
Practical Entity
Framework
Core 6

Database Access for Enterprise Applications
—
Second Edition
—
Brian L. Gorman

Practical Entity
Framework Core 6

Database Access for Enterprise
Applications

Second Edition

Brian L. Gorman

Practical Entity Framework Core 6: Database Access for Enterprise Applications

ISBN-13 (pbk): 978-1-4842-7300-5 ISBN-13 (electronic): 978-1-4842-7301-2
https://doi.org/10.1007/978-1-4842-7301-2

Copyright © 2022 by Brian L. Gorman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484273005. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Brian L. Gorman
Jesup, IA, USA

https://doi.org/10.1007/978-1-4842-7301-2

This book is dedicated to my wife Cassie and
my children Kiera, Karson, Kreighton, and baby K who have

all made many sacrifices to give me the space and time to write,
as well as for your daily, unceasing love, grace, patience, and

encouragement.

This book is further dedicated to you, dear reader.
Thank you for allowing me to be part of your journey to greatness.

v

Table of Contents

Part I: Getting Started ��� 1

Chapter 1: Introduction to Entity Framework ��� 3

One, two, three, four versions? Oh my! ��� 3

When it all began ��� 4

ADO�Net – A better tool for application database interaction �� 5

A brief note about ADO�Net �� 5

Entity Framework makes its debut ��� 6

Entity Framework and LINQ ��� 6

A new direction and a new visionary leader ��� 7

Microsoft goes all in for all developers ��� 7

A new vision requires a new path ��� 7

What is �Net 5 and why is Entity Framework called EFCore5 instead of EF5, and
why are we already on �Net 6 and EFCore6 ��� 8

The state of the union �� 9

The future�� 9

Activity 1-1: Getting started with EFCore6 �� 10

Task 1: Create a new project and add the EF packages �� 10

Task 2: Add the EFCore6 packages to your project ��� 15

Activity summary ��� 25

About the Author ��xxiii

About the Technical Reviewer ���xxv

Acknowledgments ���xxvii

Introduction ��xxix

vi

Chapter summary ��� 26

Important takeaways ��� 26

Closing thoughts �� 26

Chapter 2: Working with an Existing Database �� 27

Reverse-engineering or database first ��� 27

Why would we approach Entity Framework in this manner? �� 27

Reverse-engineered solutions ��� 28

Keeping everything in sync ��� 28

Interacting with the existing database �� 29

Activity 2-0: Working with a pre-existing database �� 29

Task 1: Prerequisites ��� 29

Task 2: Download and restore the backup file for the latest version of the
AdventureWorks database to your machine �� 32

Activity 2-1: Reverse-engineering an existing database with EFCore5 �������������������������������������� 43

Task 1: Creating the solution with a new project and referencing the DBLibrary project ����� 43

Task 2: Ensure �Net 6 and update all of the NuGet packages for both projects��������������������� 49

Task 3: Scaffold a new database context using the Scaffold- Context command ������������������ 55

Task 4: Create a settings file and leverage it from code ��� 67

Task 5: Connect to the database and show results in code �� 74

Activity summary �� 79

Chapter summary ��� 79

Important takeaways ��� 79

Closing thoughts �� 79

Chapter 3: Entity Framework: Code First �� 81

Code first doesn’t always mean code first �� 81

When not to use the code-first approach �� 81

When to use the code-first approach �� 83

Code first in an existing project ��� 83

Code first in a new project against a mature database ��� 84

Code first in a new project with a new database �� 84

Table of ConTenTs

vii

The benefits of a well-executed code-first development effort �� 84

Ability to get up and running quickly ��� 85

A complete record of database changes in source control ��� 85

Agility when needing to revert to a previous state �� 86

Shifting from declarative to imperative database programming ��� 87

It’s time to see code-first database programming in action ��� 88

A final thought before diving into the activities ��� 88

Activity 3-1: Creating a new code-first project against an existing database in EFCore6 ���������� 89

Use the starter files or your project from Chapter 2 �� 89

Task 1: Getting started with the activity �� 90

Task 2: Creating and reviewing the initial migration ��� 93

Task 3: Comment out the initial migration, run the update, and review the database ���������� 96

Task 4: Add a new migration, review it, remove it, and then add a real migration �������������� 102

Activity 3-1 summary �� 110

Activity 3-2: Creating a new code-first project in EFCore6 ��� 110

Task 1: Begin a new project for managing inventory �� 111

Task 2: Add a new library for your database models – the “code” of code first ����������������� 123

Task 3: Reference the InventoryModels project and use it to create a migration ��������������� 127

Task 4: Update and review the database ��� 135

Task 5: Add code to insert and query a list of items �� 137

Activity 3-2 summary �� 143

Chapter summary ��� 143

Important takeaways ��� 144

Closing thoughts �� 144

Part II: Building the Data Solution �� 145

Chapter 4: Models and the Data Context �� 147

What is the database context and why do we need it? �� 147

DBContext vs� ObjectContext ��� 148

What is the DBContext? ��� 149

Constructing a new DBContext �� 150

Table of ConTenTs

viii

Critical properties and methods available when working with the DBContext ������������������������� 152

Important properties on the DbContextOptionsBuilder object ��� 152

Important properties on the DBContextOptions object �� 153

Important properties on the DBContext object �� 153

Methods available on the DBContext ��� 154

Methods and extensions on the DBSet<TEntity> object ��� 156

Working with models �� 157

Two immediate benefits of code-first models ��� 157

Building a database entity model �� 157

A final thought about models �� 158

Activity 4-1: Modifying the Item model ��� 158

Practical application for your daily routine �� 159

Starter files �� 159

Task 1: Creating the base project �� 159

Task 2: Add properties to the Item class, and then use a migration to
update the database with fields to match the properties �� 166

Task 3: Add auditing to entities via inheritance ��� 172

Activity 4-1 summary �� 178

Activity 4-2: Using the ChangeTracker to inject some automated auditing ������������������������������ 179

Remember how you already set up the DBContext ��� 179

Common critical underlying objects �� 180

The ChangeTracker is the lifeblood of our interaction with the Entity Framework �������������� 180

Task 1: Getting started ��� 180

Task 2: Use the change tracker to inject auditing information on calls to
save changes ��� 183

Task 3: Add an update method to validate last modified auditing is
working as expected ��� 189

Activity 4-2 summary �� 193

Chapter summary ��� 193

Important takeaways ��� 194

Closing thoughts �� 194

Table of ConTenTs

ix

Chapter 5: Constraints, Keys, and Relationships �� 195

Constraining your data to enhance your solutions �� 195

Size limitations �� 196

Value constraints ��� 198

Default values �� 198

Other data annotations �� 199

Using keys in database tables for unique and relational results �� 200

Working with relational data ��� 201

First, second, and third normal form ��� 201

First normal form (1NF) ��� 202

Second normal form (2NF) �� 203

Third normal form (3NF) �� 205

Types of relationships �� 207

One-to-one relationships ��� 208

One-to-many relationships �� 209

Many-to-many relationships ��� 210

Some final thoughts about relationships and normalization ��� 212

Activity 5-1: Add length, range, and other constraints to the Item model ��������������������������������� 212

Creating constraints �� 212

Prerequisite: Get set up for this activity �� 213

Task 1: Setting length constraints on columns �� 213

Task 2: Creating a range on numeric fields ��� 220

Task 3: Ensuring a field is a key, making fields required, and setting
default values on a column ��� 225

Task 4: Add a new migration and apply these changes to the database ����������������������������� 228

Activity 5-1 summary �� 232

Activity 5-2: Working with relationships ��� 233

Creating a one-to-many relationship ��� 233

Task 0: Getting started ��� 233

Task 1: Create the Categories in a one-to-many relationship with Items ���������������������������� 234

Table of ConTenTs

x

Task 2: Create a one-to-one relationship from Category to CategoryDetail ������������������������ 242

Task 3: Create a many-to-many relationship ��� 249

Activity 5-2 summary �� 256

Activity 5-3: Using a non-clustered, unique index �� 256

Soft delete or hard delete, either way, just make sure it works �� 257

Task 0: Getting started ��� 257

Task 1: Create the Genre ��� 257

Task 2: Create the ItemGenre and the many-to-many relationship ������������������������������������� 259

Task 3: Use the Index attribute to create a unique, non- clustered index ����������������������������� 263

Activity 5-3 summary �� 266

Chapter summary ��� 267

Important takeaways ��� 268

Closing thoughts �� 268

Chapter 6: Data Access (Create, Read, Update, Delete) �� 269

CRUD ��� 269

LINQ ��� 269

Basic interactions ��� 269

Leverage the DbSet<T> objects �� 270

Common commands �� 271

A final thought before diving into the activities ��� 273

Activity 6-1: Quick CRUD with scaffolded controllers ��� 273

Task 0: Getting started ��� 274

Task 1: Creating the new MVC project ��� 274

Task 2: Start working with the ASP�Net MVC project ��� 282

Task 3: Create CRUD for the items ��� 289

Activity 6-1 summary �� 296

Chapter summary ��� 296

Important takeaways ��� 297

Closing thoughts �� 297

Table of ConTenTs

xi

Chapter 7: Stored Procedures, Views, and Functions ��� 299

Understanding stored procedures, views, and functions �� 299

Stored procedures ��� 300

Functions ��� 300

Views ��� 301

Setting up the database to run scripts efficiently ��� 302

The problem �� 302

The solution ��� 306

Fluent API �� 307

What can you do with the Fluent API ��� 307

How do you work with the Fluent API �� 307

Working with the database objects ��� 309

A final thought before diving into the activities ��� 309

Activity 7-1: Working with stored procedures ��� 309

Task 0: Getting started ��� 310

Task 1: Create a new stored procedure using inline code in your migration ����������������������� 310

Task 2: Create the extension method to use local files for scripting ����������������������������������� 316

Task 3: Apply the migration ��� 321

Task 4: Leverage the stored procedure in code ��� 324

Activity 7-1 summary �� 331

Activity 7-2: Working with functions, the FluentAPI, and seed data �� 331

Task 0: Getting started ��� 332

Task 1: Script out a new scalar-valued function �� 332

Task 2: Leverage the new function from code ��� 337

Task 3: Create a new table-valued function �� 339

Task 4: Seed data with the Fluent API ��� 346

Task 5: Seed data with a custom solution ��� 348

Task 6: Seed the Players and Items data ��� 358

Activity 7-2 summary �� 363

Table of ConTenTs

xii

Activity 7-3: Working with views ��� 364

Task 0: Getting started ��� 364

Task 1: Create the view ��� 364

Task 2: Expose the view data from the UI layer ��� 367

Activity 7-3 summary �� 370

Chapter summary ��� 370

Important takeaways ��� 371

Closing thoughts �� 371

Chapter 8: Sorting, Filtering, and Paging �� 373

It’s time to learn LINQ ��� 373

LINQ is generally not the problem ��� 373

Use a profiler or another tool ��� 374

Issues and solutions ��� 374

Issue #1: Pre-fetching results and then iterating in code to filter the results ��������������������� 375

Issue #2: Not disconnecting your data �� 376

Issue #3: IEnumerable vs� IQueryable ��� 377

Practical application ��� 378

Activity 8-1: Sorting, paging, and filtering ��� 379

Task 0: Getting started ��� 379

Task 1: Compare the execution efficiency of two queries ��� 381

Task 2: Filtering our results ��� 393

Task 3: Paging the filtered results ��� 398

Task 4: Disconnecting the result sets �� 401

Activity 8-1 summary �� 403

Chapter summary ��� 403

Important takeaways ��� 403

Closing thoughts �� 403

Table of ConTenTs

xiii

Part III: Enhancing the Data Solution �� 405

Chapter 9: LINQ for Queries and Projections �� 407

Data in the real world�� 407

LINQ vs� stored procedures ��� 407

Complex data and the code-first approach ��� 408

DTOs, view models, or domain models ��� 409

Decoupling your business or view logic from the database �� 409

Sometimes, a pre-defined object is overkill �� 410

One tool to rule them all�� 411

AutoMapper ��� 412

Chapter 9 activities: Using LINQ, decoupled DTO classes, projections,
anonymous types, and AutoMapper �� 412

Activity 9-1: Working with LINQ in complex queries ��� 413

Task 0: Getting started ��� 413

Task 1: Get all the salespeople �� 414

Task 2: Use projections to get more efficient queries ��� 422

Activity 9-1 summary �� 437

Activity 9-2: Setting up AutoMapper ��� 438

Task 0: Getting started ��� 438

Task 1: Get AutoMapper packages and configure the solution �� 438

Task 2: Create the DTO objects �� 441

Activity 9-2 summary �� 446

Activity 9-3: Working with AutoMapper ��� 446

Task 0: Getting started ��� 447

Task 1: Perform a more advanced query ��� 450

Task 2: Using AutoMapper and DTO projections �� 456

Activity 9-3 summary �� 461

Chapter summary ��� 462

Important takeaways ��� 462

Closing thoughts �� 462

Table of ConTenTs

xiv

Chapter 10: Encryption of Data ��� 463

Keeping your system’s data secure �� 463

Data at rest �� 463

Encryption in the past vs� encryption today �� 463

Passwords ��� 464

SSO via social logins ��� 464

ASP�Net built-in authentication �� 464

Salting and hashing ��� 465

Protecting sensitive user information ��� 466

Encryption basics �� 467

Which type should you use �� 467

Chapter 10 activities: Using Always Encrypted and Transparent Data Encryption �������������������� 469

Activity 10-1: Using Always Encrypted �� 469

Task 0: Getting started ��� 469

Task 1: Enable Always Encrypted on the InventoryManagerDb ��� 470

Activity 10-1 summary �� 491

Activity 10-2: Using Transparent Data Encryption ��� 491

Task 0: Getting started ��� 492

Task 1: Plan the migration strategy ��� 493

Task 2: Create the backup columns ��� 495

Task 3: Create the keys and certificates �� 499

Task 4: Drop constraints on the targeted columns �� 502

Task 5: Drop the columns that are going to be targeted for encryption,
and then recreate them ��� 506

Task 6: Select the backup data, transform it for encryption, and store it in
the original columns �� 514

Task 7: Clean up the table ��� 516

Activity 10-2 summary �� 517

Chapter summary ��� 517

Important takeaways ��� 517

Closing thoughts ��� 518

Table of ConTenTs

xv

Chapter 11: Repository and Unit of Work Patterns ��� 519

The repository (Repo) pattern ��� 519

Sources of information about the repository pattern �� 519

The repository pattern abstracts the database plumbing code from
the implementation ��� 520

Entity Framework’s built-in repository �� 520

The unit of work pattern ��� 521

Using a unit of work �� 521

Combining the repository and the unit of work �� 521

The one-two punch ��� 522

A couple of drawbacks�� 522

In general, rely on EF ��� 524

Separation of concerns ��� 524

Logical separation of concerns ��� 524

Final benefits of separation of concerns ��� 525

Chapter 11 activities ��� 525

Activity 11-1: Layering your solution��� 525

Task 0: Getting started ��� 526

Task 1: Creating the database layer �� 526

Task 2: Creating the business layer ��� 530

Task 3: Create and implement database operations in the database layer ������������������������� 531

Task 4: Create and implement business operations in the service layer ���������������������������� 538

Task 5: Refactor the console program ��� 541

Activity 11-1 summary �� 546

Activity 11-2: Rolling your own UoW ��� 546

Transactions are easy and effective �� 546

Use the using statement for transaction lifecycles ��� 547

Task 0: Getting started ��� 547

Task 1: Modify the InventoryDatabaseLayer �� 548

Task 2: Modify the InventoryBusinessLayer �� 554

Table of ConTenTs

xvi

Task 3: Build the insert logic ��� 558

Task 4: Build the update logic ��� 562

Task 5: Build the delete logic ��� 566

Task 6: Update the transaction scope �� 569

Activity 11-2 summary �� 572

Chapter summary ��� 573

Important takeaways ��� 573

Closing thoughts �� 574

Chapter 12: Unit Testing, Integration Testing, and Mocking ��������������������������������� 575

Testing your code is a must-have, not a nice-to- have �� 575

The code needs to be changed�� 575

The database is the lifeblood of the application �� 576

Testing saves your sanity and protects the system ��� 576

Two different approaches leading to the ability to test changes �� 576

Unit testing �� 576

Libraries utilized �� 577

Integration testing ��� 577

Activities for Chapter 12 ��� 578

Activity 12-1: Unit testing with mocking ��� 579

Mocking for your tests ��� 579

Task 0: Getting started ��� 579

Task 1: Add the unit testing project to the solution ��� 580

Task 2: Write your first unit test ��� 584

Task 3: Get and implement Moq �� 586

Task 4: Refactor the InventoryBusinessLayer to be context independent ��������������������������� 592

Task 5: Run the unit test and refactor ��� 594

Activity 12-1 summary �� 599

Activity 12-2: Integration testing with an in-memory database �� 599

Task 0: Getting started ��� 600

Task 1: Create a new xUnit project �� 600

Table of ConTenTs

xvii

Task 2: Set up the expected data for seeding and integration testing �������������������������������� 603

Task 3: Write integration tests ��� 610

Task 4: Refactor the code �� 612

Activity 12-2 summary �� 612

Chapter summary ��� 613

Unit tests ��� 613

Integration tests �� 613

Shouldly and xUnit ��� 614

Dependencies and injection to decouple layers �� 614

Chapter 13: Asynchronous Data Operations and Multiple
Database Contexts �� 615

Asynchronous operations �� 615

Multithreaded programming �� 616

Async, await, and the TaskParallelLibrary ��� 616

Responsive solutions for the end user �� 617

Asynchronous database operations �� 617

Basic asynchronous syntax ��� 618

Multiple database contexts ��� 618

Single sign-on (SSO) �� 618

Business units ��� 619

Multiple contexts require a bit more work �� 620

Putting it into practice ��� 620

Activity 13-1: Asynchronous database operations �� 621

Task 0: Getting started ��� 621

Task 1: Refactor the database layer �� 621

Task 2: Refactor the integration tests �� 629

Task 3: Refactor the business layer ��� 632

Task 4: Refactor the unit tests ��� 636

Task 5: Refactor the main program ��� 638

Task 6: Fix a broken integration test ��� 649

Table of ConTenTs

xviii

Activity 13-1 summary �� 651

Activity 13-2: Multiple database contexts ��� 651

Task 0: Getting started ��� 651

Task 1: Inject both contexts into the solution, and learn about working with
multiple contexts ��� 652

Task 2: Scaffold Category pages ��� 658

Task 3: Ensure solid learning on the database context ��� 668

Activity 13-2 summary �� 671

Chapter summary ��� 671

Important takeaways ��� 672

Closing thoughts �� 672

Part IV: Recipes for Success ��� 673

Chapter 14: �Net 5 and EFCore5 �� 675

One framework to rule them all, with more coming ��� 675

EF6, EFCore, and �Net 5/6/7/… ��� 675

� Net 6/7 and EFCore6/7 ��� 676

Changes with EFCore5 �� 676

Activity 14-1: Many-to-many navigation properties�� 677

Task 0: Getting started ��� 677

Task 1: Review the existing relationships �� 678

Task 2: Explore this implicit mapping �� 683

Activity 14-1 summary �� 690

Activity 14-2: Filtered include ��� 690

Task 0: Getting started ��� 691

Task 1: Create the method and set up the filtered include query �� 691

Task 2: Fix the original query ��� 698

Activity 14-2 summary �� 701

Activity 14-3: Split queries �� 701

Task 0: Getting started ��� 702

Table of ConTenTs

xix

Task 1: Create the query �� 702

Task 2: Use the new split query functionality �� 705

Activity 14-3 summary �� 709

Activity 14-4: Simple logging and tracking queries with the DBCommandInterceptor ������������� 710

Task 0: Getting started ��� 710

Task 1: Add a method to use for demonstration, and then add logging ������������������������������ 710

Task 2: Use the ToQueryString output �� 714

Task 3: Implement the DBCommandInterceptor to log slow running queries ��������������������� 717

Activity 14-4 summary �� 721

Activity 14-5: Flexible entity mapping ��� 722

Task 0: Getting started ��� 722

Task 1: Use flexible entity mapping to retrieve the results of a view ���������������������������������� 722

Activity 14-5 summary �� 725

Activity 14-6: Table-per-type (TPT) inheritance mapping �� 725

Task 0: Getting started ��� 726

Task 1: Create the inheritance hierarchy ��� 727

Task 2: Move data �� 730

Activity 14-6 summary �� 734

Chapter summary ��� 735

Important takeaways ��� 735

Closing thoughts �� 735

Chapter 15: �Net 6 and EFCore6 �� 737

Planned highly requested features and enhancements �� 737

SQL Server temporal tables ��� 737

JSON columns ��� 738

ColumnAttribute�Order ��� 738

Compiled models ��� 739

Migrations bundles �� 739

� Net integration improvements �� 739

Table of ConTenTs

xx

Additional new features �� 740

More flexible free text search �� 740

UnicodeAttribute �� 740

PrecisionAttribute �� 741

EntityTypeConfigurationAttribute ��� 741

Translate ToString on SQLLite �� 741

EF�Functions�Random �� 741

Support for SQL Server sparse columns ��� 742

Command timeout in the connection string for SQLLite �� 742

In-memory database – Validate required parameters ��� 742

Savepoints API – Use partial transactions to roll back to a previous savepoint ������������������ 742

Reverse-engineering preserves database comments in code �� 742

Chapter 15 activities ��� 743

Activity 15-1: New attributes �� 743

Task 0: Getting started ��� 743

Task 1: Use the Precision attribute �� 743

Task 2: Leverage the EntityTypeConfigurationAttribute ��� 748

Task 3: Use the new Unicode attribute �� 751

Activity 15-1 summary �� 755

Activity 15-2: Changes to how text and searching are handled, null or
whitespace translated to SQL, sparse columns, nullable reference types, and
a new random function ��� 756

Task 0: Getting started ��� 756

Task 1: Improved free text search ��� 756

Task 2: Review the upgrade to string�Concat �� 766

Task 3: Review the use of EF�Functions�Random ��� 768

Task 4: Reviewing improved SQL Server translation for IsNullorWhiteSpace ��������������������� 769

Task 5: Support for sparse columns �� 770

Activity 15-2 summary �� 774

Table of ConTenTs

xxi

Chapter summary ��� 775

Important takeaways ��� 775

Closing thoughts �� 775

Chapter 16: Appendix A: Troubleshooting �� 777

Migrations ��� 777

Objects exist/objects don’t exist�� 778

Comment out code �� 778

Manual insert to the database ��� 779

Change DB connection �� 779

Starter packs��� 780

General starter pack creation �� 780

What you should do every time ��� 781

Simple instructions �� 782

Final packs �� 785

Review your solution ��� 786

Use a diff tool like GitHub, VSCode, or WinMerge �� 786

Index ��� 787

Table of ConTenTs

xxiii

About the Author

Brian L. Gorman is a Microsoft Azure MVP, developer,

computer science instructor, and trainer and has been

working in .Net technologies as long as they have existed.

He was originally MCSD certified in .Net 1 and re-certified

with MCSA: Web Apps and MCSD: App Builder certifications

in 2019. From 2019 to 2022, Brian has earned nine Azure

certifications, including Azure and Data Fundamentals,

Azure Administrator, Database Administrator, Security

Engineer, and Developer Associate certifications, Azure

Solutions Architect and DevOps Expert certifications, and an

IoT Specialty certification.

Additionally, Brian became an MCT as of April 2019 and is focusing on developing

and training developers with full-stack web solutions with .Net Core and Azure, and

is also focused on helping small businesses meet certification standards to be able

to qualify for Microsoft Partnership. Most recently, Brian was employed as a Senior

Training Architect with Opsgility, and is still partnering with Opsgility for a number

of training initiatives, including taking on the instructor role for an upcoming MSSA

offering in January of 2022. As of October 2021, Brian is now fully self-employed as

a trainer and curriculum developer, author, and speaker. Brian’s company is called

MajorGuidanceSolutions.

In addition to working with .Net technologies, Brian has been an adjunct faculty

member in the computer science department for Franklin University for the last

11 years, where his courses have included data structures, algorithms, design patterns,

and, more recently, full-stack solutions in the capstone practicum course.

xxv

About the Technical Reviewer

André van Meulebrouck has a keen interest in functional

programming, especially Haskell and F#.

He also likes data technologies from markup languages

to databases and F# type providers.

He lives in Southern California with his wife “Tweety”

and is active in athletics: hiking, mountain biking, and

gravity/balance sports like freestyle skating (inline and ice),

skateboarding, surfing, and sandboarding.

To keep his mind sharp, he does compositional origami, plays classical guitar, and

enjoys music notation software.

xxvii

Acknowledgments

I would not have been able to write this book if it were not for a number of people who

have both influenced and helped me throughout my career, as well as the multitudes of

grace and support that I have received from my family throughout this process.

I’d like to begin by thanking André van Meulebrouck for his excellent work as a

technical reviewer and editor. André’s thoughts and comments throughout the process

have greatly helped to shape this book over the first and second editions. Also, his

incredible patience with working through a couple of bugs with the solution files has

been an invaluable resource to help ensure the resources work and the directions are

easy to follow. An extra special thanks to André as well for consistently putting up with

my misuse of setup vs. set up (you would think I’d be better at this by now).

I’d also like to thank the many friends and acquaintances I’ve made at various tech

conferences in the past few years. I’ve learned so much from all of you. There are a

few that I must mention, however. First, Mike Cole, my peer and friend, thank you for

introducing me to AutoMapper projections, and thanks for all your candid conversations

around Entity Framework (EF) with me as I wrote this book. Thanks to Mitchel Sellers

for your talk on Entity Framework that I got to see at Iowa Code Camp and again at our

CVINETA meeting a couple of years ago, which focused on addressing the performance

pitfalls that arise from misusing Language Integrated Query (LINQ).

Thank you to Apress and the team who have believed in me and have helped to make

this book possible. Thanks to Jonathan Gennick and Jill Balzano for running the project,

editing, and overseeing the entire schedule and process.

I would be remiss if I didn’t also thank Dustin Behn, the leader of the Inspired

Nation, and his life coaching and his Emergence program. Thank you for coaching me

these past few years and for helping me get out of my own way to do things like this book.

Last, and most importantly, to my wife Cassie and our kids, to whom the book is also

dedicated. Thank you for giving me the time and space to make this book happen and

for continually checking on my progress by asking how many chapters I have done and

how many I have left.

xxix

Introduction

Entity Framework is the object-relational mapper (ORM) of choice for a majority

of enterprise application development teams which are leveraging Microsoft .Net

technologies. Through the years, EF has gone through a number of changes, and the move

into the .Net Core world has seen EF become more performant and more user- friendly.

As this book begins, we’ll take a look at the state of things as they are and the state of

things to come. We’ll begin the real work by touching on the two different approaches to

working with a database using EFCore: database first and code first. After the first three

chapters, we settle in on the code-first approach with EFCore and approach practical,

real-world scenarios to help you and your team develop robust and rugged data solutions

while learning the fundamental concepts necessary to effectively work with EFCore.

The great news is that no matter what approach to the database or version of EF

you are using, with just a few minor exceptions, things will generally work in a similar

fashion, so all of the information in this book is relevant to anyone working with Entity

Framework.

 Who this book is for
Practical Entity Framework is written for anyone that is new to Entity Framework or is

still learning and wants to become much better with Entity Framework.

If you are already an expert or a well-established developer with a few years of EF

under your belt, this book will likely not have a lot of new information for you, but there

may be a couple of concepts that you would still benefit from reviewing.

Overall, the book is designed as a practical approach – which means that there is a

lot of hands-on work to step through the moving pieces that are necessary to understand

and work with EFCore, as well as how to approach architecting SOLID solutions around

EFCore.

The practical nature of each activity will give you many examples and cover a lot of

the basic and advanced topics you will likely encounter in real-world applications.

PART I

Getting Started

3
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_1

CHAPTER 1

Introduction to Entity
Framework
In this chapter, we are going to cover the history and origins of Entity Framework and

then continue into discussions of where Entity Framework is and where it is headed.

We’ll conclude with what it takes to get Entity Framework into any .Net project.

 One, two, three, four versions? Oh my!
Before we begin doing anything, it’s important to note that at the time that I’m writing

this book, there are currently three active versions of Entity Framework in play that

organizations likely have deployed across various solutions, and by the time you are

reading this text, you are likely to encounter at least two of them on a regular basis. The

good news is that, for the most part, they all work in a very similar fashion, with just a few

slight differences in some of the commands and available functionality.

As this is the second edition of this text, this book is an improvement and update on

the original Practical Entity Framework, which was released in July 2020. The original

version was written with EF6 and EFCore for .Net Core 3.1. If you need information that is

more specific to these original versions (and still very valid versions) of Entity Framework,

I would encourage you to pick up a copy of the first edition. Again, almost everything in

this text would also apply to the original versions of Entity Framework – EF6, EFCore3,

and EFCore5 – but there are some improvements that will be highlighted in this text that

would not work in previous versions.

Before we dive into the meat of EFCore6, in the next few pages, we’ll examine where

we came from, how we got to this situation of having multiple, active versions, and where

we’re going from here. Let’s start at the very beginning.

https://doi.org/10.1007/978-1-4842-7301-2_1#DOI

4

 When it all began
Microsoft SQL databases have been around for quite some time. In fact, they existed

before .Net was created.

 OLEDb and spaghetti database access

Prior to the .Net Framework, often a database connection was handled through code

in an Object Linking and Embedding Database Object (OLEDb). Developers

would often write SQL queries inline and then connect to the database and perform

actions using these tools. Furthermore, queries often lacked any kind of security and

organization. Similar or identical calls might be written from multiple pages. As if this

approach didn’t have enough problems to begin with, SQL queries might have even

existed within the html, which is easily viewable from a simple “right-click and view-

source” operation. In the most egregious situations, database credentials might have

even been easily viewable in this same source. Finally, and yes it gets even worse, often

the user credentials that were used in these pages had full access to everything in the

database, perhaps even multiple databases.

In addition to the problems of having a spaghetti code approach to database

operations, exposing queries and credentials to the world leads to extremely dangerous

security breaches. One of the most common security risks when working with data, even

to this day, is an attack known as a SQL Injection query.

Imagine that your update statement was fully exposed in the source on your

web page. All it would take to compromise the database is a savvy hacker to use

their knowledge to “inject” a few statements along with your query, and they could

accomplish anything from performing destructive actions like dropping tables or other

schema objects to mining operations like exporting your data for their own use. Even

if your query wasn’t directly exposed, if you had given the user a form text field to work

with, then the attacker could easily place SQL code right in that form text and potentially

hijack or corrupt your database. Obviously, some better approaches to prevent issues

like these were critically needed.

Chapter 1 IntroduCtIon to entIty Framework

5

 ADO.Net – A better tool for application database
interaction
For .Net developers, the next step in working with a database relied on a technology

known as ADO.Net. Believe it or not, ADO.Net is still in use, and it’s even possible to

use ADO.Net in your greenfield projects, even today (and there may even be some

developers who might even die on the hill of the efficiency of this approach).

ADO.Net was developed to help prevent a few of the problems we’ve previously

discussed. One of the most important aspects of the ADO.Net library was the ability to

easily parameterize queries. With parameterized queries, developers no longer had to

create inline SQL queries directly in the application code. Rather, the ADO.Net approach

allowed (and still allows) developers to create a base connection object, SQLConnection,

with credentials obscured and the connection string stored in one common, secure

location. The connection object is directly referenced by a command object, SQLCommand.

The command object had settings allowing developers to toggle the command to work

as a regular query or to execute a database object such as a stored procedure. Most

importantly, the query allows the parameters to be defined and constrained by type, as

well as allows for automatically replacing bad characters often used in SQL Injection

attacks.

Once the queries were executed from the command, the results could be used to

hydrate a result set, such as a DataReader or a DataSet. These results-oriented objects

were then used to transport the relevant data and provide access to the data to render it

back to the end user. This approach was the best tool we had as developers before Entity

Framework (or other ORMs such as NHibernate).

 A brief note about ADO.Net
As mentioned previously, it is still possible to program database operations directly with

ADO.Net. At this point, however, ADO.Net is rarely used directly in current enterprise-

level applications. In modern development, we almost always want to wrap our database

operations with a unit of work and also potentially provide access through repositories

(e.g., the unit of work and repository patterns), which is generally provided by most

object-relational mappers (ORMs). Entity Framework takes ADO.Net to the next level by

abstracting the need to directly interact with ADO.Net. Additionally, as a fully capable

ORM, EF utilizes both the unit of work and repository patterns by default.

Chapter 1 IntroduCtIon to entIty Framework

6

 Entity Framework makes its debut
In 2008, when EF was created, the only version of the .Net Framework in play was

just that – the .Net Framework (version 3.5 at the time of the first release of EF). The

framework had already been released in version 2.0 and then 3.0, and finally, some

additional tools came in the framework version 3.5 release, including the first version

of Entity Framework. The final release of the .Net Framework came with version 4.8 in

late September of 2019. At that point, the version of EF was EF6 (which means there was

an EF5 and an EF6, which is why we now have EFCore5 and EFCore6 even though the

“core” moniker is now officially dropped from .Net – there will be more on this later).

With each iteration of the .Net Framework, Microsoft revolutionized the way we

program in relation to the database with the introduction of Entity Framework and the

query syntax known as LINQ (Language Integrated Query).

 Entity Framework and LINQ
In tandem, EF and LINQ made it possible to not only work against our database objects

using C# or VB.Net code but also gave us the ability to define database structures directly

in code. Using code to create database objects rather than traditional SQL scripts is

known as working in a code-first database approach.

Being able to define and work with objects in memory that modeled the database

object while also directly tracking changes against the database was quite a powerful

revolution. Directly tracking the changes in memory also leads to a new level of

understanding of concurrency issues for those of us who were used to working with

disconnected data. This transition from disconnected to connected data was a very good

thing, even if it was a slightly painful transition. Additionally, EF provides the ability to

easily work with the data in a disconnected fashion, which is also a valid and valuable

option. We will examine working with both disconnected and connected data in this

text.

While EF and LINQ were some of the more important database tools that were made

available to us with each iteration of the .Net Framework, there was more going on than

just these language and paradigm changes. Ultimately, the introduction of a new CEO

would start to take Microsoft down an entirely different path.

Chapter 1 IntroduCtIon to entIty Framework

7

 A new direction and a new visionary leader
In early 2014, Microsoft got a new CEO in Satya Nadella. Mr. Nadella started Microsoft

on a transitional course that would somewhat shock the developer community. Almost

immediately after starting, he simply announced that the Linux operating system (which

at the time would have been seen as a direct competitor to Microsoft Windows) would be

embraced. Following that, Microsoft quickly started releasing tools that would be able to

be run not just on Windows but also on other platforms like Macs and Linux computers.

While these initial steps were a revolutionary change in Microsoft’s standard operating

procedure, what came next was completely unexpected.

 Microsoft goes all in for all developers
In late 2016, Microsoft announced that .Net was going to be open sourced. This meant

that going forward, all of the tools and code that developers work with on a daily basis

could be directly extended and were made open for suggested extensions to the entire

world. Any developer with an idea could create a pull request and ask for their changes

to be directly implemented into some of the base libraries of the .Net Framework.

From this point on, Microsoft and the .Net Framework were no longer going to be

an opaque operation with all development behind closed doors. From that day on,

Microsoft’s modus operandi has been to be fully and intentionally engaging with the

entire community of developers, not just its core of .Net developers.

 A new vision requires a new path
Making .Net open source was a very strategic and arguably a very wildly successful

decision. However, with great changes, often come great needs for new tools and

processes. Moving to be an open source language wasn’t going to be enough. It was also

apparent that the code itself, like some of the recent tools Microsoft was releasing, must

also run on any platform. Perhaps it is even as a result of these changes that you find

yourself reading this book.

In order for the code that is written to be able to live on any server on any operating

system, or even in a container framework like Docker, the .Net Framework had to be

independent of any Windows-specific API calls. While it might have been possible

to run compiled .Net code on a platform like Mono or Xamarin on a Linux or Mac,

developing, compiling, and executing code directly were simply not possible with the

Chapter 1 IntroduCtIon to entIty Framework

8

.Net Framework. Therefore, along with the release of the information that Microsoft was

going open source, came the release of the “Core” platform. In the original release of .Net

Core 1.0, a new class library type called the .Net Standard Library was also introduced.

The initial release of .Net Core was targeted for use by web developers, specifically

those using the .Net MVC web development framework. Because of the limitations of

what could be done with the framework, as well as with the overall change not being

extremely lucrative, initial adoption of the .Net Core platform by .Net developers and

organizations was fairly slow.

Adoption of .Net Core started to increase with a major release in the core platform 2.0.

However, the final release of .Net Core, version 3.1, opened the doors for more than just

web development and accelerated the move to .Net Core across all projects, not just web

development projects.

Another side effect of this new path by Microsoft was the effect that these changes

had on the direction of Entity Framework. With the rewrite of the .Net Framework into

.Net Core, along came a new EF, also called Entity Framework Core. Therefore, at the

time of this writing, and into the direct future for the next few foreseeable years, there

will be a minimum of two active versions of EF in play, EF6 and EFCore (with EFCore

having multiple versions that are likely still active).

 What is .Net 5 and why is Entity Framework called
EFCore5 instead of EF5, and why are we already on .Net 6
and EFCore6
In November of 2020, .Net 5 was officially released. .Net 5 is the end result of two paths

converging. The original .Net Framework and the new .Net Core architecture all brought

back under one roof. Rather than call it .Net Core Framework 5, the easy solution is

to just rebrand back to .Net 5. Don’t get too comfortable, however, because .Net 6 and

.Net 7 are on the plan for the next couple of years. All of this is to say that with the most

recent release at the time of this writing, .Net Core and the .Net Framework are both now

merged into .Net 5 and EFCore5, and the next editions are coming soon – .Net 6 with

EFCore6.

As previously noted, original versions of EF were released through EF6. By default,

this means there was already an EF5 release, which happened in 2012, and an EF6

release that happened in 2013. Therefore, it might create a lot of confusion to call the

new versions of EF by the same name as versions already created, which are still very

Chapter 1 IntroduCtIon to entIty Framework

9

much in active use at this time. For these reasons, it is my guess that the only choice was

to keep core in the name of the new releases. However, with .Net 6 and 7 planned, do not

be surprised if at some point in the future the official name goes back to something like

EF6.5 or EF7, once the original versions are no longer in conflict with the active version

of .Net.

 The state of the union
Although EF6 has reached end of life on new features, the support for EF6 will go on,

likely through the beginning of 2029. Additionally, .Net Core 3.1 will also have a lifecycle

that will continue until likely around 2030. With the majority of applications in the real

world at the time of this writing that use entity framework being non-core applications

and the majority of applications in the real world being written in the future in the .Net

5 stack, it will be very important to understand and know both of these frameworks (EF6

and EFCore) for the next five to ten years.

The good news is that, for the most part, both frameworks are doing the same thing

and accomplishing the same goals with the same architectural concepts. The bad news is

that these frameworks are somewhat divergent when it comes to working with commands,

how they deal with code-first migrations, and working with legacy objects like EDMX files

(which exist only in older versions of EF). Additionally, there are many variances in levels

of efficiency when it comes to the two versions, with EFCore often outperforming EF6.

As mentioned previously, this book will be primarily focused on working with

EFCore6. Currently, EF6, EFCore3.1, and EFCore5 projects should all work in .Net 5 or

.Net 6 projects, but new projects in the .Net 6 release should target EFCore6. Additionally,

most of what this book will cover using EFCore6 will also work in previous versions of

EF. In cases where code would not work in a previous version, this book will make every

effort to call out the fact that the code only works in the latest version of EFCore6.

 The future
As .Net continues to release and evolve into the future, it is my hope that everything

we cover in this text will remain relevant for years to come. Additionally, as previously

noted, most of what we cover in this text does translate back to use in EF6 EFCore3 or

EFCore5 projects. Finally, I will do my best to keep any resources associated with this

book up to date, as much as it makes sense to do so.

Chapter 1 IntroduCtIon to entIty Framework

10

 Activity 1-1: Getting started with EFCore6
In order to work with Entity Framework Core 6, you need to understand how to get the

project up and running. For this reason, in this first activity, you’re going to go through

the steps it takes for you to implement Entity Framework into any solution.

As with most things in development, there are multiple approaches that can be taken

to get started. Over the next couple of chapters, you will be exposed to a few different

starting approaches to working with Entity Framework Core 6 (EFCore6).

By completing this first activity, you will see what it takes to get started from scratch

with a brand-new project. The main goal here is to see what libraries and configurations

are necessary to start a brand-new project.

Note It is entirely likely you won’t need to do a lot of the things you’ll see in the
remainder of this chapter as many .net projects already contain eF as part of the
working solution, or your organization will have an architect that puts all of this in
place, or you may use a boilerplate project that does it all for you.

In any project, you can easily set up Entity Framework (EF). Before you do this, however,

a great question to ask yourself as the developer/architect is if the database operations

might need to be used across multiple solutions or projects. If that is the case, to use EF

across multiple solutions or projects, the best approach is to create a reusable code library

that stores your database code, including your context, configuration, and migrations.

Regardless of using a separate library or just including in a single package, the initial

setup will be exactly the same, which is to bring the libraries into your solution or project

using NuGet. Since using a separate library is a more robust and reusable approach,

in this first activity, you’ll walk through how to build a reusable database library that

leverages EFCore6. You’ll begin by taking a look at a greenfield project, and then you’ll

proceed to import the Entity Framework libraries.

 Task 1: Create a new project and add the EF packages
To get started creating a new project, make sure you have previously installed the

Visual Studio IDE latest edition. Visual Studio Community is available for free for

both academic use and open source project development and can easily be installed

on any machine. That being said, there may be some limitations if using a Mac or

Chapter 1 IntroduCtIon to entIty Framework

11

Linux box. The Visual Studio Community IDE download can be found here: https://

visualstudio.microsoft.com/downloads/. If the link is no longer working, simply run a

Google search for Visual Studio Community Download.

Additionally, if you previously had Visual Studio, make sure you’ve updated to

the latest version and that you have the .Net 6 Framework SDK installed (this book is

written using a preview version; however, the .Net 6 SDK and EFCore6 will be automatic

once they are generally available in November 2021). You can update your Visual

Studio IDE by going to “Help ➤ Check for Updates” in the menu on the Visual Studio

IDE. If updates are available, you will be given the option to easily install them, which

might require a reboot of your machine when completed. Additionally, Visual Studio

2022 should be in public preview by the time this book is published and may even be

generally available by the time you are reading this book. If Visual Studio 2022 is out,

there should be no reason for you to not use the latest version as EFCore6 and .Net 6 will

work in either version of Visual Studio.

 Step 1: Create a new .Net 6 console project

Open the Visual Studio IDE and select Create a new project as shown in Figure 1-1.

Figure 1-1. Creating a new project in Visual Studio

Chapter 1 IntroduCtIon to entIty Framework

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

12

 Step 2: Search and select Class Library

For this step, it will be important to select the correct project type. In this activity, you

are creating a new C# .Net class library. Search for Class Library and then select the

version of your choice (C# or Visual Basic). This book does everything in C#, but all

concepts would be possible in Visual Basic as well. Once you have found the correct

library of choice, select Next. You can easily search with the dropdowns as well, limiting

language, platform, and template type to C#, Windows, and Library, respectively. Review

Figure 1-2 for important details on what to look for when creating your new project.

 Step 3: Name your project and select the storage location

Once you’ve selected the type of project, you need to name it and select the correct

place to store it. Name your project EFCore_DBLibrary and select a good location on

your computer where you store your projects. For example, I like to store projects under

C:/<Client>/Projects or C:/<Client>/Code. Here I’ll place the project in a folder C:/

ApressEntityFramework/Code/. Figure 1-3 highlights what my creation page looks like,

and yours should be similar.

Figure 1-2. Selecting a C# .Net class library

Chapter 1 IntroduCtIon to entIty Framework

13

After you have selected Next, you should be prompted to select a Target Framework.

When prompted, select .NET 6.0 and then hit Create (see Figure 1-4).

Figure 1-3. Configuring your new project with name and desired folder for the
project selected

Figure 1-4. When creating a new project, you will be prompted to select the Target
Framework

Chapter 1 IntroduCtIon to entIty Framework

14

A new project will be generated with your default Class1.cs file as your class

library. This should open automatically and should look similar to what is shown here in

Figure 1-5.

 Step 4: Target the .Net 6 Framework

Although you don’t need to do this, in case you want to be certain the correct version of

.Net is targeted, select the EFCore_DbLibrary project in the Solution Explorer, right-click,

and select Properties.

Once the menu is open, use the dropdown under the Target Framework to select

.NET 6.0 as shown in Figure 1-6.

Figure 1-5. The project after initial creation is shown

Figure 1-6. Configuring the .Net class library to target the .Net 6 SDK

Chapter 1 IntroduCtIon to entIty Framework

15

 Task 2: Add the EFCore6 packages to your project
 Step 1: Determine the latest version of Entity Framework

Now that you have the project created and the Target Framework set to .NET 6.0, you

need to install the latest version of Entity Framework.

There are two ways to install NuGet packages into your code in .Net. The first way is

the easier way, which is to use the option Manage NuGet Packages for Solution, which

is found under the menu Tools ➤ NuGet Package Manager. The second way is to use

the Package Manager Console to run a command on the project to import libraries. As

a developer, you need to know how to do both. In this activity, you will use the Package

Manager Console. In future activities in the book for other libraries, you will leverage the

Manage NuGet Packages option from the Tools ➤ NuGet Package Manager menu.

To find the latest version, just do a quick Google search for Entity Framework

Core NuGet Package which should point you to this page: www.nuget.org/packages/

Microsoft.EntityFrameworkCore.

Once there, you can easily see the latest version and the command to install the

package, as shown here in Figure 1-7 (currently preview version 6.0.0-preview.4.21253.1,

but will be a newer/official version by the time you are reading this book and working

through this activity).

Chapter 1 IntroduCtIon to entIty Framework

http://www.nuget.org/packages/Microsoft.EntityFrameworkCore
http://www.nuget.org/packages/Microsoft.EntityFrameworkCore

16

Important notes about NuGet packages:

• The command to run is located in the main portion of the page.

In this case, it is Install-Package Microsoft.EntityFrameworkCore

 -Version 6.0.0-preview.4.25253.1. By the time you are working

through this text as it is published, the version will be higher and will

likely no longer be in preview. You should use the most recent stable

version of the library.

• There may be preview versions available. While they are easily

installed, they may not yet be stable. When working on application

code, I would recommend using the latest stable version. Also note

Figure 1-7. Finding the latest version of Entity Framework Core

Chapter 1 IntroduCtIon to entIty Framework

17

future releases might be marked with an “rc” for release candidate

(such as the listing for 5.0.0-rc-2.20475.6). RCs are generally close to

stable, but again, not recommended for production use.

• Although the version is specified, if you run the command for install

without the version, then generally the latest stable version would

automatically be installed for you.

 Step 2: Add the Entity Framework libraries to your project

Now that your class library is set up, you can add the Entity Framework libraries using

the Package Manager Console. Using the Tools menu at the top of the Visual Studio

IDE, select Tools ➤ NuGet Package Manager ➤ Package Manager Console as shown

in Figure 1-8 (also note one of the other options is the Manage NuGet Packages for

Solution, which you’ll use in the future, but not now).

Figure 1-8. Opening the NuGet Package Manager Console

Chapter 1 IntroduCtIon to entIty Framework

18

This will open the Package Manager Console (PMC) panel into the bottom portion of

the Visual Studio IDE.

Once the PMC is open, run the command as found in Step 1 (which will be

something like Install-Package Microsoft.EntityFrameworkCore -Version 6.0.1,

but the version number will be slightly different based on new releases since the time of

this writing (see Figure 1-9).

Once you press Enter, the packages will install, and your project will be set up for

using the Entity Framework in this code library.

Your installation should be similar to the output as shown here in Figure 1-10.

Figure 1-9. Inputting the command to bring the EFCore libraries into our project
in the Package Manager Console

Figure 1-10. Running the installation of the EFCore libraries into our project
using the Package Manager Console

Chapter 1 IntroduCtIon to entIty Framework

19

You have now successfully created a class library that references Entity Framework,

but you still have some work to do to get it set up to run against a database.

At this point, you can also validate the packages that are installed, both in the *.csproj

file and in the Tools ➤ NuGet Package Manager ➤ Manage Packages for Solution.

Using the menu to open Tools ➤ NuGet Package Manager ➤ Manage Packages for

Solution, make sure to select Installed. You should see the EFCore6 version that you just

installed via the PMC. This is shown in Figure 1-11.

Double-click the project name EFCore_DbLibrary in the Solution Explorer. This will

open the project JSON file, and in the JSON file, you will be able to see the referenced

packages for the project, as shown in Figure 1-12. Remember that your version will

almost certainly be different than what is shown, and that is OK as long as it is version 6.

Figure 1-11. Reviewing the Manage Packages for Solution installed tab reveals
that the library is successfully added as part of your project

Figure 1-12. The project JSON file reveals the packages that are included in your
project, including the Entity Framework Core 6 version that you just installed

Chapter 1 IntroduCtIon to entIty Framework

20

Because the version is still in preview as I’m writing this book, you may note that in
future projects the starter and final files will leverage version 6.0.0-*, which brings
in the latest release. you can always see the exact libraries imported under the
dependencies of the project.

 Step 3: Create a DBContext

In order to work against the database, you need a DBContext object. The DBContext

(context) object is responsible to act as the interpreter between your code and the actual

database. The context is where you’ll define all of your entity sets, and you can also

override some of the database schema using the Fluent API in the DBContext.

To make your context, you’re going to convert your Class1.cs file. First,

you need to rename it to something useful. Here you will just name the file as

ApplicationDbContext, but you could name yours after your actual application if

you would like, such as MoviesDbContext or AccountingDbContext. The name of

your context is entirely up to you. If you end up using multiple contexts, then I would

recommend distinctly naming them in a way that is easy to discern their intended

purpose, but keep them simple since using multiple contexts requires typing their

names a lot.

To rename the file, simply right-click the Class1.cs file in the Solution Explorer in

your Visual Studio IDE and select Rename as shown in Figure 1-13.

Chapter 1 IntroduCtIon to entIty Framework

21

Alternatively, selecting the file in the Solution Explorer and hitting F2 will

automatically select the file for renaming.

Once the rename textbox appears with the original name in it, enter your new

context name, such as ApplicationDbContext as shown in Figure 1-14.

Figure 1-13. Selecting the Class1.cs file for renaming

Figure 1-14. Renaming the Class1.cs file to ApplicationDbContext.cs

Chapter 1 IntroduCtIon to entIty Framework

22

Hitting Enter will prompt you to perform a rename in all code elements for the file.

You want to do this, so go ahead and select Yes as shown in the dialog in Figure 1-15.

After renaming and selecting Yes, the class declaration public class Class1 should

also be renamed to whatever you named your context (i.e., ApplicationDbContext) with

the constructor named to match as shown in Figure 1-16.

Figure 1-15. Selecting “Yes” to allow auto-rename of the class in all code
elements

Figure 1-16. The Class1.cs file has been renamed and the constructor is now
named to match the name of the file

Chapter 1 IntroduCtIon to entIty Framework

23

 Step 4: Alter your context to implement DbContext correctly

Now that your filename is changed to match your context, you need to alter the context

so that it is implemented correctly. To do this, you must accomplish two things:

 1. You must inherit and extend DbContext.

 2. You must have a constructor that allows for injecting the context

options.

First, make your ApplicationDbContext an actual DBContext by extending

DbContext. Extend DBContext and make sure to add the using statement for Microsoft.

EntityFrameworkCore as shown in Figure 1-17.

Note that the using statements that are missing in your code can easily be added by

fixing the red squiggly lines that appear under them and selecting the Show Potential

fixes option to bring up the available fixes, which includes the option to add the using

statement. In the previous fix, this would have looked as is shown in Figures 1-18 and 1-19.

First, the selection to Show potential fixes is shown here in Figure 1-18.

Figure 1-17. Extending the DBContext class and adding the appropriate using
statement

Figure 1-18. The option to Show potential fixes is shown when hovering over or
clicking any red squiggly lines in your code

Chapter 1 IntroduCtIon to entIty Framework

24

Once clicked, the missing using statement is added as an option to fix the “problem,”

as shown in Figure 1-19.

With the context inheritance in place, the first requirement is met.

To complete the operation and satisfy the second requirement that allows for

injecting the context options, you need to set the constructor to take in the DBOptions on

injection.

Adding a complex constructor can break some things if you aren’t careful. For

example, if you intend to run scaffolding options later with this context, you need a

default constructor (a parameter-less constructor). Therefore, it’s best to just add both

now, unless you know for sure you will not use tools like the scaffolding tools available in

the Visual Studio IDE.

Place the following code block into your ApplicationDbContext class:

//Add a default constructor if scaffolding is needed

public ApplicationDbContext() { }

//Add the complex constructor for allowing Dependency Injection

public ApplicationDbContext(DbContextOptions options)

 :base(options)

{

 //intentionally empty.

}

For clarity, review Figure 1-20 to ensure your code is as expected.

Figure 1-19. The missing using statement can be easily added

Chapter 1 IntroduCtIon to entIty Framework

25

Note that in order to accomplish this task, you made a public function with no

return type since it’s a constructor. The name of the constructor is the exact same

as the name of the class, and the new constructor has one injectable parameter of

type DbContextOptions. This parameter will include critical information, such as the

connection string to your database. Making these options injectable will ensure that the

context can be used from any application pointing to any correctly configured database.

 Activity summary
In the previous activity, you created a class library and then imported the Entity

Framework Core 6 library. After completing that import, you renamed the class file and

then set up your DBContext to be ready to be used in any project.

As of right now, you can’t necessarily prove that your setup is ready to go, but you

can trust that it is either ready or will be very easy to modify once you get an actual

application to use the project.

Figure 1-20. Adding the DBOptions as an injectable object to the constructor and
creating the default constructor with no parameters

Chapter 1 IntroduCtIon to entIty Framework

26

You might ask the question as to why this activity stopped here and did not just make

sure that everything is working as expected. To answer that, you need to first decide how

you are going to work against your database. Will you use a new database or an existing

database? Will you use a code-first approach for your database, or are you going to use

a reverse-engineering approach? In the next two chapters, you’ll take a look at each of

these options and get a chance to see how each approach can work. In the real world,

your approach will depend on the needs of your application and the requirements based

on the existence or non-existence of a database that the application will leverage.

 Chapter summary
In this first chapter, you have taken a good look at the history of coding against data

and how and why that history has led us to the Entity Framework. You then moved into

creating a project in a class library that would be ready to work as a shareable database

code library.

Although the first activity didn’t create a fully functional library pointing to an

actual database, you were able to get a good start and an overview of what it takes at the

foundational level to work with Entity Framework. You’ve also gained an entry-level

understanding of the DBContext object and are now familiar with how you might go

about setting up the application to leverage Entity Framework.

 Important takeaways
After working through this chapter, the things you should be in command of are

• The history of coding against data and the problems that have existed

before Entity Framework wrapped the ADO.Net libraries

• How Entity Framework can be implemented into a class library for

use in any project (still not entirely useable as is, but the initial setup

is in place)

 Closing thoughts
In the next chapter, you will examine how to create a project against an existing database

using the reverse-engineering approach.

Chapter 1 IntroduCtIon to entIty Framework

27
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_2

CHAPTER 2

Working with an Existing
Database
In this chapter, we are going to look at what it takes to get up and running with Entity

Framework when our project already has an existing database. We’ll conclude the

chapter with an activity to reverse-engineer an existing database in EFCore5 using .Net 6.

 Reverse-engineering or database first
When working with an existing database, we have many options, and how we

accomplish this task depends on what technology we are using. If we were working

in the .Net Framework and using EF6, we would need to approach this task with a

database-first operation. Since we are working in Entity Framework (EFCore5) with .Net

6, we’ll need to perform a reverse-engineering operation.

Before diving into the how on this, we should first discuss the why. Additionally, we

should take a look at some of the good and bad things about this reverse-engineering

approach.

 Why would we approach Entity Framework in
this manner?
There are going to be times when an application is needed for a database that already

exists. In these cases, the database may have many years of history and may be quite

involved. Starting from scratch is usually not possible in these cases, because the overall

amount of work it would take would overwhelm even the best development teams.

However, in these cases, it is also desirable to begin new projects, perhaps to break a

monolith into a serverless or hybrid serverless approach or to create a new access layer

for a specific application.

https://doi.org/10.1007/978-1-4842-7301-2_2#DOI

28

Rather than spend time trying to work new code into an old system, it is often

desirable for both efficiency and security reasons to build new solutions. In these cases,

when the database is mature and the desired application is new, a database-first or

reverse-engineering approach makes sense.

Another case where this might be highly useful is to start exposing some of the data

in a public or private API. Rather than creating a new database and porting data from the

old into the new, it is much more efficient and the chance for errors is lessened if the new

API just leverages the existing database.

 Reverse-engineered solutions
The really good news about this approach is that there are tools in place that allow us

to very quickly generate the code we need to work against the database. The bad news

is that this code is not very flexible, as we’ll see throughout this chapter. To sum it up,

essentially a reverse-engineered approach requires regenerating code any time the

database is changed where the application needs to interact with the database objects.

Need to add a column? You’ll need to add it in the database through your official

channels, and then you’ll need to regenerate your database context. An additional

drawback to using the reverse-engineered approach is that your database code is often

not stored in the repository. While you will have generated models for the objects you

include in your reverse-engineering operation, the scripts that actually created the

database objects are often not present. Additionally, there is not a history of objects and

their state in the database for versioning. This can make it tricky when trying to restore to

a previous patch but needing to have the database schema in the state it was at the time

of that release.

 Keeping everything in sync
A couple of final thoughts about this approach. In the older version of EF6, we often had

an EDMX file that was a conceptual model of the database. This EDMX file was a gigantic

XML file. If you’ve ever had to do a code merge in GIT, Subversion, or TFS when a large

XML file is involved for multiple developers, you don’t need me to tell you why that isn’t

a desirable situation in which to find yourself (massive merge conflicts on every change).

As such, creating the database changes in a database-first EF6 approach required a

great deal of coordination from team members. Additionally, even with a good system

Chapter 2 Working With an existing Database

29

for how the team changes the schema, you likely still needed some tool or some other

way to make sure you keep track of your database history, changes, scripts, and other

important details.

With the EFCore6 reverse-engineered database approach, a few similar issues will

arise, but the lack of a massive underlying XML file is an immediate win. Changes in this

approach do require model updates that all team members will need to make sure to

sync with to avoid future merge conflicts. The team will also need to continue to manage

how developers can get their local database copies to map to the production or test

database schema.

 Interacting with the existing database
Now that we have a decent understanding of why we might want to take a database-

first or reverse-engineered approach to the application, let’s take some time to work

through an activity that will allow us to see how to use the reverse-engineering solution

in EFCore5 with .Net 6.

 Activity 2-0: Working with a pre-existing database
In this section of the chapter, you’re going to work through setting up a pre-existing

database. In addition to getting the database up and running, you’ll also need to get SQL

Server and SSMS installed in order to work with the database locally outside of .Net and

Entity Framework code.

To complete this activity, you’ll need to have a version of Visual Studio, a working

local copy of SQL Express or SQL Server Developer edition (developer edition is

recommended), and Microsoft SQL Server Management Studio installed. Additionally,

you’ll need a backup copy of the existing AdventureWorks database.

 Task 1: Prerequisites
In this first task, you will ensure that your system is ready to work with Entity Framework

by completing two tasks to make sure you have the prerequisites of SQL Server Developer

edition and SQL Server Management Studio (SSMS) installed on your machine.

Chapter 2 Working With an existing Database

30

 Task 1-1: Prerequisite – SQL Server Developer edition (or SQL
Express)

The activity will use the recommended setup, which leverages the SQL Server 2019

Developer edition, available here: www.microsoft.com/en- us/sql- server/sql- server-

downloads.

For clarity, Figure 2-1 shows the Download button on the page for the SQL Server

Developer installation. You should use whatever the latest version of SQL Server

Developer is at the time you work through this book. Additionally, if you are unsure of

what to do during the installation, just use the basic installation options and default

settings.

if you don’t have enough space for the Developer edition or are on a machine with
limited power, you may use the express edition. if you do that, be advised that
your connection string will be slightly different than what is shown throughout the
rest of the text.

Figure 2-1. The Download button for SQL Server Developer found online is
shown

Chapter 2 Working With an existing Database

http://www.microsoft.com/en-us/sql-server/sql-server-downloads
http://www.microsoft.com/en-us/sql-server/sql-server-downloads

31

Another note here is that in this book I’m primarily working on a Windows box so I

don’t have any issues with the default versions of the software. If you are running on Linux

or a Mac, you will likely need to take additional steps to install SQL Server, which may also

include installing into a container. There are numerous resources available that discuss

how to do this online, including the instructions that follow the download highlighted

earlier on the same link as earlier. For clarity, these links are shown in Figure 2-2.

 Task 1-2: Prerequisite – SQL Server Management Studio (SSMS)

To interface with SQL Server 2019 locally, the current version of SSMS at this time is

version 18.9.1 and is available here: https://docs.microsoft.com/en- us/sql/ssms/

download- sql- server- management- studio- ssms?view=sql- server- ver15. Figure 2-3

shows the download page and link.

Figure 2-2. Additional options for installing SQL Server software on
non- Windows machines can be found below the original download link,
and the images and links are shown in this image

Chapter 2 Working With an existing Database

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

32

 Task 2: Download and restore the backup file for the
latest version of the AdventureWorks database to your
machine
Microsoft has made a free database available for use when learning or training on SQL

products. The database is called AdventureWorks and is available here: https://docs.

microsoft.com/en- us/sql/samples/adventureworks- install- configure?view=sql-

server-ver15&tabs=ssms. Regardless of which version of Entity Framework you want

to use for this activity, the two subtasks in this task to get the database downloaded and

restored will be the same. After completing the database restoration, you may proceed

with Activity 2-1.

Figure 2-3. The SSMS tool is required in order to interface with the database
server outside of code. The SSMS download link is shown for clarity in this image

Chapter 2 Working With an existing Database

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms

33

 Task 2-1: Download the latest version of AdventureWorks DB

Before you begin, it’s important to note that I’m running this on a clean machine. If you

currently have a version of SQL Server installed and you have restored AdventureWorks

in the past, you will need to evaluate the appropriate action(s) to take. To ensure that you

have the same version of AdventureWorks (it actually does change from time to time),

you may wish to just install the latest version with a new name (i.e., AdventureWorks2019

or AdventureWorks2). While you should be able to have side-by-side instances of SQL

Server (such as Developer and Express), your machine may not have space for both.

The book uses the Developer edition, but you can easily use SQLExpress. The main

difference would be in the connection string. For Developer, the connection string uses

the server as `localhost`, whereas SQLExpress generally uses `.\SQLExpress` for the

server.

Once you are ready with SQL Server and your plan for where to restore the database,

begin by downloading the latest AdventureWorksXXXX.bak file to your local machine

(i.e., AdventureWorks2019.bak). Figure 2-4 shows the download page on Microsoft’s

website for clarity.

Chapter 2 Working With an existing Database

34

For this book, examples will use the oLtp version of adventureWorks. You would
likely be able to complete all the tasks with the lightweight (Lt) version as well,
but this is untested. if for some reason you need to conserve space, you could try
using the Lt version of the download but may need to make a few tweaks on your
own in future exercises.

Once you’ve completed the download, you are ready to proceed to the restoration

task.

Figure 2-4. Downloading the latest version of the AdventureWorks database

Chapter 2 Working With an existing Database

35

 Task 2-2: Restore the AdventureWorks database to your local
SQL instance

After downloading the backup file, you need to restore it to your local SQL Server

Developer or SQL Express instance (you should have installed one of those in the

previous task).

Connect to your database in SSMS as shown in Figure 2-5. Note that the SQL Server

Developer edition references the local database server as localhost. If you are working

with SQLExpress, you will likely need to reference the server in your connection string

as “.\SQLEXPRESS” or something similar, based on how you installed the SQL Express

edition. Either way, you should use Windows Authentication as your authentication

method.

Figure 2-5. Getting connected to your SQL Server via SSMS

Chapter 2 Working With an existing Database

36

Once connected, right-click the Databases folder under your local server name, and

then select Restore Database.

Selecting Restore Database brings up the restoration dialog shown in Figure 2-7.

Figure 2-6. Selecting “Restore Database” in SQL Server Management Studio,
located by right-clicking the “Databases” folder in Object Explorer (as shown in
Figure 2-6)

Chapter 2 Working With an existing Database

37

With the Restore Database dialog open, select Device and then select the button with

three periods, which will bring up a dialog entitled Select backup devices. In this dialog,

select Add and then note the default location for backup files as in Figure 2-8. Select the

text in the Backup File location and copy it to your clipboard.

Figure 2-7. The Restore Database dialog is shown

Chapter 2 Working With an existing Database

38

Move the backup file from your downloads into the backup location found in the

Locate Backup File dialog shown in Figure 2-8.

You can copy the location from the dialog directly and open a new File explorer to
that path, or you can make note of the directory location in the directory tree on
the left half of the Locate Backup File dialog.

Figure 2-8. Finding the backup location in the Select backup devices – Add
dialog

Chapter 2 Working With an existing Database

39

Cancel the Locate Backup File dialog, copy the backup file to the correct path, and

then select Add again. You should now see a result like in Figure 2-9. Now that your

backup file is in the default location, it should be available in the window for selection as

your backup source file.

Now that the file is in the correct location, select the file and then press the OK

button and then select OK again on the Select Backup Devices dialog. This will fill in

information for the backup dialog to the point that you can restore the database.

Before we restore, let’s take a quick look and see if there is anything we want to

change. Start by looking at Figure 2-10.

Figure 2-9. The backup file shows in the dialog once placed in the default backup
folder. The file is selected and ready to be restored at the press of a button

Chapter 2 Working With an existing Database

40

Most importantly, take note that you can change the database name in the Database

dialog (see Figure 2-11). For example, here I am going to remove the year 2019 from the

database name. Additionally, you can change the default file location and other options

using the Files and Options tabs on the upper left Select a page dialog. I am going to leave

both tabs with all the default options as set automatically, so the only thing I’m changing

is the year. You may leave the year or change it as you so desire.

Figure 2-10. The AdventureWorks backup file is loaded for a potential restore
operation

Chapter 2 Working With an existing Database

41

Once all the options you want are selected and the database name is as you want it

to be, select OK to restore the database. Figure 2-12 shows the restoration progress in

action.

Once the restoration is completed, a confirmation dialog (Figure 2-13) will appear.

Figure 2-11. Changing the database name before restoration

Figure 2-12. Restoring the AdventureWorks database operation in progress

Figure 2-13. Restoring the AdventureWorks database operation has completed

Chapter 2 Working With an existing Database

42

You can then easily browse in SSMS to see the database and its existing tables and

other structures. Your database should look similar to what is shown in Figure 2-14. If,

for some reason, your database doesn’t show, try right-clicking Databases and selecting

Refresh.

You have now completed the prerequisite task work for the reverse-engineering

database activity that comes next.

Figure 2-14. Reviewing the AdventureWorks database in SSMS reveals that there
are plenty of tables and assumes they are populated with data correctly

Chapter 2 Working With an existing Database

43

 Activity 2-1: Reverse-engineering an existing
database with EFCore5
In this activity, you will use the AdventureWorks database you previously restored to

reverse-engineer an existing database for use in EFCore5.

 Task 1: Creating the solution with a new project and
referencing the DBLibrary project
In this first task for the activity, you will get started by creating a project and solution and

then referencing the library you created in Activity 1-1 in the previous chapter. If you

didn’t do the activity in the previous chapter, you can choose to go back and do so, or

you can download and use the final files for this activity.

 Step 1: Create the project and solution

In this first step, to begin the activity, you will start by creating a simple C# console

application, which will be your startup project. Open Visual Studio and use the Create a

new project dialog to create a new C# Console App in .Net Core. Review Figure 2-15 for

clarity.

Chapter 2 Working With an existing Database

44

When the Configure your new project dialog comes up, name the project

EFCore_Activity0201. Select a good location for your project, such as C:\<client>\

Projects. In my case, I’m placing all the code in the C:\APressEntityFramework\Code

folder. See Figure 2-16 and use this to guide you to enter the correct information. When

ready, hit the Create button. Make sure that you do not check the button for placing the

solution in the same directory. It is generally good practice to keep your solutions in

their own directory and projects in folders associated with the specific project.

Figure 2-15. Creating a new console project in .Net Core

Chapter 2 Working With an existing Database

45

When prompted, select .NET 6.0 as the Target Framework. If not prompted, you

can ensure that .NET 6.0 is the version of the framework you are using by setting the

properties on the project after creation (see Task 2: Ensure .Net 6…). After selecting .NET

6.0 as the Target Framework, hit the “Create” button.

Hitting “Create” will generate a new console project with a default starter class

Program.cs. The project and solution will have the same name, but their respective files

will be isolated from each other in separate folders on your hard drive. Figure 2-17 shows

the default starter project that was just created.

Figure 2-16. Configuring the new project

Chapter 2 Working With an existing Database

46

 Step 2: Copy the EFCore_DbLibrary project to a local folder

In this step, you will get the files in place to eventually leverage the database library

code in your new project. As stated earlier, you may either use the files from Activity 1-1

or just use the starter files for this activity. If you are using the starter files, make sure to

download them and extract them to your local folder for use in the next part of this step.

You will be reusing the code library in the next chapter. For this reason, the next
part of this step will ask you to copy the project folder to a new location.

Locate the folder that contains the project file for the EFCore_DbLibrary (either

extracted from the starter files or from your previous work on Activity 1-1). Additionally,

open a new File Explorer window to the folder that contains the solution for the Activity 2

project. Open the two windows side by side as shown in Figure 2-18, so that one window

has the original EFCore_DbLibrary project and the other is your new project folder with

the solution showing (do not worry if you don’t see the exact files and folder as shown, as

long as you have the EFCore_DbLibrary.csproj file available).

Figure 2-17. The EFCore_Activity0201 project was created and is ready to run

Figure 2-18. Both folders are open in File Explorer to make it easy to copy the
correct project file to the correct location

Chapter 2 Working With an existing Database

47

In the EFCore_Activity0201 folder, copy the original project from Activity 1 or

make a folder named EFCore5_DbLibrary and add the starter files into that new folder.

Figure 2-19 shows the copied folder for clarity.

ordinarily you would not bother to copy the folder and place it in the same solution
folder, but rather you would just leave the library on your root code folder and
reference it from that location. however, this activity is going to use the library,
and then it will be used again in another activity, so making a copy to avoid
conflicts here is the logical choice. the normal approach of just referencing an
existing library directly will be used in future activities.

 Step 3: Reference the code library that will be used to interact
with the database

In this final step for Task 1, you will reference the project you just copied in the new

console project created in Step 1 of this task.

Return to Visual Studio where the console project EFCore_Activity0201 is open.

Right-click the solution, and select Add ➤ Existing Project as shown in Figure 2-20.

Figure 2-19. Creating a new folder and copying the original project file into the
new folder

Chapter 2 Working With an existing Database

48

Use the Add Existing Project dialog to browse to the EFCore_DBLibrary.csproj

project file you just copied into the same solution folder under the folder EFCore_

DbLibrary. It is important that you make sure to use the copy that is local to your current

solution to avoid conflicts in future activities. Once the project is added, delete the

ApplicationDbContext.cs file, as you will not need it for this activity. The result that you

get should look as shown in Figure 2-21.

Figure 2-20. Adding an existing project to the current solution

Figure 2-21. The project is referenced. Notice that selecting the project allows you
to validate that the correct project file is referenced in the Properties window

Chapter 2 Working With an existing Database

49

When you’ve completed this step, you will see both projects in the solution, and you

can validate that the correct DBLibrary project is referenced by clicking it and reviewing

the full path in the Properties window. Ensure that the project file for the DBLibrary

is located as a subfolder in the EFCore_Activity0201 folder (this is also called out in

Figure 2-21).

 Task 2: Ensure .Net 6 and update all of the NuGet
packages for both projects
In this task, you will ensure that the console project is leveraging .Net 6, and you will

proceed to add a few new NuGet packages to the solutions that will be needed to

reverse-engineer the existing database.

 Step 1: Ensure .Net 6 on the console project

In the Visual Studio IDE (VS), right-click the EFCore_Activity0201 project and select

Properties. When the window opens, select .NET 6.0 as the project Target Framework.

Figure 2-22 shows the result of this step.

With the projects ready to go, you need to get two packages into the solution for the

Entity Framework Tools and the Entity Framework for SQL Server. These packages will

be used to reverse-engineer the existing database.

Figure 2-22. The console project is set to target .Net 5. Save and build the solution
to ensure there are currently no errors

Chapter 2 Working With an existing Database

50

 Step 2: Install the Entity Framework Tools (Microsoft.
EntityFrameworkCore.Tools) NuGet package

In VS, use the Tools ➤ NuGet Package Manager ➤ Manage NuGet Packages for

Solution menu to open the dialog to manage the NuGet packages for all solution

projects. See Figure 2-23.

With the dialog opens, select the Browse tab at the top, and type

EntityFrameworkCore into the search dialog as shown in Figure 2-24.

Figure 2-23. The Tools ➤ NuGet Package Manager ➤ Manage NuGet Packages
for Solution is ready to be clicked to open the dialog

Chapter 2 Working With an existing Database

51

Select the package Microsoft.EntityFrameworkCore.Tools, and then check both

projects and select Install (making sure that the version of the tools matches the version

of EFCore6 that you have installed in the project). Figure 2-25 highlights this operation.

Figure 2-24. The Manage Packages for Solution dialog is open and the search is
entered for EntityFrameworkCore, which lists a number of available packages for
selection

Chapter 2 Working With an existing Database

52

Accept any licenses that you are asked to review and allow the operation to

complete.

 Step 3: Install the Entity Framework SQL Server (Microsoft.
EntityFrameworkCore.SqlServer) NuGet package to both projects
in the solution

Repeat the preceding steps or just find the package Microsoft.EntityFrameworkCore.

SqlServer in the current list of packages and install to both projects. Figure 2-26 shows

the correct package selected for installation to both projects.

Figure 2-25. Installing the EntityFrameworkCore.Tools package to both projects is
accomplished by using the dialog

Chapter 2 Working With an existing Database

53

Once again, accept any licenses you are asked to accept so the package will install

correctly.

Review your installed project packages by selecting the Installed tab in the Manage

Packages for Solution dialog. You should see the three expected packages shown in

Figure 2-27 (Note: Your version will most likely be different, and that is expected.

Additionally, if you have text in the search box, you can hit the “x” to clear it, as the

search text may limit you from seeing all of your installed packages).

Figure 2-26. Installing the Microsoft.EntityFrameworkCore.SqlServer package to
both projects is accomplished by using the dialog

Chapter 2 Working With an existing Database

54

One thing to note is that the base EntityFrameworkCore library may not be installed

in the console library project. To ensure it is installed, select the project as shown in

Figure 2-27, then make sure both projects are checked, and hit the Install button.

This will ensure that you have all the appropriate libraries in both projects. Once again,

accept any licenses when prompted. At any point, you can also validate the installed

NuGet packages by reviewing the *.csproj file, which will list all installed packages.

 Step 4: Optionally, create a new GIT repository

If you have not done so, now would be a really great time to create a new GIT repository

for your local code in case something goes horribly wrong in the next tasks.

To do this, you must have GIT installed on your machine. If you don’t have GIT, go to

https://git- scm.com/downloads, and download and install it on your machine.

Use GIT commands to create a local repository. You may also wish to create a

.gitignore file and use the default Visual Studio .gitignore text found here: https://

raw.githubusercontent.com/github/gitignore/master/VisualStudio.gitignore.

Figure 2-28 shows the result of me committing the files in the current state to a new

local GIT repository, using a .gitignore file to eliminate checking in files that should

not go in the repository.

Figure 2-27. The three packages are installed into the solution. However, EFCore
may not be installed in the console project unless you selected both projects during
your installation

Chapter 2 Working With an existing Database

https://git-scm.com/downloads
https://raw.githubusercontent.com/github/gitignore/master/VisualStudio.gitignore
https://raw.githubusercontent.com/github/gitignore/master/VisualStudio.gitignore

55

if you add git externally to the project as i did here, you will likely need to restart
Visual studio in order for it to add icons for tracked files. alternatively, you could
have just created the git repository using the Visual studio iDe tools. You should
use what makes sense to you and what client you prefer to work with git.

 Task 3: Scaffold a new database context using
the Scaffold- Context command
In this task, you will run a command to scaffold a new context that will create files and a

database context that allows you to use EFCore6 against the existing database. You will

need your server information that you used to connect to the database previously in

SSMS (either localhost or .\SQLEXPRESS).

Before you scaffold, however, you should be aware that the context will require a

full database connection string to be passed in as an option in the options parameter

during the command execution. In other words, when you are scaffolding, you will be

connecting directly to the existing database to generate the reverse-engineered code.

I would not recommend doing this against production for a number of reasons, so

hopefully you have the ability to restore a backup or a test server that has a matching

schema in the real world. For your activity here, you’ll use the AdventureWorks database

that was previously restored (see Activity 2).

Figure 2-28. Creating a new local GIT repository with current state committed

Chapter 2 Working With an existing Database

56

 Step 1: Install the Microsoft.EntityFrameworkCore.Design
package to the EFCore_Activity0201 project using the PMC

In order to perform the scaffold operation, one more NuGet package will need to be

installed – Microsoft.EntityFrameworkCore.Design. This will be needed on the main

program project only. For this reason, you could install via the dialog as you did earlier,

or you can just run a command in the PMC. For simplicity, choose what works easiest for

you, but this example will run the command in the PMC. This will also give you a chance

to see how to use a specific project to run commands in the PMC.

Open the Package Manager Console in VS and select the EFCore_Activity0201

project in the dropdown to set the starter project as the target for the operation. Type the

command Install-Package Microsoft.EntityFrameworkCore.Design and hit Enter

(if you get an error, review the following note about specifying a version). This command

will install the package to the starter project only. Review Figure 2-29 for clarity.

Note that if you are using a different version of EntityFrameworkCore for some

reason, you may need to specify the version specifically in the line where you asked to

install the package.

Make sure to save, build, and then commit any changes to git at this point if you
are using a local repository.

Figure 2-29. Installing the Microsoft.EntityFrameworkCore.Design package to the
EFCore5_Activity0201 project via the PMC

Chapter 2 Working With an existing Database

57

 Step 2: Determine your connection string

To scaffold, as mentioned, you’ll need to use a valid connection string to your database.

If you are struggling to get the connection string set correctly, there are tools to help

you find the connection string, such as connecting via SSMS or via Server Explorer in

VS, as well as sites like www.connectionstrings.com/. If you are using the SQL Server

Developer edition, your source will be localhost. If you are using SQLExpress, your

source will likely be .\SQLEXPRESS. You will need to set the Data Source, the Initial

Catalog (which needs to match the name of the database as you restored it), and the fact

that you want to use a trusted connection (Trusted_Connection=True). Your connection

string should look something like this:

'Data Source=localhost;Initial Catalog=AdventureWorks;Trusted_

Connection=True'

The Initial Catalog must match the name of the database, so if you left the year in

place (when you named the database during the restore process), adjust appropriately.

Additionally, don’t forget to adjust the data source appropriately if you are not using SQL

Server Developer edition.

 Step 3: Run the scaffold command

You will run the scaffold command twice to see it in action. The first time you will

scaffold the entire database, and the second time you will just scaffold a schema – which

is just part of the database. Ordinarily you would only need to do this operation once,

but since you are learning about this command, it will be good to see the different ways

you can use this command to do all or part of the database in a reverse-engineering

operation.

Important Make sure to select the EFCore_DBLibrary project in the pMC for
the next step.

To begin the operation, return to or open the PMC, and select the EFCore_DBLibrary

project.

Chapter 2 Working With an existing Database

http://www.connectionstrings.com/

58

With the EFCore_DBLibrary project selected, run the following command:

Scaffold-DbContext 'Data Source=localhost;Initial

Catalog=AdventureWorks;Trusted_Connection=True' Microsoft.

EntityFrameworkCore.SqlServer

Ensure that you’ve updated the connection string appropriately before running

the command. The command is Scaffold-DbContext and the first parameter is

your connection string. The third parameter is the provider, which is Microsoft.

EntityFrameworkCore.SqlServer in this case (and it’s important to note you already

added the NuGet package to make this possible earlier).

If everything is set up correctly, you would be able to generate the context and

appropriate model files with this simple command. However, there is one error that will

need to be corrected. Run the command to see the error, as shown in Figure 2-30.

Earlier, when you were adding the project in, the reference from the startup project

to the library was likely not added. If you had previously added the library project, then

it’s likely everything would work and you won’t see the error shown in Figure 2-30.

Earlier you did reference the project as you added it into the solution, but in addition

to the solution, the other main activity project also needs a project reference to directly

reference the project.

Right-click the EFCore_Activity0201 project in the Solution Explorer, and select

Add ➤ Project Reference. Adding a project reference is shown in Figure 2-31.

Figure 2-30. Running the Scaffold-DbContext command at this point generates
an error because one critical step was missed

Chapter 2 Working With an existing Database

59

When the dialog comes up, select the EFCore_DbLibrary project so that the activity

startup project references the DBLibrary project as shown in Figure 2-32.

Figure 2-31. Adding the project reference for the EFCore_DbLibrary project to the
EFCore_Activity0201 project

Figure 2-32. Selecting and adding the project reference

Chapter 2 Working With an existing Database

60

With the project reference added, once again save, build, and also commit any

changes. This is important as the next operation should generate a number of new files,

and you may want to reset the code to this point after the next operation.

Once again, run the command to reverse-engineer the AdventureWorks database

(see Figure 2-33). Note: You should be able to just hit the up arrow in the PMC to get your

previous command to run it again.

This time it works as expected, and a number of warnings are generated, but so is the

AdventureWorksContext and a lot of model files (see Figure 2-34).

Figure 2-33. Running the Scaffold-DbContext command with the correct
connection string generates the code files and DbContext as expected in the
EFCore_DBLibrary project

Chapter 2 Working With an existing Database

61

Feel free to take a moment to review the files that were generated. At this point, you

have successfully reverse-engineered an existing database for use with Entity Framework

Core 6 in .Net 6.

At this point, you could start working against the database in your console

application, and in fact, this is what you will do later in this activity, after first making a

slight tweak that has no effect on the overall project for this activity but is great for the

purposes of learning.

 Step 4: Repeat the scaffold operation, but change parameters

As an optional learning experiment, wipe out the files you just created with the

scaffolding operation (just delete all models and the new context), or you could go

to the trouble of creating a new solution and then run the scaffold operation again.

To delete all of the models and the new context, find the newly created files in the

EFCore_DBLibrary project and simply delete them. If you are using GIT and saved your

commit as prompted, you could just run a git reset --hard command to reset to the

previous commit and then run a git clean -xfdi command to clean up the files using

Figure 2-34. The context and the model files are generated

Chapter 2 Working With an existing Database

62

your choice of deletion options. The end result should be that there are no files left in

the EFCore_DbLibrary as shown in Figure 2-35 (back to where you started before the

scaffold operation).

For this run, you will specify only one schema to scaffold (you can go further on

your own to specify specific tables if you would like deeper learning). Additionally,

instead of using the Fluent API, let’s specify that we want to use Data Annotations. We’ll

cover what the Fluent API and Data Annotations are later in this book, but for now just

know the difference is in how the models and context work to implement things like

required fields, length or size of fields, and overall relationships between the entities.

For the scaffold command, this time specify the flag -Schema and then implement

only the Person schema. Additionally, use the -DataAnnotations flag to generate data

annotations on the models instead of fully relying on the Fluent API. The command to

run this time, therefore, is (see Figure 2-36 for clarity)

Scaffold-DbContext 'Data Source=localhost;Initial

Catalog=AdventureWorks;Trusted_Connection=True' Microsoft.

EntityFrameworkCore.SqlServer -Schema 'Person' -DataAnnotations

Running the command gets the expected results (see Figure 2-36).

Figure 2-35. The files generated previously are removed for a second run of the
scaffolding operation with a limited scope

Chapter 2 Working With an existing Database

63

This time if you look around, only a few of the files were generated. Additionally,

Data Annotations were used in the code. See Figure 2-37 for clarity.

Figure 2-37. The operation completed and the files generated are only from the
Person schema, using Data Annotations

Figure 2-36. Running the scaffold command but only targeting one schema and
using Data Annotations instead of the Fluent API

Chapter 2 Working With an existing Database

64

Take a bit more time to just quickly review the files and context as they were

generated. It’s OK if you don’t understand everything that is going on within the files at

this point, but the important thing to note is how much work was done for you by the

tools baked into the VS IDE and Entity Framework Core 6.

 Step 5: Run the original scaffolding operation to get all the files
back

Although it might be useful in some scenarios to limit what schema and tables your

EFCore6 library has access to, for your purposes here, you’ll want to just get everything

back. Re-run the original scaffolding command by just using the arrow up key in the

PMC to get back to the original command.

You’ll note that running this command gives you an error due to files already

existing. This is a good thing – you might not want to destroy previously built data

models if you are re-running the scaffolding command. Figure 2-38 shows the result of

the command when files already exist.

Note that the final portion of the text states

Figure 2-38. Running the command when files exist gives an error so that you
don’t accidentally destroy existing models

Chapter 2 Working With an existing Database

65

“The following file(s) already exist in directory

‘C:\APressEntityFramework\Code\EFCore_Activity0201\EFCore_DBLibrary\’:

AdventureWorksContext.cs,Address.cs,AddressType.cs,BusinessEntity.cs,

BusinessEntityAddress.cs,BusinessEntityContact.cs,ContactType.cs,CountryRegion.cs,

EmailAddress.cs,Password.cs,Person.cs,PersonPhone.cs,PhoneNumberType.cs,

StateProvince.cs,VAdditionalContactInfo.cs,VStateProvinceCountryRegion.cs. Use the

Force flag to overwrite these files.”

Note the fact that there is a -Force flag. This is how you can do the operation with

destructive consequences. For your learning purposes here, this is fine. In the real world,

you would want to be super careful about forcing an overwrite.

Use the up arrow in the PMC to get your original command and add -Force to the

end of it, and then run the command. The result is that the operation completes as

expected. Figure 2-39 shows the command for clarity.

Note that without the -DataAnnotations flag, the BusinessEntity object shown

earlier no longer uses DataAnnotations (see Figure 2-40).

Figure 2-39. Running the command with the -Force flag will work as expected

Chapter 2 Working With an existing Database

66

To be clear, the relationships and restrictions are still defined, but they are

now done using the Fluent API. You can see this if you search for modelBuilder.

Entity<BusinessEntity>(entity => in the AdventureWorksContext.cs file.

Figure 2- 41 calls this out so you can see the difference between using Data Annotations

and the Fluent API.

Figure 2-40. The BusinessEntity object is no longer using DataAnnotations

Chapter 2 Working With an existing Database

67

Again, the Fluent API and Data Annotations will be covered in more detail

throughout this book.

Once again, now would be a good time to save, build, and commit any changes in

your local repository.

 Task 4: Create a settings file and leverage it from code
In this task, you will create an appsettings.json file to store the database connection

string. You will then put libraries and code in place to leverage that connection string

from the settings file in your activity project and use that to display results to the console

from the AdventureWorks database.

Figure 2-41. The BusinessEntity object now uses the Fluent API to define
relationships and constraints

Chapter 2 Working With an existing Database

68

 Step 1: Add the appsettings.json file to store connection details

With the database library project ready to go, it’s time to get the main activity project

set up to be able to connect and leverage the data. The first step to do this is to add an

appsettings.json file to the project that contains the connection string for use when

connecting the context and database.

Add an appsettings.json file to the console project by right-clicking the project,

select Add ➤ New Item, then find JSON File in the templates, and then add the following

JSON-formatted text to handle the storage of the connection string. Remember to change

the connection string if this is not the way you are connecting to your database.

{

 "ConnectionStrings": {

 "AdventureWorks": "Data Source=localhost;Initial

Catalog=AdventureWorks;Trusted_Connection=True"

 }

}

if you are using sQLexpress and the “\” character in your connection string, you
must use two slashes “\\” in the Json file.

With the appsettings.json file in place, you need to set the file so that it will build

and deploy with the project. Click the new appsettings.json file in the project, and

then use the Properties window to select a build action of Content and the Copy to

Output Directory as Copy if newer or Copy always (see Figure 2-42).

Chapter 2 Working With an existing Database

69

Additionally, you’ll need to add a couple of libraries to the project to be able to

access it.

Figure 2-42. The File needs to be copied to the output directory as content in order
to be referenced during runtime

Chapter 2 Working With an existing Database

70

 Step 2: Add the libraries to leverage the config file in the activity
project

Open the Tools ➤ NuGet Package Manager ➤ Manage NuGet Packages for Solution

dialog again from the menu. Select the Browse tab, and type Microsoft.Extensions.

Find and add the following three NuGet packages to the EFCore_Activity0201 project:

• Microsoft.Extensions.Configuration

• Microsoft.Extensions.Configuration.FileExtensions

• Microsoft.Extensions.Configuration.Json

For clarity, review Figure 2-43.

After installing all three, review your installed packages to ensure they are all present.

Select the Installed tab, and remember to clear your search or you will likely only see

installed packages that match your search terms (see Figure 2-44). Also note that your version

will be different than what is shown, so just make sure you are using the latest version.

Figure 2-43. Getting the three additional NuGet packages

Chapter 2 Working With an existing Database

71

 Step 3: Load up the config and leverage the results in the Main
method of the Program.cs file in the activity project

Now that you have the file ready to go and all of the NuGet packages that will be

necessary for connection, it’s time to add code to leverage the connection string from the

appsettings.json file.

In the Program.cs class in the EFCore_Activity0201 project, add the following code

to the file after the line that states class Program and before the static void Main

method declaration:

private static IConfigurationRoot _configuration;

After adding the code, make sure to hover over the red squiggly line for

IConfigurationRoot and select Show potential fixes. When the statements come

up, select the statement to add the using statement for Microsoft.Extensions.

Configuration.

Figure 2-44. Reviewing the installed NuGet packages shows all the expected
packages to this point

Chapter 2 Working With an existing Database

72

Continue by adding a call to a new method: BuildConfiguration in the Main method

to replace the line Console.WriteLine("Hello World!");. Replace that line with the

following line of code:

BuildConfiguration();

Next, add the method code as follows, following the Main method but before the end

of the class Program code block (Note: The order of methods in C# won’t matter, so if you

prefer to define methods before they are used, feel free to add the new code above the

Main method):

static void BuildConfiguration()

{

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json", optional: true,

reloadOnChange: true);

 _configuration = builder.Build();

}

remember that any time the Visual studio iDe shows a red squiggly line, there
are errors in your code. For each red squiggly line, attempt to use the suggested
fixes. Most of the time, you’ll just need to add missing using statements. a quick
shortcut is to hit the key chord combination Ctrl+"." – which will bring up the
suggestions for you.

another shortcut you might leverage is the key chord combination of Ctrl+"]",
which will help you find matching braces.

Resolve any missing using statements for Directory. For clarity, Figure 2-45 shows

the current code as it should look based on the directions earlier.

Chapter 2 Working With an existing Database

73

This code essentially tells the solution where to find the appsettings.json file and

how to load it into the solution for use in getting configuration values.

To ensure that everything is working, you should output the result of the connection

string setting from the file to the console. Do this by adding the following line of code

directly following the BuildConfiguration() call in the main method:

Console.WriteLine($"CNSTR: {_configuration.GetConnectionString(

"AdventureWorks")}");

Run the code to see the output and ensure you are able to get the connection string

from the appsettings.json configuration file (see Figure 2-46).

Figure 2-45. The code that has been added so far is shown to ensure no mistakes
exist at the current time

Chapter 2 Working With an existing Database

74

You are now ready to complete the final task for this activity, which is to leverage the

database data and show it in the console to prove that everything is working.

 Task 5: Connect to the database and show results in code
With the library built and the connection information ready to go in the activity project,

you can now show results using your EFCore_DbLibrary and EFCore6 from within the

console application.

 Step 1: Create the ability to connect and use the AdventureWorks
DBContext

Add another static variable to store the options builder information. This is a

DbContextOptionsBuilder object, which is a generic, with a type argument

that contains the type of your generated DbContext. It is likely that this value is

AdventureWorksContext. The value needs to match the DBContext value that was

generated in the previous task, found in the EFCore_DBLibrary project.

Validate your context name, and then set your static variable is declared as static

DbContextOptionsBuilder<AdventureWorksContext> _optionsBuilder;.

Make sure to replace the type in the less than and greater than part of that code if for

some reason your context name is different. Review Figure 2-47 for more clarity.

Figure 2-46. The connection string is leveraged from the appsettings.json file

Chapter 2 Working With an existing Database

75

Add the variable into the program class directly under the other static variable for the

IConfigurationRoot with the following code:

private static DbContextOptionsBuilder<AdventureWorksContext>

 _optionsBuilder;

Next, you will need to add another static method to build the DbContext options. Add

the following code in the Program.cs class, Main method after the BuildConfiguration

method:

static void BuildOptions()

{

 _optionsBuilder = new DbContextOptionsBuilder<AdventureWorksContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString(

"AdventureWorks"));

}

This method sets the options builder to a new instance of the options builder on the

DBContext and then tells the builder to use SQL Server with the configuration settings for

the connection string as defined in the appsettings.json file. Take a minute to resolve

any using statements, and then build the project to ensure there are no errors. Currently

the code should look similar to what is shown in Figure 2-48.

Figure 2-47. The type parameter for your context was generated in the previous
step and is the context class name from the EFCore5_DbLibrary project

Chapter 2 Working With an existing Database

76

 Step 2: Query the data

In order to get the data, you’ll need a query and an output method. Create a method

called ListPeople with the code as follows:

static void ListPeople()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var people = db.People.OrderByDescending(x => x.LastName).Take(20).

ToList();

 foreach (var person in people)

Figure 2-48. The code as it currently stands is nearly ready to get data

Chapter 2 Working With an existing Database

77

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

 }

}

The ListPeople method should be added in the Program class following the

BuildOptions method. Also remember that any time you are concerned about

placement or are having any issues with the code, feel free to review the final version of

the files to see how and where I implemented the solution. Finally, don’t forget to resolve

any missing using statements.

Please note that depending on your reverse-engineering generation settings,

you may need to use Persons or People in the name of the entity set (the entity set is

directly defined in the context, if you want to search for it). Review Figure 2-49 if you

are having trouble finding the Person DbSet property – DbSet<Person>. Also note that

if you don’t see Person, you can use another DbSet, or you may have set the options

incorrectly and need to regenerate the database context in its entirety. The generated

AdventureWorksContext with the DbSet<Person> People entry is shown in Figure 2-49.

Figure 2-49. The DbSet<Person> People entry in the AdventureWorks DBContext
is shown

Chapter 2 Working With an existing Database

78

 Step 3: Print the results to the console

You are now ready to print the results. Add the call to BuildOptions and ListPeople to

the Main method right after the call to BuildConfiguration. Also remove the code that

writes the connection string out to the console. Your main method should now look as

follows:

static void Main(string[] args)

{

 BuildConfiguration();

 BuildOptions();

 ListPeople();

}

Run the project to see the expected output. The expected result should be similar to

what is shown in Figure 2-50.

This completes the reverse-engineering database activity with EFCore6 in .Net 6.

Figure 2-50. The output of the data is working as expected, and the names of
people are shown in the window

Chapter 2 Working With an existing Database

79

 Activity summary
In this activity, you walked through getting a backup copy of an existing database

restored on your local machine and validating that you could connect to the database

using SSMS. You then created a simple console application and leveraged the EFCore6

libraries to reverse-engineer the database, which generated the data context and the

model files for each of the tables in the existing database. You finished up the activity by

seeing how you might store the database connection string in an appsettings.json file

and then leveraged that file to connect to the database with the DBContext and displayed

data from a simple database query.

 Chapter summary
In this chapter, you explored the idea of working with an existing database in EFCore6.

You learned about the various benefits and a few potential things to be concerned with

when working with an existing database in a reverse-engineered solution.

You learned about the commands to run the scaffolding using EFCore6 to generate

the database context and model, and you saw how you might be able to do a context

against just part of the database, as well as had a brief practical introduction to the

difference between using Data Annotations and the Fluent API.

 Important takeaways
After working through this chapter, the things you should be in command of are

• The ability to reverse-engineer an existing database using EFCore6

• A basic understanding of the difference between Data Annotations

and the Fluent API

 Closing thoughts
Now that you’ve seen how to create an EF code library that interacts with the database

for an existing database, it’s time to examine how to create an EF code library that works

in a greenfield project against a brand-new database. In the next chapter, you’ll learn

about using the code-first approach to working with databases in EFCore6.

Chapter 2 Working With an existing Database

81
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_3

CHAPTER 3

Entity Framework:
Code First
In this chapter, we are going to look at what it takes to get up and running with Entity

Framework using the code-first approach. As we move through this chapter, we’ll learn

about the code-first approach to Entity Framework, and we’ll take note of some of the

advantages that working with a code-first approach brings to our development process.

We’ll conclude this chapter by working through some activities to create a code-first

Entity Framework project in EFCore6.

 Code first doesn’t always mean code first
Even though the name code first implies that the database doesn’t exist until code is

written, it is entirely possible to employ a code-first approach with an existing database,

as well as in a new greenfield project. As with any development scenario, there are

multiple things to consider when attempting to determine if the code-first approach is

correct for your project.

 When not to use the code-first approach
Sometimes when trying to determine when something is the right answer, the way to

start is to determine when it is not the right answer. That being said, in most production

applications that you’ll encounter in today’s world, there are very few reasons that code

first doesn’t make a lot of sense.

The primary reason to avoid using the code-first approach would relate to having

a legacy system that is not capable of supporting the required tools. For example, a

project that was written in any .Net Framework prior to .Net 3.5. In those projects, Entity

Framework didn’t exist, so using the code-first approach is simply not possible.

https://doi.org/10.1007/978-1-4842-7301-2_3#DOI

82

Another reason that you may be forced to avoid the code-first approach could be

organizational restrictions. Perhaps there are greater security concerns at play, making

it against the law or highly dangerous for your company to expose so much power over

the data structure to any developer through code. Perhaps your company will not allow

anyone but that one mysterious DBA to touch the database for any reason. In both of the

preceding cases, there may be some training or education that can overcome the issues,

or it may truly just be impossible to work with code first in your development efforts.

Yet another reason to avoid using the code-first approach with EF could be due to

personal preference. Perhaps you don’t like the normalization structure required to use

an ORM. You might also have another solution that you prefer for database interaction,

such as F# type providers (which can be used in parallel with EF as well). Maybe you’ve

been using NHibernate and you don’t want to change something that you know already

works, although you could also implement a code-first solution with NHibernate.

A final reason to avoid using code-first could simply be that there is a high risk of

losing data in a mature database (this is no different than the risk that could exist from

running any database script that drops columns or tables; it’s not that EF code first is

just going to randomly lose data). While it is entirely possible to overcome this issue with

additional work (just like if you were running manual scripts), there will always be a

chance that forgetting to plan for database migrations that affect data can (and perhaps

will) happen. Before leaning on this argument as the reason not to choose code first in

your solution, please make sure to remember that you would have to overcome the same

data loss issues in traditional database development and that the solution is usually

exactly the same (i.e., back up the data to a temp table, run the script, restore the data).

For example, to handle a simple data loss operation, it is entirely possible to create

a migration that runs a script that backs up data from a table; then run a migration

to modify the table or the database schema as intended, truncating or causing data

loss; and then complete the operation with another, final migration to restore the

original data. The final operation will likely massage the original data to fit the new

table structure. This procedure is almost identical to how you would traditionally have

to use scripts to modify the database structure. The added benefit here is everything

is documented, guaranteed to run in order, testable, repeatable, and stored in source

control. Therefore, as we’ll examine next, the advantages of a code-first approach

could even make it a better choice in this situation. It’s hard to argue with testable and

automated processes when the argument is a single person running manual operations

including scripts that may or may not be tested.

Chapter 3 entity Framework: Code First

83

 When to use the code-first approach
If you’re wondering when you should use the code-first approach going forward, simply

put, the answer should be “every time you can.” While there may still be some unique

situations as discussed in the previous section that exist where you simply cannot use

the code-first approach, any time you can use code first, you should use code first.

With EFCore, there is no longer an ability to create a model file like the EDMX files

you may be used to from earlier versions of EF. While we can always generate a reverse-

engineered database (as seen in Chapter 2), the fact remains that we will likely have a

model-based approach to all development going forward. This is a very good thing for

several reasons.

 Code first in an existing project
Now that you’ve completely bought in and are ready to build out a code-first approach

with Entity Framework, what do you do when you have an existing and mature project

with an existing database? Since the database already exists, you could begin with a

reverse-engineering approach with scaffolding to get the code models auto-generated

into your solution. This approach also makes sure the DBContext is generated and

populated for you (as you’ve seen in Chapter 2).

With the reverse-engineered approach, to make the project operate in a code-first

manner, you would then just need to enable migrations and start working with the

migrations against the data structures.

After enabling migrations, from then on, the project would be able to continue to

build out new models and database objects and apply further migrations as needed

using the code-first approach.

If you take this approach, just be cautious, because a great level of care would still

be needed in this approach. With a database that is already mature, you need to be

protected from accidental changes that might truncate data from tables or break critical

performance enhancements (such as a change dropping a view or an index might do).

This is especially important if other legacy line-of-business applications are relying on

these original data structures for normal operation.

Chapter 3 entity Framework: Code First

84

 Code first in a new project against a mature database
Another approach that might be taken when working with Entity Framework in a

code- first manner might be to develop a new application that leverages an existing

database.

In a situation such as this, the development team will also need to use a great deal

of caution to avoid breaking legacy functionality that might be a dependency in other

existing applications. In addition to protecting schema changes from breaking the

existing legacy applications, any changes made in the code-first project would also

need to be propagated into any legacy applications, in order to avoid potentially causing

outages or other potentially disastrous consequences for other business units in the

organization. As with anything, this always comes down to your job as the developer.

You must ensure that changes and upgrades that you are making will work in the legacy

systems with extensive regression testing.

 Code first in a new project with a new database
An entirely greenfield scenario is an obvious choice for working with a code-first

approach. Even if you don’t want to use migrations for some reason, at some point you

will still need data models that define how to work with the various database objects in

order to use Entity Framework and LINQ to EF (LINQ stands for “Language Integrated

Query” and is covered in more detail later in the book).

Since a greenfield project is new and has a new database to accompany it, using code

first will provide the best flexibility and ease of use from your codebase. In this case, it

only makes sense to use the code-first approach.

 The benefits of a well-executed code-first
development effort
In case there is still any doubt about the level of success your team can achieve by using

the code-first approach, I’d like to take a moment to highlight some of the greatest

benefits of using the code-first approach.

Chapter 3 entity Framework: Code First

85

 Ability to get up and running quickly
Since the entire database structure is defined in code via migrations, any developer can

open the project, validate that the connection string works, and run a simple command

to get a local copy of the database in the exact state that it is in, in any environment

where it is currently deployed. Obviously, there would still be work to do with data, as

while some data would likely be created by seeding the database, there will likely still

be a number of data tables that need human interaction or stubbed in test data. This

is no different than the issues any project using a database would encounter, even in a

traditional approach.

 A complete record of database changes in source control
As mentioned earlier, using the code-first approach allows for every piece of the

database to be imperatively defined in code. As the structure and needs of the database

were changed, these changes were implemented in code files and a new migration was

created and executed to affect the changes on the database.

In the past, you might have tried migrations and found them to be tricky. In fact,

migrations before EFCore might have even caused you pain when multiple developers

created conflicting migrations. In previous versions of EF, even if the migrations created

by multiple developers didn’t conflict, you were still forced to re-scaffold your migration

if another developer pushed their changes first, since the overall model hash code saved

in the database would be different and order of migration application mattered. With

EFCore6, most of these pain points have been eliminated, and, although migration

conflicts can still happen, they are mainly the result of conflicting changes to the same

database objects and not just because two or more developers are both modifying the

database schema.

Since our code is defined directly within the project in this approach, the files

and changes are all tracked in source control. There is no longer any need to create

a database project with a bunch of generated and non-generated scripts, or worse,

manually put your scripts into source control and hope developers keep them up to date.

Having the changes in source control is a very important advantage and should not

be taken lightly. If drives and/or backups fail, there is always a potential of losing your

database entirely. Even if you don’t lose your database, when a database failure happens,

you would likely still lose all the transactions that had been run since the previous

backup. Although both database and backup failure combined at the same time is rare,

Chapter 3 entity Framework: Code First

86

and may never happen, if it did, and you still have your project code, migrations could be

run to restore the structure and seed initial data from the database. To be practical, this

feature is more useful for quickly establishing the application data on your developers’

machines. As soon as one developer’s changes make it into your developer source

branch, other developers can update their own local database by pulling the changes

and running a couple of quick commands, such as update-database. This is highly

advantageous when it comes to avoiding conflicts and bugs.

 Agility when needing to revert to a previous state
With the code being in source control, EF migrations also have the added benefit that,

when written correctly, can allow for automation to easily roll back a change against the

database. Rolling back a change can be a destructive event that loses data, but this is also

something that is rarely, if ever, done in production. In fact, there is a camp that exists

where some users don’t use the migration rollbacks at all. The theory in that camp is that

it is better to just add another migration to move the database back by going in a forward

direction. Either way, whether you allow rollbacks or essentially do revert migrations,

you’re still going to need to plan for how the data is affected in either scenario.

With the ability to roll back a migration, however, it is extremely easy to set a

local developer database to match the exact state a database was in at any point of

development. For example, it is easy to roll back the database to the state in time when a

bug was introduced to your codebase or a patch was released. This allows for effectively

coding against the database as it was at that time, making it easier and safer to release a

common modification across all official releases of your project or to patch a bug fix.

Another advantage of the migrations is the fact that changes can be reverted at will.

For example, if a feature is released and then eventually eliminated, migrations allow the

feature to continue to exist at a patch level but to be removed from future development

by adding further migrations that essentially revert the changes.

Having a complete history of database changes and the ability to easily reset the

database to the state it needs to be for development of a patch or testing of a bug is

all managed by the code that is generated and/or modified in the specific migrations.

Therefore, as a developer, you don’t have to spend your time trying to remember which

scripts to run and test to make sure your tables and other object structures are correct for

the patch, fix, or feature on which you are working.

Chapter 3 entity Framework: Code First

87

 Shifting from declarative to imperative database
programming
Another important concept with the use of code-first database development is that

we are making a conscious transition to imperative database programming and saying

goodbye to declarative programming around our database.

Imperative programming is the concept that as developers, we are directly defining

what should happen, thereby locking in the details of the implementation, leaving little

to interpretation or fluctuation of implementation.

Declarative programming is just getting to an end result, regardless of how you get

there. In the declarative paradigm, often the details of the implementation are not as

clear and/or not as scrutinized, as long as the desired end result is achieved.

For example, a declarative approach to development around the database might

look something like you know there is a table that holds some data that was defined

somewhere. You could query that data and perhaps connect to another table or maybe

a view to build out a result set, but as long as the data shows up, it is not important how

you got it to render. Also, you can sort of count on some fields being in the table for the

important information like name, age, date of birth, email, and maybe even a phone

number, but it may have changed so you better double-check before counting on that

data. If the data isn’t there, or has changed, maybe you can ask to store that important

information somewhere and someone can build out the database scripts so that you can

get it eventually.

An imperative approach is more defined, and code first is most definitely imperative

by nature. Every database structure is exactly modeled in code. This means you know

exactly what tables exist and what fields exist on those tables. In fact, you can easily

create an instance of a model that holds exactly the correct data, with exactly the correct

limitations that exist in the database, including type and any other constraints like length

or range. Furthermore, relationships are directly defined, so you can be certain that a

foreign key exists in each related table and you can easily query and populate related

data.

For the most part, Entity Framework has always been somewhat imperative, with

well-defined structures in place. However, the code-first approach has solidified the

imperative approach with the ability to force the database to conform to specific

requirements rather than relying on things to potentially be implemented correctly in

the database.

Chapter 3 entity Framework: Code First

88

 It’s time to see code-first database programming
in action
Now that you’ve seen some of the advantages and reasons behind using a code-first

approach, it’s time to dive in with a couple of activities. These activities will help you to

learn more about how the code-first approach works and also see the power that it gives

you to work with this approach.

One thing you will not see here is what it would take to put code first into an existing

project that is mature (i.e., a legacy application that has ADO.Net or a previous version of

EF without a code-first approach). The overall approach in that case would be the same as

if using a code-first approach against an existing database (as shown in the first activity).

In the legacy system, code would then need to be updated to start working against EF for

new and maintenance development, and the original connections and code (such as ADO.

Net implementation) would also remain in place, creating a sort of hybrid approach.

In the next two activities, you’ll look at using a code-first approach in a new

greenfield project in EFCore6. You’ll also use EFCore6 to create a new implementation

against a mature database.

 A final thought before diving into the activities
I want to take a final moment before diving into some coding activities to make sure a

couple of other things are clear. We’re about to learn how to leverage Entity Framework

against an existing and a new database in EFCore6.

Please note that in order to keep the focus on the actual implementation and use of

Entity Framework, I’ve chosen to make the startup projects work as console applications

throughout this book. This simplistic approach is not likely to be how your project will

work in the real world. However, learning to do things like making web controllers and

displaying data on views, or rendering information to Xamarin forms, or other similar

practical activities is outside of the scope of this book. It is my belief that if you are a web

developer or a Xamarin developer or a UWP or WPF developer, you already have the

skills you need in those arenas (or you will likely have resources available to learn them

at your organization). Therefore, the choice to restrict the GUI portion of these activities

to a minimal implementation is a conscious choice and is done to allow focus on the EF

technology while not muddying the water with the specifics of desktop, device, or web

development.

Chapter 3 entity Framework: Code First

89

With that choice comes a small price, however, which I feel is important to address.

If you are building out solutions in WPF, UWP, Xamarin, and/or ASP.Net MVC, it is highly

likely that those project templates have tools in place to scaffold out an implementation

directly to Entity Framework for you, so going through the setup and working in a new

manner will likely not be necessary in many of these cases. It is far more likely that you

will encounter projects where EF is already baked in or it is configured for you by the

project templates or your organization’s technical architect. Even so, learning how to

build out a solution from the ground up will position you to rearchitect your solutions

to make a more robust implementation, as well as expose you to the moving pieces that

you need to understand in order to have a more solid foundation in EF. By the end of

these activities, you’ll likely have everything you need to understand how to build out

an EFCore6 code-first solution into any new .Net 6 project, whether you are using an

existing or a new database.

 Activity 3-1: Creating a new code-first project
against an existing database in EFCore6
In this first activity, you’re going to go through building out an EFCore code-first

implementation against an existing database. This will give us the opportunity to see

what it might be like to spin up a new project in a mature business environment against a

mature database that likely has other line-of-business applications working against it.

 Use the starter files or your project from Chapter 2
To begin, you’re going to pick up where you left off at the end of Chapter 2, where

you had built out a reverse-engineered database project against the AdventureWorks

database, using Entity Framework Core.

If for some reason you do not have these files or you simply want a fresh start, the

code resources for this book include a starter zip file package for this activity called

EFCore_Activity03-1_StarterFiles.

Chapter 3 entity Framework: Code First

90

Another important thing to note is that this activity assumes you have restored a

local copy of the AdventureWorks database to your local machine. If you have not done

that previously, you should go back to Activity 2-1 at the end of Chapter 2 and ensure

that you’ve completed the steps to get the AdventureWorks database restored on your

machine.

Always remember, if you use one of the provided sets of files (starter or final),

then you should double-check to ensure the connection string is set correctly in the

appsettings.json file.

I did modify the implementation from the final version at the end of

Chapter 2, Activity 2-1, a bit. The change allows the use of a singleton class for

the configuration builder. This required a simple change to add a new class for

ConfigurationSingletonBuilder and using a singleton pattern to get the configuration

from the appsettings.json file and then just calling to get the configuration from the

singleton in the BuildOptions method of the Program file. If you would like more clarity

on this, review the starter files for EFCore_Activity0301.

An additional change I made is that I named my project for the chapter as earlier

rather than keeping the Activity0201 project name. Other than those two changes,

everything else in the Activity0301 project is the same as where you landed at the

end of Chapter 2, Activity 2-1. Always remember that, at any point, you can use the

starter files or you can also review and/or leverage the final files EFCore_Activity03- 1_

FinalFiles as a reference for clarity while working through the activities in this book.

At this point, I’m assuming you are well versed in getting started with Visual Studio

and getting a project open or up and running, so you’re going to dive right in on the

activity.

Moving the builder code to a singleton is not a necessary task; I’ve simply done

this to get the code out of the way of our learning. Once again, if you want to see

how to implement, you can review the implementation in the starter files EFCore_

Activity03- 1_StarterFiles.

 Task 1: Getting started with the activity
In this first task, you will get set up to work through the activity, including getting the

project up and running and setting the project into a mode that will allow it to work as a

code-first project that runs migrations. You will also take a quick look at the database to

make a note of the state of the database prior to this activity.

Chapter 3 entity Framework: Code First

91

 Step 1: Getting the project started for the activity

To begin, review the project structure. The base project should look similar to what is

shown here in Figure 3-1.

Note that it is expected that the solution would have two projects, EFCore_

Activity0301 (or EFCore_Activity0201 if you are using the code from Activity 2-1) and

EFCore_DbLibrary. As stated, this version has additionally moved the configuration

builder into a singleton as a purely cosmetic choice and not a functional choice for the

purposes of learning.

Once you have opened the project and validated the structure, run the project to

confirm that everything is working as expected. The output will be a list of names of

people, as was the output at the end of the previous chapter (see Figure 3-2).

Figure 3-1. The Activity 3-1 starter project is up and ready to go

Chapter 3 entity Framework: Code First

92

 Step 2: Ensure that the project is ready to work with EFCore5

In this step, you will make sure that the project is ready to run migrations. With the

project up and running, you’ve already proven that the project can leverage EFCore6 and

use the reverse-engineered AdventureWorksContext to interact with the database. The

next thing you need to do is ensure that migrations can be used.

To begin, validate that all of the correct NuGet packages are installed. Navigate to

Tools ➤ NuGet Package Manager ➤ Manage NuGet Packages for Solution, and then

select the Installed tab. Your project should include packages similar to those shown in

Figure 3-3 (v6.x.x – using the latest versions).

Figure 3-2. The expected output for the project at the initial run is shown

Chapter 3 entity Framework: Code First

93

Validate that at minimum you have all of the following packages on the EFCore_

Activity project:

• Microsoft.EntityFrameworkCore

• Microsoft.EntityFrameworkCore.Design

• Microsoft.EntityFrameworkCore.SqlServer

• Microsoft.EntityFrameworkCore.Tools

You will have the extensions as well, but the EFCore packages are critical for the

remainder of this activity.

 Task 2: Creating and reviewing the initial migration
In this task, you will create and review the initial migration. This will help you to learn

the command necessary to create a migration and to understand how migrations work

in a code-first approach to database development.

Figure 3-3. The NuGet packages are listed for the activity project using the
Manage NuGet Packages for Solution option

Chapter 3 entity Framework: Code First

94

 Step 1: Attempt to create a new migration

In this step, you will start trying to create a new migration and learn about the add-

migration command, but you will ultimately get an error when trying to create the

migration. This experience is by design for learning purposes.

In order to work with the code-first approach, you will need to learn how to work

with migrations. The first migration is often named something like “Initial_Migration.”

To work with migrations, you will use the Package Manager Console (PMC) to run

commands. The command for running a migration is add-migration followed by the

name of the migration. Generally, you don’t want spaces in the name of the migration

because it also creates a file with a similar name. For that reason, the command to run

for the initial migration might look as follows:

add-migration Initial_Migration

Begin by opening the PMC dialog (it will appear at the bottom of the VS IDE). To

open the PMC, use the menu Tools ➤ NuGet Package Manager ➤ Package Manager

Console. It is imperative that you select the project that contains your DBContext to run

commands. By default, the EFCore_Activity project is likely selected, so you’ll need to

select the DBLibrary project. If you don’t, running the command to add the migration

will create an error. With the EFCore_Activity0301 project selected (the incorrect

project), at the prompt in the PMC, type the command as shown: add- migration

Initial_Migration. The resulting error is shown in Figure 3-4.

The resulting error tells you everything you need to know:

No DbContext was found in assembly ‘EFCore_Activity0301’. Ensure that you’re using

the correct assembly and that the type is neither abstract nor generic.

Figure 3-4. If the wrong project is selected, the PMC will output an error when
trying to run code-first migration commands

Chapter 3 entity Framework: Code First

95

 Step 2: Create the initial migration

In this step, you will create the initial migration using the add-migration command in

the PMC.

To remedy the error from the previous step, select the correct project in the

dropdown list at the top center of the PMC next to Default project:, which is the

EFCore_DbLibrary project in the dropdown. With the correct project selected, run

add- migration command again (you can easily get the commands you have previously

run by hitting the up arrow). The resulting output is shown in Figure 3-5.

Now the initial migration is created as expected. Note that in the Solution Explorer

a file with the timestamp and datestamp and the name of the migration as you named

it was created, shown here in Figure 3-6 (your timestamp/datestamp will obviously be

different).

Figure 3-5. The command succeeds when the correct project is selected

Chapter 3 entity Framework: Code First

96

 Task 3: Comment out the initial migration, run the update,
and review the database
In this task, you will first comment out the initial migration since your database is

actually in place already. You will then learn what it takes to apply a migration and run

the command to get your initial migration (which is commented out) applied to the

database. You will finish this step with a review of the database to see what has changed.

 Step 1: Review the initial migration and then comment out
the Up method and delete the code in the Down method

Click the migration file that was generated in the previous task. You will see that there are

a number of commands in the migration. This tells you a couple of things right away.

The most important thing to note is that you can do more than one command in a

single migration. Additionally, you can do commands that ensure schemas, create tables,

alter tables, create and alter indexes, stored procedures, or just run raw scripts. You will

get a chance to see all of this in future exercises throughout the book.

The second thing this will point out is that no data is migrated. This migration is only

for the database schema, and no data is created in the migration. You can create data in

the migration by running a raw script, but there is a better way to seed data, which will

also be covered later in the book.

In a closer look at the migration, everything that is needed to create the database

schema is scripted out in the first method, which is the Up method. The Up method will

always be where the code exists to run the migration in the forward direction.

Figure 3-6. The Initial Migration file YYYYMMDDHHMMSS_migration_name
was created when the command was executed successfully

Chapter 3 entity Framework: Code First

97

At the start of the initial migration, in the Up method, commands like

migrationBuilder.EnsureSchema(

 name: "Person");

use the migrationBuilder object (the executor) to run a command that ensures the

schema exists for Person in this case.

If you scroll down a bit, another command states

migrationBuilder.CreateTable(

 name: "AddressType",

 schema: "Person",

 columns: table => new

 {

This command clearly creates the AddressType table, and more of the command

that is not shown here creates the columns, constraints, and other pertinent table

information.

Later in the migration, statements begin to create indexes. Use Ctrl+Shift+F to find

the text “migrationBuilder.CreateIndex”. Statements to create a new index look like

this one:

migrationBuilder.CreateIndex(

 name: "AK_Address_rowguid",

 schema: "Person",

 table: "Address",

 column: "rowguid",

 unique: true);

Once you get far enough down, you’ll see that there is also a Down method. In the

Down method, the commands that are done in the Up method are reverted. The Down

method is what is executed when you roll a migration back, reverting the objects to their

state as they were prior to this migration.

As you can see, in the Down method, a number of Drop statements exist. This would

be obviously bad for an existing database. Because this first migration is being run

against an existing database, it is highly unlikely the Down method would ever need

to be run, and even more likely that running it would create a major issue if it ran in

production. Therefore, the very first thing you should do is delete all the code in the

Down method. This also lets you know that just because code was generated doesn’t

Chapter 3 entity Framework: Code First

98

always mean you have to keep it in order for things to work. In fact, there are some teams

that never run the Down method, and they likely just delete all of this generated code in

every migration to avoid any potential issues. While I don’t personally recommend this

approach, the argument can be made that a roll-forward-for-revert approach might be

the correct way to go in your organization.

Take a minute now to delete the code in the Down method and add a comment such as

 //Down method should likely never be run on an existing database for the

first migration.

The expected code is shown in Figure 3-7.

Now that you have a migration ready to go, you might be tempted to jump right

in and run the migration. This would be a very big mistake, as the initial migration

scaffolded has a lot of tables that it is planning to create which already exist in your

database. In fact, with this current setup, the migration would likely fail if you run it since

the tables already exist.

Remember the earlier discussion of the pros and cons of using the code-first

approach? This is one of the very small downsides. Right now, you have no migrations

applied in the database, so the migrations builder thinks you need to create all the tables.

However, your database already has all the tables, so you need to make sure that the

migration doesn’t try to recreate them.

So, what should you do next? There are a couple of approaches you can take.

One approach would be to comment out everything in the Up method and apply the

migration with the update-database command.

Figure 3-7. The generated code in the Down method for the initial migration is
deleted and replaced with a comment

Chapter 3 entity Framework: Code First

99

This approach will work, but it begs the question about what the next developer

would do, and the developer after that, especially if they have a fresh start with no copy

of the existing database on their machine.

Since your database already exists, there should not be a reason that you need to

generate the tables as is. You can likely assume other developers would be able to get a

backup to restore to their machine as well. Therefore, go ahead and comment out the

code in the Up method.

Another potential solution would be to make the call idempotent, and only run the

create table and index statements if the table or index doesn’t already exist.

an idempotent operation is an operation that can be executed multiple times, and,
as long as the same input conditions exist, the output will always be the same.

Making this first migration idempotent would not be trivial, as every object would

need to be wrapped in IF NOT EXISTS statements, and the migration would then only

run the CREATE statements when the objects do not exist. Not to say that you couldn’t do

this, and you may actually want to do this in the real world. For this activity, you can just

assume that like you did previously, your team members will also be restoring a backup.

For that reason, you can safely just comment out the code in the Up method.

Go ahead and comment out the code in the Up method now. The result will be an

Up method that is entirely commented out and a Down method with a comment and no

code. Essentially the first migration is not doing anything as it stands, and that is what

you want in this case.

 Step 2: Run the update

Even though the migration is going to do nothing, it is imperative that you run the

update to get the system into a state that recognizes that this migration has been applied.

Before running the update, use SSMS to take a quick look at your current copy of

AdventureWorks and the tables that exist. Figure 3-8 shows the expected current state of

the database.

Chapter 3 entity Framework: Code First

100

The main thing to note is that there is currently no table that is tracking migrations.

This is to be expected.

In SSMS, run the following query:

SELECT *

 FROM [AdventureWorks].[dbo].[__EFMigrationsHistory]

The result of running this query will be an error that says Invalid object name

'AdventureWorks.dbo.__EFMigrationsHistory'.

Figure 3-8. The current local AdventureWorks database is shown. There is
currently no table for migrations in the database

Chapter 3 entity Framework: Code First

101

Return to the VS IDE and run the command update-database in the PMC. This

will trigger the migrations to run. Running of the command and the expected result are

shown in Figure 3-9.

there is no need to fear the update-database command right now. if this
operation goes sideways, you can restore from backup. that being said, please do
not run the update-database command against a production database until you
are certain the results you want will be achieved.

Return to SSMS and run the query again. This time you should see a result that

shows the name of the migration that has been applied. This local table is how your

database will know which migrations have been applied and which migrations have not

been applied (see Figure 3-10).

Figure 3-10. The migration has been applied and the table for migrations now
exists

Figure 3-9. Running the update-database command works as expected, and the
database migration is completed successfully

Chapter 3 entity Framework: Code First

102

Note also that the product version is shown for the update. Your version will be

newer than what is shown in the image, and that is to be expected.

 Task 4: Add a new migration, review it, remove it,
and then add a real migration
In this final task for the first activity, you will add a new migration without making any

changes, and then you will see what it takes to review and remove that migration. You

will then make a real database change and add the migration for that change. You will

finish the task by applying the real migration to prove that you have now successfully

started working with an existing database in a code-first approach with EFCore6.

 Step 1: Add a new migration without making any changes,
review it, and remove it

Whenever you have created code-first database schema changes, you will need to

migrate the database. However, if no changes are present, creating a new migration will

generate a blank migration.

This is exactly how you want it to be. You want to know that your current database is

up to date and that there are no pending changes. In fact, if you have pending changes

that don’t map and try to add a new migration, you will get an error that you first need to

resolve the pending changes.

In this step, you are going to create a new migration to ensure that the database is up

to date and that there are no pending changes.

Run the command as follows:

add-migration testing-db-state

Caution do not run the update-database command at this time.

This add-migration command will create a new migration. If everything is as

expected, your migration will be blank. If, for some reason, your migration is not blank,

examine the generated migration changes and determine if you should apply them or if

you need to reset some code (e.g., if you changed one of the model classes which created

a column change or added a class that would trigger a table change).

Chapter 3 entity Framework: Code First

103

The expected result is shown in Figure 3-11.

Since there are no pending changes, it is OK to just remove this migration. Notice

that there is a statement in the PMC that says “To undo this action, use Remove-

Migration.” That is exactly what you should do. In this case, with no pending changes,

just remove the migration.

Figure 3-11. The generated migration is blank since there are no pending
changes

Chapter 3 entity Framework: Code First

104

Please be aware that once a migration is applied using the update-database

statement, you cannot simply remove it in EFCore6. If you’ve applied a migration, you

must first change the database by rolling your changes back using the syntax update-

database -migration <migration_id_here> (see Step 3).

Run the command remove-migration, which will remove the migration that

you have not applied. Figure 3-12 shows the result of running the remove-migration

command, which effectively reverts and removes the migration.

 Step 2: Make a code change, and then add a new migration
and update the database

Next, you will make a simple code change that will trigger the need for a migration, and

then you will add and run the migration.

Begin by creating a new object that will serve as a table in the database. In the

EFCore_DbLibrary project, create a new class called ImprovementPlan in a code or class

Figure 3-12. The migration is effectively removed with the remove-migration
command

Chapter 3 entity Framework: Code First

105

file named ImprovementPlan.cs. You won’t be using this in the solution, but imagine a

scenario where you needed to link an employee with an improvement plan, and the plan

would eventually have subclasses that model metrics that could be chosen as part of the

improvement plan.

In this case, you will start with a simple class to model the name of the improvement

plan and the employee id that the plan will be assigned to, with a start and end date to

the plan. To do this, in the new class just added, add the following code:

public class ImprovementPlan

{

 [Key]

 [ForeignKey("Employee")]

 public int BusinessEntityId { get; set; }

 public virtual Employee Employee { get; set; }

 [Required]

 public DateTime PlanStart { get; set; }

 public DateTime PlanComplete => PlanStart.AddDays(90);

}

For clarity, the complete file is shown in Figure 3-13.

Chapter 3 entity Framework: Code First

106

After adding the code, you need to also add the new model to the DBContext. In the

AdventureWorksContext, add the following code before the OnConfiguring method (use

search to find “OnConfiguring”):

public virtual DbSet<ImprovementPlan> ImprovementPlans {get;set;}

With the code in place, return to the PMC and run the command add-migration

create_improvement_plans.

Running this command results in a new migration, as shown in Figure 3-14.

Figure 3-13. The ImprovementPlan class is ready to be migrated to the database
as a new table

Chapter 3 entity Framework: Code First

107

Next, run the update-database command to apply the migration. When the

command is completed and the migration is applied, examine the database to see

the new table (see Figure 3-15). The table will contain the columns and relations as

expected. Note that you will likely have to refresh your database in SSMS to see the new

table.

This operation has further proven that you have correctly set the existing database to

work in a code-first approach.

Figure 3-14. A migration is created for the new ImprovementPlans table to be
added to the existing database

Figure 3-15. The ImprovementPlans table is created in the database after the
migration is applied

Chapter 3 entity Framework: Code First

108

 Step 3: Roll back the changes and remove the migration,
and then remove the code change

To finish up the activity, you will revert the migration that you just ran and then remove

the new model file and reset the AdventureWorksContext so that there are no pending

changes in the event that future changes and migrations are needed on this database.

Even though you were able to set the new entity and use it, you really don’t want this

entity in your database, so you need to remove it. This also simulates any situation where

you created a change and want to revert it.

Since the change was already applied, you cannot simply run the remove-migration

command, as that will not work once a migration is applied in the database. The first

thing you need to do is revert to a previous migration. To do this, find the last valid

migration you want to keep, which, in this case, should be something like the initial_

migration that was applied earlier. You will need the full name of the migration as it is

stored in the database. Looking back at Figure 3-15, the migration name of the previous

migration is 20210525021627_Initial_Migration.

Note the migration starts with a date timestamp in the format
yyyymmddhhmmss. therefore, your migration will not be exactly the same as
what is shown here but will start with the date and time when you created the
migration.

To revert to any previous migration, you simply run the command update-database

 -migration <migration_id_here>. In this case:

update-database -migration 20210525021627_Initial_Migration

Running this command will revert to the previous migration.

you can revert more than one migration at a time. this can be useful if you have
multiple migrations to revert, which would execute each of the Down methods
in sequence. if there are errors, the operation would abort when an error is
encountered.

Figure 3-16 shows the command as it was executed.

Chapter 3 entity Framework: Code First

109

With the migration now successfully reverted, examine your database to ensure the

table is gone and the migration table no longer lists the migration you created earlier.

When you are satisfied that the migration is successfully reverted, run the command

remove-migration to now remove the migration that you created earlier, as shown in

Figure 3-17.

You have now learned how to work with migrations and roll back any changes when

there is an issue with the migration or the migration was not actually desired.

To clean up your solution, delete the ImprovementPlan class and also remember to

remove the line of code DbSet<ImprovementPlan> ImprovementPlans { get; set; }

from the AdventureWorksContext. Clean and build your project to ensure there are no

lingering errors. If you want to go the extra mile, add a new migration and ensure no

code is generated in the Up and/or Down methods, and then just remove the migration.

Figure 3-17. The migration that is no longer applied after being reverted can now
be safely removed

Figure 3-16. The update-database -migration <target> command will revert any
number of migrations. The revert to the initial migration is shown here

Chapter 3 entity Framework: Code First

110

 Activity 3-1 summary
In this activity, you learned how to create a new project that uses a legacy (existing)

database and then sets the project to use the code-first approach to changes. You

completed the first part by creating an initial migration and essentially making it do

nothing so that future migrations would not keep trying to create the database tables

that already exist and so that running the rollback would never accidentally drop all the

tables in the existing database.

You then learned how to create and add a new entity to the DBContext so that

it would create a new table in the database using a migration. You then added the

migration and applied it, reviewed the database change, and then finally reverted the

change and cleaned up the code. In this manner, you’ve quickly learned how to work

with code-first migrations in the forward and backward direction, and you also further

proved that you can do this against an existing legacy database.

 Activity 3-2: Creating a new code-first project
in EFCore6
In this second activity, you’re going to create a new code-first project in EFCore6. To

begin this activity, you’re going to start a new project, with a new purpose and setup,

which you will build upon for the rest of the book.

You’ll start by setting your connection strings as before within the configuration

files, and then you’ll continue by working with the code-first approach against a new

database.

Although you likely have a similar code in place, it may be confusing where to start

with this activity. For this reason, I recommend that you simply start with the files from

the project EFCore6_Activity03-2_StarterFiles which has been pre-configured with a

code library and startup console project.

Feel free to update the EFCore6 packages to the latest version at the time you are

starting this project using the Manage NuGet Packages for Solution dialog, as it

is likely that a new version will be released by the time you are working through this

activity.

Chapter 3 entity Framework: Code First

111

 Task 1: Begin a new project for managing inventory
In this activity, you’re going to build a simple database that will ultimately grow to

manage inventory. You will build upon this project throughout the rest of this book.

Inventory items could be any object you have around your house, such as a bunch of

movies, books, or board games, and can also include items like computers, cameras, or

clothing items.

if you are using the starter files, skip to task 2 at this point. task 1 is going to
quickly show how to build the inventory project starter files from the ground up.
this will be the last time this will be demonstrated but is a technique you might
choose to use in future activities.

 Step 1: Set up a new project

To begin from scratch, create a new .Net Core console project and name the project

EFCore_Activity0302.

Start by opening Visual Studio and selecting Create a new project. When the

dialog opens, choose a .Net Core console application, name it appropriately, and save in

a location that makes it easy for you to find it later. Figure 3-18 shows a similar result as

to what your new project configuration dialog should likely show, with the exception of

the folder location where you are storing your files.

Chapter 3 entity Framework: Code First

112

After the project is created, open the project properties by right-clicking the project

name. When the project properties open, change the Target Framework to .NET 6.0 (or

ensure that the target is .NET 6.0 if this is preset for you; see Figure 3-19).

Figure 3-18. The Configure your new project dialog is shown, as the new .Net Core
console project is being created

Chapter 3 entity Framework: Code First

113

After setting the framework to .Net 6, you will need to bring in the following NuGet

packages that will be used in the solution:

• Microsoft.Extensions.Configuration

• Microsoft.Extensions.Configuration.FileExtensions

• Microsoft.Extensions.Configuration.Json

• Microsoft.EntityFrameworkCore

• Microsoft.EntityFrameworkCore.Design

• Microsoft.EntityFrameworkCore.SqlServer

• Microsoft.EntityFrameworkCore.Tools

All of these packages can be easily found in the Manage NuGet Packages for

Solution dialog (review Figure 3-20).

Figure 3-19. The Target Framework is set to .NET 6.0

Chapter 3 entity Framework: Code First

114

Additionally, a quick way to add them would be to just add the following xml to your

EFCore_Activity0302 project file:

<ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="6.0.0-

preview.3.21201.2" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"

Version="6.0.0-preview.3.21201.2">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"

Version="6.0.0-preview.3.21201.2" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.Tools"

Version="6.0.0-preview.3.21201.2">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

Figure 3-20. The required NuGet packages are added to the new project

Chapter 3 entity Framework: Code First

115

 <PackageReference Include="Microsoft.Extensions.Configuration"

Version="6.0.0-preview.3.21201.4" />

 <PackageReference Include="Microsoft.Extensions.Configuration.

FileExtensions" Version="6.0.0-preview.3.21201.4" />

 <PackageReference Include="Microsoft.Extensions.Configuration.Json"

Version="6.0.0-preview.3.21201.4" />

</ItemGroup>

If you use this code in your project file, you should use the Update tab in the NuGet

Package Manager to update the versions, because newer versions will most likely be in

use by the time you are working through this text.

the next few steps are fairly code intensive. if you can’t copy/paste the code or if
you get off track, always remember that you can just review the code in the starter
files and you will be able to compare to see anything that got messed up or didn’t
get implemented as intended.

Next, create a new class file called ConfigurationBuilderSingleton.cs, and place

the following code in the file:

private static ConfigurationBuilderSingleton _instance = null;

private static readonly object instanceLock = new object();

private static IConfigurationRoot _configuration;

private ConfigurationBuilderSingleton()

{

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json", optional: true,

reloadOnChange: true);

 _configuration = builder.Build();

}

Chapter 3 entity Framework: Code First

116

public static ConfigurationBuilderSingleton Instance

{

 get

 {

 lock (instanceLock)

 {

 if (_instance == null)

 {

 _instance = new ConfigurationBuilderSingleton();

 }

 return _instance;

 }

 }

}

public static IConfigurationRoot ConfigurationRoot

{

 get

 {

 if (_configuration == null) { var x = Instance; }

 return _configuration;

 }

}

This will create the configuration builder singleton code so that it’s easy to load the

configuration file. Additionally, change the class to be a public sealed class so that it

cannot be further modified through inheritance. You will also need to resolve a couple of

dependencies for IConfigurationRoot and Directory. The using statements at the top

of the class can be replaced to contain just the following two using statements:

using Microsoft.Extensions.Configuration;

using System.IO;

At this point, you may wish to take a moment to save and build your project, just to

ensure you don’t currently have any errors.

This is also a great time to add source control if you would like to ensure you have

a way to restore changes to this point should something go wrong in the next steps.

Adding a new GIT repository is easy enough to do via the controls in Visual Studio, via

Chapter 3 entity Framework: Code First

117

the command line, or with your GIT IDE of choice. You will also want to ensure that you

add a .gitignore file for Visual Studio projects to avoid checking in files you don’t want

to have in your repository.

Next, add the configuration file appsettings.json. Place the following JSON-

formatted code in the new file:

{

 "ConnectionStrings": {

 "InventoryManager": "Data Source=localhost;Initial Catalog=

InventoryManagerDb;Trusted_Connection=True"

 }

}

You might infer this from the connection string here, but you’ll soon be creating a

new database called InventoryDb.

Make sure to set the appsettings.json file as Content and Copy if newer (or Copy

always) as shown in Figure 3-21.

Figure 3-21. Ensure that the appsettings.json file is configured to be Content and
will be copied into the output when the project is built

Chapter 3 entity Framework: Code First

118

Open the Program.cs file and replace the existing program class code with the

following code:

public class Program

{

 private static IConfigurationRoot _configuration;

 //private static DbContextOptionsBuilder<InventoryDbContext>

_optionsBuilder;

 static void Main(string[] args)

 {

 BuildOptions();

 }

 static void BuildOptions()

 {

 _configuration = ConfigurationBuilderSingleton.ConfigurationRoot;

 //_optionsBuilder = new DbContextOptionsBuilder<InventoryDbContext>();

 // _optionsBuilder.UseSqlServer(_configuration.GetConnectionString(

"InventoryManager"));

 }

}

Save and build the project. Feel free to run it – although nothing is happening yet.

Note also that a few lines are purposefully commented out and you will need to resolve

the using statement for the IConfigurationRoot variable by adding the using statement

using Microsoft.Extensions.Configuration at the top of the file.

 Step 2: Leverage a new database using the code-first approach

If you’ve worked through the previous activities in previous chapters, you had created a

simple code library during the very first chapter in Activity 1-1, which should be named

something like EFCore_DbLibrary.

At this point, you will want to leverage that project. If you didn’t already build that

project, you should review Activity 1-1 or just use the starter files that are provided for

this activity.

Chapter 3 entity Framework: Code First

119

Copy the project that was created in Activity 1-1 and place it in the same folder as the

solution for your current Activity 3-2 project. For clarity, you should have two folders and

the solution as shown in Figure 3-22.

With the project folder copied, add the existing project to the solution and then add

a project reference to the main project in your solution to include the EFCore_DBLibrary

project you just copied. You can easily do this by right-clicking the solution and selecting

Add ➤ Existing Project (see Figure 3-23).

Figure 3-22. The original code library from Activity 1-1 is copied into the folder
with the new project for Activity 3-2

Figure 3-23. Adding an existing project to the solution

Chapter 3 entity Framework: Code First

120

Next browse to the folder to find the project, and then select the project and open it

(see Figure 3-24).

Once the project is added, you need to add it as a project reference in the EFCore_

Activity0302 project. Right-click the activity project and select Add ➤ Project

Reference (see Figure 3-25).

Figure 3-25. Adding the DBLibrary project as a project reference to the activity
project

Figure 3-24. The project is selected to be added to the existing solution

Chapter 3 entity Framework: Code First

121

Check the EFCore_DBLibrary project, and then press OK to complete the operation

(as in Figure 3-26).

In the DBLibrary project, rename the current file ApplicationDbContext.cs to

InventoryDbContext.cs by right-clicking and selecting Rename (see Figure 3-27) or by

hitting the “F2” key.

Figure 3-26. Completing the process to add the DBLibrary project as a project
reference to the activity project

Figure 3-27. Renaming the ApplicationDbContext

Chapter 3 entity Framework: Code First

122

When prompted, also rename any references by selecting Yes in the dialog that is

shown in Figure 3-28.

Finally, return to the Program.cs file, then remove the comments for the

_optionsBuilder variable and the two lines that reference it in the BuildOptions

method, and then resolve the using statement for the InventoryDbContext.

For clarity, the Program.cs file is shown in Figure 3-29. Review the code and make

sure to save and build the project to ensure there are currently no errors.

Figure 3-28. Allow the project to rename the references when renaming the class file

Figure 3-29. The Program.cs file is shown for clarity, and the project is ready to go

Chapter 3 entity Framework: Code First

123

Your project is now set up and ready to start working with code in a code-first

approach against a new database. This would be a really great time to establish your

project in a GIT repository if you have not already done so.

 Task 2: Add a new library for your database
models – the “code” of code first
In this task, you will build the code-first Models project, where you will store the code

that will ultimately model the database schema. Putting this code in its own project

is a best practice, because this will allow you to reuse the code in other projects if you

needed to do so.

 Step 1: Create a new project library

In this first step for Task 2, you need to create a new reusable code library to house the

database models. The models are just classes in C# that define the attributes that will be

translated to the database schema.

Begin by right-clicking the solution and selecting Add ➤ New Project (see Figure 3-30).

For the project type, select Class library as shown in Figure 3-31, and then hit

“Next.”

Figure 3-30. To create a new project, you can just add a new project to the
solution, as shown here

Chapter 3 entity Framework: Code First

124

Name the class library project InventoryModels, and save it in the root folder where

the solution is saved (this will create a folder with the project information).

For example, Figure 3-32 shows how the project should be named and stored in the

same location as the other project folders.

Figure 3-31. Adding a new class library to the existing solution

Chapter 3 entity Framework: Code First

125

When prompted, make sure to select .NET 6.0 for the Target Framework, and hit the

Create button.

 Step 2: Update the automatically generated Class1 to be an Item
object

When the project is created, you will see one class that is named Class1.cs. Right-click

(or hit F2 when you are on the class) and rename the class to Item.cs. When prompted,

select Yes for updating references.

Figure 3-32. The project should be named InventoryModels and stored in the
same location as the other project folders

Chapter 3 entity Framework: Code First

126

Update the public class Item to have the following class code, which contains two

properties – an int Id and a string Name:

public class Item

{

 public int Id { get; set; }

 public string Name { get; set; }

}

For clarity, the code and class in the project are shown in Figure 3-33.

You will create the Item object in a migration and ensure that this new object is able

to be used in the database before the activity is over. However, a quick note about this

object. As it currently stands, this code is not very good. The reason for this is that it is

too basic. The first thing to note is that there are no constraints on any of the fields. For

example, the Id is going to be the primary key, so it should always be a positive integer.

The Name field is a string, and, as it stands, there are no length limits or requirements on

the name (currently it could be null or have a length of 0, which, by the way, are not the

same).

Do not worry, you will get a chance to learn how to make these fields better in the

next couple of chapters; and you will get a chance to learn about the differences between

null and the empty string and why they are not the same thing. For now, just note that

this design is simplistic and is not supposed to represent production code but will give

you a great start on your Inventory system.

Figure 3-33. The Item class is created with two properties for Id and Name

Chapter 3 entity Framework: Code First

127

 Step 3: Set the project to be (or ensure that it is) a .Net 5 library

To ensure compatibility and the use of the .Net 6 library, right-click your new

InventoryModels project, and then select Properties. When the properties come up,

ensure that the Target Framework is set to target .NET 6.0. With these changes, the code

is ready to be used in your database library.

 Task 3: Reference the InventoryModels project and use it
to create a migration
In this task, you will reference the new project in the EFCore_DbLibrary project and then

add the Item to the InventoryDbContext. Once the code is in place, you will then create

a migration and update the database. You will finish this task by reviewing the database

to ensure the table was created as expected.

 Step 1: Add a project reference to the EFCore_DbLibrary
for the InventoryModels

Now that the project is created, you will need to leverage it in the DbLibrary project. To

do this, right-click the EFCore_DbLibrary project and select Add ➤ Project Reference,

and then check the box next to InventoryModels and select OK. Adding the project

reference is highlighted in Figure 3-34.

Chapter 3 entity Framework: Code First

128

Go ahead and build the project to ensure there are no errors. Additionally, if you are

working with a repository, you may wish to commit changes at this point as a commit

that you could easily use as a rollback or reset target commit.

 Step 2: Add the Item class to the InventoryDbContext

For the second step, you need to let the database context know that a new entity is

needed to map with the Item class that was created in the previous task. If you don’t add

new entities as a DBSet<T> in the database context, then your solution will just ignore

them. This is a good thing because you may not want a table for every model you create.

However, I cannot tell you how many times I’ve forgotten to add the entity, created a

migration, and then had to remove the empty migration and make sure to add the entity

to the application’s database context.

In the EFCore_DbLibrary project, double-click to open the InventoryDbContext.cs

file. In this file, in the InventoryDbContext class, simply add the following code to the

top, after the first curly brace and before the comment or declaration of the default

empty constructor:

public DbSet<Item> Items { get; set; }

Figure 3-34. Adding a project reference for the InventoryModels project to the
EFCore_DbLibrary project

Chapter 3 entity Framework: Code First

129

Adding this code will also force you to need to resolve the reference for the

Item class. Resolve the using statements now, so that you will not have any errors.

When completed, you will have the following using statements at the top of the

InventoryDbContext.cs file:

using InventoryModels;

using Microsoft.EntityFrameworkCore;

using System;

At present, the using System using statement is not necessary, so you could opt to

remove it.

For clarity, the code is shown in Figure 3-35 here.

Note that the code you have added is for a DbSet of Item and that you named the

property Items. The DbSet uses generics to allow you to inject the type of DbSet to map

to any of your models. Additionally, the property name is what is used to create the

database table name by convention. Adding this code, therefore, allows you to be able

to anticipate a new migration would need to add the Items table and that the migration

would contain columns added to the table to map to each of the properties in the Item

class.

Figure 3-35. The code for the InventoryDbContext is shown for clarity, including
the declaration of the DBSet for Items

Chapter 3 entity Framework: Code First

130

 Step 3: Set the EFCore5_DbLibrary project to use the code-first
database approach as a stand-alone library

Currently, the EFCore_DbLibrary project is not ready to be a stand-alone project. The

main reason is that it doesn’t have any way to determine what database to connect to

at this point, and the InventoryDbContext is not set up correctly to work against any

database.

To make this happen, you need to do a couple of things on the project before trying

to use the code-first approach.

To see the problem, attempt to add a new migration now. Using the PMC, making

sure that the project selected is the EFCore_DbLibrary project, use the add-migration

command to create a new migration. This is the initial migration, so you could use a

command such as

add-migration initial_setup_create_items_table

As you can see, there is an error that is generated (see Figure 3-36).

The actual text of the error is

No database provider has been configured for this DbContext. A provider

can be configured by overriding the 'DbContext.OnConfiguring' method

or by using 'AddDbContext' on the application service provider. If

'AddDbContext' is used, then also ensure that your DbContext type accepts a

DbContextOptions<TContext> object in its constructor and passes it to the

base constructor for DbContext.

Figure 3-36. The attempt to add the initial migration has failed. The current
solution is not configured correctly, and an error is generated and shown here

Chapter 3 entity Framework: Code First

131

OK, that seems like a lot, but it’s actually not that bad. So how do you fix this issue?

As it turns out, you just need to do what it says in the error. The easiest solution

to solve this issue is simply to override the OnConfiguring method. In fact, if you go

back to Activity 3-1 from earlier in this chapter and take a look at the context that was

generated, you’ll see exactly the code that you need. Review Figure 3-37 to see the code

from the OnConfiguring method from the AdventureWorksContext that was generated

in Activity0301.

Add the following code into the InventoryDbContext toward the bottom, after the

constructors:

protected override void OnConfiguring(DbContextOptionsBuilder

optionsBuilder)

{

 if (!optionsBuilder.IsConfigured)

 {

 optionsBuilder.UseSqlServer("Data Source=localhost;Initial Catalog=

InventoryManagerDb;Trusted_Connection=True");

 }

}

Adding this code will also force you to resolve an error for the call to UseSqlServer.

This is due to a missing NuGet package. Open the Tools ➤ NuGet Package Manager

➤ Manage NuGet Packages for Solution and bring up the dialog, and then

select the Installed packages tab. On the tab, select the package for Microsoft.

EntityFrameworkCore.SqlServer. With that package installed, check the

EFCore_DbLibrary project and install it. For clarity, this is shown in Figure 3-38.

Figure 3-37. The OnConfiguring method was successfully overridden in the
AdventureWorksContext in the previous activity and is shown here

Chapter 3 entity Framework: Code First

132

Accept any licenses. Importing this library should fix the issue with the call to

UseSqlServer in the InventoryDbContext. Ensure the project builds in the current state,

and check in any changes if you are using source control.

 Step 4: Move the connection string out of the EFCore5_DbLibrary
project

While you could proceed at this point, it is a good idea to get the connection string out of

the code and into a configuration file. In fact, even the VS IDE has given a warning in the

previous activity (review Figure 3-37) that stated

#warning To protect potentially sensitive information in your connection string, you

should move it out of source code. You can avoid scaffolding the connection string by

using the Name= syntax to read it from configuration - see https://go.microsoft.com/

fwlink/?linkid=2131148. For more guidance on storing connection strings, see http://

go.microsoft.com/fwlink/?LinkId=723263.

To fix this, you just need to do a couple of quick things.

First, you should already have the Manage NuGet Packages for Solution dialog

open, but if you don’t, just reopen it. You’ll need to add references for the three Microsoft.

Extensions.Configuration packages to the EFCore5_DbLibrary project. Select each of the

following and install them into the EFCore_DBLibrary project:

• Microsoft.Extensions.Configuration

• Microsoft.Extensions.Configuration.FileExtensions

• Microsoft.Extensions.Configuration.Json

Figure 3-38. Installing the missing package for the
Microsoft.EntityFrameworkCore.SqlServer to the EFCore5_DbLibrary project

Chapter 3 entity Framework: Code First

https://go.microsoft.com/fwlink/?linkid=2131148
https://go.microsoft.com/fwlink/?linkid=2131148
http://go.microsoft.com/fwlink/?LinkId=723263
http://go.microsoft.com/fwlink/?LinkId=723263

133

Next, you need a class-level variable for the configuration. Add the following to the

top of the InventoryDbContext class, right before the declaration of the Items property

that you added previously:

private static IConfigurationRoot _configuration;

To use the file, update the code in the OnConfiguring method in the

InventoryDbContext to the following:

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{

 if (!optionsBuilder.IsConfigured)

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json", optional: true,

reloadOnChange: true);

 _configuration = builder.Build();

 var cnstr = _configuration.GetConnectionString("InventoryManager");

 optionsBuilder.UseSqlServer(cnstr);

 }

}

This will require adding a couple of using statements. The current using statements

that are required are shown in Figure 3-39, along with the rest of the code for clarity.

They are

using InventoryModels;

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.Configuration;

using System.IO;

Chapter 3 entity Framework: Code First

134

 Step 5: Create a new migration for the Inventory system

In this step, you will add the migration for the InventoryManager system. Since there are

currently no migrations, this will be the first one created for this solution.

Run the command that was used in the previous step once again. The command

should be accessible with a simple press of the up arrow in the PMC, and for clarity, it

should be

add-migration initial_setup_create_items_table

Figure 3-39. The InventoryDbContext class is set up to be a stand-alone class
now, with a configuration file to allow for connecting to the database and the
overridden OnConfiguring method completed

Chapter 3 entity Framework: Code First

135

Running the command this time will generate the migration as expected, now that

a connection can be established. Figure 3-40 shows the expected output, including the

successfully generated migration that contains the code to add the Items table.

Reminder the filename is going to be entirely different for you, depending on
the date and time when the migration was generated in combination with how you
named your migration.

 Task 4: Update and review the database
In this task, you will apply the generated migration and review the database to ensure

that the project is now set up and ready to be used with a new database as a code-first

Entity Framework Core 6 project.

Figure 3-40. The migration is created, and running the update command to apply
this migration will create the database (since this is the first migration) and the
Items table

Chapter 3 entity Framework: Code First

136

 Step 1: Update the database

First, you need to apply the migration generated in the previous step. In the PMC,

run the update-database command. Provided everything is set up correctly and the

connection string in the appsettings.json file is valid, you should have no trouble

running this command. Figure 3-41 shows the expected successful output in the PMC.

 Step 2: Review the database

Open your local database that was just generated in SSMS and ensure that the

InventoryManagerDb was created and that it contains a table for Items which currently

contains no records. If you already had SSMS open, you may need to right-click the

Databases folder and select Refresh. Review Figure 3-42 to see the expected solution.

Figure 3-41. The PMC shows that the update-database command worked as
expected

Chapter 3 entity Framework: Code First

137

Now the project is working as expected and the entity models are fully integrated.

The final step to prove this solution is working is to utilize the library and interact with

the database.

At this point, if you are working with your code in a local repository, this would be a

great place to commit your changes before moving to the next task.

 Task 5: Add code to insert and query a list of items
In this final task, you will create a method to ensure the existence of a few inventory

items. You will also create a method that will read the items from the Items table, and

then you will output those items to the screen.

Figure 3-42. The database is generated and has a table for Items ready to be
utilized

Chapter 3 entity Framework: Code First

138

 Step 1: Create a method to ensure the existence of some Items

In this first step, you will create a method that can run in an idempotent manner to

ensure that data exists in the database. As a reminder, idempotent as used here means

that the code or script can be run multiple times without error and the same results

would always be achieved for the execution as long as the same input was provided.

In other words, you’ll ensure that if the item doesn’t exist that it does by the end of the

script, and if it does exist that the script will just run without error.

To do this next part, I’m going to ask you to take a leap of faith with me, because the

code here might be a bit more than you have been exposed to. Rest assured that you will

get a lot of chances to work with, and fully understand, similar code in the remainder of

this book.

Return to the EFCore_Activity0302 (activity) project, and start by ensuring that you

already have a project reference to the EFCore_DbLibrary (DbLibrary) project. If you

don’t have this reference in place, make sure to put it in place now. By default, a reference

to the DbLibrary project will also ensure a reference to the InventoryModels (Models)

project (see Figure 3-43).

Figure 3-43. The project reference to the DbLibrary is shown, which has the
cascading dependency to the Models project

Chapter 3 entity Framework: Code First

139

With the project reference in place, add a call in the Main method of the Program.cs

file following the BuildOptions method for a new method called EnsureItems using the

code EnsureItems(). This method will call a small helper to generate an item if it doesn’t

already exist in the database for five simple items.

Add the following method to the class following the completion of the BuildOptions

method code and before the end of the class:

static void EnsureItems()

{

 EnsureItem("Batman Begins");

 EnsureItem("Inception");

 EnsureItem("Remember the Titans");

 EnsureItem("Star Wars: The Empire Strikes Back");

 EnsureItem("Top Gun");

}

private static void EnsureItem(string name)

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 //determine if item exists:

 var existingItem = db.Items.FirstOrDefault(x => x.Name.ToLower()

 == name.ToLower());

 if (existingItem == null)

 {

 //doesn't exist, add it.

 var item = new Item() { Name = name };

 db.Items.Add(item);

 db.SaveChanges();

 }

 }

}

Chapter 3 entity Framework: Code First

140

This code will first check for each of the five movies to see if they exist, and if they

don’t exist, the code will add the movies that are not present. The end result is that no

matter how many times this is run, there will only be five items and they will all be in the

database. This code is therefore idempotent.

do not forget to bring in all the missing using statements to ensure that the code
builds. For example, you may need to add the statement using System.Linq
manually to resolve the database call to FirstOrDefault. you will likely also
need to add a statement for using InventoryModels to leverage the Item
class.

Also note that the context is wrapped in a using statement and the variable db is

used to work against the database. You will learn more about all of this in the next few

chapters. For now, just know that the using statement allows the proper connection and

disposal of the context, and the LINQ queries used allow for you to get the data and add

items to the context and save the changes.

For clarity, your code should look like the code shown in Figure 3-44.

Chapter 3 entity Framework: Code First

141

Build and run the code now to see that the solution works as expected. In fact, run

it a couple of times. While there is currently no output in the console, after running the

program performing a quick review of the database in SSMS should show that results are

now being entered into the table (see Figure 3-45).

Figure 3-44. The EnsureItems and EnsureItem methods as implemented are
shown

Chapter 3 entity Framework: Code First

142

 Step 2: Write code to output the results

In this final step for the activity, you will simply query the results and show them in the

console. Although the data is verified in the previous step, it would be nice to see it.

Add a new method call in the Main method following the call to EnsureItems called

ListInventory by adding the code ListInventory(). Then add the method with the code

as follows:

private static void ListInventory()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.OrderBy(x => x.Name).ToList();

 items.ForEach(x => Console.WriteLine($"New Item: {x.Name}"));

 }

}

Build and run the solution. You should now see all of the items in the console as

shown in Figure 3-46.

Figure 3-45. Data is now being saved in the database as expected, and it is done
in an idempotent manner so records are not duplicated

Chapter 3 entity Framework: Code First

143

Running the program over and over again will yield the same result. You’ve now

successfully created a new solution that leverages the database via EFCore6, and you’ve

even gotten a sneak peek into using the context to add and retrieve data.

 Activity 3-2 summary
In this final activity for Chapter 3, you went through setting up a new .Net 6 project and were

able to integrate a new EFCore6 library to create the database. You learned how to make the

project work as a stand-alone project with the connection string in the configuration file,

and you learned how to leverage the code-first approach to create a new table.

To create the new table, you first added a new code library to separate the concerns.

This is a nice approach because the code library is positioned well to be reused in other

projects as necessary. Additionally, the EFCore6_DbLibrary project is also ready to be

reused in other projects as necessary.

 Chapter summary
In this chapter, you learned the basics of getting started with a code-first approach. The

chapter began with a quick look at when you can implement a code-first solution and

how a code-first solution doesn’t always have to start with a brand-new database.

Figure 3-46. The expected output is shown with the inventory printed to the
console

Chapter 3 entity Framework: Code First

144

You then worked through a couple of activities where you got to implement a new

project in a code-first approach against an existing database, and you also got to work

through a project that was completely greenfield and had no code or database to start.

Through the activities, you also got further exposure to working with the commands

in the Package Manager Console to create migrations, update the database, revert

migrations, and remove migrations.

At the end of the second activity, you also saw code that wrote to the database and

saved changes after writing the data, and then you saw how to read from the database

using EFCore6.

 Important takeaways
After working through this chapter, the things you should be in command of are

• Working in a code-first approach against an existing database

• A good understanding of the Up and Down methods in a migration and

how and when each is applied

• An understanding of what it takes to revert a migration once it has

been applied

• How to remove a migration

• An ability to understand where to check in the database to see if a

migration has been applied

• The ability to leverage a code library with models that can be used as

entities for the database schema

• How to add new entities to the database using the DBContext

• A basic understanding of the override of OnConfiguration

• How Entity Framework can be implemented into a class library for

use in any project

 Closing thoughts
In the next chapter, you will start diving deeper into building out a robust data solution

using EFCore6 by learning more about working with models, contexts, and migrations.

Chapter 3 entity Framework: Code First

PART II

Building the Data Solution

147
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_4

CHAPTER 4

Models and the Data
Context
In this chapter, you are going to examine the data context and the creation of models, as

well as look in a bit more detail about how these objects work in concert for code-first

database programming with Entity Framework.

By the end of the chapter, you will have reviewed and become even more familiar

with some of the inner workings of the database context (DBContext). Through practical

examples, you’ll also become very familiar with using models to build out your

database tables.

Eventually, you will learn more about structuring schema and relationships in

your databases with models and migrations, but this chapter will concentrate on the

basic setup of your database tables and how to use the DBContext to identify objects for

inclusion in migrations. You will build on this knowledge in future chapters.

 What is the database context and why do
we need it?
Before diving into the DBContext and why it is important, it is also critical to identify that

you may have never worked with a DBContext before. If you are reading this and you are

used to working with an older version of EF (versions prior to EF4.1) or if you have been

working in a non-code-first approach in previous database work, you’ve perhaps never

seen or used the DBContext. In such use cases, you might be familiar with an object

called the ObjectContext. The ObjectContext contains all of the methods necessary

to work against the database, such as CreateDatabase, SaveChanges, and more [see

https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.core.

objects.objectcontext?view=entity-framework-6.2.0 for more information].

https://doi.org/10.1007/978-1-4842-7301-2_4#DOI
https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.core.objects.objectcontext?view=entity-framework-6.2.0
https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.core.objects.objectcontext?view=entity-framework-6.2.0

148

Please know that going forward you will no longer be using the ObjectContext, but

instead you will be using the DBContext object.

 DBContext vs. ObjectContext
In the previous versions of EF, the DbContext could, in some instances, act like a

decorator on the ObjectContext, as it is possible for the DBContext to be created by

wrapping an ObjectContext. It was also possible to gain access to the underlying

ObjectContext from the DBContext when necessary. You will no longer be able to take

this sort of approach in EFCore6, nor would you want to. In most cases, you’ll now be

leveraging the DBContextOptionsBuilder.

In EF6, both DBContext and ObjectContext are implementations of the same

interface, the IObjectContextAdapter. By having this common definition, and the

ability for a DBContext to work like a decorator, it was possible to make the transition

from the older style EF with the *.edmx files from existing databases to the code-first

approach with no *.edmx files while still being able to support the original *.edmx

implementations.

In both EF6 (the previous version of EF before EFCore) and EFCore, the DbContext

object is a critical component for code-first implementations. The DBContext contains

all of the critical methods necessary to work against the database. With EF using a

DBContext, a lot of the underlying patterns are implemented by default and don’t require

manual intervention from developers.

We will focus on working with the DBContext for the remainder of this book.

Additionally, we will be homing in on EFCore6 for our examination of the DBContext

and will not be implementing any legacy code around the DBContext. Along the way,

however, we will still take time when appropriate to discuss how things were different

in EF6, just in case you’re working with EF6 in legacy code or in the case where you are

upgrading to EFCore6 from other legacy versions and need to know about the differences

between the two implementations.

Chapter 4 Models and the data Context

149

 What is the DBContext?
To begin looking at the DBContext, let’s get the official statement from the Microsoft

documents about what the DbContext class is. The official documentation from

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.

dbcontext?view=efcore-6.0 states the following about the DbContext Class:

A DbContext instance represents a session with the database and can be
used to query and save instances of your entities. DbContext is a combina-
tion of the unit of work and repository patterns.

Using the DbContext, therefore, we get orchestration around two significant patterns

in database development, the unit of work (UoW) pattern, and the repository design

pattern. This means that by using the DBContext, we don’t have to explicitly manage

simple transactions when working with the DBContext, as they will be handled by the

context implementing the UoW pattern.

Another way to think about this is to understand that when you are working with

the code and objects from the DBContext, everything that has been set to be modified is

managed in the same implicit transaction. Therefore, all operations are pending and not

applied until an explicit call is made to SaveChanges. If something fails during that final

call to SaveChanges, the entire modified set is rolled back, which can be both a blessing

and a curse for developers.

To be more prepared and to gain a better understanding of how all of this works,

we will take a deeper look at the UoW and repository patterns in more detail later in the

book. At that time, we will also discuss working with explicit transactions and when it

might be appropriate for developers to use explicit transactions. Until then, we’ll just

leverage the built-in UoW and repository patterns.

Although most of the interaction we will have with the DBContext in many

applications will be limited to adding DBSets and a few other small code modifications, it

is a good use of our time to learn more about how the DBContext works. It is also a good

idea to learn about how the DBContext is constructed while gaining knowledge of some

of the options available to us through the DBContext. We can examine this in more detail

by diving into the inner workings of the DBContext, which we’ll do next.

Chapter 4 Models and the data Context

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext?view=efcore-6.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext?view=efcore-6.0

150

 Constructing a new DBContext
In EFCore6, there are only two constructors for the DBContext. We’ve already seen both

constructors in use in our activities from the previous chapter. If you didn’t already work

the activities in the previous chapter, you may wish to do so now. Alternatively, you

could just review the final files from Activity 3-2.

In most cases, when creating the DBContext, we’ll use the complex constructor,

which takes a DbContextOptions object, but there are specific instances when the

default constructor with no parameters will be used. Primarily, the default constructor is

used when running migrations or scaffolding controllers for a context.

The DBContext class gives us the ability to inject options for use during

normal operation of the database interactions with EF via the DBContextOptions

class. When working with the DBContextOptions class, we generally will use a

DBContextOptionsBuilder object, as the DBContextOptions class is usually composed

and/or injected, not directly created. As previously mentioned, if you worked through

the activities in Chapter 3, you’ve already seen this in action.

The DBContextOptionsBuilder gives us a couple of critical operations that we’ll

leverage. In the last chapter, we set the type of database we wanted to use and injected

the connection string for the DBContext through the DBContextOptionsBuilder and the

DBContextOptions as follows:

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{

 if (!optionsBuilder.IsConfigured)

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 . AddJsonFile("appsettings.json", optional: true,

reloadOnChange: true);

 _configuration = builder.Build();

 var cnstr = _configuration.GetConnectionString("InventoryManager");

 optionsBuilder.UseSqlServer(cnstr);

 }

}

Chapter 4 Models and the data Context

151

Most importantly, in this implementation, we did not have a startup class or method

in place that leveraged dependency injection via services at runtime. Therefore, no

DBContextOptions were injected into the DBContext. To remedy this, we configured the

options by overriding the OnConfiguring method as shown earlier. As a result of overriding

the OnConfiguring method and building the options builder as we did in this example, we

could also further configure the DBOptionsBuilder if we needed to implement any other

custom functionality, such as adding interceptors or enabling logging.

We should also note through this examination that any creation of the DBContext

will use the OnConfiguring method, so we can continue to modify the options for our

DBContext, even if the system is leveraging dependency injection.

As an alternative to overriding the OnConfiguring method, we can build the options

inline and inject them into the constructor of the DBContextOptions directly as is shown

in the following code block (which is easily generated by creating a new ASP.Net MVC

project):

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<ApplicationDbContext>(options =>

 options.UseSqlServer(

 Configuration.GetConnectionString("DefaultConnection")));

 services.AddDatabaseDeveloperPageExceptionFilter();

 services.AddDefaultIdentity<IdentityUser>(options =>

options.SignIn.RequireConfirmedAccount = true)

 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddControllersWithViews();

}

What’s important to note here is the fact that in the ASP.Net MVC project, the project

template sets the DBContextOptions to use SQL Server and leverages a configuration

entry by name to get the connection string.

In both preceding cases, we’ve set the database to use SQL Server. There are many

other database options available if your organization or project cannot leverage SQL Server.

Chapter 4 Models and the data Context

152

 Critical properties and methods available when
working with the DBContext
In the next couple of sections, we’ll take a look at a couple of the properties and methods

that exist for our use when building up and working with a DBContext. This reference is

not an exhaustive list of all properties and methods available but should cover many of

the common properties and methods that we’re likely to use.

For your reference, the full list of detailed specifications for each object available for

use in EFCore6 is available in the documentation at Microsoft, which can be found here:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore?v

iew=efcore-6.0.

 Important properties on the DbContextOptionsBuilder
object
Each of our objects used in the composition of the DBContext for normal operations

contains a couple of noteworthy properties. At the time of this writing, there are two

properties of the DbContextOptionsBuilder class, which are IsConfigured and Options,

and they are shown in Table 4-1.

We’ve already seen these properties in action in the last chapter, although the call for

Options to get the connection string was implicit in the DBContext, whereas we directly

coded against the IsConfigured property to ensure that options were configured.

Table 4-1. Properties of the DbContextOptionsBuilder class

Property Purpose

IsConfigured Gets a value indicating whether any options have been configured.

Options Gets the options being configured by giving direct access to the

DBContextOptions object.

Chapter 4 Models and the data Context

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore?view=efcore-6.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore?view=efcore-6.0

153

 Important properties on the DBContextOptions object
Even though we don’t directly create a DBContextOptions object, we may still wish to

code against a couple of the properties. There are three properties available to us in

the DBContextOptions class, which are ContextType, Extensions, and IsFrozen as

described in Table 4-2.

In most cases, we won’t have a need to leverage these properties directly, but it’s

good to know they are available should we need to provide an implementation that is

more defined than a default implementation would be. I can definitely see a use case

where locking the options from further configuring could be a nice security feature,

potentially preventing logging or even injecting a new database connection string.

 Important properties on the DBContext object
The DbContext itself also has four properties which we can leverage. As with the other

objects, we don’t have to do anything with these properties if we don’t need to, but

there are some cases where it might make sense to work with the properties. The four

properties of the DBContext are ChangeTracker, ContextId, Database, and Model, as

listed in Table 4-3.

Table 4-2. Properties of the DbContextOptions class.

Property Purpose

ContextType Gets the type for the context; if no type is defined, then DBContext will be returned.

Extensions Gets a list of extensions as configured, such as the type of database being

leveraged.

IsFrozen Used to determine if the DBContext is open for further configuration. If true,

the system cannot further override the context options in the OnConfiguring

method.

Chapter 4 Models and the data Context

154

Although it is not always necessary to work with any of these properties, there may

be times when you’ll want to get direct access to the underlying database to perform

operations. A particularly common use to accommodate this need of direct access to

the database would be to execute a command that runs a stored procedure, which we’ll

examine in more detail later in the book.

In addition to the properties on each of these objects, there are some methods

that we’ll be leveraging for the remainder of our work in this book. Let’s start with the

DBContext, which contains the majority of the methods we’ll be using.

 Methods available on the DBContext
When working with the DBContext, we’ll first note that most methods have both a

traditional synchronous method and also an asynchronous implementation. The main

reason for using an asynchronous method is to try to avoid blocking your main thread

when making calls to the database. In general, you should try to do this whenever

possible for a better user experience. That being said, it’s important to note that the

DBContext is not a thread-safe object, so you may run into concurrency issues and other

painful situations if you are building out a multithreaded application.

Table 4-3. Properties of the DbContext class

Property Purpose

ChangeTracker allows us to get direct information about the interactions with entities in our

context. Can be used to determine if lazy loading is enabled, if the context

entities have changes, and is leveraged for major operations like accepting

changes and cascading deletes.

ContextId every context has a unique id. this can be useful information for logging what

context was being leveraged to perform an operation when there are multiple

contexts or multiple instances of a context.

Database this property implements a façade on the database and is primarily used for

determining and working with critical database operations like connections,

commands, and transactions.

Model Gets the metadata for the underlying entities and relationships as mapped in

the database.

Chapter 4 Models and the data Context

155

The methods shown in Table 4-4 are not an exhaustive list of the methods available

in the DBContext but are some of the more critical methods you’ll encounter both in

the real world and while working through this book. To get the full list, you can always

reference the full documentation at Microsoft. Table 4-4 shows some of the more

common methods we’ll use to give us a general idea of what the DBContext can do.

What we can see is that the DBContext itself has all the methods necessary for

performing CRUD operations against the database entities, as well as the critical method

for saving changes to apply all of the tracked changes. Even though these methods exist,

as we’ll see in upcoming examples, we’ll actually leverage methods and extensions on

the specific DBSet<TEntity> objects to do the majority of our CRUD operations. This

will become clearer as you gain experience and work through the various activities

throughout this book.

Table 4-4. Methods of the DbContext class

Method Purpose

Add/AddAsync allows insertion of the entity into the database; begins tracking the

entity. added objects will be tracked and will be added once the

SaveChanges method is called. note that you can add in a number of

ways, including an AddRange method, which allows adding more than

one entity at a time.

Find/FindAsync Find a specific entity by the entity’s primary key value (generally an Id).

OnConfiguring allows for us to override the options and other information about the

database.

OnModelCreating allows us to use the FluentAPI to further define our entities and

their relationships by configuring the models, their properties, and any

relationships.

Remove delete an entity from the database. this option also has a

RemoveRange ability.

SaveChanges/Save

ChangesAsync

apply the tracked changes in a single transaction.

Update Used to perform an update to the tracked entity. there is also an ability

to update a range of tracked entities with UpdateRange.

Chapter 4 Models and the data Context

156

 Methods and extensions on the DBSet<TEntity> object
The DBSet<TEntity> object has a couple of critical methods and extensions that we will

leverage in code, specifically for CRUD operations. Table 4-5 shows some of the more

important methods and extensions we will rely on when working with DBSet<TEntity>

objects.

Table 4-5. Methods and extensions of the DBSet<TEntity> object

Name Method or
Extension

Purpose

Add/AddAsync Method adds the entity to the context for insert, begins tracking the

entity, and the entity is added on the call to SaveChanges.

also has an AddRange option to do multiple entities at once.

AsNoTracking Method Gets an entity that is not tracked so that any modifications

do not cause concurrency issues. Calling SaveChanges will

not persist any changes or modifications on the entity state.

Find/FindAsync Method locates an entity by primary key (generally Id) and attaches

to the current context. returns null if no match is found.

Include Method Used to fetch related entities. Using Include and

ThenInclude will be critical to ensure that full data objects

are attached to the context.

Remove Method sets the entity as deleted in the context. Changes are

persisted only on the call to SaveChanges. also has a

RemoveRange option for multiple entities at once.

SqlQuery Method allows execution of a raw SQL Query.

Update Method sets the entity state to modified for the tracked entity;

changes are persisted on call to SaveChanges. also has an

UpdateRange option to do multiples at once.

FirstOrDefaultAsync extension returns the first element that matches a provided condition,

or null if no matches.

SingleOrDefaultAsync extension returns the only possible match to a specified condition. If

multiple matches exist, throws an exception. If no matches

exist, returns null.

Chapter 4 Models and the data Context

157

While the majority of the methods we work with will be from the DBSet<T>

or DBContext objects, there may be a few instances where methods from the

DBContextOptions and/or DBContextOptionsBuilder could be leveraged. For the

DBContextOptions, the most common method that would likely be leveraged would be

the Freeze method, which prevents the builder options from being further configured in

the OnConfiguring method.

 Working with models
Assuming you’ve worked through the previous chapters in this book, you’ve already had

a chance to create a class called Item. You then were able to use the Item class as a model

to define the structure of a table in the database by adding a property for DbSet<Item>

in the InventoryDbContext and then creating and applying a code-first migration (for

more information, review EFCore_Activity03-2_FinalFiles). In that activity, however,

we only touched the surface of working with models in the code-first approach.

 Two immediate benefits of code-first models
The real power of writing the database objects as code is twofold. The first benefit is that

we have an immediate object which we can directly use in code throughout our system.

The second benefit is that we get to define every critical piece of the database in a

common language every developer understands while also having that code tracked in

our source control repository.

 Building a database entity model
In a closer examination, a model is nothing more than another C# .Net class that is coded

by the developer. This means we can implement models with all of the same tools and

techniques we would expect for any object-oriented system.

For example, we can define properties, which then become fields in the database.

We can also set constraints on the models, as well as track relationships. Since

everything is defined in code, building the models correctly will be critical. The power of

an object-oriented approach becomes even more clear when a number of models share

basic properties, such as fields for auditing, setting the entity as active, or using a soft

delete approach to entities with something like an IsDeleted field.

Chapter 4 Models and the data Context

158

 A final thought about models
To this point in the book, we have not done a lot with models. Don’t worry, we’ll be getting

into working with models more substantially as we progress through the remainder of the

text, including seeing how to leverage inheritance to enhance our database solution in the

activities for this chapter. We’ll also take time to cover what it takes to add constraints and

build out relationships in the database. We will cover this in more detail in the next chapter.

For now, we simply need to be aware of the fact that we can model a table directly in

a code-first implementation. This is accomplished by taking the following steps:

 1. Create the model as a C# .Net class to generate a table.

 2. Add public properties to the model with a data type and a name

for fields.

 3. Add the entity to the DBContext (if not already there) as

DBSet<TEntity> where TEntity is the type of your model. If the

model is already in the DBContext, skip this and proceed to Step 4.

 4. Generate a new code-first migration to apply the modeled

changes using the add-migration command.

 5. Update the database using the update-database command.

In general, these five steps also directly translate to actions you would take in any
previous version of eF, including eFCore3, eFCore5, and even eF6.

 Activity 4-1: Modifying the Item model
In this activity, you will modify the Item class you created in the last chapter by adding a

couple of additional properties. You will then add a new database migration and update

the database to get the new fields into the database table.

After you have completed that operation for the critical fields on the Item class,

you’ll build out an auditing hierarchy to finish up the activity. The auditing hierarchy will

leverage inheritance and will allow you to easily configure all of your entities with basic

common properties that are useful for auditing and tracking data changes such as who

created or was the last person to modify a record.

Chapter 4 Models and the data Context

159

 Practical application for your daily routine
Going forward, as you build out your systems, you will be using a similar flow in most

of your daily work. This activity is an exercise to give you another chance to practice

building model properties and using them to generate a database migration and then

perform the update.

While everything you will do in this activity can be done in one set of operations with

just one migration, if you would like even more practice, take the time to add only one

property at a time and create a new migration each time, and then update the database

each time. No matter how you approach the solution, this activity will give you more

practice with generating migrations and updating the database, such as you would do in

your day-to-day development routine.

 Starter files
From this point on, with the exception of a couple of activities, you will use the same

project for the remainder of the book. As you go through each chapter, feel free to just

use the same project you have created. However, if you would like to start fresh, each

activity for each chapter will have a set of files that are labeled as the starter files. These

files will be in the correct state for you to work with them throughout the activity.

Additionally, final files will be provided with the solution to the activity in place. Feel free

to use the final files to compare your work or see the full final solution in place.

Please review Appendix A for more information on how to work with starter files for

each activity.

 Task 1: Creating the base project
The easiest way to get started for this activity is to use the starter files located in the zip

file labeled EFCore_Activity04-1_StarterFiles.zip. Alternatively, if you’ve worked

through all of the activities in Chapter 3, you could just continue working with the

solution you had previously used in Activity 3-2.

Chapter 4 Models and the data Context

160

When working with starter files, make sure to set or validate the connection string
to map to your database in the appsettings.json files, and then run an initial
update-database command to get the database up to speed at the start of the
project. also, be aware of migration conflicts that could arise due to my migrations
being run with a different timestamp than yours. For more information on using
starter files, please review appendix a.

 Step 1: Ensure the code is set up for the activity

As just mentioned, the first thing you need to do is ensure that your project structure

looks as follows (names of the projects, especially the activity project, may be different).

As long as the functionality is similar, the name is not that important. Review Figure 4-1

to see the starter project structure.

Figure 4-1. The starter project consists of a simple activity project, the DbLibrary
project, and the InventoryModels project in a solution

Chapter 4 Models and the data Context

161

Next, run an update-database command to ensure that the database is up to date

and any pending migrations are applied (don’t forget to select the EFCore_DBLibrary

project in the default project dropdown for the PMC). Additionally, this ensures that

your connection string is set correctly. The expected output is shown in Figure 4-2.

After the update-database command, run the following command:

add-migration test_blank_migration

When this command completes, you should see a blank migration. If any changes

show up, determine if they are necessary (e.g., if the Item table was never added, you

should keep this migration and apply it). Assuming there are no pending changes,

simply run the remove-migration command to delete the generated blank migration.

Review Figure 4-3 for clarity.

Figure 4-2. Running an update-database command ensures the database is up
to date

Chapter 4 Models and the data Context

162

Finally, run the program to ensure the output is as expected for the original five

items, as shown in Figure 4-4.

Figure 4-3. The remove-migration command is run and generates a blank
migration. This is followed by a remove-migration command to clean up the
unnecessary migration

Chapter 4 Models and the data Context

163

Once you are confident your code is in the correct state, you are ready to begin the

activity.

this is the only time we’ll see these steps in action to ensure the starting state, but
you should take this approach before starting any of the activities in the future.

Another final note here is that this would be a really great time to establish a GIT

repository on your code if you have not already done so.

 Step 2: Move the Configuration Builder Singleton class to a new
project

As a purely cosmetic move, the first thing you will do is just move the

ConfigurationBuilderSingleton.cs file into a new project. This will serve two

purposes, which are to get it out of the way and to make the project easier to reuse in

future projects.

Right-click the solution and select Add ➤ New Project, and then select a new Class

Library project. Name the project InventoryHelpers, and save it in the same place as

the solution file for this activity. Open the project properties and ensure that the new

project is set to be configured for .Net 6. For clarity, review Figure 4-5, which shows the

newly added project with the properties open and configured to .Net 6.

Figure 4-4. The expected output of the activity at inception is shown

Chapter 4 Models and the data Context

164

Next, delete the Class1.cs class from the new InventoryHelpers project.

After deleting Class1.cs, click the ConfigurationBuilderSingleton.cs class in the

activity project and drag it to the new InventoryHelpers project, which will copy the

code to the new project. Open the new ConfigurationBuilderSingleton.cs class file in

the InventoryHelpers project and change the namespace to InventoryHelpers. Review

Figure 4-6 to see the current expected state of the changes made to this point.

Figure 4-5. Creating a new helpers project that will allow the singleton to be
reused easily in future projects. Additional helper methods can also be added to
this project going forward

Figure 4-6. The current changes have placed a copy of the
ConfigurationBuilderSingleton.cs in the new project and the namespace is changed
to match the new project name

Chapter 4 Models and the data Context

165

You’ll notice that some red squiggly lines have appeared. You need some NuGet

packages. The easiest way to get them is to copy them from the other projects that have

them. To save you time, just double-click the new InventoryHelpers project to open the

.csproj file in the VS IDE. With the project open, add the following xml to the .csproj

file below the PropertyGroup and before the closing project tag:

<ItemGroup>

 <PackageReference Include="Microsoft.Extensions.Configuration"

Version="6.0.0-preview.3.21201.4" />

 <PackageReference Include="Microsoft.Extensions.Configuration.

FileExtensions" Version="6.0.0-preview.3.21201.4" />

 <PackageReference Include="Microsoft.Extensions.Configuration.Json"

Version="6.0.0-preview.3.21201.4" />

</ItemGroup>

Save the file, and this will automatically import the missing NuGet packages (see

Figure 4-7).

After saving and importing the project files, build the solution to see if you have any

remaining errors. At this point, you should not. You may also wish to open the NuGet

Package Manager for the solution and update any packages to the latest versions (if any

have updates).

Next, add a project reference in the activity project to include the new

InventoryHelpers project using Add ➤ Project Reference, and check the

InventoryHelpers project.

Figure 4-7. The missing NuGet packages are easily imported by adding them as a
reference in the .csproj ItemGroup section

Chapter 4 Models and the data Context

166

With the new helpers project referenced, delete the original

ConfigurationBuilderSingleton.cs file from the activity project, and then set all

references to the new project’s ConfigurationBuilderSingleton as seen in Figure 4-8.

Build and run the project to ensure that everything is still working as expected. Once

you are satisfied that the move was successful and the code is working, check in your

changes if you are tracking them and move to the next step.

 Task 2: Add properties to the Item class, and then use
a migration to update the database with fields to match
the properties
As you continue to work with the data, you will often need to modify objects in the

database. For this next part of the activity, you will add a few new properties to the Items

class and then use a migration to make the matching fields in the Items table.

 Step 1: Add properties to the Item class

For this example, you’ll start by adding an integer to track Quantity, strings for

Description and Notes, and a boolean property for tracking if the item is on sale.

Additionally, you’ll use nullable objects to optionally track two DateTime fields and two

decimal fields. These fields will be named PurchasedDate, SoldDate, PurchasePrice,

and CurrentOrFinalPrice.

Figure 4-8. The ConfigurationBuilderSingleton class is now successfully moved to
a helpers project and the references are updated, cleaning up the activity project
and making this code reusable for future projects

Chapter 4 Models and the data Context

167

As you build this out, you’ll be placing properties with non-nullable fields at the top

and nullable properties at the bottom of the class. This structure is not a requirement –

the properties could be in any order that you desire. For example, if you wanted, you

could enforce that properties are listed alphabetically. No matter what order you put the

properties in for the code in your class, you’ll eventually see that the generated migration

doesn’t care how you order the properties, they will be generated first by alphabetical

organization, and then each consecutive change will be done following the original

fields, also in alphabetical order for each generated migration.

One last thought before you modify some code. If you are experienced with database

development, you might already be thinking about auditing the rows with properties

such as CreatedDate, CreatedBy, ModifiedDate, ModifiedBy, IsActive, IsDeleted, and any

other auditing information you might find useful. You’ll get to that before the end of the

activity, so please be patient and do not add these fields until prompted to do so.

Begin by opening the Item.cs file from the InventoryModels class, and then start the

task by adding the integer for quantity with a property named Quantity:

public int Quantity { get; set; }

Follow that by adding string fields for Notes and Description:

public string Description { get; set; }

public string Notes { get; set; }

Continue by adding a boolean property for tracking if the item is listed for sale:

public bool IsOnSale { get; set; }

Next, add the DateTime fields with properties for PurchasedDate and SoldDate using

the “?” to make sure both fields are nullable in case we haven’t yet sold the item or in

case we simply don’t remember or want to track the date of purchase for an item:

public DateTime? PurchasedDate { get; set; }

public DateTime? SoldDate { get; set; }

Complete the initial Item object rework by adding the nullable decimal fields for

purchased price and current or final value:

public decimal? PurchasePrice { get; set; }

public decimal? CurrentOrFinalPrice { get; set; }

The final Item class at this point should look similar to what is shown in Figure 4-9.

Chapter 4 Models and the data Context

168

 Step 2: Add a new migration to get the properties into
the database as fields on the Items table

With your Item model changed, the next thing you need to do is add a new migration to

make the changes propagate into the database.

Begin by making sure you save all your changes, and then run a build to ensure there

are no errors. Generally, you’d hit the chord Ctrl+S and then Ctrl+Shift+B to save and

then build. That being said, building the solution should save changes, so the step to

save may be extraneous.

To be clear, it is also not necessary to build the project. Building the project will

happen before the add-migration command is applied. However, by building the

Figure 4-9. The current Item.cs class has the new properties added as defined

Chapter 4 Models and the data Context

169

project first, we ensure that we can clean up any errors before trying to create the

migration. If we simply run the add-migration command and the project won’t build,

we’ll get an error notification and the migration will not be generated.

Build the project, and then run the command

add-migration updated_items_table

Figure 4-10 shows the successful generation of the migration.

You should take a moment to review the code generated in the migration. You should

see each of the new fields added as a column in the Up method and then also dropped in

the Down method. You can also check the type and the ability for a field to be null, as per

the generated migration.

You might then notice that every field generated is nullable. This is OK for now, but

probably not the desired solution overall. The reason they are null by default here is

twofold. The first reason is because you never stated that any fields were required. The

second reason is because data may already exist in the table, and, if so, adding a required

field would also require that the field has a default value. Without a default value, adding

a new required field to the table requires a truncation of data, and the migration would

fail to apply due to the potential loss of data. You will learn more about these issues as

you work through future activities with constraints in the next chapter.

Figure 4-10. The project builds as expected and a migration is added

Chapter 4 Models and the data Context

170

 Step 3: Apply the migration and review the database structure

To complete this task, run the update-database command to apply the migration

generated in the previous step (see Figure 4-11).

Open SSMS and review the Items table. The new columns should exist as expected

(shown in Figure 4-12 for clarity).

Figure 4-11. Applying the migration with the update-database command works
as expected

Chapter 4 Models and the data Context

171

In Figure 4-12, while reviewing your database table, you can see a couple of

important notes. First, the fields that were just applied were in alphabetical order

regardless of how you coded them in the model. If we had examined the migration, you

would have seen them also laid out in this manner. Additionally, you see that the original

fields are still at the top of the column list. This tells us that fields are generally created

in alphabetical order, but their positions are kept in sequence with the migrations. The

same thing would happen if more fields were added in a new migration, as they would

be generated alphabetically and would follow the SoldDate column.

Figure 4-12. The Items table is updated after the migration is applied

Chapter 4 Models and the data Context

172

 Task 3: Add auditing to entities via inheritance
As mentioned earlier, seasoned database programmers likely recognize that there are a

couple of things that are generally very nice to track for the purpose of auditing the data

changes. As a caveat to this, however, I will say that with newer versions of SQL Server,

it is possible to use timestamps and queries that are able to check data to see what the

database looked like at a specific time. Even so, it is generally a good idea to track who

created a record, who modified or deleted a record, and when these things happened.

Additionally, tracking if an entry is active or using a soft delete is often an approach that

is favorable to help recover from problems created by users and can also be used to filter

items without losing a lot of data history.

To make the auditing for your system happen in a SOLID development approach,

you will create a couple of small interfaces and then implement them in an auditing base

class. You’ll then extend the auditing base class for the Item class, create the resulting

migration, and update the database.

depending on how robust you want to build out your solution, you could choose
to create a new project for shared objects to keep your interfaces separate from
your implementations. to keep this example more contained, you’ll just put the
interfaces in the Models project in an Interfaces folder.

 Step 1: Create the interfaces in the Models project

To begin this activity, create a new folder in the Models project and name the folder

Interfaces. Once the folder is created, right-click and select Add ➤ New Item, then

choose Code ➤ Interface, and name the file IIdentityModel.cs. In the file, make sure

that the code is for a new interface and contains the following code:

public interface IIdentityModel

{

 public int Id { get; set; }

}

For clarity, the new interface code in the new file is shown in Figure 4-13.

Chapter 4 Models and the data Context

173

remember that if any part of the activity becomes confusing or you are
encountering strange errors, you may always refer to my final solution for the
activity to see how I intended for you to implement the code.

Depending on how you are tracking your users by Id, we’ll need to respond

accordingly with the type for the user id. When working with built-in ASP.Net MVC users,

likely this will be a string to map to a guid. For other systems, you might be using an

int or long type. We don’t have users in this system, so for now we’ll use strings, for the

simple reason that any data can be used as a string, and we could update this later as the

need arises. If you wanted to use int or long, you can do so, just make sure that they are

nullable (int? or long?) for now, since you haven’t yet learned about constraints or how

to deal with required fields on existing tables.

Next, you will need to create another file for IAuditedModel.cs in the Interfaces

folder, then write the code to create an interface called IAuditedModel, and add

properties for tracking who created or modified the data row using the following code:

public interface IAuditedModel

{

 public string CreatedByUserId { get; set; }

 public DateTime CreatedDate { get; set; }

 public string LastModifiedUserId { get; set; }

 public DateTime? LastModifiedDate { get; set; }

}

Figure 4-13. A new Interfaces folder is created, and a new file IIdentityModel.cs is
created in the folder, with the code for the IIdentityModel interface

Chapter 4 Models and the data Context

174

You’ll only require the created date for now when this interface is included on

an entity model. Doing this will allow a system process to perform an insert without

tracking a user, and the default modification will not be set since the initial insert is a

create operation, not a modification. All fields other than CreatedDate are therefore set

as nullable in this code.

As mentioned, it’s often beneficial to have some sort of soft delete or activatable

property to discern if records should be included in the data while keeping history and

availability of data in the table.

To finalize this initial hierarchy of common properties, add a third interface file

called IActivatableModel.cs in the Interfaces folder, and then add the interface code

as follows in the file:

public interface IActivatableModel

{

 public bool IsActive { get; set; }

}

Now that all the interfaces are in place, you could create multiple base classes

to make various entity implementations. Since C# .Net doesn’t allow for multiple

inheritance, you’ll just create one base class to rule them all: FullAuditModel.cs.

At the top level of the InventoryModels project, create a new class file called

FullAuditModel.cs, then make the class abstract, and implement all three of the new

interfaces. Also remember, you will never want to add this class to your DBContext as a

DBSet. Keeping the base class as an abstract class should also prevent future confusion

on this point.

public abstract class FullAuditModel : IIdentityModel, IAuditedModel,

IActivatableModel

{

 public int Id { get; set; }

 public string CreatedByUserId { get; set; }

 public DateTime CreatedDate { get; set; }

 public string LastModifiedUserId { get; set; }

 public DateTime? LastModifiedDate { get; set; }

 public bool IsActive { get; set; }

}

Chapter 4 Models and the data Context

175

You will also need to bring in the using statement for the interfaces once you

implement them on this abstract class. Figure 4-14 shows the base class and the

expected placement in the project hierarchy for clarity.

 Step 2: Extend the FullAuditModel on the Item class to add
auditing properties

To complete the auditing hierarchy work, you’ll need to inherit the FullAuditModel on

the Item class. Open the Item class and modify it to use the code as follows – extending

the abstract base FullAuditModel and removing the Id property since it will be included

via inheritance:

public class Item : FullAuditModel

{

 public string Name { get; set; }

 public int Quantity { get; set; }

 public string Description { get; set; }

 public string Notes { get; set; }

 public bool IsOnSale { get; set; }

 public DateTime? PurchasedDate { get; set; }

Figure 4-14. The FullAuditModel class is at the top level of the InventoryModels
project and implements all of the auditing interfaces. This base class will allow
entities to easily be configured with common auditing properties

Chapter 4 Models and the data Context

176

 public DateTime? SoldDate { get; set; }

 public decimal? PurchasePrice { get; set; }

 public decimal? CurrentOrFinalPrice { get; set; }

}

 Step 3: Add the new migration and update the database

The hierarchy is now in place, and the Item class has been set to inherit the appropriate

auditing fields. Run the following code to add a new migration:

add-migration Auditing_hierachy_created

Once the migration has generated, review it to ensure that the Items table is

generated with the auditing fields, and then run the update-database command to

apply the changes (see Figure 4-15).

Figure 4-15. The auditing hierarchy is completed, and the migration is generated
and applied to modify the Items table with the appropriate fields

Chapter 4 Models and the data Context

177

 Step 4: Review the database

Once again, return to SSMS and review the Items table. The new auditing fields should

appear as expected and as shown in Figure 4-16.

At this point, we have completed the activity and are prepared to move on to the next

activity. If you are tracking your code in source control, now would be a good time to

commit your changes as an excellent restore point.

Please also note that if you tried to run the code from the console and you needed to

add a new item, it will not really work in its current state since you are not handling the

additional required fields (i.e., CreatedDate). You will be looking at this in more detail in

the next activity.

Figure 4-16. The auditing fields are successfully added to the Items table in the
database via the migration

Chapter 4 Models and the data Context

178

 Activity 4-1 summary
In this activity, you learned how to work with the database to create changes on an

existing table. You first modified the Item class to add properties to the database table.

After the initial changes, you then learned how to create an inheritance hierarchy to

allow easily creating common columns for auditing on all of your entities in the future.

In this example, you only created one base object; however, you could easily have

done only part of the auditing fields by creating additional abstract classes or just

directly implementing only some of the interfaces. In the end, it will be up to you as the

developer as to how to approach each entity and what fields to add to each table.

Some of the key takeaways from this activity are

• You can create one migration with many changes, or you can make

small changes and create a migration for each small change along

the way.

• It is possible and desirable to use SOLID code patterns when building

the models for your databases.

• The way that you implement your database is up to you, so you must

make the best decisions around architecture.

• Adding the “?” operator to any public property will allow any

normally non-nullable type to be nullable in the database (such as

int? or DateTime?).

• Strings and other nullable types are defaulted as nullable in the

database.

• Using the add-migration and update-database commands will be a

common operation for any developer in a code-first approach.

• It does not matter what order you create properties in the model

class. Each migration will alphabetize the properties for creation.

• Additional properties in a consecutive migration are applied after

original columns (appended) – the entire table is not restructured to

alphabetize the order of columns.

Chapter 4 Models and the data Context

179

 Activity 4-2: Using the ChangeTracker to inject
some automated auditing
In the previous activity, you learned how to set up a hierarchy to track auditing

information about entities in the database. You then applied that hierarchy and created

the appropriate migrations so that the Items will be auditable going forward. Adding

these common fields is a great way to track all this information, but you will also want to

be able to create a way to automate this auditing so that you don’t have to write the same

kinds of auditing code around each entity in a repetitive fashion.

In this activity, you will learn how to use the ChangeTracker from EF in order to

inject some automated auditing information at the time that database changes are

applied.

 Remember how you already set up the DBContext
You’ve already seen a few examples in this book and seen scenarios where you’ve

covered setting up the context to work against existing or new databases. The main

takeaways from what you’ve already learned about EF and the DBContext include

• The DBContext needs to be able to connect to the database via

a connection string. This is accomplished in the pre-configured

DbContextOptions in EFCore6.

• EFCore6 gives us a method that allows us to check if the context

options are configured. When they are not, we can perform custom

code to ensure the configuration is built as needed.

• You can work with a new or existing database, and either approach

can allow for working in the code-first approach to development.

• All EF operations are applied with the UoW pattern baked in,

meaning that transactions are handled without you having to do any

additional work.

• In the code-first approach, C# classes can be used to define the

schema as entity models, and when the model is added to the context

with the DbSet<TEntity>, migrations can be applied that allow the

model to dictate the structure of the database table.

Chapter 4 Models and the data Context

180

 Common critical underlying objects
In addition to the things you’ve already seen, a couple of critical notes about the

DBContext include the fact that in EFCore6, and previous versions of EF as well

(including EFCore3, EFCore5, and even EF6), the underlying Database is able to be

exposed and used as an object. Additionally, the DBContext relies heavily on an object to

track changes, which can be leveraged through the DBContext property ChangeTracker.

You’ll take a deeper look at accessing the underlying database later in the book when

we cover database objects like stored procedures. For this activity, however, you’re going

to work solely with the ChangeTracker.

 The ChangeTracker is the lifeblood of our interaction
with the Entity Framework
In a typical workflow, some items are fetched and displayed to the user. After the user

has time to review the objects, they may perform updates on one or more of the objects,

may insert new objects, or may delete objects.

As the user performs actions, EF is working behind the scenes to orchestrate

the changes while having the ability to undo the changes if something goes wrong

(remember that the UoW pattern is applied by default in EF without any interaction from

the developer). The changes are generally only in memory, until a point when an explicit

call is made to update the database via the DBContext – SaveChanges method.

At the time that the SaveChanges method is called, the changes that are stored in the

ChangeTracker are applied to the database through the underlying connection to the

database from EF.

 Task 1: Getting started
In this task, you will ensure that you are set up for success on the activity. To do this, you

can either continue with the code that was generated by working through the previous

activity (Activity 4-1), or you may simply get the starter files: EFCore_Activity04-2_

StarterFiles.

Chapter 4 Models and the data Context

181

Remember that no matter which path you take, it is always a good idea to ensure

you have all pending migrations applied and that adding a migration generates a blank

migration. More information on how to do those initial checks was provided at the start

of Activity 4-1. Additional information about working with starter files can be found in

Appendix A.

 Step 1: Clean up the data, and then run the program

As it currently stands, the database is now expecting auditing data, as well as additional

fields in regard to the items. Since the data was originally created with a fairly limited

model (just the Id and Name), it’s a good time for you to just wipe the table.

Open the database in SSMS and run the following query to delete the data:

TRUNCATE TABLE dbo.Items

SELECT * FROM dbo.Items

It will just delete the items and will also reset the auto-generated identity to start

over at 1. If you have relationships defined, you can’t truncate without first removing

constraints. At this point, you should not have any of those constraints in place, however.

In the end, the data should be blank as shown in the result from the query in your SSMS

window.

Next, try to run the program. At this point, you won’t see an error, but the

CreatedDate is non-nullable, so it will be inserted with a really bad date of 0001-01-01

00:00:00.0000000 (see Figure 4-17).

Also note that other default values are entered, such as 0 for IsOnSale and Quantity

and IsActive. These are all things that will need to be addressed at some point (and they

will be, in time).

Figure 4-17. The program works, but new Items are generated with bad data as
currently written. This is expected

Chapter 4 Models and the data Context

182

 Step 2: Add a method to delete all Items at the start
of the program

In the future, we may wish to persist data past each run. For now, this is a good chance to

see how easy it is to use EF to delete records.

Add a new method call in the Main method of the Program.cs file before the call

to EnsureItems, with the call as DeleteAllItems(). Then add the new method in the

Program class:

private static void DeleteAllItems()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.ToList();

 db.Items.RemoveRange(items);

 db.SaveChanges();

 }

}

Note that deleting the items is different from truncating the table. When you

truncate, you reset the identity. When you delete, you just remove the data but the

identity increment will not be reset. Additionally, you can always delete as long as the

cascading delete options are configured for referential integrity, whereas you cannot

truncate if there are relationships in place as previously mentioned.

After adding the method, run the code a few times, and then select from the Items

table to see that the identity counter has continued to increment, even though you

only have five records. Figure 4-18 shows a possible result, along with a view of the

DeleteAllItems method for clarity.

Chapter 4 Models and the data Context

183

At this point, you are ready to start using the ChangeTracker to add some automated

auditing to your solution.

 Task 2: Use the change tracker to inject auditing
information on calls to save changes
In this task, you will leverage the fact that the change tracker and the UoW are

implemented in EF to intercept the call to SaveChanges() and add some code to inject

auditing information.

 Step 1: Override the SaveChanges() method

In every instance where you are making changes to the database, the final step that you

take is to call to the SaveChanges method to apply the tracked changes. As of right now,

you are letting the default operation take place. In this step, you will change that by

overriding the SaveChanges method.

Figure 4-18. The DeleteAllItems method is run at the start of each run and deletes
the records but does not reset the identity counter

Chapter 4 Models and the data Context

184

In the InventoryDBContext file in the EFCore_DbLibrary project, add a method to

override SaveChanges at the bottom of the class as follows:

public override int SaveChanges()

{

 var tracker = ChangeTracker;

 foreach (var entry in tracker.Entries())

 {

 System.Diagnostics.Debug.WriteLine($"{entry.Entity} has state

{entry.State}");

 }

 return base.SaveChanges();

}

Place a breakpoint on the line with the code System.Diagnostics.Debug.

WriteLine($"...");, and then run the program to validate that this is working as

expected. Once you have seen enough iterations to get a grasp on the ChangeTracker,

feel free to remove the breakpoint and run to completion. Make sure to also hover over

or add a watch on the entry.Entity and entry.State when the debugger is paused on

the breakpoint to see the values. Figure 4-19 shows the execution of this code, with the

expected output values in the Output window.

Figure 4-19. The change tracker has a reference to every object that has been
added or deleted in our example

Chapter 4 Models and the data Context

185

Taking a closer look at the valid states of an entity in the ChangeTracker, you can

leverage any of these states in code. Additionally, your “logging” was fairly vanilla in

this case, as you could also have grabbed the entity Id and other properties from the

entry.Entity if you would have need to do so (you do have to check type and make sure

to cast to the correct type to get to the inner properties like Id and Name).

Diving into the documentation at https://docs.microsoft.com/en-us/dotnet/

api/microsoft.entityframeworkcore.entitystate?view=efcore-6.0, you can see the

valid entity states which you can write code against. The valid states are Added, Deleted,

Detached, Modified, and Unchanged.

In our code, with the CreatedDate, we’ll care about the Added state; and with the

LastModifiedDate, we’ll care about Deleted and Modified state.

 Step 2: Respond to the entity state in the change tracker

In this step, you will write the code that allows you to override the SaveChanges method

and inject values for each entity’s auditing trail based on the user and date information

and the state of the entity.

Before you build your automated logging however, you need to address an elephant

in the room. As of right now, the system is not tracking users. Therefore, at this time, you

don’t have a way to correctly set a valid user id. If you were working in ASP.Net MVC with

default identities, you could easily grab the logged in user id from session and just pass

it in with the model. Depending on where you are performing the save, you might even

have direct access to that session information.

Additionally, if you want to ensure a user id, you might need to also block the default

method from executing and create an overload that contains the user id as a parameter

and then proceed to set the values accordingly and call to the base.SaveChanges method

from the overloaded method.

For this example, just start by going back to the program and setting a default user

Id to add for the operations on the Item directly. This will simulate what you could do in

your code provided you had some way to get the user id of the logged in user.

Add the following code to the Program class in the Program.cs file, after the creation

of the configuration and optionsBuilder variables:

private const string _systemUserId = "2fd28110-93d0-427d-9207-d55dbca680fa";

private const string _loggedInUserId = "e2eb8989-a81a-4151-8e86-

eb95a7961da2";

Chapter 4 Models and the data Context

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate?view=efcore-6.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate?view=efcore-6.0

186

Next, in the EnsureItem method, change the code for creating new items to have

some valid values:

private static void EnsureItem(string name)

{

 Random r = new Random();

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 //determine if item exists:

 var existingItem = db.Items.FirstOrDefault(x => x.Name.ToLower()

 == name.ToLower());

 if (existingItem == null)

 {

 //doesn't exist, add it.

 var item = new Item() { Name = name,

 CreatedByUserId = _loggedInUserId,

 IsActive = true,

 Quantity = r.Next()};

 db.Items.Add(item);

 db.SaveChanges();

 }

 }

}

Return to the InventoryDbContext, and add the following code right after the

creation of the configuration variable:

private const string _systemUserId = "2fd28110-93d0-427d-9207-d55dbca680fa";

One important thing that you still need to do is modify the entity’s CreatedDate or

LastModifiedDate property, along with setting the user id if it is not provided. This is a

bit tricky, because you’ll need to do some type checking first to make sure the type has

the correct field, and then you’ll set the value when it does. Even though you’ve set a

pretty solid example and the Item has the fields for auditing, as of right now, there could

still be a rogue entity that another developer has created without the auditing fields on

that entity.

Chapter 4 Models and the data Context

187

After validating that this is an entity type that has auditing, you can then create a

switch to handle the various entity states and update your entry with a local reference

according to what operation is happening and what information you do or do not have

available.

Implement the following code to check entry entity type and use a switch when you

are set to modify the entry:

public override int SaveChanges()

{

 var tracker = ChangeTracker;

 foreach (var entry in tracker.Entries())

 {

 if (entry.Entity is FullAuditModel)

 {

 var referenceEntity = entry.Entity as FullAuditModel;

 switch (entry.State)

 {

 case EntityState.Added:

 referenceEntity.CreatedDate = DateTime.Now;

 if (string.IsNullOrWhiteSpace(referenceEntity.

CreatedByUserId))

 {

 referenceEntity.CreatedByUserId = _systemUserId;

 }

 break;

 case EntityState.Deleted:

 case EntityState.Modified:

 referenceEntity.LastModifiedDate = DateTime.Now;

 if (string.IsNullOrWhiteSpace(referenceEntity.

LastModifiedUserId))

 {

 referenceEntity.LastModifiedUserId = _systemUserId;

 }

 break;

Chapter 4 Models and the data Context

188

 default:

 break;

 }

 }

 }

 return base.SaveChanges();

}

Note that this code ensures that user ids will always be set and the correct date is

updated by default based on the state of the entity. When implemented correctly, the

code should look as is shown for clarity in Figure 4-20.

Figure 4-20. The SaveChanges method is overridden, and the auditing
information is added to each eligible entity on save so that developers will not have
to implement this logic on every entity directly

Chapter 4 Models and the data Context

189

Run the application again, and then check the table for results. At this point, you

should have the default five records, but now they should all have a valid created date

and user id. Figure 4-21 shows a sample of what the data should look like after a new run

with the latest version of the code by executing the query

SELECT Id, Name, Quantity, CreatedByUserId, CreatedDate, IsActive

FROM dbo.Items

Although the automated auditing is working, currently all of the data is wiped out so

there is no proof that the system id is being used on modification or delete.

 Task 3: Add an update method to validate last modified
auditing is working as expected
In this next task, you will add a method to update a record so that you can be certain

the last modified information is audited as expected, simulating another user with the

default system user id and last modified date.

 Step 1: Add the update method

In the Program class in the Program.cs file, add the following code to the end of the file

for the Update method:

Figure 4-21. The results are working as expected with a valid CreatedDate and
CreatedByUserId

Chapter 4 Models and the data Context

190

private static void UpdateItems()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.ToList();

 foreach (var item in items)

 {

 item.CurrentOrFinalPrice = 9.99M;

 }

 db.Items.UpdateRange(items);

 db.SaveChanges();

 }

}

Then add a call to UpdateItems following the call to EnsureItems in the Main method

to call to the newly added update method.

This is a contrived update that simply updates all the items with a current or final

price, but it is enough to trigger the last modified information on the entities.

Run the program, and then examine the results. You should now see updated items

with a current or final price set and both the created and last modified auditing fields set.

Note that the user id for the update was allowed to be set to the system id to prove that

the id can be injected at any part of the process. You could just as easily have passed a

user id from the Main method. Figure 4-22 shows the updated result (remember that the

items are deleted so the create and update dates will likely be only milliseconds different

from one another – if you don’t like that, wait about five minutes and comment out the

delete call). Use the following query to view the data:

SELECT Id, Name, CurrentOrFinalPrice, Quantity, CreatedByUserId,

CreatedDate, IsActive, LastModifiedDate, LastModifiedUserId

FROM dbo.Items

Chapter 4 Models and the data Context

191

 Step 2: Update the Insert method to add a couple of Notes
and Description information to the Items

To complete this activity, you’ll finish up by making the initial items just a bit more

robust.

Update the EnsureItem method to take a string for Description and Notes, and

then pass the information by updating the code for EnsureItems and EnsureItem to the

following code:

static void EnsureItems()

{

 EnsureItem("Batman Begins", "You either die the hero or live long

enough to see yourself become the villain", "Christian Bale, Katie

Holmes");

 EnsureItem("Inception", "You mustn't be afraid to dream a little bigger,

darling", "Leonardo DiCaprio, Tom Hardy, Joseph Gordon-Levitt");

 EnsureItem("Remember the Titans", "Left Side, Strong Side", "Denzell

Washington, Will Patton");

 EnsureItem("Star Wars: The Empire Strikes Back", "He will join us or

die, master", "Harrison Ford, Carrie Fisher, Mark Hamill");

 EnsureItem("Top Gun", "I feel the need, the need for speed!", "Tom

Cruise, Anthony Edwards, Val Kilmer");

}

Figure 4-22. The last modified auditing information is now proven as being
appropriately tracked

Chapter 4 Models and the data Context

192

private static void EnsureItem(string name, string description,

string notes)

{

 Random r = new Random();

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 //determine if item exists:

 var existingItem = db.Items.FirstOrDefault(x => x.Name.ToLower()

 == name.ToLower());

 if (existingItem == null)

 {

 //doesn't exist, add it.

 var item = new Item() { Name = name,

 CreatedByUserId = _loggedInUserId,

 IsActive = true,

 Quantity = r.Next(),

 Description = description,

 Notes = notes };

 db.Items.Add(item);

 db.SaveChanges();

 }

 }

}

Run the program and review the output and the database data to ensure that

everything is as expected. Figure 4-23 shows the expected output in the database using

the query

SELECT Id, Name, [Description], Notes, CurrentOrFinalPrice,

LastModifiedDate, LastModifiedUserId

FROM dbo.Items

Chapter 4 Models and the data Context

193

At this point, you should go ahead and comment out the call to the DeleteAllItems

method, as it is no longer needed, and the code should still be idempotent for ensuring

items. Additional runs after commenting out the code should provide more separation in

the created and modified dates.

 Activity 4-2 summary
In this final activity for Chapter 4, you learned about how you can use the fact that all of

the data is saved via a call to SaveChanges on the database context. Although you have

not yet learned about the UoW pattern directly, you have seen it in action and leveraged

the fact that it is built into the EF context.

By overriding the SaveChanges method, you were able to inject some automated

auditing into each entity that is appropriately constructed via the auditing interfaces that

were established in Activity 4-1.

Putting this all together, you’ve now seen how to get started with the database and

use the context and models to generate tables in the database, as well as how to leverage

properties of the tables for CRUD operations through the context. Further, you have seen

how to override the SaveChanges method to allow for final data manipulation before

saving to the database.

 Chapter summary
In this chapter, you learned how to leverage the DBContext when creating models to

define the database schema. You got to see some of this in action by running a few

migrations as you made changes to the Item class. You also learned how to set up an

object hierarchy using inheritance and SOLID principles so that you could build a robust

automated auditing solution in your EF database operations.

Figure 4-23. The data is now more robust, and the auditing is in place and
working as expected

Chapter 4 Models and the data Context

194

 Important takeaways
After working through this chapter, the things you should be in command of are

• Adding migrations

• Updating the database via migrations

• Creating an entity hierarchy via interfaces and abstract classes

• Leveraging an override to the SaveChanges method to inject data

changes for saving the data to the database

• General understanding of the basic underlying pieces in any code-

first database solution

 Closing thoughts
Although you learned a great deal and have set up a SOLID start to building a robust data

solution, the examples to this point have been fairly basic and the data has been able to

be used without much concern for valid values and ranges, or whether or not values can

be null or empty or have a default value set. As such, there really isn’t much integrity in

the current solution as it stands at the end of this chapter. In the next chapter, you will

learn about constraining your data so that your database integrity can be enforced.

Chapter 4 Models and the data Context

195
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_5

CHAPTER 5

Constraints, Keys,
and Relationships
In this chapter, you are going to learn about how you can use Data Annotations to

further constrain your database structures from code. In addition, you’ll look at how

you can easily build out some relationships in your models that translate directly into

relationships in the database.

When you’ve finished with this chapter, you’ll have the ability to correctly create

entities that not only specify type but have further constraints like primary and

secondary keys and limiting the length on strings. Additionally, you’ll learn to enforce

required fields and default values and how you can build one-to-many and one-to-one

relationships modeled in code and enforced in EF.

As another reminder, at this point, this book is focused in on the EFCore6 version

of Entity Framework; however, everything you do at this level can also be done in the

same or a very similar manner in EFCore3, EFCore5, and even EF6 if you happen to be

supporting a legacy codebase.

 Constraining your data to enhance your solutions
To this point in the book, you’ve simply created properties on your only model – the

Item. You were able to work with the Item class without any problem; however, as you

might expect, working with everything in the default mode is usually not going to be

considered the preferred mode. As such, you need to learn more about structuring your

models so that you can build solutions in a preferred manner.

https://doi.org/10.1007/978-1-4842-7301-2_5#DOI

196

One issue with leaving the properties of Item in a default state is that nothing is

constrained. When working with databases, constraining the data means that you need

to lock it down so that only the appropriate operations can take place. Some examples of

constraints you’ll examine throughout this chapter in more detail are

• Size limitations – for example, minimum and maximum string length

• Value constraints – that is, min, max, and range of acceptable values

on numeric fields

• Default values – such as making sure a bit is always true or false by

default

As you approach each of these constraints, you’ll need to evaluate your systems to

make sure that what you are applying to the database constraints makes sense. It is also

highly likely that as you maintain an existing project, you’ll need to rely on a few of these

constraints to keep from having to do further manipulation to protect existing data.

 Size limitations
In the activity at the end of the chapter, you’ll look at putting a size limitation on string

properties. This is incredibly important, even though you’ve not applied the constraint in

your earlier activities.

One thing you might have noted to this point is that in your original database,

all your string fields have NVARCHAR(MAX) values. While this is definitely a functional

solution, having an unlimited size is both unnecessary and considered bad practice.

In most cases, your string field will not need to exceed 250, 500, or 1000 characters.

In other instances, you might want 4000 or 8000 characters in a field for a longer input

like a Notes or a Comments field. However, there are very few, if any, reasons to have 2GB

available allocation on the size of a single column.

Doing the math on this, you know there are one billion bytes in a GB, so this is two

billion available bytes. Using NVARCHAR allows for unicode characters, which is useful

if you need to store complex characters such as diacritical marks, Cyrillic, Arabic,

Mandarin, or other similar characters. As an aside, the data type VARCHAR only stores

non-unicode characters. No matter what data type you are storing, it is highly unlikely

you need enough room to store the text of an entire novel in a single field, let alone also

needing multiple fields of unlimited length on the same table.

Chapter 5 Constraints, Keys, and relationships

197

Going even one step deeper, unicode characters require two bytes per character,

and non-unicode characters would require only one byte of storage. Assuming you use

NVARCHAR, this means you can store one billion characters in that single field when

allocated as NVARCHAR(MAX). Fortunately, most instances of the database will grow to

match size needs and not just use the full allocation of 2GB from the initial creation of

the column. Even so, do you really want every row to have one or more fields that can

expand to use up to 2GB of storage space? The entire size allotment of the SQLExpress

database and also on the least expensive plan at Azure is only 2GB, so it would be really

unfortunate to use the entirety of that size capacity on one string column.

Imagine you have the most powerful supercomputer available to mankind, and

it comes with unlimited storage, which therefore takes size constraints off the table

as a reasonable reason to constrain a text field. Would it really be a problem to use

NVARCHAR(MAX) in this case? The answer, of course, is still an invariable “Yes.”

As a database developer, you must consider what happens not just when you store

data but also when you fetch or parse the data in queries. Assuming you have just a few

of these unlimited length columns and also assuming many of them have grown to very

large lengths (i.e., each one is storing the entire text of a novel for some reason), what

happens when you run a query that is looking for a partial match such as “WHERE field

like '%contains_text%'”?

You can reasonably assume that queries such as the earlier will quickly become

useless in a system where the data is not properly constrained. With potentially

unlimited text to search over multiple rows, the execution time would quickly grow

exponentially out of a reasonable response time (imagine how long it would take and the

number of results you would get when searching for the word “jedi” in a database that

stores the entire text of each of the Star Wars books ever written in plain text fields).

To limit the length of a string field, you simply add a data annotation called

StringLength, which is applied as an attribute by placing the following code above any

string property in your model:

[StringLength(<size, int>)]

In addition, most annotations provide the ability to add an error message that is the

default error message sent to the UI client when the validation fails, for example:

[StringLength(50, ErrorMessage = "The value of this field is limited to 50

characters")]

Chapter 5 Constraints, Keys, and relationships

198

 Value constraints
In addition to size constraints, another important type of constraint is a limitation on

the expected value of a column. This value could be anything from a limitation on the

numeric value to be in a range, such as minimum and maximum values. This could also

be as simple as making sure that a field is not able to be set to null as its value.

Required fields are created with a simple attribute [Required] to reference the

required data annotation, placed on top of any existing property. This attribute should

be used anytime the database field needs to store a value other than null in the table, for

example, a primary or foreign key.

The data annotations for setting minimum and maximum constraints on the

properties in code is the Range attribute. For example, a range of 0 to max int could be

[Range(0, int.MaxValue)]. In any range annotation, the first number is the minimum

value and the second number is the max value.

 Default values
A final consideration in constraining your data is the default value of an unset column.

This is an extremely important aspect in a mature system, because null or inaccurate

values on a row could cause a lot of problems for your existing codebase and users.

As you add a field to any new or existing table, you can set a constraint on the field to

enforce a default value. There are many situations where this approach can save you a lot

of trouble.

One critical use of this functionality would be adding a new field with a required

value to an existing table with data. The field could be an easily managed field such as an

IsActive boolean flag, or it could be more complex, such as a number to store the id of

a user preference from a pre-defined list of options that references the available options

stored in another table.

In the first case, you can just set the default for every row to active. The second case

will never be as simple, as there are ramifications of every choice around existing data.

What if you default to some simple value? What if you add an “unset” element to the

options? How will this work in your current system?

Adding a default value is also accomplished with a data annotation and looks as

follows:

[DefaultValue(<the_value>)]

Chapter 5 Constraints, Keys, and relationships

199

 Other data annotations
In addition to data annotations already discussed, there are a couple of other data

annotations to be aware of. In every case, these annotations exist to apply further

constraints on what can be used to store in the database. The main difference with a

few of these is that while the constraint still applies, in some cases, the constraint is

accomplished at the code level rather than the database level.

The StringLength, Range, and DefaultValue attributes each contributed a specific

result to the underlying database structure. But what if you want to only allow an email

address, zip code, phone number, or other special type of data into the field? In these

cases, you can use another annotation, but just remember that these don’t apply at the

database level. For example, limiting to an email address is easily accomplished with the

attribute

[EmailAddress(ErrorMessage = "Invalid Email Address")]

In this case, your code will prevent inserting and updating if the input does not

conform to a pre-defined email address format. However, the database is still just storing

an NVARCHAR or VARCHAR and does not have any other information about the format of the

string.

Some other annotations/attributes to be aware of are

• RegularExpression – Format must match your expression for the

model state to be valid.

• Display – Sets the text to replace the display text for the field in the

UI. This is useful if you have a field like FirstName and you want to

display “First Name.”

• Table – It is possible to name the table differently than the name of

the model if so desired (affects database structure).

• Index – Applies an index to the column (affects database structure)

(shown in the next section).

• NotMapped – Allows a field to exist that is not tracked in the database.

• Compare – Allows making sure one field is the same as another (i.e.,

password creation for a user taking a second input to validate) (does

not affect database structure).

Chapter 5 Constraints, Keys, and relationships

200

Further annotations can be found by looking at the DataType enumeration:
https://docs.microsoft.com/en- us/dotnet/api/system.
componentmodel.dataannotations.datatype?view=netcore- 6.0.

attributes can be found by looking at the DataAnnotations documentation
here: https://docs.microsoft.com/en- us/dotnet/api/system.
componentmodel.dataannotations?view=net- 6.0.

 Using keys in database tables for unique
and relational results
If you’ve completed the activities in previous chapters, you’ve already seen how using an

Id field has generated a primary key on your Items table. However, there will be times

when you need to do more than just define the primary key.

By default, the field Id is going to implicitly be the primary key. In addition to the

implicit generation, you can explicitly define keys. This is accomplished with the [Key]

annotation as an attribute.

Suppose, however, that you have a join table and we want to create a composite

key on the two ids. In EF6, this could be accomplished a couple of ways using

data annotations. The first way was to use the [Key] attribute with a column order

[Column(Order=n)] (the order groups the keys). The problem with this is you cannot use

this approach if you already had a primary key defined. The second approach was to use

an index annotation as an attribute. This is a great way to create a composite key in EF6

but, unfortunately, at the time of this writing, is not possible in any version of EFCore. To

accomplish the creation of a composite key in the final activity later in this chapter, you’ll

have to use the Fluent API.

Indexes allow us to tell the database what fields are most important on the table, so

that the database can precompile some statistics using those fields. This allows, among

other things, more efficient queries where those fields are critical in searching for results.

Additionally, indexes can be used to make sure column combinations are unique.

Applying an index for any field by itself is as simple as adding the [Index] annotation

attribute to the field. When creating a composite key or non-clustered index, you can

use the [Index] annotation with the order, just like the key with column order earlier,

Chapter 5 Constraints, Keys, and relationships

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype?view=netcore-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype?view=netcore-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=net-6.0

201

and you can also set a third property to make the combination unique with a unique

constraint. For example, consider a system where you have items that have a group of

unique objects (like movies with actors), and you create a table called “ItemObjects”

that stores various actor/actress names and other common properties you care

about across various objects. In this case, you need a many-to-many relationship to

store objects and items together, and you don’t want to create duplicates of the same

relationship. To make this happen, you could use the following setup in a join table

called ItemObjects:

[Index("IX_ItemObjectUnique", 1, IsClustered = false, IsUnique = true)]

public int ItemId {get;set;}

[Index("IX_ItemObjectUnique", 2, IsClustered = false, IsUnique = true)]

public int ActorId {get;set;}

By creating the index and ensuring that it is unique, you make sure that records

cannot have duplicate index keys. Now that you have a good understanding of

constraints and keys, you can examine what it takes to set up relationships between

tables in the database.

 Working with relational data
Most of the systems you will build for line-of-business applications require some sort of

relational data. Orders need items with quantity. Addresses require states and/or regions

and countries. User preferences require selections. SaaS systems often have things like

editions, features, and multi-tenancy. While it is possible to implement solutions without

an RDBMS (think NoSQL here), if you’re using Entity Framework, you’re also going to be

working with relational data.

 First, second, and third normal form
A quick dive into relational database theory would help you to understand normalization

and the difference between first normal form (1NF), second normal form (2NF), and

third normal form (3NF). There are also other normalization schemas in fourth normal

form (4NF) and Boyce-Codd normal form (BCNF).

Chapter 5 Constraints, Keys, and relationships

202

In most business applications, the deepest level of normalization that is practical and

performant would be 3NF. As such, this book will not touch on 4NF or BCNF in this text,

but you may want to study them further if normalization is important and/or interesting

to you. It is also important to note that ORMs violate BCNF and 4NF by default to allow

for efficiency gains and practical usage scenarios, which is another reason why this book

will not dive deeper into them.

 First normal form (1NF)
1NF is the simplest form of normalization. For a database to be considered 1NF, the table

rows must each have a unique key and the rest of the fields in any combination must not

be the same as any other row.

Looking at the AdventureWorks database, there is a table Production.Location

which has a few fields. The fields include LocationID, Name, CostRate, Availability,

and ModifiedDate. The LocationID field is a unique key, and it can be assumed that

although there may be duplicates in CostRate, Availability, and/or ModifiedDate,

it is likely the case that the Name will not be duplicated. Even if the Name field were

duplicated, if the CostRate and Availability are different, then the table would still

be 1NF. Therefore, this table is a great example of 1NF. Make note, however, that fields

like CostRate and Availability may have the same value across many rows (i.e., 0.00,

120.00, 12.25). Figure 5-1 shows the Production.Location table.

Figure 5-1. The Production.Location table from AdventureWorks as an example
of first normal form (1NF)

Chapter 5 Constraints, Keys, and relationships

203

 Second normal form (2NF)
2NF requires that the table is in 1NF and also prevents duplicated data that can be

directly related to another column in the table. For example, in AdventureWorks the table

Person.Address has a field StateProvinceId. Suppose you also had tracked the name

of the state or province as a field, in addition to tracking the StateProvinceId. If the

StateProvinceId ever changed, then the state or province name field would also have to

change.

Another example of a violation of 2NF might be a field called FullAddress that is just

a combination of the two fields from the table: AddressLine1 and AddressLine2. In that

case, if either address line changes, FullAddress would also have to change.

The following query shows what the Person.Address table might look like in

violation of 2NF, by also containing the StateProvinceName:

SELECT pa.AddressID, pa.AddressLine1, pa.AddressLine2, pa.AddressLine1 + '

' + COALESCE(pa.AddressLine2, '') as FullAddress

 , pa.City, pa.StateProvinceID, psp.[Name] as StateProvinceName

 , pa.PostalCode, pa.SpatialLocation, pa.rowguid, pa.ModifiedDate

FROM Person.Address pa

LEFT JOIN Person.StateProvince psp on pa.StateProvinceID =

psp.StateProvinceId

Figure 5-2 shows the results of executing the query.

Chapter 5 Constraints, Keys, and relationships

204

There is another example in AdventureWorks where violation of 2NF is prevented.

This is more common in our day-to-day work and very much like what we’ll build in our

examples.

The table Person.StateProvince is set up well to be in 2NF. For example, the table

has the primary key of StateProvinceID, and then, instead of repeating data like the

name of the Country or the name of the Territory, those pieces of information are

brought in through foreign key relationships to the tables Person.CountryRegion and

Sales.SalesTerritory, respectively.

By following this normalization, the names of the Country and Territory

can be derived, but they are not going to require extra fields being changed in the

StateProvince table if for some reason the country name changes or the territory name

changes. Figure 5-3 highlights an example of 2NF.

Figure 5-2. What the Person.Address table might look like if it violated second
normal form (2NF) in a couple of different ways

Chapter 5 Constraints, Keys, and relationships

205

 Third normal form (3NF)
3NF attempts to further break down 2NF into a unique group of columns (i.e., there

are no transitive dependencies in the database) so that there is not any issue with

compositional data becoming corrupted or incomputable due to changes in related

data. For me, this can be a bit confusing, so it might help if you think in terms of auditing

the database.

For example, in AdventureWorks, the Sales.SalesOrderHeader table has a column

SubTotal and a column TaxAmt and then Freight and then TotalDue. Knowing

that TotalDue is calculated from SubTotal, TaxAmt, and Freight, we have a couple

of potential normalization problems, where either this table is in violation of 2NF

(TotalDue changes if SubTotal, Tax, and/or Freight change for some reason) or we

are in violation of 3NF. Since the TotalDue field is computed, the 2NF issues are mostly

eliminated as the value automatically updates.

However, since that TaxAmt field is likely equal to the SubTotal multiplied by the

TaxRate of the shipping address of the StateProvince where the customer lives and

is likely calculated at the time of the order processing, then the problem becomes an

auditing issue without 3NF.

Looking at the Sales.SalesTaxRate table, there is a column TaxRate and a foreign

key to StateProvinceId. What happens if legislation changes in the StateProvince

that raises the TaxRate for that region? In that case, the new TaxRate would be used on

future orders, but the old one would have been used during the original calculation to

Figure 5-3. The Person.StateProvince table follows 2NF

Chapter 5 Constraints, Keys, and relationships

206

create the TaxAmt. Because of this, the original TotalDue amount would likely appear as

a different amount during an audit due to the change of the TaxRate. A violation of 3NF

is shown in Figure 5-4.

If the Sales.SalesOrderHeader table was in proper 3NF, the tax rate would have been

stored at the time of the placement of the order so that the total due column could be

correctly calculated using the subtotal multiplied by the tax rate at the time of the order.

To be clear, consider the following values for a sale.

Figure 5-4. A violation of 3NF happens when a field in one table is dependent on
the value of another table, and that other table has a dependency on a third table.
When that third table changes and results in changes to the related table, then the
resulting dependency is also affected

Chapter 5 Constraints, Keys, and relationships

207

Assume that SubTotal is 99.99, and TaxRate at the time of the original sale is 7%.

Ignoring the Freight for this example, the TotalDue would be $99.99 + ($99.99*.07),

or roughly $106.98. Now assume legislation passes and taxes are raised to 8% and

appropriately updated in the TaxRate column. Now an auditor comes and sees a

SubTotal of $99.99 and a TaxRate of 8%. The expected SubTotal based on those

numbers would be approximately $107.98. The value changed based on a dependency.

Without an audit trail, this could cause some serious issues for the company.

While understanding the differences between 1NF, 2NF, and 3NF goes well beyond the

depth covered in this book, it is important to be aware of them when creating your entities.

With this awareness, you can now start to create proper, normalized relationships.

 Types of relationships
When working with relational data, you have three types of relationships that you can

leverage. They are

• One-to-one

• One-to-many

• Many-to-many

All three of the relationships have distinct purposes and are easily built out in

code-first implementations. The way they are built is directly related to how the code is

referenced from one model to another. What’s more, in the many-to-many relationship,

you can either define the join table explicitly, or you can rely on the implicit creation of

the table. In most cases, you’ll use a one-to-many or a many-to-many relationship, even

if you have a one-to-one correlation as the result. However, you should also know how a

one-to-one relationship would work in case we ever need to set one up.

Additionally, as of EFCore5, another feature has been added around these

relationships that makes it a bit easier to work with them. With EFCore5, you can now

create a many-to-many relationship without having to explicitly map the join table.

For example, prior to EFCore5, if you wanted to have a many-to-many relationship, you

would create three entities – the left table, the right table, and the join table that mapped

the left and the right to each other. With EFCore5, and therefore EFCore6, you simply

reference the other table in each model as an ICollection<T>, and EFCore6 implicitly

creates the join table via the functionality added as of EFCore5. If necessary, you could

still further define fields on the join table should the need arise.

Chapter 5 Constraints, Keys, and relationships

208

 One-to-one relationships
One-to-one relationships are useful when there are two tables that are directly linked to

each other, but there is only one row in each table that is joined. The relationship is built

with a primary key in one table and the foreign key in the other table and to be truly one-

to- one should go in both directions (both tables are modified with a foreign key to relate

to the only matching row in the other table).

One-to-one relationships generally provide additional attributes that are created to

further define an object, which, when coupled, create a more detailed implementation of

the object.

An example of a one-to-one relationship from AdventureWorks happens between the

tables Person.BusinessEntity and Person.Person and another from Person.Person

to HumanResources.Employee and finally another one from HumanResources.Employee

to Sales.SalesPerson. In this setup, each Person.BusinessEntity is given an ID, and

that ID is used to relate directly to an individual with more details in the Person.Person

table, more details in the HumanResources.EmployeeTable, and finally, if they are a sales

person, more details in the Sales.SalesPerson table. This allows for a BusinessEntity

to have the properties of a Person (Title, FirstName, LastName) and Employee details

like HireDate and VacationHours. Finally, if the employee happens to be a sales person,

they can have further associated information for their TerritoryID and CommissionPct.

Figure 5-5 shows how these tables each form a one-to-one relationship with each other

defining more details about the person at each level.

Chapter 5 Constraints, Keys, and relationships

209

 One-to-many relationships
A one-to-many relationship is likely the most common relationship you’ll encounter

when working with relational data. Generally, one-to-many relationships rely on

a key object that is then configured or further defined with options. One-to-many

relationships are easily set up to serve as things like dropdown lists or option lists when

building out objects for making selections in the UI. For example, in AdventureWorks,

Sales.SalesOrderHeader has a one-to-many relationship to Sales.SalesOrderDetail.

For every sales order header, you can have as many related details as you need to

fulfill the order. A simpler example was already shown in Figure 5-3, where you had

the Person.CountryRegion table having a one-to-many relationship with Person.

StateProvince and the Sales.SalesTerritory table also had a one-to-many

relationship with Person.StateProvince. Figure 5-6 illustrates how SalesOrderHeader

to SalesOrderDetail is a one-to-many relationship.

Figure 5-5. The Person.BusinessEntity is related in a one-to-one relationship with
Person.Person, which is also in a one-to-one relationship with HumanResources.
Employee, which has a one-to-one potential relationship with Sales.SalesPerson.
Each table further defines the original entity with more details about the entity

Chapter 5 Constraints, Keys, and relationships

210

 Many-to-many relationships
Many-to-many relationships are a bit more complex than the other two relationship

types. In any many-to-many relationship, a join table exists to relate two separate entities

to each other, with each side of the relationship being a one-to-many relationship from

the entity table to the join table.

This join table allows for a two-way relationship between the two entities. The first

table can join and get all elements from the second table that match via the grouping in

the join table, and the second table can do the same thing in reverse.

Figure 5-6. An example of a one-to-many relationship in the AdventureWorks
database is the Sales.SalesOrderHeader to the Sales.SalesOrderDetail table, where
one SalesOrderHeader entry might be related to many SalesOrderDetail entries

Chapter 5 Constraints, Keys, and relationships

211

In a straightforward example, we might use many-to-many relationships for things

like user preferences. We could look for any users that have set a single preference value,

or we can look for all the preferences of a single user. This is very useful for correctly

mapping data.

An example from AdventureWorks exists where the HumanResources.Employee

table is in a many-to-many relationship with the HumanResources.Department

table. This means that an employee could have history as having worked in one or

more departments, or a single department can easily be mapped to all the current

and past employees. You can perform queries in either direction, and you can

expect to get valid results from your query, as long as the data is correctly joined

together via the HumanResources.EmployeeDepartmentHistory table. Figure 5-7

displays the many-to-many relationship between Department and Employee via the

EmployeeDepartmentHistory join table.

Figure 5-7. The Employee to Department relationship is a many-to-many
relationship with the EmployeeDepartmentHistory table acting as the join table
for the relationship. In this way, one employee may have history with many
departments, or one department can easily be mapped to current and/or past
employees

Chapter 5 Constraints, Keys, and relationships

212

 Some final thoughts about relationships and
normalization
When working with any RDBMS, forming the correct relationships will be critical in

order to effectively work with the data. By knowing the different types of normalization

and relationships available to you, you will be able to make sure to build out the best

solutions as needed.

With the many different forms of normalization, you also will need to find the

balance between what works and what works with a desired level of efficiency. As the

database developer, it will be your job to understand the trade-offs that will happen if

you want to design a database all the way to 3NF, BCNF, or 4NF vs. the problems that

might happen if you only use a 1NF normalization strategy.

 Activity 5-1: Add length, range, and other
constraints to the Item model
In this activity, you will again dive into the Item class to build out a better database

structure. This will give you the chance to see how to apply some of the common data

annotations in your models to constrain your database entities.

By the end of the activity, you’ll be able to set the minimum and maximum length

of a string field, understand what it takes to make a field required or a key, and set range

limits on data, and you’ll also know how to apply default values for columns in your

tables. You will be able to accomplish all of this using EFCore6 with data annotations in

any code-first database development project.

 Creating constraints
To this point, you have not created any constraints, and that has allowed the data

fields to be built without any restrictions, including required values or null values.

Additionally, string fields were set to the default of NVARCHAR(MAX), which is not ideal – as

you’ve already read about in the preceding text.

In this activity, you will see how to create constraints that will allow restrictions on

your data that make your applications more robust. In the end, having data integrity is

going to be one of the key elements to producing a system that works well and doesn’t

Chapter 5 Constraints, Keys, and relationships

213

require a lot of additional support due to bugs or invalid scenarios that users will likely

enter on forms. For example, you wouldn’t want a person with a negative age or a

product you are selling to have a negative price. You also likely want every product to

have a name, and you want to set limits on the length of that name to prevent overflow

issues in your UI from extremely long strings of text.

 Prerequisite: Get set up for this activity
To get started with this activity, you could use the code you have been building along

with the text that has all of the implementations from activities through the first four

chapters, or you could grab the EFCore_Activity05-1_StarterFiles which positions

you to start exactly in the place the code needs to be to do this activity. Remember to

check Appendix A for more information about using the starter files.

 Task 1: Setting length constraints on columns
In this first task, you will work through setting constraints on the Item model class

to ensure that string columns are no longer set to be NVARCHAR(MAX) but will have a

maximum length.

 Step 1: Identify the fields that need constraints and create
constants for the values

To start this activity, take a look at the Items table as it stands in the database. Right now,

the fields Name, Description, and Notes are all NVARCHAR(MAX) length. Additionally,

CreatedByUserId and LastModifiedUserId are also NVARCHAR(MAX) as shown in

Figure 5-8.

Chapter 5 Constraints, Keys, and relationships

214

In the real world, if you already have data in the tables, changing the length is likely

to be a problem, because this could cause a loss of data in the case where you decrease

the length of the field. One way to prevent issues could be to quickly select the data from

the table into a backup table using a query, and then once the operation is completed,

restore by selecting the data back into the table from the backup table. A great way

to ensure you don’t have mistakes in such a scenario would be to script this process

and ensure it works as expected. You could even do the entire operation as a series of

migrations to ensure the operation will run in any environment.

In this case, you are not concerned with lost data, so you can proceed as such.

Before you add the constraints, a good practice for reusability, testability, and

general organization of your code is to simply set some static constants in place. In this

manner, you don’t have to use magic numbers in your code (a magic number is any

number that is hard-coded that could cause issues if someone changes it unexpectedly,

Figure 5-8. All string fields are currently NVARCHAR(MAX) length

Chapter 5 Constraints, Keys, and relationships

215

especially if the value is set in more than one location). In the InventoryModels project,

create a file called InventoryModelConstants.cs and add the following code to the file:

public class InventoryModelsConstants

{

 public const int MAX_DESCRIPTION_LENGTH = 250;

 public const int MAX_NAME_LENGTH = 100;

 public const int MAX_NOTES_LENGTH = 2000;

 public const int MAX_USERID_LENGTH = 50;

}

Here, you could choose different values if you want to. The description should likely

be fairly short and the name should likely be even shorter, with the notes being the

largest field. Additionally, it is likely that 32 would be long enough for the MAX_USERID_

LENGTH, assuming that it is a GUID, which has a length of 32. If more characters are

needed, you could easily expand this now or do it in the future. In order to make sure

there is enough room, just set the length to 50. If you want to be extra cautious, you could

even set this length to 64.

You might also ask something like “Why aren’t the class or the variables static?” In

case you weren’t aware of this, a const value in C# is static by default.

 Step 2: Add constraints to appropriate properties in the Item
and FullAuditModel classes

With the constants in place, open the Item.cs file for the Item model and add the

following code above the Name property:

[StringLength(InventoryModelsConstants.MAX_NAME_LENGTH)]

Adding the StringLength annotation attribute will require adding the using

statement using System.ComponentModel.DataAnnotations to the top of the file, so

make sure to go ahead and add the appropriate using statement.

Repeat the operation to add the following line of code above Description:

[StringLength(InventoryModelsConstants.MAX_DESCRIPTION_LENGTH)]

And this line of code above Notes:

[StringLength(InventoryModelsConstants.MAX_NOTES_LENGTH, MinimumLength = 10)]

Chapter 5 Constraints, Keys, and relationships

216

In this example, the minimum length is set to simply show that it can be done and

how it works when you do it. In the real world, the minimum length may be left blank or

may be set, depending on the needs of your solution.

Make a note that while the maximum length is enforced at the database level in

schema, a minimum length will be enforceable only by the model state. Even after

creating this, someone could come along and do a manual insert to the table with a

Notes entry having a length less than 10. As an aside, since the minimum length on the

Notes field here is for demonstration purposes only, you did not create a constant to

map the minimum length of 10. If you wanted, you could map that minimum length to a

constant, just as you did to the other fields.

Figure 5-9 shows the reworked Item model with constraints applied.

The UserId properties are part of the FullAuditModel. As such, open the

FullAuditModel and update both the CreatedByUserId and the LastModifiedUserId

with the following data annotation:

[StringLength(InventoryModelsConstants.MAX_USERID_LENGTH)]

Make sure to save and build the project.

Figure 5-9. The Item class is configured to enforce maximum length on the string
properties that are part of the Item class

Chapter 5 Constraints, Keys, and relationships

217

 Step 3: Create the migration

With the string properties now all configured to have a maximum length, open the PMC

and make sure you have your EFCore_DbLibrary project selected, and then run the

command add-migration updateItem_enforceStringMaxLength.

You should not have any errors, but you should receive a warning that states “An

operation was scaffolded that may result in the loss of data. Please review the migration for

accuracy”. This is because you are shortening the length of fields, and if there is currently

data that is longer than the new constraint, those fields would see a truncation of data. Take

a minute to review the migration. Figure 5-10 shows part of the migration and highlights

how the migration will now set the fields in the database to enforce a maximum length.

Figure 5-10. The new migration adds a length constraint on a number of fields

Chapter 5 Constraints, Keys, and relationships

218

 Step 4: Update the database

Once you are satisfied that the length constraints are set as expected, go ahead and run

the update-database command to apply the changes to your database. Execute the

command now. It is likely you won’t have an error and could proceed to the next step.

However, if you currently have data in the table that would be truncated, you would see

an error, shown here in Figure 5-11.

While this may seem annoying at first, this error is actually a very good thing that

EF is doing. You see, the PMC update-database command just prevented you from

accidentally wiping out portions of data.

If you wanted to see this error, before adding the migration, you could have set

the length of the user ids to something like 30. The data would then be truncated. If

this happens, you have a few choices at this point. The first thing you could do is just

go manually wipe the data (which is reasonable for this test scenario, but not so good

for a production scenario). The second option is you could write scripts that manually

back up the table and wipe the data (which again is not a real great choice if you have a

production scenario with constraints on the data). A third option is to add scripts into

this migration that back up the string fields and then wipe the data directly from those

columns and then restore it. This is again not likely to work well in the long run. A fourth

option would be to write scripts that delete all relationships, back up the data, run the

migration, then restore the data, and finally restore the relationships. That final option is

likely what you would need to do in a real-world, production scenario.Here, you would

have nothing to lose by doing any of the options, since there is only one table, and the

data is volatile and easily restored by running the program which will ensure your default

records. To simulate what you might do in the real world, you could add the following

Figure 5-11. The migration will not work if you currently have data in your
database

Chapter 5 Constraints, Keys, and relationships

219

code to the top of the migration (do not do this unless you are getting an error, and if you

are getting an error, make sure to increase field lengths appropriately to avoid truncating

data):

migrationBuilder.Sql("SELECT * INTO ItemsBackup FROM Items");

migrationBuilder.Sql("DELETE FROM Items");

You could also run a quick script to make sure that you remove any relationships.

At the end of the migration, you would then add the revert statements (these

statements are untested as they are for illustration only and may contain a small error):

migrationBuilder.Sql("SET IDENTITY_INSERT Items ON");

migrationBuilder.Sql("INSERT INTO Items (Id, Name, CurrentOrFinalPrice,

Description," +

 "IsOnSale, Notes, PurchasePrice, PurchasedDate, Quantity, SoldDate" +

 "CreatedByUserId, CreatedDate, IsActive, LastModifiedDate,

LastModifiedUserId)" +

 "SELECT * FROM ItemsBackup");

migrationBuilder.Sql("SET IDENTITY_INSERT Items OFF");

migrationBuilder.Sql("DROP TABLE ItemsBackup");

You could avoid dropping the table if you get nervous about that, and just do it

manually later. You could also add a statement to restore any relationships at this point.

Once you had that code in place, you could proceed with the update, and it should work,

as long as you are no longer truncating any data on the re-insert of data from the backup.

In any scenario, by now, you should have the new constraints in place and the

migration applied. Figure 5-12 shows the new constraints are in place on the database

table in SSMS.

Chapter 5 Constraints, Keys, and relationships

220

As with other activities, the end of a task in an activity is a great place to check

changes into source control to create a safe restore point in case things go wrong during

future tasks.

 Task 2: Creating a range on numeric fields
When working with the database, you’ll often have fields that should be further

constrained to limit what values make sense. For example, you should never have a

negative quantity, and you likely want to lock down the price on an item so that it is also

not negative.

Figure 5-12. The migration applied as expected and the database fields are now
set to have appropriate maximum lengths for string values

Chapter 5 Constraints, Keys, and relationships

221

 Step 1: Add range values to the quantity and price fields

Once again, you don’t want to use magic numbers, so for this step, you will start

by adding some constants for minimum and maximum quantity and price in the

InventoryModelsConstants file. Add the following code to the constants class after the

MAX_USERID_LENGTH:

public const int MINIMUM_QUANTITY = 0;

public const int MAXIMUM_QUANTITY = 1000;

public const double MINIMUM_PRICE = 0.0;

public const double MAXIMUM_PRICE = 25000.0;

Next, add the constraints to the appropriate fields in the Item class.

Above the Quantity field, add the constraint as follows: [Range(InventoryModelsCo

nstants.MINIMUM_QUANTITY, InventoryModelsConstants.MAXIMUM_QUANTITY)]

Above the PurchasePrice and CurrentOrFinalPrice, add the following code:

[Range(InventoryModelsConstants.MINIMUM_PRICE, InventoryModelsConstants.

MAXIMUM_PRICE)]

Once again, you’ll see that these range values are not going to generate constraints

on the table, but only constraints that your code would have to respect in the model state,

which you can check to ensure that no bad data is saved to your database. Figure 5- 13

shows the current Item class for clarity.

Chapter 5 Constraints, Keys, and relationships

222

 Step 2: Create the migration

Make sure to save and build, and then add the migration with the command add-

migration updateItems_setMinMaxValuesOnQuantityAndPrice.

Generating the migration backs up what we expected – that the constraint from

these data annotations is only on the model state and not enforced in the database. As

such, the generated migration is blank. You might be tempted to just run the remove-

migration command and let it be, but this is a great chance to run a script to also

enforce these constraints on the fields in the database. However, the following text is

only going to update quantity. For this reason, run the remove-migration command,

and then run the command add-migration updateItems_setMinMaxValuesOnQuantity

to generate a new blank migration.

In the empty Up method of the blank migration, add the following code:

migrationBuilder.Sql("UPDATE Items SET Quantity = 0 WHERE Quantity < 0");

migrationBuilder.Sql("UPDATE Items SET Quantity = 1000 WHERE Quantity > 1000");

migrationBuilder.Sql(@"IF NOT EXISTS(SELECT *

Figure 5-13. The current code for the Item class is shown for clarity

Chapter 5 Constraints, Keys, and relationships

223

FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

WHERE CONSTRAINT_NAME='CK_Items_Quantity_Minimum')

BEGIN

 ALTER TABLE [dbo].[Items] ADD CONSTRAINT CK_Items_Quantity_Minimum

CHECK (Quantity >= 0)

END

IF NOT EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Maximum')

BEGIN

 ALTER TABLE [dbo].[Items] ADD CONSTRAINT CK_Items_Quantity_Maximum

CHECK (Quantity <= 1000)

END");

Notice that the first two statements are run to ensure no data exists in the table that is

outside of the required constraint values. If data violates a constraint, you can’t add the

constraint, so the first two statements ensure the data is compliant.

Remember to also include a “rollback” statement to drop the constraint if it exists.

Additionally, note that it is a good practice to ensure that your Down statements and

Up statements are idempotent. In this manner, the migration can be run without error

regardless as to whether the objects do or don’t exist. Add the following code to your

Down method:

migrationBuilder.Sql(@"IF EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Minimum')

BEGIN

 ALTER TABLE [dbo].[Items] DROP CONSTRAINT CK_Items_Quantity_Minimum

END");

migrationBuilder.Sql(@"IF NOT EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Maximum')

BEGIN

 ALTER TABLE [dbo].[Items] DROP CONSTRAINT CK_Items_Quantity_Maximum

END");

Chapter 5 Constraints, Keys, and relationships

224

Although it is not shown here or added to the database code, you could repeat

these statements for the price columns to add the check constraints on price values.

In that case, you would again start by ensuring all data is conformant to the expected

constraints.

After saving and building the project, run the command update-database. Once the

command has completed, right-click and script the Items table for create in SSMS to

view the constraints and field information.

Figure 5-14 shows the current table, refreshed and with the Constraints expanded.

Figure 5-14. The table has the two constraints as defined in the migration

Chapter 5 Constraints, Keys, and relationships

225

 Task 3: Ensuring a field is a key, making fields required,
and setting default values on a column
As you’ve seen, a property called Id on the model acts implicitly as the primary key on

the table. It is possible, however, to explicitly name a database field as a key. In fact, it is

possible to have multiple fields as keys.

 Step 1: Ensure the Id field is a key

While it is not necessary to do this, you can explicitly define the Id field as a key on the

database. Using data annotations, you can mark any field as a key. To see this in action,

open the FullAuditModel class and add the data annotation [Key] on top of the Id field.

Figure 5-15 shows the updated code for clarity.

 Step 2: Making some fields required (not able to be set to
null – must have value)

In most cases, the ability to make a field required in the database is determined by the

data type. If you want the field to be non-nullable, you use a non-nullable type. If you

want it to be nullable, you use the question mark to indicate a nullable type. Take a look

at the FullAuditModel and note how CreatedDate is not nullable, but LastModifiedDate

can be null due to having the DateTime? data type. Additionally, in the Item class, note

that the Quantity and the IsActive fields cannot be null because they are set to int and

bool, which are not nullable.

Figure 5-15. The data annotation [Key] is added to the Id field to explicitly define
the Id as a key on the models

Chapter 5 Constraints, Keys, and relationships

226

However, some fields can be ambiguous, like strings. To ensure that a field always

has a value when you are working with your data, even if it is a nullable type, you can

use the [Required] data annotation. The required annotation will enforce the field to be

required in the database as well as invalidate the model state if the field is left null (Note:

Null and the empty string are not the same thing, so even with this in place, an empty

string could be stored!).

Since every item should have a name, add the [Required] annotation attribute to the

Name field in the Item.cs file as shown in Figure 5-16.

Feel free to make other fields required as you see fit. Additionally, feel free to add a

new migration and run the update-database command at any point to apply changes.

The final task in this activity will be to generate a new migration, which will include all of

the changes. In a real project, you may not want to combine so many changes into one

migration, so it is up to you to determine how you would like to proceed.

It is also possible that you may wish to keep the number of migrations to a minimum

to avoid having hundreds of migrations. For that reason, waiting until you are ready is a

great idea. There are a couple of things to note about this. At any point, you can remove

and recreate an unapplied migration. Therefore, if you want to see the migration, go

ahead and generate it with an add-migration command. Then if you want to redo the

migration with more changes later, just remove it and then run the exact same command

to regenerate the unapplied migration.

One final note is based on an upcoming new feature of EFCore6 that I’m pretty

excited about. This feature is the ability to squash your migrations. This feature will

allow you to combine multiple migrations into one migration, similar to squashing GIT

commits into one commit. I hope this will be implemented in time to cover later in the

book. If not, I’ll make sure to blog about it when it is available so that you can read more

about it in one way or another.

Figure 5-16. Use the [Required] data annotation to ensure that a field always has
value

Chapter 5 Constraints, Keys, and relationships

227

 Step 3: Adding a default value to a field

In a previous activity, you likely read that there is a way to do a soft delete by adding an

IsDeleted boolean value to the table. Once your table has data in it, however, you can

only add fields as nullable, unless you enforce a default value.

Assuming that you now want to make items able to be deleted without losing data,

you can do this in the object hierarchy. First, you would create another interface in the

InventoryModels project called ISoftDeletable, adding the property IsDeleted as a

boolean.

public interface ISoftDeletable

{

 bool IsDeleted { get; set; }

}

You would then want to set the value to false and make the field required to avoid

any confusion (e.g., is null signifying that the record is deleted or not deleted? You don’t

want any ambiguity on this matter).

Implement the interface on the FullAuditModel, and add the following data

annotations:

[Required]

[DefaultValue(false)]

The DefaultValue requires bringing in the using statement using System.

ComponentModel; so make sure to do that to avoid a build error.

The updated FullAuditModel is shown in Figure 5-17.

Chapter 5 Constraints, Keys, and relationships

228

Note that adding the DefaultValue constraint requires the using statement using

System.ComponentModel.

 Task 4: Add a new migration and apply these changes
to the database
As previously mentioned, it would likely have been better to do a couple of migrations

for practice in the previous task, but there is no hard and fast rule that says you must do

small migrations. However, by waiting until now to create the migration, you are taking a

calculated risk. The risk is that there is a possibility that you may have quite a few errors

by now that would prevent the migration from working.

 Step 1: Create the new migration

With all of the data formatting in place, go ahead and create a new migration

to lock down the database and create the changes you’ve implemented

in the last three tasks. Run the command add-migration updateItems_

addSoftDeleteIdKeyAndRequiredName. The migration generated should look similar to

what is shown in Figure 5-18.

Figure 5-17. The default value and required attributes are added to the IsDeleted
property

Chapter 5 Constraints, Keys, and relationships

229

Once again, you will see the warning that an operation was scaffolded that may result

in the loss of data. In this small system, there is no concern about losing data, but when/

if you see this in a real-world scenario, remember to evaluate your backup options to

ensure you do not lose critical data.

 Step 2: Update the database

Now that the migration is in place, run the update-database command to apply the

changes.

This should run without any issues. You can review your database to ensure that you

have a new field for IsDeleted which is false for all rows. Additionally, ensure the name

field is no longer nullable. See Figure 5-19.

Figure 5-18. The migration generated by the additional constraints for required
fields and default values is ready to be applied to the database

Chapter 5 Constraints, Keys, and relationships

230

 Step 3: Run the program

To complete this activity, you should make sure the code works as expected.

Unfortunately, the code is currently not quite correct. Running the program as is could

reveal a potential violation due to the new maximum quantity check constraint (see

Figure 5-20).

Figure 5-19. The database is updated as expected with the new required fields
and non-nullable field constraints

Chapter 5 Constraints, Keys, and relationships

231

To fix this issue, find the line of code Quantity = r.Next(), which is located in the

EnsureItem method in the Program class of the EFCore_Activity0501 project.

Change the code to use a minimum and maximum range for the quantity as follows:

Quantity = r.Next(1, 1000).

With the new constraints in place and the range for the quantity set to generate from

1 to 1000, run the program again. This time the program should run as expected. You

may wish to run the program a few times to ensure that it was not a fluke that it executed

successfully this one time.

For clarity, a final view of the output and the updated line of code is shown in

Figure 5-21.

Figure 5-20. The maximum quantity check constraint blocks inserting new items
if the quantity is greater than 1000

Chapter 5 Constraints, Keys, and relationships

232

 Activity 5-1 summary
This activity gave you a good look at how you can use annotations and migrations to

modify your database schema. Some of the things you learned were

• You can set the key fields for the table with the [Key] annotation.

• Making fields required is possible with the [Required] annotation.

• Use [StringLength] to set the maximum and minimum length of a

string.

• Use [DefaultValue(<value>)] to set the default value of a field.

• Some of the annotations (attributes) only apply to the model state.

In these cases, we can create a script to run T-SQL statements. This

was highlighted with the Range attribute on the Quantity and Price

properties.

• Use [Range] to set the minimum and maximum values of a field in

the model state.

This concludes Activity 5-1.

Figure 5-21. The code executes as expected and the range for the random number
generated for the quantity is shown

Chapter 5 Constraints, Keys, and relationships

233

 Activity 5-2: Working with relationships
In this activity, you will create a one-to-one relationship, a one-to-many relationship,

and a many-to-many relationship. You’ll build out the relationships and the data

structures in code, but you will not yet be implementing them in the UI (you will finish

the implementations in the coming chapter on CRUD operations).

By the end of the activity, you’ll be able to define a one-to-one, a one-to-many, and

a many-to-many relationship in code. You’ll also understand the difference between the

two types of relationships and when it will be appropriate to use either.

 Creating a one-to-many relationship
One of the most common relationships you’ll encounter is the one-to-many relationship.

In this system, to model a one-to-many relationship, you’ll create a table to store

Categories, and then you’ll create a one-to-many relationship so that you can create a

few categories and then have many items in each category. In this scenario, items will

only be able to have one category assigned (otherwise, this would be a many-to-many

relationship). Truly, having only one category per item might prove to be a bit limiting.

Soon you’ll also be creating a many-to-many relationship, so here you can think of the

category as broad strokes (movies, books, games, etc.), whereas the many-to-many

relationship later will be more specific (genres like fantasy, horror, and Sci-Fi).

 Task 0: Getting started
As with every activity, you’ll need a good launching point to start from. Here, you need

to use the files you were working with at the end of the previous activity, or you can once

again just leverage the starter files EFCore_Activity05-2_StarterFiles. Remember to

check Appendix A for more information about using the starter files. Also remember that

the final files for each activity are available if something about the activity instructions is

unclear.

Chapter 5 Constraints, Keys, and relationships

234

 Task 1: Create the Categories in a one-to-many
relationship with Items
In some ways, I’d like to just give you a simple spec and tell you to go build out the database

for the model (not the relationship yet). If you want to try to work a bit as a challenge, what

you are going to build is a new entity called Category that is a FullAuditModel, and for

now, it will only have one simple additional property for Name, which should have a length

and required attribute applied to it. A good challenge would be to try to go make this

happen on your own and then come back here for help or validation and to complete the

effort by building the correct relationship with the Items table.

 Step 1: Create the Category entity model

To begin the walk-through, open the InventoryModels project, and add a new

entity entitled Category in a file named Category.cs. For the Category, you’ll use a

FullAuditedModel and set an additional field for the Name of the category.

public class Category : FullAuditModel

{

 [StringLength(InventoryModelsConstants.MAX_NAME_LENGTH)]

 public string Name { get; set; }

}

Having this category entity in place, open the InventoryDbContext file from the

EFCore_DbLibrary project, and add the DBSet<Category> to the InventoryDbContext in

the InventoryDatabaseCore file:

public DbSet<Category> Categories { get; set; }

This code should be placed directly below the line that contains DbSet<Item> Items

{ get; set; }.

With the context reference in place and the entity set up, you could create the

migration. At this point, however, you have yet to create the one-to-many relation, so you

should do that first before adding the migration.

Chapter 5 Constraints, Keys, and relationships

235

 Step 2: Create the one-to-many relationship

To create a relationship in your code-first implementation, you need to reference the

types that are related to the models involved in the relationship on both sides of the

equation.

For this example, each of your Item objects should have one Category. Each of

your categories can have many items. By saying this out loud, you can determine which

types to place in each entity. For example, you could say the following phrase out loud

to express the relationship: “One category has many items while each item has only one

category.”

Since the Item only has one Category, you need to create a virtual reference to the

single category. In the InventoryModels project, in the Item.cs file at the bottom of the

file after the CurrentOrFinalPrice property, add the lines

public int? CategoryId { get; set; }

public virtual Category Category { get; set; }

The placement of this code in the Item class doesn’t really matter – these lines could

go anywhere in the file. However, I personally find it is nice to have the relational entities

defined after the regular properties of the entity model.

You need to make the CategoryId nullable because the database may already have

data at this point. With that data, you won’t be able to set the category id to map until you

have some categories to map to. Therefore, for now you’ll allow null in this relationship

to prevent the migration from failing.

If you must make the Category for each item required, you’ll need to back up your

data, delete from the table, run the migration with a non-nullable CategoryId property,

and then re-insert the data while also selecting valid category ids for each row, which

will also require at least one Category to select from the Categories table. Again, the

best way to do backup operations such as this would be to use a script that you write to

ensure you don’t lose any data and to run the entire process via one or more migrations

so that every environment receives the same process for update of the data schema and

consistency of existing data.

Note that it is also imperative that your Id field name matches exactly to the name

of the virtual item. If these names are not the same, by convention, an extra Id field

would automatically be added to line up to your virtual Category field, unless you add a

specific notation to map the foreign key relationship.

Chapter 5 Constraints, Keys, and relationships

236

if for some reason your Items table has a field that is already named
CategoryId, you can explicitly set the name of the id field by using the data
annotation [ForeignKey("CategoryId")] as an attribute to any nullable int
property you want to map as the foreign category id. another option would be to
rename the Category property to something like ItemCategory and use a field
ItemCategoryId.

Additionally, you want to use the virtual keyword on any of your relationships

so that EF can override and/or extend the properties to support lazy loading of the

relational data. This will become incredibly important when you want to use LINQ later

to select data and include relationship data in the model state.

Next, on the Category object, you need to create a list of items to map the

relationship in the other direction. Remember, any category can have many items –

which indicates an ICollection<Item> should be available, preferably IQueryable and/

or IEnumerable. For that reason, it is very common to just use a List object to model the

relationship. By default, a List is an IEnumerable object. If the List needs to be queried,

you’ll need to do a cast or use the LINQ expression .AsQueryable(). To complete the

relationship, go to the Category entity model and add the following code after the Name

property:

public virtual List<Item> Items { get; set; } = new List<Item>();

You will need to add the using statement using Systems.Collections.Generic to

the top of your Category code file.

Make sure to set the List to a new list by default to avoid null reference
exceptions on the list in the cases where the related items are not loaded into
scope. this is one of the biggest gotchas in eF and linQ programming. this
simple addition of the new list will save you a number of headaches, keeping you
from having to always create a new list with each entity or trying to reference
Items from the Category when none are present or the Items were never
included in the original query.

Chapter 5 Constraints, Keys, and relationships

237

For clarity, the current code of the Category class is shown in Figure 5-22.

 Step 3: Create the migration

Provided everything is set up correctly, the migration will generate the new Categories

table and will correctly set a new CategoryId in the Items table.

Ensure your PMC is pointed at the EFCore_DBLibrary project and then run the

command add-migration createCategoriesTable_withItemsRelationship. This

should generate a migration similar to what is shown in Figure 5-23.

Figure 5-22. The new Category entity code is shown for clarity. Ensure you’ve
added the inheritance for the FullAuditModel and that you’ve created the two
properties as shown

Chapter 5 Constraints, Keys, and relationships

238

Once you’ve reviewed the migration and it looks like it is set to correctly create the

new schema changes, go ahead and run the update-database command to apply the

changes.

 Step 4: Review the database

With the changes applied, open SSMS and review the tables to ensure that they are there

and that the appropriate association is created for the Categories table to the Items

table. For clarity, the data relationship is shown in a diagram in Figure 5-24.

Figure 5-23. The Foreign Key is shown, as is a table for Categories and the
CategoryId column that will be used to map an Item to a Category

Chapter 5 Constraints, Keys, and relationships

239

As an aside, if you would like to create your own database diagram, use SSMS and

right-click Database Diagrams, and then select New Database Diagram (see Figure 5- 25).

Figure 5-24. The new Categories table exists, and the data is correctly related in a
one-to-many relationship with the Items table

Figure 5-25. The process to create a new database diagram starts by right-clicking
and selecting New Database Diagram as shown here

Chapter 5 Constraints, Keys, and relationships

240

The first time you create a diagram, you will need to allow the database to create

support objects for database diagramming. If you see the dialog as shown in Figure 5-26,

select Yes.

Once you have the ability to create a new diagram, you will be shown the list of tables

from which you can select. In this case, you will only need to select the Categories and

Items tables (see Figure 5-27).

Figure 5-26. Allow the database to create the objects required for using database
diagramming

Figure 5-27. The Add Table dialog allows you to create a database diagram

Chapter 5 Constraints, Keys, and relationships

241

Once you’ve selected both tables, hit the Add button to create the diagram. After the

Add button is pressed, you will need to press Close, and then you will see the diagram in

a similar fashion to what was shown in Figure 5-24. You can drag and resize the tables as

necessary for your needs.

For further clarity, reviewing the data structure is shown in Figure 5-28, where the

index is now existing in the Items table.

Figure 5-28. The Index exists on the Items table that shows a foreign key
relationship from the CategoryId to the Categories table

Chapter 5 Constraints, Keys, and relationships

242

 Task 2: Create a one-to-one relationship from Category
to CategoryDetail
If you remember reading earlier about the setup in the AdventureWorks database, you

saw how a business entity object was further decorated as needed by using one-to-one

relationships. Assume that, in your system here, you might have multiple users and that

the system would want to have some basic default categories that everyone can see;

however, maybe you also want to allow for some custom categories that could be used as

categories but also associated with a specific color and perhaps more information like a

description.

As a quick aside, there are many ways to accomplish this goal where you wouldn’t

necessarily need a one-to-one relationship (i.e., just add a couple of fields to the

Categories table); the idea here is to learn about a one-to-one relationship, and this

contrived example gives you a good chance to do so. Much like Austin Powers tells you

not to think about the plot holes with time travel in the second Austin Powers movie, try

not to think too deeply about better ways to implement this code for the purposes of this

activity.

 Step 1: Create the CategoryDetail table

To start this off, you’ll need a couple of new constants to keep the strings at a

reasonable length. Add the following code to the InventoryModelsConstants file in the

InventoryModels project:

public const int MAX_COLORVALUE_LENGTH = 25;

public const int MAX_COLORNAME_LENGTH = 25;

Next, go to the InventoryModels project and add a new inventory model that is

called CategoryDetail in a file called CategoryDetail.cs using the following code:

public class CategoryDetail : IIdentityModel

{

 [Required]

 public int Id { get; set; }

 [Required]

 [StringLength(InventoryModelsConstants.MAX_COLORVALUE_LENGTH)]

 public string ColorValue { get; set; }

Chapter 5 Constraints, Keys, and relationships

243

 [Required]

 [StringLength(InventoryModelsConstants.MAX_COLORNAME_LENGTH)]

 public string ColorName { get; set; }

}

Ensure that you have resolved the missing using statements for using

InventoryModels.Interfaces and using System.ComponentModel.DataAnnotations.

One other thing to do, to make sure this is not forgotten, is to go into the EFCore_

DbLibrary project and add the following code after the line that contains public

DbSet<Category> Categories ...:

public DbSet<CategoryDetail> CategoryDetails { get; set; }

If you forget to do this, the migration will not work as expected later in the activity.

See Figure 5-29.

This code sets you up well to have both tables in place but has yet to build the

one- to- one relationship.

Figure 5-29. The InventoryDbContext contains the new table as a DbSet

Chapter 5 Constraints, Keys, and relationships

244

 Step 2: Create the one-to-one relationship for the Category
to the CategoryDetail table

As with the one-to-many relationship, you still need to create the relationship in

code before creating the migration. Here, you’ll just need add the direct one-to-one

relationship by giving the color object one category and the category object one color.

The problem is that this creates a somewhat weird scenario as to which is the primary

and which is the foreign key. You’ll solve this by identifying the foreign key directly in the

entity code.

In the CategoryDetail entity, add the following code:

public virtual Category Category { get; set; }

Then set the Key field to also be a foreign key to the Category (setting this makes it

so that the table is related but does not store the CategoryId as an additional field in the

table). You’ll do this on the Id field of the CategoryDetail object to essentially direct

this table to use the same Id as the Category table for the record as a direct one-to-one

relationship:

[Key, ForeignKey("Category")]

[Required]

public int Id { get; set; }

You will need to bring in the using statement for using System.ComponentModel.

DataAnnotations.Schema, so don’t forget to do that.

For clarity, review Figure 5-30 to see what the CategoryDetail entity model should

look like at this point.

Chapter 5 Constraints, Keys, and relationships

245

do not miss the ForeignKey constraint on the Id field. if you miss adding this,
then the one-to-one relationship will not map and your solution will not work as
expected.

Once the CategoryDetail entity is in place, add the relationship to the Category class

as you would expect to add a direct relationship (just like adding one Category to the

Item in the previous task). The main difference this time is you will not add the foreign

key id to map, since the mapping is literally the same key as the primary key in the

Category table.

public virtual CategoryDetail CategoryDetail { get; set; }

For further clarity, review Figure 5-31.

Figure 5-30. The CategoryDetail entity with reference to the Category entity for
creation of a one-to-one relationship

Chapter 5 Constraints, Keys, and relationships

246

The reason you want the virtual mapping is for the ability to use the navigation

properties that it will generate. You don’t want the Id from the other table as you would

usually reference in a relationship, however, because that just creates a giant mess with

the same Id as the key for the Category table and it doesn’t update or get set correctly

by default, since EF is expecting you to use the same id in both tables to directly map the

one-to-one relationship.

 Step 3: Create the migration and update the database

Now that the entities are in the context and the relationships are modeled to build

a one-to-one relationship, add the migration with the command add-migration

createCategoryDetail_withCategoriesRelationship.

For this migration, you should expect to see the new table created. To see more

detail, you’ll need to dive into the FluentAPI.

Once the migration is completed, it should be similar to what is shown in Figure 5- 32.

Figure 5-31. The Category entity with reference to the CategoryDetail for a one-to-
one relationship

Chapter 5 Constraints, Keys, and relationships

247

Note that the table is created, but it is not clear how the entities are related other than

the foreign key mapping in the constraints listing. Also note that the onDelete action is

set to ReferentialAction.Cascade. This means that if a Category is deleted, so is the

CategoryDetail. If you think about it, this makes sense because the CategoryDetail

doesn’t make any sense without a Category.

 Step 4: Review the ModelBuilder FluentAPI code in the migration

To this point, you’ve not used the FluentAPI much, if at all. That’s OK – for now, but

you will want to grow in this area as you continue working through this book and with

EFCore6 in general.

Behind the scenes, some FluentAPI code has been generated for you all along. In

EFCore6, the FluentAPI uses the model builder to quickly model and relate the entities

from the code.

Open the file that is nested under your migration, which has the same name but also

has the extension Designer in the name. See Figure 5-33 for clarity.

Figure 5-32. The generated migration for building the Category to CategoryDetail
one-to-one relationship

Chapter 5 Constraints, Keys, and relationships

248

Of particular interest is how the relationship is defined in the FluentAPI. Search for

the text “modelBuilder.Entity("InventoryModels.CategoryDetail", b =>”, and then

find the second instance of this text, which should be located near the end of the file. The

code to examine should be similar to the following:

modelBuilder.Entity("InventoryModels.CategoryDetail", b =>

 {

 b.HasOne("InventoryModels.Category", "Category")

 .WithOne("CategoryDetail")

 .HasForeignKey("InventoryModels.CategoryDetail", "Id")

 .OnDelete(DeleteBehavior.Cascade)

 .IsRequired();

 b.Navigation("Category");

 });

Note how the CategoryDetail has one (.HasOne) Category that has one (.WithOne)

CategoryDetail, mapped by the CategoryDetail Id field. This is how the relationship

is created. Take a minute to look through some of the other Fluent API code that is

in the file. Toward the very end, you will also see the navigation properties for the

InventoryModels.Category as defined in the following code:

Figure 5-33. The Designer file contains FluentAPI code that is directly the result of
your entire database state and the current migration that you have just generated

Chapter 5 Constraints, Keys, and relationships

249

modelBuilder.Entity("InventoryModels.Category", b =>

 {

 b.Navigation("CategoryDetail");

 b.Navigation("Items");

 });

You don’t need to modify any of the code in the Designer file, but it is good to review

it to start seeing more about the plumbing that is going on behind the scenes.

 Step 5: Update the database

With the migration reviewed, save and build, and then run the update-database

command to execute the changes. Once the database migration has completed, open

the tables in SSMS to review. Figure 5-34 shows the two tables with the established

relationship from a database diagram.

 Task 3: Create a many-to-many relationship
In this third task, you will be learning about a new feature that is now available since

EFCore5 that has not been available in previous versions of EFCore. This feature was

available in EF6, so if you are used to using it there, you will like that it is again available

in EFCore5 and EFCore6. In this task, you will use code to create a many-to-many

relationship without explicitly building a join table. EFCore will provide the join table for

you by convention.

Figure 5-34. The Categories and CategoryDetails one-to-one relationship after
database migrations are applied

Chapter 5 Constraints, Keys, and relationships

250

 Step 1: Create a new Player entity

Earlier, you read about the different forms of normalization. One thing that was

mentioned was how 2NF requires unique data in each row. Another thing that was not

directly discussed is that there should be no composite data. One problem is that the

current setup uses the Notes field to hold the names of the actors and actresses in the

movies. To give the ability to easily do this in a 2NF approach, you need to allow each

entity to be unique and directly linked to the Item.

Eventually, you’ll likely want to store more than movies, so you might add other

things like authors for books or production company for games. For the purposes of

this learning, you’ll create a table called Players that stores the name of a person or

company (a Player object) and allows for easy expansion to track other details later

if you so desire. The Players table will join to the Items table in a many-to-many

relationship. For example, Tom Cruise might be in many movies, and Top Gun has many

other actors like Val Kilmer and Tom Skerritt, so the many-to-many relationship makes

sense.

To start, open the InventoryModelsConstants file in the InventoryModels project

and add the following constants:

public const int MAX_PLAYERNAME_LENGTH = 50;

public const int MAX_PLAYERDESCRIPTION_LENGTH = 500;

Also in the InventoryModels project, add a new file called Player.cs that contains

the following code to create a new FullAuditModel called Player:

public class Player : FullAuditModel

{

 [Required]

 [StringLength(InventoryModelsConstants.MAX_PLAYERNAME_LENGTH)]

 public string Name { get; set; }

 [StringLength(InventoryModelsConstants.MAX_PLAYERDESCRIPTION_LENGTH)]

 public string Description { get; set; }

 public virtual List<Item> Items { get; set; } = new List<Item>();

}

Chapter 5 Constraints, Keys, and relationships

251

Notice the properties for the Name and Description but also the virtual List of

Items that will serve as part of the many-to-many relationship. Additionally, you’ll

need to bring in the using statements for System.Collections.Generic and System.

ComponentModel.DataAnnotations.

Figure 5-35 shows the new class code for clarity.

Next, open the Item.cs file and add the following code at the bottom of the Item

class (don’t forget to bring in any missing using statements):

public virtual List<Player> Players { get; set; } = new List<Player>();

This list of Player will represent the other side of the many-to-many relationship. In

the past, you would have needed to manually create and define an entity to represent the

join table for the ItemPlayers. With EFCore6, this will be done by convention.

 Step 2: Create the new migration

With everything in place to create the many-to-many relationship, make sure

the project builds, and then run the command add-migration createPlayers_

withItemsRelationship. When you create the migration, you’ll see that it will create the

new Players table, as well as the ItemPlayer table that will act as the join table.

One thing to note here is that with the ItemPlayer table being auto-generated, you

don’t have a lot of control over the object from the code-first perspective. In the future,

if you want to add more information to this table, you may need to directly add a new

model entity or you could use scripts to change the schema.

Figure 5-35. The new Player class has a name, a description, and a reference to
the List of Items

Chapter 5 Constraints, Keys, and relationships

252

Review the migration to ensure both tables are there with the appropriate fields and

relationships. Also note the indexes that will be created.

The migration should look like what is shown in Figure 5-36.

One thing you might note here is that the names of the fields in the join table are not

ideal, nor is the name of the join table. For example, you likely don’t want to have a singular

ItemId referenced as ItemsId, and the same goes for PlayerId referenced as PlayersId.

Figure 5-36. The migration is generated to create the Player and ItemPlayer tables
to create the many-to-many relationship between Players and Items

Chapter 5 Constraints, Keys, and relationships

253

Additionally, you likely want the table to be pluralized, such as ItemPlayers instead of

ItemPlayer.

To accomplish this task, you could manually modify the migration. However, there is

a better way to do this to ensure you don’t have any pending migrations.

Since you are going to recreate the migration, just run the remove-migration

command to get rid of the pending migration.

 Step 3: Update the FluentAPI to name the fields as expected

Instead of proceeding with the migration update, add the following code into the

InventoryDbContext.cs file between the OnConfiguring and SaveChanges methods:

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

 modelBuilder.Entity<Item>()

 .HasMany(x => x.Players)

 .WithMany(p => p.Items)

 .UsingEntity<Dictionary<string, object>>(

 "ItemPlayers",

 ip => ip.HasOne<Player>()

 .WithMany()

 .HasForeignKey("PlayerId")

 .HasConstraintName("FK_ItemPlayer_Players_

PlayerId")

 .OnDelete(DeleteBehavior.Cascade),

 ip => ip.HasOne<Item>()

 .WithMany()

 .HasForeignKey("ItemId")

 .HasConstraintName("FK_PlayerItem_Items_

ItemId")

 .OnDelete(DeleteBehavior.ClientCascade)

);

}

This code will override the OnModelCreating method and use the ModelBuilder to

run FluentAPI commands to further define relationships and constraints and will even

be used for some simple database seeding in future chapters.

Chapter 5 Constraints, Keys, and relationships

254

For this specific instance, note that the modelBuilder object will define the

relationship further for Items and Players and will set the value of the fields to PlayerId

and ItemId, respectively. Additionally, the entity will be defined as ItemPlayers. Use

the up arrow in the PMC to get your add-migration command back and run it again. For

reference, the command was add-migration createPlayers_withItemsRelationship.

This time the migration generates with field names as you would likely expect, thanks to

the pre-defined model relationships in the FluentAPI (see Figure 5-37).

Figure 5-37. The migration is generated, and the table name and field names
for the join table are aligned with what would likely be expected in traditional
development standards for a join table

Chapter 5 Constraints, Keys, and relationships

255

 Step 4: Update the database

Now that the migration is in place to create the many-to-many relationship between

Players and Items via a table called ItemPlayers, run the update-database command

to apply the changes to the database.

 Step 4: Review the database

Finally, take a minute to review the database to ensure that the tables and relationships

have been created as expected. Figure 5-38 shows a database diagram that contains the

many-to-many relationship that was just created.

 Step 5: Ensure the code executes

Run the program to ensure that the program executes as expected. The final output has

not changed, so it is the same as you would see in Figure 5-21.

Figure 5-38. The relationship for Items to Players via the ItemPlayers table is
shown in this database diagram

Chapter 5 Constraints, Keys, and relationships

256

 Activity 5-2 summary
In this activity, we learned how to build out a one-to-many relationship, a one-to-one

relationship, and also a one-to-many relationship. Important things to remember are

• Build out the entities, and then build the relations in the entities

using virtual objects.

• If using a one-to-many, create a List of the related objects in the

“one” table and a direct reference to the “one” object in the “many”

object entity.

• Set both Key and Foreign Key attributes on the Id of a table in a one-

to- one relationship.

• Cascading delete can prevent deletions if the entity has a related

dependency with data.

• Cascading delete can delete a related data entry if the other part of

the relationship is deleted rather than leaving an orphaned data row.

• Naming is done by convention, so use simple Id fields and then

name the related field EntityId to easily map directly to the correct

relational fields.

• In EFCore5 and EFCore6, the many-to-many relationship can be built

automatically by convention, just by adding a reference on each side

to a list of the other entity in the many-to-many relationship.

• Using the OnModelCreating override in the DbContext allows us to

further define information about relationships. We’ll also see this

method and the FluentAPI used in the future for constraints, and

we’ll also use this method with the FluentAPI to create simple seed

data.

 Activity 5-3: Using a non-clustered, unique index
This final activity for Chapter 5 will serve a dual purpose. First, you will examine

what it takes to build out a many-to-many relationship in the traditional manner

(prior to EFCore5’s new many-to-many relationship convention). After setting up that

Chapter 5 Constraints, Keys, and relationships

257

relationship, you’ll also see what it takes to create a non-clustered index that is unique

on the many-to-many relationship. The unique constraint is critical to make sure that

you don’t have duplicate records in the database.

 Soft delete or hard delete, either way, just make sure it
works
A good thing to remember about this setup is that if you are using a soft delete approach,

you’ll need to make sure that any relationships are still intact if you delete and then

restore an object. This could be accomplished by soft deleting the join entry or just

leaving it alone while making sure the data is handled correctly in both directions.

If you use a hard delete approach, then deleting one of the sides of the relationship

should also delete the entry in the join table via a cascading delete operation.

By the end of the activity, you’ll be able to define a many-to-many relationship in

code explicitly. You’ll also understand what it means to set up a unique constraint as a

non-clustered index on your database using the code-first approach.

 Task 0: Getting started
Once again, you can continue to use the code that you’ve been working on through the

chapter, or you can grab the EFCore_Activity05-3_StarterFiles and use those to complete

this activity. Remember to check Appendix A for information about using starter files.

 Task 1: Create the Genre
As you’re tracking items, you likely have some inventory categories like movies and

books, games, or other types of media. One common grouping that might exist across

categories would be Genre. For example, you can have books and movies that are

considered to be “Western” or “Sci-Fi.”

 Step 1: Add the Genre entity model

To get started, add a new constant in the InventoryModelConstants file in the

InventoryModels project as follows:

public const int MAX_GENRENAME_LENGTH = 50;

Chapter 5 Constraints, Keys, and relationships

258

Next, create a new entity in the InventoryModels project for Genre as a

FullAuditModel. Add a string Name property to describe the Genre, and constrain the

Name field using constraints that already exist. Make sure to add any missing using

statements so the code will compile. You’ll keep the Genre model pretty simple for

purposes of demonstration and brevity.

public class Genre : FullAuditModel

{

 [Required]

 [StringLength(InventoryModelsConstants.MAX_NAME_LENGTH)]

 public string Name { get; set; }

}

As always, in order to add the entity, you’ll need to put the Genre into the DBContext.

Open the InventoryDbContext file in the EFCore_DbLibrary and add the following code

after the line of code that contains public DbSet<CategoryDetail> CategoryDetails...:

public DbSet<Genre> Genres { get; set; }

For clarity, part of the InventoryDbContext is shown in Figure 5-39.

 Step 2: Add the migration and update the database

Instead of trying to do everything in one migration, this time you’ll separate the different

actions into their own migrations. This will allow for both migrations to be managed

more easily.

Figure 5-39. The InventoryDbContext is shown to illustrate the code changes

Chapter 5 Constraints, Keys, and relationships

259

Make sure that you’ve pointed your PMC at the EFCore_DbLibrary, and then run the

command add-migration createGenreTable.

Once you’ve added the migration, validate that the migration is set to create the

Genres table as expected.

With the migration in place and validated, run the update-database command to

add the Genres table to the database.

 Task 2: Create the ItemGenre and the many-to-many
relationship
Now that the Genre table is in place, you’ll create a new entity to model the join table

called ItemGenre. You will then add the associations to join both the Items and the

Genres tables in a many-to-many relationship.

 Step 1: Create the ItemGenre entity model

In the InventoryModels project, add a new file called ItemGenre.cs to create a new class

ItemGenre.

In the new class, add the following code:

public class ItemGenre : IIdentityModel

{

 public int Id { get; set; }

 public virtual int ItemId { get; set; }

 public virtual Item Item { get; set; }

 public virtual int GenreId { get; set; }

 public virtual Genre Genre { get; set; }

}

Chapter 5 Constraints, Keys, and relationships

260

 Step 2: Add references to the Item and the Genre classes to fully
create the relationship

Open the Item class and add a new property as follows to associate the Items to Genres

via the ItemGenres table:

public virtual List<ItemGenre> ItemGenres { get; set; } = new

List<ItemGenre>();

Next, open the Genre class and add a new property as follows to associate the Genres

to Items via the ItemGenres table:

public virtual List<ItemGenre> GenreItems { get; set; } = new

List<ItemGenre>();

 Step 3: Create a new migration

With both of the sides of the equation in place, that is enough to generate the table and

relationships via a migration, even without adding the ItemGenre entity as a DbSet in the

InventoryDbContext. If you would like to directly query the ItemGenre table, you could

add it to the context. However, you will likely only query this relationship from the Item

or the Genre and won’t need a direct query against the ItemGenre table.

Run the command add-migration createItemGenreJoinTableAndRelationships.

Once the migration is generated, review it to ensure that the table to join Items and Genres

is created as expected. The migration should look like what is shown in Figure 5- 40.

Chapter 5 Constraints, Keys, and relationships

261

Figure 5-40. The migration to create the ItemGenre table includes the constraints
and the indexes necessary to link the Items to the Genres in a many-to-many
relationship

Chapter 5 Constraints, Keys, and relationships

262

Once again, note that the table name here is not pluralized. There are a couple of

ways to fix this. As before, you could define it in the FluentAPI. However, this time you

will do it via Data Annotations.

Run the remove-migration command to delete the recently generated migration.

Once the migration is removed, return to the ItemGenre.cs class and add the following

Data Annotation to the top of the class:

[Table("ItemGenres")]

This will require adding the using statement using System.ComponentModel.

DataAnnotations.Schema to the top of the class. Review Figure 5-41 for clarity.

With the annotation in place, recreate the migration with the command add- migration

createItemGenreJoinTableAndRelationships.

Review the migration to see the table name is updated as expected.

If you want to look even closer, open the Designer file to once again review how the

modelBuilder is generating the relationships. Once you’ve reviewed the migration, run

the update-database command to apply the changes.

Figure 5-41. The ItemGenre class code is shown to highlight the use of the Table
data annotation

Chapter 5 Constraints, Keys, and relationships

263

 Step 4: Review the database to ensure the structure is
as expected

After the changes are applied, review the tables to ensure that all of the tables you expect

are in place, and relationships and indexes exist as expected.

Figure 5-42 shows the many-to-many relationship in a database diagram.

The main benefit of this approach is you now have full control of the join table,

should you have a desire or need to do so.

 Task 3: Use the Index attribute to create a unique,
non- clustered index
To keep from having multiple rows in the database that map the same two Item and

Genre entities into a relationship, you need to create a new index that makes that

combination unique. This is important so that you can make sure that when you create

a new record, update a row, or perform a soft delete or restore from delete, you don’t

create duplicate rows that are essentially mapping the same two entities.

Figure 5-42. The Items and Genres are related in a many-to-many relationship
via the ItemGenres join table

Chapter 5 Constraints, Keys, and relationships

264

In EF6, this task was easily accomplished using an Index attribute. In EFCore versions

prior to EFCore5, you had to do this via the Fluent API. In EFCore5 and EFCore6, the

Index attribute has returned, so creating a unique, non-clustered index is accomplished

by adding an attribute to the class.

 Step 1: Add the Index to the ItemGenre class

To create the non-clustered, unique index, open the ItemGenre.cs file from the

InventoryModels project.

At the top of the file, before the class declaration, add the following code:

[Index(nameof(ItemId), nameof(GenreId), IsUnique=true)]

Adding this code will require that you import the Microsoft.EntityFrameworkCore

NuGet package into the InventoryModels project. Figure 5-43 shows how the Index

is not recognized, but the suggestion exists to install the package for Microsoft.

EntityFrameworkCore. You will be able to use the version that is local to your project,

which will add the appropriate references into your project.

Once the package is imported, make sure that you’ve added the using statements

using Microsoft.EntityFrameworkCore and using Microsoft.EntityFrameworkCore.

Metadata.Internal at the top of the class. The suggestion might ask you to use

Metadata.Internal, but you will need to remove that statement if it is added to your

using statements.

Figure 5-43. Using the Index attribute will require a reference to Microsoft.
EntityFrameworkCore in the InventoryModels project

Chapter 5 Constraints, Keys, and relationships

265

 Step 2: Add the migration

With the Index attribute in place, you can add a new migration to see the

changes that will be applied to the database. Run the command add-migration

createUniqueNonClusteredIndex_ItemGenres. The resulting migration should look

similar to what is shown in Figure 5-44.

After you’ve reviewed the migration, go ahead and run the update-database

command.

 Step 3: Review the database

Once the database changes are applied, you can review the ItemGenre table to see that

the index is in place to ensure that the ItemId and GenreId are grouped in a unique,

non-clustered index (see Figure 5-45).

Figure 5-44. The migration drops an existing index and builds a new unique,
non-clustered index on the two columns ItemId and GenreId

Chapter 5 Constraints, Keys, and relationships

266

 Step 4: Ensure the code executes

As always, run the program to ensure that the program executes as expected. The final

output has not changed, so it is the same as you would see in Figure 5-21.

 Activity 5-3 summary
In this third activity, you created a many-to-many relationship for tracking Genres and

associating them to Items. In this scenario, you can have a Genre that is associated with

many items, and you can have an Item that has one or more Genres associated with it.

Figure 5-45. The unique, non-clustered index is created to ensure that the
combination of the two Ids must be unique in the table

Chapter 5 Constraints, Keys, and relationships

267

In the previous activity, you saw how EFCore6 created a join table by convention, and in

this activity, you learned how to explicitly create the join table.

You also had a chance to see how to add a unique, non-clustered index to the table

by using the Index attribute. The Index attribute was around in EF6 but then wasn’t

available in EFCore in versions prior to EFCore5. Now, since EFCore5, the Index attribute

is able to be used once again.

One thing you didn’t get to see was working directly with the Fluent API on a table to

define the clustered index, which is also possible, and is how you may have approached

this issue in EFCore prior to EFCore5.

Indeed, using the FluentAPI may be preferable to some, as the command is quite

simple. Had you desired or needed to use the FluentAPI in the OnModelCreating method

of the DbContext file to define the relationship, you could do that with code similar to the

following:

modelBuilder.Entity<ItemGenre>()

 .HasIndex(ig => new { ig.ItemId, ig.GenreId })

 .IsUnique()

 .IsClustered(false);

As you can see, the FluentAPI code is straightforward and easy to use for creating

indexes. You do not need to add that code to your solution, unless you wish to try it out

for yourself.

 Chapter summary
In this chapter, you’ve learned how to build out a better database schema in a code-first

database approach.

At this point, you are in a really good place to start generating some solid database

architectures and implementations. As the developer, it will be your job to know how to

work with constraints and relationships, as well as how to work with them correctly to

achieve the best overall results with your databases.

Chapter 5 Constraints, Keys, and relationships

268

 Important takeaways
After working through this chapter, the things you should be in command of are

• Limiting the length of fields

• Setting constraints on the values of the fields

• Setting default values on fields

• Creating one-to-one, one-to-many, and many-to-many relationships

• Redefining table names and relationships in the FluentAPI and

through the use of Data Annotations

• Adding unique indexes to a table

 Closing thoughts
In the next chapter, you’ll take a deeper dive into working with real data in this system

we’re building, so that you’ll not only have the tools to architect a solid solution but

the skills to develop against the data using common Create, Read, Update, and Delete

(CRUD) actions.

Chapter 5 Constraints, Keys, and relationships

269
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_6

CHAPTER 6

Data Access (Create,
Read, Update, Delete)
In this chapter, you are going to learn about the basic tenets of data access using Entity

Framework. By the end of the chapter, you’ll have a good understanding of how to

interact successfully with the data in your database.

 CRUD
The common actions that most applications need are lovingly referred to as CRUD,

which stands for Create, Read, Update, and Delete. Working with EF to perform CRUD

operations is generally easy and efficient but also requires at least a basic understanding

of the Language Integrated Query (LINQ) syntax.

 LINQ
You may already have some understanding of LINQ. You may even be an expert with

LINQ. Perhaps you consider yourself fairly new to LINQ or you have always felt that it is

confusing. Luckily, there are tools all developers can use to generate some of the basic

LINQ you would need when just getting started. Additionally, you will learn more about

LINQ later in this book.

 Basic interactions
In order to work against the database, you need to understand a few of the common

commands that you’ll rely upon to perform common operations.

https://doi.org/10.1007/978-1-4842-7301-2_6#DOI

270

 Leverage the DbSet<T> objects
As you’ve built out your database library (EFCore_DbLibrary) in previous activities

through the first five chapters, you added properties on a few of your entities to the

InventoryDbContext (context) using code, such as public DbSet<Item> Items { get;

set; }. By adding these properties, you can now leverage the power of EF and work

against these entity sets directly.

For example, if you want to add a new Item, you can build a new Item object in code

and then use the inventory context to add the item with code similar to this block of code:

var existingItem = db.Items.FirstOrDefault(x => x.Name.ToLower()

 == name.ToLower());

if (existingItem == null)

{

 //doesn't exist, add it.

 var item = new Item()

 {

 Name = name,

 CreatedByUserId = _loggedInUserId,

 IsActive = true,

 Quantity = r.Next(),

 Description = description,

 Notes = notes

 };

 db.Items.Add(item);

 db.SaveChanges();

}

This code is directly from the Progam.cs file in the EnsureItem method that you’ve

used in previous activities. In the code, you leveraged the context and made sure an

item didn’t already exist, and if not, you specified the new Item details and used the

extension Add to add a new item on the context Items, and then you saved the changes.

Other examples in the sample code from previous activities leverage the commands

RemoveRange (Remove) and UpdateRange (Update) as well. As such, you’ve already

been exposed to basic create, update, and delete methods, and you’ve easily leveraged

read operations to get the results to the console.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

271

 Common commands
When getting started with EF, you will want to have a few commands in your toolbox. As

you continue to learn and as you build on your skills through this text, you’ll cover more

than just some of these commands. For now, there are a few common commands you

need to know.

A comprehensive list of commands will always be available on the official

documentation site, which can be found here: https://docs.microsoft.com/en- us/

dotnet/api/microsoft.entityframeworkcore.dbset- 1?view=efcore- 6.0.

An additional consideration is that there are some asynchronous methods available.

For most of the code in this book, you’ll leverage the synchronous calls as you are

learning. Later in the book, there is a chapter where you’ll move all the calls to an

asynchronous pattern. The operations are pretty much identical, and for simplicity in

these activities, it’s just more convenient to use synchronous calls. In most real-world

applications, especially disconnected scenarios like the Web and APIs, you will most

definitely be using asynchronous calls.

For your immediate understanding, Table 6-1 examines a few of the common

commands. When looking at the code in Table 6-1, all commands would be run as the

preceding one, with a variable that references the DbContext, and then the specific

property on that context variable to leverage the entity, followed by the command text.

For example, entities referenced from your previous work include entities like Items,

Genres, Players, and Categories.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1?view=efcore-6.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1?view=efcore-6.0

272

Please note that most of the operations in the preceding list also require an

additional call to SaveChanges or SaveChangesAsync in order to persist the changes

in the database (up to that point they are simply tracked for save, in what you can

call a transaction – if you don’t make the call to SaveChanges, it is like you rolled the

transaction back). Note also that SaveChanges is called on the context variable itself, not

on one of the entities within the context. In this manner, all pending changes across all

entity sets are saved with one call to SaveChanges.

Table 6-1. Common commands for CRUD operations against the datastore

Command Text Example Use

Add db.Items.Add(item) add a new Item (or other entity) to the

database table.

AddAsync await db.Items.

AddAsync(item)

add a new Item (or other entity) to the

database table.

AddRange db.Items.

AddRangeAsync(items)

sets an Ienumerable<Item> to be tracked and

ready to insert each item in the Ienumerable.

AddRangeAsync await

db.AddRangeAsync(items)

sets an Ienumerable<Item> to be tracked and

ready to insert each item in the Ienumerable.

Find db.Genres.Find(2) Find a Genre (or other entity) by the Id [when

the Id is a key].

FindAsync await db.Genres.Find(7) Find a Genre (or other entity) by the Id [when

the Id is a key].

Remove db.Categories.

Remove(aCategory)

remove a Category (or other entity) by

passing a tracked entity.

RemoveRange db.Items.

RemoveRange(items)

remove all of the Ienumerable<t> from the

database.

Update db.Items.Update(item) Update a tracked Item (or other entity) by

passing a tracked entity with modified values.

UpdateRange db.Items.

UpdateRange(items)

Update all of the Ienumerable<t> objects.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

273

As previously mentioned, there are other methods available to you, as well as more

preferred ways to work with LINQ to get query results. You will see some of this in action

in the activity that concludes this chapter.

 A final thought before diving into the activities
To this point, you’ve been working with a database library and have mostly focused on

the schema for the database and how to work with the code-first approach to affect the

schema.

In this project, you will just spin up a new database and leverage your previously

built models in the project to quickly see how easily you can port your code.

It is entirely possible that you could bring your EFCore_DBLibrary project into the

solution as well, but if you do this, you would need to understand how to work with

multiple contexts in your solution. The concept of multiple contexts will be covered later

in the book, if you are interested in how to do this. For now, you’ll just use the default

context that is brought into the project.

 Activity 6-1: Quick CRUD with scaffolded controllers
To this point in the book, there hasn’t been any focus on picking a UI implementation.

As such, for all the activities, you have only worked with console applications. This is

purposeful, and with a couple exceptions, all activities will be using the console as it

would be easy for any developer to port the UI work to their UI of choice, be it WPF, ASP.

Net MVC, Blazor, Razor Pages, or even just to expose the data via a REST API.

However, for this activity, to get started with learning practical CRUD activities,

you will be creating a simple web application to let the system do the scaffolding

work for you. For this reason, you’re going to leverage a very simple ASP.Net MVC

implementation with scaffolded views and controllers. If you want to try other

frameworks, such as Blazor, that is fine as well, but this book will only be supporting the

MVC framework for this activity, so I’d suggest you use that first and then try again with

Blazor or another UI framework.

The main learning here will be the code that is generated in the controllers, but you’ll

also get to see how quickly you can spin up a basic web application in ASP.Net MVC.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

274

 Task 0: Getting started
For this activity, I would encourage you to just start with a brand-new project and follow

the tasks and steps in the activity to complete the work.

However, for reasons of simplicity and clarity, a starter file set is also available if

you wish to skip the setup and creation of a new web project. If you are using the starter

files, locate the EFCore_Activity06-1_StarterFiles, extract the files, build the project,

update the database, and run the project (it will spin up a website locally). If you run into

an issue with the database, make sure the connection string points to your local database

implementation. If you continue to have issues, consider using a different database

name than you’ve been using in the previous chapters.

Once you’ve ensured that the project is ready, using the starter files, you can skip

Task 1 and go directly to Task 2.

 Task 1: Creating the new MVC project
In this first task, you will create a new MVC project from the ground up, and you will

associate the EFCore_DbLibrary project and the InventoryModels project with the new

web project.

 Step 1: Setup

As mentioned, for this activity, you are going to start from scratch and import the

database code you’ve already written.

To begin, open the VS IDE and select Create a new project. In the Create a

new project dialog, select the C# ASP.Net Core Web Application (Model-View-

Controller) template (see Figure 6-1).

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

275

On the Configure your new project dialog, choose an appropriate folder (e.g.,

C:\APressEntityFramework\Code) to save the project. Name the project EFCore_

Activity0601 (refer to Figure 6-2 for clarity).

Figure 6-1. Use the Create a new project dialog to select a new ASP.Net Core Web
App (Model-View-Controller)

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

276

In the Additional information dialog, select the Target Framework as .NET 6.0, and

then use individual accounts for the authentication type. Leave Configure for HTTPS

checked; if you are on a Windows box, do not check Enable Docker but make sure to

check Enable Razor runtime compilation (at the time of this writing, failing to check

the compilation results in an error on load for not being able to find Home/Index).

If you are on a Linux box or a Mac, you may need to use Docker (or desire to use

docker). In the end, if you do use containers, you will need to be able to connect to a

local database from the web application. Note that the use of containers is not covered in

this book.

Figure 6-3 shows the Additional information dialog in more detail.

Figure 6-2. Use the Configure your new project to name the project and select the
location on your hard drive to store the solution

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

277

If you fail to change the Authentication Type to Individual Accounts, you can still

bring in the EFCore6 libraries and work with a database, but you would have to set that

up manually and it’s a lot easier to just let this template do it all for you.

Additionally, by using the Individual User Accounts setting, your solution will have a

fully built authentication schema working for you immediately.

 Step 2: Review the connection string

In ASP.Net MVC Core web projects, the database connection string is stored in the

appsettings.json file by default. Open the appsettings.json file now to review the

current connection string information (see Figure 6-4).

Figure 6-3. Use the Additional information dialog to set the Target Framework
to .NET 6.0, the Authentication Type to Individual Accounts, and Configure for
HTTPS

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

278

As you can see, the connection string is in a default section called

“ConnectionStrings” and the name of the key for the value of the connection string is

“DefaultConnection”. Also note that the connection string is a new database name that

is generated. For the purposes of this activity, and for ensuring that this activity doesn’t

interfere with your other activities, leave this connection string in place as is (your GUID

in the connection string will be different than mine, and that is OK).

 Step 3: Review the project setup

Note in the default project that there are folders for Views, Models, Data,

and Controllers. The Data will have all the data migrations and the context

(ApplicationDbContext in this case). Also note that the Data folder has an initial

migration to run that will set the identity into place for managing users.

The ApplicationDbContext is where the project will interact with the database in the

same manner that the InventoryDbContext has done in previous projects to this point.

The Models folder holds entities, just like the InventoryModels project you’ve

used in previous activities. The Views folder holds the UI layout and page views for the

various routes that are implemented in the project. Finally, the Controllers folder is

where the logic happens to drive the project by responding to routes. For example, the

HomeController responds to the route https://yourapplication/home/…. And the

“…” in this case can be blank, which directs the route to Index, or you can create other

routes manually. Each route should have a matching view in the Views folder under the

appropriate controller. ASP.Net MVC uses convention over configuration – so as long as

everything is named correctly, the solution will just work for you.

Figure 6-4. The appsettings.json file in the web project stores the local connection
string

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

279

 Step 4: Review the Startup.cs file

The Startup.cs file is the lifeblood for the application at startup and handles the

configuration and initialization for the project. Most importantly, the context is

initialized for use in the rest of the project via dependency injection.

Open the Startup.cs file and review the ConfigureServices method. Here, you

will see the code to add the DbContext, as well as other initialization calls. Note that the

name of the connection string here directly matches the name of the connection string

in the appsettings.json file. See Figure 6-5 for more clarity.

If you continue examining the Startup.cs file, you will also see the default routing

and other initializations for authentication and authorization.

 Step 5: Get your Models project into the solution but do not
reference them yet

In order to complete this activity, you’ll need your model files from previous activities.

For now, you’ll just put them in place in the project, but you won’t use them yet.

Locate the folder on your hard drive that contains the files previous activity (your

files as they were at the end of Activity 5-3). In that folder, you should have project folders

for the activity, the DbLibrary, the InventoryHelpers, and the InventoryModels (see

Figure 6-6).

Figure 6-5. The Startup.cs file ensures the ApplicationDbContext is loaded and
available for reference in the project

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

280

Copy the InventoryModels project folder and paste it in the folder that contains your

Activity 6 solution.

If you don’t have the files or didn’t do the previous activities, you could get the final
version of the files from activity 5-3 and use the project folder from that solution.

After you paste the files in the solution folder, your current physical folder should

look like what is shown in Figure 6-7.

Figure 6-6. Locate the project folder for the InventoryModels from
EFCore_Activity0503 and copy them to the clipboard

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

281

As a final step, add the project into the web solution by right-clicking the EFCore_

Activity0601 solution (not the project) and selecting Add ➤ Existing project, and

then import the InventoryModels project. When the operation is completed, your

solution should look like what is shown in Figure 6-8.

Figure 6-7. The InventoryModels project has been copied to the solution folder for
Activity0601

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

282

You are now ready to start working in the project to build out simple scaffolded

CRUD operations for your entities. Additionally, the code should now be in the exact

same state that it would be if you were to have grabbed the starter files for the activity,

with the exception that the starter files have been cleaned of generated code like what

you would find in bin and obj folders.

 Task 2: Start working with the ASP.Net MVC project
In this next task, you will ensure that the initial migration is run and that you can easily

register users and run the basic web project.

Figure 6-8. The InventoryModels project has been imported to the solution but is
not yet referenced in the web project

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

283

 Step 1: Update the database

Make sure that you have the project open, and then browse to the appsettings.

json file. In this file is the connection string for the database. Do not point this at the

implementation you have been using in previous activities, but instead just leave the

default connection set as is.

Open the PMC and make sure it is pointed at the EFCore_Activity0601 project.

There is no separate database library in this solution. Run the update-database

command to create the initial migration.

If you receive an error due to an inability to connect to the database, then go ahead
and change the connection string to point to your localhost or SQLExpress
instance that you generally use. In that case, ensure that you are not using the
same database name as your other activities have used. It will be important to
keep this activity in its own database.

After the command succeeds, use SSMS to review the new database (see Figure 6- 9).

Note that you will need to connect to the (localdb)\mssqllocaldb in this case, not

your original localhost or SQLExpress (use the connection string to guide you on the

connection). One other note – the appsettings.json file uses an escape slash in the

original connection string [(localdb)\\mssqllocaldb]. You will need to remove the

extra slash to connect in SSMS [(localdb)\mssqllocaldb].

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

284

 Step 2: Run the project and register a couple of users

After you’ve validated that the connection is working, run the project by hitting “F5” or

the green play button, which will open up your browser to the localhost:<some_port_

number>\home\index route (which will likely just show localhost:<some_port_number>

in your browser).

Figure 6-9. The database is created successfully, and all of the identity tables are
in place as expected

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

285

Use the Register link at the top right to add a new user, and then give the user

an email such as bob@bob.com and a password that has at least eight characters, an

uppercase character, and a special character like any of the shifted numbers (!@#$%^&*).

Make sure you can remember the password. Figure 6-10 is shown for clarity.

Important! after registering your user, ensure that you click the link that says
Click here to confirm your account (see Figure 6-11). If you fail to do this, you
will need to manually update the user record in the database to set the value for
EmailConfirmed to 1 in order to log in successfully.

After confirming the account, use the Login button at the top right to log the user in.

When logged in, the user email should be shown at the top right as in Figure 6- 12.

Figure 6-10. The registration is in process for bob@bob.com

Figure 6-11. It is important that you click the link to confirm the account;
otherwise, the user won’t be able to log in

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

bob@bob.com
bob@bob.com

286

Once you’ve been able to log in, stop the project and/or close the web page. You

could also run a quick query on the users table in your database to ensure your user

information is stored there.

 Step 2: Import the InventoryModels project

The InventoryModels project is already part of the solution but is not currently being

used. In this step, you’ll add the reference and then set the models to be used in your

database for this web solution.

Right-click the EFCore_Activity0601 project (not the solution). Select Add

➤ Project Reference. When the dialog comes up, check the box next to the

InventoryModels project. When completed, you should see the reference listed in the

Solution Explorer as highlighted in Figure 6-13.

Figure 6-12. The user is logged in and the email is shown at the top of the web page

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

287

Before you will be able to add the models to the database, you will need to reference

them in the ApplicationDbContext via the DbSet<TEntity> pattern you’ve seen in

previous activities.

Open the ApplicationDbContext.cs file, located in the Data folder of the main

EFCore_Activity0601 project. Add the following code to the file after the class

declaration and before the public constructor (if you’ve done the previous activities, this

code should look very familiar):

public DbSet<Item> Items { get; set; }

public DbSet<Category> Categories { get; set; }

public DbSet<CategoryDetail> CategoryDetails { get; set; }

public DbSet<Genre> Genres { get; set; }

Figure 6-13. The InventoryModels project is now referenced in the base activity
project

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

288

After bringing the code in, make sure to add the using statement using

InventoryModels; to the top of the file in order to resolve the missing reference to the

InventoryModels project.

 Step 3: Add a migration and update the database

Now that the models are in place and they are ready to be added, return to the PMC and

run the command add-migration createInventoryModelsEntities. You may receive

a couple of warnings about the precision on decimals (No store type was specified….or

configure a value converter using ‘HasConversion’), but you should still be able to create

the migration.

Take a minute to review the migration. You should note that all of the tables are

scheduled to be created in the migration, including the Player table, even though that

table was not explicitly named in the DbContext (later you would likely need to add it

to get access to the entities via code). Additionally, the ItemGenre and ItemPlayer join

tables are listed, as are the base tables for Categories, CategoryDetails, Genres, and

Items. Note that since nothing is being overridden in this FluentAPI as you’ve done in

prior chapters, table names and field names might not be exactly as you would desire in

the real world. For the purposes of this activity, you will not need to do any additional

changes. If you wish to fix this and/or get some extra practice, review the code from

the end of Activity 5-3. You could potentially override the OnModelCreating method in

the ApplicationDbContext and rework the migration to match what you did in the last

chapter.

With the migration in place, run the update-database command to apply the

migration. Note that the warnings about precision will be repeated but will not block the

migration from being applied.

 Step 4: Review the database

Once the migration has been applied, open the database in SSMS and refresh, and then

validate that the expected tables are in place. Figure 6-14 shows the expected database

structure after applying the migration.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

289

 Task 3: Create CRUD for the items
In this task, you will use the built-in tools within the ASP.Net MVC framework to quickly

generate a number of CRUD operations to work with your database.

 Step 1: Scaffold the Items controller and views

To begin, it’s time to see if you can leverage the database in the web project. Start

by right-clicking the Controllers folder and selecting Add ➤ Controller (shown in

Figure 6-15).

Figure 6-14. The database is now set with users and all of the expected tables from
the InventoryModels project

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

290

When the Add New Scaffolded item dialog comes up, select MVC Controller with

views, using Entity Framework, and then hit the Add button (see Figure 6-16).

Figure 6-15. Adding a new controller starts by selecting Add ➤ New Controller

Figure 6-16. Selecting the scaffolding options

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

291

On the Add MVC Controller with views, using Entity Framework dialog, select

the Item (InventoryModels) for Model class and the ApplicationDbContext for

Data context class. Leave all other options as they are by default. Note that the new

controller will be named ItemsController. Hit the Add button. Review Figure 6-17 for

clarity.

This process will take a minute or two to complete, but when it is done, you will

have a fully functional UI for CRUD operations on Items. It will not be completely

user- friendly, however.

 Step 2: Review the Items controller that was generated

Open the ItemsController.cs file in the Controllers folder of the main activity project.

Note that the controller has an ApplicationDbContext that is injected for use against the

data.

Notice that both the Index and the Details methods leverage the context to get

items (read). Also note that operations are asynchronous by default in this web solution.

Notice the Post methods for Create and Edit and how the context is leveraged to

update data that is passed in from the UI.

Figure 6-17. The Model class and Data context class are set, and the new
controller will be named ItemsController

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

292

Also notice there is a Delete method that is ready to remove items once confirmed

by the user.

Figure 6-18 shows part of the generated code with a few callouts.

 Step 3: Run the project to see the CRUD operations in action

Once the scaffolding is completed and you have reviewed the controller, go ahead and

run the project.

Once the project comes up, navigate to the route: localhost:<some_port_number>/

Items to execute the Items/Index route (see Figure 6-19).

Figure 6-18. The Items controller is ready to work against the database for CRUD
operations on the Item entity

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

293

Click the Create New link and you’ll notice you don’t have any Categories to choose

from, since none exist in the database. Another problem is going to be the required

CreatedByUserId. If you want to save a record, just put any string in that field for now

(it’s not referential as it should be). Figure 6-20 shows a record I created by setting my

own name in the field. Obviously, in a real-world solution, you would want to use the id

of the logged in user, and you wouldn’t even present these fields to the user for editing or

viewing.

Go ahead and try creating a couple items, and then scroll over to the far right and try

editing and deleting items. You should be able to easily see that the data can easily be

worked with.

If you want to see even more CRUD in action, scaffold the Categories by repeating

the preceding steps for the Category and Genres entities, and then navigate to each of

those controller routes and add a couple of each type to the solution. Figure 6-21 shows

a quick look at what it might look like to add some categories in your solution (note that

the final files have these controllers scaffolded).

Figure 6-19. The Items default view is shown, with no items listed since none
currently exist

Figure 6-20. A record can be created as long as all required fields are satisfied.
Currently, the user is not wired up as would be expected in a real-world scenario

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

294

With Categories in place, go back to the Items view, select Create New, and you

should see available categories to choose from when adding items. Figure 6-22 shows

what this might look like if you go through with this effort (also note that the final version

of the files has all of this in place if you just wanted to look there).

Figure 6-21. With Categories scaffolded, you could easily add some categories to
the database

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

295

Figure 6-22. The Items create and edit will now have the ability to select one of the
existing categories. The current view is set to show the Id. You could adjust this to
show the name easily enough by manipulating the Item’s Create.cshtml file to show
the category name

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

296

please note that this is not a production-ready solution. there are too many
reasons to list here, but a couple critical ones are that there are a number of
security issues, the code is not set to handle the logged in user or be unique to the
user, and sensitive fields are shown directly to the user for manipulation. the code
also doesn’t work without magic knowledge (i.e., enter a string for created user id),
and the Categories list is showing the id and not the name. For this reason, please
do not take this solution and utilize it in production.

The activity is completed, but spend some time looking at the generated CRUD code

in each of the controllers and review how LINQ is used to interact with the database. You

will get plenty of opportunities in the rest of this book to use similar code, but seeing it

here should help you to get started learning more about the expected ways to interact

with the context using LINQ.

 Activity 6-1 summary
In this activity, you took the InventoryModels project that you had worked with in the

past and included it into a new web solution. You were able to use code-first migrations

to update the new database, and with just a few more clicks, you were able to use built-in

tools in the MVC framework to generate fully operational CRUD web pages.

Even though these pages aren’t production ready, you were able to see that

separating your models out into their own file is extremely nice for reusability.

Additionally, you were able to use the scaffolded controllers to be able to easily see

how to perform some of the CRUD operations you will need to know without having to

struggle to write any of the code.

 Chapter summary
In this chapter, you learned a little bit about CRUD and using LINQ with the database

context. You were then able to quickly spin up a new web solution and use the built-in

tools to generate a starter project for working against your inventory.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

297

 Important takeaways
After working through this chapter, the things you should be in command of are

• Leveraging existing model projects in a new project

• Creating a new web solution and importing projects

• Basic knowledge of adding built-in authorization and authentication

to an ASP.Net web project

• How to scaffold controllers in ASP.Net MVC

• What it looks like to use LINQ and the database context for CRUD

operations on data

 Closing thoughts
This chapter gave you a good overview and really served as a checkpoint to how far

you’ve come in the first six chapters. By now, you are really starting to take command of

working with code-first solutions to design and implement robust solutions.

In the next chapter, you will take a look at how you can continue to build out your

data solution to use database objects like stored procedures, functions, and views.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

299
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_7

CHAPTER 7

Stored Procedures, Views,
and Functions
In this chapter, you are going to look into ways to leverage the built-in programmable

features of SQL Server that allow for maximum performance and efficiency.

You’ve already seen that you can easily create tables in a code-first approach

with Entity Framework. However, in real-world applications, you are going to need

to start building out more robust database solutions. By the end of this chapter, you

will have a working understanding of what it takes to leverage database objects like

stored procedures, views, and functions. You’ll also know how to set up your code and

migrations to create and manage versions of these objects. Along the way, you’ll also

learn more about the Fluent API and how you can leverage it to further define entities

and data in your solutions.

 Understanding stored procedures, views,
and functions
Before you dive into working with stored procedures, views, and functions, you should

make sure that you are fully aware of what they are and why you would use them.

Additionally, with these schema objects, you’ll be working with datasets that don’t

necessarily map to a tracked database object. For that reason, you need to learn a couple

of new techniques when working with your database context and the model builder.

In the course of the activities at the end of the chapter, you’ll see what it takes to add

a query set into the database context so that you can get the results you are expecting

when working with stored procedures, functions, and views. With all that, it’s time to

take a brief moment to discuss stored procedures, functions, and views, so that you will

be ready to leverage them in your database solutions.

https://doi.org/10.1007/978-1-4842-7301-2_7#DOI

300

 Stored procedures
As developers, we can easily write code in C# or VB.Net that does repetitive operations

like looping, making calculations, or mutating data. However, you are likely aware that

it is also possible to write code in Microsoft SQL using the T-SQL syntax. If you weren’t

aware of this, you will be very aware of it by the end of this chapter.

 Advantages of stored procedures

Writing some code on the server has a number of advantages, with the main advantage

being efficiency. When you create a stored procedure, you are essentially writing

a functional unit of code that can take parameters and perform queries and data

manipulation on the server. By using the server to run this prepared code, the server

itself can create and store execution plans, thereby speeding up the operation for

each subsequent call to the code. An additional benefit of this approach is that using

the stored procedure allows for returning the manipulated data directly rather than

returning a large set of data and then still needing to use C# or VB.Net code with LINQ to

further process the data in memory.

 Creating a stored procedure

You can easily create a new procedure with the syntax CREATE OR ALTER PROCEDURE

<name>. The easiest way to get a procedure script started is to right-click Stored

Procedures under Programmability in SSMS and select Stored Procedure, which

generates a script.

Great examples and use cases for stored procedures generally fall around operations,

such as getting large result sets and performing calculations as part of the results.

 Functions
Scalar and table-valued functions are extremely versatile and can help you to easily set

up a routine that can manipulate your data, even when the view selection is part of a

larger query.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

301

 Advantages of functions

Like stored procedures, functions can take parameters and can be optimized by query

execution plans stored on the server.

The two types of functions have distinctly different uses. For situations where a

single-value result is needed, you can create a scalar function. In other situations, you

might need a result set, which can be returned as an in-memory table as a table-valued

function.

 Examples of functions

A good example of a scalar-valued function would be a function that manipulates data

from an array into a comma-separated list as a single string. An example of a good table-

valued function might be to get the items that were added to a table in the last two weeks

and then further use that data to join against another table or to potentially get a limited

set of data based on those results compared to some metric in the fields from that result

set.

 Views
Another scenario that happens frequently in the real world is one where you need to

get some conglomerated data, which generally requires joining one or more tables. You

then need to be able to perform some sort of sorting or filtering against that data, such as

getting the top ten results or results where a field contains some key value.

 Advantages of views

Anytime you run into a situation where you need to denormalize your data to present a

segment of data for user review or reporting and then filter that result, a view can be a

very handy asset.

Where a stored procedure takes parameters and manipulates data using prepared

statements, you can think of a view as a prebuilt query that gets the results as designed

and allows further filtering against that data.

Another way to think of this is that a view can be envisioned as an in-memory table

with denormalized data based on pre-specified table joins.

The benefit of using a view is that you’ve abstracted the denormalization so that the

filtering can happen simply without having to also redefine the join statements.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

302

Once a view is in place, you can make calls against the view data with a simple

SELECT ... WHERE query statement against the view, or you can use the view to join to

other tables for even more specific results.

 Examples of using views

A very typical use of a view would be to generate data for a report, such as all items with

an included category name. You could then further limit that view to only return those

rows that have a category name of movie.

When building out your solutions, you will rarely be needing data from just one

table. You could create a call that joins data and returns it to the calling code for further

manipulation with LINQ, which would work well in most scenarios. However, if you have

a common query that you need for a specific view that the user can easily interact with,

consider building a view to increase the performance of your system.

 Setting up the database to run scripts efficiently
In the past, out of the box, EFCore hasn’t had a super nice way to handle non-table

database structures. In older versions of the .Net Framework, you would have been

able to write files and then use those files to generate a SQL database script. In code-

first entity framework solutions, you can add a migration and then put a script in the

migration directly for execution. Even though this is possible, having random scripts

in your migrations is not the most ideal solution and can lead to a couple of problems,

which you’ll examine in the following.

Therefore, in order to work with non-table database objects in EFCore code first,

we generally need to implement a quick solution. One caveat to this approach is that

EFCore5 implemented some new functionality around some of these items, including

the ability to do a ToFunction or ToView call in the Fluent API to map queries to table-

valued functions and views, which you can leverage in EFCore6.

 The problem
To make the issues with directly scripting a stored procedure in a migration clearer,

let’s examine a potential migration and then an update to that procedure in a second

migration.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

303

First, here is a script that would easily generate a stored procedure to get items with

genre and category information:

CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, g.Name as Genre, cat.Name as

Category

 FROM dbo.Items item

 LEFT JOIN dbo.ItemGenres ig on item.Id = ig.ItemId

 LEFT JOIN dbo.Genres g on ig.GenreId = g.Id

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO

This is a straightforward query, but if you put this query into a migration directly, it

would look like what is shown in Figure 7-1.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

304

As you might imagine, putting the code inline inside the migration makes it

somewhat tricky to do a code review on the script. Additionally, putting in the second

and consecutive migrations leads to large scripts in both the Up and Down methods. In

this scenario, the first query joined Items to both Genres and Categories. Consider what

would happen if the next update is requiring that the join to Genres and ItemGenres be

removed. For an example of how verbose the migrations could become in a scenario

such as this, review the following code, which updates the original query to remove the

association to Genres:

Figure 7-1. The migration to create a stored procedure is possible by just using
inline SQL in the migration itself, but this can get messy very quickly

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

305

 protected override void Up(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.Sql(@"CREATE OR ALTER PROCEDURE

 dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, cat.Name

 FROM dbo.Items item

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO");

 }

 protected override void Down(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.Sql(@"CREATE OR ALTER

PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, g.Name, cat.Name

 FROM dbo.Items item

 LEFT JOIN dbo.ItemGenre ig on item.Id = ig.ItemId

 LEFT JOIN dbo.Genres g on ig.GenreId = g.Id

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

306

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO");

 }

 }

The complexity to perform a code review also increases, as the available choices are

to compare the code in the Down method to the code in the Up method for changes, or to

find the previous migration for this procedure and compare the scripts as hard-coded in

each migration’s Up method.

As if that isn’t bad enough, although you have history via this code, you don’t have

a well-organized history that is easy to review or even find the version for which you are

looking. Once you get to version 6, for example, you would have to sort through all of

your migrations to find the six migrations to compare to figure out where in the history of

the code the issue you might be looking for exists or was created.

Therefore, you and your team need a better solution, a solution that is a nice and

easy way to keep your migrations to a minimal footprint while also giving your fellow

developers an easy way to review your changes and ultimately making it easier to track

code versions in a historical fashion.

 The solution
As you’ve seen earlier, you can run a script in the migration using the migrationBuilder

calling the Sql method. As with other objects in .Net, migrationBuilder can be

extended. To make a solution to the migration with hard-coded scripts, you’ll be writing

a simple extension that will get the script by reading a text file to a string.

After creating the extension method, all you need to do is add the text files into your

project as embedded resources, and you no longer have to write your Sql scripts inline.

You then reference the file directly in the migration.

In addition to removing the code from the migration file, this solution gives you

and your team the ability to easily keep and track all versions of the scripted database

objects. You’ll take a look at this solution in more detail as you work through the first

activity for this chapter.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

307

 Fluent API
To this point in the book, you haven’t really spent a lot of time taking a look at the

Fluent API and how you can use it in your code. When you worked with models in

Chapter 4 and relationships in Chapter 5, you saw Data Annotations, and you used the

data annotations to build things like required fields, string length, keys, and the various

relationships between entities. However, you did get a chance to take a quick look at

working with the FluentAPI to directly define the field names and table names for the

many-to-many relationship join tables for Players to Items.

 What can you do with the Fluent API
The Fluent API can do everything you can do with data annotations, but it also allows

for more specific configurations that you can configure directly. In the activities for this

chapter, you’ll leverage the Fluent API to make sure that an entity you are creating does

not generate a new table in the database or insert itself into every migration while still

being available to be used for querying objects. Additionally, as mentioned previously,

EFCore5 introduced a new feature for doing flexible entity mapping in the Fluent API

to make calls, such as ToFunction or ToView, so you will be able to take advantage of

flexible entity mapping in this EFCore6 implementation as well.

 How do you work with the Fluent API
In order to work with the Fluent API, you’ll need to override another method in your

database context. The method that you will override is called OnModelCreating which

has a parameter of type ModelBuilder. If you worked through the Chapter 5 activities,

you’ve already done this. If not, the code already exists in the starter files and you will get

to work with the OnModelCreating method in this chapter as well.

The Fluent API is leveraged from this model builder with references, such as

modelBuilder.Entity<Item>().Property(x => x.Name).IsRequired()

and

modelBuilder.Entity<Item>().HasOne(x => x.Category).WithMany(y => y.Items)

Even now, there are already references to the Fluent API in place in the projects you

have been building without you even knowing about them. If you have a project open,

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

308

take a quick look at the auto-generated file InventoryDbContextModelSnapshot.cs in

the InventoryDatabaseCore project to see more Fluent API calls in action. Additionally,

look at the subdirectory for every migration. Each one has some Fluent API code in it.

Figure 7-2 shows part of the current InventoryDbContextModelSnapshot as of the end of

Activity 5-3 and the start of Activity 7-1.

For the activities in this chapter, you’ll be building out the override for

OnModelCreating to set entities to not have a key and to act like a read-only view. You’ll

see this in full detail in the activities, but a sample of what you’ll see looks like this:

modelBuilder.Entity<GetItemsForListingDto>(x =>

{

 x.HasNoKey();

 x.ToView("ItemsForListing");

});

Figure 7-2. The InventoryDbContextModelSnapshot has been using the Fluent
API all along, and part of it is shown here

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

309

Here you can see how the GetItemsForListingDto entity object will be set to an

object with no key – that is no Id field – and then will be set to act as a view called

ItemsForListing.

 Working with the database objects
In the final part of this chapter, you will again dive into three new examples where

you can learn about building out your scripting solution and working with non-table

database objects.

While these activities focus on stored procedures, views, and functions, please

remember that with this scripting solution using files, you will be able to run any

database script to create or modify any database objects. For example, you could easily

create scripts for other objects like indexes or triggers, if desired, or you could run scripts

from files to modify data, if that made sense for your solution.

 A final thought before diving into the activities
The concept of working with stored procedures, functions, and views is an important

part of any developer’s toolbox and should be an area that you spend a bit of time

making sure that you are good at this type of development.

There will always be a trade-off – everything you do in a view can likely be done via

LINQ in memory in the UI, and that type of development generally moves a bit more

quickly than investing the time into creating the database objects. However, the payoff

for using the database objects is nearly always worth it when you have a system under

load and want your users to have the best user experience possible.

In the next three activities, you will touch on the concepts that you need as a

database developer and should leave this chapter with a very solid understanding of how

to move some of your logic into the database to build high-performant systems.

 Activity 7-1: Working with stored procedures
In this first activity, you are going to learn how to work with stored procedures in your

solution. For the first part of the solution, you will utilize the inline scripting method to

create a stored procedure. While this works, you should be able to quickly see the pain

points this would cause for your development team.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

310

You will then write the extension method to leverage the stored procedures (and any

other custom database scripts) from files stored in the solution. You will then conclude

the activity by utilizing the scripting files approach.

Through this practical approach, you should hopefully be able to see how scripting

in files will generally be much better for you and your development teams. Additionally,

you should be in command of writing and using stored procedures in your code-first

database solutions after working through this activity.

 Task 0: Getting started
The first activity will pick up where you left off at the end of Chapter 5, with the code in

place as it was at the end of Activity 5-3. As such, you can continue to work with your

solution from that point (Chapter 6 was a web solution that was divergent from this path,

and you can leave that code behind for now).

As an alternative, feel free to leverage the starter files EFCore_Activity07- 1_

StarterFiles. If you start with the starter files, as always, review Appendix A for

information on working with starter files. Always remember a final version of the files is

available for you to review as well, in the event something from the activity instructions

is not clear.

 Task 1: Create a new stored procedure using inline code
in your migration
In this first task, you will design a new stored procedure and test it locally in the

database. When you are comfortable with the code and ready to set it into a migration,

you will then create the new migration and use inline SQL to manually create the stored

procedure with the migration.

 Step 1: Design the stored procedure

To begin this task, open SSMS and connect to your local InventoryManagerDb database.

Once you’ve connected, right-click the database and select New Query to open a new

query editor window (see Figure 7-3).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

311

For this stored procedure, you are going to do a simple query to get the items for

listing, much like you would want to do if you were building a page that needed this data

for display to a customer.

To simplify the request, you are going to get all of the important Item data, along

with making joins to get Genre and Category information. Additionally, you will want

to be able to set a minimum and maximum date for the items based on the date of item

creation. If you wanted, you could even go further to filter on data for IsActive and

IsDeleted (but that is not part of this activity).

In SSMS, enter the following code into your editor. Feel free to tweak this if you

would like to try more code:

DECLARE @minDate DateTime

DECLARE @maxDate DateTime

SET @minDate = '2020.01.01'

SET @maxDate = '2022.12.31'

SELECT item.[Name], item.[Description]

 , item.Notes, item.isActive, item.isDeleted

 , genre.[Name] GenreName, cat.[Name] CategoryName

FROM dbo.Items item

LEFT JOIN dbo.ItemGenres ig on item.Id = ig.ItemId

LEFT JOIN dbo.Genres genre on ig.GenreId = genre.Id

LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

Figure 7-3. Getting a new query editor window open

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

312

When you run the query, you should see results similar to what is shown in Figure 7- 4.

Note that without any genres or categories, the data is simply null for those values.

If you want to add categories and genres and link them to items, feel free to do so, but

you will officially do that soon.

 Step 2: Create the migration for adding the GetItemsForListing
stored procedure

Now that you have the code you want to use in the stored procedure, it’s time to add it

in a migration. Ensure you are pointed at the EFCore_DbLibrary project and run the

command add-migration createProc_GetItemsForListing. This should generate a

new blank migration.

Figure 7-4. The result of running the query when there are no categories and/or
genres present

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

313

if for some reason your migration is not clean, you had some pending changes that
needed to be applied to your local database. as long as the changes look good/
relevant, you should just apply them via the update-database command and then
make a new blank migration to continue with this activity. if the changes are bad,
examine your current models and ensure nothing is out of line.

In the Up method for the migration, add the following code (but do not update the

database yet):

 migrationBuilder.Sql(@"CREATE OR ALTER PROCEDURE dbo.

GetItemsForListing

 @minDate DATETIME = '1970.01.01',

 @maxDate DATETIME = '2050.12.31'

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.[Name], item.[Description]

 , item.Notes, item.isActive, item.isDeleted

 , genre.[Name] GenreName, cat.[Name] CategoryName

 FROM dbo.Items item

 LEFT JOIN dbo.ItemGenres ig on item.Id = ig.ItemId

 LEFT JOIN dbo.Genres genre on ig.GenreId = genre.Id

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO");

This code will create the new stored procedure. Note also that this code is

idempotent, using the CREATE OR ALTER PROCEDURE statement so that even if the

procedure exists, it will just be altered to match this code and the migration will always

succeed when running forward (the Up method).

Next, place the following code in the Down method:

migrationBuilder.Sql(@"DROP PROCEDURE IF EXISTS dbo.GetItemsForListing");

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

314

This code will also execute idempotently and will always remove the procedure if it is

there when running the rollback of the database via these migrations.

For clarity, Figure 7-5 shows the full migration in place ready to be run.

Now that both the Up and Down methods are in place, go ahead and run the update-

database command to apply the new migration.

Figure 7-5. The migration to create the GetItemsForListing procedure is ready to go

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

315

 Step 3: Validate that the migration was applied

To ensure that the migration worked as expected, run the statement execute dbo.

GetItemsForListing in an SSMS query window. You should see results based on the

stored procedure. You can also check under the database in Programmability ➤ Stored

Procedures to see the procedure (you may need to refresh). Figure 7-6 shows the results

of executing the procedure.

Run the query passing in some dates that will limit results to validate the date

filtering is working. Then run another query using a valid created date range, and ensure

results are returned, for example:

execute dbo.GetItemsForListing '2001.09.11', '2021.01.01'

execute dbo.GetItemsForListing '2022.01.01', '2025.01.01'

execute dbo.GetItemsForListing '2021.01.01', '2021.12.31'

One thing to note is that you have gotten the procedure in place, and everything

should work as expected. However, you should also note that any code review on this

migration would have to look at the text in the file to ensure it is good.

Noting that the next procedure would require comparing the code in the Up method

to the Down method just to see the changes, you should be able to start seeing that this is

not a very scalable approach for your team when it comes time to review changes, or to

find when changes were applied in the distant future, when you need to see what version

changed the procedure to do some functionality.

Figure 7-6. The procedure exists on the database and running the query works as
expected

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

316

 Task 2: Create the extension method to use local files
for scripting
In this task, you will create an extension and then leverage the extension from this point

on when creating, updating, or deleting database objects, such as stored procedures,

views, and functions. Additionally, these scripts will be usable for any database scripting

operation.

At this point, you could create a new migration and run an update against the stored

procedure to see how that would look. However, you have already considered some

of the drawbacks of this approach, as shown in code earlier in the chapter. Therefore,

knowing that you could continue on this path, there is no need to rehash it here.

However, this is an excellent time to examine a better solution.

In EF6, you were able to call a method on the migration called SqlResource. This

method would take in the file and read it for execution. At the time of this writing, this

SqlResource method does not exist in any version of EFCore, including EFCore6.

Therefore, to enhance this solution, the first thing you need to do to get to a better

solution is to create a new extension that will extend the MigrationBuilder class. The

extension method could be named anything you want, but since you’re emulating

behavior from EF6, you will just call the extension by the same name: SqlResource.

Once the method is created, you’ll leverage the fact that the script is nothing more

than text that needs to be run in the migration builder. You can therefore just put your

code into a flat *.sql file and then add that file to your project as an embedded resource.

Finally, you use the new extension method to read the file as a stream for execution in

the migration.

 Step 1: Create the folder to store your script files

First, add a new folder under the Migrations folder entitled Scripts (this is shown in

Figure 7-7 with the rest of the initial changes).

The location of this folder is going to be important, but the location of the extension

inside this folder will be critical so that you don’t have to worry about the path to your

script files.

 Step 2: Create the extension

In the new Scripts folder, create a new class file called MigrationBuilderSqlResource.cs.

You’ll write your extension in this class.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

317

In the Scripts folder, you’ll create a subdirectory for each object type, and then

within each object type folder, you’ll create subfolders for each object by name for better

organization and maintenance.

Therefore, also in the Scripts folder, create a new subfolder called Procedures.

Within the Procedures folder, create a new subfolder called GetItemsForListing

and then create two new code files in the GetItemsForListing folder named

GetItemsForListing.v0.sql and GetItemsForListing.v1.sql. For clarity, the overall

look of the project structure as described earlier is shown in Figure 7-7.

Modify the MigrationBuilderSqlResource.cs file with the following code, making

sure to bring in any missing using statements so the code will compile

public static class MigrationBuilderSqlResource

{

 public static OperationBuilder<SqlOperation> SqlResource(this

MigrationBuilder mb, string relativeFileName)

 {

 using (var stream = Assembly.GetAssembly(typeof(MigrationBuilder

SqlResource)).GetManifestResourceStream(relativeFileName))

 {

 using (var ms = new MemoryStream())

 {

 stream.CopyTo(ms);

 var data = ms.ToArray();

 var text = Encoding.UTF8.GetString(data, 3, data.Length - 3);

Figure 7-7. The new Scripts folder is nested in the Migrations folder for easy access
from migrations on the relative path in the future. A Procedures folder will hold
each of the procedure scripts, which will also be held in their own folder

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

318

 return mb.Sql(text);

 }

 }

 }

}

For clarity, the using statements you will need to add will be as follows:

using Microsoft.EntityFrameworkCore.Migrations;

using Microsoft.EntityFrameworkCore.Migrations.Operations;

using Microsoft.EntityFrameworkCore.Migrations.Operations.Builders;

using System.IO;

using System.Reflection;

using System.Text;

 Step 3: Update the scripts and create the migration

Because v0 was never originally created, you are going to put that code into the v0 file. In

this manner, you have the original stored procedure code recorded in a place that is easy

to use for comparing the procedure changes in a code review. Place the following code

(the same code as your last migration) in the v0 file:

CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = '1970.01.01',

 @maxDate DATETIME = '2050.12.31'

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.[Name], item.[Description]

 , item.Notes, item.isActive, item.isDeleted

 , genre.[Name] GenreName, cat.[Name] CategoryName

 FROM dbo.Items item

 LEFT JOIN dbo.ItemGenres ig on item.Id = ig.ItemId

 LEFT JOIN dbo.Genres genre on ig.GenreId = genre.Id

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

319

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO

Next, you will modify the v1 version to remove all the references to the Genres table,

including the select query and the left joins for the join table and the join. Add the

following code into the v1 version of the file:

CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = '1970.01.01',

 @maxDate DATETIME = '2050.12.31'

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.[Name], item.[Description]

 , item.Notes, item.isActive, item.isDeleted

 , cat.[Name] CategoryName

 FROM dbo.Items item

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO

To be clear, the v0 file text is just the exact text from the Up method for creating the

stored procedure as in the first migration, without the wrapping migrationBuilder.

Sql(@"... code. This v0 file is your rollback option, so you want to get back to where you

were at the end of the previous migration if you roll back the migration you are about to

create using this file.

Before setting up a migration, it’s a good idea to double-check that the code you

will be creating is going to execute as expected. If you want, you could take the select

statement from the v1 file and execute it in SSMS to validate that the results no longer

contain any references to the Genres table, have no duplicated entries, and work to

return results as expected. You could even execute the whole script and then make a call

to the stored procedure. Since the code is CREATE OR ALTER, even running the migration

would just restore the same procedure code to the intended state.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

320

With both files containing the code as expected, rebuild and then add a new

migration using the command add-migration updateProc_GetItemsForListing_

RemoveGenres. It might surprise you, but the migration will be empty.

 Step 4: Leverage the extension in a new migration

Now that the files are in place and you have a blank migration, you need to tell the

migration what to do in the Up and Down methods.

In the Up method, simply reference the new extension with the path to the v1 file as

follows (use the namespace from the extension, followed by the path from that location

to the file):

migrationBuilder.SqlResource("EFCore_DBLibrary.Migrations.Scripts.

Procedures.GetItemsForListing.GetItemsForListing.v1.sql");

Add the v0 version to the Down method:

migrationBuilder.SqlResource("EFCore_DBLibrary.Migrations.Scripts.

Procedures.GetItemsForListing.GetItemsForListing.v0.sql");

To make these work without error, you will need to add the using statement using

EFCore_DbLibrary.Migrations.Scripts; to the top of the file to incorporate the

extension.

For clarity, the migration is shown in Figure 7-8.

Figure 7-8. The new migration that leverages the scripts is much cleaner than the
migration would be without the scripts and extension

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

321

You should be able to easily see how much cleaner this approach will be, both in the

migration files themselves and in the organization of the overall project. Additionally,

you should now be able to envision the ease with which you and your team will be able

to review the script files in a simple comparison between versions going forward.

 Task 3: Apply the migration
In this task, you will apply the migration. This might seem straightforward at this point,

but there is one thing left to do.

To this point, one error has been purposefully made so that you will see it and be

able to easily identify when this happens to you in the future.

In this task, you will see the error, correct it, and then complete the database update.

 Step 1: Run the update database command to see the error

As mentioned, there is a purposeful error still in play at the moment in the current state

of the code. To see this error, run the command update-database, and then review

Figure 7-9 to see the error Object reference not set to an instance of an object

as it is expected to appear.

Anyone who has developed in C# or VB.Net is probably very aware of this error. If

you’ve used Java, you’ve seen this error as a “Null Reference Exception.”

Either way, the issue is simple, but almost impossible to identify. Look closely to see

that in the muck of the error there is also a statement about the SqlResource. This is your

indication that something is wrong with the file. You might spend hours trying to solve

the issue with questions like “Is it the path?” or “Is it the name?” or simply “What … is

going on???

Figure 7-9. The database update fails with an error stating Object reference not
set to an instance of an object

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

322

In the end, the issue is simply that you didn’t include the file as an Embedded

resource. Yes, that is abundantly clear from the error, right? This is why you needed to

see this error now, so you would understand where to look first in the future when you

encounter a similar error.

 Step 2: Fix the error

To fix the error, click the v0 file and then use the properties to select Embedded resource

for the Build Action (see Figure 7-10). Repeat this operation for the v1 file as well. You

will need to remember to do this for each of your script files in the future to avoid the

Object reference error.

Figure 7-10. Setting the file to an Embedded resource will allow it to be used in the
migration. Failure to do this results in the error seen earlier

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

323

 Step 3: Run the update database command to apply
the migration

Now that both files are set to be of the type Embedded resource, run the update-

database command again. This time, it should run to completion with no issues

(provided the code in your scripts is valid, and your files are nested in the correct place).

if you continue to get the object reference not set to an instance of an object error,
ensure that both files are embedded resource, and then double-check that you
have the exact case and spelling for the file path references in the migration (i.e.,
eFCore_dBLibrary, not eFCore_dbLibrary). the full path should be the path to
your file from project name through all the folders (including the GetitemsForListing
twice, such as projectname.Migrations.Scripts.procedures.Specificprocedure.
Specificprocedure.v#.sql.

 Step 4: Review your database to ensure changes happened
as expected

As a final step, right-click the stored procedure in your database hierarchy in SSMS

and Script Stored Procedure as ➤ CREATE To ➤ New Query Editor Window

(see Figure 7-11).

Review the script to ensure it is in the correct state.

Figure 7-11. Scripting the stored procedure as create in SSMS

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

324

If you want, run a revert by running an update-database -target <your previous

migration> and see the down script working as well. Make sure to re-apply the

migration by running update-database again if you do this.

Finally, as another test, you could execute the stored procedure to ensure that values

are returned as expected.

 Task 4: Leverage the stored procedure in code
In this task, you will leverage the recently created stored procedure to see how this

process works, including mapping out a result with the Fluent API. Additionally, you will

learn about using parameters with your queries to avoid the risk of opening yourself to a

SQL Injection attack.

 Step 1: Execute and use the results from the stored procedure

There are a number of ways to get your code to execute a stored procedure. You could

write code against a regular ADO.Net SqlCommand object, passing in the parameters

and working with the data by getting a DataReader and reading it into a list of objects.

This approach is how you would have worked through executing stored procedures

(or other commands) in the past, and, since it is using ADO.Net, this approach doesn’t

leverage Entity Framework. Even so, using ADO.Net is still a very viable solution, and for

reasons of performance and/or using legacy code, you may continue to leverage stored

procedures in this manner.

However, this is a book on Entity Framework and, as such, will recommend the

approach that leverages EF to execute the stored procedure and return results for use in

your solutions.

To get started, in the Main method of the Program.cs file in the EFCore_Activity0701

project, add a new method after ListInventory called GetItemsForListing. After adding

the call for a new method, add the new method toward the bottom of the class as follows:

private static void GetItemsForListing()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var results = db.Items.FromSqlRaw("EXECUTE dbo.

GetItemsForListing").ToList();

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

325

 foreach (var item in results)

 {

 Console.WriteLine($"ITEM {item.Id}] {item.Name}");

 }

 }

}

With the new changes in place, go ahead and run the program. You will see that this

generates an unexpected error: The required column 'Id' was not present in the

results of a 'FromSql' operation. Basically, at this point, the original procedure

didn’t return anything that could be used as a key in the result – it’s just a flat set of data

with no real organization (see Figure 7-12).

If you were to go add the Id for the Item and the Id for the Category just to be

safe and then create the migration and apply it, the result would be another error:

The required column 'CreateByUserId' was not present in the results of a

'FromSql'. To prove this out, I modified my local procedure and applied an update on

the database and then ran the program to get the error (see Figure 7-13).

Figure 7-12. The current procedure returns data, but the solution gives an error
when trying to leverage the data for no tracked Id

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

326

You don’t need to go to this level – you can just take my word for it. However, if you

wanted to see this, just update the procedure to return both the item.Id and the cat.

Id in the GetItemsForListing.v2.sql file, and add the migration and then run the

program to see this in action. If you do take that step, make sure to revert the migration

back and remove the updated code – you won’t want it going forward.

In the end, at minimum you would need to return every required field, and you may

even be forced to return all the fields, which you likely don’t want to do. After all, this is

supposed to be a simple procedure to get information specific for a simple view of the

data, not every column from every matching row.

 Step 2: Use the Fluent API to map out a result set entity
for the stored procedure

Before starting this step, if you went to the next level and added a v2 version of

the procedure to see the additional error from Figure 7-13, make sure to revert

that migration and get your database back to the v1 version of the procedure, and

then remove any pending migration for a v2 update of the GetItemsForListing

stored procedure. To be clear, the last migration applied at this point should be the

updateProc_GetItemsForListing_RemoveGenres migration.

Figure 7-13. Modifying the procedure to add the Ids for both tables in the return
still creates an error

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

327

In order to use the Fluent API to modify this solution and use the procedure as

is, you will need to do three things. First, you need a Data Transfer Object (DTO) to

map the result to an object. Second, you will need to add code in the override for the

OnModelCreating method in the InventoryDbContext. Finally, you’ll need to modify the

call in the original code to leverage the new DTO object.

Begin by creating a new folder in the InventoryModels project named DTOs

to store your DTOs going forward. In the new DTOs folder, create a new file named

GetItemsForListingDTO.cs. Add the following code to the new file for the

GetItemsForListingDTO object:

public class GetItemsForListingDto

{

 public string Name { get; set; } = "";

 public string Description { get; set; } = "";

 public string Notes { get; set; } = "";

 public bool IsActive { get; set; } = true;

 public bool IsDeleted { get; set; } = true;

 public string CategoryName { get; set; } = "";

}

For clarity of the code and location of this file, review Figure 7-14.

Figure 7-14. The new GetItemsForListingDto class is shown, nested in the DTOs
folder in the InventoryModels project

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

328

This DTO will be used to map the results of the stored procedure so that you will no

longer get the error for the missing required fields. Note that if you are going to try to

write data with these results, it would be a good practice to still add the Id back to the

result set, even though doing so wouldn’t fix the error. For the current solution, you are

just returning results and you won’t use them to do any updating, at least for now.

Now that the DTO is in place, you need to map the result using the Fluent API. Open

the InventoryDbContext.cs file from the EFCore_DbLibrary project. In the past, you

may have used an object set such as DbQuery<T> to map this result. As of EFCore3, the

DbQuery object is obsolete, so you need a new solution for this problem (all entity sets in

EFCore6 should use DbSet<T>).

Begin by adding the following line to the InventoryDBContext after the

DbSet<Genres> property:

public DbSet<GetItemsForListingDto> ItemsForListing { get; set; }

With this change, you will also need to bring in the using statement using

InventoryModels.DTOs since the GetItemsForListingDto object is in the nested DTO

folder.

Next, you need to override the OnModelBuilding method in order to leverage the

model builder to do some Fluent API manual overrides in your code. To do this, add the

following code in the override for OnConfiguring in your InventoryDbContext, after the

declaration for the relationship between Items and Players:

modelBuilder.Entity<GetItemsForListingDto>(x =>

{

 x.HasNoKey();

 x.ToView("ItemsForListing");

});

For clarity of code placement, see Figure 7-15.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

329

Note that this code does two things. First, it overrides the default method to allow

you to inject additional changes to the context and schema. Second, the internal part

of the code sets the entity for the GetItemsForListingDto to map with no key as a view

called ItemsForListing. This is pretty cool, because now you can just use the results

of the query and you won’t have to worry about the mapping error you saw earlier for

required fields that are missing.

Figure 7-15. The override for OnModelCreating is added to the
InventoryDbContext to allow further injection of schema details using the Fluent
API (note that for brevity and display, my OnConfiguring and SaveChanges
methods are collapsed in this image)

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

330

With the DTO in place and the OnModelCreating method overridden, the final task

here is to leverage the new DTO in the original query. Return to the Program.cs file in

the activity project. Modify the original code by replacing it with the following:

private static void GetItemsForListing()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var results = db.ItemsForListing.FromSqlRaw("EXECUTE dbo.

GetItemsForListing").ToList();

 foreach (var item in results)

 {

 var output = $"ITEM {item.Name}] {item.Description}";

 if (!string.IsNullOrWhiteSpace(item.CategoryName))

 {

 output = $"{output} has category: {item.CategoryName}";

 }

 Console.WriteLine(output);

 }

 }

}

In this query, you modified the original query by first replacing the db.Items.

FromSqlRaw with db.ItemsForListing.FromSqlRaw. Additionally, you changed the

output to leverage the data from the stored procedure.

Finally, run the program to see the query being leveraged as expected in the program

output. Note that if you added and mapped categories to items you may have a different

look than this. You may also wish to do that to see it in action, but you will be seeding

data for the categories in the next activity, so if you do it, go ahead and delete them after

reviewing the output.

Figure 7-16 shows the expected final output for this activity.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

331

 Activity 7-1 summary
In this activity, you learned how to work with stored procedures using inline SQL in

migrations. You then assessed this and realized it is not a very useful solution when

scaling your efforts across your team.

To remedy the issue, you created an extension that allowed you to run a script as an

embedded resource that points directly to a flat file in your solution. In this way, you can

easily compare versions and history for all of your database objects.

You also took the time to see an error that may happen if you forget to mark a flat file

as an embedded resource. This is highly useful to see the error in case you encounter it

in the future.

After getting everything set up correctly, you then were able to update the database

to get it to the expected state.

With the database in the expected state, you then modified the UI layer to return

the results. To make this happen, you needed to map the result set from the stored

procedure to a DTO object that was then treated as a view with results from the query.

 Activity 7-2: Working with functions, the FluentAPI,
and seed data
In this activity, you will learn how to create and work with both scalar-valued and table-

valued functions. In addition to working with functions, you will get a chance to see how

to seed some data in your database using the Fluent API.

Figure 7-16. The final output correctly leverages the stored procedure as expected

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

332

 Task 0: Getting started
To work through this activity, you will either need to continue with your project that

you were using from the previous activity, or you can just grab a copy of the starter files,

EFCore_Activity07-2_StarterFiles. As always, review Appendix A for information on

working with the starter files.

it is critical that you have worked through activity 7-1 prior to this activity, so that
you will understand the nature of scripting your database changes in flat files, as
this concept will be used for the remaining activities in this chapter and throughout
the rest of the book.

 Task 1: Script out a new scalar-valued function
The first type of function you will build is a scalar-valued function. These functions are used

to get a single value, generally as the result of a calculation or other manipulation of data.

Scalar-valued functions are highly useful for one-off executions but can also be dangerous if

you include them as a join in a query (essentially executing the function one time for every

use in each row, which can quickly cause performance issues on your data queries).

A good example of a scalar-valued function would be to get a calculation that would

be difficult to achieve without multiple built-in SQL commands being executed to return

a single result. Another example could be to do something like get a list of the unique

values of a field, alphabetized, as a comma-separated value string. However, instead of a

comma, consider using a pipe, just in case a field value already has a comma in it.

In this task, you will script out a function to create a new pipe-delimited string that

combines the names of all of the items in the Items table. Additionally, the query can

allow for including or excluding items based on active status.

 Step 0: Eliminate the call to DeleteAllItems

Before starting this activity, one other important thing needs to take place. Make sure to

go to the Program class in the Program.cs file for the EFCore_Activity0702 project and

comment out the line of code that deletes items on every run (DeleteAllItems(); ➤ //

DeleteAllItems()). If you don’t do this, errors will happen later in the activity.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

333

 Step 1: Explore scalar-valued functions

The easiest way to see what the script should be is to open SSMS and then right-click the

Functions folder under Programmability and select New ➤ Scalar-valued Function,

which will generate the script (see Figure 7-17).

Once generated, the function has a lot of overhead in the form of comments that can

be removed, and then you should note that the first part of the function requires a name

and any parameters that you would want to include. The next statement in the function

is the return declaration, and then the function concludes with the function body. The

cleaned up, initial function script is shown in Figure 7-18 for clarity.

Figure 7-17. Creating a new scalar-valued function

Figure 7-18. The initial function script after some cleanup still needs some work

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

334

To make this script suit your needs to get the names of all of the items in the table in

a pipe-delimited string, you would start by modifying the function to take the IsActive

BIT as a parameter, and then you would likely set the return type to VARCHAR(2500). After

making those changes, you would then write the body to get a pipe-delimited list of the

names of all active items in alphabetical order where the IsActive flag is matched. You’ll

officially do this in the next step.

 Step 2: Create the script

To begin, add a new folder called Functions under the Migrations\Scripts

folder in the EFCore_DbLibrary project. In the Functions folder, add a subfolder

named ItemNamesPipeDelimitedString, and then add a file in that folder named

ItemNamesPipeDelimitedString.v0.sql. Ensure that you make the new file an

embedded resource as per the previous activity.

For clarity, review Figure 7-19.

Figure 7-19. The ItemNamesPipeDelimitedString.v0.sql file is created and is set as
an Embedded resource

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

335

do not forget to set the new itemnamespipedelimitedString.v0.sql file as an
embedded resource.

In the newly created file, add the following code for the function:

CREATE OR ALTER FUNCTION [dbo].[ItemNamesPipeDelimitedString]

(@IsActive BIT)

RETURNS VARCHAR (2500)

AS

BEGIN

 RETURN (SELECT STRING_AGG (Name, '|')

 FROM Items

 WHERE IsActive = @IsActive)

END

 Step 3: Add a new migration and update the database

With the file in place containing the code and being referenced as an embedded

resource, ensure you have selected the EFCore_DbLibrary project in the PMC and

then add a new migration with the command add-migration createFunction_

ItemNamesPipeDelimitedString. This should generate a blank migration. If for some

reason your migration is not blank, ensure that you have previously applied all updates

and that you didn’t have any pending changes that shouldn’t have been created.

In the new migration, add a call to use the new file in the Up method, and add an

inline SQL statement to drop the function in the Down method. Using the file will require

you to bring in the appropriate using statement to leverage the extension.

Add this code to the Up method: migrationBuilder.SqlResource("EFCore_

DBLibrary.Migrations.Scripts.Functions.ItemNamesPipeDelimitedString.

ItemNamesPipeDelimitedString.v0.sql");

Then add this code to the Down method:

migrationBuilder.Sql(@"DROP FUNCTION IF EXISTS dbo.

ItemNamesPipeDelimitedString");

Once the code is in place, run the update-database command.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

336

 Step 4: Validate that the function was added as expected

To ensure the function is in place, open SSMS and refresh the database, and then expand

the Functions ➤ Scalar-valued Functions folder. You should see the function in your

database.

Right-click the function and select Script Function as ➤ SELECT To ➤ New Query

Editor Window. Figure 7-20 shows the menu for selecting as well as the result as it

should appear after scripting.

Modify the query to replace <@IsActive, bit,> with the single number 1, and then

run the query. You should get the result that is a pipe-delimited string listing the names

of all of the items in your Items table (see Figure 7-21).

Figure 7-20. The scalar-valued function is shown with the script option to script to
a new query editor window ready to be selected. Additionally, the scripted select is
also shown in the query editor window

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

337

 Task 2: Leverage the new function from code
In the real world, you would likely use this function in concert with something else

like a stored procedure or another result set, just making it part of the select query. For

illustrative purposes, you’re just going to call the function directly to validate that it

works and that you can leverage it from code.

Before you can run this function to see it in action, just like with the stored

procedure, you need to set a result that you can return that isn’t tracked in the database.

 Step 1: Add a new DTO to map the result of the function

To make sure you can easily work with this result set, you need to create an entity in

your Models project that simply has the string return type that you’ll be getting from the

ItemNamesPipeDelimitedString function.

In the Models project under the Dtos folder, add a new class file

AllItemsPipeDelimitedStringDTO.cs with one public string property called AllItems:

public class AllItemsPipeDelimitedStringDto

{

 public string AllItems { get; set; } = string.Empty;

}

Figure 7-21. The scalar-valued function is executed and the results are as expected

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

338

 Step 2: Add the DTO as a DbSet in the InventoryDbContext

Now that you have this result DTO which you can use to map the result of the

ItemNamesPipeDelimitedString function, return to the InventoryDbContext.cs file in

the EFCore_DBLibrary project to add a new DbSet object to it.

Add the following code in the InventoryDbContext file after the declaration made

previously for the ItemsForListing stored procedure:

public DbSet<AllItemsPipeDelimitedStringDto> AllItemsOutput { get; set; }

Next, you need to update the OnModelCreating method to add the Fluent API

mapping to set the new result set to having no key and working as a read-only database

object. Add the following code into the OnModelCreating method, following the code

added in the previous activity for the stored procedure mapping:

modelBuilder.Entity<AllItemsPipeDelimitedStringDto>(x => {

 x.HasNoKey();

 x.ToView("AllItemsOutput");

});

 Step 3: Add a call in the Program file to get the results to the UI

Return to the Program.cs file in the main activity project, and add the following call to

the end of the Main method, following the call to GetItemsForListing:

GetAllActiveItemsAsPipeDelimitedString();

Then add the following method code to the end of the file:

private static void GetAllActiveItemsAsPipeDelimitedString()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var isActiveParm = new SqlParameter("IsActive", 1);

 var result = db.AllItemsOutput

 .FromSqlRaw("SELECT [dbo].

[ItemNamesPipeDelimitedString] (@IsActive)

AllItems", isActiveParm)

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

339

 .FirstOrDefault();

 Console.WriteLine($"All active Items: {result.AllItems}");

 }

}

Note that using the SqlParameter is a best practice to avoid allowing risky data into

your inline SQL statements. Even though you technically have direct control here, you

may update this in the future and you should just make it a habit to always parameterize

your queries.

Additionally, using SqlParameter will require you to bring in the using statement

using Microsoft.Sql.Client.

Run the program to see the results. The output should be similar to what is shown in

Figure 7-22.

 Task 3: Create a new table-valued function
In this task, you will create a new table-valued function. While this will be another

contrived example, it is a good exercise to get your feet wet, and you can learn the

concepts so you will be able to use them in your real-world solutions.

As you’ve already done, a good way to start when creating a new function or

procedure is to begin by scripting it out in SSMS and then applying the appropriate

changes to implement via a new migration in your project.

Figure 7-22. The function is leveraged from code as expected

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

340

For this table-valued function (TVF), you will get a list of items with Name, Quantity,

Price, and Total Value [calculated], once again leveraging a filter on the IsActive

field. This will be an inline table-valued function. As a reminder, the steps to complete

the overall process are

• Script out a new table-valued function and modify it to get the

appropriate data (see script).

• Add the folder for the function, include a file in the folder named the

same as the function with a version, and ensure that it is set to be an

embedded resource.

• Create the migration using the SqlResource approach to leverage the

new file.

• Create and map a result set DTO for the result set as returned by the

function.

• Add a method call from the UI layer that calls a new method which

executes the new function, gets the data into the appropriate result

set, and returns the data to be output to the console by the UI.

 Step 1: Create the new function

To get started, ordinarily you would open SSMS and right-click Programmability ➤

Functions and then select either a New Inline Table-valued Function or a New

Multi-statement Table-valued function. The main difference between the two is

how the data is composed and used. In the inline TVF, this is similar to a traditional

query with parameters, returned as a table that you can then use just like a view or

another query-based result set. In a multi-statement TVF, you are doing a very similar

operation, but generally you are also then going to join to your results or perform some

further operations within the query. As such, the multi-statement table-valued function

will have a bit more overhead as it works with your original query internally and does

further operations rather than just returning a single query.

For this task, you will be creating an inline TVF, and you will use the code that follows

to do this. Rather than spend the time testing it in SSMS (you can do that if you chose),

you will just run the process as if you have already proven out the code.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

341

Begin by adding a new migration with the command add-migration

createFunction_GetItemsTotalValue. With the migration created, add the following

code in the Up method:

migrationBuilder.SqlResource("EFCore_DBLibrary.Migrations.Scripts.

Functions.GetItemsTotalValue.GetItemsTotalValue.v0.sql");

Next, add the following code in the Down method:

migrationBuilder.Sql("DROP FUNCTION IF EXISTS dbo.GetItemsTotalValue");

You will also need to add the using statement using EFCore_DBLibrary.Migration.

Scripts to prevent a build error when leveraging the SqlResource extension.

After adding the code, navigate to the EFCore_DBLibrary projects, find

the Migrations ➤ Scripts ➤ Functions folder, and add a new folder named

GetItemsTotalValue. In the new GetItemsTotalValue folder, add the v0 script

GetItemsTotalValue.v0.sql. Do not forget to then ensure the file is an embedded

resource. For clarity, review Figure 7-23.

Figure 7-23. The new file for the GetItemsTotalValue.v0.sql is shown in its proper
location as an embedded resource

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

342

As you can mostly infer from Figure 7-23, the next step is to add the following code

into the new file:

CREATE OR ALTER FUNCTION dbo.GetItemsTotalValue (

 @IsActive BIT = true

)

RETURNS TABLE

AS

RETURN

(

 SELECT Id, [Name], [Description], Quantity, PurchasePrice, Quantity *

PurchasePrice as TotalValue

 From Items

 Where IsActive = @IsActive

)

Again, this is a simple example, but it gives you an idea of the concept. Note the input

parameter of IsActive to toggle showing active Items or inactive Items. Next, note the

use of the RETURNS TABLE statement. The rest of the code is just a straightforward T-SQL

SELECT statement.

With the changes in place for the script and this Fluent API declaration, go ahead

and run the update-database command to complete the migration.

 Step 3: Review the changes to the database

After running the update-database command, return to SSMS and refresh the

InventoryManager database, and then navigate to the Programmability ➤ Functions ➤

Table-valued Functions to see your new function.

Right-click the dbo.GetItemsTotalValue function, and select Script Function as

➤ SELECT To ➤ New Query Editor Window. When the window comes up, replace the

parameter <@IsActive, bit> with a 1 and run the query.

Run the query, and initially you will see that there are no values for PurchasePrice

and TotalValue, as you’ve likely never added this. Open a new query window and run

the following T-SQL code:

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

343

UPDATE Items

SET PurchasePrice = CAST (RAND(25235) * 10 as DECIMAL(18,2))

WHERE Name = 'Batman Begins'

UPDATE Items

SET PurchasePrice = CAST (RAND(3112) * 10 as DECIMAL(18,2))

WHERE Name = 'Inception'

UPDATE Items

SET PurchasePrice = CAST (RAND(62252) * 10 as DECIMAL(18,2))

WHERE Name = 'Remember The Titans'

UPDATE Items

SET PurchasePrice = CAST (RAND(22353) * 10 as DECIMAL(18,2))

WHERE Name = 'Star Wars: The Empire Strikes Back'

UPDATE Items

SET PurchasePrice = CAST (RAND(92359) * 10 as DECIMAL(18,2))

WHERE Name = 'Top Gun'

SELECT Name, PurchasePrice from Items

For fun, run it a couple of times to see how the random number is not random. Have

even more fun by using the same seed on each RAND statement.

With values in place, execute the function again. This time you should see results,

which should be similar in functionality to what is shown in Figure 7-24.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

344

 Step 3: Create the DTO for mapping function results

Now that you’re certain the function is going to work, it’s time to leverage it from the UI

layer. To do this, you’ll need a DTO for the result set.

Go to the InventoryModels project, and add a new file called

GetItemsTotalValueDTO.cs in the DTOs folder. Replace the generated empty class with

the following code for the DTO:

public class GetItemsTotalValueDto

{

 public int Id { get; set; }

 public string Name { get; set; } = "";

 public string Description { get; set; } = "";

 public int Quantity { get; set; }

 public decimal? PurchasePrice { get; set; }

 public decimal? TotalValue { get; set; }

}

Figure 7-24. The function returns results when data exists for the appropriate
fields in the calculation

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

345

Return to the InventoryDbContext in the EFCore_DBLibrary project and add the

following code to create a DbSet for the GetItemsTotalValueDto following the DbSet for

AllItemsOutput:

public DbSet<GetItemsTotalValueDto> GetItemsTotalValues { get; set; }

Additionally, configure the Fluent API to ensure no table is created for the new DTO.

Add the following code to the OnModelCreating method in the InventoryDbContext,

following the code you created earlier for the AllItemsPipeDelimitedStringDto:

modelBuilder.Entity<GetItemsTotalValueDto>(x =>

{

 x.HasNoKey();

 x.ToView("GetItemsTotalValues");

});

 Step 4: Use the new function and show results in the UI layer

Return to the Program.cs file in the EFCore_Activity0702 project, and add a call in the

Main method to a new method called GetItemsTotalValues. Then add the new method

as follows at the bottom of the Main method:

private static void GetItemsTotalValues()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var isActiveParm = new SqlParameter("IsActive", 1);

 var result = db.GetItemsTotalValues

 .FromSqlRaw("SELECT * from [dbo].

[GetItemsTotalValue] (@IsActive)", isActiveParm)

 .ToList();

 foreach (var item in result)

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Quantity,-4}" +

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

346

 $"|{item.TotalValue,-5}");

 }

 }

}

Run the code, and you should see output similar to what is shown in Figure 7-25.

if you are not getting values for the calculation for each of the items, you will not
see values following the quantity and pipe. if this is the case, ensure that you have
eliminated or commented out the call to DeleteAllItems in the Main method.
if you were getting blank numbers, after commenting out that call, return to SSMS
and reset the values for the PurchasePrice with the script run earlier.

 Task 4: Seed data with the Fluent API
Now that you can render some of the data for Categories, it’s time to put some default

data into the database. You’ll also do some default data for Genres as well as fix up the

creation of items to make your data more apparent.

When you want to have some default values that should always exist, the best place

to put these is into a seed method. You can use a seed method to make sure that certain

data is placed into the tables if it doesn’t already exist. The seed will run automatically

after every call to update-database in the PMC locally. When the solution is released

Figure 7-25. The output shows how the program can easily reference the new
function in code

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

347

to production, you’ll want to make sure the migrations are triggered to ensure your

migrations and seed methods are applied.

There are a couple of approaches to working with seed data. The first way you can do

this is in the Fluent API. Other than using the Fluent API, you can create seed methods

that can be triggered from the OnModelCreating method where you can execute some

custom code.

 Step 1: Seed data using the Fluent API

To seed data to the Genres table, add the following code at the bottom of the

OnModelCreating() method in the InventoryDbContext file, following the code you

recently added for the GetItemsTotalValues function:

var genreCreateDate = new DateTime(2021,01,01);

modelBuilder.Entity<Genre>(x =>

{

 x.HasData(

 new Genre() { Id = 1, CreatedDate = genreCreateDate, IsActive =

true, IsDeleted = false, Name = "Fantasy" },

 new Genre() { Id = 2, CreatedDate = genreCreateDate, IsActive =

true, IsDeleted = false, Name = "Sci/Fi" },

 new Genre() { Id = 3, CreatedDate = genreCreateDate, IsActive =

true, IsDeleted = false, Name = "Horror" },

 new Genre() { Id = 4, CreatedDate = genreCreateDate, IsActive =

true, IsDeleted = false, Name = "Comedy" },

 new Genre() { Id = 5, CreatedDate = genreCreateDate, IsActive =

true, IsDeleted = false, Name = "Drama" }

);

});

Ensure that your values do not change frequently (don’t use a random or volatile

value for any field, including CreatedDate).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

348

it is imperative that you do not use a random or volatile value for CreatedDate
here. if you do, each time you run a migration, the genre data would be recreated
due to the ModelBuilder finding “new” values for the records. therefore, when
using this method to seed data, ensure you are not going to change the values of
any of the columns regularly, and if you do change a value, ensure you also update
the value in the seed to match to avoid recreating or adding new records.

If for some reason you are prompted to bring in a using statement to resolve any red

squiggly lines, make sure to do so that program will build.

Right now, if you wanted to add that data, you would need to create a migration,

which would script out the insertion of this data into the database. For now, hold off on

that so that you can also get some categories and category details into the database.

 Task 5: Seed data with a custom solution
In this task, you will build your own database migrator project and ensure the database

migrations are run when the project is executed, and then you will have the ability to

create and execute one or more custom seed generators.

 Step 1: Roll your own custom migrator

To roll your own migration with seed data, as a best practice, you need a new project.

You could stub this into the main method of the Program file, but doing that would be

a bad practice in the real world (as is putting in the Items, by the way). The reason this

is a bad idea is that having the custom migration in the main method of the executing

program is only safe for one instance at a time. Likely, your real-world application will

have more than one concurrent user.

Another benefit of creating this custom project is that you can include the execution

of this project in your build pipeline, thereby making sure to run migrations on the

database at the end of your deploy process before starting up the application.

Yet another benefit of the project is the ability to run it from any environment and

point at any environment to quickly apply database changes in the event something is

not correct in one of your deployment environments.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

349

Right-click the solution and use the menus to create a new console project called

InventoryDataMigrator. Reference the InventoryDatabaseCore and InventoryHelpers

projects in the new InventoryDataMigrator project (see Figure 7-26), and then bring

in the NuGet packages for all the Entity Framework and configuration files that you’ve

been using (these can easily be found in the EFCore_Activity0702.csproj file). Note

that InventoryModels will be available by the fact that it is referenced in the EFCore_

InventoryDB project.

Figure 7-26. The new project is created with direct references to EFCore_
DBLibrary and InventoryHelpers and an indirect reference to InventoryModels
through the EFCore_DBLibrary project

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

350

An easy way to bring in all the NuGet packages is to first open the EFCore_Activity0702

project file and select the ItemGroup that contains all the package references and copy that

section. Next, open the InventoryDataMigrator.csproj file and paste the ItemGroup entries

that exist in the activity console project into the new project file.

Ensure that the project builds before proceeding.

Next, copy and paste the appsettings.json file from the activity project, and then

include the file in the project, making sure to also set the project as Content, with Copy

to Output Directory set to Copy if newer (see Figure 7-27 for clarity).

Leverage the setup that is in the Program.cs file of the activity project to get direct

access to the database context in the migrator project. Make sure that you add all

required using statements so the code will compile. At this point, your code in the

InventoryDataMigrator project’s Program.cs file should contain the following lines of

code:

Figure 7-27. The appsettings.json file is leveraged in the project, and properties
are set to Content – Copy if newer

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

351

using EFCore_DBLibrary;

using InventoryHelpers;

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.Configuration;

using System;

namespace InventoryDataMigrator

{

 class Program

 {

 static IConfigurationRoot _configuration;

 static DbContextOptionsBuilder<InventoryDbContext> _optionsBuilder;

 static void BuildOptions()

 {

 _configuration = ConfigurationBuilderSingleton.

ConfigurationRoot;

 _optionsBuilder = new DbContextOptionsBuilder<InventoryDbContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString

("InventoryManager"));

 }

 static void Main(string[] args)

 {

 BuildOptions();

 }

 }

}

 Step 2: Run migrations and execute custom seed builders

In the Main method of your migrator project, make a call to a new method named

ApplyMigrations following the call to BuildOptions. Add the method to the bottom of

the program class. To create the method, add the following code:

private static void ApplyMigrations()

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

352

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 db.Database.Migrate();

 }

}

Having this code would be sufficient to kick off migrations automatically, but

you ultimately want to add custom seed data into your pipeline in addition to

running migrations. To do this, add a new method call in the Main method called

ExecuteCustomSeedData following the call to ApplyMigrations. Then write the method

with code as follows:

private static void ExecuteCustomSeedData()

{

 using (var context = new InventoryDbContext(_optionsBuilder.Options))

 {

 var categories = new BuildCategories(context);

 categories.ExecuteSeed();

 }

}

Next, you need to add the BuildCategories custom seed class.

 Step 3: Create the BuildCategories custom seed class

Continue by adding a new class file into the migrator project called BuildCategories.

cs. In the BuildCategories class, add a method called ExecuteSeed and a constructor

that has a parameter for the InventoryDbContext. Make sure to add any missing using

statements. The following code will get you started:

private readonly InventoryDbContext _context;

private const string SEED_USER_ID = "31412031-7859-429c-ab21-c2e3e8d98042";

public BuildCategories(InventoryDbContext context)

{

 _context = context;

}

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

353

public void ExecuteSeed()

{

 //seed categories here...

}

Additionally, the preceding code adds a private readonly InventoryDbContext

_context; and a private const string SEED_USER_ID = “<GUIDString>”; statement

to create a variable to hold the value of the injected InventoryDbContext and a

simulated user id.

Now replace the line //seed categories here… by pasting the following code into the

ExecuteSeed method of the BuildCategories class:

if (_context.Categories.Count() == 0)

{

 _context.Categories.AddRange(

 new Category()

 {

 CreatedDate = DateTime.Now,

 IsActive = true,

 IsDeleted = false,

 Name = "Movies",

 CategoryDetail = new CategoryDetail() { ColorValue = "#0000FF",

ColorName = "Blue" }

 },

 new Category()

 {

 CreatedDate = DateTime.Now,

 IsActive = true,

 IsDeleted = false,

 Name = "Books",

 CategoryDetail = new CategoryDetail() { ColorValue = "#FF0000",

ColorName = "Red" }

 },

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

354

 new Category()

 {

 CreatedDate = DateTime.Now,

 IsActive = true,

 IsDeleted = false,

 Name = "Games",

 CategoryDetail = new CategoryDetail() { ColorValue = "#008000",

ColorName = "Green" }

 }

);

 _context.SaveChanges();

}

Once again, ensure you’ve referenced any missing using statements and that the

project builds before proceeding.

Now, when you run the project, you will run migrations and run the seed builder(s),

applying the changes to your database. Note that the seed here is coded to only execute

if there are currently no Categories in the database, which is by design to protect from

concurrent runs creating duplicates, but means that adding additional categories would

require refactoring this code.

 Step 4: Create a migration to apply changes and seed Genre data

In the package manager, ensure you’ve selected the EFCore_DBLibrary project,

and add a new migration with the command add-migration dataUpdate_

SeedGenresMigrationCategoriesInInventoryMigrator. This will generate a new

migration as shown in Figure 7-28.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

355

Don’t run update-database. Instead, run the migrator project you created to both

execute the migration and also seed the Categories and CategoryDetails.

Right-click the InventoryDataMigrator project and select Debug ➤ Start New

Instance (see Figure 7-29).

Figure 7-28. The new migration uses the code from the Fluent API to seed Genre
data. No other data is seeded via the migration

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

356

This is expected to run to completion, and there is no output, so you can just close

the window once the program notifies you to press any key to close.

To be certain that the migrations are applied and that genres will not regenerate with

each migration, run the command add-migration test-expected-blank command

in the PMC. You should see a blank migration. If you don’t, something is wrong with

your seed (ensure your values for Genre are not volatile). You won’t be able to just

comment code out if generated in a new migration, because if you do that, the Genre

values will get dropped in the next migration. If you’ve applied a migration and need

to roll back to the previous migration, use the update-database -migration <your

previous migration name here> pattern, such as update-database dataUpdate_

SeedGenresMigrationCategoriesInInventoryMigrator. After the rollback is

completed, you can use the remove-migration command. Since your test-expected-

blank migration was never applied, just run the remove-migration command now to get

rid of the blank migration.

Figure 7-29. Use the Start New Instance under the Debug menu to easily run the
InventoryDataMigrator project

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

357

 Step 5: Review the database to ensure changes are applied
and data exists as expected

Open SSMS and ensure that you have data in the Genres, Categories, and Category

Details tables using the following query:

SELECT * from dbo.Genres

SELECT * from dbo.Categories

SELECT * from dbo.CategoryDetails

SELECT * FROM __EFMigrationsHistory ORDER BY MigrationId DESC

These statements should generate data as shown in Figure 7-30.

Figure 7-30. The data has been seeded as expected, proving that both approaches
work to seed data, and the migrations can be run using the data migrator project

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

358

if for some reason you don’t see categories and details, ensure you included
the lines of code var categories = new BuildCategories(context);
and categories.ExecuteSeed() in the ExecuteCustomSeed method in the
Program.cs of the InventoryDataMigrator.

 Task 6: Seed the Players and Items data
Now that the data is in place for the categories and genres, it’s time to rework the items.

In this task, you will build another seed builder class to generate the items. Additionally,

you will remove the items from the database as they currently exist. You will also seed

Players and correctly link Items and Players, Categories, and Genres. Finally, you will

remove the Item seeding from the UI program, so that any UI could be easily used with

this solution and expect to have the base data applied in the database.

 Step 1: Create the Item SeedBuilder

In this step, you will create a seed builder that builds the items and associates the

appropriate Players to the Items, thereby also seeding players by default. Due to the

nature of this, currently there are no Players mapped to more than one Item to avoid

issues with conflicting or duplicated player entries.

Add a new class file called BuildItems.cs in the InventoryDataMigrator project.

Add the following code to the new BuildItems class to generate the items and players

(note, for brevity, this seed only shows one Player per Item, even though we previously

had multiple Players in the notes field):

private readonly InventoryDbContext _context;

private const string SEED_USER_ID = "31412031-7859-429c-ab21-c2e3e8d98042";

public BuildItems(InventoryDbContext context)

{

 _context = context;

}

public void ExecuteSeed()

{

 if (_context.Items.Count() == 0)

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

359

 {

 _context.Items.AddRange(

 n ew Item() { Name = "Batman Begins", CurrentOrFinalPrice =

9.99m, Description = "You either die the hero or live long

enough to see yourself become the villain",

 IsOnSale = false, Notes = "", PurchasePrice =

23.99m, PurchasedDate = null, Quantity = 1000,

SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new

List<Player>() {

 new Player() { CreatedDate = DateTime.

Now,IsActive = true,IsDeleted =

false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.

imdb.com/name/nm0000288/",Name

= "Christian Bale"}

 }

 },

 new Item() { Name = "Inception", CurrentOrFinalPrice = 7.99m,

Description = "You mustn't be afraid to dream a little bigger,

darling",

 IsOnSale = false, Notes = "", PurchasePrice =

4.99m, PurchasedDate = null, Quantity = 1000,

SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new

List<Player>() {

 new Player() { CreatedDate = DateTime.

Now,IsActive = true,IsDeleted =

false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.

imdb.com/name/nm0000138/",Name

= "Leonardo DiCaprio"}

 }

 },

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

360

 new Item() { Name = "Remember the Titans", CurrentOrFinalPrice

= 3.99m, Description = "Left Side, Strong Side",

 IsOnSale = false, Notes = "", PurchasePrice =

7.99m, PurchasedDate = null, Quantity = 1000,

SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new

List<Player>() {

 new Player() { CreatedDate = DateTime.

Now,IsActive = true,IsDeleted =

false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.

imdb.com/name/nm0000243/",Name

= "Denzel Washington"}

 }

 },

 new Item() { Name = "Star Wars: The Empire Strikes Back",

CurrentOrFinalPrice = 19.99m, Description = "He will join us or

die, master",

 I sOnSale = false, Notes = "", PurchasePrice =

35.99m, PurchasedDate = null, Quantity = 1000,

SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new

List<Player>() {

 new Player() { CreatedDate = DateTime.

Now,IsActive = true,IsDeleted =

false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.

imdb.com/name/nm0000434/",Name

= "Mark Hamill"}

 }

 },

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

361

 new Item() { Name = "Top Gun", CurrentOrFinalPrice = 6.99m,

Description = "I feel the need, the need for speed!",

 IsOnSale = false, Notes = "", PurchasePrice =

8.99m, PurchasedDate = null, Quantity = 1000,

SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new

List<Player>() {

 new Player() { CreatedDate = DateTime.

Now,IsActive = true,IsDeleted =

false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.

imdb.com/name/nm0000129/",Name

= "Tom Cruise"}

 }

 }

);

 _context.SaveChanges();

 }

}

 Step 2: Seed the Items and Players

In this step, you will seed the Items and Players. To do this, add a line of code to the

ExecuteCustomSeedData method in the Program.cs file of the InventoryDataMigrator

project as follows:

var items = new BuildItems(context);

items.ExecuteSeed();

Before you can run this code, you need to clean a couple of things up. First, you need

to delete all the existing items from the table. Use the following T-SQL code in a new

query window in SSMS to wipe the Items and ItemPlayers tables clean:

DELETE FROM ItemPlayers; DELETE FROM Items;

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

362

Review the database to ensure your items are clear. Also note that the Players table

was never defined in the DbContext or directly defined in the FluentAPI, so it is likely

called Player in your database. Make sure you currently have no players listed in that

table as well. Use the T-SQL statement DELETE FROM Player to wipe out any entries in

the table.

With the lines of code in place, use the Start New Instance in the Debug menu for

the InventoryDataMigrator as described earlier to run the additional seed. This should

build and run with no issues or output, so just close the window when it completes.

Run the following T-SQL commands to ensure your data is seeded as expected:

SELECT * FROM Items

SELECT * FROM ItemPlayers

SELECT * FROM Player

Your results should be similar to Figure 7-31.

Figure 7-31. The data is seeded as expected for Items and Players

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

363

 Step 3: Remove the calls to EnsureItems, UpdateItems,
and DeleteAllItems methods from the Main method code
in the EFCore_Activity0702 project

Now that you have seeded Items and Players, as well as Genres, Categories, and

CategoryDetails, you need to make sure running the program will not try to create

more items.

Return to Program.cs in the main activity project and remove the calls for

EnsureItems, UpdateItems, and DeleteAllItems from the Main method, and then

comment out their respective methods as well (or remove them). You will not need them

and/or you will be building a better solution to manage this through the rest of the book.

What remains should be a number of Get and/or List methods.

Run the program to ensure there are no errors and that you still see data. For now,

you are not going to modify these methods any further. You will take care of that as you

learn about LINQ in the next couple of chapters. Output from your solution should be

similar to what is shown in Figure 7-32.

 Activity 7-2 summary
In this activity, you learned how to roll your own database migrator project that allowed

you to build custom seeds for your data solutions. You also learned how to build both

table-valued and inline functions and use migrations to get them into the database,

Figure 7-32. The program runs as expected, and the data that was seeded via the
FluentAPI and the InventoryDataMigrator project is available

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

364

as well as code to execute the functions directly. Finally, you learned about seeding data

via the Fluent API, and you also learned how to use the Fluent API to map an entity as a

function without a key value so that it would not be migrated as a table into the database

when using a DTO to gather the data results from execution of the function.

 Activity 7-3: Working with views
In this final activity for the chapter, you will be creating and using a view. Utilizing similar

methods as earlier, you will migrate the view as a new script and then use the Fluent API

to map a DTO object for results from the view for use in your code.

 Task 0: Getting started
As with most activities at this point, to get started with this activity, either continue

using the code you have built to this point or grab a copy of the starter files EFCore_

Activity07- 3_StarterFiles and use them. If you use the starter files, as usual, refer to

Appendix A for more information on working with starter files.

Additionally, if you are using the starter files for this project, you will also want to run

the InventoryDataMigrator project before proceeding to ensure seed data is in place

that was created in Activity 7-2.

 Task 1: Create the view
In this task, you will create the view. This view will give full information about Item,

including any category, genre, and player information that is associated to the item.

Before getting started, also note that I’ve removed all commented code from the

previous activity to clean up the Main method in the EFCore_Activity0703 project.

 Step 1: Write the script

Ordinarily, you would take the time to write the script and test it in SSMS (you may still

do this). For brevity, you will simply add the script into the project and then migrate it for

this activity. Feel free to test the script on your own in SSMS before applying the changes

if you desire.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

365

To start, add a new folder under the Migrations/Scripts folder in the EFCore_

DBLibrary project called Views. In the Views folder, create a new folder for the view

called FullItemDetails. Once you have the new folder, add a file FullItemDetails.

v0.sql and then ensure that you have added the file as an embedded resource. Review

Figure 7-33 for clarity.

Once you have the file in place, add the following code to script the new view (also

shown in Figure 7-33):

CREATE OR ALTER VIEW [dbo].[vwFullItemDetails]

AS

SELECT item.Id, item.[Name] ItemName, item.[Description] ItemDescription

 , item.IsActive, item.IsDeleted, item.Notes, item.

CurrentOrFinalPrice

 , item.IsOnSale, item.PurchasedDate, item.PurchasePrice, item.

Quantity

 , item.SoldDate, cat.[Name] Category, cat.IsActive

CategoryIsActive

 , cat.IsDeleted CategoryIsDeleted, catDetail.ColorName,

catDetail.ColorValue

 , player.[Name] PlayerName, player.[Description]

PlayerDescription

Figure 7-33. The new view is scripted and nested in folders as an embedded
resource as expected

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

366

 , player.IsActive PlayerIsActive, player.IsDeleted

PlayerIsDeleted

 , genre.[Name] GenreName, genre.[IsActive] GenreIsActive,

genre.IsDeleted GenreIsDeleted

FROM Items item

LEFT JOIN Categories cat on item.CategoryId = cat.id

LEFT JOIN CategoryDetails catDetail on cat.Id = catDetail.Id

LEFT JOIN ItemPlayers ip on item.Id = ip.ItemId

LEFT JOIN Player player on ip.PlayerId = player.Id

LEFT JOIN ItemGenres ig on item.id = ig.ItemId

LEFT JOIN Genres genre on ig.GenreId = genre.Id

 Step 2: Add the new migration and update the database

Now that the script is in place, add a new migration by ensuring you have the EFCore_

DBLibrary project selected in the PMC and then running the command add-migration

createView_FullItemDetails. In the Up method, place the following code (don’t

forget to bring in the using EFCore_DBLibrary.Migrations.Scripts statement so the

SqlResource extension will work):

migrationBuilder.SqlResource("EFCore_DBLibrary.Migrations.Scripts.Views.

FullItemDetails.FullItemDetails.v0.sql");

Then place the following code in the Down method:

migrationBuilder.Sql("DROP VIEW IF EXISTS [dbo].vwFullItemDetails");

And once you have the code in place, update the database by running the update-

database command.

 Step 3: Validate the view was created and works

After the update-database command has completed, open SSMS and refresh the

database, and then review the Views folder to see your new view that was created. Once

you’ve validated that the view is there, run a simple T-SQL statement to prove the data

works and that you can easily order it as follows:

SELECT * FROM [dbo].[vwFullItemDetails]

ORDER BY ItemName, GenreName, Category, PlayerName

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

367

The result of running this query should look similar to what is shown here in

Figure 7-34.

Do not be alarmed if your Ids are different – that is just fine. Additionally, if you scroll

right in the results, you will likely see that there are a lot of null columns for Categories

and Genres. This is because you have never associated categories and genres to the

Items, even though data exists and it could be done at this point. You will build these data

relationships when you learn more about working with LINQ in the next chapter.

 Task 2: Expose the view data from the UI layer
The final piece of the puzzle is to expose the view data from the UI layer. By now, you

should be very familiar with this process, but it’s good to practice it one more time.

As with functions, the first thing you will need to do is model the view data into an

object for use as an entity. You will then need to add that entity to the DBContext. Finally,

you’ll use the Fluent API in the OnModelCreating method to ensure the view is treated as

a view and not as a table in the database.

 Step 1: Create a DTO object to model the view data

In the InventoryModels project, under the DTOs folder, add a new file called

FullItemDetailDTO.cs. In the file, add the following code:

public int Id { get; set; }

public string ItemName { get; set; }

public string ItemDescription { get; set; }

public bool IsActive { get; set; }

Figure 7-34. The view data is easily returned and ordered

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

368

public bool IsDeleted { get; set; }

public string Notes { get; set; }

public decimal? CurrentOrFinalPrice { get; set; }

public bool IsOnSale { get; set; }

public DateTime? PurchasedDate { get; set; }

public decimal? PurchasePrice { get; set; }

public int? Quantity { get; set; }

public DateTime? SoldDate { get; set; }

public string Category { get; set; }

public bool? CategoryIsActive { get; set; }

public bool? CategoryIsDeleted { get; set; }

public string ColorName { get; set; }

public string ColorValue { get; set; }

public string PlayerName { get; set; }

public string PlayerDescription { get; set; }

public bool? PlayerIsActive { get; set; }

public bool? PlayerIsDeleted { get; set; }

public string GenreName { get; set; }

public bool? GenreIsActive { get; set; }

public bool? GenreIsDeleted { get; set; }

Additionally, to follow the standards from other DTO classes, change the class

declaration in the file (not the file itself) to public class FullItemDetailDto.

 Step 2: Add the DbSet<FullItemDetailDto> to the
InventoryDbContext, and update the OnModelCreating method

Return to the InventoryDbContext.cs file in the EFCore_InventoryDB project. Add

the following code to create the DbSet following the line of code to create the DbSet for

GetItemsTotalValuesDto:

public DbSet<FullItemDetailDto> FullItemDetailDtos { get; set; }

With the DbSet in place, scroll down to find the OnModelCreating method, and add

the following code to ensure the entity is treated as a view:

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

369

modelBuilder.Entity<FullItemDetailDto>(x =>

{

 x.HasNoKey();

 x.ToView("FullItemDetailDtos");

});

Build the project and run it to ensure there are no errors.

 Step 3: Leverage the data from the UI

The final step to prove this is working is to leverage the view from the UI layer.

In the Program.cs file for the activity project, add a new call in the Main method to

a new method named GetFullItemDetails. Then add the following code to create the

GetFullItemDetails method at the end of the Program class:

private static void GetFullItemDetails()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var result = db.FullItemDetailDtos

 .FromSqlRaw("SELECT * FROM [dbo].

[vwFullItemDetails] " +

 "ORDER BY ItemName, GenreName,

Category, PlayerName ")

 .ToList();

 foreach (var item in result)

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.ItemName,-50}" +

 $"|{item.ItemDescription,-4}" +

 $"|{item.PlayerName,-5}" +

 $"|{item.Category,-5}" +

 $"|{item.GenreName,-5}");

 }

 }

}

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

370

Once you have the code in place, run the program to see the expected output (review

Figure 7-35).

 Activity 7-3 summary
In this final activity for Chapter 7, you were able to leverage the skills you’ve learned in

the previous two activities to complete the chapter by adding a new view that gets full

item details.

As with functions and procedures, you were able to easily add scripts in place to

generate the new database object, and then you were able to leverage the new database

objects by creating a DTO to map the object result output and add the object to the

inventory database context. You then used the Fluent API in the OnModelCreating

method to ensure the view was not added to the database as a table. Finally, you were

able to add a quick method into the main program to make a call to the view and get

results as expected to the UI layer.

 Chapter summary
In this chapter, you learned about working with database objects like functions, views,

and stored procedures. By using the migrations and applying the scripting paradigm

shown in this chapter, you will be able to set yourself and your team up for great success

at managing your database in a code-first approach.

Figure 7-35. The output for the program includes the results of the view as
expected

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

371

The use of the script file makes your life (and your team’s life) a lot easier when it

comes time to do code reviews or to look through the history of an object to see where

code problems or features were introduced.

You also took a deeper look into the Fluent API and how you can use the override of

the OnModelCreating method to further define structures in your database. Having data

annotations is still a good idea for your models, because it will enforce the client and the

server to both ensure relationships are in place and data integrity is maintained. However,

using the Fluent API will be something you also want to get familiar with because you will

have the ability to do more fine-grained tuning on your objects using the Fluent API.

The chapter concluded with three activities that gave you a practical example of each

of these concepts.

 Important takeaways
After working through this chapter, the things you should be in command of are

• Using migrations for creating and updating stored procedures

• Using migrations for creating and updating functions

• Using migrations for creating and updating views

• Leveraging an override to the OnModelCreating method to enhance

your database with the FluentAPI

• Working with DTO objects to model result output data

• An approach to creating some seed data from the Fluent API

• An approach to enforce migrations and run custom seed methods

from a new custom project

 Closing thoughts
In this chapter, you have spent a lot of time learning about how to work with database

objects. You’ve covered how to work with functions, views, and stored procedures. You

also dove into creating seed data and handling migrations from the Fluent API and from

your own custom solution.

In the next chapter, you’ll take your first look into working with LINQ to do some

sorting, filtering, and paging of results from your database.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

373
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_8

CHAPTER 8

Sorting, Filtering,
and Paging
In this chapter, you’re going to build on what you’ve learned in the previous seven

chapters. Up to this point, you have created a database using the code-first approach,

and now you are ready to start working with the data in a more robust fashion. In other

words, since the database structure is in place, now it’s time to learn how to leverage it

for enterprise applications.

 It’s time to learn LINQ
Now that the inventory manager data is modeled and you have the InventoryDBContext in

place to get the data, it’s time to start learning and working with LINQ in your solutions. To

be clear, LINQ exists outside of Entity Framework, with options like LINQ to Objects, LINQ

to XML, and even LINQ to ADO.Net, so don’t make the mistake of thinking that LINQ is

just for working with the Entity Framework. For the work in this book, you’re going to focus

on LINQ to Entities, which allows you to work against EF with LINQ. Before you move on,

however, you must first address the elephant in the room. Perhaps you’ve heard in the past

that LINQ is not performant. The first thing to understand is that this is simply not true.

 LINQ is generally not the problem
One of the most prevalent misconceptions about working with LINQ and EF is that using

LINQ is slow and bulky. Additionally, many developers have struggled with some of the

concepts around making LINQ performant. To answer the question, yes, absolutely,

LINQ is highly performant. The real problem is not LINQ per se. The real problem exists

with the way LINQ is implemented by the developer. As with any programming language,

if the developer doesn’t set things up correctly, the language cannot do its best work.

https://doi.org/10.1007/978-1-4842-7301-2_8#DOI

374

 Use a profiler or another tool
There are some instances where you can instantly find and fix issues with your queries.

In other cases, you might be receiving complaints from users about pages taking too

long to load, but you didn’t even know there was a performance issue because you never

tested a particular feature under load or with a database that potentially has millions of

records to search. To make sure that your code is not causing problems, it’s critical to

have some sort of tool that helps you trace through execution and identify bottlenecks as

they happen.

There are many tools available for this specific reason, with the most popular tool

being the Entity Framework Profiler. The Entity Framework Profiler is a solid tool for

determining execution bottlenecks and other issues with your code, but using it requires

purchasing a license.

When working with web solutions, there is another alternative that I highly

recommend called Stackify Prefix. Using the free version of prefix does require installing

a program on your machine, and at the time of this writing, the free version of Prefix only

works for web solutions. In order to use Prefix to work against non-web solutions, you

would need to upgrade to the paid version of the program.

Another tool that any developer can use is the SQL Server Profiler, which you

can easily turn on in SSMS to monitor calls as they happen against your database.

The profiler tool is also great for seeing what is going on with our database calls. The

main drawback with this tool is that the SQL Server Profiler can be a bit chatty without

configuration. Additionally, to get the filters set correctly so that the tool can be used well

takes a decent amount of practice. For learning purposes, you’ll be using this tool in the

activities for this book, but I highly encourage you to check out the other available tools

as well as you have time.

 Issues and solutions
In order to make sure you don’t fall into some of the more common incorrect

implementations, you’ll first examine a few statements and then examine the problems

they have, as well as the way to correctly implement the code.

Chapter 8 Sorting, Filtering, and paging

375

 Issue #1: Pre-fetching results and then iterating in code
to filter the results
There are a number of things that Entity Framework does well. One of the things that

EF handles well is lazy loading results as needed. Lazy loading is essentially the art of

getting the data just in time, without pulling all the data until needed.

A great example of where this takes place is when you build out queries to get data

into a list. The data from the query is only pulled when the query is executed. This

is why when you are debugging an application, you might have seen statements like

“Expanding the results view will enumerate the IEnumerable” when debugging database

calls. The expansion forces the execution because the loading hasn’t happened since it

previously was not needed.

Because of this implementation and the misconceptions around it, one of the most

prevalent issues when working with Entity Framework is causing these executions to take

place and then doing more work against the data that should have been done before the

execution took place.

You can think of it like this. If you are going to paint a room, you know you are going

to need paint brushes and paint. You have three choices as to how you approach the

task. The first is just to get a bunch of stuff, even if you won’t need it. The second is to do

lazy loading and third is eager loading.

First, you could go to the store and buy a whole bunch of supplies, brushes, and

many gallons of paint and primer; bring them all home; and start the project. In the end,

you likely have a lot of waste, because you bought a ton of materials without thinking

about what you really needed. This is the opposite of lazy loading and is generally

expensive, because with all of the materials, you have to put them somewhere and sort

through them to get what you really need.

The second way you could do this is make a trip to the store and get a couple gallons

of paint and primer and a couple of brushes and then come home and start working.

When you are ready, you make another trip to the store to get some paint and maybe

some extra brushes and tape because you realized you needed to block off a window and

your current brushes were too big to do the fine details you needed. This approach is

similar to lazy loading.

A final way you could approach the problem is to first measure the room, then make

a list of all of the materials you need, then go to the store, and bring home only what

you need. In this approach, you don’t get as much waste, because you only bought and

Chapter 8 Sorting, Filtering, and paging

376

brought home what you needed. You also might anticipate a bit of what you will need

along with the predicted materials, so you might also bring that along. When you get

home, you have less to sort through and generally only have the materials you need. This

approach is similar to a concept that is called eager loading.

As it applies to database programming, consider the following statement:

var query = db.Person.ToList().OrderByDescending(x => x.LastName);

as compared to

var query = db.Person.OrderByDescending(x => x.LastName);

Then, use either query in code to get the first ten:

var result = query.Take(10);

foreach (var person in result)

In the first example, the call to get the result ToList will first bring back all the results

in the table and then iterate those results to sort on all of the table rows in memory on

the application side. Whereas in the second query, the deferred execution allows for the

query to apply the transformations prior to the execution, thereby only needing to work

with the limited results. As would be expected, the second query can perform much

better in most situations, since the database performs the sorting and the result set is

limited to ten records vs. the entire list.

 Issue #2: Not disconnecting your data
If you’ve worked through the activities in the preceding chapters, you’ve already seen

a few queries in your work to this point that fetched data for display. In those queries,

you did something like <DBContext>.<Entity>.ToList(), where you got a list of the

objects in the database. What you maybe didn’t know at the time is that each one of

these entities in the result set has change tracking enabled. Change tracking allows

the DBContext to track the changes that have happened, so that you can perform any

updates and save changes back to the database.

If the only thing you are going to do with your data is render it for review, there is no

need to track the changes. Additionally, if you are working in a stateless environment like

the Web, when you are going to perform an update, you likely will retrieve the data to be

updated again before massaging that data with the appropriate updates. Consider the

Chapter 8 Sorting, Filtering, and paging

377

following code again, as it could be used to get a list of Person objects and display those

people on a grid for review:

var query = db.Person.OrderByDescending(x => x.LastName);

var result = query.Take(10);

foreach (var person in result)

The user would likely then select one of the Person objects to modify and then make

their changes and post that data back to the controller, where the controller would then

retrieve the Person by Id, update the fields, and then save the changes.

In this and similar scenarios, the first call could have been done in a disconnected

fashion, as is shown here:

var query = db.Person.AsNoTracking().OrderByDescending(x => x.LastName);

var result = query.Take(10);

foreach (var person in result)

It is even possible to set your Entity Framework DBContext so that all of your requests

are set to operate without change tracking by default. This can be accomplished by

adding the following statement to the DBContext constructor:

ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;

The main advantage of working with a disconnected result set is that it will be more

performant with less overhead since the application is no longer tracking changes

against that result set.

A final thought about tracking and disconnected results is that any query that uses

a projection to a DTO or an anonymous class will also not be tracking an entity, since

no entity exists for that DTO or anonymous class. You’ll be taking a deeper look at using

DTOs and anonymous classes when you look into the concept of LINQ with projections

in the next chapter.

 Issue #3: IEnumerable vs. IQueryable
Which object type should you use when creating our queries and why? There are many

to choose from. In most queries, the end result is a collection of objects, which are often

rendered as a List<T>. As you already saw in Issue #1, it’s not always ideal to get the

Chapter 8 Sorting, Filtering, and paging

378

results into a List<T>. This issue is really the same as getting items into a list too early

in the process, but by understanding the differences here, you can gain a very good

understanding of how to write the best code when working with EF.

To go deeply into the difference between IEnumerable and IQueryable, the main

differences come down to when and where the code is executed. Is query execution

on the server side or in memory? What about filtering, sorting, limiting, and/or

transforming that data? These questions are the most critical concerns you should have

when determining performance of your query. Table 8-1 shows how each of these object

types handles queries and filtering.

Looking at the table and based on everything discussed to this point in the chapter,

it should be clear by now that lazy loading with deferred execution can generally allow

for your queries to be more performant, as well as limit your results to only include the

objects that you need in scope.

The fact that the IEnumerable object requires pulling data at the onset means that

lazy loading is off the table when using an IEnumerable object, such as a List<T>. The

IQueryable object, however, allows for building out your entire query, with filters, and

then, on execution, you end up only pulling the exact data that is needed into memory.

 Practical application
In the next part of the chapter, you’re going to be working with LINQ to build out some

real-world queries that require filtering, paging, and sorting. As you do this, you’ll take a

look at ways that work that aren’t as efficient as possible, and then you’ll fix the queries

so that you have a full command of how to write the most efficient queries you need to

accomplish the task at hand.

Table 8-1. IEnumerable vs. IQueryable and how they

each handle queries and filtering

IEnumerable IQueryable

initial query Server side Server side

Filtering Client side Server side

Chapter 8 Sorting, Filtering, and paging

379

 Activity 8-1: Sorting, paging, and filtering
In this activity, you’re going to use LINQ to build out robust and efficient queries for use

in your applications.

In most applications, there is some requirement to display a grid or list of objects that

contains the data for each of the objects. Additionally, the application generally provides

the user an ability to sort the items and enter a text-based search for items that match

and provides the ability to page through results.

As you’ve read earlier, the options are that you can either get all the results at once

and then filter them in memory or pull only the data you need to display at the current

time and perhaps rely on lazy loading to get additional data as needed. Depending on

what you are trying to accomplish, there are advantages and disadvantages in each

approach to consider. As always, as the developer, it will be up to you to make the correct

choice.

For the Chapter 8 activity, you could take some time and build out your entire Items

database with lots of records. Please feel free to do that if you’d rather continue working

with your Items database. However, in the interest of time and to help illuminate the

ramifications of non-performant queries, the Chapter 8 activity will point to your

previously installed instance of the AdventureWorks database, which is loaded with

many records and can help to further illustrate the efficiency of different approaches to

getting data with LINQ.

If for some reason you don’t have AdventureWorks installed, for more information,

you could refer back to the Chapter 2 activity, which walked through restoring a backup

of the AdventureWorks database.

 Task 0: Getting started
For this activity, it would be easiest to just grab a copy of the starter files, EFCore_

Activity08- 1_StarterFiles, especially if you didn’t work through the activity at the

end of Chapter 3. If you did work through Activity 3-1, you may also feel free to use

the files from the end of that solution. For this activity, the code is working against the

AdventureWorks database. As such, you will not be doing any migrations, but you should

ensure that your connection string is correct and that the files run before you get started

with the tasks for this activity. For more information on working with the starter files,

refer to Appendix A.

Chapter 8 Sorting, Filtering, and paging

380

If, for some reason, you’d rather just create the starter pack yourself, you can easily

do so. There isn’t much to it. Simply implement the following instructions:

 1. Create a new .Net Core console project for .Net 6 called something

like Activity0801.

 2. Find the EFCore_DbLibrary project folder from the end of Chapter 3,

Activity 1 (you could use the final files version if you don’t have

your own), copy it to your local solution directory, and add a

reference to the project in your new activity project.

 3. Find the InventoryHelpers project folder from any of the Chapter 7

projects, copy it to your local solution directory, and add a project

reference to it in the activity project.

 4. Add the appsettings.json file from the Activity 3-1 project into

the main activity project to contain the AdventureWorks database

connection string, and then edit the connection string to connect

to your local version of AdventureWorks as needed. Don’t forget to

mark the file as content with the action “Copy if newer.”

 5. Install each of the NuGet packages individually using the Manage

NuGet Packages for Solution dialog:

 a. Microsoft.EntityFrameworkCore

 b. Microsoft.EntityFrameworkCore.Design

 c. Microsoft.EntityFrameworkCore.SqlServer

 d. Microsoft.Extensions.Configuration.FileExtensions

 e. Microsoft.Extensions.Configuration

 f. Microsoft.Extensions.Configuration.FileExtensions

 g. Microsoft.Extensions.Configuration.Json

Note Make sure your versions match across all projects. For example, if
some time has passed since you worked on Chapter 3, you may need to update
EFCore_DBLibrary packages to a newer version.

Chapter 8 Sorting, Filtering, and paging

381

 6. Add the code that follows into the Program.cs class in the main

activity project, add any missing using statements, and then run

the project to validate you have no errors:

private static IConfigurationRoot _configuration;

private static DbContextOptionsBuilder<AdventureWorksContext> _optionsBuilder;

static void Main(string[] args)

{

 BuildOptions();

}

static void BuildOptions()

{

 _configuration = ConfigurationBuilderSingleton.ConfigurationRoot;

 _optionsBuilder = new DbContextOptionsBuilder<AdventureWorksContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString("

AdventureWorks"));

}

 Task 1: Compare the execution efficiency of two queries
To begin this activity, start by looking at the execution of two queries that will garner the

exact same results. This will give you a chance to see the difference in how queries are

applied during execution.

 Step 1: Create two new methods to house the different queries

In this step, you will create two new methods in the Program.cs file for the activity

project. The first method will be called ListPeopleThenOrderAndTake. The second

method will be called QueryPeopleOrderedToListAndTake.

Add the following code to the Main method to call the two new methods:

Console.WriteLine("List People Then Order and Take");

ListPeopleThenOrderAndTake();

Console.WriteLine("Query People, order, then list and take");

QueryPeopleOrderedToListAndTake();

Chapter 8 Sorting, Filtering, and paging

382

With the new code in place, add the following code to implement the two new

methods:

private static void ListPeopleThenOrderAndTake()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var people = db.People.ToList().OrderByDescending(x => x.LastName);

 foreach (var person in people.Take(10))

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

 }

}

private static void QueryPeopleOrderedToListAndTake()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var query = db.People.OrderByDescending(x => x.LastName);

 var result = query.Take(10);

 foreach (var person in result)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

 }

}

Don’t forget to bring in any using statements to ensure the code will build as

expected, if any using statements are missing from your solution.

Chapter 8 Sorting, Filtering, and paging

383

Run the program to see the results. They should look similar to what is shown in

Figure 8-1.

As you can see, both methods execute and get results. You may also have noticed a

long start and then a quick ending, likely due to the performance of the first query.

 Step 2: Analyze the two queries with the SQL Query Analyzer

As you’ve just seen, both queries perform fairly well in these examples, and both return

the exact same results. Therefore, you must ask, “Are these two queries equally effective

and efficient when it comes to the implementations?”

Figure 8-1. Both methods execute and get the same results

Chapter 8 Sorting, Filtering, and paging

384

To find out, you need to perform an analysis. In SSMS, turn on the tool to profile your

server calls by going to Tools ➤ SQL Server Profiler. Enabling SQL Server Profiler is

highlighted in Figure 8-2 for clarity.

Figure 8-2. Enable the SQL Server Profiler to show query performance and
analysis

Chapter 8 Sorting, Filtering, and paging

385

After bringing up the profiler, connect to the database server with whatever database

connection you are using for the AdventureWorks database. Connecting to a SQLExpress

database is shown in Figure 8-3. Make sure to use the correct server based on your

implementation.

Figure 8-3. Connect to the database server that hosts the AdventureWorks
database

Chapter 8 Sorting, Filtering, and paging

386

After connecting, you could name your Trace, or just hit Run. Either way, hit Run to

start the trace (see Figure 8-4).

Figure 8-4. Set up the properties for your trace and then hit Run to start the
profiler

Chapter 8 Sorting, Filtering, and paging

387

Once the trace is running, you’ll see anything that hits your database for operations

against the datastore (review Figure 8-5). Note that your results will likely not be exactly

as shown.

At any point, you can clear the trace window by hitting the eraser button on the

toolbar, shown in Figure 8-6.

Figure 8-5. The trace is running, and all telemetry from the database is
shown

Figure 8-6. Use the eraser button to clear the trace

Chapter 8 Sorting, Filtering, and paging

388

Once you have cleared out your window, go back to the code and place breakpoints

on the start of each method and the end of each method. This will help you to easily

track the code that is executed in each statement (see Figure 8-7).

Because SQl Server is running, you may get notifications about locks and audits
periodically in the window. While these can be filtered out, you can always just
clear the window before running your code.

Figure 8-7. The code with breakpoints, ready for profiling

Chapter 8 Sorting, Filtering, and paging

389

Run the code, and make sure to clear the profiler before running the queries. Make

sure to review the SQL Server Profiler often to see the queries as you build out this

activity. A sample of the output is shown in Figure 8-8.

Here you see the first query as sent to SQL Server for getting results. If you click the

query, you can see the direct query in the window below the log. Also note that it looks

like the query executed twice. It did not. What you’re seeing is the start and end of the

batch request. The BatchCompleted entry (highlighted earlier) contains the execution

time, reads, and other information about the query. Drilling into the entry to get the

query text is shown in Figure 8-9.

While your numbers may be different than mine (i.e., 3821 reads and execution

duration of 1716 is unique to my run), your resulting query text should be exactly the

same as mine.

Next, execute that query text in our SQL Server with a new query to the database

directly to see the results from SSMS.

Right-click your AdventureWorks database entry in SSMS and select New Query to

open a new query window. Copy and paste the query from the profiler into the window.

The query should be as follows:

SELECT [p].[BusinessEntityID], [p].[AdditionalContactInfo],

[p].[Demographics], [p].[EmailPromotion], [p].[FirstName], [p].[LastName],

 [p].[MiddleName], [p].[ModifiedDate], [p].[NameStyle], [p].[PersonType],

[p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

Figure 8-8. The first query profiled in the SQL Server Profiler

Figure 8-9. The first query as executed according to the profiler

Chapter 8 Sorting, Filtering, and paging

390

Run the query to see the results (as is shown in Figure 8-10).

Important notes here, for my query, the execution took about a second and returned

nearly 20,000 rows. That’s pretty much to be expected when pulling all people into a list.

Another thing that you should do is run your query with the execution plan

displayed. By doing this, you will be able to notice any bottlenecks or potential issues

with your query.

Figure 8-10. The results of the query are shown in SSMS

Chapter 8 Sorting, Filtering, and paging

391

In SSMS, turn on the profiler using the icon highlighted in Figure 8-11 or by pressing

“Ctrl+M” with your focus on an SSMS query.

Run the same query again, and then review the execution plan (shown in Figure 8- 12).

Figure 8-11. Using the Include Actual Execution Plan in SSMS can help you trace
through queries

Figure 8-12. The execution plan shows that only one query is run and it is the
entire cost of the overall result

Chapter 8 Sorting, Filtering, and paging

392

Clear out the profiler again and continue executing the program code through the

second query (review Figure 8-13).

Running through the second query provides the following in the SQL Server Profiler

showing that a stored procedure was executed, and here you have only 62 reads with a

duration of 0. Again, your execution times may vary, but your query should be

exec sp_executesql N'SELECT TOP(@__p_0) [p].[BusinessEntityID],

[p].[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion],

[p].[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate],

[p].[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

ORDER BY [p].[LastName] DESC',N'@__p_0 int',@__p_0=10

Figure 8-13. The second method as executed and profiled in the SQL Server
Profiler

Chapter 8 Sorting, Filtering, and paging

393

Take that code and run it in the SSMS query window to see it perform there as well

(as shown in Figure 8-14).

Here you can easily see that only returning the ten results you wanted is much more

efficient and will make your front end that much more efficient as well. In addition to

the efficiency of the query, the ordering was done for the result set on the server, not in

memory, providing the exact results in the order as expected.

Clearly, how you write your queries matters when working with EF. Just getting the results

you want does not always mean you are using EF correctly, and just because the first result

set was not returned very quickly does not mean that EF is slow. In fact, here you see that

some of the stigma about EF being slow may in fact be your own fault and not the fault of EF.

 Task 2: Filtering our results
By now, you should know that pulling code into a list before doing sorting and filtering

is a bad thing. For that reason, you won’t be pulling data into a list until the end of the

query in order to make your queries as efficient as possible. If you want to prove it out,

however, feel free to repeat a similar test run to what you have done to evaluate the

efficiency of the queries in the last task.

Figure 8-14. The second query as profiled shows a much better performance, as
well as only the results we wanted

Chapter 8 Sorting, Filtering, and paging

394

As with most things, it will be up to you as the developer to find the correct approach

to what your system needs. For this next part, you’ll be filtering by partial name or by the

Person Type. In your real-world applications, you will likely need to allow the user to

give you input to filter results in a manner similar to this approach.

 Step 1: Implement the method to allow a user to filter results

Add code in the Main method to add a statement to ask the user for a search term, and

then use that term in a method called FilteredPeople as follows:

Console.WriteLine("Please Enter the partial First or Last Name, or the

Person Type to search for:");

var result = Console.ReadLine();

FilteredPeople(result);

In the FilteredPeople(string filter) method, use the following code with a

LINQ statement to correctly filter the results before pulling them into a List that is used

for outputting the results:

private static void FilteredPeople(string filter)

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var searchTerm = filter.ToLower();

 var query = db.People.Where(x => x.LastName.ToLower().

Contains(searchTerm)

 || x.FirstName.ToLower().

Contains(searchTerm)

 || x.PersonType.ToLower().

Equals(searchTerm));

 foreach (var person in query)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName},

{person.PersonType}");

 }

 }

}

Chapter 8 Sorting, Filtering, and paging

395

Now run the code to ensure it works, entering some text to filter, such as ‘Gonza’ or

'Mich' or 'VC' (review Figure 8-15 to see sample results).

 Step 2: Analyze the query

Grabbing the query from SQL Server Profiler yields the following query that was

executed on the server:

exec sp_executesql N'SELECT [p].[BusinessEntityID],

[p].[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion],

[p].[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate],

[p].[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

Figure 8-15. Searching for anyone with a partial name match to ‘Gonza’
produces results as expected

Chapter 8 Sorting, Filtering, and paging

396

WHERE (((@__searchTerm_0 LIKE N'''') OR (CHARINDEX(@__searchTerm_0,

LOWER([p].[LastName])) > 0)) OR ((@__searchTerm_0 LIKE N'''') OR

(CHARINDEX(@__searchTerm_0, LOWER([p].[FirstName])) > 0))) OR (LOWER([p].

[PersonType]) = @__searchTerm_0)',N'@__searchTerm_0 nvarchar(50)',

@__searchTerm_0=N'gonza'

Further scrutinization of the executed query shows that the query was filtered by

lower case letters based on the search term you sent in from the previous query. Running

the code shows some 288 results. Figure 8-16 shows the query with results.

Run a couple more search filter queries to see the results you would expect and

validate that the query is working.

Figure 8-16. The results of the filtered query

Chapter 8 Sorting, Filtering, and paging

397

Now you might be asking about SQL Injection at this point. What happens if I search

for O'Brien, for example, or try to run some other malicious code in my search term?

Figure 8-17 gives a look at an attempt at SQL Injection.

Executing the program as shown renders the following query in the SQL Profiler:

exec sp_executesql N'SELECT [p].[BusinessEntityID],

[p].[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion],

[p].[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate],

[p].[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

WHERE (((@__searchTerm_0 LIKE N'''') OR (CHARINDEX(@__searchTerm_0,

LOWER([p].[LastName])) > 0)) OR ((@__searchTerm_0 LIKE N'''') OR

(CHARINDEX(@__searchTerm_0, LOWER([p].[FirstName])) > 0))) OR (LOWER([p].

[PersonType]) = @__searchTerm_0)',N'@__searchTerm_0 nvarchar(50)',

@__searchTerm_0=N'o''bri'

And you can see that the search term is indeed protected from the single quote,

suggesting that your LINQ query is parameterized. Even so, it’s still your responsibility to

make sure that any code you write is secure.

As an additional test, you could try the typical injection attack string – passing the

text “' or 1=1 --” into the search filter to see if your query returns filter results or

all the results in the database. When the query does not return all the results, you can

have some assurance that your query is working as expected without being open to SQL

Injection.

Figure 8-17. Testing to see if the LINQ query used for filtering is vulnerable to SQL
Injection attacks

Chapter 8 Sorting, Filtering, and paging

398

 Task 3: Paging the filtered results
Even with filtering in place, you saw that your preceding results contained some 288

results in the previous query. While there may be some instances where you would be

fine with returning all of these results (your UI control handles paging well and won’t

freeze up with large result sets), it is often ideal to just page the results and get only the

records being rendered to the user at the time of the request. To do this easily, you can

further modify your LINQ query from the previous task.

 Step 1: Create the method to filter and page the results

To get started, add a new method that uses the same search term for simplicity. Call the

method FilteredAndPagedResult([filter], [pageNumber], [pageSize]). Note that

the method has three parameters. Write the method to take the string filter as before,

this time also returning a number of records equal to page size and the results from the

expected page. Also give the method the ability to select a subset of the records based on

an offset and a subset length for how many records to show on a page.

To prove this out, just do a for loop around the call in the Main method to simulate

paging. Add a breakpoint to the database call to see each page in action. Use a page size

of 5, 10, 15, 20, or 25. For even more fun, make sure to order the results by Last Name so

that they are not just filtered but also sorted and paged.

Add the following code to the Main method:

int pageSize = 10;

for (int pageNumber = 0; pageNumber < 10; pageNumber++)

{

 Console.WriteLine($"Page {pageNumber + 1}");

 FilteredAndPagedResult(result, pageNumber, pageSize);

}

When making the call, we can see paged results as expected. Please note that if you

do a more extensive search, the code as written will print out page numbers with no

results. If you don’t like that functionality, you could move the printout of the page to the

method and only show the page number if there are results to print.

Chapter 8 Sorting, Filtering, and paging

399

private static void FilteredAndPagedResult(string filter, int pageNumber,

int pageSize)

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var searchTerm = filter.ToLower();

 var query = db.People.Where(x => x.LastName.ToLower().

Contains(searchTerm)

 || x.FirstName.ToLower().

Contains(searchTerm)

 || x.PersonType.ToLower().

Equals(searchTerm))

 .OrderBy(x => x.LastName)

 .Skip(pageNumber * pageSize)

 .Take(pageSize);

 foreach (var person in query)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName},

{person.PersonType}");

 }

 }

}

Chapter 8 Sorting, Filtering, and paging

400

And the result as rendered when searching for ‘Gonz’ is shown in Figure 8-18.

 Step 2: Analyze the query results

Again, it is critical to inspect your queries in the profiler to make certain they are

performing as expected. The paging method makes multiple calls, as we would

anticipate, each one limited to the correct set of results. The final query should be similar

to the code that follows:

exec sp_executesql N'SELECT [p].[BusinessEntityID], [p].

[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion], [p].

[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate], [p].

[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

Figure 8-18. The results are paged as expected, and each page is printed as the
results are executed and written to the console

Chapter 8 Sorting, Filtering, and paging

401

WHERE (((@__searchTerm_0 LIKE N'''') OR (CHARINDEX(@__searchTerm_0,

LOWER([p].[LastName])) > 0)) OR ((@__searchTerm_0 LIKE N'''') OR

(CHARINDEX(@__searchTerm_0, LOWER([p].[FirstName])) > 0))) OR (LOWER([p].

[PersonType]) = @__searchTerm_0)

ORDER BY [p].[LastName]

OFFSET @__p_1 ROWS FETCH NEXT @__p_2 ROWS ONLY',N'@__searchTerm_0

nvarchar(50),@__p_1 int,@__p_2 int',@__searchTerm_0=N'gonz',@__p_1=90,

@__p_2=10

By validating this approach, you can see that EF is highly performant against large

database tables as long as your queries are written correctly. To see how much worse the

performance could have been, you could try that last method by pulling to a list first and

then doing the filtering, ordering, and paging on the results.

Just imagine the performance hit you would have if you made the call for every page

in this code, pulling back all nearly 20,000 records. Then, only after getting all 20,000

records on each iteration, perform another operation in memory to further filter down to

just the ten records you need for every page of results displayed to the UI.

 Task 4: Disconnecting the result sets
In this final task for the activity, you will learn how to easily disconnect any recordset

from the database. This can greatly improve your overall performance.

 Step 1: Set the code to use queries AsNoTracking

For the next part of this activity, you’ll learn about one other performance enhancement

discussed in this chapter – disconnecting the data. For every single result you pulled

back in this application, you don’t always need to keep tracking in place.

To make your queries as lightweight as possible, therefore, you can simply add the

.AsNoTracking() statement to each query right after the db.People statement. Go

ahead and do that now. Search for db.People in your code, and replace with db.People.

AsNoTracking. A sample of what this might look like is

var query = db.People.AsNoTracking().OrderByDescending(x => x.LastName);

Chapter 8 Sorting, Filtering, and paging

402

Run the code again to validate that all of the queries still work. If you continue to

profile the code, you may see some performance increases in the duration column, but

they are likely not extremely noticeable on the IQueryable methods.

 Step 2: Discuss setting the entire context to disable tracking
of entities by default

Another thing you could do is disable the tracking completely on the entire context.

Locate the AdventureWorksContext in the EFCore_DbLibrary project, and add the

following to the public constructors:

ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;

Setting the entire context to avoid tracking behaviors is shown in Figure 8-19.

While you don’t really want to do this for this project, knowing that it is possible

could be highly advantageous to your overall performance on libraries designed to be

read-only, such as a reporting library.

Figure 8-19. Setting the entire context to default to disconnected data on all
queries

Chapter 8 Sorting, Filtering, and paging

403

 Activity 8-1 summary
In this activity, you’ve seen how to use sorting, filtering, and paging to refine your results.

By making certain to optimize your query formation, you’ve set up your EF instance to

optimize for both performance and functionality when working against a large dataset.

 Chapter summary
In this chapter, you learned about a few of the common issues that arise when working

with LINQ and your data. You learned that you should not just blindly pull everything

into a List and then iterate on the list. Rather, you should filter your query as much as

possible to ensure that only the results you need are contained in the result set.

 Important takeaways
This chapter gave us our first deep dive into working with LINQ and specifically working

with LINQ to Entities. We still have a lot to learn when it comes to LINQ, but with

the knowledge we gained in this chapter, we now understand the impact that a few

differences in how things are coded can work. The main takeaways from this chapter are

• Make sure to perform the execution of the queries at the latest

possible opportunity in the codebase.

• Remember to disable change tracking when entities do not need to

stay connected for tracking in the DBContext.

• When working with LINQ to Entities and the Entity Framework in

general, make sure to use some sort of profiler to help examine the

actual queries you are executing on the database.

In the next chapter, we’ll continue looking at how we can use LINQ to get results from

our database into disconnected DTO objects using projections and anonymous classes.

 Closing thoughts
In the next chapter, you will continue looking at how you can use LINQ to get results

from your database into disconnected DTO objects by using projections and anonymous

classes.

Chapter 8 Sorting, Filtering, and paging

PART III

Enhancing the Data
Solution

407
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_9

CHAPTER 9

LINQ for Queries
and Projections
 Data in the real world
In this chapter, you are going to learn how to use queries in complex scenarios to get

the data you want. To this point, you’ve worked with the database in a fairly superficial

manner. As this is a book on practical application of the concepts, you really need to

experience working with data in real-world scenarios.

Often, when working with data, there will be a need to perform join operations

across multiple tables and then use that data in some manner. There are a couple of

approaches that you can employ in these scenarios.

 LINQ vs. stored procedures
In the past, you would simply create views and stored procedures to make all the joins

and then rely on the database server to optimize the execution plans for these scenarios.

This is similar to the approach that was taken in Chapter 7.

With LINQ, you are also able to command the server to perform the joins and get the

data just as easily as if you had written a stored procedure. The benefits of using LINQ

include the fact that you can write more flexible code with the ability to simply change

a few things here and there to get a more advanced result set as needed. By using LINQ,

you also avoid having to rewrite or modify an entire stored procedure. Additionally, not

having to rework server objects avoids the necessity of going through the governance

channels that are generally involved in pushing changes to the production database.

https://doi.org/10.1007/978-1-4842-7301-2_9#DOI

408

There are a couple of drawbacks to this approach, however. The major thing to

consider is what was discussed earlier – execution plans. With stored procedures, the

server itself will store a cached execution plan. This means that while you still have the

pain of the first execution runtime, the second and consecutive executions of that stored

procedure should be run with greater efficiency. Using LINQ does not allow the server

to store up an execution plan, so each query must be treated like a new execution on the

server. Even with optimized queries, the loss of the execution plan might be enough to

consider using a stored procedure in some instances. It will be your job as the developer

to determine the best approach.

 Complex data and the code-first approach
After getting your data from these complex join queries, either via a stored procedure

or through LINQ queries, you need to be able to pass the data to your controller or view

layers or, at minimum, to some other layer where the data will be utilized.

When you built out the models for the inventory manager system, you were able to

quickly create the exact structures that you wanted to exist in the database. With data

being returned from the database from a complex query, you’re likely not going to want

to have a table or other structure that is directly modeled in the code-first approach, but

rather you would prefer to just leverage a dynamic solution.

A couple of options exist for you, which would allow you to use that data efficiently.

As with any system, you, as the developer, should consider the best approach for your

system. Additionally, you’ll want to make sure any architecture decisions you make are

based on the standards of your organization.

The first approach you could easily take is to just keep adding models to your

InventoryModels project. Another approach you could take is to modify some of the

existing models to hold transformed data. Always remember that unless you create

direct dependencies and/or add the model to the DBContext, in the code-first approach,

a model can exist without needing to be migrated into the database. Furthermore, on

existing models that you have, simply adding the Data Annotation [NotMapped] to

any field will allow you to add fields that do not get placed into the database, even if the

model is part of the database schema.

While this approach works well and may even be the desired approach in your

current system, I would advise against using this strategy. There are two downfalls to this

approach that I simply prefer to avoid. They both relate to confusion and maintainability

in the future.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

409

In my opinion, the first issue with adding fields that are NotMapped in your models is

that this action just clutters them up with more fields while also making it so the model

and the database itself are not in a one-to-one synchronized relationship. Again, it’s not

necessary to map fields one-to-one in the model to what’s in the table, but it becomes

more confusing for other developers in the long run, especially over time and as the

models continue to change. In this scenario, you also end up sending more information

to the UI layer in many cases than the UI layer actually needs, which could present other

issues like security concerns around exposed data.

The second issue with continued use of the existing models approach is that your

Models project can start to experience class explosion; and, as with the first problem,

now you’ll have entire classes that don’t map to the database. Having this class explosion

with mismatched data schema structures can add yet another layer of confusion.

 DTOs, view models, or domain models
Before I get hate mail (or @’s on Twitter), let’s clear a few things up. DTOs, view models,

and domain models are not the same thing and generally should not be used in an

interchangeable manner. Clearly, each has a specific purpose. For example, you can

have view models that don’t map to any database objects at all, with a primary purpose

of just mapping information for user interaction on a screen. You might also see domain

models that could be the result of data from multiple models interacting with each other

for some specific behavior. DTOs, on the other hand, could just be a simple way to map

fields from one data type to another. So yes, I concede to you that these three objects are

not even close to the same thing. That being said, when I’m talking about DTOs for the

rest of this chapter, a DTO could be substituted in your system with a view model or a

domain model, if that’s what makes sense for your system.

 Decoupling your business or view logic from the
database
In my opinion, one of the better approaches to work with composed data is to create

DTO objects that map the data needed for the next layer of the system to a class

specifically molded to meet the needs of the business or view logic. In this approach,

you generally would place these DTOs in some sort of stand-alone project or at least

at some layer of the architecture that is separate from the database Models project.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

410

This approach should ultimately keep both layers cleaner, more testable, and easier to

maintain in the long run.

By placing the data into specific DTOs in a separate project, you can be much more

granular about the structure and application of these objects. This solves the problems

created earlier with having too many classes and fields in the Models project and classes,

respectively. In the end, your business logic or view layer logic is then decoupled from

your database logic, which is a very good thing.

 Sometimes, a pre-defined object is overkill
In some cases, going to the trouble of creating a DTO object is not practical and can

lead to excessive overhead in your projects. When it’s your data and we want it now,

but you don’t want to build out yet another class to hold that modeled data, you can

perform an operation known as projecting the data into an anonymous class (or

anonymous type).

Anonymous classes were introduced in C# 2.0, so they’ve been around for some

time now. Likely you’ve seen some sort of application where an anonymous class was

defined for quick use within a method or class body. A simple anonymous class that

holds information about an Item might look like this:

var item = new { Name = "ROG Zephyrus M15", Brand = "Asus", Price = 1629.00 };

In that declaration, a new anonymous class was created and assigned to the item

variable. If you wanted, you could then use that object just like any other class while it

remained in scope. For example, you could write out the details of the item with calls to

item.Name and item.Brand, just as if they were full public properties in a well-defined

class.

Putting that knowledge to use, you can easily see how it would be easy to use LINQ to

get some data and then combine that with the ability to create a new anonymous type to

model that data.

For example, a simple query against the Person.Person table in the AdventureWorks

joined to the HumanResources.Employee table, then joined to the Sales.SalesPerson

table, further joined to Sales.OrderHeaders, then Sales.OrderDetails, and all the

way through to Product could yield some great results which we might want to map to

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

411

just have access to the fields Product.Name, SalesPerson.FirstName, OrderHeader.

OrderDate, and others. That kind of interaction can easily be accomplished using LINQ

and anonymous types in a query similar to this one:

var salesReportDetails = db.SalesPeople.Select(sp => new

{

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

 sp.SalesYtd,

 Territories = sp.SalesTerritoryHistories.Select(y => y.Territory.Name),

 OrderCount = sp.SalesOrderHeaders.Count(),

 TotalProductsSold = sp.SalesOrderHeaders.SelectMany(y =>

y.SalesOrderDetails).Sum(z => z.OrderQty)

}).Where(srds => srds.SalesYtd > 1000000).AsQueryable()

.OrderByDescending(srds => srds.LastName).ThenBy(srds => srds.FirstName).

ThenByDescending(srds => srds.SalesYtd)

.Take(20).ToList();

 One tool to rule them all
Anytime you have fully modeled your DTO objects and perform a bunch of queries,

you’d run into the same problem. At some point, you’d be manually creating an instance

of some DTO object and then mapping each field, one by one to the DTO object from

either a model or an anonymous type.

While this approach works, like many others, it is not the best solution. For one

thing, writing line after line of code to map one object to another object that is often

nearly identical in structure is tedious. This approach also can lead to errors where the

programmer accidentally copies and pastes the field mappings and forgets to update

one or two so that one or more fields have incorrect or no data in them. This is where

AutoMapper comes in like Mighty Mouse, singing “Here I come to save the day!”

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

412

 AutoMapper
The most successful tool available today that correctly translates objects from one type to

another is AutoMapper, which is available here: www.nuget.org/packages/automapper/.

In addition to the ability to correctly map one type to another, AutoMapper has an

even niftier ability to project data from LINQ queries directly into their types, thereby

even skipping the step of getting the data into one type and then calling AutoMapper’s

Map<T> function. Don’t worry if this is unclear right now. As you work through the

following activities, you’ll learn more about how this works.

While it is unmistakably the best tool for the job, highly performant, and simple to

use for mappings and projections, the main issue I’ve run into with AutoMapper is the

complexity of getting set up to use the tool correctly in a project. Once you get past the

initial setup (correctly) and then learn a couple of quick tricks about how the tool syntax

works to automatically map identically named fields while providing ways to code for the

exceptions to the rule (i.e., mapping fields that don’t have the same name), the value of

AutoMapper easily becomes worth the initial price point, which is free, with the tiniest

ounce of pain (initial setup and a few things to learn about mappings). By the time

you complete this chapter, I imagine you will think of AutoMapper as one of the most

important libraries you must add to your robust solutions.

 Chapter 9 activities: Using LINQ, decoupled
DTO classes, projections, anonymous types,
and AutoMapper
In the activities for this chapter, you’ll start by building out a solution to use LINQ to

perform some more complex queries against the AdventureWorks database. You’ll

then see the differences between different approaches to working with LINQ using

projections to anonymous types to evaluate the performance implications of each

implementation decision you make.

After getting through the more advanced interactions with LINQ, you’ll move back to

your Inventory project, where you’ll first set up AutoMapper.

You’ll then finish up with a look at using AutoMapper to project your data from one

type to another, making sure to spend some time working with directly and indirectly

mapped fields to get a solid grasp on working with AutoMapper.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

http://www.nuget.org/packages/automapper/

413

 Activity 9-1: Working with LINQ in complex queries
For the first activity for Chapter 9, you’re going to dive a lot deeper into working with

LINQ in your projects. To this point, you’ve seen some of the really great features of

LINQ with the ability to quickly select IEnumerable or IQueryable result sets, and

you’ve learned how to chain commands to filter, sort, and apply other transformations.

However, you’ve not spent a lot of time working across table joins.

As you start joining tables, you’ll be bringing more data into the result sets than

you’ll likely need to send back for use by the calling program. As you then start working

with this data, not only will we need to combine the results of different tables, but we’ll

want to pare them down to contain only specific pieces of information.

There are a couple of ways we can pare things down, with the first being that you can

just select everything and then manually transform that data in memory into some sort

of DTO object for transmission. The other option is you can limit your queries to get just

the right amount of information for your results and then send that information in some

sort of DTO object. As you’ve seen before, the more you can refine your queries, the

better you can expect query (and application) performance to be.

 Task 0: Getting started
This first activity for the chapter will use the same solution that you were using at the

end of Chapter 8 (the Activity08-1 files, which were originally the Chapter 3 files). If you

worked through that activity, you may continue to use your own solution. If, however,

you either did not do that solution or you would just like to start fresh, grab a copy

of the Activity09-1_StarterFiles and just use them. Review Appendix A for more

information on working with the starter files.

Running the program as is should reveal results from the database similar to what is

shown in Figure 9-1.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

414

 Task 1: Get all the salespeople
In this task, you will take the solution as it stands and get a list of all salespeople with

details about their sales numbers as they are reported for the year.

 Step 1: Quickly comment out other method calls to get them out
of the way

To begin, just comment out the calls to the other methods in the Main method in the

Program.cs class of the Activity0901 project (Activity0801 or Activity0301 if you are

using your own files from the previous chapter or from Chapter 3). The only method that

should not be commented out is the BuildOptions method. Running the program would

output nothing at this point (see Figure 9-2).

Figure 9-1. The program should return results with no modifications

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

415

 Step 2: List out the salespeople and their important metrics

In this step, you will write a query to get the salespeople and their important numbers for

the year.

To begin, add a method to give a friendly print out of a SalesPerson with Person

information as follows to the end of the Program class in the Program.cs file:

private static string GetSalespersonDetail(SalesPerson sp, Person p)

{

 return $"ID: {sp.BusinessEntityId}\t|TID: {sp.TerritoryId}\t|Quota:

{sp.SalesQuota}\t" +

 $"|Bonus: {sp.Bonus}\t|YTDSales: {sp.SalesYtd}\t|Name: \t" +

 $"{p?.FirstName ?? ""}, {p?.LastName ?? ""}";

}

Next, add a method call to highlight a way to get the salespeople. Although this will

work, it is not going to be the best solution. In the Program.cs file at the end of the Main

method after the commented code, add a method call to ListAllSalespeople. Then add

Figure 9-2. All calls are commented so no results show when the program is run

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

416

the ListAllSalespeople method as follows at the end of the Program class before the

GetSalespersonDetail method you just added:

private static void ListAllSalespeople()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var salespeople = db.SalesPeople.AsNoTracking().ToList();

 foreach (var salesperson in salespeople)

 {

 var p = db.People.FirstOrDefault(x => x.BusinessEntityId ==

salesperson.BusinessEntityId);

 Console.WriteLine(GetSalespersonDetail(salesperson, p));

 }

 }

}

Running the code gives output as shown in Figure 9-3.

Luckily, there aren’t that many salespeople in the database. Do you see the problem

with the working solution? If not, recall our use of the SQL Server Profiler in Chapter 8.

Go ahead and turn on the profiler and watch your queries run for the preceding code

to see the issue with this solution (review Chapter 8 for information on working with

the SQL Server Profiler in SSMS). Figure 9-4 shows the output from this query to help

illuminate the problem.

Figure 9-3. The salespeople details are listed, but extra database calls will hinder
performance

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

417

The query that was just written is called an n + 1 query. This is a mistake that many

beginning developers make (and experienced ones do too). Essentially, for every record,

the solution has to make another query to get more details (n iterations) with the original

query being the plus one (+ 1) for (n + 1 queries total). Wouldn’t it be better if you could

just do one query and get all of the results? Think about how a query like this would

perform in the situation where you have thousands of results (with one new query

per result). Indeed, many a web page grid has waited needlessly due to poorly written

queries such as this one.

Figure 9-4. The current query is making one call to get the results plus one call per
result to get further result details. Only some of the calls are shown in this image

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

418

 Step 3: Use navigation properties to get the data

To get the data correctly using the code-first approach, you will want to use navigation

properties to include the other entities to allow for easily grouping this data together into

one query. To solve this issue, you should get the first and last name of the SalesPerson

using navigation properties rather than making a separate call per row to get it from the

database directly. Because AdventureWorks has a lot of stuff going on across multiple

schemas, you need to be sure to double-check relations to use navigations correctly. The

SalesPerson navigation for BusinessEntity will map to HumanResources.Employee,

which also has a navigation for BusinessEntity to Person, where the first and last name

of the person can be found. Therefore, we go from SalesPerson to Employee to Person

using the BusinessEntity property of each object. Because of this, our code will look

repetitive. What might make it more confusing is that you can directly join them in the

database. For example, running the following query in SSMS produces valid results as

shown in Figure 9-5:

SELECT sp.*, p.FirstName, p.LastName FROM Sales.SalesPerson sp

LEFT JOIN Person.Person p on sp.BusinessEntityID = p.BusinessEntityID

This is simply because of the ID maps, not because it is the correct direct

relationship. If you follow the keys, you would see that SalesPerson is indeed mapped to

HumanResources.Employee (also shown in Figure 9-5).

Figure 9-5. The direct query works but only due to the key being directly mapped.
The actual relationship goes through Humanresources.Employee

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

419

Review the database diagram shown in Figure 9-6 to further understand the

relationship.

Armed with this knowledge, you can see that even though the code will

look repetitive, you need to go through the BusinessEntity of Employee to its

BusinessEntity mapping to Person to get the first and last name of the SalesPerson.

To affect these changes in code, first modify the helper function that gets the

salesperson details to a friendly string by using the following code:

private static string GetSalespersonDetail(SalesPerson sp)

{

 return $"ID: {sp.BusinessEntityId}\t|TID: {sp.TerritoryId}\t|Quota:

{sp.SalesQuota}\t" +

 $"|Bonus: {sp.Bonus}\t|YTDSales: {sp.SalesYtd}\t|Name: \t" +

 $"{sp.BusinessEntity?.BusinessEntity?.FirstName ?? ""}, " +

 $"{sp.BusinessEntity?.BusinessEntity?.LastName ?? ""}";

}

Figure 9-6. The relationship is modeled for clarity in a database diagram from
Sales.SalesPerson to HumanResources.Employee to Person.Person

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

420

Next, remove the extra database call in the foreach loop so that only one database

call is made before the loop iterates (replace the code in the ListAllSalespeople

method with this code):

using (var db = new AdventureWorksContext(_optionsBuilder.Options))

{

 var salespeople = db.SalesPeople.AsNoTracking().ToList();

 foreach (var salesperson in salespeople)

 {

 Console.WriteLine(GetSalespersonDetail(salesperson));

 }

}

Now run the code. Do you think it will work? Why or why not? Figure 9-7 shows the

results.

Technically, the code will work, but you don’t get any names and just get a blank and

a comma and another blank. This is because the navigation properties were never filled

in the original query, and they are currently null. This is a very good thing. EF does not

get data unless you tell it to (lazy loading, and/or just not fetching unnecessary data). As

such, you only get the top-level results here. In order to fill the navigation properties, you

have to explicitly ask EF to do this for you. Modify the query in the ListAllSalespeople

method as follows:

Figure 9-7. The results come back, but the data has no first and last name

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

421

var salespeople = db.SalesPeople

 .Include(x => x.BusinessEntity)

 .ThenInclude(y => y.BusinessEntity)

 .AsNoTracking().ToList();

Note that this query makes a call to Include and to ThenInclude. Here you can see

that you are explicitly defining the navigations to bring into the query.

With this new code, run the query. This time you should see results as shown in

Figure 9-8.

Furthermore, a simple look at the SQL Server Profiler shows how much better your

query strategy is now that you are using the include statements (see Figure 9-9).

Figure 9-8. The use of Include and ThenInclude has correctly asked EF to fill the
navigation properties, and data is returned

Figure 9-9. The query is now correctly making only one call to the database and
leveraging the inner joins that hydrate the data for your navigation properties

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

422

Indeed, the query generated by EF in this scenario is

SELECT [s].[BusinessEntityID], [s].[Bonus], [s].[CommissionPct],

[s].[ModifiedDate], [s].[rowguid], [s].[SalesLastYear], [s].[SalesQuota],

[s].[SalesYTD], [s].[TerritoryID], [e].[BusinessEntityID], [e].[BirthDate],

[e].[CurrentFlag], [e].[Gender], [e].[HireDate], [e].[JobTitle],

[e].[LoginID], [e].[MaritalStatus], [e].[ModifiedDate], [e].[NationalIDNumber],

[e].[OrganizationLevel], [e].[rowguid], [e].[SalariedFlag],

[e].[SickLeaveHours], [e].[VacationHours], [p].[BusinessEntityID],

[p].[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion],

[p].[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate], [p].

[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Sales].[SalesPerson] AS [s]

INNER JOIN [HumanResources].[Employee] AS [e] ON [s].[BusinessEntityID] =

[e].[BusinessEntityID]

INNER JOIN [Person].[Person] AS [p] ON [e].[BusinessEntityID] =

[p].[BusinessEntityID]

You could run the query directly if you wanted to prove out the results. In the end,

you have a much better solution by using the Include and ThenInclude navigations to

bring in the data.

 Task 2: Use projections to get more efficient queries
To start with the idea of projections, consider again what they are and why they are

going to help you. Projections are just a way for you to use anonymous classes to model

results from a query. With LINQ, you can use the Select operator and then define the

projection directly in your query. Before you do that, you should decide exactly what

data you want to return.

For this problem, continue with the idea that you are generating a report for the

business on the results that your salespeople are getting. For this report, you need the

saleperson’s first and last name, their quota, their YTD sales, how much they sold last

year, and their bonus. Additionally, you will bring the BusinessEntityId back as well, so

that you could use these results further if necessary.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

423

 Step 1: Add the new method

Begin by adding a call to a new method named ShowAllSalespeopleUsingProjection

in the Main method of the Program class in the Program.cs file after the

call to ListAllSalesPeople, and then add the method as follows after the

GetSalespersonDetail method and before the end of the class:

private static void ShowAllSalespeopleUsingProjection()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 //query here...

 //foreach loop here...

 }

}

Next, replace the comment //query here… with the following code to get the data as

an anonymous class using a projection:

var salespeople = db.SalesPeople

 .Include(x => x.BusinessEntity)

 .ThenInclude(y => y.BusinessEntity)

 .AsNoTracking()

 .Select(x => new

 {

 x.BusinessEntityId,

 x.BusinessEntity.BusinessEntity.FirstName,

 x.BusinessEntity.BusinessEntity.LastName,

 x.SalesQuota,

 x.SalesYtd,

 x.SalesLastYear

 }).ToList();

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

424

Then replace the comment //foreach loop here… with the following code:

foreach (var sp in salespeople)

{

 Console.WriteLine($"BID: {sp.BusinessEntityId} | Name: {sp.LastName}" +

 $", {sp.FirstName} | Quota: {sp.SalesQuota} | " +

 $"YTD Sales: {sp.SalesYtd} | SalesLastYear

{sp.SalesLastYear}");

}

For clarity, the entire code is shown in Figure 9-10.

Now run the program to see the results (expected output is shown in Figure 9-11).

Figure 9-10. The code is shown in its entirety for clarity

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

425

As always, you should review the output in the SQL Server Profiler to ensure you are

running a good query that is efficient. Reviewing the results shows the query is generated

as follows:

SELECT [s].[BusinessEntityID] AS [BusinessEntityId], [p].[FirstName],

[p].[LastName], [s].[SalesQuota], [s].[SalesYTD] AS [SalesYtd],

[s].[SalesLastYear]

FROM [Sales].[SalesPerson] AS [s]

INNER JOIN [HumanResources].[Employee] AS [e] ON [s].[BusinessEntityID] =

[e].[BusinessEntityID]

INNER JOIN [Person].[Person] AS [p] ON [e].[BusinessEntityID] =

[p].[BusinessEntityID]

Additionally, the output is shown in Figure 9-12 for you to review.

Figure 9-11. The projected results work as expected, and data is easily shown for
the salespeople

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

426

This is an incredible finding! Do you see how much more efficient your query is

using projections? Look at the overall results. The number of reads is lower, and the

duration is almost 50% lower. Why do you think that is? Review both queries to see the

difference. In the first query, your request pulled all of the columns from every table

across all of the joins. Using the projection, EF was able to interpret exactly what you

needed and only queried for those results. This proves that EF is every bit as efficient as

you need it to be – or rather – as you tell it to be. If you aren’t convinced now that using

projections is an extremely powerful tool to maximize the efficiency of your queries

using EF and that EF is every bit as efficient as you can be with direct queries, then I

think you should rework this activity to further realize the power of using projections and

the effect of well-defined queries in EF with LINQ.

As any good salesperson (see what I did there?) would do, I have a “but wait, there’s

more” moment for you to ensure you take me up on this deal.

Go back to the query you just added and remove the two statements that do the

Include and the ThenInclude to hydrate the navigation properties. Trust me, just do it.

Then run the program. Do you think it will work (the current state of the code is shown

in Figure 9-13 for clarity)?

Figure 9-12. The SQL Server Profiler confirms the query is effective and efficient

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

427

Running the program should yield the same results you’ve seen before, even though

the Include and ThenInclude statements are removed from your code.

As you can see, EF automatically fills in the gaps for the missing data when you use

a projection. You really can write extremely efficient queries against your database and

write less code using EF with LINQ and projections.

Now we have a solid foundation for using LINQ with projections, and we understand

when to perform the various transformations. Armed with this understanding, we are

ready to go just a bit deeper, as you likely will have to do in a real-world solution.

 Step 2: Filter and sort the data

Imagine your solution needs to get data for a manager that reports the information

for your salespeople (as earlier) but also includes things like the territories that the

salesperson is in, the number of orders, and a count of products that the salesperson

has sold. The manager also needs to sort this data by last name and then first name and

Figure 9-13. The Include and ThenInclude navigation properties are removed
from the query when using a projection

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

428

needs to be able to filter the list to only those who have hit a certain sales dollar amount,

which they will input as a filter.

This is some heavy lifting for sure and might be worthy of views and stored

procedures, depending on how much data and manipulation you truly need, and you

might also use JavaScript or another tool to further filter results in something like a web

application that shows results in a grid. However, you can do this all efficiently in the

query itself, which you will do next. To do this well, you’ll have to leverage everything

you’ve learned to this point regarding LINQ, EF, and projections.

There are things you should learn along the way, so rather than building this all at

once, you’ll build it from the top down to see a few things in action as you go.

Start with the basics of the data request as discussed earlier. You need to get a lot of the

same information you’ve already seen, but you also need a list of the territories, a count of

total orders, and a count of total products. Total products will be tricky because there is a

quantity in each order detail. Review Figure 9-14 to see the overall structure of the database

that you need to be aware of for your results to work as expected, which includes the

tables SalesTerritoryHistory, SalesTerritory, SalesOrderHeader, SalesOrderDetail,

SpecialOfferProduct, SalesPerson, Employee, Person, SpecialOffer, and Product.

Figure 9-14. The database diagram that shows all entities in play for this query
includes the tables as identified earlier

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

429

To make this work, start by adding a bit of code to the main method that makes an

appropriate call to a new method named GenerateSalesReportData. Comment out the

other two method calls in the Main method so that only this new method will run.

Then add the following code for the new method:

private static void GenerateSalesReportData()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var salesReportData = db.SalesPeople.Select(sp => new

 {

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

 sp.SalesYtd,

 Territories = sp.SalesTerritoryHistories

 .Select(y => y.Territory.Name)

 }).OrderBy(srds => srds.LastName)

 .ThenBy(srds => srds.FirstName)

 .ThenByDescending(srds => srds.SalesYtd)

 .ToList();

 foreach (var srd in salesReportData)

 {

 Console.WriteLine($"{srd.beid}| {srd.LastName}, {srd.FirstName}

|" +

 $"YTD Sales: {srd.SalesYtd} |" +

 $"{string.Join(',', srd.Territories)}");

 }

 }

}

This code will start you off with a projection to get the data for the salespeople with

their names and sales YTD, as well as information about their territories.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

430

Note that it is further ordered by last name, then first name, and then the number of

sales. Feel free to change this ordering if you want to see a different order, such as by the

highest amount of YTD sales to lowest.

In the previous code insertion, you added the following foreach loop code to print

the data following the query to get sales report data:

foreach (var srd in salesReportData)

{

 Console.WriteLine($"{srd.beid}| {srd.LastName}, {srd.FirstName} |" +

 $"YTD Sales: {srd.SalesYtd} |" +

 $"{string.Join(',', srd.Territories)}");

}

Running the query gives the results shown in Figure 9-15.

Next, you need to get information about order counts. To do this, you’re going to

need to get all the sales orders and use those results, which you’ll do with the line of code

OrderCount = sp.SalesOrderHeaders.Count() added to the query after the declaration

of Territories in the projection. The new query should be as follows:

var salesReportData = db.SalesPeople.Select(sp => new

{

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

Figure 9-15. The results are shown with the start of the sales report data

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

431

 sp.SalesYtd,

 Territories = sp.SalesTerritoryHistories

 .Select(y => y.Territory.Name),

 OrderCount = sp.SalesOrderHeaders.Count()

}).OrderBy(srds => srds.LastName)

 .ThenBy(srds => srds.FirstName)

 .ThenByDescending(srds => srds.SalesYtd)

 .ToList();

Replace the output in the foreach loop to show the count of orders as follows:

Console.WriteLine($"{srd.beid}| {srd.LastName}, {srd.FirstName} |" +

 $"YTD Sales: {srd.SalesYtd} |" +

 $"{string.Join(',', srd.Territories)} |" +

 $"Order Count: {srd.OrderCount}");

Run the program to see the additional results. Ensure they look as you would expect.

Next, you need to get the total number of products sold. This is going to be more

difficult because of the setup of the tables and the fact that an order detail might have

multiple products in it based on quantity. To get this right, you need to get all of the order

details for each order header and then sum up the quantity of products sold across all of

those order details.

To make this happen, you’ll leverage the power of SelectMany. The SelectMany operator

will allow you to instantly grab all the order details and use them as a result set in your

query. Add the following line of code to the projection in the query after the call to get the

OrderCount (don’t forget to add a comma after the sp.SalesHeader.Count() statement):

TotalProductsSold = sp.SalesOrderHeaders

 .SelectMany(y => y.SalesOrderDetails)

 .Sum(z => z.OrderQty)

Note the select many that gets all the order details and then sums their quantity.

Replace the output statement in the foreach loop with the following code:

Console.WriteLine($"{srd.beid}| {srd.LastName}, {srd.FirstName} |" +

 $"YTD Sales: {srd.SalesYtd} |" +

 $"{string.Join(',', srd.Territories)} |" +

 $"Order Count: {srd.OrderCount} |" +

 $"Products Sold: {srd.TotalProductsSold}");

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

432

Now run the program and ensure you have the results to include order count and

product sold count. Your results should be similar to what is shown in Figure 9-16.

Next, you need to add a filter for the employee sales YTD minimum as requested. At

the start of the method, prompt the user to enter a minimum dollar amount for SalesYtd

with the following code at the start of the GenerateSalesReportData method before the

using statement, making sure to just exit if the user enters malicious or incorrect data:

Console.WriteLine("What is the minimum amount of sales?");

var input = Console.ReadLine();

decimal filter = 0.0m;

if (!decimal.TryParse(input, out filter))

{

 Console.WriteLine("Bad input");

 return;

}

This code will take input and garner a variable that is a decimal called filter, with a

value that is input by the user.

Next, add the following code to filter the results in the original query after the

original Select and before the OrderBy statement:

.Where(srdata => srdata.SalesYtd > filter)

Figure 9-16. The results are shown to use as validation that all of the data is
showing as expected

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

433

For clarity, the query at this point should be

var salesReportData = db.SalesPeople.Select(sp => new

{

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

 sp.SalesYtd,

 Territories = sp.SalesTerritoryHistories

 .Select(y => y.Territory.Name),

 OrderCount = sp.SalesOrderHeaders.Count(),

 TotalProductsSold = sp.SalesOrderHeaders

 .SelectMany(y => y.SalesOrderDetails)

 .Sum(z => z.OrderQty)

}).Where(srdata => srdata.SalesYtd > filter)

 .OrderBy(srds => srds.LastName)

 .ThenBy(srds => srds.FirstName)

 .ThenByDescending(srds => srds.SalesYtd)

 .ToList();

The call will allow the results to only return data where the YTD sales is greater than

the input filter.

Run the program to see results, using a large filter, such as 20,000,000. You should see

no results. Run the program again and put in a smaller number, such as 3,000,000. This

time you should see a few results (see Figure 9-17).

The report is looking pretty good based on our original request. You could be content

at this point, but there is one more thing to consider, which is using projections to a DTO

object rather than an anonymous class.

Figure 9-17. The query with a filter allows the manager to get details about all of
the salespeople that have sold greater than 3 million dollars as reported in their
YTD Sales column

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

434

 Step 3: Project the data to a DTO

To end this activity, you’ll create a DTO to be mapped from the results of your query.

This will allow you to see one last point – that you can project results into a pre-defined

object, not just into anonymous classes. This is highly useful in larger systems, as the

ability to communicate with a pre-defined object makes it much easier to transfer data

between layers. This will also position you for the final two activities where you’ll get to

learn about using AutoMapper to help with the data type of these projections.

Ordinarily, I’d recommend putting DTOs into a separate project. For brevity,

however, in this activity, you’ll just add your DTOs to a folder in the EFCore_DbLibrary

project.

Begin by creating a call to a new method named GenerateSalesReportDataToDTO in

the main method. Comment out the original call to GenerateSalesReportData to limit

results to the new method only.

For now, just make an exact copy of the GenerateSaleReportData method and call it

GenerateSalesreportDataToDTO.

In the EFCore_DBLibrary project, add a new folder called DTOs and then add a new

class file to that folder called SalesReportListingDto.cs. In that file, add the following

code:

public class SalesReportListingDto

{

 [Required]

 public int BusinessEntityId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public decimal? SalesYtd { get; set; }

 public IEnumerable<string> Territories { get; set; }

 public int TotalProductsSold { get; set; }

 public int TotalOrders { get; set; }

 public string DisplayName => $"{LastName}, {FirstName}";

 public string DisplayTerritories => string.Join(",", Territories);

 public override string ToString()

 {

 return $"BID: {BusinessEntityId} |{DisplayName,25}|

{DisplayTerritories,25}|" +

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

435

 $"{SalesYtd} | Orders: {TotalOrders} |" +

 $"Products Sold: {TotalProductsSold}";

 }

}

You will also need to bring in the using statement using System.ComponentModel.

DataAnnotations;.

Next, replace the query in the GenerateSalesReportDataToDTO method with the

following:

var salesReportData = db.SalesPeople.Select(sp => new SalesReportListingDto

{

 BusinessEntityId = sp.BusinessEntityId,

 FirstName = sp.BusinessEntity.BusinessEntity.FirstName,

 LastName = sp.BusinessEntity.BusinessEntity.LastName,

 SalesYtd = sp.SalesYtd,

 Territories = sp.SalesTerritoryHistories

 .Select(y => y.Territory.Name),

 TotalOrders = sp.SalesOrderHeaders.Count(),

 TotalProductsSold = sp.SalesOrderHeaders

 .SelectMany(y => y.SalesOrderDetails)

 .Sum(z => z.OrderQty)

}).Where(srdata => srdata.SalesYtd > filter)

 .OrderBy(srds => srds.LastName)

 .ThenBy(srds => srds.FirstName)

 .ThenByDescending(srds => srds.SalesYtd)

 .ToList();

You will also need to bring in the using statement using EFCore_DbLibrary.DTOs;

in order to correctly reference the new DTO object.

Then update the foreach loop to simply leverage the ToString method from the

SalesReportListingDto:

foreach (var srd in salesReportData)

{

 Console.WriteLine(srd.ToString());

}

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

436

For clarity, the code for the GenerateSalesReportDataToDTO method code is shown

in Figure 9-18.

Run the program to see the expected results.

Figure 9-18. The new method leverages the new DTO object and appears a bit
cleaner than the original select into an anonymous class

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

437

Note that there is one last thing to clean up. In the original query, the final call is

making a call ToList. When you make this call, you force the system to evaluate the

results. In the future, you might want to do more things with the query before you

actually force the execution. For this reason, it would be better to defer the execution to

the point where it is needed, which, in this case, is the foreach loop.

Remove the final ToList call from the query and just end the query after the

ThenByDescending(srcs => srds.SalesYtd). Run the program. You will still see the

expected results, but the difference is that the database call is not made until after you try

to iterate the query, not as the query was built. Figure 9-19 shows the final result of this

activity when an input of 3,000,000 is used for the sales YTD filter.

 Activity 9-1 summary
In this activity, you used the more densely populated AdventureWorks database to learn

about working with LINQ using projections. You started by getting the data using an n +

1 query and evaluated the efficiency in your SQL Server Profiler.

After learning about the pain of this query and how it is a common error, you learned

how to use navigation properties on the entities to get the data populated by EF using

LINQ.

You then learned that although this is more efficient than the first approach, an

even better approach existed with the use of projections. By projecting your data, you

found that you didn’t need to explicitly define the include statements for the navigation

properties, and you learned that EF with projections is an extremely efficient way to get

your data when joining data across tables.

After looking at LINQ with EF using projections, you solidified the activity by also

seeing how you can easily map projections to any custom DTO object that you created.

Figure 9-19. The final results work as expected, and the data is projected into a
DTO object rather than an anonymous class

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

438

Putting this all together, you are now in position to leverage EF with LINQ and

projections to create efficient solutions, and you are now ready to start utilizing

AutoMapper to make your solutions easier to work with.

 Activity 9-2: Setting up AutoMapper
In this second activity for Chapter 9, you’re going to set up AutoMapper in your custom

Inventory project. After you get set up, you’ll do a quick check to see that things are in

place correctly for using AutoMapper for the rest of the activities in this book. Activity 9-3

will then heavily leverage AutoMapper to show how to work with your efficient objects in

robust solutions.

 Task 0: Getting started
This activity will switch back to the code for the InventoryDbManager project that you’ve

been working on throughout the book. The last time you used this project was for

Activity 7-3, if you are working through each of the projects in order through the book. If

you have a working InventoryDbManager solution and you’ve completed the activities in

order, feel free to keep using those files for this activity. If you are unsure or just want a

clean start, it may be easier to just grab the EFCore_Activity09-2_StarterFiles project.

As always, refer to Appendix A for more information on working with starter files.

 Task 1: Get AutoMapper packages and configure
the solution
In this first task, you will get the AutoMapper packages for the solution.

 Step 1: Get the NuGet packages

You can get the AutoMapper projects by setting your PMC to the main activity project

and running the command Install-Package AutoMapper. If you prefer, however, you

can also just use the Manage NuGet Packages for your solution tool, browse and find

AutoMapper, and then install it. Either way, ensure you are using AutoMapper on your

main activity project – not the DBLibrary project.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

439

Figure 9-20 shows the installation of the AutoMapper NuGet package from the

Manage Packages for Solution dialog.

In addition to the base project, for your projects in this book, you will also need

the AutoMapper.Extensions.Microsoft.DependencyInjection library. Use either the

PMC or the dialog as earlier to install this package into your main activity project (see

Figure 9-21).

Once these packages are installed, we’re done! Just kidding, there are a few more

things to do.

Figure 9-20. Installing AutoMapper is easily accomplished from the Manage
NuGet Packages for Solution dialog

Figure 9-21. Both AutoMapper packages are currently installed on the main
activity project

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

440

 Step 2: Create the InventoryMapper profile

In order for AutoMapper to work correctly, you have to let it know what types you want to

map. This is incredibly useful later when you are going to do custom mapping of objects.

It is also handy because default mappings will just work.

In an effort to learn this material, you will try to keep this project as simple as

possible. However, when you’re ready to learn more about how AutoMapper is set up

and how it works, make sure you take some time to review the README.md file here:

https://github.com/AutoMapper/AutoMapper. Additionally, more information can also

be found here: http://docs.automapper.org/en/latest/.

You could just perform all the mapping configurations in the main Program.cs

file. In the real world, however, you’re going to want your mapping configuration to be

separate from your program logic for the same reason that you are working hard to keep

each piece of this entire book separate, mainly that a well-organized project will save you

a number of headaches in the future.

Begin this step by adding a new class to handle your mapping declarations. Add

a new class to the main activity project in a file called InventoryMapper.cs. This

InventoryMapper class needs to inherit from a base class called Profile, which requires

the using statement using Automapper; since it is part of the AutoMapper library. In

theory, you can separate your various business unit mapping logic into separate classes.

You may choose to do that in larger projects. For this InventoryManager project, you

don’t have enough going on in your solution right now to warrant that extra work,

so you’ll just add all of your mapping configurations in this single class. The nice

thing about this class being an AutoMapper profile is that it’s easier to inject into the

configuration this way for all maps in the profile.

Add the default constructor for the InventoryMapper class, and then add a call

to a new method named CreateMaps in the default constructor. Next, stub out the

CreateMaps method. In the CreateMaps method, you’ll place all of your Inventory

mapping logic. For now, even though it will not work correctly, just add the following

two lines of code (ItemDto and CategoryDto are not yet created):

CreateMap<Item, ItemDto>();

CreateMap<Category, CategoryDto>();

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

https://github.com/AutoMapper/AutoMapper
http://docs.automapper.org/en/latest/

441

When that is all set up, your code should look like this:

public class InventoryMapper : Profile

{

 public InventoryMapper()

 {

 CreateMaps();

 }

 private void CreateMaps()

 {

 CreateMap<Item, ItemDto>();

 CreateMap<Category, CategoryDto>();

 }

}

As of right now, the code will not compile, so you first need to create the two DTO

classes that don’t currently exist to prevent build errors. You’ll also bring in missing using

statements once all the code is created, but you could bring in the InventoryModels

using statement now if you want to resolve issues with Item and Category.

 Task 2: Create the DTO objects
The last step mapped two DTO Objects, ItemDto and CategoryDto. In this task, you will

create these DTO objects for use in your solution.

 Step 1: Create the Item DTO

In the InventoryModels project, under the DTOs folder, add a new class file ItemDTO.cs.

In this file, add two string properties for Name and Description and two int properties

for Id and CategoryId. Also, you’ll have a simple ToString method to print details. The

code for this new DTO should be as follows:

public class ItemDto

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public int CategoryId { get; set; }

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

442

 public override string ToString()

 {

 return $"{Name,-25} | {Description}";

 }

}

For clarity, review Figure 9-22 to see the position and expected code for the ItemDto

class in the DTOs folder of the InventoryModels project.

 Step 2: Create the Category DTO

In the InventoryModels project, under the DTOs folder, add a new class file

CategoryDTO.cs. Add the following code to create the CategoryDto class with a single

property for an int Id (this will be enhanced in future activities):

public class CategoryDto

{

 public int Id { get; set; }

}

Save your changes, then go back to the InventoryMapper file in the main project, and

add the missing using statements using InventoryModels and using InventoryModels.

Dtos to the top of the file. This fixes the issue for the two DTO types in the mapping profile.

Ensure that your project will build without error before proceeding to the next task.

Figure 9-22. The ItemDto class is created and placed in the InventoryModels
project in the DTOs folder as expected

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

443

 Task 3: Set up the program to use AutoMapper and configure
mappings

Back in the main method in the Program.cs file, in the space between the class

declaration and the Main method, following the _optionsBuilder or _loggedInUserId

variable, whichever is your last variable before the Main method, add three static

variables using the following code:

private static MapperConfiguration _mapperConfig;

private static IMapper _mapper;

private static IServiceProvider _serviceProvider;

Make sure to also add the using statement using AutoMapper; to resolve build issues.

Next, add a call to a new method named BuildMapper right after the call to the

BuildOptions method before making any calls to List or Get methods in the main

method of the Program class. Add the method with a blank body for now. Remember

that in this console project, methods must be static to be called from the program’s main

method (this is not because of AutoMapper).

Next, we need to set the configuration for AutoMapper, and we need to inject it using

a service collection and a service provider. This will set up our ability to use AutoMapper.

In the BuildMapper method, add the following code, and then add the using

statement using Microsoft.Extensions.DependencyInjection; to the top of the file:

var services = new ServiceCollection();

services.AddAutoMapper(typeof(InventoryMapper));

_serviceProvider = services.BuildServiceProvider();

The preceding statement sets up a service collection to allow you to use dependency

injection where AutoMapper is concerned. The service collection then gets AutoMapper,

and you inject the service profile assembly. If you had other assemblies, you could just

add them in the same call by using commas to separate the different assemblies.

After adding the service, you need to set up the mapping configuration. Add the

following lines in the BuildMapper method after the three you just added earlier:

_mapperConfig = new MapperConfiguration(cfg => {

 cfg.AddProfile<InventoryMapper>();

});

_mapperConfig.AssertConfigurationIsValid();

_mapper = _mapperConfig.CreateMapper();

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

444

These lines of code set up the configuration and tell AutoMapper to use the

InventoryMapper profile (which currently has two type mappings and will eventually

have more). Using the profile keeps this section much cleaner than manually adding all

of the object maps directly to the configuration as inline code.

Next, you make sure that your configuration is valid, which ensures your types are

correctly mapped, and then you conclude by instantiating your mapper object using the

CreateMapper call.

At this point, AutoMapper is set up correctly. If you run the program, you should not

get any errors, even though you aren’t implementing any concrete uses of AutoMapper

yet. For clarity, the finished BuildMapper method is shown in Figure 9-23.

Save and run your program to ensure there are no errors before proceeding to the

final task.

 Task 4: Leverage AutoMapper in your solution

In this final task for the activity, you will leverage AutoMapper to automatically map Item

objects to ItemDto objects without you having to do a lot of extra work. This is the power

that AutoMapper will give us.

Return to the Program class and locate the ListInventory method. In that method,

add the following line of code between the database call and the printout of the results:

var result = _mapper.Map<List<Item>, List<ItemDto>>(items);

Figure 9-23. The BuildMapper method is implemented and shown for clarity
using the code from earlier

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

445

Then change the output line to

result.ForEach(x => Console.WriteLine($"New Item: {x}"));

When completed, the ListInventory code should be

private static void ListInventory()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.OrderBy(x => x.Name).ToList();

 var result = _mapper.Map<List<Item>, List<ItemDto>>(items);

 result.ForEach(x => Console.WriteLine($"New Item: {x}"));

 }

}

Run the program to see AutoMapper in action. If you want, put a breakpoint on the

output statement to see how the result object was correctly mapped from the items list

(review Figure 9-24).

Running the program shows the overall output of the new items correctly utilized in

code, and their ToString methods are leveraged for output (see Figure 9-25).

Figure 9-24. AutoMapper has allowed for the correct translation of an Item to an
ItemDto without you having to do any extra work, now that AutoMapper is in your
solution and you have set the configuration and mappings

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

446

 Activity 9-2 summary
In this activity, you were able to successfully set up AutoMapper to map one object type

to another. You created the mapping configuration by setting up the services in your

project to hold a single instance of AutoMapper.

You also set up an InventoryMapper profile where you can easily add and work with

the specific mappings for the Inventory system going forward.

Finally, when you created the configuration, you made sure to add the

InventoryMapper profile when instantiating the mapper variable for use in your system.

One thing to note is that AutoMapper works automatically when the field names

line up exactly with each other. Here, both classes, Item and ItemDto, had fields with

identical names – Id, Name, Description, and CategoryId.

When the field names don’t line up exactly, then you will need to do a bit more with

AutoMapper configurations to make things work as expected. You’ll get to see how to do

that next in the final activity for this chapter.

 Activity 9-3: Working with AutoMapper
In the final activity for Chapter 9, you’re going to continue working with AutoMapper

and LINQ so that you can solidify your knowledge of how to both work with LINQ in

some more advanced queries and also so that you can be in a good place to fully leverage

the power of AutoMapper in the future in all of your projects.

Figure 9-25. The program is running, and the new ItemDto objects are easily
leveraged as they are mapped from Item objects via AutoMapper

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

447

 Task 0: Getting started
Before running through this activity, there are a couple of things that you need to do,

including getting the right files (yours or the starter files) and then adding more data.

 Step 1: Get the files

For this activity, you can either continue where you left off on the last project or you can

get a copy of the starter files EFCore_Activity09-3_StarterFiles.zip. If you choose

the starter pack, as always, make sure that your database connection string is configured

correctly, then save and build the project, and run the update-database command to

make sure you don’t have any missing migrations. Finally, run the program to ensure

that it works correctly before proceeding.

 Step 2: Seed more data

In order to really leverage the power of projections and EF and AutoMapper, you’ll need

a bit more data. Particularly, you will want to have a couple of items in each category.

Open the InventoryDataMigrator project and add a few more Items to the mix to

span a couple of Categories using the following code after the existing seeded items in

the BuildItems.cs file:

new Item() { Name = "Practical Entity Framework", CurrentOrFinalPrice =

27.99m, Description = "The book you are reading on Entity Framework",

 IsOnSale = false, Notes = "", PurchasePrice = 28.99m, PurchasedDate =

null, Quantity = 1, SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new List<Player>() {

 new Player() { CreatedDate = DateTime.Now,IsActive =

true,IsDeleted = false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.linkedin/in/

brianlgorman",Name = "Brian L. Gorman"}

 }

},

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

448

new Item() { Name = "The Sword of Shannara", CurrentOrFinalPrice = 9.99m,

Description = "The definitive fantasy book",

 IsOnSale = false, Notes = "", PurchasePrice = 13.99m, PurchasedDate =

null, Quantity = 900, SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new List<Player>() {

 new Player() { CreatedDate = DateTime.Now,IsActive =

true,IsDeleted = false,CreatedByUserId = SEED_USER_ID,

 Description = "https://www.amazon.

com/Sword-Shannara-Terry-Brooks/

dp/0345314255",Name = "Terry Brooks"}

 }

},

new Item() { Name = "World of Tanks", CurrentOrFinalPrice = 0.00m,

Description = "WWII First person tank shooter",

 IsOnSale = false, Notes = "", PurchasePrice = 0.00m, PurchasedDate =

null, Quantity = 1, SoldDate = null, CreatedByUserId = SEED_USER_ID,

CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new List<Player>() {

 new Player() { CreatedDate = DateTime.Now,IsActive =

true,IsDeleted = false,CreatedByUserId = SEED_USER_ID,

 Description = "https://worldoftanks.

com/",Name = "Wargaming"}

 }

},

new Item() { Name = "Battlefield 2142", CurrentOrFinalPrice = 0.00m,

Description = "WWII First person tank shooter",

 IsOnSale = false, Notes = "Game is no longer active", PurchasePrice

= 50.00m, PurchasedDate = null, Quantity = 1, SoldDate = null,

CreatedByUserId = SEED_USER_ID, CreatedDate = DateTime.Now,

 IsDeleted = false, IsActive = true, Players = new List<Player>() {

 new Player() { CreatedDate = DateTime.Now,IsActive =

true,IsDeleted = false,CreatedByUserId = SEED_USER_ID,

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

449

 Description = "https://en.wikipedia.org/

wiki/Battlefield_2142",Name = "Electronic

Arts"}

 }

}

As it currently stands, the seed will not run unless you delete all of the items. Things

are a bit more complex now, so the easiest thing to do is just open SSMS and run the

following statements:

DELETE FROM Player

DELETE FROM Items

You can leave all the Categories and Genres as is. After deleting items and players,

right-click the migration project and use the Debug ➤ Start New Instance menu to kick

off the seed.

The program will have no output. When it is completed, close it, and then run the

statements

SELECT * FROM Items

SELECT * FROM Player

Ensure that you have both Items and Player objects (you should have nine of each).

Because there are currently no categories associated, you need to add each of

the nine entries to a specific category. You could do this in a migration if you wanted;

however, for brevity, just run the following query:

DECLARE @MoviesID INT

DECLARE @BooksID INT

DECLARE @GamesID INT

SET @MoviesID = (SELECT Id FROM Categories WHERE Name = 'Movies')

SET @BooksID = (SELECT Id FROM Categories WHERE Name = 'Books')

SET @GamesID = (SELECT Id FROM Categories WHERE Name = 'Games')

UPDATE ITEMS SET CategoryId = @MoviesID WHERE Name = 'Batman Begins'

UPDATE ITEMS SET CategoryId = @GamesID WHERE Name = 'World of Tanks'

UPDATE ITEMS SET CategoryId = @BooksID WHERE Name = 'The Sword of Shannara'

UPDATE ITEMS SET CategoryId = @BooksID WHERE Name = 'Practical Entity

Framework'

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

450

UPDATE ITEMS SET CategoryId = @GamesID WHERE Name = 'Battlefield 2142'

UPDATE ITEMS SET CategoryId = @MoviesID WHERE Name = 'Star Wars: The Empire

Strikes Back'

UPDATE ITEMS SET CategoryId = @MoviesID WHERE Name = 'Top Gun'

UPDATE ITEMS SET CategoryId = @MoviesID WHERE Name = 'Remember the Titans'

UPDATE ITEMS SET CategoryId = @MoviesID WHERE Name = 'Inception'

SELECT i.*, c.Name

FROM Items i

LEFT JOIN Categories c on i.CategoryId = c.Id

This query will associate your seeded items with categories appropriately. If you

wanted, you could also do some genre and genre items, but you will not need them for

this chapter. For convenience, this script is also included in the InventoryDataMigrator

project in the starter and final files for this activity.

 Step 3: Run the program to validate output

Now that data is in place, run the program to validate the output from the program.

The output with the new data is shown in Figure 9-26.

 Task 1: Perform a more advanced query
In this task, you will use the skills you’ve learned with projections to perform a more

advanced query similar to a query you’ve already run in a stored procedure or that you

might have previously considered only running in a stored procedure.

Figure 9-26. The newly seeded data with associated categories is shown

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

451

 Step 1: Build a new GetItemsForListing query

In a previous activity, you created a stored procedure to get items for listing. Using what

you’ve learned in this chapter, add a new call that will recreate the procedure results

using LINQ and projections.

Go to the Main method in the Program class for the main activity project. Comment

out all method calls except BuildOptions, BuildMapper, and GetItemsForListing.

Next, add a call to a new method named GetItemsForListingLinq. In the

GetItemsForListingLinq method, add the code as follows:

var minDateValue = new DateTime(2021, 1, 1);

var maxDateValue = new DateTime(2024, 1, 1);

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var results = db.Items.Select(x => new

 {

 x.CreatedDate,

 CategoryName = x.Category.Name,

 x.Description,

 x.IsActive,

 x.IsDeleted,

 x.Name,

 x.Notes

 }).Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .OrderBy(y => y.CategoryName).ThenBy(z => z.Name)

 .ToList();

 foreach (var item in results)

 {

 Console.WriteLine($"ITEM {item.CategoryName}| {item.Name} - {item.

Description}");

 }

}

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

452

Run this code to see the output in action (review Figure 9-27).

One thing to note is that you can’t currently project into the DTO as you did in the

stored procedure because of the need to leverage the CreatedDate field from the Item, as

well as the CategoryName that is not currently in the ItemDto.

Both the original stored procedure and the new projected LINQ query were able to

get the same result. Furthermore, I turned on SQL Server Profiler and for most runs was

able to get similar results for the LINQ query with the projection to the actual stored

procedure call (see Figure 9-28).

Figure 9-27. The new query is nearly as efficient as the stored procedure and easily
projects the results as expected in the output as shown

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

453

If your output doesn’t match mine exactly, that may be due to you having set

different gGenres and/or different iItems and cCategories associations than what I

have in my database. It’s always a good idea to validate that your results match what is to

be expected based on your data.

Imagine that in the original stored procedure, there exists a small error due to

including the join to the Genres and ItemGenres tables that could have been left behind

when you removed the Genre data from the stored procedure. With LINQ, we avoid

making the same type of mistake. This is where LINQ can really be a powerful ally,

mainly because it is generally more flexible than a stored procedure.

To fix an issue with the original procedure, you would generally have to go through

governance procedures to update a stored procedure on the database server. With LINQ,

you can usually just fix your mistake in the code and then deploy a patch.

 Step 2: Update the DTO so that it maps to the query result

In the previous run, you ended up with an anonymous type that was used for your

output due to the fact that the CreatedDate is a required field and the CreatedDate is not

part of your DTO. You also need to map the CategoryName field to a property.

Figure 9-28. The query from LINQ with a projection is nearly as performant as a
SQL Server stored procedure when it comes to getting the data

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

454

As mentioned earlier in Activity0902, we can easily modify our DTO object to

include the CreatedDate, and then we can project directly to that type in our query. If

you needed to preserve the ItemDto, you could extend it with a subclass and just add the

CreatedDate. Instead, for brevity, just modify the ItemDto class in the InventoryModels

project DTOs folder to have the code as follows:

public class ItemDto

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public int CategoryId { get; set; }

 public bool IsActive { get; set; }

 public bool IsDeleted { get; set; }

 public string Notes { get; set; }

 public string CategoryName { get; set; }

 public DateTime CreatedDate { get; set; }

 public override string ToString()

 {

 return $"ITEM {Name,-25}] {Description,-50} has category:

{CategoryName}";

 }

}

Once you have the DTO, go back and change the GetItemsForListingLinq to

leverage the ItemDto as follows:

private static void GetItemsForListingLinq()

{

 var minDateValue = new DateTime(2021, 1, 1);

 var maxDateValue = new DateTime(2024, 1, 1);

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var results = db.Items.Select(x => new ItemDto

 {

 CreatedDate = x.CreatedDate,

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

455

 CategoryName = x.Category.Name,

 Description = x.Description,

 IsActive = x.IsActive,

 IsDeleted = x.IsDeleted,

 Name = x.Name,

 Notes = x.Notes,

 CategoryId = x.Category.Id,

 Id = x.Id

 }).Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .OrderBy(y => y.CategoryName).ThenBy(z => z.Name)

 .ToList();

 foreach (var itemDto in results)

 {

 Console.WriteLine(itemDto);

 }

 }

}

Run the program to see the expected output (see Figure 9-29).

Figure 9-29. The projection to a DTO works as expected

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

456

 Task 2: Using AutoMapper and DTO projections
In this task, you will project results directly from a query into a DTO object using

AutoMapper with projections.

One of the more powerful features of AutoMapper is the ability to project directly to a

type, even if the query is returning another type. When you originally set up AutoMapper

in the previous activity, you saw that we were able to map an Item to an ItemDto. The

ItemDto was originally a much pared-down version of the Item, which will often be the

case with DTOs.

The thing you didn’t leverage in that original example was the ability that

AutoMapper has to just project directly to the type you desire, thereby combining the

query and the mapping into one statement.

 Step 1: Use AutoMapper projections

If you commented out the call to the ListInventory method, go ahead and uncomment

it now so that it will execute on the next run. Additionally, you could comment out both

of the GetItemsForListing… methods to clear up the output for now, leaving only the

BuildOptions, BuildMapper, and ListInventory calls uncommented.

Add a new method called ListInventoryWithProjection to the Main method

following the original ListInventory method before the call to GetItemsForListing. In

the new method, place the following code:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var items = db.Items

 .OrderBy(x => x.Name)

 .ProjectTo<ItemDto>(_mapper.ConfigurationProvider)

 .ToList();

 items.ForEach(x => Console.WriteLine($"New Item: {x}"));

}

You will need to also add the using statement using AutoMapper.

QueryableExtensions.

Run the program to see the results. You should see that both methods create the

same results, where the first method has to do a manual mapping and the second

method just projects the results into the DTO object (see Figure 9-30).

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

457

 Step 2: Use AutoMapper when the fields don’t line up one to one

To complete your first look at AutoMapper and using projections with LINQ in your

codebase, you need to learn one more concept. There are going to be times in the real

world where your database object and your DTO do not map property to property.

Perhaps your DTO is a combination of a couple of objects, or perhaps your DTO needs to

transform some of the data from the object and use that in its lifecycle. Either way, a one-

to- one mapping of fields in DTOs to objects is an unreasonable expectation in robust

solutions.

The great news is that AutoMapper allows for you to map the fields as you see fit.

Sometimes, you can even tell AutoMapper to ignore a field altogether. Other times, you

need to map the relationship in both directions and sometimes just in one direction.

To show how this works, you’ll use a bit of a contrived example. Reviewing your data

in the Inventory system, you have categories, and each category has a color. Additionally,

you have items that belong to one category, thereby having a color via the category.

Suppose you want to get an output of your categories and their associated colors, but

instead of using the table field Name, you’ll use a more descriptive string Category, and

the string field ColorValue will just be leveraged with a string called Color. You can set

all this up with a friendly DTO and a couple of tweaks in the mapping configuration.

Figure 9-30. The results are the same, but the projections let you map results
directly during the query execution

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

458

Begin by creating a new class called CategoryDetailDTO.cs in the InventoryModels

project in the DTOs folder. This DTO will map to the CategoryDetail. In the new DTO,

add a string field for Color and a string field for Value.

public class CategoryDetailDto

{

 public string Color { get; set; }

 public string Value { get; set; }

}

In the CategoryDto class that you created earlier in the activity, add two properties as

follows:

public string Category { get; set; }

public CategoryDetailDto CategoryDetail { get; set; }

Next, go into the InventoryMapper file in the main activity project to create and

modify the mappings.

For the first map, when mapping Category to CategoryDto, change the code to the

following:

CreateMap<Category, CategoryDto>()

 .ForMember(x => x.Category, opt => opt.MapFrom(y => y.Name))

 .ReverseMap()

 .ForMember(y => y.Name, opt => opt.MapFrom(x => x.Category));

And then add a new map for CategoryDetail to CategoryDetailDto as follows (if

you currently have a mapping for Category to CategoryDto, replace it with this code):

CreateMap<CategoryDetail, CategoryDetailDto>()

 .ForMember(x => x.Color, opt => opt.MapFrom(y => y.ColorName))

 .ForMember(x => x.Value, opt => opt.MapFrom(y => y.ColorValue))

 .ReverseMap()

 .ForMember(y => y.ColorValue, opt => opt.MapFrom(x => x.Value))

 .ForMember(y => y.ColorName, opt => opt.MapFrom(x => x.Color));

By reversing the map with the ReverseMap call and going in the other direction, it is

now possible to map one of the database objects to the corresponding DTO and also to

go from the DTO back to the corresponding database object.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

459

If one of the classes had an extra field that didn’t map to anything, you could make a

statement like

.ForMember(x => x.AFieldNotMappable, opt => opt.Ignore())

Note that the use of the Ignore method tells AutoMapper to skip trying to match the

particular field to any field in the target object.

To complete the work, do a quick query in the main program to see all of this in

action.

Figure 9-31 is shown for clarity to ensure that the CreateMaps method code is clear

(make sure you don’t have duplicate Category to CategoryDTO mappings).

Add a new method in the Main method of the program class called ListCategories

AndColors. In the ListCategoriesAndColors method, add the following code:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var results = db.Categories

 .Include(x => x.CategoryDetail)

 .ProjectTo<CategoryDto>(_mapper.ConfigurationProvider).

ToList();

Figure 9-31. The CreateMaps method is shown to ensure that it is clear what the
code should be for this method

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

460

 foreach (var c in results)

 {

 Console.WriteLine($"Category [{c.Category}] is {c.CategoryDetail.

Color}");

 }

}

Run the program to see the results with the new projections mapping as expected

(see Figure 9-32).

Note that in this method you did use the Include syntax as the original code is

grabbing categories and their details. If you select the CategoryDetail, AutoMapper

will not be able to make the projection correctly from the internal CategoryDetailDto

from a CategoryDetail, and you cannot use an anonymous type with ProjectTo with

AutoMapper. Using Include allows the selection of the data, and then mapping is

completed successfully.

If you want to see the error, change the .Include(x => x. CategoryDetail) to

.Select(x => x.CategoryDetail) and run the program. Figure 9-33 shows the error

that happens when trying to select and project in this manner.

Figure 9-32. The CategoryDto is correctly leveraged with mappings to
translate fields that don’t map one to one and also contains the relational
CategoryDetailDto which is also now correctly mapped for each of the fields

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

461

If you did this last step, make sure to set your code back to .Include so that there are

no errors during execution.

 Activity 9-3 summary
In this final activity, you were able to see the real power of working with AutoMapper in

your EF with LINQ queries. Once you have AutoMapper configured and you learn the

syntax that is necessary to create mappings, you can really start leveraging AutoMapper

as a great tool to make your queries more succinct and generally just as performant as if

you had written them without AutoMapper.

The added benefits of using AutoMapper include the fact that you can utilize the

.ProjectTo<T> call to automatically map your results from one type to another. By doing

this, you don’t have to make manual calls to the mapper for object conversion.

Finally, using AutoMapper allows you to easily create configurations that set your

conversions in place throughout your system. This means you don’t have to spend any

time writing manual conversions of objects, field by field. Not having to do the manual

conversion also eliminates issues where you might simply forget to map a field or where

you might incorrectly map data to the wrong field.

Figure 9-33. Using Select instead of Include breaks the projections when
leveraging AutoMapper and projections with navigation properties

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

462

 Chapter summary
This chapter gave you a deep dive into using LINQ in complex queries. You were able to

see how important it is to write your queries correctly, so as to leverage the efficiency of

EF. This also reminds you that, even as you develop, you should be utilizing some sort of

analyzer tool in order to validate that your SQL queries generated by EF are working with

maximum efficiency.

After you took a deeper look at working with LINQ, you then moved into the

importance of working with AutoMapper in your solutions. Without AutoMapper, you

have a lot of manual work that you must do when you layer your architecture and don’t

just rely on base models throughout the system.

Although AutoMapper has a bit of an initial learning curve for both setup and a few

pieces of syntax for mapping fields, once these are taken care of, the tool becomes an

invaluable piece of your systems.

 Important takeaways
After working through this chapter, the things you should be in command of are

• Working with LINQ

• Working with projections

• Understanding AutoMapper and why it is a useful tool

• Leveraging DTO objects

• Creating DTO objects and mapping fields with AutoMapper

• Using AutoMapper with ProjectTo<T>

 Closing thoughts
As this chapter closes, you are now in a really great place with your knowledge of EF

and working with LINQ in your systems. Additionally, you now have seen how to use

AutoMapper to help make your solutions more robust.

With most of the deep knowledge of working with the data complete, it’s time to start

working to make your real-world solutions more organized and protected. In the next

chapter, you’ll begin this effort by learning about how to encrypt your data.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

463
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_10

CHAPTER 10

Encryption of Data
 Keeping your system’s data secure
You’ve implemented a system, and you’ve created the best database structure you can

architect. Your system is taking off, and you have hundreds or thousands of clients and

many gigabytes of customer data on your server. Things couldn’t be better, right? Then

you get a notification that something has gone wrong with your database. Somehow, a

malicious entity has gained information about all of your customers because you were

storing that information in your database in plain text. This nightmare scenario could be

you if you don’t take at least some minimal measures to prevent it.

 Data at rest
In today’s world, it is essentially unacceptable to keep any personal customer data at

rest in your system in an unencrypted fashion. By having this data in plain text, you are

putting yourself and your company at risk for major lawsuits when a breech occurs. Even

storing your data off premises at a CSP (Cloud Service Provider) like Microsoft Azure or

Amazon AWS or Google GCP is not going to be enough to protect you and your data.

 Encryption in the past vs. encryption today
In this chapter, you are going to dive into some of the tenets of encryption using

Microsoft SQL Server. Additionally, you’ll see how encryption of data at rest can

be accomplished in two different approaches by looking into a Transparent Data

Encryption (TDE) solution and an Always Encrypted solution.

https://doi.org/10.1007/978-1-4842-7301-2_10#DOI

464

Likely, when you think of encryption, the first thing you think of are passwords, so

you’ll start by taking a look at how you can correctly protect user passwords, and then

you’ll move into looking at the other fields in your database tables.

 Passwords
Password mismanagement is probably the most egregious error a system developer can

commit. Today, you have a number of options that can help with this issue. The simplest

option available is to use a single sign-on solution via a third-party provider.

 SSO via social logins
Today, you have many platforms available that provide tools to use their platform as a means

to identify users and allow for you to easily build a single sign-on solution (SSO). If you don’t

like managing users, and you are building a non-corporate business solution, there is very

little reason to not just use the SSO capabilities of one or more of these platforms.

Facebook, Google, Microsoft, LinkedIn, and others all provide solutions that are easy

to wire up into your applications. When doing this, you are able to let those providers

do the heavy work of managing the user’s passwords, and all you need to do is associate

the user in your system with the authentication information that comes back from the

provider, such as the validated email of a user as returned from the third-party provider.

In general, to set up these third-party solutions, you would just go to the provider of

choice and create an application at their developer tools portal, which will give you the

app id and token secrets that you need in order to authenticate against the third-party

provider. Once the user has authenticated, the appropriate user information (such as

email or other identifier) is handed back to you for your use in your system.

 ASP.Net built-in authentication
Another option you have that helps with preventing user password mismanagement

comes in the form of the IdentityDbContext, which is part of the AspNetCore.

Identity.EntityFramework namespace.

When using the IdentityDbContext, you are able to easily create a new solution

that handles user authentication for you. At inception, the system creates all the tables

necessary for users and roles, as well as identity claims. With all of this in place,

Chapter 10 enCryption of Data

465

you simply needed to perform a few actions to register and/or authenticate users, which

is also baked in for a .Net 6 solution.

When registering users with built-in identity management, the user password

is automatically hashed and salted. This makes it impossible for us to get the user

password back to plain text. In this scenario, if a user loses their password, they need to

go through a validation process to reset the password to a new password.

 Salting and hashing
If you must create your own custom database user solution, you should follow a hashing

and salting pattern to make sure you hash and salt your user passwords. In case you are

not familiar with why this is important, consider a couple of scenarios.

Even before starting this chapter, you would likely have agreed that you wouldn’t

even consider using a plain text password storage solution for anything past a simple

demo MVP solution (and even then, using plain text should be avoided if possible).

Now that we agree that storing passwords as plain text is a terrible idea, are you

thinking encryption alone is good enough? The answer, of course, is no. Encryption is a

two-way process. Anything that is encrypted can be decrypted if the common encryption

algorithm and key(s) are known. So, turning on Always Encrypted on your fields only

scrambles them from being plain text but does not make it impossible to reverse the

encryption (if it did, we couldn’t store user information like names, social security

numbers, and such in an always encrypted column).

With hashing, you use a unique algorithm to set the length of your data to a fixed

length. By combining the unique password with the hash and applying the hashing

algorithm during encryption, you get a value that is mathematically improbable to

reverse-engineer. Storing this hash in the database table allows the password to be

decrypted by applying that hash to the password as entered by the user and using the

same algorithm to decrypt for authentication. Therefore, you are no longer storing the

password but are storing a hash that when combined with user input can be encrypted

with the hash and compared to determine that the hashed results match.

What happens, though, when two users have the same password? Without anything

else, the hash value would be identical, and this could lead to a security issue. Although

it would still be tough to figure it out, a malicious user who has access to your data might

be able to run common passwords and determine them from the identical hash values.

Additionally, if they know the hashed value of a particular password and have proper

Chapter 10 enCryption of Data

466

access, they could update the stored hash for all users to the known hash value and then

log in and impersonate anyone in the system, including your admin users.

In this contrived example, consider three users that have the same password.

Figure 10-1 shows what it would look like if the exact same hash was used for each of

them when the password hash was generated.

Using a salt in addition to the hash allows you to create a unique hash for each

user that still maps correctly to a regenerated hash with salt and user input. The reason

this works is because the salt is going to be unique for the user based on some other

generation tactic, like a timestamp or a computer serial number or something else that

is unique. The password is then combined with the salt and then hashed, and therefore,

every user generates a unique hashed password value, even when the passwords are

identical. Figure 10-2 shows users that are registered with the same password, but the

hash is generated with a salt so that the password hash is unique to all users.

 Protecting sensitive user information
There are a couple of ways to implement encryption on data at rest using SQL Server.

If your SQL Server version is version 2016 or greater, the easiest way to implement

encryption is to use the Always Encrypted functionality of SQL Server. If you are on a

previous version of SQL Server, encryption is still straightforward but involves a more

manual interaction with the data.

Figure 10-1. A database with three users that have the same password generated
with the same hash

Figure 10-2. Three users with the same password have unique PasswordHash
values when a salt is used

Chapter 10 enCryption of Data

467

 Encryption basics
In order to encrypt columns in the database, you need to have two keys. The first key is

the master key that protects the keys in the system. The second key is the individual key

to encrypt columns.

With Always Encrypted, creation of the encryption keys is very easily accomplished

using SSMS to encrypt columns. If no master key exists, one is created. When a column

is encrypted, a column encryption key can be generated or, if one already exists, can be

reused.

When encrypting with the Always Encrypted approach, two types of encryption can

be used. The first is Deterministic, and the second is Randomized. The main difference

here is that if you are going to be joining to the column or if you are going to use it

as a condition in a query, you will want to use the Deterministic type. If you are just

encrypting the data and it isn’t going to be critical in a join or other query, you can just

use the Randomized type.

In SQL Server versions prior to 2016 or in current versions where you don’t want to

use Always Encrypted, you can leverage the Transparent Data Encryption (TDE) method.

To work with TDE in any SQL Server instance, you need to generate a certificate for

the server and then generate one or more keys to use when encrypting columns. To read

columns, you’ll need to use the encryption key as part of your transaction. Additionally,

you’ll use scripts for encryption of columns.

Since TDE requires more interaction, a general approach that works well is to

leverage stored procedures any time data from an encrypted column is queried or

transformed.

 Which type should you use
Each type of encryption has advantages and disadvantages. Consider a couple of things

that are important for anyone who is developing a secure system.

TDE encryption is server-side encryption, so data is well encrypted on the server,

but the decryption also happens at the server, and then the raw data is sent over the pipe

to the UI. There are ways to enforce encryption on the pipe as well, but that requires

additional configuration. Additionally, the keys for the encryption must be managed

at the database level so they are based on the database and server where they are

generated.

Chapter 10 enCryption of Data

468

The nice thing about TDE is that it can be more performant since the encryption and

decryption do happen at the server. TDE also works on any version of SQL Server since

2008.

One last thing about TDE is that since it is handled on the server, any database

admin with execution rights can decrypt the data and see the actual sensitive data as

stored in the table, and a compromised database likely means compromised keys.

Always Encrypted is limited to being used from SQL Server 2016 and newer, so

older systems or any system with a SQL Server back end that is less than the 2016 version

cannot leverage Always Encrypted. Always Encrypted functionality is not database

specific, however. The encryption takes place on the client side of the operation, and

the encrypted data is passed on the pipe and directly stored in the database table.

This means that transmission of the data over the pipe is done with the data already

encrypted with no extra configuration needed.

This client-side encryption also means that any SQL Server admin cannot just

decrypt the information using server certificates without a client library. Of course, SSMS

can be easily configured to be the client library with a few tweaks on the connection, so

your data is still not secure from a malicious database administrator who has the right

server credentials.

As you’ll see in the upcoming activities, encrypting specific columns with Always

Encrypted functionality is as easy as a few clicks, and this goes for tables with or without

data. In contrast, encrypting the data using TDE requires you to go through an entire

migration process (if you are doing specific columns). Always Encrypted leverages

client-side decryption while TDE sends the data plain text to and from the server. TDE

makes up for its longer setup time by generally having better performance than Always

Encrypted.

One final thought, which you can find more information on if you read more into the

topic of encryption, is that you are going to need to implement a good key management

strategy. Consider your risk for a compromised key and how you might have a plan in

place to migrate to a new key in case such an event does happen. Also consider and

test what happens with keys on backup and restore in the various scenarios, as well as

moving to a new database server.

Ultimately, it will be up to you to make sure that you mitigate the risk by managing

your keys well, and it’s also up to you to implement a risk management strategy to

handle scenarios where the keys are compromised or the server fails.

Chapter 10 enCryption of Data

469

 Chapter 10 activities: Using Always Encrypted
and Transparent Data Encryption
In the activities for this chapter, you are going to cover two different ways to encrypt your

data at rest. You’ll start by implementing Always Encrypted, and you’ll conclude with an

activity that implements TDE. You’ll do both solutions in EFCore6, but you can be certain

that previous versions of EF would be just as able to be used for these activities. In fact, it

is probably more likely you would see TDE in an EF6 (or older) implementation, mostly

due to the fact that TDE has been around a lot longer, and Always Encrypted wasn’t

available until a few years ago.

 Activity 10-1: Using Always Encrypted
In this first activity, you’ll learn how to add Always Encrypted in your InventoryManager

database solution and then work with it in your codebase. The great news about always

encrypted is that you can use it in a greenfield solution, in a legacy solution when

creating new tables, or in tables that already exist, even if the encrypted columns have

data.

Just keep in mind that once you do this, if you go back to other activities in the book,

the system will still expect you to have Always Encrypted enabled, so you’ll have to

adjust for that if you rework a previous example.

 Task 0: Getting started
To begin this activity, you can either continue working with your files that you’ve been

using after completing Activities 2 and 3 from Chapter 9. If you would like a clean start,

you can just grab the EFCore_Activity10-1_StarterFiles project and use those files.

As always, make sure to check Appendix A for more information on using the starter files.

Note that if you’re using the starter files, you’ll want to ensure to run the extra script

to seed the relationships for Items and Categories.

For reference, at the start of this activity, my project has commented out all the

GetXXXX method calls and is only starting with the two build methods and then

ListInventory, ListInventoryWithProjection, and ListCategoriesAndColors being

called from the main method (see the starter files for more clarity).

Chapter 10 enCryption of Data

470

 Task 1: Enable Always Encrypted on the
InventoryManagerDb
In this task, you will enable Always Encrypted on the InventoryManagerDb. You will then

see how to work with the encrypted columns via a couple of simple modifications in

your connection string.

 Step 1: Create a backup [optional]

If you are worried about your data, you might take a minute to create a backup. In the

InventoryManagerDb, there really isn’t any new data that you couldn’t just seed and

run from scratch, so the need to take a backup is really not there. However, in the real

world, you should take a backup of any database you are going to be relying upon in case

something goes wrong with your encryption efforts.

To take a backup, open SSMS, and then right-click the database you wish to back up

(see Figure 10-3).

Figure 10-3. Creating a backup of the database using the context menu Tasks ➤
Back Up… in SSMS

Chapter 10 enCryption of Data

471

Next, select the entire database for Copy-only backup. Leave the defaults for

everything else and back up the database (see Figure 10-4).

Hit OK, and you will see a message that lets you know when the database is backed up.

 Step 1: Prepare fields for encryption

Open the inventory database in SSMS to view the tables. Expand the Items table to see

the columns, and run a query like SELECT TOP 1000 * FROM [InventoryManager].

[dbo].[Items]. The results of this query are shown in Figure 10-5.

Figure 10-4. The defaults and Copy-only backup are selected to create the backup

Chapter 10 enCryption of Data

472

In the real-world applications that you are building, you will need to determine

which columns you want to encrypt. For this application, you’ll encrypt the Name,

Description, and Notes fields of the Items table.

Right-click the table and select Encrypt Columns, as shown in Figure 10-6.

Figure 10-5. The query shows data as expected for a simple select from the Items
table

Chapter 10 enCryption of Data

473

When the Always Encrypted wizard starts, select Next (review Figure 10-7).

Figure 10-6. Use Always Encrypted by starting with the context menu option to
encrypt columns

Chapter 10 enCryption of Data

474

In the Column Selection window, select the three columns you are going to encrypt.

For this encryption, assume we might limit or search on Name and Description, but

not on Notes. Therefore, select the Deterministic option for Name and Description, and

select the Randomized option for Notes.

Unfortunately, the first thing you’ll discover is that you cannot currently encrypt the

Name field. This is due to the default constraint that has been put on it since the column

type is NVARCHAR and it is required (see Figure 10-8).

Figure 10-7. Hit Next to get past the first informational screen

Chapter 10 enCryption of Data

475

In order to make this field encryptable, you’ll need to modify the field type on the

name and use a migration to update it. First, cancel the encryption operation.

Return to the InventoryModels project, and then modify the Item class to have the

Name column default to a VARCHAR instead of an NVARCHAR. To do this, add the following

data annotation over the field:

[Column(TypeName = "VARCHAR")]

Make sure to also bring in the using statement using System.ComponentModel.

DataAnnotations.Schema.

Next, open the PMC, select the EFCore_DBLibrary project, and add a migration using

the command add-migration update-itemname-type-to-varchar.

Note that this gives a warning: An operation was scaffolded that may result in the loss

of data. Please review the migration for accuracy. This is because altering the column

could cause data to get deleted or truncated. In this case, unless you’ve used special

characters in your Item names, you are likely OK. If you wanted to be certain, you could

easily create and add a script before and after in the same migration to back up to a

temp table, then alter, then restore from temp table, and delete the temp table (this will

error out if you do have special characters, so you would have to remove them first).

However, like Austin Powers, it’s time to live dangerously. Go ahead and run the update-

database command to convert the column. A simple select from the Items table after the

operation will ensure that no data was harmed in the making of this conversion.

Figure 10-8. The Name column cannot currently be encrypted due to the default
constraint for a required nvarchar column

Chapter 10 enCryption of Data

476

 Step 2: Encrypt the three columns Name, Description, and Notes

Return to SSMS and restart the encryption process. This time, you should have no

problem encrypting all three columns (see Figure 10-9).

To be clear, the main difference between Deterministic and Randomized is the

ability to be able to decrypt the columns. If you want to use encrypted columns in your

queries for filtering or sorting, you must make them Deterministic.

Figure 10-9. You are now able to select all three columns, with Name and
Description being the Deterministic type and Notes being Randomized

Chapter 10 enCryption of Data

477

Select Next to continue to the Master Key Configuration step in the Always

Encrypted wizard.

Leave the column master key set to Auto generate column master key, and

choose your place of storage. You can store keys either in your windows certificate store

or in an Azure Key Vault. Leave the master key source set to the Current User for the

certificate store. Alternatively, you could log into Azure and select the key vault to store

the encryption master key. For this example, you’ll store in the certificate store (see

Figure 10-10). In the real world for a very secure solution, it would be recommended that

you store the key in the Azure Key Vault.

Figure 10-10. Auto generate the column master key and store in the Windows
certificate store for the Current User

Chapter 10 enCryption of Data

478

Note, if you’ve already created certificates in the past for the database rather than

creating new keys, you would have the option here to use existing keys and might get a

message such as No further configuration is necessary.

Hit the Next button, and on the Run Settings screen, select Proceed to finish

now, and then hit Next (see Figure 10-11).

You will be presented with a review screen that will tell you a summary of what you

are about to do (see Figure 10-12). Review the summary, and if you are satisfied with

what is about to take place, hit the Finish button.

Figure 10-11. Proceed to finish now to encrypt the columns

Chapter 10 enCryption of Data

479

Once you hit Finish, the operation shouldn’t take too long to complete (a couple of

minutes). The completion of the operation is shown in Figure 10-13.

Figure 10-12. Review the choices for the encryption wizard, and then hit Finish to
run the encryption operation

Chapter 10 enCryption of Data

480

Close the wizard after the operation completes.

 Step 3: Review the data

Run the same query you ran in Step 2 to see the data in the Items table. The results

should now include the encrypted fields as expected (see Figure 10-14).

Figure 10-13. The operation has completed as expected

Chapter 10 enCryption of Data

481

It is clear from this query that the Name, Description, and Notes fields that were

there are now encrypted as expected. If your data is not showing as encrypted, it may

be that the fields are being decrypted by SSMS based on your settings (more on this in

the next step). A quick re-run of the wizard would validate the fields that are encrypted

(don’t re-apply the wizard if you do take a look). See Figure 10-15 for clarity.

Figure 10-14. The data is now encrypted as expected

Chapter 10 enCryption of Data

482

 Step 4: Modify SSMS to decrypt your columns automatically

If you are already seeing decrypted data, you likely already have this set. If you saw the

results as earlier with encrypted columns, you’ll need to make sure your results apply

Always Encrypted so that you can see results in your queries.

Return to SSMS and disconnect from your database connection.

Figure 10-15. The fields are encrypted. Reviewing the wizard shows they are not
available since they are already encrypted

Chapter 10 enCryption of Data

483

Open a new connection dialog to your SQL Server instance on SSMS, and then select

the Options ➤ button (see Figure 10-16). On the options, move to the Always Encrypted

tab and check the box next to Enable Always Encrypted (column encryption).

You are not using Enclave Attestation in your solution, but if you were, you could

set the enclave information here. Also note, if you are on an older version of SSMS, you

won’t have the Always Encrypted tab. If possible, you should just upgrade SSMS. If not,

you can add additional settings into your Additional Connection Parameters tab

on the Options dialog. Note that you do NOT need to do this if you have the Always

Encrypted tab, only if you do not have that tab.

Figure 10-16. The options allow you to turn on Always Encrypted

Chapter 10 enCryption of Data

484

If you need to add the additional parameters, add the text “Column Encryption

Setting=enabled” to the textbox (see Figure 10-17). Incidentally, this is the same setting

you will add to your connection string in your .Net project soon.

Once you have established a new connection with the correct settings, open a

new query and run the query to select the top 1000 Items. This time you’ll see the data

decrypted as expected.

if you added parameters in the additional Connection parameters tab, you may see
a pop-up the first time you connect. allow the operation to proceed as expected.

One final note here is that if you had existing query windows open, you would still

not see decrypted fields. To ensure you see the decrypted fields, you may need to close

query windows and create a new query for the new settings to take effect.

Now that you’ve set up the always encrypted database fields, let’s see what happens

when you work with your application.

Figure 10-17. Users with an older version of SSMS may need to add the
additional connection parameters for the column encryption to their connection
options

Chapter 10 enCryption of Data

485

 Step 5: Run the application

Return to the Activity 10-1 project. Run the application as is. What do you think will

happen?

In this case, you get an error immediately for an Encryption Scheme mismatch (see

Figure 10-18).

To begin fixing issues, add the following text to your connection string in the

appsettings.json file after the Trusted Connection=True text (add a semicolon to

separate from the previous statement):

Column Encryption Setting=Enabled;

Make sure to update all connection strings to use this new setting across all
projects. Specifically, don’t forget to do this in the InventoryDataMigrator
project.

Figure 10-18. The Application errors out due to encryption

Chapter 10 enCryption of Data

486

Now run the program again. What happens this time? Unfortunately, you still get the

same error as before.

Comment out all of the calls in the main method except for GetItemsForListing.

Note that this runs without any issues. Go back and comment out everything except

ListInventoryWithProjection. Running the program generates the same error as

before.

The reason this happens is because Always Encrypted uses client-side decryption.

In this case, you’re trying to work against encrypted Item fields for Name and Description

before actually decrypting them.

if you had set up your always encrypted solution to also include enclaves, it might
be possible to continue using these projections, since more operations could be
handled on the server side.

This is going to be the biggest issue with using LINQ against Always Encrypted

database columns when not using enclaves. You won’t be able to leverage these columns

without first decrypting the data. This is where using Always Encrypted can take a big

performance hit.

In your current solution, you can still create a projection, but you can’t do any

ordering, sorting, paging, or filtering until the entire result set is decrypted on the

client side.

Update the query for ListInventoryWithProjection to use the following code in the

method:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var items = db.Items

 .ProjectTo<ItemDto>(_mapper.ConfigurationProvider)

 .ToList();

 items.OrderBy(x => x.Name).ToList().ForEach(x => Console.

WriteLine($"New Item: {x}"));

}

Chapter 10 enCryption of Data

487

Run the program. This time you will see results as expected (see Figure 10-19).

Additionally, update the original ListInventory method to use the following query

to see one more issue:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var result = db.Items.OrderBy(x => x.Name).Take(20)

 .Select(x => new ItemDto

 {

 Name = x.Name,

 Description = x.Description

 })

 .ToList();

 result.ForEach(x => Console.WriteLine($"New Item: {x}"));

}

Make sure to uncomment the call in the Main method so that the ListInventory

method is called.

This time, the results will show as expected (see Figure 10-20).

Figure 10-19. The projection works, but ordering must happen after the query,
and therefore the decryption has happened

Chapter 10 enCryption of Data

488

 Step 6: Fix an issue with a join after Always Encrypted is on

At this point, you’ve seen how to encrypt and how to fix the projections.

Uncomment the rest of the calls to methods in the Main method except for calls to

GetAllActiveItemsAsPipeDelimitedString and GetFullItemDetails (the FromSqlRaw

will no longer work, but the issue is much deeper and is explained in detail during

Step 7) so that all of your Get and List operations will be run, and you should see yet

another error when you run the program.

The issue to fix is the GetItemsForListingLinq method. Here again you have a

projection with ordering, so it needs to be fixed, but also there is a join to Categories. To

fix this, you need to do a couple of things.

First, you must get the result set to a list early so that it will be decrypted on the

client side. The other issue is that the code needs to handle the join by using an include

statement to get the categories. Since the code is no longer using a projection to get data,

you have to go back to manually stating the join information. Modify the code in the

GetItemsForListingLinq method as follows:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var results = db.Items.Include(x => x.Category).ToList().Select(x =>

new ItemDto

Figure 10-20. The results for the ListInventory method are shown, and the fields
are correctly decrypted as expected

Chapter 10 enCryption of Data

489

 {

 CreatedDate = x.CreatedDate,

 CategoryName = x.Category.Name,

 Description = x.Description,

 IsActive = x.IsActive,

 IsDeleted = x.IsDeleted,

 Name = x.Name,

 Notes = x.Notes,

 CategoryId = x.Category.Id,

 Id = x.Id

 }).Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .OrderBy(y => y.CategoryName).ThenBy(z => z.Name)

 .ToList();

 foreach (var itemDto in results)

 {

 Console.WriteLine(itemDto);

 }

}

This new code is similar but forces you to get all the items before you can do any sort

of filtering or ordering, as you’ve previously seen, and again requires you to manually

include the navigations in order to get the data.

The final output is shown in Figure 10-21 (your output should be similar).

Chapter 10 enCryption of Data

490

 Step 7: Fix the remaining issues

Fixing the two functions that remain, GetAllActiveItemsAsPipeDelimitedString and

GetFullItemDetails both use the call FromSqlRaw. In this final step, you will fix both of

them.

To get started, uncomment the call to the

GetAllActiveItemsAsPipeDelimitedString method. Run the program so that you

can see the error. You will once again see the error regarding the Encryption scheme

mismatch.

In this case, the database is trying to perform a function that needs to have the data

decrypted. Since the data is encrypted, without a secure enclave, the data cannot be

parsed and joined into a comma-delimited string. For this reason, it is important to note

that when you use Always Encrypted on a column, you will not be able to use the built-in

aggregate functions at the database level without first establishing a secure enclave.

To fix this issue, therefore, you will just do the code to create

the pipe-delimited string on the client side. Change the code in the

GetAllActiveItemsAsPipeDelimitedString method to the following:

var result = db.Items.Where(x => x.IsActive).ToList();

var pipeDelimitedString = string.Join("|", result);

Console.WriteLine($"All active Items: {pipeDelimitedString}");

Figure 10-21. The final output for the activity is shown

Chapter 10 enCryption of Data

491

Run the method to see the result. This works, but you are no longer using the power

of the database to create the string – it is now happening on the client side.

Uncomment the call to GetFullItemDetails, and run the code to see the error. Once

again, you will see the error for the Encryption scheme mismatch.

This time, however, the issue is not with the view but rather with the client-side

sorting that happens before decryption. Change the query for the result to the following

code:

var result = db.FullItemDetailDtos

 .FromSqlRaw("SELECT * FROM [dbo].[vwFullItemDetails]")

 .ToList()

 .OrderBy(x => x.ItemName).ThenBy(x => x.GenreName)

 .ThenBy(x => x.Category).ThenBy(x => x.PlayerName);

Run the program to see the result. By changing the ordering to the client side, the

method works as expected, and results are correctly returned using the view.

 Activity 10-1 summary
In this activity, you were able to set up and leverage Always Encrypted on the

InventoryManager database. With this encryption in place, you were able to see a couple

of the pitfalls to using this approach as well as validate that the data is in fact encrypted,

even during transit.

Going forward, you would be able to be confident that your data at rest is much more

secure. To fully secure the data, however, you should consider storing your keys in Azure

Key Vault rather than in the Windows certificate store.

 Activity 10-2: Using Transparent Data Encryption
While it is more likely that you will encounter the need to use TDE in an older EF6

project, especially in projects that used versions of SQL Server prior to SQL Server

2016, it is entirely possible to implement TDE in the current version of SQL and .Net 6/

EFCore6.

Chapter 10 enCryption of Data

492

Therefore, to learn about TDE, you’ll be using your .Net Core project that connects

to the AdventureWorks database to complete this activity. Regardless of the version of

EF where you are implementing this solution, the real meat of this activity will happen at

the database level, with keys generated, column changes (which could/will be a code-

first change), and then the heavy use of stored procedures to work with the data for read

and write operations after fields are encrypted.

As mentioned earlier, it is possible to use TDE and then send the data encrypted

over the pipe to be decrypted at the client; in this implementation, you will only be

encrypting the data at rest. One other potential issue to this type of encryption is that it is

easier for a malicious internal team member to gain access to your data at rest, and if you

store your certificates with the database, a server breach could also be problematic if the

bad player also gets your certificates along with the data.

 Task 0: Getting started
This project will leverage the AdventureWorks database. If you are going to use your

own files, the last time you used this code was at the end of Chapter 9. If you want to

just get a clean start, as always, you could just leverage the provided starter files EFCore_

Activity10- 2_StarterFiles.

Since this is the AdventureWorks project, if you use the starter files, you should

just ensure the connection string is set to your correct server and database name. This

activity will leverage a couple of migrations, but this is the final time you’ll work against

the AdventureWorks database in this book so migration conflicts should not be an

issue. Make sure to run the update-database command to ensure you have no pending

migrations. You should not have made any changes to this point that would require a

new migration.

one critical note here is that, in earlier activities, a class called
ImprovementPlans was added to the library and then a
DbSet<ImprovementPlan> was added to the AdventureWorksContext. it is
imperative that at a minimum you do not have a DbSet<ImprovementPlan> in
your AdventureWorksContext or the first migration will try to regenerate that
table. it wouldn’t hurt anything if you did add that table on the first migration, but
it will look incorrect as compared to results in this activity.

Chapter 10 enCryption of Data

493

 Task 1: Plan the migration strategy
In this first task, you will plan out the migration strategy to apply TDE to a few columns

in the AdventureWorks database.

 Step 1: Evaluate the process to ensure data integrity

This migration strategy will work for any database that has existing data where you need

to implement TDE to protect your data at rest. The AdventureWorks database solution is

an existing EFCore implementation, and you have a lot of data. Your solution in the real

world is likely similar, especially if it’s in an older solution.

The steps you need to consider for migration of existing data to encrypted data at rest

with TDE are as follows:

 1. The first operation that you will likely want to do is take a backup

of the entire existing database, in case something goes wrong

during the encryption process.

 2. The second thing to do is to add a temporary column to the table

for each column that will be encrypted and back up the existing

data to the temporary column to preserve the original data during

encryption procedures.

 3. Third, you need to create all of the keys and certificates necessary

to encrypt and decrypt data with TDE.

 4. Fourth, you must drop any constraints on the targeted columns.

 5. Fifth, you will need to change the column type for the encrypted

columns to be encrypted to varbinary(max). This will destroy

the existing data in those columns, which is why you backed up

the data previously. Constraints will no longer be possible once

the column is encrypted. Additionally, no matter the original data

type, the encrypted column will be varbinary(max).

 6. Sixth, run a script to perform a transformation operation where

the backup column data is selected, then encrypted, and finally

inserted into the original column.

Chapter 10 enCryption of Data

494

 7. Seventh, with the data encrypted and restored to the original

column(s), delete the backup column(s) from the table. Before

you delete each of the temporary columns, make sure to fully

document the column type and length. This will be critical during

decryption, and if you don’t keep a record of the column data

type and length, you’ll have to review backups or go through the

migrations or scripts to see what the column types and lengths

were before encryption. During decryption, you will explicitly use

these column types and lengths to get back to the original data.

Sounds fairly straightforward, right? It’s actually not too bad. In this activity, you’ll

walk through these steps from start to finish to ensure that it all works as planned.

There is one final note to consider, however. If you are working through the chapters

of this book out of order, there are other chapters that depend on the AdventureWorks

database to be set up and not have encrypted columns. While you could likely just

restore the database at any point from the original download, you may wish to make a

backup of the database before performing the remaining steps in this activity to avoid

conflicts with other chapters.

if you are working on an actual database for your work or personal projects, i
would recommend backing everything up before starting, on the off chance that
something goes awry.

 Step 2: Determine the columns you want to encrypt

Referring to the preceding steps, the first thing you want to do is perform a migration to

add backup columns for every field you want to encrypt. To make this happen, you must

first identify the columns to encrypt.

While a real-world scenario would likely have many tables and columns to encrypt

or decrypt, you’re going to home in on the HumanResources.Employee table in the

AdventureWorks database. You should have no problem extrapolating what we learn

from this activity to other tables and fields if you want to practice more or when you

eventually are implementing your real-world solutions.

Chapter 10 enCryption of Data

495

After an initial examination of the table for sensitive data, the columns that appear to

make the most sense to encrypt are

• NationalIDNumber

• JobTitle

• BirthDate

• MaritalStatus

• Gender

• HireDate

You could do other fields and other tables, but this will be where you stop for this

activity. One bummer about these fields is that there isn’t a decimal field to encrypt/

decrypt in this result set, but the decryption strategy would be the same as the others;

just if you have a decimal field to encrypt/decrypt, don’t forget to convert to the correct

type and size as you decrypt.

 Task 2: Create the backup columns
In this task, you will create a migration to back up the existing data from the columns

that you are about to encrypt.

 Step 1: Add the columns to the model

For the first part of the strategy, you need to add the backup fields to the model so that

the migration will generate the columns in the database. As an alternative, you could do

this by just writing a script and including it in the migration, which is similar to how it

would have been done in a traditional database-first approach. The choice is yours on

how you would like to proceed. If using a script, another thing you could consider is just

selecting the whole table into a backup table and then encrypting from a select on that

table. There are many solutions available for the migration.

In this book example, you’re going to use full database migrations so that there is

a small chance you could roll back the migrations without too many issues if there is a

problem. Again, you could write manual rollback scripts and just use them to protect

your data, as you would in a traditional database-first approach.

Chapter 10 enCryption of Data

496

if you have not validated that you have no pending migrations, before continuing,
you should try to add a migration and make sure it is blank. if not blank, evaluate
and run it. if the migration is blank as expected, run the Remove-Migration
command.

Find the Employee.cs file in the EFCore_DBLibrary project. This code translates

to the HumanResources.Employee table in the database (the schema is mapped via the

Fluent API in the AdventureWorksContext with the line entity.ToTable("Employee",

"HumanResources"); which is in the OnModelCreating method). Add the following code

to the bottom of the class file to create the backup columns for storing the temporary

data during the encryption process:

[StringLength(15)]

public string NationalIDNumberBackup { get; set; }

[StringLength(50)]

public string JobTitleBackup { get; set; }

[Column(TypeName = "date")]

public DateTime BirthDateBackup { get; set; }

[StringLength(1)]

public string MaritalStatusBackup { get; set; }

[StringLength(1)]

public string GenderBackup { get; set; }

[Column(TypeName = "date")]

public DateTime HireDateBackup { get; set; }

You will also need to add using statements for the data annotations in this code as

follows, so add these using statements to the top of the file:

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

 Step 2: Add the migration and update the database

Open the PMC and ensure you’ve selected the EFCore_DBLibrary project.

Add a migration to update the table using the command add-migration

EncryptionMigration_Step1. After the migration runs, validate that it only contains the

Chapter 10 enCryption of Data

497

expected fields. When the migration generates, some of the fields may be set to nullable:

false and may have a default value set on them. As long as the field you are backing up is

also not nullable, this should not be an issue. If the field that is being backed up allows

null values but the backup field does not, then override the definition in the migration

to set the value to nullable: true and remove the default value. For clarity, review the

migration shown in Figure 10-22.

Run the update-database command to add the backup columns to the database. If

you wish, you could select from the table and/or refresh the table in SSMS to ensure they

are present as expected (see Figure 10-23).

Figure 10-22. The migration is generated to add the backup columns which will
hold the data for the encrypted columns during the encryption operation

Chapter 10 enCryption of Data

498

 Step 3: Run a script to back up the data for the target columns

Begin by adding a new migration using the command add-migration

EncryptionMigration_Step2_BackupData.

Once the migration is created, either add some inline T-SQL to back up the table

data or you could also implement a file management solution like was covered earlier

in the text (see Chapter 7 for more information on the scripting with file management

strategy). For this activity and for purposes of brevity, you’ll just do your scripting within

the migrations.

The preceding command should have generated a blank migration. In the Up method

of the new migration, add the following code to select the target column data into the

backup columns to get ready for encryption processing:

Figure 10-23. The new columns exist as expected

Chapter 10 enCryption of Data

499

migrationBuilder.Sql(@"UPDATE [HumanResources].[Employee]

 SET [NationalIDNumberBackup] = [NationalIDNumber]

 ,[JobTitleBackup] = [JobTitle]

 ,[BirthDateBackup] = [BirthDate]

 ,[MaritalStatusBackup] = [MaritalStatus]

 ,[GenderBackup] = [Gender]

 ,[HireDateBackup] = [HireDate]"

);

For this migration, there is nothing to do in the Down method. If you need to roll back,

you could reset the data in the original columns from this data. However, that is easily

performed manually, and in the unlikely event that you need to do this, you will likely

want to ensure you are ready to do so. For these reasons, just leave the Down method

blank.

Run the update-database command to execute the script, and then select from the

table in SSMS to ensure data exists as expected.

As with other activities, the end of a task is always a good place to check in changes if

you are using a local GIT repository.

 Task 3: Create the keys and certificates
In order to make the database keys successfully, you’ll need to have three things. First,

you’ll need a certificate. Second, you’ll need to create the symmetric keys. Finally, you

need a place to back up your keys. You’ll also need a strong password that can be used

for the keys. An important note is that anyone that is executing the migration to create

the scripts will need to make sure to have the hard-coded file path in place for storage

of local backup certificates and keys. Another consideration would be to store your

encryption certificates and keys in an Azure Key Vault.

When running the following scripts, make sure to validate that the physical
drive contains the proper folder for storing backups of the certificates and keys
generated by the migration script for creating encryption keys.

Chapter 10 enCryption of Data

500

 Step 1: Create the folder to store the keys

Begin by validating the folder for backup. For this activity, a suggestion could be C:\

Data\DatabaseKeys. In the real world, you’ll want to do something with them to keep

them secure after generation. Create the folder C:\Data\DatabaseKeys or a similar

folder of your choosing for storing the physical key files.

 Step 2: Create the certificate and key

Once the storage location is in place, create a new migration by running the command

add-migration EncryptionMigration_Step3_CertsAndKeysGeneration.

Once again, this should generate a blank migration. After the migration is created,

you need to add four statements for execution into the Up method in the exact order

listed as follows (you should use a better password, but make sure you will remember

the password you use):

migrationBuilder.Sql(@"IF NOT EXISTS (SELECT *

 FROM sys.symmetric_keys WHERE symmetric_key_id = 101)

 BEGIN

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Password#123'

 END");

migrationBuilder.Sql(@"CREATE CERTIFICATE AW_tdeCert

 WITH SUBJECT = 'AdventureWorks TDE Certificate'");

migrationBuilder.Sql(@"BACKUP CERTIFICATE AW_tdeCert TO

 FILE = 'C:\Data\DatabaseKeys\AW_tdeCert.crt'

 WITH PRIVATE KEY

 (

 FILE = 'C:\Data\DatabaseKeys\AW_tdeCert_PrivateKey.crt',

 ENCRYPTION BY PASSWORD = 'Password#123'

)");

migrationBuilder.Sql(@"CREATE SYMMETRIC KEY AW_ColumnKey

 WITH ALGORITHM = AES_256

 ENCRYPTION BY CERTIFICATE AW_tdeCert;

 ");

Chapter 10 enCryption of Data

501

Once again, you won’t be doing anything in the Down method for this migration.

With all of this in place, run the update-database command to execute the

certificate generation. Once the execution has completed, check your physical folder to

see the new certificates that were generated (see Figure 10-24).

You should see both the AW_tdeCert.crt and the AW_tdeCert_PrivateKey.crt files.

If you changed the name in the script, the name should match in the physical location.

Additionally, return to SSMS and review the database to see the keys that have been

added from the recent operation (review Figure 10-25).

Figure 10-24. Running the migration has generated the physical certificates in the
folder you specified in the script

Chapter 10 enCryption of Data

502

When this is completed, you’ll have the AW_tdeCert in the Certificates folder and

the AW_ColumnKey in the Symmetric Keys folder under Security in your AdventureWorks

database.

 Task 4: Drop constraints on the targeted columns
Now that you’re ready to encrypt data and you have your target column data backed up,

you need to prepare the columns that we’re using in our database to store the encrypted

data.

First, you must drop all the constraints and indexes on the fields that will be

changing. You can do that easily with a script within a migration.

Figure 10-25. The keys and certificates are also present in the local database
under Certificates and Symmetric Keys

Chapter 10 enCryption of Data

503

if you miss one along the way, just update your script file, and then run the drop
manually. otherwise, make sure to change your script to be idempotent so that it
could be run multiple times if necessary.

 Step 1: Drop the existing constraints

Add a new migration with the command add-migration EncryptionMigration_

Step4_DropConstraints. In this migration, you will add additional scripts to drop the

constraints and the index. As before, this should generate a blank migration.

To complete this step, you will have to remove a bunch of check constraints to drop

from each of these columns. You may want to keep a record of what they do as you may

want to enforce these constraints in the procedures that insert and/or update data in

the future. Just remember that once the column is encrypted, you will not be able to add

constraints back to the column.

In the migration’s Up command, you need to add the drop statements to get rid of all

constraints on the fields you are encrypting. For this reason, open your HumanResources.

Employee table in SSMS and review the Constraints folder. Review Figure 10-26 for

more information.

Chapter 10 enCryption of Data

504

The four constraints to drop are the check constraints on BirthDate, Gender,

HireDate, and MaritalStatus. Additionally, there is one index to drop. Review

Figure 10-27 for more information.

Here you can see that the NationalIDNumber field has an index that will need to be

removed before the field can be encrypted.

Figure 10-27. The NationalIDNumber field has an index that needs to be dropped

Figure 10-26. Four of the fields have constraints that need to be dropped before
the fields can be encrypted

Chapter 10 enCryption of Data

505

To make the necessary changes to drop the four constraints and the index, add the

following code into the Up method for the migration:

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_MaritalStatus]");

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_HireDate]");

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_Gender]");

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_BirthDate]");

migrationBuilder.DropIndex(

 name: "AK_Employee_NationalIDNumber",

 schema: "HumanResources",

 table: "Employee");

Here you should really put the revert code into the Down method to add these

constraints back to the table and re-apply the index. This is not as trivial as it seems it

should be as each constraint is three executable statements to re-apply the constraint.

For this reason, you can skip it here.

To see the script, you could just right-click each object and script as create to a new

query editor window. You could then combine the entire script and save it. I have done

this and placed a copy in the final files if you would like to see what the script would look

like.

If you wanted to add each statement to the Down method, remember to wrap each

executable statement as migrationBuilder.Sql(@"some_code_here..."). You would

use a new statement every time you encounter a GO statement in the normal T-SQL code.

Run the update-database command to drop the four constraints and the one index

so that the columns will be able to be correctly altered in the next step. After execution,

validate that the constraints and the index are no longer part of the database schema

(see Figure 10-28).

Chapter 10 enCryption of Data

506

 Task 5: Drop the columns that are going to be targeted
for encryption, and then recreate them
It may seem counter-intuitive. You might say, “Can’t I just convert the type?” The

answer is that you can if you just run a script in the database directly. Using code-first

migrations, it’s not so straightforward. If you try to migrate a change for any of the

targeted columns, you’ll get an error that says you are unable to convert from some type

to varbinary(max). There is a way to do this in one migration, using a swap strategy. I

used that strategy in the first edition of the text.

For this activity, in order to get the columns encrypted, you will first just drop the

existing columns, and then you will recreate them with the correct type. Before you do

this, ensure that you have fully backed up the data into the temp columns so that it will

not be lost forever.

Figure 10-28. The constraints are dropped and the index is removed

Chapter 10 enCryption of Data

507

 Step 1: Drop the existing columns

Return to the Employee.cs class, and comment out the properties for NationalIdnumber,

JobTitle, BirthDate, MaritalStatus, Gender, and HireDate from the model (see

Figure 10-29 for clarity).

Once you have done that, open the AdventureWorksContext and find the code in the

OnModelCreating for the Fluent API representation of the Employee entity. In there, you

will likely find the line of code

entity.HasIndex(e => e.NationalIdnumber)

 .HasName("AK_Employee_NationalIDNumber")

 .IsUnique();

Figure 10-29. The fields to drop are commented out for now

Chapter 10 enCryption of Data

508

You will need to remove this line of code (see Figure 10-30) to avoid recreating the

index that was previously dropped (the correct way to drop the index would have been to

remove this code in the first place, not use a script).

Additionally, comment out the code that maps information for the targeted

columns (not all are shown in Figure 10-31). For example, search for the phrase entity.

Property(e => e.BirthDate or any other of the targets. Comment out – do not

remove – the code in the Fluent API for the six targeted columns in the Employee entity

(see Figure 10-31).

Figure 10-30. Remove the Employee Fluent API code for creating the index that
was dropped in the previous migration

Chapter 10 enCryption of Data

509

Ensure the project builds. This will help to determine if you missed any code in the

OnModelCreating method.

Run the add-migration command that follows to add a new migration to affect

these first changes for Task 5: add-migration EncryptionMigration_Step5a_

DropTargetedFields.

In the generated migration, the first thing will be the statement to drop the index.

Just comment that statement out. The remaining statements should be drop column

statements for the six targeted fields (see Figure 10-32).

Figure 10-31. The targeted fields are commented out in the Entity builder in the
AdventureWorksContext

Chapter 10 enCryption of Data

510

Ensure this is the case and that you have commented out the drop statement, and

then run the update-database command. Once the migration is completed, you are

ready to recreate the columns. You may also wish to check the database to validate that

the fields were removed as expected.

Figure 10-32. The migration has the drop index statement and six drop column
statements only in the Up method. The drop index statement is commented out

Chapter 10 enCryption of Data

511

 Step 2: Recreate the target fields

Return to the Employee.cs class and uncomment all of the targeted fields. Change each

one to have a data type of byte[] (see Figure 10-33).

Next, you need to go back to the AdventureWorksContext and find all the code

for the Fluent API that was commented out for each of these fields. Uncomment the

mappings, but remove any information about type or length from any of the fields so

that only things like the comment and the column name mappings remain. The code

that follows is the new mapping for each of the six fields. Use caution when copying this

as they are not consecutive in the context, so you will need to be careful not to delete

any columns that are not affected by this operation (i.e., don’t accidentally wipe out

ModifiedDate). Additionally, do not change types on any other fields. The only Fluent

API code you are changing is directly related to the fields that are targeted for migration.

Figure 10-33. The original properties are restored with type byte[] instead of their
original types

Chapter 10 enCryption of Data

512

entity.Property(e => e.BirthDate)

 .HasComment("Date of birth.");

entity.Property(e => e.Gender)

 .IsRequired()

 .HasComment("M = Male, F = Female");

entity.Property(e => e.HireDate)

 .HasComment("Employee hired on this date.");

entity.Property(e => e.JobTitle)

 .IsRequired()

 .HasComment("Work title such as Buyer or Sales Representative.");

entity.Property(e => e.MaritalStatus)

 .IsRequired()

 .HasComment("M = Married, S = Single");

entity.Property(e => e.NationalIDnumber)

 .IsRequired()

 .HasColumnName("NationalIDNumber")

 .HasComment("Unique national identification number such as a social

security number.");

With the new properties restored on the Employee model and the Fluent API code

in place as earlier, run the command add-migration EncryptionMigration_step5b_

RestoreTargetColumnsAsVarBinaryMax.

When this migration is generated, you should see the six add column statements as

expected, all of type varbinary(max). Once you have ensured this is the case, run the

update-database command to apply the changes.

When the migration is run, refresh the table to ensure the columns exist as

varbinary(max) columns (see Figure 10-34).

Chapter 10 enCryption of Data

513

After validating the columns are in place, run the following T-SQL query against the

table in SSMS:

OPEN SYMMETRIC KEY AW_ColumnKey

DECRYPTION BY CERTIFICATE AW_tdeCert;

SELECT BusinessEntityID, LoginID,

ISNULL(CONVERT(nvarchar(15), decryptbykey([NationalIDNumber])), '')

[NationalIDNumber], [NationalIDNumberBackup],

ISNULL(CONVERT(nvarchar(50), decryptbykey([JobTitle])), '') [JobTitle],

[JobTitleBackup],

ISNULL(CONVERT(DateTime, decryptbykey([BirthDate])), null) [BirthDate],

[BirthDateBackup],

Figure 10-34. The original columns are back, and they are now of type
varbinary(max)

Chapter 10 enCryption of Data

514

ISNULL(CONVERT(nvarchar(1), decryptbykey([MaritalStatus])),'')

[MaritalStatus] ,[MaritalStatusBackup],

ISNULL(CONVERT(nvarchar(1), decryptbykey([Gender])),'')

[Gender],[GenderBackup],

ISNULL(CONVERT(datetime, decryptbykey([HireDate])), null)

HireDate,[HireDateBackup]

FROM [AdventureWorks].[HumanResources].[Employee]

CLOSE ALL SYMMETRIC KEYS

This query shows that the original columns have no data but also gives you a glimpse

at decryption of the data using the key and certificate in a query.

 Task 6: Select the backup data, transform it for
encryption, and store it in the original columns
For this step, you’re going to run a migration that will encrypt the data that you’ve stored

in backup columns and put it into the varbinary columns that are now holding the

encrypted data.

 Step 1: Encrypt all the data from backup columns into the new
original columns

Create a new migration using the command add-migration EncryptionMigration_

Step6_EncryptBackupDataIntoOriginalColumns. This migration should be blank.

In the Up method of the migration, you’re going to run some custom SQL to move the

backup data into the destination columns. To do this, you’re going to need to encrypt the

data as you move it.

The important moving pieces of this process will be to first open the symmetric

key to allow the encryption process to take place, as well as naming the certificate to

use for encryption. In the quick check you did at the end of the last step, you used the

same process. You also set the decryption to take place using a built-in function called

decryptByKey. In this method, you’ll do the inverse where you’re encrypting the data

using a function called encryptByKey.

The simple commands to open and close the keys are OPEN SYMMETRIC KEY AW_

ColumnKey

Chapter 10 enCryption of Data

515

DECRYPTION BY CERTIFICATE AW_tdeCert; to open the encryption, and CLOSE ALL

SYMMETRIC KEYS, to end the ability to use the keys for encryption and decryption within

a query session.

To get your script in place, go to the Up method in the migration and add the

following code:

migrationBuilder.Sql(@"OPEN SYMMETRIC KEY AW_ColumnKey

 DECRYPTION BY CERTIFICATE AW_tdeCert;

 UPDATE [HumanResources].[Employee]

 SET [NationalIDNumber] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [NationalIDNumberBackup]))

 ,[JobTitle] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [JobTitleBackup]))

 ,[BirthDate] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [BirthDateBackup]))

 ,[MaritalStatus] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [MaritalStatusBackup]))

 ,[Gender] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [GenderBackup]))

 ,[HireDate] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [HireDateBackup]))

 CLOSE ALL SYMMETRIC KEYS; ");

Note that the function encryptByKey(Key_GUID(‘keyname’), ….) allows you to

use the symmetric encryption keys. Also note that the first part of the script opens the

key by certificate and the last part just closes all the keys. You will have to use similar

commands in SSMS and stored procedures to get data or insert/update data from these

encrypted columns going forward.

Run the migration using the update-database command.

 Step 2: Validate the data

Once the migration has applied, run the script that was run at the end of Task 5 to see

how the data has now been transferred into the columns.

Chapter 10 enCryption of Data

516

To further validate that the encryption is working, just run a select top 1000 from the

table in a new query window without the use of the keys. You should see results similar

to what is shown in Figure 10-36.

 Task 7: Clean up the table
Now that you have successfully encrypted the table for the targeted fields, it’s time to

delete the backup columns.

 Step 1: Remove the properties from the Employee model

Return to the Employee.cs model and remove the properties that represent the backup

fields that were added in Task 2.

Figure 10-36. The data is encrypted and cannot be restored without the certificate
and key and the use of the decrypt function

Figure 10-35. The columns have now had their data restored

Chapter 10 enCryption of Data

517

 Step 2: Create the migration and update the database

After removing the temporary storage columns from the Employee model, run the

command add-migration EncryptionMigration_Step7_DeleteBackupColumns. This

should generate a migration that contains six statements to drop the backup columns

and nothing else.

Once you are sure the migration is correct to just delete the backup columns, run the

update-database command.

 Activity 10-2 summary
In this activity, you learned how to build out TDE around six sensitive columns in the

AdventureWorks database.

You followed a migration strategy to ensure that your data was preserved and you

were able to successfully encrypt the data and work with the data in queries after you

had encrypted it.

 Chapter summary
In this chapter, you learned about two very important and different ways to encrypt your

data in your database tables. The first way to encrypt is using Always Encrypted and the

second is using TDE.

When you applied encryption in both approaches, you saw how Always Encrypted

was easy to apply but perhaps falls short in performance in a couple of areas. You also

saw that TDE is a bit more complicated to set up but once it is in place is a very powerful

and efficient way to encrypt and decrypt data at rest.

 Important takeaways
After working through this chapter, the things you should be in command of are

• Always Encrypted databases

• Working with migrations around data transformation

• Using the Fluent API to further define indexes and column

constraints

Chapter 10 enCryption of Data

518

• How to leverage EncryptByKey and DecryptByKey for TDE

encryption

• Creation of certificate and keys for encryption

 Closing thoughts
As you’ve learned about building out your robust data solutions and now you have

learned to encrypt the data, the next step for you to learn is to build a more robust data

solution with two critical patterns – the repository pattern and the unit of work pattern.

You will learn about these in the next chapter.

Chapter 10 enCryption of Data

519
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_11

CHAPTER 11

Repository and Unit
of Work Patterns
In this chapter, you are going to learn about two critical patterns that exist which should

be on the radar of every database developer, whether you are using Entity Framework

or not. The good news is that EF actually handles a lot of the unit of work (UoW) and

repository (Repo) work for you. The bad news is that EF is sometimes not everything that

you need when implementing your solutions.

To learn more about these patterns and how you can work with them, you’ll start

this chapter by discussing each pattern and why they are important, and then you’ll

finish the chapter by reworking your Inventory system so that it is layered with your own

simple repository for working with Items. After you layer the solution, you’ll have the

ability to implement a simple UoW pattern on top of working with Entity Framework.

 The repository (Repo) pattern
The repository pattern is one of the more popular patterns when working with databases.

If you aren’t using a full repository pattern, you are likely using something that is very

close to the repository pattern. If not, you’re likely writing a lot of redundant code around

the operations to interact with your data and creating a large problem for maintenance

and upgrades to your system for yourself and future developers.

 Sources of information about the repository pattern
There are many resources that discuss the repository pattern, but almost all of them

point back to Martin Fowler’s definition as defined in the book Patterns of Enterprise

Architecture.

https://doi.org/10.1007/978-1-4842-7301-2_11#DOI

520

Microsoft itself has a great write-up on the repository pattern, which can be found

here: https://docs.microsoft.com/en- us/dotnet/architecture/microservices/

microservice- ddd- cqrs- patterns/infrastructure- persistence- layer- design.

If you want all the official definitions and more in-depth discussions of the pattern, I

recommend you take some time to review both of those resources.

 The repository pattern abstracts the database plumbing
code from the implementation
The main reason you want to work with the Repo pattern is to make your life a lot easier

when it comes to working with your databases in your solutions.

The way the pattern works is that the repository puts a layer in place which allows

you to write common code operations and rely on the repository to handle the plumbing

that is necessary to connect and perform operations against the database.

Ever since generics and expressions were added to .Net, it has been possible to write

custom repository patterns. Writing a custom implementation of the repository pattern

would even be possible without these tools, albeit not as convenient.

However, before Entity Framework, it was commonplace to use ADO.Net to write

code that created a connection and then added a command to the connection. After

adding the command, you would then set the command type and then the command

text – either the name of the stored procedure or the actual inline SQL command.

Finally, you would add parameters as needed to complete the query.

After getting that all set up, you’d then use the command with an open connection

associated with a DataReader or a DataSet to retrieve the data results, and then you’d

further have to work with that dataset line by line and/or field by field in order to hydrate

your objects in order to display the information back to the user.

This process just described was for just one of your data operations. Press “repeat”

on this process for each entity and for each specific call to the database regarding that

entity.

 Entity Framework’s built-in repository
Entity Framework, with its implemented repository, abstracted all of that coding by

implementing a default repository pattern. Instead of creating a new connection and

setting up the command for every call you need to make, you wire up EF – and then

Chapter 11 repository and Unit of Work patterns

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design

521

just ask for one of the repositories to the DBSet<T> objects – and, with ease, can Add,

Update, Remove, and perform many other actions against that entity.

In the end, this ability to generically work against any entity is the essence of the

repository pattern. You are no longer writing the plumbing that is needed to build and

execute commands. You can generally get a result and map it or push it directly into your

matching type object, without having to loop row by row and field by field to get the data

from your call into your business layer object.

Additionally, using the EF repository gives you the change tracking that you need

in order to easily just push changes back into the database. As you’ve seen in previous

chapters, there are good and bad ways to go about working with these calls, but EF has

implemented the repository to make those basic database operations obscure, thus

saving you hundreds of lines of code and many hours of work.

 The unit of work pattern
In addition to the repository pattern, EF also implements a unit of work (UoW) pattern.

As with the Repo pattern, the roots of the UoW pattern can also be traced back to Martin

Fowler’s book on Patterns of Enterprise Architecture.

 Using a unit of work
Inserting data, updating data, and deleting data operations are common to working with

the database. Every time you make a call, however, there is some overhead. Additionally,

sometimes you don’t want one of the calls to be committed if subsequent calls fail, so

you utilize a transaction to roll back the changes.

The UoW pattern gives the ability to easily group data operations. Everything that

needs to be done when the operations are ready is tracked and/or managed by the unit

of work. When the unit is completed, all of the tracked operations are applied to get the

database to match the current state of the objects in memory. Generally, if one part of

the unit fails during a unit of work operation, the entire unit is rolled back.

 Combining the repository and the unit of work
Now that you’re somewhat aware of what both of these patterns are, it’s time to see why

putting them together as EF does is such a powerful tool.

Chapter 11 repository and Unit of Work patterns

522

 The one-two punch
As you’ve seen, the repository pattern abstracts the lower-level operations for interacting

with the database from the business code. With EF, you don’t have to create connections

and commands directly. You design the system by putting DBSet<T> into the context.

Then you can just call against those DBSet<T> objects to add, remove, update, and

otherwise manipulate the data.

While the repository portion of EF is working, the unit of work portion of EF is also

in play. You encounter this in the fact that every time you start doing work with the

DBSet<T> entities, you ultimately need to make a call to SaveChanges to get the changes

to be applied and committed to the database.

Ultimately, what is going on with the SaveChanges operation is that EF serves up

objects in memory to mimic the state of the database and keeps track of their previous

state. When you tell EF it is time to save changes, EF can use the modified state of the

object to determine what calls need to be made to persist the changes. The calls are

then run just as if you had written the code to connect and execute commands yourself.

Further, if any of the calls fail, the entire transaction is rolled back, so that you don’t get a

situation where your changes are only partially applied.

 A couple of drawbacks
Using EF is a great tool for almost all scenarios you will encounter; however, the nature of

how both the Repo and UoW patterns are applied can lead to a few issues and drawbacks

in complex systems.

One major concern that a lot of developers share is the general overhead associated

with these operations. As you’ve already seen in previous chapters and as you’ve

learned more about the UoW earlier, tracking the state of every entity in memory can

potentially lead to some performance issues. For this reason, EF has exposed the ability

to avoid tracking the object against the database with the AsNoTracking statement. As

of EFCore5, there is an additional operation called ChangeTracker.Clear, which stops

tracking all currently tracked entities. In this case, you don’t have to intentionally specify

AsNoTracking on every query. Instead, you can simply disconnect with one call to the

Clear method.

Chapter 11 repository and Unit of Work patterns

523

Another concern that you’ll encounter as a developer will be related to concurrency.

What happens to changes that are currently tracked by one user through the application

if another user applies their changes first?

With EF, generally, if an error like this happens, the operation will have to be retried,

sometimes even at the expense of refreshing data. This can get a bit expensive and can

severely hinder the user experience in a system where lots of transactions are taking

place.

A third concern is that it can be tricky to apply partial changes, or, in some cases,

partial changes may be applied even when the transaction fails due to the changes not

being able to be rolled back.

For example, if you’re solely working with EF and you need to perform a number of

operations, perhaps you only want to save some changes but not all of them. Calling save

changes on the context will save all of the changes as performed in memory by the UoW,

not just some of the changes.

In the opposite direction, if some of the operations make mutating change calls to

stored procedures and those procedures are executed, it may be impossible to rely on EF

to roll those changes back, as the procedure may have already run against the database,

and EF won’t have an ability to run a revert procedure on failure, at least not by default.

In cases such as these, you often have to make sure that EF is not applying

transactions on the procedure calls or determine some way to ensure that your database

is restored to the proper state even if untracked changes are applied.

Finally, not only is there risk when multiple operations may have taken place to make

it so your change can’t be applied, there are risks that exist when using transactions. Two

such risks are that either you can get a dirty read or you might encounter deadlocks.

A dirty read happens when you pull data from the database but that data is in

the process of being changed by another user. A deadlock might be a situation where

you start a transaction and perform a read of data from any table. As you are using a

transaction, that table becomes locked for read/write operations to other users until you

commit your changes. If your operation takes a long time to complete or for some reason

you keep the transaction in session for a long duration, during that time, other users will

likely be experiencing a poor user experience waiting for your operation to complete

before their operation can get the requested data.

Chapter 11 repository and Unit of Work patterns

524

 In general, rely on EF
With everything that EF does provide, it is generally a good idea to rely on what EF is

doing around these two patterns (Repo and UoW). Implementing our own solutions

can sometimes look like the correct solution but may introduce a lot of risk for future

support, unnecessary complexity to your applications, and may also compound

development time, thereby increasing the time it takes to deliver new features in your

solutions.

Always remember that EF is going to apply changes as a unit of work for you, so you

can generally rely on it rolling back changes correctly on failure, as well as trust that

applying changes will only be allowed when the data is clean and in the proper state to

be committed.

 Separation of concerns
A final topic for this chapter to go along with these two patterns for building robust

systems is the idea of separation of concerns.

Separation of concerns (SoC) is a well-known principle in computer science. The

overall idea is that you want to keep minimal functionality in its own layer and area of

concern rather than tightly coupling everything together.

You have already used a lot of programming with SoC implicitly through this book as

you have created separate classes for modeling your objects. While they may be relational,

you don’t often (if ever) make a single class that contains multiple objects in it.

For example, when you programmed your solution, you didn’t put the properties for

Genre in the Item class. Instead, you used a many-to-many relationship so that Genres

could be their own concern and so that Items could have the ability to be separate from

Genres and Categories. This is the basic idea around SoC.

 Logical separation of concerns
To make your solution robust, it would be ideal to not only separate the concerns

across objects but also to separate concerns across layers. In this manner, you can

make functional units or components that can more easily be interchanged with new

components or logic as the needs arise. While it may add complexity, this logical

separation makes your overall solution easier to maintain or adapt in the future.

Chapter 11 repository and Unit of Work patterns

525

Another benefit of separation of concerns into layers is that you can then start

correctly using dependency injection to inject the dependent components into other

layers. By doing this, as long as the components are coded to a common interface, the

business layer doesn’t care what the database layer is doing nor how; the business layer

only cares that the data is returned as expected.

 Final benefits of separation of concerns
The final benefit of separating your layers into individual components that are not

tightly coupled will be evident when it comes time to write unit tests around your data

operations.

As the system stands as of the end of Chapter 10, it would be very difficult to unit test

your solution. You could likely put some integration testing into place in the solution,

but there wouldn’t be a good way to just test the service layer without connecting to an

actual database.

 Chapter 11 activities
To complete this chapter, you will work through two activities. In the first activity,

you will rework the solution to layer the solution. This will be more of an architecture

exercise than a database exercise, but it will position the solution well for setting up your

own repository and unit of work pattern implementations in your solution. Additionally,

this first activity will position the solution to be ready for unit testing, which is covered in

the next chapter.

In the second activity, you will quickly create your own unit of work around a custom

business process to further enhance how your solution works with data. Specifically,

you’ll create unit of work implementations for batching insert, update, and delete

operations. This will also give you a look at using custom transactions with EF.

 Activity 11-1: Layering your solution
As the InventoryManager project stands right now, the solution is very tightly coupled,

in that there is database code in the UI layer (your console project). Ideally, you want to

separate the layers out for a number of reasons, mostly involving SOLID architecture,

robustness, maintenance, and testing.

Chapter 11 repository and Unit of Work patterns

526

Additionally, separating this solution into layers is going to give you a great ability

to rework different pieces of the application in the future without having to rewrite the

entire application. Operations like switching or implementing a new user interface will

be easily possible, as will changing out the database as needed.

By the end of this activity, you are going to have a much more robust solution with

a layered architecture that is decoupled at each layer via interfaces and segregation of

work.

 Task 0: Getting started
To get started with this activity, you should use the files that you’ve been using through

the text having completed Activity 10-1. If you would prefer to get a fresh start, feel

free to use the starter files EFCore_Activity11-1_StarterFiles. Please remember

that in Chapter 10 the database was encrypted, so the files are expecting an encrypted

Items table using Always Encrypted. While it should not matter if you have columns

encrypted or not, the connection string is configured for always encrypted, and the

coding decisions from this point forward are based on the underlying assumption that

certain columns are encrypted.

As always, refer to Appendix A for more information on using starter files.

 Task 1: Creating the database layer
In this first task, you will create a new project that will work to be the database layer for

your solutions going forward.

In general, I like to work from the bottom up, so for this activity, you’ll start with the

database and work back to the UI layer. If you are more comfortable, you can work in the

other direction or piece it together from various steps in this activity. It’s ultimately up to

you how you want to implement your own solutions.

 Step 1: Create the new project for the database layer

To begin, create a new project for the database layer by right-clicking the solution and

selecting Add New Project. When the Add a new project dialog comes up, select a new

Class Library as the project type, and then hit the Next button (see Figure 11-1).

Chapter 11 repository and Unit of Work patterns

527

Name the project InventoryDatabaseLayer when prompted, select .NET 6.0 as the

Target Framework, and make sure to save the project in the same folder as the solution

file for the project so that this project will have a folder nested in the directory like all the

other included projects (the default location should be the correct folder, but it is always

good to double-check this setting).

Once you’ve ensured the location and name of the project, hit the Create button to

generate the new project in your solution. The end result will be a new project that is

included in your solution named InventoryDatabaseLayer (review Figure 11-2).

Figure 11-1. Creating a new class library to house the code for the database layer

Chapter 11 repository and Unit of Work patterns

528

 Step 2: Rename the Class1.cs file

Right-click the Class1.cs file and select Rename. When able, rename the file to

ItemsRepo.cs, and select Yes when prompted to perform a rename in this project of all

references to the code element “Class1” (see Figure 11-3).

Figure 11-2. The project is created and is part of the overall solution

Figure 11-3. The renaming of the file is completed to create the ItemsRepo
class

Chapter 11 repository and Unit of Work patterns

529

 Step 3: Add an interface to define the ItemsRepo operations

To start this step, right-click the InventoryDatabaseLayer project and select Add ➤

New Item, then choose Interface, and name the interface IItemsRepo.cs (the extra

“I” is intentional for the convention of naming Interfaces). Figure 11-4 shows this

operation in process.

 Step 4: Add a Categories Repo and interface

To complete this first task, add a new class CategoriesRepo in a file named

CategoriesRepo.cs and add a new interface named ICategoriesRepo in a file

named ICategoriesRepo.cs. Ensure that the CategoriesRepo implements the

ICategoriesRepo interface. Additionally, ensure that the ItemsRepo implements the

IItemsRepo interface. For clarity, review Figure 11-5.

Figure 11-4. The interface IItemsRepo.cs file is being created and added to the
InventoryDatabaseLayer project

Chapter 11 repository and Unit of Work patterns

530

Currently there is no code in any of the files other than the default code that was

created during the creation of the files.

 Task 2: Creating the business layer
In this task, you will complete a similar process to what you just did for the database

layer, this time adding a service layer or business layer project.

 Step 1: Create the business layer class and interface

Repeat the preceding steps, but create a project named InventoryBusinessLayer. As

with the database project, start by including two files, one as an interface and one as

a class that implements the interface. Name the new interface IItemsService in a file

Figure 11-5. The CategoriesRepo class and interface are created in the
InventoryDatabaseLayer project

Chapter 11 repository and Unit of Work patterns

531

named IItemsService.cs. Create the class to implement called ItemsService in a file

named ItemsService.cs. This will be the direct service that will be called to interact

with the ItemsRepo.

Additionally, add another class named CategoriesService in a file named

Categories.cs and another interface named ICategoriesService in a file named

ICategoriesService.cs. For clarity, the current project structure is shown in Figure 11- 6.

 Task 3: Create and implement database operations
in the database layer
In this task, you will create the database layer operations to work against the database

going forward with the project. This abstraction will make it easier to test and will also

consolidate calls to the database into one project, making the project easier to update

and maintain in the future.

Figure 11-6. The new business layer class ItemsService implements the
new interface IItemsService, and both files are located in the new project
InventoryBusinessLayer. Additionally, an interface ICategoriesService and a
matching implementation CategoriesService are included in the project

Chapter 11 repository and Unit of Work patterns

532

 Step 1: Reference existing projects

To begin, you need to reference the EFCore_DbLibrary project. Do this by right-clicking

the InventoryDatabaseLayer project and selecting Add ➤ Project Reference. When

the dialog is shown for the Reference Manager, select the EFCore_DbLibrary project

(see Figure 11-7).

After adding the reference, note that the InventoryModels project is referenced

through the EFCore_DbLibrary project (see Figure 11-8 for clarity).

Figure 11-7. The InventoryDatabaseLayer project is adding the EFCore_
DbLibrary project as a project reference in the Reference Manager dialog

Figure 11-8. Projects are associated and leveraged as expected in the hierarchy
when a dependency is added via a project reference

Chapter 11 repository and Unit of Work patterns

533

 Step 2: Add the inventory database Repo interface method
signatures, and implement them

With the project ready to utilize the database library, add the following code to the

IItemsRepo.cs class:

List<ItemDto> GetItems();

List<ItemDto> GetItemsByDateRange(DateTime minDateValue, DateTime

maxDateValue);

List<GetItemsForListingDto> GetItemsForListingFromProcedure();

List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive);

List<FullItemDetailDto> GetItemsWithGenresAndCategories();

After adding these methods (and any necessary using statements), go to the

ItemsRepo class and implement the interface as highlighted in Figure 11-9.

Figure 11-9. The IItemsRepo interface needs to be implemented in the ItemsRepo
class. This is easily done by using the helper to implement the interface

Chapter 11 repository and Unit of Work patterns

534

After the interface is implemented, replace the throw new

NotImplementedException(); code in the GetItems method with the following code:

var items = _context.Items

 .ProjectTo<ItemDto>(_mapper.ConfigurationProvider)

 .ToList();

return items;

Note that this code will not currently compile. You first need to inject a context,

and you also will need to add the NuGet packages and inject your mapper file for

AutoMapper.

Add a constructor to the class along with two private variables to inject the context

with the following code:

private readonly IMapper _mapper;

private readonly InventoryDbContext _context;

public ItemsRepo(InventoryDbContext context, IMapper mapper)

{

 _context = context;

 _mapper = mapper;

}

Add the AutoMapper NuGet packages using the Tools ➤ Manage NuGet Packages

for Solution to the project. Use the Installed tab to quickly find the packages that

have already been installed on the main project (see Figure 11-10).

Chapter 11 repository and Unit of Work patterns

535

Next, add the using statements for AutoMapper and the EFCore_DbLibrary to the

ItemsRepo class file so that it will compile. Build the project to ensure there are no errors.

For clarity, current using statements should be at minimum:

using AutoMapper;

using AutoMapper.QueryableExtensions;

using EFCore_DBLibrary;

using InventoryModels.DTOs;

using System;

using System.Collections.Generic;

using System.Linq;

using InventoryModels.DTOs;

using System;

using System.Collections.Generic;

You will likely have more, and that is fine.

Figure 11-10. The AutoMapper packages need to be installed on the
InventoryDatabaseLayer project. This is easily accomplished from the Manage
NuGet Packages for Solution dialog using the Installed tab

Chapter 11 repository and Unit of Work patterns

536

Once the code is compiling and builds as expected, update the

GetItemsByDateRange method to contain only the following code:

var items = _context.Items.Include(x => x.Category)

 .Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .ProjectTo<ItemDto>(_mapper.ConfigurationProvider)

 .ToList();

return items;

Make sure to bring in the using statement for Microsoft.EntityFramework.Core.

Then update the GetItemsForListingFromProcedure to have the following line of

code:

return _context.ItemsForListing.FromSqlRaw("EXECUTE dbo.

GetItemsForListing").ToList();

This will require adding the using statement for using Microsoft.

EntityFrameworkCore;.

Next, update the GetItemsTotalValues method to have the following code:

var isActiveParm = new SqlParameter("IsActive", 1);

return _context.GetItemsTotalValues

 .FromSqlRaw("SELECT * from [dbo].[GetItemsTotalValue] (@IsActive)",

isActiveParm)

 .ToList();

This code will require adding the using statement using Microsoft.Data.

SqlClient.

Finally, add the following code to complete the initial implementation for the

IItemsRepo and the ItemsRepo:

public List<FullItemDetailDto> GetItemsWithGenresAndCategories()

{

 return _context.FullItemDetailDtos

 .FromSqlRaw("SELECT * FROM [dbo].[vwFullItemDetails]")

 .AsEnumerable()

Chapter 11 repository and Unit of Work patterns

537

 .OrderBy(x => x.ItemName).ThenBy(x => x.GenreName)

 .ThenBy(x => x.Category).ThenBy(x => x.PlayerName)

 .ToList();

}

 Step 3: Complete the CategoriesRepo and ICategoriesRepo
code

To complete this task, working from the top down, first add the following method

declaration to the ICategoriesRepo interface (and bring in any missing using

statements):

List<CategoryDto> ListCategoriesAndDetails();

Next, add the following using statements to the CategoriesRepo.cs file:

using AutoMapper;

using AutoMapper.QueryableExtensions;

using EFCore_DBLibrary;

using InventoryModels.DTOs;

using Microsoft.EntityFrameworkCore;

using System.Collections.Generic;

using System.Linq;

Continue by adding the following private variables and constructor to the

CategoriesRepo class:

private readonly IMapper _mapper;

private readonly InventoryDbContext _context;

public CategoriesRepo(InventoryDbContext context, IMapper mapper)

{

 _context = context;

 _mapper = mapper;

}

Chapter 11 repository and Unit of Work patterns

538

Finally, add the implementation in the CategoriesRepo as follows:

public List<CategoryDto> ListCategoriesAndDetails()

{

 return _context.Categories.Include(x => x.CategoryDetail)

 .ProjectTo<CategoryDto>(_mapper.ConfigurationProvider)

 .ToList();

}

You have now completed the first implementation of the database layer. In

a real-world scenario, you would likely also want to do some of the remaining

CRUD operations like Insert, Update, and Delete in this layer. In a very robust

implementation, you might consider doing the default methods in a generic class so that

all entities could easily implement basic CRUD operations through inheritance.

 Task 4: Create and implement business operations
in the service layer
In this task, you will create and implement the business (service) operations against

which to leverage the database.

 Step 1: Add a project reference for the InventoryDatabaseLayer
to the InventoryBusinessLayer

Right-click the InventoryBusinessLayer project and select Add ➤ Project Reference.

When the dialog comes up, add a reference to the InventoryDatabaseLayer project.

 Step 2: Add method declarations for IItemsService and the code
for the ItemsService

For learning purposes, all but one of the service layer methods are going to be simple

pass-through methods. The overall idea is that the service exposes operations and could

further manipulate the data that is returned from the data layer.

Chapter 11 repository and Unit of Work patterns

539

Add the following code to the IItemsService interface:

List<ItemDto> GetItems();

List<ItemDto> GetItemsByDateRange(DateTime minDateValue, DateTime

maxDateValue);

List<GetItemsForListingDto> GetItemsForListingFromProcedure();

List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive);

string GetAllItemsPipeDelimitedString();

List<FullItemDetailDto> GetItemsWithGenresAndCategories();

Then add the following code to the ItemsService to implement the methods:

private readonly IItemsRepo _dbRepo;

public ItemsService(InventoryDbContext dbContext, IMapper mapper)

{

 _dbRepo = new ItemsRepo(dbContext, mapper);

}

public List<ItemDto> GetItems()

{

 return _dbRepo.GetItems();

}

public List<ItemDto> GetItemsByDateRange(DateTime minDateValue, DateTime

maxDateValue)

{

 return _dbRepo.GetItemsByDateRange(minDateValue, maxDateValue);

}

public List<GetItemsForListingDto> GetItemsForListingFromProcedure()

{

 return _dbRepo.GetItemsForListingFromProcedure();

}

public List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive)

{

 return _dbRepo.GetItemsTotalValues(isActive);

}

Chapter 11 repository and Unit of Work patterns

540

public string GetAllItemsPipeDelimitedString()

{

 var items = GetItems();

 return string.Join('|', items);

}

public List<FullItemDetailDto> GetItemsWithGenresAndCategories()

{

 return _dbRepo.GetItemsWithGenresAndCategories();

}

Note that the last implemented method is the GetAllItemsPipeDelimitedString,

and this method will implement the code to work with the encrypted Item names as

leveraged in the previous chapter. Make sure to add the missing using statements so the

code will compile.

 Step 3: Add method declarations for ICategoriesService
and the code for the CategoriesService

To complete the business layer, add the following code to the ICategoriesService

interface:

List<CategoryDto> ListCategoriesAndDetails();

Then add the following code to the CategoriesService class:

private readonly ICategoriesRepo _dbRepo;

public CategoriesService(InventoryDbContext dbContext, IMapper mapper)

{

 _dbRepo = new CategoriesRepo(dbContext, mapper);

}

public List<CategoryDto> ListCategoriesAndDetails()

{

 return _dbRepo.ListCategoriesAndDetails();

}

Chapter 11 repository and Unit of Work patterns

541

 Task 5: Refactor the console program
Now that the service and business layer projects are completed, you need to refactor

the program class to leverage these projects. By doing this, you will see the power and

flexibility that this will bring to your solution.

 Step 1: Add a reference to the business layer project in the main
activity project

To start, you will want to add a project reference to the EFCore_Activity1101 project (or

whatever project name you started with) that references the InventoryBusinessLayer.

By doing this, you’ll then have access to the service and be able to leverage the service to

make all the necessary calls to the database.

The way this project is architected, the UI layer project will still be responsible for

setting up the database connection and the AutoMapper configurations, and the UI layer

project will inject these objects into the service layer, which will leverage the objects and

also pass them through to the underlying DatabaseLayer project.

Right-click the EFCore_Activity1101 project and select Add ➤ Project Reference.

When the dialog appears, select the InventoryBusinessLayer project.

 Step 2: Clean up the Program.cs file

At this point, there is likely a bunch of commented out code and code a few sections

of code that need to be cleaned up. Remove any commented out code that is currently

in the system (do not remove commented method calls from the Main method).

Additionally, ensure that both methods for BuildOptions and BuildMapper are present

and are set to private access level.

Another note here is that if you have been working through the book and any

packages were updated, you might have to update packages in your main activity project

to avoid downgrades. You can always update to the latest packages in the NuGet Package

Manager ➤ Manage NuGet Packages for Solution.

Additionally, note that the methods ListInventory and ListInventoryWithProjection

produce the same result. Delete the ListInventoryWithProjection method, and also

remove the call to ListInventoryWithProjection from the Main method.

Chapter 11 repository and Unit of Work patterns

542

 Step 3: Update the Program.cs file constructor and methods

Begin this step by updating the Program class to contain new private variables for the two

service layer services as follows:

private static IItemsService _itemsService;

private static ICategoriesService _categoriesService;

Make sure to also bring in the using statement for the InventoryBusinessLayer.

Next, replace the Main method code with the code that follows:

public static void Main(string[] args)

{

 BuildOptions();

 BuildMapper();

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 _itemsService = new ItemsService(db, _mapper);

 _categoriesService = new CategoriesService(db, _mapper);

 ListInventory();

 GetItemsForListing();

 GetAllActiveItemsAsPipeDelimitedString();

 GetItemsTotalValues();

 GetFullItemDetails();

 GetItemsForListingLinq();

 ListCategoriesAndColors();

 }

}

 Step 4: Update the methods to leverage the service

The next step is to leverage the service layer in each of the method calls. Completing this

refactoring will substantially reduce the amount of code needed in each method and will

further decouple the UI layer from the database (other than during startup construction

of the database).

Chapter 11 repository and Unit of Work patterns

543

Update the ListInventory method to the following code:

private static void ListInventory()

{

 var result = _itemsService.GetItems();

 result.ForEach(x => Console.WriteLine($"New Item: {x}"));

}

Update the GetItemsForListing method to the following code:

private static void GetItemsForListing()

{

 var results = _itemsService.GetItemsForListingFromProcedure();

 foreach (var item in results)

 {

 var output = $"ITEM {item.Name}] {item.Description}";

 if (!string.IsNullOrWhiteSpace(item.CategoryName))

 {

 output = $"{output} has category: {item.CategoryName}";

 }

 Console.WriteLine(output);

 }

}

Re-implement the GetAllActiveItemsAsPipeDelimitedString with the following

code:

private static void GetAllActiveItemsAsPipeDelimitedString()

{

 Console.WriteLine($"All active Items: {_itemsService.

GetAllItemsPipeDelimitedString()}");

}

Then update GetItemsTotalValues to the following code to leverage the new layers:

private static void GetItemsTotalValues()

{

 var results = _itemsService.GetItemsTotalValues(true);

 foreach (var item in results)

Chapter 11 repository and Unit of Work patterns

544

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Quantity,-4}" +

 $"|{item.TotalValue,-5}");

 }

}

Replace the GetFullItemDetails method with the following code:

private static void GetFullItemDetails()

{

 var result = _itemsService.GetItemsWithGenresAndCategories();

 foreach (var item in result)

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.ItemName,-50}" +

 $"|{item.ItemDescription,-4}" +

 $"|{item.PlayerName,-5}" +

 $"|{item.Category,-5}" +

 $"|{item.GenreName,-5}");

 }

}

Update the GetItemsForListingLinq to the following code:

private static void GetItemsForListingLinq()

{

 var minDateValue = new DateTime(2021, 1, 1);

 var maxDateValue = new DateTime(2024, 1, 1);

 var results = _itemsService.GetItemsByDateRange(minDateValue, maxDateValue)

 .OrderBy(y => y.CategoryName).ThenBy(z => z.Name);

 foreach (var itemDto in results)

 {

 Console.WriteLine(itemDto);

 }

}

Chapter 11 repository and Unit of Work patterns

545

Note that the ordering here is still performed by the UI, and only the selection and

projection are done in the service layer.

Implement the ListCategoriesAndColors method as follows:

private static void ListCategoriesAndColors()

{

 var results = _categoriesService.ListCategoriesAndDetails();

 foreach (var c in results)

 {

 Console.WriteLine($"Category [{c.Category}] is {c.CategoryDetail.

Color}");

 }

}

 Step 5: Run the program to see results

Now that all the methods are updated to leverage the services, run the program.

Everything should work as expected, and you should now see how reorganizing the

solution into layers has provided a much more robust solution.

When running the final project, ensure that all of your methods are working and that

you are getting full output now that you’ve refactored the UI layer to use the service layer

with an underlying database layer. The output at the end of this activity should be similar

to what is shown in Figure 11-11.

Figure 11-11. The code is refactored and output is working as expected

Chapter 11 repository and Unit of Work patterns

546

 Activity 11-1 summary
In this first activity for Chapter 11, you completely refactored the system to make it more

robust for future enhancements. In this solution, you’ve created a baseline database

layer that allows you to consolidate your database code into one repository for each type

of entity. While this repository is not complete without some more CRUD operations

(you will add some in the next activity), you are in position to add the CRUD operations,

and you should be in command of the concept of separating your database calls into

their own base layer.

You then added a service layer on top of the database layer. The service layer acts as a

controller. The service layer takes calls from the UI layer and makes calls to the database

layer. By decoupling your UI from your database via this service, you’ve created a much

more robust solution. Should you desire to change out your database implementation,

all you would need to do is change the underlying database layer and code it to the

interface so that the service could still work as expected. As an added bonus, additional

operations can be added in the service layer to further customize your solution logic

without having to be directly tied to database operations.

To finish up the activity, you saw the fruits of your labor. By being able to utilize the

service layer, the UI layer no longer has to do anything but create the database at startup

and then leverage all of the operations that it needs via the service layer.

 Activity 11-2: Rolling your own UoW
In this second activity for Chapter 11, you are going to create your own unit of work using

transactions in your Inventory Database Manager solution.

 Transactions are easy and effective
Entity Framework itself has built-in transactions, but sometimes you want to make sure

that a number of operations complete before saving the entire unit of work. Even though

the individual calls to SaveChanges are transactional, when you need a group of these

operations to work together and save on success, you will also likely want them all to roll

back in the case when something fails.

Chapter 11 repository and Unit of Work patterns

547

As you work to further create your custom repository, you can create methods that

leverage their own unit of work by wrapping the operations for each unit of work in

transactions.

As a last and final statement on this matter, I will again urge you to use caution when

using transactions in a highly volatile environment with high traffic volumes. Working

with transactions on your own could lead to many scenarios that end in deadlock,

resulting in users having long load times on different pages in the solution. Therefore, if

you must use transactions, I remind you to look into the different transaction isolation

levels, as well as fully test your system under the load of multiple concurrent users to

ensure you have not created a deadlock in your solution.

 Use the using statement for transaction lifecycles
When it comes to working with transactions, just like when you connect and work

with the database context, you can rely on the fact that the transaction implements the

IDisposable interface. With that knowledge, you know that you can wrap the transaction

code in a using statement, making it very easy to handle the overall unit of work.

For this task, you are going to use our database layer like a full database Repo as

provided by Entity Framework to do a couple of simple CRUD operations, ultimately

relying on EF’s underlying unit of work. You are going to then use your service layer to

manage calls to that database layer.

Additionally, you’re going to create a somewhat contrived example where you want

to make sure that you can insert, update, or delete an entire group of Items. If any of the

mutation operations fail during execution, then you will roll back the entire transaction.

This will be your custom unit of work implementation.

 Task 0: Getting started
As usual, to get started, you can either continue with files from the previous activity or

just work with the new code. However, if you want a clean slate or you skipped to this

activity, you can start with the EFCore_Activity11-2_StarterFiles. No matter how you

start the activity, ensure that your database is up to date and that you do not have any

pending migrations.

Chapter 11 repository and Unit of Work patterns

548

 Task 1: Modify the InventoryDatabaseLayer
In this activity, just like the previous activity, you are going to work from the database

up to the UI program layer. To make your solution work as expected, first you need to fix

a couple of things that we would likely have caught if we had good unit and integration

tests (see Chapter 12).

 Step 1: Update the GetItems method to return objects of type
Item

To get started, you’ll change the GetItems method in the ItemsRepo.cs file in the

InventoryDatabaseLayer project. For this method, you will want to return a full

Item class instead of the ItemDto (you will then let the service layer do the mapping).

Additionally, you should also include the Category with the Item, and finally, you should

finish the method by making sure to only return non-deleted entities.

Change the GetItems method to use the following code:

public List<Item> GetItems()

{

 return _context.Items.Include(x => x.Category)

 .AsEnumerable()

 .Where(x => !x.IsDeleted)

 .OrderBy(x => x.Name).ToList();

}

You will also need to change the method signature in the IItemsRepo interface to

return type Item instead of ItemDto. Make sure to bring in any missing using statements

as needed (such as using InventoryModels;).

at this point, the solution will no longer build. this is expected since you’ve
modified the interface signature and have not responded to this change elsewhere
in the code. you will get this fixed later in the activity.

Chapter 11 repository and Unit of Work patterns

549

 Step 2: Add the new method signatures to the interface
and implement them

Next, you need to add four new method signatures for create, update, and delete

operations to the IItemsRepo interface as follows:

int UpsertItem(Item item);

void UpsertItems(List<Item> items);

void DeleteItem(int id);

void DeleteItems(List<int> itemIds);

After defining the methods in the interface, you need to implement them in the

ItemsRepo class.

In the ItemsRepo.cs file for the ItemsRepo class, stub out the four methods by using

the auto-generated method implementations. Optionally, move them to the bottom

of the class and break the alphabetical listing so they are easy to find. The code can be

generated, but it should be similar to the following:

public int UpsertItem(Item item)

{

 throw new NotImplementedException();

}

public void UpsertItems(List<Item> items)

{

 throw new NotImplementedException();

}

public void DeleteItem(int id)

{

 throw new NotImplementedException();

}

public void DeleteItems(List<int> itemIds)

{

 throw new NotImplementedException();

}

Chapter 11 repository and Unit of Work patterns

550

In the UpsertItem(Item item) method, add code to call to update if the item id is

greater than zero or to insert a new Item if the id is not greater than zero.

public int UpsertItem(Item item)

{

 if (item.Id > 0)

 {

 return UpdateItem(item);

 }

 return CreateItem(item);

}

Next, at the end of the ItemsRepo class, create the two new private methods called

by the UpsertItem code you just added, one method for CreateItem and one method for

UpdateItem as private methods using the following code:

private int CreateItem(Item item)

{

 _context.Items.Add(item);

 _context.SaveChanges();

 var newItem = _context.Items.ToList()

 .FirstOrDefault(x => x.Name.ToLower()

 .Equals(item.Name.ToLower()));

 if (newItem == null) throw new Exception("Could not Create the item as

expected");

 return newItem.Id;

}

private int UpdateItem(Item item)

{

 var dbItem = _context.Items

 .Include(x => x.Category)

 .Include(x => x.ItemGenres)

 .Include(x => x.Players)

 .FirstOrDefault(x => x.Id == item.Id);

Chapter 11 repository and Unit of Work patterns

551

 if (dbItem == null) throw new Exception("Item not found");

 dbItem.CategoryId = item.CategoryId;

 dbItem.CurrentOrFinalPrice = item.CurrentOrFinalPrice;

 dbItem.Description = item.Description;

 dbItem.IsActive = item.IsActive;

 dbItem.IsDeleted = item.IsDeleted;

 dbItem.IsOnSale = item.IsOnSale;

 if (item.ItemGenres != null)

 {

 dbItem.ItemGenres = item.ItemGenres;

 }

 dbItem.Name = item.Name;

 dbItem.Notes = item.Notes;

 if (item.Players != null)

 {

 dbItem.Players = item.Players;

 }

 dbItem.PurchasedDate = item.PurchasedDate;

 dbItem.PurchasePrice = item.PurchasePrice;

 dbItem.Quantity = item.Quantity;

 dbItem.SoldDate = item.SoldDate;

 _context.SaveChanges();

 return item.Id;

}

For the UpsertItems(List<Item> items) method, you’re going to use a transaction

to batch your custom unit of work around all items for create or update. In this manner, if

one of the operations in the batch fails, the whole transaction will be rolled back.

Implement the method with code as follows:

public void UpsertItems(List<Item> items)

{

 using (var transaction = _context.Database.BeginTransaction())

 {

Chapter 11 repository and Unit of Work patterns

552

 try

 {

 foreach (var item in items)

 {

 var success = UpsertItem(item) > 0;

 if (!success) throw new Exception($"Error saving the item

{item.Name}");

 }

 transaction.Commit();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 transaction.Rollback();

 throw;

 }

 }

}

Make sure to add the using System.Diagnostics; statement to the top of the class if

you keep the Debug.WriteLine statement.

Notice that this method uses the using statement to wrap the batch execution into a

transaction. When all operations complete successfully, the transaction is committed. If

any of the iterations fail to save correctly, then the exception is thrown and logged, and

the entire transaction is rolled back.

The really nice thing to note is that even though you are calling to the context to

save changes on each iteration, you are still able to roll the entire transaction back. This

can also be useful in an insert and then update scenario, where you need to get an item

inserted and then get the id of that item and use it to update some other piece of the

system.

Also notice that this code leverages the code that was previously built for the

UpsertItem method.

Chapter 11 repository and Unit of Work patterns

553

Finally, let’s follow this same pattern to implement the two Delete methods:

public void DeleteItem(int id)

{

 var item = _context.Items.FirstOrDefault(x => x.Id == id);

 if (item == null) return;

 item.IsDeleted = true;

 _context.SaveChanges();

}

public void DeleteItems(List<int> itemIds)

{

 using (var transaction = _context.Database.BeginTransaction())

 {

 try

 {

 foreach (var itemId in itemIds)

 {

 DeleteItem(itemId);

 }

 transaction.Commit();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 transaction.Rollback();

 throw ex; //make sure it is known that the transaction failed

 }

 }

}

This will complete your database layer for now. Next, you’ll move up to the service

layer. Keep in mind that as of right now the solution is still not able to be built, but the

InventoryDatabaseLayer project can be built individually if you would like to check

your code for accuracy and/or errors.

Chapter 11 repository and Unit of Work patterns

554

 Task 2: Modify the InventoryBusinessLayer
In this task, you will modify the InventoryBusinessLayer project to work with the new

functionality exposed by the InventoryDatabaseLayer project.

 Step 1: Modify the IItemsService interface and add a new DTO

The service layer (InventoryBusinessLayer.ItemsService) will now need to respond to

the new methods in the database layer, as well as do some mapping for Item to ItemDto

to get your code back to a buildable and working state.

Begin by adding four new methods to the service layer interface as follows:

int UpsertItem(CreateOrUpdateItemDto item);

void UpsertItems(List<CreateOrUpdateItemDto> item);

void DeleteItem(int id);

void DeleteItems(List<int> itemIds);

You’ll also need to add the CreateOrUpdateItemDto class to be able to compile this

code and get it to a working state. In the InventoryModels project, under the DTOs folder,

create a new file called CreateOrUpdateItemDTO.cs, and add the following code to the file:

public class CreateOrUpdateItemDto

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string Notes { get; set; }

 public int CategoryId { get; set; }

 public bool IsActive { get; set; }

 public bool IsDeleted { get; set; }

 public List<Player> Players { get; set; }

 public List<ItemGenre> ItemGenres { get; set; }

}

Note that in this DTO the lists for Players and Genres are left null by default. In this

manner, they can be ignored by the solution as to whether or not to update the relationships.

If the user wanted to delete relationships, they could create a new List. If the user wanted to

update the list, they could pass the new list in and fully update the relationships.

Chapter 11 repository and Unit of Work patterns

555

Implement the four methods as defined in the IItemsService interface and

optionally move them to the bottom of the ItemsService code file to make it easy to find

them all.

 Step 2: Modify the ItemsService to implement the new methods

In this step, you will implement the new functionality in the ItemsService class.

Implement the four methods as defined in the IItemsService interface and optionally

move them to the bottom of the ItemsService code file to make it easy to find them all.

The first thing you need to do is to be able to list the inventory and return it as an

ItemDto. This will require the mapper implementation to reside in the ServiceLayer.

At the top of the ItemsService class, add the line of code private readonly

IMapper _mapper; after the line for creating the readonly dbRepo. Then add the

instantiation _mapper = mapper; into the constructor method (the parameter should

already be present and had just not been used until now).

In the GetItems method, change the return statement to

return _mapper.Map<List<ItemDto>>(_dbRepo.GetItems());

This change should resolve any issues that existed with the GetItems method.

Next, implement the code to get the data from the database layer. Don’t forget to

bring in the missing using statement for InventoryModels. You are going to again be just

doing mostly a pass-through at this service layer.

public int UpsertItem(CreateOrUpdateItemDto item)

{

 if (item.CategoryId <= 0)

 {

 throw new ArgumentException("Please set the category id before

insert or update");

 }

 return _dbRepo.UpsertItem(_mapper.Map<Item>(item));

}

public void UpsertItems(List<CreateOrUpdateItemDto> items)

{

 try

 {

Chapter 11 repository and Unit of Work patterns

556

 _dbRepo.UpsertItems(_mapper.Map<List<Item>>(items));

 }

 catch (Exception ex)

 {

 //TODO: better logging/not squelching

 Console.WriteLine($"The transaction has failed: {ex.Message}");

 }

}

public void DeleteItem(int id)

{

 if (id <= 0)

 {

 throw new ArgumentException("Please set a valid item id before

deleting");

 }

 _dbRepo.DeleteItem(id);

}

public void DeleteItems(List<int> itemIds)

{

 try

 {

 _dbRepo.DeleteItems(itemIds);

 }

 catch (Exception ex)

 {

 //TODO: better logging/not squelching

 Console.WriteLine($"The transaction has failed: {ex.Message}");

 }

}

The interesting things to note here are that you will make sure to have a couple

of guard clauses in place to prevent issues as well as handle the cases when the

transactions don’t succeed. In the real world, you would also want to implement better

logging to avoid just squelching issues.

Chapter 11 repository and Unit of Work patterns

557

Another interesting point is that our mapper now needs to go in both

directions between Item and ItemDto. You will also need a mapping for the new

CreateOrUpdateDto in the AutoMapper configuration.

In the main activity project, in the InventoryMapper.cs file, add the command

.ReverseMap() to the map item for the mapping of Item to ItemDto to make the map go

in both directions as follows:

CreateMap<Item, ItemDto>().ReverseMap();

Then add a new mapping for Item to CreateOrUpdateItemDto as follows to the

CreateMaps method, making sure to ignore the Category after reversing the mapping:

CreateMap<Item, CreateOrUpdateItemDto>()

 .ReverseMap()

 .ForMember(x => x.Category, opt => opt.Ignore());

For clarity regarding the InventoryMapper changes, please review Figure 11-12.

Figure 11-12. The InventoryMapper class is updated to handle mapping Item to
ItemDto in both directions and the Item maps to the CreateOrUpdateItemDto as
well

Chapter 11 repository and Unit of Work patterns

558

Now that your database and service layers are done, you need to add some code to

run the program. At this point, the solution should build successfully. Go ahead and

build the solution to verify your code is in place and ensure there are no compiler errors

before proceeding.

Additionally, run your project to ensure that that there are no errors with any of the

mapping configurations or other changes that were implemented in the previous two

tasks. If you have any errors, ensure that you have mapped names in the DTOs to the

exact field names that exist in the base class (i.e., Item to CreateOrUpdateItemDto fields

for Players and ItemGenres).

 Task 3: Build the insert logic
In this task, you will handle the new insert logic from the main program.

 Step 1: Add the code to add insert functionality

Start implementing the user layer by updating the Main method in the Program.cs file to

allow for inserting new items.

After the call to list out the categories and colors, add the following code:

Console.WriteLine("Would you like to create items?");

var createItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

if (createItems)

{

 Console.WriteLine("Adding new Item(s)");

 CreateMultipleItems();

 Console.WriteLine("Items added");

 var inventory = _itemsService.GetItems();

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

}

Next, add the CreateMultipleItems code as a private static method.

Chapter 11 repository and Unit of Work patterns

559

private static void CreateMultipleItems()

{

 Console.WriteLine("Would you like to create items as a batch?");

 bool batchCreate = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<CreateOrUpdateItemDto>();

 bool createAnother = true;

 while (createAnother == true)

 {

 var newItem = new CreateOrUpdateItemDto();

 Console.WriteLine("Creating a new item.");

 Console.WriteLine("Please enter the name");

 newItem.Name = Console.ReadLine();

 Console.WriteLine("Please enter the description");

 newItem.Description = Console.ReadLine();

 Console.WriteLine("Please enter the notes");

 newItem.Notes = Console.ReadLine();

 Console.WriteLine("Please enter the Category [B]ooks, [M]ovies,

[G]ames");

 newItem.CategoryId = GetCategoryId(Console.ReadLine().Substring(0,

1).ToUpper());

 if (!batchCreate)

 {

 _itemsService.UpsertItem(newItem);

 }

 else

 {

 allItems.Add(newItem);

 }

 Console.WriteLine("Would you like to create another item?");

 createAnother = Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase);

Chapter 11 repository and Unit of Work patterns

560

 if (batchCreate && !createAnother)

 {

 _itemsService.UpsertItems(allItems);

 }

 }

}

Note that for simplicity and brevity, you are not adding any Players or Genres at this

time. Feel free to add that code if you want to go to that level.

Make sure to add any missing using statements if you have previously cleaned up

your using statements and are getting some errors.

There are a couple of interesting things happening in this method. First, you are

taking user input to validate if they want to do a one-off insert or use a batched approach

on the insert. You then gather the details from the user until they are done, and each

time through you either add the new item to the database and save changes or you add

the new item to a list of items to add later in a batch.

Either way, when the user has completed their operations, they have either entered

multiple items and saved each item entry, or they have added multiple items and then

saved them all in a batch of operations within a transaction.

Also notice that in this method is a call to a common method called GetCategoryId

to get the Category so that you can assign the correct category id to the item as we add it.

Next, add that common GetCategoryId method next as another private static

method that returns an integer.

private static int GetCategoryId(string input)

{

 switch (input)

 {

 case "B":

 return _categories.FirstOrDefault(x => x.Category.ToLower().

Equals("books"))?.Id ?? -1;

 case "M":

 return _categories.FirstOrDefault(x => x.Category.ToLower().

Equals("movies"))?.Id ?? -1;

 case "G":

 return _categories.FirstOrDefault(x => x.Category.ToLower().

Equals("games"))?.Id ?? -1;

Chapter 11 repository and Unit of Work patterns

561

 default:

 return -1;

 }

}

As you may have noticed, you now have to have a reference for all of the categories in

the system. At the top of the method, with the other class-level variable declarations, add

this line:

private static List<CategoryDto> _categories;

Then set the categories in the ListCategoriesAndColors method for use in your

insert and update logic. Right before you return from the ListCategoriesAndColors

method, add the following line of code:

_categories = results;

This will set the list of categories for use in the system.

 Step 2: Run the program and insert some items

Test the current insert logic by adding an item while you run the program. For an

example, see Figure 11-13.

Figure 11-13. A new item is added using the recently built logic

Chapter 11 repository and Unit of Work patterns

562

After the first item is added, run the program again and add items as a batch. Feel

free to put a debugger breakpoint in the database layer to see the operations in action as

you are running them.

By the end of the exercise, try to have three or four volatile items to play with for the

remaining parts of this activity (see Figure 11-14 for sample output after the operation is

completed).

 Task 4: Build the update logic
In this task, you will perform a similar set of steps as in the previous task, this time

allowing for update of existing items.

To do this, you need to add the logic to prompt the user for input as we did in the

Insert method.

 Step 1: Add the code to add update functionality

Add the following code in the Main program after the insert logic calls (following the end

of the if (createItems) block):

Console.WriteLine("Would you like to update items?");

var updateItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

if (updateItems)

{

 Console.WriteLine("Updating Item(s)");

 UpdateMultipleItems();

 Console.WriteLine("Items updated");

Figure 11-14. A few more items are added as a batch

Chapter 11 repository and Unit of Work patterns

563

 var inventory2 = _itemsService.GetItems();

 inventory2.ForEach(x => Console.WriteLine($"Item: {x}"));

}

Then add the UpdateMultipleItems method after the GetCategoryId method using

the following code:

private static void UpdateMultipleItems()

{

 Console.WriteLine("Would you like to update items as a batch?");

 bool batchUpdate = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<CreateOrUpdateItemDto>();

 bool updateAnother = true;

 while (updateAnother == true)

 {

 Console.WriteLine("Items");

 Console.WriteLine("Enter the ID number to update");

 Console.WriteLine("*******************************");

 var items = _itemsService.GetItems();

 items.ForEach(x => Console.WriteLine($"ID: {x.Id} | {x.Name}"));

 Console.WriteLine("*******************************");

 int id = 0;

 if (int.TryParse(Console.ReadLine(), out id))

 {

 var itemMatch = items.FirstOrDefault(x => x.Id == id);

 if (itemMatch != null)

 {

 var updItem = _mapper.Map<CreateOrUpdateItemDto>(_mapper.

Map<Item>(itemMatch));

 Console.WriteLine("Enter the new name [leave blank to keep

existing]");

 var newName = Console.ReadLine();

 updItem.Name = !string.IsNullOrWhiteSpace(newName) ?

newName : updItem.Name;

 Console.WriteLine("Enter the new desc [leave blank to keep

existing]");

Chapter 11 repository and Unit of Work patterns

564

 var newDesc = Console.ReadLine();

 updItem.Description = !string.IsNullOrWhiteSpace(newDesc) ?

newDesc : updItem.Description;

 Console.WriteLine("Enter the new notes [leave blank to keep

existing]");

 var newNotes = Console.ReadLine();

 updItem.Notes = !string.IsNullOrWhiteSpace(newNotes) ?

newNotes : updItem.Notes;

 Console.WriteLine("Toggle Item Active Status? [y/n]");

 var toggleActive = Console.ReadLine().Substring(0,

1).Equals("y", StringComparison.OrdinalIgnoreCase);

 if (toggleActive)

 {

 updItem.IsActive = !updItem.IsActive;

 }

 Console.WriteLine("Enter the category - [B]ooks, [M]ovies,

[G]ames, or [N]o Change");

 var userChoice = Console.ReadLine().Substring(0, 1).ToUpper();

 updItem.CategoryId = userChoice.Equals("N",

StringComparison.OrdinalIgnoreCase) ? itemMatch.CategoryId

 : GetCategoryId(userChoice);

 if (!batchUpdate)

 {

 _itemsService.UpsertItem(updItem);

 }

 else

 {

 allItems.Add(updItem);

 }

 }

 }

 Console.WriteLine("Would you like to update another?");

 updateAnother = Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase);

Chapter 11 repository and Unit of Work patterns

565

 if (batchUpdate && !updateAnother)

 {

 _itemsService.UpsertItems(allItems);

 }

 }

}

Note that this method gives the user a chance to perform a single update and save or

to batch the updates into one transaction.

 Step 2: Run the program and update some items

Run the program and update with the single update and then run again and update as

a batch. Feel free to put a breakpoint in the business or database layer to see the code in

action. An example of the output is shown in Figure 11-15.

Make sure to also test the batching of updates.

Figure 11-15. The single item update works as expected

Chapter 11 repository and Unit of Work patterns

566

 Task 5: Build the delete logic
For this final part of the program, you will follow the same logic you have followed earlier

to delete either one item at a time or a batch of items.

 Step 1: Add the code to add delete functionality

Update the Main method to include logic for deleting Items. Also add a statement that

lets the user know the program is done executing. Following the if (updateItems)

block of code you just added in the previous step, add the following code to complete the

Main method:

Console.WriteLine("Would you like to delete items?");

var deleteItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

if (deleteItems)

{

 Console.WriteLine("Deleting Item(s)");

 DeleteMultipleItems();

 Console.WriteLine("Items Deleted");

 var inventory3 = _itemsService.GetItems();

 inventory3.ForEach(x => Console.WriteLine($"Item: {x}"));

}

Then add the following line of code after the end of the using statement:

Console.WriteLine("Program Complete");

After implementing this logic in the Main method, add the code to delete multiple

items in a method called DeleteMultipleItems.

private static void DeleteMultipleItems()

{

 Console.WriteLine("Would you like to delete items as a batch?");

 bool batchDelete = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<int>();

Chapter 11 repository and Unit of Work patterns

567

 bool deleteAnother = true;

 while (deleteAnother == true)

 {

 Console.WriteLine("Items");

 Console.WriteLine("Enter the ID number to delete");

 Console.WriteLine("*******************************");

 var items = _itemsService.GetItems();

 items.ForEach(x => Console.WriteLine($"ID: {x.Id} | {x.Name}"));

 Console.WriteLine("*******************************");

 if (batchDelete && allItems.Any())

 {

 Console.WriteLine("Items scheduled for delete");

 allItems.ForEach(x => Console.Write($"{x},"));

 Console.WriteLine();

 Console.WriteLine("*******************************");

 }

 int id = 0;

 if (int.TryParse(Console.ReadLine(), out id))

 {

 var itemMatch = items.FirstOrDefault(x => x.Id == id);

 if (itemMatch != null)

 {

 if (batchDelete)

 {

 if (!allItems.Contains(itemMatch.Id))

 {

 allItems.Add(itemMatch.Id);

 }

 }

 else

 {

 Console.WriteLine($"Are you sure you want to delete the

item {itemMatch.Id}-{itemMatch.Name}");

Chapter 11 repository and Unit of Work patterns

568

 if (Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase))

 {

 _itemsService.DeleteItem(itemMatch.Id);

 Console.WriteLine("Item Deleted");

 }

 }

 }

 }

 Console.WriteLine("Would you like to delete another item?");

 deleteAnother = Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase);

 if (batchDelete && !deleteAnother)

 {

 Console.WriteLine("Are you sure you want to delete the

following items: ");

 allItems.ForEach(x => Console.Write($"{x},"));

 Console.WriteLine();

 if (Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase))

 {

 _itemsService.DeleteItems(allItems);

 Console.WriteLine("Items Deleted");

 }

 }

 }

}

 Step 2: Run the program and delete some items

Run the program to see it all in action. Make sure to test the ability to delete a single item

and also test deleting a batch of items. Figure 11-16 shows a sample run where I deleted

one entry.

Chapter 11 repository and Unit of Work patterns

569

 Task 6: Update the transaction scope
In this final task, you will learn about the transaction scope and how you can use it in

your code.

 Step 1: Learning about the transaction scope

The program is complete, but you need to be aware of one last detail. That detail is

transaction scope.

Right now, you have a couple of batch methods that just use transactions in a using

statement. When working with transactions, you will need to make sure to put your code

into scope instead of just running a plain transaction. By doing this, you can ensure

control over the transaction’s isolation level.

If you don’t set the isolation level, in a busy application, you will likely run into issues

with deadlocks and/or concurrency conflicts.

Figure 11-16. One item is deleted using the new delete functionality

Chapter 11 repository and Unit of Work patterns

570

 Step 2: Update the transaction scope for UpsertItems

To see how to work with the transaction scope, return to the InventoryDatabaseLayer

project and find the method for UpsertItems in the ItemsRepo.cs file. Change the

UpsertItems method to use a scope instead of a raw transaction by replacing the existing

method with the following code:

public void UpsertItems(List<Item> items)

 {

 using (var scope = new TransactionScope(TransactionScopeOption.

Required

 , new TransactionOptions

 { IsolationLevel = IsolationLevel.ReadUncommitted }))

 {

 try

 {

 foreach (var item in items)

 {

 var success = UpsertItem(item) > 0;

 if (!success) throw new Exception($"Error saving

the item {item.Name}");

 }

 scope.Complete();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 throw;

 }

 }

 }

For clarity, review Figure 11-17.

Chapter 11 repository and Unit of Work patterns

571

You will likely also need to add the using statement using System.Transactions;.

 Step 3: Update the transaction scope for delete items

To finish up, also change the delete method’s transaction to use a similar transaction

scope with the following code:

public void DeleteItems(List<int> itemIds)

{

 using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions

 { IsolationLevel = IsolationLevel.ReadUncommitted }))

 {

 try

 {

Figure 11-17. The transaction scope is utilized in the UpsertItems method

Chapter 11 repository and Unit of Work patterns

572

 foreach (var itemId in itemIds)

 {

 DeleteItem(itemId);

 }

 scope.Complete();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 throw; //make sure it is known that the transaction failed

 }

 }

}

 Step 4: Run the program to ensure it still works

Make sure to run the program, add items, update items, and delete items and ensure that

the code changes just implemented have not broken any functionality.

 Activity 11-2 summary
In this activity, you were able to build out your own repository and then implement

a couple of units of work in the solution. As you’ve already read about in previous

discussions, EF itself has built-in repository and unit of work patterns, and, in most

cases, you should just leverage the built-in features of EF.

However, even with the abilities of EF, there are times when you want to take more

control of the logic and, along with that, how, what, and when changes are applied to

the database. In these cases, using your own versions of the repository and unit of work

patterns on top of what EF offers can generally work to meet your needs.

Chapter 11 repository and Unit of Work patterns

573

 Chapter summary
Chapter 11 gave you a chance to really build out your solution to make it very robust.

Additionally, you had a chance in this chapter to discuss the two major patterns in any

database object-relational mapper (ORM).

The first pattern – the repository pattern – allows you to work with any entity using

the same default signatures for each operation. EF has a great repository pattern built in,

where we can generally leverage the context and start adding, deleting, updating, and

listing data with just a few simple calls and not a lot of work on our part.

The second pattern you learned about was the unit of work pattern. In the UoW

pattern, you want to make sure that your solution is robust across an entire business

process. While EF has a built-in unit of work, waiting to save changes may not always

be the most performant solution and/or may lead to a lot of frustration if operations are

consistently rejected or don’t work as expected due to small or unforeseen errors.

To overcome any limitations you may encounter, you saw how to easily create your

own repositories for managing the business and data relationship. You also learned how

to use transactions to allow the completion of your own custom units of work to save

changes or roll back the changes if any part of the transaction fails.

Now that your solution is layered for separation of concerns and is fairly robust

with database operations that you’ve built out, you could consider releasing this code

to production. However, shipping the code as is right now would be extremely risky,

because you haven’t set up unit and integration tests.

In the next chapter, you’ll add unit and integration tests so that you can modify your

code in the future without fear of creating issues and with confidence that the system is

ready to ship.

 Important takeaways
After working through this chapter, the things you should be in command of are

• The repository pattern

• The unit of work pattern

• Working with transactions

Chapter 11 repository and Unit of Work patterns

574

• Transaction scope

• Layering your solution/making robust production-ready

architectures

 Closing thoughts
In the next chapter, you will take this solution to completion by adding the appropriate

unit and integration tests to ensure that modifications, adaptations, and feature

implementations can be done with confidence in your solutions.

Chapter 11 repository and Unit of Work patterns

575
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_12

CHAPTER 12

Unit Testing, Integration
Testing, and Mocking
 Testing your code is a must-have, not a
nice-to- have
Your system has thousands of lines of code. There is at least one user interface (UI) that

connects to your business layer, and your system has multiple user interfaces, from the

Web to device to desktop to scanners to monitors and more. And now, it’s time to change

some code. Perhaps that code has been around for a while. Chances are you didn’t write

the code. The system certainly has some extremely risky scenarios where broken code

can mean loss of revenue (even millions), or, in an even more high-risk scenario, lives

might hang in the balance.

 The code needs to be changed
The directive to make some modifications to the code has been passed to you. As a

result, you will be changing code deep in the core components of one of the pillars of the

system, and you need to ensure that all the other pieces of the system remain functional

after these changes.

Also, as if this task wasn’t already sufficiently risky, there aren’t any resources

available to help you perform a full regression test on the other business layer

components or the UI interfaces for each of the supported devices. Like it or not, this is

bound to happen to you and perhaps already has happened to you at some point in your

career.

https://doi.org/10.1007/978-1-4842-7301-2_12#DOI

576

 The database is the lifeblood of the application
Even though the UI often defines how the users see and interact with the data, the

database is the place where the roots of the system live. Without the database, without

the business layer transformations, and without the robustness of your overall domain

design, the UI would just be a form on a page that pretends to do something for the user.

 Testing saves your sanity and protects the system
In the preceding scenario, having a full suite of automated tests that can be run would

be the ideal place to be. This book will not go into automated UI testing solutions

like Selenium or Cypress.IO, but as the back-end developer or full-stack developer

responsible for the business and database layers of the application, you do need some

solutions that you can easily implement and rely upon.

There are many different layers of testing that could be used, however, so you need

to determine how much testing is enough testing and how each type of testing works to

further your mission and protect you from issues in the future. Furthermore, you need to

understand what it means to mock data for testing and how and when you will use each

type of testing.

 Two different approaches leading to the ability
to test changes
In this chapter, you are going to take some time to examine two ways in which you can

test the database portion of your code. While taking these various approaches to testing,

you’ll see what the differences are between unit tests and integration tests.

 Unit testing
The first approach to testing your code is likely one you’ve heard of before – unit testing.

Unit testing is the ability to run tests against the codebase that are simple and repeatable

and are not dependent on other portions of the system – that is, single units under test.

Furthermore, unit tests do not require a connection to any database or other data storage

mechanism. In some instances, files might be used in unit tests, but only as an aid in

testing the system under test.

Chapter 12 Unit testing, integration testing, and MoCking

577

There are many different approaches to writing unit tests. Most developers agree

on two basic patterns for writing tests, which really come down to one overall testing

strategy. You will use both approaches in conjunction with each other in your unit tests.

The first approach is a simple Red-Green-Refactor approach, where you write the

test and ensure the test fails if the code is bad, then you write the code to pass the test,

and then you refactor your tests to eliminate any duplicated code.

The second approach is using the Arrange-Act-Assert approach. In this approach, for

each unit test you write, start by arranging the data for the test, then perform the single

act that needs to be tested, and finish the test with assertions to validate the data is in

place as expected.

For more information on unit testing, including the AAA pattern and how to write

unit tests in Visual Studio, please review this link from Microsoft: https://docs.

microsoft.com/en- us/visualstudio/test/unit- test- basics?view=vs- 2019.

 Libraries utilized
While performing your unit tests, you’ll also need to mock data. To accomplish mocking,

you’ll be using one of the more popular mocking libraries: Moq. Additionally, for your

unit testing, you’ll also use the Shouldly library to provide an extremely user-friendly

approach to asserting that things are as they should be.

 Integration testing
The second form of testing you’ll be looking at is integration testing. For integration

testing, you will be leveraging the .Net in memory database instance to generate an

in- memory version of your database, and then you’ll write your integration tests against

that database.

The nice thing about this implementation will be that it will be lightweight and

portable to any development environment. Additionally, the use of the in-memory

database means that you never have to be concerned with data being out of sync in

your integration tests based on other users or some test database state. With integration

testing, you also have no fear that you might screw up a shared test database or even a

local development database, since you’ll not be connecting to the actual databases.

Chapter 12 Unit testing, integration testing, and MoCking

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019

578

One drawback to using in-memory database solutions might be that they are not

fully functioning, or they might just not be robust enough. Therefore, if your solution has

a lot of stored procedures integrated into the solution or a number of database-heavy

operations using functions, you should consider just pointing your integration tests at

a database hosted in a local test database specifically for testing on your development

machine.

Of course, the other solution to not having access to functions and procedures is just

to mock the results of your stored procedures, but that sort of defeats the purpose of an

integration test.

 Activities for Chapter 12
For the Chapter 12 activities, you’re going to cover two different types of unit tests in two

different activities and apply them to your homegrown Inventory system solution.

Each activity will cover aspects of unit testing as you build your solutions. While this

simple work will not make you a testing expert, it should provide you with the foundation

to become a testing expert through trial and error in the future.

The first activity you’ll do is going to implement some simple unit tests against the

business layer in the InventoryManager system. While you will keep these activities

simple, this unit testing solution will show you how you can mock some data and work

with it in your unit tests to ensure the system is functioning correctly at the business

layer without being coupled to the database layer or connected to an actual database.

The second activity you will do will show you what it takes to set up your integration

testing and will also show you how to ensure that your database is working as expected

with the code you are writing.

By implementing fully functioning data integration tests, you can see the operation

of your system from start to finish with real data, not just fabricated expected data.

With each of these solutions completed, you’ll see the differences in the two

approaches to testing your systems. You’ll also learn why both types of testing have

their place in your system. Additionally, you will see how having both types of testing

implemented will set you up to have the peace of mind that you desire in the future

when it’s time to modify the system.

Chapter 12 Unit testing, integration testing, and MoCking

579

 Activity 12-1: Unit testing with mocking
In this first activity, you’ll set up your solution and then set the unit tests in place that will

help you to determine that your code is functioning correctly at the business layer level

as expected.

 Mocking for your tests
As you set up these unit tests, you’ll see how the data can be mocked and used in the unit

tests to show the solution working as expected in both good and bad data scenarios.

 Task 0: Getting started
This activity will resume with the files as they were at the end of Activity 11-2, where both

the refactoring into layers and the custom unit of work have been implemented. If you’ve

been following along in order, feel free to continue using your files. If you are joining out

of order or need a fresh set of files, grab the EFCore_Activity12-1_StarterFiles and

use them for this activity. Either way, as always, refer to Appendix A for more information

on using the starter files. Additionally, ensure that the program runs as expected. Output

should be similar to what is shown in Figure 12-1.

Figure 12-1. The initial output should have most functionality as expected

Chapter 12 Unit testing, integration testing, and MoCking

580

 Task 1: Add the unit testing project to the solution
In this first task, you will add a new project to the solution for running unit tests.

 Step 1: Add the testing project

Right-click the solution and select Add ➤ New Project.

Use the filter to select a Test project, and then select the MSTest Test Project

(review Figure 12-2).

Name the project InventoryManagerUnitTests and then create it (see Figure 12-3).

Figure 12-2. Selecting the MSTest Test Project

Chapter 12 Unit testing, integration testing, and MoCking

581

Make sure to select the correct Target Framework for the testing project (review

Figure 12-4).

Figure 12-3. Naming and creating the MSTest Test Project

Chapter 12 Unit testing, integration testing, and MoCking

582

Next, update the NuGet packages for the testing framework. Open the NuGet

Package Manager and select the Updates tab. There will likely be four package updates

that you should get for the testing project, three for testing and the coverlet.collector test

(you may also have EFCore updates if you started with the starter files and a more recent

version of EFCore has been released – feel free to update those as well, just remember to

also update all projects to match versions). At minimum, check the box next to the three

test projects, or just check all if you want to update everything, and then hit the Update

button to get everything up to date. Figure 12-5 shows an overview of taking care of these

updates for clarity.

Figure 12-4. Selecting the correct Target Framework is critical to ensure project
compatibility

Chapter 12 Unit testing, integration testing, and MoCking

583

As mentioned, feel free to also update the EFCore packages to bring everything up to

the latest version.

 Step 2: Rename the UnitTest1.cs file and class

To complete this first task, right-click the UnitTest1.cs file and rename it to

InventoryManagerUnitTests.cs. When prompted, select Yes to update the references in

the project. Figure 12-6 is shown for clarity on the current state of the solution.

Figure 12-5. Updating the newly added test packages to the latest version

Chapter 12 Unit testing, integration testing, and MoCking

584

 Task 2: Write your first unit test
In this task, you will start writing unit tests for the solution.

 Step 1: Add a reference to the service layer and ensure
the Target Framework

In the Solution Explorer, right-click the unit testing project you created in the last

task and select Add ➤ Project Reference. Then choose the service layer project

(InventoryBusinessLayer) as a reference (as shown in Figure 12-7).

Figure 12-6. The InventoryManagerUnitTests are ready to be written

Chapter 12 Unit testing, integration testing, and MoCking

585

Remember that the ultimate goal for these unit tests is just to test the service layer

and not to test the actual database code. You’ll get to the database code with integration

testing in the final activity for this chapter.

Also, please remember that this solution is simple, so the mocking may seem

redundant and somewhat tedious without a lot of gain. It is my hope that you will see the

value and then take what you learn here and apply it to your more advanced real-world

scenarios.

 Step 2: Write the first unit test

Using the code that follows, add a private instance variable of type IItemsService to the

InventoryManagerUnitTests class and then follow that variable with a method that will

run before every test using the [TestInitialize] attribute:

Figure 12-7. Adding a project reference to the InventoryBusinessLayer project in
the InventoryManagerUnitTests project

Chapter 12 Unit testing, integration testing, and MoCking

586

private IItemsService _itemsService;

[TestInitialize]

public void InitializeTests()

{

 _itemsService = new ItemsService();

}

Add the using statement for the InventoryBusinessLayer project so that the

IItemsService object will be defined.

Notice that the code for new ItemsService will currently be identified as having an

error since there isn’t a constructor with zero parameters. You’ll come back to fix that in

a moment. First, you need to get a database context.

To complete this step, rename the default test from TestMethod1 to TestGetItems,

and then place code in the method as follows (or simply just replace the TestMethod1

with this code):

[TestMethod]

public void TestGetItems()

{

 var result = _itemsService.GetItems();

 Assert.IsNotNull(result);

 Assert.IsTrue(result.Count > 0);

}

 Task 3: Get and implement Moq
In this next task, you will get the Moq framework and implement code to mock the

InventoryManager database.

 Step 1: Use the NuGet Package Manager to get Moq

Temporarily comment out the broken line of code in the InitializeTests method so

that the projects will build as expected. Then use the NuGet Package Manager to Manage

NuGet Packages for Solution.

Browse for Moq, and then add it to the InventoryManagerUnitTests project using

the Install button (see Figure 12-8 for clarity).

Chapter 12 Unit testing, integration testing, and MoCking

587

 Step 2: Implement a mock database layer using the Moq library

After adding Moq, the next thing we need to do is create a mock of our database layer so

that we can understand how this works.

The first step when authoring any unit tests is identifying what exactly is your system

under test. The system under test for this unit test project will be the items service

from the InventoryBusinessLayer project. This means you want to be able to call the

methods in the InventoryBusinessLayer.ItemsService and get results that you can

test. To do this without a database, you need to provide mock data for the database

context.

Start by adding a new mock for the InventoryBusinessLayer project with the

following code, added in the InventoryManagerUnitTests under the line of code for the

private IItemsService:

private Mock<IItemsRepo> _itemsRepo;

Adding this code requires using statements for Moq and the InventoryDatabaseLayer

(which is automatically referenced through the InventoryBusinessLayer project).

Next, add the initializer for the project in the InitializeTests method under the

commented out line of code that creates a new ItemsService:

_itemsRepo = new Mock<IItemsRepo>();

Figure 12-8. Adding Moq to the InventoryManagerUnitTests project

Chapter 12 Unit testing, integration testing, and MoCking

588

Follow that code with code to create a new list of items that will be your mock data

for the GetItems method from the ItemsRepo as follows:

[TestInitialize]

public void InitializeTests()

{

 //_itemsService = new ItemsService();

 _itemsRepo = new Mock<IItemsRepo>();

 var items = new List<Item>() {

 new Item () { Id = 1, Name="Star Wars IV: A New Hope"

 , Description = "Luke's Friends",

CategoryId = 2 },

 new Item () { Id = 2, Name="Star Wars V: The Empire Strikes Back"

 , Description = "Luke's Dad", CategoryId = 2 },

 new Item () { Id = 3, Name="Star Wars VI: The Return of the Jedi"

 , Description = "Luke's Sister", CategoryId = 2}

 };

}

This will require the using statements for InventoryModels and System.

Collections.Generic to be added to your code.

Next, add a call to tell the ItemsRepo what to return (mock) when the GetItems

method is called throughout the unit tests as follows:

_itemsRepo.Setup(m => m.GetItems()).Returns(items);

For clarity, review the current state of the code as shown in Figure 12-9.

Chapter 12 Unit testing, integration testing, and MoCking

589

Note that currently the solution still will not run or work as written; however,

building the project should produce no errors, and this might be a good time to create a

commit as a checkpoint that can easily be restored.

Figure 12-9. The current code is shown to ensure that no mistakes have been
made to this point

Chapter 12 Unit testing, integration testing, and MoCking

590

As a brief aside, note that what you have done so far shows you how Moq works:

• First, you create an instance of the thing you don’t really want to

instantiate that you need (i.e., the database layer).

• Then you tell the thing what to return when its methods are called

(the mock data for GetItems).

• Finally, you can use that to enhance your unit testing for your system

under test without coupling to other dependencies (this is what you’ll

do next to test the ItemsService.GetItems method).

Now you are armed with the knowledge to make sure you actually do some good

testing.

 Step 3: Bring in AutoMapper and the AutoMapper mappings file

In order to leverage the service layer, you will need to be able to inject a context and the

AutoMapper information in a similar manner to how you’ve done this from the Program

class in the main activity project in the past activities.

To get started, import the AutoMapper NuGet packages. An easy way to do this is

to use the currently installed packages in the Manage NuGet Packages for Solution and

select each AutoMapper and add them to the unit testing project (see Figure 12-10).

Figure 12-10. Bring both AutoMapper libraries into the unit testing project

Chapter 12 Unit testing, integration testing, and MoCking

591

After bringing in the AutoMapper libraries, use the File Explorer on your machine

to copy the InventoryMapper.cs file from the main activity project and place it in the

InventoryManagerUnitTests project folder on your local hard drive. It should then

automatically show up in your Solution Explorer (see Figure 12-11). Optionally, change

the namespace to InventoryManagerUnitTests on the InventoryMapper class for the

unit test project.

 Step 4: Initialize the mapper

Next, we’ll use the ClassInitialize attribute to make sure the mapper is set up when

the test harness is instantiated. The ClassInitialize method needs a TestContext.

Add class-level variables following the declaration of the _itemsRepo so that the

mapper will work as expected:

private static MapperConfiguration _mapperConfig;

private static IMapper _mapper;

private static IServiceProvider _serviceProvider;

public TestContext TestContext { get; set; }

You will need to add using statements for System and for AutoMapper for these

variables to be correctly referenced.

Figure 12-11. The InventoryMapper file is copied and used in the
InventoryManagerUnitTests project

Chapter 12 Unit testing, integration testing, and MoCking

592

Add the code from the main activity Program class BuildMapper method and add a

new Initializer method in the InventoryManagerUnitTests file as follows (this contains

the code you need):

[ClassInitialize]

public static void InitializeTestEnvironment(TestContext testContext)

{

 var services = new ServiceCollection();

 services.AddAutoMapper(typeof(InventoryMapper));

 _serviceProvider = services.BuildServiceProvider();

 _mapperConfig = new MapperConfiguration(cfg =>

 {

 cfg.AddProfile<InventoryMapper>();

 });

 _mapperConfig.AssertConfigurationIsValid();

 _mapper = _mapperConfig.CreateMapper();

}

This will require adding a using statement for Microsoft.Extensions.

DependencyInjection. Note that it leverages the public property for the TestContext.

 Task 4: Refactor the InventoryBusinessLayer to be
context independent
By writing this unit test and realizing that you can’t create the business layer without a

specific database context, you’ve discovered that the business/service layer is too tightly

coupled to the database.

 Step 1: Add a new constructor to the InventoryBusinessLayer
ItemsService class

In the ItemsService.cs file in the InventoryBusinessLayer project, add the following

constructor, which will allow you to construct the business/service layer without

specifying a database context:

Chapter 12 Unit testing, integration testing, and MoCking

593

public ItemsService(IItemsRepo dbRepo, IMapper mapper)

{

 _dbRepo = dbRepo;

 _mapper = mapper;

}

Your ItemsService should now have two explicit constructors (see Figure 12-12).

Because this unit test has shown that the database coupling was too tight, you should

eventually remove the original constructor and refactor any code that is affected by the

removal of that constructor. For brevity, that step has been omitted from this activity.

 Step 2: Fix the unit test to create the items service

Now that you have a mocked database and you have made it possible to instantiate the

ItemsService without a database context, return to the InventoryManagerUnitTests

class and uncomment the call to create a new ItemsService.

Figure 12-12. The ItemsService can now be constructed with a pre-fabricated
dbRepo, making it less coupled to the database implementation

Chapter 12 Unit testing, integration testing, and MoCking

594

Move the call to the end of the InitializeTests method, and then change the code

to the following line of code:

_itemsService = new ItemsService(_itemsRepo.Object, _mapper);

This will allow you to test the items service with the injected mock for the database

layer.

 Task 5: Run the unit test and refactor
In this task, you will run the unit test and then you will refactor the code to be well

organized. You will also implement the Shouldly library to be able to easily create useful

unit tests.

 Step 1: Run the unit test

With everything in place, it’s time to run the test to see it all work together.

Use the key chord Ctrl+R+T or right-click the TestGetItems method and select Run

Test(s) (see Figure 12-13).

The test should pass as shown in Figure 12-14.

Figure 12-13. Running the unit tests manually

Chapter 12 Unit testing, integration testing, and MoCking

595

So, if you would like to see the actual data and values, feel free to debug the test to

see how it all executes from start to finish. As you can see, however, this test is too basic

to simply call it “good” at this point.

 Step 2: Refactor the code in the InventoryMapperUnitTest class

Next, note that at this point the unit test is very basic, and you know that to fully test

this system, it is going to require much more work with the database layer, as well as

eventually requiring work with the CategoriesRepo. At that point, you will not want all of

your code to be piled up in the InitializeTests method.

 Step 3: Refactor the database mocking

To start, right-click the code that creates the new Mock<IItemsRepo> through the

line of code that includes the Setup, and then use the context menus to refactor to a

new method. Name the new refactored method InstantiateItemsRepoMock (review

Figure 12-15 for more clarity).

Figure 12-14. The test passes as expected at this point

Chapter 12 Unit testing, integration testing, and MoCking

596

Next, create constant values for the strings that are the titles and descriptions of the

items, placing this code near the top of the class:

private const string TITLE_NEWHOPE = "Star Wars IV: A New Hope";

private const string TITLE_EMPIRE = "Star Wars V: The Empire Strikes Back";

private const string TITLE_RETURN = "Star Wars VI: The Return of the Jedi";

private const string DESC_NEWHOPE = "Luke's Friends";

private const string DESC_EMPIRE = "Luke's Dad";

private const string DESC_RETURN = "Luke's Sister";

Alternatively, in a large system, consider refactoring all constants to a separate file.

Next, refactor the original items list creation to use the constants, and move the

creation of the list to its own method.

Figure 12-15. The code to build the ItemsRepo mock is refactored to a new method

Chapter 12 Unit testing, integration testing, and MoCking

597

private void InstantiateItemsRepoMock()

{

 _itemsRepo = new Mock<IItemsRepo>();

 var items = GetItemsTestData();

 _itemsRepo.Setup(m => m.GetItems()).Returns(items);

}

private List<Item> GetItemsTestData()

{

 return new List<Item>() {

 new Item() { Id = 1, Name=TITLE_NEWHOPE

 , Description = DESC_NEWHOPE, CategoryId = 2 },

 new Item() { Id = 2, Name=TITLE_EMPIRE

 , Description = DESC_EMPIRE, CategoryId = 2 },

 new Item() { Id = 3, Name=TITLE_RETURN

 , Description = DESC_RETURN, CategoryId = 2}

 };

}

At this point, you now have much better command over what you can do with the

test data, and you will easily be able to check for values that are returned correctly from

the service calls.

 Step 4: Get Shouldly

While it is entirely possible to complete the unit tests at this point using the default

Assert statements, you should switch to Shouldly. This will give you a much better

syntax for unit testing.

Use the NuGet Package Manager to bring in the Shouldly library for the

InventoryManagerUnitTests project (review Figure 12-16).

Chapter 12 Unit testing, integration testing, and MoCking

598

Now that you have Shouldly, return to the TestGetItems method and refactor with

this code:

public void TestGetItems()

{

 var result = _itemsService.GetItems();

 result.ShouldNotBeNull();

 result.Count.ShouldBe(3);

 var expected = GetItemsTestData();

 var item1 = result[0];

 item1.Name.ShouldBe(TITLE_NEWHOPE);

 item1.Description.ShouldBe(DESC_NEWHOPE);

 var item2 = result[1];

 item2.Name.ShouldBe(expected[1].Name);

 item2.Description.ShouldBe(expected[1].Description);

}

Figure 12-16. Using NuGet to get the Shouldly library

Chapter 12 Unit testing, integration testing, and MoCking

599

 Step 5: Run the test

Run the test now that the code is refactored. Your test should still pass, and you have now

set up the framework for your solution to add more complex unit tests in the future.

 Activity 12-1 summary
In this activity, you learned how to start working with unit tests in your solution. A

major player in the unit tests is the Moq library, which gives you the ability to create the

underlying dependency of the database without having to actually use a database. Here

you can see the value to create extremely lightweight unit tests that truly test the system

under test without concern for the underlying database. The database itself will be tested

as integration tests in a future project.

Keeping your unit tests and your integration tests separate is critical to ensuring that

your solution is both fully tested and is easily maintained and extensible.

In this solution, you used Moq to create a mock database repository for the items

service. You injected the data for a few items and were able to prove that the items

service works as expected to return items from the database layer. To take this to the next

level, you would need to repeat a similar process to mock the CategoriesRepo, leverage

a CategoriesService, and ensure that the service layers return data as expected.

Furthermore, you should write all of the unit tests that would be required. Methods that

would be particularly interesting would be methods that do more than just retrieve data

but also do manipulation on the data.

 Activity 12-2: Integration testing with an in-memory
database
In this activity, you will work through setting up integration tests in your solution. The

benefit of integration tests is that you will be able to simulate working with an actual

database, going one level deeper than the mocking tests you ran in the previous activity.

For this activity, you will use an in-memory database to complete these tests, but if

something goes wrong, there is no reason you couldn’t point your integration tests at an

established database instance via the connection string.

Chapter 12 Unit testing, integration testing, and MoCking

600

 Task 0: Getting started
This activity will resume with the files as they were at the end of Activity 12-1. If you’ve

been following along in order, feel free to continue using your files. If you are joining out

of order or need a fresh set of files, grab the EFCore_Activity12-2_StarterFiles and

use them for this activity. Either way, as always, ensure that your database connection

strings are correct and that there are no pending migrations. Additionally, ensure that

the program runs as expected.

 Task 1: Create a new xUnit project
In this second activity for Chapter 12, you’ll set up your solution and then set the

integration tests in place that will help you to determine that your code is functioning

properly at the database level as expected.

As an alternative to an MSTest project, in this activity, you’ll use a different type of

testing project – an xUnit test. I think you’ll agree this is worth the move when you see

xUnit in action.

 Step 1: Create and set up the new xUnit Test Project

Begin by right-clicking the solution and selecting Add ➤ New Project as in the previous

activity. This time, however, choose an xUnit Test Project (see Figure 12-17).

Chapter 12 Unit testing, integration testing, and MoCking

601

Name the new project InventoryManagerIntegrationTests, choose the correct

Target Framework, and then create the project. This will bring up the default test that

uses the [Fact] Attribute. A fact is a test that runs one time and takes no parameters.

xUnit also has a second type of test, the [Theory]. The Theory test uses inline data to

set conditions and uses parameters to allow a single test to be run multiple times.

In order to perform integration tests, you’re going to need to get access to the

database. To do this, in the InventoryManagerIntegrationTests project, add a

reference to the InventoryDatabaseLayer project using the Add ➤ Project Reference

and then set a reference to the InventoryDatabaseLayer project (see Figure 12-18).

Figure 12-17. A new xUnit project is added to the solution

Chapter 12 Unit testing, integration testing, and MoCking

602

The default file and class name that was generated during project creation

is UnitTest1. Change that file and class name to match the name of the project,

InventoryManagerIntegrationTests. When prompted, select Yes for renaming the

other references.

 Step 2: Get NuGet packages that are needed for this solution

The integration testing project is also going to need references to EntityFrameworkCore,

AutoMapper, and Shouldly. Ensure you have all of the following references by using the

NuGet Package Manager:

Automapper

Automapper.Extensions.Microsoft.DependencyInjection

Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.Tools

Microsoft.Net.Test.Sdk

xunit

xunit.runner.visualstudio

coverlet.collector

Shouldly

Figure 12-18. Setting a reference to the InventoryDatabaseLayer project in the
IntegrationTests project

Chapter 12 Unit testing, integration testing, and MoCking

603

Additionally, you will need a final package called Microsoft.EntityFrameworkCore.

InMemory. Review the project file shown in Figure 12-19 to see all of the expected

packages (note that your version numbers will almost certainly be different than what is

shown, and that is to be expected).

 Task 2: Set up the expected data for seeding and
integration testing
To get ready to test the database, start by setting up the data. To do this, you will need

to seed some data and ensure the in-memory database is connected and working as

expected.

Figure 12-19. The Project file for the InventoryManagerIntegrationTests shows all
of the expected NuGet package references

Chapter 12 Unit testing, integration testing, and MoCking

604

 Step 1: Configure the database, AutoMapper, and constant
variables for the tests

Begin by setting the class code for the InventoryManagerIntegrationTests as follows:

public class InventoryManagerIntegrationTests

{

 public InventoryManagerIntegrationTests()

 {

 SetupOptions();

 }

 private void SetupOptions()

 {

 }

 [Fact]

 public void Test1()

 {

 }

}

To save time and avoid issues later, go ahead and put the following using statements

at the top of your InventoryManagerIntegrationTests class file:

using AutoMapper;

using EFCore_DBLibrary;

using InventoryDatabaseLayer;

using InventoryModels;

using Microsoft.EntityFrameworkCore;

using Microsoft.Extensions.DependencyInjection;

using Shouldly;

using System;

using System.Linq;

using Xunit;

Chapter 12 Unit testing, integration testing, and MoCking

605

Add a class-level variable to store the options at the top of the class file as follows:

DbContextOptions<InventoryDbContext> _options;

In the SetupOptions method, you will create your database. Add the following code

to instantiate the in-memory database in the setup method:

private void SetupOptions()

{

 _options = new DbContextOptionsBuilder<InventoryDbContext>()

 .UseInMemoryDatabase(databaseName:

"InventoryManagerTest")

 .Options;

}

Next, you need to set up the mapper, just as you’ve done in the previous

activity. Create a file called InventoryMapper.cs in the project and copy the

code from the InventoryMapper class from the main activity project or from the

InventoryManagerUnitTests project, making sure to maintain the current namespace

as InventoryManagerIntegrationTests.

Once the InventoryMapper is in place, add three class-level variables to the

InventoryManagerIntegrationTests class, right after the declaration of the

DbContextOptions:

private static MapperConfiguration _mapperConfig;

private static IMapper _mapper;

private static IServiceProvider _serviceProvider;

Next, set up the mapping configuration and mapper by adding the following code in

the SetupOptions method following the initialization of the _options variable:

var services = new ServiceCollection();

services.AddAutoMapper(typeof(InventoryMapper));

_serviceProvider = services.BuildServiceProvider();

_mapperConfig = new MapperConfiguration(cfg =>

{

 cfg.AddProfile<InventoryMapper>();

});

_mapperConfig.AssertConfigurationIsValid();

_mapper = _mapperConfig.CreateMapper();

Chapter 12 Unit testing, integration testing, and MoCking

606

Make sure to add any using statements that are needed to ensure the code will

compile.

Next, add a class-level variable to be used for creating a new version of the

InventoryDatabaseRepo object in tests.

private IItemsRepo_dbRepo;

Finally, add the following constant variables:

private const string COLOR_BLUE = "Blue";

private const string COLOR_RED = "Red";

private const string COLOR_GREEN = "Green";

private const string COLOR_BLUE_VALUE = "#0000FF";

private const string COLOR_RED_VALUE = "#FF0000";

private const string COLOR_GREEN_VALUE = "#00FF00";

private const string CAT1_NAME = "CAT1 Books";

private const string CAT2_NAME = "CAT2 Movies";

private const string CAT3_NAME = "CAT3 Music";

private const string ITEM1_NAME = "Item 1 Name";

private const string ITEM2_NAME = "Item 2 Name";

private const string ITEM3_NAME = "Item 3 Name";

private const string ITEM1_DESC = "Item 1 DESC";

private const string ITEM2_DESC = "Item 2 DESC";

private const string ITEM3_DESC = "Item 3 DESC";

private const string ITEM1_NOTES = "Item 1 Notes Good";

private const string ITEM2_NOTES = "Item 2 Notes Fair";

private const string ITEM3_NOTES = "Item 3 Notes Poor";

 Step 2: Set the data

Change the default Test1 test method name to TestGetItems. In the method, add a

using statement and instantiate the context. Then use the context and the mapper to

instantiate a dbRepo. Additionally, add a method call before the using statement to call

to BuildDefaults. Stub out the BuildDefaults method. All of this can be accomplished

with the following code:

Chapter 12 Unit testing, integration testing, and MoCking

607

[Fact]

public void TestGetItems()

{

 //arrange

 BuildDefaults();

 using (var context = new InventoryDbContext(_options))

 {

 //act

 //assert

 }

}

private void BuildDefaults()

{

}

In the BuildDefaults method, add code to create the three Colors, Categories, and

Items. Additionally, add code to prevent creation if the database already exists with the

default items.

private void BuildDefaults()

{

 using (var context = new InventoryDbContext(_options))

 {

 var item1Detail = context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM1_NAME));

 var item2Detail = context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM2_NAME));

 var item3Detail = context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM3_NAME));

 if (item1Detail != null && item2Detail != null && item3Detail !=

null) return;

 var color1 = new CategoryDetail() { ColorName = COLOR_BLUE,

ColorValue = COLOR_BLUE_VALUE };

 var color2 = new CategoryDetail() { ColorName = COLOR_RED ,

ColorValue = COLOR_RED_VALUE };

Chapter 12 Unit testing, integration testing, and MoCking

608

 var color3 = new CategoryDetail() { ColorName = COLOR_GREEN ,

ColorValue = COLOR_GREEN_VALUE };

 var cat1 = new Category()

 {

 CategoryDetail = color1,

 IsActive = true,

 IsDeleted = false,

 Name = CAT1_NAME

 };

 var cat2 = new Category()

 {

 CategoryDetail = color2,

 IsActive = true,

 IsDeleted = false,

 Name = CAT2_NAME

 };

 var cat3 = new Category()

 {

 CategoryDetail = color3,

 IsActive = true,

 IsDeleted = false,

 Name = CAT3_NAME

 };

 context.Categories.Add(cat1);

 context.Categories.Add(cat2);

 context.Categories.Add(cat3);

 context.SaveChanges();

 var category1 = context.Categories.Single(x => x.Name.Equals(CAT1_NAME));

 var category2 = context.Categories.Single(x => x.Name.Equals(CAT2_NAME));

 var category3 = context.Categories.Single(x => x.Name.Equals(CAT3_NAME));

Chapter 12 Unit testing, integration testing, and MoCking

609

 var item1 = new Item()

 {

 Name = ITEM1_NAME,

 Description = ITEM1_DESC,

 Notes = ITEM1_NOTES,

 IsActive = true,

 IsDeleted = false,

 CategoryId = category1.Id

 };

 context.Items.Add(item1);

 var item2 = new Item()

 {

 Name = ITEM2_NAME,

 Description = ITEM2_DESC,

 Notes = ITEM2_NOTES,

 IsActive = true,

 IsDeleted = false,

 CategoryId = category2.Id

 };

 context.Items.Add(item2);

 var item3 = new Item()

 {

 Name = ITEM3_NAME,

 Description = ITEM3_DESC,

 Notes = ITEM3_NOTES,

 IsActive = true,

 IsDeleted = false,

 CategoryId = category3.Id

 };

 context.Items.Add(item3);

 context.SaveChanges();

 }

}

Now you have the system set up and ready to run some integration tests.

Chapter 12 Unit testing, integration testing, and MoCking

610

 Task 3: Write integration tests
In this final task for the activity, you will write a couple of integration tests to see how to

work with both the Fact and Theory attributes.

 Step 1: Test the GetItems method using an xUnit Fact test

In the TestGetItems test, inside the context using block, create a new DatabaseRepo

object, and then get the inventory items. Add the following code in the “act” portion of

the test:

_dbRepo = new ItemsRepo(context, _mapper);

var items = _dbRepo.GetItems();

Assert that the inventory items are as expected from the database by adding the

following code in the “assert” portion of the TestGetItems method (don’t forget to bring

in the using statement for Shouldly):

items.ShouldNotBeNull();

items.Count.ShouldBe(3);

var first = items.First();

first.Name.ShouldBe(ITEM1_NAME);

first.Description.ShouldBe(ITEM1_DESC);

first.Notes.ShouldBe(ITEM1_NOTES);

first.Category.Name.ShouldBe(CAT1_NAME);

var second = items.SingleOrDefault(x => x.Name.ToLower() == ITEM2_NAME.

ToLower());

second.ShouldNotBeNull();

second.Description.ShouldBe(ITEM2_DESC);

second.Notes.ShouldBe(ITEM2_NOTES);

second.Category.Name.ShouldBe(CAT2_NAME);

Run the test and debug it to see the test in action. The test should pass as expected

(as shown in Figure 12-20).

Chapter 12 Unit testing, integration testing, and MoCking

611

Figure 12-20. The GetItems integration test is working as expected

At this point, you have everything in place to finish writing your integration tests.

In each remaining scenario, you would just need to map out the data and make sure it

exists in the database as expected.

 Step 2: Test the CategoryDetails with an xUnit Theory test

With xUnit, you can create a theory that will let you run a test multiple times with

different parameters. Consider the previous test to GetItems. With a bit more code, the

test could have tested all three seeded items. However, what if you could instead write

the code once and test all of the items? With an xUnit Theory, you can do just that.

For this test, you will write a Theory test to test all the Categories and

CategoryDetails, and you will do this with reusable code and only one test.

Add the following test method as a theory with three inline data setups, one for each

category:

[Theory]

[InlineData(CAT1_NAME, COLOR_BLUE, COLOR_BLUE_VALUE)]

[InlineData(CAT2_NAME, COLOR_RED, COLOR_RED_VALUE)]

[InlineData(CAT3_NAME, COLOR_GREEN, COLOR_GREEN_VALUE)]

public void TestCategoryColors(string name, string color, string

colorValue)

{

Chapter 12 Unit testing, integration testing, and MoCking

612

 //arrange

 BuildDefaults();

 using (var context = new InventoryDbContext(_options))

 {

 //act

 var categoriesRepo = new CategoriesRepo(context, _mapper);

 var categories = categoriesRepo.ListCategoriesAndDetails();

 categories.ShouldNotBeNull();

 categories.Count.ShouldBe(3);

 var category = categories.FirstOrDefault(x => x.Category.

Equals(name));

 category.ShouldNotBeNull();

 category.CategoryDetail.Color.ShouldBe(color);

 category.CategoryDetail.Value.ShouldBe(colorValue);

 }

}

 Task 4: Refactor the code
To finish the activity, remove the individual calls to BuildDefaults from each test and

make the call in the InventoryManagerIntegrationTests constructor.

public InventoryManagerIntegrationTests()

{

 SetupOptions();

 BuildDefaults();

}

Run the tests a final time to ensure that refactoring did not break the existing tests.

 Activity 12-2 summary
In this second activity, you created the ability to run integration tests in memory using

the EFCore built-in, in-memory database.

Chapter 12 Unit testing, integration testing, and MoCking

613

Running integration tests gives you the ability to test actual data from the

database. After setting up the database, you were able to add Items, Categories, and

CategoryDetails to the database by working directly with the context.

With data in place, you are now able to test any of the available inventory methods

that are performed with LINQ against the DBContext.

At the end of this activity, you’ve only tested two of the methods. If you would like

more practice, spend some time testing the insert, update, and delete methods.

One last thought is to remember that with the in-memory version of the database,

you don’t have access to stored procedures, so for any testing on stored procedures,

you will need to test that logic outside of your integration tests to make sure they work

as expected. If you needed to have a test in place that relied on the results of the stored

procedure, you could potentially mock the result of the stored procedure and use that for

any remaining details of the test.

 Chapter summary
In this chapter, you learned about two of the ways that you can write tests against your

database and solution code. The first testing strategy is to write unit tests. The second

testing strategy is to use integration tests.

 Unit tests
Unit tests are great for testing the layered code outside of the actual database

implementation. You saw this in action when you mocked the database layer and

returned simulated data from the database layer so that you could test the functionality

of the service layer.

 Integration tests
Integration tests are critical when you want to test the overall functionality of an actual

database with your code. Integration tests provide assurance that you can rely on your

database layer and DBContext to function as expected.

Chapter 12 Unit testing, integration testing, and MoCking

614

 Shouldly and xUnit
In addition to the two types of tests, you also saw the differences between MSTest and

xUnit tests. You also pulled the Shouldly library in so that you could easily test your code

using a more user-friendly syntax.

 Dependencies and injection to decouple layers
In order to test a system, dependencies must be injectable. You have spent a lot of time

in the last two chapters working to decouple the system and code to an interface so that

you could get to the point where your layers are easily testable.

With the system layered out and tested with both unit and integration tests, you can

start to feel much more confident in the overall architecture of the system, as well as

have more peace of mind during maintenance operations.

Now that you’ve built this robust system that is well architected and tested, you are

ready to learn about some specific use case scenarios that you’ll want to be aware of. The

first topic will be moving to asynchronous development, which you will learn about in

the next chapter.

Chapter 12 Unit testing, integration testing, and MoCking

615
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_13

CHAPTER 13

Asynchronous Data
Operations and Multiple
Database Contexts
In this chapter, you’ll learn about two final critical concepts – asynchronous operations

and using multiple database contexts in your solutions.

At the end of this chapter, you’ll have learned how to work with asynchronous

operations, which can help to leverage the full power of today’s multi-core computer

systems.

Additionally, you’ll also have taken a look at how it is possible to use more than one

database context in your solutions. Using multiple contexts can be a powerful tool to

do things like building your own single sign-on solution for a suite of applications or

providing connections to multiple data systems for your solutions.

 Asynchronous operations
The first concept you need to learn about is working with asynchronous operations. To

this point, all the code in the learning activities has done everything with all methods

being synchronous. However, in most practical applications, you’ll be leveraging

the power of asynchronous programming, including using asynchronous database

operations through EF.

https://doi.org/10.1007/978-1-4842-7301-2_13#DOI

616

 Multithreaded programming
As computer architectures changed from the dominant measure of superiority being

processor-speed to the metric of superiority being processor-speed-plus-core-count,

multithreaded programming became much more popular and much more important for

building practical and performant solutions.

The main problem with multithreaded programming is that it is difficult. There are

many issues to consider before diving into multithreaded programming. Race conditions

lead to your asynchronous code executing processes or methods out of order. Thread

pools run out of available threads and can still cause pieces of your program to become

unresponsive. In a worst-case scenario, threads get locked in an infinite loop and your

entire application becomes unresponsive.

Because of the overall difficulty of asynchronous programming, the original rate

of adoption was not that high. In fact, the main use prior to the TaskParallelLibrary

being introduced for most developers was likely just to keep desktop forms from

appearing to be locked while processes ran in the background after pressing a button.

I even wrote a blog post in 2009 on how to use events, delegates, and threads to avoid

running into that specific problem on your desktop applications.

Because of the difficulty of multithreaded programming and the various technical

problems associated with it, the .Net Framework was expanded to make multithreaded

programming much easier to implement correctly.

 Async, await, and the TaskParallelLibrary
In the .Net world, async and await keywords first showed up in the .Net 3.0 Framework

but didn’t become widely adopted and useable until the TaskParallelLibrary (TPL)

was introduced in .Net 4.

The TPL gave all developers the ability to specify the Task operations with return

types that we have come to rely on in our asynchronous code. With the TPL, we can also

rely on the fact that issues with concurrency are handled correctly. For example, using

the await operator or requesting to get the result of a parallel operation gives you the

assurance that your code will not continue to execute until the threaded operation has

completed.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

617

 Responsive solutions for the end user
To put this more into perspective, think of websites from the early 2000s through about

2010. Perhaps you’ve even heard the term web 2.0. Prior to web 2.0 and other initiatives

that happened at the end of the 2000s into the 2010s, websites were mostly one user

doing one thing for themselves, or essential duties that they would perform, or were just

simple, static files. Web 2.0 really grasped the idea that there should be multiple users

interacting in the same systems and that each user should see information in real time.

With web 2.0, it became more common to expect your changes to be immediately

reflected to other users of the same system. This led to new approaches to web services

and a movement into REST APIs, as well as things like the AjaxControlToolkit and

SignalR, to provide an ability to abstract programmers from having to work directly

with websockets. In the end, real-time dashboards as part of partial pages were able to

immediately display results to the end user. Where a single-threaded approach would

need to load all of the page data and then render it and also get all of the page data from

the server to re-render even the smallest changes, web 2.0 essentially moved us to having

multithreaded web pages with various portions responding to different threads and no

longer having to reload the whole page to see a simple change on one metric.

All of this brings you to the place where you want to land for your database as well.

If you create a dashboard that requires ten different pieces of information from the

database, you don’t want the database calls to stop the page from working, and you don’t

want the page to wait to respond until all ten different calls have completed.

By placing your database calls into asynchronous operations, your web solutions can

also remain asynchronous, and the overall responsiveness of the site appears to be much

better, even if there are still calls that bottleneck the process.

 Asynchronous database operations
With the TPL and the ability to define a return type that is based on a threaded operation,

you can leverage the full power of your processor architecture. Using async and await

with your operations obfuscates the need to do the heavy lifting of multithreading

yourself, and you can get to a much more responsive solution with less concern about

the underlying issues involved with multithreading.

Programming the database operations to also happen in an asynchronous manner

thereby gives you the full power to leverage the TPL and the async and await keywords.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

618

In other words, by using asynchronous database operations, you’ll get to keep

programming as if you are working with commands in a synchronous manner

while leveraging the power of your multiple-core processors and the underlying

multithreading that is available to you. Utilizing asynchronous database operations

ultimately helps you to keep your applications responsive while querying the database in

the most efficient manner possible.

 Basic asynchronous syntax
Without going into a lot of detail here, setting your methods to use asynchronous

operations is very straightforward. All of this will be covered in detail in the first activity

later in this chapter.

To sum up what it takes to implement asynchronous operations, the main changes

will require you to

• Rework all methods to be async Task operations

• Change all database calls to happen with the built-in async abilities

of EF

• Refactor any queries that don’t work as written in an asynchronous

pattern

• Use the async/await pattern throughout the application

• Show how to execute an async operation from a synchronous context

 Multiple database contexts
In most applications, a single database context can handle your needs. However, while

it is not necessary and should ultimately be used with caution, there will be times when

using multiple contexts can be beneficial.

 Single sign-on (SSO)
The most common reason I can conceive of that you would want to have multiple

database contexts would be in a company where you have a suite of applications and

you want to provide custom sign-on capabilities to users (outside of Azure AD or an

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

619

 on- premises Active Directory). Another similar scenario involves users that also want

to sign in via third-party providers, where perhaps your solution is open to using Azure

AD, an on-premises Active Directory, and other social logins like Facebook or Google.

No matter how the sign in takes place, creating an SSO solution is still the best option

when you want to track the same user across multiple applications.

In an SSO solution, rather than requiring that your users register for all of your

applications, you can have a single database to track a user, wherein once the user is

registered with one of your applications, the same user and password combination can

be used for all of your applications.

It’s certainly true that you could replicate the data in the tables for user management

across all of your applications with a background process. However, if all applications

connect to and use the same database for identity, you can do much less work and have

fewer chances to introduce errors in the process.

 Business units
Another solution that might lend itself to multiple contexts would be a situation wherein

you want to separate units within your corporation into their own database solutions

while providing a single application to interact with the data.

For example, consider a large banking corporation that has units of work around

accounting practices, customer management, financial investment operations,

marketing, insurance, lending, and collections.

In this corporation, certain employees would likely need access to pieces of

information in all units, such as a customer account with balance and perhaps payment

and balance history in combination with mortgage and/or credit card information.

Other business units might only need access to one or two of the pieces of information.

For example, marketing employees might only need access to customer name and

address information. Furthermore, some information might be entirely confidential,

and, due to regulations, knowing the details of this information could lead to a potential

violation of federal law (such as a fairness in lending act). In this scenario, it is likely

critical to keep a clear separation of concerns which provide boundaries that cannot be

circumvented by users, either intentionally or unintentionally.

When a case such as this exists, you’ll likely need to expose certain shared data

across line-of-business applications, or you may need to have directly created contexts to

leverage only the parts of each system that should be accessible. Again, the choice here

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

620

is which is better for your company – from background jobs to sync your data on some

time interval to direct immediate access to the most valid dataset that you can provide,

the choices and implementations will be your responsibility as the developer.

 Multiple contexts require a bit more work
If your solution is going to use multiple contexts, there are a few things you’ll need to be

aware of.

The first thing to be certain to address is the injection of the context and the creation

of the context at startup. Most applications will inject their context at startup, but you’ll

be required to also include any additional contexts in a multi-context solution. Using the

additional contexts also generally requires a shared library that can leverage the shared

contexts.

The second critical piece of information that is important when working with

multiple contexts is the knowledge of the commands to run in the Package Manager

Console. With a single context, a simple add-migration or update-database command

can be run at will. Once you have introduced a second context into the solution, the PMC

will need you to explicitly specify which context to use when running these commands.

A third thing to be aware of is that using multiple contexts generally requires that

your entire team is on the same page as to the standards and approaches used in unit

testing and interface segregation. While you could get by without some standards in

these areas, having standards around processes means that any library developed

around a context has been developed with a common framework and mindset and is

expected to be fully unit and integration tested.

Finally, if there are security concerns when working with multiple contexts, the

ability to get just a read-only version of the context without much work should be readily

available. This is likely important in any scenario but becomes more critical when

working across multiple databases.

 Putting it into practice
You’ve now read about asynchronous operations and the database, as well as using

multiple contexts, so it’s time to implement a couple of examples so that you can see how

this looks in practical examples.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

621

The first activity for this chapter will give you a chance to rework the inventory

database solution to use asynchronous operations. In the second activity, you’ll take the

latest version of the InventoryManager database and combine that in a web solution that

has user management in a second context to simulate an SSO solution.

 Activity 13-1: Asynchronous database operations
For the first activity in this chapter, you are going to rework the existing database solution

to use asynchronous operations.

The main purpose of this activity is to give you the ability to implement calls that rely

on the async/await pattern. By doing this, you should be able to free up your applications

to continue processing as well as optimize the performance of your database operations,

allowing you to leverage the power of multithreading without all the heavy lifting.

As mentioned earlier, there will be a few things you have to refactor, and the changes

will ripple up all the way from the database layer to the main program. This also means

you will have to refactor your tests. In the end, this solution will be much more like what

you will encounter in any real-world application going forward.

 Task 0: Getting started
This activity will resume with the files as they were at the end of Activity 12-2, where both

unit and integration tests have been implemented. If you’ve been following along in

order, feel free to continue using your files. If you are joining out of order or need a fresh

set of files, grab the EFCore_Activity13-1_StarterFiles and use them for this activity.

Either way, as always, refer to Appendix A for more information on using the starter files.

 Task 1: Refactor the database layer
In this first task, you will start at the base database layer and work your way up through

the layers. By the end of the activity, you will refactor all of the calls and methods to work

as asynchronous calls to the database.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

622

 Step 1: Modify the interfaces

Begin by modifying the interface to expect each operation to work as a Task, either void

or to return a value (Task or Task<T>). Do this by changing any void keywords to Task

and set each return type as the return type inside a Task. For the interfaces, this means

to modify the files in the InventoryDatabaseLayer project as described as follows. Note

that changing to asynchronous method signatures and using Task in your code will

require you to also add the using statement using System.Threading.Tasks;.

For the IItemsRepo.cs file, change the code to

public interface IItemsRepo

{

 Task<List<Item>> GetItems();

 Task<List<ItemDto>> GetItemsByDateRange(DateTime minDateValue,

DateTime maxDateValue);

 Task<List<GetItemsForListingDto>> GetItemsForListingFromProcedure();

 Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool isActive);

 Task<List<FullItemDetailDto>> GetItemsWithGenresAndCategories();

 Task<int> UpsertItem(Item item);

 Task UpsertItems(List<Item> items);

 Task DeleteItem(int id);

 Task DeleteItems(List<int> itemIds);

}

For the ICategoriesRepo.cs, change the code to the following:

public interface ICategoriesRepo

{

 Task<List<CategoryDto>> ListCategoriesAndDetails();

}

After modifying both files, build the project. There will be a number of errors of

course, and you can reference the error list to ensure that you have all of the code

updated as you go (see Figure 13-1).

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

623

You can use the errors to work out the problems going forward as a road map.

You already know that you just changed the interfaces that are implemented by two

implementing classes. The next step is to rework the two implementations.

 Step 2: Rework the implementations

In this step, you will be refactoring the ItemsRepo class. Start by moving to the

ItemsRepo.cs file.

Although you will see the red squiggly line under the IITemsRepo interface

declaration, do not select “implement interface,” or you’ll get a number of duplicated

methods. Instead, you need to fix each of the existing methods and the code that

executes within each method. You will not need to add any variables or modify the

constructors in your implementing classes.

For each of the methods, as you did in the interface, you will wrap each return type

that is not void with a Task<T> where T is the existing return type or replace any void

methods with the Task declaration. Additionally, you will add the keyword async to

each method declaration. When calling methods in an asynchronous manner, you will

also preface the call with the await keyword. You will be given the code to refactor each

method shortly.

Additionally, as with the interface, you will need to add the using statement for

System.Threading.Tasks if it is not already present.

Figure 13-1. The initial build after refactoring the interfaces has a number of
expected errors. Each will need to be corrected

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

624

To begin, refactor the GetItems method as follows:

public async Task<List<Item>> GetItems()

{

 return await _context.Items.Include(x => x.Category)

 .Where(x => !x.IsDeleted)

 .OrderBy(x => x.Name).ToListAsync();

}

To make this work, note the use of the await keyword and the return by using

ToListAsync instead of just ToList. Note also that you can’t use the .AsEnumerable() in

the call as before once this statement becomes asynchronous.

Next, refactor the GetItemsByDateRange to the following:

public async Task<List<ItemDto>> GetItemsByDateRange(DateTime minDateValue,

DateTime maxDateValue)

{

 return await _context.Items.Include(x => x.Category)

 .Where(x => x.CreatedDate >= minDateValue &&

x.CreatedDate <= maxDateValue)

 .ProjectTo<ItemDto>(_mapper.ConfigurationProvider)

 .ToListAsync();

}

Note that you are cleaning up a few things as you go. Here you just returned the

result since you didn’t need the variable.

Refactor the GetItemsForListingFromProcedure method as follows:

public async Task<List<GetItemsForListingDto>>

GetItemsForListingFromProcedure()

{

 return await _context.ItemsForListing.FromSqlRaw("EXECUTE dbo.

GetItemsForListing").ToListAsync();

}

As with previous methods, you can generally just add the async keyword and then

change the call to use await and return ToListAsync.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

625

Using the same technique, change GetItemsTotalValues to the following:

public async Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool

isActive)

{

 var isActiveParm = new SqlParameter("IsActive", 1);

 return await _context.GetItemsTotalValues

 .FromSqlRaw("SELECT * from [dbo].[GetItemsTotalValue] (@IsActive)",

isActiveParm)

 .ToListAsync();

}

GetItemsWithGenresAndCategories is refactored as

public async Task<List<FullItemDetailDto>>

GetItemsWithGenresAndCategories()

{

 return await _context.FullItemDetailDtos.ToListAsync();

}

Finish the Get/List operations with an update to the

GetItemsWithGenresAndCategories as follows:

public async Task<List<FullItemDetailDto>>

GetItemsWithGenresAndCategories()

{

 return await _context.FullItemDetailDtos

 .FromSqlRaw("SELECT * FROM [dbo].[vwFullItemDetails]")

 .OrderBy(x => x.ItemName).ThenBy(x => x.GenreName)

 .ThenBy(x => x.Category).ThenBy(x => x.PlayerName)

 .ToListAsync();

}

For the UpsertItem method, you will need to refactor this method and the

two private methods that are leveraged within the UpsertItem method. Change

UpsertItem to

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

626

public async Task<int> UpsertItem(Item item)

{

 if (item.Id > 0)

 {

 return await UpdateItem(item);

 }

 return await CreateItem(item);

}

And then update the private UpdateItem and CreateItem as follows:

private async Task<int> CreateItem(Item item)

{

 await _context.Items.AddAsync(item);

 await _context.SaveChangesAsync();

 var newItem = await _context.Items

 .FirstOrDefaultAsync(x => x.Name.ToLower().

Equals(item.Name.ToLower()));

 if (newItem == null) throw new Exception("Could not Create the item as

expected");

 return newItem.Id;

}

private async Task<int> UpdateItem(Item item)

{

 var dbItem = await _context.Items

 .Include(x => x.Category)

 .Include(x => x.ItemGenres)

 .Include(x => x.Players)

 .FirstOrDefaultAsync(x => x.Id == item.Id);

 if (dbItem == null) throw new Exception("Item not found");

 dbItem.CategoryId = item.CategoryId;

 dbItem.CurrentOrFinalPrice = item.CurrentOrFinalPrice;

 dbItem.Description = item.Description;

 dbItem.IsActive = item.IsActive;

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

627

 dbItem.IsDeleted = item.IsDeleted;

 dbItem.IsOnSale = item.IsOnSale;

 if (item.ItemGenres != null)

 {

 dbItem.ItemGenres = item.ItemGenres;

 }

 dbItem.Name = item.Name;

 dbItem.Notes = item.Notes;

 if (item.Players != null)

 {

 dbItem.Players = item.Players;

 }

 dbItem.PurchasedDate = item.PurchasedDate;

 dbItem.PurchasePrice = item.PurchasePrice;

 dbItem.Quantity = item.Quantity;

 dbItem.SoldDate = item.SoldDate;

 await _context.SaveChangesAsync();

 return item.Id;

}

To modify UpsertItems, just add the async keyword and return type Task to the

method signature, and then use the await keyword in the call to UpsertItem:

public async Task UpsertItems(List<Item> items)

{

 using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions

 { IsolationLevel = IsolationLevel.ReadUncommitted }))

 {

 try

 {

 foreach (var item in items)

 {

 var success = await UpsertItem(item) > 0;

 if (!success) throw new Exception($"Error saving the item

{item.Name}");

 }

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

628

 scope.Complete();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 //transaction.Rollback();

 throw;

 }

 }

}

Finally, change DeleteItem and DeleteItems to the following code:

public async Task DeleteItem(int id)

{

 var item = await _context.Items.FirstOrDefaultAsync(x => x.Id == id);

 if (item == null) throw new Exception("Item Not found");

 item.IsDeleted = true;

 await _context.SaveChangesAsync();

}

public async Task DeleteItems(List<int> itemIds)

{

 using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions

 { IsolationLevel = IsolationLevel.ReadUncommitted }))

 {

 try

 {

 foreach (var itemId in itemIds)

 {

 await DeleteItem(itemId);

 }

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

629

 scope.Complete();

 }

 catch (Exception ex)

 {

 Debug.WriteLine(ex.ToString());

 throw; //make sure it is known that the transaction failed

 }

 }

}

To complete the async operations at the database layer, refactor the CategoriesRepo

method ListCategoriesAndDetails to the following (don’t forget to add the using

statement for System.Threading.Tasks):

public async Task<List<CategoryDto>> ListCategoriesAndDetails()

{

 return await _context.Categories

 .Include(x => x.CategoryDetail)

 .ProjectTo<CategoryDto>(_mapper.ConfigurationProvider).

ToListAsync();

}

 Task 2: Refactor the integration tests
Now that the base database layer is refactored for asynchronous operations, you need to

refactor the unit tests to correctly call the methods. Additionally, refactoring the tests will

allow you to test the code and ensure that you haven’t broken anything in the process,

even before the rest of the system is completely refactored.

 Step 1: Refactor the integration tests

Unfortunately, the system is not fully tested, and there are only a couple of tests to

refactor. In the real world, you would need to test every method and every path in each

method, of course.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

630

For this task, begin by modifying the TestGetItems in the

InventoryManagerIntegrationTests project to be an asynchronous test method, and

then leverage the database in an asynchronous manner to refactor the test as follows:

[Fact]

public async Task TestGetItems()

{

 using (var context = new InventoryDbContext(_options))

 {

 //act

 _dbRepo = new ItemsRepo(context, _mapper);

 var items = await _dbRepo.GetItems();

 //...remaining code is unchanged.

Next, update the TestCategoryColors method as follows:

[Theory]

[InlineData(CAT1_NAME, COLOR_BLUE, COLOR_BLUE_VALUE)]

[InlineData(CAT2_NAME, COLOR_RED, COLOR_RED_VALUE)]

[InlineData(CAT3_NAME, COLOR_GREEN, COLOR_GREEN_VALUE)]

public async Task TestCategoryColors(string name, string color, string

colorValue)

{

 //arrange

 using (var context = new InventoryDbContext(_options))

 {

 //act

 var categoriesRepo = new CategoriesRepo(context, _mapper);

 var categories = await categoriesRepo.ListCategoriesAndDetails();

 //remaining code is unchanged

As you can see, the bulk of the work was in the database layer itself, and leveraging

the results in an asynchronous manner doesn’t require a terrible amount of rework.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

631

 Step 2: Run the integration tests

Currently, the solution still will not build. However, if you build the solution, you will see

that now the errors are pushed up to the higher levels, in the unit tests and business layer

projects (see Figure 13-2).

Because the errors do not exist at the base database layer and in the integration tests,

even though the solution doesn’t build, you can run the integration tests. Do so now to

ensure the tests that are written still pass as expected (shown in Figure 13-2).

Figure 13-2. With the database layer and integration tests reworked, errors are
now pushed higher in the call stack to the business layer and the unit tests. The
integration tests pass as expected after refactoring

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

632

 Task 3: Refactor the business layer
With some assurance that the base database layer and integration tests are working

as expected, it’s time for you to move into reworking the business layer to also be

asynchronous. While doing this, you will also need to leverage the database layer calls

in an asynchronous manner. Once all of that is in place, you can refactor the unit tests to

run in an asynchronous manner as well.

 Step 1: Modify the interfaces

The first step in refactoring the business layer is to refactor the interfaces. This will be

extremely similar to the work done to refactor the database layer interfaces.

To complete this step, modify the interface to return Task<T> instead of T when a

type T is returned. Further modify any void methods to just be of type Task. Add the

using statement using System.Threading.Tasks.

public interface IItemsService

{

 Task<List<ItemDto>> GetItems();

 Task<List<ItemDto>> GetItemsByDateRange(DateTime minDateValue,

DateTime maxDateValue);

 Task<List<GetItemsForListingDto>> GetItemsForListingFromProcedure();

 Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool isActive);

 Task<string> GetAllItemsPipeDelimitedString();

 Task<string> GetAllItemsPipeDelimitedString();

 Task<List<FullItemDetailDto>> GetItemsWithGenresAndCategories();

 Task<int> UpsertItem(CreateOrUpdateItemDto item);

 Task UpsertItems(List<CreateOrUpdateItemDto> item);

 Task DeleteItem(int id);

 Task DeleteItems(List<int> itemIds);

}

Next, modify the ICategoriesService interface in the same way:

public interface ICategoriesService

{

 Task<List<CategoryDto>> ListCategoriesAndDetails();

}

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

633

 Step 2: Rework the implementations

As with the rework for the database layer, to make the two business layer services work

as expected, just modify each method to be asynchronous, add the using statement,

return the type as Task<T> instead of T and Task instead of void, and then make any

appropriate database layer calls asynchronous with the use of the await keyword.

The final code for the ItemsService should look as follows:

public class ItemsService : IItemsService

{

 private readonly IItemsRepo _dbRepo;

 private readonly IMapper _mapper;

 public ItemsService(InventoryDbContext dbContext, IMapper mapper)

 {

 _dbRepo = new ItemsRepo(dbContext, mapper);

 _mapper = mapper;

 }

 public ItemsService(IItemsRepo dbRepo, IMapper mapper)

 {

 _dbRepo = dbRepo;

 _mapper = mapper;

 }

 public async Task<List<ItemDto>> GetItems()

 {

 return _mapper.Map<List<ItemDto>>(await _dbRepo.GetItems());

 }

 public async Task<List<ItemDto>> GetItemsByDateRange(DateTime

minDateValue, DateTime maxDateValue)

 {

 return await _dbRepo.GetItemsByDateRange(minDateValue,

maxDateValue);

 }

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

634

 public async Task<List<GetItemsForListingDto>>

GetItemsForListingFromProcedure()

 {

 return await _dbRepo.GetItemsForListingFromProcedure();

 }

 public async Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool

isActive)

 {

 return await _dbRepo.GetItemsTotalValues(isActive);

 }

 public async Task<string> GetAllItemsPipeDelimitedString()

 {

 var items = await GetItems();

 return string.Join('|', items);

 }

 public async Task<List<FullItemDetailDto>>

GetItemsWithGenresAndCategories()

 {

 return await _dbRepo.GetItemsWithGenresAndCategories();

 }

 public async Task<int> UpsertItem(CreateOrUpdateItemDto item)

 {

 if (item.CategoryId <= 0)

 {

 throw new ArgumentException("Please set the category id before

insert or update");

 }

 return await _dbRepo.UpsertItem(_mapper.Map<Item>(item));

 }

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

635

 public async Task UpsertItems(List<CreateOrUpdateItemDto> items)

 {

 try

 {

 await _dbRepo.UpsertItems(_mapper.Map<List<Item>>(items));

 }

 catch (Exception ex)

 {

 //TODO: better logging/not squelching

 Console.WriteLine($"The transaction has failed: {ex.Message}");

 }

 }

 public async Task DeleteItem(int id)

 {

 if (id <= 0)

 {

 throw new ArgumentException("Please set a valid item id before

deleting");

 }

 await _dbRepo.DeleteItem(id);

 }

 public async Task DeleteItems(List<int> itemIds)

 {

 try

 {

 await _dbRepo.DeleteItems(itemIds);

 }

 catch (Exception ex)

 {

 //TODO: better logging/not squelching

 Console.WriteLine($"The transaction has failed: {ex.Message}");

 }

 }

}

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

636

The final code for the CategoriesService.ListCategoriesAndDetails method

should be

public async Task<List<CategoryDto>> ListCategoriesAndDetails()

{

 return await _dbRepo.ListCategoriesAndDetails();

}

 Task 4: Refactor the unit tests
Now that the business layer project is set to operate in an asynchronous manner, it’s time

to refactor the unit tests to leverage the service asynchronously.

 Step 1: Refactor the unit tests

To refactor the unit tests, only a few lines of code need to be modified. Once again,

any tests would need to be set to be asynchronous, and they would need to leverage

the business layer with an await keyword. Since there is only one test, the only thing to

modify is the signature and the call to GetItems from the business layer.

[TestMethod]

public async Task TestGetItems()

{

 var result = await _itemsService.GetItems();

 //the rest of the code is the same

Of course, in the real world, you would have more tests to refactor, but you would

mostly find a similar ease in doing so and save a few complex methods that might be

more involved.

The only other thing that needs to be changed is the mock data. Because the list of

items is now returned asynchronously, you need to use a Task.FromResult call on the

synchronous items. Modify the code in the InstantiateItemsRepoMock to set up the

data with the following changed line of code (the rest of the method remains the same

and does not need to be set to an asynchronous method):

_itemsRepo.Setup(m => m.GetItems()).Returns(Task.FromResult(items));

Those are the only changes needed to refactor the unit tests as the tests are currently

written.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

637

 Step 2: Run the unit tests

Now that the unit tests are in place, build the project again to see that the errors are once

again pushed farther up the stack, this time to the Program layer (see Figure 13-3).

Run the unit tests to ensure that any tests you have written still pass as expected

(review Figure 13-4).

Figure 13-4. The unit tests pass as expected after refactoring

Figure 13-3. The errors are now all the way at the top layer in the Program class,
and both the service and the data layer projects and tests are error-free

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

638

 Task 5: Refactor the main program
The final task for this activity will require that you refactor the main program to run in an

asynchronous context. After doing that, you will leverage the calls to the service layer in

an asynchronous manner.

 Step 1: Modify the Main method to be asynchronous

The first task is fairly straightforward. Change the method signature on the Main method

to be asynchronous as follows:

public static async Task Main(string[] args)

Don’t forget to add the using statement for System.Threading.Tasks.

 Step 2: Modify the helper methods to be asynchronous

With the program set to run in an asynchronous context, now modify all of the methods

that contain calls to the service layer to either return Task<T> or Task depending on if

they are currently returning a type T or void. A couple of the methods will require an

extra adjustment or two.

Begin with ListInventory. For this method, you can just change void to async Task

and add the await keyword before the call to the GetItems method:

private static async Task ListInventory()

{

 var result = await _itemsService.GetItems();

 result.ForEach(x => Console.WriteLine($"New Item: {x}"));

}

Follow a similar pattern for GetItemsForListing,

GetAllActiveItemsAsPipeDelimitedString, and GetItemsTotalValues. Note that

these methods may not be next to each other in your code, so be careful to find the

correct method to replace with each method block as follows:

GetItemsForListing:

private static async Task GetItemsForListing()

{

 var results = await _itemsService.GetItemsForListingFromProcedure();

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

639

 foreach (var item in results)

 {

 var output = $"ITEM {item.Name}] {item.Description}";

 if (!string.IsNullOrWhiteSpace(item.CategoryName))

 {

 output = $"{output} has category: {item.CategoryName}";

 }

 Console.WriteLine(output);

 }

}

GetAllActiveItemsAsPipeDelimitedString:

private static async Task GetAllActiveItemsAsPipeDelimitedString()

{

 Console.WriteLine($"All active Items: {await _itemsService.

GetAllItemsPipeDelimitedString()}");

}

GetItemsTotalValues:

private static async Task GetItemsTotalValues()

{

 var results = await _itemsService.GetItemsTotalValues(true);

 foreach (var item in results)

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Quantity,-4}" +

 $"|{item.TotalValue,-5}");

 }

}

For the GetItemsForListingLinq method, you’ll need to move the OrderBy

statement into the ForEach loop. The asynchronous call will work to get the data, and

then you do the ordering at the client side in this case.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

640

private static async Task GetItemsForListingLinq()

{

 var minDateValue = new DateTime(2021, 1, 1);

 var maxDateValue = new DateTime(2024, 1, 1);

 var results = await _itemsService.GetItemsByDateRange(minDateValue,

maxDateValue);

 foreach (var itemDto in results.OrderBy(y => y.CategoryName).ThenBy

(z => z.Name))

 {

 Console.WriteLine(itemDto);

 }

}

For the remaining methods, you just follow the same pattern of using async Task

instead of void in the method signature and then adding the await keyword. For the

Create, Update, and Delete methods, there are a couple of places to enter the await

keyword, since there are a couple of paths to follow for either batching or not batching

requests. Make sure to leave the GetCategoryId method unchanged (and do not delete it).

Because the code is extensive, it has been omitted from the text here. Note that you

can always find the solutions in the final version of the files, but you should be able to

perform this action without help at this point.

 Step 3: Make the calls in the Main method asynchronous

When you have completed the refactoring of the methods, the only thing that remains is

fixing the Main method.

To complete this activity, use the await keyword wherever you see a green

squiggly line. For example, add the await keyword before the call to ListInventory,

GetItemsForListing, and the rest of the calls that are making a call to an asynchronous

method without the await keyword so that all of them will be leveraged as expected with

the await keyword, including the calls in the if statements to CreateMultipleItems,

UpdateMultipleItems, and DeleteMultipleItems. Some of the changes should look like

this code:

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

641

await ListInventory();

await GetItemsForListing();

await GetAllActiveItemsAsPipeDelimitedString();

await GetItemsTotalValues();

await GetFullItemDetails();

await GetItemsForListingLinq();

await ListCategoriesAndColors();

Finally, note that there are three remaining calls to the _itemsService.GetItems

method. Add the await keyword before each call to fix the error on the ForEach

statements. For example,

var inventory = _itemsService.GetItems();

becomes

var inventory = await _itemsService.GetItems();

At this point, you should be able to build the code with no errors. If you have

remaining errors, examine them and fix them. If you need help with any of the code,

don’t forget to check the final files that contain the full solution.

 Step 4: Run the program

With everything in place, run the program to see the program in action. If you are not

using an encrypted database, then your solution will likely work right now as is.

However, if you’ve followed through the book, the solution will likely have a runtime

error (see Figure 13-5). What happened that caused this?

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

642

If you trace this through, the error happens all the way at the database layer where

the call to GetItems is made. However, you might wonder why this is happening, since

the testing clearly showed that it works as expected. The issue, if you haven’t guessed, is

because the real database is encrypted (if yours isn’t, you won’t see this error). However,

the unit tests are using an unencrypted version of the in-memory database.

So, what do you do now? Does this mean that testing is pointless?

While it may be possible to get the in-memory database to use an always encrypted

schema, the refactoring might be massive, as you may need to explicitly create every

table with a T-SQL query or modify the in-memory database with T-SQL commands

during the testing instantiation.

Even though testing didn’t expose this error, it is still not a pointless effort, but it is

incredibly important to note that even with testing, using a database that is not the same

as the database you are deploying to can create a small disconnect. This is part of your

job as a developer – to ensure that you have accounted for all of these possible issues.

Figure 13-5. There is an error deep in the database for an encryption issue

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

643

In the end, always remember that just because you’ve run your test suites it does not

always mean that you have safely tested the solution. You should always run through

as a user as well, to ensure that you have no functionality that is not correctly tested or

covered by your tests or, in this case, too much extra effort to effectively test.

 Step 5: Fix issues with encryption and asynchronous operations

In the end, you will need to fix a few issues that are now in the program based on the use

of asynchronous code and having an underlying database that uses Always Encrypted

columns.

Return all the way to the database layer, and change the GetItems method to the

following:

public async Task<List<Item>> GetItems()

{

 var items = await _context.Items.Include(x => x.Category)

 .Where(x => !x.IsDeleted).ToListAsync();

 return items;

}

An additional fix for a similar issue is needed in the

GetItemsWithGenresAndCategories method. Here, instead of just returning the results

unordered, you can refactor the method to get results and then return the result in the

same ordering as originally coded:

public async Task<List<FullItemDetailDto>>

GetItemsWithGenresAndCategories()

{

 var result = await _context.FullItemDetailDtos

 .FromSqlRaw("SELECT * FROM [dbo].

[vwFullItemDetails]")

 .ToListAsync();

 return result.OrderBy(x => x.ItemName).ThenBy(x => x.GenreName)

 . ThenBy(x => x.Category).ThenBy(x => x.PlayerName).

ToList();

}

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

644

Running the program now will work until you try to create an item.

The code in the CreateItem method is also going to be broken by the combination of

asynchronous calls and the underlying encryption. As it currently stands, if you run the

program and try to create a new Item (do not use batching yet, just create a single item),

you will get another encryption error (see Figure 13-6).

To fix the issue, it comes down to getting results first and then doing things like

sorting and filtering. In this case, get the results and then match the data. This is the

same issue you’ve run into before – where the filtering and sorting cannot happen on an

encrypted column before the results have been decrypted by the client.

In the InventoryDatabaseLayer project ItemsRepo class, change the code

var newItem = await _context.Items

 .FirstOrDefaultAsync(x => x.Name.

ToLower().Equals(item.Name.ToLower()));

Figure 13-6. The encryption and asynchronous call causes further errors for the
CreateItem method

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

645

in the CreateItem method to the following:

var items = await _context.Items.ToListAsync();

var newItem = items.FirstOrDefault(x => x.Name.ToLower().Equals(item.Name.

ToLower()));

which will run as expected, and the program will now complete successfully to add

items.

Put a breakpoint on the line return newItem.Id, as there is something important to

see in this code. Run the program now and add an item to ensure it works as expected.

Create an item (see Figure 13-7).

When you get to the breakpoint, put a watch on the newItem and then compare the

original passed in item to the newItem.Id that you are about to return (review Figure 13- 8).

Figure 13-7. Creating an item with the fixed code is working so far

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

646

This latest finding validates that you don’t even need the entire code to go get items,

as EF has already updated your tracked item id to the new id of the inserted item, and

you can just return that value.

As a result of this finding, change the CreateItem method to the following code:

private async Task<int> CreateItem(Item item)

{

 await _context.Items.AddAsync(item);

 await _context.SaveChangesAsync();

 if (item.Id <= 0) throw new Exception("Could not Create the item as

expected");

 return item.Id;

}

Figure 13-8. Tracing through the code reveals that the item is already tracked, and
the call to get items and find by name to get the Id is not necessary

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

647

The update method works as expected, but you should test it just to make sure. The

same goes for the delete method. Both the update and delete methods utilize the id for

filtering, which is not encrypted.

Run the program again, ensuring that you can do the single operations for Create,

Update, and Delete. Once that is all working, run the create with a batch. This will lead

to the final issue that needs to be resolved.

 Step 6: Fix the batching operations with asynchronous calls

Another issue still exists in the code as written. If you currently try to update (or create

or delete) the items in a batch, you will likely get the following error: "This connection

was used with an ambient transaction. The original ambient transaction

needs to be completed before this connection can be used outside of it" (see

Figure 13-9).

Note that all of the code is the same as before, so the only potential code difference

that could be causing an issue is that in the call using the batch, multiple calls are made

to UpsertItem within a transaction scope, and in the single call to the UpsertItem

method, there is no transaction scope being used.

Figure 13-9. The transaction scope doesn’t work with the asynchronous calls

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

648

Therefore, the issue seems to be with the use of a transaction and the asynchronous

calls. Whenever asynchronous calls are executed and there is an error, the first thought/

question you ask yourself should be “Is this a timing/callback error?”

To prove this out, in the current code, put a breakpoint on the call to get the items

(where the error happens), and you will see that the multiple calls to the database work

for the creation, updating, or deletion of items. If you then take the time to run a query

and wait on the breakpoint before making a call to get items from code, everything works

as expected, including the call to the database (see Figure 13-10).

This is therefore apparently a timing issue for the completion and disposal of the

transaction scope before opening a new connection to run the GetItems call.

Updating items in a batch will have the same issue, as will deleting items in a batch.

All three of them leverage a transaction scope.

So how can you prevent it?

Since this is a timing issue and is caused by using the transaction within an

asynchronous call that you know works in a synchronous call, you could just reset

everything and use a synchronous operation for your transactions.

Figure 13-10. The calls work and complete as long as you pause before calling
back to GetItems (and don’t wait too long and let your transaction timeout)

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

649

Fortunately, the fix for this issue is simple and likely doesn’t need you to fall back

to the old ways. Instead, just go into the ItemsRepo.cs file and find the UpsertItems

method. Change the using statement that creates the transaction to include a statement

for TransactionScopeAsyncFlowOption.Enabled, so that the using statement is as

follows:

using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions { IsolationLevel =

IsolationLevel.ReadUncommitted }

 , TransactionScopeAsyncFlowOption.Enabled))

{

 // no other changes

Additionally, you will need to modify the transaction in the DeleteItems method to

also allow for the TransactionScopeAsyncFlowOption.Enabled configuration:

public async Task DeleteItems(List<int> itemIds)

{

 using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions { IsolationLevel =

IsolationLevel.ReadUncommitted }

 , TransactionScopeAsyncFlowOption.Enabled))

 {

 // no other changes

With both of the transactions now effectively able to complete during their

asynchronous operation, you have set the database to run in an asynchronous mode and

completed the updates to the Program class methods, including Main.

As before, run the program a few times and make sure that everything works.

 Task 6: Fix a broken integration test
It’s always a good idea to run the unit tests before closing off the activity as completed.

 Step 1: Run the unit and integration tests

Open the Test Explorer and run the tests one more time. You will see that there is a small

failure due to the ordering that was broken in the GetItems method (see Figure 13-11).

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

650

Although you didn’t have a lot of testing, this one revealed that systems might be

relying on the order that was expected from the GetItems method.

To make this test pass, return to the ItemsRepo class in the InventoryDatabaseLayer

project, and modify the GetItems method to use a similar approach as was done in the

GetItemsWithGenresAndCategories method:

public async Task<List<Item>> GetItems()

{

 var result = await _context.Items.Include(x => x.Category)

 .Where(x => !x.IsDeleted)

 .ToListAsync();

 return result.OrderBy(x => x.Name).ToList();

}

Run the tests again. They should now be passing as expected.

Figure 13-11. The integration test is expecting ordering that was broken during
the refactoring

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

651

 Activity 13-1 summary
In this activity, you learned how to refactor your entire project to use asynchronous

operations. By doing this, you’ve leveraged the power of multithreading in today’s

modern architectures and have given your solution the best chance to operate as

efficiently as possible.

By switching to async/await and using asynchronous database calls, you also learned

about a few other issues along the way. One thing you saw was that there were a couple

of places where the client had to first decrypt data before it could be filtered. This is

generally the case for all calls to an encrypted database but became very evident when

working with asynchronous calls.

Additionally, you learned that using a transaction with asynchronous calls

can be a tricky operation but generally is available to be solved by using the

TransactionScopeAsyncFlowOption.Enabled option in the transaction.

A final thing that you learned is that while using unit and integration tests is good

practice, and tests correctly expose a number of issues, using a target database for

your integration testing that is not as robust or the same as the actual deployment

environment may lead to a false sense of assurance that things are working as expected.

Therefore, it is always a good idea to ensure that you have fully tested the solution, even

in addition to good unit and integration testing.

 Activity 13-2: Multiple database contexts
In the second activity for this chapter, you are going to leverage a shared database

context for a potential single sign-on (SSO) solution, which will manage user identities.

To simplify this operation, you’ll create a new web solution and integrate the inventory

context into the solution after first establishing the identity database.

 Task 0: Getting started
This activity will leverage the database solution from the end of the previous activity,

EFCore_Activity13-1_FinalFiles, and use that database solution within a new web

project that has been set to include a separate database connection to manage identity.

For reasons of brevity, this book is not going to walk through the steps to set this up

again. Instead, a brief description of what you would need to build follows.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

652

To begin, you need an ASP.Net MVC web solution targeting the .Net 65 Framework,

and you need to ensure that during creation, you enable using an identity that is managed

from within the application. Rather than take the time to do this, two versions of the

starter files are provided (additionally, a similar project was created in Chapter 6, so you

could review that for more information). If you would like to add your own database

library that you’ve been building along with each activity, grab the EFCore_Activity13-2_

WebOnly_StarterFiles. If you would like to just use the default version of the files with

the database solution already included, then grab the EFCore_Activity- 13- 2_AllFiles_

StarterFiles. If you choose the Web only, you will then need to manually import your

database library hierarchy into the solution.

Additionally, if building your own version, ensure that you add a project reference in

the main EFCore_Activity1302 project to the InventoryBusinessLayer. Finally, change

the name of the default database to something like CorporateSSOIdentityDb.

No matter how you get started, do not run any migrations before proceeding into the

activity. Ensure the project runs before proceeding (but don’t try to register a user yet).

 Task 1: Inject both contexts into the solution, and learn
about working with multiple contexts
At this point, you either have the full version of the starter files (the solution as created

by the end of the last activity within a new web solution) or you have imported your

solution into a default web project. Now you are ready to work with multiple database

contexts.

 Step 1: Inject the InventoryDbContext into the web solution

To get started with multiple contexts, first you must have both contexts available.

Open the EFCore_Activity1302 web project and then find the Startup.cs file

and the ConfigureServices method within this file. Note that currently there is

an ApplicationDbContext that is being leveraged. This is the identity context. If

you look into the appsettings.json file, you’ll see that it will be configured to the

DefaultConnection as listed in the ConfigureServices method and that it will be set to

point to a database named CorporateSSOIdentityDb.

In addition to this context, you need to inject the InventoryDbContext. Do this by

adding the following lines of code to the ConfigureServices method in the Startup.cs

file before the call to services.AddDatabaseDeveloperPageExceptionFilter();:

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

653

services.AddDbContext<InventoryDbContext>(options =>

 options.UseSqlServer(

 Configuration.GetConnectionString("InventoryManagerConnection")));

This will require you add the using statement using EFCore_DbLibrary; to the top

of the file.

In addition to the code in the Startup class ConfigureServices method,

you will need to add the connection string to the configuration file with the key

InventoryManagerConnection as just defined in code.

Open the appsettings.json file found in the EFCore_Activity1302 project. In

that file, add a second connection by copying the DefaultConnection JSON, adding

a comma to follow the DefaultConnection JSON, and then pasting the copy and

replacing the name with “InventoryManagerConnection”. Then set the Database to be

InventoryManagerDb or whatever you have called your local database used to this point

in the book (this connection string should map to whatever you are using as the database

in the InventoryDataMigrator application). Assuming that you also have encryption

enabled, don’t forget to set the Column Encryption Setting=Enabled in the connection

string. In the end, your ConnectionStrings section should be similar to this code:

"ConnectionStrings": {

 "DefaultConnection": "Server=localhost;Database=CorporateSSOIdentityDb;

Trusted_Connection=True;MultipleActiveResultSets=true",

 "InventoryManagerConnection": "Server=localhost;Database=Inventory

ManagerDb;Trusted_Connection=True;MultipleActiveResultSets=true;Column

Encryption Setting=Enabled"

},

pay close attention to the database name here for the
InventoryManagerConnection. in the AllFiles starter files, the Db
will be appended with the activity number 1302. if you are using a separate
Db for each activity, you’ll want to modify the preceding connection to use
 Database=InventorymanagerDb1302 to ensure the connection maps to the
same Db as the InventoryDataMigrator project from the starter files. if you
are using your own single Db throughout each of the activities, then you may want
to modify the InventoryDataMigrator project to point to your single Db if you
used the starter files for this activity.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

654

 Step 2: Run the initial migration for identity and ensure no
pending migrations exist

At this point, if you have not put your code into a local Git repository, I recommend

you do so, in case something gets messed up in the next part. Also, it’s much easier to

reset and clean up if you have some lingering files created that you don’t want after

completing the next couple of steps.

Because the identity context has never been migrated, you will need to do that. If you

run the website and try to register, it will tell you that you need to run migrations. If there

was only one context, you could likely just press that button. However, don’t do that now

if you happen to be on that page.

If you open SSMS on your machine, currently you will not even have a database for

the CorporateSSOIdentityDb (see Figure 13-12).

Open the PMC and select the default project to be the website solution EFCore_

Activity1302. In the PMC, run the command update-database. What happens? You get

an error because the solution can’t decide which database context to use, so it tells you

exactly that with the message More than one DbContext was found. Specify which one to

use… (see Figure 13-13). So how do you fix it?

Figure 13-12. Currently there is no database for the CorporateSSOIdentityDb
locally on the machine

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

655

The error says to use the -Context parameter for PowerShell and --context

parameter for dotnet commands. The best solution for the PMC is to use the PowerShell

update-database -Context command as follows, pointing to the identity context by

name:

update-database -Context ApplicationDbContext

Run that command to migrate the context for the identity into its local database on

your machine. This should work, and you should get a new database that has all of the

ASPNet identity tables in it (review Figure 13-14).

Figure 13-13. When more than one database context is present, you must specify
the context to use when running commands in the PMC

Figure 13-14. The database is generated when the context is specified, and the
migrations are applied to set the identity tables as expected

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

656

if you are using the starter files and if you are pointing to a new database for this
activity (i.e., InventoryManagerDb1302), make sure to complete the following
steps. if you are using an existing database and your inventoryManagerDb is up to
date, skip to step 3.

For those who used the starter files and are running against the

InventoryManagerDb1302 as your database, run the same update command against the

InventoryManagerDb context:

update-database -Context InventoryDbContext

After updating the database, right-click the InventoryDataMigrator project and

select Debug ➤ Start New Instance. This will work because it doesn’t reference more

than one database in that project.

When that operation has completed, use SSMS to map your Items to Categories

with the custom script MapCategories.sql found in the InventoryDataMigrator

project.

 Step 3: Run the program and ensure you can register a user
and log in as the user

To complete this first task, ensure that you can log in with a registered user. Run the

program, and then when the web page comes up, use the link on the top right to register

a user (see Figure 13-15).

Enter a valid email such as test@example.com and a super secure password such as

Password#1 (obviously, this is not secure and is not using a valid email, but that’s OK for

this activity). When the registration completes, it is incredibly important that you click

Figure 13-15. Use the link to register a new user

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

657

the link that says Validate Email. In the real world, you would send an email and the

user would click a link to validate the email is valid, of course. Here, you need to just click

the link in order to be able to log in (review Figure 13-16).

You will be presented with a blank page that says Confirm email and a green

information message that states Thank you for confirming your email which, in this case,

means you actually have confirmed your email.

Next, click Login as you will now need to log your user in, even though you just

registered and validated your email.

Enter your login credentials. When successful, you will see a welcome message at the

top right of the screen as shown in Figure 13-17.

Finally, review the database to ensure the user was created by running the query

SELECT * FROM AspNetUsers

Incidentally, if you can’t log in, run this same query and ensure you have a user, and

also ensure that EmailConfirmed field is set to 1. If you didn’t click the link as instructed,

EmailConfirmed may be 0, and the user won’t be able to log in. Figure 13-18 shows the

expected result.

Figure 13-16. Make sure to confirm your email for registration by clicking the link

Figure 13-17. The user is logged in, and a welcome message is shown in the top
right of the browser

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

658

 Task 2: Scaffold Category pages
As this is not a book on web development, the activity will conclude with the ability to

manage the Category information. This will require being able to manage Category

objects via the website.

 Step 1: Scaffold Category Details

Right-click the Controllers folder in the EFCore_Activity1302 project, and then select

Add ➤ Controller (review Figure 13-19 for clarity).

if the option to create a controller is grayed out, ensure that you are not currently
running the project. you cannot create new controllers while the project is running.

Figure 13-18. The query reveals all the registered users in the Identity database

Figure 13-19. Adding a new controller to the project that will be scaffolded

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

659

When the dialog appears, select MVC Controller with views, using Entity Framework,

and then hit the Add button (see Figure 13-20).

In the next dialog, select the CategoryDetail object as the model class, and use the

InventoryDbContext as the data context class. Leave everything else as is, and ensure

the Controller name is CategoryDetailsController (review Figure 13-21). Use the Add

button to scaffold the solution. This will take a minute or two to complete but should not

encounter an error.

Figure 13-20. Continuing the Add of an MVC Controller using EF

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

660

When completed, you will have a CategoryDetailsController with methods for

CRUD operations around CategoryDetails. You will also have a Views folder with a

subfolder for CategoryDetails, and the views will match the names of the methods in

the controller.

You might also notice, however, that the project is directly referencing the context.

While you can do this, you likely want to use the service layer that you’ve previously built,

and, instead of CategoryDetail objects, you would want to use CategoryDetailDto

objects (as a view model). Using the service layer would add a bit of complexity to the

project, but this would be a much better solution in a real-world business project. Wiring

up the service layer is outside of the scope of the book, but if you wanted to go to that

level, almost everything you need is available in the project.

 Step 2: Run the solution and review the output

Now that the scaffolding is completed, run the solution. Navigate to the CategoryDetails

controller’s Index view by entering “CategoryDetails” in the browser path. If you have

data seeded, you should see category details in a listed view (see Figure 13-22).

Figure 13-21. Scaffolding the CategoryDetails will generate code and views to
show data

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

661

You can try to create new or edit, but you will likely get an error since the user id is

not mapped.

Another issue here is that this category detail is tightly coupled to a category in a

one-to-one relationship, and you aren’t allowed to also create a new category, so there is

much work to be done.

 Step 3: Delete the CategoryDetails and add Categories

Stop the program, and then you can optionally delete the CategoryDetails controller

and the views that were generated (this code will never work exactly right in the scope

of this book). For completeness, the code will remain in the final solution files, but note

that the ability to create/edit/modify a category detail will not be working.

Repeat the preceding step to add a new Controller, but this time add the Category

object. The name should stay as defaulted to CategoriesController.

When done, you should have a CategoriesController and views to map to all of the

category controller’s methods.

Although authorization is out of scope for this book, authentication is easy enough,

and doing this will ensure that only logged in users can modify data (you will want to

also learn about roles and use authorization to ensure only the right logged in users can

modify data, not just any logged in user).

At the top of the CategoriesController, add the following attribute:

[Authorized]

Figure 13-22. The Category Details are shown as expected

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

662

You will need to also add the using statement using Microsoft.AspNetCore.

Authorization;. Adding this attribute will require any user that hits these routes to be

logged in (see Figure 13-23).

With an authorized user, it is easy to get the user id in a .Net web application.

Change the private variables and constructor for the CategoriesController to the

following:

private readonly InventoryDbContext _context;

private readonly UserManager<IdentityUser> _userManager;

public CategoriesController(InventoryDbContext context,

UserManager<IdentityUser> userManager)

Figure 13-23. The user must be authenticated when the Authorize attribute is
added to a controller

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

663

{

 _context = context;

 _userManager = userManager;

}

Add the using statement using Microsoft.AspNetCore.Identity; to the top of your

class.

In the POST method for Create, add the following code:

if (ModelState.IsValid)

{

 var userId = _userManager.GetUserId(HttpContext.User);

 category.CreatedByUserId = userId;

 _context.Add(category);

Figure 13-24 shows this new code for clarity.

Figure 13-24. The code to get the user id is used in the POST method for creating a
new category

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

664

Run the application, and ensure you are logged out of any signed in user. Try to

navigate to the /Categories page. You should be directed to log in, proving that you

must be authorized. Figure 13-25 shows the expected page. Note also that the route in

the URL has the redirect information back to the Categories page.

When you log in successfully, you will get redirected to the categories as shown in

Figure 13-26.

Figure 13-25. An unauthenticated user cannot modify categories

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

665

Add a new category such as Appliances. Because the model will first validate on

the user id, add any string into the field. Figure 13-27 shows an attempt to create a new

category.

Figure 13-26. The categories index is shown as expected once you are logged in

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

666

Figure 13-27. Adding a new Category works with the correct user authentication
in place

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

667

Make sure to create the category – you should be able to do this without error – and

then your UserId should be stored in the database as the creator.

Review the Categories database table to see the new category (see Figure 13-28).

Use the query from earlier to validate your user id in the corporate sign-on database, and

then use the following query to validate your new Category:

SELECT * FROM Categories

Figure 13-28. The Category is in the database as expected

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

668

as stated, this solution is nowhere near production ready. it is not wired up fully on
anything other than Categories and does not have good authorization in place
with roles. additionally, all full models should be exchanged with view models
that are the Dtos. all database calls should happen through the service layer, not
directly against the context.

Making the web solution work completely and be production ready is far beyond the

scope of this book, but you have now proven you can work against multiple database

contexts from within the same solution.

 Task 3: Ensure solid learning on the database context
At this point, you have a lot of the tools you need to move forward with a robust solution

on the web and database solution as designed to this point.

For this last task, you are going to just make a quick model change and ensure that

you have full command over utilizing migrations and tools when multiple database

contexts exist.

Before starting this final part of the activity, I suggest that you check any changes into

a local GIT repository in case things go wrong from this point.

 Step 1: Add a new migration

To begin this final task, add a new class file called Manufacturer.cs in the

InventoryModels project. In this file, add the following code:

public class Manufacturer : FullAuditModel

{

 public string Name { get; set; }

}

In order to create a migration that is not blank, you will also need to add the

following to the InventoryDbContext.cs file in the EFCore_DbLibrary project:

public DbSet<Manufacturer> Manufacturers { get; set; }

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

669

With this in place, you are ready to add a new migration. Even though this is in the

inventory database library, you are still working with multiple contexts. Therefore, go

back into the PMC and ensure that you have the EFCore_DbLibrary project selected, and

then run the following command:

add-migration add-manufacturer-entity -Context InventoryDbContext

You may see some warnings about a type being specified for decimal properties. For

purposes of this activity, just ignore the warnings.

Note that the migration is generated where you would want it to be and you also get

the migration code you would expect (review Figure 13-29).

Figure 13-29. The migration generates as expected

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

670

you may see some warnings for the precision on decimal properties in the
database. this is not ideal but will not cause any issues for our project. to
make these errors go away, you could put an explicit column type with a defined
precision using the Fluentapi in the onModelCreating method.

 Step 2: Update the database

With the migration in place from the previous exercise and the PMC still targeting the

DbLibrary project, run the following command:

update-database -Context InventoryDbContext

This will update the database. Use SSMS to view tables and ensure that the correct

database was modified locally (review Figure 13-30).

 Step 3: Roll back the migration

As you don’t really want this table and this was an exercise to just easily see how to work

with the multiple contexts, find the target migration in your current list of migrations

as the last migration you want to keep prior to the one that was just applied. Once you

Figure 13-30. The database update applies as expected to the correct database

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

671

have that specific migration, run a command similar to this, but make sure to replace the

actual migration name with your exact migration name:

update-database -Context InventoryDbContext -Migration 20210515165148_

update- itemname- type-to-varchar.

Once the migration has been applied, ensure the table was dropped from your

inventory database, and then go ahead and remove the model and reference in the

InventoryDbContext so future migrations won’t require this migration to take place

(final files will just comment out this code).

 Step 4: Remove the migration

With the migration rolled back, run the command to remove the migration as follows:

remove-migration -Context InventoryDbContext

This will remove the changes and the migration. Once again, you will want to

ensure that you at minimum comment out or remove the addition of the type in the

InventoryDbContext list of DbSets so that you don’t have a lingering required migration

in the future.

 Activity 13-2 summary
In this activity, you learned how to work with multiple database contexts. You did this

by generating a simulated corporate single sign-on database that used built-in ASP.

Net identity management to manage users. You then brought your inventory database

solution into the project in order to leverage the existing code you had already written

and simulate one possible way to integrate multiple databases in the same project.

Through this activity, you also learned about the commands needed to successfully

run and work with code-first migrations when using multiple databases.

 Chapter summary
In this chapter, you learned how to create asynchronous database operations, and you

learned how to work with multiple database contexts.

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

672

 Important takeaways
After working through this chapter, the things you should be in command of are

• Async/await.

• Asynchronous database operations.

• Further understanding of the need for the client to decrypt data

before filtering on encrypted columns.

• Using the TransactionScopeAsyncFlowOption.Enabled option to aid

transactions in an asynchronous database call.

• Use the -Context flag in the PMC when dealing with multiple

contexts.

• Contexts do not need to be in the same project to be utilized in a

project.

 Closing thoughts
As you’ve moved through this book, you have learned a great deal about how to work

with entity framework, specifically with EFCore5.

You’ve learned the major moving pieces and have now also seen a couple of recipes

for robust development.

In the next chapter, you will learn about some of the things that are new to working

with EFCore as of the EFCore5 release (the final chapter will dive deeper into EFCore6).

Chapter 13 asynChronous Data operations anD Multiple Database Contexts

PART IV

Recipes for Success

675
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_14

CHAPTER 14

.Net 5 and EFCore5
In this chapter, we’re going to have a brief discussion about the November 2020 version

of the .Net ecosystem: .Net 5. This book has used EFCore6 throughout the samples, but

there are a few features that were released with EFCore5 that were not possible until it

was released. As such, I wanted you to spend a little time just exploring a couple of the

new things you can do as of the EFCore5 release.

 One framework to rule them all, with more coming
One thing of note is that with the .Net 5 release that happened in November of 2020,

there is no longer a .Net Framework by name, and there is no more .Net Core by name

(with the exception of EFCore, due to the versioning confusion that would likely happen

until we get to version 7 in 2022, at which time I expect EFCore will also just become

EF7 – but I’m just speculating on that).

 EF6, EFCore, and .Net 5/6/7/…
With the direction of .Net 5/6/7/... being the wave of the future, we need to know what

that will do to our current legacy EF6 and EFCore applications. The good news for us is

that, for the most part, we should be able to keep working with our solutions.

With .Net going forward, everything will be housed in the same place, and all of the

moving pieces should work together from this point on, and even a legacy application

written in the .Net Framework can be upgraded into the new .Net 5/6/7/… framework.

Additionally, EF6 still works in the .Net 5 Framework, as of the last release 6.4.4 (EF6

version 6.3 was actually ported to work in EFCore3, so this is not entirely new). Of course,

EFCore works in the .Net 5/6/7/… framework, as even EFCore5 was working in .Net Core

3.1, and all of that was recombined into .Net 5. With the release road map of a yearly

release, EFCore6 will likely be packaged with .Net 6 and will likely be limited to .Net 6 or

greater solutions.

https://doi.org/10.1007/978-1-4842-7301-2_14#DOI

676

As a .Net developer, therefore, you should be able to have a similar development

experience from this point on, no matter which version of the framework you are using.

 .Net 6/7 and EFCore6/7
Do not fear, almost everything that you have learned (if not everything) in this book

will work in the latest flavor of .Net 6 and EFCore6 and will continue to work in .Net 7

and EFCore7 even after they are released in November 2022. However, the next chapter

will deal with a forecast of expected changes for .Net 6 and EFCore6, so that you can be

prepared for those changes when they happen. Currently, .Net 6 and EFCore6 are slated

for official release in November of 2021, just a few weeks after this book is released.

Don’t get too used to .Net 6 and EFCore6, however, because .Net 7 and EFCore7

(EF7?) are slated to be released in November of 2022. With this pace, the really good

news, again, is that the concepts and tools you’ve learned in this book will continue to be

the base you need to use the technology, regardless of the version, and you’ll just want to

make sure to keep up with any new features that are released as .Net 6 and 7 are released.

 Changes with EFCore5
The rest of this chapter will take you through practical applications with brief

descriptions of some of the critical changes that came along with EFCore5 in November

of 2020. While a couple of new features were already used in the previous chapters, most

were not.

For simplicity and consistency, the final version of the files from Chapter 13, Activity

1, will be used to examine some of the changes. The sample files will also apply each of

these techniques in the order presented in this chapter. For example, code for the Split

Queries example will contain the code generated for learning about many-to-many

navigations, table-per-type inheritance, and filtered includes. Each activity will have its

own starter files so you can always just grab the starter files for the activity if you don’t

want to do all of the activities.

This approach should allow you to have familiarity with the code and also allow you

to be set up and ready to roll on any of the activities by simply using the appropriate

starter files. If you do run activities out of order, consider just using a new database

named in the connection string and running migrations to ensure you don’t have any

conflicts.

Chapter 14 .Net 5 aNd eFCore5

677

I did not come up with this list of features to learn on my own. Further information

and the original documentation used to help define this list and features can be found

here: https://docs.microsoft.com/en- us/ef/core/what- is- new/ef- core- 5.0/

whatsnew.

 Activity 14-1: Many-to-many navigation properties
In the activities to this point previously in the text, you were able to create a couple of

many-to-many relationships. To that end, the bulk of this activity will be revisiting those

entities.

 Task 0: Getting started
To get started, ensure you have a current version of the files, either the version at the

end of Activity 13-1 or just use the starter files for this activity, EFCore_Activity14- 1_

StarterFiles. Either way, remember to review Appendix A for information about using

starter files.

One thing that has changed in this code from Activity 13-1 is due to working

through Activity 13-2. In that activity, you built a web page and added a new

category – Appliances. If you did not do the activity, you will be just fine. If you did

do the activity and you are using the same database as that activity, then running

the code initially would create an error due to a null reference on details for that

category (see Figure 14- 1).

Chapter 14 .Net 5 aNd eFCore5

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/whatsnew
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/whatsnew

678

To fix this error, simply add a null-conditional operator to prevent failure on the

CategoryDetail.Color as follows:

Console.WriteLine($"Category [{c.Category}] is {c.CategoryDetail?.Color ??

"Not associated to any detail/color"}");

Alternatively, you could just delete the Appliances category from the database, or you

could both delete the category and add the code.

Once you have the fix in place, your code would work as expected. The starter files

already contain this fix.

 Task 1: Review the existing relationships
In this task, you’ll just take a quick look at the existing many-to-many relationships in

the solution. All code for this example is already completed as per Chapter 5, Activity

5-2, Task 3, Step 3 (Items and Players many-to-many relationship, along with Chapter 5,

Activity 5-3, Task 2 (Items and Genres many-to-many relationship).

Figure 14-1. The additional category doesn’t have any details, so the code as per
Activity 13-1 encounters a null reference exception

Chapter 14 .Net 5 aNd eFCore5

679

 Step 1: Review the Item and Genre many-to-many relationship

The Item to Genre relationship was created in the traditional manner. Here, a new join

entity called ItemGenre was created, and each entity – Item and Genre – referenced a list

of the ItemGenre. By default, this created a many-to-many relationship, where an Item

can be associated with many Genres and a Genre can be associated with many Items.

Figure 14-2 shows the two entities creating a relationship via the ItemGenre entity.

Having the ItemGenre entity also allows for additional fields that can be associated

with the entity. Although none were added, should it be desired, it would be easy enough

to accomplish in the join entity ItemGenre, highlighted in Figure 14-3.

Figure 14-2. The Item and Genre entities created a many-to-many relationship
via the ItemGenre entity

Chapter 14 .Net 5 aNd eFCore5

680

This entity, of course, gets its own table in the database as shown in Figure 14-4. As

a reminder, the data annotation [Table("ItemGenres")] was added to the class (see

Figure 14-3) to ensure the name of the table was pluralized to ItemGenres.

Figure 14-3. The ItemGenre join entity is shown. It would be easy enough to add
additional fields to this entity in the traditional manner

Chapter 14 .Net 5 aNd eFCore5

681

All of this was established in more detail in Chapter 5. The main takeaways here

are the fact that you can still use the traditional approach to creating a many-to-many

relationship (and you may have scenarios where you desire to do so). Taking this

approach gives you full control over the join entity in a traditional code-first approach

with data annotations. This approach is also accomplished without having to do

anything via the Fluent API.

 Step 2: Review the Item and Player many-to-many relationship

The Item to Player relationship was created with the new implicit mapping that can

happen as of the release of EFCore5 (and by default in EFCore6). In this relationship,

the Item and Player directly reference a list of the other entity. Rather than using a join

entity such as ItemPlayer, this relationship was created directly by the associations in

the individual entities (see Figure 14-5).

Figure 14-4. The database contains a table ItemGenres that stores the
relationships

Chapter 14 .Net 5 aNd eFCore5

682

Even though there is not a direct join entity defined in the InventoryModels project,

the table is still created (see Figure 14-6), and the many-to-many relationship is still

possible. This was not possible in EFCore before EFCore5, as all join entities would have

been required to be explicitly defined as in the ItemGenre relationship.

Figure 14-5. The Item and Player many-to-many relationship is created by
including a direct list of the other type in their entity definitions

Chapter 14 .Net 5 aNd eFCore5

683

A couple of things to remember here as well. The names of these columns originally

came in as ItemsId and PlayersId. Additionally, the table name was not pluralized. The

techniques to make this happen are discussed as follows and were implemented in

detail in Chapter 5.

As a final note, with the lack of a pre-defined entity, you generally don’t reference the

join entity in code at all, whereas you might actually reference a list of ItemGenre in code.

 Task 2: Explore this implicit mapping
In this second task, you will take a deeper look at the entity mapping and how it works in

EFCore with the many-to-many navigations with skip properties.

Figure 14-6. The ItemPlayers table is defined in the database due to the direct
mapping of each type to one another and the internal operations made possible in
the release of EFCore5 (and therefore also possible in EFCore6)

Chapter 14 .Net 5 aNd eFCore5

684

 Step 1: Modify the program to review the entity relationships

To start this activity, open the Program.cs file in the main activity project. In

the file, feel free to comment out all the method calls for simplicity. No matter

what, add a new method call in the Main method for a call to a method named

ExploreManyToManyRelationships as an asynchronous call in the using statement that

passes the full context to the method for direct use in this learning activity using the

following code:

await ExploreManyToManyRelationships(db);

Review Figure 14-7 for clarity.

Next, add the new method to the program as follows:

private static async Task ExploreManyToManyRelationships(InventoryDbContext db)

{

 var items = await db.Items.ToListAsync();

Figure 14-7. The only call active in the Main method at this time is the call to a
new method (yet to be implemented)

Chapter 14 .Net 5 aNd eFCore5

685

 foreach (var item in items)

 {

 Console.WriteLine($"New Item: {item.Name} found...");

 foreach (var itemGenre in item.ItemGenres)

 {

 Console.WriteLine($"Item {item.Name} has genre {itemGenre.

Genre.Name}");

 }

 foreach (var player in item.Players)

 {

 Console.WriteLine($"Item {item.Name} has player {player.Name}");

 }

 }

}

Of course, this returns no genre or player information, even if you have some, due to

the lack of include statements in the LINQ query.

Performing the join in the traditional way requires a statement that has multiple

includes. Doing the join with the new way as of EFCore5 allows you to “skip” the include,

and this is actually called a skipNavigation property.

Modify the code to get the items from the database to the following:

var items = await db.Items

 .Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude(x => x.Genre)

 .Where(x => !x.IsDeleted && x.IsActive)

 .ToListAsync();

Note that the Player associations are retrieved directly, but the Genre associations

require the use of ThenInclude to get to them through the ItemGenre associations. Also

note a clause is added to prevent pulling items that are deleted or are set to inactive.

Note that if you don’t see associations for Genres or Players on this run, you likely

don’t have associations defined. Ensure that you have Players and Genres in your

database and that you have the links set in the join tables as expected. Running the

InventoryDataMigrator project will take care of the player associations.

Chapter 14 .Net 5 aNd eFCore5

686

For example, I didn’t have any genres associated, so I needed to add some. If you need

to add some, use the following additional code and methodology. First, add a new method

call before you call to the ExploreManyToManyRelationships in the Main method:

await EnsureItemsHaveGenres(db);

Next, add the new method in the Program class as follows, and make sure to set the

min and max ids to map to your genre ids (mine are 1–5):

private static async Task EnsureItemsHaveGenres(InventoryDbContext db)

{

 var items = await db.Items

 .Include(x => x.ItemGenres).ThenInclude(x => x.Genre)

 .Where(x => !x.IsDeleted && x.IsActive)

 .ToListAsync();

 var genres = await db.Genres

 .Where(x => x.IsActive && !x.IsDeleted)

 .ToListAsync();

 foreach (var item in items)

 {

 await AssociateItemsAndGenres(genres, item);

 }

 await db.SaveChangesAsync();

}

This will also use the following helper method to associate, which you need to add as

well:

private static async Task AssociateItemsAndGenres(List<Genre> genres, Item item)

{

 if (item.ItemGenres.Count > 0) return;

 int minId = 1;

 int maxId = 5;

 int maxGCount = 3;

Chapter 14 .Net 5 aNd eFCore5

687

 Random r = new Random();

 var gCount = r.Next(1, maxGCount);

 var used = string.Empty;

 for (int i = 0; i < gCount; i++)

 {

 var ig = new ItemGenre();

 var next = r.Next(minId, maxId);

 while (used.Split("|").ToList().Contains(next.ToString()))

 {

 next = r.Next(minId, maxId);

 }

 used = string.Join(used, $"{next}|");

 ig.GenreId = next;

 ig.ItemId = item.Id;

 item.ItemGenres.Add(ig);

 }

}

In the end, now you should see output similar to what is shown in Figure 14-8 (note

that I’ve only made the call to the new method and cleaned up any data that existed from

testing in previous runs, and due to the random nature, it is highly unlikely your output

would be identical to this).

Chapter 14 .Net 5 aNd eFCore5

688

Figure 14-8. The output shows that the many-to-many relationships are working
as expected and highlights the differences in the traditional vs. the EFCore5 skip
navigations

Chapter 14 .Net 5 aNd eFCore5

689

Open the BuildItems class file in the InventoryDataMigrator project. In that file,

review the BuildItems method and note how the Players are directly associated with an

Item.

By understanding the differences between a traditional many-to-many mapping and

the new many-to-many navigation properties (skip navigations), you are now fully aware

and able to work with each type.

 Step 2: Review the model builder as it was used to modify
the ItemPlayers table

In this step, you will review the use of the model builder to modify the ItemPlayers

table. As noted earlier, with a pre-defined entity, the ItemGenre entity can be easily

modified by adding new fields to the entity. However, this doesn’t help if you need to do

this in the ItemPlayers, and you likely don’t want to go and create a new ItemPlayers

entity unless you need to explicitly work with that entity.

As also noted earlier and in Chapter 5, the ItemPlayers had an undesirable syntax of

ItemsId and PlayersId for the columns in the table. This is not the end of the world but

would likely be a pain for your team that is querying the database, and all queries would

have to make that subtle correction.

Even with the automatic skip navigations, you can explicitly define the columns

using the model builder.

In the InventoryDbContext file from the InventoryDbLibrary project, in the

OnModelCreating method, in Chapter 5, you added the following code:

modelBuilder.Entity<Item>()

 .HasMany(x => x.Players)

 .WithMany(p => p.Items)

 .UsingEntity<Dictionary<string, object>>(

 "ItemPlayers",

 ip => ip.HasOne<Player>()

 .WithMany()

 .HasForeignKey("PlayerId")

 .HasConstraintName("FK_ItemPlayer_Players_PlayerId")

 .OnDelete(DeleteBehavior.Cascade),

Chapter 14 .Net 5 aNd eFCore5

690

 ip => ip.HasOne<Item>()

 .WithMany()

 .HasForeignKey("ItemId")

 .HasConstraintName("FK_PlayerItem_Items_ItemId")

 .OnDelete(DeleteBehavior.ClientCascade)

);

By adding this code, you resolved any issues with the name of the table and the

fields. After adding that code, you created and ran a migration to make the appropriate

updates to the database.

 Activity 14-1 summary
In this activity, you took a second look at the many-to-many relationships in the

Inventory system you’ve been building throughout the text. In this activity, you saw how

the traditional relationships are modeled, which is good to know as you likely will need

to support the previous relationships that are explicitly defined. Additionally, you saw

how the skip navigations are used to allow you to just define the left and right sides of the

relationship and not have to explicitly define the join table as an entity or in the include

statement.

Finally, you finished the activity by taking a deeper look into the OnModelCreating

method and reviewing how you can explicitly define the skip table relationships using

the Fluent API.

 Activity 14-2: Filtered include
This activity may be short, but this feature is one of my favorite new features that was

introduced in EFCore5. In the past, whenever you used an include, you had to pull in all

of the subset items, even if you didn’t want all of them. When you got the results back,

then you had to filter the objects to meet the needs of your system.

As of EFCore5, you can now filter on the include statements, performing the filtering

at the time of the query rather than after.

There is a scenario that causes issues in these queries, however, which I ran into

while building the example for this activity. As such, you’ll also go down that road, so you

can see the issue and be aware of it in case you encounter a similar issue in the future.

Chapter 14 .Net 5 aNd eFCore5

691

 Task 0: Getting started
In order to complete this activity, you need a version of the files as per the end of Activity

14-1 or your own files that you were working on through the book. If you want a fresh

start, use the EFCore_Activity14-2_StarterFiles. As always, review Appendix A for

more information on using starter files.

 Task 1: Create the method and set up the filtered include
query
In this first task, you will create the code necessary to run the query and execute the

filtered query. You will then look at the underlying T-SQL to see that the query is working

as expected, even when you don’t get the expected results. You will also write an

alternate query that lets you see a different approach to get the data.

 Step 1: Create the new method

In the Program.cs file in the Main method, replace the code that makes the two calls

from Activity 14-1 with the following code:

await EnsureItemsHaveGenres(db);

//Activity 14-1 - ManyToMany Navigation Properties

//await ExploreManyToManyRelationships(db);

//Activity 14-2 - Filtered Includes

await QueryWithFilteredIncludes(db);

With the method call in place, create the new method in the Program class as follows:

private static async Task QueryWithFilteredIncludes(InventoryDbContext db)

{

 var nonFilteredItems = await db.Items.Include(x => x.Players).

ToListAsync();

 var allPlayers = new List<Player>();

Chapter 14 .Net 5 aNd eFCore5

692

 foreach (var item in nonFilteredItems)

 {

 //Console.WriteLine($"Item: {item.Name}");

 foreach (var player in item.Players)

 {

 //Console.WriteLine($"Player: {player.Name}");

 allPlayers.Add(player);

 }

 }

 Console.WriteLine("Non-Filtered Items:");

 allPlayers.ForEach(x => Console.WriteLine($"{x.Name}"));

 Console.WriteLine(new string('*', 80));

 Console.WriteLine(new string('*', 80));

 //using filtered include

 var filteredItems = await db.Items

 .Include(item => item.Players

 .Where(player => player.Name.

Contains("ar")))

 .ToListAsync();

 var filteredPlayers = new List<Player>();

 foreach (var fi in filteredItems)

 {

 //Console.WriteLine($"Item: {fi.Name}");

 foreach (var player in fi.Players)

 {

 //Console.WriteLine($"Player: {player.Name}");

 filteredPlayers.Add(player);

 }

 }

 Console.WriteLine("Filtered Players");

 filteredPlayers.ForEach(x => Console.WriteLine($"{x.Name}"));

}

Chapter 14 .Net 5 aNd eFCore5

693

Run the method to see what happens. You will likely see results similar to Figure 14- 9.

This error is very elusive, and it can take some time to figure this out if you don’t

know what to look for.

 Step 2: Determine the T-SQL is working

The T-SQL is actually working as generated by EFCore5. This is even more perplexing.

How is it possible that the T-SQL could return null but the data would still show?

To prove this out, open SSMS, connect to your local db, and then start a SQL Server

Profiler session. Add a breakpoint on the code that uses the filtered include. This is the

line that follows the comment //using filtered include.

Run the program again, and when you hit the breakpoint, clear the profiler and then

execute the line of code and get the result of the T-SQL that was sent.

Once the query executes, select it and copy it to your clipboard to paste into a new

query in SSMS (see Figure 14-10).

Figure 14-9. The filtered include is set, but it’s not working as shown here, with all
player names being listed

Chapter 14 .Net 5 aNd eFCore5

694

For clarity, the T-SQL code generated should be similar to this:

SELECT [i].[Id], [i].[CategoryId], [i].[CreatedByUserId], [i].

[CreatedDate], [i].[CurrentOrFinalPrice], [i].[Description], [i].

[IsActive], [i].[IsDeleted], [i].[IsOnSale], [i].[LastModifiedDate], [i].

[LastModifiedUserId], [i].[Name], [i].[Notes], [i].[PurchasePrice], [i].

[PurchasedDate], [i].[Quantity], [i].[SoldDate], [t].[ItemId], [t].

[PlayerId], [t].[Id], [t].[CreatedByUserId], [t].[CreatedDate], [t].

[Description], [t].[IsActive], [t].[IsDeleted], [t].[LastModifiedDate],

[t].[LastModifiedUserId], [t].[Name]

FROM [Items] AS [i]

LEFT JOIN (

 SELECT [i0].[ItemId], [i0].[PlayerId], [p].[Id], [p].[CreatedByUserId],

[p].[CreatedDate], [p].[Description], [p].[IsActive], [p].[IsDeleted],

[p].[LastModifiedDate], [p].[LastModifiedUserId], [p].[Name]

 FROM [ItemPlayers] AS [i0]

 INNER JOIN [Player] AS [p] ON [i0].[PlayerId] = [p].[Id]

 WHERE [p].[Name] LIKE N'%ar%'

) AS [t] ON [i].[Id] = [t].[ItemId]

ORDER BY [i].[Id], [t].[ItemId], [t].[PlayerId], [t].[Id]

With the query captured, run it against your local database to ensure that you have

the correct data being generated by the query (review Figure 14-11).

Figure 14-10. The query is captured as executed in the SQL Server Profiler

Chapter 14 .Net 5 aNd eFCore5

695

Figure 14-11. The query as executed shows the correct data is being queried and
the item players are only populated when the filter is matched

 Step 3: Write an alternate query using projections

As a bit of an aside, there is another way to get this data and to ensure that you get only

what you want. An efficient and easy way to get the data is to just use a projection.

In the QueryWithFilterIncludes method, after the output of the filteredPlayers,

add the following code:

Console.WriteLine(new string('*', 80));

Console.WriteLine(new string('*', 80));

//using projections

var selectedFilteredItems = await db.Items.AsNoTracking().Select(item =>

new

{

 Id = item.Id,

 Name = item.Name,

 Players = item.Players.Where(player => player.Name.Contains("ar"))

Chapter 14 .Net 5 aNd eFCore5

696

 .Select(player => new Player

 {

 Id = player.Id,

 Name = player.Name

 }).ToList()

}).ToListAsync();

var selectedFilteredPlayers = new List<Player>();

foreach (var fi in selectedFilteredItems)

{

 //Console.WriteLine($"Item: {fi.Name}");

 foreach (var player in fi.Players)

 {

 //Console.WriteLine($"Player: {player.Name}");

 selectedFilteredPlayers.Add(player);

 }

}

Console.WriteLine("Selected [Projected] Filtered Items");

selectedFilteredPlayers.ForEach(x => Console.WriteLine($"{x.Name}"));

With this new code in place, run the program. Additionally, you may wish to capture

the T-SQL that is generated by the projection to see how it compares to what EF has

generated. Your output should look like what is shown in Figure 14-12.

Chapter 14 .Net 5 aNd eFCore5

697

As you can see, the projection works very well (and may even prove to be more

efficient than the filtered include, as well as more complicated to write, utilize, and

understand).

Furthermore, the T-SQL generated by the projection is a bit more straightforward

and should be similar to the following:

SELECT [i].[Id], [i].[Name], [t].[Id], [t].[Name], [t].[ItemId], [t].

[PlayerId]

FROM [Items] AS [i]

LEFT JOIN (

 SELECT [p].[Id], [p].[Name], [i0].[ItemId], [i0].[PlayerId]

 FROM [ItemPlayers] AS [i0]

 INNER JOIN [Player] AS [p] ON [i0].[PlayerId] = [p].[Id]

 WHERE [p].[Name] LIKE N'%ar%'

) AS [t] ON [i].[Id] = [t].[ItemId]

ORDER BY [i].[Id], [t].[ItemId], [t].[PlayerId], [t].[Id]

Figure 14-12. The output is filtered in the projection version as expected

Chapter 14 .Net 5 aNd eFCore5

698

Furthermore, running the code produces a more concise data result (see Figure 14- 13).

 Task 2: Fix the original query
In this task, you will further examine the issue with the filtered include and will fix the

filtered include so that it will work as expected.

 Step 1: Examine the issue

As you start working through the issue with the filtered include, you might try a number

of things. You might try updating the version of EFCore to the latest to see if that was an

issue. You also have already gone through the examination of the actual queries being

produced. Clearly, this is an elusive issue.

Further analysis proves that somehow the filtered query is essentially ignored in this

code. This should trigger the thought that the client must have all the data and the filter

is just not being used at all in this case.

Figure 14-13. The query and result for the version using the projection are shown.
This is a bit more concise than the T-SQL from the filtered include. This code also
works as expected without any further code modifications

Chapter 14 .Net 5 aNd eFCore5

699

Taking the time to look closely into the documentation reveals that there is a specific

caution statement that deals with this exact issue.

The caution statement found at https://docs.microsoft.com/en- us/ef/core/

querying/related- data/eager#filtered- include, says:

In case of tracking queries, results of filtered include may be unexpected due to
navigation fixup. all relevant entities that have been queried for previously and
have been stored in the change tracker will be present in the results of filtered
include query, even if they don’t meet the requirements of the filter. Consider using
Notracking queries or recreate the dbContext when using filtered Include in those
situations.

 Step 2: Use AsNoTracking in your queries

As stated in the caution from the official documentation, the issue is that the data is in

fact stored once you have it within the change tracker. As the sample is first pulling all the

data, it’s no wonder that the filtered include didn’t work.

To make the code work, add the simple code statement .AsNoTracking by updating

the code in the first two queries.

Change the code var nonFilteredItems = await db.Items.Include(x =>

x.Players).ToListAsync(); to

var nonFilteredItems = await db.Items.AsNoTracking().Include(x =>

x.Players).ToListAsync();

Then change the code

//using filtered include

var filteredItems = await db.Items

 .Include(item => item.Players

 .Where(player => player.Name.Contains("ar")))

 .ToListAsync();

Chapter 14 .Net 5 aNd eFCore5

https://docs.microsoft.com/en-us/ef/core/querying/related-data/eager#filtered-include
https://docs.microsoft.com/en-us/ef/core/querying/related-data/eager#filtered-include

700

to

//using filtered include

var filteredItems = await db.Items.AsNoTracking()

 .Include(item => item.Players

 .Where(player => player.Name.

Contains("ar")))

 .ToListAsync();

With this code in place, run the solution. You should now see the correct results for

both the filtered include and the projection as expected (see Figure 14-14).

If you want, compare their execution time and reads to see the difference in

efficiency (see Figure 14-15).

Figure 14-14. The filtered include works as expected once changes are no longer
tracked

Chapter 14 .Net 5 aNd eFCore5

701

One thing to note here is that even with the filtered include, the projection is still

more performant – at least for this query.

 Activity 14-2 summary
In this activity, you learned about using the filtered include statement to limit the results

for your data selection based on a filter used during the include operation.

In the activity, you also had the opportunity to see how important it is to apply the

AsNoTracking call to the queries in order to allow the filtered include to work.

As further practice and understanding, you also wrote another projection query to

get the same results that you get from the filtered include. This allowed you to be able to

optionally profile the performance for each of the three queries.

 Activity 14-3: Split queries
As your database is leveraged in a system with a number of queries and users, there are

times when you might have data getting modified quite regularly. As such, there are

times when you want to use transactions to make sure that data doesn’t get modified

out of order or the data doesn’t get changed during your operations by other parts of the

system.

In the previous version of EFCore, all queries generated were executed as a single

statement. The main purpose of this execution pattern was to ensure that consistency

occurred for the entire lifecycle of the query. The problem with using only one statement

during execution is that whenever a query contains an include statement, this single-

query execution doesn’t perform as well as the execution might have performed had the

query been split into multiple queries for execution.

Figure 14-15. The three queries’ performance is shown in SQL Server Profiler

Chapter 14 .Net 5 aNd eFCore5

702

As of EFCore5, this performance enhancement is now possible, and your execution

statements for queries that utilize an include statement can now take advantage of the

split query execution functionality. Since the query can now be split, you can get the

performance benefit, but you might also get the inconsistencies that can happen as data

could potentially change during the execution of the queries.

 Task 0: Getting started
As with previous activities, you can keep using the code from the previous activities

if you are up to date, or you can just get a fresh start with the EFCore_Activity14- 3_

StarterFiles. As always, follow the instructions as laid out in Appendix A for working

with the starter files if you go that route.

 Task 1: Create the query
In this first task, you will build a query that leverages an include statement and review

the execution using the SQL Query Profiler.

 Step 1: Create the query

Most of the queries you’ve already written have an include. You could use any of them.

For purposes of demonstration, you’ll create a new one for this activity.

Begin by commenting out the Activity 14-2 code await

QueryWithFilteredIncludes(db) in the Main method of the Program class, and then

add the code as follows for Activity 14-3 in the Main method:

//Activity 14-3 - Split Queries

await DemonstrateSplitQueries(db);

To create the new method, add the following code:

private static async Task DemonstrateSplitQueries(InventoryDbContext db)

{

 var fullItemDetails = await db.Items

 .Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude

(y => y.Genre)

Chapter 14 .Net 5 aNd eFCore5

703

 .Include(x => x.Category)

 .Where(x => x.IsActive && !x.IsDeleted)

 .AsNoTracking().ToListAsync();

 var outputItems = _mapper.Map<List<ItemDto>>(fullItemDetails);

 foreach (var item in outputItems)

 {

 Console.WriteLine($"New Item: {item}");

 }

}

This output will not show the genre information or the player information, so if you

want to add that in, feel free to make adjustments or use the FullItemDto (you’d have to

add a mapping to do that). The important thing here is the creation of the query with the

joins.

Run the program to see the results and ensure the query works and is called as

expected (review Figure 14-16).

 Step 2: View the profiler to see the execution

Start the SQL Server Profiler, and then run the program again. You may wish to put a

breakpoint on the call to ensure you can clear the profiler so that only the query that you

are focused on is run in the analyzer.

Running the program should be similar to the output shown in Figure 14-17.

Figure 14-16. The program runs as expected with results from the single query

Chapter 14 .Net 5 aNd eFCore5

704

Reviewing the query reveals the following query was executed:

SELECT [i].[Id], [i].[CategoryId], [i].[CreatedByUserId], [i].

[CreatedDate], [i].[CurrentOrFinalPrice], [i].[Description], [i].

[IsActive], [i].[IsDeleted], [i].[IsOnSale], [i].[LastModifiedDate],

[i].[LastModifiedUserId], [i].[Name], [i].[Notes], [i].[PurchasePrice],

[i].[PurchasedDate], [i].[Quantity], [i].[SoldDate], [c].[Id], [c].

[CreatedByUserId], [c].[CreatedDate], [c].[IsActive], [c].[IsDeleted], [c].

[LastModifiedDate], [c].[LastModifiedUserId], [c].[Name], [t].[Id], [t].

[CreatedByUserId], [t].[CreatedDate], [t].[Description], [t].[IsActive],

[t].[IsDeleted], [t].[LastModifiedDate], [t].[LastModifiedUserId], [t].

[Name], [t].[ItemId], [t].[PlayerId], [t0].[Id], [t0].[GenreId], [t0].

[ItemId], [t0].[Id0], [t0].[CreatedByUserId], [t0].[CreatedDate],

[t0].[IsActive], [t0].[IsDeleted], [t0].[LastModifiedDate], [t0].

[LastModifiedUserId], [t0].[Name]

FROM [Items] AS [i]

LEFT JOIN [Categories] AS [c] ON [i].[CategoryId] = [c].[Id]

LEFT JOIN (

 SELECT [p].[Id], [p].[CreatedByUserId], [p].[CreatedDate], [p].

[Description], [p].[IsActive], [p].[IsDeleted], [p].[LastModifiedDate],

[p].[LastModifiedUserId], [p].[Name], [i0].[ItemId], [i0].[PlayerId]

 FROM [ItemPlayers] AS [i0]

 INNER JOIN [Player] AS [p] ON [i0].[PlayerId] = [p].[Id]

) AS [t] ON [i].[Id] = [t].[ItemId]

Figure 14-17. The query is executed and revealed in the SQL Server Profiler

Chapter 14 .Net 5 aNd eFCore5

705

LEFT JOIN (

 SELECT [i1].[Id], [i1].[GenreId], [i1].[ItemId], [g].[Id] AS [Id0],

[g].[CreatedByUserId], [g].[CreatedDate], [g].[IsActive], [g].

[IsDeleted], [g].[LastModifiedDate], [g].[LastModifiedUserId],

[g].[Name]

 FROM [ItemGenres] AS [i1]

 INNER JOIN [Genres] AS [g] ON [i1].[GenreId] = [g].[Id]

) AS [t0] ON [i].[Id] = [t0].[ItemId]

WHERE ([i].[IsActive] = CAST(1 AS bit)) AND ([i].[IsDeleted] = CAST(0 AS bit))

ORDER BY [i].[Id], [c].[Id], [t].[ItemId], [t].[PlayerId], [t].[Id], [t0].

[Id], [t0].[Id0]

As you can see, that’s quite an intense query. You could make the query more

specific by using projections so that you wouldn’t be selecting every field, but no matter

how you execute it, this query runs in one statement.

 Task 2: Use the new split query functionality
In this task, you will modify the query to use the split query functionality and review the

output, as well as the execution via the SQL Server Profiler.

 Step 1: Add AsSplitQuery to the query

Modify the query that you created in the previous task by adding the simple call to

AsSplitQuery in the query syntax:

var fullItemDetails = await db.Items

 .Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude(y =>

y.Genre)

 .Include(x => x.Category)

 .Where(x => x.IsActive && !x.IsDeleted)

 .AsSplitQuery()

 .AsNoTracking().ToListAsync();

Chapter 14 .Net 5 aNd eFCore5

706

Run the query to validate you still get the same results. Review the output and also

review the SQL Server Profiler to see how the query now splits into multiple queries (see

Figure 14-18).

The queries are separated by the different joins that happen to get the includes into

the result set.

The queries are first to get the Categories:

SELECT [i].[Id], [i].[CategoryId], [i].[CreatedByUserId], [i].

[CreatedDate], [i].[CurrentOrFinalPrice], [i].[Description], [i].

[IsActive], [i].[IsDeleted], [i].[IsOnSale], [i].[LastModifiedDate],

[i].[LastModifiedUserId], [i].[Name], [i].[Notes], [i].[PurchasePrice],

[i].[PurchasedDate], [i].[Quantity], [i].[SoldDate], [c].[Id], [c].

[CreatedByUserId], [c].[CreatedDate], [c].[IsActive], [c].[IsDeleted], [c].

[LastModifiedDate], [c].[LastModifiedUserId], [c].[Name]

FROM [Items] AS [i]

LEFT JOIN [Categories] AS [c] ON [i].[CategoryId] = [c].[Id]

WHERE ([i].[IsActive] = CAST(1 AS bit)) AND ([i].[IsDeleted] = CAST(0 AS bit))

ORDER BY [i].[Id], [c].[Id]

Then the Items joined to the Category result and then joined to get the Player

information:

SELECT [t].[Id], [t].[CreatedByUserId], [t].[CreatedDate], [t].

[Description], [t].[IsActive], [t].[IsDeleted], [t].[LastModifiedDate],

[t].[LastModifiedUserId], [t].[Name], [i].[Id], [c].[Id]

FROM [Items] AS [i]

LEFT JOIN [Categories] AS [c] ON [i].[CategoryId] = [c].[Id]

INNER JOIN (

Figure 14-18. The AsSplitQuery command splits the query into multiple calls
instead of one single call

Chapter 14 .Net 5 aNd eFCore5

707

 SELECT [i0].[ItemId], [p].[Id], [p].[CreatedByUserId], [p].

[CreatedDate], [p].[Description], [p].[IsActive], [p].[IsDeleted], [p].

[LastModifiedDate], [p].[LastModifiedUserId], [p].[Name]

 FROM [ItemPlayers] AS [i0]

 INNER JOIN [Player] AS [p] ON [i0].[PlayerId] = [p].[Id]

) AS [t] ON [i].[Id] = [t].[ItemId]

WHERE ([i].[IsActive] = CAST(1 AS bit)) AND ([i].[IsDeleted] = CAST(0 AS bit))

ORDER BY [i].[Id], [c].[Id]

Finally, the last query gets the Genre results:

SELECT [t].[Id], [t].[GenreId], [t].[ItemId], [t].[Id0], [t].

[CreatedByUserId], [t].[CreatedDate], [t].[IsActive], [t].[IsDeleted], [t].

[LastModifiedDate], [t].[LastModifiedUserId], [t].[Name], [i].[Id], [c].[Id]

FROM [Items] AS [i]

LEFT JOIN [Categories] AS [c] ON [i].[CategoryId] = [c].[Id]

INNER JOIN (

 SELECT [i0].[Id], [i0].[GenreId], [i0].[ItemId], [g].[Id] AS [Id0],

[g].[CreatedByUserId], [g].[CreatedDate], [g].[IsActive], [g].

[IsDeleted], [g].[LastModifiedDate], [g].[LastModifiedUserId],

[g].[Name]

 FROM [ItemGenres] AS [i0]

 INNER JOIN [Genres] AS [g] ON [i0].[GenreId] = [g].[Id]

) AS [t] ON [i].[Id] = [t].[ItemId]

WHERE ([i].[IsActive] = CAST(1 AS bit)) AND ([i].[IsDeleted] = CAST(0 AS bit))

ORDER BY [i].[Id], [c].[Id]

Note that the join for the Categories happens in every query, since there is only one

Category per Item and this doesn’t create a lot of overhead in your queries.

 Step 2: Use transactions to ensure consistency of results

Now that you’ve split the data queries, in a scenario where multiple users are working

against your data, you could see issues where the Categories or the Genres or Players

or even Items change from one query to the next. This inconsistency could pose an issue

or cause undesired results.

Chapter 14 .Net 5 aNd eFCore5

708

To make the query absolutely safe, use a serializable transaction by modifying the

method to be wrapped in a transaction as follows:

using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions { IsolationLevel =

IsolationLevel.Serializable }

 , TransactionScopeAsyncFlowOption.Enabled))

{

 var fullItemDetails = await db.Items

 .Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude(y =>

y.Genre)

 .Include(x => x.Category)

 .Where(x => x.IsActive && !x.IsDeleted)

 .AsSplitQuery()

 .AsNoTracking().ToListAsync();

 var outputItems = _mapper.Map<List<ItemDto>>(fullItemDetails);

 foreach (var item in outputItems)

 {

 Console.WriteLine($"New Item: {item}");

 }

}

Run the program to ensure the results are still generated. Also note that it would be

incredibly difficult to test a changed data value that happened during the execution of

one of the split queries, since you don’t have the ability to just stop in the middle of the

split queries and change something and then continue with the queries.

 Step 3: A final note

A couple of final notes to keep in mind about split queries that are important.

First, using split queries may give you better efficiency, but it may also hurt your

efficiency due to creating multiple calls to the database, so you will have to decide which

is the best for your solution.

Chapter 14 .Net 5 aNd eFCore5

709

Second, as with AsNoTracking, you can enable the AsSplitQuery to be the default

behavior. To do this, you modify the OnConfiguring method for the DBContext to UseQue

rySplittingBehavior(QuerySplittingBehavior.SplitQuery). If you do use this global

statement, you will have to explicitly make calls with AsSingleQuery to get back to a

single query result when desired in database queries.

A third issue is related to the consistency issue highlighted earlier. When using split

queries, if others modify your data in the middle of your query results, you may end up

with a dirty read that gives results that are not entirely accurate to the current state of the

database, so now you also should wrap your split queries in a transaction to ensure data

integrity.

Finally, when using split queries, keep in mind that making multiple calls to the

database may hurt your application performance. Not only will you be making more

direct calls to the database (instead of just one), but you will be storing each query in

memory within the application while the remaining queries complete, which could add

overhead or load on your execution environment.

 Activity 14-3 summary
In this activity, you learned about using split queries to change the behavior of a query

that has includes or projections to leverage the new AsSplitQuery call. By doing this,

you were able to see how the original query only ran one database call in the SQL Server

Profiler, and the split queries call added multiple calls to the database, splitting each

query to only get part of the data result.

Splitting the query added multiple trips to the database and also added a need to use

transactions to ensure data integrity during the multiple database calls.

Although you didn’t implement it explicitly, you also read about how you could set

your context to always use split queries as the default execution pattern and how doing

this would require a call to AsSingleQuery to get back to the original functionality shown

at the start of the activity.

In the end, you may choose to use this split query functionality when it makes sense

for your solution.

Chapter 14 .Net 5 aNd eFCore5

710

 Activity 14-4: Simple logging and tracking queries
with the DBCommandInterceptor
Another new feature that is available as of EFCore5 that has received much

praise is the feature of simple logging with improved diagnostic capabilities. The

DBCommandInterceptor has been around since EFCore3.1. However, use of the

interceptor is definitely worth mentioning here with the logging activity.

 Task 0: Getting started
This activity picks up where Activity 14-3 ended. If you are working through the activities

in order, feel free to use the files you have been using; otherwise, grab the files for the

EFCore_Activity14-4_StarterFiles and use those files for this activity. As always,

review Appendix A for information on working with the starter files if you go that route.

 Task 1: Add a method to use for demonstration, and then
add logging
In this task, you will create another method to demonstrate a couple of logging

capabilities that have been added as of EFCore5. You will then use the new LogTo

method to show how easy it is to write to your logs with EFCore.

 Step 1: Create a new method

To begin this activity, comment out any previous calls to methods for previous activities

in the Main method of the Program.cs file (leave the call to EnsureItemsHaveGenres

uncommented). After commenting out other calls, add the following code for Activity 14-4:

//Activity 14-4 - Simple Logging

await DemonstrateSimpleLogging(db);

Chapter 14 .Net 5 aNd eFCore5

711

To create the new method, add the following code:

private static async Task DemonstrateSimpleLogging(InventoryDbContext db)

{

 var fullItemDetails = await db.Items

 .Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude(y =>

y.Genre)

 .Include(x => x.Category)

 .Where(x => x.IsActive && !x.IsDeleted)

 .AsNoTracking().ToListAsync();

 var outputItems = _mapper.Map<List<ItemDto>>(fullItemDetails);

 foreach (var item in outputItems)

 {

 Console.WriteLine($"New Item: {item}");

 }

}

Run the code to ensure it works as expected. The output should be the same as was

shown in Figure 14-16 in Activity 14-3, Task 1, Step 1.

 Step 2: Add simple logging with the LogTo call

With the query implemented earlier, navigate to the OnConfiguring method that is

overridden in your InventoryDbContext.cs file in the EFCore_DBLibrary project.

In the OnConfiguring method, add a simple call at the end of the method following

the if(!optionsBuilder.IsConfigured) block as follows:

optionsBuilder.LogTo(Console.WriteLine);

With the new code in place, run the project again to see the logging output (review

Figure 14-19).

Chapter 14 .Net 5 aNd eFCore5

712

Note that the logging contains not just the things that are happening with

connections, datareaders, and the context but also contains full output of executed

SQL commands.

 Step 3: Move the logging to a file

You can do a number of different outputs with the logging. You can move it to the Debug

console rather than your general output. You can also leverage the output and push it to

the logger of your choice.

In this task, you will just write the output to a flat file to see how to move the logging

to another location, as pushing into the console is not a very good use case.

Ensure you have a folder on your machine such as C:\Data, and, no matter what

output folder you choose here, ensure you have mapped the following code to that root

folder (i.e., C:\Data\).

Figure 14-19. The LogTo method is added to the optionsBuilder in the
OnConfiguring method. With that in place, running the program also now
contains verbose log messages as shown in this image

Chapter 14 .Net 5 aNd eFCore5

713

Additionally, you could create idempotent directory checks and creations if you

wanted to ensure the program would execute even if the folder didn’t exist, but for

simplicity, that is beyond the scope of this activity.

In the InventoryDbContext, at the top of the file, add the following private variables:

private string _logFilePath = $@"C:\Data\{Environment.MachineName}_

{DateTime.Now.Ticks}_efcore_logs.txt";

private readonly StreamWriter _logger;

With that code in place, add the following line of code to both constructors:

_logger = new StreamWriter(_logFilePath, append: true);

Note that having this in place could potentially break scaffolding in solutions like an

ASP.Net MVC project, so you would want to double-check to ensure that scaffolding still

worked if you were utilizing scaffolding in your solution.

Because the file has to live for the lifecycle of the context and you need to wrap

up the file when the context is disposed, add the following code to the end of the

InventoryDbContext file:

public override void Dispose()

{

 base.Dispose();

 _logger.Dispose();

}

public override async ValueTask DisposeAsync()

{

 await base.DisposeAsync();

 await _logger.DisposeAsync();

}

This will likely require you to bring in the using statement using System.

Threading.Tasks.

Finally, with the code in place, make a simple change in the OnConfiguring method

to output to the logger instead of the console:

optionsBuilder.LogTo(_logger.WriteLine);

Chapter 14 .Net 5 aNd eFCore5

714

Now run the program to see that your results are clean as expected, then browse to

the root folder you chose for your logging, and view the text file that was created with the

logging information for your application execution (review Figure 14-20).

 Task 2: Use the ToQueryString output
In this task, you will utilize the ToQueryString functionality available as of EFCore5

to see a quick and easy way for you to view the SQL Query that will be executed for a

specific query.

In the previous task, you ran code that logged everything from the context to the

output and then moved it into a logging file. This is an exceptionally easy way to set up

verbose logging on your entire project.

However, what if you just wanted to see the queries? In the last activity (Activity 14- 4),

you worked through using SQL Server Profiler to view the output for split queries.

 Step 1: Utilize the new ToQueryString functionality

For this task, you will just see both the single and split queries for the query in your

console.

Just like the last task, you are currently starting by running a single query for the

includes.

Figure 14-20. The Output is now logged to a file as expected for each execution of
the application

Chapter 14 .Net 5 aNd eFCore5

715

In the DemonstrateSimpleLogging method, add the following code to the beginning

of the method, before the call to get the var fullItemDetails:

var queryToExecute = db.Items.Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude(y => y.Genre)

 .Include(x => x.Category)

 .Where(x => x.IsActive && !x.IsDeleted)

 .AsNoTracking().ToQueryString();Console.WriteLine("Single

Query:");

Console.WriteLine(queryToExecute);

Run the program to see the output (see Figure 14-21).

Finally, comment everything out in the DemonstrateSimpleLogging method, and

then add the following code to the end of the method:

Console.WriteLine("Split Query:");

var queriesToExecute = db.Items.Include(x => x.Players)

 .Include(x => x.ItemGenres).ThenInclude(y => y.Genre)

 .Include(x => x.Category)

Figure 14-21. The query is captured, and output is displayed in the console as
expected

Chapter 14 .Net 5 aNd eFCore5

716

 .Where(x => x.IsActive && !x.IsDeleted)

 .AsNoTracking().AsSplitQuery().ToQueryString();

Console.WriteLine(queriesToExecute);

Run the program one more time to see the output for the split queries directly in the

console (review Figure 14-22).

Because of the default operation of EFCore and the split queries, only the first query

is shown. To review the queries, you need to use the SQL Server Profiler or a similar tool.

If you check your log file created from the most recent execution, which contains the logs

from your database activity for the last run, you’ll see the results do not include the full

queries.

Figure 14-23 contains the text of the log file to validate that all split queries were not

logged with the SimpleLogging solution from the first part of the activity.

Figure 14-22. The split query shows only the first query in the console with a
message about the fact that the other queries are not shown

Chapter 14 .Net 5 aNd eFCore5

717

 Task 3: Implement the DBCommandInterceptor to log
slow running queries
This final task for Activity 14-4 is actually something I’ve just learned about myself.

I would like to once again thank Dave Callan for his excellent post on this topic on

LinkedIn and his permission to share it with you.

The overall implementation will need to be tweaked a bit for your implementation,

but the general idea is the same as what is shown in Dave’s post.

Here is a screenshot of Dave’s original post (shown in Figure 14-24).

Figure 14-23. The log file from the last run using AsSplitQuery is shown to
validate that the logs did not capture all of the individual queries that were
originally seen using the SQL Server Profiler as in the previous activity

Chapter 14 .Net 5 aNd eFCore5

718

 Step 1: Implement the DBCommandInterceptor inheriting class

To implement this code in your solution, start by adding a class file named

LogSQLQueriesInterceptor.cs in the EFCore_DBLibrary project. Inherit from

the DBCommandInterceptor as in Figure 14-24. Since your implementation is in an

asynchronous call, you’ll need to override the ReaderExecutedAsync method instead of

the ReaderExecuted method as in Dave’s original post.

Figure 14-24. Dave Callan’s original LinkedIn post to highlight using the
DBCommandInterceptor to log long running SQL Queries

Chapter 14 .Net 5 aNd eFCore5

719

Therefore, implement the necessary code by using the following code block to

complete the class file (feel free to modify the path and threshold as desired/required):

public class LogSQLQueriesInterceptor : DbCommandInterceptor

{

 private int _longRunningQueryThreshold = 500;

 private string _logQueriesFilePath = $@"C:\Data\{Environment.

MachineName}_longQueries.txt";

 public override ValueTask<DbDataReader> ReaderExecutedAsync(DbCommand

command, CommandExecutedEventData eventData

 , DbDataReader result, CancellationToken cancellationToken =

default(CancellationToken))

 {

 if (eventData.Duration.TotalMilliseconds >= _

longRunningQueryThreshold)

 {

 File.AppendAllText(_logQueriesFilePath

 , $"{command.CommandText} MS: {eventData.Duration.

TotalMilliseconds}" +

 $"{Environment.NewLine}{Environment.NewLine}");

 }

 return base.ReaderExecutedAsync(command, eventData, result,

cancellationToken);

 }

}

 Step 2: Register the DBCommandInterceptor in the Program
class

Return to the EFCore_Activity1404 project, and open the Program.cs file. In the

Program.cs file, locate the BuildOptions method, and then add a final line under the

_optionsBuilder.UseSqlServer(…) line of code as follows:

_optionsBuilder.AddInterceptors(new LogSQLQueriesInterceptor());

Chapter 14 .Net 5 aNd eFCore5

720

 Step 3: Run the program to see the new interceptor logs

Run the program and then check your destination folder to see if any logs have been

recorded.

Assuming that none have been recorded, uncomment the calls to the other methods

in the activity to ensure some longer running queries are hit. Next, modify the threshold

to be 10 milliseconds in the LogSQLQueriesInterceptor.

Put a breakpoint on the line that is writing the log, and then execute the program

again. You should now see the code getting hit a few times. If you don’t see any of the

breakpoints getting hit, you may need to clean your solution and try again as some of the

data may be cached (review Figure 14-25).

The final file output will look something like what is shown in Figure 14-26.

Figure 14-25. The LogSQLQueriesInterceptor is executed and will record any
queries that run longer than your specified threshold

Chapter 14 .Net 5 aNd eFCore5

721

Figure 14-26. The log file is created and the long running queries are logged as
expected

Don’t forget to set the threshold back to a more reasonable time, such as the

original 500.

 Activity 14-4 summary
In this activity, you learned how to leverage the new simple logging available as of

EFCore5. You started by just outputting the log to the console, but then you made a more

robust solution logging the output to a flat file. You could take that to the next level in

your production solutions.

You then learned about the new ToQueryString call that allows you to get the

generated SQL for any query that you are creating. This will be highly useful for your

debugging purposes to validate your queries and their efficiency without having to go to

the SQL Server Profiler.

Chapter 14 .Net 5 aNd eFCore5

722

You then reviewed one limitation of the ToQueryString as it exists at the time of this

writing, which is that the method only shows the first query in a split query, instead of

showing each of the queries that are generated.

Finally, the activity closed off with a look at using a custom class to override the

DBCommandInterceptor to log long running queries in your solution.

 Activity 14-5: Flexible entity mapping
This activity picks up where Activity 14-4 left off. In this activity, you are going to look at

another way you can utilize the FullItemDetailDtos view in code. Using flexible entity

mapping, you will be able to get the results you expect for a function or view or even get

results directly mapped from an inline query.

 Task 0: Getting started
As with all other activities, keep working with your files from the end of the previous

activity or grab the EFCore_Activity14-5_StarterFiles. As always, refer to Appendix A

for more information on working with starter files.

 Task 1: Use flexible entity mapping to retrieve the results
of a view
In this task, you will use flexible entity mapping to create a mapping to leverage the

results of the vwFullItemDetails view.

 Step 1: Rework the main program to call to just
the GetFullItemDetails view

To get started, in the Main method of the main activity project in the Program.cs file,

comment out the code await DemonstrateSimpleLogging(db); that calls the Activity

14-4 method.

Next, add the following code to start the activity. Note that there is already a call for

await GetFullItemDetails, so you could just uncomment that line, but it’s likely easier

to just copy/paste this code, which will be removed in the next step:

Chapter 14 .Net 5 aNd eFCore5

723

Figure 14-27. The current call to GetFullItemDetails works as expected

//Activity 14-5 - Flexible Entity Mapping

await GetFullItemDetails();

With the changes in place, run the program. The only thing that should be called is

the method for GetFullItemDetails, and it will have results similar to what is shown in

Figure 14-27.

One thing to note is that the original view is returning all of the data from the table,

including deleted rows (and potentially inactive rows as well). The full view does have

the fields in the result set, so they can be further filtered if desired to only display active

and non-deleted rows.

With this in place, you have now successfully mapped the view and leveraged it

through the service and database layers as expected. However, you haven’t really done

flexible entity mapping yet. While it’s true you did map the entity to a view in the model

builder, you still aren’t doing anything new that couldn’t be accomplished in previous

versions of EFCore. For reference, the code in the InventoryDbContext.cs file that is

doing the mapping is

modelBuilder.Entity<FullItemDetailDto>(x =>

{

 x.HasNoKey();

 x.ToView("FullItemDetailDtos");

});

 Step 2: Add the flexible entity mapping

An example of using flexible entity mapping to get the view can be easily accomplished.

For this activity, you won’t go through the layers. Instead, you will just quickly leverage

the data from the context using a flexible entity mapping.

Chapter 14 .Net 5 aNd eFCore5

724

For this activity, in the InventoryModels project, start by creating a copy of the

FullItemDetailDTO as a new DTO named FullItemDetailEMQueryDTO in a class with

the same name. The properties should be exactly the same as the original DTO in order

to map directly to the view fields.

After adding the new class, return to the InventoryDbContext in the EFCore_

DBLibrary project, and add a property as follows:

public DbSet<FullItemDetailEMQueryDto> FullItemDetailEMQueryDtos { get; set; }

Then add the new flexible entity mapping somewhere in the OnModelCreating

method, such as right after the mapping for the FullItemDetailDtos view as follows:

//just map the query directly:

modelBuilder.Entity<FullItemDetailEMQueryDto>()

 .ToSqlQuery(

 @"SELECT * FROM [dbo].[vwFullItemDetails] WHERE IsActive = 1

and IsDeleted = 0"

).HasNoKey().ToView("FullItemDetailEMQueryDtos");

Note that this mapping will just do everything the other mapping did but leverages

the SQL Query directly in the mapping and limits results to just the active and non-

deleted records. You could write any T-SQL query you wanted, as long as the fields map

to the output DTO.

In the Main method in the Program file, add a call to a new method named

GetFullItemDetailsEMQuery with the call await GetFullItemDetailsEMQuery().

Comment out (or remove if you duplicated it) the original call to GetFullItemDetails

so the new call will be the only code that executes. Then implement the code for the

method as follows:

private static async Task GetFullItemDetailsEMQuery()

{

 using (var context = new InventoryDbContext(_optionsBuilder.Options))

 {

 var results = await context.FullItemDetailEMQueryDtos.ToListAsync();

 foreach (var item in results.OrderBy(x => x.ItemName).ThenBy

(x => x.GenreName)

 .ThenBy(x => x.Category).ThenBy(x

=> x.PlayerName))

Chapter 14 .Net 5 aNd eFCore5

725

Figure 14-28. The new query returns results using the flexible entity mapping to a
direct SQL Query

 {

 Console.WriteLine($"New Flexible Entity Mapping Query Item]

{item.Id,-10}" +

 $"|{item.ItemName,-50}" +

 $"|{item.ItemDescription,-4}" +

 $"|{item.PlayerName,-5}" +

 $"|{item.Category,-5}" +

 $"|{item.GenreName,-5}");

 }

 }

}

This method will accomplish the same thing that you just did with the other entity

using the traditional mapping.

Run the program to see that the results work as expected (review Figure 14-28).

 Activity 14-5 summary
In this activity, you learned about the new flexible entity mapping and how it can be

used to map entities to views. A couple of things that were not covered that you can also

do are the ability to map to functions and the ability to map to a view for queries and to

an entity for updating data.

 Activity 14-6: Table-per-type (TPT) inheritance
mapping
In this final activity for Chapter 14, you will walk through the new table-per-type

functionality that exists in EFCore5.

Chapter 14 .Net 5 aNd eFCore5

726

Table-per-type is exactly how it sounds, but, just in case you’re not sure what this

means, here is a quick overview.

As currently programmed in the InventoryDbContext, Items as a whole have

Categories like Movie, Book, and Game. This is likely the correct implementation, since

all of them do have basic characteristics. However, adding in Players was dicey. Is

the Game Player the person playing it, or some entity who created the Game? Also, the

Player of a book is an Author, not a Player, and the people in movies are generally

called Actors, not Players.

In the past, you could use inheritance, having Player be the base and then having

a specific type of player – that is, Author, Actor, Company, etc. Each of these types would

be a class that inherits from Player and then would be stored in the Players table. One

database table would be created with all the fields needed for all types.

This table-per-hierarchy operation could result in fields like FirstName and LastName

for Author, maybe also for Actor, and perhaps StockSymbol and City for Company. You then

also get a field called Discriminator that essentially stores the type of object for that row.

A query against the Players table needing to get the type of Actor could use the

query SELECT * FROM Players where Discriminator = 'Actor'.

Additionally, this table-per-hierarchy setup would then have a table with a lot of null

fields since not all types are the same and not every field is needed for each row.

In a TPT operation, each inherited type gets a new table as a one-to-one relationship

with the base table. Instead of a table of Players with a bunch of null fields and a

discriminator, you get the base Players table, and then you can further define player

attributes in the tables created for each inheriting class, such as Person ➤ Actor, Person

➤ Author, and Publisher.

 Task 0: Getting started
To get started, this activity assumes you have code as per the end of Activity 14-5. As

always, you can use the files that you’ve been working with and continue with this

activity, or you can start with the EFCore_Activity14-6_StarterFiles.

Additionally, once you’ve gotten the project up and running, ensure that you have

commented out any method calls other than EnsureItemsHaveGenres. Running the

program should have no output other than Program Complete statement when this is

configured correctly.

Chapter 14 .Net 5 aNd eFCore5

727

For this activity, there is a script that will be used to migrate data. You will want
to get a copy of that script if you are using your own version of the files. the
script file is MigratePlayers.v0.sql and is found in the EFCore_DbLibrary
project under Migrations ➤ Scripts ➤ CustomScripts in the EFCore_
Activity14- 6_StarterFiles.

 Task 1: Create the inheritance hierarchy
In this task, you will add additional types to further define players as either Person or

Company. Each type will have a couple of unique attributes to track.

 Step 1: Add the inheritance structures

To begin, in the InventoryModels project, create two classes that inherit from Player

called Person and Company.

In the InventoryModelsConstants file, add the following constants:

public const int MAX_STOCKSYMBOL_LENGTH = 10;

public const int MAX_COMPANYNAME_LENGTH = 150;

public const int MAX_CITY_LENGTH = 50;

public const int MAX_FIRSTNAME_LENGTH = 50;

public const int MAX_LASTNAME_LENGTH = 50;

Then, in the Person class, implement the following code:

[Table("People")]

public class Person : Player

{

 [StringLength(InventoryModelsConstants.MAX_FIRSTNAME_LENGTH)]

 public string FirstName { get; set; }

 [StringLength(InventoryModelsConstants.MAX_LASTNAME_LENGTH)]

 public string LastName { get; set; }

 public override string Name => $"{FirstName} {LastName}";

}

Chapter 14 .Net 5 aNd eFCore5

728

Note that you will get an error that you cannot override the inherited member Player.

Name. To fix this, open the Player class and add the virtual keyword to the Name property:

public virtual string Name { get; set; }

Next, in the Company class, implement the following code:

[Table("Companies")]

public class Company : Player

{

 [StringLength(InventoryModelsConstants.MAX_COMPANYNAME_LENGTH)]

 public string CompanyName { get; set; }

 [StringLength(InventoryModelsConstants.MAX_STOCKSYMBOL_LENGTH)]

 public string StockSymbol { get; set; }

 [StringLength(InventoryModelsConstants.MAX_CITY_LENGTH)]

 public string City { get; set; }

 public override string Name => $"{CompanyName} - {StockSymbol}";

}

To make sure that the types are added to a migration, find the InventoryDbContext

in the EFCore_DbLibrary project, and add the following DbSet properties:

public DbSet<Company> Companies { get; set; }

public DbSet<Person> People { get; set; }

 Step 2: Create the migration, and update the database

With all of the new hierarchy in place, add a new migration with the command add-

migration create-tpt-hierarchy-player-person-company. Make sure to select the

EFCore_DbLibrary project in the PMC.

The most important thing to note here is that you must include the table attribute for

this to work. Here it made sense to use a table attribute since Person pluralized becomes

People and Company becomes Companies, but what if you had another table type called

Organization that would easily become Organizations when pluralized? If you didn’t

explicitly name the table, EFCore wouldn’t recognize that you are trying to do a TPT

mapping and you’d get an error about not having a discriminator (see Figure 14-29,

where I purposefully didn’t map Person to a table to generate the error).

Chapter 14 .Net 5 aNd eFCore5

729

Figure 14-30. The migration is going to generate the tables to map with a foreign
key id back to the base table, as expected. This creates the proper TPT relationships,
where Person is just a more specific player as is Company

Once the migration is added, examine it to see that you are going to get the base

table plus the TPT tables that have a one-to-one foreign key relationship back to the base

table Player (review Figure 14-30).

Figure 14-29. If you try to create a migration without the entities explicitly naming
tables, you would get an error about not having a discriminator as shown in this image

Chapter 14 .Net 5 aNd eFCore5

730

After reviewing the migration and ensuring it looks good, run the update-database

command to apply the changes.

If you are tracking your code in a GIT repository, this would be a great time to

commit changes.

 Task 2: Move data
If you have used the migration project, then you have items, and the items were

generated with Players to provide some simple mappings. In this task, you will move

data so that the more specific Player and Company types can be leveraged.

 Step 1: Create a new script to migrate existing data

Currently, the BuildItems class in the InventoryDataMigrator project builds out the

Items data and is idempotent. Because you already have data, you need to write a

script to make the data work as Person or Company from the People or Companies tables,

respectively, bound back to the Players table.

If you don’t want to do this in a script, you could do this with code, but you would

likely need to wipe existing data and modify the migrator project to seed data as the

specific types due to Id and tracking conflicts. For this activity, the scripting option will

be used.

Begin by adding a new blank migration using the command add-migration

migrate-players-to-people-and-companies. This will generate a blank migration.

When the migration is generated, add the following code to the Up method:

migrationBuilder.SqlResource("EFCore_DBLibrary.Migrations.Scripts.

CustomScripts.MigratePlayers.v0.sql");

Then add the following code to the Down method:

migrationBuilder.Sql("DELETE FROM Companies; DELETE FROM People;");

You will also need to add the using statement using EFCore_DbLibrary.

Migrations.Scripts; to the top of the file.

Because the script is long, a copy of the script has already been placed in the correct

folder for the migrations as of the starter project, and the file was set as an embedded

resource. If you are using your own files, locate the starter files’ project and download the

project to get a copy of the script, and then place the script in the appropriate folder.

Chapter 14 .Net 5 aNd eFCore5

731

Figure 14-31. Ensure that the script is set as an embedded resource

Either way, ensure that the script is set as an embedded resource in the project (see

Figure 14-31).

Once you are sure that the data script is in place as an embedded resource and you

have the migration in place, run the script by executing the update-database command

in the PMC.

After the command is run, use SSMS to ensure that the People and Companies tables

have data (review Figure 14-32).

Chapter 14 .Net 5 aNd eFCore5

732

 Step 2: Use the new TPT tables in code

Now that the data has been created, you should run a couple of quick calls to ensure that

the data works as expected.

Figure 14-32. The migration will execute the script to update the TPT tables for
People and Companies

Chapter 14 .Net 5 aNd eFCore5

733

Note again that the code for the Main method in the Program class of the main

activity file has been set so that no other code will execute. In the Main method, add a call

to a new method called ShowPlayerTPTData with the code

//Activity 14-6 - TPT data

await ShowPlayerTPTData(db);

and then add the method as follows:

private static async Task ShowPlayerTPTData(InventoryDbContext db)

{

 var items = await db.Items.Include(x => x.Players).ToListAsync();

 if (items != null && items.Any())

 {

 foreach (var item in items)

 {

 var players = item.Players;

 if (players == null || !players.Any()) continue;

 Console.WriteLine($"New Item with players: {item.Name}: ");

 foreach (var player in players)

 {

 if (player is Person)

 {

 var p = player as Person;

 Console.WriteLine($"{p.LastName}, {p.FirstName} --

{p.Name}");

 }

 else if (player is Company)

 {

 var c = player as Company;

 Console.WriteLine($"{c.CompanyName} - {c.City} --

{c.Name}");

 }

Chapter 14 .Net 5 aNd eFCore5

734

 else

 {

 Console.WriteLine($"Player only: {player.Name}");

 }

 }

 }

 }

}

Once the code is in place, run the program. You should see results similar to what is

shown in Figure 14-33.

 Activity 14-6 summary
In this activity, you learned how EFCore5 now allows you to work with table-per-type

hierarchies. While it can be a bit tricky to get started, you’ve seen that by using the

inheritance built into C#, you can easily put the types in place to separate your entity

data across tables instead of using the discriminator column.

Figure 14-33. The TPT data works very well and allows you to get the full data by
type just by including the base type

Chapter 14 .Net 5 aNd eFCore5

735

By using this TPT hierarchy instead of the traditional table-per-hierarchy approach,

you can see that the data is streamlined and easily associated with the correct type.

 Chapter summary
In this chapter, you learned about some of the new features that exist as of EFCore5

that didn’t exist prior to the release of EFCore5. While not all of the new features from

EFCore5 were covered, you now have been through working with EFCore in both

traditional and new approaches. By default, anything that was made available in

EFCore5 is also available in EFCore6.

Taking this information forward, you will have the ability to use the best options,

traditional or new, in your solutions.

 Important takeaways
After working through this chapter, the things you should be in command of are

• Many-to-many navigation properties

• Filtered includes

• Split queries

• Simple logging

• DB command interceptors

• Flexible entity mapping

• Table-per-type inheritance mapping

 Closing thoughts
With this chapter, you’ve seen EFCore in action for a robust database solution, and

you’ve seen some of the features that were released with EFCore5 applied to the solution.

The final chapter for this book will conclude the book with things that are going to be

released in the next version, which is EFCore6 with .Net 6.

Chapter 14 .Net 5 aNd eFCore5

737
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_15

CHAPTER 15

.Net 6 and EFCore6
In this final chapter, you’ll take a quick look at some of the new stuff coming in EFCore6

with .Net 6, which are scheduled for simultaneous release in November of 2021.

 Planned highly requested features
and enhancements
A number of features and enhancements that have been highly requested are planned

for release in the next version of EFCore. The following features are currently or were

originally planned for release. These features as well as a few additional features that

are planned are listed and discussed in more detail at the following link: https://docs.

microsoft.com/en- us/ef/core/what- is- new/ef- core- 6.0/plan. Note that some of

these features will be available and others will get cut or won’t be fully implemented in

the first release of EFCore6.

 SQL Server temporal tables
In SQL Server 2016 and later, an option exists to use temporal tables. Temporal tables

allow for tables to have the ability to keep history based on timestamps. The benefit of

temporal tables is that you can specify a datetime and you can see what the value of

the data in the table was at that point in time. Essentially, all data changes are tracked.

Temporal tables are also called system-versioned temporal tables.

In order to track the changes, a second table is leveraged to keep the history of the

previous versions of rows of data that have changed.

In EFCore6, work is currently underway to begin implementing the ability to work

with temporal tables. The main priority for implementation at the time of this writing is

the ability to use the AS OF operation to get information "AS OF" a certain timestamp.

Additionally, the hope is to be able to get the ability to specify the name of the history

table, along with columns for start and end time.

https://doi.org/10.1007/978-1-4842-7301-2_15#DOI
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-6.0/plan
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-6.0/plan

738

If this functionality gets implemented by the final release, the idea would be that you

could select queries using a join statement to get data from the history of the table. For

example, you might be able to run a query similar to context.Items.TemporalAsOf

(YYYY/MM/DD).Select(i => i.Price), which would pull out the Items as they existed in

the table as of the specified date, and leverage the value of the price from that history.

 JSON columns
JSON columns are interesting because they essentially allow any developer to start using

JSON to store things like settings or other volatile data that is somewhat well structured

but also flexible. NoSQL databases have been leveraging JSON as the mechanism to store

data since their inception. With SQL JSON columns, you can get a bit of the best of both

worlds, with perhaps a bit of a performance hit.

All of that being said, using JSON columns in your database can be highly useful

for creating solutions that are not so tightly bound to the database schema and thereby

become more flexible for rapid implementation of new features.

In Activity 15-2, Task 1, a value type is created that stores data in an nvarchar

column. That value is essentially JSON stored as nvarchar. In the activity, JSON data is

serialized and deserialized by the client.

The plan for JSON columns with EFCore6 was to create a common way to handle

JSON columns for multiple database implementations, including SQL Server.

Unfortunately, this feature was cut from the final release.

 ColumnAttribute.Order
As you’ve seen in this book, each migration generates new columns as you specify;

however, they are alphabetical and in order based on migration. For example, if the first

migration contains Id and Name, you would get those two in order. If a second migration

contains Description, the fields would be in the order Id, Name, and Description.

In the new functionality, you could create the columns from each migration in any

order, not just alphabetical. Note, however, that the stated plan mentions there is no plan

to allow for restructuring columns of an existing table, since doing so is not trivial and

requires a rebuild of the entire table. Rebuilding a table would also imply the need to

back up data and restore it after the table was successfully rebuilt.

Chapter 15 .Net 6 aNd eFCore6

739

 Compiled models
This feature will be used to help with performance of the overall solution. In the current

solution, the migrations are based on the database model; however, the model is not

precompiled, so there is a bit of overhead at the startup of a new project. Additionally,

the compiled model should give an additional performance gain during operation when

the model is leveraged.

 Migrations bundles
In this book, you created a custom project to ensure that migrations were applied.

This is highly useful and easy to implement in a real-world solution. The idea behind

a migration bundle would be to give you the ability to build an executable that would

allow for easily performing migrations for deployment. The real benefit for this would be

in making it easier to deploy your migrations into production.

 .Net integration improvements
There are a number of planned improvements for working with EFCore6 in .Net 6. Here

you’ll read about a couple of them, but you can find more at the link https://docs.

microsoft.com/en- us/ef/core/what- is- new/ef- core- 6.0/plan#net- integration.

 System.Data

One of the main improvements planned for EFCore6 with .Net 6 will be to implement

the batching API to allow for batching SQL queries. The main improvement will be to

allow for the developer to write multiple queries that can be batched and will not require

parsing by the client, providing a single trip to the database, rather than parsing the

query and making multiple trips from the client to the database. Additional hopes would

be to allow for mixed type queries to be batched, such as select and insert in the same

batch.

Chapter 15 .Net 6 aNd eFCore6

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-6.0/plan#net-integration
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-6.0/plan#net-integration

740

 Microsoft.Data.SqlLite

The main enhancements planned would allow for connection pooling and prepared

statements.

As noted in the testing chapter of this text, one of the limitations of the in-memory

database is the inability to test procedures. With prepared statements, it could

potentially be possible to emulate the behavior of stored procedures for integration

testing.

 Additional new features
In addition to the enhancements and changes listed earlier, a number of new features

are planned. A comprehensive list can be found at the following link: https://docs.

microsoft.com/en- us/ef/core/what- is- new/ef- core- 6.0/whatsnew.

A few of the features will be highlighted to close this chapter.

 More flexible free text search
In the past, you would not be able to search a field that has been serialized to binary or

has been mapped using a value converter. This will enhance your ability to use Contains

or FreeText when looking for matches in your LINQ queries. In the past, this would only

work when the column was stored as a string. In EFCore6, you’ll be able to leverage this

enhanced search against your types, not just against strings. For example, you can add a

type for AdditionalProperties that stores JSON data to the Items table, and then you can

search the column for matches within that JSON data (see Activity 15-2, Task 1).

 UnicodeAttribute
In the past, you would have to use the IsUnicode property in the model builder in

order to set the type of a field to be Unicode. Additionally, you would set that to false

for a non-Unicode field. In EFCore6, you’ll be able to directly map a field using the

new DataAnnotation for Unicode(true|false) to map a property as Unicode or non-

Unicode (see Activity 15-1, Task 3).

Chapter 15 .Net 6 aNd eFCore6

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-6.0/whatsnew
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-6.0/whatsnew

741

 PrecisionAttribute
In EFCore6, another DataAnnotation that will be added is a Precision(n,m) attribute.

This attribute will allow you to easily map the precision of a decimal field. In the past,

you would have had to use the column DataAnnotation similar to the following:

[Column("PurchasePrice", TypeName = ("decimal(18,2)")]. In EFCore6, you’ll be

able to set it more simply as [Precision(18,2)] (see Activity 15-1, Task 1).

 EntityTypeConfigurationAttribute
Another change coming with EFCore6 will be the ability to create configurations for your

entities that can be leveraged from outside of the OnModelCreating override without

having to do any extra configuration.

This will allow for easier use of a layer of abstraction to allow you to better

manage your entities and will also help to keep the DbContext cleaner. With the

EntityTypeConfigurationAttribute added to your model, you just reference the

model in the DBContext as you ordinarily would, and the configuration will be applied as

expected (see Activity 15-1, Task 2).

 Translate ToString on SQLLite
Translation of non-text types is already possible with EFCore5 for SQL Server, but with

EFCore6, you will be able to do this for SQLLite as well. With this feature, non-text fields

will be automatically cast to text so that you can search the value for a match (see Activity

15-3).

 EF.Functions.Random
Another feature coming with EFCore6 will be the random number function. This

function will generate a number between 0 and 1. The underlying SQL will translate to

the RAND function (see Activity 15-2, Task 3).

Chapter 15 .Net 6 aNd eFCore6

742

 Support for SQL Server sparse columns
When you have data where the column values across the dataset are going to be mostly null,

with just a few instances containing data, using sparse columns is a great choice. In the last

chapter, you saw how to use the table-per-type mapping. In a table-per-hierarchy mapping,

there are going to be many fields that might benefit from being optimized for null values.

In EFCore6, you will be able to use the IsSparse mapping in the OnModelCreating

method via the Fluent API to map a field as a sparse column (see Activity 15-2, Task 5).

 Command timeout in the connection string for SQLLite
Another feature for EFCore6 will be the ability to set the command timeout in the

connection string for SQLLite databases. To set the command timeout, you can add the

command directly to the connection string with the statement Command Timeout=30 or

Default Timeout=120.

 In-memory database – Validate required parameters
One of the updates to the in-memory database is a new exception being thrown when a

required field is null.

 Savepoints API – Use partial transactions to roll back
to a previous savepoint
Another update to the SQLite database is the ability to use savepoints. When using

savepoints, you can save the transaction that is in process. Once you’ve done that, you

can then continue working, and if something goes wrong, you can roll the transaction

back to the created savepoint. In this manner, you can commit the changes to the point

where the savepoint was created.

 Reverse-engineering preserves database comments
in code
Another update to EFCore6 is that any comments that exist in a database that is being

reverse-engineered will also be translated into comments in the classes generated

during the reverse-engineering process.

Chapter 15 .Net 6 aNd eFCore6

743

 Chapter 15 activities
In order to keep this simplistic, all activities for Chapter 15 use a prebuilt minimal

implementation. For the easiest possible solution, just grab the starter files for each

activity, then validate the connection string will connect to your database, open the

Package Manager Console (PMC) and select the EFCore_DbLibrary project, and then run

an update-database command. Always remember a solution is included in the final files

for the activity, in case you need to review something or just want to see the solution. For

brevity, a few of the enhancements have been combined where it makes sense to limit

the number of activities.

As a final note here, remember that I’m working against a preview version of

EFCore6, so certain features may change slightly and/or features may be available to

you that are not available as I am writing these activities. I will continue to support the

codebase at GitHub to make sure any issues are quickly resolved, should any arise.

 Activity 15-1: New attributes
One of the easiest ways to get started with new features is to look at the new attributes for

Unicode and Precision and then dive a bit into the EntityTypeConfiguration attribute.

In this activity, you will take a quick look at all three of these new attributes.

 Task 0: Getting started
To get started, grab the EFCore_Activity15-1_StarterFiles and then run the steps

mentioned earlier to get the project ready for the activity.

 Task 1: Use the Precision attribute
In this task, you will look at two different ways to set the precision and scale on a

database column using EFCore6.

 Step 1: Note the update-database warning

When you first get the starter files and run the update-database command, you’ll

note that there is a warning that is happening on two of the fields as follows: No store

type was specified for the decimal property ‘CurrentOrFinalPrice’ on entity type ‘Item’.

Chapter 15 .Net 6 aNd eFCore6

744

This will cause values to be silently truncated if they do not fit in the default precision

and scale. Explicitly specify the SQL server column type that can accommodate all the

values in ‘OnModelCreating’ using ‘HasColumnType’, specify precision and scale using

‘HasPrecision’, or configure a value converter using ‘HasConversion’.

The same thing is repeated for the PurchasePrice field.

Note that the warning tells you directly to specify precision and scale using

HasPrecision or configure a value converter using HasConversion (see Figure 15-1).

There are a couple of ways to get rid of this error. Before you can fix this issue,

however, you will want to roll back the migration that creates the Item entity and the

schema for auditing. To do this, run the command

update-database -migration 20210606183054_initial-migration

Once the command is run, you’ll be able to apply changes that will fix the problem

and re-apply the migration.

 Step 2: Fix the precision and scale using the Fluent API

Prior to EFCore6, one way to fix this issue would be to use the Fluent API to set the

precision. For this step, you’ll use the Fluent API to set the precision and scale on the

CurrentOrFinalPrice column.

Figure 15-1. The initial run of update-database contains a warning for the lack of
using precision and a potential side effect of truncation

Chapter 15 .Net 6 aNd eFCore6

745

This is easily accomplished by going to the InventoryDbContext in the EFCore_

DBLibrary project. Add the following code to the context after the OnConfiguring

method and before the SaveChanges method:

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

 modelBuilder.Entity<Item>()

 .Property(x => x.CurrentOrFinalPrice)

 .HasPrecision(18, 2);

}

This will set the precision and scale to 18, 2, which is a familiar setting for decimals

if you’ve used SQL database for a long time. Feel free to use a smaller number for the

precision if you so desire.

Do not run the migrations yet. Also note that if you are reviewing the final solution

files, this code will be commented out in the final files due to changes coming in Task 2

of this activity. At this point, of course, you would not want to comment out that code.

 Step 3: Fix the precision and scale using the new Precision
attribute

A second way to fix the precision and scale is to use the new Precision attribute

available in EFCore6. For this step, you will use this new attribute to fix the

PurchasePrice column precision warning.

Navigate to the Item.cs class file in the InventoryModels project. Locate the line

of code public decimal? PurchasePrice { get; set; } and replace that code with

the following two lines of code above that line to decorate the property with the new

Precision attribute:

[Precision(18, 2)]

public decimal? PurchasePrice { get; set; }

Unfortunately, the code won’t work just yet. If you try to use the suggested fixes, the

solution would be to install the package MathNet.Numerics, which is not the correct

package (as shown in Figure 15-2).

Chapter 15 .Net 6 aNd eFCore6

746

To fix this, you need to add a reference to Microsoft.EntityFrameworkCore into your

solution. You can do this using the Manage NuGet Packages for Solution dialog, or

an easy way to get it is to just add the following lines of code to your InventoryModels.

csproj project file:

<ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore"

Version="6.0.0-*" />

</ItemGroup>

Note that I’m using schema 6.0.0-* since I’m working against preview versions
and want to get the latest version of the code. Your version number might be
different and shouldn’t matter as long as the first number is 6.

You could also just add this code and then use the Manage NuGet package
Manager for the solution to see if any updates are available.

Save the project file, and then you will be able to add a using statement for

Microsoft.EntityFramework to your Item.cs class file as shown in Figure 15-3.

Figure 15-2. The current suggestions do not contain the correct way to get this new
attribute to work

Chapter 15 .Net 6 aNd eFCore6

747

 Step 4: Build the project and run the update-database
command

With the two fixes for precision issues, ensure that you’ve rolled the current migration

back to the initial-migration so the create items table migration will be re-applied,

and then run the update-database command in the PMC to run the create-items-

table-and-audit-schema migration. Note that as the update-database command

executes this time, there are no longer any warnings generated about precision and scale

for the two fields (see Figure 15-4).

Note that running these migrations has generated the appropriate database and

columns with precision as expected (review Figure 15-5 for clarity).

Figure 15-3. Once the NuGet package for EntityFrameworkCore is loaded into the
project, you can add the correct using statement to leverage the Precision attribute

Figure 15-4. The project is updated, and there are no longer warnings for
precision and scale as the migrations are applied

Chapter 15 .Net 6 aNd eFCore6

748

One last thing to note here is that because the database fields were previously

created as decimal(18, 2), as you can see in the migration itself, a new migration was not

required, and all you did was simply tell the system that you expect the exact precision

and scale as defined. Had you changed the precision or scale, you would likely need to

create a new migration to also affect the data structure changes in the database.

 Task 2: Leverage the EntityTypeConfigurationAttribute
In this second task for Activity 15-1, you will leverage the

EntityTypeConfigurationAttribute to see how you can move entity configuration

using the Fluent API into its own class, instead of the DbContext or OnModelCreating.

Figure 15-5. The database is generated, and columns have precision as expected
due to the changes in this first task

Chapter 15 .Net 6 aNd eFCore6

749

 Step 1: Revert the database again

To get a fresh start for the migrations, once again roll your database back to the initial

migration using the command

update-database -migration 20210606183054_initial-migration

You can likely get this command back by simply using the up arrow in the PMC if you

haven’t closed out the project.

 Step 2: Move the Fluent API declaration
for precision out of the DbContext using the new
EntityTypeConfigurationAttribute

In this step, you will rework the precision and scale fix that uses the Fluent API to

use the new EntityTypeConfigurationAttribute by implementing a new class

to contain the information. I think that once you’ve seen this, you’ll understand

how useful this approach would be in the real world due to the ability to keep your

context file cleaner while also keeping entity code and configuration details together

in the same project.

Begin by navigating to the InventoryDbContext file in the EFCore_DBLibrary project.

In this file, locate the code for the OnModelCreating method that you implemented in the

last task. Remove the code that sets the precision for the Item entity (note that I am just

going to comment this code out for clarity in the final files, but you will not need it so you

can remove it).

 Step 3: Add a new class file called ItemConfiguration
to the InventoryModels project, and implement
IEntityTypeConfiguration<Item> in the new class

To complete this step, navigate to the InventoryModels project and add a new class file

named ItemConfiguration.cs to create the new configuration class. Set the code for the

class to the following block of code:

Chapter 15 .Net 6 aNd eFCore6

750

public class ItemConfiguration : IEntityTypeConfiguration<Item>

{

 public void Configure(EntityTypeBuilder<Item> builder)

 {

 //configuration code here...

 }

}

Note that this code is creating the class and implementing the interface for

IEntityTypeConfiguration on type Item. You will need to add the using statements

using Microsoft.EntityFrameworkCore and using Microsoft.EntityFrameworkCore.

Metadata.Builders to the file.

Once you have that code in place, replace the Configure method code with the

following to set the precision for the CurrentOrFinalPrice column on the Item entity:

public void Configure(EntityTypeBuilder<Item> builder)

{

 builder

 .Property(x => x.CurrentOrFinalPrice)

 .HasPrecision(18, 2);

}

To complete the operation, you also need to tell the Item class to leverage this

configuration. Open the Item.cs file and add the following declaration to the top of the

Item class:

[EntityTypeConfiguration(typeof(ItemConfiguration))]

Another way you could have done this previously would be to register it in the

OnModelCreating, but this still kept the implementation tightly coupled to the

DbContext. With this new approach, you can use your model with its appropriate

configuration in any DbContext without having to register it in the OnModelCreating

method. Figure 15-6 shows the implementation in the Item class for clarity.

Chapter 15 .Net 6 aNd eFCore6

751

 Step 4: Run the update-database command to see the final result

With the new EntityTypeConfiguration in place, ensure you have deleted the

InventoryManagerDb1501 database and then run the update-database command again.

Once again, the operation will complete as expected, with no warnings for precision

or scale. With this, you’ve successfully moved the configuration from the DbContext into

the ItemConfiguration class.

 Task 3: Use the new Unicode attribute
For this final task of Activity 15-1, you will see how to leverage the new Unicode attribute

for a property in your entity. Once again, there are two ways to do this. The traditional

way is using the Fluent API, and the new way is to use the Unicode attribute.

Figure 15-6. The EntityTypeConfiguration attribute is used on the Item class to
register the ItemConfiguration implementation

Chapter 15 .Net 6 aNd eFCore6

752

 Step 1: Add four new properties to the Item class

To make a contrived example, the first thing you will do is add four new columns to the

Item class. Navigate to the Item.cs file in the InventoryModels project and add the

following code to the Item class:

[StringLength(50)]

public string nonUnicodeValueFluentAPI { get; set; }

[StringLength(50)]

public string nonUnicodeValueAttribute { get; set; }

[StringLength(50)]

public string UnicodeValueFluentAPI { get; set; }

[StringLength(50)]

public string UnicodeValueAttribute { get; set; }

You will need to add the using statement using System.ComponentModel.

DataAnnotations due to the StringLength attribute on the new properties.

 Step 2: Create the FluentAPI Unicode mapping implementations

In this step, you will set two of the properties to be either a Unicode or a non-

Unicode field by setting them correctly in the configuration (you will leverage the

ItemConfiguration you built in the last task to do this).

Navigate to the ItemConfiguration class and add the following code to build out the

properties to be Unicode or non-Unicode as expected:

builder

 .Property(x => x.nonUnicodeValueFluentAPI)

 .IsUnicode(false);

builder

 .Property(x => x.UnicodeValueFluentAPI)

 .IsUnicode(true);

Hopefully, the code is clear enough here that you can see how this should work,

setting one property to be Unicode and the other property to be non-Unicode.

Do not run any migration commands yet.

Chapter 15 .Net 6 aNd eFCore6

753

 Step 3: Use the new Unicode attribute to map the other two
properties

Return to the Item class and update the nonUnicodeValueAttribute property with the

following attribute: [Unicode(false)].

Above the UnicodeValueAttribute property, use the attribute [Unicode(true)].

For clarity, the four new fields should now be declared with the following code:

[StringLength(50)]

public string nonUnicodeValueFluentAPI { get; set; }

[StringLength(50)]

[Unicode(false)]

public string nonUnicodeValueAttribute { get; set; }

[StringLength(50)]

public string UnicodeValueFluentAPI { get; set; }

[StringLength(50)]

[Unicode(true)]

public string UnicodeValueAttribute { get; set; }

 Step 4: Add a new migration and update the database

To see how both the Fluent API and the new attribute for Unicode can be used in your

code, run the command add-migration adding-properties-unicode-attribute.

Review the generated migration to ensure that both approaches to creating Unicode

and non-Unicode fields work as expected (Figure 15-7 shows the expected migration Up

method).

Chapter 15 .Net 6 aNd eFCore6

754

Figure 15-7. The migration is generated and both approaches work, either via the
Fluent API declaration or via the new Unicode attribute

Chapter 15 .Net 6 aNd eFCore6

755

Run the update-database command, and review the database in SSMS to ensure

fields are generated as expected (see Figure 15-8).

 Activity 15-1 summary
In this first activity for the chapter, you were able to implement a number of the

new features regarding attributes and the ability to move Fluent API code to a new

configuration file.

First you saw the use of the Precision attribute and how that allows you to define

the precision and scale as a data annotation as of EFCore6. For comparison, you also saw

a traditional way to accomplish this same task in the Fluent API, which you would have

done prior to EFCore6 (and still works in EFCore6).

Figure 15-8. The columns are generated in the database as expected with two
Unicode and two non-Unicode columns

Chapter 15 .Net 6 aNd eFCore6

756

You then took a look at the implementation of the IEntityTypeAttribute interface

in a class that you can use to build out the properties for a specific entity. This is a great

feature as it will allow for you to keep your DbContext cleaner while also keeping your

properties and their configurations together for ease of reuse in other contexts and

projects.

In the final task for the activity, you then saw how to set fields as Unicode or non-

Unicode, either via the Fluent API or via the new Unicode attribute in your model class.

 Activity 15-2: Changes to how text and searching
are handled, null or whitespace translated
to SQL, sparse columns, nullable reference types,
and a new random function
This activity will be covering a number of new changes which are somewhat closely

related, but yet fairly distinct. Rather than create a number of individual activities, I’ve

chosen to wrap these all together as they are fairly short in duration and are mostly

concerned with ways to search for or use text in columns, including how null or

whitespace is translated into SQL.

 Task 0: Getting started
To get started, grab the EFCore_Activity15-2_StarterFiles and then run the steps

mentioned earlier to get the project ready for the activity.

A couple of quick notes is that in order to make this activity a bit more robust and

create the ability to use some of the new functionality, this project has everything

from the first activity plus a new Category entity. Items have one Category associated,

and Categories can have many Items. All of this relationship information is defined

using regular virtual properties and Fluent API configurations in the individual

EntityTypeConfigurations for Item and Category.

 Task 1: Improved free text search
In this first task, you will explore how EFCore6 has enhanced your ability to search for

text using Contains.

Chapter 15 .Net 6 aNd eFCore6

757

 Step 1: Ensure you have full-text search installed

This first task will not work unless you currently have installed full-text search capability

on your database. If you are not sure, right-click the Items table. If Full-Text index is

grayed out, it’s likely you didn’t install it. To install it, re-run SQL Server installer with a

custom installation, and then when the prompt is available, select update an existing

installation. Select your installation, and then make sure to select the Full-Text and

Semantic Extractions for Search under Database Engine Services (see Figure 15-9).

Note that turning this feature on can take some time. Additionally, you will need to

reconnect to your database or potentially even restart SSMS if you already have it open at

the time of installation of this feature.

Figure 15-9. You will need to have the Full-Text and Semantic Extractions for
Search enabled to complete Task 1 of this activity

Chapter 15 .Net 6 aNd eFCore6

758

 Step 1: Search for Items by Category Name with a traditional
approach

To begin this activity, the first thing to do is examine a traditional search for Items by

using one of the properties of a Category.

Navigate to the Program.cs file in the EFCore_Activity1502 project, and add

a method call to a new method named FindItemsByCategory following the call to

ListInventory in the Main method.

Then add the following code to create the FindItemsByCategory method somewhere

in the Program class:

private static void FindItemsByCategory()

{

 Console.WriteLine("Please enter the filter to use for searching items

by category (i.e. 'Blue' or 'Digital'):");

 var filter = Console.ReadLine();

 if (string.IsNullOrWhiteSpace(filter))

 {

 Console.WriteLine("No filter was supplied. Exiting.");

 return;

 }

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var filteredItems = db.Items

 .AsNoTracking()

 .Select(x => new

 {

 ItemName = x.Name,

 Category = x.Category,

 CategoryName = x.Category.Name,

 CategoryColor = x.Category.Color,

 CategoryColorValue = x.Category.ColorValue

 })

Chapter 15 .Net 6 aNd eFCore6

759

 .Where(x => x.CategoryName.Contains(filter)

 || x.CategoryColor.Contains(filter)

 || x.CategoryColorValue.Contains(filter))

 .OrderBy(x => x.ItemName).ToList();

 filteredItems.ForEach(x => Console.WriteLine($"New Item:

{x.ItemName} " +

 $"has Category {x.CategoryName} " +

 $"with color {x.CategoryColor}"));

 }

}

Run the program, and you should be able to get results similar to what is shown in

Figure 15-10.

This traditional approach works as expected. However, note that you had to explicitly

define all of the properties for the Category entity to search against in the Where clause of

the query.

 Step 2: Leverage the improved free text search in EFCore6

In order to see how this new EF.Functions.Contains operation works, you will need to

create a new value type property that doesn’t map to a navigation. Since the Category is

a navigation on the Item, you can’t use the Fluent API to map it as a property.

Figure 15-10. The filter works as expected using the contains method in a
traditional query

Chapter 15 .Net 6 aNd eFCore6

760

For that reason, in the InventoryModels project, add a new class file called

AdditionalProperty.cs for a new class AdditionalProperty, which will be stored as

JSON in the database, not as a full entity that is mapped to a table.

In the new AdditionalProperty class, add the following code:

public class AdditionalProperty

{

 public string Name { get; set; }

 public string Value { get; set; }

}

Then return to the Item class and map this new class with a new property as follows:

public List<AdditionalProperty> AdditionalProperties { get; set; }

Don’t forget to add the using statement using System.Collections.Generic.

In order to leverage the JSON mapping for this new property, return to the

ItemConfiguration class in the InventoryModels project to further define how this

property is mapped in the Fluent API.

In the ItemConfiguration, add the following code:

builder

 .Property(i => i.AdditionalProperties)

 .HasConversion(ap => JsonSerializer.Serialize(ap, null),

 ap => JsonSerializer.Deserialize<List<AdditionalProperty>>

(ap, null),

 new ValueComparer<List<AdditionalProperty>>(

 (c1, c2) => c1.SequenceEqual(c2),

 c => c.Aggregate(0, (a, v) => HashCode.Combine(a,

v.GetHashCode())),

 c => c.ToList()));

This code will require a number of using statements to be added to the class. Ensure

that your ItemConfiguration class has all of the following using statements at the top of

the file:

using Microsoft.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore.ChangeTracking;

using Microsoft.EntityFrameworkCore.Metadata.Builders;

Chapter 15 .Net 6 aNd eFCore6

761

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text.Json;

 Step 3: Add a migration to affect the changes to the Items table

Now that you’ve created a new property for the Item class, you need to add a migration

to be able to store the data.

Use the command add-migration add-additional-properties-to-Item to create

a new migration. The migration should be simple and should look like what is shown in

Figure 15-11.

Once you’ve reviewed the migration, run the update-database command.

Figure 15-11. The migration contains the new column for Additional Properties,
and it’s stored as nvarchar(max)

Chapter 15 .Net 6 aNd eFCore6

762

 Step 4: Create the code to perform the search

Now that you have the data structures in place to store additional properties as JSON

in your database in a single column, you need to add data and then leverage those

additional properties.

Begin by returning to the Program.cs file in the EFCore_Activity1502 project and

then adding a new method call to FindItemsByAdditionalProperty in the Main method.

Comment out the call to FindItemsByCategory to make the output easier to review.

Next, add the following code to define the new method somewhere in the Program

class:

private static void FindItemsByAdditionalProperty()

{

 Console.WriteLine("Please enter the filter to use for searching items

by additional properties:");

 var filter = Console.ReadLine();

 if (string.IsNullOrWhiteSpace(filter))

 {

 Console.WriteLine("No filter was supplied. Exiting.");

 return;

 }

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var filteredItems = db.Items

 .AsNoTracking()

 .Select(x => new

 {

 ItemName = x.Name,

 AdditionalProperties = x.AdditionalProperties

 })

 .Where(i => EF.Functions.Contains(i.

AdditionalProperties, filter))

 .OrderBy(x => x.ItemName).ToList();

Chapter 15 .Net 6 aNd eFCore6

763

 foreach (var item in filteredItems)

 {

 Console.WriteLine($"New Item: {item.ItemName}");

 item.AdditionalProperties.ForEach(ap => Console.WriteLine($"AP:

{ap.Name} | {ap.Value}"));

 }

 }

}

To complete the initial code changes, add the following method to generate a couple

of additional property lists:

private static List<AdditionalProperty> GenerateAdditionalProperties(int

modifier)

{

 if (modifier % 2 == 0)

 {

 return new List<AdditionalProperty>() {

 new AdditionalProperty() { Name = "Genre", Value="Sci/Fi"},

 new AdditionalProperty() { Name = "Rating", Value="PG"},

 new AdditionalProperty() { Name = "RottenTomatoes",

Value="68/45"},

 };

 }

 else

 {

 return new List<AdditionalProperty>() {

 new AdditionalProperty() { Name = "Genre", Value="Action"},

 new AdditionalProperty() { Name = "Rating", Value="R"},

 new AdditionalProperty() { Name = "RottenTomatoes",

Value="92/71"},

 };

 }

}

Finally, add the line of code

AdditionalProperties = GenerateAdditionalProperties(r.Next(0, 99))

Chapter 15 .Net 6 aNd eFCore6

764

to the declaration of a new Item under the CategoryId in the EnsureItem method.

Run the program to see what happens. Do you think this will work? If you answered

No, you are correct (unless you already have defined a full-text index on the Items table).

Running the code currently without a full-text index generates the error as shown in

Figure 15-12.

 Step 5: Create a full-text index on the Items table

Open SSMS and connect to your database if you haven’t already. Right-click the Items

table, and then select Full-Text index ➤ Define Full-Text Index.

Use the wizard to create the full-text index for the Items table. Select the

AdditionalProperties field when asked to select table columns, and do not select

Statistical Semantics as using that option requires additional configuration and

should not be necessary for this activity. Track changes automatically. If you have an

existing catalog, select it. If not, create a new one and set it as the default. Leave the index

filegroup and full-text stoplist with the default selections. Skip through the population

schedules. Review settings and click Finish. For clarity, review Figure 15-13.

Figure 15-12. The Items table is not yet set up with a full-text index so an error is
shown during execution

Chapter 15 .Net 6 aNd eFCore6

765

Once the wizard completes, run the program again. This time you should have no

problem searching your additional properties field (see Figure 15-14 for sample results).

Figure 15-13. The final page of the Full-Text Indexing Wizard is shown to help
with clarity on expected configuration

Chapter 15 .Net 6 aNd eFCore6

766

Reminder due to the pseudo-random nature of the results, your output my vary
slightly.

 Task 2: Review the upgrade to string.Concat
For this activity, you will run a simple query to show that string.Concat is no longer

limited to just two arguments as it was in previous versions of EFCore.

 Step 1: Add the method

For this first step, return to the Main method in the Program class for the

EFCore_Activity1502 project. Add a method call for a new method named

StringConcatWithMultipleArguments. As the output for this will be verbose,

comment out your other calls to ListInventory, FindItemsByCategory, and

FindItemsByAdditionalProperty.

Figure 15-14. With a full-text index in place, the EF.Functions.Contains function
can be successfully leveraged to search the text of a JSON column without having to
specify specific properties

Chapter 15 .Net 6 aNd eFCore6

767

Next, add the method code as follows somewhere in the Program class:

private static void StringConcatWithMultipleArguments()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 //in the past, you could only concat two

 var result = db.Items

 .AsNoTracking()

 .Select(x => new

 {

 ItemName = x.Name,

 ItemDetail = string.Concat("Item: ", x.Name

 , " Description: ",

x.Description

 , " Notes: ", x.Notes),

 Category = x.Category,

 CategoryDetail = string.Concat("Category: ",

x.Category.Name

 , " Color: ", x.Category.

Color

 , " Value: ", x.Category.

ColorValue)

 })

 .OrderBy(x => x.ItemName).ToList();

 result.ForEach(x => Console.WriteLine($"{x.ItemDetail} |

{x.CategoryDetail}"));

 }

}

 Step 2: Run the program to see the results

With the code in place, run the program to see the results of the use of string.Concat in

EFCore6 with more than two parameters allowed (review Figure 15-15).

Chapter 15 .Net 6 aNd eFCore6

768

 Task 3: Review the use of EF.Functions.Random
In this task, you will check out the EF.Functions.Random to return a pseudo-random

number between 0 and 1.

 Step 1: Add a new method to review EF.Functions.Random

Return to the Main method in the Program class. Comment out the call to the

StringConcatWithMultipleArguments method, and add a new method called

EFFunctionsRandom.

Add the code for the method somewhere in the Program class as follows:

private static void EFFunctionsRandom()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.AsNoTracking()

 .Where(i => i.PurchasePrice >= (decimal)(EF.

Functions.Random() * 33) + 1)

 .ToList();

 items.ForEach(x => Console.WriteLine($"{x.Name} | {x.PurchasePrice}"));

 }

}

Next, add the following line of code to the Item declaration in the EnsureItem

method after the AdditionalProperties:

PurchasePrice = r.Next(4, 33)

Figure 15-15. The string.Concat method can now leverage more than just two
arguments in EFCore6

Chapter 15 .Net 6 aNd eFCore6

769

Figure 15-16. The EF.Functions.Random can be used to get results based on the
returned value of a pseudo-random number

 Step 2: Run the program a couple of times to see results

With the code in place, run the program a few times to see various results. They should

be similar to what is shown in Figure 15-16.

 Task 4: Reviewing improved SQL Server translation
for IsNullorWhiteSpace
This task shows how EFCore6 now handles IsNullorWhiteSpace to optimize query

execution.

 Step 1: Create the new method

For this first task, return to the Main method of the Program class. Comment out

the call to EFFunctionsRandom, and add a new method call for a method named

IsNullOrWhiteSpaceReview.

Add the code for the IsNullOrWhiteSpaceReview method somewhere in the Program

class as follows:

private static void IsNullOrWhiteSpaceReview()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.AsNoTracking()

 .Where(i => string.IsNullOrWhiteSpace(i.Description)

 || string.IsNullOrWhiteSpace(i.

Notes))

 .ToList();

Chapter 15 .Net 6 aNd eFCore6

770

 items.ForEach(x => Console.WriteLine($"{x.Name} | has null or

whitespace in description or notes"));

 }

}

The output from the profiler should be similar to what is shown in Figure 15-17.

In the past, the Where clause would have run operations like LTRIM(RTRIM([i].

[Description])) = N" instead of the simple [i].[Description] = N".

 Step 2: Review the SQL output in SQL Server Profiler

Use SSMS to turn on a new session for the SQL Server Profiler. Once the profiler session

is running, run the program and review the query output.

 Task 5: Support for sparse columns
If you worked through the book prior to reading this chapter, you’ve already seen the

changes related to the table-per-type (TPT) vs. table-per-hierarchy (TPH) (review Activity

14-6 for more information).

Figure 15-17. The SQL Server Profiler reveals the output from the query that has
optimized the IsNullOrWhiteSpace query

Chapter 15 .Net 6 aNd eFCore6

771

In this task, you will see how EFCore6 has optimized the database for sparse columns

in a TPH implementation.

Briefly, the difference is that a TPT implementation creates a table for each of the

classes that inherit from the base type. In a TPH implementation, only one table is used,

and a column is added to differentiate the specific type. In TPT, columns can map exactly

to the type that is being stored. In TPH, you end up with a number of columns that do

not get data due to the general nature of the table spanning multiple types.

 Step 1: Implement the TPH model classes

Begin this first step for this final task by creating a new class file named Player.cs in the

InventoryModels project. Then add two implementing classes Person.cs and Company.cs.

Define the Player.cs class with the following code:

public class Player : FullAuditModel

{

 [Required]

 [StringLength(50)]

 public virtual string Name { get; set; }

 [StringLength(500)]

 public string Description { get; set; }

 public virtual List<Item> Items { get; set; } = new List<Item>();

}

Define the Person.cs class as follows:

public class Person : Player

{

 [StringLength(50)]

 public string FirstName { get; set; }

 [StringLength(250)]

 public string LastName { get; set; }

 public override string Name => $"{FirstName} {LastName}";

}

Chapter 15 .Net 6 aNd eFCore6

772

Implement the Company.cs file as follows:

public class Company : Player

{

 [StringLength(150)]

 public string CompanyName { get; set; }

 [StringLength(10)]

 public string StockSymbol { get; set; }

 [StringLength(50)]

 public string City { get; set; }

 public override string Name => $"{CompanyName} - {StockSymbol}";

}

In order to create a many-to-many relationship between Players and Items, also

add the following to the Item class:

public virtual List<Player> Players { get; set; }

 Step 2: Add the new entities to the DbContext

There are a number of ways to register the entities. Using the DbSet<T> approach is the

easiest, but you could also register each entity in the OnModelCreating if you prefer to

use the Fluent API.

In the InventoryDbContext, add the following three lines following the line that

declares the DbSet<Category>:

public DbSet<Player> Players { get; set; }

public DbSet<Person> People { get; set; }

public DbSet<Company> Companies { get; set; }

With the declarations in place, run the command add-migration create-tph-

players-person-company. The migration that is generated should create the Players

table and also creates a join table between Items and Players. The main thing to note

is the additional column Discriminator that is added to the Players table and columns

like StockSymbol and FirstName and LastName, which are specific to sub-types, but all

included in the table.

Chapter 15 .Net 6 aNd eFCore6

773

Also note, however, that no columns are currently marked as sparse. Run the

command remove-migration to remove the generated migration.

 Step 3: Mark StockSymbol as sparse

To show how the sparse column supports, you will just tell the system to mark the stock

symbol as a sparse column. This is a bit contrived, but good enough to get the point

across.

Navigate to the InventoryDbContext in the EFCore_DBLibrary project. Add the

following line of code to the OnModelCreating method:

modelBuilder.Entity<Company>().Property(x => x.StockSymbol).IsSparse();

Note that as of the time of this writing, you cannot use IsSparse in
the EntityTypeConfiguration, which is why it is being done in the
OnModelCreating method here.

 Step 4: Regenerate the migration

Return to the PMC and run the add-migration command again:

add-migration create-tph-players-person-company

You should be able to easily get this back with your up arrow.

Note that this time the migration is created and the column StockSymbol is created

with a special annotation SqlServer:Sparse (see Figure 15-18).

Chapter 15 .Net 6 aNd eFCore6

774

With the field marked as Sparse, run the update-database command.

By making this field known to the database as a field that will not be leveraged often,

the database can further optimize this table since the column will be expected to be null

for most of the rows.

 Activity 15-2 summary
This activity was pretty intense, but a number of great features were discovered that are

new as of EFCore6.The first thing you learned about was the improvements that have

been made for free text searching. This did require you to potentially update your server

installation to include the ability to create a full-text index. Once all of that was in place,

you were able to see how you can easily search a column that is loaded with JSON data

by both defining the column and then also using the Fluent API to tell the system how to

serialize and deserialize the column text.

You then learned about a few simple features like the upgraded ability to send

more than two arguments to the string.Concat function, the ability to use a pseudo-

random number generator in EF.Functions.Random, and the improved efficiency of the

Figure 15-18. The SqlServer:Sparse annotation is added to the StockSymbol field
as expected

Chapter 15 .Net 6 aNd eFCore6

775

translation of string.IsNullOrWhiteSpace into SQL. The activity finished up by looking

at the added support for sparse columns in tables, which is especially useful in a TPH

implementation where one or more fields may be expected to be null for most rows.

 Chapter summary
In this chapter, you learned about some of the new features that are coming with

EFCore6. This list of features and enhancements presented is not intended to be all

inclusive. Additionally, as the framework is a work in progress, it’s entirely possible that

a mentioned feature won’t be implemented in the first release of the new framework and

may get pushed into the next version of EFCore.

Hopefully through this book, you’ve enhanced your overall skills with Entity

Framework and you will be looking forward to the next version, and hopefully you’ll be

able to leverage some or all of the features mentioned in this chapter as makes sense for

your solutions.

 Important takeaways
Now that you’ve seen some of the features that are coming with EFCore6, you should be

positioned to use the skills you’ve learned and implement solid solutions in EFCore5, 6,

and beyond.

 Closing thoughts
I hope you have enjoyed reading and working through this book as much as I’ve enjoyed

creating it for you. Alas, the end is nigh.

Our time together doesn’t have to be over, however. Please don’t hesitate to connect

with me on LinkedIn or Twitter. I would love to hear your story and get your thoughts on

how this book has helped you in your day-to-day work.

I wish you all the best in your development endeavors. May you have peace, joy, and

abundance in your life.

Chapter 15 .Net 6 aNd eFCore6

777
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2_16

CHAPTER 16

Appendix A:
Troubleshooting
There are a number of activities in this book, and, while I’ve tried to keep them

consistent, I am certain there may be times where things could be a bit difficult.

Therefore, I wanted to put together a quick reference to help in case something goes

wrong during your application of the activities from the book.

 Migrations
As you are likely aware, troubleshooting migrations can be very painful if things don’t

work as expected. From cryptic error messages to things that really should work not

working, a lot of figurative hair can get pulled out.

If you started by working with your own solution, but then switch to one of the starter

packs, you would likely run into some issues with database conflicts, simply because my

dates are clearly going to be different than yours. For this reason, all of the starter packs

that could conflict if used against a common database are currently pointed to their own

database via the connection string.

Note that if you want to do this entire book in a single database, that is entirely possible

as well. You can always switch a connection string to point to any database of your choice.

Just remember that your migrations and my migrations will never line up exactly.

The overall goal/expectation for the book would be that you would work on your

own files the entire way through the book and only reference mine as needed and then

implement the solution in your own projects. However, you may wish to skip around, or

you may just desire a fresh start at some point with files that are set up and ready to run the

activity you are wanting to work through, so it is more than likely you will need or want to

leverage one of the pre-fabricated project files at some point in your journey. In a couple of

the solutions, such as the web projects, using the starter files will be the easiest choice.

https://doi.org/10.1007/978-1-4842-7301-2_16#DOI

778

 Objects exist/objects don’t exist
Another major issue you may run into as you work through the book is that the initial

migrations are not idempotent. Therefore, if your database already has an Items table,

and you pick up my starter pack and point at your database, you would likely get an error

that the update-database command cannot be applied because the Items table already

exists.

Again, for this reason, the starter packs have been reworked to contain a reference

to a new database. Because of this, using the starter packs does require a few steps to get

started. Table A-1 expounds upon this.

Along the way, if you try to run a migration and an object is missing, you might be

able to simply add the object and try again. Another thought here could be to find the

activity where the object was created and use that to build out the object and then come

back to where you were in your current project.

One final thought here is that if you are working with scripts, ensure that you have

included all scripts as embedded resources in your DBLibrary project where you are

creating the migrations.

 Comment out code
One solution that we might use in this text is to create a migration and then just

comment out the code. This is not a recommended solution, but it works in a jam. For

example, if you already created the Items table, then I have a migration that also wants to

do the same thing, and you pick up my files and get a conflict due to pointing to the same

database, and then just comment my migration code out and let it execute with no effect

on the schema or data in your database. Use this approach sparingly, but know that it

can be done in a jam (you wouldn’t really want to do it this way in a real-world project).

The one exception to this where it is entirely useful is when you are reverse-

engineering an existing database. In that scenario, there is likely never a time that

you will want to recreate any of the original schema, so that migration code should be

removed or commented out on the initial migration from an existing database into a

code-first approach.

Chapter 16 appendix a: troubleshooting

779

 Manual insert to the database
If an object is missing, you could insert it manually with a script using SSMS. This might

be handy for a missing function or view or procedure. Again, this is likely not the correct

approach as you should be able to get everything you need through migrations.

Another thing to note here is that you can attempt to make EF think that a migration

has executed by simply performing an insert into the __EFMigrationsHistory table.

Simply insert the migration id and product version, and the next time you run update-

database, EF should skip your conflicting migration.

Additionally, if something goes horribly wrong and a migration is idempotent, you

could potentially force a reset by deleting a MigrationId from the table to make EF think

it still needs to run that migration.

 Change DB connection
Probably one of the easiest things you could do if things are off kilter is just to change the

name of the database in the connection string or point to a different server where the

database doesn’t exist. In this way, no conflicts could possibly exist.

When starting a new database, you’ll also have to reset your data. Since all the starter

projects are set to do this, instructions on how to work with the files are in Table A-1. For

the same reason, if you build your own solutions, you should follow a similar approach

to reseed your data as you progress through the exercises.

In the event you are in the latter part of the book and you need to just point to a new

database, you could just set the database connection to the new database and then run

the migrator project by right-clicking and selecting Debug ➤ Start New Instance. This

action will ensure that the database exits and then apply the migrations, as well as run a

quick seed as seen in the text. Note also that from Activity 10-1 on, there is a simple script

being used to reset the relationships between Items and Categories.

Feel free to use multiple databases, as well as multiple database servers to suit your

needs. Just remember that your connection string holds all the power when you work

through the activities.

Chapter 16 appendix a: troubleshooting

780

 Starter packs
Every activity except the first has an accompanying starter pack. If something isn’t

working or you just want to jump around, leverage the starter packs to get the code in the

state it needs to be at the start of the activity.

 General starter pack creation
Rather than keep working with the same files, I chose to do a unique project for each

activity. As you might imagine, this added a bit of work. In general, if you want to roll

your own starter packs, you could follow a similar process. Here are the steps I took on

generally every new project:

 1. Create a new .Net Core console application for .Net 6.

 2. Copy and paste the existing project folders for all of the class

libraries that are needed for the activity.

 3. Add each class library to the solution, and build the project to

restore NuGet packages.

 4. Get the list of NuGet packages from the previous solution (the last

completed activity) from the project file, and copy/paste that into

the new activity’s *.csproj file. This is much faster than doing them

one by one in NuGet Package Manager.

 5. Copy/paste the appsettings.json file into the new activity

project, add it as Content, Copy if newer. Do the same for the

InventoryMapper file once the project is leveraging AutoMapper

(also update the namespace to the new project’s namespace when

doing this).

 6. Set project references on the new activity to appropriate class

libraries.

 7. Build and run.

 8. Copy/paste the code from the Program file of the previous activity

into the Program file of the new activity (be careful – just get

the methods, not the class or the namespace). Then add all the

missing using statements and run the project.

Chapter 16 appendix a: troubleshooting

781

 9. In some instances, you may choose to do an update-database

command to make sure there are no pending migrations.

 10. Finally, if in doubt, add a new migration called test to ensure that

there are no pending changes. This is very important if the activity

is going to be adding new migrations, because you don’t want to

start with something in your way.

 What you should do every time
When you get a starter pack for an InventoryManagerDb activity, make sure that you do

the same thing at the start, every time.

First, build the project. Once it builds, check the connection string to make sure it

points to the correct database server. Use Table A-1 to see specific information about

each starter project.

When you have completed the initial build, run an update-database command to

apply the pending migrations. If the activity you are about to start has migrations in it,

then you should run an add-migration command to make sure that you don’t have any

untracked pending changes that could get in the way. Although you should not have any,

if you do have pending changes in the new migration just created, examine the migration

and consider just updating the database if the changes are not going to hurt anything.

If no pending operations exist and you get a blank migration (this should generally be

the case), just run the remove-migration command so that you don’t have unnecessary

blank migration.

If the project contains the InventoryDataMigrator project, you should also run that

by right-clicking the project and selecting Debug ➤ Start New Instance. If the activity

is Activity 10-1 or greater, you should also run the script to remap the relationships for

Items and Categories. If the activity is Activity 11-1 or greater, the original database

would be encrypted; however, new databases won’t be. The connection string is ready

to work against an encrypted database, but you do not need to redo the encryption on

every new database, unless you would like the practice. The code should work either

way, regardless of if the data is encrypted or not.

Finally, after all of that, make sure that the main activity project is set as the startup

project and then run the project to ensure that it is working as expected.

Chapter 16 appendix a: troubleshooting

782

 Simple instructions
The information in Table A-1 will help you get started with each of the starter packs as a

quick reference.

Table A-1. Instructions on how to work with each starter file pack

Activity Instructions

eFCore_activity02- 1_starterFiles Just use the provided files in your new project.

eFCore_activity03- 1_starterFiles these are adventureWorks-based files, so just use the

provided files. there are no migrations at the start of this

activity so there should be no conflicts.

eFCore_activity03- 2_starterFiles these are inventoryManagerdb-based files, and there are no

migrations at the start, so you can just use these files against

your initial database.

eFCore_activity04- 1_

starterFileseFCore_activity04- 2_

starterFiles

eFCore_activity05- 1_starterFiles

eFCore_activity05- 2_starterFiles

eFCore_activity05- 3_starterFiles

eFCore_activity07- 1_starterFiles

eFCore_activity07- 2_starterFiles

these starter files are pointed to their own database based

on the connection string due to the potential for conflicts with

migrations. open the starter files, and check the connection

string to make sure it points to a valid server. each activity

will point to a new inventoryManagerdbxxxx version of the

database. this will add more databases to your local server

but avoids migration conflicts due to the timestamp on each

migration.build the project, and then run an update-database

command in the pMC. once that update has completed,

run the project to ensure it works. potentially run an add-

migration test command to ensure a blank migration,

and then run the command remove-migration to remove

the test migration once you’ve validated there are no pending

migration-causing changes.

(continued)

Chapter 16 appendix a: troubleshooting

783

Table A-1. (continued)

Activity Instructions

eFCore_activity-06- 1_starterFiles this is a new project for a web-based implementation to help

show simple Crud operations with minimal work.

because this is a new project, you can use this without any

extra steps on your part.

eFCore_activity07- 3_starterFiles

eFCore_activity09- 2_starterFiles

eFCore_activity09- 3_starterFiles

eFCore_activity10- 1_starterFiles

eFCore_activity11- 1_starterFiles

eFCore_activity11- 2_starterFiles

eFCore_activity12- 1_starterFiles

eFCore_activity12- 2_starterFiles

eFCore_activity13- 1_starterFiles

eFCore_activity14- 1_starterFiles

eFCore_activity14- 2_starterFiles

eFCore_activity14- 3_starterFiles

eFCore_activity14- 4_starterFiles

eFCore_activity14- 5_starterFiles

eFCore_activity14- 6_starterFiles

as with other InventoryManagerDb projects, these

projects all have their own database connection set in the

starter files, so ensure the server is correct. When you

get these projects, you should run the update-database

command. You should then use the Debug ➤ Start New

Instance on the InventoryDataMigrator project to

seed additional data. then run the project to ensure it is

working as expected. as earlier, you could also run the add-

migration test command and then remove-migration

when you’ve validated there are no pending migration

changes.

For activity 10-1 and greater (activities 11-1, 11-2, 12-1,

etc.), remember to also run the script MapCategories.sql

against your new database after seeding data.

additionally, activity 11-1 and greater are set to work against

encrypted data on their own database via the connection

string. this should not be an issue, and you don’t have to

encrypt the new database. however, if you want to encrypt

the database, it will not hurt anything.

(continued)

Chapter 16 appendix a: troubleshooting

784

Table A-1. (continued)

Activity Instructions

eFCore_activity08- 1_starterFiles

eFCore_activity09- 1_starterFiles

runs against the adventureWorks database. there is an

initial migration that was created, but the migration is

commented out so that it will not make any changes as per

activity 3-1. therefore, you should be able to pick up this

project and run with it.

there is no need to do so, but you could still run an update-

database and ensure there are no pending changes with

an add-migration test command and a remove-

migration when you’ve validated there are no pending

migration changes.

*note: if you have run the encryption in Chapter 10 before

doing the Chapter 9 activity, you will get an error for byte[].

in that case, restore a new copy of adventureWorks and

name it something different than the first, and point your

connection string to the new version of the database to avoid

the error with encryption.

eFCore_activity10- 2_starterFiles this is another adventureWorks activity. this will be the final

adventureWorks project for the book, so it’s oK that this has

a number of migrations. if you do this before the others,

however, you will likely need to restore another version of

adventureWorks for the other activities as this will break

one or more of them. if you’re doing them in order, there is

nothing to worry about.

You should be able to use these starter files against the

default adventureWorks instance on your local machine with

no issues.

(continued)

Chapter 16 appendix a: troubleshooting

785

 Final packs
Final packs are exactly what they sound like. This is the finished version of the code as it

was on my machine after the activity was completed. You can use these to see the code

as it should exist at the end of the activity. This is highly useful if something from the text

is unclear or if there is anything that you want to double-check to be certain that what

you’ve done was as intended.

As with the preceding activities, I did go back and point all of the

InventoryManagerDb projects at their own database solutions (i.e.,

InventoryManagerDb0902 or InventoryManagerDb0701). If you are using the final pack,

and you want to get the database to the final state, you could run the update-database

command to get all the migrations applied.

When there is a seed project (Activity 7-3 on), you should not need to run the

InventoryDataMigrator project unless you did not run it for the starter files.

Table A-1. (continued)

Activity Instructions

eFCore_activity13- 2_Webonly_

starterFiles

For this activity, get the project and ensure it works, and then

follow the instructions at the start of the activity to build the

rest of your solution. essentially, you will bring in the libraries

to work against the InventoryManagerDb in addition to

the CorporateSSOIdentityDb.

eFCore_activity13- 2_allFiles_

starterFiles

this is essentially the same as all the others, except you will

build out the project as you go in the activity. therefore, get

these files and return to the activity for further instructions.

do not try to update the database.

do not run the migrator project.

Do not run a new migration.
You will be directed to get everything completed during the

activity.

Chapter 16 appendix a: troubleshooting

786

 Review your solution
In general, the final pack should be used as a “check your answer” solution only. If

something is unclear from the text, the final pack will likely have the answer. Things like

“Where does this code go?” or “How did he do that?” or “I’m completely lost” can often

be quickly resolved just by comparing what you have to what is in the final pack.

 Use a diff tool like GitHub, VSCode, or WinMerge
A neat trick you can do (as long as your files are named the same as mine) is that you

could just use a tool to do a diff on files. For example, I’ll often use the built-in capability

to compare files in VSCode. In rare instances when things are really off track, I might

check in my code and push to GitHub, then create a branch and drop the final pack code

in, and push to GitHub and create a pull request. This gives me a great tool to easily see

the differences in files. Finally, other tools like WinMerge or Perforce or even GitKraken

might be enough to help you see the differences in your code from the final pack.

Chapter 16 appendix a: troubleshooting

787
© Brian L. Gorman 2022
B. L. Gorman, Practical Entity Framework Core 6, https://doi.org/10.1007/978-1-4842-7301-2

Index

A
AdditionalProperty class, 760, 762, 763
add-migration command, 102, 773, 781
add-migration createFunction_

GetItemsTotalValue, 341
ADO.Net, 5, 26
AdventureWorksContext, 74, 92
AdventureWorks database, 33, 34, 60, 90
AlwaysEncrypted, 467, 468

enable AlwaysEncrypted on
InventoryManagerDb

backup creation, 470, 471
columns Name, Description, and

Notes, 476–480
data review, 480–482
fix issue, 488–491
modify SSMS, 482–484
prepare fields for encryption,

471, 473–475
run application, 485–488

ApplicationDbContext, 20, 21, 278
appsettings.json file

add code to leverage connection
string, 71, 73, 74

NuGet packages, 70, 71
store connection details, 68, 69

AsNoTracking, 522, 699–701
ASP.Net built-in authentication, 464
AsSingleQuery, 709
AsSplitQuery, 705, 707
async and await keywords, 616, 617
Asynchronous database operations

async/await pattern, 621
async/await/TaskParallelLibrary, 616
broken integration test, 649, 650
business layer, refactor, 632–636
database, 617, 618
database layer, refactor, 621–629
integration tests, refactor, 629–631
multithreaded programming, 616
refactor main program

batching operations with
asynchronous calls, 647–649

fix issues with encryption, 643–647
helper methods, 638–640
Main method, 638
run program, 641, 643

responsive solutions, end user, 617
syntax, 618
unit tests, refactor, 636, 637

Auto generate column master key, 477
AutoMapper, 412

CategoryDto class, 458
CreatedDate, 453
DTO objects

BuildMapper method, 444
Category DTO, creation, 442
Item DTO creation, 441, 442
mapping configuration, 443, 444
solution, 444, 445

GetItemsForListing query, 451–454
Ignore method, 459
InventoryMapper profile, creation,

440, 441

https://doi.org/10.1007/978-1-4842-7301-2#DOI

788

ListCategoriesAndColors, 459
NuGet packages getting, 438, 439
projections, 456, 457
seed data, 447, 449, 450
validate output, 450

await keyword, 617, 623, 633

B
base.SaveChanges method, 185
Boyce-Codd normal form (BCNF), 201
BuildCategories custom

seed class, 352–354
BuildDefaults method, 607
BuildMapper method, 443
BuildOptions method, 77, 139, 414
BusinessEntity object, 65–67
Business layer, interface creation, 530
Business units, 440, 619, 620

C
Cascading delete operation, 257
CategoryDetail entity, 244, 245
CategoryDetails controller, 659–661
CategoryDetail table, 242–244
CategoryId property, 235
ChangeTracker

add update method, 189, 191
clean up data and run program, 181
DBContext property, 180
DeleteAllItems(), 182, 183
EnsureItem method, 191, 193
interaction with EF, 180
respond to entity state, 185, 186,

188, 189
SaveChanges() method, 183–185

Client-side encryption, 468
Code-first approach, 408

benefits, 84–87
database programming in

action, 88, 89
existing project, 83
mature database, 84
reason to avoid, 81, 82
use, 83

Code-first database approach, 6
Code-first Entity Framework project

in EFCore6
add new library, 123–127
database, update and review, 135–137
EFCore5_DbLibrary project

connection string out, 132–134
stand-alone library, 130–132

existing database, against
activity, 90–93
add-migration command,

102–104
code change, 104–107
comment out initial

migration, 96–102
initial migration, creation and

review, 93–96
revert migration, 108, 109
starter files, 89, 90

inventory management
leverage new database, 118–123
set up, 111–118

InventoryModels project
add Item class to

InventoryDbContext, 128, 129
EFCore_DbLibrary, 127, 128
migration creation, 134, 135

method creation, inventory
items, 137–143

AutoMapper (cont.)

INDEX

789

ColumnAttribute.Order, 738
Command timeout, 742
Compiled model, 739
Constraints

activity, 213
creation, 212
data annotations, 199
default value to field, 198, 227, 228
field to be non-nullable, 225
Id field is key, 225
migration creation, 228
range on numeric fields, 220–224
setting length on columns

FullAuditModel class, 215, 216
identify fields, 213–215
migration creation, 217
update database, 218–220
values constants, 213–215

size limitations, 196, 197
value, 198

Copy-only backup, 471
CreateItem method, 626, 644–646
CreateMaps method, 440, 459, 557
CreateOrUpdateItemDto class, 554
Create, Read, Update, and Delete (CRUD)

ASP.Net MVC project
add migration, 288
database update, 283, 284, 288
import InventoryModels project,

286, 288
review database, 288
users register, 284–286

commands, 272
items controller and views, 289, 291
MVC project

connection string, 277
InventoryModels project, 280–282
review project setup, 278

setup, 274–277
Startup.cs file, 279

operations in action, 292, 293, 295
review Items controller, 291, 292

D
Data annotations, 66, 198, 199
Database entity model, 157
Database-first operation, 27
Database layer

add interface, 529
Categories Repo, 529, 530
database operations

implementation, 531–538
project creation, 526–528
rename Class1.cs file, 528

DataReader, 5, 520
Data Transfer Object (DTO), 327
DBCommandInterceptor, 710, 718, 719
DBContext, 20–24, 150

constructors, 150, 151
definition, 149
methods, 154, 155
vs. ObjectContext, 148
properties, 153, 154

DbContextOptionsBuilder object, 74,
152, 153

Deadlock, 523, 547, 569
Debug console, 712
Declarative programming, 87
DefaultValue constraint, 228
DeleteAllItems(), 182, 183, 193
DemonstrateSimpleLogging method, 715
Docker, 7, 276
Domain models, 409
Down method, 97, 98, 169, 223, 314,

315, 499, 505

INDEX

790

E
EFCore_Activity project, 93, 94
EFCore_DbLibrary, 19, 95, 104
EF.Functions.Contains operation, 759
EF.Functions.Random, 768, 769, 774
__EFMigrationsHistory table, 779
Encryption

advantages and
disadvantages, 467

basics, 467
TDE, 467

EnsureItem method, 141, 186, 191,
193, 270

EnsureItemsHaveGenres, 726
Entity framework

ADO.Net, 5
built-in repository, 520
EFCore5, 8
and LINQ, 6
.Net Core, 8

Entity Framework Core 6
.Net 6 console project

class library, 12
configuration, 13
creation, 11
DBContext creation, 20–22
EFCore_DbLibrary, 12
implement DbContext, 23–25
install NuGet packages, 15
latest version finding, 16
libraries adding, 17–19
NuGet packages, 16
target .Net 6 SDK, 14
target Framework, 13

reverse-engineering (see
Reverse-engineering)

Entity Framework Profiler, 374

EntityTypeConfigurationAttribute, 741,
743, 748–751

Execution of queries, 381–393
ExploreManyToManyRelationships, 684

F
Features and enhancements, .Net

6/EFCore6
ColumnAttribute.Order, 738
command timeout, 742
compiled model, 739
EF.Functions.Random, 741
EntityTypeConfigurationAttribute, 741
free text search, 740
in-memory database, 742
JSON columns, 738
migrations bundles, 739
.Net integration improvements,

739, 740
PrecisionAttribute, 741
reverse-engineered, 742
SQL server sparse columns, 742
SQL server temporal tables, 737
UnicodeAttribute, 740

Filtered include query
alternate query using

projections, 695–698
AsNoTracking, 699–701
issue, 698
method creation, 691–693
QueryWithFilterIncludes

method, 695–698
T-SQL, 693–695

Filtering, 393–397
Final packs, 785, 786
FindItemsByAdditionalProperty, 762
FindItemsByCategory method, 758

INDEX

791

First normal form (1NF), 201, 202
Flexible entity mapping, 722–725
Fluent API, 66, 67, 742

data annotations, 307
precision attribute

precision and scale, fixing, 744
working, 307

ForEach loop, 639
Fourth normal form (4NF), 201
Free text search, 740

add-migration add-additional-
properties-to-Item, 761

code creation, 762–764
full-text index, creation, 764–766
full-text search installation, 757
improved in EFCore6, 759, 760
traditional search, 758, 759

FullAuditModel, 175, 216, 225
Full-Text index, 757, 764
Functions

advantages, 301
leverage from code, 337–339

G
GenerateSalesreportDataToDTO

method, 434, 436
Genre entity model, 257, 258
GetAllItemsPipeDelimitedString, 540
GetCategoryId method, 560, 640
GetFullItemDetails method, 369
GetItemsForListing stored procedure, 326
GetItemsForListingDto entity object, 309
GetItemsForListingLinq method, 451,

488, 639
GetItems method, 534, 548
GetItemsWithGenresAndCategories

method, 643

git clean-xfdi command, 61
GitHub, 743, 786
git reset--hard command, 61

H
HasPrecision, 744
Hybrid serverless approach, 27

I
IDisposable interface, 547
IEntityTypeConfiguration, 750
IEnumerable vs. IQueryable, 377, 378
Ignore method, 459
IItemsRepo interface, 529, 533, 549
Imperative programming, 87
In-memory database, 742
Insert method, 562
Integration testing, 577, 578

refactor code, 612
setting up data, 603–609
writing, 610–612
xUnit project, creation, 600–603

InventoryBusinessLayer
modification, 554–558

InventoryDataMigrator project, 781
InventoryDbContext file, 713, 749
InventoryDbContextModelSnapshot, 308
InventoryManager system, 134, 446, 557
InventoryModels, 124
IsNullorWhiteSpace, 769, 770
ISoftDeletable, 227
IsSparse mapping, 742
IsUnicode property, 740
Item class, modification

auditing to entities via inheritance
add migration, 176

INDEX

792

database review, 177
FullAuditModel, 175
interfaces creation, 172–175

add migration, 168, 169
add properties, 166–168
base project creation

activity project, 160–163
ConfigurationBuilderSingleton.

cs, 163–166
remove-migration command,

161, 162
update-database command, 170, 171
starter files, 159

ItemGenre entity, 260, 679
entity model creation, 259
many-to-many relationship, 263
relationship, 260

Item SeedBuilder, 358–361

J
JSON columns, 738, 766

K
Keys, 200, 201

L
LastModifiedDate property, 186
Language Integrated Query (LINQ)

syntax, 6, 84, 269
projections

add method, 423–427
data to DTO, 434–437
filter and sort data, 427–433

salespeople

comment out method calls, 414
navigation properties, 418–422
write query, 415–417

vs. stored procedures, 407, 408
ListAllSalespeople method, 420
ListCategoriesAndColors method,

459, 561
ListInventory method, 487
ListPeople method, 77
Logging and tracking queries

DBCommandInterceptor
implementation

inheriting class, 718, 719
interceptor logs, 720, 721
Program class, 719

debug console, 712
method creation, demonstration, 710
OnConfiguring method, 711, 713
ToQueryString functionality, 714–717

LogSQLQueriesInterceptor, 719, 720
LogTo method, 710, 712

M
Many-to-many navigation properties

CategoryDetail.Color, 678
entity mapping

review entity relationships, 684–689
review model builder, 689, 690

review existing relationships
Item and Genre relationship,

679, 681
Item and Player relationship,

681–683
Many-to-many relationship, 210, 211

code executes, 255
database updation, 255
FluentAPI updation, 253, 254

Item class, modification (cont.)

INDEX

793

migration creation, 251–253
player entity, creation, 250, 251
review database, 255

Microsoft’s modus operandi, 7
Migrations bundles, 739
MoviesDbContext, 20
Multiple contexts, 620
Multiple database contexts

initial migration for identity, 654–656
InventoryDbContext into the web

solution, 652, 653
register user, 656–658
scaffold category pages, 658–668
solid learning, 668–671

Multithreaded programming, 616

N
NationalIdNumber field, 504
New inline table-valued function, 340
nonUnicodeValueAttribute property, 753
NuGet packages, 15, 16, 50, 780
NVARCHAR, 196, 197, 475

O
ObjectContext, 147, 148
Object Linking and Embedding Database

Object (OLEDb), 4
Object-relational mappers (ORMs), 5
OnConfiguring method, 131, 151, 711, 713
One-to-many relationship, 209, 210

category entity model, creation, 234
creation, 233, 235, 237
database review, 238–241
migration creation, 237, 238

One-to-one relationship, 208, 209
CategoryDetail table, creation, 242–244

CategoryDetail entity, 244, 245
database update, 246, 249
migration creation, 246
ModelBuilder FluentAPI code, 247, 248

One-to-one synchronized
relationship, 409

OnModelBuilding method, 328
OnModelCreating method, 307, 308, 327,

330, 338, 347, 367, 371, 741, 742,
748–750, 772

P
Package Manager Console (PMC),

15, 18, 743
Paging, 398–401
Password mismanagement, 464
Precision attribute

precision and scale, fixing, 745–747
update-database command, 747, 748
update-database warning, 743, 744

Pre-defined object, 410, 411
Pre-existing database

AdventureWorks DB, 33, 34
prerequisites

SQL Server Developer
edition, 30, 31

SSMS, 31
restore AdventureWorks database, SQL

instance, 35–42
Projections, AutoMapper, 456, 457
PurchasePrice field, 131, 744

Q
Quantity field, 221
QueryWithFilterIncludes

method, 695–698

INDEX

794

R
RAND function, 343, 741
ReaderExecutedAsync method, 718
ReaderExecuted method, 718
Recordset disconnect, 401, 402
Refactor, console program, 541–545
Relational data

many-to-many relationships, 210, 211
1NF, 202
one-to-many relationship, 209, 210
one-to-one relationships, 208, 209
2NF, 203–205
3NF, 205–207

remove-migration command, 104, 222,
356, 781

Repository (Repo), pattern, 519–521
Reverse-engineering

appsettings.json file
add code to leverage connection

string, 71, 73, 74
NuGet packages, 70, 71
store connection details, 68, 69

code library, 47, 48
database approach, 29
database connection

AdventureWorks DBContext, 74–76
ListPeople method, 76
print the results, 78
query, 76, 77

EFCore_DbLibrary project to local
folder, 46, 47

ensure .Net 6
console project, 49
Entity Framework SQL Server

installation, 52–54
GIT repository creation, 54, 55
NuGet package, 50–52

existing database interaction, 29
project creation and solution, 43, 45, 46
Scaffold-Context command

connection string, 57
Microsoft.EntityFrameworkCore.

Design package, installation, 56
original scaffolding command

run, 64–67
running, 57–61
scaffolding operation, 61–64

solutions, 28

S
SaveChangesAsync, 272
SaveChanges() method, 183–186, 188,

189, 253
Scaffold-DbContext command, 58, 60
Scalar-valued function, 301

add migration and database
update, 335

creation, 333
DeleteAllItems, 332
script creation, 334, 335
validate, 336, 337

Second normal form (2NF), 201, 203–205
Seed data

custom solution
BuildCategories custom seed

class, 352–354
custom migrator, 348, 350, 351
database review, 357
execute custom seed builders, 351
migration creation, 354, 356

Fluent API, 346–348
Items and Players, 361, 362
Item SeedBuilder creation, 358–361

Separation of concerns (SoC)

INDEX

795

benefits, 525
definition, 524
logical, 524

Service layer
ICategoriesService, 540
InventoryDatabaseLayer to

InventoryBusinessLayer, 538
ItemsService, 540

SetupOptions method, 605
Single sign-on (SSO), 464, 618, 651
skipNavigation property, 685
Spaghetti code approach, 4
Sparse columns, 742

entities to DbContext, 772
mark StockSymbol, 773
regenerate migration, 773
TPH model classes, 771, 772

Split queries
functionality

AsSplitQuery, 705, 707
transactions, 708

query creation, 702, 703
view profiler, 703, 705

SQL express instance, 35
SQLite database, 741, 742
SQL Server Management Studio

(SSMS), 31
SQL Server Profiler, 374, 703, 705
Stackify prefix, 374
Starter packs

creation, 780, 781
instructions, 782–785
InventoryManagerDb activity, 781

Stock symbol, 773
Stored procedures

advantages, 300
apply migration

database review, 323

error fix, 322
update-database

command, 321–323
creation, 300
design, 310–312
extension method

creation, 316, 318
folder, store script files, 316
leverage in migration, 320
migration creation, 318, 319
scripts updation, 318, 319

GetItemsForListing, 312–314
leverage in code

execute, 324–326
Fluent API, 326–331

vs. LINQ, 407, 408
migration creation, 312–314
validate migration, 315

string.Concat, 766–768
StringConcatWithMultipleArguments

method, 768
StringLength annotation attribute,

215, 752
System’s data secure

ASP.Net built-in authentication, 464
data at rest, 463
encryption, 463
passwords, 464
salting and hashing, 465, 466
SSO via social logins, 464

T
Table-per-hierarchy (TPH), 770
Table-per-type (TPT)

inheritance mapping
inheritance hierarchy creation

add inheritance structures, 727, 728

INDEX

796

migration and database
updation, 728, 730

move data
coding, 732–734
script to migrate existing

data, 730–732
Table-valued function (TVF)

creation, 340–342
DTO creation, mapping function

results, 344
GetItemsTotalValues, 345
process, 340
review database changes, 342, 344

TaskParallelLibrary, 616
Temporal tables, 737
TestGetItems test, 610
Third normal form (3NF), 201, 205–207
ToQueryString functionality, 714–717, 721
ToString method, 441, 445
Translation of non-text types, 741
Transparent Data Encryption (TDE)

method, 463, 467
backup columns, 514, 515
backup columns, creation, 495–499
certificate and key, creation, 500–502
drop constraints on targeted

columns, 502–506
drop existing columns, 507–510
folder to keys store, 500
migration strategy planning, 493–495
table clean up, 516
target fields, recreate, 511–514
update-database command, 492

Troubleshooting migrations
change DB connection, 779
comment out code, 778

manual insert to database, 779
objects exist/objects don’t exist, 778
starter packs, 778

T-SQL, 232, 300, 693–695

U
Unicode attribute

add migration, 753–755
add properties to Item class, 752
FluentAPI Unicode mapping

implementations, 752
nonUnicodeValueAttribute

property, 753
UnicodeValueAttribute property, 753
Unique, non-clustered index

code executes, 266
database review, 265
ItemGenre class, 264
migration creation, 265

Unit of work (UoW)
delete logic, 566–569
insert logic, 558–562
InventoryBusinessLayer

modification, 554–558
InventoryDatabaseLayer

modification, 548–553
pattern, 521
statement, transaction lifecycles, 547
transactions, 546
transaction scope, 569–572
update logic, build, 562–565

Unit testing, 576
get and implement Moq

AutoMapper mappings file, 590, 591
initialize mapper, 591
mock database, 587–590
NuGet Package Manager, 586

Table-per-type (TPT) inheritance
mapping (cont.)

INDEX

797

get Shouldly, 597, 598
mocking, 579
project to solution, 580–584
refactor code, 595
refactor database mocking, 595–597
refactor InventoryBusinessLayer,

592–594
run, 594, 595
writing, 584–586

update-database command, 730, 743, 747,
778, 781

Up method, 306, 313, 500
UpsertItem method, 552, 647
UpsertItem(Item item) method, 550, 649
UpsertItems(List<Item> items)

method, 551
UserId properties, 216
User interface (UI), 526, 575

V
Value constraints, 196, 198
Views

advantages, 301
creation, 364–367
DTO object to model, 367
InventoryDbContext.cs file, 368
models, 409
UI layer, 369

W
WinMerge, 786

X, Y, Z
xUnit project, 600, 601
xUnit Theory test, 611

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: Introduction to Entity Framework
	One, two, three, four versions? Oh my!
	When it all began
	OLEDb and spaghetti database access

	ADO.Net – A better tool for application database interaction
	A brief note about ADO.Net

	Entity Framework makes its debut
	Entity Framework and LINQ

	A new direction and a new visionary leader
	Microsoft goes all in for all developers
	A new vision requires a new path
	What is .Net 5 and why is Entity Framework called EFCore5 instead of EF5, and why are we already on .Net 6 and EFCore6
	The state of the union

	The future
	Activity 1-1: Getting started with EFCore6
	Task 1: Create a new project and add the EF packages
	Step 1: Create a new .Net 6 console project
	Step 2: Search and select Class Library
	Step 3: Name your project and select the storage location
	Step 4: Target the .Net 6 Framework

	Task 2: Add the EFCore6 packages to your project
	Step 1: Determine the latest version of Entity Framework
	Step 2: Add the Entity Framework libraries to your project
	Step 3: Create a DBContext
	Step 4: Alter your context to implement DbContext correctly

	Activity summary

	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 2: Working with an Existing Database
	Reverse-engineering or database first
	Why would we approach Entity Framework in this manner?
	Reverse-engineered solutions
	Keeping everything in sync
	Interacting with the existing database

	Activity 2-0: Working with a pre-existing database
	Task 1: Prerequisites
	Task 1-1: Prerequisite – SQL Server Developer edition (or SQL Express)
	Task 1-2: Prerequisite – SQL Server Management Studio (SSMS)

	Task 2: Download and restore the backup file for the latest version of the AdventureWorks database to your machine
	Task 2-1: Download the latest version of AdventureWorks DB
	Task 2-2: Restore the AdventureWorks database to your local SQL instance

	Activity 2-1: Reverse-engineering an existing database with EFCore5
	Task 1: Creating the solution with a new project and referencing the DBLibrary project
	Step 1: Create the project and solution
	Step 2: Copy the EFCore_DbLibrary project to a local folder
	Step 3: Reference the code library that will be used to interact with the database

	Task 2: Ensure .Net 6 and update all of the NuGet packages for both projects
	Step 1: Ensure .Net 6 on the console project
	Step 2: Install the Entity Framework Tools (Microsoft.EntityFrameworkCore.Tools) NuGet package
	Step 3: Install the Entity Framework SQL Server (Microsoft.EntityFrameworkCore.SqlServer) NuGet package to both projects in the solution
	Step 4: Optionally, create a new GIT repository

	Task 3: Scaffold a new database context using the Scaffold-Context command
	Step 1: Install the Microsoft.EntityFrameworkCore.Design package to the EFCore_Activity0201 project using the PMC
	Step 2: Determine your connection string
	Step 3: Run the scaffold command
	Step 4: Repeat the scaffold operation, but change parameters
	Step 5: Run the original scaffolding operation to get all the files back

	Task 4: Create a settings file and leverage it from code
	Step 1: Add the appsettings.json file to store connection details
	Step 2: Add the libraries to leverage the config file in the activity project
	Step 3: Load up the config and leverage the results in the Main method of the Program.cs file in the activity project

	Task 5: Connect to the database and show results in code
	Step 1: Create the ability to connect and use the AdventureWorks DBContext
	Step 2: Query the data
	Step 3: Print the results to the console

	Activity summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 3: Entity Framework: Code First
	Code first doesn’t always mean code first
	When not to use the code-first approach
	When to use the code-first approach
	Code first in an existing project
	Code first in a new project against a mature database
	Code first in a new project with a new database

	The benefits of a well-executed code-first development effort
	Ability to get up and running quickly
	A complete record of database changes in source control
	Agility when needing to revert to a previous state
	Shifting from declarative to imperative database programming

	It’s time to see code-first database programming in action
	A final thought before diving into the activities

	Activity 3-1: Creating a new code-first project against an existing database in EFCore6
	Use the starter files or your project from Chapter 2
	Task 1: Getting started with the activity
	Step 1: Getting the project started for the activity
	Step 2: Ensure that the project is ready to work with EFCore5

	Task 2: Creating and reviewing the initial migration
	Step 1: Attempt to create a new migration
	Step 2: Create the initial migration

	Task 3: Comment out the initial migration, run the update, and review the database
	Step 1: Review the initial migration and then comment out the Up method and delete the code in the Down method
	Step 2: Run the update

	Task 4: Add a new migration, review it, remove it, and then add a real migration
	Step 1: Add a new migration without making any changes, review it, and remove it
	Step 2: Make a code change, and then add a new migration and update the database
	Step 3: Roll back the changes and remove the migration, and then remove the code change

	Activity 3-1 summary
	Activity 3-2: Creating a new code-first project in EFCore6
	Task 1: Begin a new project for managing inventory
	Step 1: Set up a new project
	Step 2: Leverage a new database using the code-first approach

	Task 2: Add a new library for your database models – the “code” of code first
	Step 1: Create a new project library
	Step 2: Update the automatically generated Class1 to be an Item object
	Step 3: Set the project to be (or ensure that it is) a .Net 5 library

	Task 3: Reference the InventoryModels project and use it to create a migration
	Step 1: Add a project reference to the EFCore_DbLibrary for the InventoryModels
	Step 2: Add the Item class to the InventoryDbContext
	Step 3: Set the EFCore5_DbLibrary project to use the code-first database approach as a stand-alone library
	Step 4: Move the connection string out of the EFCore5_DbLibrary project
	Step 5: Create a new migration for the Inventory system

	Task 4: Update and review the database
	Step 1: Update the database
	Step 2: Review the database

	Task 5: Add code to insert and query a list of items
	Step 1: Create a method to ensure the existence of some Items
	Step 2: Write code to output the results

	Activity 3-2 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Part II: Building the Data Solution
	Chapter 4: Models and the Data Context
	What is the database context and why do we need it?
	DBContext vs. ObjectContext
	What is the DBContext?
	Constructing a new DBContext

	Critical properties and methods available when working with the DBContext
	Important properties on the DbContextOptionsBuilder object
	Important properties on the DBContextOptions object
	Important properties on the DBContext object
	Methods available on the DBContext
	Methods and extensions on the DBSet<TEntity> object

	Working with models
	Two immediate benefits of code-first models
	Building a database entity model
	A final thought about models

	Activity 4-1: Modifying the Item model
	Practical application for your daily routine
	Starter files
	Task 1: Creating the base project
	Step 1: Ensure the code is set up for the activity
	Step 2: Move the Configuration Builder Singleton class to a new project

	Task 2: Add properties to the Item class, and then use a migration to update the database with fields to match the properties
	Step 1: Add properties to the Item class
	Step 2: Add a new migration to get the properties into the database as fields on the Items table
	Step 3: Apply the migration and review the database structure

	Task 3: Add auditing to entities via inheritance
	Step 1: Create the interfaces in the Models project
	Step 2: Extend the FullAuditModel on the Item class to add auditing properties
	Step 3: Add the new migration and update the database
	Step 4: Review the database

	Activity 4-1 summary
	Activity 4-2: Using the ChangeTracker to inject some automated auditing
	Remember how you already set up the DBContext
	Common critical underlying objects
	The ChangeTracker is the lifeblood of our interaction with the Entity Framework
	Task 1: Getting started
	Step 1: Clean up the data, and then run the program
	Step 2: Add a method to delete all Items at the start of the program

	Task 2: Use the change tracker to inject auditing information on calls to save changes
	Step 1: Override the SaveChanges() method
	Step 2: Respond to the entity state in the change tracker

	Task 3: Add an update method to validate last modified auditing is working as expected
	Step 1: Add the update method
	Step 2: Update the Insert method to add a couple of Notes and Description information to the Items

	Activity 4-2 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 5: Constraints, Keys, and Relationships
	Constraining your data to enhance your solutions
	Size limitations
	Value constraints
	Default values
	Other data annotations

	Using keys in database tables for unique and relational results
	Working with relational data
	First, second, and third normal form
	First normal form (1NF)
	Second normal form (2NF)
	Third normal form (3NF)
	Types of relationships
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships
	Some final thoughts about relationships and normalization

	Activity 5-1: Add length, range, and other constraints to the Item model
	Creating constraints
	Prerequisite: Get set up for this activity
	Task 1: Setting length constraints on columns
	Step 1: Identify the fields that need constraints and create constants for the values
	Step 2: Add constraints to appropriate properties in the Item and FullAuditModel classes
	Step 3: Create the migration
	Step 4: Update the database

	Task 2: Creating a range on numeric fields
	Step 1: Add range values to the quantity and price fields
	Step 2: Create the migration

	Task 3: Ensuring a field is a key, making fields required, and setting default values on a column
	Step 1: Ensure the Id field is a key
	Step 2: Making some fields required (not able to be set to null – must have value)
	Step 3: Adding a default value to a field

	Task 4: Add a new migration and apply these changes to the database
	Step 1: Create the new migration
	Step 2: Update the database
	Step 3: Run the program

	Activity 5-1 summary
	Activity 5-2: Working with relationships
	Creating a one-to-many relationship
	Task 0: Getting started
	Task 1: Create the Categories in a one-to-many relationship with Items
	Step 1: Create the Category entity model
	Step 2: Create the one-to-many relationship
	Step 3: Create the migration
	Step 4: Review the database

	Task 2: Create a one-to-one relationship from Category to CategoryDetail
	Step 1: Create the CategoryDetail table
	Step 2: Create the one-to-one relationship for the Category to the CategoryDetail table
	Step 3: Create the migration and update the database
	Step 4: Review the ModelBuilder FluentAPI code in the migration
	Step 5: Update the database

	Task 3: Create a many-to-many relationship
	Step 1: Create a new Player entity
	Step 2: Create the new migration
	Step 3: Update the FluentAPI to name the fields as expected
	Step 4: Update the database
	Step 4: Review the database
	Step 5: Ensure the code executes

	Activity 5-2 summary
	Activity 5-3: Using a non-clustered, unique index
	Soft delete or hard delete, either way, just make sure it works
	Task 0: Getting started
	Task 1: Create the Genre
	Step 1: Add the Genre entity model
	Step 2: Add the migration and update the database

	Task 2: Create the ItemGenre and the many-to-many relationship
	Step 1: Create the ItemGenre entity model
	Step 2: Add references to the Item and the Genre classes to fully create the relationship
	Step 3: Create a new migration
	Step 4: Review the database to ensure the structure is as expected

	Task 3: Use the Index attribute to create a unique, non-clustered index
	Step 1: Add the Index to the ItemGenre class
	Step 2: Add the migration
	Step 3: Review the database
	Step 4: Ensure the code executes

	Activity 5-3 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 6: Data Access (Create, Read, Update, Delete)
	CRUD
	LINQ

	Basic interactions
	Leverage the DbSet<T> objects
	Common commands
	A final thought before diving into the activities

	Activity 6-1: Quick CRUD with scaffolded controllers
	Task 0: Getting started
	Task 1: Creating the new MVC project
	Step 1: Setup
	Step 2: Review the connection string
	Step 3: Review the project setup
	Step 4: Review the Startup.cs file
	Step 5: Get your Models project into the solution but do not reference them yet

	Task 2: Start working with the ASP.Net MVC project
	Step 1: Update the database
	Step 2: Run the project and register a couple of users
	Step 2: Import the InventoryModels project
	Step 3: Add a migration and update the database
	Step 4: Review the database

	Task 3: Create CRUD for the items
	Step 1: Scaffold the Items controller and views
	Step 2: Review the Items controller that was generated
	Step 3: Run the project to see the CRUD operations in action

	Activity 6-1 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 7: Stored Procedures, Views, and Functions
	Understanding stored procedures, views, and functions
	Stored procedures
	Advantages of stored procedures
	Creating a stored procedure

	Functions
	Advantages of functions
	Examples of functions

	Views
	Advantages of views
	Examples of using views

	Setting up the database to run scripts efficiently
	The problem
	The solution

	Fluent API
	What can you do with the Fluent API
	How do you work with the Fluent API

	Working with the database objects
	A final thought before diving into the activities

	Activity 7-1: Working with stored procedures
	Task 0: Getting started
	Task 1: Create a new stored procedure using inline code in your migration
	Step 1: Design the stored procedure
	Step 2: Create the migration for adding the GetItemsForListing stored procedure
	Step 3: Validate that the migration was applied

	Task 2: Create the extension method to use local files for scripting
	Step 1: Create the folder to store your script files
	Step 2: Create the extension
	Step 3: Update the scripts and create the migration
	Step 4: Leverage the extension in a new migration

	Task 3: Apply the migration
	Step 1: Run the update database command to see the error
	Step 2: Fix the error
	Step 3: Run the update database command to apply the migration
	Step 4: Review your database to ensure changes happened as expected

	Task 4: Leverage the stored procedure in code
	Step 1: Execute and use the results from the stored procedure
	Step 2: Use the Fluent API to map out a result set entity for the stored procedure

	Activity 7-1 summary
	Activity 7-2: Working with functions, the FluentAPI, and seed data
	Task 0: Getting started
	Task 1: Script out a new scalar-valued function
	Step 0: Eliminate the call to DeleteAllItems
	Step 1: Explore scalar-valued functions
	Step 2: Create the script
	Step 3: Add a new migration and update the database
	Step 4: Validate that the function was added as expected

	Task 2: Leverage the new function from code
	Step 1: Add a new DTO to map the result of the function
	Step 2: Add the DTO as a DbSet in the InventoryDbContext
	Step 3: Add a call in the Program file to get the results to the UI

	Task 3: Create a new table-valued function
	Step 1: Create the new function
	Step 3: Review the changes to the database
	Step 3: Create the DTO for mapping function results
	Step 4: Use the new function and show results in the UI layer

	Task 4: Seed data with the Fluent API
	Step 1: Seed data using the Fluent API

	Task 5: Seed data with a custom solution
	Step 1: Roll your own custom migrator
	Step 2: Run migrations and execute custom seed builders
	Step 3: Create the BuildCategories custom seed class
	Step 4: Create a migration to apply changes and seed Genre data
	Step 5: Review the database to ensure changes are applied and data exists as expected

	Task 6: Seed the Players and Items data
	Step 1: Create the Item SeedBuilder
	Step 2: Seed the Items and Players
	Step 3: Remove the calls to EnsureItems, UpdateItems, and DeleteAllItems methods from the Main method code in the EFCore_Activity0702 project

	Activity 7-2 summary
	Activity 7-3: Working with views
	Task 0: Getting started
	Task 1: Create the view
	Step 1: Write the script
	Step 2: Add the new migration and update the database
	Step 3: Validate the view was created and works

	Task 2: Expose the view data from the UI layer
	Step 1: Create a DTO object to model the view data
	Step 2: Add the DbSet<FullItemDetailDto> to the InventoryDbContext, and update the OnModelCreating method
	Step 3: Leverage the data from the UI

	Activity 7-3 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 8: Sorting, Filtering, and Paging
	It’s time to learn LINQ
	LINQ is generally not the problem
	Use a profiler or another tool

	Issues and solutions
	Issue #1: Pre-fetching results and then iterating in code to filter the results
	Issue #2: Not disconnecting your data
	Issue #3: IEnumerable vs. IQueryable

	Practical application
	Activity 8-1: Sorting, paging, and filtering
	Task 0: Getting started
	Task 1: Compare the execution efficiency of two queries
	Step 1: Create two new methods to house the different queries
	Step 2: Analyze the two queries with the SQL Query Analyzer

	Task 2: Filtering our results
	Step 1: Implement the method to allow a user to filter results
	Step 2: Analyze the query

	Task 3: Paging the filtered results
	Step 1: Create the method to filter and page the results
	Step 2: Analyze the query results

	Task 4: Disconnecting the result sets
	Step 1: Set the code to use queries AsNoTracking
	Step 2: Discuss setting the entire context to disable tracking of entities by default

	Activity 8-1 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Part III: Enhancing the Data Solution
	Chapter 9: LINQ for Queries and Projections
	Data in the real world
	LINQ vs. stored procedures
	Complex data and the code-first approach

	DTOs, view models, or domain models
	Decoupling your business or view logic from the database
	Sometimes, a pre-defined object is overkill

	One tool to rule them all
	AutoMapper

	Chapter 9 activities: Using LINQ, decoupled DTO classes, projections, anonymous types, and AutoMapper
	Activity 9-1: Working with LINQ in complex queries
	Task 0: Getting started
	Task 1: Get all the salespeople
	Step 1: Quickly comment out other method calls to get them out of the way
	Step 2: List out the salespeople and their important metrics
	Step 3: Use navigation properties to get the data

	Task 2: Use projections to get more efficient queries
	Step 1: Add the new method
	Step 2: Filter and sort the data
	Step 3: Project the data to a DTO

	Activity 9-1 summary
	Activity 9-2: Setting up AutoMapper
	Task 0: Getting started
	Task 1: Get AutoMapper packages and configure the solution
	Step 1: Get the NuGet packages
	Step 2: Create the InventoryMapper profile

	Task 2: Create the DTO objects
	Step 1: Create the Item DTO
	Step 2: Create the Category DTO
	Task 3: Set up the program to use AutoMapper and configure mappings
	Task 4: Leverage AutoMapper in your solution

	Activity 9-2 summary
	Activity 9-3: Working with AutoMapper
	Task 0: Getting started
	Step 1: Get the files
	Step 2: Seed more data
	Step 3: Run the program to validate output

	Task 1: Perform a more advanced query
	Step 1: Build a new GetItemsForListing query
	Step 2: Update the DTO so that it maps to the query result

	Task 2: Using AutoMapper and DTO projections
	Step 1: Use AutoMapper projections
	Step 2: Use AutoMapper when the fields don’t line up one to one

	Activity 9-3 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 10: Encryption of Data
	Keeping your system’s data secure
	Data at rest
	Encryption in the past vs. encryption today
	Passwords
	SSO via social logins
	ASP.Net built-in authentication
	Salting and hashing

	Protecting sensitive user information
	Encryption basics
	Which type should you use

	Chapter 10 activities: Using Always Encrypted and Transparent Data Encryption
	Activity 10-1: Using Always Encrypted
	Task 0: Getting started
	Task 1: Enable Always Encrypted on the InventoryManagerDb
	Step 1: Create a backup [optional]
	Step 1: Prepare fields for encryption
	Step 2: Encrypt the three columns Name, Description, and Notes
	Step 3: Review the data
	Step 4: Modify SSMS to decrypt your columns automatically
	Step 5: Run the application
	Step 6: Fix an issue with a join after Always Encrypted is on
	Step 7: Fix the remaining issues

	Activity 10-1 summary
	Activity 10-2: Using Transparent Data Encryption
	Task 0: Getting started
	Task 1: Plan the migration strategy
	Step 1: Evaluate the process to ensure data integrity
	Step 2: Determine the columns you want to encrypt

	Task 2: Create the backup columns
	Step 1: Add the columns to the model
	Step 2: Add the migration and update the database
	Step 3: Run a script to back up the data for the target columns

	Task 3: Create the keys and certificates
	Step 1: Create the folder to store the keys
	Step 2: Create the certificate and key

	Task 4: Drop constraints on the targeted columns
	Step 1: Drop the existing constraints

	Task 5: Drop the columns that are going to be targeted for encryption, and then recreate them
	Step 1: Drop the existing columns
	Step 2: Recreate the target fields

	Task 6: Select the backup data, transform it for encryption, and store it in the original columns
	Step 1: Encrypt all the data from backup columns into the new original columns
	Step 2: Validate the data

	Task 7: Clean up the table
	Step 1: Remove the properties from the Employee model
	Step 2: Create the migration and update the database

	Activity 10-2 summary
	Chapter summary
	Important takeaways

	Closing thoughts

	Chapter 11: Repository and Unit of Work Patterns
	The repository (Repo) pattern
	Sources of information about the repository pattern
	The repository pattern abstracts the database plumbing code from the implementation
	Entity Framework’s built-in repository

	The unit of work pattern
	Using a unit of work

	Combining the repository and the unit of work
	The one-two punch

	A couple of drawbacks
	In general, rely on EF

	Separation of concerns
	Logical separation of concerns
	Final benefits of separation of concerns

	Chapter 11 activities
	Activity 11-1: Layering your solution
	Task 0: Getting started
	Task 1: Creating the database layer
	Step 1: Create the new project for the database layer
	Step 2: Rename the Class1.cs file
	Step 3: Add an interface to define the ItemsRepo operations
	Step 4: Add a Categories Repo and interface

	Task 2: Creating the business layer
	Step 1: Create the business layer class and interface

	Task 3: Create and implement database operations in the database layer
	Step 1: Reference existing projects
	Step 2: Add the inventory database Repo interface method signatures, and implement them
	Step 3: Complete the CategoriesRepo and ICategoriesRepo code

	Task 4: Create and implement business operations in the service layer
	Step 1: Add a project reference for the InventoryDatabaseLayer to the InventoryBusinessLayer
	Step 2: Add method declarations for IItemsService and the code for the ItemsService
	Step 3: Add method declarations for ICategoriesService and the code for the CategoriesService

	Task 5: Refactor the console program
	Step 1: Add a reference to the business layer project in the main activity project
	Step 2: Clean up the Program.cs file
	Step 3: Update the Program.cs file constructor and methods
	Step 4: Update the methods to leverage the service
	Step 5: Run the program to see results

	Activity 11-1 summary
	Activity 11-2: Rolling your own UoW
	Transactions are easy and effective
	Use the using statement for transaction lifecycles
	Task 0: Getting started
	Task 1: Modify the InventoryDatabaseLayer
	Step 1: Update the GetItems method to return objects of type Item
	Step 2: Add the new method signatures to the interface and implement them

	Task 2: Modify the InventoryBusinessLayer
	Step 1: Modify the IItemsService interface and add a new DTO
	Step 2: Modify the ItemsService to implement the new methods

	Task 3: Build the insert logic
	Step 1: Add the code to add insert functionality
	Step 2: Run the program and insert some items

	Task 4: Build the update logic
	Step 1: Add the code to add update functionality
	Step 2: Run the program and update some items

	Task 5: Build the delete logic
	Step 1: Add the code to add delete functionality
	Step 2: Run the program and delete some items

	Task 6: Update the transaction scope
	Step 1: Learning about the transaction scope
	Step 2: Update the transaction scope for UpsertItems
	Step 3: Update the transaction scope for delete items
	Step 4: Run the program to ensure it still works

	Activity 11-2 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 12: Unit Testing, Integration Testing, and Mocking
	Testing your code is a must-have, not a nice-to-have
	The code needs to be changed
	The database is the lifeblood of the application
	Testing saves your sanity and protects the system

	Two different approaches leading to the ability to test changes
	Unit testing
	Libraries utilized
	Integration testing

	Activities for Chapter 12
	Activity 12-1: Unit testing with mocking
	Mocking for your tests
	Task 0: Getting started
	Task 1: Add the unit testing project to the solution
	Step 1: Add the testing project
	Step 2: Rename the UnitTest1.cs file and class

	Task 2: Write your first unit test
	Step 1: Add a reference to the service layer and ensure the Target Framework
	Step 2: Write the first unit test

	Task 3: Get and implement Moq
	Step 1: Use the NuGet Package Manager to get Moq
	Step 2: Implement a mock database layer using the Moq library
	Step 3: Bring in AutoMapper and the AutoMapper mappings file
	Step 4: Initialize the mapper

	Task 4: Refactor the InventoryBusinessLayer to be context independent
	Step 1: Add a new constructor to the InventoryBusinessLayer ItemsService class
	Step 2: Fix the unit test to create the items service

	Task 5: Run the unit test and refactor
	Step 1: Run the unit test
	Step 2: Refactor the code in the InventoryMapperUnitTest class
	Step 3: Refactor the database mocking
	Step 4: Get Shouldly
	Step 5: Run the test

	Activity 12-1 summary
	Activity 12-2: Integration testing with an in-memory database
	Task 0: Getting started
	Task 1: Create a new xUnit project
	Step 1: Create and set up the new xUnit Test Project
	Step 2: Get NuGet packages that are needed for this solution

	Task 2: Set up the expected data for seeding and integration testing
	Step 1: Configure the database, AutoMapper, and constant variables for the tests
	Step 2: Set the data

	Task 3: Write integration tests
	Step 1: Test the GetItems method using an xUnit Fact test
	Step 2: Test the CategoryDetails with an xUnit Theory test

	Task 4: Refactor the code

	Activity 12-2 summary
	Chapter summary
	Unit tests
	Integration tests
	Shouldly and xUnit
	Dependencies and injection to decouple layers

	Chapter 13: Asynchronous Data Operations and Multiple Database Contexts
	Asynchronous operations
	Multithreaded programming
	Async, await, and the TaskParallelLibrary
	Responsive solutions for the end user
	Asynchronous database operations
	Basic asynchronous syntax

	Multiple database contexts
	Single sign-on (SSO)
	Business units
	Multiple contexts require a bit more work
	Putting it into practice

	Activity 13-1: Asynchronous database operations
	Task 0: Getting started
	Task 1: Refactor the database layer
	Step 1: Modify the interfaces
	Step 2: Rework the implementations

	Task 2: Refactor the integration tests
	Step 1: Refactor the integration tests
	Step 2: Run the integration tests

	Task 3: Refactor the business layer
	Step 1: Modify the interfaces
	Step 2: Rework the implementations

	Task 4: Refactor the unit tests
	Step 1: Refactor the unit tests
	Step 2: Run the unit tests

	Task 5: Refactor the main program
	Step 1: Modify the Main method to be asynchronous
	Step 2: Modify the helper methods to be asynchronous
	Step 3: Make the calls in the Main method asynchronous
	Step 4: Run the program
	Step 5: Fix issues with encryption and asynchronous operations
	Step 6: Fix the batching operations with asynchronous calls

	Task 6: Fix a broken integration test
	Step 1: Run the unit and integration tests

	Activity 13-1 summary
	Activity 13-2: Multiple database contexts
	Task 0: Getting started
	Task 1: Inject both contexts into the solution, and learn about working with multiple contexts
	Step 1: Inject the InventoryDbContext into the web solution
	Step 2: Run the initial migration for identity and ensure no pending migrations exist
	Step 3: Run the program and ensure you can register a user and log in as the user

	Task 2: Scaffold Category pages
	Step 1: Scaffold Category Details
	Step 2: Run the solution and review the output
	Step 3: Delete the CategoryDetails and add Categories

	Task 3: Ensure solid learning on the database context
	Step 1: Add a new migration
	Step 2: Update the database
	Step 3: Roll back the migration
	Step 4: Remove the migration

	Activity 13-2 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Part IV: Recipes for Success
	Chapter 14: .Net 5 and EFCore5
	One framework to rule them all, with more coming
	EF6, EFCore, and .Net 5/6/7/…
	.Net 6/7 and EFCore6/7

	Changes with EFCore5
	Activity 14-1: Many-to-many navigation properties
	Task 0: Getting started
	Task 1: Review the existing relationships
	Step 1: Review the Item and Genre many-to-many relationship
	Step 2: Review the Item and Player many-to-many relationship

	Task 2: Explore this implicit mapping
	Step 1: Modify the program to review the entity relationships
	Step 2: Review the model builder as it was used to modify the ItemPlayers table

	Activity 14-1 summary
	Activity 14-2: Filtered include
	Task 0: Getting started
	Task 1: Create the method and set up the filtered include query
	Step 1: Create the new method
	Step 2: Determine the T-SQL is working
	Step 3: Write an alternate query using projections

	Task 2: Fix the original query
	Step 1: Examine the issue
	Step 2: Use AsNoTracking in your queries

	Activity 14-2 summary
	Activity 14-3: Split queries
	Task 0: Getting started
	Task 1: Create the query
	Step 1: Create the query
	Step 2: View the profiler to see the execution

	Task 2: Use the new split query functionality
	Step 1: Add AsSplitQuery to the query
	Step 2: Use transactions to ensure consistency of results
	Step 3: A final note

	Activity 14-3 summary
	Activity 14-4: Simple logging and tracking queries with the DBCommandInterceptor
	Task 0: Getting started
	Task 1: Add a method to use for demonstration, and then add logging
	Step 1: Create a new method
	Step 2: Add simple logging with the LogTo call
	Step 3: Move the logging to a file

	Task 2: Use the ToQueryString output
	Step 1: Utilize the new ToQueryString functionality

	Task 3: Implement the DBCommandInterceptor to log slow running queries
	Step 1: Implement the DBCommandInterceptor inheriting class
	Step 2: Register the DBCommandInterceptor in the Program class
	Step 3: Run the program to see the new interceptor logs

	Activity 14-4 summary
	Activity 14-5: Flexible entity mapping
	Task 0: Getting started
	Task 1: Use flexible entity mapping to retrieve the results of a view
	Step 1: Rework the main program to call to just the GetFullItemDetails view
	Step 2: Add the flexible entity mapping

	Activity 14-5 summary
	Activity 14-6: Table-per-type (TPT) inheritance mapping
	Task 0: Getting started
	Task 1: Create the inheritance hierarchy
	Step 1: Add the inheritance structures
	Step 2: Create the migration, and update the database

	Task 2: Move data
	Step 1: Create a new script to migrate existing data
	Step 2: Use the new TPT tables in code

	Activity 14-6 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 15: .Net 6 and EFCore6
	Planned highly requested features and enhancements
	SQL Server temporal tables
	JSON columns
	ColumnAttribute.Order
	Compiled models
	Migrations bundles
	.Net integration improvements
	System.Data
	Microsoft.Data.SqlLite

	Additional new features
	More flexible free text search
	UnicodeAttribute
	PrecisionAttribute
	EntityTypeConfigurationAttribute
	Translate ToString on SQLLite
	EF.Functions.Random
	Support for SQL Server sparse columns
	Command timeout in the connection string for SQLLite
	In-memory database – Validate required parameters
	Savepoints API – Use partial transactions to roll back to a previous savepoint
	Reverse-engineering preserves database comments in code

	Chapter 15 activities
	Activity 15-1: New attributes
	Task 0: Getting started
	Task 1: Use the Precision attribute
	Step 1: Note the update-database warning
	Step 2: Fix the precision and scale using the Fluent API
	Step 3: Fix the precision and scale using the new Precision attribute
	Step 4: Build the project and run the update-database command

	Task 2: Leverage the EntityTypeConfigurationAttribute
	Step 1: Revert the database again
	Step 2: Move the Fluent API declaration for precision out of the DbContext using the new EntityTypeConfigurationAttribute
	Step 3: Add a new class file called ItemConfiguration to the InventoryModels project, and implement IEntityTypeConfiguration<Item> in the new class
	Step 4: Run the update-database command to see the final result

	Task 3: Use the new Unicode attribute
	Step 1: Add four new properties to the Item class
	Step 2: Create the FluentAPI Unicode mapping implementations
	Step 3: Use the new Unicode attribute to map the other two properties
	Step 4: Add a new migration and update the database

	Activity 15-1 summary
	Activity 15-2: Changes to how text and searching are handled, null or whitespace translated to SQL, sparse columns, nullable reference types, and a new random function
	Task 0: Getting started
	Task 1: Improved free text search
	Step 1: Ensure you have full-text search installed
	Step 1: Search for Items by Category Name with a traditional approach
	Step 2: Leverage the improved free text search in EFCore6
	Step 3: Add a migration to affect the changes to the Items table
	Step 4: Create the code to perform the search
	Step 5: Create a full-text index on the Items table

	Task 2: Review the upgrade to string.Concat
	Step 1: Add the method
	Step 2: Run the program to see the results

	Task 3: Review the use of EF.Functions.Random
	Step 1: Add a new method to review EF.Functions.Random
	Step 2: Run the program a couple of times to see results

	Task 4: Reviewing improved SQL Server translation for IsNullorWhiteSpace
	Step 1: Create the new method
	Step 2: Review the SQL output in SQL Server Profiler

	Task 5: Support for sparse columns
	Step 1: Implement the TPH model classes
	Step 2: Add the new entities to the DbContext
	Step 3: Mark StockSymbol as sparse
	Step 4: Regenerate the migration

	Activity 15-2 summary
	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 16: Appendix A: Troubleshooting
	Migrations
	Objects exist/objects don’t exist
	Comment out code
	Manual insert to the database
	Change DB connection

	Starter packs
	General starter pack creation
	What you should do every time
	Simple instructions

	Final packs
	Review your solution

	Use a diff tool like GitHub, VSCode, or WinMerge

	Index

