

 [image: Cover image]
 Book cover of Stylish F# 6

 Kit Eason

Stylish F# 6
Crafting Elegant Functional Code for .NET 6
2nd ed.
[image: ../images/462726_2_En_BookFrontmatter_Figa_HTML.png]Logo of the publisher

Kit EasonFarnham, Surrey, UK

				ISBN 978-1-4842-7204-6e-ISBN 978-1-4842-7205-3
https://doi.org/10.1007/978-1-4842-7205-3
© Kit Eason 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

To Val, Matt, Meg, Kate, Andy, Noah, and Darwin: my own persistent collection.

Introduction
There are three distinct philosophies which you can apply to computer programming. You can think of programming as a science, where the measure of progress is how well you discover and reflect fundamental mathematical concepts in your code. You can think of it as a discipline, where you seek to establish and follow rules about how code should be written and organized. Or, best of all, you can think of it as a craft, where, yes, you apply some of the science and some of the discipline; but you leaven those with a generous helping of human creativity. To do this successfully, you need a fair bit of experience, because crafting something is an inherently intuitive process. This book aims to get you to a level where you can craft code confidently. It does this by distilling and passing on my own experience of writing F# systems in numerous different industries over the past ten years.
Before you start this book, you’ll need at least some knowledge of F# syntax and concepts. Maybe you’ve read some of the wide range of beginner material that’s available, and probably you’ll have written at least a few simple F# programs yourself. You may well have deeper experience of other languages, such as C# or Python. That said, I have framed the book so that C# knowledge is not a hard prerequisite: I learned F# before I learned C#, and if I can do it, so can you! Also you definitely don’t need any background in computer science or functional programming. I don’t have even a trace of formal education in either of these areas.
So what’s between the covers? In Chapter 1, I’ll establish some principles which will help us decide whether we are coding well and say a little bit about why coding stylishly is important. In Chapter 2, we’ll pick up the basic tools of our craft and learn to chisel out elegant and reliable functions. In Chapter 3, we’ll tackle the thorny issue of missing data, learning some effective techniques for writing dependable code when certain values might not be available. In Chapter 4, we’ll pick up some more powerful crafting tools, the so-called collection functions, and explore how you can use them to achieve a surprising amount with very little code. In Chapter 5, we’ll delve into the strange world of immutability: how you can write programs which achieve a result without explicitly changing anything. In Chapter 6, we’ll look at pattern matching, a concept you may have looked at a little when you learned F# syntax, but which is surprisingly pervasive and powerful in quality F# code. In Chapter 7, we’ll explore record types, F#’s go-to structure for storing groups of labeled values. In Chapter 8, we’ll cover some ground which might already be familiar to C# developers: object-oriented classes. In Chapter 9, we’ll return to the topic of F# functions and explore what it means for a function to also be a first-class value. In Chapter 10, we’ll tame the apparent complexity of asynchronous and parallel programming: it needn’t be as hard as you think! In Chapter 11, we’ll look at Railway Oriented Programming, an interesting metaphor you can use to help you think about processing pipelines. In Chapter 12, we’ll investigate performance: Can you really write code which is both elegant and fast? In Chapter 13, we’ll establish some useful techniques for laying out your code and naming items to maximize readability. In Chapter 14, I’ll briefly reiterate what we’ve learned.
As this book is primarily about the language, you’ll find relatively few references to other libraries. Of course, to build substantial systems, you’ll almost always want to pull in NuGet packages for requirements such as unit testing, serialization, web serving, and so forth. But these libraries constitute a large and fast-changing landscape, so I’ve chosen to pare things down to the F# essentials for this book. For the same reason, I hardly mention graphical user interface or web development. Since the first edition of this book, F# has become much more widely used in these areas, but this has been via innovations in the surrounding ecosystem (notably the Fable transpiler), whereas in these pages, I want to concentrate on the F# language itself.
This focus also means that most of the code examples can be typed in and run as cells in a .NET Interactive notebook. They are provided in notebook form in the downloadable code samples. In the small number of cases where you need to write a compilable program, I take you through the process in the text alongside the example. These non-notebook examples are also provided in the downloadable code but in “project” form so that you can open and build them in Visual Studio Code (with the Ionide extension), Visual Studio, or JetBrains Rider.
I very much hope you enjoy sharing my F# experience as much as I enjoyed acquiring it. Don’t forget to have fun!

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.apress.com/9781484272046. For more detailed information, please visit http://www.apress.com/source-code.
Acknowledgments
I am grateful for the generous help I received in putting Stylish F# together. Thanks to Stachu Korick (Second Edition) and Quinton Coetzee (First Edition) for their exceedingly diligent and constructive technical reviews. To Val Eason for detecting many typos and poor turns of phrase. To Dr. Jon Harrop for providing detailed technical feedback on Chapter 12, and to several other F# community members who have provided feedback on the first edition and ideas for the second. To Jason Heeris for kindly giving permission to reproduce the cartoon in Chapter 1. To Don Syme, Phillip Carter, and the F# community for the never-ending stream of compiler and tooling improvements that propel F# forward. And to Matt Jones and the amazing team at Perpetuum for providing the best working environment I’ve ever experienced. Thanks also to the tireless crew at Apress: Joan Murray, Jill Balzano, and Laura Berendson. Any errors, omissions, or plain wrong-headedness are, of course, still my own responsibility.

Table of Contents

Chapter 1:​ The Sense of Style1
Why a Style Guide?​1

Understanding Beats Obedience2

Good Guidance from Bad Code2

What About Testability?​8

Complexity Explosions8

Summary9

Chapter 2:​ Designing Functions Using Types11
Miles and Yards (No, Really!)11
Converting Miles and Yards to Decimal Miles12

How to Design a Function13
Sketch the Signature of the Function14

Naively Code the Body of the Function14

Review the Signature for Type Safety15

Review and Refine19

A Final Polish21

Recommendations23

Summary24

Exercises24

Exercise Solutions25

Chapter 3:​ Missing Data29
A Brief History of Null29

Option Types vs.​ Null32

Consuming Option Types34
Pattern Matching on Option Types35

The Option Module36

Option Type No-Nos43

Designing Out Missing Data44

Interoperating with the Nullable World48
Leaking In of Null Values48

Defining a SafeString Type49

Using Option.​ofObj50

Using Option.​ofNullable51

Leaking Option Types and DUs Out52

Using Option.​toObj52

Using Option.​toNullable53

The Future of Null54

The ValueOption Type55

Recommendations56

Summary56

Exercises57

Exercise Solutions58

Chapter 4:​ Working Effectively with Collection Functions61
Anatomy of a Collection Function61

Picking the Right Collection Function64

Detailed Collection Function Tables66

Practicing with Collection Functions72
Exercise Setup72

Single Collection Function Exercises73

Multiple Collection Function Exercises77

Partial Functions80
Coding Around Partial Functions82

Using the “try” Idiom for Partial Functions84

Consuming Values from try… Functions86

Try… Function Exercises86

Functions for Other Kinds of Collections87

When the Collection Function Is Missing88

Common Mistakes89

Recommendations93

Summary94

Exercise Solutions94

Chapter 5:​ Immutability and Mutation99
These Folks Are Crazy!99

Classic Mutable Style99

Immutability Basics101

Common Mutable Patterns103
Linear Search104

Guarded Linear Search105

Process All Items107

Repeat Until110

Find Extreme Value112

Summarize a Collection115

Recommendations117

Summary118

Exercises118

Exercise Solutions119

Chapter 6:​ Pattern Matching123
Weaving Software with Patterns123

Pattern Matching Basics123

When Guards126

Pattern Matching on Arrays and Lists127

Pattern Matching on Tuples129

Pattern Matching on Records130

Pattern Matching on Discriminated Unions133

Pattern Matching on DUs in Function Parameters135

Pattern Matching in Let Bindings138

Revisiting Single-Case Discriminated Unions139

Pattern Matching in Loops and Lambdas141

Pattern Matching and Enums142

Active Patterns144
Single-Case Active Patterns144

Multicase Active Patterns146

Partial Active Patterns147

Parameterized Active Patterns149

Pattern Matching with “&​”150

Pattern Matching on Types151

Pattern Matching on Null153

Recommendations154

Summary156

Exercises157

Exercise Solutions160

Chapter 7:​ Record Types165
Winning with Records165

Record Type Basics165

Record Types and Immutability167

Default Constructors, Setters, and Getters169

Records vs.​ Classes169
Structural Equality by Default170

Records as Structs173

Mapping from Instantiation Values to Members175

Records Everywhere?​176

Pushing Records to the Limit177
Generic Records178

Recursive Records179

Records with Methods180

Records with Methods – A Good Idea?​183

Anonymous Records184
Anonymous and Named Record Terminology186

Anonymous Records and Comparison186

“Copy and Update” on Anonymous Records189

Serialization and Deserialization of Anonymous Records190

Anonymous Records in Type Hints192

Struct Anonymous Records192

Anonymous Records and C#193

Pattern Matching on Anonymous Records193

Adding Methods to Anonymous Records194

Mutation and Anonymous Records194

Record Layout195

Recommendations196

Summary198

Exercises198

Exercise Solutions200

Chapter 8:​ Classes205
The Power of Classes205

Additional Constructors215

Values As Members217

Simple Mutable Properties219

Member Getters and Setters with Bodies220

Named Parameters and Object Initialization Syntax222

Indexed Properties223

Interfaces226

Object Expressions232

Abstract Classes235
Abstract Members235

Default Member Implementations236

Class Equality and Comparison237
Implementing Equality237

Implementing Comparison243

Recommendations246

Summary246

Exercises248

Exercise Solutions249

Chapter 9:​ Programming with Functions253
Functions First253

Functions as Values253

Currying and Partial Application255

Mixing Tupled and Curried Styles257

Function Signatures Revisited259

Type Hints for Functions260

Functions That Return Functions262

Function Composition265

Recommendations268

Summary269

Exercises269

Exercise Solutions272

Chapter 10:​ Asynchronous and Parallel Programming275
Ordering Pizza275

A World Without Async276

Running the Synchronous Downloader282

Converting Code to Asynchronous284

Locking Shared Resources290

Testing Asynchronous Downloads291

Batching292

Throttling297

C# Task vs.​ F# Async299

F# Tasks301

Recommendations304

Summary305

Exercises306

Exercise Solutions307

Chapter 11:​ Railway Oriented Programming311
Going Off the Rails311

On the Factory Floor312

Adapting Functions for Failure316

Writing a Bypass Adapter317

Writing a Pass-Through Adapter318

Building the Production Line319

Making It Official323

Love Your Errors324

Recommendations328

Summary329

Exercises330

Exercise Solutions333

Chapter 12:​ Performance337
Design Is Compromise337

Some Case Studies338

BenchmarkDotNet338

Case Study:​ Inappropriate Collection Types340
Avoiding Indexed Access to Lists343

Using Arrays Instead of Lists345

Use Sequences Instead of Arrays346

Avoiding Collection Functions347

Avoiding Loops Having Skips349

Inappropriate Collection Types – Summary350

Case Study:​ Short-Term Objects352
Sequences Instead of Arrays355

Avoiding Object Creation356

Reducing Tuples357

Using Struct Tuples358

Operator Choice360

Short-Term Objects – Summary362

Case Study:​ Naive String Building364
StringBuilder to the Rescue366

Using String.​Join367

Using Array.​Parallel.​map368

Using String Interpolation370

Naive String Building – Summary371

Other Common Performance Issues372
Searching Large Collections372

Comparison Operators and DateTimes372

Concatenating Lists372

For-Loop with Unexpected List Creation372

F# and Span Support373

The Importance of Tests373

Recommendations375

Summary376

Exercises377

Exercise Solutions380

Chapter 13:​ Layout and Naming383
Where Are My Braces?​383

It’s Okay Pluto, I’m Not a Planet Either384

Some Infelicitous Code386

Convenience Functions390

Column Extraction Functions391

The Observation Range Type393

The Importance of Alignment395

The Minor Planet Type397

Recommendations404

Summary405

Exercise406

Exercise Solution407

Chapter 14:​ Summary409
F# and the Sense of Style409

Designing Functions with Types409

Missing Data410

Collection Functions410

Immutability and Mutation411

Pattern Matching411

Record Types411

Classes412

Programming with Functions412

Asynchronous and Parallel Programming413

Railway Oriented Programming414

Performance414

Layout and Naming415

Onward!416

Index417

About the Author

Kit Easonis a software developer and educator with more than 20 years of experience. He has been programming in F# since 2011 and is employed at Perpetuum Ltd., working on an extensive network of energy-harvesting vibration sensors fitted to railway rolling stock and infrastructure. Kit is an avid F# user who is passionate about teaching others. He has contributed to several publications, including the Apress book “Beginning F#.” He often teaches on the topic of F#, and his popular videos appear on Udemy and Pluralsight.

About the Technical Reviewer

Stachu Korick[image: ../images/462726_2_En_BookFrontmatter_Figb_HTML.jpg]

stumbled upon F# in 2014 and instantly fell in love with both the language and the surrounding community. Most importantly, he met his wife Olya after speaking on F# at a local .NET conference near Philadelphia. As time allows, he works on an F# podcast WTF# (https://wtfsharp.com). Beyond software, Stachu spends his time as an amateur woodworker, playing with his cats, practicing chemistry, or jotting down bits of lyrics to eventually compose into music.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_1

1. The Sense of Style

Kit Eason1
(1)Farnham, Surrey, UK

Mystification is simple; clarity is the hardest thing of all.
—Julian Barnes, English Novelist

Why a Style Guide?
In this chapter, I will talk a little about why we as F# developers need a style guide and what such a guide should look like. I’ll also outline a few principles that, independent of language, great developers follow. These principles will be our guiding light in the many decisions we’ll examine in future chapters.
One of the most common issues for developers beginning their journey into F# is that the language is neither old enough nor corporate enough to have acquired universally accepted and comprehensive idioms. There simply isn’t the same depth of “best practice” and “design patterns” as there is in older languages such as C# and Java. Newcomers are often brought to a standstill by the openness of the choices before them and by a lack of mental tools for making those choices.
Traditionally, teams and language communities have dealt with this kind of problem by adopting “coding standards,” together with tools to support and enforce them, such as “StyleCop” and “ReSharper.” But I must admit to having a horror of anything so prescriptive. For me, they smack too much of the “human wave” approach to software development, in which a large number of programmers are directed toward a coding task, and “standards” are used to try and bludgeon them into some approximation of a unified team. It can work, but it’s expensive and depressing. This is not the F# way!
Understanding Beats Obedience
So how are we to assist the budding F# developer, in such a way that their creativity and originality are respected and utilized, while still giving them a sense of how to make choices that will be understood and supported by their peers? The answer, I believe, is to offer not coding standards, but a style guide. I mean “guide” in the truest sense of the word: something that suggests rather than mandates and something that gives the reader the tools to understand when and why certain choices might be for the best and when perhaps the developer should strike out on their own and do something completely original.
In coming to this conclusion, I’ve been inspired by Steven Pinker’s superb guide to writing in English, The Sense of Style (Penguin Books, 2014). The book is a triumph of guidance over prescription, and my hope is to set the same tone here. Pinker makes the point that stylish writing isn’t merely an aesthetic exercise: it is also a means to an end, that end being the spread of ideas. Exactly the same is true of stylish coding, in F# or any other computer language. The aim is not to impress your peers, to adhere slavishly to this or that “best practice,” or to wring every possible drop of processing power out of the computer. No, the aim is to communicate. The only fundamental metric is how effectively we communicate using our language of choice. Therefore, the measure of the usefulness of a style guide is how much it improves the reader’s ability to communicate with peers, and with the computer, via the code they write.
Good Guidance from Bad Code
Let’s begin by defining what kinds of communication problems we are trying to avoid. We can get to the bottom of this by looking at the common characteristics of code bases which everyone would agree are bad. Avoid those characteristics and we can hope that our code can indeed communicate well!
Regardless of the era or technology involved, hard-to-work-with code bases tend to have the following characteristics in common.
Characteristic 1: It’s hard to work out what’s going on when looking closely at any particular piece of code.
To understand any one part of the program, the reader must think simultaneously about what is going on in various other widely scattered pieces of code and configuration. This cartoon (Figure 1-1) sums up the situation brilliantly.[image: ../images/462726_2_En_1_Chapter/462726_2_En_1_Fig1_HTML.jpg]
Figure 1-1This is why you shouldn’t interrupt a programmer

Interrupting busy programmers is bad, but the whistling coffee carrier isn’t the only villain in this cartoon. The other is the code, which requires the developer to keep so much context in their personal working memory. When we write such code, we fail to communicate with people (including our future selves) who will have to maintain and extend it.
Note
I’ll describe the kind of code that isn’t readable with minimum context as having poor semantic focus. In other words, relevant meaning isn’t concentrated in a particular place but is spread about the code base.

Listing 1-1 shows an example of code that has poor semantic focus
 (along with a number of other problems!). let addInterest (interestType:int, amt:float, rate:float, y:int) =
 let rate = checkRate rate
 let mutable amt = amt
 checkAmount(&amt)
 let mutable intType = interestType
 if intType <= 0 then intType <- 1
 if intType = 1 then
 let yAmt = amt * rate / 100.
 amt + yAmt * (float y)
 else
 amt * System.Math.Pow(1. + (rate/100.), float y)

Listing 1-1Code with bad semantic focus

It is literally impossible to predict the behavior of this code without looking at other code elsewhere. What are checkRate and checkAmount doing? Is it OK that the value interestType can be any value from 2 upward with the same result? What happens when any of the parameters is negative? Or are some or all of the invalid range cases prevented elsewhere, or within checkRate and checkAmount? Could those protections ever get changed by accident?
And you can bet that when you see code like this, then the other code you then have to look at, such as the bodies of checkRate and checkAmount, is going to have similar issues. The number of “what if?” questions increases – literally exponentially – as one explores the call chain.
By the way, when I was writing this example, part of me was thinking “no professional would ever do this,” and a larger part of me was remembering all the times when I had seen code exactly like it.
Characteristic 2: It’s hard to be sure that any change will have the effects one wants, and only those effects.
In hard-to-maintain code, it’s also difficult to answer questions such as the following:	Can I refactor with confidence, or does the mess I’m looking at conceal some special cases that won’t be caught properly by apparently cleaner code?

	Can I extend the code to handle circumstances it wasn’t originally designed for and be confident that both the old circumstances and the new circumstances are all correctly handled?

	Could the code here be undermined in the future by some change elsewhere?

Again, this is fundamentally a failure of communication with a human audience.
Note
I’ll describe code that is difficult to change safely as having poor revisability because the consequences of any local revision are not readily predictable.

I’ll give some specific examples in Chapter 5, but I’ll bet that if you’ve been in the industry more than 5 minutes, you can provide plenty of your own!
Characteristic 3: It’s hard to be certain of the author’s intent.
A bad code base raises similar unsettling questions in the area of authorial intent:	What did the author mean by a particular section of code? Does the code actually do what they apparently think it should do? Is that even the right thing in the context of the system as a whole?

	If there appear to be gaps in the logic in the code, did the author realize they were there? Who is wrong, the author or the reader?

	If there are logic gaps, are the circumstances where they could manifest themselves prevented from occurring, or are the resulting errors handled elsewhere? Or have they never happened due to good luck? Or do they sometimes happen, but no one noticed or complained?

As if reading code wasn’t hard enough, the maintainer is now placed in a position of having to read the mind of the original author, or worse still, the minds of every author who has touched the code. Not the recipe for a good day at work and another failure to communicate.
Note
I’ll describe the kind of code where the author’s intentions are unclear as having poor motivational transparency. We can’t readily tell what the author was thinking and whether they were right when they were thinking it.

Here’s a great example of some code (in C# as it happens) where it’s hard to divine the author’s intention. This is code that is published by a major cloud service provider, apparently with a perfectly straight face, as an example of how to iterate over stored objects. Perhaps a little cruelly, I’ve removed some helpful code comments (Listing 1-2).ListVersionsRequest request = new ListVersionsRequest()
{
 BucketName = bucketName,
 MaxKeys = 2
};
do
{
 ListVersionsResponse response = client.ListVersions(request);
 foreach (ObjectVersion entry in response.Versions)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }
 if (response.IsTruncated)
 {
 request.KeyMarker = response.NextKeyMarker;
 request.VersionIdMarker = response.NextVersionIdMarker;
 }
 else
 {
 request = null;
 }
} while (request != null);

Listing 1-2Code with bad motivational transparency

My problem with this code is that request is used both as an object embodying a client request and as a sort of break marker, used to transport to the end of the loop the fact that response.IsTruncated has become true. Thus, it forces you to carry two distinct meanings of the label "request" in your head.
This immediately makes the reader start wondering, “Is there some reason why the author did this, something which I’m not understanding when I’m reading the code? For example, will any resources allocated when request was instantiated be released promptly when the assignment to null occurs? Was this therefore an attempt at prompt disposal?” (Would you know, without googling it, if resources are disposed promptly on assignment to null? I have googled it and I still don’t know.) This is on top of the mental overhead caused by the way the code has to transport state (KeyMarker and VersionIdMarker) from the response to the request. Admittedly, this isn’t the sample author’s fault as it is part of the API design, but with some careful coding, it might have been possible to mitigate the issue.
All in all, reading this code starts a great many mental threads in the user’s head, for no good reason. We can do better.
Characteristic 4: It's hard to tell without experimentation whether the code will be efficient.
Any algorithm can be expressed in myriad ways, but only a very few of these will make decent use of the available hardware and runtime resources. If you’re looking at code with a tangle of flags, special cases, and ill-thought-out data structures, it is going to be very difficult to keep efficiency and performance in mind. You’ll end up getting to the end of a hard day fiddling with such code and thinking: “Oh well, at least it works!” As data volumes and user expectations grow exponentially, this will come back to bite you – hard!
Note
I’ll describe code that isn’t obviously efficient as having poor mechanical sympathy.

Again, it’s a failure of communication. The code should be written in a way that satisfies both the human and electronic audiences, so the human maintainer can understand it, and the computer can execute it efficiently. I’ll give some bad and good examples in Chapter 12.
Generally, the term “mechanical sympathy” means the ability to get the best out of a machine by having some insight into how the machine operates. In a world of perfect abstractions (such as perfect automatic gearboxes or perfect computer languages), we wouldn’t need mechanical sympathy. But we do not yet live in such a world. Incidentally, the term is sometimes attributed to racing driver Jackie Stewart, but although he used it, a quick glance at Google Ngrams suggests it predates him as a well-used phrase.
What About Testability?
If you are worrying that I have missed out another characteristic of bad code, poor testability, don’t worry. Testability is always at the forefront of my mind, but it’s my belief that it would be hard to write code that had good semantic focus, good revisability, good motivational transparency, and good mechanical sympathy, without it automatically turning out to have good testability. Test-driven design aficionados would put the cart and the horse the other way around, which is fine by me, but it’s not the way I want to tackle things in this book.
Complexity Explosions
Everyone would agree that maintaining bad, poorly communicating code is an unpleasant experience for the individual. But why does this matter in a broader sense for software engineering? Why should we spend extra time polishing code when we could be rushing on to the next requirement?
The reason is that these sources of uncertainty exert an inexorable pressure toward a complexity explosion
. A complexity explosion occurs when developers, under all sorts of time and commercial pressures, give up trying to fully reason about existing code and start to commit sins such as the following:	Duplicating code, because that feels safer then generalizing existing code to handle both old and new cases

	Programming by coincidence, in which one keeps changing code until it “seems to work,” because the code is just too hard to reason about comprehensively

	Avoiding refactoring, because it seems too risky or time consuming in the short term to be worth doing

The reason why I refer to such situations as explosions is because these bad practices lead to further uncertainty, which leads to more widespread bad practice, and so forth. Complexity explosions are the reason why, when joining a team working on an established code base, the new developer is so often tempted to say, “Shouldn’t we just rewrite the whole thing?” Complexity explosions are expensive and hard to recover from! To prevent them, it’s important to write code that doesn’t put others (or your future self) into a position where the sins look more tempting than the path of righteousness.
Everything about this book is designed to help you minimize the risk of complexity explosions. If any of the techniques I suggest seem a little hard at first, consider the cost and pain of the alternative!
Summary
I hope I’ve convinced you that writing good code is a worthwhile investment of time and that I’ve helped you spot some of the characteristics of bad code so that you can see the practical advantages of every recommendation in this book.
The great news is that the F# language makes it easier than ever to avoid writing bad code, by making it easy to write programs that are semantically focused, revisable, motivationally transparent, and mechanically sympathetic. In the following chapters, you’ll learn to write such great code and to enjoy doing it. For once in life, the path to righteousness is downhill!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_2

2. Designing Functions Using Types

Kit Eason1
(1)Farnham, Surrey, UK

When you remove layers, simplicity and speed happen.
—Ginni Rometty, CEO, IBM

Object-Oriented (OO) programming is currently the dominant design approach in almost all software development. In OO, the natural unit of work is, unsurprisingly, the “object” or “class,” and design effort is focused on defining classes that have the right shapes, behaviors, and relationships for the tasks at hand. In F#, by contrast, the natural units of work are types, which describe the shape of data, and functions, units of code that take some (typed) input and produce some (typed) output in a predictable fashion. It makes sense, therefore, to start our journey into stylish F# coding by looking at how best to design and code relatively simple types and functions. It’s a surprisingly rich and rewarding topic.
Miles and Yards (No, Really!)
For the examples in this chapter, I’m going to choose a deliberately messy business domain. No cherry-picked, simplified examples here! Let me introduce you to the weird and wonderful world of premetrication units and the British railroad (in British parlance, “railway”) system. British railways are still measured, for some purposes at least, in miles and yards. A yard is just under 1 meter and will be familiar to American and most British readers. A mile is 1,760 yards and again will be familiar to many readers (Table 2-1).Table 2-1Some Rail Units of Distance

	Name
	Equal to

	Yard
	0.9144 meters

	Mile
	1760 yards

That’s simple enough, but it might surprise you to learn how miles and yards are recorded in some British railway systems. They use a single floating-point value, where the whole miles are in the whole part of the number and the yards are in the fractional part, using .0 for zero yards and .1759 for 1,759 yards. For example, a mile and a half would be 1.0880 because half a mile is 880 yards. A fractional part greater than .1759 would be invalid because at 1,760 yards, we are at the next mile.
Now you know why I chose British railway mileages as a nice gnarly domain for our coding examples.1 Clearly, some rather specific coding is needed to allow railway systems to do apparently straightforward things like reading, calculating with, storing, and printing such miles.yards distances. This gives us a great opportunity to exercise our type- and function-design skills.
Converting Miles and Yards to Decimal Miles
Let’s start with the conversion from a miles-and-yards value, as perhaps read from a railway GIS (Geographic Information System), to a more conventional floating-point representation of miles and fractional miles, which would be useful for calculation. This conversion is needed because, for example, you can’t just add two miles-and-yards values, as the fractional part would not add properly. (Think about adding 1.0880 [one-and-a-half miles] to another 1.0880. Would you get three miles?) Because of the everpresent risk of confusion, I’ll use very specific terminology for the two representations (Table 2-2).Table 2-2Miles Terminology

	Term
	Example Value
	Real-World Meaning

	miles.yards
	1.0880
	One and a half miles

	decimal miles
	1.5
	One and a half miles

How to Design a Function
Here is my thought process for coding any function. I’ll list the steps first and then work through the example.	Sketch the signature of the function – naively, what types of inputs does it take, and what type does it return? What should the function itself be called? Does the planned signature fit well into code that would need to call it?

	Code the body of the function, perhaps making some deliberately naive assumptions if this helps get quickly to a “first cut.”

	Ask, does the sketched signature cover the use cases and eliminate as many potential errors as possible? If not, refine the signature and then the body to match.

	In coding the body, did you learn anything about the domain? Did you think of some new error cases that could have been eliminated at the signature level? Is the function name still a good reflection of what it does? Refine the name, signature, and body accordingly.

	Rinse and repeat as necessary.

In outlining these steps, I’ve dodged the whole issue of tests. How and when unit tests are written is an important topic, but I’m not getting into that here.
Now let us apply these steps to the miles.yards to decimal miles problem.
Sketch the Signature of the Function
You can sketch out the signature of a function straight into code by typing the let binding of the function, using specified rather than inferred types, and making the body of the function simply raise an exception. Listing 2-1 shows my initial thought on the miles.yards to decimal miles converter.
Listing 2-1. Sketching out a function signature open System

 let convertMilesYards (milesPointYards : float) : float =
 raise <| NotImplementedException()

Here we are saying, “We’ll have a function called convertMilesYards that takes a floating-point input and returns a floating-point result.” The function will compile, meaning that you could even experiment with calling it in other code if you wanted. But there is no danger of forgetting to code the logic of the body because it will immediately fail if actually called.
Naively Code the Body of the Function
Now we can replace the exception in the body of the function with some real code. In the miles.yards example, this means separating the “whole miles” element (for instance, the “1” part of 1.0880) from the fractional part (the 0.0880) and dividing the fractional part by 0.1760 (remembering that there are 1,760 yards in a mile). Listing 2-2 shows how this looks in code.
Listing 2-2. Naively coded function body let convertMilesYards (milesPointYards : float) : float =
 let wholeMiles = milesPointYards |> floor
 let fraction = milesPointYards - float(wholeMiles)
 wholeMiles + (fraction / 0.1760)

 // val decimalMiles : float = 1.5
 let decimalMiles = 1.0880 |> convertMilesYards

As you can see from the example at the end of Listing 2-2, this actually works fine. If you wanted, you could stop at this point, add some unit tests if you hadn’t written these already, and move on to another task. In fact, for many purposes, particularly scripts and prototypes, the code as it is would be perfectly acceptable. As you go through the next few sections of this chapter, please bear in mind that the changes we make there are refinements rather than absolute necessities. You should make a mental cost-benefit analysis at every stage, depending on how polished and “bullet proof” you need the code to be.
Review the Signature for Type Safety
The next step in the refinement process is to reexamine the signature, to check whether there are any errors we could eliminate using the signature alone. It’s all very well to detect errors using if/then style logic in the body of a function, but it would be much better to make these errors impossible to even code. Prominent OCaml2 developer Yaron Minsky calls this “making illegal state unrepresentable.” It’s an important technique for making code motivationally transparent and revisable – but it can be a little hard to achieve in code where numeric values are central.
In our example, think about what would happen if we called our naive function with an argument of 1.1760. If you try this, you’ll see that you get a result of 2.0, which is understandable because (fraction / 0.1760) is 1.0 and, in case you’d forgotten, 1.0 + 1.0 is 2.0. But we already said that fractional parts over 0.1759 are invalid because from 0.1760 onward, we are into the next mile. If this happened in practice, it would probably indicate that we were calling the conversion function using some other floating-point value that wasn’t intended to represent miles.yards distances, perhaps because we accessed the wrong field in that hypothetical railway GIS. Our current code leaves the door open to this kind of thing happening silently, and when a bug like that gets embedded deep in a system, it can be very hard to find.
A traditional way of handling this would be to check the fractional part in the body of the conversion function and to raise an exception when it was out of range. Listing 2-3 shows that being done. (As a brief digression, note how we use nameof when raising the exception so that the correct name is output even if the parameter is renamed.)
Listing 2-3. Bounds checking within the conversion function open System

 let convertMilesYards (milesPointYards : float) : float =
 let wholeMiles = milesPointYards |> floor
 let fraction = milesPointYards - float(wholeMiles)
 if fraction > 0.1759 then
 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),
 "Fractional part must be <= 0.1759")
 wholeMiles + (fraction / 0.1760)

 // System.ArgumentOutOfRangeException: Fractional part must be <= 0.1759
 // Parameter name: milesPointYards
 let decimalMiles = 1.1760 |> convertMilesYards

But this isn’t making illegal state unrepresentable; it’s detecting an invalid state after it has happened. It’s not obvious how to fix this because the milesPointYards input is inherently a floating-point value, and (in contrast to, say, Discriminated Unions) we don’t have a direct way to restrict the range of values that can be expressed. Nonetheless, we can bring the error some way forward in the chain.
We start the process by noting that miles.yards could be viewed as a pair of integers, one for the miles and one for the yards. (In railways miles.yards distances, we disregard fractional yards.) This leads naturally to representing miles.yards as a Single-Case Discriminated Union (Listing 2-4.)
Listing 2-4. Miles and yards as a Single-Case Discriminated Union type MilesYards = MilesYards of wholeMiles : int * yards : int

Just in case you aren’t familiar with Discriminated Unions, we are declaring a type called MilesYards, with two integer fields called wholeMiles and yards. From a construction point of view, it’s broadly the same as the C# in Listing 2-5. Consumption-wise though, it’s very different, as we’ll discover in a moment.
Listing 2-5. An immutable class in C#public class MilesYards
{
 private readonly int wholeMiles;
 private readonly int yards;
 public MilesYards(int wholeMiles, int yards)
 {
 this.wholeMiles = wholeMiles;
 this.yards = yards;
 }
 public int WholeMiles { get { return this.wholeMiles; } }
 public int Yards { get { return this.yards; } }
}

I should also mention that in Discriminated Union declarations, the field names (in this case, wholeMiles and yards) are optional, so you will often encounter declarations without them, as in Listing 2-6. I prefer to include field names, even though it’s a little wordier, because this improves motivational transparency.
Listing 2-6. A Single-Case Discriminated Union without field names type MilesYards = MilesYards of int * int

Going back to our function design task, we’ve satisfied the need for a type that models the fact that miles.yards is really two integers. How do we integrate that with the computation we set out to do? The trick is to isolate the construction of a MilesYards instance from any computation. This is an extreme version of “separation of concerns”: here the concern of constructing a valid instance of miles.yards is a separate one from the concern of using it in a computation. Listing 2-7 shows the construction phase.
Listing 2-7. Constructing and validating a MilesYards instance open System

 type MilesYards = MilesYards of wholeMiles : int * yards : int

 let create (milesPointYards : float) : MilesYards =
 let wholeMiles = milesPointYards |> floor |> int
 let fraction = milesPointYards - float(wholeMiles)
 if fraction > 0.1759 then
 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),
 "Fractional part must be <= 0.1759")
 let yards = fraction * 10_000. |> round |> int
 MilesYards(wholeMiles, yards)

Note the carefully constructed signature of the create function: it takes a floatingpoint value (from some external, less strictly typed source like a GIS) and returns our nice strict MilesYards type. For the body, we’ve brought across some of the code from the previous iteration of our function, including the bits that validate the range of the fractional part. Finally, we’ve constructed a MilesYards instance using whole miles and yards.
All this may seem a trifle pernickety, but separating construction and conversion like this has a number of benefits:	The mapping from floating point to MilesYards is separately testable from the conversion to decimal yards.

	We could use the independent MilesYards type in other useful ways, such as overriding its ToString() method

 to provide a standard string representation.

	The signature and implementation are motivationally transparent. Even if a reader wasn’t familiar with the strange miles.yards convention in British railways, they’d see instantly what we were trying to do, and they’d be very clear that we were doing it deliberately.

	Likewise, it’s semantically focused: the reader only has to worry about one thing at a time.

	The code is also revisable. For example, if a new requirement surfaced to create distance values from miles and chains (a chain in railways is 22 yards, and yes, this unit is widely used), it would be obvious what to do.

Now it only remains to implement the computation. Listing 2-8 shows a first cut of code to do that.
Listing 2-8. Computing decimal miles from a MilesYards instance let milesYardsToDecimalMiles (milesYards : MilesYards) : float =
 match milesYards with
 | MilesYards(wholeMiles, yards) ->
 (float wholeMiles) + ((float yards) / 1760.)

Again, the signature is super explicit: MilesYards -> float. In the body, we use pattern matching to recover the wholeMiles and yards payload values from the MilesYards instance. Then we use the recovered values in a simple computation to produce decimal miles. Incidentally, if you aren’t familiar with Discriminated Unions, the match expression is how we get at the fields of the DU. This is one way in which a DU differs from an immutable class such as the C# example in Listing 2-5.
Review and Refine
At this point, we have a somewhat safer and more explicit implementation. But it’s not time to rest yet: we should still ruthlessly review the signature, naming, and implementation to ensure they are the best they can be.
The first thing that might jump out at you is the naming of the create function. “Create” is rather a vague word. What if we wanted to create an instance from some other type, such as a string? We could perhaps rename create to fromMilesPointYards - but that still leaves open the issue of what we are creating. And if we incorporated the result type in the name as well, it would be too long.3 How about moving the function into a module with the same name as the type and naming it fromMilesPointYards (Listing 2-9)?
Listing 2-9. Using a module to associate functions with a type open System

 type MilesYards = MilesYards of wholeMiles : int * yards : int

 module MilesYards =
 let fromMilesPointYards (milesPointYards : float) : MilesYards =
 // ... Same body as 'create' before ...

 let toDecimalMiles (milesYards : MilesYards) : float =
 // ... Same body as 'milesYardsToDecimalMiles' before ...

 // 4.5
 printfn "%A"
 (MilesYards.fromMilesPointYards(4.0880)
 |> MilesYards.toDecimalMiles)

 // Error: System.ArgumentOutOfRangeException: Fractional
 // part must be <= 0.1759 (Parameter 'milesPointYards')
 printfn "%A" (MilesYards.fromMilesPointYards(4.5))

This style of creation, using a from... function within a module, is nice because it leaves open the possibility that we might add additional ways of creating a MilesYards instance. For example, we might later add a fromString function. From the point of view of the caller, they would be doing a MilesYards.fromMilesPointYards or a MilesYards.fromString, which is just about as motivationally transparent as you could wish. We were also able to simplify the name of the conversion function from milesYardsToDecimalMiles to toDecimalMiles.
One objection to our current code is that we haven’t quite achieved “making illegal state unrepresentable.” Someone could simply construct their own invalid MilesYards instance like this:let naughty = MilesYards.MilesYards(1, 1760)

Thus, they’d bypass our carefully crafted fromMilesPointYards function. If this really bothers you, you can move the Single-Case Discriminated Union inside the module and make its case private (Listing 2-10).
Listing 2-10. Hiding the DU constructor module MilesYards =
 type MilesYards =
 private MilesYards of wholeMiles : int * yards : int

Now the only way to create a MilesYards instance is to go via the fromMilesPointYards function or via any other creation functions we might add in the future.
Note
Sometimes, making a DU case constructor private in this way can cause problems. For example, test code or serialization/deserialization sometimes needs to see the constructor. Also, you won’t be able to pattern match to recover the underlying values. If using private constructors causes more problems than it solves, just put the type outside the module again, and don’t worry too much about it.

A Final Polish
Time for a last look at the code to see if there is anything we can improve or simplify. Listing 2-11 shows where we are so far. (I have reverted to the type-outside-module style we were using prior to Listing 2-10, as this is what I find myself doing most in practice.)
Listing 2-11. A pretty good implementation of miles.yards conversionopen System

type MilesYards = MilesYards of wholeMiles : int * yards : int

module MilesYards =

 let fromMilesPointYards (milesPointYards : float) : MilesYards =
 let wholeMiles = milesPointYards |> floor |> int
 let fraction = milesPointYards - float(wholeMiles)
 if fraction > 0.1759 then
 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),
 "Fractional part must be <= 0.1759")
 let yards = fraction * 10_000. |> round |> int
 MilesYards(wholeMiles, yards)

 let toDecimalMiles (milesYards : MilesYards) : float =
 match milesYards with
 | MilesYards(wholeMiles, yards) ->
 (float wholeMiles) + ((float yards) / 1760.)

I now only have a couple of objections to this code, and they are both in the area of conciseness. The first is that we can avoid the match expression in the body of toDecimalMiles. Perhaps surprisingly, the way to do that is to move the pattern matching into the parameter declaration! Listing 2-12 shows before-and-after versions of the function.
Listing 2-12. Pattern matching in parameter declarations /// Before:
 let toDecimalMiles (milesPointYards : MilesYards) : float =
 match milesYards with
 | MilesYards(wholeMiles, yards) ->
 (float wholeMiles) + ((float yards) / 1760.)
 /// After:
 let toDecimalMiles (MilesYards(wholeMiles, yards)) : float =
 (float wholeMiles) + ((float yards) / 1760.)

This trick, which only works safely with Single-Case Discriminated Unions, causes the pattern match to occur at the caller/callee function boundary, rather than within the body of callee. From the caller’s point of view, the type they have to provide (a MilesYards DU instance) is unchanged; but within the callee, we have direct access to the fields of the DU, in this case, the wholeMiles and yards values. I’m laboring this point slightly because the first time you see this approach in the wild, it can be incredibly confusing.
Another thing we can tighten up a little is the repeated casting to float, such as in this line: (float wholeMiles) + ((float yards) / 1760.)

This casting is necessary because F# is stricter when mixing integers and floating-point types than, for example, C#. You have to explicitly cast in one direction or the other, which is intended to help you focus on your code’s intentions and thus to avoid subtle floating-point bugs. However, all those brackets and float keywords do make the code a bit wordy. We can get around this by creating a little operator to do the work. Listing 2-13 shows how this looks. (Obviously, you can put the operator in a different scope if you want to use it more widely.)
Listing 2-13. Using an operator to simplify mixing floating-point and integer values module MilesYards =
 let private (~~) = float
 ...
 let toDecimalMiles (MilesYards(wholeMiles, yards)) : float =
 ~~wholeMiles + (~~yards / 1760.)

The reason I chose ~~ as the name of this operator is that the wavy characters are reminiscent of an analog signal.
I personally find this a very useful trick when writing computational code. That said, many F# developers are reluctant to create their own operators, as it can obfuscate code as much as it simplifies. I’ll leave the choice to you.
Recommendations
Here are the key points I want you to take away from this chapter.	To write a function, first define the required signature and then write the body. Refine the signature and body until as many errors as possible are eliminated declaratively at the signature (type) level, and remaining errors are handled imperatively in the function body.

	To model a business type, consider using a Single-Case Discriminated Union. Provide functions to act on the type (e.g., to create instances and to convert to other types) in a module with the same name as the type. For extra safety, optionally put the type inside the module and make its single case private.

	Consider using operators – sparingly - to simplify code. In particular, consider declaring conversion operators such as ~~ to simplify code that mixes floating-point and integer values.

Summary
In this chapter, you learned how to design and write a function. You started by thinking about types: what type or types the function should take as parameters and what type it should return. Then you coded the body of the function, before circling back to the type signature to try and eliminate possible errors. You learned how to define a Single-Case Discriminated Union type representing some business item together with supporting functions to instantiate the type and to transform the type to another type. You learned the importance of Single-Case Discriminated Unions and about the usefulness of hiding the constructor to maximize type safety. Finally, you learned a couple of tricks to simplify your code: doing pattern matching in the declaration of a function parameter and using operators to simplify common operations such as casting to float.
In the next chapter, we’ll look at missing data: how best to express the concept that a data item is missing or irrelevant in a particular context.
Exercises
Here are some exercises to help you hone the skills you’ve gained so far. Exercise solutions are at the end of the chapter.
Exercise 2-1 – Handling Negative Distances
There’s a hole in the validation presented previously: we haven’t said anything about what happens when the input distance is negative. If we decided that negative distances simply aren’t valid (because miles.yards values always represent a physical position on a railway network), what would you need to change in the code to prevent negative values entering the domain?
Hint: You could do this around the same point in the code where we already check the range of the yards value.

Exercise 2-2 – Handling Distances Involving Chains
For some purposes, British railway distances aren’t expressed in miles and yards, but in miles and chains, where a chain is defined as 22 yards (see Figure 2-1).[image: ../images/462726_2_En_2_Chapter/462726_2_En_2_Fig1_HTML.png]
Figure 2-1A sign identifying a British railway bridge. The figures at the very bottom represent a distance from some datum, in miles and chains

Write a new type and module that can create and represent a distance in whole miles and chains and convert such a miles-and-chains distance to decimal miles. The only way to create the new MilesChains distance should be by supplying a whole miles and a chains input (i.e., two positive integers), so unlike MilesYards, you won’t need a fromMilesPointYards function.
Hint: There are 80 chains in a mile.

Exercise Solutions
Exercise 2-1 – Handling Negative Distances
To complete this exercise, you just need to add a couple of lines to validate milesPointYards using an if expression and then raise an ArgumentOutOfRangeException.open System

type MilesYards = MilesYards of wholeMiles : int * yards : int

module MilesYards =

 let private (~~) = float

 let fromMilesPointYards (milesPointYards : float) : MilesYards =
 let wholeMiles = milesPointYards |> floor |> int
 let fraction = milesPointYards - float(wholeMiles)
 if fraction > 0.1759 then
 raise <| ArgumentOutOfRangeException(nameof(milesPointYards), "Fractional part must be <= 0.1759")
 if milesPointYards < 0.0 then
 raise <| ArgumentOutOfRangeException(nameof(milesPointYards), "Must be > 0.0")
 let yards = fraction * 10_000. |> round |> int
 MilesYards(wholeMiles, yards)

 let toDecimalMiles (MilesYards(wholeMiles, yards)) : float =
 ~~wholeMiles + (~~yards / 1760.)

// Error: System.ArgumentOutOfRangeException: Must be > 0.0 (Parameter 'milesPointYards')
printfn "%A" (MilesYards.fromMilesPointYards(-1.))

Exercise 2-2 – Handling Distances Involving Chains
To complete this exercise, you need to create a Single-Case Discriminated Union much like the MilesYards DU, but with wholeMiles and chains as its fields. Since the exercise states that you should only be able to create valid instances, put the DU into a module and make its case private. Add a fromMilesChains function that range-validates the wholeMiles and chains arguments and then use them to make a MilesChains instance.
To convert to decimal miles, create a toDecimalMiles function that pattern matches to retrieve the wholeMiles and chains values and then use the 80-chains-per-mile conversion factor to calculate decimal miles. open System

 module MilesChains =

 let private (~~) = float

 type MilesChains =
 private MilesChains of wholeMiles : int * chains : int

 let fromMilesChains(wholeMiles : int, chains : int) =
 if wholeMiles < 0 then
 raise <| ArgumentOutOfRangeException(nameof(wholeMiles), "Must be >= 0")
 if chains < 0 || chains >= 80 then
 raise <| ArgumentOutOfRangeException(nameof(chains), "Must be >= 0 and < 80")
 MilesChains(wholeMiles, chains)

 let toDecimalMiles (MilesChains(wholeMiles, chains)) : float =
 ~~wholeMiles + (~~chains / 80.)

Footnotes
1Just be grateful that, for now at least, I’m ignoring another common railway unit, the “chain,” which is equal to, wait for it, 22 yards or 1/80th of a mile.

2OCaml is a language closely related to F#.

3The longest item name I ever created was EventModuleBlockBedroomAllocationDelegates. I’m not proud.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_3

3. Missing Data

Kit Eason1
(1)Farnham, Surrey, UK

Not even a thought has arisen; is there still a sin or not?
—Zen Koan, 10th Century CE

This is a chapter about nothing! Specifically, it’s about how we handle the absence of data in our programs. It’s a more important topic than you might think at first: bugs caused by incorrect handling of missing data, typically manifested as “null reference errors,” are distressingly common in Object-Oriented programs. And this still happens, despite code to avoid such errors forming a significant proportion of the line count of many C# code bases.
In this chapter I’ll try to convince you how serious a problem this is and show you the many features and idioms that F# offers to mitigate and even eliminate this class of error.
A Brief History of Null
When computer scientist Tony Hoare invented the concept of null in 1965 in developing ALGOL W, his purpose was to represent a thing or property that is potentially present but might not be present in a particular situation. Take the ALGOL W program in Listing 3-1, where null values are used extensively.RECORD PERSON (
 STRING(20) NAME;
 INTEGER AGE;
 LOGICAL MALE;
 REFERENCE(PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING, ELDERSIBLING
);
REFERENCE(PERSON) PROCEDURE YOUNGESTUNCLE (REFERENCE(PERSON) R);
 BEGIN
 REFERENCE(PERSON) P, M;
 P := YOUNGESTOFFSPRING(FATHER(FATHER(R)));
 WHILE (P ¬= NULL) AND (¬ MALE(P)) OR (P = FATHER(R)) DO
 P := ELDERSIBLING(P);
 M := YOUNGESTOFFSPRING(MOTHER(MOTHER(R)));
 WHILE (M ¬= NULL) AND (¬ MALE(M)) DO
 M := ELDERSIBLING(M);
 IF P = NULL THEN
 M
 ELSE IF M = NULL THEN
 P
 ELSE
 IF AGE(P) < AGE(M) THEN P ELSE M
 END

Listing 3-1Some ALGOL W code that uses null

Here, the ability to have a null or an actual value is used to model – for example - the fact that a person might or might not have an elder sibling. Null and nonnull instance values are used as flags to go down various branches of code. The modeling is definitely a bit fuzzy: for instance, FATHER and MOTHER are also nullable, even though everyone has a mother and father. Perhaps this models the fact that we might not know who they are. This kind of ambiguity was excusable in the 1960s, but coding patterns in the style of Listing 3-1 are still surprisingly common, even though there are now well-known techniques for modeling such relationships much more explicitly.
Of course, things have improved somewhat since 1965: in C#, for example, we now have the null coalescing operator ??, which allows us to retrieve either the nonnull value of some source item, or some other value, typically a default. As of C# 6.0, we also have the null-conditional operators ?. and ?[] that allow us to reach into an object or array for a property or indexed item and safely return null if either the object with the property, or the property itself, is null.
Despite these improvements, we all regularly see problems caused by null-based modeling. Spotting a ticketing machine or timetable display that has crashed with a null reference error can brighten any programmer’s commute. Figure 3-1 shows a less high-profile but equally typical example: Team Explorer in Visual Studio 2017 exposing a null reference exception during a git syncing operation.[image: ../images/462726_2_En_3_Chapter/462726_2_En_3_Fig1_HTML.png]
Figure 3-1Visual Studio 2017 Team Explorer exposing a null reference exception

What has happened in these cases (typically) is that code has tried to access some property or method of an object, which is itself null, such as the arrival time of the first train when there is no known first train.
It’s common to blame the programmer in these situations, attributing such errors either to incompetence or to outdated practices and technologies. But it isn’t as simple as that. I took a look at the GitHub issue list of a very modern, reputable, high-profile C# code base. (I won’t be so rude as to name it.) When I checked (in April 2021) for mentions of null references in that GitHub issue list, I got hundreds of hits, many of which were still open (Table 3-1). (There will of course be some double counting in these figures.)Table 3-1Null Reference Mentions in a Major C# Code Base Issue List

	Search Term
	Open
	Closed

	NullReferenceException
	201
	521

	null reference
	264
	811

	null-ref
	73
	191

	nullref
	2
	24

Incidentally, when I updated these figures for the new edition of this book, the figures in all but two categories had gone up since 2018. Clearly, it isn’t just “bad programmers” making these mistakes: null reference errors are accidents waiting to happen. Rather than blaming the operator, we should follow the basic principles of ergonomics and design such errors out of the technology at the language level.
At the time of writing, the primary approach in C# is still to “code around” the problem of null, which works (if you remember to do it) but does have a cost. I analyzed several open-source C# code bases and found that the proportion of lines involved in managing nulls (null checks, uses of null-coalescing and null-conditional operators) amounted to between 3% and 5% of the significant lines of code. Not crippling by any means, but certainly a significant distraction. Anything we can do to make this process easier has a worthwhile payoff.
The conclusion must be that paying attention to missing data and spending some time learning the techniques handle to it correctly, or avoiding it completely, are among the most useful things you can do as you learn idiomatic F# coding.
Option Types vs. Null
F#’s answer to the problem of potentially absent values is the option type. If you’ve coded in F# at all, you are probably familiar with option types, but please bear with me for a few moments while I establish very clearly what option types are and what they are not.
Fundamentally, the option type is just another Discriminated Union (DU), a type that represents several case values, each of which may have a different type of payload. Just in case you aren’t fully conversant with DUs, Listing 3-2 shows a general example: a type that can represent the dimensions of a square, a rectangle, or a circle. The Shape DU is made generic (the <'T> part) so that we could express the dimensions in any type we wanted – single precision, double precision, integer pixels, or whatever. type Shape<'T> =
 | Square of height:'T
 | Rectangle of height:'T * width:'T
 | Circle of radius:'T

Listing 3-2Example of a Discriminated Union

Conceptually, the F# option type is just the same: you can think of it as being a generic DU as shown in Listing 3-3. (Actually, within the compiler, it’s not quite as simple as that. For one thing, the option type has its own keyword: option.) type Option<'T> =
 | Some of 'T
 | None

Listing 3-3The Option type viewed as a Discriminated Union

One obvious difference between Shape and Option is that one of the cases of Option takes no payload at all - which makes sense because we can’t know the value of something that, by definition, doesn’t exist. DU cases without payloads are perfectly fine.
Listings 3-4 and 3-5 show us creating and pattern matching on the Shape DU and the Option DU in exactly the same way, to illustrate that there is nothing really magical about the Option DU. type Shape<'T> =
 | Square of height:'T
 | Rectangle of height:'T * width:'T
 | Circle of radius:'T

 let describe (shape : Shape<float>) =
 match shape with
 | Square h -> sprintf "Square of height %f" h
 | Rectangle(h, w) -> sprintf "Rectangle %f x %f" h w
 | Circle r -> sprintf "Circle of radius %f" r

 let goldenRect = Rectangle(1.0, 1.61803)
 // Rectangle 1.000000 x 1.618030
 printfn "%s" (describe goldenRect)

Listing 3-4Creating and using the Shape DU

 let myMiddleName = Some "Brian"
 let herMiddleName = None

 let displayMiddleName (name : Option<string>) =
 match name with
 | Some s -> s
 | None -> ""

 // >>>Brian<<<
 printfn ">>>%s<<<" (displayMiddleName myMiddleName)
 // >>><<<
 printfn ">>>%s<<<" (displayMiddleName herMiddleName)

Listing 3-5Creating and using the Option DU

The Shape type and the (built-in) Option type

 are treated in comparable ways in Listings 3-4 and 3-5 – the only real difference is that we could have declared the displayMiddleName function’s argument using string option instead of Option<string>, thus: let displayMiddleName (Name : string option) = ...

I could have done this because the compiler offers a special keyword for option types. I only used the Option<string> version in Listing 3-5 to highlight the fact that option types are DUs. In practice, you should use the option keyword as this is built into the language, making it widely understood and performant.
Consuming Option Types
How does all this help us step away from the risky world of nullable types, where we are always one missed null check away from a NullReferenceException? The difference from using nulls is that – provided we don’t deliberately bypass F# idioms – we are forced by the compiler to consider both the Some and None cases whenever we consume an option type. Consider Listing 3-6, where we have a billing details record that might, or might not, have a separate delivery address. (Again, this isn’t great modeling – see the next few sections for some improvements.) type BillingDetails = {
 Name : string
 Billing : string
 Delivery : string option }

 let myOrder = {
 name = "Kit Eason"
 billing = "112 Fibonacci Street\nErehwon\n35813"
 delivery = None }

 let hisOrder = {
 name = "John Doe"
 billing = "314 Pi Avenue\nErewhon\n15926"
 delivery = Some "16 Planck Parkway\nErewhon\n62291" }

 // Error: the expression was expected to have type 'string'
 // but here has type 'string option'
 printfn "%s" myOrder.delivery
 printfn "%s" hisOrder.delivery

Listing 3-6Modeling an optional delivery address using an Option type

Note how at the end of Listing 3-6, we try to treat the orders’ delivery addresses as strings, not as string options, which are a different type. This causes a compiler error for both the myOrder and hisOrder cases, not just a runtime error in the myOrder case. This is the option type protecting us by forcing us to consider the has-data and nodata possibilities at the point of consumption.
This begs the question: How are we supposed to access the underlying value or payload? There are several ways to do this, some more straightforward than others, so in the next few sections, we’ll go through these and examine their benefits and costs.
Pattern Matching on Option Types
Since an option type is a Discriminated Union, the obvious way to get at its payload (when there is one) is using pattern matching using a match expression (Listing 3-7). // BillingDetails type and examples as Listing 3-6.

 let addressForPackage (details : BillingDetails) =
 let address =
 match details.delivery with
 | Some s -> s
 | None -> details.billing
 sprintf "%s\n%s" details.name address

 // Kit Eason
 // 112 Fibonacci Street
 // Erehwon
 // 35813 printfn "%s" (addressForPackage myOrder)

 // John Doe
 // 16 Planck Parkway
 // Erewhon
 // 62291
 printfn "%s" (addressForPackage hisOrder)

Listing 3-7Accessing an option type’s payload using pattern matching

Consuming option types using explicit pattern matching in this way has clear trade-offs. The big advantage is that it’s simple: everyone familiar with the basics of F# syntax will be familiar with it, and the reader doesn’t require knowledge of other libraries (or even computer science theory!) to understand what is going on. The disadvantage is that it’s a little verbose and pipeline unfriendly.
I’ll present alternatives in future sections, but before I do, let me say this: if you, and anyone maintaining your code, aren’t completely comfortable with the basics of option types – comfortable to the extent that everyone is ready and keen to move onto more fluent methods of consumption – I’d advise that you stick with good old-fashioned pattern matching, at least for a while. As with many other areas of F# coding, trying to get too clever too quickly can lead to some pretty obscure code and a definite blurring of the principles of motivational transparency and semantic focus.
The Option Module
Once you are ready to go beyond pattern matching, you can start using some of the functions available in the Option module

. I personally found the Option module functions a little hard to get my head around at first. I suspect this is because English language descriptions of these functions don’t make much sense without examples – so proceed with this section slowly!
The Option.defaultValue Function
Let me start off with the equivalent code, in the Option module world, to that presented in Listing 3-7 – that is, getting either a string representing a delivery address or a default value (Listing 3-8). type BillingDetails = {
 Name : string
 Billing : string
 Delivery : string option }

 let addressForPackage (details : BillingDetails) =
 let address =
 Option.defaultValue details.billing details.delivery
 sprintf "%s\n%s" details.name address

Listing 3-8Defaulting an Option Type Instance using Option.defaultValue

The usage of addressForPackage is exactly the same as in Listing 3-7, so I haven’t repeated the usage here.
Option.defaultValue is pretty straightforward: you give it an option type as its second argument (in this case, details.delivery), and it’ll either return the underlying value of that instance if there is one or instead the value you give it in the first parameter (in this case, details.billing). One thing that might confuse you is the ordering of the parameters – the default value first and the option value second. The reason for this is to make the function “pipeline friendly.” The usefulness of this becomes clear if we apply Option.defaultValue as part of a pipeline, as in Listing 3-9. let addressForPackage (details : BillingDetails) =
 let address =
 details.delivery
 |> Option.defaultValue details.billing

 sprintf "%s\n%s" details.name address

Listing 3-9Using Option.defaultValue in a pipeline

The Option.iter Function
The Option module also offers a function to do something imperative with an option type, for example, printing out its payload or writing it to a file. It’s called Option.iter

, by analogy with functions like Array.iter that “do something imperative” with each element of a collection. If the value is Some, it performs the specified imperative action once using the payload; otherwise, it does nothing at all. The function printDeliveryAddress in Listing 3-10 prints "Delivery address: <address>" if there is such an address; otherwise, it takes no action. let printDeliveryAddress (details : BillingDetails) =
 details.delivery
 |> Option.iter
 (fun address -> printfn "%s\n%s" details.name address)

 // No output at all
 myOrder |> printDeliveryAddress

 // Delivery address:
 // John Doe
 // 16 Planck Parkway
 // Erewhon
 // 62291
 hisOrder |> printDeliveryAddress

Listing 3-10Using Option.iter to take an imperative action if a value is populated

There are additional Option module functions analogous to their collection-based cousins. These include Option.count, which produces 1 if the value is Some, otherwise 0, and Option.toArray and Option.toList, which produce a collection of length 1 containing the underlying value, otherwise an empty collection.
Option.map and Option.bind
The two Option module functions that I personally struggled most with were Option.map

 and Option.bind

, so we’ll spend a little more time on them. The documented behavior of these functions is a good example of descriptions of function behavior in English not being terribly useful (Table 3-2). (It may be that the descriptions are more helpful if – unlike me – you have a computer science or formal functional programming background!)Table 3-2Documented Behavior of the Option.map and Option.bind Functions

	Function
	Description

	Option.map
	Transforms an option value by using a specified mapping function

	Option.bind
	Invokes a function on an optional value that itself yields an option

The Option.map Function
Option.map

 is a way to apply a function to the underlying value of an option type if it exists and to return the result as a Some case; and if the input value is None, to return None without using the function at all. An example probably says it better: Listing 3-11 is a variation on printDeliveryAddress. let printDeliveryAddress (details : BillingDetails) =
 details.delivery
 |> Option.map
 (fun address -> address.ToUpper())
 |> Option.iter
 (fun address ->
 printfn "Delivery address:\n%s\n%s"
 (details.name.ToUpper()) address)

 // No output at all
 myOrder |> printDeliveryAddress

 // Delivery address:
 // JOHN DOE
 // 16 PLANCK PARKWAY
 // EREWHON
 // 62291
 hisOrder |> printDeliveryAddress

Listing 3-11Using Option.map to optionally apply a function, returning an option type

Here, the requirement is to print a delivery address in capitals if it exists, otherwise to do nothing. We combine Option.map, to do the uppercasing when necessary, with Option.iter, to do the printing.
Another way of thinking of Option.map is in diagram form (Figure 3-2).[image: ../images/462726_2_En_3_Chapter/462726_2_En_3_Fig2_HTML.png]
Figure 3-2Option.map as a diagram

In the None case (top of the diagram), the None effectively passes through untouched and never goes near the uppercasing operation. In the Some case (bottom of diagram), the payload is uppercased and comes out as a Some value. At this point, we begin to see the beginnings of the “Railway Oriented Programming” paradigm, which we’ll discuss in detail in Chapter 11.
The Option.bind Function
Option.bind

 is so similar to Option.map that I found it very hard to get my head around the difference. (Indeed, I still often catch myself trying each of them until the compiler errors go away!) I think the best way to start is to compare the signatures of Option.map and Option.bind (Table 3-3).Table 3-3Type Signatures for Option.map and Option.bind

	Function
	Signature

	Option.map
	('T -> 'U) -> 'T option -> 'U option

	Option.bind
	('T -> 'U option) -> 'T option -> 'U option

Look at them carefully: the only difference is that the “binder” function needs to return an option type ("U" option) rather than an unwrapped type ("U"). The usefulness of this is that if you have a series of operations, each of which might succeed (returning Some value) or fail (returning None), you can pipe them together without any additional ceremony. Execution of your pipeline effectively “bails out” after the first step that returns None, because subsequent steps just pass the None through to the end without attempting to do any processing.
Think about a situation where we need to take the delivery address from the previous example, pull out the last line of the address, check that it is a postal code by trying to convert it into an integer, and then look up a delivery hub (a package-sorting center) based on the postal code. The point is that several of these operations might “fail,” in the sense of returning None

.	The delivery address might not be specified (i.e., have a value of None).

	The delivery address might exist but be an empty string, hence having no last line from which to get the postal code.

	The last line might not be convertible to a postal code.

(I’ve made some simplifying assumptions here: I’m ignoring the billing address; I’m ignoring any validation that might in practice mean the delivery address isn’t an empty string; I’m assuming that a postal code must simply be an integer; and I’m assuming that the hub lookup always succeeds.) What does the code look like to achieve all this? (Listing 3-12). open System

 type BillingDetails = {
 Name : string
 Billing : string
 Delivery : string option }

 let tryLastLine (address : string) =
 let parts =
 address.Split([|'\n'|],
 StringSplitOptions.RemoveEmptyEntries)
 // Could also just do parts |> Array.tryLast
 match parts with
 | [||] ->
 None
 | parts ->
 parts |> Array.last |> Some

 let tryPostalCode (codeString : string) =
 match Int32.TryParse(codeString) with
 | true, i -> i |> Some
 | false, _ -> None

 let postalCodeHub (code : int) =
 if code = 62291 then
 "Hub 1"
 else
 "Hub 2"

 let tryHub (details : BillingDetails) =
 details.delivery
 |> Option.bind tryLastLine
 |> Option.bind tryPostalCode
 |> Option.map postalCodeHub

 let myOrder = {
 name = "Kit Eason"
 billing = "112 Fibonacci Street\nErehwon\n35813"
 delivery = None }

 let hisOrder = {
 name = "John Doe"
 billing = "314 Pi Avenue\nErewhon\n15926"
 delivery = Some "16 Planck Parkway\nErewhon\n62291" }

 // None
 myOrder |> tryHub

 // Some "Hub 1"
 hisOrder |> tryHub

Listing 3-12Using Option.bind to create a pipeline of might-fail operations

In Listing 3-12, we have a trylastLine function that splits the address by line breaks and returns the last line if there is one, otherwise None. Similarly, tryPostalCode attempts to convert a string to an integer and returns Some value only if that succeeds. The postalCodeHub function does a super-naive lookup (in reality, it would be some kind of database lookup) and always returns a value. We bring all these together in tryHub, which uses two Option.bind calls and an Option.map call to apply each of these operations in turn to get us from an optional delivery address to an optional delivery hub.
This is a really common pattern in idiomatic F# code: a series of Option.bind and Option.map calls to get from one state to another, using several steps, each of which can fail. Common though it is, it is quite a high level of abstraction, and it’s one of those things where you have to understand everything before you understand anything. So if you aren’t comfortable using it for now – don’t. A bit of nested pattern matching isn’t the worst thing in the world! I’ll return to this topic in Chapter 11 when we talk about “Railway Oriented Programming,” at which point perhaps it’ll make a little more sense.
Option Type No-Nos
Using option types can be frustrating at first. There’s often a strong temptation to bypass the pattern-matching or bind/map approach and instead tear open the package by examining the IsSome and Value properties that the option type offers (Listing 3-13). // Accessing payload via .IsSome and .Value
 // Don't do this!
 let printDeliveryAddress (details : BillingDetails) =
 if details.delivery.IsSome then
 printfn "Delivery address:\n%s\n%s"
 (details.name.ToUpper())
 (details.delivery.Value.ToUpper())

Listing 3-13Antipattern: accessing Option type payloads using hasValue and Value

Don’t do this! You’d be undermining the whole infrastructure we have built up for handling potentially missing values in a composable way.
Some people would also consider explicit pattern matching using a match expression (in the manner of Listing 3-7) and antipattern too and would have you always use the equivalent functions from the Option module. I think this is advice that’s great in principle but isn’t always easy to follow; you’ll get to fluency with Option.map, Option.bind, or so forth in due course. In the meantime, a bit of pattern matching isn’t going to hurt anyone, and the lower level of abstraction may make your code more comprehensible to nonadvanced collaborators.
Designing Out Missing Data
So far, we’ve been accepting the admittedly not-great modeling embodied in our original BillingDetails type. (As a reminder, this is repeated in Listing 3-14.) type BillingDetails = {
 Name : string
 Billing : string
 Delivery : string option }

Listing 3-14The BillingDetails type

The reason I say this is not great is that it isn’t clear under what circumstances the delivery address might not be there. (You might have to look elsewhere in the code to find out, which is a violation of the principle of semantic focus.) We can certainly improve on this. Let’s think about what the business rules might be for the BillingDetails type:	There must always be a billing address.

	There might be a different delivery address but….

	There must be no delivery address if the product isn’t a physically deliverable one, such as a download.

A good way to model this kind of thing is to express the rules as Discriminated Union cases. Listing 3-15 shows how this might play out. type Delivery =
 | AsBilling
 | Physical of string
 | Download

 type BillingDetails = {
 Name : string
 Billing : string
 delivery : Delivery }

Listing 3-15Modeling delivery address possibilities using a DU

In the new Delivery type, we’ve enumerated the three business possibilities: that the delivery address is the same as the billing address, that the delivery address is a separate physical address, or that the product is a download that does not need a physical address. Only in the Physical case do we need a string in which to store the address. In Listing 3-16, I’ve shown how it feels to consume the revamped BillingDetails type

. let tryDeliveryLabel (billingDetails : BillingDetails) =
 match billingDetails.delivery with
 | AsBilling ->
 billingDetails.billing |> Some
 | Physical address ->
 address |> Some
 | Download -> None
 |> Option.map (fun address ->
 sprintf "%s\n%s" billingDetails.name address)

 let deliveryLabels (billingDetails : BillingDetails seq) =
 billingDetails
 // Seq.choose is a function which calls the specified function
 // (in this case tryDeliveryLabel) and filters for only those
 // cases where the function returns Some(value). The values
 // themselves are returned.
 |> Seq.choose tryDeliveryLabel

 let myOrder = {
 name = "Kit Eason"
 billing = "112 Fibonacci Street\nErehwon\n35813"
 delivery = AsBilling }

 let hisOrder = {
 name = "John Doe"
 billing = "314 Pi Avenue\nErewhon\n15926"
 delivery = Physical "16 Planck Parkway\nErewhon\n62291" }

 let herOrder = {
 name = "Jane Smith"
 billing = "9 Gravity Road\nErewhon\n80665"
 delivery = Download }

 // seq
 // ["Kit Eason
 // 112 Fibonacci Street
 // Erehwon
 // 35813";
 // "John Doe
 // 16 Planck Parkway
 // Erewhon
 // 62291"]
 [myOrder; hisOrder; herOrder]
 |> deliveryLabels

Listing 3-16Consuming the improved BillingDetails type

In Listing 3-16, I’ve imagined that we want a function that generates delivery labels only for those orders that require physical delivery. I’ve divided the task up into two parts:	The tryDeliveryLabel function

 uses a match expression to extract the relevant address. Then (when it exists), it uses Option.map to pair this with the customer name to form a complete label.

	The deliveryLabels function

 takes a sequence of billingDetails items and applies tryDeliveryLabel to each item. Then it uses Seq.choose both to pick out those items where Some was returned and to extract the payloads of these Some values. (I go into more detail about Seq.choose and related functions in Chapter 4.)

Viewed in the light of the principles I laid out in Chapter 1, the code in Listings 3-15 and 3-16 is much better:	It has good semantic focus
. You can tell without looking elsewhere what functions such as tryDeliveryLabel will do and why.

	It has good revisability
. Let’s say you realize that you want to support an additional delivery mechanism: so-called “Click and Collect,” where the customer comes to a store to collect their item. You might start by adding a new case to the Delivery DU, maybe with a store ID payload. From then on, the compiler would tell you all the points in existing code that you needed to change, and it would be pretty obvious how to add new features such as a function to list click-and-collect orders and their store IDs.

	It has good motivational transparency
. You aren’t left wondering why a particular delivery address is None. The reasons why an address might or might not exist are right there in the code. Other developers both “above you” in the stack (e.g., someone designing a view model for a UI) and “below you” (e.g., someone consuming the data to generate back-end fulfilment processes) can be clear about when and why certain items should and should not be present.

Modeling like this, where we use DUs to provide storage only for the DU cases where a value is required, brings us toward the nirvana of “Making Illegal State Unrepresentable,” an approach that I believe does more to eliminate bugs than any other coding philosophy I’ve come across.
Interoperating with the Nullable World
In this section, I’ll talk a bit about the implications of nullability when interoperating between F# and C#. There shouldn’t be anything too unexpected here, but when working in F#, it’s always worth bearing in mind the implications of interop scenarios.
Leaking In of Null Values
If you’re of a skeptical frame of mind, you’ll realize that there is a pretty big hole in my suggestion so far in this chapter (i.e., the claim that you can protect against null values by wrapping things in option types or Discriminated Unions). The hole is that (if it is a nullable reference type like a string), the wrapped type could still have a value of null. So, for example, the code in Listing 3-17 will compile fine, but it will fail with a null reference exception at runtime. type BillingDetails = {
 Name : string
 Billing : string
 Delivery : string option }

 let printDeliveryAddress (details : BillingDetails) =
 details.delivery
 |> Option.map
 (fun address -> address.ToUpper())
 |> Option.iter
 (fun address ->
 printfn "Delivery address:\n%s\n%s"
 (details.name.ToUpper()) address)

 let dangerOrder = {
 name = "Will Robinson"
 billing = "2 Jupiter Avenue\nErewhon\n199732"
 delivery = Some null }

 // NullReferenceException
 printDeliveryAddress dangerOrder

Listing 3-17A null hiding inside an Option type

(As an aside, and perhaps a little surprisingly, doing a printfn "%s" null or a sprint "%s" null is fine – formatting a string with %s produces output as if the string was a nonnull, empty string. The problem in Listing 3-17 is the call to the ToUpper() method

 of a null instance.)
Obviously, you wouldn’t knowingly write code exactly like Listing 3-17, but it does indicate how we are at the mercy of anything calling our code that might pass us a null. This doesn’t mean that the whole exercise of using option types or DUs is worthless. Option types and other DU wrappers are primarily useful because they make the intention of our code clear. But it does mean that, at the boundary of the code we consider to be safe, we need to validate for or otherwise deal with null values.
Defining a SafeString Type
One generalized way to deal with incoming nulls is to define a new wrapper type and perform the validation in its constructor (Listing 3-18). type SafeString (s : string) =
 do
 if s = null then
 raise <| System.ArgumentException()
 member __.Value = s
 override __.ToString() = s

 type BillingDetails = {
 name : SafeString
 billing : SafeString
 delivery : SafeString option }

 let printDeliveryAddress (details : BillingDetails) =
 details.delivery
 |> Option.map
 (fun address -> address.Value.ToUpper())
 |> Option.iter
 (fun address ->
 printfn "Delivery address:\n%s\n%s"
 (details.name.Value.ToUpper()) address)

 // NullReferenceException at construction time
 let dangerOrder = {
 name = SafeString "Will Robinson"
 billing = SafeString "2 Jupiter Avenue\nErewhon\n199732"
 delivery = SafeString null |> Some }

Listing 3-18Validating strings on construction

Having done this, one would need to require all callers to provide us with a SafeString rather than a string type

.
It’s a tempting pattern, but frankly, things like nullable strings are so ubiquitous in .NET code that hardly anyone bothers. The overhead of switching to and from such null-safe types so that one can consume them and use them in .NET calls requiring string arguments is just too much to cope with. This is particularly in the case of mixed-language code bases, where, like it or not, nullable strings are something of a lingua franca.
Using Option.ofObj
We can fight the battle at a different level by using some more functions from the Option module; there are several very useful functions here to help mediate between the nullable and the nonnullable worlds. The first of these is Option.ofObj

, which takes a reference type instance and returns that same instance wrapped in an option type. It returns Some value if the input was nonnull, or None if the input was null. This is invaluable at the boundaries of your system, when callers might give you nulls (Listing 3-19). let myApiFunction (stringParam : string) =
 let s =
 stringParam
 |> Option.ofObj
 |> Option.defaultValue "(none)"
 // You can do things here knowing that s isn't null
 printfn "%s" (s.ToUpper())
 // HELLO
 myApiFunction "hello"
 // (NONE)
 myApiFunction null

Listing 3-19Using Option.ofObj

Using Option.ofNullable
If you have an instance of System.Nullable (e.g., a nullable integer), you can use Option.ofNullable

 to smoothly transition it into an option type (Listing 3-20). open System
 let showHeartRate (rate : Nullable<int>) =
 rate
 |> Option.ofNullable
 |> Option.map (fun r -> r.ToString())
 |> Option.defaultValue "N/A"

 // 96
 showHeartRate (System.Nullable(96))
 // N/A
 showHeartRate (System.Nullable())

Listing 3-20Using Option.ofNullable

Incidentally, Listing 3-20 was inspired by my exercise watch, which occasionally tells me that my heart rate is null.
Leaking Option Types and DUs Out
Clearly, the flipside of letting nulls leak into our F# code is the potential for leakage outward of F#-specific types such as the option type and Discriminated Unions in general. It’s possible to create and consume these types in languages such as C# using compiler-generated sugar such as the NewCase constructor and the .IsCase, .Tag, and .Item properties, plus a bit of casting. However, it’s generally regarded as bad manners to force callers to do so, if those callers might not be written in F#. Again, some functions in the Option module come to the rescue.
Using Option.toObj
Option.toObj

 is the mirror image of Option.ofObj. It takes an option type and returns either the underlying value if it is Some or null if it is None. Listing 3-21 shows how we might handle returning a nullable “location” string for a navigation UI. open System

 let random = new Random()

 let tryLocationDescription (locationId : int) =
 // In reality this would be attempting
 // to get the location from a database etc.
 let r = random.Next(1, 100)
 if r < 50 then
 Some (sprintf "Location number %i" r)
 else
 None

 let tryLocationDescriptionNullable (locationId : int) =
 tryLocationDescription()
 |> Option.toObj

 // Sometimes null, sometimes "Location number #"
 tryLocationDescriptionNullable 99

Listing 3-21Using Option.toObj

Alternatively, you might want to repeat the kind of pattern used in standard functions like System.Double.TryParse(), which return a Boolean value indicating success or failure, and place the result of the operation (if successful) into a “by reference” parameter (Listing 3-22). This is a pattern that might feel more natural if the function is being called from C#. open System

 let random = new Random()

 let tryLocationDescription (locationId : int, description : string byref) : bool =
 // In reality this would be attempting
 // to get the description from a database etc.
 let r = random.Next(1, 100)
 if r < 50 then
 description <- sprintf "Location number %i" r
 true
 else
 description <- null
 false

Listing 3-22Returning success or failure as a Boolean, with result in a reference parameter

Using Option.toNullable
It won’t surprise you to learn that Option.toNullable

 is the counterpart of Option.ofNullable. It gets you from an option type to a nullable type, for example, Nullable<int>. Listing 3-23 shows us getting a heart rate from an unreliable sensor and returning either null or a heart rate value. (Clearly, unlike my exercise watch, the UI would need to know how to handle the null case!) open System

 let random = new Random()

 let getHeartRateInternal() =
 // In reality this would be attempting
 // to get a heart rate from a sensor:
 let rate = random.Next(0, 200)
 if rate = 0 then
 None
 else
 Some rate

 let tryGetHeartRate () =
 getHeartRateInternal()
 |> Option.toNullable

Listing 3-23Using Option.toNullable

The Future of Null
At the time of writing, there is some light at the end of the tunnel regarding nulls in the .NET framework. (Hopefully, the light is not of the oncoming-train variety!) C# 8.0 allows you to specify that reference types such as strings are not nullable by default. This feature is opt-in; when switched on, you have to use specific syntax (adding a question mark to the declaration – see Listing 3-24) to declare a reference type as nullable. In due course, this should make it less likely that C# code that calls our nice clean F# code will send us null values by accident. At the time of writing, however, this feature is turned off by default, so the impact for the time being is likely to be small.class Person
{
 public string FirstName; // Not null
 public string? MiddleName; // May be null
 public string LastName; // Not null
}

Listing 3-24C# 8.0 Syntax for nullable and nonnullable types

The ValueOption Type
In addition to option types, F# offers a type called ValueOption. This is analogous to the option type, except that it is a value type (i.e., a struct) rather than a reference type. This means that instances of ValueOption are stored on the stack or inline in their parent array, which can help performance in some scenarios. Listing 3-25 shows usage of the ValueOption type

. Note the new voption keyword and the ValueSome and ValueNone case names. let valueOptionString (v : int voption) =
 match v with
 | ValueSome x ->
 sprintf "Value: %i" x
 | ValueNone ->
 sprintf "No value"

 // "No value"
 ValueOption.ValueNone
 |> valueOptionString

 // "Value: 99"
 ValueOption.ValueSome 99
 |> valueOptionString

Listing 3-25Using the ValueOption type

There is also a ValueOption module that contains useful functions like ValueOption.bind, ValueOption.map, ValueOption.count, and ValueOption.iter, which behave in the same way that we described for the Option module previously.
Using ValueOption values can have performance benefits in some kinds of code. To quote the documentation for value option types:
Not all performance-sensitive scenarios are “solved” by using structs. You must consider the additional cost of copying when using them instead of reference types. However, large F# programs commonly instantiate many optional types that flow through hot paths, and in such cases, structs can often yield better overall performance over the lifetime of a program.
The only way to be sure is to experiment with realistic volumes and processing paths.
Recommendations
Here are the key points I’d like you to take away from this chapter.	Avoid using null values to represent things that legitimately might not be set. Instead, use Discriminated Unions to model explicit cases when a value is or is not relevant, and only have storage for the value in the cases where it is relevant. If DUs make things too complicated, or if it is obvious from the immediate context why a value might not be set, model it as an option type.

	To make your option-type handling more fluent, consider using functions from the Option module such as Option.bind, Option.map, and Option.defaultValue to create little pipelines that get you safely through one or more processing stages, each of which might fail. But don’t get hung up on this – pattern matching is also fine. What’s not fine is accessing the .IsSome and .Value properties of an option type!

	At the boundary of your system, consider using Option.ofObj and Option.ofNull to move incoming nullable values into the option world and Option.toObj and Option.toNullable for option values leaving your code for other languages.

	Avoid exposing option types and DUs in APIs if callers might be written in C# or other languages that might not understand F# types.

	Remember the voption type and ValueOption module for optional values you want to be stored as structs. Using voption may have performance benefits.

Summary
In this chapter, you learned how to stop thinking of null values and other missing data items as rare cases to be fended off as an afterthought in your code. You found out how to embrace and handle missing data stylishly using F#’s rich toolbox, including option types, value option types, Discriminated Unions, pattern matching, and the Option and ValueOption modules. These techniques may not come easily at first, but after a while, you’ll wonder how you managed in any other way.
In the next chapter, we’ll look at how to use F#’s vast range of collection functions, functions that allow you to process collections such as arrays, lists, and IEnumerable values with extraordinary fluency.
Exercises
Exercise 3-1 – Supporting Click and Collect
Take the code from Listing 3-16 and update it to support the following scenario:
There is an additional delivery type called “Click and Collect.”
When a BillingDetails instance’s delivery value is “Click and Collect,” we need to store an integer StoreId value but no delivery address. (We still store a billing address as for the other cases.)
Write and try out a function called collectionsFor. It needs to take an integer StoreId and a sequence of BillingDetails instances and return a sequence of “Click-and-Collect” instances for the specified store.

Exercise 3-2 – Counting Nonnulls
You have a BillingDetails type and some orders in this form: type BillingDetails = {
 Name : string
 Billing : string
 Delivery : string option }

 let myOrder = {
 name = "Kit Eason"
 billing = "112 Fibonacci Street\nErehwon\n35813"
 delivery = None }

 let hisOrder = {
 name = "John Doe"
 billing = "314 Pi Avenue\nErewhon\n15926"
 delivery = None }

 let herOrder = {
 name = "Jane Smith"
 billing = null
 delivery = None }

 let orders = [| myOrder; hisOrder; herOrder |]

What is the most concise function you can write to count the number of BillingDetails instances that have a nonnull billing address? (Ignore the delivery address.)
Hint: One way to solve this is using two functions from the Option module. Option.ofObj is one of them. The other one we only mentioned in passing, earlier in this chapter. You might also want to use Seq.map and Seq.sumBy.

Exercise Solutions
This section shows solutions for the exercises in this chapter.
Exercise 3-1 – Supporting Click And Collect
You can achieve the requirement by adding a new case called ClickAndCollect of int to the Delivery DU (or ClickAndCollect of storeId:int).
Then your collectionsFor function can do a Seq.choose, containing a lambda that maps the ClickAndCollect back into Some, using a when clause to check the StoreId. All other cases can be mapped to None, meaning they don’t appear in the results at all.module Exercise_03_03 =
 type Delivery =
 | AsBilling
 | Physical of string
 | Download
 | ClickAndCollect of int

 type BillingDetails = {
 Name : string
 Billing : string
 delivery : Delivery }

 let collectionsFor (storeId : int) (billingDetails : BillingDetails seq) =
 billingDetails
 |> Seq.choose (fun d ->
 match d.delivery with
 | ClickAndCollect s when s = storeId ->
 Some d
 | _ -> None)

 let myOrder = {
 name = "Kit Eason"
 billing = "112 Fibonacci Street\nErehwon\n35813"
 delivery = AsBilling }

 let yourOrder = {
 name = "Alison Chan"
 billing = "885 Electric Avenue\nErewhon\n41878"
 delivery = ClickAndCollect 1 }

 let theirOrder = {
 name = "Pana Okpik"
 billing = "299 Relativity Drive\nErewhon\79245"
 delivery = ClickAndCollect 2 }

 // { name = "Alison Chan";
 // billing = "885 Electric Avenue
 // Erewhon
 // 41878"; }
 // delivery = ClickAndCollect 1;}
 [myOrder; yourOrder; theirOrder]
 |> collectionsFor 1
 |> Seq.iter (printfn "%A")

You’ll also have to add a new case to the pattern match in the tryDeliveryLabel function to ensure it ignores Click-and-Collect instances. | ClickAndCollect _
 -> None

Exercise 3-2 – Counting Nonnulls
There are many ways to do this. You can, for example, use Seq.map to pick out the billing address, another Seq.map with an Option.ofObj to map from nulls to None and nonnulls to Some, and Seq.sumBy with an Option.count to count the Some values. Remember, Option.count returns 1 when there is a Some and 0 when there is a None. let countNonNullBillingAddresses (orders : seq<BillingDetails>) =
 orders
 |> Seq.map (fun bd -> bd.billing)
 |> Seq.map Option.ofObj
 |> Seq.sumBy Option.count

 countNonNullBillingAddresses orders

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_4

4. Working Effectively with Collection Functions

Kit Eason1
(1)Farnham, Surrey, UK

I’m an intuitive musician. I have no real technical skills. I can only play six chords on the guitar.
—Patti Smith, Musician

Collection functions are central to productive F# coding. Trying to code without them is as crazy as trying to play the guitar without learning chords. Though you don’t need to know all the chords to be a decent guitarist, you do need the basic ones, and to be able to use them instinctively. The same is true for using collection functions when coding in F#.
But how to start with this seemingly mountainous task? There are over 100 collection functions in the Array module alone! This chapter will get you familiar with the most useful collection functions and show you how to combine them to achieve complex processing tasks with just a few lines of code. I’ll also show you how to spot and recover from mistakes commonly made when using collection functions.
Anatomy of a Collection Function
If you’ve coded at all in F#, you’re probably already familiar with the concept of collection functions, at least through examples such as Array.map and Array.filter. Likewise, if you’re primarily a C# developer, you’ll be familiar with the equivalents in LINQ: Select and Where. But just in case you aren’t familiar with collection functions, here’s a quick primer.
The collection functions in F# are a set of functions that are always available in F# (you don’t have to bring in any extra dependencies) and which let you “do something” with a collection. A collection in this context is a grouping of values of the same type, such as an array, an F# list, or any type that implements IEnumerable. The kinds of operations you can perform are things like filtering, sorting, or transforming. Listing 4-1 shows an example of filtering.
Note
In the numeric literals such as 250_000m in Listing 4-1, the underscores are just a readability aid, equivalent to the commas we might use when handwriting the numbers. The m suffix specifies that these are decimal values, which is a good choice when handling money amounts.

type House = { Address : string; Price : decimal }

let houses =
 [|
 { Address = "1 Acacia Avenue"; Price = 250_000m }
 { Address = "2 Bradley Street"; Price = 380_000m }
 { Address = "1 Carlton Road"; Price = 98_000m }
 |]

let cheapHouses =
 houses |> Array.filter (fun h -> h.Price < 100_000m)

// [|{Address = "1 Carlton Road"; Price = 98000M;}|]
printfn "%A" cheapHouses

Listing 4-1Filtering example

Note
In the C# LINQ and SQL worlds, this is known as a Where operation rather than a filter operation – it’s the same thing.

The collection functions come in a number of flavors, based on the collection type to which they are applicable. Each flavor lives in its own module, so there is an Array module for working on .NET arrays, a Seq module for working on IEnumerables (known as “sequences” in the F# world), and a List module for working on F# lists. (There are some other flavors that I’ll come to later.) Typically, a collection function takes at least two arguments:	A function that defines details of the operation we want to perform.

For example, the Array.filter function takes a function that itself takes a collection element and returns a Boolean value. Elements where that function returns true are returned in the result of the filter operation.
In the example in Listing 4-1, we defined the element-processing function anonymously, by saying (fun h -> h.Price < 100_000m). When defined anonymously in this way, the function is known as a lambda function or lambda expression.	An instance of the collection we want to work on – for example, an array.

This is a different approach from the one in C#, where collection functions are normally defined as extension methods on the type. For example, using LINQ in C#, we would do a houses.Where to perform filtering, "Where" being an extension method on the type of houses.
Collection functions that take and use a function argument are “higher-order functions.” But some collection functions, such as Array.sort, don’t take a function argument (in the case of sort because the sorting is done using default comparison). These ones are collection functions but aren’t higher-order functions.
Some of the collection functions need additional arguments. For instance, Array.init, which creates an array, needs to be told how many elements to create.
Typically, here is how the ordering of the parameters of a collection function goes:	1.
Any parameters that don’t fall into the other two categories – for example, the length of the required collection

	2.
The function to be applied

	3.
The collection itself, always as the last parameter

This ordering makes collection functions “pipeline friendly” because the forward-pipe operator passes the result of the preceding operation (typically in this context, a collection) into the last parameter of the next operation.
Note
When you define your own collection functions, use the same parameter ordering style as the built-in functions so that yours will also be pipeline friendly.

The other essential property of collection functions is that they are designed to be used in an immutable way. For example, if you filter a collection, you end up with a new collection containing only the desired elements. The original collection is unaffected. The one slight exception is iter, which returns unit and therefore doesn’t convey any useful information back to the caller. Instead, you would use iter to do something in the “outside world” like printing output or sending messages.
Picking the Right Collection Function
I personally find lists that show the signature of the function, for example ('T -> 'Key) -> 'T [] -> 'T [], not particularly useful in finding the right function, so in Table 4-1, I have put together a more human-friendly reference, which should help you identify the right tool for the job.Table 4-1Commonly Used Collection Functions

	 	Begin with
	End up with
	Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figa_HTML.gif]
	Many
	Equally Many
	map, mapi, sort, sortBy, rev

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figb_HTML.gif]
	Many
	Fewer
	filter, choose, distinct, take, truncate, tail, sub

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figc_HTML.gif]
	Many
	One
	length, fold, reduce, average, head, sum, max, maxBy, min, minBy, find, pick

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figd_HTML.gif]
	Many
	Boolean
	exists, forall, isEmpty

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Fige_HTML.gif]
	Nothing
	Many
	init, create, unfold1

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figf_HTML.gif]
	Many
	Nothing (except side effects)
	iter, iteri

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figg_HTML.gif]
	Many of Many
	Many
	concat, collect

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figh_HTML.gif]
	Many
	Groupings
	groupBy

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figi_HTML.gif]
	2 of Many
	Many
	append, zip

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figj_HTML.gif]
	Many
	2 of Many
	partition

To use this table, you need to think about just two things:	How many elements do I want to start off with?

	How many elements do I want to end up with?

We’re not talking absolute numbers here, but in terms of options such as no elements

, exactly one element (or value), or up-to-n elements. In the table, I’ve called these cardinalities Nothing, One, and Many. When I say Many-to-Equally Many, I mean that the number of elements returned is the same as the number provided. In cases where the function will return at most the same number of elements (but probably fewer), I’ve called the cardinality Fewer.
Oddly enough, thinking first about the cardinality of the operation you want is better than thinking first about the specific operation.
Table 4-1 doesn’t cover all the collection functions, just the ones that are most widely used. Once you get used to thinking in terms of collection operations by practicing with the common ones listed previously, you’ll find it relatively easy to scan the documentation for the more exotic functions, such as Array.sortInPlaceWith.
As an example of using Table 4-1, say we have a collection of houses, and we want to retrieve just those houses that have a sale price of less than $100,000. Our “Begin with” cardinality is Many, and our “End up with” cardinality is Fewer. A quick glance at Table 4-1 shows us that the functions that fit this profile are filter, choose, distinct, and sub. At this point, it’s probably pretty obvious from the name which one of these we need (it’s filter), but if it isn’t, at least we only have four functions to consider. How do we choose between these? In Tables 4-2 through 4-11, I give a breakdown of the commonly used functions in each classification. The table you would use for the house example is Table 4-3 because that is the one for Many-to-Fewer operations.Table 4-2Many-to-Equally Many Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figk_HTML.gif]

	Function
	Description
	Useful Variants

	map
	Takes each of the input values, applies the provided function to it, and returns all the results
	Array.Parallel.map

	mapi
	As map, but the provided function is called with two arguments: an index value starting with 0 and ending with n-1 and the current element
	Parallel.mapi

	rev
	Returns a collection containing the original elements in reverse order
	
	sort
	Returns a collection containing all the elements, but sorted using the default comparer for the element type
	sortBy

	sortBy
	As sort, but compares using not the elements, but the results of sending the elements to the provided function
	sortByDescending, sortWith

Table 4-3Many-to-Fewer Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figl_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	filter
	Returns only those elements that return true when the provided filtering function is applied to them
	
	choose
	Applies the provided function to each element and returns the values of function results when those function results were Some(value)
	
	distinct
	Returns the elements after eliminating any duplicates, where duplicates are identified using the default comparer for the element type
	distinctBy

	sub
	Returns a subset of the elements, starting with the element at the specified index and continuing for the specified length (available for arrays only)
	Array slicing syntax, for example,
let arr2 = arr.[3..5]

	take
	Returns the first n elements
	takeWhile, truncate

	truncate
	Returns at most the first n elements (fewer if the collection contains fewer than n elements)
	
	tail
	Returns all elements after the first element
	

Table 4-4Many-to-One Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figm_HTML.gif]

	Function
	Description
	Useful Variants

	length
	Calculates the number of elements in the collection
	Also available as a property on arrays and F# lists, for example, arr.Length

	fold
	Starts with an initial value, applies the provided function to that value and the first element of the collection, then applies the function to the previous result and the second element of the collection, and so forth until all the elements have been used. Returns the final accumulated result of all these operations
	foldBack

	reduce
	Like fold, but takes its initial state from the first element
	reduceBack

	average
	Computes the average value of the elements
	averageBy

	head
	Gets the first element
	
	sum
	Computes the total value of the elements
	sumBy

	max
	Gets the maximum element
	maxBy

	min
	Gets the minimum element
	minBy

	find
	Gets the first element for which the provided function returns true
	tryFind, pick

	pick
	Returns the first result for which the provided function returns Some
	tryPick, find

Table 4-5Many-to-Boolean Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Fign_HTML.gif]

	Function
	Description
	Useful Variants

	exists
	Returns true if any of the elements returns true when passed into the provided function
	
	forall
	Returns true if all the elements return true when passed into the provided function
	
	isEmpty
	Returns true if the collection has no elements
	

Table 4-6Nothing-to-Many Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figo_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	init
	Creates a collection with n elements, where each element value is created by calling the provided function. An index parameter (starting at 0 and ending at n-1) is provided to each call to the function
	initInfinite (for sequences)

	create
	Creates a collection with n elements, whose elements are initially the specified single value (available for arrays only)
	zeroCreate

	unfold
	Creates a collection by taking a specified initial value and passing it to the provided “generator” function. If the generator function returns, say, Some(x,y), then x is added to the sequence and y is passed into the next iteration. If the function returns None, then the sequence ends
	Array and list comprehensions

Table 4-7Many-to-Nothing Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figp_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	iter
	Takes each collection element in turn and executes the provided function using the element. The provided function needs to return nothing (in F# terms, unit, denoted by the literal ()). Thus, the only way iter can affect the outside world is via “side effects,” such as writing files, printing lines to the console, and updating mutable values
	iteri

	iteri
	As iter, but the provided function is called with two arguments: the current element and an index value starting with 0 and ending with n-1
	

Table 4-8Many-of-Many to Many Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figq_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	concat
	Takes a collection of collections and returns a single collection of all the input elements. Note the distinction between concat and append. concat takes a collection of collections, whereas append takes exactly two collections
	
	collect
	Takes a collection, applies the provided function to each of the elements (where the function itself returns a collection) and returns a single collection of all the results. Whenever you find yourself using a map followed by a concat, it’s likely you can replace this with collect. Strictly speaking, this isn’t a “Many-of-Many to Many” operation, but it feels most natural to put it in this category
	

Table 4-9Many-to-Groupings Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figr_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	groupBy
	Takes a collection, applies the provided function to each of the elements, and returns the distinct values of the results, together with all the elements that resulted in each key result
	

Table 4-102-of-Many to Many Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figs_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	append
	Creates a collection consisting of all the elements from both the input collections
	
	zip
	Takes two collections and returns a single collection, each of whose elements is a tuple of the corresponding values from each of the input collections
	zip3

Table 4-11Many to 2-of-Many Collection Functions

	[image: ../images/462726_2_En_4_Chapter/462726_2_En_4_Figt_HTML.gif]

	Function
	Description
	Useful Variants and Alternatives

	partition
	Takes a collection and returns a tuple of two collections, the first of which contains elements that returned true when the provided function was applied, and the second contains those which returned false (available for arrays and F# lists only)
	

Detailed Collection Function Tables
Just skim these detailed tables for now and come back to them as reference when you do the exercises that follow.
Practicing with Collection Functions
Much of the productivity gain from programming in F# comes from effective use of collection functions. So I want to spend a little time practicing how to choose and combine them in a variety of situations. This section contains some exercises that will let you do just that. They get progressively more difficult, so please make sure you take the time to go through them in order so that your skills in this area are really secure.
Remember to refer back to Tables 4-1 through 4-11 to help you find the right collection function in each case. All the exercises in this section can be solved with a call to a single collection function. We’ll explore tasks needing several collection functions in the next section.
Exercise Setup
You’ll need a little code to provide data and useful functions to work with. Either download the source code for this chapter or create an F# script file and add the code from Listing 4-2, replacing anything the creation template added for you.type House = { Address : string; Price : decimal }

module House =

 let private random = System.Random(Seed = 1)

 /// Make an array of 'count' random houses.
 let getRandom count =
 Array.init count (fun i ->
 { Address = sprintf "%i Stochastic Street" (i+1)
 Price = random.Next(50_000, 500_000) |> decimal })

module Distance =

 let private random = System.Random(Seed = 1)

 /// Try to get the distance to the nearest school.
 /// (Results are simulated)
 let tryToSchool (house : House) =
 // Because we simulate results, the house
 // parameter isn’t actually used.
 let dist = random.Next(10) |> double
 if dist < 5. then
 Some dist
 else
 None

type PriceBand = | Cheap | Medium | Expensive

module PriceBand =

 // Return a price band based on price.
 let fromPrice (price : decimal) =
 if price < 100_000m then
 Cheap
 elif price < 200_000m then
 Medium
 else

 Expensive

Listing 4-2Setup code for exercises

Take a moment to read the code in Listing 4-2. It provides a type called House, which has an address and a price. (This is a very naive model but will do for the topics covered in this chapter.) There is also a function called House.getRandom, which will create some House instances for you, with random prices and ascending street numbers. I’ve hardwired the seed of the random number generator so you always get the same results, which will make debugging some of your exercise solutions easier. The usage of the Distance.tryToSchool and PriceBand.fromPrice functions will become apparent as you go through the exercises.
As you tackle the exercises, structure your code as I do when I go through Exercise 4-1 with you. This will help you concentrate on the logic of the collection functions. Solutions for the exercises are at the end of the chapter.
Single Collection Function Exercises
Each of the exercises in this section can be solved using just one collection function.
Exercise 4-1 – Transforming Data Items
Note I’ll do this exercise with you to help you get used to working with the provided code and the collection functions tables.
Take a sample of 20 houses, and for each house, produce a string in the formAddress: 1 Stochastic Street - Price: 123456.00000

The number of decimal places displayed for the price doesn’t matter.

To tackle this exercise, first, make sure you have the code from Listing 4-2 in a notebook cell or an F# script. The downloadable notebook for this chapter already has the necessary code in one of the cells. Begin by binding a value called housePrices (Listing 4-3).// Listing 4-2 code above here

let housePrices =

Listing 4-3Binding a value

Now take a careful look at the exercise requirements. It doesn’t require you to write a general-purpose function, just to take one sample of 20 houses and produce some results. That means you can just make a value (not a function) using a let binding with no arguments. You can start to define the required value by getting the sample of 20 houses, using the getRandom function in the House module (Listing 4-4).let housePrices =
 House.getRandom 20

Listing 4-4Getting the houses sample

Looking back at the exercise requirement again, you are required to produce one string for each input house. In terms of Table 4-1, this is clearly a ManytoEqually Many operation. There are only a few collection functions in the table that match this profile: map, mapi, sort, sortBy, and rev. It’s probably obvious which of these are definitely not the one we need, as this isn’t a sorting or reversing operation. You can refine your choice further by looking at Table 4-2 to review what each function does. The map function looks promising, since its description, “Takes each of the input values, applies the specified function to it, and returns all the results,” looks very similar to what you want to achieve. You don’t want the mapi function, as there is no need for the index value it provides. To use Array.map, you can continue your code as in Listing 4-5.let housePrices =
 House.getRandom 20
 |> Array.map (fun h ->) // Still needs a body...

Listing 4-5Calling the map function

Note
In Listing 4-5, I’ve typed the final closing bracket for the map’s lambda function, even though the function doesn’t yet have a body. Doing this helps to ensure that Intellisense works correctly while you type the body of the lambda function.

Now you need a body for the lambda function, which needs to take a House instance and produce a string in the required format. That’s easy using the sprintf function

 (Listing 4-6).let housePrices =
 House.getRandom 20
 |> Array.map (fun h ->
 sprintf "Address: %s - Price: %f" h.Address h.Price)

housePrices

Listing 4-6Providing a lambda body for the map function

To test the function, execute the relevant notebook cell, or select all the code in your F# script (including the setup code) and send it to F# Interactive. Your output should look something like Listing 4-7. If using a notebook, the output will be shown as a table, but the content should be similar. Your house prices might vary from the listing, depending on the implementation of System.Random in your environment. val housePrices : string [] =
 [|"Address: 1 Stochastic Street - Price: 161900.000000";
 ...
 "Address: 20 Stochastic Street - Price: 365808.000000"|]

Listing 4-7Output from a successful run of the exercise code

Exercise solved!
Now tackle the remaining exercises on your own. You can solve each of them with a single collection function, and the code in each case can be structured in a very similar way to Listing 4-6.
Exercise 4-2 – Calculating an Average
Take a sample of 20 houses and calculate the average of their prices.
You can assume the list isn’t empty (you know it has 20 houses!).

Exercise 4-3 – Selecting Based on a Condition
Take a sample of 20 houses and get all the houses that cost over $250,000.

Exercise 4-4 – Attempting a Calculation and Choosing Successes
Take a sample of 20 houses and return an array of tuples, each tuple containing a house and the distance to the nearest school. Use the Distance.tryToSchool function to calculate the distance. Exclude houses for which this function returns None.
Sample output:val housesNearSchools : (Houses.House * double) [] =
 [|({Address = "1 Stochastic Street";
 Price = 161900M;}, 2.0); ({Address = "3 Stochastic Street";
 Price = 99834M;}, 2.0); ...

Clue: Although you can achieve this in a single collection function, the lambda it uses will need to do some pattern matching on the Some/None cases returned by Distance.tryToSchool.

Multiple Collection Function Exercises
By now, you should be pretty slick at selecting and using an individual collection function to solve a problem. Now it’s time to practice combining collection functions to solve slightly more complex problems. You’ll need to use more than one collection function for each of the exercises in this section. When tackling these exercises, remember to think about the cardinality (e.g., Many-to-Fewer) of each step you need to achieve the goal.
Exercise 4-5 – Filtering and Iterating
Note I’ll do this exercise with you to help you get used to combining collection functions.
Take a sample of 20 houses, find the ones that cost over $100,000, and iterate over the results printing (not returning) their addresses and prices. The exact format doesn’t matter, as long as the address and price are printed in some form.
You should be able to complete this exercise using two collection functions.

If you remember the previous section, you’ll know immediately that the first function you’ll need is the Many-to-Fewer function filter.
You can begin coding by getting the house sample and calling filter (Listing 4-8).House.getRandom 20
|> Array.filter (fun h -> h.Price > 100_000m)

Listing 4-8Filtering the sample

Reading the second part of the exercise, you might notice that you aren’t required to create (in F# terms, bind) an actual value, but merely to print results. (In functional programming terms, we are using side effects.) This means that we need a Many-to-None operation, which should help you quickly narrow your choice down to the iter function.
To implement this second operation, simply use the forward-pipe operator (|>) to send the results from the filtering operation to the iteration operation (Listing 4-9).House.getRandom 20
|> Array.filter (fun h -> h.Price > 100_000m)
|> Array.iter (fun h ->
 printfn "Address: %s Price: %f" h.Address h.Price)

Listing 4-9Iterating over an array

If you run this, you should get output that looks something like this.Address: 1 Stochastic Street Price: 161900.000000
Address: 3 Stochastic Street Price: 260154.000000
...
Address: 20 Stochastic Street Price: 365808.000000

Now go on to complete the other multifunction exercises yourself. In each case, you should be able to solve the exercise by using two or more collection functions, piped together as we did here.
Exercise 4-6 – Ordering
Extend the previous exercise, this time ensuring that the houses are printed in descending order of price.
You should be able to complete this exercise using three collection functions (including the two already used in Exercise 4-5).

Exercise 4-7 – Filtering and Averaging
Take a sample of 20 houses and find the average price of all the houses that cost over $200,000.
You can assume for this exercise that there will be at least one house that fulfills the criterion.
You should be able to complete this exercise using two collection functions.

Exercise 4-8 – Finding a Single Element
Take a sample of 20 houses and find the first house that costs less than $100,000 and for which we can calculate the distance to a school. The results should include the house instance and the calculated distance to school.
You can assume for this exercise that there will be at least one house that fulfills the criteria.
You should be able to complete this exercise using two collection functions.
Clue: You can reuse some of the solution code from Exercise 4-4 to help complete this exercise.

Exercise 4-9 – Grouping
Take a sample of 20 houses, and create an array of tuples, where the first element of each tuple is a price band. A price “band” is a range of prices created using the provided PriceBand.fromPrice function. The second element of the tuple is a sequence of all the houses that fall into the band.
It’s OK if a band is omitted when there are no houses in that band. Within a grouping, the houses should be in ascending order of price.
Example output: val housesByBand : (Houses.PriceBand * Houses.House []) [] =
 [|(Medium,
 [|{Address = "12 Stochastic Street";
 Price = 161613M;};
 ...
 {Address = "13 Stochastic Street";
 Price = 194049M;}|]);
 (Cheap,
 [|{Address = "11 Stochastic Street";
 Price = 62886M;};
 ...
 {Address = "2 Stochastic Street";
 Price = 99834M;}|]);
 (Expensive,
 [|{Address = "7 Stochastic Street";
 Price = 209337M;};
 ...
 {Address = "14 Stochastic Street";
 Price = 495395M;}|])|]

You should be able to complete this exercise using three collection functions.

Partial Functions
There’s another characteristic of collection functions that I omitted from the tables and exercises shown previously for simplicity, but which you must always bear in mind. That characteristic is whether the collection function is partial. (This is a separate concept from the concept of partial application, which I tackle in Chapter 9.)
In this context, a function is partial

 if it can cause an error rather than return a value, even when given a logically possible input. We’re talking here about errors that are inherent to the input and the function in question, not externally induced conditions such as running out of memory or having one’s network connection fall over. A good example of a function that is partial in this sense is the head function (e.g., Array.head). Using head on an empty collection will cause an ArgumentException. An empty collection doesn’t have a first element.
Another example is the zip function, but here the situation is a little trickier. It’s an error to perform an Array.zip when the input arrays are different lengths. But it’s fine to use Seq.zip when the input sequences are different lengths: the leftover elements in the longer sequence will just be ignored.
Table 4-12 gives a list of the functions from Table 4-1 that are partial. Whenever you use a function from this list, think carefully about whether the input could ever cause an error condition.Table 4-12Partial Collection Functions to Watch Out For

	Function
	Error Condition
	Ways to Avoid

	average, max, maxBy,
min,
minBy
	Collection is empty
	Check length first and define a suitable value (e.g., 0 or None) in that situation. Also be sure to check whether there is an official implementation of tryAverage, tryMax, etc. (At the time of writing, these have not been implemented)

	find
	No elements matched the condition (or the collection was empty)
	Use tryFind and handle the Some() and None cases when consuming the result

	pick
	No elements matched the condition (or the collection was empty)
	Use tryPick and handle the Some() and None cases when consuming the result

	reduce
	Collection is empty, so there is no way to get an initial state for the accumulator
	Use fold and provide an explicit initial state

	sub
	Collection doesn’t have enough elements
	Check ranges first
Use filter to select elements instead

	zip (Array and List versions)
	Collections are different lengths
	Check lengths are equal
Use Seq.zip and accept that “leftover” elements will be lost

	head and last
	Collection is empty
	Use tryHead or tryLast
Check length first and define a suitable value in that situation

	tail
	Collection is empty
	Check length first and define a suitable value in that situation

By the way, any kind of function can be partial. The issue doesn’t just affect collection functions, but it does crop up most commonly in practice when using collection functions.
Note
Get in the habit of thinking about partiality whenever using a collection function, and handle the failure cases explicitly.

Don’t think about a function being partial as a bug in the function: all these cases are inherent in the nature of the function. How can you possibly get the maximum value in an empty list?
Incidentally, a function that isn’t partial in this sense is known as a total function, though you will hardly ever hear this term used outside a math or computer science context (I had to look it up).
Coding Around Partial Functions
As you can see from Table 4-12, many built-in collection functions have try... equivalents (e.g., tryFind), which return None if there is no value to return, or Some(value) if there is, thus making them nice safe total functions. When no such function is available (or you don’t want to use it), there are several other things you can do.
For example, let’s say you have some transaction values and a business rule that says, “When there are no transactions, the average transaction value is considered to be zero.” Listing 4-10 shows how you might define an averaging function that meets this requirement.module Average =

 let averageValue (values : decimal[]) =
 if values.Length = 0 then
 0.m
 else
 values |> Array.average

 // 370.m
 let ex1 = [|10.m; 100.m; 1000.m|] |> averageValue

 // 0.m
 let ex2 = [||] |> averageValue

Listing 4-10A function to compute an array average, or zero when the array is empty

This would work fine in the specific case of an array of decimal values, but since this is a book on style, I probably ought to mention a couple of alternatives. The first (Listing 4-11) takes an array of any type (not just decimal) and uses the GenericZero function

 to return a suitably typed zero value.module Average =

 let inline averageOrZero (values : 'T[]) =
 if values.Length = 0 then
 LanguagePrimitives.GenericZero<'T>
 else
 values |> Array.average

 // 370.m
 let ex3 = [|10.m; 100.m; 1000.m|] |> averageOrZero

 // 370.f
 let ex3f = [|10.f; 100.f; 1000.f|] |> averageOrZero

 // 0.m
 let ex4:decimal = [||] |> averageOrZero<decimal>

 // 0.f
 let ex4f:decimal = [||] |> averageOrZero<float32>

Listing 4-11A generic function to compute an array average, or zero when the array is empty

Another possibility (Listing 4-12) is to allow the caller to specify what should be returned when the collection is empty.module Average =

 let inline averageOr (defaultValue : 'T) (values : 'T[]) =
 if values.Length = 0 then
 defaultValue
 else
 values |> Array.average

 // 370.m
 let ex5 = [|10.m; 100.m; 1000.m|] |> averageOr 0.m

 // 370.f
 let ex5f = [|10.f; 100.f; 1000.f|] |> averageOr 0.f

 // 0.m
 let ex6 = [||] |> averageOr 0.m

 // 0.f
 let ex6f = [||] |> averageOr 0.f

Listing 4-12A function to compute an array average, or a caller-supplied default when the array is empty

Note that in both Listings 4-11 and 4-12, I’ve had to “inline” the functions using the inline keyword

 because they call Array.average, which has a static parameter.
Note
Remember the principle of semantic focus: the place to handle, for example, the empty collection case is right here in the code where it could occur. Don’t rely on the caller to condition your inputs to prevent conditions such as an empty collection. The calling code might get changed, or your function might get used in new code, and in either case, the input prechecking might be forgotten about.

Using the “try” Idiom for Partial Functions
Another way of coding around partial functions is to define your own try... version

 that returns Some(value) when a sensible value can be returned and None when it cannot. For example, at the time of writing, there is no built-in Array.tryAverage function. Listing 4-13 shows how to code your own in just a few lines.module Array =

 let inline tryAverage (values : 'T[]) =
 if values.Length = 0 then
 None
 else
 values |> Array.average |> Some

Listing 4-13Defining an idiomatic tryAverage function

Note
Notice that in the averageOr and tryAverage example in Listings 4-10 through 4-13, I put the function in a module called Array. This means that, for example, tryAverage will be available elsewhere as Array.tryAverage and can thus be used in exactly the same way as the built-in functions such as Array.tryFind.

I definitely prefer this final approach: defining your own try... function. This is because it is in line with a couple of our coding principles:	It displays good semantic focus because everything about the process of calculating an average (and returning None when not possible) is handled in one place in the code. The decision as to what to do when the result is None (use a default, raise an error, or whatever) is delegated back to where it should be, in the caller, which is likely to have more “knowledge” about the particular case where the averaging is required.

	It displays good motivational transparency: you are saying to the reader, “Here I intend to define a function which behaves like other, similarly named functions such as tryHead.” This leverages the reader’s existing knowledge of how such functions behave, making the code a lot easier to read.

Consuming Values from try… Functions
Whether you use a built-in try... function like tryFind, or one you defined yourself, you must explicitly handle both the Some and None

 possibilities when consuming the result. Listing 4-14 shows the one simple way of calling the tryAverage function

 and dealing with the return value. Here, we use an explicit match statement on the Some and None cases

. // "The average was 370.000000"
 match [|10.m; 100.m; 1000.m|] |> Array.tryAverage with
 | Some av -> printfn "The average was %f" av
 | None -> printfn "There was no average."

 // "There was no average."
 match [||] |> Array.tryAverage with
 | Some av -> printfn "The average was %f" av
 | None -> printfn "There was no average."

Listing 4-14Consuming option type results using match expressions

There are arguably nicer alternatives to this, which are discussed in Chapters 3 and 11.
Try… Function Exercises
These exercises are variations on some of the previous exercises, except here we remove the assumption that the relevant collection is nonempty.
Exercise 4-10 – Filtering, Averaging, and Try
Take a sample of 20 houses and find the average price of all the houses that cost over $200,000.
You’ll need to make sure you handle the case where no houses in the sample cost over $200,000. (You will need to change the price criterion a little to test this.)
You should be able to complete this exercise using two collection functions, but you may need to define one of these functions yourself.

Exercise 4-11 – Finding a Single Element If Any
Take a sample of 20 houses and find the first house that costs less than $100,000 and for which we can calculate the distance to a school. The results should include the house instance and the calculated distance to school.
You’ll need to make sure you handle the case where no houses meet the criteria. (You will need to change the price criterion a little to test this.)
You should be able to complete this exercise using two collection functions.
Clue: You can reuse some of the solution code from previous exercises to help complete this exercise.

Functions for Other Kinds of Collections
Although most F# developers are familiar with the most widely used modules of collection functions, the Array, Seq, and List modules, they sometimes forget that similar functions are available for more specialized collections (Table 4-13).Table 4-13Less-Well-Known Collection Functions

	Module
	Purpose

	Array2D, Array3D, Array4D
	Basic operations on n-dimensional arrays

	Map
	Basic operations on the Map type

	Set
	Basic operations on the Set type

For example, let’s say you have a word list generated from some natural language text (like the text of a novel), and this word list is stored as a Set to guarantee uniqueness. Now you want to create another set that contains only lowercased versions of the inputs. Listing 4-15 shows how you might do that.let novelWords = Set ["The";"the";"quick";"brown";"Fox";"fox"]

// set ["brown"; "fox"; "quick"; "the"]
let lowerWords =
 novelWords
 |> Set.map (fun w -> w.ToLowerInvariant())

lowerWords

Listing 4-15Using Set.map

Note that the Set.map operation is strictly speaking a Many-to-Fewer operation, since it produces a Set, and sets inherently eliminate duplicates. For example, if the input set contained “The” and “the,” the output set would contain only “the.”
When the Collection Function Is Missing
Collection functions normally exist in all the flavors you are likely to need – that is, for arrays, F# lists, and sequences. However, in some cases, the one you might want is missing: for example, there is an Array.partition and a List.partition, but no Seq.partition. When you need such a missing function, simply convert the collection you are working with into a collection type for which the function you need is available, using either the Collection.ofOtherCollection or Collection.toOtherCollection functions. For instance, Array.ofSeq or Seq.toArray. See Listing 4-16.type House = { Address : string; Price : decimal }

module House =

 /// Make a sequence of 'count' random houses.
 let getRandomSeq count =
 let random = System.Random(Seed = 1)
 Seq.init count (fun i ->
 { Address = sprintf "%i Stochastic Street" (i+1)
 Price = random.Next(50_000, 500_000) |> decimal })

// Convert a sequence of houses into an array, so that we
// can use Array.partition to divide them into affordable and
// unaffordable. (There is no Seq.partition.)
let affordable, unaffordable =

 House.getRandomSeq 20
 |> Array.ofSeq
 |> Array.partition (fun h -> h.Price < 150_000m)

affordable, unaffordable

Listing 4-16Using Array.partition on a sequence

You can convert the result back to the original collection type if necessary. For example, you could add |> Seq.ofArray to the end of Listing 4-16.
Common Mistakes
There are a few mistakes that are commonly made when using collection functions. Quite often, these don’t really matter as the output is the same, but it’s worth watching out for them, so as to keep your code as robust and stylish as possible.	Forgetting which functions are partial: I covered this in the section on partial functions previously. Always handle the error cases (such as an empty collection) explicitly, typically by using the try... version of the function.

	Not using the choose function: In my early days with F#, I would often write pipelines that called a function that might return None, then filtered for the Some cases, and finally recovered the underlying values by using pattern matching or the Option.Value property. When you catch yourself doing this, use the choose function instead. It does the Some filtering and the value recovery for you. See Listing 4-17.

	Not using the collect function: You may find yourself writing a pipeline that produces a collection of collections and then immediately joins these into a single collection using the concat function. Instead, use the collect function to achieve this in a single step.

	Long lambda bodies: If the body of a lambda function gets beyond two or three lines, consider pulling it out into a separate, named function and calling that. This will help you mentally isolate the logic of the function from the logic of the pipeline as a whole. It’ll also reduce indenting! See Listing 4-18.

	Lambdas that could be direct calls: Whenever your code contains code like (fun x -> doSomething x), it can be replaced simply with doSomething. Listing 4-17 contains an example of this more concise approach, where we do |> Array.map trySchoolDistance instead of |> Array.map (fun h -> trySchoolDistance h).

	Overlong pipelines: Pipelines that contain more than a handful of forward-pipe operations can be hard to read and debug. Consider breaking them up, perhaps by binding an intermediate value and then passing this into a separate pipeline. This problem can be mitigated by using anonymous record types instead of tuples to carry structured values between pipeline stages. This can make the meaning of intermediate values clearer by careful naming. We’ll discuss this properly in Chapter 7.

	Overlong or obscure tuples: Certain operations naturally produce tuples, which you will then want to pattern match back into individual values, for processing in the next step of your pipeline. Again, the solution to this is often anonymous records. See Listing 4-19.

module Array =

 let inline tryAverage (a : 'T[]) =
 if a.Length = 0 then
 None
 else
 a |> Array.average |> Some

// Calculate the average known distance to school
// in a sample of 20 houses.
let averageDistanceToSchool =
 House.getRandom 20
 |> Array.map Distance.tryToSchool
 |> Array.filter (fun d -> d.IsSome)
 |> Array.map (fun d -> d.Value)
 |> Array.tryAverage

// As previous function, but use Array.choose instead
// of map, filter and map.
let averageDistanceToSchool2 =
 House.getRandom 20
 |> Array.choose Distance.tryToSchool
 |> Array.tryAverage

averageDistanceToSchool, averageDistanceToSchool2

Listing 4-17Using the choose function

// Get houses with their price bands the long-winded way:
let housesWithBands =
 House.getRandom 20
 |> Array.map (fun h ->
 let band =
 if h.Price < 100_000m then
 Cheap
 elif h.Price < 200_000m then
 Medium
 else
 Expensive
 h, band)

// Most of the code above could be pulled into a fromPrice function:
// (Here we use the one that is already defined in the PriceBand module
// in a previous listing.)
let housesWithBands2 =
 House.getRandom 20
 |> Array.map (fun h ->
 h, h.Price |> PriceBand.fromPrice)

housesWithBands, housesWithBands2

Listing 4-18Avoiding long lambda functions

module PriceBand =

 let order = function
 | Cheap -> 0 | Medium -> 1 | Expensive -> 2

// A report of price bands and the houses that fall into them:
House.getRandom 20
|> Seq.groupBy (fun h -> h.Price |> PriceBand.fromPrice)
|> Seq.sortBy (fun (band, _) -> band |> PriceBand.order)
|> Seq.iter (fun (band, houses) ->
 printfn "---- %A ----" band
 houses
 |> Seq.iter (fun h -> printfn "%s - %f" h.Address h.Price))

// Like the previous report, but using an anoymous record to
// reduce use of tuples:
House.getRandom 20

|> Seq.groupBy (fun h -> h.Price |> PriceBand.fromPrice)
|> Seq.map (fun (band, houses) ->
 {| PriceBand = band; Houses = houses |})
|> Seq.sortBy (fun group -> group.PriceBand |> PriceBand.order)
|> Seq.iter (fun group ->
 printfn "---- %A ----" group.PriceBand
 group.Houses
 |> Seq.iter (fun h -> printfn "%s - %f" h.Address h.Price))

---- Cheap ----
2 Stochastic Street - 99834.000000
9 Stochastic Street - 95569.000000
...
---- Medium ----
1 Stochastic Street - 161900.000000
12 Stochastic Street - 161613.000000
...
---- Expensive ----
3 Stochastic Street - 260154.000000
4 Stochastic Street - 397221.000000
...

Listing 4-19Replacing tuples with anonymous records

Recommendations
Here are some key points to take away from this chapter:	Become familiar with the many collection functions available to you in modules such as Array, List, and Seq and the more specialized modules such as Map and Set.

	Learn how to map from the problem you are trying to solve (e.g., “I have an array of numbers and I want the average of the largest three”) to the type signatures that are likely to help solve them (e.g., 'T [] -> 'T [] for the sorting, 'T [] -> 'T [] for the top-three selection, and ^T [] -> ^T for the average) and from there to the specific collections you are going to need (Array.sort, Array.truncate, and Array.average).

	If you find type signatures a little inaccessible, refer back to Tables 4-2 through 4-11 for a more visual reference to the most useful collection functions.

	Beware of collection functions that are partial, such as Array.head, which raises an exception when the array is empty. Use the try... version (e.g., Array.tryHead), or if there isn’t one, consider writing one using the try... naming style.

	Think of explicit looping, especially using mutable values, as a last resort. There’s usually a collection function or a combination of them that will do the job more simply.

	Use pipelines of collection functions, but don’t let them get too long. Remember that anonymous records, discussed at length in Chapter 7, are often preferable to tuples when passing values between stages of a pipeline.

Summary
Collection functions are the guitar chords of the F# world. You simply can’t get by without a good working knowledge of the basic functions and how to fit them together. In most domains, a large proportion of your F# code should consist of pipelines of collection functions that map, filter, summarize, and group data to get from the inputs you have to the outputs you want. Enjoy the feeling of using collection functions to achieve F#’s enduring goal: to solve complex problems with simple code.
In the next chapter, we’ll look at immutability, the curious notion that we should write programs that don’t change anything; and we’ll also learn when to break back out of this mindset and use mutation.
Exercise Solutions
This section shows solutions for the exercises in this chapter. For the code shown here to run, you’ll also need the code for the Houses module in Listing 4-2.
Exercise 4-1 – Transforming Data Items

let housePrices =
 House.getRandom 20
 |> Array.map (fun h ->
 sprintf "Address: %s - Price: %f" h.Address h.Price)

housePrices
|> Array.iter (printfn "%O")

Alternatively, you could have used string interpolation, like this:let housePrices2 =
 House.getRandom 20
 |> Array.map (fun h ->
 sprintf $"Address: {h.Address} - Price: {h.Price}")

Exercise 4-2 – Calculating an Average

let averagePrice =
 House.getRandom 20
 |> Array.averageBy (fun h -> h.Price)

Exercise 4-3 – Selecting Based on a Condition

let expensive =
 House.getRandom 20
 |> Array.filter (fun h -> h.Price > 250_000m)

Exercise 4-4 – Attempting a Calculation and Choosing Successes

let housesNearSchools =
 House.getRandom 20
 |> Array.choose (fun h ->
 // See also the "Missing Data" chapter
 match h |> Distance.tryToSchool with
 | Some d -> Some(h, d)
 | None -> None)

Exercise 4-5 – Filtering and Iterating

House.getRandom 20
|> Array.filter (fun h -> h.Price > 100_000m)
|> Array.iter (fun h ->
 printfn "Address: %s Price: %f" h.Address h.Price)

Exercise 4-6 – Ordering

House.getRandom 20
|> Array.filter (fun h -> h.Price > 100_000m)
|> Array.sortByDescending (fun h -> h.Price)
|> Array.iter (fun h ->
 printfn "Address: %s Price: %f" h.Address h.Price)

Exercise 4-7 – Filtering and Averaging

let averageOver200K =
 House.getRandom 20
 |> Array.filter (fun h -> h.Price > 200_000m)
 |> Array.averageBy (fun h -> h.Price)

Exercise 4-8 – Finding a Single Element

let cheapHouseWithKnownSchoolDistance =
 House.getRandom 20
 |> Array.filter (fun h -> h.Price < 100_000m)
 |> Array.pick (fun h ->
 match h |> Distance.tryToSchool with
 | Some d -> Some(h, d)
 | None -> None)

Exercise 4-9 – Grouping

let housesByBand =
 House.getRandom 20
 |> Array.groupBy (fun h -> h.Price |> PriceBand.fromPrice)
 |> Array.map (fun group ->
 let band, houses = group
 band, houses |> Array.sortBy (fun h -> h.Price))

You can also “pattern match” in the lambda declaration of the Array.map call for a more concise solution: let housesByBand2 =
 House.getRandom 20
 |> Array.groupBy (fun h -> h.Price |> PriceBand.fromPrice)
 |> Array.map (fun (band, houses) ->
 band, houses |> Array.sortBy (fun h -> h.Price))

Exercise 4-10 – Filtering, Averaging, and Try
To test this solution, you’ll need to increase the price criterion so that the sample is empty.module Array =

 let inline tryAverageBy f (a : 'T[]) =
 if a.Length = 0 then
 None
 else
 a |> Array.averageBy f |> Some

let averageOver200K =
 House.getRandom 20
 |> Array.filter (fun h -> h.Price > 200_000m)
 |> Array.tryAverageBy (fun h -> h.Price)

Exercise 4-11 – Finding a Single Element If Any
To test this solution, you’ll need to decrease the price criterion so that the sample is empty.let cheapHouseWithKnownSchoolDistance =
 House.getRandom 20
 // Try lower price values to explore what happens
 // when the filter returns no results.
 |> Array.filter (fun h -> h.Price < 100_000m)
 |> Array.tryPick (fun h ->
 match h |> Distance.tryToSchool with
 | Some d -> Some(h, d)
 | None -> None)

Footnotes
1Although, strictly speaking, unfold starts with one item – an initial state – that state is usually something empty like a zero-length collection, so I am including it in “Begin with nothing.”

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_5

5. Immutability and Mutation

Kit Eason1
(1)Farnham, Surrey, UK

Nothing is so painful to the human mind as a great and sudden change.
—Mary Wollstonecraft Shelley, from the novel Frankenstein

These Folks Are Crazy!
Most software developers, for most of the history of programming, have been entirely comfortable with mutation
. Code that uses mutation declares a variable (perhaps with some initial value, perhaps uninitialized) and then updates its value one or more times until some final result is achieved. It’s so natural of an approach (at least for those of us who came to programming via languages such as BASIC, JavaScript, and C) that we didn’t really feel the need to name it. Mutable programming was programming.
For people with that kind of background, the first encounter with immutable style is disorientating to say the least. I still clearly remember seeing an early presentation on F# and thinking “these folks are crazy.” The only reason I stayed with it was because the presenter was particularly engaging. It was beyond me at the time to think that immutable style programming might actually be useful. I certainly wouldn’t have entertained the notion that it could even be easier. How the times have changed!
My aim in this chapter is to show you how immutable style can indeed be easier. I hope by the end you’ll agree that most code should be written in an immutable style, with mutation only coming into play where performance considerations, or the nature of the operation being performed, genuinely require it.
Classic Mutable Style
For most of my career, I’ve written code in the style exemplified in Listing 5-1. (In different languages, obviously; it’s the logic that’s important.)open System
open System.IO

let latestWriteTime (path : string) (searchPattern : string) =
 let files = Directory.EnumerateFiles(path, searchPattern,
 SearchOption.AllDirectories)
 let mutable latestDate = DateTime.MinValue
 for file in files do
 let thisDate = File.GetLastWriteTime(file)
 if thisDate > latestDate then
 latestDate <- thisDate
 latestDate

latestWriteTime @"c:\temp" "*.*"

Listing 5-1A loop using mutation

The pattern here is that we set some variable to an initial state (it might be null, zero, an empty string, or whatever); then we perform some kind of loop, updating the variable repeatedly; and finally, we use whatever value was set last. In this case, the “variable” is the mutable value latestDate, and we keep updating it whenever the write date of the file we’re looking at is later than the last value we set. There are variations on the pattern – sometimes, we break out of the loop when some condition is attained; sometimes, the mutable thing is a collection to which we add elements; and so forth.
This kind of coding works fine when the logic is as simple as in Listing 5-1. But as soon as things get even remotely complicated, the code gets very hard to follow. For example, we might end up with nested loops and a variety of variables being declared and updated at various different scopes. Or a variable might get updated in two successive loops, maybe having the same business meaning in each loop or maybe having a subtly different one. You might answer that this kind of coding is bad practice whether you are writing in a mutable style or not; but the fact is that it’s extremely common, and it leads to a lot of bugs. It’s also somewhat verbose. And in a sense, it isn’t DRY (“Don’t Repeat Yourself”) because, as I’ll illustrate later, one is in fact repeating the same essential logic each time one does it.
Immutability Basics
So what is the immutable equivalent to Listing 5-1, and how do we get to it? The secret is to think “up” one level of abstraction, work out what we are really doing, and find the appropriate built-in F# functions to achieve it. Applying this method to Listing 5-1, your thought process should be	Oops, I’m using a mutable. Is there a better way?

	What I really want is the maximum date for a list of files.

	A list is a sequence, and there is a Seq.max function.

Following this approach, you might end up with a first cut of your immutable version looking like Listing 5-2.open System.IO

let latestWriteTime (path : string) (searchPattern : string) =
 Directory.EnumerateFiles(path, searchPattern,
 SearchOption.AllDirectories)
 // Could also just say '|> Seq.map File.GetLastWriteTime' here.
 |> Seq.map (fun file -> File.GetLastWriteTime(file))
 |> Seq.max

latestWriteTime @"c:\temp" "*.*"

Listing 5-2First cut of an immutable latestWriteTime

This is already a vast improvement over Listing 5-1. It’s more concise, which is not automatically an advantage, but here, where we are plugging well-understood operations together in a completely idiomatic way, it certainly is. It follows the principle of motivational transparency
 – the use of Seq.max tells us we are looking for the largest something, and the Seq.map tells us what that something is. And it also follows the principle of revisability
. If we suddenly decided we wanted the earliest write time instead of the latest, we’d just have to change the Seq.max to a Seq.min. Contrast that with Listing 5-1, where we’d have to change both the initial value of the mutable and the operator of the check (less than instead of greater than).
There’s another, subtler, but more fundamental advantage of removing the reliance on mutation. Working at this level lets us reason about our code without getting involved in the nitty-gritty of intermediate values, terminating conditions, and so forth. It’s a slight digression, but here’s an example of how thinking at this higher level can help. If you were paying attention during Chapter 4, you might remember that certain functions are partial; that is, they don’t return valid outputs for seemingly sensible inputs. If you don’t immediately see the significance of this, try running the code from Listing 5-2 for a search pattern for which no file exists, for example: latestWriteTime @"c:\temp" "doesnotexist.*"

You’ll get an “input sequence is empty error.” Seq.max is a partial function: you can’t find the maximum value of “no values.” Back in Listing 5-1, the no-files situation was dealt with by returning DateTime.MinValue. This kind of works, but it violates the principle of motivational transparency
 because the caller isn’t forced by the type signature to think about the empty-file-list case. Therefore. they may not deal properly with DateTime.MinValue. Imagine a UI saying “You last updated a file on 1st January 0001.” It wouldn’t look great, would it?
How do we force callers to handle empty cases? We learned in Chapter 3 that the answer is often an option type, so we start by hoping there is a built-in Seq.tryMax function

 to do the work for us, by returning None when there is nothing in the sequence. At the time of writing, there isn’t such a function, but defining one is almost trivial. Listing 5-3 shows us defining Seq.tryMax and then using it to ensure we return None when there are no files and Some date when there is at least one file.open System.IO

module Seq =

 let tryMax s =
 if s |> Seq.isEmpty then
 None
 else
 s |> Seq.max |> Some

let tryLatestWriteTime (path : string) (searchPattern : string) =
 Directory.EnumerateFiles(path, searchPattern,
 SearchOption.AllDirectories)
 |> Seq.map File.GetLastWriteTime
 |> Seq.tryMax

// Some date
printfn "Most recent file: %A" (tryLatestWriteTime @"c:\temp" "*.*")

// None
printfn "Most recent file: %A" (tryLatestWriteTime @"c:\temp" "doesnotexist.*")

Listing 5-3Defining and using Seq.tryMax to handle the empty case

Now the caller is forced to think about the no-files case and to handle it explicitly. It might do this by defaulting the value using pattern matching or Option.defaultValue, or it might use Option.bind and Option.map to skip subsequent processing when the return value from trylatestWriteTime is None. It doesn’t matter how the caller handles None – it’s good enough to know that it will be handled.
Common Mutable Patterns
When transitioning to an “immutable-first” coding style, it’s easy to get blocked, particularly if the mutable answer to the problem is already obvious to you. If this happens, don’t worry: just code the function in mutable style if that’s what seems more natural, and then go look at it again to see what is needed to transform it to immutable style. Once you’ve done this a few times, you’ll start to recognize the logical mappings between the old and new approaches, and you’ll gradually find yourself able to code in immutable style by default.
To help you with the process, here’s a list of common mutable-style coding patterns, together with suggestions on how to reexpress them in immutable style. For each pattern, I’ll first show how you might naively code the F# solution; then I’ll give the immutable equivalent.
Linear Search
In this pattern, the aim is to search a sequence of items for the first that meets a specific condition.type Student = { Name : string; Grade : char }

let findFirstWithGrade (grade : char) (students : seq<Student>) =
 let mutable result = { Name = ""; Grade = ' ' }
 let mutable found = false
 for student in students do
 if not found && student.Grade = grade then
 result <- student
 found <- true
 result

// { Name = Jones, B; Grade = 'B' }
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> findFirstWithGrade 'B'

Listing 5-4Linear Search in mutable style

In Listing 5-4, we set a mutable value to some arbitrary “empty” value. Then we loop over the items in the collection until we find one that meets the criterion. When we find it, we take a note of its value by updating the mutable value with the found value. When the loop is complete, we return that mutable value.
In a language like C or C#, we would also break out of the loop when we found the first element. This would skip the cost of further iterations and would avoid overwriting our mutable found value with some later matching element. In F#, we don’t have a break keyword, so we use a mutable value found to achieve a similar effect. (There are still some useless iterations, but at least they are cheap.)
There are several aspects of this code that shout out “refactor me as immutable”:	Use of mutable values

	Use of an arbitrary empty initialization value (often null in other languages)

	For-loops

	Use of flag values such as found

The good news is that the refactoring is easy (Listing 5-5).type Student = { Name : string; Grade : char }

let findFirstWithGrade (grade : char) (students : seq<Student>) =
 students
 |> Seq.find (fun s -> s.Grade = grade)

// { Name = Jones, B; Grade = 'B' }
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> findFirstWithGrade 'B'

Listing 5-5Linear Search in immutable style

In Listing 5-5, we simply use Seq.find to do the work. This has a couple of advantages:	We are letting the F# libraries do the work, so we won’t introduce any of the bugs that inevitably creep in with mutable values.

	We can now reason more readily about the code. For example, the fact that Seq.find is a partial function (see Chapter 4) should immediately flag up the fact we should be handling the “not found” case explicitly, which leads us nicely onto “Guarded Linear Search.”

Guarded Linear Search
This pattern is like Linear Search, except that we handle the fact that a matching element might not be found (Listing 5-6).type Student = { Name : string; Grade : char }

let tryFindFirstWithGrade (grade : char) (students : seq<Student>) =
 let mutable result = { Name = ""; Grade = ' ' }
 let mutable found = false
 for student in students do
 if not found && student.Grade = grade then
 result <- student
 found <- true
 if found then
 Some result
 else
 None

// Some ({ Name = Jones, B; Grade = 'B' })
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> tryFindFirstWithGrade 'B'

Listing 5-6Guarded Linear Search in mutable style

In C-like languages, it would be common to raise an exception in the “not found” case, or to return a null. Instead, I’ve chosen to make the function return an option type, so the caller has a fighting chance of knowing what has happened. I’ve used the found mutable value to decide whether to return Some value or None.
The warning signs that this isn’t great F# code are the same as they were for Listing 5-4, and the cure is equally simple (Listing 5-7).type Student = { Name : string; Grade : char }

let tryFindFirstWithGrade (grade : char) (students : seq<Student>) =
 students
 |> Seq.tryFind (fun s -> s.Grade = grade)

// Some ({ Name = Jones, B; Grade = 'B' })
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> tryFindFirstWithGrade 'B'

Listing 5-7Guarded Linear Search in immutable style

Seq.tryFind is a total function (i.e., not a partial function), which gives us a warm feeling that our function will work in a predictable way from the caller’s point of view, whether or not the collection is empty or an element is found.
Process All Items
In this pattern, we do something “to” or “with” every element in a collection. We need to do different things in the “to” (imperative) version vs. the “with” (functional) version. Listing 5-8 shows us processing every student by doing something imperative using each element.type Student = { Name : string; Grade : char }

let printGradeLabel (student : Student) =
 printfn "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let printGradeLabels (students : seq<Student>) =
 for student in students do
 printGradeLabel student

// GARCIA, A\nGrade: A\n...
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> printGradeLabels

Listing 5-8Process All Items, imperative version, in looping style

Listing 5-8 really isn’t too bad – there is no explicit mutation anywhere. The argument for the more idiomatic version (Listing 5-9) is only that it’s more consistent with how we like to handle collections generally in F# code.type Student = { Name : string; Grade : char }

let printGradeLabel (student : Student) =
 printfn "%s\nGrade: %c\n " (student.Name.ToUpper()) student.Grade

let printGradeLabels (students : seq<Student>) =
 students
 |> Seq.iter (fun student -> printGradeLabel student)
 // Alternatively:
 //|> Seq.iter printGradeLabel

// GARCIA, A\nGrade: A\n...
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> printGradeLabels

Listing 5-9Process All Items, imperative version, in loop-free style

Using Seq.iter also allows us (if we want) to avoid having an explicit value for a single student, as shown in the commented-out line in Listing 5-9. This is more concise, but it does require you to name your functions clearly, and not to have pipelines that are too long. Otherwise, you risk sacrificing readability.
How about processing a collection of items by doing some calculation using each element and returning all the results? Listing 5-10 shows a mutable-style approach.type Student = { Name : string; Grade : char }

let makeGradeLabel (student : Student) =
 sprintf "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let makeGradeLabels (students : seq<Student>) =
 let result = ResizeArray<string>()
 for student in students do
 result.Add(makeGradeLabel student)
 result |> Seq.cast<string>

// [GARCIA, A\nGrade: A\n...
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> makeGradeLabels

Listing 5-10Process All Items, returning a result for each, in mutable style

Here, we start with an empty collection that is mutable, in the sense that it can be added to. I’ve used ResizeArray, which is F#’s alias for System.Collections.Generic.List. (You can actually resize an ordinary .NET array with the Array.Resize, but… well, just don’t.) We call a function for each element in the input list and add the result to the output list. Finally, we return the built-up list. I’ve also explicitly cast the result so that it is a sequence of strings, because it isn’t the caller’s concern that we used a ResizeArray to build up the result.
This “initialize-empty-then-add” style of coding is almost unthinkable when you’ve mentally made the transition to immutable style, but it’s the pattern I see most from people who haven’t yet made the transition. (Incidentally, you may well see this style legitimately used in low-level or asynchronous code, but most code should avoid it.) Another common mutable approach is to initialize a collection of the right size with zero-valued elements and then mutate them to the right values (Listing 5-11).type Student = { Name : string; Grade : char }

let makeGradeLabel (student : Student) =
 sprintf "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let makeGradeLabels (students : seq<Student>) =
 let length = students |> Seq.length
 let result = Array.zeroCreate<string> length
 let mutable i = 0
 for student in students do
 result.[i] <- makeGradeLabel student
 i <- i + 1
 result |> Seq.ofArray

// [GARCIA, A\nGrade: A\n...
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> makeGradeLabels

Listing 5-11Process All Items in mutable style, another approach

While Listings 5-10 and 5-11 may seem self-evidently ridiculous as I’ve presented them here, somewhat more complex instances of what is fundamentally the same thing abound. So watch out for them. Generally, when the input is a collection of known size and the result is a collection of the same size, the answer is map (Listing 5-12).type Student = { Name : string; Grade : char }

let makeGradeLabel (student : Student) =
 sprintf "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let makeGradeLabels (students : seq<Student>) =
 students
 |> Seq.map makeGradeLabel

// [GARCIA, A\nGrade: A\n...
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Jones, B"; Grade = 'B' }
 { Name = "Ng, S"; Grade = 'A' }]
|> makeGradeLabels

Listing 5-12Process All Items, returning a result for each, in immutable style

Listings 5-10 and 5-11 may be among the most common antipatterns in beginner F# code, but they are also the easiest to rectify. Sprinkle your code with map operations!
Repeat Until
Often, we need to repeat an operation until some condition has been reached, but there is no way to know the condition until we have executed the operation at least once. Many languages provide a “repeat until” construct to handle this, but not F#. We also don’t have the concept of “breaking out of a for-loop”, exiting before all elements have been exhausted. Thus, our attempt to do this in mutable style (Listing 5-13) is notably inelegant. In Listing 5-13, I’ve also had to add a function called tryGetSomethingFromApi

 that simulates a “must call once” API. Ignoring that mock function, let’s focus on improving listThingsFromApi.// Simulate something coming from an API which only
// tells you if you are going to get something after
// you asked for it.
let tryGetSomethingFromApi =
 let mutable thingCount = 0
 let maxThings = 10
 fun () ->
 if thingCount < maxThings then
 thingCount <- thingCount+1
 "Soup"
 else
 null // No more soup for you!

let listThingsFromApi() =
 let mutable finished = false
 while not finished do
 let thing = tryGetSomethingFromApi()
 if thing <> null then
 printfn "I got %s" thing
 else
 printfn "No more soup for me!"
 finished <- true

// I got Soup (x10)
// No more soup for me!
listThingsFromApi()

Listing 5-13Repeat Until in mutable style

We can improve on this using a “sequence” expression, in which we call the API, convert the result into an option type using Option.ofObj, and decide whether to continue based on whether the result is Some or None. Note that the sequence expression is recursive because it needs to include not only the result from “this” iteration, using yield, but also the results from every subsequent iteration, using yield! (note the exclamation mark after yield).// Simulate something coming from an API which only
// tells you if you are going to get something after
// you asked for it.
let tryGetSomethingFromApi =
 let mutable thingCount = 0
 let maxThings = 10
 fun () ->
 if thingCount < maxThings then
 thingCount <- thingCount+1
 "Soup"
 else
 null // No more soup for you!

let rec apiToSeq() =
 seq {
 match tryGetSomethingFromApi() |> Option.ofObj with
 | Some thing ->
 yield thing
 yield! apiToSeq()
 | None ->
 ()
 }

let listThingsFromApi() =
 apiToSeq()
 |> Seq.iter (printfn "I got %s")

// I got Soup (x10)
listThingsFromApi()

Listing 5-14Repeat Until in immutable style using a recursive sequence expression

Find Extreme Value
In this pattern, we are trying to find an extreme value, typically a maximum or minimum value. That “max-ness” or “min-ness” might be expressed in all sorts of ways, simply as the magnitude of a number, closeness to or distance from zero, time duration, alphabetical order, and so on. Focusing for a moment on numerical magnitude, here’s how we might naively code getting the maximum of a sequence of numbers (Listing 5-15).open System

let getMax (numbers : seq<float>) =
 let mutable max = Double.MinValue
 for number in numbers do
 if number > max then
 max <- number
 max

// 9.8
let ex1 = [1.3; 9.8; 4.5; -13.0] |> getMax

// -1.7976931348623157E+308
let ex2 = [] |> getMax

ex1, ex2

Listing 5-15Naive get-maximum function in mutable style

Listing 5-15 has several serious shortcomings. It only works for collections of floating-point values; it has no way of finding a whole object in a collection, based on some property of each element; and most seriously of all, it will return an arbitrary value (-1.797693135e+308) if the collection is empty. This is an obvious candidate for the “try” idiom, where we return Some maximum or None. At the time of writing, there isn’t a Seq.tryMax nor a Seq.tryMaxBy, but it’s simple to write them (Listing 5-16).module Seq =

 let tryMax s =
 if s |> Seq.isEmpty then
 None
 else
 s |> Seq.max |> Some

 let tryMaxBy f s =
 if s |> Seq.isEmpty then
 None
 else
 s |> Seq.maxBy f |> Some

Listing 5-16Implementing Seq.tryMax and Seq.tryMaxBy

Listing 5-16 means we don’t need to write the code in Listing 5-15 at all – we’d just call Seq.tryMax. If we want to get the maximum of a collection of objects “by” some property, we’d call Seq.tryMaxBy as defined at the end of Listing 5-16 and used in Listing 5-17.type Student = { Name : string; Grade : char }

let tryGetLastStudentByName (students : seq<Student>) =
 students
 |> Seq.tryMaxBy (fun s -> s.Name)

// { Name = "Ng, S" Grade = 'A' }
[{ Name = "Garcia, A"; Grade = 'A'}
 { Name = "Ng, S"; Grade = 'A' }
 { Name = "Jones, B"; Grade = 'B' }]
|> tryGetLastStudentByName

Listing 5-17Using Seq.tryMaxBy

Going back to the “distance from zero” requirement, Listing 5-18 shows how we might code this, again using Seq.tryMaxBy. The abs function returns the absolute value of its input – for example, abs -1.0 is 1.0.// Some(-5.3)
let furthestFromZero =
 [| -1.1; -0.1; 0.; 1.1; -5.3 |]
 |> Seq.tryMaxBy abs

furthestFromZero

Listing 5-18Using Seq.tryMaxBy to find furthest from zero

Summarize a Collection
Frequently

, we’re trying to produce a single value that in some sense summarizes a collection. Straightforward summaries such as summing or averaging can easily be dealt with using appropriate collection functions such as Seq.sum, Seq.sumBy, Seq.average, and Seq.averageBy. But what about calculations that aren’t directly covered by built-in functions? Let’s take the example of calculating the root mean square (RMS) of a data series. This is a measure that expresses, for example, the effective voltage of an alternating electric current. Because it oscillates between positive and negative values, the simple average of the voltage is 0. But by calculating the average of the squares (converting the negative parts of each wave to positive) and then taking the square root of the results, we can produce a useful figure. Listing 5-19 shows how one might be tempted to do this in a mutable style.let rms (s : seq<float>) =
 let mutable total = 0.
 let mutable count = 0
 for item in s do
 total <- total + (item ** 2.)
 count <- count + 1
 let average = total / (float count)
 sqrt average

// 120.2081528
[|0.; -170.; 0.; 170.|] |> rms

Listing 5-19Calculating RMS in mutable style

Even though there is no Seq.rms function, it’s still possible to achieve the same result with no mutation. In Listing 5-20, we average “by” the square of each sample; then we pipe the result into the built-in sqrt function.let rms (s : seq<float>) =
 s
 |> Seq.averageBy (fun item -> item ** 2.)
 |> sqrt

// 120.2081528
[|0.; -170.; 0.; 170.|] |> rms

Listing 5-20Calculating RMS in immutable style

This is common: even if there isn’t a summary collection function to do exactly what you want, you can normally combine collection functions with other calculations to get where you need to be. The presence of mutable accumulator values (such as total and count in Listing 5-19) is a sure-fire sign that you can improve your code in this way.
Sometimes, you still need to thread an “accumulator” value through a collection computation because the value at position n depends on the cumulative value built up at position n-1. Listing 5-21 shows a mutable example, in this case, multiplying together all the successive elements of a collection.let product (s : seq<float>) =
 let mutable total = 1.
 for item in s do
 total <- total * item
 total

// 1.98
[| 1.2; 1.1; 1.5|] |> product

Listing 5-21Cumulative computation in mutable style

This is, technically speaking, a “fold” operation, and to support it, we have Seq.fold (and Array.fold, etc.). Fold sometimes gets bad press because it can be confusing, but here it is a perfect fit (Listing 5-22).let product (s : seq<float>) =
 s
 |> Seq.fold (fun acc elem -> acc * elem) 1.

// 1.98
[| 1.2; 1.1; 1.5|] |> product

Listing 5-22Cumulative computation in immutable style

Incidentally, I have a way of taming the confusion that can easily accompany use of fold. I always name the two arguments of the lambda function, which represent the accumulated value and the value of the current element, acc and elem. Somehow sticking to the acc-elem mantra, rather than using context-specific names like totalSoFar and thisElement, helps me remember which way round to put the values and how they are used.
Recommendations
Here are the main points you should take away from this chapter:	Programming in immutable style is key in accessing the benefits of programming in F#.

	Watch out for the common signs of mutable or imperative programming style: use of mutable values, use of arbitrary initialization values (e.g., nulls), for-loops, and use of flag or “sentinel” values such as found.

	It’s OK to code a first cut in mutable style. But when that is working, try to factor it into immutable style, often using collection functions such as Seq.max to work at a higher level of abstraction.

	As you get used to the style, it’ll start feeling natural to code in immutable style from the outset.

Summary
In this chapter, I’ve listed some of the most common coding patterns where, in C-like languages and in the absence of wonderful technologies like LINQ in C#, one has to resort to using mutable values and looping. I hope you’re convinced that this old style of coding is hardly ever necessary.
Of course, you sometimes have to resort to mutable style for performance reasons. But personally, I have found this relatively rare. All that said, feel free to start off in mutable style and refactor to immutable as you go along. You soon find that immutable-first becomes your natural default.
In the next chapter, we’ll look at pattern matching, a technique for flow control and data assignment that leaves if and switch statements in the dust!
Exercises
Exercise 5-1 – Clipping a Sequence
Write a function “clip,” which takes a sequence of values and returns a sequence of the same length, in which the values are the same as the inputs, except elements that were higher than a defined ceiling are replaced with that ceiling.
For example: // seq [1.0; 2.3; 10.0; -5.0]
 [| 1.0; 2.3; 11.1; -5. |]
 |> clip 10.

You can solve this exercise using one collection function and one other function.

Exercise 5-2 – Minimum and Maximum
You come across a function that appears to be designed to calculate the minimum and maximum values in a sequence:open System

let extremes (s : seq<float>) =
 let mutable min = Double.MaxValue
 let mutable max = Double.MinValue
 for item in s do
 if item < min then
 min <- item
 if item > max then
 max <- item
 min, max

// (-5.0, 11.1)
[| 1.0; 2.3; 11.1; -5. |]
|> extremes

How would you rewrite the function to avoid using mutable values? You can ignore the situation where the input sequence is empty.
Given a precomputed array of one million elements, how does the performance of your function compare with the mutable version?
You can solve this exercise using two collection functions.

Exercise Solutions
This section shows solutions for the exercises in this chapter.
Exercise 5-1 – Clipping a Sequence
You can achieve the requirement by writing a function that takes a required ceiling value and a sequence. Then you can use Seq.map to map the input values to the lower of either the input element or the specified ceiling, using the built-in min function.open System

let clip ceiling (s : seq<_>) =
 s
 |> Seq.map (fun x -> min x ceiling)

// seq [1.0; 2.3; 10.0; -5.0]
[| 1.0; 2.3; 11.1; -5. |]
|> clip 10.

Exercise 5-2 – Minimum and Maximum
You can achieve the requirement simply by using Seq.min and Seq.max and returning the results as a tuple by putting a comma between the calls.let extremesImmutable (s : seq<float>) =
 s |> Seq.max,
 s |> Seq.min

// (11, -5)
[| 1.0; 2.3; 11.1; -5. |]
|> extremesImmutable

Basic performance can be analyzed by using code like this:// Performance test:
open System
open System.Diagnostics

let r = Random()
let big = Array.init 1_000_000 (fun _ -> r.NextDouble())
let sw = Stopwatch()

// Test the mutable version:
sw.Start()
let min1, max1 = big |> extremes
// min: 0.999998 max: 0.000002 - time: 12ms
printfn "min: %f max: %f - time: %ims" min1 max1 sw.ElapsedMilliseconds
sw.Stop()

// Test the immutable version:
sw.Restart()
let min2, max2 = big |> extremesImmutable
// min: 0.999998 max: 0.000002 - time: 19ms
printfn "min: %f max: %f - time: %ims" min2 max2 sw.ElapsedMilliseconds
sw.Stop()

As you can see from the comments, on my setup and when running in a notebook, the immutable version takes 50% longer than the mutable version. If s is allowed to be a generic sequence (seq<_>), the situation is much, much worse:// Some variations - generic sequence:
let extremesImmutableGeneric (s : seq<_>) =
 s |> Seq.max,
 s |> Seq.min

// Test the immutable, generic sequence version:
sw.Restart()
let min3, max3 = big |> extremesImmutableGeneric
// min: 0.999998 max: 0.000002 - time: 173ms
printfn "min: %f max: %f - time: %ims" min3 max3 sw.ElapsedMilliseconds
sw.Stop()

You can offset this by inlining the function (i.e., let inline extremes...):// Generic sequence, inline function
let inline extremesImmutableGenericInline (s : seq<_>) =
 s |> Seq.max,
 s |> Seq.min

// Test the immutable, generic sequence version:
sw.Restart()
let min4, max4 = big |> extremesImmutableGenericInline
// min: 0.999998 max: 0.000002 - time: 22ms
printfn "min: %f max: %f - time: %ims" min4 max4 sw.ElapsedMilliseconds
sw.Stop()

Making functions inline is a technique that you should use very selectively. We’ll return to performance in Chapter 12.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_6

6. Pattern Matching

Kit Eason1
(1)Farnham, Surrey, UK

We may say most aptly, that the Analytical Engine weaves algebraical patterns just as the Jacquard-loom weaves flowers and leaves.
—Ada Lovelace, Computer Pioneer

Weaving Software with Patterns
I have many “favorite” F# features, but my favorite favorite is pattern matching! Perhaps this is because it’s the feature that takes us furthest away from Object-Oriented coding, letting us truly differentiate from legacy coding patterns. Another nice aspect is how unexpectedly pervasive it can be in well-factored code bases. Prepare to be surprised at the places where you can use pattern matching to simplify and beautify your code. But also be prepared to exercise some restraint in using your newfound superpower. Pattern matching can be overdone.
Because pattern matching tends to be completely new, conceptually, to many developers, I’m going to be more gradual in my explanations than I have been in other chapters of this intermediate book. I’ll start with the very basics.
Pattern Matching Basics
At its simplest, pattern matching is analogous to the switch or case constructs found in many languages. For example, Listings 6-1 and 6-2 show how we’d implement simple switching of control using C# and F#.int caseSwitch = 1;

switch (caseSwitch)
{
 case 1:
 Console.WriteLine("Case 1");
 break;
 case 2:
 Console.WriteLine("Case 2");
 break;
 default:
 Console.WriteLine("Default case");
 break;
}

Listing 6-1Case switching in C#

let caseSwitch = 2

match caseSwitch with
| 1 -> printfn "Case 1"
| 2 -> printfn "Case 2"
| _ -> printfn "Default case"

Listing 6-2Case switching in F#

This is explicit pattern matching – that is, we are using the match keyword

 – and it’s super clear what is going on.
Using pattern matching to match on integer literals like this is a bit like using an expensive torque wrench as a hammer, but even here there are some surprising goodies to be had. Try commenting out the bottom line in Listing 6-2. You’ll get a compiler warning saying “Incomplete pattern matches on this expression. For example, the value '0' may indicate a case not covered by the pattern(s).” The F# compiler checks, at the type level, whether a value that isn’t covered by the listed cases could conceivably be passed in. And just in case you don’t believe it, it gives you an example! I can’t tell you how many times that feature alone has saved my bacon. Incidentally, it’s a good habit to have no warnings in your F# code or even to turn on the “warnings as errors” setting in your development/build environment. F# warnings are almost always pointing you to a genuine weakness in your code, and “Incomplete pattern matches” warnings are the best example of this.
If you want multiple conditions to invoke the same body of code, use several | case constructs

 and follow the last of them with the -> arrow and then the code to be executed (Listing 6-3).let caseSwitch = 3

// "Maybe 3, maybe 4"
match caseSwitch with
| 1 -> printfn "Case 1"
| 2 -> printfn "Case 2"
| 3
| 4 -> printfn "Maybe 3, maybe 4"
| _ -> printfn "Default case"

Listing 6-3Handling multiple match cases

I love how layout and syntax work together here so that you can run your eye down the code and spot anomalies and special cases at a glance. The code is almost a diagram of what you want to happen.
Now let’s start treating the torque wrench with a bit of respect. What else can it do? Well it can recover the value that actually matched at runtime, if you follow the case or cases with as x (Listing 6-4).let caseSwitch = 3

// "Maybe 3, maybe 4. But actually 3."
match caseSwitch with
| 1 ->
 printfn "Case 1"
| 2 ->
 printfn "Case 2"
| 3 | 4 as x ->
 printfn "Maybe 3, maybe 4. But actually %i." x
| _ ->
 printfn "Default case"

Listing 6-4Recovering a matched value

Using the as x construct means that an identifier of the appropriate type, called x (or whatever you want to label it), is bound with the value that matched. The scope of this identifier is limited to the code that’s executed as a result of the match. In the code of other cases, and outside the match expression, it has no meaning.1
I like to think of a match expression as a kind of time travel, allowing you to go back and get the value that must have been assigned for this case to have matched.
When Guards
If you want a bit more branching, using the value recovered in a match case, you can use a when guard. A when guard is a bit like an if expression, and it uses the recovered value for some comparison. Only if the comparison returns true is the following code executed (Listing 6-5).let caseSwitch = 11

// "Less than a dozen"
match caseSwitch with
| 1 ->
 printfn "One"
| 2 ->
 printfn "A couple"
| x when x < 12 ->

 printfn "Less than a dozen"
| x when x = 12 ->
 printfn "A dozen"
| _ ->
 printfn "More than a dozen"

Listing 6-5Matching with a when guard

Pattern Matching on Arrays and Lists
What if the value being matched is a bit more structured – say, an array? We can pattern match on arrays and pick out cases having specific element counts (Listing 6-6).let arr0 = [||]
let arr1 = [|"One fish"|]
let arr2 = [|"One fish"; "Two fish"|]
let arr3 = [|"One fish"; "Two fish"; "Red fish"|]
let arr4 = [|"One fish"; "Two fish"; "Red fish"; "Blue fish"|]

module Pond =

 let describe (a : string[]) =
 match a with
 | [||] ->
 "An empty pond"
 | [| fish |] ->
 sprintf "A pond containing one fish: %s" fish
 | [| f1; f2 |] ->
 sprintf "A pond containing two fish: %s and %s" f1 f2
 | _ ->
 "Too many fish to list!"

// An empty pond
// A pond containing one fish: One fish
// A pond containing two fish: One fish and Two fish
// Too many fish to list!
// Too many fish to list!
[| arr0; arr1; arr2; arr3; arr4 |]
|> Array.map Pond.describe

Listing 6-6Pattern matching on arrays

This process of recovering the constituents of a structured type is often called decomposition

.
Array decomposition is a little limited, as you have to specify either arrays of specific sizes (including size zero) or a catch-all case using an underscore. List decomposition is a bit more powerful, taking advantage of the linked structure of a list (Listing 6-7).let list0 = []
let list1 = ["One fish"]
let list2 = ["One fish"; "Two fish"]
let list3 = ["One fish"; "Two fish"; "Red fish"]
let list4 = ["One fish"; "Two fish"; "Red fish"; "Blue fish"]

module Pond =

 let describe (a : List<string>) =
 match a with
 | [] ->
 "An empty pond"
 | [fish] ->
 sprintf "A pond containing one fish only: %s" fish
 | head::tail ->
 sprintf "A pond containing one fish: %s (and %i more fish)"
 head (tail |> List.length)

// A pond containing one fish only: One fish
// A pond containing one fish: One fish (and 1 more fish)
// A pond containing one fish: One fish (and 2 more fish)
// A pond containing one fish: One fish (and 3 more fish)
[| list1; list2; list3; list4 |]
|> Array.map Pond.describe

Listing 6-7Pattern matching on lists

Here, the first two cases are pretty much as Listing 6-6, except we use list brackets [] instead of “array clamps” [||]. The next case uses a cons operator ::. When constructing a list, you can use the cons operator to join a single element onto the beginning of a list (e.g., "One fish" :: ["Two fish"; "Red fish"]). But here we are using it in the opposite direction – to recover the first element and all subsequent elements (if any) from an existing list. (You can see now why I referred to pattern matching as a form of time travel: the :: operator works both forwards in time to compose and backwards in time to decompose. You can also think of this as the :: operator being “inverted.”)
In Listing 6-7, I’ve used the identifiers head and tail in the cons case, that is, head::tail. I normally use the names head and tail in cons matching, regardless of the business meanings of the particular values in question. (The alternative in this case might have been something like firstFish::otherFishes.) This is one of those conventions, like using acc and elem in fold functions, which helps your mind recognize common idioms with as little cognitive overhead as possible and saves you from some unnecessary decision-making.
You might want to experiment a bit to prove what I said about the possibility of the tail containing zero elements. Comment out the | [fish] -> case

 from Listing 6-7 and its following printf line. What do you expect to happen when you send list1 into the match expression? Were you right?
Finally, you might have noticed that although the individual “ponds” in Listing 6-7 are of type List<string>, the demonstration in the last two lines makes an array of those lists and uses Array.map to process them. I could just as well have used a list of lists, but it’s also absolutely fine to mix collections as I have done here.
Pattern Matching on Tuples
We’ve got a bit ahead of ourselves and missed out one of the most pervasive forms of pattern matching – so pervasive it’s not that obvious that it is pattern matching at all. Consider a function that returns a tuple. You can call that function and decompose the tuple result straight into separate values like this (Listing 6-8).let extremes (s : seq<_>) =
 s |> Seq.min,
 s |> Seq.max

// lowest : int = -1
// highest : int = 9
let lowest, highest =
 [1; 2; 9; 3; -1] |> extremes

// -1, 9
lowest, highest

Listing 6-8Pattern matching on tuples in a let binding

You can also explicitly pattern match on tuples using the match keyword. For example, the Int32.TryParse function

 returns a tuple consisting of a Boolean flag to say whether the parsing succeeded and the parsed integer value. (The compiler cleverly translates into a tuple result from the “real” signature of TryParse, in which the value is placed in a by-reference parameter.) Thus, you can pattern match to recover the value and place it into an option type, which makes it more usable from the rest of your F# code (Listing 6-9).open System

let tryParseInt (s : string) =
 match Int32.TryParse(s) with
 | true, i -> Some i
 | false, _ -> None

// Some 30
"30" |> tryParseInt

// None
"3X" |> tryParseInt

Listing 6-9Pattern matching on tuples using match

Pattern Matching on Records
You can also use pattern matching to decompose record types. This is sometimes useful when you want to pluck one or two values out of the record and ignore the rest.type Track = { Title : string; Artist : string }

let songs =
 [{ Title = "Summertime"
 Artist = "Ray Barretto" }
 { Title = "La clave, maraca y guiro"
 Artist = "Chico Alvarez" }
 { Title = "Summertime"
 Artist = "DJ Jazzy Jeff & The Fresh Prince" }]

let distinctTitles =
 songs
 |> Seq.map (fun song ->
 match song with
 | { Title = title } -> title)
 |> Seq.distinct

// seq ["Summertime"; "La clave, maraca y guiro"]
distinctTitles

Listing 6-10Pattern matching on record types

In Listing 6-10, we pull Title out of the record and ignore Artist. (You aren’t obliged to use Artist = _ to do this; you can just omit the fields you aren’t interested in.). The syntax is a little confusing at first because Title = title looks almost like an assignment but written backward, given that it is title (on the right) that receives the value.
There are more concise ways to achieve what we did in Listing 6-10 (e.g., Seq.map (fun song -> song.Title)) – but it’s worth getting used to record matching in the context of a match expression, as it’ll make things easier to understand when we start to discover record matching in other constructs. In fact, let’s jump ahead a bit and look at one example of pattern matching on records without a match expression.
Say the Track type from Listing 6-10 has a few more fields, and we want to write a function that formats a track name and artist as a menu item. Clearly, that function only cares about two fields from the Track type, but it would be quite nice to be able to throw whole Track instances at the function, without either the caller or the callee having to break out the fields of interest. Listing 6-11 shows how to achieve exactly that.type TrackDetails = {
 Id : int
 Title : string
 Artist : string
 Length : int }

let songs =
 [{ Id = 1
 Title = "Summertime"
 Artist = "Ray Barretto"
 Length = 99 }
 { Id = 2
 Title = "La clave, maraca y guiro"
 Artist = "Chico Alvarez"
 Length = 99 }
 { Id = 3
 Title = "Summertime"
 Artist = "DJ Jazzy Jeff & The Fresh Prince"
 Length = 99 }]

// The TrackDetails. prefix is is only needed here to avoid a warning when
// working in Notebooks. (A previous cell defines a record with the same
// field names.)
let formatMenuItem ({ TrackDetails.Title = title; TrackDetails.Artist = artist }) =
 let shorten (s : string) = s.Substring(0, 10)
 sprintf "%s - %s" (shorten title) (shorten artist)

// Summertime - Ray Barret

// La clave, - Chico Alva
// Summertime - DJ Jazzy J
songs
|> Seq.map formatMenuItem
|> Seq.iter (printfn "%s")

Listing 6-11Pattern matching at the function call boundary

The magic happens in the parameter list of formatMenuItem, where we say ({ Title = title; Artist = artist }). This will cause values called title and artist to be bound with the relevant fields’ values from a Track instance, and they will be available within the function body. Other fields from the record are ignored. See how the Seq.map near the bottom of the listing can send in whole Track instances.
You could argue that this technique offers a whole new paradigm of parameter declaration: an alternative to both the curried style, where you just list the parameters with spaces, meaning the caller can populate as many as it feels like; and the tupled style, where the caller must supply values for all parameters. In this new paradigm, the caller must supply a whole record instance, but the callee only sees some of the values. It can be very useful, but it’s a trick to use sparingly. I’ve come across it in my own code and been confused by it!
Pattern Matching on Discriminated Unions
It’s time for the yin of pattern matching to meet its yang, in the form of Discriminated Unions. A Discriminated Union (DU) is a type that has several labeled cases, each of which may have an associated payload of any type. The payload type associated with each case can be different. Multiple types can be put into the payload of a DU case simply by tupling them together or using another complex type such as a class or record.
You can recover the payload of a DU instance using explicit pattern matching (Listing 6-12). In Listing 6-12, we are modeling readings for two kinds of UK domestic electricity meters. The “Standard” meter is one where your consumption is simply recorded as a single number. The “Economy 7” meter is one where daytime and nighttime consumption is recorded separately and charged at different rates. Clearly, a single “meter read” event will produce one value for standard readings and two (which we absolutely must not mix up) for Economy 7. Given these rules, the code in Listing 6-12 should be fairly self-explanatory. The function MeterReading.format takes a MeterReading instance of either type and formats it appropriately for printing on a bill or web page, using pattern matching to recover the reading(s).type MeterReading =
 | Standard of int
 | Economy7 of Day:int * Night:int

module MeterReading =

 let format(reading : MeterReading) =
 match reading with
 | Standard reading ->
 sprintf "Your reading: %07i" reading
 | Economy7(Day=day; Night=night) ->
 sprintf "Your readings: Day: %07i Night: %07i" day night

let reading1 = Standard 12982

let reading2 = Economy7(Day=3432, Night=98218)

// "Your reading: 0012982", "Your readings: Day: 0003432 Night: 0098218"
reading1 |> MeterReading.format, reading2 |> MeterReading.format

Listing 6-12Pattern matching on a DU

If you are at an intermediate level in F#, DUs and pattern matching will be pretty familiar to you. But let me point out some language features in Listing 6-12 that are little used in F# code bases generally and which I think should be used more. First, I’ve assigned labels to each of the readings in the Economy7 case, that is, Economy7 of Day:int * Night:int rather than Economy7 of int*int. Second, I’ve used those labels when instantiating Economy 7 readings, that is, Economy7(Day=3432, Night=98218) rather than Economy7(3432, 98218). (F# doesn’t force you to do this, even if you’ve given labels to the tuple elements in the case declaration.) Finally, when decomposing out the day and night values in the pattern match, I’ve again used the labels, that is, | Economy7(Day=day; Night=night) rather than | Economy7(day, night). There’s an oddity in the decomposition part: note how the decomposition syntax has a semicolon, while when you construct the instance, you used a comma (Table 6-1).Table 6-1DU Labeled Payload Elements Construction and Decomposition Syntax

	Action
	Syntax

	Construction
	Economy7(Day=3432, Night=98218)

	Decomposition
	Economy7(Day=day; Night=night)

I suspect there is a reason for this: here, the decomposition isn’t quite the “opposite” of the composition because in the decomposition, you can legitimately omit some of the items from the payload. For example, if you just wanted to pull out the day reading, you could use the match case | Economy7(Day=day) ->
Anyway, if you choose not to label the items in your payload, Listing 6-13 shows the same functionality as Listing 6-12, but without the labels.type MeterReading =
 | Standard of int
 | Economy7 of int * int

module MeterReading =

 let format(reading : MeterReading) =
 match reading with
 | Standard reading ->
 sprintf "Your reading: %07i" reading
 | Economy7(day, night) ->
 sprintf "Your readings: Day: %07i Night: %07i" day night

let reading1 = Standard 12982

let reading2 = Economy7(3432, 98218)

// "Your reading: 0012982", "Your readings: Day: 0003432 Night: 0098218"
reading1 |> MeterReading.format, reading2 |> MeterReading.format

Listing 6-13DUs and pattern matching without payload labels

You will see code like Listing 6-13 much more often, but I prefer the style of Listing 6-12 if there is any possibility of confusion between the elements of a DU payload, or if the nature of the payload isn’t immediately obvious from context. Remember: motivational transparency

!
Another alternative to labeling the payload elements is to have the payload as a whole be a type with some structure, for example, a record type. Thus, the field labels or member names make the code self-documenting, taking the place of the payload element labels. Using a “proper” type is obviously a less minimalist approach than simply having labels in the DU payload (and generally I like minimalism), but obviously, it has benefits if you have broader uses for the type anyway.
Pattern Matching on DUs in Function Parameters
If you think back to the section “Pattern Matching on Records,” you might remember that we said you can pattern match in the declaration of a function, thus:let formatMenuItem ({ Title = title; Artist = artist }) = ...

In this way, you can recover items from the incoming type and use their values within the function body. It might occur to you that the same should be possible for Discriminated Unions. And yes, you can – with certain important restrictions. Imagine you are trying to implement complex numbers. For this example, all you need to know about complex numbers is that each one has two components, the real and imaginary parts, and that to add two complex numbers, you add each one’s real parts and each one’s imaginary parts and make a new complex number using the two results. (Incidentally, there is no need, in reality, to implement complex numbers, as they are already right there in System.Numerics. Nonetheless, they do make a useful example.) Listing 6-14 shows how you could model complex numbers using a single-case DU.type Complex =
 | Complex of Real:float * Imaginary:float

module Complex =

 let add (Complex(Real=r1;Imaginary=i1)) (Complex(Real=r2;Imaginary=i2)) =
 Complex(Real=(r1+r2), Imaginary=(i1+i2))

let c1 = Complex(Real = 0.2, Imaginary = 3.4)
let c2 = Complex(Real = 2.2, Imaginary = 9.8)

// Complex(Real=2.4, Imaginary=13.2)
let c3 = Complex.add c1 c2
c3

Listing 6-14Implementing complex numbers using a single-case DU

Note how, as in Listing 6-12, I’ve opted to label the two components of the payload tuple, as it is rather critical we don’t mix up the real and imaginary components! The key new concept here is the add function

, where I’ve done pattern matching in the parameter declaration to pull out the actual values we need for the computation. In the body of the add function, we simply construct a new Complex instance

, doing the necessary computation at the same time. Once again, we use the slightly odd semicolon-based syntax at the decomposition stage, even though we compose the instances using commas.
Exactly as with records, this technique can be useful in certain circumstances. But it is a double-edged sword in terms of readability, particularly for nonadvanced maintainers of your code. I would say I’ve regretted using single-case DUs in the manner outlined in Listing 6-14 about as often as I’ve been pleased with the results.
I mentioned “certain important restrictions” when you want to do pattern matching in a function declaration. Apart from the readability risk, the main restriction is that the DU you are using should be a single-case one, or the pattern you use should cover all the possibilities. Consider Listing 6-15, where I have extended the complex number example from Listing 6-14 so that we can have either a “real” number, which is just an everyday floating-point number, or the complex number we described earlier.type Number =
 | Real of float
 | Complex of Real:float * Imaginary:float

module Number =
 // Warning: Incomplete pattern matches on this expression...
 let add (Complex(Real=r1;Imaginary=i1)) (Complex(Real=r2;Imaginary=i2)) =
 Complex(Real=(r1+r2), Imaginary=(i1+i2))

Listing 6-15Pattern matching in function declaration on a multicase DU

This immediately causes a compiler warning where the add function is declared because the function only handles one of the two DU cases that could be sent to it. Never ignore this kind of warning: if the DU truly needs to have multiple cases, you will have to refactor any code that uses it to handle all the cases. Failing to do so will undermine the whole edifice of type safety that using F# lets you construct.
You could extend the parameter binding to cover all the cases, as in Listing 6-16.type Number =
 | Real of float
 | Complex of Real:float * Imaginary:float

module Number =

 // Gets rid of the compiler warning but doesn't make much sense!
 let addReal (Complex(Real=a)|Real(a)) (Complex(Real=b)|Real(b)) =
 Real(a+b)

Listing 6-16Handling a multicase DU in a function parameter

Leaving aside whether this is a mathematically valid operation, this really isn’t terribly readable, and I struggle to think of a good reason to do it, except perhaps in rather specialized code.
Pattern Matching in Let Bindings
There’s yet another place you can use DU pattern matching: directly in let bindings

. If you have a complex number, stored as a single-case DU as in Listing 6-14, you can recover its components directly in a let binding (Listing 6-17).type Complex =
 | Complex of Real:float * Imaginary:float

let c1 = Complex(Real = 0.2, Imaginary = 3.4)

let (Complex(real, imaginary)) = c1

// 0.2, 3.4
real, imaginary

Listing 6-17Pattern matching in a let binding

You can also use the component labels if you want to, that is: let (Complex(Real=real; Imaginary=imaginary)) = c1

Note that when using labels like this, you must use a semicolon separator rather than a comma, as we saw earlier.
If you want an assign from a multicase DU, you can do so using the | character, providing you bind the same value in all cases and use _ to ignore “leftover” values (Listing 6-18).type Complex =
 | Real of float
 | Complex of Real:float * Imaginary:float

let c1 = Complex(Real = 0.2, Imaginary = 3.4)

let (Complex(real, _)|Real (real)) = c1

// 0.2
real

Listing 6-18A let binding from a multicase DU

As I said in the previous section, the times where it is useful and advisable to do this are fairly rare.
Pattern matching in let bindings is a really useful trick once you get used to it. But do bear in mind the readability implications based on the skill level of your collaborators. Don’t do it just to look clever!
Revisiting Single-Case Discriminated Unions
Now that we’ve looked at pattern matching in a number of contexts, let’s revisit the use of Single-Case Discriminated Unions

, which we first looked at in connection with railway miles and yards back in Chapter 2. What is the most concise syntax we can think of to validate or clean values on creation of such a DU and to retrieve the wrapped value in a caller-friendly way? This time I’ll use heading as an example. A heading is a direction of travel measured clockwise from North and has values between 0.0° and 359.999…°. If some operation takes the value clockwise past 359.999°…, or anticlockwise past 0°, we need to “wrap around” appropriately. For example, 5° clockwise from 359° is 4°, and 5° anticlockwise from 4° is 359°. Similarly, if something creates a heading using an out-of-range value, say, 361°, we also wrap it around, in this case, to 1°. Listing 6.19 shows one way to achieve all this.2module Heading =

 [<Struct>]
 type Heading =
 private Heading of double
 member this.Value = this |> fun (Heading h) -> h

 let rec create value =
 if value >= 0.0 then
 value % 360.0 |> Heading

 else
 value + 360.0 |> create

// "Heading: 180.0"
let heading1 = Heading.create 180.0
printfn "Heading: %0.1f" heading1.Value

// "Heading: 90.0"
let heading2 = Heading.create 450.0
printfn "Heading: %0.1f" heading2.Value

// "Heading: 270.0"
let heading3 = Heading.create -450.0
printfn "Heading: %0.1f" heading3.Value

// "Heading: 270.0"
let heading4 = Heading.create -810.0
printfn "Heading: %0.1f" heading4.Value

Listing 6-19Expressing a heading as a DU

Parts of Listing 6-19 will already be familiar to you: we use a Single-Case DU to carry a payload value, we place the type inside a module named after the DU, and we make its case (also called Heading) private – which makes it impossible to bypass validation by creating an instance directly. For a (potential) performance gain, we mark the DU with the [<Struct>] attribute. Finally, we provide a create function

 to do instantiation. In Chapter 2, we used a create function to both validate and instantiate, but here we clean and instantiate: values outside the range 0.0…359.99… are automatically wrapped around. Wrapping values above 360.0 is easy – we can use the modulus operator %. Wrapping values below 0.0 requires recursively adding 360.0 until the value is brought into range. There are probably more mathematical ways to achieve this, but I quite like the elegance of the recursion. We have to mark the create function as recursive by saying let rec instead of just let.
But the real innovation is the addition of the member called this.Value. From a caller’s point of view, it allows code to retrieve the wrapped value using, for example, heading1.Value. The member pipes this into a lambda that uses pattern matching to get the wrapped value as h, which is then returned to the caller. Providing a Value member is more succinct from the consumer’s point of view than having to pattern match at the point of consumption. Also note that – ignoring the [<Struct>] attribute and the create function – a DU with a Value member part can even be achieved as a “one liner” (Listing 6-20).type Heading = Heading of double member this.Value = this |> fun (Heading h) -> h

Listing 6-20Expressing a heading as a one-line DU

Pattern Matching in Loops and Lambdas
Sometimes, you have a collection of tuples or records that you want to loop over, either explicitly using for-loops or implicitly using higher-order functions such as iter and map. Pattern matching comes in useful here because it lets you seamlessly transition from the collection items to the items to be used in the body of the for-loop or lambda function (Listing 6-21).let fruits =
 ["Apples", 3
 "Oranges", 4
 "Bananas", 2]

// There are 3 Apples
// There are 4 Oranges
// There are 2 Bananas
for (name, count) in fruits do
 printfn "There are %i %s" count name

// There are 3 Apples
// There are 4 Oranges
// There are 2 Bananas
fruits
|> List.iter (fun (name, count) ->
 printfn "There are %i %s" count name)

Listing 6-21Pattern matching in loops

In Listing 6-21, we make a list of tuples and then iterate over it in both a for-loop and a higher-order function style. In both cases, a pattern match in the form of (name, count) lets us recover the values from the tuple, for use in the body code.
You can also do this with Record Types, and there’s an exercise showing that at the end of the chapter. And you can do it with Discriminated Unions, though normally only when they are single case.
Purely as a curiosity, Listing 6-22 shows an example of “cheating” by looping with a pattern match over a multicase Discriminated Union. This code actually works (it will just iterate over the cases that are circles) but isn’t great practice unless your aim is to annoy purists. You will get a compiler warning.type Shape =
 | Circle of Radius:float
 | Square of Length:float
 | Rectangle of Length:float * Height:float

let shapes =
 [Circle 3.
 Square 4.
 Rectangle(5., 6.)
 Circle 4.]

// Circle of radius 3.000000
// Circle of radius 4.000000
// Compiler wanning: "Incomplete matches on this expression..."
for (Circle r) in shapes do
 printfn "Circle of radius %f" r

Listing 6-22Pattern matching in loop over a multicase DU (bad practice!)

Pattern Matching and Enums
If you want a Discriminated Union to be treated more like a C# enum, you must assign each case a distinct value, where the value is one of a small set of simple types such as byte, int32, and char

. Listing 6-23 shows how to combine this feature, together with the Sytem.Flags attribute, to make a simplistic model of the Unix-style file permissions structure.open System

[<Flags>]
type FileMode =
 | None = 0uy
 | Read = 4uy
 | Write = 2uy
 | Execute = 1uy

let canRead (fileMode : FileMode) =
 fileMode.HasFlag FileMode.Read

let modea = FileMode.Read
let modeb = FileMode.Write
let modec = modea ^^^ modeb

// True, False, True
canRead modea, canRead modeb, canRead modec

Listing 6-23Simple model of Unix-style file permissions

Here, the DU FileMode can take one of four explicit values, each of which is associated with a bit pattern (000, 001, 010, and 100). We can use the HasFlag property (which is added for us because we used the Flags attribute) to check whether an instance has a particular bit set, regardless of the other bits. We can also bitwise-OR two instances together, using the ^^^ operator.
But beware! As soon as you make a DU into an enum

, code can assign to it any value that is compatible with the underlying type, including one not supported by any specified case. For example: open Microsoft.FSharp.Core.LanguagePrimitives
 let naughtyMode =
 EnumOfValue<byte, FileMode> 255uy

For the same reason, enum pattern matching that doesn’t contain a default case (“_”) will always cause a compiler warning saying “Enums may take values outside known cases. For example, the value ‘enum<FileMode> (3uy) may indicate a case not covered by the pattern(s).” The compiler knows, at the type level, that any value of the underlying type could be sent in, not just one covered by the specified DU cases (Listing 6-24).open System

[<Flags>]
type FileMode =
 | None = 0uy
 | Read = 4uy
 | Write = 2uy
 | Execute = 1uy

let describeReadability (fileMode : FileMode) =
 let read =
 // Compiler warning: "Enums may take values outside known cases..."
 match fileMode with
 | FileMode.Read -> "can"
 | FileMode.None
 | FileMode.Write
 | FileMode.Execute -> "cannot"

 printfn "You %s read the file"

Listing 6-24Pattern matching on an enum DU without a default case

Because it makes a hole in type safety, I always avoid using enum DUs except in very specific scenarios, typically those involving language interop.
Active Patterns
Pattern matching and Discriminated Unions are exciting enough, but there’s more! Active Patterns

 let you exploit the syntactical infrastructure that exists to support pattern matching, by building your own mapping between values and cases. Once again, because this is a somewhat advanced feature, I’m going to explain Active Patterns from the very beginning. Then we can discuss their stylistic implications.
Single-Case Active Patterns
The simplest form of Active Pattern is the Single-Case Active Pattern. You declare it by writing a case name between (| and |) (memorably termed banana clips), followed by a single parameter, and then some code that maps from the parameter value to the case.
For instance, in Listing 6-25, we have an Active Pattern that takes a floating-point value and approximates it to a sensible value for a currency, which for simplicity we are assuming always has two decimal places.open System

let (|Currency|) (x : float) =
 Math.Round(x, 2)

// true
match 100./3. with
| Currency 33.33 -> true
| _ -> false

Listing 6-25A Single-Case Active Pattern

With the Currency Active Pattern in place, we can pattern match on some floating-point value that has an arbitrary number of decimal places (such as 33.333333...) and compare it successfully with its approximated value (33.33).
The code is now nicely integrated with the semantics of pattern matching generally, especially when recovering the matched value. Listing 6-26 shows us using Currency in the three contexts we have seen for other pattern matching: match expressions, let bindings, and function parameters.open System

let (|Currency|) (x : float) =
 Math.Round(x, 2)

// "That didn't match: 33.330000"
// false
match 100./3. with
| Currency 33.34 -> true
| Currency c ->
 printfn "That didn't match: %f" c
 false

// C: 33.330000
let (Currency c) = 1000./30.
printfn "C: %0.4f" c

let add (Currency c1) (Currency c2) =
 c1 + c2

// 66.66
add (100./3.) (1000./30.)

Listing 6-26Recovering decomposed values with Active Patterns

Multicase Active Patterns
While Single-Case Active Patterns map any value to a single case, Multicase Active Patterns map any value to one of several cases. Let’s say you have a list of wind turbine model names (I got mine from the USGS wind turbine database here: https://eerscmap.usgs.gov/uswtdb/), and you want to divide these into ones made by Mitsubishi, ones made by Samsung, and ones made by some other manufacturer. (Since we are dealing with unconstrained string input data, it’s essential to provide an “Other” case). Listing 6-27 shows how we might do this using a combination of regular expressions and Multicase Active Patterns.open System.Text.RegularExpressions

let (|Mitsubishi|Samsung|Other|) (s : string) =
 let m = Regex.Match(s, @"([A-Z]{3})(\-?)(.*)")
 if m.Success then
 match m.Groups.[1].Value with
 | "MWT" -> Mitsubishi
 | "SWT" -> Samsung
 | _ -> Other
 else
 Other

// From https://eerscmap.usgs.gov/uswtdb/
let turbines = [
 "MWT1000"; "MWT1000A"; "MWT102/2.4"; "MWT57/1.0"
 "SWT1.3_62"; "SWT2.3_101"; "SWT2.3_93"; "SWT-2.3-101"
 "40/500"]

// MWT1000 is a Mitsubishi turbine
// ...
// SWT1.3_62 is a Samsung turbine
// ...
// 40/500 is an unknown turbine
turbines
|> Seq.iter (fun t ->
 match t with
 | Mitsubishi ->
 printfn "%s is a Mitsubishi turbine" t
 | Samsung ->
 printfn "%s is a Samsung turbine" t
 | Other ->
 printfn "%s is an unknown turbine" t)

Listing 6-27Categorizing wind turbines using Multicase Active Patterns and Regex

Listing 6-27 exploits the observation that all (and only) Mitsubishi turbines have model names starting with “MWT,” and Samsung ones start with either “SWT” or “SWT-.” We use a regular expression to pull out this prefix and then some string literal pattern matching to map onto one of our cases. It’s important to note that the Active Pattern is defined using a let binding

 rather than a type declaration, even though the fact that it has a finite domain of cases makes it feel like a type.
Multicase Active Patterns have a serious limitation: the number of cases is capped at seven. Since I’m pretty sure there are more than seven wind turbine manufacturers, Multicase Active Patterns wouldn’t be a great fit when trying to map every case in the real dataset. You’d have to be content with a more fluid data structure.
Partial Active Patterns
Partial Active Patterns divide the world into things that match by some condition and things that don’t. If we just wanted to pick out the Mitsubishi turbines from the previous example, we could change the code to look like Listing 6-28.open System.Text.RegularExpressions

let (|Mitsubishi|_|) (s : string) =
 let m = Regex.Match(s, @"([A-Z]{3})(\-?)(.*)")
 if m.Success then
 match m.Groups.[1].Value with
 | "MWT" -> Some s
 | _ -> None
 else
 None

// From https://eerscmap.usgs.gov/uswtdb/
let turbines = [
 "MWT1000"; "MWT1000A"; "MWT102/2.4"; "MWT57/1.0"
 "SWT1.3_62"; "SWT2.3_101"; "SWT2.3_93"; "SWT-2.3-101"
 "40/500"]

// MWT1000 is a Mitsubishi turbine

// ...
// SWT1.3_62 is not a Mitsubishi turbine
turbines
|> Seq.iter (fun t ->
 match t with
 | Mitsubishi m ->
 printfn "%s is a Mitsubishi turbine" m
 | _ as s ->
 printfn "%s is not a Mitsubishi turbine" s)

Listing 6-28Categorizing wind turbines using Partial Active Patterns

Here, we can pattern match on just two cases – Mitsubishi and “not Mitsubishi,” the latter represented by the default match “_”. Notice that in the nonmatching case, although the Active Pattern doesn’t return a value, you can recover the input value using the “as” keyword and a label (here I used “as s”).
Parameterized Active Patterns
You can parameterize Active Patterns, simply by adding extra parameters before the final one. (The last parameter is reserved for the primary input of the Active Pattern.) Say, for example, you had to validate postal codes for various regions. US postal codes (zip codes) consist of five digits, while UK ones have a rather wacky format consisting of letters and numbers (e.g., “RG7 1DP”). Listing 6-29 uses an Active Pattern, parameterized using a regular expression to define a valid format for the region in question.open System
open System.Text.RegularExpressions

let zipCodes = ["90210"; "94043"; "10013"; "1OO13"]
let postCodes = ["SW1A 1AA"; "GU9 0RA"; "PO8 0AB"; "P 0AB"]

let regexZip = @"^\d{5}$"
// Simplified: the official regex for UK postcodes is much longer!
let regexPostCode = @"^[A-Z](\d|[A-Z]){1,3} \d[A-Z]{2}$"

let (|PostalCode|) pattern s =
 let m = Regex.Match(s, pattern)
 if m.Success then
 Some s
 else
 None

// ["90210"; "94043"; "10013"]
let validZipCodes =
 zipCodes
 |> List.choose (fun (PostalCode regexZip p) -> p)

// ["SW1A 1AA"; "GU9 0RA"; "PO8 0AB"]
let validPostCodes =
 postCodes
 |> List.choose (fun (PostalCode regexPostCode p) -> p)

validZipCodes, validPostCodes

Listing 6-29Using parameterized Active Patterns to validate postal codes

In Listing 6-29, I’ve had to simplify the regular expression used for UK postcodes as the real (government endorsed!) one is too long to fit into book-listing form.
One important point to note about Listing 6-29 is that although the Active Pattern we have defined is a “Complete” one (declared using (|PostalCode|) rather than (|PostalCode|_)), it can still return Some or None as values.
Pattern Matching with “&”
Occasionally, it’s useful to be able to “and” together items in a pattern match. Imagine, for example, your company is offering a marketing promotion that is only available to people living in “outer London” (in the United Kingdom), as identified by their postcode. To be eligible, the user needs to provide a valid postcode, and that postcode must begin with one of a defined set of prefixes. Listing 6-30 shows one approach to coding this using Active Patterns.open System.Text.RegularExpressions

let (|PostCode|) s =
 let m = Regex.Match(s, @"^[A-Z](\d|[A-Z]){1,3} \d[A-Z]{2}$")
 if m.Success then
 Some s
 else
 None

let outerLondonPrefixes =
 ["BR";"CR";"DA";"EN";"HA";"IG";"KT";"RM";"SM";"TW";"UB";"WD"]

let (|OuterLondon|) (s : string) =
 outerLondonPrefixes
 |> List.tryFind (s.StartsWith)

let promotionAvailable (postcode : string) =
 match postcode with
 | PostCode(Some p) & OuterLondon(Some o) ->
 printfn "We can offer the promotion in %s (%s)" p o
 | PostCode(Some p) & OuterLondon(None) ->
 printfn "We cannot offer the promotion in %s" p
 | _ ->
 printfn "Invalid postcode"

let demo() =
 // "We cannot offer the promotion in RG7 1DP"
 "RG7 1DP" |> promotionAvailable
 // "We can offer the promotion in RM3 5NA (RM)"
 "RM3 5NA" |> promotionAvailable
 // "Invalid postcode"
 "Hullo sky" |> promotionAvailable

demo()

Listing 6-30Using & with Active Patterns

In Listing 6-30, we have two Active Patterns, a PostCode one that validates UK postcodes and an OuterLondon one that checks whether a postcode has one of the defined prefixes (and also returns which prefix matched). In the promotionAvailable function, we use & to match on both PostCode and OuterLondon for the main switching logic.
Note
The symbol to “and” together items in a pattern match is a single &, in contrast to && that is used for logical “and” in, for example, if expressions.

Incidentally, it might look as though PostCode and OuterLondon would each be called twice for each input string, but this is not the case. The code is more efficient than it appears at first glance.
Pattern Matching on Types
Occasionally, even functional programmers have to deal with type hierarchies! Sometimes, it’s because we are interacting with external libraries like System.Windows.Forms, which make extensive use of inheritance. Sometimes, it’s because inheritance is genuinely the best way to model something, even in F#. Whatever the reason, this can place us in a position where we need to detect whether an instance is of a particular type or is of a descendent of that type. You won’t be surprised to learn that F# achieves this using pattern matching.
In Listing 6-31, we define a two-level hierarchy with a top-level type of Person and one lower-level type Child, which inherits from Person and adds some extra functionality, in this case, just the ability to print the parent’s name. (For simplicity, I’m assuming one parent per person.)type Person (name : string) =
 member _.Name = name

type Child(name, parent : Person) =
 inherit Person(name)
 member _.ParentName =
 parent.Name

let alice = Person("Alice")
let bob = Child("Bob", alice)
let people = [alice; bob :> Person]

// Person: Alice
// Child: Bob of parent Alice
people
|> List.iter (fun person ->
 match person with
 | :? Child as child ->
 printfn "Child: %s of parent %s" child.Name child.ParentName
 | _ as person ->
 printfn "Person: %s" person.Name)

Listing 6-31Pattern matching on type

With this little hierarchy in place, we define a list called people and put both alice and bob into the list. Because collections require elements to all be the same type, we must shoehorn (upcast) bob back into a plain old Person. Then when we iterate over the list, we must use pattern matching to identify whether each element is “really” a Child, using the :? operator, or is just a Person. I use a wildcard pattern “_” to cover the Person case; otherwise, I will get a compiler warning. This is because the operation “:? Person” is redundant, since all the elements are of type Person.
Pattern matching on types is indispensable when dealing with type hierarchies in F#, and I use it unhesitatingly when hierarchies crop up.
Pattern Matching on Null
Remember back in Chapter 3 we used Option.ofObj and Option.defaultValue to process a nullable string parameter? Listing 6-32 shows an example of that approach.let myApiFunction (stringParam : string) =
 let s =
 stringParam
 |> Option.ofObj
 |> Option.defaultValue "(none)"
 // You can do things here knowing that s isn't null
 sprintf "%s" (s.ToUpper())

// AN ACTUAL STRING, (NONE)
myApiFunction "hello", myApiFunction nullAn actual string

Listing 6-32Using Option.ofObj

Well there is an alternative, because you can pattern match on the literal null. Here’s Listing 6-32, redone using null pattern matching (Listing 6-33).let myApiFunction (stringParam : string) =
 match stringParam with
 | null -> "(NONE)"
 | _ -> stringParam.ToUpper()

// AN ACTUAL STRING, (NONE)
myApiFunction "An actual string", myApiFunction null

Listing 6-33Pattern matching on null

How do you choose between these alternatives? On stylistic grounds, I prefer the original version (Listing 6-32) because – at least for code that is going to be maintained by people with strong F# skills – sticking everywhere to functions from the Option module feels more consistent. But there’s no doubt that the new version (Listing 6-33) is slightly more concise and more likely to be readable to maintainers who are earlier in their F# journey. You might also want to experiment with performance in your use case, since it looks as though the null-matching version creates no intermediate values and may therefore allocate/deallocate less memory. In performance-critical code, this could make quite a difference.
Recommendations
Get used to pattern matching almost everywhere in your code. To help you remember the breadth of its applicability, here’s a table both to remind you of what pattern matching features are available and to help you decide when to use them (Table 6-2).Table 6-2Pattern Matching Features and When to Use Them

	Feature
	Example
	Suggested Usage

	Match keyword
	match x with
| Case payload -> code...
	Use widely. Consider Option module (e.g., Option.map) when dealing with option types

	Default case (“wildcard”)
	match x with
| Case payload -> code...
| _ -> code ...
	With caution. Could this cause you to ignore important cases added in the future?

	When guards
	| x when x < 12 -> code...
	Use freely when applicable. Complicated schemes of when-guarding may indicate another approach is needed, for example, Active Patterns

	On arrays
	match arr with
| [||] -> code...
| [|x|] -> code...
| [|x;y|] -> code...
	With caution. The cases can never be exhaustive, so there will always be a wildcard (default) case. Would lists and the cons operator :: be a better fit?

	On lists
	match l with
| [] -> code...
| acc::elem -> code...
	Use freely when applicable. Indispensable in recursive list-processing code

	In let bindings on tuples
	let a, b = GetNameVersion(...)
	Use widely

	On records
	match song with
| { Title = title } -> code...
	Use freely when collaborators are reasonably skilled in F#

	On Discriminated Unions with match keyword
	match shape with
| Circle r -> code...
	Use widely

	On DUs using payload item labels
	match reading with
| Economy7(Day=day; Night=night) -> code...
	Use where it improves readability or avoids mixing elements up

	On records in parameter declarations
	let formatMenuItem ({ Title = title; Artist = artist }) = code...
	With caution. May be confusing if collaborators are not highly skilled

	On Single-Case Discriminated Unions in parameter declarations
	let add (Complex(Real=a;Imaginary=b)) (Complex(Real=c;Imaginary=d)) = code...
	With caution. May be confusing if collaborators are not highly skilled. Need to be sure the DU will remain single case or at worst that all cases are handled. Very useful in specialized situations

	In let bindings on Discriminated Unions
	let (Complex(real, imaginary)) = c1
	With caution. May be confusing if collaborators are not highly skilled

	In Loops and Lambdas
	for (name, count) in fruits do
code...
	Use freely when applicable, especially on tuples

	On Enums
	match fileMode with
| FileMode.Read -> "can"
| FileMode.Write -> "cannot"
| ...
	With caution. The matching can never be exhaustive unless there is a wildcard case, so new cases added later can cause bugs

	Active Patterns
	let (|PostalCode|) pattern s = code...
	Use where applicable and collaborators are reasonably skilled in F#. Beware of the limitation of seven cases

	On Types
	match person with
| :? Child as child -> code...
	Use freely when forced to deal with OO inheritance

	On Null
	match stringParam with
| null -> code...
	Use freely, but also consider mapping to an option type and using, for example, Option.map and Option.bind

Summary
If you aren’t pattern matching heavily, you aren’t writing good F# code. Remember that you can pattern match explicitly using the match keyword

, but you can also pattern match in let bindings, loops, lambdas, and function declarations. Active Patterns add a whole new layer of power, letting you map from somewhat open-ended data like strings or floating-point values to much more strongly typed classifications.
But pattern matching can be overdone, leading to code that is unreadable to collaborators who may not be experienced in F#. Doing this violates the principle of motivational transparency.
In the next chapter, we’ll look more closely at F#’s primary mechanism for storing groups of labeled values: record types.
Exercises
Exercise 6-1 – Pattern Matching On Records With Dus
Exercise: Let’s say you want to amend the code from Listing 6-12 so that a meter reading can have a date. This is the structure you might come up with:type MeterValue =
| Standard of int
| Economy7 of Day:int * Night:int

type MeterReading =
 { ReadingDate : DateTime
 MeterValue : MeterValue }

How would you amend the body of the MeterReading.format function so that it formats your new MeterReading type in the following form?"Your readings on: 01/01/2022: Day: 0003432 Night: 0098218"
"Your reading on: 01/01/2022 was 0012982"

You can use DateTime.ToShortDateString() to format the date.module MeterReading =

 let format(reading : MeterReading) =
 raise <| System.NotImplementedException()
 "TODO"

let reading1 = { ReadingDate = DateTime(2022, 01, 01)
 MeterValue = Standard 12982 }

let reading2 = { ReadingDate = DateTime(2022, 01, 01)
 MeterValue = Economy7(Day=3432, Night=98218) }

// "Your readings on: 01/01/2022: Day: 0003432 Night: 0098218",
// "Your reading on: 01/01/2022 was 0012982"
reading1 |> MeterReading.format, reading2 |> MeterReading.format

Exercise 6-2 – Record Pattern Matching and Loops
Exercise: Start with this code from Listing 6-21

:let fruits =
 ["Apples", 3
 "Oranges", 4
 "Bananas", 2]

// There are 3 Apples
// There are 4 Oranges
// There are 2 Bananas
for (name, count) in fruits do
 printfn "There are %i %s" count name

// There are 3 Apples
// There are 4 Oranges
// There are 2 Bananas
fruits
|> List.iter (fun (name, count) ->
 printfn "There are %i %s" count name)

Add a record type called FruitBatch to the code, using field names Name and Count. How can you alter the fruits binding to create a list of FruitBatch instances and the for loop and iter lambda so that they have the same output as they did before you added the record type?

Exercise 6-3 – Zip+4 Codes and Partial Active Patterns
Exercise: In the United States, postal codes can take the form of simple five-digit Zip codes, or “Zip+4” codes, which have five digits, a hyphen, and then four more digits. Here is some code that defines Active Patterns to identify Zip and Zip+4 codes, but with the body of the Zip+4 pattern omitted. The exercise is to add the body.open System
open System.Text.RegularExpressions

let zipCodes = [
 "90210"
 "94043"
 "94043-0138"
 "10013"
 "90210-3124"
 // Letter O intead of zero:
 "1OO13"]

let (|USZipCode|_|) s =
 let m = Regex.Match(s, @"^(\d{5})$")
 if m.Success then
 USZipCode s |> Some
 else
 None

let (|USZipPlus4Code|_|) s =
 raise <| NotImplementedException()

zipCodes
|> List.iter (fun z ->
 match z with
 | USZipCode c ->
 printfn "A normal zip code: %s" c
 | USZipPlus4Code(code, suffix) ->
 printfn "A Zip+4 code: prefix %s, suffix %s" code suffix
 | _ as n ->
 printfn "Not a zip code: %s" n)

Hint: A regular expression to match Zip+4 codes is “^(\d{5})\-(\d{4})$”. When this expression matches, you can use m.Groups.[1].Value and m.Groups.[2].Value to pick out the prefix and suffix digits.

Exercise Solutions
This section shows solutions for the exercises in this chapter.
Exercise 6-1 – Pattern Matching on Records With Dus
I tackled this exercise in two passes. In the first pass, I pattern matched on the whole MeterReading structure

 using a combination of record pattern matching and DU pattern matching to pull out the date and reading or readings:type MeterValue =
| Standard of int
| Economy7 of Day:int * Night:int

type MeterReading =
 { ReadingDate : DateTime
 MeterValue : MeterValue }

module MeterReading =

 let format(reading : MeterReading) =
 match reading with
 | { ReadingDate = readingDate
 MeterValue = Standard reading } ->
 sprintf "Your reading on: %s was %07i"
 (readingDate.ToShortDateString()) reading
 | { ReadingDate = readingDate
 MeterValue = Economy7(Day=day; Night=night) } ->
 sprintf "Your readings on: %s were Day: %07i Night: %07i"
 (readingDate.ToShortDateString()) day night

let reading1 = { ReadingDate = DateTime(2022, 01, 01)
 MeterValue = Standard 12982 }

let reading2 = { ReadingDate = DateTime(2022, 01, 01)
 MeterValue = Economy7(Day=3432, Night=98218) }

// "Your reading on: 01/01/2022 was 0012982"
// "Your readings on: 01/01/2022: Day: 0003432 Night: 0098218",
reading1 |> MeterReading.format, reading2 |> MeterReading.format

The salient lines are these: | { ReadingDate = readingDate
 MeterValue = Standard reading }
 ...
 | { ReadingDate = readingDate
 MeterValue = Economy7(Day=day; Night=night) }

Note how the curly braces {...} indicate that we are pattern matching on records, but within this, we also have <DUCase>(Label=value) syntax to decompose the DU field of the record.
This worked, but I wasn’t happy with it because of the repetition of the reading date pattern match and of the date formatting ((readingDate.ToShortDateString())).
In a second pass, I eliminated the repetition. I used pattern matching in the parameter declaration to pick out the date and value fields. I also created a formatted date string in one place rather than two.module MeterReading =

 // "MeterReading."" prefix only needed in Notebooks where there may be
 // more than one definition of MeterReading in scope.
 let format { MeterReading.ReadingDate = date; MeterReading.MeterValue = meterValue } =
 let dateString = date.ToShortDateString()
 match meterValue with
 | Standard reading ->
 sprintf "Your reading on: %s was %07i"
 dateString reading
 | Economy7(Day=day; Night=night) ->
 sprintf "Your readings on: %s were Day: %07i Night: %07i"
 dateString day night

Exercise 6-2 – Record Pattern Matching and Loops
In the fruits binding, you just need to use standard record-construction syntax:type FruitBatch = {
 Name : string
 Count : int }

let fruits =
 [{ Name="Apples"; Count=3 }
 { Name="Oranges"; Count=4 }
 { Name="Bananas"; Count=2 }]

In the for loop and List.iter lambda, you can use record pattern matching in the form { FieldName1=label1; FieldName2=label2...} to recover the name and count values.// There are 3 Apples
// There are 4 Oranges
// There are 2 Bananas
for { Name=name; Count=count } in fruits do
 printfn "There are %i %s" count name

// There are 3 Apples
// There are 4 Oranges
// There are 2 Bananas
fruits
|> List.iter (fun { Name=name; Count=count } ->
 printfn "There are %i %s" count name)

Remember that in both cases, just using “dot” notation in the loop/lambda body to retrieve the record fields is also legitimate and more common.

Exercise 6-3 – Zip+4 Codes and Partial Active Patterns
The body of the Zip+4 Active Pattern should look something like this:let (|USZipPlus4Code|_|) s =
 let m = Regex.Match(s, @"^(\d{5})\-(\d{4})$")
 if m.Success then
 USZipPlus4Code(m.Groups.[1].Value,
 m.Groups.[2].Value)
 |> Some
 else
 None

See how when the regular expression matches, we return a USZipPlus4Code case whose payload is a tuple of the two matching groups.

Footnotes
1No horrific fall-through semantics, as in C!

2I am indebted to Jordan Marr (https://​twitter.​com/​jordan_​n_​marr) for suggesting this technique.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_7

7. Record Types

Kit Eason1
(1)Farnham, Surrey, UK

Proper storage is about creating a home for something so that minimal effort is required to find it and put it away.
—Geralin Thomas, Organizing Consultant

Winning with Records
Record types

 are a simple way of recording small groups of values. You define a set of names and corresponding types; then you can create, compare, and amend instances of these groupings with some extremely simple syntax. But behind this simplicity lies some powerful and well-thought-out functionality. Learn to wield record types effectively and you’ll be well on the way to becoming an expert F# developer. It’s also worth knowing when not to use record types and what the alternatives are in these circumstances. We’ll cover both explicitly declared named record types and also implicitly declared anonymous record types.
Record Type Basics
Declaring and instantiating a record type could hardly be easier. You define the names (field labels) of the items you want the record to contain, together with their types, all in curly braces (Listing 7-1). open System

 type FileDescription = {
 Path : string
 Name : string
 LastModified : DateTime }

Listing 7-1Declaring a record type

Then you create instances simply by binding values to each name, again in curly braces (Listing 7-2). open System.IO

 let fileSystemInfo (rootPath : string) =
 Directory.EnumerateFiles(rootPath, "*.*",
 SearchOption.AllDirectories)
 |> Seq.map (fun path ->
 { Path = path |> Path.GetDirectoryName
 Name = path |> Path.GetFileName
 LastModified = FileInfo(path).LastWriteTime })

Listing 7-2Instantiating record type instances

Note that at instantiation time, you don’t have to mention the name of the record type itself, just its fields. The exception to this is when two record types have field names in common, in which case you may have to prefix the first field name in the binding with the name record type you want, for example, { FileDescription.Path =
You can access the fields of record type instances using dot-name notation, exactly as if they were C# class members (Listing 7-3). // Name: ad.png Path: c:\temp Last modified: 15/08/2017 22:07:34
 // Name: capture-1.avi Path: c:\temp Last modified: 27/02/2017 22:04:31
 // ...
 fileSystemInfo @"c:\temp"
 |> Seq.iter (fun info -> // info is a FileDescription instance
 printfn "Name: %s Path: %s Last modified: %A"
 info.Name info.Path info.LastModified)

Listing 7-3Accessing record type fields using dot notation

Record Types and Immutability
Like most things in F#, record types are immutable by default. You can in principle bind the whole record instance as mutable using let mutable (Listing 7-4), but this means that the entire record instance can be replaced with a new and different record using the <- operator. It does not make the individual fields mutable. In practice, I can’t remember ever declaring an entire record to be mutable. type MyRecord = {
 String : string
 Int : int }

 let mutable myRecord =
 { String = "Hullo clouds"
 Int = 99 }

 // {String = "Hullo clouds";
 // Int = 99;}
 printfn "%A" myRecord
 myRecord <-
 { String = "Hullo sky"
 Int = 100 }

 // {String = "Hullo sky";
 // Int = 100;}
 printfn "%A" myRecord

Listing 7-4Declaring a record instance as mutable

What about making the fields of the record mutable? This is certainly possible (Listing 7-5), and having done this, you can assign into fields using <-. This isn’t quite as unheard of as declaring whole records mutable, but it’s still rare. I guess there might be performance-related cases where this might be desirable, but again I can’t recall doing it myself. type MyRecord = {
 mutable String : string
 mutable Int : int }

 let myRecord =
 { String = "Hullo clouds"
 Int = 99 }

 // {String = "Hullo clouds";
 // Int = 99;}
 printfn "%A" myRecord

 myRecord.String <- "Hullo sky"
 // { String = "Hullo sky";
 // Int = 99;}
 printfn "%A" myRecord

Listing 7-5Declaring record fields as mutable

By far, the most common and idiomatic way of “amending” record types is using the not-very-snappily-named copy-and-update record expression (Listing 7-6). type MyRecord = {
 String : string
 Int : int }

 let myRecord =
 { String = "Hullo clouds"
 Int = 99 }
 // {String = "Hullo clouds";
 // Int = 99;}

 printfn "%A" myRecord

 let myRecord2 =
 { myRecord with String = "Hullo sky" }
 // { String = "Hullo sky";
 // Int = 99;}
 printfn "%A" myRecord2

Listing 7-6“Amending” a record using copy and update

In a copy-and-update operation, all the fields of the new record are given the values from the original record, except those given new values in the with clause. Needless to say, the original record is unaffected. This is the idiomatic way to handle “changes” to record type instances.
Default Constructors, Setters, and Getters
One downside to immutability by default: you may occasionally have problems with external code (particularly serialization and database code) failing to instantiate record types correctly, or throwing compilation errors about default constructors. In these cases, simply add the [<CLIMutable>] attribute to the record declaration. This causes the record to be compiled with a default constructor and getters and setters, which the external framework should find easier to cope with.
Records vs. Classes
Records offer a nice, concise syntax for grouping values, but surely they aren’t that different from the conventional “object” of object orientation (which are known in F# as class types or just classes). After all, if we make a class-based version of Listings 7-1 and 7-2, the code doesn’t look all that different and seems to behave exactly the same (Listing 7-7). open System

 type FileDescriptionOO(path:string, name:string, lastModified:DateTime) =
 member __.Path = path
 member __.Name = name
 member __.LastModified = lastModified

 open System.IO

 let fileSystemInfoOO (rootPath : string) =
 Directory.EnumerateFiles(rootPath, "*.*",
 SearchOption.AllDirectories)
 |> Seq.map (fun path ->
 FileDescriptionOO(path |> Path.GetDirectoryName,
 path |> Path.GetFileName,
 (FileInfo(path)).LastWriteTime))

Listing 7-7F# Object-Oriented class types vs. records

We’ll look properly at classes in Chapter 8, but it’s fairly easy to see what is going on here. The class we make is even immutable. So do we really need to bother with record types? In the next few sections, I’ll discuss some of the advantages (and a few disadvantages!) of using record types.
Structural Equality by Default
Consider the following attempt to represent a position on the Earth’s surface with a class, using latitude and longitude (Listing 7-8). type LatLon(latitude : float, longitude : float) =
 member __.Latitude = latitude
 member __.Longitude = longitude

Listing 7-8Representing latitude and longitude using a class

You might think that if two positions have the same latitude and longitude values, they would be considered equal. But with a class, they are not1 (Listing 7-9). let waterloo = LatLon(51.5031, -0.1132)
 let victoria = LatLon(51.4952, -0.1441)
 let waterloo2 = LatLon(51.5031, -0.1132)

 // false
 printfn "%A" (waterloo = victoria)
 // true

 printfn "%A" (waterloo = waterloo)
 // false!
 printfn "%A" (waterloo = waterloo2)

Listing 7-9Some types are less equal than others

This is because classes in both F# and C# have what is called reference or referential equality by default, which means that to be considered equal, two values need to represent the same physical object in memory. Sometimes, as in the LatLon example, this is very much not what you want.
The conventional way around this in C# (and you can do the same for classes in F#) is to write custom code that decides whether two instances are equal in some meaningful sense. The trouble is in practice this is quite an endeavor, requiring you to override Object.Equals, implement System.IEquatable, override Object.GetHashCode, and (admittedly optionally) override the equality and inequality operators. Who has time for all that? (I will show how to do it in Chapter 8, just in case you do have time!)
Record types, by contrast, have what is called structural equality. (I think that’s a terrible name, so I always mentally translate this to content equality.) With structural equality, two items are considered equal if all their fields are equal. Listing 7-10 shows the LatLon issue being solved simply by using a record instead of a class. type LatLon = {
 Latitude : float
 Longitude : float }
 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }
 let victoria = { Latitude = 51.4952; Longitude = -0.1441 }
 let waterloo2 = { Latitude = 51.5031; Longitude = -0.1132 }
 // false
 printfn "%A" (waterloo = victoria)
 // true
 printfn "%A" (waterloo = waterloo)
 // true
 printfn "%A" (waterloo = waterloo2)

Listing 7-10Default structural (content) equality with record types

You can mess things up again, though, if one of the fields of your record is itself of a type that implements referential equality. This is because, under those circumstances, the records’ fields aren’t all equal by their own types’ definitions of “equal” – so the records won’t be considered equal. Listing 7-11 shows an example of this happening. type Surveyor(name : string) =
 member __.Name = name
 type LatLon = {
 Latitude : float
 Longitude : float
 SurveyedBy : Surveyor }
 let waterloo =
 { Latitude = 51.5031
 Longitude = -0.1132
 SurveyedBy = Surveyor("Kit") }
 let waterloo2 =
 { Latitude = 51.5031
 Longitude = -0.1132
 SurveyedBy = Surveyor("Kit") }
 // true
 printfn "%A" (waterloo = waterloo)
 // false
 printfn "%A" (waterloo = waterloo2)

Listing 7-11Do all the fields of your record implement the right equality?

Because

 they use different instances of the Surveyor class, the instances waterloo and waterloo2 aren’t considered equal, even though from a content point of view, the surveyors have the same name. If we had created one Surveyor instance in advance and used that same instance when creating each of the LatLon instances, waterloo and waterloo2 would have been equal again! The general solution to this would be either to use a record for the Surveyor type or override the Surveyor equality-checking logic. Although worth bearing in mind, this issue rarely comes up in practice.
Another edge case is when you actually want records to have referential equality. That’s easy: add the [<ReferenceEquality>] attribute (Listing 7-12). [<ReferenceEquality>]
 type LatLon = {
 Latitude : float
 Longitude : float }
 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }
 let waterloo2 = { Latitude = 51.5031; Longitude = -0.1132 }
 // true
 printfn "%A" (waterloo = waterloo)
 // false
 printfn "%A" (waterloo = waterloo2)

Listing 7-12Forcing reference equality for record types

Once again, I can’t ever recall having to use the ReferenceEquality attribute in real code. If you do use it, remember you won’t be able to sort instances using default sorting because the attribute disables greater than/less than comparison. While we are on the subject, you can also add the NoEquality attribute to disable “equals” and “greater/less than” operations on a record type, or you can even disable “greater/less than” operations while allowing “equals” operations using the NoComparison attribute

. I have seen the NoEquality attribute used precisely once in real code. Stylistically, I would say that – given what records are for – use of ReferenceEquality, NoEquality, and NoComparison attributes in general “line of business” code is probably a code smell, though they no doubt have their place in highly technical realms.
Be aware that the ReferenceEquality, NoEquality, and NoComparison attributes are all F# specific. Other languages are under no obligation to respect them (and probably won’t).
Records as Structs
Another possible reason to favor records is that, subject to certain restrictions, they can easily be marked as structs. This affects the way they are stored. To quote the official documentation:Structures are value types, which means that they are stored directly on the stack or, when they are used as fields or array elements, inline in the parent type.

You make a record of a struct simply by adding the [<Struct>] attribute. As Listing 7-13 shows, this can have a substantial effect on performance. type LatLon = {
 Latitude : float
 Longitude : float }
 [<Struct>]
 type LatLonStruct = {
 Latitude : float
 Longitude : float }
 let sw = System.Diagnostics.Stopwatch.StartNew()
 let llMany =
 Array.init 1_000_000 (fun x ->
 { LatLon.Latitude = float x
 LatLon.Longitude = float x })
 // Non struct: 51ms
 printfn "Non struct: %ims" sw.ElapsedMilliseconds
 sw.Restart()
 let llsMany =
 Array.init 1_000_000 (fun x ->
 { LatLonStruct.Latitude = float x
 LatLonStruct.Longitude = float x })
 // Struct: 17ms
 printfn "Struct: %ims" sw.ElapsedMilliseconds

Listing 7-13Marking a record type as a struct

Scenarios vary widely in regard to creating, accessing, copying, and releasing instances, so you should experiment diligently in your use case, rather than blindly assuming that using the Struct attribute

 will solve any performance woes.
There is one significant implication of using struct records: if you want any field of the record type to be mutable, you must declare the whole instance as mutable too, as in Listing 7-14. [<Struct>]
 type LatLonStruct = {
 mutable Latitude : float
 mutable Longitude : float }

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }
 // Error: a value must be mutable in order to mutate the contents.
 waterloo.Latitude <- 51.5032

 let mutable waterloo2 = { Latitude = 51.5031; Longitude = -0.1132 }
 waterloo2.Latitude <- 51.5032

Listing 7-14Struct records must be mutable instances to mutate fields

Mapping from Instantiation Values to Members
The final, and for me, clinching advantage of records over classes is the direct and complete mapping from what you provide when creating instances to what you get back when consuming instances. If you create a LatLon record instance by providing a latitude and longitude, then you automatically know the following facts when you later consume the instance:	You can get all the values back that you originally provided and in their original form.

	You can’t get anything else back other than what you provided (unless you define members on the record type, which is possible but rare).

	You can’t create an instance without providing all the necessary values.

	Nothing can change the values you originally provided – unless you declare fields as mutable, which generally is unwise.

These may seem like small points, but they contribute greatly to the motivational transparency and semantic focus of your code. As an example, consider the third point: You can’t create an instance without providing all the necessary values. Contrast that with the coding pattern that any experienced OO developer has seen, where you need to both construct an object instance and set some properties in order for the object to become usable. (Any place you use object-initializer syntax to get to a usable state is an example.) The fact that, in order to create a record, you have to provide values for all its fields has an interesting consequence: if you add a field, you’ll have to make code changes everywhere that record is instantiated. This is true even if you make the field an option type – there is no concept in record instantiation of default values for fields, even ones that are option types. At first, this can seem annoying, but it is actually a very good thing. All sorts of subtle bugs can creep in if it’s possible to add a property to a type without making an explicit decision about what that property should contain, everywhere the type is used. Those compiler errors are telling you something!
Records Everywhere?
If the case for record types is so compelling, why don’t we use them everywhere? Why does F# even bother to offer OO-style class types? Are these just a concession to C# programmers, to be avoided by the cool kids?
The answer is “no”; class types definitely have a place in F# code. I’ll go into detail on class types in Chapter 8, but just to balance all the positive things I’ve said about record types, Table 7-1 shows some reasons why you might not want to use them, together with some suggestions for alternatives.Table 7-1When to Consider Not Using Record Types

	Scenario
	Consider instead

	External and internal representations of data need to differ
	Class types

	Need to participate in an inheritance hierarchy – either to inherit from or be inherited from in a traditional OO sense
	Class types

	Need to represent a standard set of functions, with several realizations that share function names and signatures, but have different implementations
	F# interfaces and/or abstract types, inherited from by class types

The last of these points bears a little elaboration. From time to time, I have come across code bases where records of functions have been used as a supposedly more functional alternative to interfaces. In principle, this does have a few advantages:	Unlike code that uses interfaces, you don’t have to upcast to the interface type whenever you want to use the interface. (I give a few more details of this in Chapter 8.)

	It can make it easier to use partial application when using the “pretend interface.”

	It’s sometimes claimed to be more concise.

The MSDN F# Style Guide comes out firmly against records-as-interfaces, and, having worked with a substantial code base where records were used in this way, so do I! To quote the guide:Use interface types to represent a set of operations. This is preferred to other options, such as tuples of functions or records of functions… Interfaces are first-class concepts in .NET....

In my experience, use of records-as-interfaces leads to unfriendly, incomprehensible code. When editing, one rapidly gets into the situation where everything has to compile before anything will compile. In concrete terms, your screen fills with red squiggly lines, and it’s very hard to work out what to do about it! With true interfaces, by contrast, the errors resulting from incomplete or slightly incorrect code are more contained, and it’s much easier to work out if an error results, for example, from a wrongly implemented method or from a completely missing one. Interfaces play more nicely with Intellisense as well. As for the supposed advantage of partial application – well, I’d much rather maintainers (including my future self) have some idea of what is going on than save a few characters by not repeating a couple of function parameters.
I’m not saying, by the way, that records shouldn’t implement interfaces, which they can do in exactly the same way as I show with classes in Chapter 8. If you find that useful, it’s fine.
One notable exception to what I’ve said previously is when working with “Fable Remoting.” Fable, in case you haven’t come across it, is an F#-to-JavaScript compiler that allows you to write both the back and front end of a web application in F#. This architecture requires the ability to make function calls from the front end, in the browser, to the back end - a .NET program running on the server. Without going into detail here, it turns out that describing such an interface in terms of a record-of-functions works very well in that specialized case.
Pushing Records to the Limit
Now that you’re familiar with how and when to use basic record types, it’s time to look at some of the more exotic features and usages that are available. Don’t take this section as encouragement to use all the techniques it describes. Some (not all) of these tricks really are rarities, and when it’s truly necessary to use them, you’ll know.
Generic Records
Records can be generic – that is, you can specify the type (or types) of the fields, as a kind of meta-property of the record type. The meta-property is called a type parameter. Listing 7-15 shows a LatLon record that could use any type for its Latitude and Longitude fields

. type LatLon<'T> = {
 mutable Latitude : 'T
 mutable Longitude : 'T }

 // LatLon<float>
 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 // LatLon<float32>
 let waterloo2 = { Latitude = 51.5031f; Longitude = -0.1132f }

 // Error: Type Mismatch...
 printfn "%A" (waterloo = waterloo2)

Listing 7-15A generic record type

Note that we don’t have to specify the type to use at construction time. The simple fact that we say { Latitude = 51.5031f... versus { Latitude = 51.5031... (note the “f,” which specifies a single-precision constant) is enough for the compiler to create a record that has single-precision instead of double-precision fields. Also notice that, since waterloo and waterloo2 are different types, we can’t directly compare them using the equals operator.
What if you don’t want to leave type inference to work out the type of the generic parameter? (Very occasionally type inference can even find it impossible to work this out.) Clearly, in this case, we can’t use the trick of prefixing the first field binding with the record type name to disambiguate, as the name will be the same in each case. Instead – as in any let binding – you can specify the type of the bound value, in this case, LatLon<float> or LatLon<float32> (Listing 7-16). type LatLon<'T> = {
 mutable Latitude : 'T
 mutable Longitude : 'T }

 // LatLon<float>
 let waterloo : LatLon<float> = {
 Latitude = 51.5031

 Longitude = -0.1132 }

 // Error: The expression was expected to have type 'float32'
 // but here has type 'float'.
 let waterloo2 : LatLon<float32> = {
 Latitude = 51.5031f
 Longitude = -0.1132 }

Listing 7-16Pinning down the generic parameter type of a record type

In this case, as shown in the final lines of Listing 7-16, it’s an error to try and bind a field using a value of a different type (note the missing “f” in the Longitude binding).
Recursive Records
Record types can also be recursive

 – that is, the type can have a field containing a value of its own type. Not easy to put into words, so jump straight to Listing 7-17, where we define a type to represent some imaginary user interface. type Point = { X : float32; Y : float32 }
 type UiControl = {
 Name : string
 Position : Point
 Parent : UiControl option }

 let form = {
 Name = "MyForm"
 Position = { X = 0.f; Y = 0.f }
 Parent = None }

 let button = {
 Name = "MyButton"
 Position = { X = 10.f; Y = 20.f }
 Parent = Some form }

Listing 7-17A recursive record type

Each UiControl instance can have a parent that is itself a UiControl instance. It’s important that the recursive field (in this case, Parent

) is an option type. Otherwise, we are implying either that the hierarchy goes upward infinitely (making it impossible to instantiate) or that it is circular.
Oddly enough, it is possible to instantiate circular hierarchies, using let rec and and (Listing 7-18). I present this mainly as a curiosity – if you need to do it in practice, either you are doing something very specialized or something has gone terribly wrong in your domain modeling! // You probably don't want to do this!
 type Point = { X : float32; Y : float32 }

 type UiControl = {
 Name : string
 Position : Point
 Parent : UiControl }

 let rec form = {
 Name = "MyForm"
 Position = { X = 0.f; Y = 0.f }
 Parent = button }

 and button = {
 Name = "MyButton"
 Position = { X = 10.f; Y = 20.f }
 Parent = form }

Listing 7-18Instantiating a circular set of recursive records

Records with Methods
Anyone with an Object-Oriented programming background will be wondering whether it’s possible for records to have methods. And the answer is yes, but it may not always be a great idea.
Instance Methods
Listing 7-19 shows us adding a Distance instance method to our familiar LatLon record and then calling it exactly as one would a class method.type LatLon =
 { Latitude : float
 Longitude : float }
 // Naive, straight-line distance
 member this.DistanceFrom(other : LatLon) =
 let milesPerDegree = 69.
 ((other.Latitude - this.Latitude) ** 2.)
 +
 ((other.Longitude - this.Longitude) ** 2.)
 |> sqrt
 |> (*) milesPerDegree

let coleman = {
 Latitude = 31.82
 Longitude = -99.42 }

let abilene = {
 Latitude = 32.45
 Longitude = -99.75 }

// Are we going to Abilene? Because it's 49 miles!
printfn "Are we going to Abilene? Because it's %0.0f miles!"
 (abilene.DistanceFrom(coleman))

Listing 7-19Adding an instance method to a record type

Note that the distance calculation I do here is extremely naive. In reality, you’d want to use the haversine formula, but that’s rather too much code for a book listing.
Instance methods like this work fine with record types and are quite a nice solution where you want structural (content) equality for instances and also to have instance methods to give you fluent syntax like abilene.DistanceFrom(coleman).
Static Methods
You can also add static methods. If you do this, it’s probably because you want to construct a record instance using something other than standard record construction syntax. For example, Listing 7-20 adds a TryFromString method

 to LatLon, which tries to parse a comma-separated string into two elements and then tries to parse these as floating-point numbers, before finally constructing a record instance in the usual curly-bracket way.open System

type LatLon =
 { Latitude : float
 Longitude : float }
 static member TryFromString(s : string) =
 match s.Split([|','|]) with
 | [|lats; lons|] ->
 match (Double.TryParse(lats),
 Double.TryParse(lons)) with
 | (true, lat), (true, lon) ->
 { Latitude = lat
 Longitude = lon } |> Some
 | _ -> None
 | _ -> None

// Some {Latitude = 50.514444;
// Longitude = -2.457222;}
let somewhere = LatLon.TryFromString "50.514444, -2.457222"

// None
let nowhere = LatLon.TryFromString "hullo trees"

printfn "%A, %A" somewhere nowhere

Listing 7-20Adding a static method to a record type

This is quite a nice way of effectively adding constructors to record types. It might be especially useful it you want to perform validation during construction.
Method Overrides
Sometimes, you want to change one of the (very few) methods that a record type has by default. The most common one to override is ToString(), which you can use to produce a nice printable representation of the record (Listing 7-21).type LatLon =
 { Latitude : float
 Longitude : float }
 override this.ToString() =
 sprintf "%f, %f" this.Latitude this.Longitude

// 51.972300, 1.149700
{ Latitude = 51.9723
 Longitude = 1.1497 }
|> printfn "%O"

Listing 7-21Overriding a method on a record

In Listing 7-21, I’ve used the “%O” format specifier, which causes the input’s ToString() method to be called.
Records with Methods – A Good Idea?
I don’t think there is anything inherently wrong with adding methods to record types. You should just beware of crossing the line into territory where it would be better to use a class type. If you are using record methods to cover up the fact that the internal and external representations of some data do in fact need to be different, you’ve probably crossed the line!
There is an alternative way of associating behavior (functions or methods) with types (sets of data): group them in an F# module, usually with the same name as the type and placed just after the type’s definition. We looked at this back in Chapter 2, for example, in Listing 2-9, where we defined a MilesYards type, for representing British railroad distances, and a MilesYards module containing functions to work with the type. In my opinion, the modules approach is generally better than gluing the functions to the record in the form of methods.
Anonymous Records
Although the declaration syntax of F# records is about as lightweight as it could be, there are sometimes situations where even that overhead seems too much. For times like this, F# offers anonymous records. Anonymous records bring most of the benefits of “named” records – in terms of strong typing, type inference, structural (content) equality, and so forth – without the overhead of having to declare them explicitly.
Let’s say you want to work with GPS coordinates. You might use a LatLon type like the one we declared back in Listing 7-10, but with anonymous records, you can get rid of the declaration (Listing 7-22). The only tax you have to pay is to insert vertical bar (“|”) characters inside the curly brackets. Notice how you still get a type that has Latitude and Longitude fields, just like a named record. // {| Latitude : float; Longitude : float |}
 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 // {| Latitude : float; Longitude : float |}
 let victoria = {| Latitude = 51.4952; Longitude = -0.1441 |}

 printfn "%0.2f, %0.2f; %0.2f, %0.2f"
 waterloo.Latitude waterloo.Longitude
 victoria.Latitude victoria.Longitude

Listing 7-22Creating anonymous records

Use of anonymous records doesn’t undermine the type safety that is the mainstay of F# code. For example, in Listing 7-23, we try to add the value 1.0f to the latitude of an anonymous latitude/longitude record, but I get an error because the type of the latitude field is a double-precision floating-point number, whereas 1.0f is single precision. let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 // The type 'float32' does not match the type 'float'
 let newLatitude = waterloo.Latitude + 0.1f

Listing 7-23Type safety and anonymous records

A good use of anonymous records is in pipelines where more than one value needs to be passed between successive stages. If you are using tuples in these cases, it’s very easy to mix values up or lose track of what is going on. In these cases, at least consider doing something like Listing 7-24. This code is designed to take a collection of artist names and sort them while ignoring definite and indefinite articles such as “The” in “The Bangles” and “A” in “A Flock of Seagulls.” A couple of other requirements complicate matters: the sort should be case insensitive, and a “display name” should be generated which shows the sorting value with the case preserved (e.g., “Bangles, The”). let artists =
 [|
 "The Bangles"; "Bananarama"; "Theo Travis"
 "The The"; "A Flock of Seagulls"; "REM"; "ABBA";
 "eden ahbez"; "Fairport Convention"; "Elbow"
 |]

 let getSortName (prefixes : seq<string>) (name : string) =
 prefixes

 |> Seq.tryFind name.StartsWith
 |> Option.map (fun prefix ->
 let mainName = name.Substring(prefix.Length)
 sprintf "%s, %s" mainName prefix)
 |> Option.defaultValue name

 let sortedArtists =
 artists
 |> Array.map (fun artist ->
 let displayName =
 artist |> getSortName ["The "; "A "; "An "]
 {| Name = artist
 DisplayName = displayName
 SortName = displayName.ToUpperInvariant() |})
 |> Array.sortBy (fun sortableArtist ->
 sortableArtist.SortName)

Listing 7-24Using anonymous records to clarify intermediate values

This could certainly be achieved by having the lambda in the Array.map operation return a tuple. But using an anonymous record makes very clear the roles that the three created values play: the original name, the display name with the article moved to the end, and the uppercased sort name. When we come to sort the results in the last line, it’s very clear that we are using SortName to sort on. Anything which consumed these results could also use these fields appropriately and unambiguously.
Another advantage of code like this is that when you use a debugger to pause program execution and view values, it’s much clearer which value is which. The field names in anonymous records are shown in the debugger.
Anonymous and Named Record Terminology
At this point, I need to make a brief point about terminology. The documentation for anonymous records contains the magnificent heading “Anonymous Records are Nominal,” which appears at first sight to be a contradiction in terms. What this is saying is that anonymous records have a “secret” name and so technically are “nominal,” even though we don’t give them a name in our code. For simplicity, in this section, I’m using named records to mean those declared up front with the type Name = { <field declarations> } syntax and instantiated later and anonymous record to mean those instantiated without prior declaration using the {| <field values> |} syntax.
Anonymous records seem to be almost too good to be true. Surely, there are some showstopping limitations. In practice, there are very few and indeed some things which you might expect would not work are in fact fine. Here are some points which might be worrying you about anonymous records.
Anonymous Records and Comparison
Anonymous records have the same equality and comparison rules as named records. Consider Listing 7-25, where I create latitude/longitude anonymous records for several locations. These can be compared using structural (content) equality: two instances that have the same coordinates are considered equal. And when the instances are compared (e.g., for sorting purposes), a sensible comparison is done using the contents of their fields. let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}
 let victoria = {| Latitude = 51.4952; Longitude = -0.1441 |}
 let waterloo2 = {| Latitude = 51.5031; Longitude = -0.1132 |}

 // false
 printfn "%A" (waterloo = victoria)
 // true
 printfn "%A" (waterloo = waterloo)
 // true
 printfn "%A" (waterloo = waterloo2)
 // true, because (51.5031,-0.1132 is 'greater' than (51.4952, -0.1441)
 printfn "%A" (waterloo > victoria)

Listing 7-25Equality and comparison of anonymous record instances

The same stipulation applies here as it does to named records: that each of the fields of the record itself has structural equality.
What happens if I instantiate anonymous records having the same fields in different parts of my code? Are these instances also type compatible? In Listing 7-26, I instantiate anonymous records in two different functions; then I have some code to return true if the types coming from those separate locations are the same. They are! From this also flows the fact that they can be compared or checked for equality just as if the two sources had returned instances of a single named type. For completeness, I also create a third anonymous record with an apparently minor difference; the fields are single-precision numbers as denoted by the f in the literals. This is a different type and so cannot be compared or checked for equality with the others. let getSomePositions() =
 [|
 {| Latitude = 51.5031; Longitude = -0.1132 |}
 {| Latitude = 51.4952; Longitude = -0.1441 |}
 |]

 let getSomeMorePositions() =
 [|
 {| Latitude = 51.508; Longitude = -0.125 |}
 {| Latitude = 51.5173; Longitude = -0.1774 |}
 |]

 let getSinglePositions() =
 [|
 {| Latitude = 51.508f; Longitude = -0.125f |}
 {| Latitude = 51.5173f; Longitude = -0.1774f |}
 |]

 let p1 = getSomePositions() |> Array.head
 let p2 = getSomeMorePositions() |> Array.head
 let p3 = getSinglePositions() |> Array.head

 // f__AnonymousType3108251393`2[System.Double,System.Double]
 printfn "%A" (p1.GetType())
 // f__AnonymousType3108251393`2[System.Double,System.Double]
 printfn "%A" (p2.GetType())
 // true
 printfn "%A" (p1.GetType() = p2.GetType())
 // false
 printfn "%A" (p1 = p2)

 // f__AnonymousType3108251393`2[System.Single,System.Single]
 printfn "%A" (p3.GetType())
 // false
 printfn "%A" (p1.GetType() = p3.GetType())

 // Error: Type mismatch
 printfn "%A" (p1 = p3)

Listing 7-26Anonymous records with the same names and types of fields are the same type

“Copy and Update” on Anonymous Records
Again, the behavior is at least as good as for named records, but with a little bonus. Listing 7-27 shows us moving the position of a latitude/longitude anonymous record by 1 degree of latitude using the with keyword. You can go beyond this to create a new type, with additional fields, on the fly. Also in Listing 7-27, we create a new instance with the same latitude and longitude, but with an altitude value as well. Finally, we do both, using with to create a new instance from an existing one, having both an altered value for an existing field, and a new field. Stylistically, I think you could easily take this too far, but you may find it useful in some circumstances. let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 let nearWaterloo =
 {| waterloo
 with Latitude = waterloo.Latitude + 1.0 |}

 let waterloo3d =
 {| waterloo
 with AltitudeMetres = 15.0 |}

 let nearWaterloo3d =
 {| waterloo
 with
 Latitude = waterloo.Latitude + 1.0
 AltitudeMetres = 15.0 |}

Listing 7-27Copy-and-update operations on anonymous records

It’s also worth noting that the basis for a with construct that adds one or more fields doesn’t have to be an anonymous record, so long as it returns an anonymous record. Listing 7-28 is like Listing 7-27 except that we are “extending” a named record, the result being an anonymous record. type LatLon = { Latitude : float; Longitude : float }

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 // {| Latitude = 52.531; Longitude = -0.1132; AltitudeMetres = 15.0 |}
 let nearWaterloo3d =
 {| waterloo
 with
 Latitude = waterloo.Latitude + 1.0
 AltitudeMetres = 15.0 |}

Listing 7-28Creating a new anonymous record with an additional field, based on a named record

Serialization and Deserialization of Anonymous Records
Listing 7-29 shows us happily serializing and deserializing yet another anonymous latitude/longitude instance using System.Text.Json. The deserialization syntax is interesting: we don’t have a named record type to provide as the type parameter of the Deserialize method

. But that’s fine – in the angle brackets, we can specify the field names and types in {| |} brackets, just as they appear in the type signature of the waterloo value. open System.Text.Json

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 let json = JsonSerializer.Serialize(waterloo)

 // {"Latitude":51.5031,"Longitude":-0.1132}
 printfn "%s" json

 let waterloo2 =
 JsonSerializer.Deserialize<
 {| Latitude : float; Longitude : float |}>(json)

 // { Latitude = 51.5031
 // Longitude = -0.1132 }
 printfn "%A" waterloo2

Listing 7-29Serializing and deserializing anonymous records

This raises an interesting possibility. If you are facing the task of deserializing some JSON from an external source, you can use exactly this syntax to keep things super lightweight. In Listing 7-30, we get a response from the PLOS Open Access science publisher, in this case, a list of papers about DNA. We are only interested in a subset of the many fields and subfields of the JSON response. We specify these as a nested, anonymous type in the type parameter of Deserialize.open System.Net.Http
open System.Text.Json

let client = new HttpClient()

let response =
 client.GetStringAsync("http://api.plos.org/search?q=title:DNA").Result

let abstracts =
 JsonSerializer.Deserialize<
 {| response :
 {| docs :
 {| id : string; ``abstract`` : string[] |}[]
 |}
 |}>(response)

// { response =
// { docs =
// [|{ abstract =
// [|"Nucleic acids, due to their structural and chemical properties, can form double-stranded secondary...
// id = "10.1371/journal.pone.0000290" }; ...
printfn "%A" abstracts

Listing 7-30Using anonymous records to deserialize JSON API results

There are several interesting things to note here. These points are not specific to anonymous records but do help us to keep things lightweight in this context:	If we are not interested in a property of the JSON, that’s fine – we just don’t mention it in the anonymous record we specify in the type parameter.

	If we happen to specify fields in the anonymous record that aren’t in the JSON, we will get nulls or zeros. (If you edit one of the field names and rerun the code, you’ll see what I mean.) You will have to watch out for mistakes like this at runtime because there is no way for the compiler to spot them.

	If there happens to be a clash between a property name in the JSON and a reserved word in F#, you will need to put the field name in double back quotes. We have done this with the word abstract

 in Listing 7-30.

Anonymous Records in Type Hints
You can use anonymous records in type hints. Listing 7-31 shows a function that uses anonymous records in both the parameter part and the result part of its declaration. I’m not sure that using anonymous records in this way makes for particularly readable code, but you may find it a useful trick in specialized situations. let toSinglePrecision
 (latLon : {| Latitude : float; Longitude : float |})
 : {| Latitude : single; Longitude : single |} =
 {| Latitude = latLon.Latitude |> single
 Longitude = latLon.Longitude |> single |}

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}
 let waterlooSingle = waterloo |> toSinglePrecision

Listing 7-31Anonymous records in type hints

Struct Anonymous Records
You might remember that named records can be forced to be structs using the [<Struct>] attribute

. This causes them to be stored directly on the stack or inline in their parent type or array. The syntax is a bit different for anonymous records because there is no type declaration on which to put an attribute. Instead, you use the struct keyword where you instantiate the record, just before the opening {| brackets. (Listing 7-32). You can also do this when specifying an anonymous record as the parameter of a function. Calls to that function will be inferred to be using structs as well. let waterloo = struct {| Latitude = 51.5031; Longitude = -0.1132 |}

 let formatLatLon
 (latLon : struct {| Latitude : float; Longitude : float |}) =
 sprintf "Latitude: %0.3f, Longitude: %0.3f"
 latLon.Latitude latLon.Longitude

 // Type inference deduces that the anonymous record being
 // instantiated here is a struct.
 // "Latitude: 51.495, Longitude: -0.144"
 printfn "%s"
 (formatLatLon {| Latitude = 51.4952; Longitude = -0.1441 |})

Listing 7-32Structural anonymous records

Anonymous Records and C#
From C#’s point of view, F# anonymous records look like C#’s anonymous types. If a C# caller requires an anonymous type, feel free to give it an anonymous record as your return value. More commonly, if an F# caller is calling a C# API that requires an anonymous type, you can give it an anonymous record instance.
Pattern Matching on Anonymous Records
Finally, we come to something which anonymous records don’t support! You can’t pattern match on them. If we attempt to adapt the code from Listing 6-11 in the previous chapter, we find that it doesn’t compile when anonymous records are used (Listing 7-33).
Given how lightweight named records are anyway, this is hardly a major hardship. However, it’s worth noting that there is an open language design suggestion to add a degree of pattern matching for anonymous records, so it’s possible that code like Listing 7-33 may be possible in future. let songs =
 [{| Id = 1
 Title = "Summertime"
 Artist = "Ray Barretto"
 Length = 99 |}
 {| Id = 2
 Title = "La clave, maraca y guiro"
 Artist = "Chico Alvarez"
 Length = 99 |}
 {| Id = 3
 Title = "Summertime"
 Artist = "DJ Jazzy Jeff & The Fresh Prince"
 Length = 99 |}]

 // Doesn't compile:
 let formatMenuItem ({| Title = title; Artist = artist |}) =
 let shorten (s : string) = s.Substring(0, 10)
 sprintf "%s - %s" (shorten title) (shorten artist)

Listing 7-33You cannot pattern match on anonymous records

Adding Methods to Anonymous Records
You cannot directly add methods to anonymous records. There are workarounds for this, but I can’t think of a reason you would do such a thing, given how much it obfuscates your code. I rarely even add methods to named records!
Mutation and Anonymous Records
You can’t declare an anonymous record with a mutable field, though again there is an open language suggestion to address this. Again, I rarely if ever have mutable fields in a named record. Having one in an anonymous record seems even more inadvisable. You can declare entire anonymous record instances as mutable, but I am hard-pressed to think of a situation where you would want to do so.
Record Layout
I cover spacing and layout in general in Chapter 13, but there are few code formatting points that are specific to record types (both named and anonymous).	Use Pascal case for both record type names and for the individual field labels. All the listings in this chapter follow that approach.

	Where a record type definition or instantiation doesn’t fit comfortably into a single line, break it into multiple lines, leftaligning the field labels. If you put fields on separate lines, omit the separating semicolons. Don’t mix single and multiline styles (Listing 7-34).

	Use the field names in the same order in the record type definition as in any instantiations and with operations.

 // Declaration:

 // Good
 type LatLon1 = { Lat : float; Lon : float }

 // Good
 type LatLon2 =
 { Latitude : float
 Longitude : float }

 // Good
 type LatLon3 = {
 Latitude : float
 Longitude : float }

 // Bad - needless semi-colons
 type LatLon4 = {
 Latitude : float;
 Longitude : float }

 // Bad - mixed newline style
 type Position = { Lat : float; Lon : float
 Altitude : float }

 // Instantiation:

 // Good
 let ll1 = { Lat = 51.9723; Lon = 1.1497 }

 // Good
 let ll2 =
 { Latitude = 51.9723
 Longitude = 1.1497 }

 // Bad - needless semi-colons
 let ll3 =
 { Latitude = 51.9723;
 Longitude = 1.1497 }

 // Bad - mixed newline style
 let position = { Lat = 51.9723; Lon = 1.1497
 Altitude = 22.3 }

Listing 7-34Good and bad record type layout

Recommendations
Here are my suggestions to help you make great code with record types:	Prefer records to class types unless you need the internal and external representations of data to differ, or the type needs to have “moving parts” internally.

	Think long and hard before making record fields or (worse still!) whole records mutable; instead, get comfortable using copy-and-update record expressions (i.e., the with keyword).

	Make sure you understand the importance of “structural” (content) equality in record types, but make sure you also know when it would be violated. (When a field doesn’t itself, have content equality.)

	Sometimes, it’s useful to add instance methods, static methods, or overrides to record types, but don’t get carried away: having to do this, a lot might indicate that a class type would be a better fit.

	Consider putting record types on the stack with [<Struct>] if

 this gives you performance benefits across the whole life cycle of the instance.

	Lay your record type definitions and instantiations out carefully and consistently.

Next, some recommendations specific to anonymous records:	Consider anonymous records where the scope of the instances you create is narrow; a few lines or at most one module or source file. Pipelines that use tuples to pass values between their stages are a particularly attractive target. If the type is more pervasive, it’s probably better to declare a named record up front.

	Obviously, don’t use anonymous records if one of their shortcomings is going to force you into strange workarounds. For instance, if you need to pattern match on records, anonymous records are currently a nonstarter. Likewise, you won’t get far in adding methods to an anonymous record, and the workarounds to this aren’t, in my opinion, particularly useful.

	Although you can use anonymous records in type hints, I’m not convinced that you should do so. It leads to some pretty strange function headers, and in general, these look much simpler if done in terms of named record types declared separately.

	Don’t discount the cognitive benefits of declaring a named record up front. When you name a record type, you are making a focused statement about what kind of thing you want to create and work with. If you are clear about that, a lot of the code that instantiates and processes instances of the record type will naturally “fall out” of that initial statement of intent.

	Anonymous records are usually the best solution when interacting with C# code that produces or consumes anonymous objects.

Summary
Effective use of records is core to writing great F# code. It’s certainly my go-to data structure when I want to store small groups of labeled values. I only switch to classes (Chapter 8) when I find that I’m adorning my record types to the extent they might as well be classes – which is rarely. And any day I find that I’m using the with keyword with record types is a good day! I often use anonymous records to clarify code where, in earlier versions of F#, I might have used tuples.
All that said – classes have their place, even in F# code, so in the next chapter, we’ll talk about them in considerable detail.
Exercises
Exercise 7-1 – Records and Performance
You need to store several million items, each consisting of X, Y, and Z positions (single precision) and a DateTime instance. For performance reasons, you want to store them on the stack.
How might you model this using an F# record?
How can you prove, in the simple case, that instantiating a million records works faster when the items are placed on the stack than when they are allowed to go on the heap?

Exercise 7-2 – When To Use Records
You have an idea for a novel cache that stores expensive-to-compute items when they are first requested and periodically evicts the 10% of items that were least accessed over a configurable time period. Is a record a suitable basis for implementing this? Why or why not?
Don’t bother to actually code this – it’s just a decision-making exercise.

Exercise 7-3 – Equality and Comparison
A colleague writes a simple class to store music tracks but is disappointed to discover that they can’t deduplicate a list of tracks by making a Set instance from them: type Track (name : string, artist : string) =
 member __.Name = name
 member __.Artist = artist
 let tracks =
 [Track("The Mollusk", "Ween")
 Track("Bread Hair", "They Might Be Giants")
 Track("The Mollusk", "Ween")]
 // Error: The type 'Track' does not support the
 // comparison constraint
 |> Set.ofList

What’s the simplest way to fix the problem?

Exercise 7-4 – Modifying Records
Start off with the struct record from Exercise 7-1. Write a function called translate that takes a Position record and produces a new instance with the X, Y, and Z positions altered by specified amounts, but the Time value unchanged. open System
 [<Struct>]
 type Position = {
 X : float32
 Y : float32
 Z : float32
 Time : DateTime }

Exercise 7-5 – Anonymous Records
How would you alter the solution to Exercise 7-1 so that you return an array of struct anonymous records instead of struct named records? What effect does doing this have on performance?

Exercise Solutions
Exercise 7-1 – Records and Performance
You need to create a record type with suitably typed fields X, Y, Z, and Time. Mark the record with the [<Struct>] attribute to force instances to be placed on the stack. Note that DateTime is also a value type (struct) so the Time field should not interfere with the storage. open System
 [<Struct>]
 type Position = {
 X : float32
 Y : float32
 Z : float32
 Time : DateTime }

You can do a simple performance check by starting a “stopwatch” and checking its ElapsedMilliseconds property. let sw = System.Diagnostics.Stopwatch.StartNew()

 let test =
 Array.init 1_000_000 (fun i ->
 { X = float32 i
 Y = float32 i
 Z = float32 i
 Time = DateTime.MinValue })

 sprintf "%ims" sw.ElapsedMilliseconds

On my system, the instantiation took around 40ms with the [<Struct>] attribute and around 50ms without it. In reality, you’d need to check the whole life cycle of the items (instantiation, access, and release) in the context of the real system and volumes you were working on.

Exercise 7-2 – When To Use Records
This sounds like something with a number of moving parts, including storage for the cached items, a timer for periodic eviction, and members allowing values to be retrieved independently of how they are stored internally. There is also, presumably, some kind of locking going on for thread safety. This clearly fulfills the criteria of “internal storage differs from external representation” and “has moving parts,” which means that one or more class types are almost certainly a more suitable approach than a record type.

Exercise 7-3 – Equality and Comparison
Simply change the class type to a record type. Now your type will have structural (content) equality, and Set.ofList can be used successfully to deduplicate a collection of tracks. type Track = {
 Name : string
 Artist : string }
 // set [{Name = "Bread Hair";
 // Artist = "They Might Be Giants";};
 // {Name = "The Mollusk";
 // Artist = "Ween";}]

 let tracks =
 [{ Name = "The Mollusk"
 Artist = "Ween" }
 { Name = "Bread Hair"
 Artist = "They Might Be Giants" }
 { Name = "The Mollusk"
 Artist = "Ween" }]
 |> Set.ofList

Exercise 7-4 – Modifying Records
Use the with keyword to assign new values for the X, Y, and Z values. Note that you can access the old values from the original instance using dot notation. Make sure you have the instance to be “modified” as the last function parameter, to make your function pipeline friendly.open System

[<Struct>]
type Position = {
 X : float32
 Y : float32
 Z : float32
 Time : DateTime }

let translate dx dy dz position =
 { position with
 X = position.X + dx
 Y = position.Y + dy
 Z = position.Z + dz }

let p1 =
 { X = 1.0f
 Y = 2.0f
 Z = 3.0f
 Time = DateTime.MinValue }

// { X = 1.5f;
// Y = 1.5f;
// Z = 4.5f;
// Time = 01/01/0001 00:00:00;}
p1 |> translate 0.5f -0.5f 1.5f

Exercise 7-5 – Anonymous Records
You can do this by using the keyword struct and instantiating an anonymous record with the appropriate field names and values between {| |}:open System

let sw = System.Diagnostics.Stopwatch.StartNew()

let test =
 Array.init 1_000_000 (fun i ->
 struct
 {| X = float32 i
 Y = float32 i
 Z = float32 i
 Time = DateTime.MinValue |})

sprintf "%ims" sw.ElapsedMilliseconds

In this simple case I couldn’t see any consistent difference between this version and a named record version.

Footnotes
1In this example, I’m ignoring the perils of comparing floating-point values (which, even if they are different by a tiny amount, are still different) for exact equality.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_8

8. Classes

Kit Eason1
(1)Farnham, Surrey, UK

It’s a curious thing about our industry: not only do we not learn from our mistakes, we also don’t learn from our successes.
—Keith Braithwaite, Software Engineer

The Power of Classes
F# classes give you the full power of Object-Oriented Programming (OOP)1. When you need to go beyond record types, for example, when the external and internal representations of data need to differ, or when you need to hold or even mutate state over time, classes are often the answer. They are also a great solution when you need to interact closely with an OO code base, for instance, by participating in a class hierarchy. F# classes can inherit from C# classes and can implement C# interfaces, and C# can do the same for F# classes and interfaces.
By the way, I’m avoiding using the phrase class types (although that is what we are talking about) because there also exists a rather different concept, confusingly called type classes. Type classes aren’t supported in F# at the time of writing, although there is work going on in that area, so perhaps someday they will be. I’m not going to talk about them at all in this book, and I’ll stick to the term class for F# object types and their C# equivalents.
A great example where you might want to move away from a purely functional style is where you are dealing with streams. Streams have lots of “moving parts”: the content of the stream itself, the current read position, whether that position is at the end, and so forth. Compressed streams add a further level of complication, as do streams that have some form of internal structure, such as an archive that might contain multiple subitems.
I was recently presented with exactly this situation, when I came across a requirement to create so-called TGZ archives. A TGZ file consists of one or more tar (which originally meant “tape archive”) files, each of which can contain one or more other files. The whole outer file (or stream) is compressed using the gzip algorithm. Figure 8-1 summarizes the situation.[image: ../images/462726_2_En_8_Chapter/462726_2_En_8_Fig1_HTML.png]
Figure 8-1Structure of a TGZ file

The good news is there is an open source library called SharpZipLib
 that can both read and write tar and gzip streams. The less good news is that this library doesn’t have a slick way to create a TGZ file, where we need to create a tar file/stream and compress it. This calls for us to wrap up the available low-level features into a nice neat F# class.
We start defining an F# class by specifying its name and any constructor parameters (Listing 8-1).// Remove this line for use in a program (as opposed to a script or Notebook)
// and add the Nuget package to your project instead.
#r "nuget: SharpZipLib, 1.3.2"

open System
open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =

Listing 8-1Declaring a class

The SharpZipLib library

 requires us to provide an “output stream.” Once archives are created and compressed, the library will put the resulting bytes into this stream for us. Because we don’t know whether the caller will want to use a file stream, a memory stream, or whatever, in Listing 8-1, we require the caller to create the stream. So our new class has a constructor parameter in which that stream can be provided. We also take a parameter to specify the zip compression level and another to take the text encoding used for entry names in the tar archive.
Next, we need to do any initialization work required when an instance is constructed (Listing 8-2).open System
open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream, IsStreamOwner=false)
 do gzipStream.SetLevel(zipLevel)
 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding, IsStreamOwner=false)

Listing 8-2Adding a constructor body to a class

Initialization is done in the constructor body (everything between the constructor parameters and the first member declaration). Here, we create a GZipOutputStream instance and a TarOutputStream instance (both types provided by the SharpZipLib library

). These types will do the archiving and compression donkey work for us.
Imperative actions in the constructor body (things which are not let bindings, for example, setting a property of a created object) must be in a do block. This is simply a block of code following (usually indented below) the keyword do, which is executed imperatively rather than returning a meaningful value. Hence, in Listing 8-2, we say do before setting the zip level of the GZip stream.
Anything we bind with let in the constructor is available in the bodies of any (nonstatic) class members. But such values aren’t available outside the class (unless we explicitly expose them via members – which we’ll come to in a minute). By the way, you can omit the constructor body entirely if there is nothing that needs to be done on construction.
Now we need our first member (Listing 8-3).open System
open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =
 (As Listing 8-2)

 /// Adds the content stream to the archive, starting at position 0 of the content stream
 /// and using the specified entry name.
 member _.AddEntry(entryName : string, content : Stream) =
 content.Position <- 0L
 let entry = Tar.TarEntry.CreateTarEntry(entryName, Size=content.Length)
 tarStream.PutNextEntry(entry)
 content.CopyTo(tarStream)
 tarStream.CloseEntry()

Listing 8-3Adding a member to a class

Members are functions that are available outside the class: they are the world’s way of communicating with the class by getting values from it or sending values to it. The member AddEntry lets the caller add an entry to the zipped tar archive, by providing a name for the entry and a stream containing the required contents.
Members are declared with the keyword member, followed – if necessary – by a self-identifier such as this and then the name of the member and any parameters. A self-identifier is only needed if the member needs to call other members of the same instance. AddEntry does not do this, so we use an underscore to avoid an unused name binding.
In the body of the member, we make sure the input stream is at the beginning and then do the various steps which the SharpZipLib library

 requires for adding an entry.
Now let’s add another member to allow callers to add an entry based on a string instead of a stream. Vanilla F# functions can’t be overloaded. In other words, you can’t have two functions with the same name and different parameter lists. However, this rule doesn’t apply to class members, so in Listing 8-4, we add an overload of the AddEntry member

 using a string instead of a stream.open System
open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =
 (As Listing 8-2)

 /// Adds the content stream to the archive, starting at position 0 of the content stream
 /// and using the specified entry name.
 member _.AddEntry(entryName : string, content : Stream) =
 (As Listing 8-3)

 /// Adds the content string to the archive using the specified entry name.
 member this.AddEntry(entryName : string, content : string) =
 use memStream = new MemoryStream()
 use memStreamWriter = new StreamWriter(memStream, AutoFlush=true)
 memStreamWriter.Write(content)
 this.AddEntry(entryName, memStream)

Listing 8-4Adding an overloaded member to a class

In Listing 8-4, the overload does need a self-identifier – because it works by copying the input string to a stream and then calling the other overload to add that stream to the archive. You can name self-identifiers whatever you like (within reason), but this is a good default choice. It may seem a little asymmetrical to have one member without a self-identifier and another with one, but I think it’s preferable to do this than to break the rule of having absolutely no bound – but unused – values.
Next, we need to deal with the thorny issue of finalization: how to tell SharpZipLib that we have finished adding content and that it should finish populating the output stream with a complete compressed archive. The only way which SharpZipLib provides to do this is by disposing the GZipOutputStream and TarOutputStream instances. Only when they are disposed do these classes write to their output streams. It makes sense for our own wrapper class to do the same thing: when our type is disposed, the inner SharpZipLib types should also be disposed, causing them to finish writing their outputs.
To provide disposability, a .NET class needs to implement the IDisposable interface. It’s straightforward to do this in F# (Listing 8-5).open System
open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =
 (As Listing 8-4)

 interface IDisposable with
 member this.Dispose() =
 tarStream.Dispose()
 gzipStream.Dispose()
 outputStream.Position <- 0L

Listing 8-5Implementing the IDisposable interface

In Listing 8-5, we implement the System.IDisposable interface and define its one method, Dispose(). In Dispose(), we explicitly call the Dispose() methods

 of the tarStream and gzipStream objects that we created in the constructor. This will cause first the tar stream to finalize the output stream we provided to it, which is gzipStream. So at this point, gzipStream has been given all the input it needs. Second, we dispose the gzipStream object, which causes it to write our ultimate output (a zipped tar archive) to the outputStream provided by the caller. Clearly, it is important we do this in the right order, first, the “inner stream” (tar) and then the “outer stream” (zip). Last, as a courtesy to the consumer of the output stream, we set the outputStream position to 0. This is sensible as it’s almost certain that the caller will want to consume the output stream from the start.
Now to check if our class works! Listing 8-6 shows it being used to add an entry from a stream and then from a string. (To save you flipping backward and forward, I’ve reproduced all the code in this listing.)open System
open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream, IsStreamOwner=false)
 do gzipStream.SetLevel(zipLevel)
 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding, IsStreamOwner=false)

 /// Adds the content stream to the archive, starting at position 0 of the content stream
 /// and using the specified entry name

.
 member _.AddEntry(entryName : string, content : Stream) =
 content.Position <- 0L
 let entry = Tar.TarEntry.CreateTarEntry(entryName, Size=content.Length)
 tarStream.PutNextEntry(entry)
 content.CopyTo(tarStream)
 tarStream.CloseEntry()

 /// Adds the content string to the archive using the specified entry name.
 member this.AddEntry(entryName : string, content : string) =
 use memStream = new MemoryStream()
 use memStreamWriter = new StreamWriter(memStream, AutoFlush=true)
 memStreamWriter.Write(content)
 this.AddEntry(entryName, memStream)

 interface IDisposable with
 member this.Dispose() =
 tarStream.Dispose()
 gzipStream.Dispose()
 outputStream.Position <- 0L

let gZipStreamDemo() =
 // Change the path as appropriate.
 use fileStream = new FileStream(@"d:\temp\gZipStreamDemo.tgz", IO.FileMode.Create)
 use tgz = new TGZipStream(3, Text.Encoding.Default, fileStream)
 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)
 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)
 tgz.AddEntry("String", "Hello world")

gZipStreamDemo()

Listing 8-6Testing the TGZipStream class

In Listing 8-6, we begin by creating a file stream to which we want our output to be written. Because FileStream also implements IDisosable, we bind it with the keyword use rather than let. This will cause the file stream to be disposed as soon as it goes out of scope. Then we create an instance of our TGZipStream class, again with use as it too implements IDisposable. Then we create and add the stream along with stream entries using each of the overloaded methods of TGZipStream.
If you run the code (after changing the file path to match your environment), you should end up with a file called gZipStreamDemo.tgz
. You can open this file with a tool such as 7-Zip (https://​www.​7-zip.​org/​) and you’ll see that it does indeed contain a tar file, which itself contains an entry called “Bytes” with 26 bytes of data and an entry called “String” with 11 bytes of data (Figure 8-2).[image: ../images/462726_2_En_8_Chapter/462726_2_En_8_Fig2_HTML.jpg]
Figure 8-2Viewing the gZipStreamDemo.tgz file in Z-Zip

Going back to the topic of disposal: when we bound our TGZipStream instance using the keyword use, this caused the instance to be disposed when it went “out of scope,” in other words, at the end of the code block where the instance was declared. This is the usual way of doing things in F#, but it’s worth being aware of two alternatives which give you a little more control. The first is the using function

, which requires you to instantiate your disposable object in its first parameter and utilize it in its second parameter, which is commonly expressed as a lambda (Listing 8-7).let gZipStreamUsingDemo() =
 // Change the path as appropriate.
 use fileStream = new FileStream(@"d:\temp\gZipStreamUsingDemo.tgz", IO.FileMode.Create)
 using (new TGZipStream(3, Text.Encoding.Default, fileStream)) (fun tgz ->
 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)
 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)
 tgz.AddEntry("String", "Hello world")
)

gZipStreamUsingDemo()

Listing 8-7Utilizing a disposable type with using

The using function

 does have the very mild advantage that it allows you to define a very explicit local block where your instance is valid and after which the instance has definitely been disposed. But it does so at the cost of some extra bracketing, and in general, one should prefer use. In practice, you will normally be creating a disposable object in a small function, so it will quickly go out of scope and be disposed anyway.
If you want even more control, you can explicitly dispose a disposable object. Here, you will come across what is arguably a bit of a rough edge in F#’s implementation of Object-Oriented features: to access an interface method, you normally need to cast the instance to the interface. The good news is that this is easy to do using the :> operator (Listing 8-8).let gZipStreamDisposalDemo() =
 // Change the path as appropriate.
 use fileStream = new FileStream(@"d:\temp\gZipStreamDisposalDemo.tgz", IO.FileMode.Create)
 let tgz = new TGZipStream(3, Text.Encoding.Default, fileStream)
 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)
 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)
 tgz.AddEntry("String", "Hello world")

 (tgz :> IDisposable).Dispose()

 // Error: ICSharpCode.SharpZipLib.Tar.TarException: TarBuffer.WriteBlock - no output stream defined
 //tgz.AddEntry("Boom", "Boom")

gZipStreamDisposalDemo()

Listing 8-8Explicitly disposing a disposable object

In Listing 8-8, we use the upcast operator :> to cast our TGZipStream instance to IDisposable, having done which we can call Dispose().
You might like to prove that the object has indeed been disposed by uncommenting the final line of Listing 8-8, so that we try to add an entry to the archive after we dispose it. This causes an exception, which is exactly what you’d expect. However, as we don’t handle this situation explicitly in our code, the exception comes from deep within the SharpZipLib code:ICSharpCode.SharpZipLib.Tar.TarException: TarBuffer.WriteBlock - no output stream defined

You might want to think about how this could be improved. Unfortunately, IDisposable doesn’t have a standard mechanism for detecting when an instance has been disposed. Instead, you’d have to detect disposal yourself, perhaps using a mutable flag initialized to false in the constructor and set to true in Dispose(), and raise a suitable exception when this flag was true if members such as AddEntry() were called post-disposal.
Additional Constructors
Our main constructor requires the caller to specify a zip compression level and a text encoding for tar entry labels. But what if the caller just wants to use default values for these? We can do this by providing an additional constructor for our class (Listing 8-9), using the new keyword as a sort of “constructor member.”open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream, IsStreamOwner=false)
 do gzipStream.SetLevel(zipLevel)
 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding, IsStreamOwner=false)

 /// Instantiates TGZipStream with a Zip level of 3 and a text encoding of Encoding.Default.
 new(outputStream : Stream) =
 new TGZipStream(3, Text.Encoding.Default, outputStream)

 /// Adds the content stream to the archive, starting at position 0 of the content stream
 /// and using the specified entry name.
 member _.AddEntry(entryName : string, content : Stream) =
 (As Listing 8-6)

 /// Adds the content string to the archive using the specified entry name.
 member this.AddEntry(entryName : string, content : string) =
 (As Listing 8-6)

 interface IDisposable with
 (As Listing 8-6)

let gZipStreamAdditionalConstructorDemo() =
 // Change the path as appropriate.
 use fileStream = new FileStream(@"d:\temp\ gZipStreamAdditionalConstructorDemo.tgz", IO.FileMode.Create)
 use tgz = new TGZipStream(fileStream)
 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)
 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)
 tgz.AddEntry("String", "Hello world")

gZipStreamAdditionalConstructorDemo()

Listing 8-9An additional constructor

Additional constructors must always call the primary constructor eventually, as the final expression, but are free to do other work in their bodies and to provide their own values for some of the main constructor parameters. In Listing 8-9, we provide default zip level and text encoding values when calling the main constructor from the additional constructor.
The requirement that additional constructors must call the main constructor implies that the main constructor will be the most elaborate (have the most parameters), with additional constructors providing various variations or defaults.
Values As Members
Sometimes, it is useful to expose some internal value of a class – or something derived from an internal value – as a member. Providing read-only access to internal values is really simple (Listing 8-10), using the member val construct

.open System.IO
open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can be added.
type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream : Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream, IsStreamOwner=false)
 do gzipStream.SetLevel(zipLevel)
 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding, IsStreamOwner=false)

 /// Instantiates TGZipStream with a Zip level of 3 and a text encoding of Encoding.Default.
 new(outputStream : Stream) =
 new TGZipStream(3, Text.Encoding.Default, outputStream)

 /// Adds the content stream to the archive, starting at position 0 of the content stream
 /// and using the specified entry name.
 member _.AddEntry(entryName : string, content : Stream) =
 (As Listing 8-6)

 /// Adds the content string to the archive using the specified entry name.
 member this.AddEntry(entryName : string, content : string) =
 (As Listing 8-6)

 member val ZipLevel = zipLevel

 member val TextEncoding = textEncoding

 interface IDisposable with
 (As Listing 8-6)

let gZipStreamMemberDemo() =
 // Change the path as appropriate.
 use fileStream = new FileStream(@"d:\temp\gZipStreamMemberDemo.tgz", IO.FileMode.Create)
 use tgz = new TGZipStream(3, Text.Encoding.Default, fileStream)
 // "Created tgz with zip level: 3, encoding: Unicode (UTF-8)"
 printfn "Created %s with zip level: %i, encoding: %s" (nameof tgz) tgz.ZipLevel tgz.TextEncoding.EncodingName

gZipStreamMemberDemo()

Listing 8-10Exposing read-only internal values as members

In Listing 8-10, we expose ZipLevel and TextEncoding as members using the syntax member val.... Note how the members don’t need brackets after their names in this case.
Simple Mutable Properties
What do we want to do if we want some of the values encompassed by a class to be settable from the outside? There are two ways of doing this, depending on the amount of sophistication you need. This isn’t needed for the TGZ example, so instead let’s try to model a simple “turtle,” as pioneered by the famous Logo programming language in the late 1960s. Our version of a turtle can be given an initial position and has a settable heading. It can also be told to walk a certain distance, at which point its position will change according to the current heading and the distance it is told to walk. Listing 8-11 achieves all of this.open System

type Turtle(x : float, y : float) =
 member val X = x
 with get, set
 member val Y = y
 with get, set
 member val HeadingRadians = 0.
 with get, set
 member this.Walk(distance : float) =
 this.X <- this.X + (distance * Math.Sin(this.HeadingRadians))
 this.Y <- this.Y + (distance * Math.Cos(this.HeadingRadians))

let degreesToRadians d =
 d * Math.PI / 180.0

let turtleDemo() =
 let turtle = Turtle(0., 0.)
 turtle.HeadingRadians <- 90.0 |> degreesToRadians
 turtle.Walk(10.)
 turtle.HeadingRadians <- 180.0 |> degreesToRadians
 turtle.Walk(10.)
 printfn "Position now: %0.3f, %0.3f. Heading: %0.3f radians" turtle.X turtle.Y turtle.HeadingRadians

// Position now: 10.000, -10.000, Heading: 3.142
turtleDemo()

Listing 8-11A simple turtle

In Listing 8-11, our type takes an x and a y position as constructor arguments. It has three members: X Y and HeadingRadians

. X and Y are set at first to the values of x and y from the constructor, and HeadingRadians gets an initial value of 0.0 (our turtle always starts by facing North!). When you define a member with member val, you have to bind an initial value, which is usually a constant, like 0.0, or comes from a constructor parameter. If you want the member to be mutable, you say with get, set; or for read-only members, you say just with get. We require the heading to be in radians rather than degrees because this makes the position calculation super-simple. (.NET’s Math.Sin and Math.Cos functions require arguments in radians.) Finally, we have a Walk() method that does the necessary calculations to work out a new position. Since X and Y are mutable members, we can set them by saying X <- new value. Here is one of those cases where the member does need a self-identifier like this, because it accesses one of the other members of the instance.
Also in Listing 8-11, we have a little convenience function to convert from degrees to radians, making it a little easier to see that when we turn East (heading 90°), walk ten steps, then turn South (heading 180°), and walk another ten steps, we end up in the right place.
Members bound with member val ... with get, set are a great solution when the following conditions are true:	The item needs to be readable from outside.

	We can get an initial value at construction time, typically from a constant or a constructor argument.

	If the item needs to be writable from outside, no validation, additional calculation, or further modifications are needed: the value can just be set.

Member Getters and Setters with Bodies
What if we want members that aren’t simple enough to be set directly? Let’s say that we want the user of our Turtle class to be able to set the heading in degrees (more intuitive for most humans), but for it to be stored and used for calculations internally in radians (which saves a conversion in the Walk() method

). This is a classic example of “asymmetric representation”: what the outside world sees isn’t the same as what happens internally. In this case, we can provide a getter and a setter that do actual work when setting and retrieving the value from outside (Listing 8-12).open System

type Turtle(x : float, y : float) =
 let mutable headingRadians = 0.
 let radiansPerDegree = Math.PI / 180.
 member val X = x
 with get, set
 member val Y = y
 with get, set
 member _.HeadingDegrees
 with get() =
 headingRadians / radiansPerDegree
 and set(degrees : float) =
 headingRadians <- degrees * radiansPerDegree
 member this.Walk(distance : float) =
 this.X <- this.X + (distance * Math.Sin(headingRadians))
 this.Y <- this.Y + (distance * Math.Cos(headingRadians))

let turtleDemo() =
 let turtle = Turtle(0., 0.)
 turtle.HeadingDegrees <- 90.0
 turtle.Walk(10.)
 turtle.HeadingDegrees <- 180.0
 turtle.Walk(10.)
 printfn "Position now: %0.3f, %0.3f. Heading: %0.3f degrees" turtle.X turtle.Y turtle.HeadingDegrees

// Position now: 10.000, -10.000, Heading: 180 degrees
turtleDemo()

Listing 8-12Getters and setters with bodies

Listing 8-12 is very similar to Listing 8-11 except we have a HeadingDegrees member

 that is no longer bound with member val. (But it doesn’t need a self-identifier, so we put _ in that position.) We use with get() to define a function to get the value. This is obtained by taking a mutable value called headingRadians (which is set initially to 0.0) and dividing by a constant radiansPerDegree. Similarly, we use set(...) to define a setter that converts to radians and updates the mutable value.
Although F# developers generally try to minimize the number of mutable values in their code, this is one case where using mutable is perfectly idiomatic (assuming it’s the right scenario to be using a class at all). The scope of the mutable value is very narrow, there is exactly one place it can be changed, and the effect any change will have is local and obvious.
Named Parameters and Object Initialization Syntax
Sometimes, it can be hard for a person reading some code to understand what the various arguments going into a constructor or method actually mean. This is particularly acute for Boolean flags, where a value of true or false gives no clue, at the call site, to what the value might do. It’s time to demonstrate our commitment to the principle of semantic focus by looking at some alternative construction styles (Listing 8-13).// Unnamed arguments:
let turtle1 = Turtle(1.2, 3.4)

// Named arguments:
let turtle2 = Turtle(x=1.2, y=3.4)
let turtle2b = Turtle(y=3.4, x=1.2)

// Object initialization syntax:
let turtle3 = Turtle(1.2, 3.4, HeadingDegrees=180.0)

// Named arguments and object initialization syntax:
let turtle4 = Turtle(x=1.2, y=3.4, HeadingDegrees=180.0)

turtle1, turtle2, turtle3, turtle4

Listing 8-13Alternative construction styles

In Listing 8-13, I show four variations on constructor calling.	The turtle1 instance is constructed in the default manner, giving arguments in the same order that the parameters are declared in the constructor. To work out what the arguments mean, you’d have to guess from their values or look at the class definition. (Or if you are lucky, the author may have documented the parameters in a /// comment, meaning that the definitions would appear in a tool tip in most IDEs.)

	The turtle2 instance is constructed using named argument syntax. It’s a little more verbose but much more readable, especially if there are several parameters. The turtle2b instance illustrates how, with this syntax, you can provide arguments in a different order if you really want to.

	The turtle3 instance sets a property of the class at construction time, in this case, HeadingDegrees, using object initialization syntax. Here, we do this without using named argument syntax.

	The turtle4 instance combines named argument syntax with object initialization syntax.

In my opinion, named argument syntax isn’t used in F# code as much as it should be. If arguments are easy to mix up, it’s crucial: for example, I often see Latitude and Longitude arguments being mixed up, because ordering conventions vary between different code bases.
Object initialization syntax is more well used, particularly when interacting with C#-based APIs, which tend to make extensive use of mutable properties. If you find yourself creating instances and immediately setting their properties, always change this to object initialization style.
In general, make sure you give some thought to which style you adopt. Naming at the call site can be very helpful to the reader, especially when you are calling APIs that require you to set lots of constructor arguments and mutable properties.
Indexed Properties
We’ve already learned how to provide simple properties in a class by providing default or explicit getters and setters. That’s fine if the properties are single values, but what if you want a class to provide a collection property, one that you can access with the syntax property.[index] (or, from F# 6, property[index])? For example, let’s implement a ring buffer: a structure that contains a collection of length n. When we access elements beyond the last, we circle back to element number (index modulus length). For instance, in Figure 8-3, element [8] is actually the same item as element [0].[image: ../images/462726_2_En_8_Chapter/462726_2_En_8_Fig3_HTML.png]
Figure 8-3A ring buffer

Listing 8-14 shows a simple ring buffer implementation that is initialized with values from a sequence.type RingBuffer<'T>(items : 'T seq) =
 let _items = items |> Array.ofSeq
 let length = _items.Length
 member _.Item i =
 _items.[i % length]

let fruits = RingBuffer(["Apple"; "Orange"; "Pear"])
// Apple Orange Pear Apple Orange Pear Apple Orange
for i in 0..7 do
 printfn "%s" fruits.[i]
// Invalid assignment
// fruits.[4] <- "Grape"

Listing 8-14A ring buffer implementation

The important part here is the member called Item. When a property has the name Item

 and an index argument (here we used i), it describes a read-only, indexed property that can be accessed by the caller using array-like syntax. Notice that I used the name _items for the array backing store. I could instead have shadowed the original items sequence by reusing the name items for the backing store array. By the way, the reason I use a private backing store array, instead of directly accessing the items constructor argument, is to avoid potentially slow indexed access into the items sequence.
You might also have noticed that I made the type generic, by adding the <'T> parameter, just as we did with a record type in an earlier chapter. This means that the ring buffer can have elements of any type.
If you want indexed properties to be settable, you need to use a slightly different syntax, one with an explicit getter and setter (Listing 8-15).type RingBuffer<'T>(items : 'T seq) =
 let _items = items |> Array.ofSeq
 let length = _items.Length
 member _.Item
 with get(i) =
 _items.[i % length]
 and set i value =
 _items.[i % length] <- value

let fruits = RingBuffer(["Apple"; "Orange"; "Pear"])
fruits.[4] <- "Grape"
// Apple Grape Pear Apple Grape Pear Apple Grape
for i in 0..7 do
 printfn "%s" fruits.[i]

Listing 8-15Settable indexed properties

You can also have multidimensional indexed properties. Listing 8-16 implements a (slightly mind-bending) two-dimensional ring buffer. Maybe this could be used to represent a 2D gaming environment with wrap-around when a player went beyond the finite bounds. type RingBuffer2D<'T>(items : 'T[,]) =
 let leni = items.GetLength(0)
 let lenj = items.GetLength(1)
 let _items = Array2D.copy items
 member _.Item
 with get(i, j) =
 _items.[i % leni, j % lenj]
 and set (i, j) value =
 _items.[i % leni, j % lenj] <- value

let numbers = Array2D.init 4 5 (fun x y -> x * y)
let numberRing = RingBuffer2D(numbers)
// 0 0 -> 0
// 0 1 -> 0
// ...
// 1 1 -> 1
// 1 2 -> 2
// ..
// 9 8 -> 3
// 9 9 -> 4
for i in 0..9 do
 for j in 0..9 do
 printfn "%i %i -> %A" i j (numberRing.[i,j])

Listing 8-16A two-dimensional ring buffer

The one subtlety here is that the dimension index parameters (i and j in this case) must be tupled together. But the value parameter in the set declaration is curried – that is, it’s outside the brackets that surround i and j.
Interfaces
Interfaces

 are a key concept of the Object-Oriented world. An interface lets you define a set of members in terms of their names and type signatures, but without any actual behavior. Classes may then implement the interface, in other words, provide member implementations that have the same names and type signatures as the members defined in the interface. We’ve already done these when we implemented the IDisposable interface earlier.
Let’s imagine we want to have an interface that defines a simple media player. The player needs to know how to open, play, stop playing, and eject media items. We want to specify these behaviors in abstract terms, without worrying about whether a player implementation plays audio, video, or something else (smell?), or thinking about how it does so. Listing 8-17 shows an interface definition that meets these requirements.type MediaId = string

type TimeStamp = int

type Status =
 | Empty
 | Playing of mediaId : MediaId * timeStamp : TimeStamp
 | Stopped of mediaId : MediaId

type IMediaPlayer =
 abstract member Open : mediaId : MediaId -> unit
 abstract member Play : unit -> unit
 abstract member Stop : unit -> unit
 abstract member Eject : unit -> unit
 abstract member Status : unit -> Status

Listing 8-17Simple interface definition for a media player

Listing 8-17 starts with a couple of type aliases, which give new names for the string and int types. I’m not a huge fan of littering code with type aliases, but when defining interfaces, they make a lot of sense. They help motivational transparency by incorporating meaningful names for both parameters and results in the type signature. Next we have a Discriminated Union called Status, which embodies the states that the media player can be in. (I’ve used labels for the payload elements, but I don’t have to.) Finally, there is the actual interface definition. It starts with type <Name>, just like a class definition, but since there can be no constructor, the name isn’t followed by brackets or constructor parameters.
The definition of the interface consists of a series of abstract member definitions, each of which must have a name, such as Open, and a type signature, such as mediaId : MediaId -> unit. Use the keyword unit if you need to express the fact that the member doesn’t require any “real” parameters, or that it doesn’t return anything “real.” Again, I’ve given names as well as types for each parameter, but in the case of interface definitions, I don’t have to.
The beauty of interfaces is that you can start to think about the design of your concrete types (the ones that will implement this interface) without getting distracted by implementation details. For example, the fact that Open has a signature of MediaId -> unit tells you that implementations of Open aren’t going to return any feedback to the caller about whether they successfully opened the requested media item. This further implies that any failures are either swallowed and not reported back or are signaled in the form of exceptions. That might or might not be the best design: the point is that you can think about it here, before committing to a lot of coding in either the implementation of classes or their consuming code. If you have become accustomed to designing systems based on function signatures, you could think of an interface as a sort of big, multiheaded function signature.
Now that we have an interface definition, it’s time to start implementing the interface: in other words, writing at least one class that provides actual code to execute for each of the abstract members in the interface. To implement an interface, start by defining a class in the usual way, providing a name and a constructor body (Listing 8-18).type DummyPlayer() =
 let mutable status = Empty

 interface IMediaPlayer with

 member _.Open(mediaId : MediaId) =
 printfn "Opening '%s'" mediaId
 status <- Stopped mediaId

 member _.Play() =
 match status with
 | Empty
 | Playing(_, _) -> ()
 | Stopped(mediaId) ->
 printfn "Playing '%s'" mediaId
 status <- Playing(mediaId, 0)

 member _.Stop() =
 match status with
 | Empty
 | Stopped(_) -> ()
 | Playing(mediaId, _) ->
 printfn "Stopping '%s'" mediaId
 status <- Stopped(mediaId)

 member _.Eject() =
 match status with
 | Empty -> ()
 | Stopped(_)
 | Playing(_, _) ->
 printfn "Ejecting"
 status <- Empty

 member _.Status() =
 status

Listing 8-18Implementing an interface

Implement the interface by adding interface <Interface Name> with, followed by implementations for each member in the interface. Each member declaration replaces the abstract member from the interface with a concrete member containing real code. The implementation needs to have the same function signature as the interface member it is implementing.
In Listing 8-18, I’ve called the implementation DummyPlayer because this class doesn’t really do very much – it certainly doesn’t actually play media! But you can see how a real implementation would fit into the same interface/implementation pattern.
Now that we have a class that implements the interface, we can use it in code. There is one minor complication, which always trips people up because it is a different behavior from that in C#. To access any interface members, you must cast the concrete class instance to the interface type, which you do with the :> (upcast) operator (Listing 8-19).let player = new DummyPlayer() :> IMediaPlayer
// "Opening 'Dreamer'"
player.Open("Dreamer")
// "Playing 'Dreamer'"
player.Play()
// "Ejecting"
player.Eject()
// "Empty"
player.Status() |> printfn "%A"

Listing 8-19Accessing interface members

To help me remember which operator to use, I visualize the upcast operator :> as a sort of sarcastic emoticon, saying “Haha, you forgot to cast to the interface… again!”
In Listing 8-19, I cast to the interface as soon as I’ve constructed the class instance. This is appropriate here because I am only accessing members that were part of the interface. You can’t get away with this if you need to access members that aren’t part of the interface – either direct members of the class itself or members from some other interface that the class also implements. In those cases, you’ll need to cast to the interface just before you access the relevant members (Listing 8-20).// Requires code from Listing 8-17
open System
open System.IO

type DummyPlayer() =
 let uniqueId = Guid.NewGuid()
 let mutable status = Empty
 let stream = new MemoryStream()

 member _.UniqueId =
 uniqueId

 interface IMediaPlayer with

 member _.Open(mediaId : MediaId) =
 printfn "Opening '%s'" mediaId
 status <- Stopped mediaId

 member _.Play() =
 match status with
 | Empty
 | Playing(_, _) -> ()
 | Stopped(mediaId) ->
 printfn "Playing '%s'" mediaId
 status <- Playing(mediaId, 0)

 member _.Stop() =
 match status with
 | Empty
 | Stopped(_) -> ()
 | Playing(mediaId, _) ->
 printfn "Stopping '%s'" mediaId
 status <- Stopped(mediaId)

 member _.Eject() =
 match status with
 | Empty -> ()
 | Stopped(_)
 | Playing(_, _) ->
 printfn "Ejecting"
 status <- Empty

 member _.Status() =
 status

 interface IDisposable with
 member _.Dispose() =
 stream.Dispose()

let player = new DummyPlayer()

(player :> IMediaPlayer).Open("Dreamer")
// 95cf8c51-ee29-4c99-b714-adbe1647b62c
printfn "%A" player.UniqueId
(player :> IDisposable).Dispose()

Listing 8-20Accessing instance and interface members

The class in Listing 8-20 implements two interfaces, IMediaPlayer and IDisposable, and it also creates a memory stream in the class constructor, just as an example of a resource that the class might want to dispose promptly when it itself is disposed. It also has a member of its own, called UniqueId
. At the end of Listing 8-20, we create a player, open a media item, and then explicitly dispose the player. (By the way, it would be better generally to create the player with the use keyword or the using function, meaning that the player instance would be disposed on going out of context. I’ve coded in this way so you can see the casting in action.)
Notice how, to call the Open() method

, we cast to IMediaPlayer; to call the Dispose method

, we cast to IDisposable; and to use the UniqueId property, we don’t cast at all because this is a member of the class itself. You might wonder why I didn’t have to cast the stream instance to IDisposable when calling its Dispose() method. The answer is that the C# code for MemoryStream didn’t implement the IDisposable interface explicitly. F# always implements interfaces explicitly; in C#, you have the choice.
Object Expressions
You can use an object expression to create a “something,” which inherits from a class or implements one or more interfaces, but which is not a new named type. It’s a great way of creating ad hoc objects for specific tasks, without actual, named types proliferating in your code base.
Let’s say you are testing some class that takes a logger as one of its constructor arguments and uses that logger throughout its implementation. You don’t want the overhead of creating a real logger instance; you just want a simple dummy logger that writes to the console or even does nothing. Listing 8-21 shows how to do that for the MediaPlayer example, without creating any new types.// Requires code from Listing 8-17
type ILogger =
 abstract member Info : string -> unit
 abstract member Error : string -> unit

type LoggingPlayer(logger : ILogger) =
 let mutable status = Empty
 interface IMediaPlayer with
 member _.Open(mediaId : MediaId) =
 logger.Info(sprintf "Opening '%s'" mediaId)
 status <- Stopped mediaId
 member _.Play() =
 match status with
 | Empty ->
 logger.Error("Nothing to play")
 | Playing(_, _) ->
 logger.Error("Already playing")
 | Stopped(mediaId) ->
 logger.Info(sprintf "Playing '%s'" mediaId)
 status <- Playing(mediaId, 0)
 member _.Stop() =
 match status with
 | Empty
 | Stopped(_) ->
 logger.Error("Not playing")
 | Playing(mediaId, _) ->
 logger.Info(sprintf "Playing '%s'" mediaId)
 status <- Stopped(mediaId)
 member _.Eject() =
 match status with

 | Empty ->
 logger.Error("Nothing to eject")
 | Stopped(_)
 | Playing(_, _) ->
 logger.Info("Ejecting")
 status <- Empty
 member _.Status() =
 status

let logger = {
 new ILogger with
 member _.Info(msg) = printfn "%s" msg
 member _.Error(msg) = printfn "%s" msg }

let player = new LoggingPlayer(logger) :> IMediaPlayer
// "Nothing to eject"
player.Eject()
// "Opening 'Dreamer'"
player.Open("Dreamer")
// "Ejecting"
player.Eject()

Listing 8-21Using object expressions

In Listing 8-21, we make a new implementation of IMediaPlayer that requires a logger as a constructor argument. The logger needs to be of type ILogger, which I’ve also declared here but could just as easily be defined externally. The LoggingPlayer implementation calls the logger’s Info and Error methods at various points. The object expression part comes in the last few lines, where we create a value called logger that implements ILogger but is not a new, named type. The curly brackets {} are important here: they are part of the object expression. When various members of the LoggingPlayer instance are called, these call the methods we defined in the logger binding.
I personally don’t use object expressions very often, but they can certainly be useful. The times I have used them have been in writing tests in F# for highly coupled C# code bases. There they really have been a boon.
Abstract Classes
An abstract class

 is, broadly speaking, a class that allows at least some of its members to be implemented by derived classes. The concept in F# is not precisely the same as it is in C#, so if you are going to use abstract classes, it’s good to be clear about F#’s interpretation of “abstract”:	A method is abstract if it is marked with the keyword abstract, meaning that it can be overridden in a derived class.

	Abstract members can have default definitions, meaning that they can be but don’t have to be overridden.

	A class is only considered abstract if it contains at least one abstract member that doesn’t have a default implementation. Classes that fall into this category must be annotated with the [<AbstractClass>] attribute.

	Thus, a class’s members can all be abstract without the class being considered abstract: that’s when all the class’s abstract members have default implementations. Classes that fall into this category must not be annotated with the [<AbstractClass>] attribute.

Confused yet? Let’s look at some examples.
Abstract Members
Listing 8-22 shows a simple class hierarchy with one abstract class and one derived class.[<AbstractClass>]
type AbstractClass() =
 abstract member SaySomething : string -> string

type ConcreteClass(name : string) =
 inherit AbstractClass()
 override _.SaySomething(whatToSay) =
 sprintf "%s says %s" name whatToSay

let cc = ConcreteClass("Concrete")
// "Concrete says hello"
cc.SaySomething("hello")

Listing 8-22A simple abstract class

The abstract class’s member SaySomething
 is defined using the same kind of syntax as we used when defining an interface: we specify the name of the member and its signature (in this case, string -> string). Importantly, we use the [<AbstractClass>] attribute because this truly is an abstract class: it has at least one abstract member that doesn’t have a default definition. The error message you get if you omit the [<AbstractClass>] attribute is a little confusing:error FS0365: No implementation was given for 'abstract member AbstractClass.SaySomething : string -> string'

So don’t forget the attribute!
Default Member Implementations
Sometimes, we want to provide a default implementation

 for an abstract member: one that will be used if a derived class doesn’t bother to override that member. Default implementations are defined separately from the abstract definition. You use the same syntax as for ordinary members, except by using the keyword default instead of member (Listing 8-23).type ParentClass() =
 abstract member SaySomething : string -> string
 default _.SaySomething(whatToSay) =
 sprintf "Parent says %s" whatToSay

type ConcreteClass1(name : string) =
 inherit ParentClass()

type ConcreteClass2(name : string) =
 inherit ParentClass()
 override _.SaySomething(whatToSay) =
 sprintf "%s says %s" name whatToSay

let cc1 = ConcreteClass1("Concrete 1")
let cc2 = ConcreteClass2("Concrete 2")
// "Parent says hello"
printfn "%s" (cc1.SaySomething("hello"))
// "Concrete 2 says hello"
printfn "%s" (cc2.SaySomething("hello"))

Listing 8-23Default abstract member implementation

See how SaySomething is defined twice in ParentClass, once as an abstract member and again as the default implementation of that member.
It’s important to notice that because SaySomething now has a default implementation, its class is no longer considered abstract. This is why I’ve renamed the class ParentClass and removed the [<AbstractClass>] attribute. It would still be abstract if there was at least one other abstract member that didn’t have a default implementation.
Moving on to the derived classes: one of them, ConcreteClass1, doesn’t override SaySomething, so the default implementation is used. The other one, ConcreteClass2, does override SaySomething, and it is the overriding implementation that we see in operation.
Class Equality and Comparison
Although many F# developers don’t use inheritance or interfaces a great deal, there are a few standard interfaces that we often have to support. One is IDisposable

, which we dealt with briefly previously. The others are IEquatable and IComparable, which are used to determine if two instances are equal in some meaningful sense and whether one is larger or smaller than another.
Implementing Equality
Back in Chapter 7 we dodged the issue of latitude/longitude equality by storing positions as F# records, which by default implement structural (content) equality. Now it’s time to revisit the issue in the world of classes, where reference equality is the default. Consider the code in Listing 8-24, and note how two instances of LatLon, landsEnd, and landsEnd2, are considered unequal even though they refer to the same geographical position.type LatLon(latitude : float, longitude : float) =
 member val Latitude = latitude
 member val Longitude = longitude

let landsEnd = LatLon(50.07, -5.72)
let johnOGroats = LatLon(58.64, -3.07)
let landsEnd2 = LatLon(50.07, -5.72)

// false
printfn "%b" (landsEnd = johnOGroats)
// false
printfn "%b" (landsEnd = landsEnd2)

Listing 8-24Two identical geographical positions might be “unequal”

Note
Comparing floating-point values is always a dangerous thing to do: two GPS positions might only differ by the width of an atom and still be considered different on the basis of floating-point comparison. To keep things simple, I’m going to ignore that aspect and assume that instances like landsEnd and landsEnd2 come from some completely repeatable source. I’m also ignoring what happens if someone sends in an out-of-range value like 181.0 for longitude!

In the world of classes, the standard way to represent equality is to implement the .NET interface IEquatable. There are some gotchas in doing this though, so I’ll take it a step at a time and make a few deliberate mistakes.
Let’s start by simply making our class implement IEquatable, which is just a matter of overriding the Equals method (Listing 8-25).open System

type LatLon(latitude : float, longitude : float) =
 member val Latitude = latitude
 member val Longitude = longitude
 interface IEquatable<LatLon> with
 member this.Equals(that : LatLon) =
 this.Latitude = that.Latitude
 && this.Longitude = that.Longitude

let landsEnd = LatLon(50.07, -5.72)
let johnOGroats = LatLon(58.64, -3.07)
let landsEnd2 = LatLon(50.07, -5.72)

// false
printfn "%b" (landsEnd = johnOGroats)
// false
printfn "%b" (landsEnd = landsEnd2)

Listing 8-25Just implementing IEquatable isn’t enough

This compiles absolutely fine, and you might be forgiven for relaxing at that point. Except that it doesn’t work! In the last line of Listing 8-25, landsEnd = landsEnd2 still returns false. Confusingly, in the case of IEquatable, it isn’t enough just to implement the interface. For a start, you must also override the Equals() method of System.Object. (All classes are derived ultimately from System.Object, and for low-level operations like equality, you do sometimes have to override its methods.) Listing 8-26 shows us doing everything needed to make basic equality work.open System

[<AllowNullLiteral>]
type LatLon(latitude : float, longitude : float) =
 let eq (that : LatLon) =
 if isNull that then
 false
 else
 latitude = that.Latitude
 && longitude = that.Longitude
 member val Latitude = latitude
 member val Longitude = longitude
 override this.GetHashCode() =
 hash (this.Latitude, this.Longitude)
 override _.Equals(thatObj) =
 match thatObj with
 | :? LatLon as that ->
 eq that
 | _ ->
 false
 interface IEquatable<LatLon> with
 member _.Equals(that : LatLon) =
 eq that

Listing 8-26Overriding Object.Equals

We’ve made a number of changes between Listings 8-23 and 8-24, and to make equality work correctly, you’ll often need to do all of these things:	The [<AllowNullLiteral>] attribute has been added to the class. This allows other languages to create null instances. If we are implementing LatLon as a class instead of an F# record, this is a likely use case.

	There’s now a private eq function that does the real work of comparing instances. This includes a null check, which is now necessary as a result of adding [<AllowNullLiteral>].

	We’ve overridden the Object.Equals() method

. Since this takes an obj instance as its argument, this needs to pattern match on type before calling eq.

	The IEquatable implementation also calls eq.

	We’ve also overridden the Object.GetHashCode() method.

In case you didn’t already know, GetHashCode()
 is a method that returns a “magic number” that has the following qualities:	If two objects are considered equal, they must have the same hash code. (Within one Application Domain that is – the underlying hash code generator can vary between platforms and versions.)

	If two objects are considered not equal, they will usually have different hash codes, though this is far from guaranteed.

The purpose of hash codes is to provide a quick way to check for likely equality in, for example, dictionary implementations. You wouldn’t normally use hash codes directly – unless you were implementing some special collection type of your own – but you are encouraged to override GetHashCode so that your class can be placed into hash-based collections efficiently. Luckily, this is often easy to do: just tuple together the items that embody equality (in this case, the latitude and longitude values) and apply the built-in hash function

 to them, as we did in Listing 8-26.
If you don’t override GetHashCode(), equality for the class will work correctly, but you’ll get a compiler warning:Warning FS0346: The struct, record or union type 'LatLon' has an explicit implementation of 'Object.Equals'. Consider implementing a matching override for 'Object.GetHashCode()'

With all these changes in place, Listing 8-27 demonstrates that equality now works correctly from F#, including directly comparing instances with the = operator and adding them to a dictionary, which requires equality.let landsEnd = LatLon(50.07, -5.72)
let johnOGroats = LatLon(58.64, -3.07)
let landsEnd2 = LatLon(50.07, -5.72)

// false
printfn "%b" (landsEnd = johnOGroats)
// true
printfn "%b" (landsEnd = landsEnd2)

let places = [landsEnd; johnOGroats; landsEnd2]
let placeDict =
 places
 |> Seq.mapi (fun i place -> place, i)
 |> dict
// 50.070000, -5.720000 -> 2
// 58.640000, -3.070000 -> 1

placeDict
|> Seq.iter (fun kvp ->
 printfn "%f, %f -> %i"
 kvp.Key.Latitude kvp.Key.Longitude kvp.Value)

Listing 8-27Exercising equality

See how we use LatLon instances

 as keys in a dictionary. (The dictionary values here are integers and aren’t meaningful beyond being something to put in the dictionary.) The first instance (landsEnd, i=0) isn’t represented when we print out the dictionary contents because it was replaced by another item with the same key (landsEnd2, i=2).
There is one final thing we need to do in regard to equality: ensure that the == operator works correctly from C# and VB.NET. To do this, add another override for the op_Equality method (Listing 8-28).open System

[<AllowNullLiteral>]
type LatLon(latitude : float, longitude : float) =
 let eq (that : LatLon) =
 if isNull that then
 false
 else
 latitude = that.Latitude
 && longitude = that.Longitude
 member val Latitude = latitude
 member val Longitude = longitude
 // static member (=) : this:LatLon * that:LatLon -> bool
 static member op_Equality(this : LatLon, that : LatLon) =
 this.Equals(that)
 override this.GetHashCode() =
 hash (this.Latitude, this.Longitude)
 override _.Equals(thatObj) =
 match thatObj with
 | :? LatLon as that ->
 eq that
 | _ ->
 false
 interface IEquatable<LatLon> with
 member _.Equal

Listing 8-28Overriding op_Equality

op_Equality is a static member. As in C#, this means that it isn’t associated with any particular LatLon instance.
Implementing Comparison
Sometimes, you can get away with only implementing equality and not comparison, as we did in the previous section. In fact, it doesn’t seem particularly meaningful to implement comparison (greater than/less than) for LatLon instances. Which is genuinely “greater” – LatLon(1.0, 3.0) or LatLon(2.0, 0.0)? But there’s a catch: some collections, such as F# sets, require their elements to be comparable, not just equatable, because they rely on ordering to search for items efficiently. And, of course, other classes might have an obvious sort order, which you might need to implement, so it’s important to know how.
Here’s how to implement IComparable for our LatLon class (Listing 8-29).open System

[<AllowNullLiteral>]
type LatLon(latitude : float, longitude : float) =
 ...code as Listing 8-28...
 interface IComparable with
 member this.CompareTo(thatObj) =
 match thatObj with
 | :? LatLon as that ->
 compare
 (this.Latitude, this.Longitude)
 (that.Latitude, that.Longitude)
 | _ ->
 raise <| ArgumentException("Can't compare different types")

Listing 8-29Implementing IComparable

Now that you’re familiar with interfaces in F#, this code should be pretty self-explanatory. We implement IComparable and implement its one method: CompareTo(). Then, in a similar way to the Equals() override

, we use pattern matching on types to recover the other LatLon instance. We take the latitudes and longitudes from the instances being compared and pass them as tuples to the built-in compare function

, which will do the real comparison work for us. Pleasingly, using compare means we don’t have to worry about whether, for example, (50.07, -5.72) is less than or greater than (58.64, -3.07). Whatever the compare function does for us is going to be consistent.
In Listing 8-30, we prove that a list of LatLon instances from Listing 8-29 can be put into a Set and that duplicates by geographical position are eliminated in the process.let landsEnd = LatLon(50.07, -5.72)
let johnOGroats = LatLon(58.64, -3.07)
let landsEnd2 = LatLon(50.07, -5.72)

let places = [landsEnd; johnOGroats; landsEnd2]
// 50.070000, -5.720000
// 58.640000, -3.070000
places
|> Set.ofList
|> Seq.iter (fun ll -> printfn "%f, %f" ll.Latitude ll.Longitude)

Listing 8-30Using class instances that implement IComparable

One final wrinkle: there are actually two versions of IComparable: a nongeneric and a generic one. In Listing 8-29, we only implemented the nongeneric one. This works, but there can be a benefit in also implementing the generic version. Some APIs will try to use both, starting with the generic version, which can improve performance. Listing 8-31 shows how to add the generic version of IComparable to the LatLon definition.open System

[<AllowNullLiteral>]
type LatLon(latitude : float, longitude : float) =
 let eq (that : LatLon) =
 if isNull that then
 false
 else
 latitude = that.Latitude
 && longitude = that.Longitude
 let comp (that : LatLon) =
 compare
 (latitude, longitude)
 (that.Latitude, that.Longitude)
 member val Latitude = latitude
 member val Longitude = longitude
 static member op_Equality(this : LatLon, that : LatLon) =
 this.Equals(that)
 override this.GetHashCode() =
 hash (this.Latitude, this.Longitude)
 override _.Equals(thatObj) =
 match thatObj with
 | :? LatLon as that ->
 eq that
 | _ ->
 false
 interface IEquatable<LatLon> with
 member _.Equals(that : LatLon) =
 eq that
 interface IComparable with
 member _.CompareTo(thatObj) =
 match thatObj with
 | :? LatLon as that ->
 comp that
 | _ ->
 raise <| ArgumentException("Can't compare different types")
 interface IComparable<LatLon> with
 member _.CompareTo(that) =
 comp that

Listing 8-31Adding a generic version of IComparable

As with equality, I’ve moved the implementation of comparison to a private function called comp and delegated to that from both the IComparable and the new IComparable<LatLon> implementations.
Now you know why F# record types, with structural equality and comparison by default, are so valuable! If you even dip a toe into equality or comparison for classes, you pretty much have dive into the pool completely. Sometimes, that’s worth it, sometimes not.
Recommendations
Here are the ideas I’d like you to take away from this chapter:	Use F# classes when the modeling possibilities offered by simpler structures, such as F# records and Discriminated Unions, aren’t sufficient. Often, this is because there is a requirement for asymmetric representation: the type is more than just a grouping of its construction values, or it needs to have moving parts.

	Also use classes when you need to participate in a class hierarchy, by inheriting from some other class or providing the ability to be inherited from. This is most common when interacting with C# code bases but may also be perfectly legitimate in F#-only code bases in cases where class hierarchies are the easiest way to model the requirement.

	Be aware of the benefits and costs of going down the OO route. Don’t just do it because you happen to have more experience in modeling things in an OO way. Explore the alternatives that F# offers first.

	Don’t forget the power of object expressions to inherit from base types or implement interfaces without creating a new type.

	All the major OO modeling facilities offered by C# are also available in F#: classes, abstract classes, interfaces, read-only, and mutable properties – even nullability.

Summary
The chapter has two messages. The explicit message is “Here’s how to do Object Orientation in F#. Here’s how to write classes, use interfaces, override methods, and so forth.” The implicit message is “Object Orientation can be a slippery slope.” Compare, for example, what we ended up with in Listing 8-31 with what would have been achieved, almost for free, using an F# record (accepting the dangers and limitations of comparing floating-point values, which apply to both the class and the record version). Also, it’s interesting to note that this chapter is the longest in the book and was by far the hardest to write. It’s hard to be concise when writing classes or writing about classes!
Object Orientation has its own internal logic that, when followed, doesn’t always lead to the simplest solution. Therefore, you need to be keenly aware of the costs (and, to be fair, benefits) of even starting down this path for any particular piece of design. The costs are, broadly speaking, the following:	The OO philosophy sometimes feels as though it involves taking something complicated and making it more complicated. (I’m indebted to Don Syme, “father of F#,” for this phrase.)

	OO code can be harder to reason about than a good, functional implementation, especially once one opens the door to mutability.

	OO code tends to embrace the concept of nullability, which can complicate your code. That said, as we discovered in Chapter 3, the introduction of nullable reference types into C# may change the balance of power here.

At the same time, you shouldn’t discount the benefits of an OO approach:	.NET is fundamentally an OO platform. This isn’t just built into the C# language – the lower-level IL into which both C# and F# are compiled is also inherently object oriented. This fact can leak into your F# code, and frankly you shouldn’t waste too much time fighting it.

	Many of the NuGet packages and other APIs you will be coding against will be written in terms of classes, interfaces, and so forth. Again, this is just a fact of life.

	The OO world has an immense depth of experience in building working, large-scale systems. A dyed-in-the-wool F# developer like me would argue that these systems have often not been built in the most productive way. But there is no denying there have been many successes. It seems foolish to dismiss all this hard-won knowledge.

So that you can make informed design decisions, make sure you are familiar with the basics of F# classes, constructors, overrides, interfaces, and abstract classes. Don’t forget how useful object expressions can be for making ad hoc extensions to a class without a proliferation of types. Above all, be extremely cautious about implementing deep hierarchies of classes. I’ve rarely seen this turn out well in F# code bases.
In the next chapter, we’ll return to F# fundamentals and look at how to get the best out of functions.
Exercises
Exercise 8-1 – A Simple Class
Make a class that takes three byte values called r, g, and b and provides a byte property called Level, which contains a grayscale value calculated from the incoming red, green, and blue values.
The grayscale value should be calculated by taking the average of the r, g, and b values. You’ll need to cast r, g, and b to integers to perform the calculation without overflow.

Note
This is a terrible way to calculate grayscale values and probably a terrible way to model them! The focus of this and the next few exercises is on the mechanics of class definition.

Exercise 8-2 – Secondary Constructors
Add a secondary constructor for the GrayScale class from Exercise 8-1. It should take a System.Drawing.Color instance and construct a GrayScale instance from the color’s R, G, and B properties

.

Exercise 8-3 – Overrides
Override the ToString() method of GrayScale so that it produces output like this, where the number is the Level value:GrayScale(140)

Exercise 8-4 – Equality
Implement equality for the GrayScale class by overriding GetHashCode() and Equals() and implementing the generic version of IEquatable. The GrayScale class should not be nullable (don’t add the [<AllowNullLiteral>] attribute).
Prove that GrayScale(Color.Orange) is equal to GrayScale(0xFFuy, 0xA5uy, 0x00uy).
Prove that GrayScale(Color.Orange) is not equal to GrayScale(Color.Blue).
What happens if you check equality for GrayScale(0xFFuy, 0xA5uy, 0x00uy) and GrayScale(0xFFuy, 0xA5uy, 0x01uy). Why is this?

Exercise Solutions
Exercise 8-1 – A Simple Class
This can be done in three lines of code. Note the casting between byte and int and back again. This is done so that there is no overflow during the addition, but the Level property is still a byte.type GrayScale(r : byte, g : byte, b : byte) =
 member _.Level =
 (int r + int g + int b) / 3 |> byte

// 127
GrayScale(255uy, 128uy, 0uy).Level

Exercise 8-2 – Secondary Constructors
Add a secondary constructor using the new keyword and pass the color values individually through to the main constructor.open System.Drawing

type GrayScale(r : byte, g : byte, b : byte) =
 new (color : Color) =
 GrayScale(color.R, color.G, color.B)
 member _.Level =
 (int r + int g + int b) / 3 |> byte
// 83
GrayScale(Color.Brown).Level

Exercise 8-3 – Overrides
Add a straightforward override and use sprintf to produce the formatted output.open System.Drawing

type GrayScale(r : byte, g : byte, b : byte) =
 new (color : Color) =
 GrayScale(color.R, color.G, color.B)
 member _.Level =
 (int r + int g + int b) / 3 |> byte
 override this.ToString() =
 sprintf "GrayScale(%i)" this.Level

// GrayScale(140)
GrayScale(Color.Orange) |> printfn "%A"
// GrayScale(255)
GrayScale(255uy, 255uy, 255uy) |> printfn "%A"

Exercise 8-4 – Equality
Follow the pattern shown in Listing 8-24, but since you have not added the [<AllowNullLiteral>] attribute

, you shouldn’t check for null in the eq function.open System

open System.Drawing

type GrayScale(r : byte, g : byte, b : byte) =
 let level = (int r + int g + int b) / 3 |> byte
 let eq (that : GrayScale) =
 level = that.Level
 new (color : Color) =
 GrayScale(color.R, color.G, color.B)
 member _.Level =
 level
 override this.ToString() =
 sprintf "GrayScale(%i)" this.Level
 override this.GetHashCode() =
 hash level
 override _.Equals(thatObj) =
 match thatObj with
 | :? GrayScale as that ->
 eq that
 | _ ->

 false
 interface IEquatable<GrayScale> with
 member _.Equals(that : GrayScale) =
 eq that

let orange1 = GrayScale(Color.Orange)
let blue = GrayScale(Color.Blue)
let orange2 = GrayScale(0xFFuy, 0xA5uy, 0x00uy)
let orange3 = GrayScale(0xFFuy, 0xA5uy, 0x01uy)

// true
printfn "%b" (orange1 = orange2)
// false
printfn "%b" (orange1 = blue)
// true
printfn "%b" (orange1 = orange3)

GrayScale(0xFFuy, 0xA5uy, 0x00uy) is equal to GrayScale(0xFFuy, 0xA5uy, 0x01uy) even though the input RGB levels are slightly different. This is because we lose some accuracy (we round down when doing integer division) in calculating Level to fit into a byte range (0..255), so certain different combinations of inputs will result in the same Level value.

Footnotes
1F# people often refer to “Object Programming” rather than “Object-Oriented Programming,” to reflect the fact that we are happy to use OO features, but don’t base all our choices on OO principles such as inheritance.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_9

9. Programming with Functions

Kit Eason1
(1)Farnham, Surrey, UK

“Form follows function” – that has been misunderstood. Form and function should be one, joined in a spiritual union.
—Frank Lloyd Wright, Architect

Functions First
One of the things that makes F# a functional-first language is that its functions are “first-class values.”1 But what does that really mean, and how genuinely useful is it? In this chapter, you’ll get the answers to these questions and learn how you can use (and sometimes abuse) this feature to build simple, refactorable code. This is one of those topics where we move quite a way from the familiar ground of Object-Oriented code. So buckle up and enjoy the ride!
Functions as Values
What does it mean to describe a function as a value? Consider a simple function that adds two numbers (Listing 9-1).// int -> int -> int
let add a b = a + b

// int -> int -> int
let addUp = add

// 5
printfn "%i" (add 2 3)

// 5
printfn "%i" (addUp 2 3)

Listing 9-1Binding a function to another label

Listing 9-1 shows that we can not only define a function and use it: we can also bind it to another label (let addUp = add) and call that as if it were the original function. We can also pass it as an argument to some other function and have that other function call the supplied function (Listing 9-2).let add a b = a + b

let applyAndPrint f a b =
 let r = f a b
 printfn "%i" r

// "5"
applyAndPrint add 2 3

Listing 9-2A function as a parameter for another function

In Listing 9-2, the function applyAndPrint has a parameter called f, whose signature is a function that takes two values and returns an integer. In its body, applyAndPrint calls

 the provided function – whatever it is – and prints the result.
All this is achieved without any additional ceremony, for example, having to make the function be a “delegate” or a “func.” It’s just a value that happens to be a function. The fact that it is a function (and not a single integer value or a string or whatever) is deduced by the compiler entirely by the way it is used. In this case, the key line islet r = f a b.

Furthermore, the compiler knows the function must return an integer, because we use its result in a printfn statement that uses a %i format string.
Treating functions as values unlocks a rich store of possibilities for expressing yourself in code. But it comes with the need to understand a few distinctly non-ObjectOriented concepts, which I’ll cover in the next few sections.
Currying and Partial Application
To get a bit more out of functions as values, we need to go into the twin concepts of curried arguments

 and partial application. You can think of curried arguments as being arguments expressed as separate values like this:let add a b = a + b

…as opposed to the (for many people) more familiar style of tupled arguments, which are bracketed together like this:let add (a, b) = a + b

Note
I’m using the terms “curried arguments” and “tupled arguments” here even though, strictly speaking, these are function parameters (in the definition), not arguments (actual values at call time). It just happens that “curried arguments” and “tupled arguments” are the more commonly used, if less, precise phrases.

Partial application is the act of binding a function while providing values for some, but not all, of the expected arguments (Listing 9-3).// int -> int -> int
let add a b = a + b

// int -> int
let addTwo = add 2

// 5
printfn "%i" (add 2 3)

// 5
printfn "%i" (addTwo 3)

Listing 9-3Partial application

In Listing 9-3, we bind a function called addTwo
, which takes one argument and adds it to the constant 2. This is achieved by using (applying) add and providing one argument value: 2. The one “left-over” argument of add is now required by addTwo, and when we supply a value for it (last line of Listing 9-3), an actual calculation is done.
Incidentally, we can only use partial application because the add function’s arguments are curried, not tupled. With tupled arguments, the caller always has to provide the complete tuple.
Note
Another way to think of currying is that every function in F# takes only one parameter. If a function is bound with, say, two (nontupled) parameters, it’s really a function that takes one parameter and returns a function that itself takes the other parameter.

You may well wonder why you’d ever want to curry and partially apply! The short answer is code reuse. Imagine you want a simple function that surrounds a string with two other strings. The surrounding strings might be brackets, quote marks, or even comment delimiters. Listing 9-4 shows how you can do this in a concise way using partial application.let surround prefix suffix s =
 sprintf "%s%s%s" prefix s suffix

let roundParen = surround "(" ")"

let squareParen = surround "[" "]"

let xmlComment = surround "<!--" "-->"

let quote q = surround q q

let doubleQuote = quote "\""

// ~~Markdown strikethrough~~
printfn "%s" (surround "~~" "~~" "Markdown strikethrough")
// (Round parentheses)
printfn "%s" (roundParen "Round parentheses")
// [Square parentheses]
printfn "%s" (squareParen "Square parentheses")
// <!--XML comment-->
printfn "%s" (xmlComment "XML comment")
// "To be or not to be"
printfn "%s" (doubleQuote "To be or not to be")

Listing 9-4Parenthesizing strings using partial application

In Listing 9-4, we start with a simple function called surround, which does the fundamental work of surrounding a string with two other strings. The surround function has curried arguments, which means we can use partial application to specialize the function in various different ways: roundParen and squareParen parenthesize a string with round and square brackets, respectively; and just to prove that we can use longer surrounding strings, xmlComment surrounds the string with <!-- and -->. We also define a quote function, which uses the same string before and after the input string, again by calling surround. Then we specialize quote further, as doubleQuote, to surround the input string with double quotation marks.
Mixing Tupled and Curried Styles
There’s nothing in the rule book that says you can’t mix tupled and curried styles. Let’s say you decide that it’s invalid to allow the enclosing strings to be applied separately in the surround function. You could enforce that by tupling together the prefix and suffix parameters (Listing 9-5).let surround (prefix, suffix) s =
 sprintf "%s%s%s" prefix s suffix

let roundParen = surround ("(", ")")

let squareParen = surround ("[", "]")

let xmlComment = surround ("<!--", "-->")

let quote q = surround(q, q)

let doubleQuote = quote "\""

// ~~Markdown strikethrough~~
printfn "%s" (surround ("~~", "~~") "Markdown strikethrough")
// (Round parentheses)
printfn "%s" (roundParen "Round parentheses")
// [Square parentheses]
printfn "%s" (squareParen "Square parentheses")
// <!--XML comment-->
printfn "%s" (xmlComment "XML comment")
// "To be or not to be"
printfn "%s" (doubleQuote "To be or not to be")

Listing 9-5Mixed tupled and curried styles

Note how all the code in Listing 9-5 has been amended so that prefix and suffix are provided as a single tuple. But there is still partial application going on, for instance, when we define specialized versions like roundParen and quote, where we provide the whole prefix/suffix tuple but no value for the s parameter.
Stylistically, mixing tupled and curried styles is relatively rare, though oddly enough we have encountered one example earlier in this book. It happened in Chapter 8, when we had to provide a tuple for the two indices of a two-dimensional array property in the property’s setter, and yet the value to be set was curried. (The relevant code is repeated in Listing 9-6).type RingBuffer2D<'T>(items : 'T[,]) =
 let leni = items.GetLength(0)
 let lenj = items.GetLength(1)
 let _items = Array2D.copy items
 member _.Item
 with get(i, j) =
 _items.[i % leni, j % lenj]
 and set (i, j) value =
 _items.[i % leni, j % lenj] <- value

Listing 9-6Mixed tupled and curried styles in the wild

It’s also worth saying that many F# developers prefer the curried style even when they don’t intend to use partial application, simply because it means there are fewer brackets to type and match up.
When writing a function, it’s important to think through the order of the curried arguments; which arguments will you want to provide “first,” and which will you want to leave open for specialization?
Function Signatures Revisited
We discussed function signatures a bit in Chapter 2, but I want to revisit the topic here because it’s very important to start thinking in function signatures when designing code. Like me, you might initially have been a bit irritated to find that in F#, the type signature of a function like add is int -> int -> int. “Why,” I thought, “can’t they use a different symbol to separate the parameter list (int and another int) from what the function returns? (int). Why is it all just arrows?” The answer is because when we use curried style, there truly is no distinction. Every time we provide an argument value for a parameter, one item gets knocked off that undifferentiated list of parameters, until we finally bind an actual value with a nonfunction type like int (Listing 9-7).// int -> int -> int
let add a b = a + b

// int -> int
let addTwo = add 2

// int
let result = addTwo 3

Listing 9-7Function signatures and function application

Note how the type signature of the add function differs if we tuple its parameters (Listing 9-8).// int * int -> int
let add(a, b) = a + b

// int
let result = add(2, 3)

Listing 9-8Function signature for tupled arguments

The asterisk in the construct int * int

 shows that these values are part of a tuple, and the function is expecting a whole tuple, not just two integers that might be provided separately.
It’s worth getting familiar with F#’s way of expressing type signatures for two reasons: they let you verify that a function has the “shape” you expect, and they let you pin down that shape, if you want to, using type hints.
Type Hints for Functions
When a function takes another function as a parameter, the “outer” function obviously needs to apply the provided function appropriately. Think about the code in Listing 9-9, where we provide a function to another function.let add a b = a + b

let applyAndPrint f a b =
 let r = f a b
 printfn "%i" r

// "5"
applyAndPrint add 2 3

Listing 9-9A function as a parameter for another function

Type inference deduces that the signature of the function f is ‘a -> ‘b -> int; in other words, “function f takes a parameter of unknown type ‘a and another parameter of unknown type ‘b and returns an integer.” The actual add function

 that we send in fits this signature (where ‘a and ‘b also turn out to be integers). But sometimes you will want to think about things in a different way: choosing to specify the type of f up front, by giving a type hint. You write the type hint using the same notation as shown in the type signatures we’ve just been discussing: that is, a list of parameter types, separated by-> if the parameters are to be curried, or * if they are to be tupled together. Listing 9-10 shows this in action. First (in applyAndPrint1), we allow the incoming curried arguments to be unknown types ‘a and ‘b, expressed as (f : 'a -> 'b -> int). Second (in applyAndPrint2), we pin them down to be integers, expressed as (f : int -> int-> int). And finally (in applyAndPrint3), we require a tuple of two integers, expressed as (f : int * int -> int).// Takes curried arguments:
let add a b = a + b

// Takes tupled argument:
let addTupled(a, b) = a + b

// f must take curried arguments and return an int:
let applyAndPrint1 (f : 'a -> 'b -> int) a b =
 let r = f a b
 printfn "%i" r

// f must take curried integer arguments and return an int:
let applyAndPrint2 (f : int -> int -> int) a b =
 let r = f a b
 printfn "%i" r

// f must take tupled integer arguments and return an int:
let applyAndPrint3 (f : int * int -> int) a b =
 let r = f(a, b)
 printfn "%i" r

// Must use the curried version of add here:
applyAndPrint1 add 2 3
applyAndPrint2 add 2 3

// Must use the tupled version of add here:
applyAndPrint3 addTupled 2 3

Listing 9-10Using type hints to specify function types

This means that when writing a function that takes another function, you have two options (we’ll call the functions newFunction and paramFunction):	Work on the body of newFunction first, and let the compiler work out the type of paramFunction itself based on how it is used (as Listing 9-9).

	Specify the signature of the paramFunction
 in newFunction’s parameter list using a type hint so that the compiler can check that you call paramFunction correctly in newFunction’s body (as Listing 9-10).

The final outcome can be just the same, because usually you can remove the type hint when everything is compiling successfully.
For me, there is no hard and fast rule for which approach to take. I usually start by relying entirely on type inference at first, but if either the compiler or I get confused, I try adding a type hint in case that clarifies matters. I normally try removing the type hint at the end of the process, but I don’t let it ruin my day if type inference can’t work out the signature, which sometimes does happen in otherwise valid code. In those cases, I leave the type hint in and move on. Even then, I often find later that my code elsewhere was imperfect, and when I sort that out, I try again to remove type hints I left in earlier.
All that being said, it can be useful to provide type hints for functions you expect other people to have to call or refer to a lot, for example, the public API of a library you are publishing. This can help readability for people who might not be interested in the nuts and bolts of your code, or who are viewing it outside an IDE.
Functions That Return Functions
Not only can functions take functions; functions can return functions. Unlike with parameters, explicitly returning functions requires you to pay a tiny syntax overhead, the keyword fun followed by an argument list and a forward arrow ->. We can rejig the add function from Listing 9-1 so that it behaves in exactly the same way but works by explicitly returning a function (Listing 9-11).// int -> int -> int
let add a =
 fun b -> a + b

// 5
printfn "%i" (add 2 3)

Listing 9-11Explicitly returning a function

See how in Listing 9-11 we use fun b -> to specify that we want to create a function that takes one argument, which we call b. Since this is the last expression in the definition of add, it is this newly minted function that is returned. Notice also how the type signature of the new add is the same as it was in Listing 9-1. This bears out what I was saying earlier: that you can think of a function with two arguments as only really taking one argument and returning a function that itself requires the remaining argument.
Why on earth would you want to make a function definition more complicated by explicitly returning another function? The answer is: you can do useful work, and/or hide data, by placing it inside the outer function but before the returned function. In Listing 9-12, we define a simple counter that takes a starting point, and each time it is invoked, it returns the next integer.let counter start =
 let mutable current = start
 fun () ->
 let this = current
 current <- current + 1
 this

let c1 = counter 0
let c2 = counter 100
// c1: 0
// c2: 100
// c1: 1
// c2: 101
// c1: 2
// c2: 102
// c1: 3
// c2: 103
// c1: 4
// c2: 104
for _ in 0..4 do
 printfn "c1: %i" (c1())
 printfn "c2: %i" (c2())

Listing 9-12A simple counter using explicit returning of a function

The counter function

 works by initializing a little bit of mutable state (current) and then returning a function that returns the current value and increments the state. This is a nice way of using, but concealing, some mutable state. (As implemented here, though, I wouldn’t want to warrant that it’s thread safe.)
Another situation where you might like to create and use, but not expose, a bit of state is random number generation. One way of generating random numbers is to create a new instance of the System.Random class and then call one of its methods to produce values. It’s always a little annoying to have to worry about the scope of the System.Random instance. But you can get around this by binding a value that creates the System.Random and then returns a function that gets the next value from it (Listing 9-13).let randomByte =
 let r = System.Random()
 fun () ->
 r.Next(0, 255) |> byte

// E.g. A3-52-31-D2-90-E6-6F-45-1C-3F-F2-9B-7F-58-34-44-
for _ in 0..15 do
 printf "%X-" (randomByte())
printfn ""

Listing 9-13Hiding a System.Random instance by returning a function

In Listing 9-13, the function we return takes unit (expressed as two round brackets) and uses – but does not expose – a System.Random instance

 to return a random byte. Although we call randomByte() multiple times, only one System.Random() instance is created. In addition to the data-hiding aspect, this pattern is also useful where it takes significant time to initialize the state within the outer function.
Function Composition
Once we realize that functions are simply values, it’s logical to ask if we can in some way add them together, as we can number values (by adding) or string values (by concatenating). The answer, you won’t be surprised to learn, is “yes.” Let’s imagine you have the task of taking some text and replacing all the directional or typographic quote marks with nondirectional or neutral ones. For example, this text:
“Bob said ‘Hello’,” said Alice.
… would be translated to this:
"Bob said 'Hello'," said Alice. (Note the nondirectional quote marks.)
The actual replacement is simply a matter of calling .NET’s String.Replace method a couple of times in functions called fixSingleQuotes and fixDoubleQuotes (Listing 9-14). Then we bind a function called fixTypographicQuotes. which calls fixSingleQuotes and fixDoubleQuotes to do its work.module Quotes =

 module Typographic =
 let openSingle = '\u2018' // ‘
 let closeSingle = '\u2019' // ’
 let openDouble = '\u201C' // “
 let closeDouble = '\u201D' // ”

 module Neutral =
 let single = '\u0027' // '
 let double = '\u0022' // "

 /// Translate any typographic single quotes to neutral ones

.
 let fixSingle (s : string) =
 s
 .Replace(Typographic.openSingle, Neutral.single)
 .Replace(Typographic.closeSingle, Neutral.single)

 /// Translate any typographic double quotes to neutral ones.
 let fixDouble (s : string) =
 s
 .Replace(Typographic.openDouble, Neutral.double)
 .Replace(Typographic.closeDouble, Neutral.double)

 /// Translate any typographic quotes to neutral ones.
 let fixTypographic (s : string) =
 s
 |> fixSingle
 |> fixDouble

"This had "typographical 'quotes'"" |> Quotes.fixTypographic

Listing 9-14First cut of removing typographic quotes

There’s nothing inherently wrong with the way Quotes.fixTypographic is defined in Listing 9-14. Indeed, I would often be tempted to leave the code in that state. But there are several alternative ways of expressing the same logic, any of which you may encounter in the wild, and some of which you might even prefer.
Firstly, we note that Quotes.fixSingle returns a string and Quotes.fixDouble takes a string. Whenever some function takes the same type that another function returns, you can compose them together into a new function using the function composition operator >> (Listing 9-15). /// Translate any typographic quotes to neutral ones using
 /// function composition.
 let fixTypographic (s : string) =
 let fixQuotes = fixSingle >> fixDouble
 s |> fixQuotes

Listing 9-15Basic function composition

In Listing 9-15, we define a function called fix, which is a combination of fixSingle and fixDouble

. When fix is called, fixSingle will be called first (using the input to fix), and its output will be passed to fixDouble. Whatever fixDouble returns will be returned as the result of fixTypographic. Having defined fixTypographic, we then call it by passing the input s into it.
We can eliminate still more code by not explicitly binding fixQuotes, instead doing the composition “on the fly” in brackets and passing s into that (Listing 9-16). /// Translate any typographic quotes to neutral ones using
 /// function composition.
 let fixTypographic (s : string) =
 s |> (fixSingle >> fixDouble)

Listing 9-16Using a composed function without binding it to a name

This does exactly the same thing as Listing 9-15, but without binding the composed function to an arguably unnecessary token.
Finally, we note that the explicit parameter s isn’t really needed because its sole purpose is to be passed into the composition of fixSingle and fixDouble

. If we simply delete it, we still end up with a function fixTypographic that takes a string and returns a string (Listing 9-17). /// Translate any typographic quotes to neutral ones using
 /// function composition.
 let fixTypographic =
 fixSingle >> fixDouble

Listing 9-17Eliminating an unnecessary parameter

It takes a while before one starts automatically recognizing where functions can be composed with >>, rather than pipelined together with |>. But once you start “feeling the force,” there is a temptation to go crazy with function composition. You may even find yourself bending other parts of your code just so that you can use composition. This is often a good thing: functions that are easily composable are often well-designed functions. But also remember: composition isn’t a goal in itself. The principles of motivational transparency and semantic focus trump everything else.
For example, if you use function composition extensively, the reader of your code will have fewer named bindings, like fixTypographic, to give them clues as to what is going on. And in the worst case, if the code has to be debugged, they won’t have a bound value to look at because the composed functions have effectively been put into a black box. Sometimes, code with a few explicitly bound intermediate values is simply more readable and more maintainable. Use function composition with restraint!
Recommendations
Here are some thoughts I’d like you to take away from this chapter:	Remember the twin concepts of currying (defining parameters as separate, untupled items) and partial application (binding a function value by applying another function giving some, but not all, its curried parameters).

	Consider defining the parameters of your function in curried style. It can reduce noise (brackets) and make your functions more flexible to use.

	Define curried parameters (more commonly known as curried arguments) in an order that is likely to make partial application by a consumer make the most sense.

	Use currying and partial application judiciously to clarify and simplify your code and to eliminate code repetition.

	Functions can take other functions as arguments. Exploit this to create beautiful, decoupled code. Remember that you have a choice about whether to specify the signature of the incoming function using a type hint or to allow type inference to infer its signature based on how it is used.

	Functions can explicitly return other functions. This can be a great way to get data hiding without classes.

	Whenever a function’s input is the same type as another function’s output, they can be composed together using the >> operator. The fact that the functions you have written are composable is a good sign, but that doesn’t mean you have to compose them with >>. You may be sacrificing readability and ease of debugging.

Summary
Coding gurus love to talk about “decoupled code.” But in Object-Oriented languages, functions are still coupled to classes in the form of methods, and parameters are still coupled to one another in the form of tuples. F# sets functions free by making them first-class values, able to be declared independently, called, passed as arguments, returned as results, and composed together; all vastly increasing the expressiveness of the language. In part, this is achieved by using the concept of curried arguments, which can be applied one at a time, with each supplied argument taking us one step closer to an actual computation.
One of the keys to writing stylish F# code is to make good but cautious use of these powers. Above all, don’t always use partial application and composition to reduce your code down to the most concise expression humanly possible. It won’t be readable or maintainable.
In the next chapter, we’ll leave the rarefied world of F# functions and start our journey into performant F# code by looking at asynchronous and parallel programming
.
Exercises
Exercise 9-1 – Functions as Arguments
Think back to the code from Listing 9-2, where we supplied an add function to applyAndPrint, which calls add and prints the results:let add a b = a + b

let applyAndPrint f a b =
 let r = f a b
 printfn "%i" r

// "5"
applyAndPrint add 2 3

Define another function called multiply that multiplies its arguments. Can it be used by applyAndPrint?
What if you want to send in a function to subtract its second input from its first? Is it possible to do this without defining a named function called something like subtract?

Exercise 9-2 – Functions Returning Functions
In Listing 9-12, we defined a counter that returned a function to count up from a defined starting point:let counter start =
 let mutable current = start
 fun () ->
 let this = current
 current <- current + 1
 this

let c1 = counter 0
let c2 = counter 100

for _ in 0..4 do
 printfn "c1: %i" (c1())
 printfn "c2: %i" (c2())

Define another function called rangeCounter that returns a function that generates numbers in a circular pattern between a specified range, for example, 3, 4, 5, 6, 3, 4, 5, 6, 3….

Exercise 9-3 – Partial Application
The following code shows a function featureScale that “rescales” a dataset so that all the values fall into a specified range. The scale function

 calls featureScale to normalize a dataset into the range 0..1.let featureScale a b xMin xMax x =
 a + ((x - xMin) * (b - a)) / (xMax - xMin)

let scale (data : seq<float>) =
 let minX = data |> Seq.min
 let maxX = data |> Seq.max
 // let zeroOneScale = ...
 data
 |> Seq.map (fun x -> featureScale 0. 1. minX maxX x)
 // |> Seq.map zeroOneScale

// seq [0.0; 0.5; 1.0]
[100.; 150.; 200.]
|> scale

How would you amend the code so that the mapping operation at the end of the scale function did not use a lambda function? That is, so that it reads something like this:|> Seq.map zeroOneScale

You can assume that the provided dataset is nonempty.

Exercise 9-4 – Function Composition
You have a list of functions, each of which takes a float argument and returns another float, like this:let pipeline =
 [fun x -> x * 2.
 fun x -> x * x
 fun x -> x - 99.9]

The list is nonempty but otherwise can have any length.
How would you write a function applyAll that can take such a list of functions and apply them all, taking the result of the first function and feeding it into the second, taking the result of that and feeding it into the third function, and so forth, until a final result is produced? Your function should be callable like this:let applyAll (p : (float -> float) list) =
 // Replace this:
 raise <| System.NotImplementedException()

let r = 100. |> applyAll pipeline
// 39900.1
printfn "%f" r

Hints:	You can combine values in a nonempty list using List.reduce.

	Remember that there is an F# operator that can combine (compose) two functions into one, providing that the output of the first is compatible with the input of the second.

Exercise Solutions
Exercise 9-1 – Functions as Arguments
It’s straightforward to define a multiply function and pass it into applyAndPrint

:let add a b = a + b
let multiply a b = a * b

let applyAndPrint f a b =
 let r = f a b
 printfn "%i" r

// "5"
applyAndPrint add 2 3
// "6"
applyAndPrint multiply 2 3

To define a subtract function without naming it, you can use the fun keyword in the call to applyAndPrint:// "-1"
applyAndPrint (fun x y -> x - y) 2 3

Or you could just pass an operator straight in:// "-1"
applyAndPrint (-) 2 3

Exercise 9-2 – Functions Returning Functions
You can achieve this using a similar pattern to Listing 9-12 but with a little if/then logic to calculate the next value and wrap it round when it passes the upper bound.let rangeCounter first last =
 let mutable current = first
 fun () ->
 let this = current
 let next = current + 1
 current <-
 if next <= last then
 next
 else
 first
 this

// r1: 3 r2: 6
// r1: 4 r2: 7
// r1: 5 r2: 8
// r1: 6 r2: 9
// r1: 3 r2: 10
// r1: 4 r2: 11
// ...
// r1: 3 r2: 8
let r1 = rangeCounter 3 6
let r2 = rangeCounter 6 11
for _ in 0..20 do

 printfn "r1: %i r2: %i" (r1()) (r2())

Exercise 9-3 – Partial Application
You need to bind a value called something like zeroOneScale, which is a partial application of featureScale providing values for the a, b, xMin, and xMax parameters. The resulting function only has one parameter, x, and so can be used directly in a Seq.map operation

.let featureScale a b xMin xMax x =
 a + ((x - xMin) * (b - a)) / (xMax - xMin)

let scale (data : seq<float>) =
 let minX = data |> Seq.min
 let maxX = data |> Seq.max
 let zeroOneScale = featureScale 0. 1. minX maxX
 data
 |> Seq.map zeroOneScale

// seq [0.0; 0.5; 1.0]
[100.; 150.; 200.]
|> scale

Exercise 9-4 – Function Composition
This can be achieved using List.reduce (or Seq.reduce) and the >> (function composition) operator.let pipeline =
 [fun x -> x * 2.
 fun x -> x * x
 fun x -> x - 99.9]

let applyAll (p : (float -> float) list) =
 p |> List.reduce (>>)

let r = 100. |> applyAll pipeline
// 39900.1
printfn "%f" r

Since List.reduce is a partial function and raises an exception if the list is empty, the function pipeline list must contain at least one function.
If you want, you can omit the explicit parameter for applyAll, as the reduce operation will return a composed function, which itself expects a parameter. let applyAll =
 List.reduce (>>)

Footnotes
1Just to clarify for readers with English as an additional language: the word “class” in this paragraph doesn’t refer to “classes” in a programming sense (i.e., as in Chapter 8). In this paragraph, by “first-class,” we mean something that is built naturally into the language syntax, rather than something that needs extra ceremony to use.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_10

10. Asynchronous and Parallel Programming

Kit Eason1
(1)Farnham, Surrey, UK

I know how hard it is to watch it go.

And all the effort that it took to get there in the first place.

And all the effort not to let the effort show.
—Everything but the Girl, Band

Ordering Pizza
In asynchronous programming, we embrace the fact that certain operations are best represented by running them separately from the main flow of logic. Instead of stopping everything while we wait for a result, we expect those separate computations to notify us when they have completed, at which point we’ll deal with their results. It’s a bit like one of those restaurants where you order, say, a pizza, and they give you a pager that flashes when your order is ready. You’re free to grab a table and chat with your friends. When the pager goes off, you collect your pizza and carry on with the main business of your visit – eating!
F# offers an elegant approach for asynchronous computation (actually a choice of two elegant approaches!), but it has to be said that working asynchronously inevitably complicates the business logic of your code. The trick is to keep the impacts to the minimum. For most applications, by adopting a small set of coding patterns, you can keep your code elegant and readable while still getting the benefits of asynchronous working.
The first of these approaches, and the one with the longest history in the F# ecosystem, is the async computation expression

. (Don’t worry for now about what a “computation expression” is.) The second approach, added in F# 6.0, is the task computation expression. The task approach is more closely aligned with the way in which asynchronous work is done in C#. But first we’ll tackle F#’s classic approach: async.
A World Without Async
Because the benefits and impacts of asynchronous working tend to manifest across the whole structure of your program, I’m going to break with the practice of most of this book and offer a complete, potentially useful program as the example for this whole chapter. The example is a bulk file downloader, a console program that can find all the file download links in a web page and download all the files. It’ll also be able to filter what it downloads. For example, you could download just the files whose names end in “.gz”. As a starting point, I’ll offer a synchronous version of the program. Then I’ll go through all the steps necessary to make it work asynchronously using the async computation expression. This reflects my normal coding practice: I tend to write a synchronous version initially to get all the business logic clear; then I translate relevant portions into an asynchronous world.
To avoid including a huge listing, I’ve broken up the program into parts that I’ll discuss separately. If you want to follow along, create an F# console program called MassDownload (Listing 10-1) and simply add the code from the listings into .fs files named after the module in the code.$ mkdir MassDownload
$ cd MassDownload
$ dotnet new console -lang F#

Listing 10-1Creating the MassDownload program

We’ll start with a module that can print colored messages to the console, which will be useful to show when downloads start, complete, fail, and so forth (Listing 10-2). Its message function also shows the managed thread ID for the current thread, which will help us explore the behavior of our program as we transition it to an asynchronous approach.
Notice also how I use partial application, as introduced in the previous chapter, to provide functions called red, green, and so forth to issue messages in those colors.namespace MassDownload

module Log =

 open System
 open System.Threading

 /// Print a colored log message.
 let message (color : ConsoleColor) (message : string) =
 Console.ForegroundColor <- color
 printfn "%s (thread ID: %i)"
 message Thread.CurrentThread.ManagedThreadId
 Console.ResetColor()

 /// Print a red log message.
 let red = message ConsoleColor.Red
 /// Print a green log message.
 let green = message ConsoleColor.Green
 /// Print a yellow log message.
 let yellow = message ConsoleColor.Yellow
 /// Print a cyan log message.
 let cyan = message ConsoleColor.Cyan

Listing 10-2Log.fs – printing colored console messages

Now let’s write some functions that get the file download links from the target web page (Listing 10-3). The absoluteUri function

 deals with the fact that some web pages provide download links relative to their own addresses (e.g., downloads/myfile.txt) while others provide absolute addresses (e.g., https://mysite.org/downloads/myfile.txt). The code here is pretty simplistic and may not work in all cases, but I wanted to keep it simple, as URL processing is not the main topic of this chapter.
The getLinks function

 takes a URI and a regular expression pattern and parses the web page to get all the download links that match the pattern. Note that this function uses HtmlDocument.Load, which is provided by the FSharp.Data NuGet package. You’ll need to add this package to your console project (e.g., dotnet add package FSharp.Data).namespace MassDownload

module Download =

 open System
 open System.IO
 open System.Net
 open System.Text.RegularExpressions
 // From Nuget package "FSharp.Data": dotnet add package FSharp.Data
 open FSharp.Data

 /// If a download link starts with http: or https: return a Uri of it
 /// unchanged, otherwise return a uri of it relative to its page.
 let private absoluteUri (pageUri : Uri) (filePath : string) =
 if filePath.StartsWith("http:")
 || filePath.StartsWith("https:") then
 Uri(filePath)
 else
 let sep = '/'
 filePath.TrimStart(sep)
 |> (sprintf "%O%c%s" pageUri sep)
 |> Uri

 /// Get the URLs of all links in a specified page matching a
 /// specified regex pattern.
 let private getLinks (pageUri : Uri) (filePattern : string) =

 Log.cyan "Getting names..."
 let re = Regex(filePattern)
 let html = HtmlDocument.Load(pageUri.AbsoluteUri)

 let links =
 html.Descendants ["a"]
 |> Seq.choose (fun node ->
 node.TryGetAttribute("href")
 |> Option.map (fun att -> att.Value()))
 |> Seq.filter (re.IsMatch)
 |> Seq.map (absoluteUri pageUri)
 |> Seq.distinct
 |> Array.ofSeq

 links

Listing 10-3Download.fs – functions for getting download links from a web page

Next up, we have a function that attempts to download a file from a given URI to a given local path (Listing 10-4). If you are following along, the code for this listing should be included in the Download module we started in Listing 10-3. The tryDownload function uses WebClient.DownloadFile to do its work. It reports success by returning Result.OK or failure (if there is an exception) by returning Result.Error. /// Download a file to the specified local path.
 let private tryDownload (localPath : string) (fileUri : Uri) =

 let fileName = fileUri.Segments |> Array.last
 Log.yellow (sprintf "%s - starting download" fileName)

 let filePath = Path.Combine(localPath, fileName)
 use client = new WebClient()

 try
 client.DownloadFile(fileUri, filePath)
 Log.green (sprintf "%s - download complete" fileName)
 Result.Ok fileName
 with
 | e ->
 let message =
 e.InnerException
 |> Option.ofObj
 |> Option.map (fun ie -> ie.Message)
 |> Option.defaultValue e.Message
 Log.red (sprintf "%s - error: %s" fileName message)
 Result.Error e.Message

Listing 10-4Download.fs continued – the tryDownload function

Note
Creating and disposing WebClient instances locally like this might cause thread exhaustion problems in high-volume scenarios, so it might in practice be better to create a single WebClient instance externally and provide it as a parameter. I’ve left the creation locally here in the interest of simplicity.

Also within the Download module

, we have one public function, GetFiles (Listing 10-5). GetFiles uses getLinks to list the required download links and calls tryDownload for each of the resulting paths. We count up the Result.Ok and the Result.Error results to provide success and error counts. /// Download all the files linked to in the specified webpage, whose
 /// link path matches the specified regular expression, to the specified
 /// local path.
 let GetFiles (pageUri : Uri) (filePattern : string) (localPath : string) =

 let links = getLinks pageUri filePattern

 let downloadResults =
 links
 |> Array.map (tryDownload localPath)

 let isOk = function
 | Ok _ -> true
 | Error _ -> false

 let successCount =
 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =
 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 {|
 SuccesCount = successCount
 ErrorCount = errorCount
 |}

Listing 10-5Download.fs continued – the GetFiles function

Finally, in Listing 10-6, we have a main function

 for the console program. It calls Download.GetFiles to do its work. We also use a System.Diagnostics.Stopwatch to time the whole operation.open System
open System.Diagnostics
open MassDownload

[<EntryPoint>]
let main args =

 // A program to get multiple files from download links provided on a website.
 // (Quite naive - intended mainly as a basis for demonstrating async programming.)

 // E.g. dotnet run https://minorplanetcenter.net/data "neam.*\.json\.gz$" "c:\temp\downloads"
 // dotnet run http://compling.hss.ntu.edu.sg/omw "\.zip$" "c:\temp\downloads"
 //
 // Large!
 // dotnet run http://storage.googleapis.com/books/ngrams/books/datasetsv2.html "eng\-1M\-2gram.*\.zip$" "c:\temp\downloads"

 if args.Length = 3 then
 let uri = Uri args.[0]
 let pattern = args.[1]
 let localPath =args.[2]
 let sw = Stopwatch()
 sw.Start()

 let result =
 Download.GetFiles uri pattern localPath

 Log.cyan
 (sprintf "%i files downloaded in %0.1fs, %i failed."
 result.SuccessCount sw.Elapsed.TotalSeconds result.ErrorCount)
 0
 else
 Log.red @"Usage: massdownload url nameregex download path - e.g. massdownload https://minorplanetcenter.net/data neam.*\.json\.gz$ c:\temp\downloads"
 1

Listing 10-6Program.fs – the console program’s main function

You can run the program for data from the Minor Planet Center by typing
dotnet run https://minorplanetcenter.net/data “neam.*\.json\.gz$” “c:\temp\downloads”
You’ll need to make sure the directory used in the command line (c:\temp\downloads) exists, or change the command line to use one that does. To help you try out the program on different web pages, here is a table of URLs where you will find some files to download and corresponding regular expression patterns (Table 10-1).Table 10-1Some Download URLs and Name Patterns

	URL
	Pattern
	Comments

	https://minorplanetcenter.net/data
	neam.*\.json\.gz$
	Minor planets

	http://compling.hss.ntu.edu.sg/omw
	\.zip$
	Computational linguistics

	http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
	eng\-1M\-2gram.*\.zip$
	Google n-grams
Very large!

Running the Synchronous Downloader
Here’s the output I got when I ran our synchronous program for the minor planets data (Listing 10-7).neam00_extended.json.gz - starting download (thread ID: 1)
neam00_extended.json.gz - download complete (thread ID: 1)
neam01_extended.json.gz - starting download (thread ID: 1)
neam01_extended.json.gz - download complete (thread ID: 1)
neam02_extended.json.gz - starting download (thread ID: 1)
...
neam15_extended.json.gz - starting download (thread ID: 1)
neam15_extended.json.gz - download complete (thread ID: 1)
16 files downloaded in 6.4s, 0 failed. (thread ID: 1)

Listing 10-7Behavior of the synchronous downloader

The files are downloaded one at a time, everything happens on the same thread (ID: 1), and the whole process takes about 6 seconds. If we run it for a bigger dataset, the computational linguistics one, it takes quite a while. Figure 10-1 shows what was happening on my Wi-Fi connection while the computational linguistics download ran.[image: ../images/462726_2_En_10_Chapter/462726_2_En_10_Fig1_HTML.jpg]
Figure 10-1Wi-Fi usage during a run of the synchronous mass downloader

While the Wi-Fi connection is kept fairly busy, it certainly isn’t maxed out (it’s a 200Mbps connection). But the main concern with the behavior of this synchronous version is the fact that it hogs an entire thread throughout the time it is running. It does this even though much of the time is spent waiting for server responses as blocks of data are sent over the network. In .NET, a thread is considered quite an expensive resource, one which – on a busy machine – could be doing other work during these waits.
Converting Code to Asynchronous
To remedy the situation, we need to go through all our code to identify operations where our code is “ordering pizza”: in other words, starting an operation that will take a significant amount of time and which doesn’t require our main thread’s attention to complete. Typically, this will be input/output operations, where the real work happens in disk controllers, network interfaces, networks, and remote servers. The first place where our code orders pizza is in the getLinks function (back in Listing 10-3), where we load an HTML document that comes from a remote server: let html = HtmlDocument.Load(pageUri.AbsoluteUri)

If you look at the Intellisense for HtmlDocument, you might notice that there’s also an AsyncLoad function

. What if you simply use this in your html binding? (Listing 10-8). let private getLinks (pageUri : Uri) (filePattern : string) =

 Log.cyan "Getting names..."
 let re = Regex(filePattern)
 // val html : Async<HtmlDocument>
 let html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)
 ...

Listing 10-8The return type of HtmlDocument.AsyncLoad

The code following the let html = binding won’t compile now because html is no longer an HtmlDocument instance; it’s an Async<HtmlDocument>. Instead of giving you a pizza, the person at the counter has given you a pager: effectively the promise of a pizza and a means of knowing when it’s ready. So just like when you order at a restaurant that uses a pager system, you need to adjust your expectations and behave a little differently: that is, don’t eat the pager!
The way to achieve this change of worldview in F# is with an async computation expression, which is very easy to use. Firstly, rename the function to asyncGetLinks to reflect its new asynchronous nature. Then move the whole body of the function into curly brackets, and place the word async before these. Instead of let to bind the html value, use let!. Finally, instead of simply “mentioning” the links value at the end of the function to return it, explicitly return it using the return keyword (Listing 10-9). /// Get the URLs of all links in a specified page matching a
 /// specified regex pattern.
 let private asyncGetLinks (pageUri : Uri) (filePattern : string) =
 async {
 Log.cyan "Getting names..."
 let re = Regex(filePattern)
 let! html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

 let links =
 html.Descendants ["a"]
 |> Seq.choose (fun node ->
 node.TryGetAttribute("href")
 |> Option.map (fun att -> att.Value()))
 |> Seq.filter (re.IsMatch)
 |> Seq.map (absoluteUri pageUri)
 |> Seq.distinct
 |> Array.ofSeq

 return links
 }

Listing 10-9Placing a function body into an async computation expression

The let! and return keywords are only valid in the context of computation expressions such as async {}. In brief, a computation expression or “CE” is a section of code where certain keywords, such as let! and return, have special meanings. In an async {} CE, let! effectively means “Please get me a pizza and page me when it’s ready. I or one of my friends will come back to this exact point when you page us. In the meantime, I’ll feel free to find a table and chat.” Using return is analogous to linking a particular pizza order with a pager and handing over the pager instead of the pizza.
The next place where we “order pizza” is in the tryDownload function

, where we use WebClient.DownloadFile: client.DownloadFile(fileUri, filePath)

Again, this is an I/O operation that is going to take time, in this case, an eternity in CPU terms because we might be downloading large files. There are two asynchronous methods in the WebClient API to choose from: DownloadFileAsync and DownloadFileTaskAsync. The one we want is DownloadFileTaskAsync. (The other one requires us to provide an event handler to notify us of completion, almost as if we had to give the pizza restaurant our own pager. This seems a bit too much trouble to be worth it, even for pizza.)
To use DownloadFileTaskAsync in the context of an F# async computation expression, we need to do two things. First, we need to translate it from a C# Task into an F# Async, which you can easily do using Async.AwaitTask. (I’ll follow up on the differences between Task and Async in a moment.) Second, since this is an imperative operation that doesn’t of itself return anything, we need to use the do! keyword instead of let! to specify that it should be run asynchronously without returning a value. And finally, we need to use the return keyword

 to return the Result.Ok or Result.Error results (Listing 10-10). /// Download a file to the specified local path.
 let private asyncTryDownload (localPath : string) (fileUri : Uri) =
 async {
 let fileName = fileUri.Segments |> Array.last
 Log.yellow (sprintf "%s - starting download" fileName)

 let filePath = Path.Combine(localPath, fileName)
 use client = new WebClient()

 try
 do!
 client.DownloadFileTaskAsync(fileUri, filePath)
 |> Async.AwaitTask
 Log.green (sprintf "%s - download complete" fileName)
 return (Result.Ok fileName)
 with
 | e ->
 let message =
 e.InnerException

 |> Option.ofObj
 |> Option.map (fun ie -> ie.Message)
 |> Option.defaultValue e.Message
 Log.red (sprintf "%s - error: %s" fileName message)
 return (Result.Error e.Message)
 }

Listing 10-10Using Async.AwaitTask and do! to perform an async imperative operation

By now, you should be able to see a pattern emerging in what we need to do to make a function asynchronous:	Place the body in an async {} block.

	Identify any time-consuming external operations where the API you are using offers an Async version.

	Use let! or do! to bind or imperatively execute them. Where necessary, use Async.AwaitTask to translate from a C# Task to an F# Async.

	Return (the promise of) results using the return keyword.

Incidentally, there is also a match! keyword

, which you can use to call async functions, and pattern match on the results, in a single operation.
Next, we need to apply a similar recipe to the next level up: the GetFiles function that calls getLinks and tryDownload (now the async... versions) to do its work. We can start off in exactly the same way, placing the whole function body in async {} and using let! to bind asyncGetLinks (Listing 10-11). /// Download all the files linked to in the specified webpage, whose
 /// link path matches the specified regular expression, to the specified
 /// local path.
 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath : string) =
 async {

 let! links = asyncGetLinks pageUri filePattern
 ...

Listing 10-11Starting to make GetFiles asynchronous

The next few lines of AsyncGetFiles

 require a little more thought. The current code is repeated in Listing 10-12. let downloadResults =
 links
 |> Array.map (tryDownload localPath)

Listing 10-12Synchronous download code

We can’t just change tryDownload to asyncTryDownload because the async version no longer immediately does its work and returns results: instead, it returns a promise of work not yet even started. We could make the code compile by forcing the computation to execute and awaiting its result (Listing 10-13), but then we’ve gained almost nothing because the download operations are still performed one at a time, even though they run on different threads. let downloadResults =
 links
 /// Antipattern: using Async.RunSynchronously anywhere but the top level:
 |> Array.map (fun link ->
 asyncTryDownload localPath link |> Async.RunSynchronously)

Getting names... (thread ID: 1)
neam00_extended.json.gz - starting download (thread ID: 8)
neam00_extended.json.gz - download complete (thread ID: 13)
neam01_extended.json.gz - starting download (thread ID: 13)
neam01_extended.json.gz - download complete (thread ID: 4)
...
neam15_extended.json.gz - starting download (thread ID: 5)
neam15_extended.json.gz - download complete (thread ID: 5)
16 files downloaded in 5.8s, 0 failed. (thread ID: 1)

Listing 10-13An antipattern for multiple, similar async computations

This is like ordering multiple pizzas one at a time and for each one waiting at the counter for the pager to flash before ordering the next.
Instead, what we want to do is gather all the ready-to-go computations and run them simultaneously (or at least allow .NET to run them as simultaneously as resources allow). This can be achieved by sending the results of Seq.map (asyncTryDownload...) into the function Async.Parallel and using a let! binding to bind the results (Listing 10-14). /// Download all the files linked to in the specified webpage, whose
 /// link path matches the specified regular expression, to the specified
 /// local path.
 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath : string) =
 async {

 let! links = asyncGetLinks pageUri filePattern

 let! downloadResults =
 links
 |> Array.map (asyncTryDownload localPath)
 |> Async.Parallel

 let isOk = function
 | Ok _ -> true
 | Error _ -> false

 let successCount =
 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =
 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return
 {|
 SuccessCount = successCount
 ErrorCount = errorCount
 |}
 }

Listing 10-14Using Async.Parallel

We’ll refine this logic later, but this is good enough for now. Finally, we need to amend the program’s main function

 slightly so that it calls AsyncGetFiles and waits for its results (Listing 10-15). ...
 let result =
 Download.AsyncGetFiles uri pattern localPath |> Async.RunSynchronously
 ...

Listing 10-15program.fs – calling AsyncGetFiles

It’s reasonable to use Async.RunSynchronously at this top level because nothing else, other than the execution of the command-line program as whole, depends on the completion of this operation. (If we were writing something with a user interface, it would be a different story, as we wouldn’t want the UI to freeze while the downloads were happening.)
Locking Shared Resources
There’s one more task to do, and that is to control access to a shared, mutable resource that all the download tasks will use concurrently. And what is that resource? It’s the console, with its colored messages! Each of the simultaneous computations might output to the console at any time, so if you don’t control access to it, you’ll get jumbled-up messages and colors. The fix is relatively easy: use the lock keyword (Listing 10-16). /// Print a colored log message.
 let message =
 let lockObj = obj()
 fun (color : ConsoleColor) (message : string) ->
 lock lockObj (fun () ->
 Console.ForegroundColor <- color
 printfn "%s (thread ID: %i)"
 message Thread.CurrentThread.ManagedThreadId
 Console.ResetColor())

Listing 10-16Make a function thread safe using a lock expression

The new version of message is a nice example of the technique we introduced in the previous chapter: using a binding that creates some state but keeps it private and then returns a function that uses that state. In this case, the state in question is simply an arbitrary object that is used by the lock expression to ensure exclusive access.
Needless to say, locking is a very complex subject. But in this context, Listing 10-16 shows a simple and effective way to achieve exclusive access for an operation that won’t take long to run.
Testing Asynchronous Downloads
It is time to check whether our shiny new asynchronous download performs better. Here are the results of running against the minor planets data (Listing 10-17, compare with Listing 10-7).Getting names... (thread ID: 1)
neam11_extended.json.gz - starting download (thread ID: 18)
neam15_extended.json.gz - starting download (thread ID: 14)
neam00_extended.json.gz - starting download (thread ID: 4)
neam08_extended.json.gz - starting download (thread ID: 13)
neam09_extended.json.gz - starting download (thread ID: 19)
...
neam07_extended.json.gz - download complete (thread ID: 14)
neam13_extended.json.gz - download complete (thread ID: 14)
neam03_extended.json.gz - download complete (thread ID: 4)
neam15_extended.json.gz - download complete (thread ID: 14)
neam06_extended.json.gz - download complete (thread ID: 14)
16 files downloaded in 3.9s, 0 failed. (thread ID: 1)

Listing 10-17Log messages from an asynchronous run

The differences between this and Listing 10-7 are striking:	The downloads run on several threads, and the thread that logs the completion of a download is usually different from the thread that started it, even though both the “started” and “complete” log messages are issued by the same function. This is the magic of let! and do!.

	All the downloads are started before any of them complete. Compare that with the way started/completed messages simply alternate in the synchronous version.

	Most importantly of all, the whole operation takes under 4 seconds instead of over 6 seconds.

The usage of my Wi-Fi connection, when downloading the larger computational linguistics dataset, is equally striking (Figure 10-2).[image: ../images/462726_2_En_10_Chapter/462726_2_En_10_Fig2_HTML.jpg]
Figure 10-2Wi-Fi throughput downloading files asynchronously

In Figure 10-1, throughput on the interface was very spiky and hovered around 4–5Mbps. In the asynchronous version, we get up to over 150Mbps initially (note the difference in scale on the charts), and it stabilizes at around 25Mbps. I would guess that the tail-off we observe is the server at the other end throttling the download – but even allowing for this, we are downloading five times faster than the synchronous version.
Batching
One thing I’ve learned in several decades of coding is never to trust one’s first successful run! Let’s try the same code against the Google n-grams dataset. (You’ll find the URL and regular expression pattern for this in Table 10-1.)
Note
This is a large dataset. Don’t leave this running on a metered connection!

This is how things looked after a minute or so of running (Listing 10-18 and Figure 10-3).Getting names... (thread ID: 1)
googlebooks-eng-1M-2gram-20090715-1.csv.zip - starting download (thread ID: 8)
googlebooks-eng-1M-2gram-20090715-22.csv.zip - starting download (thread ID: 24)
googlebooks-eng-1M-2gram-20090715-19.csv.zip - starting download (thread ID: 22)
googlebooks-eng-1M-2gram-20090715-20.csv.zip - starting download (thread ID: 23)
googlebooks-eng-1M-2gram-20090715-17.csv.zip - starting download (thread ID: 13)
googlebooks-eng-1M-2gram-20090715-14.csv.zip - starting download (thread ID: 17)
googlebooks-eng-1M-2gram-20090715-10.csv.zip - starting download (thread ID: 4)
googlebooks-eng-1M-2gram-20090715-2.csv.zip - starting download (thread ID: 19)
googlebooks-eng-1M-2gram-20090715-0.csv.zip - starting download (thread ID: 5)
...

Listing 10-18Downloading a large number of files

[image: ../images/462726_2_En_10_Chapter/462726_2_En_10_Fig3_HTML.jpg]
Figure 10-3Wi-Fi throughput while downloading a large number of files

Something is certainly going on, as evidenced by the Wi-Fi throughput. But even after several minutes, I found that no download had been completed. This pattern might not be ideal for a couple of reasons:	Although Google’s servers will probably be just fine, some other services might throttle if you ask for too much at once. (We seemed to see this in Figure 10-2 when the throughput tailed off, which I suspect was a result of server throttling.) Database servers might even run out of connection resources if not configured to service a tsunami of requests like this.1

	We might want to start work on some downloaded files as soon as possible. For instance, we might want to start uncompressing them or getting data out of them as soon as they are downloaded. In the pizza analogy, we don’t want all the cooks to spend their time kneading dough and chopping toppings for a large order, when they could be spending at least some time putting batches of assembled pizzas into ovens. This means trying to download fewer files at once so that some files have a chance to complete earlier in the overall process.

So how do we deal with this? One possibility is to explicitly batch our computations into groups of a specified size and then send each batch through individually using Async.Parallel just across the batch (Listing 10-19)./// Download all the files linked to in the specified webpage, whose
 /// link path matches the specified regular expression, to the specified
 /// local path.
 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath : string) =

 // This could equally well be a parameter:
 let batchsize = 5

 async {

 let! links = asyncGetLinks pageUri filePattern

 let downloadResults =
 links
 |> Seq.map (asyncTryDownload localPath)
 |> Seq.chunkBySize batchsize
 |> Seq.collect (Async.Parallel >> Async.RunSynchronously)
 |> Array.ofSeq

 let isOk = function
 | Ok _ -> true
 | Error _ -> false

 let successCount =
 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =
 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return
 {|
 SuccessCount = successCount
 ErrorCount = errorCount
 |}

 }

Listing 10-19Using Seq.chunkBySize to create computation batches

In Listing 10-19, we use Seq.chunkBySize, which groups a sequence into batches of specified size (the last batch might be smaller). Then for each such batch, we do an Async.Parallel >> Async.RunSynchronously to run just that batch in parallel.
The behavior for this version is shown in Listing 10-20 and Figure 10-4, using a batch size of 5.Getting names... (thread ID: 1)
googlebooks-eng-1M-2gram-20090715-1.csv.zip - starting download (thread ID: 8)
googlebooks-eng-1M-2gram-20090715-12.csv.zip - starting download (thread ID: 14)
googlebooks-eng-1M-2gram-20090715-11.csv.zip - starting download (thread ID: 12)
googlebooks-eng-1M-2gram-20090715-10.csv.zip - starting download (thread ID: 5)
googlebooks-eng-1M-2gram-20090715-0.csv.zip - starting download (thread ID: 4)
googlebooks-eng-1M-2gram-20090715-0.csv.zip - download complete (thread ID: 16)
googlebooks-eng-1M-2gram-20090715-1.csv.zip - download complete (thread ID: 5)
googlebooks-eng-1M-2gram-20090715-10.csv.zip - download complete (thread ID: 5)
googlebooks-eng-1M-2gram-20090715-12.csv.zip - download complete (thread ID: 5)
googlebooks-eng-1M-2gram-20090715-11.csv.zip - download complete (thread ID: 18)
googlebooks-eng-1M-2gram-20090715-13.csv.zip - starting download (thread ID: 18)
...

Listing 10-20Behavior of explicitly batched download

[image: ../images/462726_2_En_10_Chapter/462726_2_En_10_Fig4_HTML.jpg]
Figure 10-4Wi-Fi throughput during explicitly batched download

On the plus side, we do start seeing downloads complete much earlier in the process, meaning that we could get started with further processing of those files. But notice the pattern of the log messages. The first file of the second batch doesn’t start downloading until the last file of the first batch has finished downloading. Hence, the five-deep bands of “started” and “completed” messages in the log. This is reflected in the network throughput: it dips toward the end of each batch as the last part of the last file dribbles through.
What we need is throttling: the ability to start a limited number of computations simultaneously and to start a new one each time a previous one completes.
Throttling
Recent versions of F# now provide throttled, asynchronous, parallel processing via an additional, optional parameter of the Async.Parallel function called – snappily – maxDegreeOfParallelism (Listing 10-21). /// Download all the files linked to in the specified webpage, whose
 /// link path matches the specified regular expression, to the specified
 /// local path.
 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath : string) =

 // This could equally well be a parameter:
 let throttle = 5

 async {

 let! links = asyncGetLinks pageUri filePattern

 let! downloadResults =
 links
 |> Seq.map (asyncTryDownload localPath)
 |> (fun items -> Async.Parallel(items, throttle))

 let isOk = function
 | Ok _ -> true
 | Error _ -> false

 let successCount =
 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =
 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return
 {|
 SuccessCount = successCount
 ErrorCount = errorCount
 |}
 }

Listing 10-21Asynchronous, parallel, throttled downloads

The additional parameter specifies the largest number of computations that will be started simultaneously. This behaves really nicely, as you can see from the log messages and Wi-Fi throughput (Listing 10-22 and Figure 10-5).Getting names... (thread ID: 1)
googlebooks-eng-1M-2gram-20090715-1.csv.zip - starting download (thread ID: 11)
googlebooks-eng-1M-2gram-20090715-0.csv.zip - starting download (thread ID: 5)
googlebooks-eng-1M-2gram-20090715-10.csv.zip - starting download (thread ID: 4)
googlebooks-eng-1M-2gram-20090715-12.csv.zip - starting download (thread ID: 15)
googlebooks-eng-1M-2gram-20090715-11.csv.zip - starting download (thread ID: 12)
googlebooks-eng-1M-2gram-20090715-1.csv.zip - download complete (thread ID: 4)
googlebooks-eng-1M-2gram-20090715-13.csv.zip - starting download (thread ID: 4)
googlebooks-eng-1M-2gram-20090715-12.csv.zip - download complete (thread ID: 13)
googlebooks-eng-1M-2gram-20090715-14.csv.zip - starting download (thread ID: 13)
...

Listing 10-22Behavior of a parallel, throttled download

[image: ../images/462726_2_En_10_Chapter/462726_2_En_10_Fig5_HTML.jpg]
Figure 10-5Wi-Fi throughput during parallel, throttled download

Initially, a batch of five downloads is started; then as soon as one completes, another one is started on whatever thread happens to be available. This keeps the network connection nice and busy but without having a great number of downloads all fighting for limited bandwidth.
C# Task vs. F# Async
Now that you’ve seen the benefits of asynchronous programming, it’s time to revisit something we glossed over earlier: the difference between an F# Async and a C# Task. They each represent their language’s conception of an asynchronous computation that will return some type when completed. However, there is an important difference. Broadly speaking, C# uses a “hot task” model: when something creates a Task instance, the underlying computation is already running. F# uses a “cold task” model: the caller is responsible for starting the computation.
Both Async and Task are, of course, valid models: the problems arise when we have to stand astride both worlds. For example, in Listing 10-9, we were able to use the result of HtmlDocument.AsyncLoad directly in a let! binding thus: let! html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

…only because HtmlDocument is an F#-first API and returns an F# Async – which is what let! expects. By contrast, in Listing 10-10, we used WebClient.DownloadFileTaskAsync, which returns a C# Task. To make it compatible with do!, which expects an F# Async, we had to pipe it into Async.AwaitTask. do!
 client.DownloadFileTaskAsync(fileUri, filePath)
 |> Async.AwaitTask

Although we happened to be using do! in this case, the same would have applied for a let! or match! binding.
When using async {}, this dichotomy has a number of practical and stylistic implications that you should always be aware of when coding in F#.	As we’ve already said, when an API returns a C# Task, you’ll have to convert it into an F# Async, using Async.AwaitTask, if you want to use it in an async computation expression with let!, do! , and match!.

	If you’re writing a general-purpose API that exposes asynchronous functions, you should by default return a C# Task rather than an F# Async. This follows the general guidance that APIs for use in languages other than F# should not expose F#-specific types. You can work in terms of F# Async internally and at the last moment convert into a C# Task using Async.StartAsTask – or you can use the relatively new F# task computation expression (see below).

	API functions that return a C# Task should be named with a suffix of Async – for example, WebClient.DownloadFileTaskAsync.

	It’s OK, though, for APIs aimed primarily at F# consumers, such as FSharp.Data.HtmlDocument, to expose asynchronous functions that return F# Async instances.

	F#-centric APIs that return an F# Async should be named with a prefix of Async – for example, HtmlDocument.AsyncLoad.

	Be aware that translation between the two approaches (F# Async and Task) has a performance penalty.

F# Tasks
F#’s

 async {} was designed prior to C# having a streamlined pattern for defining and consuming asynchronous computations, so it made sense to have an F#-specific approach. C# later introduced the async/await pattern using a somewhat different philosophy, and since then, some developers have found it annoying to have to translate between the two styles. As of F# 6 and .NET 6, F# has a task {} computation expression that works entirely in terms of C#-style tasks.
To use this feature, simply enclose the relevant code in task {} instead of async {}, and remove any explicit translations you may be making between async results and tasks (Listing 10-23). /// Get the URLs of all links in a specified page matching a
 /// specified regex pattern.
 let private getLinksAsync (pageUri : Uri) (filePattern : string) =
 task {
 Log.cyan "Getting names..."
 let re = Regex(filePattern)
 let! html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

 let links =
 html.Descendants ["a"]
 |> Seq.choose (fun node ->
 node.TryGetAttribute("href")
 |> Option.map (fun att -> att.Value()))
 |> Seq.filter (re.IsMatch)
 |> Seq.map (absoluteUri pageUri)
 |> Seq.distinct
 |> Array.ofSeq

 return links
 }

 /// Download a file to the specified local path.
 let private tryDownloadAsync (localPath : string) (fileUri : Uri) =
 task {
 let fileName = fileUri.Segments |> Array.last
 Log.yellow (sprintf "%s - starting download" fileName)

 let filePath = Path.Combine(localPath, fileName)
 use client = new WebClient()

 try
 do!
 client.DownloadFileTaskAsync(fileUri, filePath)
 Log.green (sprintf "%s - download complete" fileName)
 return (Result.Ok fileName)
 with
 | e ->
 let message =
 e.InnerException

 |> Option.ofObj
 |> Option.map (fun ie -> ie.Message)
 |> Option.defaultValue e.Message
 Log.red (sprintf "%s - error: %s" fileName message)
 return (Result.Error e.Message)
 }

Listing 10-23Using the F# 6 task {} computation expression

In doing this, you lose the ability to use Async.Parallel, but you can use LINQ’s parallel async features to achieve broadly the same result (Listing 10-24). open System.Linq

 ...

 /// Download all the files linked to in the specified webpage, whose
 /// link path matches the specified regular expression, to the specified
 /// local path.
 let GetFilesAsync (pageUri : Uri) (filePattern : string) (localPath : string) =

 // This could equally well be a parameter:
 let throttle = 5

 task {
 let isOk = function
 | Ok _ -> true
 | Error _ -> false

 let! links = getLinksAsync pageUri filePattern

 let! downloadResults =
 links
 .AsParallel()
 .WithDegreeOfParallelism(throttle)
 .Select(fun uri -> tryDownloadAsync localPath uri)
 |> System.Threading.Tasks.Task.WhenAll

 let successCount =
 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =
 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return
 {|
 SuccessCount = successCount

 ErrorCount = errorCount
 |}
 }

Listing 10-24Using LINQ to run tasks in parallel

If for some reason you are constrained to use an earlier F# and .NET version, you can include the NuGet package TaskBuilder.fs to achieve much the same effect. Unusually, this NuGet package consists of a single source file, hence the .fs part of its name. You can still add it to your project in the same way you would a more conventional package. You will also need to open the namespace FSharp.Control.Tasks.V2. This package provides a task {} computation expression which – though built on different compiler infrastructure – has the same behavior.
Recommendations
Here are some basic steps that are worth taking away from this chapter:	Get your business logic working correctly in a synchronous way.

	Identify places where you are “ordering pizza,” in other words, making a request, usually via an API, which will take some time and doesn’t require the involvement of the current thread. Any good API should offer an asynchronous implementation of the call you are making.

	Assuming the function from where you are ordering pizza is reasonably well factored, simply enclose its body with async {}. Change the ordering-pizza calls from let to let!, or if they are imperative, use do!. To pattern match on the result of an asynchronous call, you can use match!.

	If the function from where you are ordering pizza is not well factored, you may need to break it down to make it easier to enclose the appropriate code in async {} blocks

.

	If an asynchronous API call returns a C# Task rather than an F# Async, you’ll also have to convert the Task to an Async using Async.StartAsTask.

	Return (the promise of) data from the async{} expression using the return keyword.

	Do the same thing to any higher-level functions that call the functions you just changed. Keep on going until you reach the top of the hierarchy, where you actually use the data or expose an API. I’ve heard this process referred to as implementing async “all the way down.”

	If exposing an API for use by other languages, translate the F# Async to a C# Task using Async.StartAsTask. This avoids exposing F# types where they may not be natively understood.

	To actually get results, use Async.RunSynchronously. But do this as little as possible – generally at the top of your “async-all-the-way-down” chain. You may not have to do it at all if you want external code that calls your functions to decide when to expect results – for example, when your program has a web-based or desktop UI.

	To run similar, independent requests in parallel, use Async.Parallel, adding a throttle parameter if appropriate.

	Consider using a task {} computation expression (included in .NET 6 or later, otherwise available via the TaskBuilder.fs NuGet package) to minimize translations between F# asyncs and C# tasks.

	Finally, all this may be moot if your computation is limited by the local CPU power available (“CPU bound”) and you don’t have a UI that you need to keep responsive. In those cases, you might as well use Array.Parallel.map or one of its siblings from the Array.Parallel module

. We’ll revisit this topic in Chapter 12.

Summary
In this chapter, you learned how to deal with situations where your application is “ordering pizza” – in other words, setting off a computation that will take some time and for which it isn’t necessary for the current thread to stay involved. You found out how to deal with these cases by enclosing them in an async {} or task {} computation expression and using let!, match!, and do! to set off the time-consuming computation and to have control to return to the same point (but likely on a different thread) once a result is obtained.
Asynchronous and parallel programming is a huge topic. In a wide-ranging book like this, we can really only scratch the surface. Having said that, the techniques described in this chapter should serve you well in most situations.
In the next chapter, we’ll look at Railway Oriented Programming, a coding philosophy that encourages you to think about errors as hard as you think about successes, so that both the “happy” and “sad” paths in your code are equally well expressed.
Exercises
This section contains exercises to help you get used to translating code into an asynchronous world.
Exercise 10-1 – Making Some Code Asynchronous
In the following code, the Server module contains a simulated server endpoint that returns a random string, taking half a second to do so. In the Consumer module, we call the server multiple times to build up an array of strings, which we then sort to produce a final result.open System

module Random =

 let private random = System.Random()
 let string() =
 let len = random.Next(0, 10)
 Array.init len (fun _ -> random.Next(0, 255) |> char)
 |> String

module Server =

 let AsyncGetString (id : int) =
 // id is unused
 async {
 do! Async.Sleep(500)
 return Random.string()
 }

module Consumer =

 let GetData (count : int) =
 let strings =
 Array.init count (fun i ->
 Server.AsyncGetString i |> Async.RunSynchronously)
 strings
 |> Array.sort

let sw = System.Diagnostics.Stopwatch()
sw.Start()
Consumer.GetData 10 |> ignore

printfn "That took %ims" sw.ElapsedMilliseconds

If you run the code, you’ll notice that this operation takes over 5 seconds to get ten results.
Change the Consumer.GetData() function so that it is asynchronous and so that it runs all its calls to Server.AsyncGetString() in parallel.
You don’t need to throttle the parallel computation. The changed function should be an F# style async function; that is, it should return Async<String[]>.
Hint: You’ll also need to change the calling code so that the result of the changed function is passed into Async.RunSynchronously.

Exercise 10-2 – Returning Tasks
How would your solution to Exercise 10-1 change if Consumer.GetData() needed to return a C# style Task? The dummy API should be unchanged; in other words, it should still return an Async<string>.
There is more than one way to solve this exercise.

Exercise Solutions
Exercise 10-1 – Making Some Code Asynchronous
Rename Consumer.GetData() to AsyncGetData() to reflect its new return type. Enclose its body in an async {} block. Change the binding of strings from let to let!. Remove the call to Async.RunSynchronously and instead pass the results of the Array.init (which will now be an array of Async<string> instances) into Async.Parallel. Finally, return the result of sorting the array explicitly using the return keyword. let AsyncGetData (count : int) =
 async {
 let! strings =
 Array.init count (fun i -> Server.AsyncGetString i)
 |> Async.Parallel
 return
 strings
 |> Array.sort
 }

In the calling code, pass the result of Consumer.AsyncGetData into Async.RunSynchronously to actually run the computation.let sw = System.Diagnostics.Stopwatch()
sw.Start()
Consumer.AsyncGetData 10 |> Async.RunSynchronously |> ignore
printfn "That took %ims" sw.ElapsedMilliseconds

Run the code to verify that the computation takes roughly half a second.

Exercise 10-2 – Returning Tasks
Rename Consumer.AsyncGetData() to GetDataAsync() to reflect its new return type.
Then you can either use Async.StartAsTask or change the function body to a task {} computation expression.
To achieve the first of these: after the end of the function’s async {} block, add |> Async.StartAsTask to start the computation running and return a C# Task. let GetDataAsync1 (count : int) =
 async {
 let! strings =
 Array.init count (fun i -> Server.AsyncGetString i)
 |> Async.Parallel
 return
 strings
 |> Array.sort
 } |> Async.StartAsTask

In the calling code, add an Async.AwaitTask call to await the result of the task.let sw = System.Diagnostics.Stopwatch()
sw.Start()
Consumer.GetDataAsync1 10
|> Async.AwaitTask
|> Async.RunSynchronously
|> ignore
printfn "GetDataAsync1 took %ims" sw.ElapsedMilliseconds

To use the task {} approach – first, if you are not using .NET 6, bring in the TaskBuilder.fs NuGet package and open the namespace at the beginning of your code.// Remove these two lines if your .NET Interactive is configured to use .NET 6 or later.
#r "nuget: TaskBuilder.fs"
open FSharp.Control.Tasks.V2

Then rename and amend the GetData... function so that its body is a task {} computation expression. let GetDataAsync2 (count : int) =
 task {
 let! strings =
 Array.init count (fun i -> Server.AsyncGetString i)
 |> Async.Parallel
 return
 strings
 |> Array.sort
 }

The calling code can be as earlier in this exercise solution, remembering to call GetDataAsync2.

Footnotes
1I had precisely this problem in my “day job,” during the period I was writing this chapter.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_11

11. Railway Oriented Programming

Kit Eason1
(1)Farnham, Surrey, UK

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?” I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.
—Charles Babbage, Computer Pioneer

Going Off the Rails
Railway Oriented Programming (ROP) is an analogy invented by F#’s premier educator, Scott Wlaschin. It describes a programming philosophy in which we embrace errors as a core part of program flow, rather than exiling them to the separate domain of exception handling. Scott didn’t invent the technique, but he did invent the analogy, which has helped many F# developers understand this initially daunting but powerful technique. Although I’ve titled this chapter according to Scott’s analogy, I’m going to use a slightly different way to describe what is going on. Rest assured, I am still talking about ROP. I just thought it might be interesting to look at it using an alternative mental image. You may want to treat this chapter as a companion piece to Scott’s own description of ROP, which you can find (among a cornucopia of other invaluable material) at https://fsharpforfunandprofit.com.
On the Factory Floor
You’ve decided to get into the widget business! You are going to build your very own highly automated widget factory. You’ll make them so cheaply the entire widget industry will be disrupted. Investors and admirers will flock to your door!
One small problem – how do you lay this factory out? Widget making is a complex process: machining the raw material into shape, polishing certain parts, coating other parts, bolting on subassemblies, and so on. You want to keep your factory compact and easy to manage; otherwise, you’ll just be another widget wannabe. Your initial layout design is like this (Figure 11-1).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig1_HTML.png]
Figure 11-1Naive layout for a widget factory

Each box represents a machine tool performing one of the manufacturing processes. Leading into each box is a conveyor for taking items into the machine, and leading out of each box is another conveyor that takes items on to the next process. The conveyor coming out of a machine will not be the same as the one going in because work items that come out will be a different shape from what goes in. Luckily, numerous styles of conveyors are available, so you just pick (or even build) the conveyor style to suit each stage. Laying out the machines is pretty straightforward: you place them in a line, in the order the processes must be performed. This way the conveyors with matching styles naturally link up. You can hardly go wrong.
You show your production line design to an experienced manufacturing engineer. But she isn’t impressed.
“What about quality control?” she asks. “Is the whole production line going to stop every time a single step goes wrong for one widget?”
Shamefaced you return, literally, to the drawing board. Diversion is your answer! Within each process, there will be a quality control step. If the widget being processed fails that step, it is shot out on a different conveyor and into a rejects hopper (Figure 11-2).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig2_HTML.png]
Figure 11-2Simple handling for rejects

You show the engineer your new layout.
“That’s better,” she says, “But still not great. Someone will have to keep an eye on all those rejects hoppers, and they’re scattered all the way along the line.” She grabs the pencil. “Maybe you want something more like this?” (Figure 11-3).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig3_HTML.png]
Figure 11-3Combining rejects

This solves the multiple-rejects-hoppers problem, but it’s messy in other ways. It’s going to be fiddly linking up both sets of conveyors, especially with the rejects conveyors sticking out of the side like that. It feels repetitive somehow.
“No worries,” says the engineer. “I know some folks who build special adapter housings for machine tools. The housing has two conveyors going in. The main one takes good parts into the machine tool inside. The other one takes rejects in and just passes them straight on out again. If there is a new reject from the current machine, it gets put onto the rejects conveyer along with any existing rejects. Once you’ve put each of your machine tools in one of those housings, you can join the housings together as simply as your original concept.” She draws another diagram (Figure 11-4).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig4_HTML.png]
Figure 11-4Adapter housings for easier process linkage

This is getting exciting, but you need to check your understanding.
“So internally the housing looks something like this, right? The machine tool needs to put rejects from its own process on the rejects conveyer, and good parts on the main out-conveyor. And it can pass through incoming rejects untouched?” (Figure 11-5).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig5_HTML.png]
Figure 11-5Adapter housing detail

“Spot on,” replies the engineer. “And you’re going to need a couple of other housings. I’m guessing some of your processes never fail, so better include a housing which just passes rejects through” (Figure 11-6).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig6_HTML.png]
Figure 11-6Adapter housing detail for processes that never fail

“And you’ll also need to pay a bit of attention to what happens at the end of the line. Do you really want to just toss all the rejects into the trash? I think you might want to count them by kind of failure, report them, or something like that. If so, you’ll need the reject adapter housing” (Figure 11-7).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig7_HTML.png]
Figure 11-7Reject adapter housing detail

“You can put in any machine you like to handle incoming rejects. It might pass them on in some form, it might report them, or it might just destroy them. Good inputs just pass straight through the adapter untouched.”
“What about the first machine on the line?” you ask. “Won’t that need a special type of adapter?”
“Nope,” replies the engineer. “If it’s a typical machine that takes a good input and produces a good output or a failure, it can just sit at the front of the line, because its good/bad outputs will fit into the second machine’s adapted inputs.”
This makes so much sense, and you’re keen to get on with the details.
“Can you hook me up with the folks who make these magic housings?” you ask.
“Sure!” replies the engineer. “There’s just the small matter of my fee.”
“Will you accept stock options?” you ask….
Adapting Functions for Failure
In the widget manufacturing example, your initial stab at rejects handling (Figure 11-2) is like the concept of raising and handling exceptions in .NET languages like C# and F#. When something goes wrong, you “jump out” of the natural sequence of processing (you raise an exception), and what happens to that exception is of no concern to the local section of code. The exception will be handled elsewhere or (all too often) simply ignored (Listing 11-1).open System

let checkString (s : string) =
 if isNull(s) then
 raise <| ArgumentNullException("Must not be null")
 elif String.IsNullOrEmpty(s) then
 raise <| ArgumentException("Must not be empty")
 elif String.IsNullOrWhiteSpace(s) then
 raise <| ArgumentException("Must not be white space")
 else
 s

// I love F#
let r1 = checkString "I love F#"
r1

// Error: System.ArgumentException: Must not be white space
// let r2 = checkString "\t"

Listing 11-1Raising an exception. Where she stops, nobody knows!

This makes the type signature of the function a lie: the function can really either return its official result type or an exception. This is, arguably, a violation of the principle of semantic focus. You can’t tell from the outside (by its signature) what kinds of things a function will do under all circumstances; and you can’t tell from the inside (looking at the body of the function) whether the function’s callers have any strategy at all for handling errors. The aim of ROP is to get away from this by making failures part of the signature of a function and by providing a bypass mechanism so that, as in Figure 11-4, functions can be joined together in such a way that failures whizz past any later functions in the production line.
Writing a Bypass Adapter
Although the “adapters” you’ll need do exist in F#, it’s worth trying to write a couple of them from scratch, as this makes it much easier to understand how the whole concept works. Let’s start with the adapter from Figure 11-5. It needs to take a function (the equivalent to the machine tool hidden within the adapter housing) and an input (the equivalent of an incoming, partially made widget). If the input is currently valid, it needs to be processed using the supplied function. If the input is already a failure, it needs to be passed through untouched.
Since a function can only have one type, this means we need to bundle together good values and failures in the same type. And by now you probably realize that bundling different things together usually means a Discriminated Union. Let’s call it Outcome (Listing 11-2).type Outcome<'TSuccess, 'TFailure> =
 | Success of 'TSuccess
 | Failure of 'TFailure

Listing 11-2An Outcome Discriminated Union

In Listing 11-2, there’s a Success case and a Failure case. We keep the payload types of the DU generic using 'TSuccess and 'TFailure because we don’t want to commit to a specific payload type for either the success or the failure path.
Now we need to write the adapter itself. Let’s start with a spot of pseudocode.	Take a function and an input (which might already be a success or a failure).

	If the input is valid so far, pass it to the supplied function.

	If the input is already an error, pass it through untouched.

It only takes a few lines of F# to achieve this (Listing 11-3).type Outcome<'TSuccess, 'TFailure> =
 | Success of 'TSuccess
 | Failure of 'TFailure

let adapt func input =
 match input with
 | Success x -> func x
 | Failure f -> Failure f

Listing 11-3The basic adapter in code

Writing a Pass-Through Adapter
Now we need the second kind of adapter the manufacturing engineer suggested (Figure 11-6): a “pass-through” adapter, which is used to wrap processes that can’t themselves fail and which allows failure inputs to whizz by (Listing 11-4).let passThrough func input =
 match input with
 | Success x -> func x |> Success
 | Failure f -> Failure f

Listing 11-4The pass-through adapter in code

Listing 11-4 is almost laughably similar to Listing 11-3; I have highlighted the only difference. Whereas the func of Listing 11-3 is itself capable of returning Success or Failure, the func of Listing 11-4 is (by definition) one which can’t fail. Therefore, to let it participate in the pipeline, its result has to be wrapped in a Success case. So we simply say func x |> Success.
Building the Production Line
Now we’ll need an example process to try out this new concept. Let’s take a requirement to accept a password, validate it in various ways, and then save it if it is valid. The validations will be the following:	The password string can’t be null, empty, or just whitespace.

	It must contain mixed case alphabetic characters.

	It must contain at least one of these characters: - _ ! ?

	Any leading/trailing whitespace must be trimmed.

The password should be saved to a database if valid; if not, there needs to be an error message.
Listing 11-5 shows the code to perform each of these steps individually. (We haven’t joined them into a pipeline yet.) open System

let notEmpty (s : string) =
 if isNull(s) then
 Failure "Must not be null"
 elif String.IsNullOrEmpty(s) then
 Failure "Must not be empty"
 elif String.IsNullOrWhiteSpace(s) then
 Failure "Must not be white space"
 else
 Success s

let mixedCase (s : string) =
 let hasUpper =
 s |> Seq.exists (Char.IsUpper)
 let hasLower =
 s |> Seq.exists (Char.IsLower)
 if hasUpper && hasLower then
 Success s
 else
 Failure "Must contain mixed case"

let containsAny (cs : string) (s : string) =
 if s.IndexOfAny(cs.ToCharArray()) > -1 then
 Success s

 else
 Failure (sprintf "Must contain at least one of %A" cs)

let tidy (s : string) =
 s.Trim()

let save (s : string) =
 let dbSave s : unit =
 printfn "Saving password '%s'" s
 // Uncomment this to simulate an exception:
 // raise <| Exception "Dummy exception"
 let log m =
 printfn "Logging error: %s" m
 try
 dbSave s
 |> Success
 with
 | e ->
 log e.Message
 Failure "Sorry, there was an internal error saving your password"

Listing 11-5Some password validation code

The exact details of the code in Listing 11-5 are less important than the general pattern of these functions: if validation succeeds, they return a value wrapped in a Success case. If validation fails, they return an error message wrapped in a Failure case. The save() function is slightly more complicated: it handles any exceptions that come back from writing to the (imaginary) database and returns a message wrapped in a Failure case if an exception occurred. It just happens that the result of a successful database save operation is just unit, but unit can still be returned wrapped in a Success like any other type. The tidy() function

 is an example of a “can’t fail” process (assuming the string isn’t null, which is tackled in an earlier step).
Now we need to make sure these functions are all called in the right order – the equivalent of rolling the machines onto the factory floor, putting them inside their adapters, and bolting them all together into a production line. Listing 11-6 shows a first cut of this stage. (It assumes that the Outcome DU, the adapt and passThrough functions

, and the password validation functions from previous listings are available.) // password:string -> Outcome<unit, string>
 let validateAndSave password =

 let mixedCase' = adapt mixedCase
 let containsAny' = adapt (containsAny "-_!?")
 let tidy' = passThrough tidy
 let save' = adapt save

 password
 |> notEmpty
 |> mixedCase'
 |> containsAny'
 |> tidy'
 |> save'

// Success ()
validateAndSave "Correct-Horse-Battery-Staple-9"

// Failure 'Must contain at least one of "-_!?"'
validateAndSave "LetMeIn"

Listing 11-6Lining the machines up on the factory floor

In Listing 11-6, we take each of the validation functions (apart from the first) and partially apply adapt or passThrough by providing the validation function as an argument. This is the precise equivalent, in our analogy, to putting the machine tool inside its adapter. In each case, I’ve just added a single quote (') to the name of the adapted version, just so you can tell which functions have been adapted. Items such as mixedCase' are now functions that require their input value to be wrapped in Outcome

 and which will just pass on Failure cases untouched.
Why didn’t we have to adapt the first function (notEmpty)? Well, exactly as the manufacturing engineer said, the very first machine tool doesn’t need an adapter because it already takes nonwrapped input and returns an Outcome case, and so it can be plugged into the second (adapted) machine without change.
At this point, we can do a sanity check by looking at the signature of the validateAndSave function

. We see that the signature is password:string -> Outcome<unit, string>. This makes sense because we want to accept a string password and get back either an Outcome.Success with a payload of unit (because the database save operation returns unit) or an Outcome.Failure with a payload of string, which will be the validation or saving error message.
Now we need to try this all out. Listing 11-7 exercises our code for various invalid passwords and one valid one.// Failure "Must not be null"
null |> validateAndSave |> printfn "%A"
// Failure "Must not be empty"
"" |> validateAndSave |> printfn "%A"
// Failure "Must not be white space"
" " |> validateAndSave |> printfn "%A"
// Failure "Must contain mixed case"
"the quick brown fox" |> validateAndSave |> printfn "%A"
// Failure "Must contain at least one of "-_!?""
"The quick brown fox" |> validateAndSave |> printfn "%A"
// Success ()
"The quick brown fox!" |> validateAndSave |> printfn "%A"

Listing 11-7Exercising the validateAndSave function

Listing 11-7 shows that our function works – invalid passwords are rejected with a user-friendly message, and valid ones are “saved.” If you want to see what happens when there is an exception during the save process (maybe we lost the database connection?), simply uncomment the line in the save function

 (in Listing 11-5) that raises an exception. In that case, the specific error details will be logged, and a more general error message will be returned that would be safe to show to the user (Listing 11-8). Saving password 'The quick brown fox!'
 Logging error: Dummy exception
 Failure "Sorry, there was an internal error saving your password"

Listing 11-8Results of an exception during saving

Listing 11-6 is a little wordy! If you were paying attention in Chapter 9, you might recognize this as a prime candidate for function composition using the >> operator. Listing 11-9 shows the magic that happens when you do this!// string -> Outcome<unit, string>
let validateAndSave =
 notEmpty
 >> adapt mixedCase
 >> adapt (containsAny "-_!?")
 >> passThrough tidy
 >> adapt save

Listing 11-9Composing adapted functions

We’ve moved the “adapting” of the various functions into the body of the pipeline and joined the adapted functions with the >> operator. We get rid of the password parameter because a string input is expected anyway by notEmpty, and this requirement of a parameter “bubbles out” to the validateAndSave function

. The type signature of validateAndSave is unchanged (although the password string is now unlabeled), and if we run it again using the code from Listing 11-7, it works exactly the same. Amazing!
Making It Official
I said at the outset that F# has its own ROP types. So how do we use these rather than our handcrafted Outcome type? The DU we named Outcome

 is officially called Result, and the DU cases are Ok and Error. So each of the password validation and processing functions needs some tiny naming changes (e.g., Listing 11-10).let notEmpty (s : string) =
 if isNull(s) then
 Error "Must not be null"
 elif String.IsNullOrEmpty(s) then
 Error "Must not be empty"
 elif String.IsNullOrWhiteSpace(s) then
 Error "Must not be white space"
 else
 Ok s

Listing 11-10Using the official Result DU

Likewise, the official name for what I called adapt is bind, and the official name for passThrough is map. So the validateAndSave function

 needs to open the Result namespace and call map and bind (Listing 11-11).open Result

// string -> Result<unit, string>
let validateAndSave =
 notEmpty
 >> bind mixedCase
 >> bind (containsAny "-_!?")
 >> map tidy
 >> bind save

Listing 11-11Using bind and map

Incidentally, you may notice a close resemblance between Result.bind/Result.map and Option.bind/Option.map, which we discussed way back in Chapter 3. These two names, map and bind, are pretty standard in functional programming and theory. You eventually get used to them.
Love Your Errors
Remember when the engineer said you were going to need an adapter for the rejects? Well it’s time to tackle that. At the moment, we have cheated a little, by making all the functions return Error cases that have strings as payloads. It’s as if we assume that on the production line, rejects at every stage would fit on the same rejects conveyor – which might well not be the case if the rejects from different stages were different shapes. Luckily in F# world, we can force all the kinds of rejects into the same wrapper by (say it aloud with me) creating another Discriminated Union!
This DU will have to list all the kinds of things that can go wrong, together with payloads for any further information that might need to be passed along (Listing 11-12).open System

type ValidationError =
 | MustNotBeNull
 | MustNotBeEmpty
 | MustNotBeWhiteSpace
 | MustContainMixedCase
 | MustContainOne of chars:string
 | ErrorSaving of exn:Exception

let notEmpty (s : string) =
 if isNull(s) then
 Error MustNotBeNull
 elif String.IsNullOrEmpty(s) then
 Error MustNotBeEmpty
 elif String.IsNullOrWhiteSpace(s) then
 Error MustNotBeWhiteSpace
 else
 Ok s

let mixedCase (s : string) =
 let hasUpper =
 s |> Seq.exists (Char.IsUpper)
 let hasLower =
 s |> Seq.exists (Char.IsLower)
 if hasUpper && hasLower then
 Ok s
 else
 Error MustContainMixedCase

let containsAny (cs : string) (s : string) =
 if s.IndexOfAny(cs.ToCharArray()) > -1 then
 Ok s
 else
 Error (MustContainOne cs)

let tidy (s : string) =
 s.Trim()

let save (s : string) =
 let dbSave s : unit =
 printfn "Saving password '%s'" s
 // Uncomment this to simulate an exception:
 raise <| Exception "Dummy exception"
 try
 dbSave s
 |> Ok
 with
 | e ->
 Error (ErrorSaving e)

Listing 11-12An error-types Discriminated Union

Listing 11-12 starts with the new DU. Most of the cases have no payload because they just need to convey the fact that a certain kind of thing went wrong. The MustContainOne

 has a payload that lets you say what characters were expected. The ErrorSaving case has a slot to carry the exception that was raised, which a later step may choose to inspect if it needs to. See how we also had to change most of the validation functions so that their Error results wrap a ValidationError case – for example, Error MustNotBeNull. Here, to be clear, we have a DU wrapped up in another DU. Another small change in Listing 11-12 is that I’ve removed the log function from the save() function

, for reasons that will become clear in a moment.
Now we need the “rejects adapter” that the engineer suggested. The adapter function lives with map and bind in the Result namespace, and it is called mapError. The best way to think about mapError is by comparing the physical diagrams from Figures 11-6 and 11-7. Here, they are again side by side (Figure 11-8).[image: ../images/462726_2_En_11_Chapter/462726_2_En_11_Fig8_HTML.png]
Figure 11-8Comparing map and mapError

The map function

 takes an input, and if it is good, it processes it using a supplied function (which cannot fail) and returns a good output. It passes through preexisting bad inputs untouched. mapError

 is like a vertical flip of the same thing. It takes an input, and if it is good, it passes it through untouched. If the input is bad, it processes it using a supplied function, which itself returns a bad result.
We can use mapError to branch our logic depending on what kind of error occurred, maybe just translating it into a readable message, maybe logging exceptions (but hiding them from the end user), and so forth (Listing 11-13).open Result

// string -> Result<unit, ValidationError>
let validateAndSave =
 notEmpty
 >> bind mixedCase
 >> bind (containsAny "-_!?")
 >> map tidy
 >> bind save

let savePassword =
 let log m =
 printfn "Logging error: %s" m
 validateAndSave
 >> mapError (fun err ->
 match err with
 | MustNotBeNull
 | MustNotBeEmpty
 | MustNotBeWhiteSpace ->
 sprintf "Password must be entered"
 | MustContainMixedCase ->
 sprintf "Password must contain upper and lower case characters"
 | MustContainOne cs ->
 sprintf "Password must contain one of %A" cs
 | ErrorSaving e ->
 log e.Message
 sprintf "Sorry there was an internal error saving the password")

Listing 11-13Using mapError

See in Listing 11-13 how the signature of validateAndSave has changed to string -> Result<unit, ValidationError>, because we made all the validation functions return ValidationError cases when there was a problem. Then in the savePassword function, we composed validateAndSave with Result.mapError. We gave mapError a lambda function that matches on the ValidationError

 cases to generate suitable messages and in one case to log an exception.
This approach has the interesting consequence that it forces you to enumerate every kind of thing that could go wrong with your process, all in a single DU. This certainly takes some getting used to, but it is potentially a very useful discipline. It helps you avoid wishful thinking or an inconsistent approach to errors.
Recommendations
If you’ve been enthused about Railway Oriented Programming, here’s how I recommend you get started:	Identify processes that involve several steps, each of which might fail in predictable ways.

	Write a DU that enumerates the kinds of errors that can occur. (You can obviously add cases to this as you go along.) Some cases might just identify the kind of error; others might have a payload with more information, such as an exception instance, or more details about the input that triggered the failure.

	Write a function for each step in your process. Each should take a nonwrapped input (or inputs) and return either a good output in the form of a Result.Ok that wraps the step’s successful output or a Result.Error that wraps a case from your error-types DU.

	Compose the steps into a single pipeline. To do this, wrap each function but the first using Result.bind (or Result.map for operations that need to fit into the pipeline but which can’t fail). Compose the wrapped functions with the function composition operator >>.

	Use Result.mapError at the end of the pipeline to process failure cases, for example, by attaching error messages or writing to a log.

Summary
I hope you now understand enough about ROP to make an informed decision about whether to use it. You’re also equipped to dive in and maintain existing code bases that use ROP or some variation of it.
I’d worry, though, if I succeeded too well and left you an uncritical enthusiast for the technique. The truth is that ROP is rather controversial in the F# community, with both passionate advocates and passionate critics. The official F# coding conventions have quite a lot to say on the subject. They conclude:Types such as Result<‘Success, ‘Error> are appropriate for basic operations where they aren’t nested, and F# optional types are perfect for representing when something could either return something or nothing. They are not a replacement for exceptions, though, and should not be used in an attempt to replace exceptions. Rather, they should be applied judiciously to address specific aspects of exception and error management policy in targeted ways.
—F# Style Guide, Microsoft and contributors

In my opinion, ROP works rather nicely in the same sorts of places where function composition works nicely: constrained pipelines of operations, where the pipeline has limited scope, such as our password validation example. Using it at an architectural level works less well in my experience, tending to blur motivational transparency, at least for ordinary mortals.
In the next chapter, we’ll look at performance – how to measure the speed of F# functions and how to make them faster.
Exercises
Exercise 11-1 – Reproducing mapError
You might remember that we started by writing our own versions of map and bind in the form of adapt and passThrough functions

:type Outcome<'TSuccess, 'TFailure> =
 | Success of 'TSuccess
 | Failure of 'TFailure

let adapt func input =
 match input with
 | Success x -> func x
 | Failure f -> Failure f

let passThrough func input =
 match input with
 | Success x -> func x |> Success
 | Failure f -> Failure f

Can you implement a passThroughRejects function, with the same behavior as the built-in mapError function?
Hint: Look carefully at Figure 11-8 and the surrounding text.

Exercise 11-2 – Writing an ROP Pipeline
You are working on a project to handle some incoming messages, each containing a file name and some data. The file name is a string representation of a DateTimeOffset when the data was captured. The data is an array of floating-point values. The process should attempt to parse the file name as a DateTimeOffset (some might fail due to spurious messages) and should also reject any messages where the data array contains any NaN (“not-a-number”) values. Any rejects need to be logged.
The following listing contains a partial implementation of the requirement. Your task is to fill in the code marked with TODO, removing the exceptions that have been placed there. Each TODO should only take a line or two of code to complete.open System

type Message =
 { FileName : string
 Content : float[] }

type Reading =
 { TimeStamp : DateTimeOffset
 Data : float[] }

let example =
 [|
 { FileName = "2019-02-23T02:00:00-05:00"
 Content = [|1.0; 2.0; 3.0; 4.0|] }
 { FileName = "2019-02-23T02:00:10-05:00"
 Content = [|5.0; 6.0; 7.0; 8.0|] }
 { FileName = "error"
 Content = [||] }
 { FileName = "2019-02-23T02:00:20-05:00"
 Content = [|1.0; 2.0; 3.0; Double.NaN|] }
 |]

let log s = printfn "Logging: %s" s

type MessageError =
 | InvalidFileName of fileName:string
 | DataContainsNaN of fileName:string * index:int

let getReading message =
 match DateTimeOffset.TryParse(message.FileName) with
 | true, dt ->
 let reading = { TimeStamp = dt; Data = message.Content }
 // TODO Return an OK result containing a tuple of the
 // message file name and the reading:
 raise <| NotImplementedException()
 | false, _ ->
 // TODO Return an Error result containing an
 // InvalidFileName error, which itself contains
 // the message file name:
 raise <| NotImplementedException()

let validateData(fileName, reading) =
 let nanIndex =
 reading.Data
 |> Array.tryFindIndex (Double.IsNaN)
 match nanIndex with
 | Some i ->
 // TODO Return an Error result containing an
 // DataContainsNaN error, which itself contains
 // the file name and error index:
 raise <| NotImplementedException()
 | None ->
 // TODO Return an Ok result containing the reading:
 raise <| NotImplementedException()

let logError (e : MessageError) =
 // TODO match on the MessageError cases

 // and call log with suitable information
 // for each case.
 raise <| NotImplementedException()

// When all the TODOs are done, uncomment this code
// and see if it works!
//
//open Result
//
//let processMessage =
// getReading
// >> bind validateData
// >> mapError logError
//
//let processData data =
// data
// |> Array.map processMessage
// |> Array.choose (fun result ->
// match result with
// | Ok reading -> reading |> Some
// | Error _ -> None)
//
//example
//|> processData
//|> Array.iter (printfn "%A")

Exercise Solutions
Exercise 11-1 – Reproducing mapError
The function you want is a kind of mirror image of passThrough. I’ve repeated passThrough here for comparison:let passThrough func input =
 match input with
 | Success x -> func x |> Success
 | Failure f -> Failure f

let passThroughRejects func input =
 match input with
 | Success x -> Success x
 | Failure f -> func f |> Failure

Exercise 11-2 – Writing an ROP Pipeline
Here is a possible solution. Added lines are marked with DONE.open System

type Message =
 { FileName : string
 Content : float[] }

type Reading =
 { TimeStamp : DateTimeOffset
 Data : float[] }

let example =
 [|
 { FileName = "2019-02-23T02:00:00-05:00"
 Content = [|1.0; 2.0; 3.0; 4.0|] }
 { FileName = "2019-02-23T02:00:10-05:00"
 Content = [|5.0; 6.0; 7.0; 8.0|] }
 { FileName = "error"
 Content = [||] }
 { FileName = "2019-02-23T02:00:20-05:00"
 Content = [|1.0; 2.0; 3.0; Double.NaN|] }
 |]

let log s = printfn "Logging: %s" s

type MessageError =
 | InvalidFileName of fileName:string
 | DataContainsNaN of fileName:string * index:int

let getReading message =
 match DateTimeOffset.TryParse(message.FileName) with
 | true, dt ->
 let reading = { TimeStamp = dt; Data = message.Content }
 // DONE
 Ok(message.FileName, reading)
 | false, _ ->
 // DONE

 Error (InvalidFileName message.FileName)

let validateData(fileName, reading) =
 let nanIndex =
 reading.Data
 |> Array.tryFindIndex (Double.IsNaN)
 match nanIndex with
 | Some i ->
 // DONE
 Error (DataContainsNaN(fileName, i))
 | None ->
 // DONE
 Ok reading

let logError (e : MessageError) =
 // DONE
 match e with
 | InvalidFileName fn ->
 log (sprintf "Invalid file name: %s" fn)
 | DataContainsNaN (fn, i) ->
 log (sprintf "Data contains NaN at position: %i in file: %s" i fn)

open Result

let processMessage =
 getReading
 >> bind validateData
 >> mapError logError

let processData data =
 data
 |> Array.map processMessage
 |> Array.choose (fun result ->
 match result with
 | Ok reading -> reading |> Some
 | Error _ -> None)

example

|> processData
|> Array.iter (printfn "%A")

Logging: Invalid file name: error
Logging: Data contains NaN at position: 3 in file: 2019-02-23T02:00:20-05:00
{ TimeStamp = 23/02/2019 02:00:00 -05:00
 Data = [|1.0; 2.0; 3.0; 4.0|] }
{ TimeStamp = 23/02/2019 02:00:10 -05:00
 Data = [|5.0; 6.0; 7.0; 8.0|] }

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_12

12. Performance

Kit Eason1
(1)Farnham, Surrey, UK

Since the engine has a mode of acting peculiar to itself, it will in every particular case be necessary to arrange the series of calculations conformably to the means which the machine possesses; for such or such a process which might be very easy for a [human] calculator may be long and complicated for the engine, and vice versâ.
—L. F. Menabrea, describing Charles Babbage’s Analytical Engine, 1842
(Translated by Ada Lovelace)

Design Is Compromise
In programming, there is always a tension between abstraction and efficiency

. Code that has a higher level of abstraction is less likely to define the minimum number of operations needed to achieve the correct result in a specific situation. Conversely, code that is written at a lower level will often be faster but will be less widely applicable, leading to more repetition and sometimes worse maintainability. As a language that encourages you to work at a relatively high level of abstraction, F# can sometimes leave you at the wrong end of this trade-off. This chapter aims to give you the tools to recognize common performance bottlenecks in F# code and the skills needed to resolve these to a reasonable degree, without fatally compromising the readability of your code.
Getting from correct code to correct, efficient code is one of the coding tasks that I find the most satisfying. I hope that by the end of this chapter, you’ll feel the same way.
Some Case Studies
.NET performance, and code performance generally, is a huge topic. Rather than getting lost in a sea of performance-related issues, I’m going to focus on a few case studies that represent mistakes I commonly see being made (often by me). Incidentally, you might notice that I haven’t included asynchronous code in these case studies: this topic was covered in Chapter 10. For each case study, I’m going to present some correctly functioning but inefficient code. Then I’ll help you identify why it’s inefficient and show you the steps you can go through to make it relatively fast, but still correct and maintainable.
But before we can embark on the case studies, we need a framework for measuring and comparing performance. Enter “BenchmarkDotNet.”
BenchmarkDotNet
Through most of this book, I’ve avoided using third-party libraries, as I wanted to focus on the language itself. But in the case of performance, we need something that can provide a fair measure of execution speed, which includes running our code a number of times and performing back-to-back comparisons of different versions. BenchmarkDotNet does exactly this and works nicely with F#.
You can either use the source code provided with this book or create your own project using the following steps:	Create a command-line F# project.

mkdir performance
cd performance
dotnet new console -lang F#

	Add the package “BenchmarkDotNet.”

dotnet add package BenchmarkDotNet

	Add a file called Dummy.fs before Program.fs and populate it with the code from Listing 12-1.

	Replace the code in Program.fs with the code from Listing 12-2

.

module Dummy

let slowFunction() =
 System.Threading.Thread.Sleep(100)
 99

let fastFunction() =
 System.Threading.Thread.Sleep(10)
 99

Listing 12-1Dummy functions to benchmark (Dummy.fs)

The code in Listing 12-1, Dummy.fs, is the test subject – the actual code whose performance we want to check. Initially, this will be a dummy, but later we’ll add real code to test.open System
open BenchmarkDotNet.Running
open BenchmarkDotNet.Attributes

module Harness =
 [<MemoryDiagnoser>]
 type Harness() =
 [<Benchmark>]
 member _.Old() =
 Dummy.slowFunction()
 [<Benchmark>]
 member _.New() =
 Dummy.fastFunction()

[<EntryPoint>]
let main _ =
 BenchmarkRunner.Run<Harness.Harness>()
 |> printfn "%A"
 0

Listing 12-2Executing the benchmarks (Program.fs)

The code in Listing 12-2, Program.fs, is the “boiler plate” we need to get BenchmarkDotNet to call our code repeatedly to measure its performance.
Once you have all the source in place, run the project, making sure you force the build to be in Release configuration:dotnet run -c release

You should get a large volume of diagnostic output and toward the end a table of timings as in Listing 12-3

.| Method | Mean | Error | StdDev | Median | Allocated |
|------- |----------:|---------:|---------:|----------:|----------:|
| Old | 110.93 ms | 2.193 ms | 3.283 ms | 110.66 ms | - |
| New | 18.62 ms | 0.458 ms | 1.349 ms | 19.11 ms | - |

Listing 12-3Dummy benchmark output

The “Method” column contains the names of the methods in the Harness class that we used to call our actual test-subject functions. As we are going to be back-to-back testing original vs. performance-enhanced versions, I’ve called these “Old” and “New.” The “Mean” column shows the average time needed to execute the functions we are testing. Not surprisingly, the “Old” function (slowFunction()) takes more time than the “New” function (fastFunction()). The difference in means is roughly 10:1, reflecting the fact that the slow dummy function sleeps for ten times as long. (It’s not exactly 10:1 because of other overheads that are the same for each version.)
The “Error,” “StdDev,” and “Median” columns give other relevant statistical measures of runtimes. The “Allocated” column shows how much managed memory – if any – was allocated per invocation of the functions under test. For the purposes of this chapter we’ll focus mainly on the “Mean” column. If the function being tested causes garbage collections, there will be additional columns in the table showing how many Generation 0, 1, and 2 collections occurred.
Case Study: Inappropriate Collection Types
Now that we have some nice benchmarking infrastructure in place, it’s time to look at common performance antipatterns and their remedies. We’ll start with what happens if you use an inappropriate collection type or access it inappropriately.
Imagine you have a need to create a “sample” function. It takes a collection of values and returns only every n’th value, for some provided value of n which we’ll call interval. For example, if you gave it the collection ['a';'b';'c';'d'] and an interval of 3, it would return ['a';'d']. The requirement doesn’t say anything about what type of collection contains the input, so you decide to be idiomatic and use F# lists as both the input and the return values. Listing 12-4 shows your first cut of this logic.let sample interval data =
 [
 let max = (List.length data) - 1
 for i in 0..interval..max ->
 data.[i]
]

Listing 12-4First cut of a sample function

We want to generate an F# list, so we use a list comprehension (the whole body of the function is in []). We use a for loop with a skip value of interval as the sampling mechanism. Items are returned from the input list using the -> operator (a shortcut for yield in for-loops) together with indexed access to the list, that is, data.[i]. Seems reasonable – but does it perform?
To find out, we’ll need to integrate it with the project we put together in Listings 12-1 and 12-2. Add another file called InappropriateCollectionType.fs and ensure that it is first in the compilation order. Populate it with the code from Listing 12-5.module InappropriateCollectionType

module Old =
 let sample interval data =
 [
 let max = (List.length data) - 1
 for i in 0..interval..max ->
 data.[i]
]

module New =
 let sample interval data =
 [
 let max = (List.length data) - 1
 for i in 0..interval..max ->
 data.[i]
]

Listing 12-5Integrating a function with benchmarking

In Listing 12-5, we declare modules Old and New to hold baseline and (in the future) improved versions of our function-under-test. At this stage, the Old and New implementations of sample are the same.
To make the test harness call these functions and to give them something to work on, change the Harness module

 within Program.fs to look like Listing 12-6.module Harness =
 [<MemoryDiagnoser>]
 type Harness() =
 let r = Random()
 let list = List.init 1_000_000 (fun _ -> r.NextDouble())
 [<Benchmark>]
 member _.Old() =
 list
 |> InappropriateCollectionType.Old.sample 1000
 |> ignore
 [<Benchmark>]
 member _.New() =
 list
 |> InappropriateCollectionType.New.sample 1000
 |> ignore

Listing 12-6Modifying the test harness

In Listing 12-6, we create some test data, called list, for the test functions to work on, and we link up the Old and New benchmark functions to the Old and New implementations in the InappropriateCollectionType module.
Note
BenchmarkDotNet offers ways to ensure that time-consuming initializations occur only once globally, or once per iteration. Search online for “benchmarkdotnet setup and cleanup” for details. I haven’t done this here for simplicity. This won’t greatly affect the measurements, but it will have some impact on the time the overall benchmarking process takes to run.

With the code from Listings 12-5 and 12-6 in place, you can run the project and check the results. Your timings should look something like Listing 12-7, though obviously the absolute values will depend on the speed of your machine, what .NET and compiler version you are using, and so forth.| Method | Mean | Error | StdDev | Allocated |
|------- |--------:|---------:|---------:|----------:|
| Old | 1.103 s | 0.0112 s | 0.0110 s | 31 KB |
| New | 1.091 s | 0.0062 s | 0.0058 s | 33 KB |

Listing 12-7Baseline timings

The key points are that the Old and New methods take similar times (to be expected as they are currently calling identical functions) and that the amount of time per iteration, at over a second, is significant. We have a baseline from which we can optimize!
Avoiding Indexed Access to Lists
One red flag in this code is that it uses indexed access into an F# list: data.[i]. Indexed access into arrays is fine – the runtime can calculate an offset from the beginning of the array using the index and retrieve the element directly from the calculated memory location. (The situation might be a little more complex for multidimensional arrays.) But indexed access to an F# list is a really bad idea. The runtime will have to start at the head of the list and repeatedly get the next item until it has reached the n’th item. This is an inherent property of linked lists such as F# lists.
Indexed access to an F# list element is a so-called O(n) operation; that is, the time it takes on average is directly proportional to the length of the list. By contrast, indexed access to an array element is an O(1) operation: the time it takes on average is independent of the size of the array. Also, it takes no longer to retrieve the last element of an array than the first (ignoring any effects of the low-level caching that might go on in the processor).
So can we still use an F# list (which, rightly or wrongly, was our original design decision) while avoiding indexed access? My first thought on this was Listing 12-8, which I wrote almost as a “straw man,” not expecting it to be particularly effective. let sample interval data =
 data
 |> List.indexed
 |> List.filter (fun (i, _) ->
 i % interval = 0)
 |> List.map snd

Listing 12-8First attempt at optimization

In Listing 12-8, we use List.indexed to make a copy of the original list but containing tuples of an index and the original value, for example, [(0, 1.23); (1, 0.98); ...]. Then we use List.filter to pick out the values whose indexes are a multiple of the required interval. Finally, we use List.map snd to recover just the element values as we no longer need the index values.
I had low expectations of this approach, as it involves making a whole additional list (the one with the indexes tupled in); filtering it (with some incidental pattern matching), which will create another list; and mapping to recover the filtered values, which will create a third list. Also, a bit more vaguely, this version is very functional, and we’ve been conditioned over the years to expect that functional code is inherently less efficient than imperative code.
To check my expectations, add the code from Listing 12-8 into the New module in InappropriateCollectionType.fs replacing the existing sample implementation, and run the project. Were you surprised? Listing 12-9 shows the results I got. (I’ve omitted some of the statistical columns to save space.)| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |-----------:|----------:|----------:|----------:|----------:|
| Old | 1,099.6 ms | - | - | - | 33 KB |
| New | 134.0 ms | 9000.0000 | 5200.0000 | 1400.0000 | 62,563 KB |

Listing 12-9Results of first optimization attempt

The good – and perhaps surprising – news is that this is very nearly an order of magnitude faster: 134ms vs. 1,100ms. The takeaway here is that indexed access to F# lists is a disaster for performance. But the fix has come at a cost: there is a great deal of garbage collection going on, and in all three generations. This aspect should not be a surprise: as we just said, the code in Listing 12-8 creates no less than three lists to do its work, only one of which is needed in the final result.
Using Arrays Instead of Lists
Time for another optimization. What if we revoke our initial design decision to use F# lists for the input and output and work with arrays instead? An array is an inherently more efficient data structure for many operations because it is a contiguous block of memory. There is no overhead, as there is with lists, for pointers from the n’th to the n+1’th element. Changing the code to use arrays simply means changing all the references to the List module to use the Array module instead (Listing 12-10). let sample interval data =
 data
 |> Array.indexed
 |> Array.filter (fun (i, _) ->
 i % interval = 0)
 |> Array.map snd

Listing 12-10Directly replacing lists with arrays

You’ll also have to add a line to the test harness (in Program.fs) to make and use an array version of the test data (Listing 12-11). type Harness() =
 let r = Random()
 let list = List.init 1_000_000 (fun _ -> r.NextDouble())
 let array = list |> Array.ofList
 [<Benchmark>]
 member _.Old() =
 list
 |> InappropriateCollectionType.Old.sample 1000
 |> ignore
 [<Benchmark>]
 member _.New() =
 array
 |> InappropriateCollectionType.New.sample 1000
 |> ignore

Listing 12-11Providing an array in the test harness

This improves on the elapsed time of the list-based version by about half but still does a considerable amount of garbage collection (Listing 12-12).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |------------:|----------:|----------:|---------:|----------:|
| Old | 1,098.67 ms | - | - | - | 33 KB |
| New | 67.00 ms | 4500.0000 | 2625.0000 | 750.0000 | 39,200 KB |

Listing 12-12Results of using arrays instead of lists

Again, perhaps this isn’t too surprising: array creation might be a bit more efficient than list creation, but we are still creating three arrays and using two of them only for a brief moment.
Use Sequences Instead of Arrays
There’s tension between the fact that we’d quite like to keep the code idiomatic (a pipeline of collection functions) and the fact that the current version creates some big transient objects. Is there any way to reconcile that? Whenever we want a collection to exist but not exist, we should think about F# sequences. What happens if we replace all the Array module references with Seq references? (Listing 12-13). let sample interval data =
 data
 |> Seq.indexed
 |> Seq.filter (fun (i, _) ->
 i % interval = 0)
 |> Seq.map snd

Listing 12-13Using sequences instead of arrays

To make this a fair test, we ought to make sure the sequence is actually retrieved, so add an Array.ofSeq to the calling code. We can also revert back to the original list as input, as lists can be used as sequences (Listing 12-14). [<Benchmark>]
 member __.New() =
 list
 |> InappropriateCollectionType.New.sample 1000
 |> Array.ofSeq
 |> ignore

Listing 12-14Retrieving the sequence

This makes a very satisfactory difference (Listing 12-15).| Method | Mean | Gen 0 | Gen 1 | Allocated |
|------- |------------:|----------:|--------:|----------:|
| Old | 1,097.62 ms | - | - | 31 KB |
| New | 19.97 ms | 3812.5000 | 31.2500 | 31,275 KB |

Listing 12-15Results of using sequences instead of lists

We reduced the average elapsed time by 70% compared with the previous iteration, and although there is still a lot of garbage collection going on, there is less of it and it is almost all in Generation 0, with none at all in Generation 2. Compared with the original baseline, our code is now more than 50 times faster!
Avoiding Collection Functions
We’ve spent quite a long time tweaking a collection-function-based implementation of sample

. The current implementation has the advantage that it is highly idiomatic and has a reasonable degree of motivational transparency. But is it really the best we can do?
If we go back to Listing 12-4, we observe that the main problem was that we were using indexed access to an F# list. Now that we have relaxed the requirement to have lists as inputs and outputs, what happens if we restate the same code in array terms? (Listing 12-16). let sample interval data =
 [|
 let max = (Array.length data) - 1
 for i in 0..interval..max ->
 data.[i]
 |]

Listing 12-16Array comprehension instead of list comprehension

In Listing 12-16, I’ve highlighted all the differences from Listing 12-4: all we have to do is use array clamps ([|...|]) instead of list brackets ([...]) to enclose the comprehension, and Array.length instead of List.length to measure the length of the data. You’ll also need to undo the changes to Program.fs we made in Listing 12-14, as we’re back to accepting and returning an array rather than a sequence, as in Listing 12-11.
With those simple changes, we’ve fixed the main issue with the baseline version: indexed access into a linked list structure. How does it perform? (Listing 12-17).| Method | Mean | Gen 0 | Gen 1 | Allocated |
|------- |----------------:|-------:|-------:|----------:|
| Old | 1,130,741.04 us | - | - | 31 KB |
| New | 13.91 us | 3.9215 | 0.1221 | 32 KB |

Listing 12-17Results of using array comprehension instead of list comprehension

Note that in Listing 12-17, the measurements are now shown in microseconds (us) rather than milliseconds (ms) because the New measurement

 is too small to measure in milliseconds. This is impressive: we’ve now improved execution time from the baseline by an astonishing factor of 80,000, nearly five orders of magnitude. It’s as if we found a shortcut on the journey from New York to Paris that shortened the distance from 6000 kilometers to less than 100 meters. And we’ve done so using only functional constructs: an array comprehension and a yielding-for-loop. I’ve sometimes encountered people who consider this style nonfunctional, but I disagree. There is no mutation, no declare-then-populate patterns, and it’s very concise.
Avoiding Loops Having Skips
I’ve heard it said that loops with skips (for i in 1..10..1000 ...) compile to less efficient IL than loops with an implicit skip size of 1 (for i in 1..100 ...). I’ve no idea if this is still true (we’re not going to get into the whole business of inspecting IL in this book), but it’s relatively easy to check whether this makes a difference in practice. Listing 12-18 shows an implementation that avoids a skipping for-loop. We calculate an array index by multiplying the loop counter by the interval. The hard part is defining the upper bound of the loop. let sample interval data =
 [|
 let max =
 ((data |> Array.length |> float) / (float interval)
 |> ceil
 |> int) - 1
 for i in 0..max ->
 data.[i * interval]
 |]

Listing 12-18Avoiding a skipping for-loop

This makes no significant difference to performance (Listing 12-19). Either it’s no longer true that skipping loops are substantially less efficient or the overhead of multiplying up the array index has overwhelmed any gains from avoiding a skipping loop.| Method | Mean | Gen 0 | Gen 1 | Allocated |
|------- |----------------:|-------:|-------:|----------:|
| Old | 1,109,881.03 us | - | - | 32 KB |
| New | 13.31 us | 3.9215 | 0.1221 | 32 KB |

Listing 12-19Results of avoiding a skipping loop

Apart from the fact that it makes no difference to performance, there are several reasons why I’d be reluctant to go this far in real code:	It lowers the motivational transparency of the code, by making it a little bit less obvious what the author was intending to do.

	It’s a true microoptimization, with effects that could easily change between architectures or compiler versions. By working at this level, we deny ourselves any potential improvements in the way the compiler and runtime work with respect to skipping loops.

	The code is much riskier, with a complicated calculation for defining the upper bound of the loop. (It took me no less than six attempts to get it right!) In going down this route, we are laying ourselves open to off-by-one errors and other silly bugs: exactly the kind of thing that idiomatic F# code excels at avoiding.

Inappropriate Collection Types – Summary
Figure 12-1 shows a chart of the effects of our various changes.[image: ../images/462726_2_En_12_Chapter/462726_2_En_12_Fig1_HTML.png]
Figure 12-1Impact of various improvements to collection usage

The improvements are dominated by the simple change of not using indexing into an F# list. Figure 12-2 shows the same measurements on a logarithmic scale, which makes it easier to compare the last few items.[image: ../images/462726_2_En_12_Chapter/462726_2_En_12_Fig2_HTML.png]
Figure 12-2Impact of various improvements to collection usage on a log scale

The takeaways from this section are as follows:	Don’t do indexed access into F# lists – that is, myList.[i]. Either use a different collection type or find another way of processing the list.

	Be familiar with the performance characteristics of the collection data structures and functions that you are using. At the time of writing, these functions are somewhat patchily documented regarding their time complexity (O(n), O(1), etc.), so you may have to do a little online searching or experimentation to pin this down. Don’t default to using F# lists just because they might be considered more idiomatic. Unless you are playing to the strengths of lists (which boils down to use of the head::tail construct), arrays are often the better choice.

	Pipelines of collection functions (.filter, .map, and so forth) can have decent performance, provided you choose the right collection type in the first place.

	Sequences (and functions in the Seq module) can sometimes be a way of expressing your logic in terms of pipelines of collection functions, without the overhead of creating and destroying short-lived collection instances.

	Comprehensions (e.g., placing code in array clamps and using yield or a for...-> loop) can have stellar performance. Don’t be fooled into thinking such code is in some way “not functional” just because the for keyword is involved.

	Beware of low-level microoptimizations: Are you denying yourself the benefits of potential future compiler or platform improvements? Have you introduced unnecessary risk into the code?

Case Study: Short-Term Objects
An oft-quoted dictum in .NET programming is that you shouldn’t unnecessarily create and destroy large numbers of reference types because of the overhead of allocating them and later garbage collecting them. How true is this in practice, and how can we avoid it?
Imagine you are tasked with taking in a large number of three-dimensional points (x, y, and z positions) and identifying those which are within a given radius of some other fixed point. (For example, you might be trying to identify all the stars that fall within a certain radius of the Sun.) We’ll assume that the API of the function must take a radius value, a tuple of three floats for the “fixed” point, and an array of tuples of three points for the candidate positions (Listing 12-20). let withinRadius
 (radius : float)
 (here : float*float*float)
 (coords : (float*float*float)[]) : (float*float*float)[] =
 ...

Listing 12-20The required API for a point-searching function

As a further given, you have access to a class that can do 3D distance calculations (Listing 12-21).type Point3d(x : float, y : float, z : float) =
 member __.X = x
 member __.Y = y
 member __.Z = z
 member val Description = "" with get, set
 member this.DistanceFrom(that : Point3d) =
 (that.X - this.X) ** 2. +
 (that.Y - this.Y) ** 2. +
 (that.Z - this.Z) ** 2.
 |> sqrt
 override this.ToString() =
 sprintf "X: %f, Y: %f, Z: %f" this.X this.Y this.Z

Listing 12-21A 3D point class that can do distance calculations

The type from Listing 12-21 can do the required distance calculation, but you might notice it contains other things – a mutable Description field and a ToString override – which we don’t particularly need for the requirement. This is pretty typical in an object-oriented scenario: the functionality you need is coupled with a certain amount of other stuff you don’t need.
To start exploring this requirement, add another file called ShortTermObjects.fs to your project, and populate it with the code from Listings 12-21 and 12-22.module ShortTermObjects

type Point3d(x : float, y : float, z : float) =
 // Code as Listing 12-21
 ...

type Float3 = (float * float * float)

module Old =
 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let here = Point3d(here)
 coords
 |> Array.map Point3d
 |> Array.filter (fun there ->
 there.DistanceFrom(here) <= radius)
 |> Array.map (fun p3d -> p3d.X, p3d.Y, p3d.Z)

module New =
 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let here = Point3d(here)
 coords
 |> Array.map Point3d
 |> Array.filter (fun there ->
 there.DistanceFrom(here) <= radius)
 |> Array.map (fun p3d -> p3d.X, p3d.Y, p3d.Z)

Listing 12-22First cut of the withinRadius function

As in the previous section, the Old and New implementations are the same initially. Note also that we use a type alias (type Float3 = (float * float * float)) to avoid repeating the tuple of three floats throughout the code.
We do the required selection by mapping the incoming array of tuples into Point3d instances and filtering the result using the DistanceFrom instance method. Finally, we map back to an X, Y, Z tuple, as the requirement states we have to return tuples, not Point3d instances.
To integrate with the benchmarking, you’ll also need to alter Program.fs so that the Harness module looks like Listing 12-23.module Harness =
 [<MemoryDiagnoser>]
 type Harness() =
 let r = Random(1)
 let coords =
 Array.init 1_000_000 (fun _ ->
 r.NextDouble(), r.NextDouble(), r.NextDouble())
 let here = (0., 0., 0.)
 [<Benchmark>]
 member __.Old() =
 coords
 |> ShortTermObjects.Old.withinRadius 0.1 here
 |> ignore
 [<Benchmark>]
 member __.New() =
 coords
 |> ShortTermObjects.New.withinRadius 0.1 here
 |> ignore

Listing 12-23Integrating the 3D distance calculation with benchmarking

When I ran this code, I didn’t have particularly high hopes: this was going to create a million instances of Point3d just so that we could use the DistanceFrom method

 for each instance. Listing 12-24 shows the results. (Old and New are roughly the same here, as the same function is being used in this first version.)| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |---------:|----------:|----------:|----------:|----------:|
| Old | 166.7 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54 MB |
| New | 160.6 ms | 6250.0000 | 3500.0000 | 750.0000 | 54 MB |

Listing 12-24Results of a baseline run

The statistics in Listing 12-24 aren’t as bad as I’d feared – the average execution time works out at about 0.17 microseconds per input position. Not terrible, though of course that depends entirely on your objectives. Over 50Mb of memory is being allocated during processing, which might have an effect on the wider system, and there are garbage collection “survivors” into Generations 1 and 2. The .NET garbage collector is pretty good at collecting so-called “Generation 0” items, but for every extra generation that an object survives, it will have been marked and copied, and all pointers to it will have been updated. This is costly! So can we improve on our baseline?
Sequences Instead of Arrays
We learned earlier that sequences can sometimes be a better choice than arrays (or other concrete collections) for pipeline operations that create reference types. It’s simple enough to apply this to the current example (Listing 12-25). let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let here = Point3d(here)
 coords
 |> Seq.map Point3d
 |> Seq.filter (fun there ->
 there.DistanceFrom(here) <= radius)
 |> Seq.map (fun p3d -> p3d.X, p3d.Y, p3d.Z)
 |> Seq.toArray

Listing 12-25Using sequences instead of arrays

This runs a little faster and allocates a bit less memory than the baseline example, and no objects survive into Generation 1 – but the overall improvement is nothing to write home about (Listing 12-26).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |---------:|----------:|----------:|----------:|----------:|
| Old | 171.7 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54 MB |
| New | 117.1 ms | 5600.0000 | - | - | 46 MB |

Listing 12-26Results of using sequences instead of arrays

Avoiding Object Creation
Maybe it’s time to question the whole approach of creating Point3d instances

 just so we can use one of Point3d’s methods. Even if you didn’t have access to Point3d’s source code, you’d probably be able to code the calculation for a 3D distance yourself, based on the widely known formula √((x1–x2)2 + (y1-y2)2 + (z1-z2)2).
Listing 12-27 shows what happens when we do this. let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let distance (p1 : float*float*float) (p2: float*float*float) =
 let x1, y1, z1 = p1
 let x2, y2, z2 = p2
 (x1 - x2) ** 2. +
 (y1 - y2) ** 2. +
 (z1 - z2) ** 2.
 |> sqrt
 coords
 |> Array.filter (fun there ->
 distance here there <= radius)

Listing 12-27Avoiding object creation

This shaves about 50% off the execution time and is vastly lighter on memory allocation. There is no recorded garbage collection (Listing 12-28).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |----------:|----------:|----------:|----------:|----------:|
| Old | 169.84 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |
| New | 83.58 ms | - | - | - | 126 KB |

Listing 12-28Results of avoiding object creation

Reducing Tuples
You might be wondering what happens if we simplify the signature of the distance function so that it takes six separate floating-point values instead of two tuples of three floating-point values. This enables us to decompose here into x, y, and z only once, though we still have to decompose each candidate point, now using pattern matching in the filter lambda (Listing 12-29). let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let distance x1 y1 z1 x2 y2 z2 =
 (x1 - x2) ** 2. +
 (y1 - y2) ** 2. +
 (z1 - z2) ** 2.
 |> sqrt
 let x1, y1, z1 = here
 coords
 |> Array.filter (fun (x2, y2, z2) ->
 distance x1 y1 z1 x2 y2 z2 <= radius)

Listing 12-29Reducing tuples

This makes no useful difference as compared with the results in Listing 12-28 (Listing 12-30).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |----------:|----------:|----------:|----------:|----------:|
| Old | 172.00 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |
| New | 83.50 ms | - | - | - | 126 KB |

Listing 12-30Result of reducing tuples

Using Struct Tuples
F# has the concept of “struct tuples” – tuples that are value types rather than reference types. Would using struct tuples improve the performance of our withinDistance function? Listing 12-31 shows the new code. Note how we have to use the struct keyword everywhere we instantiate or pattern match on a struct tuple.type Float3s = (struct(float * float * float))

module New =
 let withinRadius
 (radius : float)
 (here : Float3s)
 (coords : Float3s[]) =
 let distance p1 p2 =
 let struct(x1, y1, z1) = p1
 let struct(x2, y2, z2) = p2
 (x1 - x2) ** 2. +
 (y1 - y2) ** 2. +
 (z1 - z2) ** 2.
 |> sqrt
 coords
 |> Array.filter (fun there ->
 distance here there <= radius)

Listing 12-31Using struct tuples

For this change, we’ll also have to amend Program.fs, as the signature of the function being tested has changed slightly (Listing 12-32). (This would be a practical disadvantage of this optimization if the original source of the data couldn’t be changed to produce struct tuples: you’d have to map all your tuples to struct tuples before calling withinDistance.)module Harness =
 [<MemoryDiagnoser>]
 type Harness() =
 let r = Random(1)
 let coords =
 Array.init 1_000_000 (fun _ ->
 r.NextDouble(), r.NextDouble(), r.NextDouble())
 let here = (0., 0., 0.)
 let coordsStruct =
 coords
 |> Array.map (fun (x, y, z) -> struct(x, y, z))
 let hereStruct = struct(0., 0., 0.)
 [<Benchmark>]
 member __.Old() =
 coords
 |> ShortTermObjects.Old.withinRadius 0.1 here
 |> ignore
 [<Benchmark>]
 member __.New() =
 coordsStruct
 |> ShortTermObjects.New.withinRadius 0.1 hereStruct
 |> ignore

Listing 12-32Providing struct tuples

Unfortunately, the move to struct tuples doesn’t make much difference for this benchmark (Listing 12-33).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |----------:|----------:|----------:|----------:|----------:|
| Old | 170.76 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |
| New | 85.28 ms | - | - | - | 135 KB |

Listing 12-33Results of moving to struct tuples

Operator Choice
We seem to be scraping the bottom of the barrel in relation to memory management. Does anything else stand out as being capable of improvement? What is the code doing most?
One thing it is doing a lot is squaring, in the lines that look like this: (x1 - x2) ** 2. + This seems pretty innocent, but there is a tiny clue to a potential problem – the fact that we are squaring by raising to a floating-point exponent, 2.0. Maybe the ** operator is more general than it needs to be. What if we use the pown function, which raises to an integer exponent? It’s a simple change (Listing 12-34). let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let distance x1 y1 z1 x2 y2 z2 =
 pown (x1 - x2) 2 +
 pown (y1 - y2) 2 +
 pown (z1 - z2) 2
 |> sqrt
 let x1, y1, z1 = here
 coords
 |> Array.filter (fun (x2, y2, z2) ->
 distance x1 y1 z1 x2 y2 z2 <= radius)

Listing 12-34Using pown instead of the ** operator

You’ll also have to undo the changes to Program.fs

 that we made in Listing 12-32, as we are no longer bothering with struct tuples. The results of using pown are very satisfying (Listing 12-35)!| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |-----------:|----------:|----------:|---------:|----------:|
| Old | 167.257 ms | 6250.0000 | 3500.0000 | 750.0000 | 54,839 KB |
| New | 9.113 ms | - | - | - | 126 KB |

Listing 12-35Results of using pown instead of the ** operator

This is almost ten times faster than anything we’ve achieved before and 18 times faster than the baseline. Looking at the compiler source, perhaps this isn’t too surprising. There are several steps involved in getting to the final operation of multiplying x by itself, of which Listing 12-36 is just the last. let inline ComputePowerGenericInlined one mul x n =
 let rec loop n =
 match n with
 | 0 -> one
 | 1 -> x
 | 2 -> mul x x
 | 3 -> mul (mul x x) x
 | 4 -> let v = mul x x in mul v v
 | _ ->
 let v = loop (n/2) in
 let v = mul v v in
 if n%2 = 0 then v else mul v x in
 loop n

Listing 12-36Part of the compiler logic behind the ** operator

Are we satisfied yet? Well even pown x 2

 is a little more general than we need, as we know that we really just want to do x*x. What if we make one last change to do exactly that (Listing 12-37)? let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let distance x1 y1 z1 x2 y2 z2 =
 let dx = x1 - x2
 let dy = y1 - y2
 let dz = z1 - z2
 dx * dx +
 dy * dy +
 dz * dz
 |> sqrt
 let x1, y1, z1 = here
 coords
 |> Array.filter (fun (x2, y2, z2) ->
 distance x1 y1 z1 x2 y2 z2 <= radius)

Listing 12-37Avoiding using pown for squaring

This makes a further 60% difference! (Listing 12-38).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |-----------:|----------:|----------:|----------:|----------:|
| Old | 172.101 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |
| New | 3.815 ms | - | - | - | 126 KB |

Listing 12-38Results of avoiding using pown

We’ve now achieved a gain of 98% over the original implementation. It’s probably time to stop scraping the barrel.
Short-Term Objects – Summary
Figure 12-3 shows a chart of the effects of our various changes.[image: ../images/462726_2_En_12_Chapter/462726_2_En_12_Fig3_HTML.png]
Figure 12-3Impact of various improvements to object usage

The results are dominated by one kind of change: not the way we use objects or collections, but our choice of operator to do the distance calculation.
The takeaways from this section are as follows:	If many reference objects are placed into collections, the collections and their functions can have a bearing on performance over and above the cost of the objects themselves. For example, when dealing with long lists of reference type instances, pipelines of sequence functions can be better than pipelines of array functions.

	Think about why you are creating objects. Could the methods you are calling be factored out into stand-alone functions, meaning that the whole object-instantiation/collection issue goes away (unless those functions themselves allocate memory)? Refactoring into independent functions has additional benefits in terms of conciseness, decoupling, and testability.

	Concerns about allocation of tuples, and the possible gains from using struct tuples, can be important, but quick wins are not guaranteed.

	Though discussions of performance in .NET languages often focus on memory management, this is far from being the whole story. Consider algorithms and operators as well.

	Only use ** for raising to noninteger exponents. Use pown when raising to integer exponents, and also consider simple self-multiplication when the exponent is known in advance (e.g., squaring, cubing, etc.). More generally, remember there is a trade-off between how generic and general-purpose things are (such as the generic ** operator) and how efficient they are.

Case Study: Naive String Building
As developers, we often find ourselves building up strings, for example, for formatting values in UIs or data exports, or sending messages to other servers. It’s easy to get wrong on .NET – but fortunately not too hard to get right either.
For this section, we’ll imagine we’ve been tasked with formatting a two-dimensional array of floating-point values as a single CSV (comma-separated values) string, with line ends between each row of data. For simplicity, we’ll assume that F#’s default floating-point formatting (with the "%f" format specifier) is sufficient. We’ll further assume that the array, while not trivial, fits in memory and that its CSV also fits in memory, so we don’t need a fancy streaming approach.
Add a new file called NaiveStringBuilding.fs
 to the benchmarking project and copy into it the code from Listing 12-39.module NaiveStringBuilding

open System

module Old =
 let private buildLine (data : float[]) =
 let mutable result = ""
 for x in data do
 result <- sprintf "%s%f," result x
 result.TrimEnd(',')
 let buildCsv (data : float[,]) =
 let mutable result = ""
 for r in 0..(data |> Array2D.length1) - 1 do
 let row = data.[r, *]
 let rowString = row |> buildLine
 result <- sprintf "%s%s%s" result rowString Environment.NewLine
 result

module New =
 // Code as in Old module above.

Listing 12-39First cut of a CSV builder

Also change the Harness module in Program.fs to look like Listing 12-40.module Harness =
 [<MemoryDiagnoser>]
 type Harness() =
 let data =
 Array2D.init 500 500 (fun x y ->
 x * y |> float)
 [<Benchmark>]
 member __.Old() =
 data
 |> NaiveStringBuilding.Old.buildCsv
 |> ignore
 [<Benchmark>]
 member __.New() =
 data
 |> NaiveStringBuilding.New.buildCsv
 |> ignore

Listing 12-40Integrating CSV generation with benchmarking

In Listing 12-40, we generate a 500 x 500 element array: not exactly “big data,” but it’s still a quarter of a million elements, so will give our CSV builder a decent workout. (You can reduce the number of elements if the benchmarks run too slowly for you.) How does the naive, mutation-based solution shape up? (Listing 12-41).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |--------:|------------:|------------:|------------:|----------:|
| Old | 1.027 s | 340000.0000 | 149000.0000 | 140000.0000 | 3 GB |
| New | 1.032 s | 336000.0000 | 145000.0000 | 136000.0000 | 3 GB |

Listing 12-41Results of naive CSV string building

This is not good. Building the CSV for our relatively modest 500 x 500 array takes over a second and allocates an astonishing 3GB of memory. There is garbage collection going on in all three generations. Imagine you’d put this code on a web server for, say, generating client downloads for scientific or banking customers. You would not be popular! The reason things are so bad is the level at which we are mutating things. Every time we do a result <- sprintf..., we are discarding the string object that was previously referred to by the label result (making it available for garbage collection in due course) and creating another string object. This means allocating and almost immediately freeing vast amounts of memory.
StringBuilder to the Rescue
The problems of string mutation aren’t unique to F#. There is a nice solution in .NET called System.Text.StringBuilder
, which is designed to tackle exactly this kind of situation. Listing 12-42 shows how you can use it. The code doesn’t have to change much: the mutable result is replaced by a StringBuilder instance, and the actual mutation of result in buildLine is replaced by calling the string builder’s Append() method. (Confusingly, calling Append both does an in-place append and returns the StringBuilder instance, which is why we have to pipe its result into ignore.) In the buildCsv function

, we use StringBuilder.AppendLine() to get the line breaks. Finally, we call the string builder’s ToString() method

 to get the built-up string. open System.Text

 let private buildLine (data : float[]) =
 let sb = StringBuilder()
 for x in data do
 sb.Append(sprintf "%f," x) |> ignore
 sb.ToString().TrimEnd(',')

 let buildCsv (data : float[,]) =
 let sb = StringBuilder()
 for r in 0..(data |> Array2D.length1) - 1 do
 let row = data.[r, *]
 let rowString = row |> buildLine
 sb.AppendLine(rowString) |> ignore
 sb.ToString()

Listing 12-42Using StringBuilder for string concatenation

The results are impressive: a 14-fold speedup and nearly a 40-fold improvement in memory allocation (Listing 12-43).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |------------:|------------:|------------:|------------:|----------:|
| Old | 1,036.89 ms | 341000.0000 | 150000.0000 | 141000.0000 | 3,127 MB |
| New | 72.97 ms | 9857.1429 | 2000.0000 | 1000.0000 | 81 MB |

Listing 12-43Result of using StringBuilder for string concatenation

Using String.Join
If we now focus on the buildLine function

, we notice a few things about it that should make us a little unhappy:	It’s too much code for what must surely be a commonly required operation: joining a set of strings together with some separator at the joins.

	At the end of the string building process, we have to go back and trim off the final separator.

It turns out that .NET offers a built-in function for doing pretty much all we want. String.Join takes a separator and an array of strings to join, so all we need to do before calling it is map the floats into strings in the required format (Listing 12-44). open System.Text

 let private buildLine (data : float[]) =
 let cols = data |> Array.map (sprintf "%f")
 String.Join(',', cols)

 let buildCsv (data : float[,]) =
 let sb = StringBuilder()
 for r in 0..(data |> Array2D.length1) - 1 do
 let row = data.[r, *]
 let rowString = row |> buildLine
 sb.AppendLine(rowString) |> ignore
 sb.ToString()

Listing 12-44Using String.Join

This gives a further incremental improvement in performance and quite a good reduction in memory allocation (Listing 12-45).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |------------:|------------:|------------:|------------:|----------:|
| Old | 1,026.21 ms | 339000.0000 | 148000.0000 | 139000.0000 | 3,127 MB |
| New | 62.46 ms | 5750.0000 | 2125.0000 | 875.0000 | 47 MB |

Listing 12-45Result of using String.Join

Using Array.Parallel.map
If we look again at Listing 12-44, we notice that we have an array mapping operation. With such operations, you can often speed things up by using Array.Parallel.map instead (Listing 12-46). Array.Parallel.map has the same type signature and observable behavior as Array.map, but the computations it specifies are done in parallel, spread across your available cores. Obviously, we don’t want to do this until we are convinced that the operation we are doing is itself reasonably efficient, but here it seems justified. open System.Text

 let private buildLine (data : float[]) =
 let cols = data |> Array.Parallel.map (sprintf "%f")
 String.Join(',', cols)

 let buildCsv (data : float[,]) =
 let sb = StringBuilder()
 for r in 0..(data |> Array2D.length1) - 1 do
 let row = data.[r, *]
 let rowString = row |> buildLine
 sb.AppendLine(rowString) |> ignore
 sb.ToString()

Listing 12-46Using Array.Parallel.map

This brings us a considerable speed improvement, a great cost-benefit given the simplicity of the code change (Listing 12-47).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |------------:|------------:|------------:|------------:|----------:|
| Old | 1,013.15 ms | 338000.0000 | 147000.0000 | 138000.0000 | 3,127 MB |
| New | 29.77 ms | 6437.5000 | 2250.0000 | 968.7500 | 50 MB |

Listing 12-47Result of using Array.Parallel.map

A couple of things to be aware of when using Array.Parallel.map. First, its impact will obviously be very dependent on the number of available cores. It’s not uncommon for cheaper cloud instances (e.g., on Microsoft Azure) to have fewer cores than a typical developer machine, so the in-production speedup may be disappointing. You may have to experiment with running your benchmarks on a cloud instance to clarify this. And second, try not to nest Array.Parallel operations. You will rapidly bump into the law of diminishing returns.
Using String Interpolation
If you are really concentrating, you may be wondering if other point optimizations in the buildLine function

 might squeeze out a little more performance:	Using Seq.map instead of Array.map.

	Using String.Format instead of F#’s sprintf to format the floating-point values into strings:
let cols = data |> Array.Parallel.map (fun x -> String.Format("{0}", x))

	Using F# string interpolation.

Of these, I found that the only substantial improvement was by using F# string interpolation (Listing 12-48) (notice the $"x"). open System.Text

 let private buildLine (data : float[]) =
 let cols = data |> Array.Parallel.map (fun x -> $"x")
 String.Join(',', cols)

 let buildCsv (data : float[,]) =
 let sb = StringBuilder()
 for r in 0..(data |> Array2D.length1) - 1 do
 let row = data.[r, *]
 let rowString = row |> buildLine
 sb.AppendLine(rowString) |> ignore
 sb.ToString()

Listing 12-48Using string interpolation

This improved performance by a surprising 50% and memory allocation by two-fifths (Listing 12-49).| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |
|------- |------------:|------------:|------------:|------------:|----------:|
| Old | 1,029.77 ms | 342000.0000 | 151000.0000 | 142000.0000 | 3,127 MB |
| New | 14.26 ms | 4109.3750 | 625.0000 | 234.3750 | 32 MB |

Listing 12-49Result of using string interpolation

Overall, we’ve achieved approximately a 72-fold improvement in performance and two orders of magnitude less memory allocation.
Naive String Building – Summary
Figure 12-4 shows a chart of the effects of our various changes.[image: ../images/462726_2_En_12_Chapter/462726_2_En_12_Fig4_HTML.png]
Figure 12-4Impact of various improvements to string building

The takeaways from this section are as follows:	Mutating string instances really means discarding and replacing the entire instance with another one. This is a disaster for performance.

	The .NET StringBuilder class is optimized for exactly this requirement and can offer a huge speed and memory efficiency boost.

	When joining strings together with a separator, String.Join gives good performance with minimal code.

	Using Array.Parallel.map gives a great low-code-impact speed boost. Bear in mind the number of cores on the machine where the code will be running live. Nest Array.Parallel.map operations at your peril.

	It’s well worth experimenting with alternatives to sprintf for formatting values. In this case, string interpolation halved our execution time.

Other Common Performance Issues
I should mention a few other common performance issues. We don’t have room for case studies for these, but a brief description should be enough to help you avoid them.
Searching Large Collections
If you find yourself repeatedly searching through large collections using Array.find, Array.tryFind, Array.contains, and so forth, consider making the collection an F# Map, a .NET Dictionary, or some other collection optimized for lookup.
Comparison Operators and DateTimes
If you need to do large numbers of less-than, greater-than, or equality comparisons with DateTime or DateTimeOffset instances, consider using DateTime.CompareTo or DateTimeOffset.CompareTo. At the time of writing, this works about five times faster (in a brief informal test) than =, >, >=, <, and <=.
Concatenating Lists
The @ operator

 concatenates two F# lists. This is a relatively expensive operation, so you may want to avoid doing it in performance critical code. Building up lists using the cons operator (::) is OK (assuming that a list is otherwise suitable for what you are doing) because that’s what linked lists are optimized for.
For-Loop with Unexpected List Creation
What’s the practical difference between these two lines of code? (Listing 12-50).for i in 0..9999 do...
for i in [0..9999] do...

Listing 12-50A right way and a wrong way to write a simple indexed for-loop

The first is a simple for-loop and is correct. The second instantiates a list instance with 10,000 elements and iterates over the list. The body of the loops could be the same, and the second would perform much more slowly and would use more memory.
F# and Span Support
Be aware that F# 4.5 introduced support for the .NET type Span<T>. To quote MSDN Magazine:System.Span<T> is a new value type at the heart of .NET. It enables the representation of contiguous regions of arbitrary memory, regardless of whether that memory is associated with a managed object, is provided by native code via interop, or is on the stack. And it does so while still providing safe access with performance characteristics like that of arrays.

Usage of Span is too low level an undertaking to go into detail here, but if you are really struggling for performance and you think working directly with a range of memory might help, you can do so using F#’s support for Span.
The Importance of Tests
I’ve done all this benchmarking without having shown any tests to prove that the functions being tested still work correctly. This is simply to keep down the amount of code included in the book. In reality, it would be important to have passing tests before you started the optimization process – and to keep running them for each optimization pass. Broadly, your workflow should be like Figure 12-5. You might prefer to write at least some of the tests before writing the implementation, but my key point is they should be in place before you start optimizing.[image: ../images/462726_2_En_12_Chapter/462726_2_En_12_Fig5_HTML.png]
Figure 12-5Workflow for running tests and checking performance

You might shortcut the process a bit by doing several performance optimization passes before rerunning tests. But the important thing is that nothing gets included in your product that doesn’t both pass functional tests and have acceptable performance.
This is especially true when replacing pipelines of collection functions with more handcrafted logic. The lower the level of abstraction you are working at, the more potential there is for silly off-by-one errors and so forth: just the kinds of things that one avoids if one sticks to using collection functions.
Recommendations
Here are some lessons that are worth taking away from this chapter:	When performance is important, have a method for measuring it in a simple and repeatable way. BenchmarkDotNet is a good choice.

	Be keenly aware of the performance characteristics of any collection types and functions you are using. Indexed access into F# lists and list concatenation with @ are traps that are particularly easy to fall into.

	Instantiating and later destroying reference values (i.e., classes) have a cost. Be mindful of whether those objects need to exist – could a function do the work instead?

	When instances are in a collection, the type of collection used can also affect memory behavior. Using sequence functions instead of concrete collection functions for intermediate steps in a pipeline can sometimes help (e.g., Seq.map instead of Array.map).

	Although discussion of .NET performance often focuses on the memory footprint and life cycles of objects, other considerations, such as the choice of operators, can sometimes have a greater impact. Remember the impact of using ** vs. pown or simple multiplication.

	Naive string building is a common source of performance problems. StringBuilder and String.Join can help. String interpolation can be faster than sprintf.

	Array.Parallel.map
 can have a big impact on performance when multiple cores are available. Add it as a last step when you are sure the mapping function itself is efficient.

	When dealing with DateTimes and DateTimeOffsets, CompareTo is currently faster than comparison operators such <, >, and =.

	Don’t use for x in [y..z] unless you really did intend to create a collection of values to iterate over. Omit the brackets.

	You can get great improvements in performance without moving away from a functional, immutable style. Beware of microoptimizations that make your code less reliable, less maintainable, and less likely to benefit from future compiler or platform enhancements.

Summary
Optimizing F# code can be a pleasure rather than a chore, provided you set up good benchmarks and code with a degree of mechanical sympathy. Code a baseline version that works, bearing in mind the principles of motivational transparency and semantic focus. While you should avoid obvious howlers (like indexed access into F# lists), you shouldn’t worry overly much about performance during this step. Ensure tests and benchmarks are in place for this baseline version. Then tackle bottlenecks. You can often achieve improvements of several orders of magnitude without compromising the clarity and maintainability of your code.
Finally, I want to say a big thanks to the authors and maintainers of BenchmarkDotNet. It’s an awesome library, and we’ve only skimmed the surface of its capabilities here.
In the next chapter, we’ll move our focus back from the computer to the human and discuss how to use code layout and naming to maximize the readability and hence the revisability of our code.
Exercises
Exercise 12-1 – Concatenating Lists
You come across the following code, which adds some new transactions to an existing collection of transactions. It seems to be a bottleneck in your system.type Transaction = { Id : int } // Would contain more fields in reality

let addTransactions
 (oldTransactions : Transaction list)
 (newTransactions : Transaction list) =
 oldTransactions @ newTransactions

let transactions1 = List.init 10_000_000 (fun i -> { Id = i})
let transactions2 = List.init 10_000_000 (fun i -> { Id = i+1_000_000})

let stopwatch = System.Diagnostics.Stopwatch.StartNew()
let allTransactions = addTransactions transactions1 transactions2
sprintf "That took %ims" stopwatch.ElapsedMilliseconds

Assuming that the old and new transaction collections don’t have to be F# lists, how could you speed up the system with minimal code changes?

Exercise 12-2 – Speeding Up Filtering
A colleague suggests that you could speed up the following code (from Listing 12-37) by mapping to the distance in parallel and then filtering. (At the time of writing, there is no Array.Parallel.filter function, which is why you’d have to map first.)type Float3 = (float * float * float)

let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =
 let distance x1 y1 z1 x2 y2 z2 =
 let dx = x1 - x2
 let dy = y1 - y2
 let dz = z1 - z2
 dx * dx +
 dy * dy +
 dz * dz
 |> sqrt

 let x1, y1, z1 = here

 coords
 // Original code:
 // |> Array.filter (fun (x2, y2, z2) ->
 // distance x1 y1 z1 x2 y2 z2 <= radius)
 |> Array.Parallel.map (fun (x2, y2, z2) ->
 distance x1 y1 z1 x2 y2 z2)
 |> Array.filter (fun d -> d <= radius)

let r = Random(1)
let coords =
 Array.init 1_000_000 (fun _ ->
 r.NextDouble(), r.NextDouble(), r.NextDouble())
let here = (0., 0., 0.)

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let result =
 coords
 |> withinRadius 0.1 here

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

Would you expect this to improve performance? Why/why not?

Exercise 12-3 – Changing the Approach to CSV Generation
How could you change the following code (originally from Listing 12-46) so that the entire 2D array is mapped into string representations of the numbers in one step and only then converted into CSV lines?let buildLine (data : float[]) =
 let cols = data |> Array.Parallel.map (sprintf "%f")
 String.Join(',', cols)

let buildCsv (data : float[,]) =
 let sb = StringBuilder()
 for r in 0..(data |> Array2D.length1) - 1 do
 let row = data.[r, *]
 let rowString = row |> buildLine
 sb.AppendLine(rowString) |> ignore
 sb.ToString()

let data =
 Array2D.init 500 500 (fun x y ->
 x * y |> float)

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let csv =
 data
 |> buildCsv
 |> ignore

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

What impact does doing this have on performance?
Hints

:	You can get rid of the buildLine function in your new version.

	Remember there is an Array2D module.

	You won’t be able to work in parallel.

Exercise Solutions
Exercise 12-1 – Concatenating Lists
Concatenating lists with @ tends to be slow. Given that we are not required to use lists, it’s simple to replace them with arrays and to use Array.append to perform the joining. Depending on the point in your code at which you wanted to get the results, you could also experiment with using sequences.type Transaction = { Id : int } // Would contain more fields in reality

let addTransactions
 (oldTransactions : Transaction[])
 (newTransactions : Transaction[]) =
 Array.append oldTransactions newTransactions

let transactions1 = Array.init 10_000_000 (fun i -> { Id = i})
let transactions2 = Array.init 10_000_000 (fun i -> { Id = i+1_000_000})

let stopwatch = System.Diagnostics.Stopwatch.StartNew()
let allTransactions = addTransactions transactions1 transactions2
sprintf "That took %ims" stopwatch.ElapsedMilliseconds

Exercise 12-2 – Speeding Up Filtering
Generally speaking, the suggested change would be slower. This is because the Array.Parallel.map operation creates a whole new array, which we then filter.

Exercise 12-3 – Changing the Approach to CSV Generation
This can be achieved by doing an Array2D.map to generate the string representation of every array value and then iterating over the result row-wise, doing a String.Join and an AppendLine in a single line of code.open System.Text

let buildCsv (data : float[,]) =
 let dataStrings =
 data |> Array2D.map (sprintf "%f")
 let sb = StringBuilder()
 for cols in 0..(dataStrings |> Array2D.length1) - 1 do
 sb.AppendLine(String.Join(',', cols)) |> ignore
 sb.ToString()

let data =
 Array2D.init 500 500 (fun x y ->
 x * y |> float)

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let csv =
 data
 |> buildCsv
 |> ignore

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

I found the performance results were considerably worse than the prior (Listing 12-46) version, taking 78ms when run in a notebook, rather than 38ms.
This is at least partly because we are no longer doing an Array.Parallel.map to generate the string representations. There is no Array2D.Parallel.map.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_13

13. Layout and Naming

Kit Eason1
(1)Farnham, Surrey, UK

I think for a lot of amateurs, their alignment is always out.
—Karrie Webb, Professional Golfer

Where Are My Braces?
Newcomers to F# are often disorientated by how different everything seems. Indentation is semantically significant – most code isn’t enclosed in curly brackets. There’s an increased emphasis on functions “floating free” without being in classes. And there are strange-seeming practices such as currying and partial application. These factors combine to undermine the comfortable naming and layout habits we might rely on in, say, C#. All this means that it can be hard to be sure that one is coding in a team-friendly, maintainable style. In this chapter, I’ll demonstrate some practices and conventions that should help you get over this feeling.
Incidentally, if you want to automate your layout, you might want to consider using Fantomas (https://github.com/fsprojects/fantomas). Fantomas automates layout and can even fix issues such as the use of the old-fashioned in keyword (verbose syntax). It’s automatically used by JetBrains Rider and can be installed as a plug-in/extension in Visual Studio Code and Visual Studio.
There is also a very comprehensive guide to layout and naming within the F# Style Guide (https://docs.microsoft.com/en-us/dotnet/fsharp/style-guide/), which I’d urge you to read as soon as you’ve come to grips with the basics of F# syntax. Rather than reiterate the Style Guide’s recommendations in this chapter, I’m going to take a case-study approach. We’ll start with some code that embodies some… let’s say “infelicities” I commonly see being perpetrated in F# code. We’ll progressively tidy and refactor the example until it is code to be proud of. Please don’t treat my suggestions as rules (I have a personal horror of “coding standards”), but as useful suggestions born of experience. It’s more important that you finish this chapter wanting to organize your code well, than it is to memorize this or that convention.
It’s Okay Pluto, I’m Not a Planet Either
Our example will be some code to process data from the International Astronomical Union’s Minor Planet Center. In case astronomy isn’t your forte, a minor planet is essentially anything natural orbiting the Sun, which isn’t a proper planet or a comet. The Minor Planet Center provides a data file of all the known minor planets, which you can download from here: www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT. The format is documented here: https://minorplanetcenter.net/iau/info/MPOrbitFormat.html.
The aim of our code is to let consumers easily query the data file, to produce information such as a list of the brightest minor planets, or those with the most eccentric orbits.
Note
This chapter has made use of data and/or services provided by the International Astronomical Union's Minor Planet Center.

To help understand the code, let’s take a quick look at the file format. Listing 13-1 shows an abridged version of the start of the file.MINOR PLANET CENTER ORBIT DATABASE (MPCORB)
This file contains published orbital elements for all numbered and unnumbered multi-opposition minor planets for which it is possible to make reasonable
(about 30 more lines of explanation)
Des'n H G Epoch M Peri. Node Incl.
e n a Reference #Obs #Opp Arc rms
Perts Computer

00001 3.53 0.15 K2175 248.40797 73.73770 80.26762 10.58820 0.0783941 0.21429254 2.7656551 0 MPO600179 7283 120 1801-2021 0.51 M-v 30k Pan 0000 (1) Ceres 20210128

00002 4.22 0.15 K2175 230.07779 310.44122 172.91972 34.89867 0.2297622 0.21335178 2.7737791 0 MPO636060 8823 119 1804-2021 0.58 M-c 28k Pan 0000 (2) Pallas 20210716

Listing 13-1The start of the MPCORB.DAT file

The MPCORB.DAT file

 begins with some explanatory text, then some heading information followed by a set of dashes, and finally lines of data in fixed-length columns. (I’ve wrapped and separated the data lines in Listing 13-1 to make it clearer where the break is.)
Let’s also look at the documentation file (Listing 13-2).The column headed 'F77' indicates the Fortran 77/90/95/2003/2008 format specifier that should be used to read the specified value.
 Columns F77 Use
 1 - 7 a7 Number or provisional designation
 (in packed form)
 9 - 13 f5.2 Absolute magnitude, H
 15 - 19 f5.2 Slope parameter, G
(several more columns)
 124 - 126 i3 Number of oppositions

 For multiple-opposition orbits:
 128 - 131 i4 Year of first observation
 132 a1 '-'
 133 - 136 i4 Year of last observation

 For single-opposition orbits:
 128 - 131 i4 Arc length (days)
 133 - 136 a4 'days'(several more columns)

Listing 13-2Extract from the file format documentation

So essentially the logic of the code to read the file will need to be:	Skip all the lines up to and including the line that looks like -------…

	For each subsequent line…

	Take characters 1–7 and use them as a string for the designation.

	Take characters 9–13 and interpret them as a floating-point value for the absolute magnitude.

	And so forth for each data item.

One complication will be the data between columns 128 and 136, which is interpreted differently depending on the value of the preceding “Number of oppositions” item. An opposition
 is simply the passage of the body through the opposite side of the sky from the Sun, when viewed from Earth. It’s significant because during opposition, the body is as its most visible.
Some Infelicitous Code
With those requirements in mind, Listing 13-3 shows some messy but working code. Have a read – how typical is this of F# you have written or had to maintain?module MinorPlanets =

 open System

 let toCharArray (s : string) =
 s.ToToCharArray()

 let toDouble (s : string) =
 match Double.TryParse(s) with
 | true, x -> Some x
 | false, x -> None

 let toChar (s : string) =
 if String.IsNullOrWhiteSpace(s) then None
 else
 Some(s.[0])

 let toInt (s : string) =
 match Int32.TryParse(s) with
 | true, x -> Some x
 | false, x -> None

 let columnAsString startInd endInd (line : string) =
 line.Substring(startInd-1,endInd-startInd+1).Trim()

 let columnAsCharArray startInd endInd (line : string) =
 toCharArray(columnAsString startInd endInd line)

 let columnAsInt startInd endInd (line : string) =
 toInt(columnAsString startInd endInd line)

 let columnAsDouble startInd endInd (line : string) =
 toDouble(columnAsString startInd endInd line)

 let columnAsChar startInd endInd (line : string) =
 toChar(columnAsString startInd endInd line)

 type ObservationRange =
 | SingleOpposition of int
 | MultiOpposition of int * int

 let rangeFromLine (oppositions : int option) (line : string) =
 match oppositions with
 | None -> None
 | Some o when o = 1 ->
 line |> columnAsInt 128 131
 |> Option.map SingleOpposition
 | Some o ->
 match (line |> columnAsInt 128 131),
 (line |> columnAsInt 133 136) with
 | Some(firstObservedYear), Some(lastObservedYear) ->
 MultiOpposition(firstObservedYear,
 lastObservedYear) |> Some
 | _ -> None

 type MinorPlanet = {
 Designation : string; AbsMag : float option
 SlopeParam : float option; Epoch : string
 MeanAnom : float option; Perihelion : float option
 Node : float option; Inclination : float option
 OrbEcc : float option; MeanDaily : float option
 SemiMajor : float option; Uncertainty : char option
 Reference : string; Observations : int option
 Oppositions : int option; Range : ObservationRange option
 RmsResidual : double option; PerturbersCoarse : string
 PerturbersPrecise : string; ComputerName : string
 Flags : char[]; ReadableDesignation : string
 LastOpposition : string }

 let private create (line : string) =
 let oppositions = line |> columnAsString 124 126 |> toInt
 let range = line |> rangeFromLine oppositions
 {
 Designation = columnAsString 1 7 line
 AbsMag = columnAsDouble 9 13 line
 SlopeParam = columnAsDouble 15 19 line
 Epoch = columnAsString 21 25 line
 MeanAnom = columnAsDouble 27 35 line
 Perihelion = columnAsDouble 38 46 line
 Node = columnAsDouble 49 57 line
 Inclination = columnAsDouble 60 68 line
 OrbEcc = columnAsDouble 71 79 line
 MeanDaily = columnAsDouble 81 91 line
 SemiMajor = columnAsDouble 93 103 line
 Uncertainty = columnAsChar 106 106 line
 Reference = columnAsString 108 116 line
 Observations = columnAsInt 118 122 line
 Oppositions = oppositions
 Range = range
 RmsResidual = columnAsDouble 138 141 line
 PerturbersCoarse = columnAsString 143 145 line
 PerturbersPrecise = columnAsString 147 149 line
 ComputerName = columnAsString 151 160 line
 Flags = columnAsCharArray 162 165 line
 ReadableDesignation = columnAsString 167 194 line
 LastOpposition = columnAsString 195 202 line
 }

 let createFromData (data : seq<string>) =
 data
 |> Seq.skipWhile (fun line ->
 line.StartsWith("----------")
 |> not) |> Seq.skip 1
 |> Seq.filter (fun line ->
 line.Length > 0)
 |> Seq.map (fun line -> create line)

Listing 13-3Initial state of the minor planets reading code

It’s important to say that this code, messy though it is, actually works! Listing 13-4 gives some code you can use to try it out. As we make our way through the various issues, we won’t be changing any of the functionality at all: this chapter is entirely about organization and presentation.open System.IO

// To run this program, please first download the data from:
// https://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT

// Brightest 10 minor planets (absolute magnitude)
// Edit the path to reflect where you stored the file:
@".\MinorPlanets\MPCORB.DAT"
|> File.ReadLines
|> MinorPlanets.createFromData
|> Seq.sortBy (fun mp ->
 mp.AbsMag |> Option.defaultValue Double.MaxValue)
|> Seq.truncate 10
|> Seq.iter (fun mp ->
 printfn "Name: %s, Abs. magnitude: %0.2f"
 mp.ReadableDesignation
 (mp.AbsMag |> Option.defaultValue nan))

Name: (136199) Eris, Abs. magnitude: -1.11
Name: (134340) Pluto, Abs. magnitude: -0.45
Name: (136472) Makemake, Abs. magnitude: -0.12
Name: (136108) Haumea, Abs. magnitude: 0.26
Name: (90377) Sedna, Abs. magnitude: 1.57
Name: (225088) Gonggong, Abs. magnitude: 1.92
Name: (90482) Orcus, Abs. magnitude: 2.29
Name: (50000) Quaoar, Abs. magnitude: 2.50
Name: (532037) 2013 FY27, Abs. magnitude: 3.20
Name: (4) Vesta, Abs. magnitude: 3.31

Listing 13-4Trying out the code

Note by the way that in astronomy, a lower magnitude number means a greater brightness.
Convenience Functions
So where do we start? It might help to organize the code into smaller modules, thus improving the semantic focus
 that’s available to the reader. One grouping is obvious: functions such as toCharArray and toDouble are general-purpose convenience functions that don’t have any direct relationship with the astronomy domain. We can move these into a module called Convert (Listing 13-5).module Convert =

 open System

 let toCharArray (s : string) =
 s.ToToCharArray()

 let tryToDouble (s : string) =
 match Double.TryParse(s) with
 | true, x -> Some x
 | false, _ -> None

 let tryToChar (s : string) =
 if String.IsNullOrWhiteSpace(s) then None
 else
 Some(s.[0])

 let tryToInt (s : string) =
 match Int32.TryParse(s) with
 | true, x -> Some x
 | false, _ -> None

Listing 13-5A Convert module

Putting just these functions in a module helps us focus what else might be wrong with them. Some of them return option types, so I renamed them using the “try” idiom – for example, tryToDouble. Also, the match expressions contained a bound but unused value x in the false branch. I replaced these with underscores. Always try to remove unused bindings in your code: explicitly ignoring them using underscore shows that you didn’t just overlook them, adding motivational transparency
.
Column Extraction Functions
Another obvious set of candidates for moving into a module is functions such as columnAsString and columnAsCharArray, which are all about picking out a substring from a data line and converting it into some type. Moving them into a Column module

 means we can get rid of the repetitive use of the column prefix in their names. We also use the “try” idiom here when an option type is returned. Many of the columns have missing values in the dataset – some minor planets are in the process of discovery so not all the parameters will be known. For robustness, I’ve assumed that almost anything might be missing (Listing 13-6).module Column =

 let asString startInd endInd (line : string) =
 line.Substring(startInd-1,endInd-startInd+1).Trim()

 let asCharArray startInd endInd (line : string) =
 Convert.toCharArray(asString startInd endInd line)

 let tryAsInt startInd endInd (line : string) =
 Convert.tryToInt(asString startInd endInd line)

 let tryAsDouble startInd endInd (line : string) =
 Convert.tryToDouble(asString startInd endInd line)

 let tryAsChar startInd endInd (line : string) =
 Convert.tryToChar(asString startInd endInd line)

Listing 13-6A Column module

Again, now that the functions are in a module, we can focus on what could be improved within them. Listing 13-7 shows an arguably more idiomatic version.module Column =

 let asString startInd endInd (line : string) =
 let len = endInd - startInd + 1
 line
 .Substring(startInd-1, len)
 .Trim()

 let asCharArray startInd endInd =
 (asString startInd endInd) >> Convert.toCharArray

 let tryAsInt startInd endInd =
 (asString startInd endInd) >> Convert.tryToInt

 let tryAsDouble startInd endInd =
 (asString startInd endInd) >> Convert.tryToDouble

 let tryAsChar startInd endInd =
 (asString startInd endInd) >> Convert.tryToChar

Listing 13-7Alternative layout for dot notation and using function composition

The things that have changed in Listing 13-7 are the following:	In asString, I removed the length calculation that was being done on the fly in the Substring call. Instead, I’ve put it into a separate binding (let len = ...). This reduces the number of things the reader has to think about at any one time.

	Also in the asString function

, I changed the layout to an indented style where each method call (.Substring() and .Trim()) is on its own line. I quite like this style because, again, it lets the reader think about one thing at a time. It’s mimicking the F# pipeline style where you put each |> someFunction on a separate line.

	In the other functions (asCharArray etc.), I’ve used function composition. For example, in asCharArray, we explicitly compose the asString and Convert.toCharArray to produce the desired mapping from a data line to a value. This means we can remove the explicit line parameter because the partial application of asString still leaves the requirement of a line input. You might want to reflect on whether this is truly an improvement: it’s one of those cases where it depends on the skill levels of the maintainers.

The Observation Range Type
The next category of code that deserves to go into a separate module is the code relating to the “observation range” data. Just to recap, one of the data items needs to be different depending on the number of oppositions of the minor planet that have been observed. When only one opposition has been seen, we need to show how many days the body was observed for. When more than one opposition has been seen, we give the calendar years of the first and last observation. Listing 13-8 shows the relevant section from the documentation. 124 - 126 i3 Number of oppositions

 For multiple-opposition orbits:
 128 - 131 i4 Year of first observation
 132 a1 '-'
 133 - 136 i4 Year of last observation

 For single-opposition orbits:
 128 - 131 i4 Arc length (days)
 133 - 136 a4 'days'(several more columns)

Listing 13-8Observation range of a minor planet

The existing code rightly models this as a Discriminated Union. But the DU and its constructing function need to be pulled out into their own module (Listing 13-9).module Observation =

 type Range =
 private
 | SingleOpposition of ArcLengthDays:int
 | MultiOpposition of FirstYear:int * LastYear:int

 let fromLine (oppositions : int option) (line : string) =
 match oppositions with
 | None ->
 None
 | Some o when o = 1 ->
 line
 |> Column.tryAsInt 128 131
 |> Option.map SingleOpposition
 | Some _ ->
 let firstYear = line |> Column.tryAsInt 128 131
 let lastYear = line |> Column.tryAsInt 133 136
 match firstYear, lastYear with
 | Some(fy), Some(ly) ->
 MultiOpposition(FirstYear=fy, LastYear=ly) |> Some
 | _ ->
 None

Listing 13-9The Observation module

This is a great pattern for F# code: define a domain type in a module of its own, and place one or more functions to create instances of that type (or otherwise work with it) in the same module. As we’ve discussed before, the one issue this does give you is that of choosing names for the module and the type. Here, I’ve settled on Observation and Range. I made both the case constructors for Range private, as we provide a means of creating instances within the module: the fromLine function. You might have to remove the private keyword if it caused problems with serialization or with use from other languages. In that case, you might as well name both the module and the type “ObservationRange” and place the type outside the module.
A few other things I’ve changed in the observation range functions:	I changed the layout of the DU so that each case is indented to the right of the keyword type. This isn’t required by F#’s indentation rules, but the coding guidelines firmly recommend it.

	I named each of the fields of the DU (ArcLengthDays, FirstYear, and LastYear). This greatly improves motivational transparency. You might also notice that I used these labels when constructing the MultiOpposition instance near the end of Listing 13-9.

	I renamed the rangeFromLine function as fromLine. The module name now gives sufficient context. The function will be invoked, thus:
let range = line |> Observation.fromLine oppositions

	I bound firstYear and lastYear values explicitly, rather than doing it on the fly in the match expression. Again, this reduces the cognitive load on the reader. Heavily nested calls, each level of which does some separate calculation, are the absolute bane of code readability. And they make step debugging much harder.

	I tidied up some of the slightly idiosyncratic indentation.

The Importance of Alignment
The indentation changes merit a little more commentary. In one of the changes in Listing 13-9, this line |> columnAsInt 128 131
 |> Option.map SingleOpposition

has become this: line
 |> Column.tryAsInt 128 131
 |> Option.map SingleOpposition

It’s particularly heinous to mix new-line styles when writing pipelines. It makes the reader wonder whether there is some unnoticed reason why successive lines are different. To avoid this, the simple rule is this: single piping operations can go into a single line; multiple piping operations like this example should each go on a separate line. In that case, the forward-pipe operators go at the beginning of each line.
The second indentation change in Listing 13-9 was this: match (line |> columnAsInt 128 131),
 (line |> columnAsInt 133 136) with
 | Some(firstObservedYear), Some(lastObservedYear) ->
 MultiOpposition(firstObservedYear,
 lastObservedYear) |> Some
 | _ -> None

to this: let firstYear = line |> Column.tryAsInt 128 131
 let lastYear = line |> Column.tryAsInt 133 136
 match firstYear, lastYear with
 | Some(fy), Some(ly) ->
 MultiOpposition(FirstYear=fy, LastYear=ly) |> Some
 | _ ->
 None

Apart from the separate binding of firstYear and lastYear, the point here is that if one branch of a match expression (the bit after the ->) is on the same line as the ->, the other branches should also be on the same line. Conversely, as in this example, if any branch won’t nicely fit on the same line, all the branches should begin on an indented new line.
Why am I banging on about indentation so much? It’s to do with the way the human eye and brain process information. What we are aiming for is code laid out in a very rectilinear (lined-up) style, where items that perform a similar role (e.g., different branches of the same match expression, or different steps of the same pipeline) are all lined up with one another. Then the reader can run their eye down the code and quickly pick out all the lines of equivalent significance. This engages the visual pattern processing part of the brain, which works somewhat separately (and faster) than the part of the brain concerned with interpreting the language of the code itself. I’ve illustrated this in Figure 13-1, showing with boxes the kinds of categories the reader might be looking for. Finding them is so much easier when the boxes are left aligned![image: ../images/462726_2_En_13_Chapter/462726_2_En_13_Fig1_HTML.png]
Figure 13-1Code is more readable when thoughtfully aligned

The Minor Planet Type
Now we tackle the core “domain object”: the type that represents an individual minor planet. Here’s the initial state of the code (Listing 13-10). type MinorPlanet = {
 Designation : string; AbsMag : float option
 SlopeParam : float option; Epoch : string
 MeanAnom : float option; Perihelion : float option
 Node : float option; Inclination : float option
 OrbEcc : float option; MeanDaily : float option
 SemiMajor : float option; Uncertainty : char option
 Reference : string; Observations : int option
 Oppositions : int option; Range : Observation.Range option
 RmsResidual : double option; PerturbersCoarse : string
 PerturbersPrecise : string; ComputerName : string
 Flags : char[]; ReadableDesignation : string
 LastOpposition : string }

Listing 13-10Initial state of the minor planet type

It’s horrible! In an effort to make the code more compact, two record fields have been put on each line. Some fields are divided by a semicolon, and others are not. Some of the field names, such as AbsMag, are abbreviated, while others, such as PerturbersPrecise, are written out fully. There are no triple-slash comments on the fields, so the consumer won’t get tool tips explaining the significance of each field, its units, etc. Let’s move the type into its own module and tidy it up (Listing 13-11).module MinorPlanet =

 type Body = {
 /// Number or provisional designation (packed format)
 Designation : string
 /// Absolute magnitude
 H : float option
 /// Slope parameter
 G : float option
 /// Epoch in packed form
 Epoch : string
 /// Mean anomaly at the epoch (degrees)
 M : float option
 /// Argument of perihelion, J2000.0 (degrees)
 Perihelion : float option
 /// Longitude of the ascending node, J2000.0 (degrees)
 Node : float option
 /// Inclination to the ecliptic, J2000.0 (degrees)
 Inclination : float option
 /// Orbital eccentricity
 e : float option
 /// Mean daily motion (degrees per day)
 n : float option
 /// Semimajor axis (AU)
 a : float option
 /// Uncertainty parameter
 Uncertainty : char option
 /// Reference
 Reference : string
 /// Number of observations
 Observations : int option
 /// Number of oppositions
 Oppositions : int option
 /// Year of first and last observation,
 /// or arc length in days.
 Range : Observation.Range option
 /// RMS residual (arcseconds)
 RmsResidual : double option
 /// Coarse indicator of perturbers
 PerturbersCoarse : string
 /// Precise indicator of perturbers
 PerturbersPrecise : string
 /// Computer name
 ComputerName : string
 /// Flags
 Flags : char[]
 /// Readable designation
 ReadableDesignation : string
 /// Date of last observation included in orbit solution (YYYYMMDD)
 LastOpposition : string }

Listing 13-11A tidier version of the minor planet type

I’ve put the type in its own module, MinorPlanet, and called the type itself Body. (If I were going for the type-outside-the-module style, both the type and the module could simply have been called MinorPlanet.) Each field has its own line and its own triple-slash comment. More controversially, I’ve used shorter names for some of the fields, such as H for absolute magnitude. I did this because this is the officially accepted domain term for the item. When astronomers see a value H in the context of a Solar System body, they know it means absolute magnitude. I’ve even reflected the fact that some accepted domain terms are lowercase, for example, e for orbital eccentricity. I think this is reasonable in a domain such as this, where there is an accepted terminology having some terms conventionally expressed in lowercase.
How far you take use of domain terminology is an interesting question. In math-related code, I have occasionally found myself using Greek letters and symbols as names, as in Listing 13-12.let eccentricity 𝜖 h μ =
 1. + ((2. * 𝜖 * h * h) / (μ * μ))
 |> sqrt

Listing 13-12Using Greek characters in code

This has the advantage that your code can look a lot like the accepted formula for a particular mathematical calculation. But it does mean a lot of copy and pasting of special characters or use of ALT-xxx keyboard codes, so it is probably not to be encouraged!
Getting back to the minor planet record type, we also need to place the related functions into our MinorPlanet module

. Listing 13-13 shows the tidied-up function to create a MinorPlanet.Body instance from a string.module MinorPlanet =

 type Body = {
 // Code as Listing 13-11
 ...
 let fromMpcOrbLine (line : string) =
 let oppositions = line |> Column.asString 124 126 |> Convert.tryToInt
 let range = line |> Observation.fromLine oppositions
 {
 Designation = line |> Column.asString 1 7
 H = line |> Column.tryAsDouble 9 13
 G = line |> Column.tryAsDouble 15 19
 Epoch = line |> Column.asString 21 25
 M = line |> Column.tryAsDouble 27 35
 Perihelion = line |> Column.tryAsDouble 38 46
 Node = line |> Column.tryAsDouble 49 57
 Inclination = line |> Column.tryAsDouble 60 68
 e = line |> Column.tryAsDouble 71 79
 n = line |> Column.tryAsDouble 81 91
 a = line |> Column.tryAsDouble 93 103
 Uncertainty = line |> Column.tryAsChar 106 106
 Reference = line |> Column.asString 108 116
 Observations = line |> Column.tryAsInt 118 122
 Oppositions = oppositions
 Range = range
 RmsResidual = line |> Column.tryAsDouble 138 141
 PerturbersCoarse = line |> Column.asString 143 145
 PerturbersPrecise = line |> Column.asString 147 149
 ComputerName = line |> Column.asString 151 160
 Flags = line |> Column.asCharArray 162 165
 ReadableDesignation = line |> Column.asString 167 194
 LastOpposition = line |> Column.asString 195 202
 }

Listing 13-13Creating a MinorPlanet.Body instance

I’ve taken another potentially controversial step here: I’ve aligned the start-and-end index positions as if they were numbers in a table. There are advantages and disadvantages to this. The obvious disadvantage is that it’s fiddly to do. And if you rename anything, you have to adjust the alignment. The advantage, and for me it’s an overwhelming one in this case, is again that you can run your eye down the code and spot patterns and anomalies.
If you are going to follow this approach, it’s well worth being familiar with your editor’s block selection features. In Visual Studio, you can ALT+drag to select a rectangular block, which makes it much easier to adjust alignment. In Visual Studio Code, it’s SHIFT+ALT+click. I would only do this kind of super-alignment in special cases such as Listing 13-13, where there are a lot of necessarily repetitive lines of code.
Listing 13-14 shows the original code for creating minor planet record instances from a sequence of strings. let createFromData (data : seq<string>) =
 data
 |> Seq.skipWhile (fun line ->
 line.StartsWith("----------")
 |> not) |> Seq.skip 1
 |> Seq.filter (fun line ->
 line.Length > 0)
 |> Seq.map (fun line -> create line)

Listing 13-14Original code for creating minor planet instances

By now, you probably recognize what needs doing here. We should move the header-skipping code to its own function, and we should get rid of the crazy indenting. A good principle to adopt is to indent things the minimum amount that is required by the compiler. This applies even if you have to add extra line breaks to achieve it – unless the line is going to be pretty short anyway. Listing 13-15 shows the improved version.
Note
This principle of indenting things as little as possible – even if it means adding extra line breaks – is very different from the conventions adopted by other languages, notably Python. The big advantage of the minimal-indent approach is that your code won’t stop compiling due to indenting issues, if a label is renamed to a name with a different length.

module MinorPlanet =

 // Code as Listing 13-11 and 13-13
 ...

 let private skipHeader (data : seq<string>) =
 data
 |> Seq.skipWhile (fun line ->
 line.StartsWith("----------") |> not)
 |> Seq.skip 1

 let fromMpcOrbData (data : seq<string>) =
 data
 |> skipHeader
 |> Seq.filter (fun line -> line.Length > 0)
 |> Seq.map fromMpcOrbLine

Listing 13-15Improved code for creating minor planet instances

I’ve also renamed the createFromData function

 to fromMpcOrbData as this is a little more specific. The abbreviation MpcOrb is reasonable here because that is what the input file is called.
Finally, here’s how the demonstration code needs to change to reflect the improvements we’ve made (Listing 13-16). open System.IO

// Get data from: https://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT

// Brightest 10 minor planets (absolute magnitude)
@".\MinorPlanets\MPCORB.DAT"
|> File.ReadLines
|> MinorPlanet.fromMpcOrbData
|> Seq.sortBy (fun mp ->
 mp.H |> Option.defaultValue Double.MaxValue)
|> Seq.truncate 10
|> Seq.iter (fun mp ->
 printfn "Name: %s, Abs. magnitude: %0.2f"
 mp.ReadableDesignation
 (mp.H |> Option.defaultValue nan))

Name: (136199) Eris, Abs. magnitude: -1.11
Name: (134340) Pluto, Abs. magnitude: -0.45
Name: (136472) Makemake, Abs. magnitude: -0.12
Name: (136108) Haumea, Abs. magnitude: 0.26
Name: (90377) Sedna, Abs. magnitude: 1.57
Name: (225088) Gonggong, Abs. magnitude: 1.92
Name: (90482) Orcus, Abs. magnitude: 2.29
Name: (50000) Quaoar, Abs. magnitude: 2.50
Name: (532037) 2013 FY27, Abs. magnitude: 3.20
Name: (4) Vesta, Abs. magnitude: 3.31

Listing 13-16Calling the revised code

Recommendations
Use thoughtful naming and layout to maximize the readability of your code. In particular:	Choose names for types and functions that reflect exactly what they represent or do – but don’t be verbose. Remember that the name of the module in which items live can provide additional context, allowing you to keep the item names relatively short.

	When you are forced to bind a value that you don’t later use, for example, in a match expression, use underscore to explicitly ignore it.

	Use the try… idiom when a function returns an option type.

	Don’t force the reader to think about too much at a time. For example, a line with heavy nesting and multiple calculations might benefit from being broken up into separate, explicit steps.

	Isolate nondomain-specific items from domain-specific items, typically by placing them in separate modules. Different “domain objects” should also go into (or beside) their own modules, along with closely associated functions. More generally, keep modules short by ruthlessly classifying items into small groupings. Sometimes, this process can be helped by nesting modules.

	Where there is already established domain terminology, derive the naming in your domain-specific code from that terminology.

	When using Discriminated Unions, seriously consider giving explicit names to any case payload fields, especially when there are several fields that could be confused.

	When a pipeline uses more than one forward-pipe operator, place each operation on a separate line. Never ever mix the single-line with the new-line style.

	Within a match expression, be consistent on whether the code following -> is on the same or a new line.

	When declaring and constructing records, place fields on separate lines unless the record definition is very small. Never mix single-line and new-line styles in the same record declaration or construction.

	For domain classes, record types and API functions; use triple-slash comments to document members, fields, and public functions. Only rarely can you cram sufficient information into the name.

	Above all, name items and align your code to maximize the eye’s ability to spot patterns – and exceptions to those patterns. If you only take away one principle from this chapter, make it this one!

Summary
It’s rare to be able to organize code perfectly on the first pass. It’s absolutely fine to hack something together just to see if it works and to help you understand the domain you are working on. This is in keeping with the exploratory spirit of F# coding. But what happens next is also important. Tirelessly polish your code using the principles from this chapter. What you are aiming for is code that, in the words of computer scientist Tony Hoare, has “obviously no deficiencies”:There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.

As Hoare points out, achieving “obviously no deficiencies” isn’t easy. But the cost of bugs escalates exponentially as they become embedded in a larger system and in the associated processes. So designing code that has “obviously no deficiencies” is – even in the medium term – much cheaper. Remember what we said in Chapter 1 about complexity explosions!
In the next chapter, we’ll draw together the various threads from this book and remind ourselves of the key practices required to produce truly stylish F# code.
Exercise
Exercise 13-1 – Making Code Readable
The following working code searches for files below a certain path and returns those files whose names match a regular expression and which have the ReadOnly attribute set.open System.IO
open System.Text.RegularExpressions

let find pattern dir =
 let re = Regex(pattern)
 Directory.EnumerateFiles
 (dir, "*.*", SearchOption.AllDirectories)
 |> Seq.filter (fun path -> re.IsMatch(Path.GetFileName(path)))
 |> Seq.map (fun path ->
 FileInfo(path))
 |> Seq.filter (fun fi ->
 fi.Attributes.HasFlag(FileAttributes.ReadOnly))
 |> Seq.map (fun fi -> fi.Name)

find "[a-z]." @"c:\temp"

How would you reorganize this code to make it easier to read, maintain, and extend?
Hint: You might want to add a few modules, which may each have only one function.

Exercise Solution
Exercise 13-1 – Making Code Readable
Here’s my attempt to improve this code. How does yours compare?open System.IO
open System.Text.RegularExpressions

module FileSearch =

 module private FileName =
 let isMatch pattern =
 let re = Regex(pattern)
 fun (path : string) ->
 let fileName = Path.GetFileName(path)
 re.IsMatch(fileName)

 module private FileAttributes =
 let hasFlag flag filePath =
 FileInfo(filePath)
 .Attributes
 .HasFlag(flag)

 /// Search below path for files whose file names match the specified
 /// regular expression, and which have the 'read only' attribute set.
 let findReadOnly pattern dir =
 Directory.EnumerateFiles(dir, "*.*", SearchOption.AllDirectories)
 |> Seq.filter (FileName.isMatch pattern)
 |> Seq.filter (FileAttributes.hasFlag FileAttributes.ReadOnly)

find "[a-z]." @"c:\temp"

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
K. EasonStylish F# 6https://doi.org/10.1007/978-1-4842-7205-3_14

14. Summary

Kit Eason1
(1)Farnham, Surrey, UK

We are what we repeatedly do. Excellence, then, is not an act, but a habit.
—Will Durant, Historian and Philosopher (paraphrasing Aristotle)

F# and the Sense of Style
Well, you reached the end – congratulations! I very much hope you picked up some useful habits from these pages. They’re distilled from several years of very happy experience of using F# in a wide variety of industries. While you may not agree with everything I say, I hope I’ve helped you become a more reflective practitioner of the art of programming in F#.
Before I let you go, let me reiterate the key points from each of the preceding chapters. If any of these still feel unfamiliar, it might be worth turning back to the chapters in question.
Designing Functions with Types
In Chapter 2, I talked about how to design and write that fundamental unit of work in F#: the function. My approach is to start by defining the required signature. Then I write a body that matches the signature. Likely as not, doing this causes me to rethink what the function should really do and hence what its signature should be. I repeatedly refine the signature and body, trying to eliminate as many errors as possible at the signature (type) level – but also making sure any remaining potential errors are handled explicitly in the function body.
I also pointed out the usefulness of Single-Case Discriminated Unions for modeling some business types. It’s often useful to place such a union into or beside a module named after the type in question, together with functions to create and work with instances of the union.
In passing, I also mentioned how you can sometimes simplify code by defining your own operators. It’s a technique to use sparingly.
Missing Data
In Chapter 3, I showed you ways to stop using null values for representing missing data. Either you can use Discriminated Unions to model cases where data items are present or absent, or you can use option types in situations where the possibilities are simply “value present” or “value not present” and where it’s obvious from context why these cases would occur.
I talked about the Option module

, in particular the Option.bind, Option.map, and Option.defaultValue functions, which you can use to make your option type handling pipeline-friendly. There are also functions such as Option.ofObj and Option.ofNull, which can help you transition data between the nullable and the F# world.
Don’t forget that the advent of “nullable reference types” in C# – that is, the potential for reference types to be nonnullable by default – is slowly changing the landscape here. You’ll need to keep up with the latest language design thinking for both C# and F# to get the best from these changes.
Finally, I mentioned that you should avoid exposing F#-specific types, such as DUs and option types, in APIs that might be consumed by C# or other .NET languages.
Collection Functions
In Chapter 4, I showed how vital the fluent use of collection functions is to effective F# programming. I encouraged you to get familiar with the many functions in the Array, List, and Seq modules, such as map, iter, and filter. I pointed out the importance of choosing and interpreting functions, particularly collection functions, by looking at their type signatures. Remember there are handy visual tables in this chapter to help you with this (Tables 4-1 through 4-11).
Be aware of the significance of partial functions and learn to handle their failure cases gracefully. Often, this can be done by using a try... variant of a function, which returns an option type, or by writing such a variant yourself.
I pointed out the dangers of loops that use mutable values as counters and flags. There is almost always an easier way of achieving the same thing using a collection function. Learn to write neat, elegant pipelines of collection functions – but don’t let them get too long, or maintainers may find them difficult to interpret and debug.
Immutability and Mutation
In Chapter 5, I discussed how, though baffling at first, immutability by default is the key to the practical benefits of functional programming. Once you understand how to program in an immutable style, try to get in the habit of coding in that style first, only falling back on mutation for performance reasons, or because what you’re trying to do isn’t possible to express clearly in immutable terms. I realize, though, that it may take a while before this approach seems natural to you. Remember that using the collection functions is often the way to move away from loop-based, mutable programming to mutable style.
Pattern Matching
In Chapter 6, I showed how there’s more to pattern matching than match expressions. I urged you to practice recognizing and using pattern matching wherever it can occur. Use Table 6-2 as a guide both to what syntax features are available and how freely to use them. Understand active patterns and use them where appropriate, but not at the expense of obfuscating your code. Remember that you can pattern match on types, which is indispensable when dealing with class hierarchies, and on the literal null, which may sometimes be useful when dealing with nullable values.
Record Types
In Chapter 7, I discussed how to use record types as the first choice for representing small groups of named items. Be familiar with the design considerations that drive the choice of records over classes: records are to be preferred when there are no “moving parts,” and the external and internal representations of data can be the same.
When you need to “modify” a record type instance, reach for the with keyword rather than making the record instance or its fields mutable.
I discussed the difference between structural (content) equality, as implemented by default in record types, and reference equality, as implemented by default in classes.
You can add instance or static methods to records, but do so sparingly. Alternatives include placing the record type and closely related functions in a module, or – when behaviors need to be complex and closely coupled to the type – using a class instead.
Remember that you don’t have to declare a record type in advance. If the scope is small, it might be worth instantiating an anonymous record with {| Label = value; ... |}.
Finally, I think it’s worth understanding the implications of applying the [<Struct>] attribute to a record type.
Classes
In Chapter 8, I discussed F#’s approach to .NET classes, which allow you to represent combinations of private and public values and behaviors. I suggest you reach for classes rather than record types when you truly need asymmetric representation of data, or you need moving parts. Typically, having moving parts involves there being an internal mutable state, together with methods that indirectly let the caller change that state. Here, F# classes are the most natural fit. Also consider using F# classes when you need to participate in a C#-style class hierarchy.
Conversely, be aware of the costs of using classes. I showed how using them can lead to accidental complexity, which often starts because of a need to implement equality and/or comparison between class instances.
Remember that object expressions can sometimes let you provide inheritance-like behavior with minimal code.
Programming with Functions
In Chapter 9, I introduced the twin concepts of currying and partial application
. Currying is the separation of function parameters into individual items, and partial application is providing just some of those parameters when using the function. Prefer curried style unless there is a special reason to tuple a function’s parameters together. Define curried parameters in an order that best allows the caller to partially apply when necessary. Use partial application if it makes your code clearer or eliminates repetition.
I showed how functions are first-class values, meaning you can create them, bind them to other values, pass or receive them as parameters, and return them as the result of other functions – all with little more effort than it takes to do the same for, say, an integer.
I explained how you can compose functions using the >> operator, if the two functions return and take the same types. Consider using this feature if it genuinely simplifies or clarifies your code. Be wise to the costs of function composition in terms of readability and the ability to step through code and inspect intermediate values.
Asynchronous and Parallel Programming
In Chapter 10, I illustrated asynchronous programming using the analogy of ordering pizza at a restaurant – one which gives you a pager to tell you when your meal is ready. To make your code asynchronous, identify places where your code is “ordering pizza,” typically requesting a disk or network operation. Use let!, use!, or match! bindings in an async {} block to perform such operations, freeing up the thread to do other work and ensuring that another thread picks up and processes the result when it becomes available. Return the (promise of a) result of an async {} block using the return keyword.
I pointed out the difference between the F# “cold task” model for asynchronous calls and C#’s “hot task” model – where the task is running as soon as it is defined. Be prepared to translate between the two worlds, for example, by using Async.StartAsTask to create a running, C#-style task. Use Async.RunSynchronously very sparingly to actually get the result of an asynchronous computation, remembering that doing so is equivalent to waiting at the restaurant counter for your pizza pager to go off. In an extended example, I took you through the process of implementing “async all the way down,” at each layer of a stack of functions.
Where it makes sense to run several asynchronous computations in parallel, consider doing so with Async.Parallel, remembering that this takes an optional parameter that allows you to limit the number of threads working simultaneously.
For computations that don’t need to be asynchronous but which can usefully be run in parallel, simply use Array.Parallel.map or one of the other functions in the Array.Parallel module.
Don’t forget that F# now has a native task {} computation expression, allowing you to work directly in terms of C#-style “hot tasks.”
Railway Oriented Programming
In Chapter 11, I took you through the ROP style. This is an approach centered around the use of the Result type, which allows you to represent the results of computations that might pass or fail. I recast the ROP metaphor in terms of machine tools in a widget factory. Each machine tool is placed into an “adapter housing” so that we can put together a production line of units, each of which can bypass failures and process successes from the previous step. In ROP, the basic functions generally take a “naked” type as input and return a result wrapped in a Result type. We use an adapter function (Result.bind) to convert each such function so that it both takes a Result type and returns a Result type. Functions thus adapted can be composed using >>. ROP also uses Result.map to adapt functions that can never fail so that they can also slot into the pipeline.
We can use a Discriminated Union to enumerate all the error possibilities, with some cases having payloads to convey further information about the error. Doing this means that errors that have occurred anywhere in the pipeline can be handled in a centralized way using Result.mapError.
I suggested that you use ROP judiciously. But even if you choose not to adopt it in your code, you should be sure to understand how it works, as doing so can yield insights that are applicable in your F# programming generally.
Performance
In Chapter 12, I encouraged you to code with mechanical sympathy
, being aware of the performance characteristics of the data structures and algorithms that you employ. For example, don’t use indexed access into F# lists, and don’t create large numbers of objects unnecessary, particularly if they will persist beyond Generation 0 of the garbage collection cycle.
Use collection functions combined with the appropriate collection types to write performant code. For example, Array.map and Array.filter might in some circumstances be a better choice than List.map and List.filter. If you don’t want intermediate collections in a pipeline to be realized, consider using functions from the Seq module. Remember that comprehensions (code in seq {}, [||], or [], combined with the yield keyword) can be a great way to combine somewhat imperative code with functional concepts, all in a performant way.
Where performance is critical, create repeatable benchmarks. I gave an example of doing this using BenchmarkDotNet. First write correct code, typically supported by unit tests. Then refine performance progressively, all while keeping an eye both on the benchmark results and the unit test results.
I suggested that you shouldn’t optimize prematurely, nor microoptimize unnecessarily, especially if doing so compromises the clarity or reliability of your code or risks not getting the benefits of future compiler or platform improvements.
Layout and Naming
In Chapter 13, I encouraged you to treat layout and naming as key drivers of the quality of your code. I suggested that you choose concise names that reflect exactly what an item does or represents. Placing items in carefully named modules can help with this. It’s often useful to classify types and functions carefully, for example, separating generic from domain-specific types and functions and placing functions relating to each type into their own module.
I gave a few tips on layout. These boil down to organizing your code to help the eye pick out patterns (and exceptions to those patterns) using consistent line breaks and indentation. You can also help the reader by using triple-slash comments to document public functions, types, etc., as these comments will appear as tool tips in most editors.
I also pointed you to the official F# Style Guide, which contains a wealth of more detailed recommendations on topics such as naming, spacing, and indentation.
Onward!
You’re now equipped to write stylish, performant, maintainable code. But if you ever find yourself in doubt, try applying the principles we established in Chapter 1.	Semantic focus: When looking at a small piece of code, can the reader understand what is going on without needing a great deal of context from elsewhere in the codebase – or worse still, from outside it?

	Revisability: Can the maintainer make changes to the code and be confident that there won’t be unexpected knock-on effects elsewhere?

	Motivational transparency: Can the reader tell what the author of the code intended to achieve, and why each piece of code is as it is?

	Mechanical sympathy: Does the code make best use of the facilities available in the platform and the language, for instance, by using the right data structure and accessing it in an efficient way?

Stick to these principles, learn what language features help you adhere to them, and you’ll have an enjoyable and productive time with F#. Have fun!

Index

Symbols

@ operator

A

abs function

absoluteUri function

Abstract class
definition
default implementation
members

Active Patterns
definition
multicase
parameterized
partial
single-case

add function

AddEntry member

addTwo

Anonymous records
C#
comparison
copy/update
creating
definition
mutation
named record
pattern matching
serialization/deserialization
structs
type hints
type safety

Array.Parallel module

Array.Parallel.map

asString function

Asynchronous/parallel programming
async {} blocks
batching
code
computation
converting code
C# vs. F#
download files
F# tasks
locking shared resources
partial application
running synchronous downloader
testing
throttling

Asynchronous programming

AsyncLoad function

Authorial intent

B

BenchmarkDotNet

BillingDetails type

buildCsv function

buildLine function

C

Classes
abstract class
adding member
comparison
constructors
declaration
disposable object
equality
example
F#
IDisposable interface
indexed properties
interfaces
member getters/setters
mutable properties
named parameter/object initialization
object expression
OO approach
overrides
secondary constructors
TGZ file
TGZipStream class
types
value as members

Collection functions
anatomy
definition
elements
exercises
many-of-many to many
many to 2-of-many
many-to-Boolean
many-to-equally many
many-to-grouping
many-to-nothing
multiple collection
nothing-to-many
picking right collection
single collection

Column module

Communication problems

compare function

Complexity explosion

cons operator

counter function

create function

createFromData function

Currying

D

deliveryLabels function

Delivery mechanism

Deserialize method

Discriminated Union (DU)

Dispose method

Dispose() methods

Distance calculation

DistanceFrom method

E

Equals() override

F

Forward-pipe operators

Functions
arguments
code
composition
computation
conversion
curried arguments/partial applications
curried parameters
first-class values
functions as values
mix tupled/curried styles
partial application
return functions
returning arguments
returning functions
review/refine
signatures
type hints

G

GenericZero function

Geographic Information System (GIS)

GetHashCode()

getLinks function

gzip algorithm

gZipStreamDemo.tgz

H

Harness module

I, J, K

Ill-thought-out data structures

Immutability/mutation

Immutable version

Indentation

inline keyword

Int32.TryParse function

L

Layout/naming

Let binding

M

main function

map function

match keyword

match! keyword

Mechanical sympathy

member val construct

Miles-and-yards value

MinorPlanet module

Minor planet instances

Motivational transparency

MPCORB.DAT file

Mutable-style coding patterns
cumulative computation
extreme value
guarded linear search
linear search
process all items
repeat Until
RMS
summarizes

Mutation
loop

N

Naive function

Naive string building
array parallel.map
concatenation
CSV builder
improvements
interpolation
string join
two-dimensional array

NaiveStringBuilding.fs

NoComparison attribute

Null
C# code
constructor
DU
future
leaking in
Option.ofNullable
Option.ofObj
Option.toNullable
Option.toObj
vs. option types
string type

O

Object.Equals() method

Object Orientation

Object-Oriented languages

Object-Oriented Programming (OOP)

Observation range data

Observation range functions

Open() method

Opposition

Option module functions

Option.bind function

Option.iter function

Option.map function

Option types
default value
missing values
Option module
Option.bind
Option.iter
Option.map
pattern matching

P, Q

paramFunction

Partial application

Partial functions
array
coding
collection function
definition
exercises, try function
mistakes
modules
try
try idiom

Passed as arguments

passThrough functions

Pattern matching
active patterns
&
arrays/lists
case swiching, C#
case swiching, F#
definition
DUs
enums
feature
guards
let bindings
loops
loops/lambdas
multiple conditions
null
parameters
records
recovered value
Single-Case Discriminated Unions
Single-Case DU
tuples
types
Zip+4 active pattern

Performance
concatenating lists
CSV generation
design
F#/span support
issues
tests

Performance antipatterns
inappropriate collection type
arrays
avoid indexed access
collection usage
functions, avoid
sample function
sequences
skipping for-loop, avoid
test harness
timings

R

Railway Oriented Programming (ROP)
adapting functions, failure
bypass adapter
definition
errors
factory floor
F# coding conventions
outcome
pipeline
production line
reproducing maperror
writing pass-through adapter

Record types
anonymous
vs. classes
F# object oriented class
instantialtion values to members
structs
structural equality
class types
constructors/setters/getters
declaration
definition
equality
generic
immutability
instances
layout
methods
instance
overrides
static
modifying
performance
principle
recursive
struct

return keyword

Revisability

S

save() function

SaySomething

Semantic focus

Semantic focus

Seq.tryMax function

SharpZipLib library

Short-term objects
benchmarking
object creation
operator choice
reducing tuples
required API
sequence instead of arrays
struct tuples
withinRadius function

Single-Case Discriminated Unions

sprintf function

Struct attribute

System.Random instance

System.Text.StringBuilder

T

Testability

TGZ archives

tidy() function

ToString() method

ToUpper() method

Triple-slash comments

tryAverage function

tryDeliveryLabel function

tryDownload function

TryFromString method

tryGetSomethingFromApi function

Type-outside-module style

U

UniqueId

using function

V

validateAndSave function

ValueOption type

W, X, Y, Z

Walk() method

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figh_HTML.gif

OEBPS/images/462726_2_En_10_Chapter/462726_2_En_10_Fig3_HTML.jpg
Ethernet Killer E2600 Gigabit Ethernet Controller

Throughput 500 Mbps
— ~200-Mbps
60 seconds 0
: Send Adapter name: Ethernet
' 4.1 Mbps Connection type: Ethernet
' IPv4 address: 192.168.0.70
Receive IPv6 address: £€80:71db:12a9:722b:7b35%21

224 Mbps

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Fign_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figb_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figt_HTML.gif
It

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig8_HTML.png
map

W

NwWIL

e

mapError

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig2_HTML.png
o paosl Nl

SRS

OEBPS/css/sidebar.gif

OEBPS/images/462726_2_En_10_Chapter/462726_2_En_10_Fig4_HTML.jpg
Ethernet Killer E2600 Gigabit Ethernet Controller

Throughput 500 Mbps

=N — S~ | /= | 200\ibps|

g N \J V — N

60 seconds 0
: Send Adapter name: Ethernet
122 MbpS Connection type: Ethernet
: IPv4 address: 192.168.0.70
Receive IPv6 address: fe80::71db:1229:722b:7b35%21

220 Mbps

OEBPS/images/462726_2_En_1_Chapter/462726_2_En_1_Fig1_HTML.jpg
THIS IS WHY YOU SHOULDN'T INTERRUPT A PROGRAMMER

iPec ==
backtrack =

.60 iF the current character is
3 comma, we set the back-
tracking Flag..

camm: 25763‘:0 here CLT ENTRY |« ::z:l; ‘::‘l’::b":z
cause
ue e " POINT weird parse logic?

or did it just
axpose it? ¢ —
NEW CONFIG : REMOTE CONFIG
FORMAT PARSER LOADER
@ _L N_ no access to
CALLBACK FOR |— source - are
i Celeutating its
HEY, SO'T JUST O \:g)-\ state later?
SENT YOU AN EMAIL 00 —

ABOUT THAT THING o’

© Jason Heeris 2013 Printed with permission of Jason Heeris heeris.id.au

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. The Sense of Style

 		2. Designing Functions Using Types

 		3. Missing Data

 		4. Working Effectively with Collection Functions

 		5. Immutability and Mutation

 		6. Pattern Matching

 		7. Record Types

 		8. Classes

 		9. Programming with Functions

 		10. Asynchronous and Parallel Programming

 		11. Railway Oriented Programming

 		12. Performance

 		13. Layout and Naming

 		14. Summary

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/462726_2_En_10_Chapter/462726_2_En_10_Fig2_HTML.jpg
Ethernet Killer E2600 Gigabit Ethernet Controller

Throughput 500 Mbps
200 Mbps
60 seconds 0
: Send Adapter name: Ethernet
: 320 KbpS Connection type: Ethernet
: IPv4 address: 192.168.0.70
Receive IPv6 address: £€80:71db:1229:722b:7b35%21

27.5 Mbps

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figo_HTML.gif

OEBPS/images/462726_2_En_12_Chapter/462726_2_En_12_Fig4_HTML.png
microseconds

Average Execution Time

12,00,000

10,00,000
8,00,000
6,00,000
4,00,000
2,00,000
) I I —— —

Baseline StringBuilder String.Join Array.Parallel.map String interpolation

OEBPS/images/462726_2_En_10_Chapter/462726_2_En_10_Fig5_HTML.jpg
Ethernet Killer E2600 Gigabit Ethernet Controller

Throughput 500 Mbps
60 seconds 0
Send Adapter name: Ethemnet

‘24 M Connection type: Ethemnet
. ? bpS IPv4 address: 192.168.0.70
Receive IPv6 address: £e80:71db:12a9:722b:Tb35%21

224 Mbps

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figl_HTML.gif

OEBPS/images/462726_2_En_12_Chapter/462726_2_En_12_Fig1_HTML.png
microseconds

12,00,000

10,00,000

8,00,000

6,00,000

4,00,000

2,00,000

Baseline

Average Execution Time

Avoid index into Use array not list Use seq not array Avoid collection Avoid skipping
list functions loops

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figi_HTML.gif

OEBPS/images/462726_2_En_3_Chapter/462726_2_En_3_Fig2_HTML.png
Option.map

- 1
—

Option.map

(”16 Planck Park...")— Bha—> A “16 PLANCK PARK...")

OEBPS/images/978-1-4842-7205-3_CoverFigure.jpg
£ -

'!-- ==

Stylish
Fi 6

(rafting Elegant Functional Code
for NET 6

Second Edition

Kit Eason

OEBPS/css/envelope.png

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figc_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figf_HTML.gif

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig1_HTML.png
DOO

00(

V- V-

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig7_HTML.png

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig4_HTML.png
DOO

00¢

V-V-N

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Fige_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figk_HTML.gif

OEBPS/images/462726_2_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/462726_2_En_12_Chapter/462726_2_En_12_Fig3_HTML.png
microseconds

1,80,000
1,60,000
1,40,000
1,20,000
1,00,000
80,000
60,000
40,000
20,000

Average Execution Time

Baseline Use seq se
not array functlons
not

objects

Reduce
tuples

Use
struct
tuples

Use pown
not **

Use
multiply
not pown

OEBPS/images/462726_2_En_8_Chapter/462726_2_En_8_Fig1_HTML.png
“GZip” (compressed) file

“Tar” (tape archive) file #1

Tar entry #1

Content

Tar entry #2

Content

“Tar” (tape archive) file #2

Tar entry #1

Content

(etc...)

(etc...)

OEBPS/images/462726_2_En_13_Chapter/462726_2_En_13_Fig1_HTML.png
let rangeFromLine (oppositions : int option) (line : string) =
match oppositions with
| None -> None
| Some o when 0 = 1 ->
line|[> columnAsInt 128 131
| some o -> i
match (line |> columnAsInt 128 131),
(line |> columnAsInt 133 136) with
| Some(firstObservedYear), Some(lastObservedYear) ->
M:l?iapgozi?ign?fir;tab;e:v:dVe;r
lastObservedYear) |> Some 3
| T e e e e e e

o ->|_No_ne_'

let fromLine (oppositions : int option) (line : string) =
match oppositions with
| None ->
None
| Some o when o =1 ->
line |
|> Column.tryAsInt 128 131 |
| > Option.map SingleOpposition
| Some _ ->
let firstYear = line |> Column.tryAsInt 128 131
let lastYear = line |> Column.tryAsInt 133 136
match firstYear, lastYear with
| Some(fy), Some(ly) ->
(it G A A it

P - -

|>

r.a
151

1
=

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figq_HTML.gif

OEBPS/images/462726_2_En_BookFrontmatter_Figa_HTML.png
APICSS®

OEBPS/images/462726_2_En_10_Chapter/462726_2_En_10_Fig1_HTML.jpg
Ethernet Killer E2600 Gigabit Ethernet Controller

Throughput 11 Mbps
7.7 Mbps
N\

60 seconds 0
: Send Adapter name: Ethernet

' 144 Kbps Connection type: Ethernet

: IPv4 address: 192.168.0.70

Receive IPv6 address: fe80::71db:12a9:722b:7b35%21

4.2 Mbps

OEBPS/images/462726_2_En_3_Chapter/462726_2_En_3_Fig1_HTML.png
O @ ¥ o
Synchronization |
Object reference not set to an instance of an object.

Branch:

Sync | Fetch | Pull | Push | Actions v

4 Incoming Commits
Fetch | Pull

There are no incoming commits.

4 Outgoing Commits (1)
Push | View Summary

OEBPS/images/462726_2_En_8_Chapter/462726_2_En_8_Fig2_HTML.jpg
D:\temp\gZipStreamDemo.tgz\gZipStreamDemo.tar\ - m}
File Edit View Favorites Tools Help

P = v B = X i

Add Extract Test Copy Move Delete Info

5 l. D:\temp\gZipStreamDemo.tgz\gZipStreamDemo.tar\

Size Packed Size Modified Mode User
n 512 2021-06-26 19:19 A S
26 512 2021-06-26 19:19 T

0/ 2 object(s) selected

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig5_HTML.png

OEBPS/images/462726_2_En_2_Chapter/462726_2_En_2_Fig1_HTML.png
5im 29ch

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figr_HTML.gif

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig6_HTML.png

OEBPS/images/462726_2_En_8_Chapter/462726_2_En_8_Fig3_HTML.png

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figd_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figa_HTML.gif

OEBPS/images/462726_2_En_11_Chapter/462726_2_En_11_Fig3_HTML.png
o4

\\\\\\

OEBPS/images/462726_2_En_12_Chapter/462726_2_En_12_Fig2_HTML.png
microseconds

1,00,00,000

10,00,000

1,00,000

10,000

1,000

100

10

Average Execution Time (Log Scale)

Baseline Avoid index Usearray Use seq not Avoid Avoid
into list not list array collection skipping
functions loops

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figp_HTML.gif

OEBPS/images/462726_2_En_12_Chapter/462726_2_En_12_Fig5_HTML.png
Code in
idiomatic style

l

Add tests

Fix test failure

Yes
d
Run i
Fix worst
peri(;l’:;éznce bottleneck
Identify
‘NO bottlenecks
Yes

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figj_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figg_HTML.gif

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figs_HTML.gif
21

=

OEBPS/images/462726_2_En_4_Chapter/462726_2_En_4_Figm_HTML.gif

