
Visual Studio Code
Distilled

Evolved Code Editing for Windows,
macOS, and Linux
—
Second Edition
—
Alessandro Del Sole

Visual Studio
Code Distilled

Evolved Code Editing for
Windows, macOS, and Linux

Second Edition

Alessandro Del Sole

Visual Studio Code Distilled: Evolved Code Editing for Windows, macOS, and Linux

ISBN-13 (pbk): 978-1-4842-6900-8			 ISBN-13 (electronic): 978-1-4842-6901-5
https://doi.org/10.1007/978-1-4842-6901-5

Copyright © 2021 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (https://www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit https://www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at https://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484269008. For more
detailed information, please visit https://www.apress.com/source-code.

Printed on acid-free paper

Alessandro Del Sole
Cremona, Italy

https://doi.org/10.1007/978-1-4842-6901-5

To my wife Angelica, you mean everything to me.

v

About the Author�� xi

Acknowledgments�� xiii

Introduction��xv

Table of Contents

Chapter 1: �Introducing Visual Studio Code�� 1

Visual Studio Code, a Cross-platform Development Tool��� 1

When and Why Visual Studio Code��� 2

Installing and Configuring Visual Studio Code��� 4

Installing Visual Studio Code on Windows�� 6

Installing Visual Studio Code on macOS��� 8

Installing Visual Studio Code on Linux�� 8

Localization Support��� 10

Updating Visual Studio Code��� 11

Previewing Features with Insiders Builds�� 13

Summary��� 14

Chapter 2: �Getting to Know the Environment�� 17

The Welcome Page��� 18

The Code Editor�� 19

Reordering, Resizing, and Zooming Editor Windows�� 20

The Status Bar��� 20

The Activity Bar�� 22

The Side Bar��� 22

The Explorer Bar��� 23

The Search Tool�� 27

The Git Bar�� 28

vi

The Run and Debug Bar�� 29

The Extensions Bar��� 29

The Accounts Button�� 30

The Settings Button�� 32

Navigating Between Files�� 32

The Command Palette�� 33

The Panels Area��� 35

The Problems Panel�� 35

The Output Panel�� 37

The Debug Console Panel��� 37

Working with the Terminal�� 38

Summary��� 40

Chapter 3: �Language Support and Code Editing Features��������������������������������������� 41

Language Support�� 41

Working with C# and C++�� 42

Basic Code Editing Features�� 43

Working with Text��� 43

Syntax Colorization��� 44

Delimiter Matching and Text Selection��� 46

Code Block Folding��� 46

Multicursors��� 47

Reusable Code Snippets��� 47

Word Completion�� 49

Minimap Mode�� 50

Whitespace Rendering and Breadcrumbs�� 51

Markdown Preview��� 53

Evolved Code Editing�� 54

Working with IntelliSense��� 55

Parameter Hints�� 57

Inline Documentation with Tooltips�� 58

Go to Definition and Peek Definition��� 60

Table of Contents

vii

Go to Implementation and Peek Implementations�� 62

Finding References��� 63

Renaming Symbols and Identifiers��� 67

Live Code Analysis�� 68

Summary��� 76

Chapter 4: �Working with Files and Folders��� 77

Visual Studio Code and Project Systems��� 77

Working with Individual Files��� 78

Creating Files�� 80

File Encoding, Line Terminators, and Line Browsing�� 81

Working with Folders and Projects�� 82

Opening a Folder�� 83

Opening .NET Solutions�� 85

Opening JavaScript and TypeScript Projects�� 86

Opening Loose Folders��� 87

Working with Workspaces�� 87

Creating Workspaces�� 89

Opening Existing Workspaces�� 90

Workspace Structure�� 90

Summary��� 91

Chapter 5: �Customizing Visual Studio Code�� 93

Customizations and Extensions Explained��� 93

Customizing Visual Studio Code��� 94

Theme Selection��� 95

Customizing the Environment��� 97

Customizing Keyboard Shortcuts��� 106

Summary��� 110

Table of Contents

viii

Chapter 6: �Installing and Managing Extensions�� 111

Installing Extensions�� 111

Extension Recommendations��� 115

Useful Extensions��� 116

Managing Extensions��� 118

Configuring Extensions��� 119

Hints About Extension Authoring�� 121

Summary��� 122

Chapter 7: �Source Control with Git�� 123

Source Control in Visual Studio Code��� 123

Downloading Other Source Control Providers�� 124

Managing Repositories�� 125

Initializing a Local Git Repository��� 125

Creating a Remote Repository�� 128

Handling File Changes��� 130

Staging Changes�� 132

Managing Commits�� 133

Working with the Git Command-Line Interface�� 135

Creating and Managing Branches�� 136

Switching to a Different Branch��� 138

Merging from a Branch��� 138

Hints About Rebasing Branches��� 141

Deleting Branches�� 141

Adding Power to the Git Tooling with Extensions��� 141

Git History��� 142

GitLens�� 143

GitHub Pull Requests and Issues�� 147

Working with Azure DevOps and Team Foundation Server�� 149

Creating a Team Project��� 149

Connecting Visual Studio Code to a Remote Repository�� 151

Summary��� 153

Table of Contents

ix

Chapter 8: �Automating Tasks�� 155

Understanding Tasks�� 155

Tasks Types�� 156

Running and Managing Tasks��� 157

The Default Build Task�� 162

Auto-Detected Tasks��� 163

Configuring Tasks��� 165

Running Files with a Default Program�� 186

Summary��� 186

Chapter 9: �Building and Debugging Applications: .NET 5 and
Other Platforms�� 189

Creating Applications��� 189

Introducing .NET 5�� 190

Creating .NET 5 Projects��� 191

Creating Projects on Other Platforms��� 196

Debugging Your Code��� 198

Configuring the Debugger�� 200

Managing Breakpoints��� 203

Debugging an Application��� 204

Summary��� 209

Chapter 10: �Building Applications with Python��� 211

Chapter Prerequisites�� 211

Creating Python Applications�� 213

Running Python Code��� 215

Code Editing Features for Python��� 221

Enhanced Word Completion with IntelliSense�� 221

Understanding Function Parameters With Parameter Hints��� 222

Quickly Retrieving Type Definitions�� 222

Finding References��� 223

Renaming Symbols��� 224

Finding Code Issues with Linters�� 225

Table of Contents

x

Advanced Code Editing with Pylance��� 227

Managing Pylance Settings�� 230

Running Python Scripts�� 231

Summary��� 232

Chapter 11: �Deploying Applications to Azure�� 235

Introducing Azure Extensions��� 235

Deploying Web Applications��� 237

Installing Extensions��� 237

Signing into Azure Subscriptions�� 238

Publishing Web Applications��� 240

Creating and Deploying Azure Functions��� 243

Configuring Visual Studio Code�� 243

Creating Azure Functions�� 245

Deploying Azure Functions��� 251

Summary��� 256

Index�� 257

Table of Contents

xi

About the Author

Alessandro Del Sole is Senior Software Engineer for a healthcare company, building

mobile apps for doctors and dialysis patients. He has been in the software industry for

almost 20 years, focusing on Microsoft technologies such as .NET, C#, Visual Studio, and

Xamarin. He has been a trainer, consultant, and a Microsoft MVP since 2008 and is the

author of many technical books. He is a Xamarin Certified Mobile Developer, Microsoft

Certified Professional, and a Microsoft Programming Specialist in C#.

xiii

Acknowledgments

Thanks to Joan Murray, Jill Balzano, Laura Berendson, and everyone else at Apress for

the opportunity and the great teamwork on this book.

Special thanks to the technical editor, Damien Foggon, who contributed to the

quality and accuracy of the contents.

Special thanks to my wife Angelica, who understands and never complains about the

time I spend on writing books.

xv

Introduction

One of the most common requirements in software development today is building

applications and services that run on multiple systems and devices, especially with the

continued expansion of cloud and artificial intelligence services.

Developers have many options to build cross-platform and cross-device software,

from languages to development platforms and tools. However, in most cases such tools

rely on proprietary systems, therefore creating strong dependencies. Moreover, most

development tools target specific platforms and development scenarios. Microsoft

Visual Studio Code makes a step forward, by providing a fully featured development

environment for Windows, macOS, and Linux that not only offers advanced coding

features but also integrated tools that span across the entire application life cycle from

coding to debugging to team collaboration.

With .NET 5 recently released and with .NET MAUI coming shortly, Visual Studio

Code becomes even more important to support cross-platform development on multiple

operating systems. In this book, developers with any skill will learn how to leverage

Visual Studio Code to target scenarios such as web, cloud, and mobile development with

the programming language of their choice, providing guidance to build apps for any

system and any device.

1
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_1

CHAPTER 1

Introducing Visual
Studio Code
Visual Studio Code is not just another evolved Notepad with syntax colorization

and automatic indentation. Instead, it is a very powerful code-focused development

environment expressly designed to make it easier to write web, mobile, and cloud

applications using languages that are available to different development platforms and

to support the application development life cycle with a built-in debugger and integrated

support for the popular Git version control engine.

With Visual Studio Code, you can work with individual code files or with folders

containing projects or loose files. This chapter provides an introduction to Visual Studio

Code, giving you information on when and why you should use it and details about

installing and configuring the program on the different supported operating systems.

Note  Across the book, I will refer to the product with its full name, Visual Studio
Code, and its friendly names, VS Code and Code, interchangeably.

�Visual Studio Code, a Cross-platform
Development Tool
Visual Studio Code has been the first cross-platform development tool in the Microsoft

Visual Studio family that runs on Windows, Linux, and macOS. It is free, open source

(https://github.com/microsoft/vscode), and definitely a code-centric tool, which not

only makes editing code files and folder-based project systems easier but also facilitates

writing cross-platform web, mobile, and cloud applications over the most popular

https://doi.org/10.1007/978-1-4842-6901-5_1#DOI
https://github.com/microsoft/vscode

2

platforms, such as Node.js and .NET 5 (including earlier versions of .NET Core), with

integrated support for a huge number of languages and rich editing features such as

IntelliSense, finding symbol references, quickly reaching a type definition, and much

more.

Visual Studio Code is based on Electron (https://electronjs.org/), a framework

for creating cross-platform applications with native technologies, and combines the

simplicity of a powerful code editor with the tools a developer needs to support the

application lifecycle development, including debuggers and version control integration

based on Git. Visual Studio Code is therefore a complete development tool, rather

than being a simple code editor. For a richer development experience, you will want to

consider Microsoft Visual Studio 2019 on Windows and Visual Studio 2019 for Mac on

macOS, but Visual Studio Code can be really helpful in many situations.

In this book, you’ll learn how to use Visual Studio Code and how to get the most out

of it; you’ll discover how you can use it both as a powerful code editor and as a complete

environment for end-to-end development. Except where necessary to differentiate

operating systems, figures are based on Microsoft Windows 10, but typically there is no

difference in the interface on Linux and macOS. Also, Visual Studio Code includes a

number of color themes that style its layout. In this book, figures display the Light (Visual

Studio) theme, so you might see different colors on your own screen if you choose a

different color theme. Chapter 5 explains how to change the theme, but if you want to be

consistent with the book’s figures, simply select File ➤ Preferences ➤ Color Theme and

select the Visual Studio Light Theme. It is worth mentioning that the theme you select

does not affect at all the features described in this book.

�When and Why Visual Studio Code
Before you learn how to use Visual Studio Code, explore the features it offers, and

discover how it provides an improved code editing experience, you have to clearly

understand its purpose. Visual Studio Code is not a simple code editor; rather, it is a

powerful environment that puts writing code at its center. The main purpose of Visual

Studio Code is to make it easier to write code for web, mobile, and cloud platforms for

any developers working on Windows, Linux, or macOS, providing independence from

proprietary development environments.

For a better understanding of the nonproprietary nature of Visual Studio Code,

let’s consider an example based on ASP.NET Core, the cross-platform, open source

Chapter 1 Introducing Visual Studio Code

https://electronjs.org/

3

technology able to run on Windows, Linux, and macOS that Microsoft produced to

create portable web applications; forcing you to build cross-platform, portable web apps

with Microsoft Visual Studio 2019 would make you dependent on that specific integrated

development environment (IDE). This also applies to the (free) Visual Studio 2019

Community edition. Conversely, though Visual Studio Code certainly is not intended to

be a replacement for more powerful and complete environments, it can run on a variety

of operating systems and can manage different project types, as well as the most popular

languages. To accomplish this, Visual Studio Code provides the following core features:

•	 Built-in support for coding with many languages, including those

you typically use in cross-platform development scenarios, such as

C# and JavaScript, with advanced editing features and support for

additional languages via extensibility

•	 Built-in debugger for Node.js, with support for additional debuggers

(such as .NET 5) via extensibility

•	 Version control based on the popular Git version control system,

which provides an integrated experience for collaboration supporting

code commits and branches, and that is the proper choice for a tool

intended to work with possibly any language

In order to properly combine all these features into one tool, Visual Studio Code

provides a coding environment based on folders, which makes it easy to work with code

files that are not organized within projects and offers a unified way to work with different

languages. Starting from this assumption, Visual Studio Code offers an advanced editing

experience with features that are common to any supported languages, plus some

features that are available to specific languages. As you’ll learn throughout the book,

Code also makes it easy to extend its built-in features by supplying custom languages,

syntax coloring, editing tools, debuggers, and much more via a number of extensibility

points. It is a code-centric tool, with primary focus on web, cross-platform code. That

said, it does not provide all of the features you need for full, more complex application

development and application lifecycle management and is not intended to be the best

choice with some development platforms. If you have to make a choice, consider the

following points:

•	 Visual Studio Code can produce binaries and executable files only if

the language you use has support to do so through a command-line

interface (CLI), a compiler, and a debugger. If you use a language

Chapter 1 Introducing Visual Studio Code

4

for which there is no extensive support (e.g., the open source Go

programming language, https://golang.org), Visual Studio

Code is not able to invoke a compiler. You can work around this by

implementing task automation, discussed in Chapter 8, but this is

different than having the compilation process integrated.

•	 Visual Studio Code has no designers, so creating an application’s

user interface can only be done by writing all of the related code

manually. As you can imagine, this is fine with some languages and

for some scenarios, but it can be very complicated with some kinds

of applications and development platforms, especially if you are used

to working with the powerful graphical tools available in Microsoft

Visual Studio 2019.

•	 Visual Studio Code is a general-purpose tool and is not the proper

choice for specific development scenarios such as building Windows

desktop applications.

If your requirements are different, consider instead Microsoft Visual Studio 2019

or Microsoft Visual Studio 2019 for Mac, which are optimized for building, testing,

deploying, and maintaining multiple types of applications.

Now that you have a clearer idea of Code’s goals, you are ready to learn the amazing

editing features that elevate it above any other code editor.

�Installing and Configuring Visual Studio Code
Installing Visual Studio Code is an easy task. In fact, you can simply visit https://

code.visualstudio.com from your favorite browser, and the web page will detect

your operating system, suggesting the appropriate installer. Figure 1-1 shows how the

download page appears on Windows.

Chapter 1 Introducing Visual Studio Code

https://golang.org
https://code.visualstudio.com
https://code.visualstudio.com

5

Note  Visual Studio Code can also run in Portable Mode, which means that
you can create a self-containing folder that can be moved across environments.
Since this is a very specific scenario, it isn’t covered in this book; you can read
the documentation (https://code.visualstudio.com/docs/editor/
portable) to learn the steps required to generate Portable Mode.

In the following sections, you will learn tips for installing Visual Studio Code on the

various supported systems.

Note T he latest stable release of Visual Studio Code at the time of this writing is
version 1.56, released in April 2021.

Figure 1-1.  The download page for Visual Studio Code

Chapter 1 Introducing Visual Studio Code

https://code.visualstudio.com/docs/editor/portable
https://code.visualstudio.com/docs/editor/portable

6

�Installing Visual Studio Code on Windows
Visual Studio Code can be installed on Windows 7, 8, and 10. For this operating system,

Visual Studio Code is available with two installers: a global installer and a user-level

installer. The first installer requires administrative privileges for installation and makes

Code available to all users. The second installer makes Code available only to the

currently logged-in user, but it does not require administrative privileges.

The latter is the choice I recommend, especially if you work within a corporate

environment and you do not have administrative privileges to install software on your

PC. The Download for Windows button that you can see in Figure 1-1 will automatically

download the User Installer. If you instead wish to download the system-level installer,

go to https://code.visualstudio.com/download and select the System Installer

download that best fits your system configuration (32 or 64 bit, or ARM).

Once the download has been completed, launch the installer and simply follow the

guided procedure that is typical of most Windows programs. During the installation, you

will be prompted to specify how you want to integrate shortcuts to Visual Studio Code in

the Windows shell. In the Select Additional Tasks dialog, make sure you select (at least)

the following options :

•	 Add “Open with Code” action to Windows Explorer file context
menu, which allows for right-clicking a code file in the Explorer and

opening such a file with VS Code

•	 Add “Open with Code” action to Windows Explorer directory
context menu, which allows for rightclicking a folder in the Explorer

and opening such a folder with VS Code

•	 Add to PATH (available after restart), which adds the VS Code’s

pathname to the PATH environment variable, making it easy to run

Visual Studio Code from the command line without typing the full path

Note  Some antivirus and system protection tools, such as Symantec Endpoint
Protection, might block the installation of some files that are recognized as false
positives. In most cases this will not prevent Visual Studio Code from working, but it
is recommended that you disable the protection tool before installing Code or, if you
do not have elevated permissions, that you ask your administrator to do it for you.

Chapter 1 Introducing Visual Studio Code

https://code.visualstudio.com/download

7

A specific dialog will inform you once the installation process has completed. The

installation folder for the user-level installer is C:\Users\username\AppData\Local\

Programs\Microsoft VS Code, while the installation folder for the global installer is

C:\Program Files\Microsoft VS Code on 64-bit systems and C:\Program Files(x86)\

Microsoft VS Code on 32-bit systems. You will find a shortcut to Visual Studio Code in

the Start menu and on the Desktop, if you selected the option to create a shortcut during

the installation. When started, Visual Studio Code appears like in Figure 1-2.

Figure 1-2.  Visual Studio Code running on Windows

Chapter 1 Introducing Visual Studio Code

8

�Installing Visual Studio Code on macOS
Installing VS Code on macOS is extremely simple. From the download page, simply click

the Download for macOS button and wait for the download to complete. On macOS,

Visual Studio Code works as an individual program, and therefore you simply need to

double-click the downloaded file to start the application. Figure 1-3 shows Visual Studio

Code running on macOS.

�Installing Visual Studio Code on Linux
Linux is a very popular operating system and many derived distributions exist, so there are

different installers available depending on the distribution you are using. For the Ubuntu

and Debian distributions, you need the .deb installer. For the Red Hat Linux, Fedora, and

SUSE distributions, you need the .rpm installer. This clarification is important because,

Figure 1-3.  Visual Studio Code running on macOS

Chapter 1 Introducing Visual Studio Code

9

differently from Windows and macOS, the browser might not be able to automatically

detect the Linux distribution you are using, and therefore it will offer both options.

Once Visual Studio Code is installed, simply click the Show Applications button on

the desktop and then the Visual Studio Code shortcut. Figure 1-4 shows Visual Studio

Code running on Ubuntu.

Note  If you are a Windows user and want to try Visual Studio Code on a Linux
distribution, you can create a virtual machine with the Hyper-V tool. For example,
you might install the latest Ubuntu version (https://www.ubuntu.com/
download/desktop) as an ISO image and use it as an installation media in
Hyper-V. On macOS, you need to purchase the Apple Parallels Desktop software
separately in order to create virtual machines, but you can basically do the same.

Figure 1-4.  Visual Studio Code running on Ubuntu

Chapter 1 Introducing Visual Studio Code

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop

10

�Localization Support
Visual Studio Code ships in English, but it can be localized in many other supported

languages and cultures. When started, VS Code checks for the operating system

language and, if different from English, it shows a pop-up message suggesting to install a

language pack for the culture of your operating system. The localization support can be

also enabled manually.

To accomplish this, select View ➤ Command Palette. When the text box appears at

the top of the page, type the following command:

> Configure Display Language

You can also just type display and the command will be automatically listed in the

command palette (see Figure 1-5).

Note T he Command Palette will be discussed thoroughly in Chapter 2.

When you click this command, the Command Palette displays two options:

•	 en, which allows for selecting American English as the culture. This is

the default localization and is always available.

•	 Install additional languages, which allows for installing additional

language packs built by Microsoft.

When you click Install additional languages, VS Code shows a list of available

language packs, as you can see in Figure 1-6.

Figure 1-5.  Invoking the command to change the localization

Chapter 1 Introducing Visual Studio Code

11

Select the language pack to see a localized description, then click the Install button.

Visual Studio Code’s user interface will then be localized at restart, based on your selection.

�Updating Visual Studio Code
Visual Studio Code is configured to receive automatic updates in the background and,

usually, Microsoft releases updates monthly.

Note  Because VS Code receives monthly updates, some features might have
been updated at the time of your reading, and others might be totally new. This is
a necessary clarification you should keep in mind while reading, and it is also the
reason why I will also provide links to the official documentation, so that you can
stay up to date more easily.

Figure 1-6.  Installing language packs

Chapter 1 Introducing Visual Studio Code

12

Additionally, you can manually check for updates with Help ➤ Check for Updates

on Windows and Linux and with Code ➤ Check for Updates on macOS. If you do

not want to receive automatic updates and prefer manual updates, you can disable

automatic updates by selecting File ➤ Preferences ➤ Settings and then, in the Update

section of the Application settings group, disable the background updates option.

Figure 1-7 shows an example based on Windows. (Obviously, on macOS and Linux, the

Enable Windows Background Updates option is not available.)

You follow the same steps to re-enable updates in the background. Whenever Visual

Studio Code receives an update, you will receive a notification suggesting that you restart

Code in order to apply changes. The first time you restart Visual Studio Code after an

update, you will see the release notes for the version that was installed, as demonstrated

in Figure 1-8.

Figure 1-7.  Disabling automatic updates

Chapter 1 Introducing Visual Studio Code

13

Release notes contain the list of new and updated features, as well as hyperlinks that

will open the proper feature page in the documentation. You can recall release notes at

any time from Help ➤ Release Notes.

�Previewing Features with Insiders Builds
By default, the download page of the Visual Studio Code’s website allows you to

download the latest stable build. However, Microsoft periodically also releases preview

builds of Visual Studio Code called Insiders builds that you can download to have a look

at new and updated upcoming features before they are released to the general public.

Insiders builds can be downloaded from https://code.visualstudio.com/insiders,

and follow the same installation rules described previously for each operating system.

They have a different icon color, typically a green icon instead of a blue icon, and the name

you see in the application bar is Visual Studio Code - Insiders instead of Visual Studio Code

(see Figure 1-9).

Figure 1-8.  VS Code release notes

Chapter 1 Introducing Visual Studio Code

https://code.visualstudio.com/insiders

14

Insiders builds and stable builds can work side by side without any issues. Because

each lives in its own environment, your setting customizations and extensions you

installed on the stable build will not be automatically available to the Insiders build and

vice versa, so you will need to provide them again.

Insiders builds are a very good option to have a look at what is coming with Visual

Studio Code, but because they are not stable, final builds, it is not recommended you use

them in production or with code you will release to production.

�Summary
Visual Studio Code is not a simple code editor but a fully featured development

environment optimized for web, mobile, and cloud development. In this chapter, you

saw how to install Visual Studio Code on Windows, macOS, and Linux distributions,

Figure 1-9.  Visual Studio Code Insiders builds

Chapter 1 Introducing Visual Studio Code

15

learning how to select the appropriate installers and fine-tune the setup process. You

also saw how to configure localization and updates. Finally, you had a look at the

Insiders builds, which offer previews of upcoming, unreleased features.

Now that you have your environment ready for use, it is time to start discovering

the amazing features offered by Visual Studio Code. The next chapter walks through the

environment, then in Chapter 3, you will see all the amazing code editing features that

make Visual Studio Code a rich, powerful crossplatform editor.

Chapter 1 Introducing Visual Studio Code

17
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_2

CHAPTER 2

Getting to Know the
Environment
Before you use Visual Studio Code as the editor of your choice, it is convenient for you

to know how the workspace is organized and what commands and tools are available, in

order to get the most out of the development environment.

The VS Code user interface and layout are optimized to maximize the space for

code editing, and it also provides easy shortcuts to quickly access all the additional

tools you need in a given context. More specifically, the user interface is divided into

five areas: the code editor, the Status Bar, the Activity Bar, the Panels area, and the Side

Bar. This chapter explains how the user interface is organized and how you can be most

productive using it.

Note  All the features discussed in this chapter apply to any file in any language,
and they will be available regardless of the language you see in the figures
(normally C#). You can open one or more code files via File ➤ Open File to get
some editor windows active and explore the features discussed in this chapter.
Then, Chapter 4 discusses more thoroughly how you can work with individual files
and multiple files, in one or more languages, concurrently.

https://doi.org/10.1007/978-1-4842-6901-5_2#DOI

18

�The Welcome Page
At startup, Visual Studio Code displays the Welcome page, as shown in Figure 2-1.

On the left side of the page, under the Start group, you find shortcuts for creating and

opening files and folders, and for cloning an existing Git repository. Under the Recent

group is a list of recently opened files and folders that you can click for fast opening.

Under the Help group, there are useful links to cheat sheets, introductory videos,

product documentation, and other learning resources about Visual Studio Code. On the

right side of the Welcome page, under the Customize group, you can find shortcuts to

customize Visual Studio Code by installing extensions, changing keyboard shortcuts,

and changing color themes. Under the Learn group are additional shortcuts to learning

resources about commands and the user interface.

Figure 2-1.  The Welcome page

Chapter 2 Getting to Know the Environment

19

Most of the features highlighted in the Welcome page are discussed throughout this

book. By default, the Welcome page is set to show up every time you launch Code. To

change this default behavior, remove the check mark from the Show welcome page on
startup check box. To re-enable the Welcome page on startup, click Help ➤ Welcome

and add the check mark back.

�The Code Editor
The code editor is certainly the area where you spend most of your time in VS Code.

The code editor becomes available when you create a new file or open existing files and

folders. You can edit one file at a time or edit multiple files side by side concurrently.

Figure 2-2 shows an example of the latter.

Figure 2-2.  The code editor and multiple file views

Chapter 2 Getting to Know the Environment

20

To do this, you have a couple options:

•	 Right-click a file name in the Explorer bar and then select Open to
the Side.

•	 Ctrl-click a file name in the Explorer bar. This is discussed in the

section “The Side Bar” later in this chapter.

•	 Ctrl+\ (or ⌘+\ on macOS) to split the editor in two.

Notice that if you already have three files open and you want to open another file, the

editor that is active will display that file. Open editors can also be organized into groups.

To accomplish this, you can drag and drop the title of an open editor close to another one

and they will be both grouped in the same space and the Explorer bar will show the list of

groups. You can quickly switch between editors by pressing Ctrl + 1, 2, and 3. Keep in mind

this works with up to nine editor windows. The code editor is the heart of Visual Studio

Code and provides tons of powerful productivity features that will be deeply discussed in

the next chapter. For now, it is enough to know how to open and arrange editor windows.

�Reordering, Resizing, and Zooming Editor Windows
You can reorder and resize editor windows based on your preferences. To reorder an

editor, click the editor’s header (which is where you see the file name) and move the

editor to a different position. Resizing an editor can instead be accomplished by clicking

the mouse left button when the pointer is on the editor’s border, until it appears as a

left/right arrow pair.

You can also zoom in and out the active editor by clicking Ctrl++ and Ctrl+-,

respectively. As an alternative, you can select View ➤ Zoom In and View ➤ Zoom Out.

You can reset the original zoom factor with Appearance ➤ Reset Zoom.

Note I n Visual Studio Code, the zoom is actually an accessibility feature. As an
implication, when you zoom the code editor, everything else will also be zoomed.

�The Status Bar
The Status Bar contains information about the current file or folder and provides shortcuts

for some quick actions. Figure 2-3 shows an example of how the Status Bar appears.

Chapter 2 Getting to Know the Environment

21

The Status Bar contains the following information, from left to right:

•	 Git version control information and options, such as the current

branch. This is only visible when VS Code is connected to a Git

repository.

•	 Errors and warnings detected in the source code.

•	 The cursor position expressed in line and column.

•	 Tab size, in this case Spaces: 4. You can click this to change the

indentation size and to convert indentation to tabs or spaces.

•	 The encoding of the current file.

•	 The current line terminator.

•	 The programming or markup language for the open file. By clicking

the current language name, you can change the language from a

drop-down list that pops up.

•	 The project name, if you open a folder that contains a supported

project system. It is worth noting that, in case the folder contains

multiple project files, clicking this item enables you to switch

between projects.

•	 The feedback button, which enables you to share your feedback

about Visual Studio Code on Twitter.

•	 The notification icon, which shows the number of new notifications

(if any). Notification messages typically come from extensions or they

are about product updates.

It is worth mentioning that the Status Bar color changes depending on the situation.

For example, it is purple when you open a single file, blue when you open a folder,

and orange when Visual Studio Code is in debugging mode. Additionally, third-party

extensions might use the Status Bar to display their own information.

Figure 2-3.  The Status Bar

Chapter 2 Getting to Know the Environment

22

�The Activity Bar
The Activity Bar is at the left side of the workspace and can be considered a collapsed

container for the Side Bar. Figure 2-4 shows the Activity Bar.

The Activity Bar provides shortcuts for the Explorer, Search, Git, Run and Debug,

Extensions, Accounts, and Settings tools, each described in the next section. When you

click a shortcut, the Side Bar related to the selected tool becomes visible. You can click

again the same shortcut to collapse the Side Bar.

�The Side Bar
The Side Bar is one of the most important tools in Visual Studio Code, and one of the

tools you will interact more with. It is composed of five tools, each enabled by the

corresponding icon, described in the following subsections.

Figure 2-4.  The Activity Bar

Chapter 2 Getting to Know the Environment

23

�The Explorer Bar
The Explorer bar is enabled by clicking the first icon from the top of the side bar and

provides a structured, organized view of the folder or files you are working with. The OPEN
EDITORS subview contains the list of active files, including open files that are not part of

a project or folder or files that have been modified. These are instead shown in a subview

whose name is the folder or project name. Figure 2-5 provides an example of Explorer.

Figure 2-5.  The Explorer bar

Chapter 2 Getting to Know the Environment

24

Note  You must hover your cursor over a folder name (APP1 in Figure 2-5) to
make the four buttons visible.

The subview that shows a folder structure provides four buttons (from left to right):

New File, New Folder, Refresh Explorer, and Collapse Folders in Explorer, each

self-explanatory. The OPEN EDITORS subview has instead three buttons (which you

get when hovering over with the mouse): Toggle Vertical/Horizontal Editor Layout,

Save All, and Close All Editors. Right-clicking a folder or file name in Explorer provides

a context menu that offers common commands (such as Open to the Side, referenced

earlier in this chapter). A very interesting command is Reveal in Explorer (or Reveal
to Finder on Mac and Open Containing Folder on Linux), which opens the containing

folder for the selected item. Notice that the Explorer icon in the Activity Bar also reports

the number of modified files.

�The Outline View

The bottom of the Explorer bar contains another group called OUTLINE. This group

provides a hierarchical view of types and members defined within a code file or of tags

within implicit. Figures 2-6 and 2-7 show the OUTLINE based on a TypeScript file and

based on an HTML file, respectively.

Chapter 2 Getting to Know the Environment

25

Figure 2-6.  The Outline view on a TypeScript file

Chapter 2 Getting to Know the Environment

26

You can expand types and members defined in a markup file to see what other

objects they define, and you can click each item and get the cursor over the selected item

definition in the source code. It is worth mentioning that Visual Studio Code highlights

with a different color (red in the case of the Visual Studio Light Theme) items that have

potential problems and that are highlighted with squiggles in the code editor. Currently,

the Outline view is only available to languages such as JavaScript, TypeScript, HTML,

Markdown, and JSON. Support for additional languages might be available when

installing the appropriate extensions.

Figure 2-7.  The Outline view on an HTML file

Chapter 2 Getting to Know the Environment

27

�The Search Tool
The Search tool, enabled by clicking the search icon, allows for searching and,

optionally, replacing text across files. You can search for one or more words, including

special characters (such as * and ?), and you can even search based on regular

expressions. Figure 2-8 shows the Search tool in action, with advanced options expanded

(files to include and files to exclude), which you enable by clicking the … button located

under Replace. In the example, search is performed only within .cs files.

Figure 2-8.  The Search tool

Chapter 2 Getting to Know the Environment

28

Search results are presented in a hierarchical view that groups all the files that contain

the specified search key, showing an excerpt of the line of code that contains it. Occurrences

are also highlighted in both the list of files and in the code editor. You can finally clean up

search results by clicking the Clear Search Results button located in the toolbar close to the

SEARCH header. If you instead wish to replace some text with a new text, you can do this by

entering the new text into the Replace text box and then clicking the Replace All button.

�The Git Bar
The Side Bar provides access to Git integration for version control. Git integration is a

core topic and will be thoroughly discussed in Chapter 7, but a quick look is provided

here for the sake of completeness about the Side Bar.

The Git bar can be enabled by clicking the third button from the top of the side

bar (with a kind of fork icon) and provides access to all of the common source control

operations, such as initializing a repository, committing code files, and synchronizing

branches. The Git icon also shows the number of files that have been modified locally.

Figure 2-9 shows an example. Modified files are listed under the Changes group. Three

buttons are available for each listed file: Open File, Discard Changes, and Stage
Changes. In Git, as you will learn in Chapter 7, the concept of staging changes means

keeping changes separate from the main code branch so that a developer can evaluate

whether to commit the changes or discard them. Clicking a file name enables a split view

that shows the differences between the modified code and the original code; this topic

will also be more thoroughly discussed in Chapter 7.

Figure 2-9.  The Git bar

Chapter 2 Getting to Know the Environment

29

The Git bar also provides a pop-up menu that contains the list of supported Git

commands in Visual Studio Code organized into submenus, such as Commit, Push, Pull,

and several more you will discover later in the book. Click the … button in the top-right

corner of the Git bar to open the menu.

�The Run and Debug Bar
Visual Studio Code is not only a simple code editor, but also a fully featured development

tool that ships with an integrated debugger for .NET Core and that can be extended with

third-party debuggers for other platforms and languages. Chapter 9 describes in more

detail this important part of Visual Studio Code, but for now note that you can access the

debugging tools by clicking the fourth icon from the top of the side bar. This opens the

Run and Debug bar, shown in Figure 2-10.

In Chapter 9 you will see how to configure the debugging tools and how powerful

they are in Visual Studio Code. You will also see how easy it is to install additional

debuggers.

�The Extensions Bar
The Extensions bar can be enabled by clicking the fifth button from the top in the

Activity Bar and allows for searching and installing extensions for Visual Studio Code,

which include additional languages, debuggers, code snippets, and much more.

Extensibility will be discussed in Chapter 6, but Figure 2-11 provides an example of how

the Extensions bar appears.

Figure 2-10.  The Run and Debug bar

Chapter 2 Getting to Know the Environment

30

You not only can search online for extensions, but also see the list of installed

extensions as well as disabled and recommended extensions.

�The Accounts Button
One of the biggest benefits of Visual Studio Code is that you can customize it in many

ways by arranging the development environment in whichever configuration is most

convenient for you. This includes extensions, keyboard shortcuts, general settings, and

much more.

Figure 2-11.  The Extensions bar

Chapter 2 Getting to Know the Environment

31

If you run VS Code on multiple machines, it would be very useful if you could re-

create your environment automatically on all the machines, without the need to set your

preferences manually on each machine. Fortunately, this is possible using the Accounts

button on the Side Bar.

With this tool, you can sign in with a Microsoft or GitHub account and your settings

will be synchronized across all the VS Code installations to which you have signed in

with the same account. Following is a list of settings that can be synchronized:

•	 General settings

•	 Keyboard shortcuts

•	 Extensions

•	 User-defined code snippets

•	 State of the user interface

You enable settings synchronization by clicking the Accounts button and then Turn
on Settings Sync. At this point Code shows a list of settings that you can sync across

machines, selecting all of them by default, as shown in Figure 2-12.

Select the settings you want to sync, then click Sign in & Turn on. At this point you

will be asked to specify which kind of account you want to use, such as Microsoft or

GitHub. Obviously, you need to use the same account on all the other Code installations.

A browser window opens in which you enter your credentials, and you will quickly get a

confirmation message when sign-in is completed.

Figure 2-12.  The selection of settings to synchronize

Chapter 2 Getting to Know the Environment

32

Note  On Windows, the Firewall might prompt you with a warning saying that VS
Code is trying to open a resource on the Web. If this happens, you can safely allow
this action.

At this point Visual Studio Code starts synchronizing all the selected settings,

which might take a while. Behind the scenes, settings synchronization is based on two

files, settings.json and extensions.json, which VS Code needs to merge from different

installations. If it encounters problems in merging these files automatically, VS Code

gives you an option to manually merge settings with the same merging tool used with

Git. This is a very useful feature and it will save you a lot of time in getting the same

comfortable environment across machines.

�The Settings Button
The Settings button is represented with the gear icon, at the bottom of the Activity Bar. If

you click it, you will see a pop-up menu with a list of commands that represent shortcuts

for customizing Visual Studio Code (and that will be discussed more thoroughly in

Chapter 5). Among others, a command in the menu enables you to manually search for

product updates.

�Navigating Between Files
Other than clicking the tab of an editor, Visual Studio Code provides two ways of

navigating between files. The quickest way is to press Alt+Left or Alt+Right to switch

between active files.

If you instead press Ctrl+Tab, you will be able to browse the list of currently open files

and select one for editing, as shown in Figure 2-13.

Chapter 2 Getting to Know the Environment

33

�The Command Palette
Together with the code editor and the Activity Bar and Side Bar, the Command Palette

is another very important tool in Visual Studio Code, which enables you to access

Visual Studio Code built-in commands and also commands added by extensions via

the keyboard. You can open the Command Palette, shown in Figure 2-14 with View ➤

Command Palette or via the Ctrl+Shift+P keyboard shortcut (⌘+P on macOS).

Figure 2-13.  Navigating between active files

Chapter 2 Getting to Know the Environment

34

The Command Palette is not just about menu commands or to user interface

instrumentation but also to other actions that are not accessible elsewhere. For instance,

the Command Palette enables you to install extensions as well as restore NuGet packages

over the current project or folder. You can simply move up and down to see the full list

of available commands, and you can type in some characters to filter the list. You will

notice how many of them map actions available within menus and that, for many of

them, there is a keyboard shortcut available. Other commands related to extensions,

debugging, and Git, will be discussed in the following chapters, so it is important that

you get started with the Command Palette at this point.

Figure 2-14.  The Command Palette

Chapter 2 Getting to Know the Environment

35

�The Panels Area
Visual Studio Code very often needs to display not only information about source

code but also information coming from the Git engine, external tools, or debuggers.

To accomplish this in an organized way, the environment provides the so-called Panels

area, which appears by default at the bottom of the user interface.

The Panels area is composed of four built-in panels: Problems, Output, Debug

Console, and Terminal, each discussed in this section. The Panels area is not visible

by default, and it usually pops up when the information the panels represent becomes

available (such as the debugger sending information about symbols in the source

code). Additionally, by default Panels area appears at the bottom of the VS Code’s user

interface, but you can move it to the side of the workspace by right-clicking a panel and

then selecting Move Panel Right or Move Panel Left, or restore the original position

with Move Panel to Bottom. In addition, you can now drag and drop panels in a

different position using the mouse. Let’s now discuss each panel in more detail.

�The Problems Panel
With languages that have built-in enhanced editing support, such as TypeScript

(https://www.typescriptlang.org), or for which an extension has been added to

provide advanced editing features, such as C#, Visual Studio Code can detect code

issues as you type. In the code editor, these are usually highlighted with red squiggles

(for blocking errors) and in green (for warnings). The list of errors, warnings, and

informational messages is also displayed in the Problems panel. This can be enabled by

clicking the number of errors at the bottom-left corner of the Status Bar (see Figure 2-15).

Chapter 2 Getting to Know the Environment

https://www.typescriptlang.org

36

The Problems panel makes it easy to distinguish between errors and warnings due to

different icons (a white x over red background for errors and a black exclamation mark

over yellow background for warnings). Figure 2-15 shows an example based on some

C# code that contains an unused variable (warning) and a syntax error.

If you have multiple files open, the Problems panel groups problems by file name.

Also, for each problem, you will be able to see the folder name and the position within

the source code file. Just double-click a problem, and VS Code will move the cursor to

the selected item in the code editor.

Figure 2-15.  The Problems panel

Chapter 2 Getting to Know the Environment

37

Note  The code editor also provides a way to quickly fix code issues while typing,
but this is not related to the Problems panel and will instead be discussed in the
next chapter.

�The Output Panel
The Output panel is the place where Visual Studio Code displays messages from

internal and external tools, such as runtime tools, Git commands, extensions, and tasks.

Figure 2-16 shows an example based on the output of .NET’s NuGet package manager.

Because multiple tools might run concurrently during an operation against source

code files (e.g., package restore and then compilation) or during the Visual Studio Code

lifetime (such as extensions), you can use the dropdown box in the panel to change the

view and see the output of each tool. This tool is particularly useful if the execution of

external tools fails and you want to get more information about what happened.

�The Debug Console Panel
As the name implies, the Debug Console panel is a specialized panel used by debuggers

to display information about code execution. Figure 2-17 shows an example based on

the execution of a simple C# application.

Figure 2-16.  The Output panel

Chapter 2 Getting to Know the Environment

38

The Debug Console not only shows information about code execution, debug

symbols, and any other information a debugger needs to display, but also acts as an

interactive console where you can evaluate expressions. Figure 2-17 shows that a

mathematical expression has been manually evaluated using variables defined in the

code. Debugging is a very important topic in Visual Studio Code and is thoroughly

discussed in Chapter 9, where you will find additional information about the Debug

Console.

�Working with the Terminal
Visual Studio Code allows executing commands against the operating system directly

from within the development environment. In fact, you can select the Terminal ➤ New
Terminal command to open a new terminal instance in a panel at the bottom of the

work area. Figure 2-18 shows an example based on Windows.

Figure 2-17.  The Debug Console panel

Chapter 2 Getting to Know the Environment

39

On macOS and Linux, the terminal tool is based on the bash shell of each system.

On Windows, the terminal is based on PowerShell by default. However, you can select a

different tool by clicking the drop-down menu on the panel’s toolbar and then clicking

Select Default Shell. At this point you will be able to select, from the Command Palette,

from among the Windows command prompt, PowerShell, and the Git bash command-

line tool. You can also open multiple terminal instances by clicking the New Terminal
button (the icon with the + symbol).

The Terminal panel is also used by Visual Studio Code to launch automatic scripts

and commands against the operating system. For example, when you build a C#

application, Visual Studio Code starts the .NET Core compiler, whose output is displayed

in the Terminal panel, as shown in Figure 2-19.

Figure 2-19.  The Terminal panel used for automatic scripting

Figure 2-18.  The Terminal panel

Chapter 2 Getting to Know the Environment

40

�Summary
In this chapter, you got an overview of the workspace in Visual Studio Code and of the

tools you will interact with frequently. You saw how to take advantage of quick shortcuts

in the Welcome page and how you can arrange editor windows.

You saw how the Status Bar provides information about the active file and how the

Activity Bar is a collapsed container of shortcuts for the tools contained in the Side Bar:

the Explorer bar, the Search tool, the Git bar, the Debug bar, the Extensions bar, the

Accounts button, and the Settings button. You saw how to quickly navigate between

files and how the Command Palette provides a way for accessing commands via the

keyboard, both Visual Studio Code commands and extensions’ commands. You have

also walked through another important area in the environment, the Panels area, where

you can get information about code issues, get messages from internal and external tools

and debuggers, and execute commands and scripts via the Terminal.

Now that you have seen how the environment is organized, it is time to have some

fun walking through all the powerful productivity features in the code editor. This is the

topic of the next chapter.

Chapter 2 Getting to Know the Environment

41
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_3

CHAPTER 3

Language Support and
Code Editing Features
Visual Studio Code is not just another evolved text editor with syntax colorization

and automatic indentation. Instead, it is a very powerful codefocused development

environment expressly designed to make it easier to write web, mobile, and cloud

applications using languages that are available to different development platforms.

With the ambition to provide a powerful, rich development environment, Visual

Studio Code integrates a number of editing features that are focused on improving

the productivity and quality of your code. This chapter discusses what languages are

supported in Visual Studio Code and all the available code editing features, starting from

the most basic that are available to all the supported languages to the most advanced

productivity tools that are available to specific languages such as C#, JavaScript, and

TypeScript.

Note  Keyboard shortcuts used in this chapter are based on the default settings in
Visual Studio Code.

�Language Support
Out of the box, Visual Studio Code has built-in support for many languages. Table 3-1

groups supported languages by editing features.

https://doi.org/10.1007/978-1-4842-6901-5_3#DOI

42

Visual Studio Code can be extended with additional languages produced by the

developer community and downloadable from the Visual Studio Marketplace. This is

discussed in more detail in Chapter 6, but, in the meantime, you can have a look at the

available languages out of the box. For the purposes of this book, an introduction to C#

and C++ is provided for your convenience.

�Working with C# and C++
The C# programming language deserves a more detailed introduction, because of its

popularity and because it is now a cross-platform language that you can use not only

on Windows but also on macOS and Linux. As you can see from Table 3-1, the editing

experience that Visual Studio Code offers out of the box for C# is limited to common

features.

However, full and rich support for the coding experience with C# is offered via the Microsoft

C# free extension (https://marketplace.visualstudio.com/items?itemName=ms-vscode.

csharp). This provides an optimized experience for .NET Core development and includes all

the support and tools you need to build apps with C#, including the necessary support for the

.NET Core debugger. With this extension, you basically get the same experience available to

Table 3-1.  Language Support by Feature

Languages Editing Features

Batch, C, C#, C++, Clojure, CoffeeScript, Diff, Dockerfile,

F#, Go, HLSL, Jade, Java, HandleBars, Ini, Lua, Makefile,

Objective-C, Objective-C++, Perl, PowerShell, Properties, Pug,

Python, R, Razor, Ruby, Rust, SCSS, ShaderLab, Shell Script,

SQL, Visual Basic, XML

Common features (syntax coloring,

bracket matching, basic word

completion)

Groovy, Markdown, PHP, Swift Common features and code

snippets

CSS, HTML, JSON, JSON with Comments, Less, Sass Common features, code snippets,

IntelliSense, Outline

TypeScript, TypeScript React, JavaScript, JavaScript React Common features, code snippets,

IntelliSense, Outline, parameter hints,

refactoring, Find All References, Go

to Definition, Peek Definition

Chapter 3 Language Support and Code Editing Features

https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp

43

TypeScript, including advanced editing capabilities based on the .NET Compiler Platform (also

known as Roslyn) that makes it easier to fix code issues as you type. If you plan to work with C#,

I definitely recommend that you install this extension, especially because this chapter discusses

some editing features that are available only through the extension.

Extensibility is explained in more detail in Chapter 6, but you can easily install the

C# extension without further information by opening any C# code file (.cs) and following

the instructions shown by Visual Studio Code when it detects that a proper extension is

available for that file type.

Similarly, you might want to install the Microsoft C/C++ extension that adds

enhanced editing features to the C and C++ languages, plus debugging support for

Windows (PDB, MinGW, Cygwin), macOS, and Linux. The extension is available at

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools, and

you can follow the same easy installation steps just described for the C# extension by

opening a .c, .h, or .cpp file.

�Basic Code Editing Features
Visual Studio Code provides many of the features you would expect from a powerful

code editor. This section describes what editing features make your coding experience

amazing with this tool. If you are familiar with Microsoft Visual Studio, you will also see

how some features have been inherited from this IDE. It is worth mentioning that Visual

Studio Code provides keyboard shortcuts for almost all the editing features, giving you

an option to edit code faster. For this reason, the keyboard shortcut is also mentioned for

many of the described features.

Note  Features described in this section apply to all the supported languages
described in Table 3-1, except where expressly specified.

�Working with Text
As you would expect, the code editor in VS Code offers commands for text manipulation

and text selection. The Edit menu provides the Undo, Redo, Copy, Cut, Paste, Find,

Replace, Find in Files, and Replace in Files commands. These commands are available

in every text editor and do not require any further explanation.

Chapter 3 Language Support and Code Editing Features

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

44

The Edit menu also includes the Toggle Line Comment and Toggle Block
Comment commands, which add a single-line comment or a block comment,

respectively, depending on the language. For instance, in C# the first command would

comment a line like this:

// int a = 0;

By contrast, the block comment tool would add a multiline comment as follows:

/* int a = 0;

int b = 0; */

The Edit menu also provides a command to work with code snippets, Emmet:
Expand Abbreviation. This command is the menu representation of keyboard shortcuts

offered by the code editor to add a code snippet. Code snippets are discussed in more

detail in the “Reusable Code Snippets” section in this chapter.

The Selection menu not only provides commands for text selection but also provides

commands that make it easier to move or duplicate lines of code above and below the

current line. The Add Cursor Above, Add Cursor Below, and Add Cursors To Line
Ends commands allow working with multicursors, described in the “Multicursors”

section in this chapter.

If you click an identifier, reserved word, or type name in the editor, you can use

the Add Next Occurrence, Add Previous Occurrence, and Select All Occurrences

commands that allow to quickly select occurrences of the selected word, and

occurrences will be highlighted in a different color, which differs depending on the

current theme.

�Syntax Colorization
For all the languages summarized in Table 3-1, the code editor in Visual Studio Code

provides the proper syntax colorization. Figure 3-1 shows an example based on a

TypeScript code file.

Chapter 3 Language Support and Code Editing Features

45

Syntax colorization is available for other languages via extensibility. If you need to

work with a language that is not included with Visual Studio Code out of the box, you

can check the Visual Studio Marketplace and see if an extension is available to support

such a language. See Chapter 6 for information about extensibility. As a side note, syntax

colorization is the minimum that an extension must provide to add support for a new

language.

Figure 3-1.  Syntax colorization

Chapter 3 Language Support and Code Editing Features

46

�Delimiter Matching and Text Selection
The code editor can highlight matching delimiters such as brackets and parentheses

(both square and round). This feature is extremely useful to delimit code blocks and is

triggered once the cursor gets near one of the delimiters. Figure 3-2 shows an example

based on bracket matching in a constructor definition.

This feature is also very useful when you need to visually delimit nested blocks and

with complex and long expressions. It is worth mentioning that you can press Ctrl+D to

quickly select a word or identifier at the right of the cursor. You can also quickly select all

the text within the delimiters of a code block by pressing Shift+Alt+Arrow Right, and you

can quickly deselect the same code block by pressing Shift+Alt+Arrow Left.

�Code Block Folding
The code editor allows folding delimited code blocks. Just hover your cursor over line

numbers and a symbol representing a down arrow will appear near the start of a code

block. Simply click to fold, and you will see the > symbol at this point, which you click to

unfold the code block. Figure 3-3 provides an example.

Figure 3-2.  Delimiter matching

Chapter 3 Language Support and Code Editing Features

47

Note  If code block folding is not enabled in the code editor, open VS Code’s
Settings, then in the Text Editor group enable both the Folding and Folding
Highlight options.

�Multicursors
The code editor supports multicursors. Each cursor operates independently, and you

can add secondary cursors by pressing Alt+Click at the desired position. The most typical

situation in which you want to use multicursors is when you want to add (or replace) the

same text in different positions of a code file.

�Reusable Code Snippets
Visual Studio Code ships with a number of built-in code snippets that you can easily

add by using the Emmet abbreviation syntax and pressing Tab. See Table 3-1 in the

“Language Support” section to review which languages support code snippets natively.

For instance, in a Swift file, you can easily add a do..catch block definition by using the

do code snippet, as shown in Figure 3-4.

Figure 3-3.  Code block folding

Chapter 3 Language Support and Code Editing Features

48

Code snippets are available as you type within the code editor, and you can

recognize them by the icon representing a small, white sheet. Notice how a tooltip shows

a preview of the code snippet. Pressing Tab over the previous snippet produces the result

shown in Figure 3-5.

Figure 3-4.  Adding code snippets

Figure 3-5.  A newly added code snippet with a variable name highlighted

Chapter 3 Language Support and Code Editing Features

49

Notice that if the code snippet contains variable names or identifiers, these might be

highlighted to suggest that you give them a different name (like for the error identifier in

Figure 3-5). When you rename a highlighted identifier, all occurrences are also renamed.

Visual Studio Code is not limited to built-in code snippets. You can download code

snippets produced by other developers for many languages from the Visual Studio

Marketplace. Actually, most of the extensions that introduce or extend support for

programming languages also include a number of code snippets.

�Word Completion
Out of the box, the code editor in Visual Studio Code implements basic word completion for

all the supported languages. This feature helps you complete words and statements as you

type. For example, Figure 3-6 shows how the code editor suggests terminating a statement

with the Class keyword in a Visual Basic file, based on what the developer is typing.

Figure 3-6.  Completing a statement with word completion

Chapter 3 Language Support and Code Editing Features

50

Simply press Enter or Tab to insert the suggested word. The word completion engine

learns as you code and can provide suggestions based on variables and member names

you declare. For example, Figure 3-7 demonstrates how the editor suggests adding the

name of a variable called Test, declared previously in the code.

�Minimap Mode
Sometimes it is difficult to find the position of the cursor inside a source code file,

especially with very long files. Visual Studio Code provides the Minimap, a small preview

of the source code file on the code editor’s scrollbar. Figure 3-8 provides an example.

Figure 3-7.  The code editor can suggest identifiers declared in the code

Chapter 3 Language Support and Code Editing Features

51

If you click the Minimap, the portion of source code that is visible in the code editor

is highlighted in the scrollbar, so that you can have a better perception of the current

position of the cursors. The Minimap can be disabled and enabled using the View ➤

Show Minimap command.

�Whitespace Rendering and Breadcrumbs
A very common feature with text editors is the option to show light dots instead of white

spaces. In Visual Studio Code, this is possible for white spaces within indentations. To

accomplish this, you select View ➤ Render Whitespace. Figure 3-9 shows an example

of how white spaces for indentations are replaced with dots. For this figure, the Solarized

Light color theme has been used for better visualization on the paper.

Figure 3-8.  The Minimap allows for previewing source code on the scrollbar

Chapter 3 Language Support and Code Editing Features

52

Simply use the same command to return to white spaces. Another very useful

command is Toggle Breadcrumbs, available in the View menu. With supported

languages, such as JavaScript, TypeScript, and C# with the extension installed, this

command shows the list of types and members defined in the current code file at the top

of the editor, which you can expand to see their members, as shown in Figure 3-10.

Figure 3-9.  Rendering indentation spaces with dots

Chapter 3 Language Support and Code Editing Features

53

Clicking a type or member name moves the cursor to its definition and highlights the

related code block, making code navigation much easier.

�Markdown Preview
Visual Studio Code supports the Markdown syntax for producing documents in the very

popular .md file format. Other than syntax colorization, for this particular language

Visual Studio Code also provides a preview of what the document will look like. Simply

press Ctrl+Shift+V (Cmd+Shift+V on macOS) in the code editor, and the preview will

appear in a separate window, as demonstrated in Figure 3-11.

Figure 3-10.  Navigating between types and members with breadcrumbs

Chapter 3 Language Support and Code Editing Features

54

This feature is very useful because it allows you to preview your documents without

the need of an external program such as a web browser.

�Evolved Code Editing
Visual Studio Code is an extremely powerful code editing tool and brings to a cross-

platform and multilanguage environment many features that have been available in

Microsoft Visual Studio for many years, providing what is called evolved code editing.

This section explains all the advanced code editing features that are available, out of the

box, to languages such as TypeScript and JavaScript and, with the appropriate extensions

installed, to languages like C#, C++, and Python.

Figure 3-11.  Integrated Markdown preview

Chapter 3 Language Support and Code Editing Features

55

�Working with IntelliSense
IntelliSense provides rich, advanced word completion via a convenient pop-up list

that appears as you type. In the developer tools from Microsoft, such as Visual Studio,

IntelliSense has always been one of the most popular features, and the reason is that it

is not simply word completion. In fact, IntelliSense provides suggestions as you type,

showing the documentation about a member (if available) and displaying an icon near

each suggestion that describes what kind of syntax element a word represents. Figure 3-12

shows IntelliSense in action with a C# code file.

Figure 3-12.  IntelliSense showing suggestions as you type and advanced word
completion

Chapter 3 Language Support and Code Editing Features

56

As you can see in Figure 3-12, IntelliSense shows the list of available members as

you write, for the given type (in this case Console). When you scroll the list with the

keyboard and stop on a word from the completion list, Visual Studio Code shows the

member documentation. The little arrow at the right of the dialog can be used to turn the

documentation off.

Note  The documentation for a type or member is available only if it has been
supplied by the developers. For example, in C# the documentation for types and
members must be provided with XML comments. This enables IntelliSense to
display it in a tooltip, like in Figure 3-12.

Press either Tab or Enter to complete the word insertion, or simply click. Not limited

to this, IntelliSense in Visual Studio code supports suggestion filtering: based on the

CamelCase convention, you can type the uppercase letters of a member name to filter

the suggestion list. For instance, if you are working against the System.Console type and

you type cv, the suggestion list will show the CursorVisible property, as demonstrated

in Figure 3-13.

Chapter 3 Language Support and Code Editing Features

57

IntelliSense also provides the foundation for other advanced features in the code

editor that depend on it, described in the next subsections.

�Parameter Hints
When you write a function invocation, IntelliSense also shows a tooltip that describes

each parameter. This feature is called parameter hints and is available only if the

documentation for function parameters has been implemented. An example is visible in

Figure 3-14.

Figure 3-13.  Suggestion filtering in IntelliSense

Chapter 3 Language Support and Code Editing Features

58

For languages such as C# and TypeScript or, more generally, languages that allow

for function overloads, parameter hints show the description for the parameters of each

overload. You can also scroll the list of overloads with the up and down arrow keys to

select a different overload.

�Inline Documentation with Tooltips
If you hover your cursor over types, variables, and type members, Visual Studio Code

shows a tooltip that contains the documentation for the selected object. Figure 3-15

provides an example.

Figure 3-14.  IntelliSense showing parameter hints

Chapter 3 Language Support and Code Editing Features

59

Like parameter hints, this feature is available only if the documentation has been

implemented

Note  If you hover your cursor over a variable name, the tooltip shows only the
type for the variable.

Figure 3-15.  Tooltips provide quick, inline documentation

Chapter 3 Language Support and Code Editing Features

60

�Go to Definition and Peek Definition
Visual Studio Code provides another interesting feature called Go to Definition. If you

hover your cursor over a symbol and press Ctrl (or ⌘ on macOS), the symbol appears

as a hyperlink; also, a tooltip shows the code that declares that symbol. If you click the

type name while pressing Ctrl, you will be redirected to the code that defines that type.

Figure 3-16 shows how the code editor appears when you press Ctrl and hover over a

type name.

Figure 3-16.  Ctrl + hovering over a type enables Go to Definition

Chapter 3 Language Support and Code Editing Features

61

The same tool is available if you select a type name and press F12 or if you right-

click a type name and then select Go to Definition from the context menu. This is an

extremely useful feature that lets you quickly browse between type definitions that are in

different code files.

Note  For C#, Go to Definition can also open the definition of a type exposed by
the .NET Core libraries and any NuGet package that includes the type definition
information, not just your code.

Now suppose that you have dozens of code files and want to see or edit the definition

of a type you are currently using. With other editors, you would search among the code

files, which not only can be annoying but also moves your focus away from the original

code. Visual Studio Code brilliantly solves this problem with a feature called Peek

Definition.

You can simply right-click a type name and then select Peek ➤ Peek Definition (the

keyboard shortcut is Alt+F12); an interactive pop-up window appears, showing the code

that defines the type, giving you not only an option to look at the code but also of direct

editing. Figure 3-17 shows the Peek Definition window in action. You can press Esc to

quickly close the Peek Definition window as an alternative to clicking the Close button.

Chapter 3 Language Support and Code Editing Features

62

As you can see, the Peek Definition window is very similar to the Find All References

feature, and it still shows the file name that defines the type at its top. Simply click the file

name to open the code file in a separate editor.

�Go to Implementation and Peek Implementations
Sometimes you might need to understand how many times and where an interface or an

abstract class has been implemented.

Though you can accomplish this by finding a type’s references (see the next section),

Visual Studio Code now offers more convenient ways that work similarly to Go to

Definition and Peek Definition, respectively called Go to Implementation and Peek

Implementations. You can right-click an interface or abstract class definition and then

select Go to Implementation or Peek ➤ Peek Implementations. Both actions bring up

Figure 3-17.  Working on a type defined in another file with Peek Definition

Chapter 3 Language Support and Code Editing Features

63

an interactive, nested editor that shows the list of implementations of the selected type

on the right, and the code for the first occurrence of the implementation, as you can see

in Figure 3-18.

The difference between the two actions is the following: with Go to Implementation,

when you click an implementation in the list, VS Code opens a new editor window

pointing to the file that contains the implementation; with Peek Implementations, when

you click an implementation in the list, it is displayed in an interactive pop-up window

similarly to how Peek Definition works.

�Finding References
You will often need to know where types or members have been used across your code,

and Visual Studio Code provides two nice tools to retrieve references.

Figure 3-18.  Navigating among type implementations

Chapter 3 Language Support and Code Editing Features

64

The first tool is called Find All References, which you might already be familiar with

if you have experience with Visual Studio on Windows. There are different options to run

this tool: you can right-click a type or member name and then select Find All References

or you can press Shift+Alt+F12 (Option+Shift+F12 on macOS). Figure 3-19 shows an

example based on finding all references of a type called Startup.

The References panel opens on the left side of the screen and shows a list of

references grouped by code file, together with the total number of references and of code

files involved. It also adds a new entry to the Side Bar that is disabled once you close

the References panel. The occurrences are highlighted; when you click one of them, an

editor opens on the file that contains the selected occurrence, which will be highlighted

inside the code.

Figure 3-19.  Finding all references of types and members

Chapter 3 Language Support and Code Editing Features

65

There is also another tool called Go to References (Shift+F12), which works inside

the active editor window. You enable Go to References either by right-clicking the object

name and then selecting Go to References or by clicking the number of references at the

top of the member definition (see Figure 3-19). You can use the first option anywhere

in the code, whereas you can use the second option only when the type or member

definition is focused in the code editor.

The user interface for Go to References is the same as for Find All References. Visual

Studio Code also provides another useful tool to find type and member references,

called Peek References. You can enable this tool by right-clicking an object name and

then selecting Peek ➤ Peek References. As the name implies, Peek References displays

all the references in the active editor, inside an interactive panel similar to what you saw

previously with Peek Definition. Figure 3-20 shows an example, again based on finding

all references of a type called Startup.

Figure 3-20.  Finding references with Peek References

Chapter 3 Language Support and Code Editing Features

66

If you click an occurrence in the list on the right, the code editor opens a pop-up

window containing the code where that occurrence has been found. It is very important

to note that this pop-up window is interactive, which means that you can edit the code

directly without the need to open the containing code file separately. This enables you

to keep your focus on the code, saving time. Also, notice that the interactive pop-up

window shows, at the top, the file name that contains the selected reference.

Similar to Find All References is Find All Implementations, which makes it easy to

find implementations of an interface or abstract class. Figure 3-21 shows an example

where an interface called IPerson is implemented by two classes, Person and Employee.

Find All Implementations shows in a tree view all the implementations of the interface

and highlights the class definition in the code editor.

Figure 3-21.  Finding all type implementations

Chapter 3 Language Support and Code Editing Features

67

�Renaming Symbols and Identifiers
Renaming a symbol is a frequent task, so Visual Studio Code offers a convenient way to

accomplish this. If you press F2 over the symbol you wish to rename or right-click and

then select the Rename Symbol command, a small interactive pop-up box appears.

There you can write the new name without any dialogs, keeping your focus on the code.

Figure 3-22 shows an example based on a symbol called app.

If you press Shift+Enter before renaming, Visual Studio Code shows a preview of how

symbols will be renamed (see the REFACTOR PREVIEW tab at the bottom of Figure 3-22).

Toolbar buttons in the tab enable you to accept changes (Apply Refactoring button) and

reject changes (Discard Refactoring button).

Figure 3-22.  Renaming symbols

Chapter 3 Language Support and Code Editing Features

68

By pressing Enter, all references of that symbol will be renamed accordingly.

Additionally, you can rename all the occurrences of an identifier. You simply right-click

the identifier, then select Change All Occurrences (or press Ctrl+F2 on Windows/Linux

and ⌘+F2 on macOS); all the occurrences will be highlighted and updated with the new

name as you type.

�Live Code Analysis
With C#, TypeScript, and languages whose support can be enhanced via extensions

like Python, Visual Studio Code can detect code issues as you type, suggesting fixes and

offering code refactorings. This is one of the most powerful features in this tool, which

is something that you will not find in most other code editors. The next examples are

based on the C# programming language, since (together with TypeScript) this supports

the richest experience possible in Visual Studio Code, and therefore it is a good choice

to discuss the powerful coding features available. Of course, everything discussed here

applies to all other languages that support the same enhanced features.

According to the severity level of a code issue, Visual Studio Code underlines with

squiggles the pieces of code that need your attention. Green squiggles mean a warning;

red squiggles mean an error that must be fixed. If you hover over the line or symbol

with squiggles, you get a tooltip that describes the issue. Figure 3-23 shows two code

issues, one with green squiggles (an unused local variable) and one with red squiggles (a

symbol that does not exist).

Chapter 3 Language Support and Code Editing Features

69

Code issues are detected as you type and they are also listed in the Problems panel.

Look again at Figure 3-23 and note the icon with the shape of a light bulb. This icon

is a shortcut for a tool called Light Bulb. When you click the icon, Visual Studio Code

shows possible code fixes for the current context. For example, Figure 3-24 shows the

suggestions that the Light Bulb provides to fix the missing symbol underlined with red

squiggles.

Figure 3-23.  Code issue detection as you type

Chapter 3 Language Support and Code Editing Features

70

In this particular case, the editor suggests five options: create a field, create a

read-only field, create a property, create a local variable, or create a parameter. In this

particular case, a field would be created as follows:

private static bool welcomeMessage;

A property would be generated like this:

public static bool welcomeMessage { get; private set; }

Probably bool is not the type you would expect here, but Visual Studio Code does

not have enough information to infer a different type so it will generate one based on

the type parameter accepted by the first overload of the method, which is bool for

WriteLine. However, when the code contains some information that Visual Studio Code

could use to understand the proper type, it generates properties, fields, local variables,

and parameters of the expected type. With the Light Bulb, it is also easier to generate

Figure 3-24.  Potential fixes suggested by the Light Bulb

Chapter 3 Language Support and Code Editing Features

71

types on the fly. Figure 3-25 shows an example based on an object called person, for

which a type has not been defined yet. As you can see, for this context the code editor

shows a larger list of possible fixes, including generating a new class, either in the current

file or in a separate file, including the option of a nested class.

The Light Bulb also can help you refactor your code and keep it cleaner. For example,

you can click any of the using directives (or equivalent in other languages) and, when

the Light Bulb appears, you can see how it offers to remove unused code, as shown in

Figure 3-26.

Figure 3-25.  Generating types on the fly

Chapter 3 Language Support and Code Editing Features

72

Actually, the Light Bulb tool offers even more power. Suppose you want to create a

class that implements the IDisposable interface. As you can see in Figure 3-27, the code

editor cannot find the definition of such interface and shows a red squiggle, but the Light

Bulb provides shortcuts for quickly fixing this issue. For example, it suggests adding a

using System; directive, which is what the code needs.

At this point, IDisposable is still underlined with a red squiggle because the code is

not implementing the interface yet. When a code issue is detected on the usage of a type,

you can hover your cursor over the underlined code and see an informational tooltip, as

demonstrated in Figure 3-28.

Figure 3-26.  Code refactoring made easy

Figure 3-27.  Adding missing directives

Chapter 3 Language Support and Code Editing Features

73

Tooltips disappear when you move the cursor off the issue, but you can click Peek
Problem and dock the error description inside a red box that stays in the code editor. If

you still have the Light Bulb enabled, you will see how the code editor suggests potential

fixes based on the current context, such as implementing the interface in different ways

(see Figure 3-29).

Figure 3-28.  Informational tooltips about code issues

Chapter 3 Language Support and Code Editing Features

74

Just to give you an idea of the power of this tool, following is the code that is

generated if you choose the Implement interface with Dispose pattern option:

using System;

public class Person: IDisposable

{

 #region IDisposable Support

 private bool disposedValue = false; // To detect redundant calls

 protected virtual void Dispose(bool disposing)

 {

 if (!disposedValue)

 {

 if (disposing)

Figure 3-29.  The Light Bulb provides suggestions based on the current context

Chapter 3 Language Support and Code Editing Features

75

 {

 // TODO: dispose managed state (managed objects).

 }

 // TODO: free unmanaged resources (unmanaged objects)

 // TODO: set large fields to null.

 disposedValue = true;

 }

 }

 // // �TODO: override a finalizer only if Dispose(bool disposing) above

has code to free unmanaged resources.

 // ~Person() {

 // �Do not change this code. Put cleanup code in Dispose(bool

disposing) above.

 // Dispose(false);

 // }

 // This code added to correctly implement the disposable pattern.

 public void Dispose()

 {

 // �Do not change this code. Put cleanup code in Dispose(bool

disposing) above.

 Dispose(disposing: true);

 GC.SuppressFinalize(this);

 }

 #endregion

}

You would get a similar result, but with different implementation, if you choose

one of the other possible code fixes. Though it is not possible to show examples for all

the code fixes that Visual Studio Code can apply, what you have to keep in mind is that

suggestions and code fixes are based on the context for the code issue, which is a very

powerful feature that makes Visual Studio Code a unique editor.

Chapter 3 Language Support and Code Editing Features

76

�Summary
Visual Studio Code is a code-centric tool that supports out of the box a wide variety of

languages, offering coding features such as syntax colorization, delimiter matching, code

block folding, multicursors, code snippets, and code completion that are common to all

the supported languages.

In addition, languages such as TypeScript and C# provide the so-called evolved code

editing experience via integrated tools such as IntelliSense, Go to Definition and Peek

Definition, Find All References, and the extremely powerful Light Bulb that detects code

issues as you type and suggests potential fixes based on the context.

Now that you have knowledge of the powerful coding features that Visual Studio

Code offers, it is time to see how to use them with individual source code files and

structured folders in Chapter 4.

Chapter 3 Language Support and Code Editing Features

77
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_4

CHAPTER 4

Working with Files
and Folders
Being the powerful editor it is, Visual Studio Code provides a convenient way of working

with code files and folders containing both loose files and projects. In this chapter you

will learn how to work with individual files, with folders containing source code files, and

with workspaces. You will also learn about VS Code’s independence from proprietary

project systems as well as its built-in support for a few popular project types.

�Visual Studio Code and Project Systems
Visual Studio Code is file and folder based. This means that you can open one or more

code files distinctly, but it also means that you can open a folder that contains source

code files and treat them in a structured, organized way. When you open a folder, Visual

Studio Code searches for one of the following files to organize a structured view of the list

of files in the folder:

•	 Tsconfig.json

•	 Jsconfig.json

•	 Package.json

•	 Project.json

•	 .sln Visual Studio solutions for and .csproj project files for .NET with

the C# extension installed

https://doi.org/10.1007/978-1-4842-6901-5_4#DOI

78

If VS Code finds one of these files, it is able to organize the file structure into a

convenient editing experience and can offer additional rich editing features such as

IntelliSense and code refactoring. If a folder only contains source code files, without any

of the aforementioned .json or .sln files, it still opens and shows all the source code files

in that folder, providing a convenient way to switch between all of them. This chapter

describes how to work with individual files and with folders in Visual Studio Code, and

more details about how it manages projects will be provided in the subsection “Working

with Folders and Projects.”

�Working with Individual Files
The easiest way to get started editing with Visual Studio Code is to work with one code

file. You can open an existing supported code file with File ➤ Open (Ctrl+O or ⌘+O on

macOS). Visual Studio Code automatically detects the language for the code files and

enables the proper editing features. In addition, it checks if an extension is available

on the Marketplace for the selected language and, if so, offers to install it to improve

the editing experience. Of course, you can certainly open more files and easily switch

between files by pressing Ctrl+Tab (or ^+Tab on macOS). As you can see in Figure 4-1, a

convenient pop-up box shows the list of open files; by pressing Ctrl+Tab, you can browse

files and cycle through the files in the list, and when you release the keys, the selected file

becomes the active editing window.

Chapter 4 Working with Files and Folders

79

You can close an editor simply by clicking the Close button in the upper-right corner

of each tab, or by using File ➤ Close Editor. You can also quickly close all open editors

with the Close All command in the top-right options, under the … shortcut.

Note I n Visual Studio Code terminology, it is common to refer to open files as
active editors or open editors. This is because editor windows are not limited to
code files, but can also display documentation files or provide formatted previews
of the content of other types of files (e.g., images and spreadsheets).

Figure 4-1.  Quickly navigating between open editors

Chapter 4 Working with Files and Folders

80

�Creating Files
You have several ways to create a new file:

•	 Via File ➤ New File

•	 By pressing Ctrl+N (⌘+N on macOS)

•	 By using the New File shortcut on the Welcome page

•	 By clicking the New File button in the Explorer bar when a folder is

currently opened

By default, new files are treated as plain text files. To change the language for a new

file, click the Select Language Mode item in the right corner of the Status Bar, near the

smile icon. In this case, you will see Plain Text as the current mode, so click it. As you can

see in Figure 4-2, you will be presented with a list of supported languages from which

you can select the new language for the current file. You can also start typing a language

name to filter the list.

Figure 4-2.  Selecting the language for a new file

Chapter 4 Working with Files and Folders

81

When you select a new language, the Select Language Mode item is updated with

the current language, and the editor enables the supported features for the selected

language, such as syntax colorization, word completion, and code snippets.

Obviously, you can change the language of any open code file, not just new files.

�File Encoding, Line Terminators, and Line Browsing
Visual Studio Code allows you to specify an encoding for new and existing files. Default

encoding for new files is UTF-8. You can change the current encoding by clicking the

Select Encoding item in the Status Bar (in the previous figures, it is represented with

UTF-8, the current encoding). You are first asked to select an action between Reopen
with Encoding and Save with Encoding. Click the first option to be presented with a

long list of supported encodings and a search box where you can filter the list as you type

(see Figure 4-3).

Similarly, you can change the line terminator by clicking the Select End of Line
Sequence item (in previous figures it’s represented by CRLF). Visual Studio Code

supports CRLF (Carriage Return and Line Feed) and LF (Line Feed), and the default

selection is CRLF. On Windows, the default sequence is CRLF, while on macOS and

Figure 4-3.  Selecting the file encoding

Chapter 4 Working with Files and Folders

82

Linux it is LF. You can also move fast to a line of code by clicking the Go to Line item,

represented by the line number/column group in the Status Bar. This opens a search

box in which you can type the line number you want to go to, and the line of code is

immediately highlighted as you type (see Figure 4-4). When you press Enter, the cursor is

moved to the start of the selected line.

�Working with Folders and Projects
Unlike other development environments, such as Microsoft Visual Studio, Visual Studio

Code is folder based, not project based. This makes Visual Studio Code independent

from proprietary project systems. VS Code can open folders on disk containing multiple

code files and organize them the best way possible in the environment, and it also

supports a variety of project files. More specifically, when you open a folder, VS Code

first searches for the following:

Figure 4-4.  Quickly moving to a specific line of code with Go to Line

Chapter 4 Working with Files and Folders

83

•	 MSBuild solution files (.sln): In this case, VS Code expects to find a

.NET Core solution made of C# projects, so it scans the referenced

projects (*.csproj files) and organizes files and subfolders in the

proper way. Remember that VS Code needs the Microsoft C#

extension installed to properly treat solution files. Note that VS Code

can open any .sln solution, but full support is currently offered only for

.NET Core. An example of this scenario will be offered in Chapter 8.

•	 tsconfig.json files: If found, VS Code knows these represent the root of

a TypeScript project, so it scans for the referenced files and provides

the proper file and folder representation.

•	 jsconfig.json files: If found, VS Code knows these represent the

root of a JavaScript project. So, similarly to TypeScript, it scans

for the referenced files and provides the proper file and folder

representation.

•	 package.json files: These are typically included with JavaScript

projects and .NET Core projects, so VS Code automatically resolves

the project type based on the folder’s content.

•	 project.json files: If found, VS Code treats the folder as a .NET Core project.

Note O pening a .sln, .csproj, or .json file directly will result in editing the content
of the individual file. For this reason, you must open a folder, not a solution or a
project file.

Additional project systems might be supported via extensibility. If none of the

supported projects is found, Visual Studio Code loads all the code files in the folder as

a loose assortment, organizing them into a virtual folder for easy navigation. Now let’s

explore how to work with folders and supported projects in Visual Studio Code, with

corresponding examples.

�Opening a Folder
You open a folder via File ➤ Open Folder or via the Open Folder shortcut on the

Welcome page. You can also drag and drop a folder name from Windows Explorer or

macOS Finder onto Visual Studio Code.

Chapter 4 Working with Files and Folders

84

Note O n Windows, the VS Code installer also provides an option to enable a
shortcut called Open With Code when you right-click a folder or file name in File
Explorer.

Whatever folder you open, VS Code creates a structured view in the Explorer bar,

where it shows all files and subfolders that belong to the main folder. Figure 4-5 shows an

example based on a TypeScript project.

The root container is the folder name. Nested you see files and subfolders, and you

can expand each subfolder to browse every file it contains. Simply click a file to open an

editor window on it.

Figure 4-5.  The structured view of files and folders in Explorer

Chapter 4 Working with Files and Folders

85

�Opening .NET Solutions
When you open a folder that contains a .NET solution based on the MSBuild project

system (.sln file) or a C# project (.csproj file), Visual Studio Code organizes all the code

files into the Explorer bar and enables all the available editing features for C#. Figure 4-6

shows an example.

Notice how the root level in Explorer is the project name. You can browse folders,

browse code files, and edit anything that Visual Studio Code can properly recognize. It is

worth mentioning that VS Code can certainly open any MSBuild solution, not only .NET

Core solutions, but it is only able to run and debug .NET Core applications, not .NET

Framework solutions. For instance, the most recent version of .NET Core allows creating

Windows Presentation Foundation (WPF) and Windows Forms projects; Visual Studio

Code and the C# extension support opening this type of solutions as well as running and

debugging code. WPF and Windows Forms projects created for the .NET Framework

can still be opened in VS Code, and you will still benefit from the structured folder view

in the Explorer bar and the full C# language support, but you will not be able to build,

Figure 4-6.  A .NET solution opened in Visual Studio Code

Chapter 4 Working with Files and Folders

86

run, and debug the code. Instead, with .NET Core you also have integrated debugging

support, which allows running, debugging, and testing code directly within VS Code.

This will be discussed in Chapter 9.

�Opening JavaScript and TypeScript Projects
Similarly to .NET Core solutions, Visual Studio Code can manage JavaScript folders

by searching for jsconfig.json or package.json files. If found, Code organizes the list of

folders and files the proper way and enables all the available editing features for all the

files it supports, as shown in Figure 4-7.

TypeScript projects’ behavior is the same as for JavaScript, except that Visual Studio

Code searches for a file called tsconfig.json as the root.

Figure 4-7.  A JavaScript project opened in Visual Studio Code

Chapter 4 Working with Files and Folders

87

�Opening Loose Folders
Visual Studio Code supports opening folders that contain unrelated, loose assortments

of files. VS Code creates a logical root based on the folder name, showing files and

subfolders. Figure 4-8 shows an example based on a sample folder called MyFiles that

contains files in different languages.

With this option, you can basically open any folder in VS Code and edit all supported

files, taking advantage of the code editing features for each file individually.

�Working with Workspaces
Visual Studio Code has the concept of a workspace. A workspace can be thought of as a

logical container of folders.

Note I f you have experience with Microsoft Visual Studio, a workspace in Visual
Studio Code can be compared to a Visual Studio solution as a container of projects.

Figure 4-8.  A folder containing a loose assortment of files

Chapter 4 Working with Files and Folders

88

Workspaces are extremely useful to organize multiple projects and/or folders into

one place. For example, you might have a .NET Core Web API project, a JavaScript

application that consumes such API, and a folder containing documentation. Instead

of working on each folder separately, you can put them all under the same workspace

and have them all available in Visual Studio Code at the same time. Figure 4-9 shows

a workspace, called SampleWorkspace, that includes a .NET Core Web API project, a

JavaScript project, and a loose folder.

Figure 4-9.  A workspace can group multiple projects and folders into one logical
container

Chapter 4 Working with Files and Folders

89

The multeor-master folder contains the files for a sample open source project called

Multeor that you can download for instructional purposes from https://github.

com/filidorwiese/multeor. The Explorer bar shows the name of the workspace in

uppercase together with the (WORKSPACE) literal so that it’s easier to recognize it. In

the next sections, I will explain in more detail how to create and open workspaces and

what is the structure of a workspace file.

�Creating Workspaces
You can create a workspace regardless of whether you already have a folder open. If

you do already have a folder open, select File ➤ Save Workspace As and VS Code will

ask you to specify the location and file name for the new workspace. A workspace is

represented by a JSON file with the .code-workspace extension, the structure of which

will be explained shortly.

The workspace name is simply the file name without the .codeworkspace extension

and is shown in the Explorer bar (see Figure 4-9). Then you can add other folders to the

workspace by selecting File ➤ Add Folder to Workspace. Added folders are displayed in

the Explorer bar under the workspace root.

If you do not have any folders already open, you can start either with File ➤ Save
Workspace As or with File ➤ Add Folder to Workspace. With the first option, you

basically create an empty workspace with a name, and then you add folders as described

in the preceding text. With the second option, you instead create an empty, untitled

workspace starting from an existing folder. In this case, in fact, the Explorer bar shows

UNTITLED (WORKSPACE) as the new workspace name. When you save the workspace

as described in the preceding text, the Explorer bar shows the new name based on the

workspace file name. Remember that workspaces are only logical containers and do not

affect the structure or behavior of your projects and folders in any manner.

Note  Folders you add to a workspace can be anywhere on disk; Visual Studio
Code will group their content under the workspace root and let you work as if they
were in the same location.

Chapter 4 Working with Files and Folders

https://github.com/filidorwiese/multeor
https://github.com/filidorwiese/multeor

90

�Opening Existing Workspaces
You can open an existing workspace via File ➤ Open Workspace. You can also drag and

drop a workspace file name from your operating system’s file browsing program onto

the Visual Studio Code surface. Opening a .code-workspace file directly simply results

in viewing the file content, not opening the workspace. Similarly, opening a folder that

contains a .code-workspace file results in opening only the folder, not the workspace.

You can only use the specific commands described at the beginning of this paragraph.

�Workspace Structure
The information of a Visual Studio Code workspace is stored inside a file with a .code-

workspace extension. A workspace file is a JSON file with a root element called folders.

This is an array of path elements, each assigned with the name of a folder that is

included in the workspace. The following JSON markup represents how the workspace

file of the example shown in Figure 4-9 looks on my machine, and will vary on your

computer:

{

 "folders": [

 {

 "path": ".\MyFiles"

 },

 {

 "path": "C:\\Source\\webapp"

 },

 {

 "path": "C:\\Source\\multeor-master"

 }

]

}

Notice that the full pathname of a folder is provided only if the folder is not in the

same location of the workspace file. In this case, the .code-workspace file, the webapp

folder, and the multeor-master folders are all in the same location; instead, the MyFiles

folder is located under a different folder. If you want to see for yourself the structure of a

workspace file, you can open it in Visual Studio Code via File ➤ Open File.

Chapter 4 Working with Files and Folders

91

�Summary
Visual Studio Code is file and folder based, and it allows for working with individual

files as well as with folders that contain source code files and treat them in a structured,

organized way.

Visual Studio Code also supports a number of project systems such as .NET Core,

TypeScript, and JavaScript, and it allows for creating and managing workspaces.

Workspaces are logical containers of folders that make it easy to have multiple projects

and folders under the same visual root. VS Code is not only a very powerful code

editor but also a very flexible environment that can be customized in many ways.

Customization is the topic of the next chapter.

Chapter 4 Working with Files and Folders

93
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_5

CHAPTER 5

Customizing Visual
Studio Code
Visual Studio Code is an extremely versatile development tool that can be customized

and extended in many ways. In fact, you can customize its appearance, the code editor,

and key shortcuts to make your editing experience extremely personalized.

Additionally, you can install third-party extensions such as new languages,

debuggers, themes, linters, and code snippets. This chapter explains how to customize

Visual Studio Code, explaining the difference between customizations and extensions.

Then, in the next chapter, you will learn how to work with extensions.

�Customizations and Extensions Explained
You can personalize the environment of Visual Studio Code with both customizations

and extensions. The difference is that extensions add new instrumentation or they add

functionalities to a tool or change the behavior of existing functionalities. Implementing

IntelliSense for a language that does not have it by default, adding commands to the

Status Bar, and adding custom debuggers are examples of extensions.

Customizations are instead related to environment settings and do not add

functionalities to a tool. Examples of popular customizations are color themes and key

bindings. Table 5-1 summarizes customizations and extensions in VS Code.

https://doi.org/10.1007/978-1-4842-6901-5_5#DOI

94

In this chapter, you will see how to customize Visual Studio Code by changing the

existing preferences. Then in the next chapter, you will see how to install extensions,

including extensions that add new customizations to the development environment,

such as themes and key bindings.

�Customizing Visual Studio Code
In this section, you will discover how easy it is to customize Visual Studio Code by

walking through the customization types described in Table 5-1.

Table 5-1.  Customizations and Extensions

Feature Description Type

Color themes Style the environment layout with different colors. Customization

User and workspace

settings

Specify environment preferences. Customization

Key bindings Redefine keyboard shortcuts. Customization

Language grammar

and syntax colorizers

Add support to additional languages with syntax colorizers. Customization

Code snippets Add TextMate and Sublime Text snippets and type repetitive

code faster.

Customization

Debuggers Add new debuggers for specific languages and platforms. Extension

Language servers Implement your validation logic for files opened in VS Code. Extension

Activation Load an extension when a specific file type is detected or

when a command is selected in the Command Palette.

Extension

Editor Work against the code editor’s content, including text

manipulation and selection.

Extension

Workspace Enhance the Status Bar, working file list, and other tools. Extension

Eventing Interact with VS Code’s lifecycle events such as open and close. Extension

Evolved editing Improve language support with IntelliSense, Peek Definition,

Go to Definition, and all the advanced, supported editing

capabilities.

Extension

Chapter 5 Customizing Visual Studio Code

95

�Theme Selection
You can select among several themes to give Visual Studio Code a different look and feel.

A brief introduction to color themes was given at the beginning of Chapter 1, but now

you will get more details.

You select a color theme with File ➤ Preferences ➤ Color Theme or by clicking the

Settings button and then Color Theme. The list of available color themes is shown in the

Command Palette, as you can see in Figure 5-1.

Figure 5-1.  Selecting a theme

Chapter 5 Customizing Visual Studio Code

96

Themes are divided into light themes, dark themes, and high-contrast themes. Once

you select a different color theme, it is applied immediately. Also, you can get a preview

of the theme as you scroll the list with the keyboard. Figure 5-2 shows the Dark (Visual

Studio) theme applied to VS Code, which is a very popular choice; try out the other

themes to find one that suits you.

As you might expect, applying a theme also affects colors used in the code editor so

that there is an appropriate brightness and contrast balance. In the next chapter, you will

see how to install additional themes as extensions.

Figure 5-2.  The Dark (Visual Studio) theme applied to Visual Studio Code

Chapter 5 Customizing Visual Studio Code

97

�Customizing the Environment
In most applications, including other IDEs, you set environment settings and preferences

via a convenient user interface, and VS Code is no exception. There are two different

types of settings: user settings and workspace settings. User settings apply globally to the

development environment, while workspace settings only apply to the current project or

folder. The following subsections cover both user setting and workspace settings.

�Understanding User Settings

User settings globally apply to the VS Code’s development environment. Customizing

user settings is accomplished by selecting File ➤ Preferences ➤ Settings. When you do

this, the settings editor appears, as represented in Figure 5-3.

Figure 5-3.  Working with user settings

Chapter 5 Customizing Visual Studio Code

98

On the left side of the editor, settings are grouped by category. In the Search settings

bar, you can quickly search settings based on what you type, and you can also see the

number of total settings found, which varies depending on the version of VS Code and

on the number of extensions you have installed. You can manually expand settings

categories manually, or you can just scroll the list of settings, and the related category is

automatically highlighted as you scroll. For instance, you could control the behavior of

the Explorer bar by locating and selecting Explorer under the Features category, and

there you could change the current settings, as shown in Figure 5-4.

Similarly, you could change settings and preferences for the text editor, the whole

application, and extension settings. In fact, extensions that allow for customizing

preferences store their settings in the same place as VS Code does, so that you have a

Figure 5-4.  Changing user settings

Chapter 5 Customizing Visual Studio Code

99

unique settings editor. There are hundreds of settings and the number varies depending

on your configuration and installed extensions, so it’s not possible to list all settings here.

For more details about available settings, visit the official documentation (https://

code.visualstudio.com/docs/getstarted/settings).

Behind the Scenes: The settings.json File

Behind the scenes, VS Code (and extensions) stores settings inside a file called settings.

json. In this file, each key/value pair represents a specific setting and its value.

It is important to understand how this file works, so click the Open Settings (JSON)

button located above the search bar and represented by a sheet icon with a plus symbol

overlayed (the first from left to right). Figure 5-5 shows how the editor appears at this point.

Figure 5-5.  Working with the settings.json file

Chapter 5 Customizing Visual Studio Code

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

100

As you can see, the editor for settings.json allows you to define custom settings by

overriding one or more default settings. It is worth mentioning that changes you do in

this file are at the user or workspace level only, and do not affect general settings of VS

Code. Figure 5-5 shows an example of how to change the theme, how to control white

characters, how to control characters and breadcrumbs in the code editor, and how to

enable the Minimap mode. Also, you will see how IntelliSense helps you choose among

available settings as you type. The code editor also reports errors, such as missing

commas or curly braces, as you would expect when editing a JSON file. In Figure 5-5 you

can also see that it is possible to customize settings for an extension: I have the Microsoft

SQL Server extension installed on my machine, and settings.json allows for specifying

the extension settings such as the server address and credentials. Every time you modify

a setting in the user interface, the related JSON is updated in settings.json.

IntelliSense also allows you to get more information about a given settings by clicking

the rollover, which shows hints about the setting with a convenient tooltip, exactly as

you would expect after learning about IntelliSense’s features in Chapter 3. When you are

done, do not forget to save settings.json; otherwise your changes will be lost.

A Real-World Example: Working with Proxies

If you work for an enterprise, the network probably is behind a proxy server. In this case,

you or the system administrator might need to configure Visual Studio Code to work

with the proxy. If you do not, you will not be able to download packages, extensions,

and product updates. Visual Studio Code should automatically detect proxies and ask

for your credentials, but this does not always happen, so you might need to take some

manual steps.

The first thing to do is make sure that the sites described in Table 5-2 are in the

allowed applications list of the firewall.

Chapter 5 Customizing Visual Studio Code

101

The next step is to configure VS Code to work with the proxy. Actually, if the

http_proxy and https_proxy environment variables have been defined at the system

level, VS Code uses their values. If these variables have not been set, you must provide

the proxy address in the user settings. In the settings editor, locate Proxy under the

Application category. Then, as you can see in Figure 5-6, enter the proxy address in the

Proxy text box.

Table 5-2.  Sites to Be Allowed by a Firewall

URL Description

update.code.visualstudio.com Visual Studio Code download and update server

code.visualstudio.com Visual Studio Code documentation

go.microsoft.com Microsoft link forwarding service

vscode.blob.core.windows.net Blob storage for Visual Studio Code

marketplace.visualstudio.com Visual Studio Marketplace

*.gallery.vsassets.io Visual Studio Marketplace

*.gallerycdn.vsassets.io Visual Studio Marketplace

rink.hockeyapp.net Crash reporting service

bingsettingssearch.trafficmanager.net In-product settings search

vscode.search.windows.net In-product settings search

raw.githubusercontent.com GitHub repository raw file access

vsmarketplacebadge.apphb.com Visual Studio Marketplace badge service

az764295.vo.msecnd.net Content Delivery Network (CDN) for Visual Studio Code

downloads

download.visualstudio.microsoft.com Visual Studio download service, which includes

dependencies for extensions such as C# and C++

Chapter 5 Customizing Visual Studio Code

102

If your proxy also requires an authorization header, this must be specified in the

settings.json file, so you have to click the Edit in settings.json hyperlink and then

enter the value supplied by your network administrator as the value for the http.

proxyAuthorization key. Also, check the Proxy Strict SSL checkbox if the certificate

should be verified against the list of supplied certification authorities.

Save your changes and check if Visual Studio Code is able to download extensions,

packages and libraries required by some languages, and product updates. If you still

encounter network issues, you should ask your network administrator to help you

configure the proxy settings.

Figure 5-6.  Configuring VS Code to work behind a proxy server

Chapter 5 Customizing Visual Studio Code

103

Note  Some protection programs such as Symantec Endpoint Protection
block some Visual Studio Code installation (and update) files because they are
recognized as CryptoLocker virus instances. Obviously, these are false positives,
but you might want to talk to your network administrator to review the protection
rules for Visual Studio Code.

Privacy Settings: Telemetry

By default, Visual Studio Code anonymously collects and sends to Microsoft information

about usage, errors, and crashes. You can disable one or more of these telemetry settings

by scrolling the user settings to the Telemetry group, located under the Application

category (see Figure 5-7).

The Enable Crash Reporter option allows sending crash reports to Microsoft, while

the Enable Telemetry allows sending usage data and errors. A shortcut to the privacy

policy is also available, and I recommend that you read it before enabling one or both

the options.

Figure 5-7.  Managing telemetry in Visual Studio Code

Chapter 5 Customizing Visual Studio Code

104

Synchronization Settings

In Chapter 1 you learned that Visual Studio Code allows for synchronizing settings across

different installations. You have full control over items that can be synchronized through

the Settings Sync group under the Application category.

You can decide which extension will be synchronized and which not, you can

exclude specific settings from synchronization, and you can disable or re-enable

keybinding synchronization. Apart from the latter, which is managed via a simple check

box, you need to make your changes in the settings.json file. The Ignored Extensions

and Ignored Settings hyperlinks enable you to edit specific blocks of settings about

extensions and general settings, respectively. As mentioned previously, IntelliSense will

help adding the available settings. Figure 5-8 shows an example, but keep in mind that

available settings may vary on your machine, especially depending on the extensions

you have installed.

Figure 5-8.  IntelliSense helps manage synchronization settings

Chapter 5 Customizing Visual Studio Code

105

�Understanding Workspace Settings

Differently from user settings, which globally apply to VS Code’s environment,

workspace settings apply to the current workspace and folders in the workspace. As an

implication, you first need to open an existing workspace, or add an existing folder to a

new workspace, to customize workspace settings.

Next you still select File ➤ Preferences ➤ Settings. At this point the settings

editor shows three tabs: one for user settings, one for workspace settings, and one for

individual folders within the workspace, as demonstrated in Figure 5-9.

Figure 5-9.  Customizing workspace settings

Chapter 5 Customizing Visual Studio Code

106

You customize workspace and folders settings exactly as you do with user settings,

so you have not only a second view in the settings editor but also two other JSON files

where you can specify your preferences. More specifically, workspace settings are stored

in the .code-workspace file (you can see this in the Explorer), while folder settings are

stored in the settings.json file. The .code-workspace file is saved under the workspace

folder, while settings.json is saved under the .vscode subfolder that Visual Studio Code

creates inside the opened folder, restricting settings availability to the current folder only.

�Customizing Keyboard Shortcuts
Visual Studio Code includes a huge number of keyboard shortcuts that you can override

with custom values. This is particularly useful if you are used to working with other

development tools and you want to have the same keyboard shortcuts in Visual Studio

Code.

Note  In the next chapter you will learn how to download ready-to-use keyboard
shortcuts that will save you a lot of time, but it’s first important for you to know
how they actually work.

Like user and workspace settings, keyboard shortcuts are represented with JSON

markup, and each is made of two elements: key, which stores one or more keys to be

associated to an action, and command, which represents the action to invoke. In some

cases, VS Code might offer the same shortcuts for different scenarios. This is the typical

case of the Esc key, which targets a number of actions depending on what you are

working with, such as the code editor or a tool window. To identify the proper action,

keyboard shortcut settings support the when element, which specifies the proper action

based on the context. You can quickly get the list of current keyboard shortcuts by

selecting File ➤ Preferences ➤ Keyboard Shortcuts. At this point, Visual Studio Code

displays a nicely formatted list of commands and shortcuts, as you can see in Figure 5-10.

Chapter 5 Customizing Visual Studio Code

107

To customize keyboard shortcuts, all you need to do is click the Open Keyboard
Shortcuts button, represented by a sheet icon with a plus symbol overlayed, located at

the top-right corner of the window. This opens the keybindings.json file, where you can

override default shortcuts with custom ones (see Figure 5-11).

Note  Remember that Visual Studio Code has (and allows for customizing)
different default keyboard shortcuts depending on what operating system it is
running on.

Figure 5-10.  The list of current keyboard shortcuts

Chapter 5 Customizing Visual Studio Code

108

You can quickly add a custom keyboard shortcut by clicking the Define Keybinding

button or by using the shortcut suggested in the button text (which varies depending on

your operating system). When you do this, a pop-up box appears and asks you to specify

the keyboard shortcut, as shown in Figure 5-11.

When you press Enter, the JSON markup for the new keyboard shortcut is added, as

shown in Figure 5-12.

Figure 5-11.  Adding a keyboard shortcut

Chapter 5 Customizing Visual Studio Code

109

You need to edit the command and when elements with the command you want to map

and for which scenario. Additionally, when editing keybindings.json manually, you need

to supply the markup for both the old shortcut and the new one. For example, suppose

you want to replace the Alt+O shortcut for the C/C++ extension (Switch: Header/Source)

with Shift+Alt+O. The markup you would need to write looks like the following:

{

 "key": "shift+alt+o",

 "command": "C_Cpp.SwitchHeaderSource",

 "when": "editorTextFocus && editorLangId == 'cpp'"

},

Figure 5-12.  Editing the new keyboard shortcut

Chapter 5 Customizing Visual Studio Code

110

{

 "key": "alt+o",

 "command": "-C_Cpp.SwitchHeaderSource",

 "when": "editorTextFocus && editorLangId == 'cpp'"

}

Actually, the when element is optional. Save your changes to the keybindings.json file

to get your new keyboard shortcuts ready.

�Summary
Visual Studio Code enables you to make several customizations that will help you

feel at home, especially if you are used to working with other development tools or

code editors. You can select a different color theme from a list, you can customize the

environment settings globally or for a specific folder, and you can even create custom

keyboard shortcuts.

But the very good news is that customizations can also be downloaded as extensions,

as well as new languages, debuggers, and tools. Extensibility is discussed in the next

chapter.

Chapter 5 Customizing Visual Studio Code

111
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_6

CHAPTER 6

Installing and Managing
Extensions
Extensibility is one of the key features in Visual Studio Code, because you can add

tools, languages, code snippets, debuggers, key bindings, and themes. Extensibility is

especially beneficial in the area of languages, because Visual Studio Code enables you to

extend the code editor with specific syntax support, which can also include IntelliSense,

code snippets, and code refactoring.

This all means that Visual Studio Code has open support for any language and any

tool on any platform, opening the possibilities to infinite development scenarios. This

chapter explains how to find and install extensions and how to manage extensions on

your system.

�Installing Extensions
You have two ways of browsing and installing extensions: from the Visual Studio

Marketplace and from within Visual Studio Code. The Visual Studio Marketplace is a

website that contains extensions for the most popular Microsoft development tools and

services, such as Visual Studio, Visual Studio Code, and Azure DevOps. It is available at

https://marketplace.visualstudio.com, and you need to click the Visual Studio Code

tab to see a list of extensions for Visual Studio Code. Figure 61 shows the Marketplace for

Visual Studio Code.

https://doi.org/10.1007/978-1-4842-6901-5_6#DOI
https://marketplace.visualstudio.com

112

You can search for extensions by typing in the search box, or you can browse

the groups below, such as Featured, Trending, Most Popular, and Recently Added. If

you scroll to the bottom of the page, you can also browse extensions by category or

collection. Once you have found an extension of your interest, click its name to see a

detail page. Figure 6-2 shows an example based on the C# extension by Microsoft.

Figure 6-1.  The Visual Studio Marketplace

Chapter 6 Installing and Managing Extensions

113

An extension’s page provides a detailed description and guidance about using

the extension, often providing links to additional documentation, resources, and the

source code (if open source). I strongly recommend that you read the detail page to

get information about what the extension includes, especially with extensions that add

language support, because it is important to know if there is support only for a new

syntax or also for IntelliSense, code snippets, and debugging.

If you click the Install button, your browser will ask your confirmation to open

the download link with Visual Studio Code. When this starts, the extension will

automatically be installed. You can also download the offline installer of the extension

for later reuse. To do so, click the Download Extension hyperlink under the Resources

group, on the right of the page. In this way you will be able to download a .vsix installer

file that you can then launch manually.

Figure 6-2.  Detail page for an extension

Chapter 6 Installing and Managing Extensions

114

Note  If you have experience with the Microsoft Visual Studio development
environment, you probably know that VSIX is the format used by Microsoft for
extension installer files. However, the VSIX format for Visual Studio Code is not the
same. Extensions for Visual Studio Code are packaged with a tool called vsce and
cannot work with Visual Studio 2019 on Windows or with Visual Studio for Mac.

The second way of installing extensions is from within Visual Studio Code. You can

open the Extensions bar and search for an extension and then click a specific extension

to get the details, as shown in Figure 6-3.

You can click the Install button when ready. You need to click the Reload button

(that appears once the installation completes) to enable the extension in VS Code. You

can also filter the search results; for instance, if you type category:linters in the search

box, Visual Studio Code will list all the extensions that provide linting support with

Figure 6-3.  Installing extensions from within Visual Studio Code

Chapter 6 Installing and Managing Extensions

115

syntax colorization to specific languages. You can use the same category names you see

in the Visual Studio Marketplace.

As an alternative, you can use the Command Palette to download (and manage)

extensions. Open the Command Palette, type in ext, and a list of self-explanatory

commands related to extension management will appear. You will typically prefer

working with extensions from the Command Palette when you do not want to lose focus

on the active editor window; otherwise, using the Extensions bar’s user interface is

definitely easier.

Note  Many extensions, especially extensions that provide full language support
such as C# and C/C++, rely on additional tools like debuggers and libraries. These
additional tools are usually downloaded the first time you use the extension.
For example, in the case of the C# extension, required tools and libraries are
downloaded the first time you create or open a C# file. These include libraries
to support .NET Core debugging and tools to improve the editing experience via
IntelliSense and live static analysis. Also, newly downloaded extensions might need
some initial configuration. In this case, a pop-up box will appear explaining what
you need to do to get started.

�Extension Recommendations
Visual Studio Code can provide suggestions about recommended extensions based

on your activity. When you open the Extensions bar, you will see a group called

RECOMMENDED, under the list of installed extensions.

The list of recommended extensions varies on your activity and might be empty

the first time you work with Visual Studio Code. As one option, Visual Studio Code

can suggest extensions based on the file you open. For example, suppose you open a

code file written with the Go language but you do not have installed any Go extension

yet. Visual Studio Code has built-in support for the Go language syntax, so the editor

provides syntax colorization and basic word completion, but you might want to work

with a richer editing experience that includes code snippets, code navigation, and rich

IntelliSense support. In this case, VS Code will suggest that an extension is available to

help you work with Go files and will offer to install it, as represented in Figure 6-4.

Chapter 6 Installing and Managing Extensions

116

You can click Install and Visual Studio Code will automatically install the extension

that it thinks to be the most appropriate, or you can click Show Recommendations to

see a list of possible extensions. In both cases, the Extensions bar will open and you

will see the list of available recommended extensions, but when you click Install, the

proposed extension will be already installing.

�Useful Extensions
The Visual Studio Marketplace contains tons of useful extensions, but there is a set that

I personally recommend after using Visual Studio Code for a long time in my daily job.

Table 6-1 summarizes this set of useful extensions.

Figure 6-4.  Extension recommendations based on the current file

Chapter 6 Installing and Managing Extensions

117

Table 6-1.  Recommended Extensions for Visual Studio Code

Name Description Type

C# C# full language support Language,

debugger, editing

C/C++ C and C++ full language support Language,

debugger, editing

Python Python full language support Language,

debugger, editing

Language Support for

Java

Java full language support Language, editing

SQL Server (mssql) SQL Server support Language, editing,

tools

Debugger for Chrome JavaScript debugging with the Chrome browser Debugger

Debugger for Java Java debugging support Debugger

Debugger for Microsoft

Edge

JavaScript debugging with the Edge browser Debugger

Cordova Tools Mobile development with Apache Cordova Editing, tools

Node Debug Debug support for Node.js Debugger

Visual Studio Keymap Keyboard shortcuts based on Microsoft Visual Studio Key binding

Atom Keymap Keyboard shortcuts based on Atom Key binding

Notepad++ Keymap Keyboard shortcuts based on Notepad++ Key binding

Docker Language support for Dockerfile Language, editing,

tools

vscode-icons Colored icons for the Explorer bar Tools

GitLens Extend Git integrated features for Visual Studio Code Tools

PowerShell PowerShell scripting support Language, editing,

tools

Live Share Extension for collaborative, real-time development

that shares your instance of VS Code with other

developers

Tools

Chapter 6 Installing and Managing Extensions

118

As you work with Visual Studio Code on your projects and on the operating system of

your choice, you will be able to find and fine-tune extensions that will help you be more

productive.

�Managing Extensions
The Extensions bar allows you to quickly manage extensions. It shows the list of installed

extensions, as shown in Figure 6-5. Then, for each extension, the button with the gear

icon opens a pop-up menu that contains commands for disabling or uninstalling an

extension.

You can also click an extension name, and the detail page will show the Disable and

Uninstall buttons. Notice that when you disable or uninstall an extension, in most cases

you will need to click a button called Reload (that appears when the extension has been

disabled or uninstalled) to refresh the development environment. It is worth mentioning

Figure 6-5.  Shortcuts for extension management

Chapter 6 Installing and Managing Extensions

119

that you can change the default view of the Extensions bar (displaying the list of installed

extensions) by clicking the … button at the top of the EXTENSIONS group and selecting the

Views submenu. You then can choose among different options, such as viewing popular

extensions, checking for extension updates, and installing extensions from .vsix files.

Note S hortcuts for extension management are also available in the Command
Palette.

�Configuring Extensions
Visual Studio Code has some options that allow you to control the global behavior of

extensions. You can see these options in the user settings, under the Extensions group,

as shown in Figure 6-6 (which is based on the list of extensions installed on my machine

and likely differs from yours).

Figure 6-6.  Customizing options about extension management

Chapter 6 Installing and Managing Extensions

120

There are detailed comments that explain what each option is about. Each extension

allows for customizing its own behavior in the user settings and edits can also be done

in the well-known settings.json file. For instance, suppose you have the C# extension

installed. If you look in the user settings, you will find a group called C# Configuration. If

you expand this group, you will see the full list of options about the C# extension, which

include options for code editing and for tools the extensions add. Figure 6-7 shows these

options.

If you want to instead edit extension settings in the settings.json file, IntelliSense will

simplify your work by showing setting names and a tooltip with the setting description

when you scroll the list. Figure 6-8 shows an example where IntelliSense is showing

some settings for the C# extension, identified with the csharp literal.

Figure 6-7.  Customizing extension options

Chapter 6 Installing and Managing Extensions

121

Normally, extension authors provide detailed comments that explain what an option

is about so that it is easier for you to fine-tune an extension behavior, such as in the case

of the C# extension.

�Hints About Extension Authoring
You can build extensions for Visual Studio Code and share them through the Visual

Studio Marketplace. You can basically build any type of supported extension, such as

language support, editing features, themes, code snippets, debugger adapters, and key

bindings. You will also need to register as a publisher on the Marketplace, which requires

you to have a Microsoft account.

Figure 6-8.  Customizing extension options in settings.json

Chapter 6 Installing and Managing Extensions

122

Extensions are usually written with TypeScript and, for most of them, you can

use an extension generator such as the Yeoman tool on Node.js. As you can imagine,

extension authoring is a complex task, and it is out of scope in a book from the Distilled

series. If you are interested in extension authoring, you can walk through the official

documentation (https://code.visualstudio.com/api), which provides examples and

guidance for many scenarios.

�Summary
Extensibility is a key feature in Visual Studio Code, because it allows you to add power to

the development environment. Extensions can add new languages (with or without rich

editing support), debuggers, keyboard shortcuts, themes, code snippets, and tools. You

can install extensions from the Visual Studio Marketplace or from within Visual Studio

Code, through the Extensions bar or the Command Palette.

Visual Studio Code can also provide extension recommendations based on the

context, such as when you open a file written in a language for which there is no built-

in support. Visual Studio Code makes also makes managin extensions simple, with

shortcuts to disable and uninstall extensions and the capability to configure extensions’

behavior via the user settings file. In the next chapter, you will see how to leverage

extensions to add features to Visual Studio Code to another core feature that makes it a

step forward compared to its competitors: version control with Git.

Chapter 6 Installing and Managing Extensions

https://code.visualstudio.com/api

123
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_7

CHAPTER 7

Source Control with Git
Writing software often involves collaboration. This is true whether you are part of a

development team, are involved in open source projects, or are an individual developer

who has interactions with customers. Microsoft strongly supports both collaboration and

open source, so Visual Studio Code provides an integrated source control system that is

based on Git and can be extended to other providers.

This chapter describes not only all the integrated tools for collaboration over source

code from within Visual Studio Code that are available out of the box, but also how to

use extensions that you will find very useful on the job to better review your code and

to push your work to Azure DevOps. Notice that the source control and version control

terms are used interchangeably.

�Source Control in Visual Studio Code
Visual Studio Code supports different source control providers via extensibility, but

it offers integrated support for Git. Git (https://git-scm.com/) is a very popular

distributed, cross-platform version control engine that makes collaboration easier for

small and large projects. One of the reasons for its popularity is that Git is open source,

and therefore it has always been loved by large open source communities.

Visual Studio Code works with any Git repository, such as GitHub or Azure DevOps,

and provides an integrated way to manage your code commits.

Note that this chapter is not a guide to Git; rather, it is a place to learn how Visual

Studio Code works with it, so for further information, visit the Git official page. Also,

remember that Visual Studio Code requires the Git engine to be installed locally, so

make sure it is available on your machine or download it from https://git-scm.com/

downloads. To demonstrate how Git version control works with Visual Studio Code, I

will use a small TypeScript project called Greeter, available in the TypeScript Samples

repository from Microsoft (https://github.com/Microsoft/TypeScriptSamples).

https://doi.org/10.1007/978-1-4842-6901-5_7#DOI
https://git-scm.com/
https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/Microsoft/TypeScriptSamples

124

You can download the repository on your system and extract the Greeter subfolder on

your disk. Obviously, you are totally free to use another example or another project of

your choice, regardless of the language, but to follow along with the examples in this

chapter, you’ll need Greeter. At this point, open the project in Visual Studio Code to start

collaborating over the source code.

�Downloading Other Source Control Providers
As I mentioned earlier, VS Code supports additional source control managers, also

referred to as SCM, via extensibility. You can open the Extensions bar and type SCM

providers in the search box to find third-party extensions that target other source

control engines. Figure 7-1 shows an example of selecting an extension that adds support

for the Subversion engine (https://subversion.apache.org).

Because VS Code provides in-the-box support only for Git, other source control

providers are not discussed in this chapter. If you wish to install SCM extensions, make

sure you refer to the documentation provided by the producer.

Figure 7-1.  Installing additional source control providers

Chapter 7 Source Control with Git

https://subversion.apache.org

125

�Managing Repositories
With Git, version control supports both a local repository and a remote repository to

work. This section explains how to create both, supplying information that you will not

find in the documentation, especially for remote repositories.

Note A very popular abbreviation for repository is repo. Although this term is
not used in this book, you will encounter it often, especially when searching for
information about open source projects.

�Initializing a Local Git Repository
As a starting point for the following examples, open the Greeter project downloaded

previously. The first thing you need to do is create a local repository for the current

project. This is accomplished by opening the Git tool from the Side Bar, as shown in

Figure 7-2.

Chapter 7 Source Control with Git

126

Clicking the Publish to GitHub button would allow you to initialize a local repository

and publish to GitHub at the same time, but because it is important to understand how

the flow works and how to properly authorize VS Code to GitHub, the steps here are split

into creating a local repository first and then publishing to the remote one. Click the

Initialize Repository button at the top (see Figure 7-2). Visual Studio Code will initialize

the local repository and show the list of files that now are under version control but not

committed yet (see Figure 7-3).

Figure 7-2.  Ready to initialize a local Git repository

Chapter 7 Source Control with Git

127

Notice how the Git icon shows the number of pending changes. This is an important

indicator that you will always see anytime you have pending, uncommitted changes.

Write a commit description and then press Ctrl+Enter. You will see a warning message

saying that there are no staged files at the moment, and you will be offered to stage and

commit directly all files. Staging will be discussed in the next section, so for now click

Yes. At this point, files are committed to the local repository, and the list of pending

changes will be cleaned. Now there is a problem: you need a remote repository, but the

official documentation does not describe how to associate one to VS Code. The next

section explains how to accomplish this.

Figure 7-3.  Files are under version control but not committed yet

Chapter 7 Source Control with Git

128

�Creating a Remote Repository
Visual Studio Code works with any Git repository. There are plenty of platforms that use

Git as the version control engine, but probably the most popular platforms are GitHub,

Atlassian Bitbucket, and Microsoft Azure DevOps. This section shows you how to create

a remote repository on GitHub. I chose GitHub not only because of the popularity of the

platform but also because Visual Studio Code includes a built-in extension called GitHub

that is expressly designed to simplify the workflow against GitHub itself. This requires

you to have an existing GitHub account or to create one for free at https://github.

com/join. Visual Studio Code makes it very easy to publish repositories to GitHub with

a single mouse click, but VS Code first needs to be authorized by the GitHub engine, so

there are some preliminary steps to do just once.

Note  GitHub no longer supports Microsoft browsers such as Edge and Internet
Explorer. Though you can open the website with both, some actions will not be
available. I recommend opening GitHub with a browser such as Chrome or Firefox.

On the Status Bar, click the Publish to GitHub button, identified by an icon

representing a cloud with an arrow and located to the right of the master branch name.

Figure 7-4 shows this button inside the green box.

An alert will inform you that VS Code wants to access GitHub and, after you click

OK to accept, it will open the default browser pointing to a GitHub page where it will be

possible to authorize VS Code. Click Authorize, then enter your GitHub credentials and

accept the access requirements that the extension requires. Next, GitHub generates an

authorization token that is specific for Visual Studio Code and that looks like the one

generated on my machine, visible in Figure 7-5.

Figure 7-4.  The Publish to GitHub button

Chapter 7 Source Control with Git

https://github.com/join
https://github.com/join

129

Your browser will ask your permission to open an URL with Visual Studio Code.

Allow this, so that Visual Studio Code will be able to complete the authentication process

automatically. (This is an improvement over previous versions, which required entering

the token manually.) At this point VS Code is enabled to access GitHub. As I mentioned

previously, the steps required to authorize Visual Studio Code need to be done only

once. Note that you will not get confirmation that the authorization has completed…it is

a silent process.

At this point you need to click again the Publish to GitHub button on the Status Bar.

VS Code shows a text box containing the repository name; by default, this is based on the

current folder name, but you can write a different name. It also provides two options to

publish the repository to GitHub based on the folder name, as you can see in Figure 7-6;

one option is to publish to a private repository, and the other option is to publish to a

public repository.

Figure 7-5.  An authorization token generated for Visual Studio Code

Chapter 7 Source Control with Git

130

For the current example, the public option will be used, but you are free to choose

whichever option you prefer. When publishing is completed, you will get a confirmation

message and an option to open the GitHub repository in the browser.

Note I f you work with platforms different from GitHub, you can easily associate a
remote repository by clicking the … button located in the upper-right corner of the
Source Control bar and then selecting Remote ➤ Add Remote. This is explained
in practice in the section “Working with Azure DevOps and Team Foundation
Server” toward the end of this chapter.

�Handling File Changes
Git locally tracks changes on your code files, and the Git icon in VS Code shows the

number of files with pending changes. This number is actually updated only after you

save your files. In VS Code, handling file changes is very straightforward. In Figure 7-7

you can see how the number of pending changes is highlighted in the Git icon but also

how files that have changes are marked with a brown M (where M stands for Modified),

whereas deleted files are marked with a red D (where D stands for Deleted). Note that

these markers are also visible in the Explorer bar.

Figure 7-6.  Available options to publish the repository remotely

Chapter 7 Source Control with Git

131

By clicking a file in the list, you can see the differences between the current and

previous versions of the file with the Diff tool. Figure 7-8 shows an example.

The left side shows the old version and the right side shows the new one. The line

highlighted in red represents code that has been removed, whereas the line highlighted

in green represents new code. Specific changes inside the lines of code are represented

with darker shades of red and green, as you can see for the words world and developers

in Figure 7-8. This is a very important tool when working with any version control

engine.

Figure 7-7.  Identifying the number of pending changes

Chapter 7 Source Control with Git

132

�Staging Changes
You can promote files for staging, which means marking them as ready for the next

commit. This is actually not mandatory, as you can commit directly, but it is useful to

have a visual representation of your changes. You can stage a file by simply clicking the

+ symbol near its name, or you can stage all files by right-clicking the Changes title and

then selecting Stage All Changes or clicking the plus icon on the bar. Visual Studio Code

organizes staged files into a logical container, as you can see in Figure 7-9. Similarly, you

can unstage files by clicking the – symbol.

Figure 7-8.  Comparing file versions with the Diff tool

Chapter 7 Source Control with Git

133

The workflow based on staging is very convenient, because if you no longer want

to commit a file, you can simply unstage it before the code gets committed to the

repository.

�Managing Commits
The … button provides access to additional actions, such as Commit, Sync, Pull,
Stash, and Pull (Rebase). Figure 7-10 shows the full list of builtin Git synchronization

commands available in VS Code. Notice that some of them are grouped into submenus,

such as Pull, Push that you can see in Figure 7-10.

Figure 7-9.  The view of staged and unstaged changes

Chapter 7 Source Control with Git

134

When you are satisfied with your work on the source code, you can select the

Commit ➤ Commit All command to commit your changes. Remember that this action

commits files to the local repository. Also, before you commit, you might want to check

staged and nonstaged changes so that the code is committed without missing any files.

You have to use the Push command to send changes to the remote repository.

You also have an option to undo the last commit and revert to the previous version

with the Commit ➤ Undo Last Commit command. Pull and Pull (Rebase), both in

the Pull, Push submenu, allow you to merge a branch into another branch; Pull is

nondestructive and merges the history of the two branches, while Pull (Rebase) rewrites

the project history by creating new commits for each commit in the local branch. The

Sync command in the same submenu performs a Pull first and then a Push operation,

so that both the local and remote repositories are synchronized.

Figure 7-10.  Shortcuts to commit and synchronize changes

Chapter 7 Source Control with Git

135

There is also a command called Stash, which allows for storing modified tracked

changes and staged changes in a cache, so that you can switch to another branch while

having unfinished work on the current branch. Then, with the Pop Latest Stash and Pop
Stash commands, under the Stash submenu, you can retake the latest version of your

unfinished work or a specific version of the unfinished work, respectively.

Every time you work with Git commands, such as Commit and Push, Visual Studio

Code redirects the output of the Git command line to the Output panel. Figure 7-11

shows an example.

You will need to select Git from the drop-down menu in the Output panel in order

to see the Git output. You can also open the Output panel using the Show Git Output

command from the pop-up menu shown in Figure 7-10.

�Working with the Git Command-Line Interface
The Command Palette has support for specific Git commands that you can type as if

you were in a command-line terminal. Figure 7-12 shows a partial list of available Git

commands, displayed by typing Git in the Command Palette. The full list of commands

is quite long and cannot be totally included in Figure 7-12, but you can type Git on your

own computer and scroll the list to see all available commands.

Figure 7-11.  Messages from the Git command line are shown in the Output panel

Chapter 7 Source Control with Git

136

It is worth mentioning that the list of commands is also grouped by most recently

used and all commands.

For instance, you can use Git Sync to synchronize the local and remote repositories,

or you can use Git Push to send pending changes to the remote repository. A common

scenario in which you use Git commands is with branches.

�Creating and Managing Branches
For a better understanding of what a branch is, suppose you have a project that, at a

certain point of its life cycle, goes to production. You need to continue the development

of your project, but you do not want to do it over the code you have written so far.

You can create two histories by using a branch. When you create a repository, you

also get a default branch called master.

Figure 7-12.  Supported Git commands in the Command Palette

Chapter 7 Source Control with Git

137

Note T here have been recent changes in GitHub, so if you first create a remote
repository on this platform directly, the main branch is no longer called master,
but instead is called main. This change is specific to GitHub, so if you create a Git
repository either locally or on other platforms, you still get the master branch.

Continuing with the example, the master branch could contain the code that has

gone to production, and now you can create a new branch, such as development, based

on master but different from it. In Visual Studio Code, you have different options to

create a new branch: The first option is to create a branch from the Command Palette

by typing Git branch, selecting the Git: Create Branch option, and specifying a new

branch name, such as development. This creates a new branch locally, based on

master. The second option is to click the current branch name in the Status Bar (master

in this case) and then click the Create new branch command (see Figure 7-13). Enter

the new branch name, and then press Enter.

In addition, you can use the Create new branch from command to create a new

branch from a branch that is not the active one. When a new branch is created, the Status

Bar shows it as the active branch; when you are ready, you can publish the new branch

to the remote repository with the Publish Changes button, represented by the cloud

icon (see Figure 7-14).

Figure 7-13.  Creating a branch

Figure 7-14.  The new branch is set as active and ready to be published

Chapter 7 Source Control with Git

138

�Switching to a Different Branch
Switching to a different branch is very easy. Simply click the name of the active branch in

the Status Bar, and VS Code displays the list of branches, as shown in Figure 7-15. If the

repository already has a remote branch, it will also be visible in the list.

Click the desired branch, and VS Code checks it out and sets it as the active branch.

�Merging from a Branch
Suppose you have completed and tested some work on the development branch and

you want this work to be published to production. Because the production code is on the

master branch, you must bring all the work from the development branch to the master

branch. This is a merge operation (which normally happens via pull requests, described

later in this chapter). You can merge from a branch into another one via the Command

Palette, using the Git: Merge Branch command. VS Code shows the list of branches,

and you need to select the branch you want to merge from into the current branch

(see Figure 7-16).

Note R emember that the branch that receives the merge is the active branch,
so make sure you have switched to the proper branch before starting a merge
operation.

Figure 7-15.  Selecting a different branch

Chapter 7 Source Control with Git

139

In the example, some changes were made and pushed to the development

branch, then the master branch has been selected as the active one and changes from

development will be merged into master.

Once the merge operation is completed, remember to push your changes to the

remote repository.

�Resolving Merge Conflicts

When you merge branches in which the same code files were modified, Visual Studio

Code leverages the Git tooling to combine the different edits into one code inside the

target files. However, sometimes VS Code is not able to automatically combine the edits,

in which case it raises a merge conflict. If this happens, VS Code shows an editor where

it highlights the code on which a conflict exists, displaying the current version and the

incoming version with different colors, as you can see in Figure 7-17, which shows an

example of one conflict due to edits on the same line of code in different branches.

Figure 7-16.  Merging from a branch

Chapter 7 Source Control with Git

140

Conflicts are also visible in the COMMITS panel of the Side Bar, and must be

resolved before merging can be completed. As you can see in Figure 7-17, the code editor

provides inline shortcuts to quickly resolve the conflict:

•	 Accept Current Change: Keeps the existing code and rejects the

incoming change.

•	 Accept Incoming Change: Overwrites the existing code with the

incoming edits.

•	 Accept Both Changes: Keeps both the existing and incoming code.

Incoming code is appended to the existing code.

•	 Compare Changes: With several conflicts, allows for deciding which

of the existing code or incoming code should be merged.

•	 Start Live Share: Only available with the Live Share extension

installed, allows starting a live sharing session to ask for help from

other developers.

Figure 7-17.  Resolving merge conflicts

Chapter 7 Source Control with Git

141

What the right choice is only depends on your preference. Visual Studio Code gives

you an integrated and user-friendly way to quickly solve merge conflicts without dealing

with complex Git commands.

�Hints About Rebasing Branches
Among the available commands for Git in Visual Studio Code, you will find one called

Rebase. In Git, rebasing still allows you to include the changes made by a branch in

another branch, but rebasing and merging accomplish this task differently.

More specifically, rebasing does not create overlaps between branches but rather

appends code changes to the end of the target branch, which means that the history of

the code is easier to understand, even if there is a need to frequently incorporate the

commits of one branch into the other.

Rebasing therefore offers the possibility of accessing a more linear history, because,

unlike merging, it allows you to not incorporate unnecessary commits into the target

branch.

However, rebasing should be used with care. For example, if another team member

is working on the same branch, it is preferable to avoid rebasing because this might lead

to the duplication of the branch instead of merging changes.

�Deleting Branches
Sometimes you might have branches that have been created only for testing some code

and that are not really necessary in the application lifecycle management. In this case, in

the Command Palette, you can use the Git: Delete Branch command.

With a user interface like what you see in Figure 7-16, VS Code shows the list of

branches. Select the branch you want to delete and press Enter. Remember that the

active branch cannot be deleted, and you first need to switch to a different branch. Also,

remember that you can delete remote branches only if you created them.

�Adding Power to the Git Tooling with Extensions
The integrated tools for Git cover all the needs that you, as a developer, may have when

working with local and remote repositories to manage your source code, but there are

extensions that provide additional power to the integrated tools.

Chapter 7 Source Control with Git

142

This section describes the most useful free extensions that will improve your

collaboration experience in Visual Studio Code.

�Git History
Git History is a free extension that enables you to view the history of your source code, such

as information and author about each commit and that can display how a file has gone

through branches; plus it adds commands that make it easier to manage your code against

Git. After you have installed the extension, you can right-click a file inside the folder view of

Explorer bar and select Git: View File History.

Figure 7-18 shows an example based on a file that has three commits. If available, the

view shows the branches where the file has been included, comments and author for the

commit, and the commit ID, and it allows for searching and filtering contents by branch

and author. Local branches are highlighted in green and remote branches in red.

Figure 7-18.  Viewing the history of commits with Git History

Chapter 7 Source Control with Git

143

Note I f the commit author has associated a picture to the Git credentials, Git
History shows the picture near the author name.

If you click the More shortcut at the right of each commit, a menu appears showing

a number of very useful commands that make it easier to work with commits (see

Figure 7-19).

At the bottom of the view, you will see the list of files involved in the selected

commit. If you click a file name, you also get shortcuts to compare the file with the

previous version and to view the history of that file. Git History is a very useful extension

especially when your team works with the Agile methodologies, because for each task in

the backlog, a new branch is created and then merged into one branch at the end of the

sprint, making it easier to walk through the history of the work.

�GitLens
Another extremely useful extension that will boost your productivity is GitLens. At first

usage, GitLens requires you to be authorized by GitHub, so VS Code will invite you to

follow the same steps you did when creating your first remote repository. GitLens adds to

VS Code many features and commands related to Git. For example, GitLens extends the

Source Control bar (see Figure 7-20) with a number of useful Git groups.

Figure 7-19.  Git History provides commands that make it easier to work with
commits

Chapter 7 Source Control with Git

144

The GitLens extension adds several areas to the Source Control bar. The BRANCHES

and REMOTES areas show the list of local and remote branches, respectively, and, for

each branch, GitLens displays the list of commits. Each commit can be expanded to see

the commit message, the list of files involved in the commit, and an icon that represents

the operation made on the file. The STASHES area shows stashed changes with a similar

structure (if any). The FILE HISTORY area shows the list of commits for a file (this

requires an open editor). For each commit, you can see the name, the author, and the

time of last edit.

The Status Bar in VS Code now provides, with GitLens, a field containing the current

commit’s author name and time of last edit. If you click this information, VS Code shows

a list of commands, as shown in Figure 7-21.

Figure 7-20.  The Source Control bar extended by GitLens

Chapter 7 Source Control with Git

145

These commands allow you to not only open the commit in your remote repository

but also open the commit revisions. Additionally, you can copy the commit ID or

message to the clipboard. You can also expand the file names below and see individual

details for the current code commit.

GitLens also adds summary information about edits made on a specific code

snippet, right above the code snippet itself. Figure 7-22 shows an example where GitLens

highlights that a code change to the Greeter class was made 4 hours earlier by the

author.

Note I f you hover your cursor over the GitLens, you will see some information
such as author, code differences, and commit number inside an interactive
pop-up box.

Figure 7-21.  GitLens commands

Chapter 7 Source Control with Git

146

If you click at the left side of the divider, you get to the menu shown in Figure 7-21.

If you instead click the author name, VS Code shows a pop-up box that contains the list

of commits made by the selected author, and if you hover over a commit name, you see

the full commit details (see Figure 7-23).

Other commands are available in the context menu when you right-click the code

editor, such as Copy Commit ID to Clipboard, Copy Message to Clipboard, and Copy
Remote File URL to Clipboard, all selfexplanatory.

Figure 7-22.  GitLens adds summary information about a code snippet.

Figure 7-23.  GitLens showing information about a commit

Chapter 7 Source Control with Git

147

Note A ll the preceding commands described are also available via shortcuts that
you can find in the upper-right corner of the code editor bar (see Figure 7-23).

�GitHub Pull Requests and Issues
Pull requests in Git make it easier to perform code reviews, while issues enable you

to keep track of feedback from other developers. With pull requests, your code is not

automatically merged into a branch until someone else on the team reviews the code

and accepts it. If you use GitHub for your repositories, an extension called GitHub Pull
Requests and Issues is available to introduce support for pull requests in Visual Studio

Code. When you first install the extension (and reload the environment), you are asked

to sign into GitHub. To accomplish this, you can either click Settings in the Side Bar and

then click Sign in to use GitHub Pull Requests and Issues, or click the Sign in button in

the GitHub bar. Simply follow the same steps you did to authorize GitLens.

After you provide your GitHub credentials and open a folder that is associated to a

remote repository hosted on GitHub, you will be able to leverage the GITHUB bar, which

you enable by clicking the GitHub icon on the Side Bar. An example of the GITHUB view

is provided in Figure 7-24.

Chapter 7 Source Control with Git

148

The extension supports both viewing and submitting pull requests, regardless of

their source, which can be VS Code, GitHub, or another development environment

connected to the same repository. When pull requests are available, you see them listed

in the view. If you select a pull request, a new editor window appears showing all the pull

request details, and you have the option of adding comments and then closing, rejecting,

or approving the pull request (see Figure 7-24).

You can also work on the pull request locally by clicking the Checkout button, which

displays it under the Local Pull Request Branches node in the tree view.

You can create issues from within Visual Studio Code by using the + button, after

which you can edit and then save them so that they are associated to the remote

repository. Viewing issues happens inside the browser, so when you click the globe icon

at the right side of an issue, the default web browser opens the GitHub page for the issue.

This is a very useful extension especially if you work within Agile teams, but

remember it only supports GitHub as the host.

Figure 7-24.  The GitHub Pull Requests view

Chapter 7 Source Control with Git

149

�Working with Azure DevOps and Team Foundation
Server
Azure DevOps (https://dev.azure.com) and Team Foundation Server are the complete

solutions from Microsoft to manage the entire application life cycle, from development

to testing to continuous integration and delivery. Azure DevOps is a cloud service,

whereas Team Foundation Server works on premises. Among the many features, they

both provide source control capabilities based on two engines: Git and the Microsoft

Team Foundation Server engine.

In this section I will explain how to configure a Git repository that you can use for

source control with Visual Studio Code, and the good news is that you do not need any

extensions. I will use Azure DevOps so that you do not need to have an on-premises

installation of Team Foundation Server. Also, I will reuse the Greeter project described

in the previous sections. If you want to do the same, you can simply delete the local .git

folder located under the project folder.

You obviously need an account on Azure DevOps, which you can create by using

a Microsoft account. If you do not have one, you can get a Microsoft account at www.

outlook.com, and then you can get an account on Azure DevOps at https://aka.ms/

SignupAzureDevOps. Follow all the instructions required to configure your account for

the first time.

�Creating a Team Project
From the home page, click the New Project button. As you can see in Figure 7-25, you

need to supply a team project name, a source control engine, and a work item process.

Chapter 7 Source Control with Git

https://dev.azure.com
http://www.outlook.com
http://www.outlook.com
https://aka.ms/SignupAzureDevOps
https://aka.ms/SignupAzureDevOps

150

Enter a project name and click Create. After a few seconds, your new team project

will be ready. At this point, the Azure DevOps site shows a page with all the information

about your new team project. Now click Repos on the left side of the screen so that you

can see all the information about the new Git repository (see Figure 7-26). Notice that the

new repository is created with the same name as the new project. Copy the repository

URL into the clipboard, as it will be necessary very shortly.

Figure 7-25.  Creating a team project in Azure DevOps

Chapter 7 Source Control with Git

151

Now that a remote repository is set up, you have several options to associate it to

Visual Studio Code. You could clone the repository to the local machine, or you could

even use the Git CLI. However, the simplest yet most effective option is to use the VS

Code tools you have seen in the first part of this chapter, as described next.

�Connecting Visual Studio Code to a Remote Repository
Go back to Visual Studio Code. The first thing to do is initialize a local Git repository

(see the “Initializing a Local Git Repository” section earlier in the chapter for a refresher).

Once you have a local repository set up, you can connect it to the remote Azure DevOps

repository with little effort.

In the Source Control bar, click the … button, then Remote ➤ Add Remote. You

first need to specify the name of the remote repository (which is the one you specified

in Azure), then you will have the option to enter the URL of the remote repository you

created, so paste the URL and press Enter (see Figure 7-27).

Figure 7-26.  Information about a Git repository on Azure DevOps

Chapter 7 Source Control with Git

152

You are also asked to provide a name, which is used as a project identifier. Enter

a name of your choice, with no blank spaces, then press Enter. At this point Visual

Studio Code links the local repository to the remote one, but note that you do not get

any confirmation message of the operation completion, only indicators running on the

Status Bar.

The very last step is to push the branch to the remote repository, using any of the

options described in the first part of this chapter; however, you need to take care about

the main branch. As previously mentioned, due to recent changes in Azure DevOps that

reflect what GitHub also does, when you create a repository on Azure DevOps, the main

branch is now named main rather than master. The problem is that VS Code still creates

a master branch. So basically you need to push the master branch from VS Code and

then create a pull request to merge master into main so that you will be able to work with

the new branch.

Note A ll these steps are necessary if you connect existing code to a remote
repository. If you start from creating a remote repository for a new project, you can
clone the repository in VS Code so that you start with the main branch directly.

Once changes are pushed, they are visible in the Repos view of the Azure DevOps

project (see Figure 7-28).

Figure 7-27.  Specifying an Azure DevOps remote repository

Chapter 7 Source Control with Git

153

Now that your code has been pushed remotely, other developers will be able to

collaborate on the project. The key point is how easy it has been to set up a connection

between a local Git repository and a remote Azure DevOps one, all from within Visual

Studio Code.

�Summary
Writing software involves collaboration, whether you are part of a development team,

involved in open source projects, or are an individual developer who has interactions

with customers. In this chapter you have explored how Visual Studio Code provides

integrated tools to work with Git, the popular open source and cross-platform source

control provider.

You have seen how to create a local repository with the Git bar and how to associate

it to a remote repository with a couple of commands from the integrated terminal. You

have also seen how you can handle file changes, including commits, and how you can

create and manage branches directly from within the environment. In addition, you were

introduced to some useful extensions, such as Git History, Git Lens, and GitHub Pull

Figure 7-28.  The source code has been pushed to Azure DevOps

Chapter 7 Source Control with Git

154

Requests and Issues, that will boost your productivity by adding important features that

every developer needs when it comes to team collaboration. Finally, you learned how

easy it is to link a local repository to a remote Git repository hosted on Azure DevOps,

the premiere cloud solution from Microsoft to manage the whole application life cycle.

Behind the scenes, Visual Studio Code invokes the Git commands to execute operations

over your source code, and it is preconfigured to work with this external tool.

However, Visual Studio Code is not limited to work with a small set of predefined

tools; rather, it can be configured to work with basically any external program. This is

what you will learn about in the next chapter.

Chapter 7 Source Control with Git

155
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_8

CHAPTER 8

Automating Tasks
As described in previous chapter, Visual Studio Code is more than a simple code editor

because it enables you to execute operations such as compilingand testing code by

running external tools. In this chapter you will learn how VS Code can execute external

programs via tasks, by both existing tasks and customized tasks. To run the examples

provided in this chapter, you need the following software:

•	 Node.js, a free and open source JavaScript runtime based

upon Chrome’s JavaScript engine, which you can download from

https://nodejs.org

•	 The TypeScript compiler (tsc), which you install via the Node.js

command line with the following command:

> npm install -g typescript

Using Node.js and TypeScript helps you to avoid dependencies on the operating

system and proprietary development environments. Obviously, all the topics discussed

in this chapter apply to other languages and platforms as well. For the last example in this

chapter about MSBuild tasks on Windows, you instead need Microsoft Visual Studio 2019.

The Community edition is available for free at https://visualstudio.microsoft.com.

�Understanding Tasks
At its core, Visual Studio Code is a code-centric tool, so it often requires executing

external programs to complete operations that are part of the application life cycle, such

as compilation, debugging, and testing.

https://doi.org/10.1007/978-1-4842-6901-5_8#DOI
https://nodejs.org
https://visualstudio.microsoft.com

156

In Visual Studio Code terminology, integrating with an external program within the

flow of the application life cycle is a task. Running a task means not only executing an

external program but also getting the output of the external program and displaying it in

the most convenient way inside the user interface, such as the integrated Terminal.

Note  Tasks are only available with folders, not individual code files.

A task is basically a set of instructions and properties represented with the JSON

notation, stored in a special file called tasks.json. If VS Code is able to detect the type of

project or source code inside the folder, a tasks.json file is not always necessary, and VS

Code does all the work for you. If VS Code cannot detect the type of project or source

code, or if you are not satisfied with the default settings of a task, under the current

folder, it generates a hidden subfolder called .vscode and, inside this folder, generates

a tasks.json file. If VS Code is able to detect the type of project or source code inside the

folder, it also prefills the tasks.json content with the proper information; otherwise, you

need to configure tasks.json manually. For a better understanding, I will explain tasks

that VS Code can detect and that it configures on your behalf, and then I will discuss how

to create and configure tasks manually.

�Tasks Types
There is no limit to how many types of tasks could be available for a source code folder,

but the most common are the following:

•	 Build task: A build task is configured to compile the source code,

assets, metadata, and resources into a binary or executable file, such

as libraries or programs.

•	 Test task: A test task is configured to run unit tests in the source code.

•	 Watch task: A watch task starts a compiler in the so-called watch

mode. In this mode, a compiler always watches for changes to any

unresolved files after the latest build and recompiles them at every

save.

Chapter 8 Automating Tasks

157

Visual Studio Code provides built-in shortcuts to execute a build task. When new tasks

are added, VS Code updates itself to provide shortcuts for the new tasks. Additionally, you

can differentiate tasks of the same type. For example, you can have a default build task and

other custom build tasks that can be executed only in specific situations.

�Running and Managing Tasks
The first approach to understanding tasks in practice is to run existing, preconfigured

tasks. For the sake of simplicity, start Visual Studio Code and open the project folder called

simple from the collection of examples you downloaded previously from the TypeScript

Samples repository on GitHub (https://github.com/Microsoft/TypeScriptSamples).

Visual Studio Code detects it as a TypeScript project, and therefore it preconfigures

some tasks (in the next section, I will provide more details about task auto-detection).

Now open the Terminal menu. As you can see in Figure 8-1, there are several commands

related to tasks.

Figure 8-1.  Commands for running and managing tasks in the Terminal menu

Chapter 8 Automating Tasks

https://github.com/Microsoft/TypeScriptSamples

158

An explanation of each command is provided in Table 8-1.

If you select Run Task, VS Code opens the Command Palette showing the list of

available task categories, as represented in Figure 8-2.

Table 8-1.  Commands for Task Execution and Management

Command Description

Run Task Shows the list of available tasks in the Command Palette and runs

the selected task

Run Build Task Runs the default, preconfigured build task (if any)

Terminate Task Forces a task to be stopped

Restart Running Task Restarts the currently running task

Show Running Tasks Shows the output of the currently running task in the Terminal panel

Configure Tasks Shows the list of available tasks in the Command Palette and allows

editing the selected task inside the tasks.json file editor

Configure Default Build Task Shows the list of available tasks in the Command Palette and allows

selection of the task to use as the build task

Chapter 8 Automating Tasks

159

From here you can pick up a group of available tasks by category. In this case, you

need to select the typescript category. At this point the Command Palette displays the

list of available tasks for that category, as you can see in Figure 8-3.

As you can see, there are two tasks, tsc: build and tsc: watch, both pointing to the

tsconfig.json project file. This means that either task will run against the specified file. tsc

is the name of the command-line TypeScript compiler, whereas build and watch are two

Figure 8-3.  Running a task from the Command Palette

Figure 8-2.  Selecting task categories from the Command Palette

Chapter 8 Automating Tasks

160

preconfigured tasks whose description has been provided previously. If you select tsc
build, Visual Studio Code launches the tsc compiler and compiles the TypeScript code

into JavaScript code, as shown in Figure 8-4.

Note I n the case of TypeScript, the build task compiles TypeScript code into
JavaScript code. In the case of other languages, the build task generates binaries
from the source code. More generally, a build task produces the expected output
from the compilation process depending on the language. Also, the list of available
tasks varies depending on the type of project or folder you are working with. For
example, for .NET Core projects, only a task called build is available.

Figure 8-4.  Executing a build task

Chapter 8 Automating Tasks

161

The Terminal panel shows the progress and result of the task execution. In this case,

the result of the task is also represented by the generation of a .js file and a .js.map file,

now visible in the Explorer bar.

Note I f the Terminal shows an error message saying that a .ps1 file could not be
loaded because running scripts is disabled on the systems, try to first restart VS
Code as an administrator and to repeat the steps. If this does not solve the issue,
you need to enable script execution on your machine. You can do this on your own
if you are the computer administrator; otherwise you need to ask the administrator
of your network. You can find more detailed information on how to enable script
execution depending on your environment and on how to enable specific privileges
at https:/go.microsoft.com/fwlink/?LinkID=135170.

You can stop and restart a task using the Terminate Task and Restart Running Task

commands, respectively, both described in Table 8-1. Now suppose there is a critical

error that prevents the build task from completing successfully. For demonstration

purposes, remove a closing bracket from the code of the simple.ts file and run again the

build task. At this point, Visual Studio Code will show the detailed log from the tsc tool in

the Terminal panel, as shown in Figure 8-5, describing the error and the line of code that

caused it.

Chapter 8 Automating Tasks

https://go.microsoft.com/fwlink/?LinkID=135170

162

In the real world, this error probably would not happen because you have the

Problems panel and red squiggles in the code editor that both highlight the error. But

this is actually an example of how Visual Studio Code integrates with an external tool

and shows its output directly in the Terminal panel, helping to solve the problem with

the most detailed information possible.

�The Default Build Task
Because building the source code is the most frequently used task, Visual Studio Code

provides a built-in shortcut to run this task in the Terminal menu, called Run Build
Task (Ctrl+Shift+B on Windows and ⇧+⌘+B on macOS). However, you first need to set a

default build task, because otherwise the Run Build Task command will behave like the

Run Task command.

Figure 8-5.  Visual Studio Code shows the output of the external tool in a
convenient way

Chapter 8 Automating Tasks

163

To accomplish this, select Terminal ➤ Configure Default Build Task. When the

Command Palette appears, select the task you want to be set as the default build task,

in this case select tsc build. When you do this, Visual Studio Code is actually changing

its default configuration and therefore generates a new tasks.json file under the .vscode

folder, and it then opens this file in a new editor window. The content and structure of

tasks.json will be discussed in the upcoming “Configuring Tasks” section, so for now

let’s focus on the new default build task. Select Terminal ➤ Run Build Task, or use the

keyboard shortcut, and you will see how the default build task will be executed, without

the need to specify it every time from the Command Palette.

�Auto-Detected Tasks
Visual Studio Code can auto-detect tasks for the following environments: Grunt, Gulp,

Jake, and Node.js. Auto-detecting tasks means that Visual Studio Code can analyze a

project built for one of the aforementioned platforms and generate the appropriate

tasks without the need of creating custom ones. Figure 8-6 shows an example based on

the Node debugger extension for Visual Studio Code, whose source code is available at

https://github.com/Microsoft/vscode-node-debug.

Chapter 8 Automating Tasks

https://github.com/Microsoft/vscode-node-debug

164

The source code of this extension is made of JavaScript and TypeScript files and is

built upon the Node.js runtime. So Visual Studio Code has been able to detect a number

of tasks that work well with this kind of project, such as the npm build and npm watch

tasks. You can then open the npm category to view the full list of preconfigured tasks that

can run against npm.

Auto-detected tasks are very useful because they allow you to save a lot of time in

terms of task automation. However, more often than not, you will have needs that are not

satisfied by existing tasks, so you will need to make your own customizations.

Note I n order to auto-detect tasks, behind the scenes VS Code requires that
specific environments are installed. For example, VS Code can auto-detect tasks
based on Node.js only if Node.js is installed; similarly, it can auto-detect tasks
based on Gulp only if Gulp is installed, and so on.

Figure 8-6.  Auto-detected tasks

Chapter 8 Automating Tasks

165

�Configuring Tasks
When Visual Studio Code cannot auto-detect tasks for a folder, or when auto-detection

does not satisfy your needs, you can create and configure custom tasks by editing the

tasks.json file. In this section I will present two examples that will help you understand

how to configure your own tasks.

More specifically, I will explain how to compile Pascal source code files using the

OmniPascal extension and the Free Pascal compiler, available to all operating systems,

and how to build a Visual Studio solution based on the full .NET Framework on Windows

by invoking the MSBuild.exe compiler.

To complete both the examples, you need the following:

•	 The OmniPascal language extension for Visual Studio Code, which

you can download via the Extensions panel. This extension is useful

to enable Pascal syntax highlighting and code navigation, though you

can still compile source files without it.

•	 The Free Pascal compiler, which includes all you need to develop

applications using Pascal and provides a free command-line

compiler. Free Pascal is available for Windows, macOS, Linux,

and other systems, and you can download it from https://www.

freepascal.org.

•	 On Windows only, download the latest version of the .NET

Framework (4.8 at this writing), which includes the MSBuild.exe tool.

Let’s start with an example based on the Pascal language.

�First Example: Compiling Pascal Source Code

In this section, I will explain how to create a custom task that allows for compiling

Pascal source code files by invoking the Free Pascal command-line compiler from VS

Code. Assuming you have downloaded and installed the required software as listed in

the preceding text, locate the Free Pascal folder installation on disk (usually C:\FPC\

VersionNumber on Windows and /FPC/VersionNumber on macOS and Linux), then

open the examples folder. In Visual Studio Code, open any folder containing some

Pascal source code. I will use one called fcl-json.

Figure 8-7 shows how Visual Studio Code appears with Pascal source files currently

opened.

Chapter 8 Automating Tasks

https://www.freepascal.org
https://www.freepascal.org

166

The OmniPascal extension installed previously enables syntax colorization and
the other common editing features. Now imagine you want to compile the source code
into an executable binary by invoking the Free Pascal command-line compiler. You can
accomplish this by creating a custom task. Follow these steps to create a new tasks.json
file and set up the custom task:

	 1.	 Select Terminal ➤ Configure Tasks. When the Command Palette

appears asking for a task to configure, select Create tasks.json file
from template (see Figure 8-8). There is no existing task to configure at

this particular point, so the only thing you can do is create a new tasks.

json file.

Figure 8-7.  Editing Pascal source code

Chapter 8 Automating Tasks

167

	 2.	 The Command Palette shows the list of available task templates:

MSBuild, maven, .NET Core, and Others (see Figure 8-9). Select

Others to create a new task that is independent from other

systems.

Visual Studio Code generates a subfolder called .vscode and, inside this folder, a new

tasks.json file whose content at this point is the following:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "echo",

 "type": "shell",

 "command": "echo Hello"

 }

]

}

Figure 8-9.  Selecting a task template

Figure 8-8.  Creating a new task from scratch

Chapter 8 Automating Tasks

168

The core node of this JSON file is an array called tasks. It contains a list of tasks, and

for each task, you can specify the text that VS Code will use to display it in the Command

Palette (label), the type of task (type), and the external program that will be executed

(command). An additional JSON property called args allows you to specify command-line

arguments for the program you invoke. The list of supported JSON properties is available

in Table 8-2 in the upcoming “Understanding tasks.json Properties” section, but if you

are impatient, you can quickly look at the table and then return here.

Now suppose you want to create a build task, which, by convention, is the type of

task you use to compile source code. You can accomplish this by modifying tasks.json as

follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"]

 }

]

}

The key points are the following:

•	 The label property value is now build so that the task is clearly

provided as the build task.

•	 The type property value is shell, meaning it will be executed by the

operating system’s shell.

•	 The command property value is fpc, which is the file name of the Free

Pascal compiler.

•	 The args property value is an array of command-line arguments to be

passed to the external program; in this case there is only one argument,

which is the active source file, represented by the $(file) variable.

Chapter 8 Automating Tasks

169

Note A s a general rule, an external program can be invoked without specifying
its full path only if such a path has been registered in the operating system’s
environment variables, such as PATH on Windows. In the case of Free Pascal, the
installer claims to take care of registering the program’s path, but remember to
take a look at the environment variables for other programs.

You could certainly specify the name of the file you want to compile, but using a

variable is more flexible so that you can simply compile any file that is currently active

in the code editor. Variables are discussed in the section “Understanding Substitution

Variables” and summarized in Table 8-3 later in this chapter. Notice how IntelliSense

helps you find the appropriate properties in tasks.json, as shown in Figure 8-10.

Save and close tasks.json, then open one of the Pascal source files. Now you can run

the newly created build task. Select Terminal ➤ Run Task and, from the Command

Palette, select the build task (see Figure 8-11).

Figure 8-10.  IntelliSense helps defining task properties

Chapter 8 Automating Tasks

170

At this point, VS Code asks what would you like to do to detect any problems

encountered during the execution of the external program so that it can display them in

the Problems panel. Detecting problems in the program’s output is the job of a so-called

problem matcher. This is a more complex topic and will be discussed in the section

“Understanding Problem Matchers” later in this chapter. For now, select Continue
without scanning the task output (see Figure 8-12).

Figure 8-11.  Selecting the new task

Chapter 8 Automating Tasks

171

The Free Pascal compiler is executed in the Terminal panel, where you also see the

program output, as demonstrated in Figure 8-13.

Figure 8-12.  Selecting a problem matcher

Chapter 8 Automating Tasks

172

If the execution succeeds, you will find a new binary file in the source code’s folder.

If it fails, the compiler’s output displayed in the Terminal panel will help you understand

what the problem was. Before moving to a second example, I will now explain more

about default tasks, task templates, JSON properties in tasks.json, and variables.

�Multiple Tasks and Default Build Tasks

The tasks.json file can define multiple tasks. As introduced earlier in this chapter, among

others, common tasks are build and test, but you might want to implement multiple

tasks that are specific to your scenario. For example, suppose you want to use the Free

Pascal compiler to build Delphi source code files.

The Free Pascal command-line compiler provides the -Mdelphi option, which

enables compilation based on the Delphi compatibility mode. You can therefore modify

tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

Figure 8-13.  Executing the Free Pascal compiler

Chapter 8 Automating Tasks

173

 "command": "fpc",

 "args": ["${file}"]

 },

 {

 "label": "Delphi build",

 "type": "shell",

 "command": "fpc",

 "args": [

 "${file}",

 "-Mdelphi"

]

 }

]

}

As you can see, there is a new custom task called Delphi build in the tasks array,

which still invokes the Free Pascal compiler on the active file, but with the -Mdelphi

option being passed as a command-line argument. Now if you select Terminal ➤ Run
Task again, you see both tasks in the Command Palette, as demonstrated in Figure 8-14.

It is common to have multiple build tasks, and even multiple tasks of the same

type, but in most cases, you will usually run the same task and keep other tasks for very

specific situations. Related to the current example, you will usually build Pascal source

files and sometimes build Delphi source files, so a convenient choice is to configure a

Figure 8-14.  All defined tasks are displayed in the Command Palette

Chapter 8 Automating Tasks

174

default build task for Pascal files. As you learned in the “The Default Build Task” section

previously, you can easily accomplish this with the following steps:

	 1.	 Select Terminal ➤ Configure Default Build Task.

	 2.	 In the Command Palette, select the build task defined previously by

adding an isDefault parameter (as you will see shortly in code).

	 3.	 With a Pascal source file active, select Terminal ➤ Run Build
Task, or press the keyboard shortcut for your system.

This command automatically starts the default build task, without the need of

manually selecting a task every time.

�Understanding tasks.json Properties

There are a number of properties available to customize a task. Table 8-2 provides a

summary of common properties that you can use with custom tasks.

Table 8-2.  Available Properties for Task Customization

Property Name Description

label A string used to identify the task (e.g., in the Command Palette).

type Represents the task type. For custom tasks, supported values are shell and

process. With shell, the command is interpreted as a shell command (such

as bash, cmd, or PowerShell). With process, the command is interpreted as a

process to be executed.

command The command or external program to be executed.

args An array of command-line arguments to be passed to the command.

windows Allows specifying task properties that are specific to the Windows operating

system.

osx Allows specifying task properties that are specific to macOS.

linux Allows specifying task properties that are specific to Linux and its distributions.

group Allows for defining task groups and for specifying to which group a task

belongs to.

(continued)

Chapter 8 Automating Tasks

175

The windows, osx, and linux properties will be discussed separately in the next

section. The group property allows grouping tasks by category. For instance, if you

consider the two multiple tasks created previously, they are both related to building

code, so they might be grouped into a category called build. This is accomplished by

modifying tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"],

 "group": "build",

 },

 {

 "label": "Delphi build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}", "-Mdelphi"],

 "group": "build"

 }

]

}

Property Name Description

presentation Defines how Visual Studio Code handles the task output in the user interface

(see the following example).

options Allows for providing custom values about the cwd (current working directory),

env (environment variables), and shell (default shell) options.

Table 8-2.  (continued)

Chapter 8 Automating Tasks

176

Notice how IntelliSense shows the built-in supported values for the group property

(see Figure 8-15).

You can also specify additional values for individual tasks in a group. For example,

if you want to set a task as the default one in the group, you might change the JSON as

follows:

"group": {

 "kind": "build",

 "isDefault": true

 }

}

The kind property represents the group name and isDefault is self-explanatory.

You can also customize the way VS Code handles the task output via the presentation

property. When you type presentation and then press Tab, IntelliSense adds a number

of key/value pairs with some default values, as follows:

Figure 8-15.  IntelliSense helping with groups

Chapter 8 Automating Tasks

177

"presentation": {

 "echo": true,

 "reveal": "always",

 "focus": false,

 "panel": "shared",

 "showReuseMessage": true

}

Following is the description of each key and its values:

•	 echo can be true or false and specifies whether the task output is

actually written to the Terminal panel.

•	 reveal can be always, never, or silent and specifies whether the

Terminal panel where the task is running should be always visible,

never visible, or visible only when a problem matcher is not specified

and some errors occur.

•	 focus can be true or false and specifies if the Terminal panel should

get focus when the task is running.

•	 panel can be shared, dedicated, or new and specifies if the terminal

instance is shared across tasks or if an instance must be dedicated to

the current task or if a new instance should be created at every task run.

•	 showReuseMessage can be true or false and specifies whether a

message should be displayed to inform that the Terminal panel will

be reused by a task and that therefore it is possible to close it.

The values you see in the preceding snippet are the default values. In case of default

values, a key can be omitted. For example, the following markup demonstrates how to

create a new Terminal panel at every run without showing a reuse message:

"presentation": {

 "panel": "new",

 "showReuseMessage": false

}

Other values can be omitted because we are okay with the default values seen in the

preceding text.

Chapter 8 Automating Tasks

178

Note  The list of supported properties is much longer, but most of them are not
of common use. If you want to get deeper knowledge about the full list of available
properties, you can look at the tasks.json schema, which provides detailed
comments about each property; the schema is available at https://code.
visualstudio.com/docs/editor/tasks-appendix.

�Understanding Substitution Variables

Visual Studio Code also offers several predefined variables that you can use instead of

regular strings and that are useful to represent file and folder names when passing these

to a command. Table 8-3 provides a summary of supported variables.

Table 8-3.  Supported Substitution Variables

Variable Description

${workspaceFolder} Represents the path of the currently opened folder.

${workspaceFolderBasename} Represents the name of the currently opened folder without

any slashes.

${file} The path to the active code file.

${relativeFile} The active code file relative to ${workspaceFolder}.

${fileBasename} The active code file’s base name, without path and leading

slash.

${fileBasenameNoExtension} The active code file’s base name without the extension.

${fileDirname} The path of the directory that contains the active code file.

${fileExtname} The file extension of the active code file.

${cwd} The current working directory of the task.

${lineNumber} The currently selected line number in the active file.

${selectedText} The currently selected text in the active file.

${env.VARIABLENAME} References an environment variable, such as {$env.PATH}.

Chapter 8 Automating Tasks

https://code.visualstudio.com/docs/editor/tasks-appendix
https://code.visualstudio.com/docs/editor/tasks-appendix

179

Using variables is very common when you run a task that works at the project/folder

level or against file names that you either cannot predict or do not want to hardcode.

You can check the variables documentation for further details at https://code.

visualstudio.com/docs/editor/variables-reference.

�Operating System–Specific Properties

Sometimes you might need to provide task property values that are different based on

the operating system. In Visual Studio Code, you can use the windows, osx, and linux

properties to specify different values of a property, depending on the target.

For example, the following tasks.json implementation shows how to explicitly specify

the path of an external tool for Windows and Linux (the directory names might not be

the same on your machine):

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "args": ["${file}"],

 "windows": {

 "command": "C:\\Program Files\\FPC\\fpc.exe"

 },

 "linux": {

 "command": "/usr/bin/fpc"

 }

 }

]

}

More specifically, you need to move the property of your interest under the operating

system property and provide the desired value. In the preceding code, the command

property has been moved from the higher level down to the windows and linux property

nodes.

Chapter 8 Automating Tasks

https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/variables-reference

180

�Reusing Existing Task Templates

In the previous example about compiling Pascal source code, you saw how to create

a custom task from scratch. However, for some particular scenarios, you can leverage

existing task templates, which consists of tasks.json files already preconfigured to work

with specific commands and settings.

The list of task templates may vary depending on the extensions you have installed,

but assuming you have installed only the C# extension, your list should look like that

shown in Figure 8-9. The first template is called MSBuild and generates the following

tasks.json file:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "msbuild",

 "args": [

// Ask msbuild to generate full paths for file names.

 "/property:GenerateFullPaths=true",

 "/t:build",

// �Do not generate summary otherwise it leads to duplicate errors in

Problems panel

 "/consoleloggerparameters:NoSummary"

],

 "group": "build",

 "presentation": {

// Reveal the output only if unrecognized errors occur.

 "reveal": "silent"

 },

Chapter 8 Automating Tasks

181

// Use the standard MS compiler pattern to detect errors, warnings and infos

 "problemMatcher": "$msCompile"

 }

]

}

This template is very useful if you want to work with Microsoft Visual Studio

solutions inside VS Code, and a more specific example is coming in the next subsection.

It is worth mentioning that this template has been included thinking about C# solutions

(such as web applications and desktop projects built upon the .NET Framework), but

MSBuild can build any kind of solution so it can be reused for different purposes.

The second template is called Maven and is tailored to support the same-named

build automation tool for Java. Such a template generates the following tasks.json file:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "verify",

 "type": "shell",

 "command": "mvn -B verify",

 "group": "build"

 },

 {

 "label": "test",

 "type": "shell",

 "command": "mvn -B test",

 "group": "test"

 }

]

}

Chapter 8 Automating Tasks

182

Obviously, Maven must be installed on your machine (you can find it at

https://maven.apache.org). The third template is called .NET Core and, as the name

implies, it generates a tasks.json file that is tailored to automate the build of .NET Core

projects. The configuration looks like the following:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "command": "dotnet",

 "type": "shell",

 "args": [

 "build",

 // Ask dotnet build to generate full paths for file names.

 "/property:GenerateFullPaths=true",

 // �Do not generate summary otherwise it leads to duplicate

errors in Problems panel

 "/consoleloggerparameters:NoSummary"

],

 "group": "build",

 "presentation": {

 "reveal": "silent"

 },

 "problemMatcher": "$msCompile"

 }

]

}

Chapter 8 Automating Tasks

https://maven.apache.org

183

In this case, the command is not MSBuild; instead it is dotnet. These templates are

useful for at least two reasons:

•	 They provide ready-to-use configurations for projects of the targeted

type, where you might need only a few adjustments.

•	 They provide a complete task structure, where you only need to

replace the command and target and optionally the presentation and

the problem matcher.

You will now see an example based on the MSBuild task template.

�Second Example: Building an MSBuild Solution (Windows Only)

MSBuild has been the Microsoft build engine since the very first release of the .NET

Framework back in 2002. It is a very powerful tool, because it can build a Visual Studio

solution with no effort. So, a very nice-to-have feature would be the possibility of

compiling your solutions and projects inside Visual Studio Code.

Note S tarting with .NET Core 3, it is possible to build desktop apps with C#
and Visual Studio Code will be able to debug and run them without any additional
configuration. However, desktop apps have been built for decades with Windows
Presentation Foundation and Windows Forms upon the full .NET Framework.
Because Visual Studio Code has no direct support for .NET Framework, you will
need to customize the tasks configuration as explained in this section.

You can configure a task to run MSBuild.exe, the build engine used by Visual Studio.

In the next example, you will see how to compile an MSBuild solution made of a Visual

Basic project based on Windows Presentation Foundation (WPF), but of course all the

steps apply to any .sln file and to any supported languages. If you do not have one, in

Visual Studio 2019 create a blank WPF project with Visual Basic as the language. There’s

no need to write code, as the focus is on the project type. Save the project, then open the

project folder in VS Code.

Chapter 8 Automating Tasks

184

Before configuring a task, it is worth mentioning that, by default, the MSBuild path is

not registered in the Windows environment variables, so you have two possible alternatives:

•	 Add the MSBuild directory to the PATH environment variable

via Control Panel ➤ System ➤ Advanced system settings ➤

Environment Variables.

•	 Specify the full MSBuild pathname in tasks.json. This is the quickest

option and the one I will demonstrate.

Select Terminal ➤ Configure Tasks. Select the Create template from task.json

option first, then select the MSBuild template from the list of templates. When tasks.json

has been created, change the value of the command property as follows, also replacing

Enterprise (this is what I have on my machine) with the name of the Visual Studio

edition you have on your machine, for example:

"command": "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\

Enterprise\\MSBuild\\Current\\Bin\\MSBuild"

Also, change the value of the reveal property from silent to always for

demonstration purposes, so that you can see the output of MSBuild in the Terminal

panel. Now select Terminal ➤ Run Task and select the preconfigured build task, and

MSBuild will be started and the solution will be built, as you can see in Figure 8-16.

The preconfigured MSBuild task uses the $msCompile problem matcher to detect

problems related to C# and Visual Basic in the build output, so that they can be

presented in a convenient way in the user interface. Let’s delve into problem matchers in

a bit more detail.

Figure 8-16.  Compiling a WPF project written in Visual Basic with the MSBuild
task

Chapter 8 Automating Tasks

185

�Understanding Problem Matchers

Problem matchers scan the task output text for known warning or error strings and

report these inline in the editor and in the Problems panel. Visual Studio Code ships

with a number of built-in problem matchers for TypeScript, JSHint, ESLint, Go, C#

and Visual Basic, Lessc, and Node Sass (see https://code.visualstudio.com/docs/

editor/tasks#_processingtaskoutput-with-problem-matchers).

Built-in problem matchers are extremely useful, because for the aforementioned

environments, VS Code can present problems that occurred at build time in the

Problems panel, but it can also highlight the line of code in the code editor that caused

the problem.

You can also define custom problem matchers to scan the output of an external

program. For instance, a problem matcher for scanning the Free Pascal compiler could

look like the following:

 "problemMatcher": {

 "owner": "external",

 "fileLocation": ["relative", "${workspaceRoot}"],

 "pattern": {

"regexp": "((([A-Za-z]):\\\\(?:[^\\/:*?\\\"

<>|\\r\\n]+\\\\)*)?[^\\/\\s\\(:*?\\\"<>|\\r\\n]*)\\((\\d+)\\):

\\s.*(fatal|error|warning|hint)\\s(.*):\\s(.*)",

// The first match group matches the file name which is relative.

 "file": 1,

// The second match group matches the line on which the problem occurred.

 "line": 2,

// The third match group matches the column at which the problem occurred.

 "column": 3,

// �The fourth match group matches the problem's severity. Can be ignored.

Then all problems are captured as errors.

 "severity": 4,

 // The fifth match group matches the message.

 "message": 5

 }

Chapter 8 Automating Tasks

https://code.visualstudio.com/docs/editor/tasks#_processing­task­output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing­task­output-with-problem-matchers

186

The owner property represents the language service, whose value is external in this

case, but it could be, for example, cpp in the case of a C++ project. But the most important

property is pattern, where you specify a regular expression (regexp) to match error strings

sent by the external program. Also notice, with the help of comments, how matches are

grouped by target. Building problem matchers can be tricky and it is out of the scope of

this book, so I recommend that you read the official documentation available at https://

code.visualstudio.com/docs/editor/tasks#_defining-a-problem-matcher.

�Running Files with a Default Program
In case you are editing in VS Code a file whose type is associated with the operating

system, you do not need to create custom tasks to run it. For example, you can run a

batch program (.bat) in Windows or a shell script file (.sh) on macOS by simply clicking

Terminal ➤ Run Active File.

The file name is passed to the current terminal program on your system (PowerShell

on Windows or the bash shell on Linux and macOS) so that the operating system tries

to open the file with the program that is registered with the file extension, if any. In the

case of a batch or shell script file, the operating system executes the file. The output is

displayed in the Terminal panel.

Note O nly the output of the operating system or of command-line tools will be
redirected to the Terminal panel. For instance, if you try to edit a .txt file and then
select Terminal ➤ Run Active File, such a file will be opened inside the default
text editor on your system, and there will be no additional interactions with the
Terminal panel.

�Summary
There are many features in Visual Studio Code that make it different from a simple code

editor. Tasks are among these features. With tasks you can attach external programs to

the application life cycle and run tools like compilers. VS Code ships with task auto-

detection for some environments, but it allows for creating custom tasks when you need

to associate specific tools to a project or folder.

Chapter 8 Automating Tasks

https://code.visualstudio.com/docs/editor/tasks#_defining-a-problem-matcher
https://code.visualstudio.com/docs/editor/tasks#_defining-a-problem-matcher

187

By working on the tasks.json file and with the help of IntelliSense, you can include

the execution of any external program in your folders. The execution of external

programs like compilers is certainly useful, but it would not be so important if VS Code

could not make a step forward: debugging code, which is discussed in the next two

chapters, first with C# and then with Python.

Chapter 8 Automating Tasks

189
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_9

CHAPTER 9

Building and Debugging
Applications: .NET 5
and Other Platforms
Being an end-to-end development environment, Visual Studio Code offers opportunities

that you will not find in other code editors. In fact, in Visual Studio Code, you can work

with many project types and debug your code in several languages. This chapter first

provides a general overview of application development, and then it explains how to

build .NET 5 projects supported in Visual Studio Code and how to use all the built-in,

powerful debugging features. Even if you do not plan to use C# with Visual Studio Code,

I recommend that you read this chapter because most of the concepts are applicable to

other languages as well, especially TypeScript, JavaScript, and Python.

�Creating Applications
Visual Studio Code is independent from proprietary project systems and platforms

and, consequently, it does not offer any built-in options to create projects. This means

that you need to rely on the tools offered by each platform. This section explains how to

build projects based on the new .NET 5, but you can similarly create projects with the

command-line interface offered by other platforms.

I also recommend that you create a dedicated folder on disk for the following

examples. With the help of the file manager tool on your system (Windows Explorer on

Windows, Finder on macOS, and Nautilus on Linux distributions such as Ubuntu), create

a folder called VSCode under the root folder, such as C:\VSCode or ~/Library/VSCode.

In this folder, you will shortly create new applications.

https://doi.org/10.1007/978-1-4842-6901-5_9#DOI

190

Note  The following topics are discussed in the context of .NET 5, but Visual
Studio Code supports all .NET Core versions up to 3.1. All explanations and
examples therefore apply to .NET Core as well.

�Introducing .NET 5
.NET 5 is the new major release of the Microsoft .NET technology. After releasing .NET

Core a few years ago, Microsoft has had in mind the vision of a complete unification

between .NET Framework and .NET Core, working on a single, cross-platform API that

could bring the great power of .NET to any developer on any system.

As you might know, .NET Core is a cross-platform, open source, modular runtime

to build applications using C#, F#, and Visual Basic that run on Windows, macOS, and

Linux distributions. With .NET Core, you can create different kinds of applications such

as web applications, Web API REST services, Console applications, and class libraries.

Its bigger brother, the .NET Framework, also includes the ability to create desktop

applications, such as Windows Forms and Windows Presentation Foundation, but the

.NET Framework’s biggest limitation is that it only runs on Windows.

So .NET 5 can be considered as an update for both .NET Core and .NET Framework;

with it, Microsoft brings together the two technologies and offers a unified development

platform that has the flexibility and portability of .NET Core, plus the full power of

.NET Framework. .NET 5 also includes C# 9 and F# 5, but it does not support mobile

development with C# and F#, which is planned for .NET 6 with the inclusion of Xamarin.

Additionally, at this writing, with .NET 5 you can only create desktop apps on Windows.

There are several ways to get .NET 5. As a developer working with Visual Studio

Code, the easiest way is to download the latest release from the official website

(https://dotnet.microsoft.com). This website enables you to select the installation

package that matches your operating system. For the following explanations and

examples, I’m assuming you have downloaded and installed .NET 5 on your machine.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

https://dotnet.microsoft.com

191

�Creating .NET 5 Projects
.NET 5 ships with a rich command-line interface that provides many options to create

different kinds of projects and individual files. You can create projects and files from the

command line by using the dotnet tool, more specifically by invoking the dotnet new

command. For example, if you want to create a Console application with C#, you would

enter the following command:

> dotnet new console

By default, the dotnet tool assumes you want to use C# unless you explicitly specify a

different language. For example, the following command enables you to create a Console

application with Visual Basic:

> dotnet new console -lang VB

Table 9-1 provides a comprehensive list and description of all the available

templates.

Table 9-1.  Available .NET Project and File Templates

Template Name Short Name Language

Console Application console C#, F#, VB

Class Library classlib C#, F#, VB

WPF Application wpf C#, VB

WPF Class Library wpflib C#, VB

WPF Custom Control Library wpfcustomcontrollib C#, VB

WPF User Control Library wpfusercontrollib C#, VB

Windows Forms (WinForms) Application winforms C#, VB

Worker Service worker C#

Unit Test Project mstest C#, F#, VB

NUnit 3 Test Project nunit C#, F#, VB

(continued)

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

192

Table 9-1.  (continued)

Template Name Short Name Language

NUnit 3 Test Item nunit-test C#, F#, VB

xUnit Test Project xunit C#, F#, VB

Razor Component razorcomponent C#

Razor Page page C#

MVC ViewImports viewimports C#

MVC ViewStart viewstart C#

Blazor Server App blazorserver C#

Blazor WebAssembly App blazorwasm C#

ASP.NET Core Empty web C#, F#

ASP.NET Core Web App (Model-View-Controller) mvc C#, F#

ASP.NET Core Web App webapp, razor C#

ASP.NET Core with Angular angular C#

ASP.NET Core with React.js react C#

ASP.NET Core with React.js and Redux reactredux C#

Razor Class Library razorclasslib C#

ASP.NET Core Web API webapi C#, F#

ASP.NET Core gRPC Service grpc C#

dotnet gitignore file gitignore

global.json file globaljson

NuGet Config nugetconfig

Dotnet local tool manifest file tool-manifest

Web Config webconfig

Solution File sln

Protocol Buffer File proto

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

193

Note  All Windows Forms and WPF templates are available to Visual Basic only
with .NET 5. For C# and F# they have already been available since .NET Core 3.1.
However, the majority of the templates described in Table 9-1 have been available
since previous versions.

In this section I will show an example based on C# and an ASP.NET Core web

application built upon the Model-View-Controller (MVC) pattern. Open a command

prompt or a terminal instance on the VSCode folder created previously, depending on

your system.

Type the following command to create a new empty folder called HelloWeb:

> mkdir HelloWeb

Then, move into the new directory. On Windows and Linux, you can type

> chdir HelloWeb

On macOS, the command is instead cd, which is also commonly used on Windows

as a shortcut for chdir.

Next, type the following command to build a new .NET 5 web application using C#:

> dotnet new mvc

The mvc command-line switch specifies that the new web application is based on the

MVC pattern and the .NET SDK will generate all the plumbing code for some controllers

and views. You could also use the web switch and create an empty web application, but

having some autogenerated pages will help with describing the debugging features.

Once the project has been created, .NET 5 will automatically restore NuGet packages for

the solution. You could also do this manually by typing the following command:

> dotnet restore

If you were to type dotnet run, the development server would start running and

then you would need to open your browser and launch the application manually.

However, the goal is understanding how to run and debug the application in Visual

Studio Code. So, open the project folder with VS Code. You can also type code . to

open Visual Studio Code from the command line. Thanks to the C# extension, VS Code

recognizes the presence of the .csproj project file, organizing files and folders and

enabling all the powerful code editing features you learned previously.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

194

The next step is to run the application. As a general rule, in Visual Studio Code you

have two options:

•	 Running the application with an instance of the debugger attached,

where a debugger is available for the current project type. In the case

of .NET 5, this ships with its own debugger that integrates with VS

Code.

•	 Running the application without an instance of the debugger

attached.

Let’s start with the second option, and then the debugging features are described in

detail in the next section. You can select Run ➤ Run Without Debugging. Visual Studio

Code first asks you to specify an environment, so select .NET Core, then it starts the

default build task. For Web applications, VS Code starts an instance of the development

server, but in order to run the application you need to manually open the browser and

enter the Web address you see in the Terminal panel.

Note  The first time you run some code, VS Code might show a pop-up message
saying that required assets are needed to enable building and debugging. Accept
the offer and VS Code will do the rest.

Figure 9-1 shows the web application built previously.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

195

Note  Your browser might show a warning saying that the website is not secure.
Because the local development environment is currently being used, you can
ignore the warning and proceed to display the web page. Also, some browsers
might ask to add a security exception for the current site, which you might want to
accept to avoid the warning every time.

ASP.NET web applications use an open source development server called Kestrel

(https://github.com/aspnet/AspNetCore), which allows for independence from

proprietary systems. By default, Kestrel listens for the application on port 5001, which

means your application can be reached at http://localhost:5001. You can change the

default port setting in a file called launch.json, which is discussed more thoroughly in

the later section “Configuring the Debugger.”

Figure 9-1.  The .NET web application running

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

https://github.com/aspnet/AspNetCore

196

With the preceding simple steps, you have been able to create and run a .NET 5

project in VS Code that you can certainly edit as you need with the powerful C# code

editing features.

�Creating Projects on Other Platforms
Obviously, .NET 5 is not the only platform you will use with VS Code. Depending on the

platform, you will use specific command-line tools to build a new project. In the next

chapter you will learn how to work with Python projects, but providing some context

in this chapter is worthwhile as well. For example, with Node.js you can quickly create

JavaScript projects based on the Express.js framework (https://expressjs.com).

Express is a minimal and flexible Node.js web application framework that provides

a robust set of features to develop web and mobile applications. It facilitates the rapid

development of Node-based web applications and includes features such as setting

up middleware to respond to HTTP requests, defining a routing table used to perform

different actions based on HTTP methods and URL, and dynamically rendering HTML

pages based on passing arguments to templates. An easy way to start creating apps

with Express is to use the Express application generator (https://expressjs.com/en/

starter/generator.html), which you install with the following command:

> npm install -g express-generator

Next, you can generate a JavaScript project with the following command:

> express expressexample

Note that npm requires using all lowercase letters. You can then type code . to open

the new project in Visual Studio Code. Figure 9-2 shows a JavaScript project created with

the Express JavaScript framework inside Visual Studio Code.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

https://expressjs.com
https://expressjs.com/en/starter/generator.html
https://expressjs.com/en/starter/generator.html

197

You follow a similar process with other command-line tools that allow for generating

projects, such as the Yeoman generator (https://yeoman.io/), still available for Node.

js, and that also allow for generating ASP.NET Core projects and VS Code extensions.

For example, you could create mobile apps with the Apache Cordova framework

(https://cordova.apache.org). Cordova is a JavaScript-based framework, and it works

very well with Node.js. Apps you build with Cordova are based on JavaScript, HTML,

and Cascading Style Sheets (CSS). First, you can install Cordova with the following

command:

> npm install -g cordova

Figure 9-2.  A JavaScript project created with the Express JavaScript framework in
VS Code

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

https://yeoman.io/
https://cordova.apache.org

198

Then you can easily build a Cordova project with the following command:

> cordova create mycordovaproject

where mycordovaproject is the name of the new project. Once you have a new or

existing Cordova project, you can install the Cordova Tools extension for Visual Studio

Code (https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-

tools). This extension adds support for Cordova projects to the integrated debugger for

Node.js, providing specific configurations to target Android and iOS devices, as well as

simulators.

Note  You also need some additional specific tools for Cordova, depending on
what system you intend to target. For iOS, you need to install the tools described
in the iOS Platform Guide from Apache Cordova (https://cordova.apache.
org/docs/en/latest/guide/platforms/ios/index.html). For Android,
you need to install the tools described in the Android Platform Guide from Apache
Cordova (https://cordova.apache.org/docs/en/latest/guide/
platforms/android/index.html).

�Debugging Your Code
The code debugging capability of Visual Studio Code is one of its most powerful features

and probably the one that makes it a notch above other code editors. Visual Studio Code

ships with an integrated debugger for Node.js applications and can be extended with

third-party debuggers. For instance, if you have .NET 5 installed, the C# extension for

Visual Studio Code detects the availability of a compatible debugger and takes care of

attaching it to VS Code.

We will consider the scenario of using C# and .NET Core as the example of how

debugging works, so reopen the HelloWeb folder that you created previously.

Note  All the features discussed in this chapter apply to all the supported
debuggers (both built-in and via extensibility), so they are not specific to C#
and .NET 5.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html

199

The Run view provides a way to interact with the debugger. Figure 9-3 shows how it

appears at this point.

At the top of the view, you can see the RUN toolbar, which provides the following items:

•	 The Start Debugging button, represented with the play icon (the

white and green arrow). Clicking this button starts the application

with an instance of the debugger attached.

•	 The configuration drop-down box. Here you can select a debugger

configuration for running the application.

•	 The settings button, represented with the gear icon and whose tooltip

says Open launch.json (details coming shortly).

•	 A submenu represented by the … button that contains the list of

available and selected views, plus the Debug Console command,

which opens the Debug Console panel where you see the output

messages from the debugger.

Figure 9-3.  Run view

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

200

After this quick overview, you are ready to learn about debugger configurations, and

then you will walk through the debugging tools available in VS Code.

�Configuring the Debugger
Before a debugger can inspect an application, it must be configured. For Node.js and for

platforms like .NET 5, where an extension takes care of everything, default configurations

are provided. Figure 9-3 shows the two predefined configurations, .NET Core Launch
(web) and .NET Core Attach.

The first configuration is used to run the application within the proper host, with

an instance of the debugger attached. For an ASP.NET Core web application like in the

current example, the host is the web browser. In the case of a Console application, the

host would be the Windows Console or the Terminal in macOS and Linux. The second

configuration can be used to attach the debugger to another running .NET 5 application.

Note  Actually, there is a .NET Core Launch configuration that is different for each
kind of application you create with .NET Core. For example, the configuration for
Console applications is called .NET Core Launch (console). The concept to keep
in mind is that a Launch configuration is provided to attach an instance of the
debugger to the current project.

Debugger configurations are stored in a special file called launch.json. Visual Studio

Code stores this file in the .vscode subfolder (along with tasks.json). This special JSON

file contains the markup that instructs Visual Studio Code about the output binary that

must be debugged and about the application host. The content of launch.json for the

current .NET Core sample looks like the following:

 {

 "version": "0.2.0",

 "configurations": [

 {

 // Use IntelliSense to find out which attributes

 // exist for C# debugging

 // Use hover for the description of the

 // existing attributes

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

201

 // �For further information visit https://github.com/OmniSharp/

omnisharp-vscode/blob/master/debugger-launchjson.md

 "name": ".NET Core Launch (web)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 �// �If you have changed target frameworks, make sure to update

the program path.

 "program": "${workspaceFolder}/bin/Debug/net5.0/HelloWeb.dll",

 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 �// �Enable launching a web browser when ASP.NET Core starts.

For more information: https://aka.ms/VSCode-CS-LaunchJson-

WebBrowser

 "serverReadyAction": {

 "action": "openExternally",

 "pattern": "\\\\bNow listening on:\\\\s+(https?://\\\\S+)"

 },

 "env": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 },

 "sourceFileMap": {

 "/Views": "${workspaceFolder}/Views"

 }

 },

 {

 "name": ".NET Core Attach",

 "type": "coreclr",

 "request": "attach",

 "processId": "${command:pickProcess}"

 }

]

}

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

202

As you can see, the syntax of this file is similar to the syntax of tasks.json. In this case

you have an array called configurations. For each configuration in the array, the most

important properties are

•	 name, which represents the configuration-friendly name.

•	 type, which represents the type of runtime the debugger is running

on.

•	 request (launch or attach), which determines whether the debugger

is attached to the current project or to an external application.

•	 preLaunchTask, which contains any task to be executed before the

debugging session starts. Usually, this property is assigned with the

default build task.

•	 program, which represents the binary that will be the subject of the

debugging session.

•	 env, which represents the environment. In the case of .NET 5, a value

of Development instructs VS Code to run the Kestrel development

server.

If you wanted to implement custom configurations, launch.json is the place where

you would add them. Because these two configurations, and more generally default

configurations, are enough for most of the common needs, custom configurations

are not covered in this book. The documentation provides additional details about

this topic (https://code.visualstudio.com/docs/editor/debugging#_add-a-new-

configuration).

Note I f you click the Add Configuration button located at the bottom-right
corner of the code editor when launch.json is the active file, you will be able to
select from a built-in list of configurations that you can add to launch.json. This can
be useful especially in those cases where VS Code should detect a project type and
its configuration but doesn’t.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

https://code.visualstudio.com/docs/editor/debugging#_add-a-new-­configuration
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-­configuration

203

�Managing Breakpoints
Before starting a debugging session, it is useful to place one or more breakpoints to

discover the full debugging capabilities in VS Code. You place breakpoints by clicking

the white space near the line number of by pressing F9 on the line of your interest. For

instance, place a breakpoint on line 18 of the Startup.cs file, as shown in Figure 9-4.

Figure 9-4.  Adding breakpoints

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

204

You can remove a breakpoint by simply clicking it again, or you can manage

breakpoints in the Breakpoints area of the Run view (see Figure 9-5).

Here you can see the list of files that contain any breakpoint and the line numbers.

You can also cause the debugger to break on userunhandled exceptions (default) and on

all exceptions. You can click the Add Function Breakpoint (+) button. Instead of placing

breakpoints directly in source code, a debugger can support creating breakpoints by

specifying a function name. This is useful in situations where source is not available but

a function name is known.

�Debugging an Application
Now it is time to start a debugging session so that you can see in action all the debugging

tools and make decisions when breakpoints are hit. In the Run view, make sure the .NET
Core Launch (web) configuration is selected, then click the Start button or press F5.

Visual Studio Code launches the debugger, and it will display the output of the debugger

in the Debug Console panel. It will also break when it encounters an exception or a

breakpoint, like in the current example.

Figure 9-6 shows VS Code hitting a breakpoint and all the debugging

instrumentation. The line of code highlighted in yellow is the line that will be executed

as the next one.

Figure 9-5.  Managing breakpoints

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

205

Notice that the status bar becomes orange while debugging and the Debug Console

window shows information about the debugging process. On the left side, the Debug

view shows a number of tools:

•	 VARIABLES, which shows the list of variables that are currently

under the debugger control and that you can investigate by

expanding each variable. This panel includes a sublist called Locals,

which displays the list of the variables that are currently in scope.

Each can be further expanded to see their details.

•	 WATCH, a place where you can evaluate expressions.

•	 CALL STACK, where you can see the stack of method calls. If you

click a method call, the code editor takes you to the code that is

making that call.

•	 BREAKPOINTS, where you can manage breakpoints.

Figure 9-6.  The debugging tools available when a breakpoint is hit

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

206

At the top of the window, also notice the debugging toolbar (see Figure 9-6) called

Debug action pane, which is composed of the following commands (from left to right):

•	 Continue, which allows continuing the application execution after

breaking on a breakpoint or an exception.

•	 Step Over, which executes one statement at a time, except for

method calls, which are invoked without stepping into.

•	 Step Into, which executes one statement at a time. Statements within

method bodies are also executed one at a time.

•	 Step Out, which executes the remaining lines of a function starting

from the current breakpoint.

•	 Restart, which you select to restart the application execution.

•	 Stop, which you invoke to stop debugging.

These commands are also available in the Run menu, together with their keyboard

shortcuts. For example, if you click the Step Over button, the highlighted line runs

and the execution advances one line (see Figure 9-7). If you hover your cursor over

a variable name in the code editor, a convenient pop-up box enables you to easily

investigate values and property values (depending on the type of the variable), as

demonstrated in Figure 9-7, which shows a pop-up box that includes information about

the configuration variable. You can expand properties and see their values, and you

can also investigate properties in the VARIABLES area of the Run and Debug bar.

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

207

�Evaluating Expressions

You have an option to use the Watch tool to evaluate expressions. While debugging, click

the Add Expression (+) button in the Watch box, then type the expression you want to

evaluate. For instance, if you type configuration != null, the Watch tool returns true

or false depending on whether or not the object has an instance. Figure 9-8 shows an

example.

Figure 9-7.  Investigating property values at debugging time

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

208

�The Call Stack

The debugger also offers the Call Stack feature, which allows stepping through the

hierarchy of method calls. When you click a method call in the stack, the code editor

opens the containing file, highlighting the method call (see Figure 9-9).

Figure 9-8.  Evaluating expressions

Figure 9-9.  Walking through method calls

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

209

As you walk through method calls, the Locals subview of the VARIABLES panel also

updates to show variables that are in the current scope. The code editor can highlight

method calls only if the method is part of the source code, so it does not allow further

control over the methods marked as [External Code] in the CALL STACK (see Figure 9-9),

but this feature is very useful especially when you encounter errors and you need to step

back through the code.

�The Debug Console Panel

The Debug Console is certainly the place where VS Code shows the debugger output,

but, as the name implies, it is also an interactive panel where you can evaluate

expressions. You can type the expression near the > symbol and then press Enter.

Figure 9-10 shows an example that evaluates if the configuration variable is not null.

�Summary
The power of Visual Studio Code as a development environment comes out when you

work with real applications. With the help of specific generators, you can easily generate

.NET 5 projects using C# or Node.js projects. This chapter described how you can leverage

a powerful, built-in debugger that offers all the necessary tools you need to write great

apps, such as breakpoints, variable investigation, call stack, and expression evaluators.

By completing this chapter, you have walked through all the most important and

powerful features you need to know to write great cross-platform applications using

Visual Studio Code.

Figure 9-10.  Evaluating expressions in the Debug Console panel

Chapter 9 Building and Debugging Applications: .NET 5 and Other Platforms

211
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_10

CHAPTER 10

Building Applications
with Python
Python is a very popular and powerful programming language that can be used to

develop applications of any kind, and it is especially useful to build data science and

data analysis applications.

Python is an interpreted, object-oriented programming language that can be

learned by developers of any experience. This chapter describes how Visual Studio Code

supports building and debugging Python code, including specific code editing features.

Obviously, the chapter’s focus is not the Python language but rather how Python can find

used with VS Code.

�Chapter Prerequisites
In this chapter, I provide examples of running and debugging Python code. Following

along with these examples requires that you install the following components before you

continue reading:

•	 The Python interpreter with its tools, which you can download from

the Python official site (https://www.python.org/downloads). The

download page automatically detects your operating system and

offers the appropriate download package for Windows, macOS, and

Linux distributions.

•	 The Python extension for Visual Studio Code provided by Microsoft,

which you can install via the Extensions panel. There are several

extensions for Python in the Marketplace, but I recommend that

you download the official one, shown in Figure 10-1, because it

dramatically improves the development experience with a debugger

and additional coding tools.

https://doi.org/10.1007/978-1-4842-6901-5_10#DOI
https://www.python.org/downloads

212

Note  This chapter walks through a simple code example, but in the real world
you might want to build more complex applications, in which case you need
additional components. For instance, building data science applications requires
Anaconda (https://www.anaconda.com), a distribution that includes Python
and the R programming languages, plus a set of libraries specific for data science.
If you instead need to do web development, you might want to consider Django
(https://www.djangoproject.com), a web framework built with Python.

If you haven’t already created a dedicated folder on disk for the code examples (mine

is called VSCode), as suggested in the previous chapters, I recommend doing so for this

chapter.

Now that you have all the minimum required tools installed, you are ready to start

coding and debugging with Python in Visual Studio Code.

Figure 10-1.  The official Python extension from Microsoft

Chapter 10 Building Applications with Python

https://www.anaconda.com
https://www.djangoproject.com

213

�Creating Python Applications
Previously in the book you learned that Visual Studio Code is independent from

proprietary project systems and platforms and, consequently, does not offer any built-in

options to create projects, and this is also true for the Python programming language.

What you can do with Visual Studio Code is open existing Python files and projects,

or create new code files from within the development environment. As an example, let’s

consider a simple battleships game available in one code file at pythonfiddle.com/

battleships-game-in-python/. In Visual Studio Code, create a new file and then select

Python as the language from the well-known drop-down menu located in the bottom-

right corner. The source code in its current state will not work with the latest versions of

the Python interpreter, because it is missing parentheses enclosing parameters of the

print function and some string-to-integer conversions. The modified and working code

for Python is listed here for your convenience:

import random

board = []

for x in range(0,5):

 board.append(["O"] * 5)

def print_board(board):

 for row in board:

 print (" ".join(row))

print ("Let's play Battleship!")

print_board(board)

def random_row(board):

 return random.randint(0,len(board)-1)

def random_col(board):

 return random.randint(0,len(board[0])-1)

ship_row = random_row(board)

ship_col = random_col(board)

print (ship_row)

print (ship_col)

Chapter 10 Building Applications with Python

214

for turn in range(4):

 guess_row = int(input("Guess Row:"))

 guess_col = int(input("Guess Col:"))

 if guess_row == ship_row and guess_col == ship_col:

 print ("Congratulations! You sunk my battleship!")

 break

 else:

 if turn == 3:

 board[guess_row][guess_col] = "X"

 print_board(board)

 print ("Game Over")

 print ("My ship was here:

 [" + str(ship_row) + "][" + str(ship_col)

 + "]")

 else:

 if (guess_row < 0 or guess_row > 4) or

 (guess_col < 0 or guess_col > 4):

 print ("Oops, that's not even in the ocean.")

 elif(board[guess_row][guess_col] == "X"):

 print

 ("You guessed that one already.")

 else:

 print ("You missed my battleship!")

 board[guess_row][guess_col] = "X"

 print (turn + 1)

 print_board(board)

Save the file as BattleshipsGame.py. This is a simplified implementation of the

battleships game and is mostly for learning purposes, but it is enough to understand

how Visual Studio Code can support Python development. You will immediately notice

powerful editing features as you type the source code, such as (but not limited to)

IntelliSense and parameter hinting, but before highlighting Python-specific editing

features, I will walk you through running and debugging Python code.

Chapter 10 Building Applications with Python

215

�Running Python Code
Visual Studio Code automatically attempts to retrieve an appropriate Python interpreter

on your machine when you assign this language to a code file or open an existing file.

Sometimes VS Code might not be able to do this even if you previously installed a Python

interpreter successfully, in which case you receive a warning similar to the one shown in

Figure 10-2.

Clicking the Select Python Interpreter button in the warning card or the same-

named item at the bottom-left corner of the Status Bar enables you to pick your favorite

version of the Python interpreter (see Figure 10-3).

This is a very nice option in case you need to select a specific version and not

necessarily the most recent one. Once you have selected a Python interpreter, the name

appears on the Status Bar, replacing the Select Python Interpreter button, and you

can either run or debug your code. Let’s start with running code, which you can do by

Figure 10-2.  Visual Studio Code could not find a Python interpreter

Figure 10-3.  Selecting a version of the Python interpreter

Chapter 10 Building Applications with Python

216

selecting Run ➤ Run Without Debugging. The Python runtime builds the code file and,

if no error is found, the output of the code is displayed in an instance of the Terminal

panel. Figure 10-4 shows an example based on the sample game provided previously.

The Terminal allows user input, so you will be able to enter the values for the

battleships. Behind the scenes, Visual Studio Code invokes a tool called Launcher, which

is installed together with the Python interpreter and makes it possible to run Python

code from the command line.

Note  In more specific development scenarios based on the Anaconda libraries,
such as data science, Visual Studio Code is able to display additional tool windows
and show charts and calculation results inside the development environment. More
details are available in the official Data Science Tutorial (code.visualstudio.
com/docs/python/data-science-tutorial).

For the next example, make sure you add a breakpoint at line 30 (as described in

Chapter 9). This is to demonstrate how debugging tools for Python work. You start

debugging Python code by pressing F5, by clicking the Run and Debug button in the

Run panel, or by selecting Run ➤ Start Debugging. At this point Visual Studio Code asks

you what file or program you want to debug, as shown in Figure 10-5.

Figure 10-4.  Output of Python code in the Terminal

Chapter 10 Building Applications with Python

217

You can select any one of the configurations, which are provided by the Python

extension for VS Code, described in Table 10-1.

Figure 10-5.  Selecting the debugging target

Table 10-1.  Debug Configurations for Python

Configuration
Name

VS Code
Description

Description

Python File Debug the currently

active Python file

Starts debugging the currently active Python file, where

“active” means the file in the active editor.

Module Debug a Python

module by invoking

it with -m

A Python module can be considered as a code library,

comparable to namespaces in a C# library. Debugging with

the -m switch enables VS Code to also debug a module.

Remote Attach Attach to a remote

debug server

Allows connecting VS Code to a remote debug service.

Attach using

Process ID

Attach to a local

process

Allows connecting the debugger to a process that is

already running. You need to retrieve the process ID (e.g.,

on Windows you can do so via the Task Manager).

(continued)

Chapter 10 Building Applications with Python

218

For the current example, select the first option, Python File, which allows for

debugging the current code file. The application starts in the integrated Terminal and

VS Code’s Status Bar becomes orange, which indicates that the application is in debug

mode. In the Terminal you will be able to enter the values for the battleships game, and

then, because you previously set a breakpoint, the execution will break at line 30. This

will enable all the toolboxes in the Run panel as well as data tips in the code editor (see

Figure 10-6).

Table 10-1.  (continued)

Configuration
Name

VS Code
Description

Description

Django Launch and debug

a Django web

application

Django is a high-level Python web framework that enables

rapid development of secure and maintainable websites.

With this option, you can debug a Django project in VS

Code.

FastAPI Launch and debug

a FastAPI web

application

FastAPI is a modern web framework for building APIs

with Python (requires version 3.6 or higher). With this

configuration, you can use VS Code to debug a FastAPI

project.

Flask Launch and debug

a Flask web

application

Flask is another framework that allows building web

applications with Python. With this configuration, VS Code

makes it possible to debug Flask projects.

Pyramid Launch and debug

a Pyramid web

application

Pyramid is a framework for Python that allows for creating

web applications based on the Model-View-Controller

(MVC) pattern. With this configuration, you can debug a

Pyramid project in VS Code.

Chapter 10 Building Applications with Python

219

If you hover your cursor over a variable name in the code editor, you will be able to

see its current value. For instance, if you hover over the guess_col variable, you will see

that it contains the integer value you entered during the execution. However, Python

debugging tools offer more: if you hover over a complex type like the board variable,

which is a list of arrays, you will see how a sophisticated data tip shows values for each

array in the list. You can expand the Special variables and Function variables groups to

get more information about runtime functions.

The values you see through data tips are also visible in the Locals group of the

VARIABLES tool in the Run panel. Debugging tools for Python are also able to catch

runtime exceptions and to display appropriate information to solve them. To understand

how this works, you can intentionally introduce a runtime exception in the current

sample file. Consider line 27, which looks like the following:

guess_row = int(input("Guess Row:"))

Change the line as follows:

guess_row = input("Guess Row:")

Figure 10-6.  The application in debug mode and debugging tools enabled

Chapter 10 Building Applications with Python

220

This particular line will still work, because it still waits for the user to enter

something from the keyboard; the difference from the original line is simply that the

input, of type str, is not converted into an int. However, while comparisons with the

equality operator will succeed, comparisons made with the < and > operators at line 40

will fail, because this line attempts to compare the user input, which is now a string, with

an integer value, and such a comparison is not supported, so a runtime exception will

happen. Figure 10-7 shows how Visual Studio Code breaks the application execution

when it encounters a runtime exception.

More specifically, the exception information is displayed in a different-colored

tooltip that is displayed right below the line of code that caused the error. In this tooltip,

you can see the exception type (TypeError in this case), the number and content of the

line of code, and the full error message. Actually, the tooltip also displays the name of

the file that caused the exception in the form of a hyperlink. This is very useful when

the exception was raised by a different file in the execution hierarchy, enabling you to

quickly go to the problem by clicking the file name.

Figure 10-7.  Debugging runtime exceptions in Python

Chapter 10 Building Applications with Python

221

As you have seen, debugging Python code in Visual Studio Code is a rich experience,

but actually the Python extension offers even more functionality, such as a dedicated

language service and additional features, discussed in the next section.

�Code Editing Features for Python
The Python extension for Visual Studio Code brings most of the powerful code editing

features described in Chapter 3 to Python files. This section walks you through the

evolved code editing features, describing how these can improve your productivity.

�Enhanced Word Completion with IntelliSense
Probably the most productive code editing feature with any language is an enhanced

word completion engine, and VS Code brings IntelliSense to Python. IntelliSense shows

up as you type and displays documentation tooltips about the type or member currently

selected in the IntelliSense pop-up box. Figure 10-8 shows an example based on the bin

function, where you can also see how syntax colorization is available in the tooltip to

provide easier understanding of the method usage.

Figure 10-8.  IntelliSense in action with Python

Chapter 10 Building Applications with Python

222

�Understanding Function Parameters With Parameter Hints
Connected to IntelliSense is Parameter Hints. When you type the name of a function, you

get suggestions on how to provide parameters, as demonstrated in Figure 10-9, which is

based on the pow function.

As you can see, the parameter you are currently supplying is highlighted in bold and

underlined, while a description of the parameter itself is provided as the text content of

the tooltip.

�Quickly Retrieving Type Definitions
Among the code editor productivity features, Go to Definition and Peek Definition (see

Chapter 3) are certainly very useful and popular, and these are also available to Python

code files. To understand how they work in Python, right-click the board parameter of

the print_board statement in the last line of the code file.

Figure 10-9.  Parameter Hints explains how to provide function parameters

Chapter 10 Building Applications with Python

223

If you click Go to Definition, the cursor moves to the place where the board

variable is declared. If you instead select Peek and then Peek Definition, the definition

is shown inside an interactive pop-up box, where you can make your edits directly

(see Figure 10-10).

�Finding References
As explained in Chapter 3 and exactly like for other languages such as C#, you can

quickly search for all references of a given type, member, or variable in Python. Simply

right-click the object of your choice in the code editor and select Find All References.

For instance, you can do this with the board variable in the sample code file and you

will see where it was used across the code via the already well-known interactive editor,

which highlights occurrences and shows a list of references on the right side of the panel.

Figure 10-11 demonstrates this.

Figure 10-10.  Peeking type definitions

Chapter 10 Building Applications with Python

224

Note  The Find All References user interface is basically an extended version
of Peek Definition. The latter shows an individual reference of an object, which
represents the place where it was defined. Find All References shows instead all
the type or member references.

�Renaming Symbols
With the Python extension, renaming symbols is an easy task. You can just right-click

a symbol, select Rename Symbol (or press F2), and provide the new name, and all the

occurrences in the source code will be renamed accordingly. When typing the new

name, you can also press Shift+Enter and see a preview of all the occurrences that will be

renamed.

Figure 10-12 shows an example based on the board variable, with the preview

enabled.

Figure 10-11.  Finding object references

Chapter 10 Building Applications with Python

225

If you enabled the Refactor Preview panel, you need to click the tick icon in order to

accept your changes. If you instead entered a new name without looking at the preview,

simply press Enter and all the occurrences of (including references to) the symbol will be

renamed.

�Finding Code Issues with Linters
Linters highlight syntactical and stylistic problems in your code. Just as an example,

linters highlight missing brackets or parentheses in a code block or highlight the

usage of an undefined variable, underlining the code with squiggles. Linting is not

enabled by default, but you can quickly do this via the Command Palette. You can type

Python Select Linter directly, or just Python and then pick the appropriate command.

Figure 10-13 shows how to enable linting with the list of commands filtered as I was

typing.

Figure 10-12.  Renaming symbols

Chapter 10 Building Applications with Python

226

When you select this command, the Command Palette also displays a list of available

linters for Python. This is actually up to your choice, but I would suggest to use pylint,

which is the official Microsoft linter provided via the Python extension. When the linter

is enabled, the code editor displays squiggles under code that has issues, and these code

issues are also detailed in the Problems panel, as shown in Figure 10-14.

Note  If you have experience with C# in Visual Studio Code, you might expect the
same behavior of live code analysis as you type, but, with Python, linters are able
to show squiggles under code that has issues only after saving a code file or by
explicitly invoking the linter from the Command Palette. An enhancement to this is
provided by the Pylance extension, described shortly.

Figure 10-13.  Enabling Python linters

Chapter 10 Building Applications with Python

227

Note L inters, as well as the other editing features, can be further customized
with the Settings user interface and via the Settings.json file. Because the goal
of this book is to provide guidance on the most effective ways to get productive
quickly, I am showing the fastest configuration options available with a few
mouse clicks. If you want to dig deep into setting customizations, bookmark
the related documentation at https://code.visualstudio.com/docs/
python/linting, where you will also find more details about the pylint linter and
summary information about the other linters listed in the Command Palette.

�Advanced Code Editing with Pylance
Without a doubt, the Python extension for Visual Studio Code tremendously improves

developer productivity and the coding experience, but Microsoft is doing even more. In

fact, Microsoft is offering a new extension called Pylance, currently in preview, which

Figure 10-14.  Linters highlight code issues in the editor and in the Problems panel

Chapter 10 Building Applications with Python

https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/linting

228

introduces code refactorings, IntelliCode (an evolved code completion engine powered

by artificial intelligence), and other improvements.

When you open (or create) a Python code file, Visual Studio Code shows a pop-up

box that offers to install Pylance, as shown in Figure 10-15. As an alternative, you can

download the Pylance extension from the Extensions tool directly (see Figure 10-16).

Figure 10-16.  The Pylance extension details

Figure 10-15.  Visual Studio Code offering to install the Pylance extension

Chapter 10 Building Applications with Python

229

Once Pylance has been installed, IntelliSense will be powered by IntelliCode. This

tool learns from your code and from your patterns and offers an improved editing

experience based on your coding styles, enabling IntelliSense to provide even better

suggestions based on the coding context.

Pylance is not limited to offering an improved IntelliSense engine, but it makes

it easier to write better code with new code refactorings and live code analysis. For

instance, Pylance enables linters to show error squiggles as you type. As another example,

whereas the Python extension, by default, only allows sorting import directives, Pylance

introduces new refactorings: Extract method, Extract variable and automatic addition

of the required import directives when adding code via IntelliSense or code snippets.

For a better understanding of how this works, select the code block from line 5 to line 13

of the sample file, as shown in Figure 10-17. You will see a light bulb icon appear, which

means that there are some suggestions to refactor the selected code block.

If you hover your cursor over the light bulb icon, you will see a tooltip saying Show
fixes. Click it to see available suggestions for the current context; in this case there is

one suggestion, Extract method. Click this suggestion and VS Code will extract a new

method for the selected block, adding the related method call. This is demonstrated in

Figure 10-18.

Figure 10-17.  Enabling suggestions for code fixes

Chapter 10 Building Applications with Python

230

You need to manually rename the new method, because Pylance provides a default

name and does not enter in rename mode. Similarly, the code fix called Extract variable

enables you to extract a variable from a code block, and it is available through the light

bulb icon only if the context of the code allows for extracting variables. The light bulb

icon is not the only shortcut to retrieve code fixes for a code block; you can also select a

code block, right-click, and then select Refactor from the context menu.

�Managing Pylance Settings
As I mentioned previously, at this writing Pylance is in a preview state, but you can have

a look at what Microsoft is working on by enabling the Insiders Channel for the extension

updates. You can do so in the VS Code’s Settings (see Figure 10-19) by changing to daily

the value for the Pylance: Insiders Channel option.

Figure 10-18.  Extracting a method

Chapter 10 Building Applications with Python

231

It is reasonable to expect more additions and improvements to Pylance once it

reaches a production milestone.

�Running Python Scripts
Python is also an interpreted language, so it allows for running arbitrary code without

the need of a backing build process. Visual Studio Code supports Python as an

interpreter, providing an option to write and run code via an REPL (read-eval-print-loop)

interactive console, available within the Terminal.

You enable the Python REPL in the Command Palette by selecting the Python: Start
REPL command (see Figure 10-20).

Figure 10-19.  Changing Pylance settings

Chapter 10 Building Applications with Python

232

At this point the Terminal appears and loads the Python REPL, where you will be

able to write and run arbitrary code. Figure 10-21 shows an example based on declaring

a variable and printing its content onscreen.

This is another important tool for Python developers, because it is a very common

way to use this language and certainly a way that leverages one of the most powerful of

its characteristics.

�Summary
Python is a very popular and powerful programming language which is fully supported

by Visual Studio Code. It offers full support for evolved code editing, debugging, and

even for advanced development with data science tools and libraries.

Visual Studio Code enhances support for Python with the official Python extension,

which makes working with Python very similar to working with other languages and

platforms, so you can apply existing skills and knowledge if you are approaching Python

for the first time but have existing experience with C# or Node.js.

Figure 10-20.  Enabling the Python REPL console

Figure 10-21.  Running arbitrary code in the Python REPL console

Chapter 10 Building Applications with Python

233

Microsoft is also investing in a new extension called Pylance, which provides an

improved IntelliSense experience with IntelliCode and additional code refactorings. An

interactive REPL for interpreted code completes the integrated tooling for Python.

Once again, Visual Studio Code demonstrates how versatile it is, providing a perfect

environment for Python and its most popular flavors.

Chapter 10 Building Applications with Python

235
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_11

CHAPTER 11

Deploying Applications
to Azure
Microsoft Azure is Microsoft’s premiere cloud solution that offers many services, from

hosting web applications and SQL databases to remote virtual machines, artificial

intelligence services, and many more.

With Visual Studio Code, it is easy to deploy your code to Azure through a number

of extensions that support multiple environments, such as Node.js and .NET, and that

offer an integrated experience so that you can work directly within your development

environment. Many extensions for Azure development are available, each targeting

different scenarios, but it would require an entire book to describe them all, so in this

chapter I will cover two of the most popular extensions: Azure App Services, which

supports publishing web applications, and Azure Functions, which enables you to work

with serverless apps directly from Visual Studio Code.

Note  This chapter requires an active Microsoft Azure subscription to complete
the examples. If you do not have one, you can get a free trial at https://azure.
microsoft.com/en-us/free.

�Introducing Azure Extensions
Visual Studio Code supports developing with the most popular and powerful Azure

services. Support is integrated in the development environment with specific extensions

available in the Visual Studio Marketplace. Table 11-1 lists and describes common

extensions for Azure development.

https://doi.org/10.1007/978-1-4842-6901-5_11#DOI
https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free

236

I recommend that you bookmark the official documentation, available at https://

code.visualstudio.com/docs/azure/extensions, for further details and examples.

Noteworthy is that Visual Studio Code can support Docker and Kubernetes for

containerized applications, which is something very important for many developers.

Table 11-1.  Common Extensions for Azure Development

Extension Description

Azure Account Allows signing into one or more Azure subscriptions.

Azure App Service Provides integrated support to deploy web applications to the cloud.

Azure CLI Tools Installs all the command-line tools required to work with all the Azure services.

Azure Databases Allows for creating, browsing, and managing SQL Azure, MongoDB, Cosmos

DB, PostgreSQL, and DocumentDb databases directly within VS Code via an

integrated browser.

Azure Functions Provides integrated support for writing, testing and deploying Azure Functions.

Azure Machine

Learning

Formerly called Visual Studio Code for AI Tools, allows for creating, building,

training, and deploying machine learning models based on your Azure

subscriptions.

Azure Resource

Manager

Allows managing Azure resource groups in VS Code.

Azure Storage Allows connecting to blobs, tables, files, and queue storage in your Azure

subscriptions. It also allows uploading folders directly from within VS Code.

Deploy to Azure Allows for setting up continuous integration and continuous deployment

pipelines for Azure DevOps code repositories.

Docker Allows for publishing containerized applications from Visual Studio Code, with

improved code editing features for Docker and YAML files.

Kubernetes Provides integrated support to deploy Docker containers to Kubernetes, an

open source system for automating deployment, scaling, and management of

containerized applications, supported by Azure.

Chapter 11 Deploying Applications to Azure

https://code.visualstudio.com/docs/azure/extensions
https://code.visualstudio.com/docs/azure/extensions

237

�Deploying Web Applications
Deploying web applications to Azure with Visual Studio Code is very easy. You can

retake the helloweb sample applications created with C# and .NET Core in Chapter 9,

but it’s worth remembering that publishing to Azure is not limited to these technologies,

but is also possible for Node.js.

Note  Visual Studio Code, the Microsoft Azure platform, and Azure extensions for
VS code continuously evolve. New releases might introduce changes to what is
described in this chapter.

�Installing Extensions
The first thing you need to do is install the Azure App Service extension from the

Marketplace. This extension also needs the Azure Account and the Azure Resources

extensions, but these are installed together with the App Service, so you do not need to

take any additional steps.

The Azure Account extension is actually required to enable developers to log into

their Azure account from within Visual Studio Code and to select which subscription to

use. The Azure Resources extension is used to manage resources groups, which are the

places where your cloud services are organized. Figure 11-1 shows the Azure App Service

extension in the Extensions panel.

Chapter 11 Deploying Applications to Azure

238

�Signing into Azure Subscriptions
Once the Azure App Service extension has been installed, along with the Azure Account

and Azure Resource Groups extensions, you need to sign in before you can use any

service.

To accomplish this, you can use the Azure: Sign In command from the Command

Palette or the Sign in to Azure shortcut in the App Service node of the Azure side

bar. Either action opens an instance of your default browser pointing to the Microsoft

Account login service. Simply enter your credentials, sign in, and close the browser

window once you are logged in. Now in Visual Studio Code you can open the Azure

extension and see the list of services associated to your subscription. Figure 11-2 shows

an example based on my subscription.

Figure 11-1.  The Azure App Service extension from Microsoft

Chapter 11 Deploying Applications to Azure

239

Note  The Microsoft Azure offering is very extensive and spans a plethora of
services, so I recommend that you look at the official website (https://azure.
microsoft.com/en-us/free) for detailed information. In addition, do not
forget to enter the management portal (https://portal.azure.com), which
gives you access to the full tools and options to create and manage your services
and resources.

The hierarchical view displays resource groups and the services they contain, and it

also supports multiple subscriptions.

You can quickly interact with each service by expanding its group and accessing the

available options by right-clicking its name.

Figure 11-2.  The Azure services view

Chapter 11 Deploying Applications to Azure

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://portal.azure.com

240

�Publishing Web Applications
Visual Studio Code makes the process of publishing web apps to Azure very easy.

The goal of this section is to demonstrate how quick and easy it is to publish a web

application to Azure. Assuming you have opened the helloweb sample project, in the

Azure view, right-click the name of your subscription and select Create New Web App.

A three-step wizard guides you through the creation of the application. The first

step asks you to supply a unique name for your new web application in the Command

Palette, as shown in Figure 11-3.

Because the name you specify will be combined with the azurewebsites.net domain

and represents the web address of your applications, if the name is already taken, a

validation message appears, inviting you to choose a different name. You might want to

specify a name that is different from vscodedistilled, which is the name I use for the

examples in this chapter.

The next step is to specify the target environment for your web application; this is

necessary because the Azure extension cannot detect which technology your app is

based on. Figure 11-4 shows the list of available options.

Figure 11-3.  Specifying a name for the web application

Chapter 11 Deploying Applications to Azure

241

Because the sample application was written on .NET 5, select this as the target

platform. The last step of the wizard asks you to specify a pricing tier. I suggest using the

Free tier, as shown in Figure 11-5.

After you complete these three easy steps, Visual Studio Code first builds the project

in Release mode (and the result will be visible in the Terminal) and then starts creating

the necessary resources inside your Azure subscription, and you will be able to see the

progress in a pop-up box that appears in the bottom-right corner of the environment.

Figure 11-4.  Specifying a target platform

Figure 11-5.  Specifying a pricing tier

Chapter 11 Deploying Applications to Azure

242

When everything is ready, a pop-up message asks if you want to enable automatic

deployment. Click Always Deploy so that the application will be published.

When deployment is completed, the browser automatically launches the newly

published application (see Figure 11-6). If this does not happen, you can right-click the

application name in the APP SERVICE view of the Azure side bar and select Browse
Website, then click the Open button in the dialog that informs you about the fact that an

external program is being launched.

You need no additional steps. Your application is up and running in the browser,

hosted in your Azure subscription. You can further manage your Azure services and

resources, both within Visual Studio Code and in the Azure portal (https://portal.

azure.com). Though managing resources in the Azure portal is a bigger topic and is out

of the scope of this chapter, Figure 11-7 shows the management page for the sample

web application, where you can see the full list of available settings on the left side and

information on the deployment, the data center, and statistics in the main view.

Figure 11-6.  The web application running in the cloud

Chapter 11 Deploying Applications to Azure

https://portal.azure.com
https://portal.azure.com

243

�Creating and Deploying Azure Functions
Put succinctly, Azure Functions (https://docs.microsoft.com/en-us/azure/azure-

functions) is a service that allows for running code on-demand in the cloud, and it

is considered part of the growing trend of serverless computing. The biggest benefit of

using Azure Functions is that functions are triggered only when invoked, which not only

reduces the usage of cloud resources but also reduces maintenance and infrastructure

needs, thereby providing more cost saving.

�Configuring Visual Studio Code
Azure supports writing Functions in several languages, such as C#, Python, Java,

JavaScript, and Rust. Usually, tools are available for different development environments

to write Azure Functions, such as Visual Studio 2019, and Visual Studio Code is no

exception.

The first thing you need to develop Azure Functions with VS Code is Azure Functions

Core Tools. This set of command-line tools is required to run the tasks necessary to develop,

debug, and publish functions. On Windows, you have two ways to install these tools:

Figure 11-7.  Managing app services in the Azure portal

Chapter 11 Deploying Applications to Azure

https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions

244

download the installer for Windows from the official website (https://bit.ly/3f1lHxR)

or use the following command that leverages npm on Node.js and that you can run from

a Terminal window in VS Code or from a developer command prompt:

> npm i -g azure-functions-core-tools@3 --unsafe-perm true

I recommend using the latter command-line method to install the tools, because

Visual Studio Code might not recognize that the tools were installed via the installer

package.

On macOS, you need to run the following commands:

> brew tap azure/functions

> brew install azure-functions-core-tools@3

On the latest version of Ubuntu, the required commands are the following:

> wget

-q https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-

prod.deb

> sudo dpkg -i packages-microsoft-prod.deb

The installation commands vary depending on the Linux distribution, so you can

locate the appropriate commands at https://github.com/Azure/azure-functions-

core-tools#linux.

Once you have installed Azure Functions Core Tools, you need to install the Azure

Functions extension for Visual Studio Code (see Figure 11-8).

Chapter 11 Deploying Applications to Azure

https://bit.ly/3f1lHxR
https://github.com/Azure/azure-functions-core-tools#linux
https://github.com/Azure/azure-functions-core-tools#linux

245

The Azure Functions extension also needs the Azure Account one, which you already

installed previously.

�Creating Azure Functions
With the Azure Functions extension installed, VS Code simplifies the way you can create

Azure Functions projects. For the current example about deploying Azure Functions,

I will show how to create a function stub using the built-in templates, but you can

certainly use existing Azure Functions projects created with other environments or

sample projects.

If you are starting with new code, you first need to have (or create) a new folder on

disk where the new projects will be created. For the next example, I have created a folder

on disk called C:\AzureFunctionsDistilled.

When you have the folder ready, in Visual Studio Code enable the Command

Palette and search for the command called Azure Functions: Create New Project

(see Figure 11-9).

Figure 11-8.  The Azure Functions extension for VS Code

Chapter 11 Deploying Applications to Azure

246

Note  There are two additional commands available to create Functions: Create
Function App in Azure and Create Function App in Azure (Advanced). Both
commands allow to create a project that is automatically provisioned in your Azure
subscription, together with a local project for development and debugging. In
this book, I’m not using these commands in order to better highlight the different
phases of development and debugging, and then deployment.

When you click this command, an eight-step wizard starts. First, you are asked to

select a target folder on disk, so pick the one you created previously. Then you are asked

to select a language. For the sake of consistency with the previous examples, I have

selected C#, but you are free to use a different one. In the third step, you are asked to

specify a runtime platform. If you selected C#, the wizard shows .NET versions and you

can select the latest.

Note  The wizard identifies .NET 5 as .NET 5 (Isolated). Understanding what this
means requires taking a step back into the previous versions of Azure Functions.
Previously, Azure Functions only supported a tightly integrated mode for .NET
functions, which run as a class library in the same process as the host. Though this
mode provides deep integration between the host process and the functions, this
integration also requires a tighter coupling between the host process and the .NET
function. For example, .NET functions running in-process are required to run on the
same version of .NET as the Functions runtime. To enable you to run outside these
constraints, you can now choose to run in an isolated process. .NET 5 (Isolated)
then means that support for running functions out-of-process is now allowed.

Figure 11-9.  Creating a new Azure Functions project

Chapter 11 Deploying Applications to Azure

247

If you selected another language, the list of target platforms will change depending

on your language of choice.

In the fourth step, you have the option to select a project template (see Figure 11-10).

The project template you select here is not really relevant for the current example,

whose goal is not to go into the details of Azure Functions development but rather to

show how quick and easy building and deploying functions is. I selected the HttpTrigger

template, which generates simple code that defines a function that is triggered on Azure

when an HTTP/HTTPS request is intercepted, sending a response back.

In the fifth and sixth steps, you first enter a name for the new project (or leave the

default project name, like AzureFunctionsDistilled in the current example) and then

enter a namespace that will be used in the code. The namespace should be in the

form CompanyName.Function; for example, my namespace is AlessandroDelSole.

AzureFunctionsDistilled.

In the seventh step of the wizard, you specify a security access level: Anonymous,

Functions, or Admin. Table 11-2 provides a short description of each authorization

level.

Figure 11-10.  Selecting an Azure Functions project template

Chapter 11 Deploying Applications to Azure

248

For the current example, you can just select the Anonymous level. In the final step

of the wizard, you decide where to open the new project: Current Window (current

instance of Visual Studio Code), New Window (new instance of Visual Studio Code), or

Add to WorkSpace (the new project is added to an existing folder to create a workspace).

Select Current Window and, after a few seconds, the new project will be available and

you will be ready to edit the code depending on your needs (see Figure 11-11).

Note  The function name defined by the FunctionName attribute must always
be lowercase, otherwise the runtime will throw an exception. In the current
example, make sure to change from FunctionName("AzureFunctions
Distilled") to FunctionName("azurefunctionsdistilled").

Table 11-2.  Azure Functions Authorization Levels

Level Description

Anonymous No authorization required; all HTTP requests pass.

Function Function authorization level is based on security keys generated in the Azure portal.

Host keys (at the application level) and function keys (at the function level) can work

as security keys in the Function level.

Admin Similar to the Function level, but only works with host keys (at the app level).

Chapter 11 Deploying Applications to Azure

249

You are now working fully locally, which is a good opportunity to debug your

code on a development environment before promoting the code to the Azure, remote

environment. Press F5 to start debugging, exactly as you would do with any C# project,

and after a few seconds the Terminal will show not only the compiler output but also a

local URL that you can use to test the code (see Figure 11-12).

Figure 11-11.  Editing the Azure Functions project in VS Code

Chapter 11 Deploying Applications to Azure

250

The URL shown in the Terminal is the following: http://localhost:7071/api/

azurefunctionsdistilled. 7071 is the port of the local development server, while

azurefunctionsdistilled is the name (all lowercase) of the function defined in

the code, and both will vary depending on the projects you create. You can paste

the aforementioned URL into the address bar of your browser, and then press Enter.

Figure 11-13 shows the function running in the browser and listening for HTTP GET and

POST calls.

Figure 11-12.  Debugging an Azure Function

Chapter 11 Deploying Applications to Azure

251

Assuming that you have done all your local development, debugging, and testing,

you can publish the Azure Function to the cloud, as described next.

�Deploying Azure Functions
Deploying Azure Functions to your subscription in Visual Studio Code is an easy task.

In the FUNCTIONS area of the Azure panel, you can click the Deploy to Function App

button, highlighted in Figure 11-14, or you can right-click the subscription name in the

FUNCTIONS view and then select the same command.

Figure 11-13.  Running an Azure Function locally

Chapter 11 Deploying Applications to Azure

252

Once you click this button, the Command Palette shows a quick wizard consisting of

three steps. In the first step, specify if you want to create a new Azure Function app with

default settings or with advanced settings (see Figure 11-15).

Select the first (default) option and then press Enter. You are asked again to specify

a unique name (for the current example it is azurefunctionsdistilled) and then to

specify the target platform, and available options depends on the technology you used to

build the app. Select the same platform you selected when creating the project.

Note  You might see the (non-LTS) phrase close to a .NET version in the
Command Palette. At this writing, it is .NET 5 (non-LTS). This phrase means that the
identified version of .NET is not supported to long term (LTS stands for Long Term
Support). The reason is that Microsoft plans to release .NET 6 by the end of 2021,
and that will provide extensive support for this new version once it ships.

Figure 11-14.  Initiating the deploy process with the Deploy to Function App
button

Figure 11-15.  Choosing default or advanced settings to create a new Function app

Chapter 11 Deploying Applications to Azure

253

In the last step of the wizard, you need to specify a data center location (see

Figure 11-16).

If you have experience with Azure development, you know that this is a crucial

choice, because the location you select has an impact on the costs charged to your

subscription. At least for this example related to development purposes, make sure that

you select the data center that is closest to your location (in my case it is West Europe),

which translates to less latency and less bandwidth required and corresponding cost

savings, especially if your subscription does not have a spending limit enabled.

Note N ot all Azure regions and data centers offer the same services. For real-world
scenarios, you might want to look at the official documentation about choosing the
appropriate Azure region based on your location, needs, and requested services
(https://azure.microsoft.com/en-us/global-infrastructure/
geographies).

Figure 11-16.  Selecting a location for the data center

Chapter 11 Deploying Applications to Azure

https://azure.microsoft.com/en-us/global-infrastructure/geographies
https://azure.microsoft.com/en-us/global-infrastructure/geographies

254

At this point, Visual Studio Code first builds the project in Release mode and then

starts publishing the function to Azure. You can follow the progress in the Terminal and

with the pop-up box that shows the name of the currently running task (see Figure 11-17).

After the last step, the function will be up and running in the cloud, which you can

easily verify by opening the function’s URL in the browser, as shown in Figure 11-18.

Remember that the function’s URL is made by the unique name you supplied when

creating the project, followed by the azurewebsites.net domain name and by the

/api/<functionname> part. In the case of an Azure Function, you can add the query

string required to trigger the function itself. In Figure 11-18 you can see how the same

query string used locally has also been supplied to the remote URL.

Figure 11-17.  Publication of the Azure Function is in progress

Chapter 11 Deploying Applications to Azure

255

As you have seen, Visual Studio Code makes it very simple not only to deploy an

Azure Function, but also to create a project and interact with the Azure subscription

directly from within the environment, which improves overall productivity.

Note  To avoid unexpected charges or consumption of your Azure credit, I
recommend deleting all the resources that you no longer use, such as the sample
applications created in this chapter. In VS Code you can quickly delete apps and
functions by right-clicking on their name in the APP SERVICE and FUNCTIONS
panels (respectively) of the Azure side bar and then selecting the appropriate
Delete command. Additional resources can be deleted in the Azure portal.

Figure 11-18.  The Azure Function is running in the cloud

Chapter 11 Deploying Applications to Azure

256

�Summary
Once again, Visual Studio Code demonstrates its power and versatility even with cloud

development based on Microsoft Azure. With the Azure extensions, you have direct

access to your subscriptions directly from within the environment.

With specialized extensions, such as Azure App Service and Azure Functions, you

can create, configure, and deploy your web applications and functions with limited effort

and a few mouse clicks, reducing the need to manage resources in the Azure portal only

to situations in which you need custom configurations. In addition, multiple languages

and environments are supported, including .NET Core, Java, Python, and Node.js,

extending the cloud development possibilities to a larger number of companies and

developers.

Chapter 11 Deploying Applications to Azure

257
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5

Index

A
Automation task

auto-detected tasks, 163, 164
configure

compiling Pascal source code files,
165–169, 171, 172

examples, 165
MSBuild solution, 183, 184
multiple tasks/default build, 172–174
operating system, 179
problem matchers, 185
reusing task template, 180, 181, 183
substitution variables, 178, 179
task.json properties, 174–177

default build task, 162
definition, 156
running files, default program, 186
running/managing, 157–159, 161, 162
types, 156

Azure DevOps, 111, 123, 149, 151, 153

B
branch command, 137, 138, 142

C
Call Stack feature, 208, 209
Carriage Return and Line Feed (CRLF), 81
Cascading Style Sheets (CSS), 197

Code snippets, 47, 48
Command-line interface (CLI), 3
Command Palette, 226
C# programming language, 42
Customizations, 93, 94

D
Debug action pane, 206
Debug Console, 35, 37, 199, 205, 209
Delete Branch command, 141
Delimiter matching, 46, 76

E
Editing features

breadcrumbs, 53
code blocks, 46
code snippets, 47, 49
markdown, 53, 54
matching delimiters, 46
minimap mode, 50, 51
multicursors, 47
rendering, 51, 52
syntax colorization, 44, 45
text, 43, 44
word completion, 49, 50

Evolved code editing, 54, 76
Find All References, 64, 66
Go to Definition, 60–62

https://doi.org/10.1007/978-1-4842-6901-5#DOI

258

Go to Implementation, 62, 63
intelliSense, 55–57
identifiers, 67, 68
live code analysis, 68–75
parameter hints, 57
tooltips, 58, 59

Extensions, 93, 94
authoring, 122
configure, 119
customize, 120, 121
detail page, 113
install, 111, 112, 114, 115
managing, 118
recommended, 115, 116
useful, 116

F
File changes, handling, 130

manage commits, 133–135
pending, 131
staging, 132, 133

Find All References, 64, 223
Free Pascal compiler, 165, 168, 171

G
GIT command-line

interface, 135, 136
Git History, 142, 143
GitHub Pull Requests, 147, 148
GitLens, 143–146
Git repository, 123

authorization, 129
create remote, 128
local, 125–127
manage, 125

publish remotely, 130
source control providers, 124

Go to Definition, 60

H
HelloWeb, 193, 198

I, J
Individual files, 78

create, 80
encode, 81

Integrated development environment
(IDE), 3

IntelliSense, 55–57

K
kind property, 176

L
Language support

C#, 42
features, 41, 42

M
Markdown syntax, 53
Merge Branch command, 138, 139, 201
Merge conflict, 139, 140
Microsoft Azure

creating/deploying
Azure extensions, 245–251
deploying Azure functions, 251–255
Visual Studio Code,

configure, 243–245

Evolved code editing (cont.)

Index

259

definition, 235
extensions, 236
web applications

extensions, installing, 237, 238
publishing, 240–243
signing subscriptions, 238, 239

Model-View-Controller (MVC), 192, 193
Multicursors, 44, 47

N, O
.NET Compiler Platform, 43
.NET 5 projects, 189

application running, 195
breakpoints, 203, 204
Call Stack feature, 208, 209
code debugging, 198, 199
create, 189–191, 193, 194
Debug Console, 209
debugger, 200, 202
debugging, 204, 205, 207
evaluate expressions, 207, 208
platforms, 196, 197

Node.js, 155

P, Q
Project systems, 82, 83

JavaScript, 86
loose folders, 87
.NET solution, 85
open folder, 83, 84
TypeScript, 86

Python
code editing features

finding references, 223, 224
IntelliSense, 221
Linters, 225–227

parameter hints, 222
renaming symbols, 224, 225
retrieving type definitions, 222, 223

creating applications, 213, 214
definition, 211
extension, 212
Pylance, 227–231
running code, 215, 216, 218–220
running scripts, 231, 232

R
Remote repository, 151, 152
Rename Symbol command, 67, 68, 224
Roslyn, 43

S
Syntax colorization, 1, 44, 45, 53, 76

T, U
Team Foundation Server, 130, 149
Team project, 150
TypeScript, 86, 155

V
Visual Studio (VS) Code

Activity Bar, 22
code editor, 19, 20
coding environment, 3
color themes, 2
Command Palette, 33, 34
considerations, 3, 4
cross-platform applications, 2
customize, 94
customize environment, 97

Index

260

dark theme, 96
download page, 4, 5
features, 2, 3
insiders builds, 13, 14
installation

Linux, 8, 9
localization support, 10, 11
macOS, 8
Windows, 6, 7

keyboard shortcuts, 106–110
nature, 2
navigation, files, 32
Panels area, 35

Debug Console panel, 37, 38
Output panel, 37
Problems panel, 35, 36
Terminal panel, 38, 39

Portable Mode, 5
privacy settings, 103
proxies, 100–102
purpose, 2
settings.json file, 99, 100
Side Bar, 22

Accounts button, 30–32
Explorer bar, 23, 24, 26

Extensions bar, 29, 30
Git bar, 28, 29
Run/Debug bar, 29
search tool, 27, 28
settings button, 32

Status Bar, 20, 21
synchronizing

settings, 104
telemetry, 103
theme

selection, 95, 96
updating, 11–13
user interface/layout, 17
user settings, 97, 98
Welcome page, 18
workspace

settings, 105

W, X, Y, Z
Windows Presentation

Foundation (WPF), 85, 183
Workspace, VS code, 87, 88

create, 89
open existing, 90
structure, 90

Visual Studio (VS) Code (cont.)

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Visual Studio Code
	Visual Studio Code, a Cross-platform Development Tool
	When and Why Visual Studio Code
	Installing and Configuring Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on macOS
	Installing Visual Studio Code on Linux
	Localization Support
	Updating Visual Studio Code
	Previewing Features with Insiders Builds

	Summary

	Chapter 2: Getting to Know the Environment
	The Welcome Page
	The Code Editor
	Reordering, Resizing, and Zooming Editor Windows

	The Status Bar
	The Activity Bar
	The Side Bar
	The Explorer Bar
	The Outline View

	The Search Tool
	The Git Bar
	The Run and Debug Bar
	The Extensions Bar
	The Accounts Button
	The Settings Button

	Navigating Between Files
	The Command Palette
	The Panels Area
	The Problems Panel
	The Output Panel
	The Debug Console Panel
	Working with the Terminal

	Summary

	Chapter 3: Language Support and Code Editing Features
	Language Support
	Working with C# and C++

	Basic Code Editing Features
	Working with Text
	Syntax Colorization
	Delimiter Matching and Text Selection
	Code Block Folding
	Multicursors
	Reusable Code Snippets
	Word Completion
	Minimap Mode
	Whitespace Rendering and Breadcrumbs
	Markdown Preview

	Evolved Code Editing
	Working with IntelliSense
	Parameter Hints
	Inline Documentation with Tooltips
	Go to Definition and Peek Definition
	Go to Implementation and Peek Implementations
	Finding References
	Renaming Symbols and Identifiers
	Live Code Analysis

	Summary

	Chapter 4: Working with Files and Folders
	Visual Studio Code and Project Systems
	Working with Individual Files
	Creating Files
	File Encoding, Line Terminators, and Line Browsing

	Working with Folders and Projects
	Opening a Folder
	Opening .NET Solutions
	Opening JavaScript and TypeScript Projects
	Opening Loose Folders

	Working with Workspaces
	Creating Workspaces
	Opening Existing Workspaces
	Workspace Structure

	Summary

	Chapter 5: Customizing Visual Studio Code
	Customizations and Extensions Explained
	Customizing Visual Studio Code
	Theme Selection
	Customizing the Environment
	Understanding User Settings
	Behind the Scenes: The settings.json File
	A Real-World Example: Working with Proxies
	Privacy Settings: Telemetry
	Synchronization Settings

	Understanding Workspace Settings

	Customizing Keyboard Shortcuts

	Summary

	Chapter 6: Installing and Managing Extensions
	Installing Extensions
	Extension Recommendations
	Useful Extensions

	Managing Extensions
	Configuring Extensions

	Hints About Extension Authoring
	Summary

	Chapter 7: Source Control with Git
	Source Control in Visual Studio Code
	Downloading Other Source Control Providers

	Managing Repositories
	Initializing a Local Git Repository
	Creating a Remote Repository

	Handling File Changes
	Staging Changes

	Managing Commits
	Working with the Git Command-Line Interface
	Creating and Managing Branches
	Switching to a Different Branch
	Merging from a Branch
	Resolving Merge Conflicts

	Hints About Rebasing Branches
	Deleting Branches

	Adding Power to the Git Tooling with Extensions
	Git History
	GitLens
	GitHub Pull Requests and Issues

	Working with Azure DevOps and Team Foundation Server
	Creating a Team Project
	Connecting Visual Studio Code to a Remote Repository

	Summary

	Chapter 8: Automating Tasks
	Understanding Tasks
	Tasks Types
	Running and Managing Tasks
	The Default Build Task
	Auto-Detected Tasks
	Configuring Tasks
	First Example: Compiling Pascal Source Code
	Multiple Tasks and Default Build Tasks
	Understanding tasks.json Properties
	Understanding Substitution Variables
	Operating System–Specific Properties
	Reusing Existing Task Templates
	Second Example: Building an MSBuild Solution (Windows Only)
	Understanding Problem Matchers

	Running Files with a Default Program

	Summary

	Chapter 9: Building and Debugging Applications: .NET 5 and Other Platforms
	Creating Applications
	Introducing .NET 5
	Creating .NET 5 Projects
	Creating Projects on Other Platforms

	Debugging Your Code
	Configuring the Debugger
	Managing Breakpoints
	Debugging an Application
	Evaluating Expressions
	The Call Stack
	The Debug Console Panel

	Summary

	Chapter 10: Building Applications with Python
	Chapter Prerequisites
	Creating Python Applications
	Running Python Code

	Code Editing Features for Python
	Enhanced Word Completion with IntelliSense
	Understanding Function Parameters With Parameter Hints
	Quickly Retrieving Type Definitions
	Finding References
	Renaming Symbols
	Finding Code Issues with Linters

	Advanced Code Editing with Pylance
	Managing Pylance Settings

	Running Python Scripts
	Summary

	Chapter 11: Deploying Applications to Azure
	Introducing Azure Extensions
	Deploying Web Applications
	Installing Extensions
	Signing into Azure Subscriptions
	Publishing Web Applications

	Creating and Deploying Azure Functions
	Configuring Visual Studio Code
	Creating Azure Functions
	Deploying Azure Functions

	Summary

	Index

