have a node always face the camera using a SCNBillboardConstraint

var rootNode = new SCNNode

{

 Geometry = CreateGeometry(),

 Constraints = new[] { new SCNBillboardConstraint() }

};

�LookAtConstraint
The LookAtConstraint is similar to the BillboardConstraint in some ways; however,

this constraint tells the node to always look at (face) a particular node.

https://doi.org/10.1007/978-1-4842-6770-7_6#DOI

58

Previously, I have used this to make a number of surrounding nodes “look at” a

center invisible node with great effect as can be seen in Figure 6-1.

This effect is achieved using the code shown in Listing 6-2.

Listing 6-2.  Use “SCNLookAtConstraint” to make nodes always face another node

var lookAtConstraint = SCNLookAtConstraint.Create(targetNode);

lookAtConstraint.GimbalLockEnabled = true;

imagePlaneNode.Constraints = new SCNConstraint[]

{

 lookAtConstraint

};

Using GimbalLockEnabled=true stops the node from rotating horizontally if the

camera is rotated.

Figure 6-1.  You can use LookAtConstraints to point nodes to look at other nodes

Chapter 6 Constraints

59

�Other Constraints
There are a number of other, more advanced constraints that we can use from SceneKit;

however, they are beyond the scope of this introductory book. They include

•	 SCNOrientationConstraint

•	 SCNTransformConstraint

•	 SCNDistanceConstraint

•	 SCNAvoidOccluderConstraint

•	 SCNAccelerationConstraint

•	 SCNSliderConstraint

•	 SCNReplicatorConstraint

•	 SCNIKConstraint

�Things to Try
Play with LookAtConstraint.

Place a node with no geometry (therefore invisible) at the WorldOrigin. Add multiple

2D planes to a scene whose nodes have a SCNLookAtConstraint set to look at the world

origin node.

Play with Billboard Constraint.

Add multiple 2D planes into a scene whose nodes have a SCNBillboardConstraint and

notice how they always face the camera.

�Summary
The SCNBillboardConstraint and SCNLookAtConstraint constraints are useful ways of

restricting how you want your nodes to behave and are especially useful as they mean

you don’t need to use complex maths to calculate the exact angles necessary to achieve

the same effect.

In the next chapter, we will look at Lighting, something that at first glance may not

seem all that important but actually can make an AR experience a lot better or a lot

worse if not factored into your AR experiences.

Chapter 6 Constraints

61
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_7

CHAPTER 7

Lighting
It turns out that lighting is extremely important when it comes to making our AR scenes

look realistic. For example, if it is a bright day but we place a dark object in the scene, it

looks very artificial; conversely, the same can be said for placing a very light object in a

dark environment. So where possible we want to take the real-world lighting conditions

into consideration in our scene.

Another consideration for creating realistic AR experiences is shadows.

If you are placing objects in your scene between a light source (such as the sun) and

a surface (such as the floor), your mind expects to see a shadow. We can create these

fake shadows to make our scenes look like they would in the real world.

�Automatically Add Default Lighting
By default, “default” lighting is added to your SceneView as the default value of

ARSCNView.AutoenablesDefaultLighting is true. This places an omnidirectional light

source in the scene that points in the same direction as the camera. This may be fine for

your initial AR creations, but if you want more control over specific lighting instances,

you may wish to turn this off by setting AutoenablesDefaultLighting=false.

�Automatically Update Default Lighting
We can add default lighting to the scene that tries to mimic real-world lighting

conditions using the ARSCNView.AutomaticallyUpdatesLighting property. So if the

real-world lighting changes, the artificial light changes as well. Again, this is true by

default, and if you wish to have more control over lighting in your scenes, you can set

AutomaticallyUpdatesLighting=false as shown in Listing 7-1.

https://doi.org/10.1007/978-1-4842-6770-7_7#DOI

62

Listing 7-1.  A default light source is added to the scene, but you can turn it off if

you want to have more control/add your own light sources

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView

 {

 AutoenablesDefaultLighting = false,

 AutomaticallyUpdatesLighting = false

 };

 this.View.AddSubview(this.sceneView);

}

�Light Types
Rather than solely relying on default lighting, it is possible to place one or more specific

light sources in a scene by adding an instance of SCNLight to a SCNNode.

These are the different types of light sources (SCNLight.Type) you can use:

•	 Ambient – Emits light uniformly in all directions.

•	 Directional – Emits light in a certain direction with uniform strength,

so its originating position doesn’t matter. It will look the same

whether placed 10 cm or 1 m away.

•	 Omni – Similar to a directional, however, its position can dictate the

strength of the light. Use this if the distance of the light source matters

in your scene.

•	 Spot – Similar to Omni but the strength of the light gradually falls off

forming a cone of light.

In the real world, light bounces off multiple surfaces to light an area. The nearest

thing we can do to mimic this is adding an Ambient light source. Then to better represent

some actual light sources, we can use Directional lights. So it is not uncommon to add

multiple types of light sources to your scene.

Chapter 7 Lighting

63

The example in Listing 7-2 shows a directional light being added to a SCNNode and

made to point straight down, effectively lighting the top of any node placed underneath it.

Listing 7-2.  You create a light source and add it to a SCNNode

var light = SCNLight.Create();

light.LightType = SCNLightType.Directional;

light.Intensity = 2000f;

light.ShadowColor = UIColor.Black.ColorWithAlpha(0.5f);

light.ShadowRadius = 4;

light.ShadowSampleCount = 4;

light.CastsShadow = true;

var lightNode = new SCNNode();

lightNode.Light = light;

lightNode.EulerAngles = new SCNVector3((float)-Math.PI / 2, 0, 0);

Note I f the only virtual light source in your scene is a directional light, any
surfaces that are parallel to light direction will be black.

If we wanted, we can then do something clever and place this light above other

nodes in our scene to roughly mimic the sun and cast shadows on a plane placed on the

ground as can be seen in the next section.

�Adding Shadows
Making it look like your objects are casting a shadow in a scene is as simple as adding a

light source (SCNLight) above the object and a transparent plane below the object to act

as a surface on which the shadow to fall as can be seen in Figure 7-1.

Chapter 7 Lighting

64

The experience with and without the shadow are miles apart. Without the

shadow, the virtual cube still appears to be present in the scene, but our only way of

understanding its position and how high it is above the floor is by moving around.

However, including the shadow instantly gives us a much clearer indication as to the

position of the cube and its height above the floor.

In Listing 7-3, because we want to include plane detection, we use an

ARSCNViewDelegate, and this time, rather than have a separate class implement the

IARSCNViewDelegate, we will have our ViewController implement it and set our Scene

View Delegate to be the class itself (this).

In ViewDidAppear, we are enabling horizontal plane detection in the

ARWorldTrackingConfiguration. We are also creating an instance of a directional light,

setting its properties such as intensity, direction, and so on, then creating a SCNNode to

hold the light, and then placing the node containing the light in the scene.

Then we are creating a cube shaped and adding it to the scene, making sure to

position it below the light node.

Figure 7-1.  A virtual shadow shown on a virtual plane underneath a virtual cube
cast by a virtual light source

Chapter 7 Lighting

65

Then in the DidUpdateNode method, we are making sure the material of the

detected plane’s lighting model is SCNLightingModel.ShadowOnly, effectively making it

transparent for all but the casted shadow.

Listing 7-3.  If you add a light source above other nodes in a scene, you can make

them all cast a shadow, making the scene look more realistic

public partial class ViewController : UIViewController, IARSCNViewDelegate

 {

 private readonly ARSCNView sceneView;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView

 {

 AutoenablesDefaultLighting = true,

 AutomaticallyUpdatesLighting = true,

 Delegate = this

 };

 this.View.AddSubview(this.sceneView);

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 var configuration

 = new ARWorldTrackingConfiguration

 {

 AutoFocusEnabled = true,

 PlaneDetection = ARPlaneDetection.Horizontal,

 LightEstimationEnabled = true,

Chapter 7 Lighting

66

 WorldAlignment = ARWorldAlignment.Gravity,

 EnvironmentTexturing =

 AREnvironmentTexturing.Automatic

 };

 this.sceneView.Session.Run(configuration);

 var light = SCNLight.Create();

 light.LightType = SCNLightType.Directional;

 light.Intensity = 2000f;

 light.ShadowColor =

 UIColor.Black.ColorWithAlpha(0.5f);

 light.ShadowRadius = 4;

 light.ShadowSampleCount = 4;

 light.CastsShadow = true;

 var lightNode = new SCNNode();

 lightNode.Light = light;

 lightNode.EulerAngles

 = new SCNVector3((float)-Math.PI / 2, 0, 0);

 var cube = SCNBox.Create(0.1f, 0.1f, 0.1f, 0.02f);

 var metal = SCNMaterial.Create();

 metal.LightingModelName =

 SCNLightingModel.PhysicallyBased;

 metal.Roughness.Contents = new NSNumber(0.1);

 metal.Metalness.Contents = new NSNumber(1);

 cube.FirstMaterial = metal;

 var cubeNode = new SCNNode();

 cubeNode.Geometry = cube;

 cubeNode.CastsShadow = true;

 this.sceneView.Scene.RootNode

 .AddChildNode(lightNode);

 this.sceneView.Scene.RootNode

 .AddChildNode(cubeNode);

 }

Chapter 7 Lighting

67

 [Export("renderer:didUpdateNode:forAnchor:")]

 public void DidUpdateNode(ISCNSceneRenderer renderer,

 SCNNode node, ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor)

 {

 var plane =

 ARSCNPlaneGeometry.Create(sceneView.Device);

 plane.Update(planeAnchor.Geometry);

 plane.FirstMaterial.LightingModelName =

 SCNLightingModel.ShadowOnly;

 node.Geometry = plane;

 node.CastsShadow = false;

 }

 }

 }

Make sure if you are using the IARSCNViewDelegate on your ViewController class

rather than a separate class that you decorate the DidUpdateNode method with [Export(

"renderer:didUpdateNode:forAnchor:")] as shown in Listing 7-3. It is easy to forget, as

I have many a time, and wondered why my shadows were not showing.

Note I f you can’t see any shadows, make sure the nodes in your scene have
their CastsShadow property set to true.

�Things to Try
Experiment with different light source types and lighting properties.
Try adding different light sources to your scene (along with a number of different shaped

nodes) to see what effect they have on them. Try different light intensities and directions.

Try enabling and disabling default automatic lighting to see the effect on your scene.

Cast shadows.
Make sure you can get an example working that casts a shadow, preferably with multiple

objects, casting multiple shadows, as shadows really do make a scene pop and look more real.

Chapter 7 Lighting

68

�Summary
While you can create Augmented Reality experiences with little consideration for lighting

and in fact let ARKit even add default lighting to your scenes, to get more realistic

experiences, you will want to manually take control of lighting in your scenes yourself.

Play around with different types of lighting with different strengths in different positions

pointing in different directions.

As we have seen, adding artificial shadows adds an extra level of believability to our

experiences as we expect objects in the real world to cast shadows, so it makes sense to

get our virtual objects to cast shadows where possible.

In the next chapter, we will look at even more ways of engaging the user in our

experiences, this time using Video and Sound.

Chapter 7 Lighting

69
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_8

CHAPTER 8

Video and Sound
To add another dimension of interaction to your Augmented Reality experience, you can

incorporate sound and video to your scenes. It is especially effective when they are the

result of interacting with items in the scene.

�Playing Sound
Playing sound is a very simple affair; you just use an instance of AVAudioPlayer, provide

it with the location of a sound file (making sure you have added it to your project), and

call .Play() as can be seen in Listing 8-1.

Listing 8-1.  Playing sound in an AR scene

NSUrl songURL = new NSUrl($"Sounds/sound.mp3");

NSError err;

AVAudioPlayer player

 = new AVAudioPlayer(songURL, "Song", out err);

player.Volume = 0.5f;

player.FinishedPlaying += delegate {

 player = null;

};

player.Play();

As sound is a great way of feeding back interaction with your app, if you wanted, you

could play a sound when a SCNNode is pressed in a scene, for example. Or you could have

sound play when your app first loads.

https://doi.org/10.1007/978-1-4842-6770-7_8#DOI

70

�Playing Video
You have to see it to believe it, because it looks kind of awesome, but you can play videos

inside your Augmented Reality scenes which appear almost like virtual TV screens or

monitors.

In this example, we need to use a SKVideoNode and SKScene to play the video.

In Listing 8-2, you can see that we are placing the video on a 2D plane using a

SCNMaterial. As this is a material, you could use it elsewhere, for example, on the sides

of a 3D box.

Listing 8-2.  Playing video in an AR scene

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(new

 ARWorldTrackingConfiguration {

 LightEstimationEnabled = true,

 WorldAlignment = ARWorldAlignment.GravityAndHeading

 });

 var videoNode

 = new SKVideoNode("Videos/big-buck-bunny-wide.mp4");

 // Without this the video will be inverted upside down and

 // back to front

 videoNode.YScale = -1;

 videoNode.Play();

 var videoScene = new SKScene();

 videoScene.Size = new CoreGraphics.CGSize(640, 360);

 videoScene.ScaleMode = SKSceneScaleMode.AspectFill;

 videoNode.Position

 = new CoreGraphics.CGPoint(videoScene.Size.Width / 2,

 videoScene.Size.Height / 2);

 videoScene.AddChild(videoNode);

 // Set to be the same aspect ratio as the video itself

 //(1.77)

Chapter 8 Video and Sound

71

 var width = 0.5f;

 var length = 0.28f;

 var material = new SCNMaterial();

 material.Diffuse.Contents = videoScene;

 material.DoubleSided = true;

 var geometry = SCNPlane.Create(width, length);

 geometry.Materials = new[] { material };

 var planeNode = new SCNNode();

 planeNode.Geometry = geometry;

 planeNode.Position = new SCNVector3(0, 0, -0.5f);

 this.sceneView.Scene.RootNode.AddChildNode(planeNode);

}

In Listing 8-2, you will also notice that we must use a couple of more things from

SceneKit to play a video, including SKScene and SKVideoNode.

In Figure 8-1, you can see how a floating 2D plane can show a video being played.

It is even possible to alter its opacity to make it semitransparent or have it cast a shadow

as discussed in Chapter 7, “Lighting.”

Figure 8-1.  Playing a video on a floating 2D plane

Chapter 8 Video and Sound

72

�Things to Try
Play numerous videos simultaneously.
See if you can play the same video file on multiple plane nodes simultaneously; then see

if you can play different video files simultaneously on different nodes.

See how many nodes you can do this with simultaneously. 5? 50?

Play a video on a huge plane.
Ever dreamt of an 80-inch TV? See if you can recreate that by playing a movie file on a

huge 2D plane.

�Summary
Using sound in your Augmented Reality experiences can help provide auditory feedback

when the user interacts with your app, and using videos can help engage, entertain, or

communicate with your user. Both provide a greater level of engagement with the user.

In the next chapter, we will look at plane detection which identifies surfaces such

as floors and walls. Once we have detected these surfaces, we can do some interesting

things with them.

Chapter 8 Video and Sound

73
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_9

CHAPTER 9

Plane Detection
The ability to detect surfaces such as floors, walls, and surfaces is important as these

dictate the limits of our scenes environment as well as enabling us to place things

upon them.

The commercial applications of this AR feature are interesting. It is already used by

some businesses to detect walls and place products such as wallpaper or pictures on

them to allow customers to preview items in their homes before buying them.

�Detecting Planes
It is possible to set plane detection to just detect horizontal, vertical, or both horizontal

and vertical planes.

During plane detection, as the camera is moved around and detects more of its

environment, it can detect new planes or update its understanding of planes already

detected.

When a new plane is detected, an ARPlaneAnchor is placed at the detected location.

This anchor holds details about the detected plane such as its type (horizontal or

vertical), position, orientation, width, and length and is automatically given a unique ID

so that it can be distinguished from other planes.

Bear in mind that low lighting conditions and featureless or reflective surfaces will

hinder ARKit’s ability to detect planes. For example, ARKit will struggle to detect a plain

white wall or a wall in a dimly lit room.

�Remembering Planes
It is often desired and useful to keep track of detected planes in your app. In Listing 9-2

as well as the code for detecting planes, you will see code for storing the detected planes

in a variable for easy retrieval later on.

https://doi.org/10.1007/978-1-4842-6770-7_9#DOI

74

�ARSCNViewDelegate (Scene View Delegate)
Generally speaking, it is common practice to create a dedicated class (an instance

of ARSCNViewDelegate) that will handle events that are fired when different anchors

are detected and placed in the scene, for example, when planes, images, or faces are

detected. We will discuss this further in the chapters on Plane and Image detection as

well as Face Tracking.

So in order to enable plane detection, you will need to set your SceneView’s

SceneViewDelegate as shown in Listings 9-1 and 9-2.

Listing 9-1.  Setting a Delegate for the ARSCNView

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView

 {

 AutoenablesDefaultLighting = true,

 Delegate = new SceneViewDelegate()

 };

 this.View.AddSubview(this.sceneView);

}

Note  Rather than use a separate class to act as the Scene View Delegate, it is
possible to have your ViewController class implement IARSCNViewDelegate and
set the Delegate to this (itself).

Listing 9-2.  The instance of ARSCNViewDelegate will detect and respond to

events that are fired when new planes are detected or existing planes are updated

public class SceneViewDelegate : ARSCNViewDelegate

{

 �private readonly IDictionary<NSUuid, PlaneNode> planeNodes = new

Dictionary<NSUuid, PlaneNode>();

Chapter 9 Plane Detection

75

 public override void DidAddNode(

 ISCNSceneRenderer renderer,

 SCNNode node, ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor)

 {

 UIColor colour;

 if(planeAnchor.Alignment == ARPlaneAnchorAlignment.Vertical) {

 colour = UIColor.Red;

 }

 else {

 colour = UIColor.Blue;

 }

 var planeNode = new PlaneNode(

 planeAnchor, colour);

 var angle = (float)(-Math.PI / 2);

 planeNode.EulerAngles

 = new SCNVector3(angle, 0, 0);

 node.AddChildNode(planeNode);

 this.planeNodes.Add(anchor.Identifier, planeNode);

 }

 }

 public override void DidRemoveNode(

 ISCNSceneRenderer renderer, SCNNode node,

 ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor) {

 this.planeNodes[anchor.Identifier].RemoveFromParentNode();

 this.planeNodes.Remove(anchor.Identifier);

 }

 }

Chapter 9 Plane Detection

76

 public override void DidUpdateNode(ISCNSceneRenderer renderer,

 SCNNode node, ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor) {

 this.planeNodes[anchor.Identifier]

 .Update(planeAnchor);

 }

 }

}

The DidAddNode method fires when a new plane is detected in the scene (and

corresponding ARPlaneAnchor is added to the scene). The DidUpdateNode method fires

when ARKit’s understanding of an existing detected plane changes. That is, the plane

is larger than it originally thought, or the orientation is different. We can add our own

custom code to either of these methods to do interesting things with this information.

�Plane Detection Example
An example ViewController class that detects planes and places a blue or red SCNPlane

at the detected location depending on whether the plane is horizontal or vertical is

shown in Listing 9-3.

Listing 9-3.  A full end-to-end example of plane detection

 public partial class ViewController : UIViewController

 {

 private readonly ARSCNView sceneView;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView

 {

 AutoenablesDefaultLighting = true,

 Delegate = new SceneViewDelegate()

 };

 this.View.AddSubview(this.sceneView);

 }

Chapter 9 Plane Detection

77

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(new ARWorldTrackingConfiguration

 {

 �PlaneDetection = ARPlaneDetection.Horizontal |

ARPlaneDetection.Vertical,

 LightEstimationEnabled = true,

 WorldAlignment = ARWorldAlignment.GravityAndHeading

 �}, ARSessionRunOptions.ResetTracking |

ARSessionRunOptions.RemoveExistingAnchors);

 }

 public override void ViewDidDisappear(bool animated)

 {

 base.ViewDidDisappear(animated);

 this.sceneView.Session.Pause();

 }

 }

internal class PlaneNode : SCNNode

 {

 private readonly SCNPlane planeGeometry;

 public PlaneNode(ARPlaneAnchor planeAnchor, UIColor colour)

 {

 �Geometry = (planeGeometry = CreateGeometry(planeAnchor,

colour));

 }

Chapter 9 Plane Detection

78

 public void Update(ARPlaneAnchor planeAnchor)

 {

 planeGeometry.Width = planeAnchor.Extent.X;

 planeGeometry.Height = planeAnchor.Extent.Z;

 Position = new SCNVector3(

 planeAnchor.Center.X,

 planeAnchor.Center.Y,

 planeAnchor.Center.Z);

 }

 �private static SCNPlane CreateGeometry(ARPlaneAnchor planeAnchor,

UIColor colour)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = colour;

 material.DoubleSided = true;

 material.Transparency = 0.8f;

 �var geometry = SCNPlane.Create(planeAnchor.Extent.X,

planeAnchor.Extent.Z);

 geometry.Materials = new[] { material };

 return geometry;

 }

 }

public class SceneViewDelegate : ARSCNViewDelegate

 {

 �private readonly IDictionary<NSUuid, PlaneNode> planeNodes = new

Dictionary<NSUuid, PlaneNode>();

 public override void DidAddNode(

 ISCNSceneRenderer renderer, SCNNode node,

 ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor)

 {

 UIColor colour;

Chapter 9 Plane Detection

79

 �if(planeAnchor.Alignment == ARPlaneAnchorAlignment.

Vertical)

 {

 colour = UIColor.Red;

 }

 else {

 colour = UIColor.Blue;

 }

 var planeNode

 = new PlaneNode(planeAnchor, colour);

 var angle = (float)(-Math.PI / 2);

 planeNode.EulerAngles

 = new SCNVector3(angle, 0, 0);

 node.AddChildNode(planeNode);

 this.planeNodes.Add(anchor.Identifier, planeNode);

 }

 }

 public override void DidRemoveNode(

 ISCNSceneRenderer renderer, SCNNode node,

 ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor)

 {

 this.planeNodes[anchor.Identifier]

 .RemoveFromParentNode();

 this.planeNodes.Remove(anchor.Identifier);

 }

 }

 public override void DidUpdateNode(

 ISCNSceneRenderer renderer, SCNNode node,

 ARAnchor anchor)

 {

 if (anchor is ARPlaneAnchor planeAnchor)

Chapter 9 Plane Detection

80

 {

 this.planeNodes[anchor.Identifier]

 .Update(planeAnchor);

 }

 }

 }

The result can be seen in Figure 9-1. Where the floor meets the wall, you can see how

the materials of detected vertical and horizontal planes have been made red and blue,

respectively. Opacity has been used so that you can still see the plane (wall or floor).

Of course, as discussed in Chapter 3, “Nodes, Geometries, Materials, and Anchors,”

as well as solid colors, geometry materials can also be images. By using a transparent

PNG of a square and repeating/tiling the image on a detected plane, the following grid

effect shown in Figure 9-2 can easily be achieved.

Figure 9-1.  Differentiating between detected horizontal and vertical planes

Chapter 9 Plane Detection

81

�Turning Off Plane Detection
Plane detection can be CPU intensive; it is recommended that once you have identified

the planes you desire, you turn off plane detection, as shown in Listing 9-4.

This is done by simply calling the .Run() method on the existing SceneView

Session, this time with an ARWorldTrackingConfiguration with PlaneDetection set to

ARPlaneDetection.None.

Listing 9-4.  It is recommended to turn off plane detection when no longer

needed

...

// Turn off plane detection

var configuration = new ARWorldTrackingConfiguration

{

 PlaneDetection = ARPlaneDetection.None,

 LightEstimationEnabled = true,

};

this.sceneView.Session.Run(configuration, ARSessionRunOptions.None);

...

Figure 9-2.  Grid image used on a detected plane

Chapter 9 Plane Detection

82

�Possible Applications
Plane detection is already used successfully by a number of businesses. Some major

furniture retailers use it in their apps to detect the floor to allow users to place 3D models

of their furniture in their living rooms. Some wallpaper and paint retailers use it to allow

users of their apps to preview what a particular wallpaper or paint may look like on their

walls.

Being able to detect planes in a scene also comes in useful if we want to have our

virtual objects cast virtual shadows onto real surfaces as we saw in Chapter 7, “Lighting.”

Like many aspects of AR, you need only use your imagination and you should

hopefully be able to quickly identify many possible applications.

�Things to Try
Now that you know the theory of plane detection, you can try the following to use the

feature in different ways.

Identify detected vertical and horizontal planes and visually differentiate them.
Set detected horizontal and vertical planes to a color of your choice, and play around

with the opacity.

Use a material with an image on detected planes.
Rather than give your detected planes geometries a solid color, provide it with an image

as its material. I have seen a (tiled) transparent grid image used to give detected planes

an interesting look.

Turn off plane detection.
Practice turning off plane detection when you no longer need it. As mentioned, it is

intensive and after you have detected your plane(s) sufficiently, often you do not need to

detect more.

Add touch interaction to your detected planes.
Once you have read Chapter 12, “Touch Gestures and Interaction,” come back and add

touch gestures to your detected planes. Maybe change their color or some other aspect

when tapped?

Chapter 9 Plane Detection

83

�Summary
Plane detection is an important concept to understand as it gives you the ability to do a

number of interesting things like placing objects on detected surfaces.

Continuing on our theme of built-in detection abilities in ARKit, in the next chapter,

we will look at image detection which allows us to identify predefined images in a scene

and do some interesting things with them.

Chapter 9 Plane Detection

85
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_10

CHAPTER 10

Image Detection
Image detection is one of the most simple, fun, and useful abilities in Augmented

Reality, and ARKit makes it super easy to do it.

In this chapter, we are going to see how we can use ARKit to recognize the location of

predetermined images we want it to detect. Once we identify the location of a recognized

image, we can do additional things such as replacing or adding to it. In this way, images

are often used as markers to identify a location in 3D space.

�Adding Images as App Resources
One way of declaring the image(s) to detect is to package them along with the app. This

is great if you know what image(s) you want to detect before you deploy the app.

https://doi.org/10.1007/978-1-4842-6770-7_10#DOI

86

To do this:

	 1.	 Double-click the Assets.xcassets folder in Solution Explorer to

see the following screen shown in Figure 10-1.

	 2.	 Click the bottom right green plus icon to bring up the “add”

context menu and select “New AR Resource Group” to add a new

AR Resource Group as shown in Figure 10-2.

Figure 10-1.  The Assets.xcassets folder

Chapter 10 Image Detection

87

	 3.	 Right-click the new AR Resource Group and choose “New AR

Reference Image” as shown in Figure 10-3.

Figure 10-2.  Add new AR Resource Group

Figure 10-3.  Add new AR Reference Image

Chapter 10 Image Detection

88

	 4.	 Choose the image, provide its dimensions, and optionally

rename it as shown in Figure 10-4.

The dimensions you specify in Step 4 are the approximate dimensions the image will

appear as in the real world. You specify these to help the app detect it.

�Detecting the Images
Now that we have added the images that we want to detect in the real world, we need to

write the code to detect them and do something interesting when our app detects them.

As you can see in our constructor in Listing 10-1, we are telling our Scene View to use

a Scene View Delegate. This class that can be seen in Listing 10-3 effectively handles the

image detected event.

Listing 10-1.  Setting a Scene View Delegate to use in the constructor

public ViewController(IntPtr handle) : base(handle)

{

 this.sceneView = new ARSCNView

 {

Figure 10-4.  Select Image and provide dimensions

Chapter 10 Image Detection

89

 AutoenablesDefaultLighting = true,

 Delegate = new SceneViewDelegate()

 };

 this.View.AddSubview(this.sceneView);

}

In Listing 10-2, we are retrieving the images that we previously added to the “AR

Resources AR Reference Group” in Figure 10-4 and setting those as the images we want

to detect.

Listing 10-2.  Declaring which images we wish to detect in the scene

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 var detectionImages = ARReferenceImage.GetReferenceImagesInGroup("AR

Resources", null);

 this.sceneView.Session.Run(new ARWorldTrackingConfiguration

 {

 LightEstimationEnabled = true,

 WorldAlignment = ARWorldAlignment.GravityAndHeading,

 DetectionImages = detectionImages,

 MaximumNumberOfTrackedImages = 1

 });

}

In our SceneViewDelegate in Listing 10-3, we first check to see if the anchor that has

been added to the scene is an ARImageAnchor. This will have been as a result of our app

detecting the target image in the camera view. We can then get the corresponding name

of the Reference Image that we provided in Figure 10-4 so we can identify which image

has been detected.

Then next in this example, all we are doing are determining the dimensions of the

detected image, creating a blue plane, and placing it at the location of the detected

image, effectively covering the image.

Chapter 10 Image Detection

90

It is worth noting that once you have placed virtual things on this node, if you change

the orientation of the detected image in the real world, the orientation of your added

plane will also be rotated.

This is a pretty cool effect and shows just how clever ARKit is; it is able to recognize

that the orientation of the detected image is changing and can change the orientation of

your virtual nodes accordingly in real time.

Listing 10-3.  Scene View Delegate handles image detection events

public class SceneViewDelegate : ARSCNViewDelegate

{

 public override void DidAddNode(

 ISCNSceneRenderer renderer, SCNNode node, ARAnchor anchor)

 {

 if (anchor is ARImageAnchor imageAnchor)

 {

 var detectedImage = imageAnchor.ReferenceImage;

 var width = detectedImage.PhysicalSize.Width;

 var length = detectedImage.PhysicalSize.Height;

 �var planeNode = new PlaneNode(width, length, new SCNVector3(0,

0, 0), UIColor.Blue);

 float angle = (float)(-Math.PI / 2);

 planeNode.EulerAngles

 = new SCNVector3(angle, 0, 0);

 node.AddChildNode(planeNode);

 }

 }

}

Chapter 10 Image Detection

91

In Listing 10-4, we can see a simple class to encapsulate a plane node we used in

Listing 10-3.

Listing 10-4.  Our custom PlaneNode

public class PlaneNode : SCNNode

{

 public PlaneNode(nfloat width, nfloat length,

 SCNVector3 position, UIColor colour)

 {

 var rootNode = new SCNNode

 {

 Geometry = CreateGeometry(width, length, colour),

 Position = position

 };

 AddChildNode(rootNode);

 }

 private static SCNGeometry CreateGeometry(

 nfloat width, nfloat length, UIColor colour)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = colour;

 material.DoubleSided = false;

 var geometry = SCNPlane.Create(width, length);

 geometry.Materials = new[] { material };

 return geometry;

 }

}

�Dynamically Adding Images to Detect
As well as packaging the image(s) which you want to detect along with the app, it is also

possible to dynamically add images to detect at runtime. This is especially useful if you

don’t know which images you need to detect at compile time.

Chapter 10 Image Detection

92

For example, you could make a call to the Amazon API, return the images for the

top-selling book front covers, and add those to the app to detect. Then provide further

functionality when those book covers are detected such as retrieving and displaying

review information in AR next to the detected book.

�Things to Try
Now that you know how to detect expected images in a scene, you may wish to try and

see what you can do with that functionality. Here are some ideas.

Replace the detected image with another image.
When you have detected the image, try placing another image on top of the detected

image (apparently replacing it).

Replace the detected image with a video.
After you have detected the image, place a video at the location of the detected image

and play it. See Chapter 8, “Video and Sound,” for how to add a video to your scene.

Place a 3D model at the location of the detected image.
After detecting the image, place a 3D model at the location of the detected image. See

Chapter 13, “3D Models,” for how to add a 3D model to your scene.

Figure 10-5.  Placing a 3D model on a detected image

Chapter 10 Image Detection

93

Image detection can be used to create some interesting effects as can be seen in

Figure 10-5 which shows a 3D model placed on top of the detected image and Figure 10-6

which shows floating images added on top of a detected image.

�Summary
Image detection is a very useful feature in Augmented Reality often used by marketers to

add AR experiences to their products.

Another amazing feature that comes right out of the box with ARKit is the ability to

not only track faces but also facial expressions. We will explore this in the next chapter,

“Face Tracking and Expression Detection.”

Figure 10-6.  Adding floating images to a detected image

Chapter 10 Image Detection

95
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_11

CHAPTER 11

Face Tracking
and Expression Detection
Just in case you thought that the built-in Augmented Reality functionality that ARKit has

to offer wasn’t amazing enough, you won’t believe what you can do with face tracking

and facial expression detection. By using the front-facing camera, it can track multiple

faces and even the expressions on them.

�Tracking Faces
Out of the box ARKit gives us the ability to track up to three different faces in a scene. To

be clear, that means detecting faces and following them around the scene.

Please note that without additional coding, ARKit cannot recognize who the faces

belong to. ARKit can only detect that there are faces in front of the camera, not who they

belong to.

https://doi.org/10.1007/978-1-4842-6770-7_11#DOI

96

It is worth noting that older iOS devices may not support face tracking. It is

recommended that you check the ARFaceTrackingConfiguration.IsSupported property

before trying to call the face tracking functionality as if your device does not support it,

the app will just crash and exit if it attempts to call the functionality. If face tracking is not

supported, you may wish to show a message to the user telling them this.

In Listing 11-1, we are running our Session, this time with an

ARFaceTrackingConfiguration which by default uses the front camera on the phone

and allows us to track faces in the scene as demonstrated in Figure 11-1.

We are then using a Scene View Delegate to handle the events that are fired when a face

is detected, moves, or changes. More specifically, in the following code example, when a

new face is detected in the scene (which places an ARFaceAnchor at the relevant position),

Figure 11-1.  Up to three faces can be tracked in a scene and their geometry
retrieved and manipulated

Chapter 11 Face Tracking and Expression Detection

97

we are retrieving the facial geometry and setting it to be the geometry of the node that is

placed at the location of the ARFaceAnchor and setting it to be 80% opaque.

Listing 11-1.  Tracking people’s faces in the scene

public partial class ViewController : UIViewController

{

 private readonly ARSCNView sceneView;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView

 {

 AutoenablesDefaultLighting = true,

 Delegate = new SceneViewDelegate()

 };

 this.View.AddSubview(this.sceneView);

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 var faceTrackingConfiguration = new ARFaceTrackingConfiguration()

 {

 LightEstimationEnabled = true,

 MaximumNumberOfTrackedFaces = 1

 };

 this.sceneView.Session.Run(faceTrackingConfiguration);

 }

Chapter 11 Face Tracking and Expression Detection

98

 public override void ViewDidDisappear(bool animated)

 {

 base.ViewDidDisappear(animated);

 this.sceneView.Session.Pause();

 }

}

public class SceneViewDelegate : ARSCNViewDelegate

{

 �public override void DidAddNode(ISCNSceneRenderer renderer, SCNNode

node, ARAnchor anchor)

 {

 if (anchor is ARFaceAnchor faceAnchor)

 {

 �var faceGeometry = ARSCNFaceGeometry.Create(renderer.

GetDevice());

 node.Geometry = faceGeometry;

 node.Opacity = 0.8f;

 }

 }

 �public override void DidUpdateNode(ISCNSceneRenderer renderer, SCNNode

node, ARAnchor anchor)

 {

 if (anchor is ARFaceAnchor)

 {

 var faceAnchor = anchor as ARFaceAnchor;

 var faceGeometry = node.Geometry as ARSCNFaceGeometry;

 faceGeometry.Update(faceAnchor.Geometry);

 }

 }

}

Instead of using a plane solid color for the facial geometry, if we wanted, we could

use an image instead. So we could place an image on top of someone’s face, making

them look like a masked superhero, for example.

Chapter 11 Face Tracking and Expression Detection

99

It is easy to doubt the usefulness of the real-world applications of this functionality

and just think of it as a bit of fun; however, there are successful businesses that have

implemented this type of facial tracking to great effect. For example, being able to track

the orientation of faces, some businesses show what different glasses look like when

worn by the user by adding 3D models of different styles of glasses onto the user’s facial

geometry. Impressive stuff.

�Recognize Facial Expressions
As well as tracking the presence of faces in our scene, we are also able to detect a

surprisingly large number of different facial expressions on those faces (in fact, over 50

different facial expressions).

In Figure 11-2, I am using material.FillMode = SCNFillMode.Lines that we first

mentioned in Chapter 3, “Nodes, Geometries, Materials, and Anchors,” with a default

color of white and then, when detecting a mouth funnel, changing the line color to yellow.

Figure 11-2.  More than 50 different facial expressions can be detected

Chapter 11 Face Tracking and Expression Detection

100

Using SCNFillMode.Lines, we can really see how ARKit can detect the contours of

the face. It’s no surprise that it can infer a number of facial expressions.

Here is a complete list of detectable facial expressions (I told you there were a lot):

•	 eyeBlinkLeft, eyeBlinkRight

•	 eyeLookDownLeft, eyeLookDownRight

•	 eyeLookInLeft, eyeLookInRight

•	 eyeLookOutLeft, eyeLookOutRight

•	 eyeLookUpLeft, eyeLookUpRight

•	 eyeSquintLeft, eyeSquintRight

•	 eyeWideLeft, eyeWideRight

•	 jawForward

•	 jawLeft, jawRight

•	 jawOpen

•	 mouthClose

•	 mouthFunnel

•	 mouthPucker

•	 mouthLeft, mouthRight

•	 mouthSmileLeft, mouthSmileRight

•	 mouthFrownLeft, mouthFrownRight

•	 mouthDimpleLeft, mouthDimpleRight

•	 mouthStretchLeft, mouthStretchRight

•	 mouthRollLower, mouthRollUpper

•	 mouthShrugLower, mouthShrugUpper

•	 mouthPressLeft, mouthPressRight

•	 mouthLowerDownLeft, mouthLowerDownRight

•	 mouthUpperUpLeft, mouthUpperUpRight

Chapter 11 Face Tracking and Expression Detection

101

•	 browDownLeft, browDownRight

•	 browInnerUp

•	 browOuterUpLeft

•	 browOuterUpRight

•	 cheekPuff

•	 cheekSquintLeft, cheekSquintRight

•	 noseSneerLeft, noseSneerRight

•	 tongueOut

The description of each expression can be found here in Apple’s official

documentation: https://developer.apple.com/documentation/arkit/arfaceanchor/

blendshapelocation.

ARKit even allows us to track multiple expressions simultaneously (e.g., right eye

closed and tongue out) as well as tracking the relative presence of those expressions. For

example, each expression has a floating value between 0 and 1 to denote the complete

absence of the expression or the complete presence of it, that is, to track whether the

tongue is not out at all, a little bit, or completely.

Listing 11-2 shows how we can set up and use ARFaceTrackingConfiguration when

we start our session.

Listing 11-2.  Recognizing a few of the facial expressions

public partial class ViewController : UIViewController

{

 private readonly ARSCNView sceneView;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView

 {

 AutoenablesDefaultLighting = true,

 Delegate = new SceneViewDelegate()

 };

Chapter 11 Face Tracking and Expression Detection

https://developer.apple.com/documentation/arkit/arfaceanchor/blendshapelocation
https://developer.apple.com/documentation/arkit/arfaceanchor/blendshapelocation

102

 this.View.AddSubview(this.sceneView);

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 var faceTrackingConfiguration = new

 ARFaceTrackingConfiguration()

 {

 LightEstimationEnabled = true,

 MaximumNumberOfTrackedFaces = 1

 };

 this.sceneView.Session.Run(faceTrackingConfiguration);

 }

 public override void ViewDidDisappear(bool animated)

 {

 base.ViewDidDisappear(animated);

 this.sceneView.Session.Pause();

 }

}

public class SceneViewDelegate : ARSCNViewDelegate

{

 �public override void DidAddNode(ISCNSceneRenderer renderer, SCNNode

node, ARAnchor anchor)

 {

 if (anchor is ARFaceAnchor)

 {

Chapter 11 Face Tracking and Expression Detection

103

 �var faceGeometry = ARSCNFaceGeometry.Create(renderer.

GetDevice());

 node.Geometry = faceGeometry;

 node.Geometry.FirstMaterial.FillMode =

 SCNFillMode.Lines;

 }

 }

 �public override void DidUpdateNode(ISCNSceneRenderer renderer, SCNNode

node, ARAnchor anchor)

 {

 if (anchor is ARFaceAnchor)

 {

 var faceAnchor = anchor as ARFaceAnchor;

 var faceGeometry = node.Geometry as

 ARSCNFaceGeometry;

 var expressionThreshold = 0.5f;

 faceGeometry.Update(faceAnchor.Geometry);

 if (faceAnchor.BlendShapes.EyeBlinkLeft > expressionThreshold

 || �faceAnchor.BlendShapes.EyeBlinkRight >

expressionThreshold)

 {

 ChangeFaceColour(node, UIColor.Blue);

 return;

 }

 if (faceAnchor.BlendShapes.MouthSmileLeft > expressionThreshold

 || �faceAnchor.BlendShapes.MouthSmileRight >

expressionThreshold)

 {

 ChangeFaceColour(node, UIColor.SystemPinkColor);

 return;

 }

Chapter 11 Face Tracking and Expression Detection

104

 if (faceAnchor.BlendShapes.EyeLookOutLeft > expressionThreshold

 || �faceAnchor.BlendShapes.EyeLookOutRight >

expressionThreshold)

 {

 ChangeFaceColour(node, UIColor.Magenta);

 return;

 }

 if (faceAnchor.BlendShapes.TongueOut > expressionThreshold)

 {

 ChangeFaceColour(node, UIColor.Red);

 return;

 }

 if (faceAnchor.BlendShapes.CheekPuff > expressionThreshold)

 {

 ChangeFaceColour(node, UIColor.Orange);

 return;

 }

 ChangeFaceColour(node, UIColor.White);

 }

 }

 private void ChangeFaceColour(SCNNode faceGeometry, UIColor colour)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = colour;

 material.FillMode = SCNFillMode.Lines;

 faceGeometry.Geometry.FirstMaterial = material;

 }

}

Notice in Listing 11-2 we are using SCNFillMode.Lines as the materials FillMode to

better show the contours of the facial geometry.

Chapter 11 Face Tracking and Expression Detection

105

�Things to Try
Add new nodes and shapes to your detected face.
Create and add additional nodes (e.g., shapes or images) to the node containing the

facial mesh in the DidUpdateNode method – for example, placing a basic “hat” on

someone’s head, giving them a beard or moustache, or showing an image (on a 2D

plane) containing information on that person.

Treat different tracked faces differently.
As mentioned, ARKit can track up to three faces simultaneously. Try assigning a different

color to each face being tracked.

Use an image for the face material.
Instead of a solid color for the detected face node material, try using an image for the

material. With the right image, you could make the user’s face look like a Spider-Man

mask or similar. Use your imagination!

�Summary
Face tracking and facial expression detection allows us to make augmented personal by

involving the user’s face in the experiences. The use cases of this can range from a bit of

fun to previewing wearable products, a very popular use case for Augmented Reality apps.

So far in the book, we have looked at placing items in our scene; in the next chapter,

we will look at how we can interact with those objects as we learn about touch gestures

and interaction.

Chapter 11 Face Tracking and Expression Detection

107
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_12

CHAPTER 12

Touch Gestures
and Interaction
So far, we’ve looked at different ways of adding virtual objects to our Augmented Reality

scenes. Wouldn’t it be great if you could interact with them too? Oh, wait. You can, and

that is what we will look at in this chapter.

�Gesture Recognizers
There are a number of predefined ways of touching your device’s screen that can

be automatically translated into what are called gestures and fire an equivalent

UIGestureRecognizer. Then based on the type of gesture made, if any of the virtual

items in your scene are touched, they can be manipulated accordingly.

We are able to recognize a number of different gestures on the device’s screen, and in

this chapter, we will look at how we can react to them.

•	 Tap

•	 Rotate

•	 Pinch

•	 Swipe

•	 Long press

We will also look at how we can alter the default behaviors of these gestures and

extend them. For example, easily changing the tap gesture into a double-tap gesture or

changing how long a press is required for a long press gesture.

https://doi.org/10.1007/978-1-4842-6770-7_12#DOI

108

You must bear in mind that device screens are two-dimensional and therefore our

gestures are in 2D, so it is sometimes necessary to define in the code which axis you

are wanting to manipulate your virtual item in. For example, when using the panning

gesture up or down or left or right, it makes sense to move an object along the Y and X

axes in 3D space, but how do you enable the user to move something along the Z axis to

be closer or further? You may wish to use multiple gesture recognizers to achieve your

desired experience.

�Hooking Up Gesture Recognizers
In order for our app to respond to different types of touch, we need to tell our SceneView

to listen for the gestures that we want it to recognize as can be seen in Listing 12-1.

Then in the subsequent listings in this chapter, we can look at example code that

runs for those types of gestures.

Listing 12-1.  We can tell our app to respond to a number of different gestures

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 ...

 var panGesture = new UIPanGestureRecognizer(HandlePanGesture);

 this.sceneView.AddGestureRecognizer(panGesture);

 �var rotateGesture = new UIRotationGestureRecognizer

(HandleRotateGesture);

 this.sceneView.AddGestureRecognizer(rotateGesture);

 var pinchGesture = new UIPinchGestureRecognizer(HandlePinchGesture);

 this.sceneView.AddGestureRecognizer(pinchGesture);

 var tapGesture = new UITapGestureRecognizer(HandleTapGesture);

 this.sceneView.AddGestureRecognizer(tapGesture);

 var swipeGesture = new UISwipeGestureRecognizer(HandleSwipeGesture);

 this.sceneView.AddGestureRecognizer(swipeGesture);

Chapter 12 Touch Gestures and Interaction

109

 �var longPressGesture = new UILongPressGestureRecognizer(HandleLongPress

Gesture);

 this.sceneView.AddGestureRecognizer(longPressGesture);

 ...

}

�Tapping
We can detect whether a tap on the screen touches a virtual object in our scene and react

accordingly. We can also insist on a minimum number of taps if we wanted, for example,

to make it a double-click gesture recognizer. In Listing 12-2, when a node is tapped, we

are changing its color to be black.

Listing 12-2.  Tap UIGestureRecognizer

private void HandleTapGesture(UITapGestureRecognizer sender)

{

 var areaTapped = sender.View as SCNView;

 var location = sender.LocationInView(areaTapped);

 var hitTestResults = areaTapped.HitTest(

 location, new SCNHitTestOptions());

 var hitTest = hitTestResults.FirstOrDefault();

 if (hitTest == null)

 return;

 var node = hitTest.Node;

 var material = new SCNMaterial();

 material.Diffuse.Contents = UIColor.Black;

 node.Geometry.FirstMaterial = material;

}

Chapter 12 Touch Gestures and Interaction

110

If you are using the tap gesture to “select” a virtual object in your scene, you may

want to do other things to denote that it is “selected,” such as change its color or scale, for

example, something to help denote that the object that has been tapped has focus and

you want your user to know what has been tapped/selected.

�Pinching
By placing two fingers on the screen and pinching them together or un-pinching them

apart, we can scale the virtual item you are pinching larger or smaller. This can be

achieved using the code shown in Listing 12-3.

Note  When handling the Pinch Gesture and scaling nodes as shown in Listing 12-2,
it is necessary to reset the sender scale to 1 to avoid unusual behavior.

Listing 12-3.  Pinch UIGestureRecognizer

private void HandlePinchGesture(UIPinchGestureRecognizer sender)

{

 var areaPinched = sender.View as SCNView;

 var location = sender.LocationInView(areaPinched);

 var hitTestResults = areaPinched.HitTest(

 location, new SCNHitTestOptions());

 var hitTest = hitTestResults.FirstOrDefault();

 if (hitTest == null)

 return;

 var node = hitTest.Node;

 var scaleX = (float)sender.Scale * node.Scale.X;

 var scaleY = (float)sender.Scale * node.Scale.Y;

 var scaleZ = (float)sender.Scale * node.Scale.Z;

 node.Scale = new SCNVector3(scaleX, scaleY, scaleZ);

 sender.Scale = 1;

}

Chapter 12 Touch Gestures and Interaction

111

Pinching is a great way to scale items in your scene. It is often used to scale items

or zoom in/out in other popular apps so it will feel natural to a user to use pinching in

this way.

�Rotating
By placing two fingers on the screen atop a virtual object and rotating their position

clockwise or counterclockwise, we can rotate the virtual item in a given axis.

In Listing 12-4, we are rotating the orientation of the touched object in the Z axis

when we detect this gesture.

Listing 12-4.  Rotate UIGestureRecognizer

private void HandleRotateGesture(UIRotationGestureRecognizer sender)

{

 var areaTouched = sender.View as SCNView;

 var location = sender.LocationInView(areaTouched);

 var hitTestResults = areaTouched.HitTest(

 location, new SCNHitTestOptions());

 var hitTest = hitTestResults.FirstOrDefault();

 if (hitTest == null)

 return;

 var node = hitTest.Node;

 newAngleZ = (float)(-sender.Rotation);

 newAngleZ += currentAngleZ;

 node.EulerAngles = new SCNVector3(node.EulerAngles.X,

 node.EulerAngles.Y, newAngleZ);

}

You may need to try translating the rotate gesture to change the orientation of the

object in different axis to achieve the correct result.

Chapter 12 Touch Gestures and Interaction

112

�Panning
By placing your finger on the screen atop a virtual object and dragging it across the

screen in any direction, then releasing, we can move an item from its original position to

a new one along a given axis. Listing 12-5 shows how you could respond to a pan gesture.

Listing 12-5.  Pan UIGestureRecognizer

private void HandlePanGesture(UIPanGestureRecognizer sender)

{

 var areaPanned = sender.View as SCNView;

 var location = sender.LocationInView(areaPanned);

 var hitTestResults = areaPanned.HitTest(location,

 new SCNHitTestOptions());

 var hitTest = hitTestResults.FirstOrDefault();

 if (hitTest == null)

 return;

 var node = hitTest.Node;

 if (sender.State == UIGestureRecognizerState.Changed)

 {

 var translate = sender.TranslationInView(areaPanned);

 // Only allow movement vertically or horizontally

 // High values are used so that the movement is smooth

 node.LocalTranslate(

 new SCNVector3((float)translate.X / 10000f,

 (float)-translate.Y / 10000, 0.0f));

 }

}

As mentioned in the introduction, we can only interact with our device screens in

two dimensions using touch gestures (vertically and horizontally), so when a pan gesture

is recognized, we need to choose which of the two axes we want to move the object in.

Whether you are looking at an object from the side or from above may determine

which axis you wish to move them along.

Chapter 12 Touch Gestures and Interaction

113

�Swiping
By placing your finger on the screen atop a virtual object and swiping it across the screen

either vertically or horizontally, we can have our virtual objects respond to swipes. In

Listing 12-6, when a swiping gesture is detected on a node, it will turn it pink.

Listing 12-6.  Swipe UIGestureRecognizer

private void HandleSwipeGesture(UISwipeGestureRecognizer sender)

{

 var areaSwiped = sender.View as SCNView;

 var location = sender.LocationInView(areaSwiped);

 var hitTestResults = areaSwiped.HitTest(

 location, new SCNHitTestOptions());

 var hitTest = hitTestResults.FirstOrDefault();

 if (hitTest == null)

 return;

 var node = hitTest.Node;

 var material = new SCNMaterial();

 material.Diffuse.Contents = UIColor.SystemPinkColor;

 node.Geometry.FirstMaterial = material;

}

The swiping gesture is similar to a fast pan gesture and is often used to remove or

dismiss things in other apps, so you could do the same with your app if you wished.

�Long Press
By placing your finger on the screen atop a virtual object and holding it there, we can

have our virtual object respond to the long press gesture. In Listing 12-7, when a long

press gesture is detected on a node, it will turn it orange.

Chapter 12 Touch Gestures and Interaction

114

Listing 12-7.  Long Press UIGestureRecognizer

private void HandleLongPressGesture(UILongPressGestureRecognizer sender)

{

 var areaPressed = sender.View as SCNView;

 var location = sender.LocationInView(areaPressed);

 var hitTestResults = areaPressed.HitTest(

 location, new SCNHitTestOptions());

 var hitTest = hitTestResults.FirstOrDefault();

 if (hitTest == null)

 return;

 var node = hitTest.Node;

 var material = new SCNMaterial();

 material.Diffuse.Contents = UIColor.Orange;

 node.Geometry.FirstMaterial = material;

}

You could use a long press as a type of “special selection” and as a way to

differentiate from just a simple “tap” gesture.

It is possible to change the MinimumPressDuration, which is the number of seconds

which the press needs to happen for to be considered a long press and fire which by

default is 0.5.

�Things to Try
Touch interactions are some of the more tactile interactions that we have with our

Augmented Reality experiences. You can fine-tune them to suit your needs.

Add touch gesture recognizers to your app.
Try adding tap, rotate, pan, swipe, and long press touch gesture recognizers to your app

and have them manipulate objects in your scene in different ways.

Alter the MinimumPressDuration of the long press gesture.
Try changing the MinimumPressDuration required to fire a long press gesture from the

default 0.5 seconds to 2 seconds.

Chapter 12 Touch Gestures and Interaction

115

Change the minimum number of fingers required in the gestures.
Try enforcing two or more fingers be involved in the gesture before it is fired using the

NumberOfTouchesRequired property. By default, it is 1.

Require a double-tap condition to activate a tap gesture.
You can change the NumberOfTapsRequired property on the tap gesture recognizer to 2,

to change a tap gesture recognizer into a double-tap recognizer. You don’t need much

imagination to figure out how to implement a triple-tap gesture recognizer.

�Summary
You should now know how to interact with any item you place into your AR experiences

in several different ways including moving them around in 3D space. The trick is to make

your interactions intuitive and behave in a manner your user would expect.

So far, we have been placing simple shapes and images into our scene; in the next

chapter, we will look at how we can place much more interesting objects into our scene,

3D models.

Chapter 12 Touch Gestures and Interaction

117
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_13

CHAPTER 13

3D Models
In this chapter, we will look at how we can take existing 3D models and use them in your

Augmented Reality scenes as well as discuss the popular free 3D tool “Blender” and how

it can be used to create your own 3D models.

We’ve already seen that SceneKit allows us to use seven or eight different primitive

3D models such as boxes, spheres, cylinders, planes, and so on, but they are rather

limited and unexciting. By using existing 3D models or even creating our own, we can

make our Augmented Reality experiences more impressive and engaging.

�Importing 3D Models
Fortunately, it is easy to import existing 3D models into a scene and SceneKit/ARKit

support several 3D file formats.

The following 3D model formats can be used in our scenes:

•	 .dae

•	 .usdz

•	 .usda

•	 .usd and .usdc

•	 .rcproject and .reality

•	 .obj and .mtl

•	 .abc

•	 .ply

•	 .stl

•	 .scn

https://doi.org/10.1007/978-1-4842-6770-7_13#DOI

118

There are an increasing number of websites and creators specializing in pre-made

3D models. I have found free3d.com to be an excellent place to find free and cheap pre-

made 3D models.

In Listing 13-1, we can see how simple it is to import a 3D model into our scene.

It is worth noting that once the 3D model has been added to the scene as a SCNNode,

it is just like any other SCNNode, so we can change its position, scale, orientation,

materials, and so on. In fact, sometimes imported 3D models are far too big for our

scene, so we need to change the scale of the nodes before they will fit into our scene.

And of course you can combine other effects we covered in previous chapters with

your 3D model. For example, you could use animations to have the 3D model slowly spin

or set its opacity to have it slightly transparent or have it fade into the scene.

One thing you must bear in mind when retrieving the 3D model from the file is that

you will need to retrieve the specific node you wish to retrieve from the file by name as

can be seen in Listing 13-1. Fortunately, Xcode can be quite useful in determining the

name of the node you wish to add, as can be seen in Figure 13-1.

Listing 13-1.  Adding a 3D model to a scene

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(

 new ARWorldTrackingConfiguration());

 SCNScene sceneFromFile = SCNScene.FromFile(

 "art.scnassets/tree.dae");

 SCNNode model = sceneFromFile.RootNode.FindChildNode(

 childName:"SomeChildName", recursively: true);

 // How to scale or position the node model if needed

 model.Scale = new SCNVector3(0.2f, 0.2f, 0.2f);

 model.Position = new SCNVector3(0, -0.2f, 0);

 this.sceneView.Scene.RootNode.AddChildNode(model);

}

Chapter 13 3D Models

119

To reiterate, if you have possession of the 3D model file but don’t know the name of

the root node, then if you open the file in Xcode, you should be able to click around parts

of the model and navigate the scene graph to find the root node name.

�Creating Your Own 3D Models in Blender
If you want to create your own 3D models in your Augmented Reality experiences,

I strongly recommend you consider learning how to use a 3D modelling tool called

Blender. It is something that I am slowly learning myself.

For starters, it is a free tool that is not only powerful but at the same time accessible

to beginners willing to put in the time to learn it, and is becoming increasingly popular.

In fact, many film studios have started using Blender for creating 3D models and

effects rather than using expensive industry standard alternatives. There are also a lot

Figure 13-1.  Xcode is useful for finding the name of your root node if you do not
know it

Chapter 13 3D Models

120

of tutorials online about how to create various 3D models ranging from doughnuts to

furniture to castles and cars.

For example, as can be seen in Figure 13-2, using Blender and a plug-in called

“BlenderGIS,” we can produce a 3D model of any terrain returned from Google Maps,

then export it and use it in our AR experiences.

You can see in Figure 13-2, this example is also using shadows (from Chapter 7,

“Lighting”) to help the user to understand how high off the ground it is floating and

make it look more real.

Note  Whether you create, export, and import your own 3D model or obtain and
use a pre-made 3D model, if that model comes with textures (usually one or more
image files), you will need to make sure you package those along with your 3D
model. Often the 3D model file will reference the image texture files locations
relatively, so they often need to be stored in the same folder or at least relative to
where the 3D model file resides.

Figure 13-2.  Using 3D models from Blender in our AR experiences can be very
impressive

Chapter 13 3D Models

121

�Add Shadows, Animations, and Make Interactive
By this point, we have already covered a few other concepts that we can use in

conjunction with our 3D models. We can add lighting and shadows to make the 3D

models look more real. We can use animations to make the 3D models more dynamic.

�Things to Try
You could spend all day playing around with 3D models in your Augmented Reality

scenes; however, here are a few ideas of things you could try.

Add a pre-made 3D model to your app.
Obtain a supported, 3D model file, add it to your project, and place it in your scene.

Create a simple model in Blender and use it in your app.
Create a basic model in Blender; it doesn’t have to be complicated. Then export it into a

supported file type, add it to your project, then use it in your scene.

Use touch gestures to interact with 3D models in your scene.
Get your 3D model to respond to the touch interactions discussed in Chapter 12, “Touch

Gestures and Interaction.”

Add animations to your 3D model.
Use some of the animations (actions) discussed in Chapter 5, “Animations,” to animate

the scale, position, or opacity of a 3D model in your scene.

Use 3D models with Image detection.
Try adding a 3D model to an image detected in a scene. You’ll notice that if you rotate

the orientation of the detected image, the orientation of the 3D model will change

similarly.

�Summary
As well as basic 3D shapes, which we learned about previously, you should now be aware

of how more complex 3D models can be added to and used in your AR experiences. You

can either obtain pre-made ones or even build and use your own using a 3D modelling

tool like Blender.

Chapter 13 3D Models

122

With various models and shapes in our scene now, we should look at ways that we

can allow them to simulate interaction with each other and their physical environment

through the use of simulated physics. If you are thinking this sounds complicated, don’t

worry. ARKit has some built-in physics abilities so that we don’t have to worry about the

maths and complexities as we shall see in the next chapter, “Physics.”

Chapter 13 3D Models

123
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_14

CHAPTER 14

Physics
Another amazing thing that SceneKit provides us with right out of the box that we can

use in our Augmented Reality experiences is a physics engine. This means that we can

give the items we place in our scenes the ability to interact with each other as you would

expect if they were real objects.

We can do this by setting the SCNNode.PhysicsBody property on our SCNNodes.

�Giving an Item a Rigid Structure
We can give our nodes some virtual substance beyond a visual appearance so that things

can collide with it as if it were solid as shown in Listing 14-1.

We set our nodes’ physics body to be solid by calling PhysicsBody =

SCNPhysicsBody.CreateKinematicBody().

Listing 14-1.  Making a 2D plane rigid

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.DarkGray;

var geometry = SCNPlane.Create(width, length);

geometry.Materials = new[] { material };

var planeNode = new SCNNode

{

 Geometry = geometry,

 PhysicsBody = SCNPhysicsBody.CreateKinematicBody(),

 EulerAngles = new SCNVector3((float)(-Math.PI / 2), 0, 0)

};

https://doi.org/10.1007/978-1-4842-6770-7_14#DOI

124

Once we have done this, other nodes with a PhysicsBody will collide with it if they try

to occupy the same space, and more importantly, we can place items on top of this solid

plane.

�Applying Gravity to an Object
Instead of placing items in our scene at a particular position and having them effectively

“float” there remaining in that position, we can tell items to mimic being effected by

gravity, that is, be pulled straight down until they are stopped by hitting another virtual

item that has been given a rigid body as we did previously in Figure 14-1.

To have a SCNNode be pulled down like gravity, we can set its PhysicsBody to be

a Dynamic Body PhysicsBody = SCNPhysicsBody.CreateDynamicBody() as shown in

Listing 14-2.

If you do use gravity in your scene and on your nodes, I suggest you also use a

Kinematic Body as a type of physical surface or floor; otherwise, you’ll find your nodes

just fall off the screen toward the center of the earth! In fact, they will keep falling while

they are well out of view (but will still use app memory!).

By placing a kinetic plane underneath, we can stop that unusual and undesired

behavior and mimic something more like a real-world experiences.

Listing 14-2.  Making a cube effected by gravity

var material = new SCNMaterial();

material.Diffuse.Contents = UIColor.Green;

var size = 0.05f;

var geometry = SCNBox.Create(size, size, size, 0);

geometry.Materials = new[] { material };

var cubeNode = new SCNNode

{

 Geometry = geometry,

 PhysicsBody = SCNPhysicsBody.CreateDynamicBody(),

};

Chapter 14 Physics

125

�Combining Gravity and Solid Objects
In the following example (Listing 14-3), we are placing a 2D plane in the scene and

giving it a solid rigid physical attribute. We are then spawning cubes above the 2D plane

that are affected by gravity and are pulled downward until they hit and come to rest on

the solid 2D plane.

Listing 14-3.  Using gravity to drop solid cubes onto a solid 2D plane

public partial class ViewController : UIViewController

 {

 private readonly ARSCNView sceneView;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView();

 this.View.AddSubview(this.sceneView);

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(new ARWorldTrackingConfiguration

 {

 LightEstimationEnabled = true,

 WorldAlignment = ARWorldAlignment.Gravity

 });

 �var planeNode = new PlaneNode(width:0.5f, length:0.5f, UIColor.

DarkGray);

Chapter 14 Physics

126

 this.sceneView.Scene.RootNode.AddChildNode(planeNode);

 }

 public override void TouchesEnded(NSSet touches, UIEvent evt)

 {

 base.TouchesEnded(touches, evt);

 if (!(touches.AnyObject is UITouch touch))

 return;

 var point = touch.LocationInView(this.sceneView);

 �var hits = this.sceneView.HitTest(point, new

SCNHitTestOptions());

 var hit = hits.FirstOrDefault();

 if (hit == null)

 return;

 var node = hit.Node;

 if (node == null)

 return;

 var cubeNode = new CubeNode(0.05f, UIColor.Green)

 {

 Position = new SCNVector3(

 hit.WorldCoordinates.X,

 hit.WorldCoordinates.Y + 0.1f,

 hit.WorldCoordinates.Z

)

 };

 this.sceneView.Scene.RootNode.AddChildNode(cubeNode);

 }

 public override void ViewDidDisappear(bool animated)

 {

 base.ViewDidDisappear(animated);

 this.sceneView.Session.Pause();

 }

Chapter 14 Physics

127

 public override void DidReceiveMemoryWarning()

 {

 base.DidReceiveMemoryWarning();

 }

 }

 public class PlaneNode : SCNNode

 {

 public PlaneNode(float width, float length, UIColor color)

 {

 Geometry = CreateGeometry(width, length, color);

 PhysicsBody = SCNPhysicsBody.CreateKinematicBody();

 EulerAngles = new SCNVector3((float)(-Math.PI / 2), 0, 0);

 }

 �private static SCNGeometry CreateGeometry(float width, float

length, UIColor color)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = color;

 material.DoubleSided = true;

 var geometry = SCNPlane.Create(width, length);

 geometry.Materials = new[] { material };

 return geometry;

 }

 }

 public class CubeNode : SCNNode

 {

 public CubeNode(float size, UIColor color)

 {

 Geometry = CreateGeometry(size, color);

 Position = new SCNVector3(0, size / 2, 0);

 PhysicsBody = SCNPhysicsBody.CreateDynamicBody();

 }

Chapter 14 Physics

128

 �private static SCNGeometry CreateGeometry(float size, UIColor

color)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = color;

 var geometry = SCNBox.Create(size, size, size, 0);

 geometry.Materials = new[] { material };

 return geometry;

 }

 }

�Applying Force
As well as applying basic physics to our nodes like gravity, giving them a solid structure,

and allowing them to touch each other, we can also apply a force to them.

In Listing 14-4, we place a single box on a plane and, when touching the box node,

apply a large force to it propelling forward and off the plane. You can play around with

the amount of force to apply and see how the node is affected when touched.

Figure 14-1.  Dropping solid cubes onto a solid plane

Chapter 14 Physics

129

Listing 14-4.  Apply force to an object in Augmented Reality

public partial class ViewController : UIViewController

 {

 private readonly ARSCNView sceneView;

 public ViewController(IntPtr handle) : base(handle)

 {

 this.sceneView = new ARSCNView();

 this.View.AddSubview(this.sceneView);

 }

 public override void ViewDidLoad()

 {

 base.ViewDidLoad();

 this.sceneView.Frame = this.View.Frame;

 }

 public override void ViewDidAppear(bool animated)

 {

 base.ViewDidAppear(animated);

 this.sceneView.Session.Run(new ARWorldTrackingConfiguration

 {

 LightEstimationEnabled = true,

 WorldAlignment = ARWorldAlignment.Gravity,

 });

 �var planeNode = new PlaneNode(width: 0.3f, length: 0.3f,

UIColor.LightGray);

 this.sceneView.Scene.RootNode.AddChildNode(planeNode);

 SCNNode boxNode = new SCNNode();

 var boxMaterial = new SCNMaterial();

 boxMaterial.Diffuse.Contents = UIColor.Blue;

 var boxGeometry = SCNBox.Create(0.04f, 0.06f, 0.04f, 0f);

 boxNode.Geometry = boxGeometry;

Chapter 14 Physics

130

 boxNode.Geometry.FirstMaterial = boxMaterial;

 boxNode.PhysicsBody = SCNPhysicsBody.CreateDynamicBody();

 boxNode.Position = new SCNVector3(0.0f, 0.05f, 0.0f);

 this.sceneView.Scene.RootNode.AddChildNode(boxNode);

 }

 public override void TouchesEnded(NSSet touches, UIEvent evt)

 {

 base.TouchesEnded(touches, evt);

 if (!(touches.AnyObject is UITouch touch))

 return;

 var point = touch.LocationInView(this.sceneView);

 �var hits = this.sceneView.HitTest(point, new

SCNHitTestOptions());

 var hit = hits.FirstOrDefault();

 if (hit == null)

 return;

 var node = hit.Node;

 if (node == null)

 return;

 var forcePower = 10;

 var pointOfView = this.sceneView.PointOfView;

 var transform = pointOfView.Transform;

 �var orientation = new SCNVector3(-transform.M31, -transform.

M32, -transform.M33);

 node.PhysicsBody.ApplyForce(

 new SCNVector3(

 orientation.X * forcePower,

 orientation.Y * forcePower,

 orientation.Z * forcePower), true);

 }

Chapter 14 Physics

131

 public override void ViewDidDisappear(bool animated)

 {

 base.ViewDidDisappear(animated);

 this.sceneView.Session.Pause();

 }

 public override void DidReceiveMemoryWarning()

 {

 base.DidReceiveMemoryWarning();

 }

 }

 public class PlaneNode : SCNNode

 {

 public PlaneNode(float width, float length, UIColor color)

 {

 Geometry = CreateGeometry(width, length, color);

 PhysicsBody = SCNPhysicsBody.CreateKinematicBody();

 EulerAngles = new SCNVector3((float)(-Math.PI / 2), 0, 0);

 }

 �private static SCNGeometry CreateGeometry(float width, float

length, UIColor color)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = color;

 material.DoubleSided = true;

 var geometry = SCNPlane.Create(width, length);

 geometry.Materials = new[] { material };

 return geometry;

 }

 }

Chapter 14 Physics

132

 public class CubeNode : SCNNode

 {

 public CubeNode(float size, UIColor color)

 {

 Geometry = CreateGeometry(size, color);

 Position = new SCNVector3(0, size / 2, 0);

 PhysicsBody = SCNPhysicsBody.CreateDynamicBody();

 }

 �private static SCNGeometry CreateGeometry(float size, UIColor

color)

 {

 var material = new SCNMaterial();

 material.Diffuse.Contents = color;

 var geometry = SCNBox.Create(size, size, size, 0);

 geometry.Materials = new[] { material };

 return geometry;

 }

 }

There are quite a lot of physics-related variables you can change in SceneKit

including Mass and Friction. By altering these values, you will alter how the items in your

scene are effected by physics.

Note I n the same way we can apply force to an object, we are able to apply
torque to an object, that is, spinning an object on its axis. You can do this by calling
SCNPhysicsBody.ApplyTorque().

�Things to Try
Here are a number of different things you could try when experimenting and learning

about physics in ARKit.

Try altering Friction and Mass and other physics properties.
Play around with altering some of the properties of objects in the scene including their

Friction and Mass and see how this effects how they behave in the scene.

Chapter 14 Physics

133

Use ApplyForce() to fire objects.
Play around with firing objects in different directions and at other objects. See if you can

knock other objects over.

Use different shaped objects.
Don’t just use cubes, for example, see how a sphere may roll down an inclined plane.

Use ApplyTorque() to apply torque to objects.
See how different shaped objects with different physics properties behave when you

apply torque to them.

�Summary
SceneKit gives us quite a complex physics engine at our disposal. Having items in your

scene respond to interactions just like real objects can add yet another level of realism to

your AR experiences. You can see how some games make good use of the built-in physics

engine in ARKit.

In previous chapters, we have seen how we can use ARKit for image detection, face

detection, and plane detection. In the next chapter, we will look at how we can identify

3D items in a scene. Sound impossible? Well, let’s find out using Object Detection.

Chapter 14 Physics

135
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_15

CHAPTER 15

Object Detection
Previously, in Chapter 10, “Image Detection,” we looked at how we can get our AR

mobile app to recognize and respond to predefined 2D images when they are detected

in our scenes. Well, in a similar way, we can get our app to respond to predefined 3D

objects. It’s a more complex process than 2D image recognition; however, ARKit makes

this possible. All we need to do is plumb the functionality together.

This process requires two parts, the first to enable the user to use the app to scan a

3D object and store some of its “spatial data,” then a second part to use that spatial data

again to detect the object in the scene.

While this chapter gives an overview of the concept, the code required to

demonstrate this is too long to include in full. Fortunately, Microsoft have created an

open source Xamarin Body Detection sample app that we can download and try out.

The example app and resulting screenshots discussed and shown in this chapter are

from the Microsoft Xamarin.iOS Scanning App sample here:

https://docs.microsoft.com/en-us/samples/xamarin/ios-samples/ios12-scann

inganddetecting3dobjects/

�Scanning and Saving Object Spatial Data
During scanning, an instance of ARObjectScanningConfiguration configuration is used

by the Session as can be seen in Listing 15-1.

Listing 15-1.  Using ARObjectScanningConfiguration

var configuration = new ARObjectScanningConfiguration();

sceneView.Session.Run(configuration);

https://doi.org/10.1007/978-1-4842-6770-7_15#DOI
https://docs.microsoft.com/en-us/samples/xamarin/ios-samples/ios12-scanninganddetecting3dobjects/
https://docs.microsoft.com/en-us/samples/xamarin/ios-samples/ios12-scanninganddetecting3dobjects/

136

When the example app is ran, you will see that during the scanning stage a bounding

box is used to denote the area in which the 3D object we wish to scan should be located

as seen in Figure 15-1. By default, it detects a horizontal plane and places the bottom

of the bounding box on top of it. It is possible to increase the size and location of the

bounding box using pinch and pan touch gestures.

Once you are happy that your 3D object is located within the bounding box, press

the Scan button to store the spatial data for later use. During the scan, the app asks you

to move around the object to allow scanning and subsequent recognition from different

angles. This process of scanning from different angles makes the bounding box walls

go solid as shown in Figure 15-2. When you are happy that you have scanned the object

from a sufficient number of different angles, press Finish.

Figure 15-1.  Position the bounding box around the object you wish to scan

Chapter 15 Object Detection

137

Once the scan is complete, the scanned object is stored as an ARReferenceObject in

the app for later reference.

�Recognizing Scanned Objects
In order to recognize the 3D object in the scene, we need to retrieve (or at least

reference) the previously scanned and saved spatial data for the 3D object and use it to

allow the app to detect any objects that match it.

When you are ready, press the “Test” button in the app which will begin detection of

the 3D object you have scanned in the scene.

Figure 15-2.  Scan the object from multiple directions

Chapter 15 Object Detection

138

If the object is detected in the scene (using the code in Listing 15-2), the app notifies

you and tells you how long it took to detect it (pretty quick in my opinion) as shown in

Figure 15-3.

Listing 15-2.  The code that fires when the object is detected

public override void DidAddNode(ISCNSceneRenderer renderer, SCNNode node,

ARAnchor anchor)

{

 if (anchor != null && anchor is ARObjectAnchor)

 {

 var objectAnchor = anchor as ARObjectAnchor;

 if (objectAnchor.ReferenceObject == referenceObject)

 {

 // Successful detection, do something

 }

 }

}

We could do anything once we have successfully detected the object, we could show

a message as shown in Figure 15-3, or we could add additional nodes to or next to the

detected object.

Chapter 15 Object Detection

139

�Things to Try
Here are some ideas of things to try using Object Detection.

Scan and store multiple objects.
See if you can scan and store multiple different objects.

Scan a product and retrieve/display product information upon successful detection.
Scan and save the 3D characteristics of a product (such as a cuddly toy); then when it is

detected, display additional information next to it such as product details, description,

price, and so on.

Scan someone’s head to see how accurate recognition is.
Try scanning someone’s head and seeing if Object Detection can recognize it.

Figure 15-3.  Successfully detecting object

Chapter 15 Object Detection

140

See how small/big an object you can scan and detect.
Play around with scanning very small or very large objects to see if there are limitations

to how well object detection works with very small or very large objects.

Change the color of the bounding box.
Try changing the color or other aspects of the bounding box used for scanning and

detection.

�Summary
The built-in Object Detection functionality in ARKit continues to show just how varied

and powerful ARKit is and literally adds another dimension to the 2D image detection

we previously looked at opening up a whole bunch of interesting use cases.

Continuing the theme of detecting interesting subjects in our scene, in the next

chapter, we will look at Body Detection where we will see how ARKit can determine the

position and orientation of a person in a scene.

Chapter 15 Object Detection

141
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_16

CHAPTER 16

Body Tracking
When it comes to people, as well as detecting and tracking faces as we saw in Chapter 11,

“Face Tracking and Expression Detection,” we can also use ARKit to detect bodies in a

scene including the orientation of different parts of the body in real time. This is called

body tracking, and it gives us the ability to not track the position of major body joints to a

high degree of accuracy.

�Detecting a Body in a Scene
We will look at how ARKit is able to detect the presence of a human body in a scene and

its various joints and then overlay them on top of the detected body in 3D space. But

what exactly are we tracking you ask?

The position of the following joints is tracked:

•	 Root (center of the hip)

•	 Head

•	 LeftHand

•	 RightHand

•	 LeftFoot

•	 RightFoot

•	 LeftShoulder

•	 RightShoulder

These values are from the enum ARSkeletonJointName.

https://doi.org/10.1007/978-1-4842-6770-7_16#DOI

142

A number of other joints can be referenced in a detected ARSkeleton3D object (92 in

total shown in Figure 16-1). However, only the preceding joints are tracked, so the others

are inferred based on the position of these tracked joints.

In fact, in order to get a full list of all 92 joint names that we will iterate

over, we will use the string[] returned from calling ARSkeletonDefinition.

DefaultBody3DSkeletonDefinition.JointNames.

To enable body tracking in our scene, we use an ARBodyTrackingConfiguration

when we run our ARSession as can be seen in Listing 16-1.

Note  As well as these joints, if we wanted, we could extrapolate the paths
between those joints and draw straight lines, thereby creating a visualization of a
skeleton.

Listing 16-1.  Using ARBodyTrackingConfiguration and declaring the

SceneViewDelegate

public BodyDetectionViewController()

{

 this.sceneView = new ARSCNView

 {

Figure 16-1.  The names of all 92 joints that make up an ARSkeleton

Chapter 16 Body Tracking

143

 AutoenablesDefaultLighting = true,

 Delegate = new SceneViewDelegate()

 };

 this.View.AddSubview(this.sceneView);

}

...

public override void ViewDidAppear(bool animated)

{

 base.ViewDidAppear(animated);

 var bodyTrackingConfiguration

 = new ARBodyTrackingConfiguration()

 {

 WorldAlignment = ARWorldAlignment.Gravity

 };

 this.sceneView.Session.Run(bodyTrackingConfiguration);

}

When a body is detected in the scene, an ARBodyAnchor is placed at the relevant

location. We can add our custom code to the DidAddNode and DidUpdateNode methods

on the ARSCNViewDelegate as shown in Listing 16-2.

As you can also see in Listing 16-2, we have declared a JointNode class that just

inherits from SCNNode to represent the joint nodes we want to place in the scene. We are

storing these joint nodes in a Dictionary using the joint name as a key when we detect

them in DidAddNode. We then update their position by calling .Update(SCNVector3

position) if we detect their position has changed when DidUpdateNode is fired.

We have a method for creating a sphere to represent the joint called

MakeJoint(string jointName) which is pretty simple and similar to previous examples

we’ve seen that create basic colored shapes.

The more complex method GetJointPosition(ARBodyAnchor bodyAnchor, string

jointName) is taking the detected ARBodyAnchor and calculating and then returning the

position of the joint referred to by jointName. It does this by determining the requested

joints offset from the root position of the bodyAnchor (which is always the center of the

hip). We are also making use of an extension method that converts an NMatrix4 to a

SCNMatrix4.

Chapter 16 Body Tracking

144

The end result shows 92 spheres in the scene arranged in the same orientation as the

detected body. The orientation and position of these spheres change as the orientation

and position of the tracked body change in real time.

Listing 16-2.  Detecting and updating body joint positions

public class SceneViewDelegate : ARSCNViewDelegate

{

 Dictionary<string, JointNode> joints

 = new Dictionary<string, JointNode>();

 public override void DidAddNode(

 ISCNSceneRenderer renderer, SCNNode node,

 ARAnchor anchor)

 {

 if (!(anchor is ARBodyAnchor bodyAnchor))

 return;

 �foreach (var jointName in ARSkeletonDefinition.

DefaultBody3DSkeletonDefinition.JointNames)

 {

 JointNode jointNode = MakeJoint(jointName);

 �var jointPosition = GetJointPosition(bodyAnchor,

jointName);

 jointNode.Position = jointPosition;

 if (!joints.ContainsKey(jointName))

 {

 node.AddChildNode(jointNode);

 joints.Add(jointName, jointNode);

 }

 }

 }

 public override void DidUpdateNode(

 ISCNSceneRenderer renderer, SCNNode node,

 ARAnchor anchor)

 {

Chapter 16 Body Tracking

145

 if (!(anchor is ARBodyAnchor bodyAnchor))

 return;

 �foreach (var jointName in ARSkeletonDefinition.

DefaultBody3DSkeletonDefinition.JointNames)

 {

 �var jointPosition = GetJointPosition(bodyAnchor,

jointName);

 if (joints.ContainsKey(jointName))

 {

 joints[jointName].Update(jointPosition);

 }

 }

 }

 private SCNVector3 GetJointPosition(

 ARBodyAnchor bodyAnchor, string jointName)

 {

 �NMatrix4 jointTransform = bodyAnchor.Skeleton.

GetModelTransform((NSString)jointName);

 return new SCNVector3(jointTransform.Column3);

 }

 private JointNode MakeJoint(string jointName)

 {

 var jointNode = new JointNode();

 var material = new SCNMaterial();

 material.Diffuse.Contents =

 GetJointColour(jointName);

 var jointGeometry =

 SCNSphere.Create(GetJointRadius(jointName));

 jointGeometry.FirstMaterial = material;

 jointNode.Geometry = jointGeometry;

 return jointNode;

 }

Chapter 16 Body Tracking

146

 private UIColor GetJointColour(string jointName)

 {

 switch (jointName)

 {

 case "root":

 case "left_foot_joint":

 case "right_foot_joint":

 case "left_leg_joint":

 case "right_leg_joint":

 case "left_hand_joint":

 case "right_hand_joint":

 case "left_arm_joint":

 case "right_arm_joint":

 case "left_forearm_joint":

 case "right_forearm_joint":

 case "head_joint":

 return UIColor.Green;

 }

 return UIColor.White;

 }

 private float GetJointRadius(string jointName)

 {

 switch (jointName)

 {

 case "root":

 case "left_foot_joint":

 case "right_foot_joint":

 case "left_leg_joint":

 case "right_leg_joint":

 case "left_hand_joint":

 case "right_hand_joint":

 case "left_arm_joint":

 case "right_arm_joint":

 case "left_forearm_joint":

Chapter 16 Body Tracking

147

 case "right_forearm_joint":

 case "head_joint":

 return 0.04f;

 }

 if (jointName.Contains("hand"))

 return 0.01f;

 return 0.02f;

 }

 }

public class JointNode : SCNNode

 {

 public void Update(SCNVector3 position)

 {

 this.Position = position;

 }

 }

}

The result can be seen in Figure 16-2. The tracked bodies’ major joints are tracked

and shown as green spheres and other inferred minor joints shown as white nodes.

As usual, the accuracy of ARKit’s ability to track things in the real world depends on

sufficient lighting. To give ARKit the best chance of tracking a body in a scene, make sure

the environment is well lit.

Chapter 16 Body Tracking

148

�Capturing Body Motion
One use of body tracking is to translate the detected movements and positions of the

tracked body and mimic them on a humanoid shaped 3D model (called a rig) so that if

you move your arm, the 3D model’s arm also moves in the same manner. This requires

creating a 3D model with various moving joints and importing it into the app, something

that is beyond the scope of this book but can be seen in Figure 16-3.

Figure 16-2.  Showing the orientation of the tracked body using nodes

Chapter 16 Body Tracking

149

To learn more about model rigging with body tracking, see Apple’s documentation

(https://developer.apple.com/documentation/arkit/rigging_a_model_for_

motion_capture).

�Potential Applications
Because we can detect the position of the major joints and their relative position to one

another, we can infer the angles of various parts of the body in the scene. I have seen this

technology used to automatically detect if a user is slouching when sitting at their desk to

help prevent unnecessary pressure on the spine and to help avoid backache.

Figure 16-3.  Rigging of body tracking example

Chapter 16 Body Tracking

https://developer.apple.com/documentation/arkit/rigging_a_model_for_motion_capture
https://developer.apple.com/documentation/arkit/rigging_a_model_for_motion_capture

150

Being able to detect repetitive body movements makes Body Detection a great way to

track exercises such as press-ups and squats.

�Things to Try
Here are a few things you could try yourself when implementing body tracking.

Change the color, size, and opacity of the nodes representing the joints.
Play around with representing the joint nodes in different ways.

Add touch gestures to help identify joints when pressed.
Use your knowledge of touch gestures so that when you touch a node, it displays the

name of it on the screen.

Try rigging a 3D model to copy your movements.
Look up how to use an appropriate 3D skeleton model and rig it to the tracked body to

have it mimic the movements of the body in the scene.

Add additional nodes to the tracked body.
Either use a combination of out of the box geometry shapes, images, or 3D models to add

additional nodes to the tracked body. For example, you could place a spherical emoji

head at the position of the head node.

Add straight lines between joints to create a skeleton effect.
As you know the positions and names of the major and minor joints, you could try and

create lines (or long thin boxes/cylinders) between them.

�Summary
If you have got this far, then you probably by now know how to make use of a lot of

ARKit’s Augmented Reality capabilities and be able to make some rather remarkable AR

experiences.

Once you have made your killer AR app, you may wish to share it with the world via

the App Store, so in the next and final chapter, we will look at “Publishing to the App

Store.”

Chapter 16 Body Tracking

151
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7_17

CHAPTER 17

Publishing to the App
Store
As promised from the very start, everything we have looked at in this book has been

possible to experiment with and put into your app and deploy onto your phone without

an Apple Developer Account.

That said, if what you have created is ready to be shared with the rest of the world,

you are going to want to put it in the App Store for others to download and install. To do

this, you will need an Apple Developer Account, and you will need to follow the steps

outlined in this chapter.

�App Store Submission To-Do List
In this chapter, we will cover the process of getting your app into the App Store. The

process is comprised of a number of stages:

•	 Set up icons for the app.

•	 Set up the launch screen (optional).

•	 Set up App ID and Entitlements.

•	 Create and install an App Store provisioning profile.

•	 Update the build release configuration.

•	 Build your app and submit it to Apple.

https://doi.org/10.1007/978-1-4842-6770-7_17#DOI

152

�Set Up Icons for the App
Because the icon for your app will be used in a variety of different places, you will need

to provide the icon in several different sizes.

Your icon will appear in different sizes in the following places:

•	 App Store

•	 Notifications

•	 Settings

•	 Spotlight

To provide different sized icons, open Assets.xcassets and provide images for an

IconImage resource. See in Figure 17-1.

Figure 17-1.  Provide images for an AppIcon resource in the Assets.xcassets folder

Chapter 17 Publishing to the App Store

153

�Set Up Launch Screen Image
The launch screen for your app is the screen that you see immediately after launching

your app but before you initially see the main page of your app and by default it is a

blank white screen. And fortunately, it is very easy to change if you choose to do so. It

is something I recommend because it is relatively simple and can help with the initial

experience a user has with your app.

As mentioned, you optionally can override the default blank launch screen of your app

(LaunchScreen.storyboard). Once you open LaunchScreen.storyboard, you can change

its background color and add labels and images to it as can be seen in Figure 17-2. If you

go ahead and choose to alter the default, when your app launches, the updated launch

screen will be shown before your main app.

Figure 17-2.  You can customize your app’s launch screen

Chapter 17 Publishing to the App Store

154

�Set Up App ID and Entitlements
Before you go much further, you will need to create an App ID for your app. You do this

in the Apple Developer Portal at https://developer.apple.com, and to be able to do

this, you will need an Apple Developer Account which at the time of writing costs £79.

Also, if you do not already have an Apple ID, you will need to create one first at

https://appleid.apple.com/account.

When you log in to your Apple Developer Account, you should be greeted by a page

as shown in Figure 17-3.

Okay, presuming you’ve got your Apple Developer Account now and have logged in,

go to Certificates, IDs & Profiles as shown in Figure 17-4.

Figure 17-3.  Your Apple Developer Account

Chapter 17 Publishing to the App Store

https://developer.apple.com
https://appleid.apple.com/account

155

We are going to create a new Identifier for our app in the form of an App ID, so click

the + button next to the Identifiers heading to start creating a new identifier for our app.

Select App IDs from the list of identifiers as shown in Figure 17-5, then press Continue.

Figure 17-4.  The identifiers section of your developer account

Figure 17-5.  Beginning to register a new identifier

Chapter 17 Publishing to the App Store

156

On the next screen, select what the App ID is for – in our case, an App, so choose App

from the options as shown in Figure 17-6, then press Continue.

In the next screen, provide a Description and Bundle ID, then select from the list any

device Capabilities your app uses as shown in Figure 17-7, then press Continue.

Figure 17-6.  Choosing what we are using the App ID for

Chapter 17 Publishing to the App Store

157

On the next screen, you are given a chance to confirm the App ID details before

registering as can be seen in Figure 17-8. When ready, press Continue, then press

Register.

Figure 17-7.  Providing information for your App ID

Chapter 17 Publishing to the App Store

158

Congratulations! You have created your first App! Well, App ID anyway. Don’t worry.

We’ll put it to good use soon enough.

�Create and Install an App Store Provisioning Profile
In order to publish your app to the App Store, you will need to create, install, and use

an appropriate distribution provisioning profile on your computer. These provisioning

profiles contain information about the certificate that is used to sign your app, the App

ID, and where it can be installed.

To create and install a provisioning profile for your app, go to Certificates, IDs &

Profiles section in the Apple Developer Portal again.

This time, go to the Profiles section. From here, you will see any existing

Development or Distribution profiles and can create new ones.

In the Profiles section, click the + button next to the Profiles heading as shown in

Figure 17-9.

Figure 17-8.  Confirm your App ID details before registering

Chapter 17 Publishing to the App Store

159

Then on the Register a New Provisioning Profile page, under the Distribution section,

select App Store as shown in Figure 17-10 and press Continue.

Figure 17-9.  Development and Distribution profiles

Figure 17-10.  Registering a new distribution provisioning profile

Chapter 17 Publishing to the App Store

160

On the next screen, select your App ID from the drop-down list as shown in

Figure 17-11 and press Continue.

Select the certificate from the next screen as shown in Figure 17-12, then press

Continue.

Provide a name for the Provisioning Profile on the next screen as shown in

Figure 17-13, then press Generate.

Figure 17-12.  Select certificate

Figure 17-11.  Select the App the provisioning profile is for

Chapter 17 Publishing to the App Store

161

Then finally, as shown in Figure 17-14, download and double-click the Provisioning

Profile you have generated to install it to your computer.

Phew, now you will have successfully installed a distribution provisioning profile

onto your machine that can be used to put your app in the App Store.

Now, let’s go and build the version of the app we wish to upload in the next section.

Figure 17-13.  Provide a name for the provisioning profile

Figure 17-14.  Download and install the provisioning profile

Chapter 17 Publishing to the App Store

162

�Update Build Release Configuration
Before we build our app for submission to the App Store, we need to do a few more

things including assigning the Provisioning Profile we created in the previous section.

Open the Info.plist file and go to the Application tab. It will probably look a bit

like this. Make sure Manual Provisioning is selected as the Signing Scheme as shown in

Figure 17-15.

Next, open your Project Options and go to Build ➤ IOS Build. On this page, change

the Configuration to Release and Platform to Phone, and ensure all other settings look

like the following in Figure 17-16.

Figure 17-15.  Ensure Signing is using Manual Provisioning

Chapter 17 Publishing to the App Store

163

Next, go to the iOS Bundle Signing section as shown in Figure 17-17.

•	 The Configuration should be set to Release and the Platform set to

iPhone.

•	 The Signing Identity should be Distribution (Automatic).

•	 The Provisioning Profile should be the one you created in the

previous step.

Note  You will only see Provisioning Profiles that have a bundle ID that match the
app’s bundle ID in the Info.plist file.

Figure 17-16.  Setting the iOS Build settings

Chapter 17 Publishing to the App Store

164

Your project should now be ready to build and publish. But first, we need to get the

App Store side of things ready to receive the upload of the app.

�Set Up the App in App Store Connect
Before you can submit your app to the Apple for review, you must first configure it in App

Store Connect. App Store Connect is an online portal used to manage your iOS apps in

the App Store and can be found at https://appstoreconnect.apple.com/.

There are a number of things we need to do in App Store Connect including

•	 Provide app name as will appear in store

•	 Select Bundle ID

•	 Provide description, keywords, category

Figure 17-17.  Setting the iOS Bundle Signing settings

Chapter 17 Publishing to the App Store

https://appstoreconnect.apple.com/

165

•	 Provide screenshots

•	 Declare price and availability

The main screen of the App Store Connect looks like the following in Figure 17-18.

Go to My Apps and create a new app by pressing the blue circle + button next to the

Apps heading and provide your app’s details as shown in Figure 17-19.

Figure 17-18.  App Store Connect

Chapter 17 Publishing to the App Store

166

Once you have created an app in App Store Connect you should see a screen as

shown in Figure 17-20, where you can provide further details for it.

Figure 17-19.  Creating a new app from the Apps section

Chapter 17 Publishing to the App Store

167

In the Pricing and Availability section shown in Figure 17-21, you can set how much

or how little you would like to charge for your app.

Figure 17-20.  Your draft unpublished app

Chapter 17 Publishing to the App Store

168

In the General Information section, you should provide your app’s Primary Category

and Secondary Category as well as a Subtitle to aid people searching for apps like yours

and give them the best chance of stumbling onto your app. See Figure 17-22.

You will also need to set up the Content Rights for the app where you confirm that

you have rights to any content in the app.

Figure 17-21.  Providing pricing information

Chapter 17 Publishing to the App Store

169

But don’t press Submit for Review yet as you will need to create and upload/

associate a build with your initial release. For this, we need to go back to Visual Studio

for Mac which we will see in the next section.

�Build the App and Submit It to Apple
Now that you have set up your app in App Store Connect, you need to finally build and

submit your app.

Select the Release Build Configuration in Visual Studio for Mac as shown in

Figure 17-23.

Figure 17-22.  Providing general app information

Figure 17-23.  Setting to Release build configuration

Chapter 17 Publishing to the App Store

170

Then, from the Build menu, select Archive for Publishing as shown in Figure 17-24.

This bundles up your app into an archive ready for upload.

Once the Archive has been created, click the Sign and Distribute button shown in

Figure 17-25.

Figure 17-24.  Archiving your app for Publishing

Chapter 17 Publishing to the App Store

171

On the Select iOS Distribution Channel screen, select App Store and press Next as

shown in Figure 17-26.

Figure 17-25.  After Archive creation

Chapter 17 Publishing to the App Store

172

In the next screen, when selecting a destination, choose Upload, then Next as shown

in Figure 17-27.

Figure 17-26.  Select distribution channel

Chapter 17 Publishing to the App Store

173

In the next Provisioning Profile screen as shown in Figure 17-28, select the desired

provisioning profile (if you have more than one), then press Next.

Figure 17-27.  Select destination

Chapter 17 Publishing to the App Store

174

On the next screen, you will be asked to provide some credentials to enable

communication with App Store Connect as shown in Figure 17-29.

Figure 17-28.  Select the relevant provisioning profile

Chapter 17 Publishing to the App Store

175

Now you may wonder what on earth this App Specific Password is. I certainly did.

It turns out you must create a dedicated app password at https://appleid.apple.com

as shown in Figure 17-30.

Figure 17-29.  Provide communication details for the App Store

Chapter 17 Publishing to the App Store

https://appleid.apple.com

176

After you have generated an app specific password, enter your Apple ID Username

and the password and press Next.

After which, as you can guess by the next screen shown in Figure 17-31, you are

finally ready to publish the app. Press Publish.

Figure 17-31.  Get ready to publish your app

Figure 17-30.  Provide communication details for the App Store

Chapter 17 Publishing to the App Store

177

Once you have clicked Publish, you will be asked to choose a location to save an ipa

file, after which, your app will be uploaded to App Store Connect, and if you have been

successful, you will be notified that publishing has succeeded as shown in Figure 17-32.

You will notice that the status of your app will change to “Waiting for Review.” You

just have to wait now for Apple to make its automated and manual checks on your app

by its team of reviewers. If Apple have any means to reject your app such as copyright

infringement or unclear permission requests, your app will be rejected, and you will be

given feedback. If this happens, you will be able to make the relevant changes to your

app and resubmit for approval.

Figure 17-32.  Successfully publishing your app to the App Store

Chapter 17 Publishing to the App Store

178

Once Apple have successfully approved your app, it will shortly appear in the App

Store.

�Summary
Well, that’s it. You now have everything you need to not only develop some pretty

impressive and useful Augmented Reality experiences but also distribute and share

them with the world. What you choose to make next is up to you.

Augmented Reality is set to become increasingly popular over the coming years, and

the rich variety of abilities that ARKit allows us to leverage right out of the box to deliver

amazing AR experiences should be apparent by now.

The experiences you can create are limited only by your imagination.

Good luck and have fun.

Chapter 17 Publishing to the App Store

179
© Lee Englestone 2021
L. Englestone, .NET Developer’s Guide to Augmented Reality in iOS,
https://doi.org/10.1007/978-1-4842-6770-7

Index

A
Anchors, 38
Animations

combining, 54
easing, 53
opacity, 49, 50
orientation, 51
position, 51
repeat behavior, 52
scale, 50, 51
wait actions, 54

Apple ID, 1
App Store

App ID/entitlements
Certificates/IDs/Profiles, 154, 155
choose App ID, 156
description/Bundle ID, 156, 157
details confirmation, 157, 158
Developer Account, 154
new identifier, 155

Archive for Publishing, 170
build release configuration

iOS build settings, 162, 163
iOS Bundle settings, 163, 164
signing scheme, 162

communication details, 174–176
icons, 152
iOS distribution channel, 171, 172
launch screen image, 153

provisioning profile, 173, 174
App ID, 160
development/distribution, 158, 159
download/install, 161
naming, 160, 161
registration, 159
select certificate, 160

publishing, 176, 177
release build configuration, 169
select destination, 172, 173
sign/distribute, 170, 171
stages, 151

App Store Connect, 164
create new app, 165, 166
general information, 168, 169
main screen, 165
number of things, 164, 165
pricing information, 167, 168
provide details, 166, 167

Augmented Reality (AR)
basic concepts

camera, 25, 26
configuration, 28
Gravity, 25
GravityAndHeading, 25
positioning, 21–23
SceneKit, 21
SceneView, 19, 20
Session, 20, 21

https://doi.org/10.1007/978-1-4842-6770-7#DOI

180

sizes, 26–28
world alignment, 24
world origin, 23, 24

coaching overlay, 45–48
coordinate axis, 42–44
feature points, 41, 42
playing sound, 69
playing video, 70, 71
statistics, 44, 45
world origin, 42–44

B
Blender, 119, 120
Body tracking

ARBodyAnchor, 143
ARBodyTrackingConfiguration, 142, 143
body motion, 148, 149
definition, 141
DidAddNode, 143
joint names, 142
joint positions, 144–147
joints, 141
orientation, 144, 147, 148
potential applications, 149, 150

C
Constraints

LookAtConstraint, 57, 58
SCNBillboardConstraint, 57
types, 58

D, E
DidUpdateNode method,

65, 67, 76, 105, 143

F
Facial expressions, 99

ARFaceTrackingConfiguration, 101
detectable list, 100, 101
floating value, 101
recognizing, 101–104
SCNFillMode.Lines, 100

G, H
Geometry

definition, 33
shapes, 33–35

Gesture recognizers
dimensions, 108
long press, 113
panning, 112
pinching, 110, 111
rotating, 111
SceneView, 108, 109
swiping, 113
tapping, 109, 110
types, 107

GetJointPosition(ARBodyAnchor
bodyAnchor, string jointName)
method, 143

I
Image detection

adding images
AR Resource

Group, 86, 87
AR Resource image, 87
Assets.xcassets folder, 86
dimensions, 88
dynamical, 91

Augmented Reality (AR) (cont.)

Index

181

detecting images
ARImageAnchor, 89
custom PlaneNode, 91
declaration, 89
orientation, 90
Scene View Delegate, 88–90

J, K
JointNode class, 143

L
Lighting

ARSCNView.
AutoenablesDefaultLighting, 61

ARSCNView.Automatically
UpdatesLighting, 61, 62

SCNNode, 63
shadows, 63, 64

add light sources, 65–67
IARSCNViewDelegate, 67
plane detection, 64
SCNLightingModel.ShadowOnly, 65
ViewDidAppear, 64

types, 62

M
MakeJoint(string jointName) method, 143
Materials

fill mode, 37
image, 36, 37
solid color, 35, 36

N
Nodes, 31, 32

O
Object detection

recognize scanned objects, 137, 139
spatial data

ARObjectScanningConfiguration, 135
bounding box, 136
scanning, 136, 137

Opacity, 32, 33

P, Q, R
Physics engine

applying force, 128–132
gravity

applying, 124
combining, 125–128

rigid structure, 123, 124
solid objects, 125–128

Plane detection
abilities, 73
applications, 82
ARPlaneAnchor, 73
ARSCNViewDelegate, 74, 75
grid image, 80, 81
horizontal/vertical planes, 80
turning off, 81
ViewController class, 76–80

S
SCNBox.Create()method, 34
SCNSphere.Create()method, 34
Session.Run() method, 20

T, U
this.sceneView.Scene.RootNode.

AddChildNode()method, 27

Index

182

3D models
animations, 121
creation, 119, 120
importing

file formats, 117
SCNNode, 118
Xcode, 118, 119

shadows, 121
Tracking faces, 95, 96

ARFaceAnchor, 97
ARFaceTrackingConfiguration, 96–98
ARFaceTrackingConfiguration.

IsSupported, 96
Scene View Delegate, 96

V, W
ViewDidAppear method, 27
Visual Studio

installation, 3, 4
project creation

app details, 14, 15
camera permissions, 17, 18
deployment device, 16, 17
project details, 15, 16
type, 13, 14

X, Y, Z
Xcode

installation, 2, 3
project creation, 4, 5

Apple ID, 9, 10
Bundle Identifier, 13
deployment target, 10, 11
details, 6, 7
location, 7, 8
Personal code signing, 13
Swift project, 8, 9
team selection, 9, 10
template, 5, 6
trust developer, 11–13

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Setting Up Your Environment
	Apple ID
	Suitable iOS Device
	Install Xcode
	Install Visual Studio for Mac
	Create a New Project in Xcode
	Step 1. Choose a project template
	Step 2. Provide project details
	Step 3. Provide a project location
	Step 4. View the new project
	Step 5. Select a Team or sign in with an Apple ID
	Step 6. Change the deployment target
	Step 7. Trust the developer
	Step 8. Done

	Create a New Project in Visual Studio for Mac
	Step 1. Create a new project and select a project type
	Step 2. Provide app details
	Step 3. Provide project details
	Step 4. Choose a deployment device and run
	Set Camera Permissions

	Summary

	Chapter 2: Basic Concepts
	Scene View
	Session
	SceneKit
	Positioning
	World Origin
	World Alignment
	Gravity
	GravityAndHeading
	Camera
	Size
	Configuration
	Summary

	Chapter 3: Nodes, Geometries, Materials, and Anchors
	Nodes
	Opacity
	Geometries
	Built-in Geometry Shapes
	Materials
	Solid Color Material

	Image Material
	Material Fill Mode
	Anchors
	Things to Try
	Summary

	Chapter 4: Built-in AR Guides
	Show Feature Points
	Show World Origin and Coordinate Axis
	Show Statistics
	Coaching Overlay
	Summary

	Chapter 5: Animations
	Animating Opacity
	Animating Scale
	Animating Position
	Animating Orientation
	Repeat Behavior
	Animation Easing
	Combining Animations
	Waiting
	Summary

	Chapter 6: Constraints
	BillboardConstraint
	LookAtConstraint
	Other Constraints
	Things to Try
	Summary

	Chapter 7: Lighting
	Automatically Add Default Lighting
	Automatically Update Default Lighting
	Light Types
	Adding Shadows
	Things to Try
	Summary

	Chapter 8: Video and Sound
	Playing Sound
	Playing Video
	Things to Try
	Summary

	Chapter 9: Plane Detection
	Detecting Planes
	Remembering Planes
	ARSCNViewDelegate (Scene View Delegate)
	Plane Detection Example
	Turning Off Plane Detection
	Possible Applications
	Things to Try

	Summary

	Chapter 10: Image Detection
	Adding Images as App Resources
	Detecting the Images
	Dynamically Adding Images to Detect
	Things to Try

	Summary

	Chapter 11: Face Tracking and Expression Detection
	Tracking Faces
	Recognize Facial Expressions
	Things to Try
	Summary

	Chapter 12: Touch Gestures and Interaction
	Gesture Recognizers
	Hooking Up Gesture Recognizers
	Tapping
	Pinching
	Rotating
	Panning
	Swiping
	Long Press
	Things to Try
	Summary

	Chapter 13: 3D Models
	Importing 3D Models
	Creating Your Own 3D Models in Blender
	Add Shadows, Animations, and Make Interactive
	Things to Try
	Summary

	Chapter 14: Physics
	Giving an Item a Rigid Structure
	Applying Gravity to an Object
	Combining Gravity and Solid Objects
	Applying Force
	Things to Try
	Summary

	Chapter 15: Object Detection
	Scanning and Saving Object Spatial Data
	Recognizing Scanned Objects
	Things to Try

	Summary

	Chapter 16: Body Tracking
	Detecting a Body in a Scene
	Capturing Body Motion
	Potential Applications
	Things to Try
	Summary

	Chapter 17: Publishing to the App Store
	App Store Submission To-Do List
	Set Up Icons for the App
	Set Up Launch Screen Image
	Set Up App ID and Entitlements
	Create and Install an App Store Provisioning Profile
	Update Build Release Configuration
	Set Up the App in App Store Connect
	Build the App and Submit It to Apple
	Summary

	Index

