Visual Studio Code
Distilled

Evolved Code Editing for Windows,
macOS, and Linux

Second Edition

Alessandro Del Sole

Apress:

Visual Studio
Code Distilled

Evolved Code Editing for
Windows, macOS, and Linux

Second Edition

Alessandro Del Sole

Apress’

Visual Studio Code Distilled: Evolved Code Editing for Windows, macOS, and Linux

Alessandro Del Sole
Cremona, Italy

ISBN-13 (pbk): 978-1-4842-6900-8 ISBN-13 (electronic): 978-1-4842-6901-5
https://doi.org/10.1007/978-1-4842-6901-5

Copyright © 2021 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (https://www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit https://www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at https://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484269008. For more
detailed information, please visit https://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6901-5

To my wife Angelica, you mean everything to me.

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
AcknNoWIedgmentsccccuuseeummmssssnnnmsssssnsnsssssssnnmsssssnnnssssssnnnssssssnnssssssnnnnssssnnnnssssnnns Xiii
1L LT (1 XV
Chapter 1: Introducing Visual Studio Code.........cccerrsssmmmmmmssnnnnmsssssnsssssssssssssssssnnnsnsss 1
Visual Studio Code, a Cross-platform Development TOOIccovcvvnnicnsnnnsss e 1
When and Why Visual Studio COUE.........coueermrererrercrereneseseseese s s s sesesssse s sessesessssessenes 2
Installing and Configuring Visual Studio COMEc.cvvrererenmrnsesnsesessse s sessesessenens 4
Installing Visual Studio Code on WiNUOWS.........ccovenmrenernsesessessssssssessssssssssssssssesssssssssssssssssnns 6
Installing Visual Studio Code 0n MaCOS..........ccccorrermresmrmsesrnese s sessesenns 8
Installing Visual Studio COde 0N LiNUX.......cccoerrreererreneresesensesessesessesesesesessssessssesessssssssssssssssenns 8
LoCAliZation SUPPOM.......coi i 10
Updating Visual StUdio COUE.........ccceerrerererererenereerese e s 11
Previewing Features with InSiders BUlUSc.ccovrenrenrnnesnese s 13
SUMIMAIY ...ttt s e Re e e e e e s e e Re e s R e e e n e e nRe e ba e s e e e nnnsnnnns 14
Chapter 2: Getting to Know the Environmentc..ccccinnnmmmnmnnsssssnmmnsssssnmssssssnnnns 17
The WEICOME PAQE......ccceveirir it e s b e e s nn e s 18
LR 60T L= =10y RO 19
Reordering, Resizing, and Zooming Editor WindOWScccccocvvervnnininnnsnnessensessee e sennens 20

LLLLCI LT3 = TSP 20

I TE Y A7 RS 22
THE S Bar.......cceirierereseresere s e ne s p e s p e e s e npe e nrnnis 22
THE EXPIOFEr Bccociieicsiccirene ettt sttt et et 23

THe SEAICH TOOI ... s e e e rnnn e 27

THE GIE Bccceeecrereeree s ne e nnnn e 28

TABLE OF CONTENTS

The Run and DebUQg Bar ... s s e se s s s sesssesnessesneas 29
The EXEENSIONS Bar ..o s 29
The AcCOUNES BUHON........cccoiicr e 30
The SEttingS BULLON......ccccvevecercere s re e s s a e e s s sa e e s aennes 32
Navigating BetWeen FileSc.cocvvrieniririr et re e s s sn e s e n 32
The Command PalBHE ... s 33
THE PANEIS AFEQ ... s nr s 35
The Problems PaNEL..........ccoevrcrrecrecrsese e se e s sesannens 35
The QUEPUL PANEI ..ot e r e s 37
The Debug CoNS0le PANEL...........ccoieierecrerererese e nesaenens 37
Working with the Terminal..........ccooeereennereer e 38
B30T 111 T OSSR 40
Chapter 3: Language Support and Code Editing Featurescccinnsseennnnsssnnnnnnns 41
IR T4 10112 T L= T 1 o010 OO 4
Working With C# and G+ccevcrererirseriere e s ses s se e sse s s e ssessessssessessesssssssessesnes 42
Basic Code Editing FEATUIEScccvvereverririereresersese s sessese s s sessessesasssssessessesssssssessesesssssensesaes 43
WOrKIiNg With TEXT.....cceceieriersie st s 43
3L P 0] (0] 12 1T O 44
Delimiter Matching and Text SEIECHONcccvvvirerrrrr s 46
COdE BIOCK FOIOING.....ccrueireieriererresersereressesessessessesessessessessessssessessessssessessesssssssessessesssssnsessens 46
MUITICUISOFS ..ucueierissssesesesssssse e s sr s s p s 47
Reusable Code SNIPPELS.......ccvvvrerierirrriere s sr e ss s e s saesas e s e sne s 47
L0 o B 00T T o] 1= (03 R 49
TR 10T LR 50
Whitespace Rendering and BreadCrumbsc.ccocevevrvnennnnsensesessssessesessssessessessesessessesnes 51
MarKAOWN PrEVIBW......c.covruiuiiiiserisisssse s s s s 53
EVOIVEd COAE EQITiNG......ccccererrerrriererestnsereressessssessessesessessessessesessessesasssssessessesssssssessessesssnessesaes 54
Working With INTEIlISENSE........ccvcrererirrirere vt se e sae e e nnes 55
Parameter HINTS.........cccoviiicr s 57
Inline Documentation With TOOITIPSccverrererierierererrersere s s s e s sse e s e s saesessensesaens 58

Go to Definition and Peek Definition............cccvvrinnnmncsnnssss s 60

TABLE OF CONTENTS

Go to Implementation and Peek Implementations.........ccvrvvvvrerenensnsenienssensesesesessesensens 62
FiINAING RETEIENCES.....ccceiee et a e e s a e e e 63
Renaming Symbols and Identifiers........ccevvrrrrierennnerieness s sessesesse s sessessessssessessenes 67
LiVE COUE ANAIYSIS....cererrerrererserersesersersersessessssessessessssessessessessssessessessessssessessessssessessesssssnsessens 68

£ 11114 7 76
Chapter 4: Working with Files and FOlders........cccvuumsmmmmmmsssnnnmmssssnssssssssssssssssssnssess 77
Visual Studio Code and Project SYSIEMSccovooreirnrrreere e 77
Working with INdividual FileS.........ccoveenrerrnrernesesesssssesessssess s se s sessesessssessssesenses 78
Creating FileS.......ccovierrererssesresese s s nr s s 80
File Encoding, Line Terminators, and Ling BrowSingc.cccovererenerensesesenesesesessesessesessens 81
Working with Folders and ProjectS ... s ssssesessssesenses 82
OPENING @ FOIAREvveeeeeerrecrrrc s e nr e s 83
0pening .NET SOIULIONScccvrerereerese e s 85
Opening JavaScript and TypeScript ProjectS......ccuvvvirnnininie s sessese s sessessens 86
0pening LO0SE FOIAEISccoveeerieriee s 87
WOrking With WOrKSPACES........cccvruererererreserisessssesese s ssssesssesssss e ssssessssesessssesssssssssessssssessnss 87
Creating WOrKSPACES.......cuuverrerereserssesrssesss e sr s ss e e e s s srs e sn s sen s nns 89
Opening EXisting WOrKSPACESccccerrvierrnnennneserese e sesse s e sssssssssssesessssnnns 90
WOIKSPACE STTUCTUIEccueveieirere sttt p e e s e 90
1] 4= RS 91
Chapter 5: Customizing Visual Studio Codeccuuremrrmsssnnnnnnssssnnnmnssssssnsssssssnnsens 93
Customizations and Extensions EXpIAINEd..........cccecvrierrenrnnernienene s sessesesse e e sessesessenens 93
Customizing Visual StUdio COE..........coverererererereescrerce e 94
THEME SEIBCLION.......c.cceeeeerec e e e 95
Customizing the ENVIroNMEeNt...........ccocoiinininr e 97
Customizing Keyboard SROMCULSccccevvcrirninrrr e 106
£ T 110

vii

TABLE OF CONTENTS

Chapter 6: Installing and Managing EXtensions.........cccouussemnmnsssssnnsssssssssssssssnnns 111
INStalling EXTENSIONScccciiriiirircre e et n e 111
Extension Recommendations ..o s 115
USETUL EXTENSIONS ... e 116
Managing EXIENSIONS........ccceviirirre s st 118
Configuring EXIENSIONS.......ccocveriinrir s e e 119
Hints About EXtension AUthOKING.........ccvverrererene s 121
B30T 1117 o OSSR 122
Chapter 7: Source Control with Git...........ccccnsnemmmmmnsnnmmmnssssmmmssssnmsssss——— 123
Source Control in Visual STudio COUE..........cuvermrerrminisisri s 123
Downloading Other Source Control Providersccucvverernsnienennsensese e sessesessesessessesses 124
Managing REPOSITONIESccevuereriiriiirie et a e s s ae e 125
Initializing a Local Git REPOSIOIYcccceeverrerverereserreresesessesese e sessessesaesessessessessssessesnees 125
Creating a Remote REPOSITOrY.......ccucvvererrririerere s s sesessesssses e ssesaesesessessessssessesnees 128
Handling File CRANGESccvevrererrererenenseressessssesessesssssssessessessssessessesssssssessesssssssessessesssnsnsessens 130
S 10T [0 0 1 140 TR 132
Managing CoMMILSccucveriinsrre s e e e s be s p e nne 133
Working with the Git Command-Line INterface...........ccovverrerrnnnnenrescrssesese e 135
Creating and Managing BranChes.........c.ccovvrrnnnenmnsscsssesesssess s sessenenns 136
Switching 10 a Different Branch ..o sessssessssessnses 138
Merging from @ BranCh...........ccoveerenmrnnesnesesese s s sesssssssssessnnes 138
Hints About Rebasing Branches ... senns 141
Deleting BranChesocovverenenenenernsesesesese s ses e e e se s sss e sessssessssesenns 141
Adding Power to the Git Tooling With EXIENSIONS.......cccccvvverenenernnerssesrse s sesse s 141
LC T 513 (0] OSSPSR 142
T SO SOTR 143
GitHub Pull Requests and ISSUES ..o s s sss e sne s 147
Working with Azure DevOps and Team Foundation SErvercuoevenernsesnesesssesessesesenens 149
Creating @ Team PrOjJECL........ccccuvcerisernesere s 149
Connecting Visual Studio Code to a Remote RepoSitory........c.cccvveernsernnesersnsesensesessesensnnes 151
L1114 O 153

viii

TABLE OF CONTENTS

Chapter 8: Automating Tasksccuuseurrrsssnnnmsssssnnsssssssnsssssssssnsssssssnnssssssnnnssssssnnnnss 155
Understanding TasksS.........ccueiiinnnnnnnsnne s s 155
TASKS TYPES ..reerirerieir et p s s e p e e b e e e R p e e e nnn 156
Running and Managing TasKS.........couuureriennnnsenennsinsese s sesse e s sessessesssssssessesssssssessesnes 157
The Default BUild TASK........cccuvurerereneresesesesesssssssssssssssssssssssssssssssesesesssssssssssssssssssssssssssanas 162
AUL0-DEteCted TASKS......ccoeeeeeriee e s 163
CONFIGUIING TASKS ..veuereerrerrererersereesesseressessssessesseseesessessesaessssessessesasssssessesassssssssessesssnsnsesseses 165
Running Files with a Default Program..........cccceveririrnnnenirser e cesses e sessessee e ssessenns 186
SUMIMANY ..ttt e s R e e e e e R e e e e e e R e e e e e Re e Re R e e e e e Re R e e e e e Rennis 186
Chapter 9: Building and Debugging Applications: .NET 5 and
Other Platforms..........cccouvmmnsmmnmmmssmmsmmsmmss s sssas s 189
(=T LT oI AY] o] o= 0] R 189
INTrOTUCING NET 5.t se e s a e e s e s s a e a e e e nne e 190
Creating .NET 5 ProjECES......ccccvirivririere st s e sss e s saeses e s snesassessesne s 191
Creating Projects on Other Platforms ..o s sessesse s 196
DebugQing YOUF COUE.....ccucererrrreriererestrserersessesesessessesessessessesessessessessssessessesssssssessessesssssnsesaens 198
Configuring the DEDUGUETcceevererrereresersererserrese s se e s s s e ssess s e s e ssesaeses e ssesaessssessesnees 200
Managing Bre@KpPOinNtS.........cccvverererenseriersensssessessesssssssessessessssessessesssssssessesssssssessesasssssessesses 203
Debugging an ApPlCAION........ccvevievrire e e 204
£ 11134 7R 209
Chapter 10: Building Applications with Python..........cccccunemninnsssmnnnnsssssnenssnnns 211
Chapter Prer@qUISITESccoeccciicre it s 211
Creating Python AppliCations..........ccccvrnninin s 213
Running PYthon COdE ...t se s s sn s 215
Code Editing Features for PYtNON..........ccoeeernrnreser e 221
Enhanced Word Completion with IntelliSEnse ... 221
Understanding Function Parameters With Parameter Hintsccooevniennecnnscnencscnnenes 222
Quickly Retrieving Type Definitionsccooverrerrrenenesernsesse s 222
FiNding REfEreNCES.......ccoveeerrrerererer s 223
RenNaming SYMDOIS.......ccoeeerrrerrrerereneressesesesese e ses e ses e sss s s ses e sessssessssessnss 224
Finding Code ISsues With LINTErS.........coeeereererererrsc s 225

TABLE OF CONTENTS

Advanced Code Editing With PYIANCE..........cccvvrieriernnenseresesessesesesssssssessessessssessessesssssssessessens 227
Managing PYlance SEHINGScccvivvrrriererrrirrere s s ses s e s ssessesss e s e saesaesessessesaes 230
Running PYthon SCHPLS.......ccoiiir st 231
SUMIMAIY ..ttt e e b E e e b b e e e R e R e e e e e e e Re R e e e e e Re e b e e e e e Renns 232
Chapter 11: Deploying Applications 10 AZUreccccccvrrrrsssssssssssnnnneesssssssssssnsnnnnas 235
INtroducing AZUre EXEENSIONS......cocoerreserensesersesesresesessesesesessesessssesessesessssessesesessssssssssssssssesssenns 235
Deploying Web AppliCationS........cccccveeernrenenesenise s s sesse s 237
INStalliNg EXIENSIONS.......cccieiirerriserrssesrse s sr s nr s 237
Signing into Azure SUDSCHPLIONS......cccouererisernserrre e nre s 238
Publishing Web Applications..........cccvvrierininininnnnir s ssssessessesnes 240
Creating and Deploying Azure FUNCHIONScccvvrierininsnienens s s s sessesaesnes 243
Configuring Visual StUdio COEccecerervririerere e ss s sae s 243
Creating AZUre FUNCLIONS.......ccocvivirrirere e e s s snesas e s sae s 245
Deploying AZUre FUNCLIONScccuceerenernesrnesese e s e s sr s ssssessnses 251

£ 1] 34 7R 256
1T = 257

About the Author

Alessandro Del Sole is Senior Software Engineer for a healthcare company, building
mobile apps for doctors and dialysis patients. He has been in the software industry for
almost 20 years, focusing on Microsoft technologies such as .NET, C#, Visual Studio, and
Xamarin. He has been a trainer, consultant, and a Microsoft MVP since 2008 and is the
author of many technical books. He is a Xamarin Certified Mobile Developer, Microsoft
Certified Professional, and a Microsoft Programming Specialist in C#.

xi

Acknowledgments

Thanks to Joan Murray, Jill Balzano, Laura Berendson, and everyone else at Apress for
the opportunity and the great teamwork on this book.

Special thanks to the technical editor, Damien Foggon, who contributed to the
quality and accuracy of the contents.

Special thanks to my wife Angelica, who understands and never complains about the
time I spend on writing books.

xiii

Introduction

One of the most common requirements in software development today is building
applications and services that run on multiple systems and devices, especially with the
continued expansion of cloud and artificial intelligence services.

Developers have many options to build cross-platform and cross-device software,
from languages to development platforms and tools. However, in most cases such tools
rely on proprietary systems, therefore creating strong dependencies. Moreover, most
development tools target specific platforms and development scenarios. Microsoft
Visual Studio Code makes a step forward, by providing a fully featured development
environment for Windows, macOS, and Linux that not only offers advanced coding
features but also integrated tools that span across the entire application life cycle from
coding to debugging to team collaboration.

With .NET 5 recently released and with .NET MAUI coming shortly, Visual Studio
Code becomes even more important to support cross-platform development on multiple
operating systems. In this book, developers with any skill will learn how to leverage
Visual Studio Code to target scenarios such as web, cloud, and mobile development with
the programming language of their choice, providing guidance to build apps for any
system and any device.

CHAPTER 1

Introducing Visual
Studio Code

Visual Studio Code is not just another evolved Notepad with syntax colorization

and automatic indentation. Instead, it is a very powerful code-focused development
environment expressly designed to make it easier to write web, mobile, and cloud
applications using languages that are available to different development platforms and
to support the application development life cycle with a built-in debugger and integrated
support for the popular Git version control engine.

With Visual Studio Code, you can work with individual code files or with folders
containing projects or loose files. This chapter provides an introduction to Visual Studio
Code, giving you information on when and why you should use it and details about
installing and configuring the program on the different supported operating systems.

Note Across the book, | will refer to the product with its full name, Visual Studio
Code, and its friendly names, VS Code and Code, interchangeably.

Visual Studio Code, a Cross-platform
Development Tool

Visual Studio Code has been the first cross-platform development tool in the Microsoft
Visual Studio family that runs on Windows, Linux, and macOS. It is free, open source
(https://github.com/microsoft/vscode), and definitely a code-centric tool, which not
only makes editing code files and folder-based project systems easier but also facilitates
writing cross-platform web, mobile, and cloud applications over the most popular

© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_1

https://doi.org/10.1007/978-1-4842-6901-5_1#DOI
https://github.com/microsoft/vscode

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

platforms, such as Node.js and .NET 5 (including earlier versions of .NET Core), with
integrated support for a huge number of languages and rich editing features such as
IntelliSense, finding symbol references, quickly reaching a type definition, and much
more.

Visual Studio Code is based on Electron (https://electronjs.org/), a framework
for creating cross-platform applications with native technologies, and combines the
simplicity of a powerful code editor with the tools a developer needs to support the
application lifecycle development, including debuggers and version control integration
based on Git. Visual Studio Code is therefore a complete development tool, rather
than being a simple code editor. For a richer development experience, you will want to
consider Microsoft Visual Studio 2019 on Windows and Visual Studio 2019 for Mac on
macOS, but Visual Studio Code can be really helpful in many situations.

In this book, you'll learn how to use Visual Studio Code and how to get the most out
of it; you'll discover how you can use it both as a powerful code editor and as a complete
environment for end-to-end development. Except where necessary to differentiate
operating systems, figures are based on Microsoft Windows 10, but typically there is no
difference in the interface on Linux and macOS. Also, Visual Studio Code includes a
number of color themes that style its layout. In this book, figures display the Light (Visual
Studio) theme, so you might see different colors on your own screen if you choose a
different color theme. Chapter 5 explains how to change the theme, but if you want to be
consistent with the book’s figures, simply select File » Preferences » Color Theme and
select the Visual Studio Light Theme. It is worth mentioning that the theme you select
does not affect at all the features described in this book.

When and Why Visual Studio Code

Before you learn how to use Visual Studio Code, explore the features it offers, and
discover how it provides an improved code editing experience, you have to clearly
understand its purpose. Visual Studio Code is not a simple code editor; rather, itis a
powerful environment that puts writing code at its center. The main purpose of Visual
Studio Code is to make it easier to write code for web, mobile, and cloud platforms for
any developers working on Windows, Linux, or macOS, providing independence from
proprietary development environments.

For a better understanding of the nonproprietary nature of Visual Studio Code,
let’s consider an example based on ASP.NET Core, the cross-platform, open source

https://electronjs.org/

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

technology able to run on Windows, Linux, and macOS that Microsoft produced to
create portable web applications; forcing you to build cross-platform, portable web apps
with Microsoft Visual Studio 2019 would make you dependent on that specific integrated
development environment (IDE). This also applies to the (free) Visual Studio 2019
Community edition. Conversely, though Visual Studio Code certainly is not intended to
be a replacement for more powerful and complete environments, it can run on a variety
of operating systems and can manage different project types, as well as the most popular
languages. To accomplish this, Visual Studio Code provides the following core features:

e Built-in support for coding with many languages, including those
you typically use in cross-platform development scenarios, such as
C# and JavaScript, with advanced editing features and support for
additional languages via extensibility

e Built-in debugger for Node.js, with support for additional debuggers
(such as .NET 5) via extensibility

e Version control based on the popular Git version control system,
which provides an integrated experience for collaboration supporting
code commits and branches, and that is the proper choice for a tool
intended to work with possibly any language

In order to properly combine all these features into one tool, Visual Studio Code
provides a coding environment based on folders, which makes it easy to work with code
files that are not organized within projects and offers a unified way to work with different
languages. Starting from this assumption, Visual Studio Code offers an advanced editing
experience with features that are common to any supported languages, plus some
features that are available to specific languages. As you'll learn throughout the book,
Code also makes it easy to extend its built-in features by supplying custom languages,
syntax coloring, editing tools, debuggers, and much more via a number of extensibility
points. It is a code-centric tool, with primary focus on web, cross-platform code. That
said, it does not provide all of the features you need for full, more complex application
development and application lifecycle management and is not intended to be the best
choice with some development platforms. If you have to make a choice, consider the
following points:

e Visual Studio Code can produce binaries and executable files only if
the language you use has support to do so through a command-line
interface (CLI), a compiler, and a debugger. If you use a language

CHAPTER 1

INTRODUCING VISUAL STUDIO CODE

for which there is no extensive support (e.g., the open source Go
programming language, https://golang.org), Visual Studio
Code is not able to invoke a compiler. You can work around this by
implementing task automation, discussed in Chapter 8, but this is
different than having the compilation process integrated.

Visual Studio Code has no designers, so creating an application’s
user interface can only be done by writing all of the related code
manually. As you can imagine, this is fine with some languages and
for some scenarios, but it can be very complicated with some kinds
of applications and development platforms, especially if you are used
to working with the powerful graphical tools available in Microsoft
Visual Studio 2019.

Visual Studio Code is a general-purpose tool and is not the proper
choice for specific development scenarios such as building Windows
desktop applications.

If your requirements are different, consider instead Microsoft Visual Studio 2019

or Microsoft Visual Studio 2019 for Mac, which are optimized for building, testing,

deploying, and maintaining multiple types of applications.

Now that you have a clearer idea of Code’s goals, you are ready to learn the amazing

editing features that elevate it above any other code editor.

Installing and Configuring Visual Studio Code

Installing Visual Studio Code is an easy task. In fact, you can simply visit https://

code.visualstudio.comfrom your favorite browser, and the web page will detect

your operating system, suggesting the appropriate installer. Figure 1-1 shows how the

download page appears on Windows.

https://golang.org
https://code.visualstudio.com
https://code.visualstudio.com

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

) visual Studio Code - Co X | + o x I

&~ @] £ httpsy/codevisualstudio.com, ¥ E.

| Visual Studio Code

Code editing.
Redefined.

Download for Windows
Stable Build

Y 5 {5

IntelliSense Run and Debug Built-in Git Extensions

Figure 1-1. The download page for Visual Studio Code

Note Visual Studio Code can also run in Portable Mode, which means that
you can create a self-containing folder that can be moved across environments.
Since this is a very specific scenario, it isn’t covered in this book; you can read
the documentation (https://code.visualstudio.com/docs/editor/
portable) to learn the steps required to generate Portable Mode.

In the following sections, you will learn tips for installing Visual Studio Code on the

various supported systems.

Note The latest stable release of Visual Studio Code at the time of this writing is
version 1.56, released in April 2021.

https://code.visualstudio.com/docs/editor/portable
https://code.visualstudio.com/docs/editor/portable

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Installing Visual Studio Code on Windows

Visual Studio Code can be installed on Windows 7, 8, and 10. For this operating system,
Visual Studio Code is available with two installers: a global installer and a user-level
installer. The first installer requires administrative privileges for installation and makes
Code available to all users. The second installer makes Code available only to the
currently logged-in user, but it does not require administrative privileges.

The latter is the choice I recommend, especially if you work within a corporate
environment and you do not have administrative privileges to install software on your
PC. The Download for Windows button that you can see in Figure 1-1 will automatically
download the User Installer. If you instead wish to download the system-level installer,
go to https://code.visualstudio.com/download and select the System Installer
download that best fits your system configuration (32 or 64 bit, or ARM).

Once the download has been completed, launch the installer and simply follow the
guided procedure that is typical of most Windows programs. During the installation, you
will be prompted to specify how you want to integrate shortcuts to Visual Studio Code in
the Windows shell. In the Select Additional Tasks dialog, make sure you select (at least)
the following options :

¢ Add “Open with Code” action to Windows Explorer file context
menu, which allows for right-clicking a code file in the Explorer and
opening such a file with VS Code

¢ Add “Open with Code” action to Windows Explorer directory
context menu, which allows for rightclicking a folder in the Explorer
and opening such a folder with VS Code

o Add to PATH (available after restart), which adds the VS Code’s
pathname to the PATH environment variable, making it easy to run
Visual Studio Code from the command line without typing the full path

Note Some antivirus and system protection tools, such as Symantec Endpoint
Protection, might block the installation of some files that are recognized as false
positives. In most cases this will not prevent Visual Studio Code from working, but it
is recommended that you disable the protection tool before installing Code or, if you
do not have elevated permissions, that you ask your administrator to do it for you.

https://code.visualstudio.com/download

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

A specific dialog will inform you once the installation process has completed. The
installation folder for the user-level installer is C:\Users\username\AppData\Local\
Programs\Microsoft VS Code, while the installation folder for the global installer is
C:\Program Files\Microsoft VS Code on 64-bit systems and C:\Program Files(x86)\
Microsoft VS Code on 32-bit systems. You will find a shortcut to Visual Studio Code in
the Start menu and on the Desktop, if you selected the option to create a shortcut during
the installation. When started, Visual Studio Code appears like in Figure 1-2.

30 File Edit Selection View Go Run Terminal Help Welcome - Visual Studio Code = O X
’Q Welcorne X m -
Start Customize
Mew file
Open folder... Tools and languages

Add workspace folder... Install support for JavaSeript, Python, Java, PHP, Azure, Docker and more

Settings and keybindings
TRy Install the settings and keyboard shortcuts of Vim, Sublime, Atom and ...
rRecen
Mo recent folders

Color theme

Make the editor and your code look the way you love

Help |

Printable ke

earn
yboard cheatsheet
ntroductory videos

Tips and Tricks

Product documentation
GitHub repository

Stack Overflow

Join our Newsletter

Find and run all commands

mands from the Command Palette (Ctrl...

Rapidly access and search ¢

interface overview

Get a visual overlay highlighting the major components of the U

Show welcome page on startup Interactive playground
Try out essential editor features in a short walkthrough

Figure 1-2. Visual Studio Code running on Windows

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Installing Visual Studio Code on mac0S

Installing VS Code on macOS is extremely simple. From the download page, simply click
the Download for macOS button and wait for the download to complete. On macQOS,
Visual Studio Code works as an individual program, and therefore you simply need to
double-click the downloaded file to start the application. Figure 1-3 shows Visual Studio
Code running on macOS.

® Code File Edit Selection View Go Run Terminal Window Help

Welcome
] Welcome x m
Editing evolved
Start Customize
New file
Open folder... Tools and languages
Add workspace folder... Install support for JavaScript, Python, Java, PHP, Azure, Docker an...
Settings and keybindings
Install the settings and keyboard shortcuts of Vim, Sublime, Atom a...
Recent . !

Mo recent folders
Color theme |
Make the editor and your code look the way you love

Help

. Learn
Printable keybeoard cheatsheet
Intreductory videos
Tips and Tricks Find and run all commands
Product documentation Rapidly access and search commands from the Command Palette (...

GitHub repository
Stack Overflow
Join our Newsletter Interface overview

Get a visual overlay highlighting the major components of the LI

Show welcome page on startup Interactive playground
Try out essential editor features in a short walkthrough

Figure 1-3. Visual Studio Code running on macOS

Installing Visual Studio Code on Linux

Linux is a very popular operating system and many derived distributions exist, so there are
different installers available depending on the distribution you are using. For the Ubuntu
and Debian distributions, you need the .deb installer. For the Red Hat Linux, Fedora, and
SUSE distributions, you need the .rpm installer. This clarification is important because,

8

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

differently from Windows and macOS, the browser might not be able to automatically
detect the Linux distribution you are using, and therefore it will offer both options.

Once Visual Studio Code is installed, simply click the Show Applications button on
the desktop and then the Visual Studio Code shortcut. Figure 1-4 shows Visual Studio
Code running on Ubuntu.

Welcome - Visual Studio Code - o &
File Edit Selection View Go Run Terminal Help

] Welcome x m -

New file
Open folder... or clone repository... Tools and languages
Install support for Javaseript, Python, Java, PHP, Azure, Docker...

Settings and keybindings
Install the settings and keyboard shortcuts of Vim, Sublime, AL. ..

Mo recent folders

Color theme
Make the editor and your code look the way you love

Printable keyboard cheatsheet
Introductory videos
Tips and Tricks
Product documentation Find and run all commands
GitHub repository Rapidly access and search commands from the Command Palet..
Stack Overflow
Join our Newsletter
Interface overview
Get a visual overlay highlighting the major components of the Ul

Show welcome page on startup

Interactive playground
Try out essential editor features in a short walkthrough

Figure 1-4. Visual Studio Code running on Ubuntu

Note If you are a Windows user and want to try Visual Studio Code on a Linux
distribution, you can create a virtual machine with the Hyper-V tool. For example,
you might install the latest Ubuntu version (https://www.ubuntu.com/
download/desktop) as an ISO image and use it as an installation media in
Hyper-V. On macOS, you need to purchase the Apple Parallels Desktop software
separately in order to create virtual machines, but you can basically do the same.

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Localization Support

Visual Studio Code ships in English, but it can be localized in many other supported
languages and cultures. When started, VS Code checks for the operating system
language and, if different from English, it shows a pop-up message suggesting to install a
language pack for the culture of your operating system. The localization support can be
also enabled manually.

To accomplish this, select View » Command Palette. When the text box appears at
the top of the page, type the following command:

> Configure Display Language

You can also just type display and the command will be automatically listed in the
command palette (see Figure 1-5).

View Go Run Terminal Help Welcome - Visual Studio Code
>display
Configure Display Language recently used

Figure 1-5. Invoking the command to change the localization

Note The Command Palette will be discussed thoroughly in Chapter 2.

When you click this command, the Command Palette displays two options:

» en, which allows for selecting American English as the culture. This is
the default localization and is always available.

o Install additional languages, which allows for installing additional
language packs built by Microsoft.

When you click Install additional languages, VS Code shows a list of available
language packs, as you can see in Figure 1-6.

10

@categony:"language packs”

Chinese (Simplified) Languag... 1520

ARSI

Microsoft Install
No Code 202

No code is the best way to write secur...

E

writenothing

Japanese Language Pack for V... 1520
BER

Microsoft

Spanish Language Pack for Vi... 1520

Espariol
Microsoft
Russian Language Pack for Vi... 1520
Pycckuii
Microsoft Install

Korean Language Pack for Vis... 1520

TB20f

Microsoft

Chinese (Traditional) Languag... 1520

IR

Microsoft m
French Language Pack for Vis... 13520
Frangais

Microsoft =0

German Language Pack for Vi... 13520

Deutsch

Micresoft =0
Portuguese (Brazil) Language ... 1520
Portugués (Brasil)
Microsoft

Terminal Help Extension: Spanish

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Language Pack for Visual Studio Code - Visual Studio Code = a X

Extension: Spanish Language Pack for Visual Studio Code X m -

Details Feature Contributions Changelog

Spanish Language Pack for Visual Studio Code

Microsoft | @ 672728 | % % % % % | Repesitory | visz20

Language pack extension for Spanish

Paquete de idioma espafiol para VS Code

El paquete de idiomz espanol proporcions unz experienciz de Ul localizada para VS Code.

Uso

Una vez instalado, establezca "locale”: “es” en locale.json para cargar el paguete de idioma espafiol. Para
modificar locale. json pulse Ctrl+Shift+P para activar la Command Palette, comience a teclear "config” para
filtrar la lista de comandos disponibles, y luego seleccione el comando Configure Language. Vea Docs para mas
informacion.

Como contribuir

Les cadenas de traduccidn se mantienen en el proyecto "DevTools - VS Code” en la plataforma para I comunidad de
localizacion de Microsoft (MLCP).

Si quiere colaborar, ya sea mediante 13 aportacidn de traducciones o la mejora de &stas, consulte |a pagina de
localizacion de la comunidad para obtener mas informacidn

Licencia

£l cédigo fuente y las cadenas se someten a la licencia MIT.

Figure 1-6. Installing language packs

Select the language pack to see a localized description, then click the Install button.
Visual Studio Code’s user interface will then be localized at restart, based on your selection.

Updating Visual Studio Code

Visual Studio Code is configured to receive automatic updates in the background and,
usually, Microsoft releases updates monthly.

Note Because VS Code receives monthly updates, some features might have
been updated at the time of your reading, and others might be totally new. This is
a necessary clarification you should keep in mind while reading, and it is also the
reason why | will also provide links to the official documentation, so that you can
stay up to date more easily.

11

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Additionally, you can manually check for updates with Help » Check for Updates
on Windows and Linux and with Code » Check for Updates on macOS. If you do
not want to receive automatic updates and prefer manual updates, you can disable
automatic updates by selecting File » Preferences » Settings and then, in the Update
section of the Application settings group, disable the background updates option.
Figure 1-7 shows an example based on Windows. (Obviously, on macOS and Linux, the
Enable Windows Background Updates option is not available.)

ﬂ Go Run Terminal H o = m] >
O [
Search settings
User Tumn on Settings Sync
Update
Enable Windows Background Updates
/| Enable to download and install new V5 Code Versions in the background on Windows
ive automatic updates. Requires a restart after change. The updates are fetched from a

Show Release Notes

v'| Show Release Motes after an update. The Release Notes are fetched from a Microsoft online service.

Telemetry

Enable Crash Reporter
oft online service,

/| Enable cr
This optio

Enable Telemetry
+'| Enable usage data and errors to be sent to a Microsoft online service. Read our privacy statement here.

Settings Sync

Figure 1-7. Disabling automatic updates

You follow the same steps to re-enable updates in the background. Whenever Visual
Studio Code receives an update, you will receive a notification suggesting that you restart
Code in order to apply changes. The first time you restart Visual Studio Code after an
update, you will see the release notes for the version that was installed, as demonstrated

in Figure 1-8.

12

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

) File Edit Selection View Go Run Terminal Help Release Notes: 1.54.3 - Visual Studio Code - g x

] Release Motes: 1,543 X M -

February 2021 (version 1.54)

Update 1.54.1: The update addresses an issue with an extension dependency.
Update 1.54.2: The update addresses these issues.

Update 1.54.3: The update addresses this issue.

Welcome to the February 2021 release of Visual Studio Code. There are a number of updates in this version that we hope you will like, some of the key

highlights include:

» Apple Silicon bullds - S Code is now available in stable for Apple Sllicon.

» Accessibility improvements - Better word navigation on Windows and reles for views and buttans.
* Persistent terminal processes - Local terminal processes are restored on window reload.

» Product lcon Themes - Personalize your V5 Code icon imagery with Praduct lcon Themes,

* Timeline view improvements - Compare changes acress Git history timeline entries.

» Auto reload Notebooks - Notebooks automatically reboad when their file changes on disk.

* Remote ports table view - Remote ports now shown in a table widget,

* Brackets extensions - Use Brackets keyboard shortcuts in VS Code.

* Troubleshooting extensions blog post - Learn to treubleshoot extensions using extension bisect

I] If you'd like to read these release notes anline, go to Updates on codewvisualstudio.com.

Join us live at the V5 Code team's livestream on Thursday, March 11 at 8am Pacific (4pm Londen) to see a demo of what's new in this release, and ask us

1 questions live.

Insiders: Want to try new features as soon as possible? You can download the nightly Insiders build and try the latest updates as scon as they are °
available,

Figure 1-8. VS Code release notes

Release notes contain the list of new and updated features, as well as hyperlinks that
will open the proper feature page in the documentation. You can recall release notes at
any time from Help > Release Notes.

Previewing Features with Insiders Builds

By default, the download page of the Visual Studio Code’s website allows you to
download the latest stable build. However, Microsoft periodically also releases preview
builds of Visual Studio Code called Insiders builds that you can download to have a look
at new and updated upcoming features before they are released to the general public.
Insiders builds can be downloaded from https://code.visualstudio.com/insiders,
and follow the same installation rules described previously for each operating system.
They have a different icon color, typically a green icon instead of a blue icon, and the name
you see in the application bar is Visual Studio Code - Insiders instead of Visual Studio Code

(see Figure 1-9).

13

https://code.visualstudio.com/insiders

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

] File Edit Selection View Go Run Terminal Help Release Notes: 1.56.2 - Visual Studio Code [Administrator] = o x

] Release Notes: 1.56.2 X m -

April 2021 (version 1.56)

Update 1.56.1: The update addresses these sacunty issues

Update 1.56.2: The update addresses these issues

Welcome to the April 2021 release of Visual Studio Code. The VS Code team has been busy this month working on several longer lead time updates so
check out the Preview features section to learn what's upcoming. Here are some of the highlights included in this release:

Improved hover feedback - Helps you quickly find clickable editor actions.
Terminal profile improvements - Create 3 custom default terminal profile.
Debugger inline values - Display vanable values inline duning debugging sessions.
Notebook KaTeX support - Math support in notebook Markdown cells.

R te - Containers vol view - Manage mounted volumes within Docker containers.
winget installation - VS Code is available via the Windows Package Manager.
New introductory videos - Videos for getting started with VS Code as well as working with C++.

Terminal tabs preview - Get a first look at managing open terminals with the new tabs view.
| Ifyoud like to read these release notes online, go to Updates on codevisualstudio.com.

Join us live at the VS Code team's livestream on Tuesday, May 11 at 8am Pacific (4pm London) to see a demo of what's new in this release, and ask us
questions live.

Insiders: Want to try new features as soon as possible? You can download the nightly Insiders build and try the latest updates as soon as they are
available.

Workbench °

Improved action hover feedback

Figure 1-9. Visual Studio Code Insiders builds

Insiders builds and stable builds can work side by side without any issues. Because
each lives in its own environment, your setting customizations and extensions you
installed on the stable build will not be automatically available to the Insiders build and
vice versa, so you will need to provide them again.

Insiders builds are a very good option to have a look at what is coming with Visual
Studio Code, but because they are not stable, final builds, it is not recommended you use
them in production or with code you will release to production.

Summary

Visual Studio Code is not a simple code editor but a fully featured development
environment optimized for web, mobile, and cloud development. In this chapter, you
saw how to install Visual Studio Code on Windows, macOS, and Linux distributions,

14

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

learning how to select the appropriate installers and fine-tune the setup process. You
also saw how to configure localization and updates. Finally, you had a look at the
Insiders builds, which offer previews of upcoming, unreleased features.

Now that you have your environment ready for use, it is time to start discovering
the amazing features offered by Visual Studio Code. The next chapter walks through the
environment, then in Chapter 3, you will see all the amazing code editing features that
make Visual Studio Code a rich, powerful crossplatform editor.

15

CHAPTER 2

Getting to Know the
Environment

Before you use Visual Studio Code as the editor of your choice, it is convenient for you
to know how the workspace is organized and what commands and tools are available, in
order to get the most out of the development environment.

The VS Code user interface and layout are optimized to maximize the space for
code editing, and it also provides easy shortcuts to quickly access all the additional
tools you need in a given context. More specifically, the user interface is divided into
five areas: the code editor, the Status Bar, the Activity Bar, the Panels area, and the Side
Bar. This chapter explains how the user interface is organized and how you can be most

productive using it.

Note All the features discussed in this chapter apply to any file in any language,
and they will be available regardless of the language you see in the figures
(normally C#). You can open one or more code files via File » Open File to get
some editor windows active and explore the features discussed in this chapter.
Then, Chapter 4 discusses more thoroughly how you can work with individual files
and multiple files, in one or more languages, concurrently.

17
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_2

https://doi.org/10.1007/978-1-4842-6901-5_2#DOI

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

The Welcome Page

At startup, Visual Studio Code displays the Welcome page, as shown in Figure 2-1.

*] File FEdit Selection View Go Run Terminal Help Welcome - Visual Studic Code = o X
:Q'.-‘.’e:'{o.-r.‘s ® m
Start Customize
New file
Open folder... or clone repository... Tools and languages

Install support for JavaScript, Python, Java, PHP, Azure, Docker and more

Settings and keybindings
Install the settings and keyboard shortcuts of Vim, Sublime, Atom and ot...

Calor theme

Make the editor

i your code look the way you love

o Find and run all commands
Product documentation

GitHub repositery
Stack Owerfl

Join our Newsletter

Rapidly access and search commands from the Command Palette (Ctrl+S...

Interface overview

Get a visual overlay highlighting the major components of the U

Show welcome page on startup

Interactive playground

Figure 2-1. The Welcome page

On the left side of the page, under the Start group, you find shortcuts for creating and
opening files and folders, and for cloning an existing Git repository. Under the Recent
group is a list of recently opened files and folders that you can click for fast opening.
Under the Help group, there are useful links to cheat sheets, introductory videos,
product documentation, and other learning resources about Visual Studio Code. On the
right side of the Welcome page, under the Customize group, you can find shortcuts to
customize Visual Studio Code by installing extensions, changing keyboard shortcuts,
and changing color themes. Under the Learn group are additional shortcuts to learning

resources about commands and the user interface.

18

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Most of the features highlighted in the Welcome page are discussed throughout this
book. By default, the Welcome page is set to show up every time you launch Code. To
change this default behavior, remove the check mark from the Show welcome page on
startup check box. To re-enable the Welcome page on startup, click Help » Welcome
and add the check mark back.

The Code Editor

The code editor is certainly the area where you spend most of your time in VS Code.
The code editor becomes available when you create a new file or open existing files and
folders. You can edit one file at a time or edit multiple files side by side concurrently.
Figure 2-2 shows an example of the latter.

) F ew Go Run Termi Help o1 - Visual Studic Code -] X
€ Mair Ed AboutResources.txt X m
appl > .Android > € MainActivity.cs Appl > ApplA d > » ApplAndroid.c App1 > Appl.Android » Resources > = Abou

1 using System; 1 «?xml version="1.8" encoding 1 Images, layout descriptions, e
2 2 - ¢Project DefaultTargets="Bui 2 in your application as resou =
3 using Android.App; 5 3 <PropertyGroup> 3 operate on the resource IDs
4 using Android.Content.PM;] 4 <Configuration Condition | 4 directly.
5 using Android.Runtime; 5 <Platform Conditione" "% 3 b
6 using Android.Views; 6 <ProjectGuid>{CCB45AA2-¢ [For example, a sample Androi o
7 using Android.wWidget; 7 <ProjectTypeGuids»{EFBAE 7 an internationalization stri
8 using Android.os; a <TemplateGuid»{6968b3ad- 8 would keep its resources in
a] <OutputType>Library</Out 9
12 namespace Appl.Droid le <RootNamespace>Appl.Droi Him- 12 Resources/
11 { 11 <AssemblyName>Appl.Andrc] 11 drawable-hdpi/
12 [Activity(Label = "App1" 12 <AndroidApplication>True 12 icon.png
13 public class MainActivit 13 <AndroidResgenFile»Resou 13
14 { 14 <AndroidResgenClass>Resc 14 drawable-1dpi/
15 protected override v 15 <AndroidManifest>Propert 15 icon.png
16 { 16 <MonoAndroidResourcePref 16
17 TabLayoutResourc i7 <MonoAndroidAssetsPrefix 17 drawable-mdpi/
18 ToolbarResource 18 <AndroidUseLatestPlatfor 18 icon.png
19 19 <TargetFrameworkversion> 19
20 base.OnCreate(sa Pl <AndroidEnableSGenConcur 28 layout/
21 21 <AndroidUsedapt2>trued/a 21 main.xml
22 global: :Xamarin. 22 <AndroidHttpClientHandle 22
23 Xamarin.Essentia 23 <NuGetPackageImportStamp 23 values/
24 global: :Xamarin. 24 </NuGetPackageImportStan 24 strings.xml
25 LoadApplication(25 </PropertyGroup> 25
26 b 26 <PropertyGroup Conditions™ 26 In order to get the build sy
27 public override void 27 <Debugsymbols>true</Debu 27 "androidResource™. The nati
28 { 28 <DebugType>portable</Deb 28 instead operate on resgurce
29 Xamarin.Essentia 29 <Optimize>false</Optimiz 29 the build system will packag
1] 30 <OutputPath>bin\Debug</C 3@ "Resource” that contains the
31 base.OnRequestPe 31 <DefineConstants>DEBUG; < 31 for the above Resources layo
32 b 32 <ErrorReport>prompt</Err 32
33 b 33 <Warninglevel>d</Warning 33 public class Resource {
34} 34 <AndroidLinkMode>None</A 34 public class drawable {
| Brone ro i jot 4

gub on g
Ln1,Col1 Spaces:4 UTF-8 CRLF Plain Text

Figure 2-2. The code editor and multiple file views

19

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

To do this, you have a couple options:

o Right-click a file name in the Explorer bar and then select Open to
the Side.

e Citrl-click a file name in the Explorer bar. This is discussed in the
section “The Side Bar” later in this chapter.

e Ctrl+\ (or $8+\ on macOS) to split the editor in two.

Notice that if you already have three files open and you want to open another file, the
editor that is active will display that file. Open editors can also be organized into groups.
To accomplish this, you can drag and drop the title of an open editor close to another one
and they will be both grouped in the same space and the Explorer bar will show the list of
groups. You can quickly switch between editors by pressing Ctrl + 1, 2, and 3. Keep in mind
this works with up to nine editor windows. The code editor is the heart of Visual Studio
Code and provides tons of powerful productivity features that will be deeply discussed in
the next chapter. For now, it is enough to know how to open and arrange editor windows.

Reordering, Resizing, and Zooming Editor Windows

You can reorder and resize editor windows based on your preferences. To reorder an
editor, click the editor’s header (which is where you see the file name) and move the
editor to a different position. Resizing an editor can instead be accomplished by clicking
the mouse left button when the pointer is on the editor’s border, until it appears as a
left/right arrow pair.

You can also zoom in and out the active editor by clicking Ctrl++ and Ctrl+-,
respectively. As an alternative, you can select View » Zoom In and View » Zoom Out.

You can reset the original zoom factor with Appearance » Reset Zoom.

Note In Visual Studio Code, the zoom is actually an accessibility feature. As an
implication, when you zoom the code editor, everything else will also be zoomed.

The Status Bar

The Status Bar contains information about the current file or folder and provides shortcuts
for some quick actions. Figure 2-3 shows an example of how the Status Bar appears.

20

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Pmaster @ ®oho @& Ehellowed Ln24,Col1 Spacessd UTF-8 CRIF c# & 0

Figure 2-3. The Status Bar

The Status Bar contains the following information, from left to right:

Git version control information and options, such as the current
branch. This is only visible when VS Code is connected to a Git
repository.

Errors and warnings detected in the source code.
The cursor position expressed in line and column.

Tab size, in this case Spaces: 4. You can click this to change the
indentation size and to convert indentation to tabs or spaces.

The encoding of the current file.
The current line terminator.

The programming or markup language for the open file. By clicking
the current language name, you can change the language from a
drop-down list that pops up.

The project name, if you open a folder that contains a supported
project system. It is worth noting that, in case the folder contains
multiple project files, clicking this item enables you to switch
between projects.

The feedback button, which enables you to share your feedback
about Visual Studio Code on Twitter.

The notification icon, which shows the number of new notifications
(if any). Notification messages typically come from extensions or they
are about product updates.

It is worth mentioning that the Status Bar color changes depending on the situation.

For example, it is purple when you open a single file, blue when you open a folder,

and orange when Visual Studio Code is in debugging mode. Additionally, third-party

extensions might use the Status Bar to display their own information.

21

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

The Activity Bar

The Activity Bar is at the left side of the workspace and can be considered a collapsed
container for the Side Bar. Figure 2-4 shows the Activity Bar.

Figure 2-4. The Activity Bar

The Activity Bar provides shortcuts for the Explorer, Search, Git, Run and Debug,
Extensions, Accounts, and Settings tools, each described in the next section. When you
click a shortcut, the Side Bar related to the selected tool becomes visible. You can click
again the same shortcut to collapse the Side Bar.

The Side Bar

The Side Bar is one of the most important tools in Visual Studio Code, and one of the
tools you will interact more with. It is composed of five tools, each enabled by the
corresponding icon, described in the following subsections.

22

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Explorer Bar

The Explorer bar is enabled by clicking the first icon from the top of the side bar and
provides a structured, organized view of the folder or files you are working with. The OPEN
EDITORS subview contains the list of active files, including open files that are not part of

a project or folder or files that have been modified. These are instead shown in a subview
whose name is the folder or project name. Figure 2-5 provides an example of Explorer.

) File Edit Selection View Go FRun Te
EXPLORER

~ OPEN EDITORS |2 UNSAVED @ &
® C* MainActivity.cs App1\App1.Android
[] AboutAssets.txt AppT\App1.Andro...

~ APP1 HED E‘_\J]
~ App1'\Appl.Android

v Assets
AboutAssets.txt
> bin
> obj
> Properties
v Resources
v drawable
& tab_about.png
K& tab_feedpng
L& xamarin_logo.png
v layout
& Tabbarxml
& Toolbarxml
mipmap-anydpi-v26

mipmap-hdpi

>
>
2 mipmap-mdpi
2 mipmap-xhdpi
2 mipmap-xxhdpi
2 mipmap-xchdpi

~ values

& colors.xml

& stylesxml

AboutResources.txt

C* Resource.designer.cs
& App1.Android.csproj
C* MainActivity.cs

> OUTLINE
G0 A g 2

Figure 2-5. The Explorer bar

23

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

Note You must hover your cursor over a folder name (APP1 in Figure 2-5) to
make the four buttons visible.

The subview that shows a folder structure provides four buttons (from left to right):
New File, New Folder, Refresh Explorer, and Collapse Folders in Explorer, each
self-explanatory. The OPEN EDITORS subview has instead three buttons (which you
get when hovering over with the mouse): Toggle Vertical/Horizontal Editor Layout,
Save All, and Close All Editors. Right-clicking a folder or file name in Explorer provides
a context menu that offers common commands (such as Open to the Side, referenced
earlier in this chapter). A very interesting command is Reveal in Explorer (or Reveal
to Finder on Mac and Open Containing Folder on Linux), which opens the containing
folder for the selected item. Notice that the Explorer icon in the Activity Bar also reports

the number of modified files.

The Qutline View

The bottom of the Explorer bar contains another group called OUTLINE. This group
provides a hierarchical view of types and members defined within a code file or of tags
within implicit. Figures 2-6 and 2-7 show the OUTLINE based on a TypeScript file and
based on an HTML file, respectively.

24

) File Edit Selection View Go Run Terminal Help

@ EXPLORER

» OPEN EDITORS
“* REACT-TYPESCRIPT-TODO-LIST-MASTER
~ public
#* favicon.ico
< index.html
& logo192.png
& logosi2.png
} manifest.json
robots.txt
it 1=
TS App.isx
Js index.js
5 serviceWorker.js
% _gitignore
~ QOUTLINE

v =0 [Todo
&2 complete
2 text
~ @ App
v D todos.map(callback
£ textDecoration
~ [@] addTedo
~ [@] newTodos
&2 complete
& text
~ [@] completeTodo
[#] newTodos
~ [@] deleteTodo
[«] newTodos
[#] handleSubmit
[«] setTodos
@] setvalue
=] todos

TS App.tsx

> T8 Apptsx > @ App > [han

T Y T

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

App.tsx - react-typescript-todo-list-master - Visual Studio Code

x

const [value, setValue] = useState<string>('');
const [todos, setTodos] = useState<ITodo[]>([]);
// debugger;

const handleSubmit = (e: FormElement): void => {
e.preventDefault();

| addTodo(value);
setvalue('");

hH

const addTedo = (text: string): void => {

const newTodes: ITodo[] = [...todos, { text, complete:

setTodos(newTodos);
b

console.log(todos);

const completeTodo = (index: number): woid => {
const newTodos: ITodo[] = [...todos];
/7 switch complete state
newTodos[index].complete = !newTodos[index].complete;
setTodos(newTodos);

b

const deleteTodo = (index: number): void => {
const newTodos: ITodo[] = [...todos];
newTodos.splice(index, 1);

// newTodos = todos.filter((todo: ITedo) =»> tode !== newTodos[in

setTodos(newTodos);

b

return (
<Fragment>
<h1>Todo List</h1>
<form onSubmit={handleSubmit}>
<input
types"text’
value={value}

Ln 18, Col20 Spaces2 UTF-8 LF TypeScriptReact 412

false }];

2 0

Figure 2-6. The Outline view on a TypeScript file

25

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

>Q File Edit Selection View Go Run Terminal Help indexhtml - react-typescript-todo-list-master - Visual Studie Code = O X
@ EXPLORER © indexhitml X 1L
» OPEN EDITORS public > <* index.html > ...
“ REACT-TYPESCRIPT-TODO-LIST-MASTER 1 <!DOCTYPE htmlk
v img 2 <html lang="en"»
= 190301todo.gif ?
ol 4 <head>
R _ 5 <meta charset="utf-g" />
* favicon.ico [<link rel="shortcut icon” href="%PUBLIC URLX/favicon.ico” />
index.html 7 <meta name="viewport" contents"widthsdevice-width, initial-scales=1
2 logo192.png 8 <meta name="theme-color” content="#eg00ee" />
= logoS12.png 9 <meta name="description” content="Web site created using create-re
" 1a") PP o "
manifestjson 18 <link rel="apple-touch-icon" href="logo192.png" />
bots.txt B <
FOSSS. 12 manifest.json provides metadata used when your web app is inst
R 13 user’'s mobile device or desktop. See https://developers.google
T5 App.isx 14 Y
5 indexjs 15 <link rel="manifest" href="%¥PUBLIC_URL%/manifest.json” />
“ OUTLINE 15 A i
] 17 Notice the use of XPUBLIC_URLX in the tags above.
i 18 It will be replaced with the URL of the “public’ folder during
v @ body 19 Only files inside the “public® folder can be referenced from t
&2 div#root 28
& noscript 21 Unlike “/favicon.ico” or "favicon.ico", "¥PUBLIC_URLX/favicon.
~ & head 22 work correctly both with client-side routing and a non-root pu
€ link 23 Learn how to configure a non-root public URL by running “npm r
24 -3
) link .
LT 25 <title>Todo list</titles
@ link 26 </head>
& meta 27
& meta 28 <body>
& meta 29 <noscript>¥You need to enable JavaScript to run this app.</noscript
2 meta EL:] <div id="reot"></div>
31 le-
@ title
! 32 This HTHML file is a template.
33 If you open it directly in the browser, you will see an empty
34
35 You can add webfonts, meta tags, or analytics to this file.
36 The build step will place the bundled scripts into the <body>
37
®oM0 Ln1,Col1 Spaces:2 UTF-8 LF HTML & O

Figure 2-7. The Outline view on an HTML file

You can expand types and members defined in a markup file to see what other
objects they define, and you can click each item and get the cursor over the selected item
definition in the source code. It is worth mentioning that Visual Studio Code highlights
with a different color (red in the case of the Visual Studio Light Theme) items that have
potential problems and that are highlighted with squiggles in the code editor. Currently,
the Outline view is only available to languages such as JavaScript, TypeScript, HTML,
Markdown, and JSON. Support for additional languages might be available when
installing the appropriate extensions.

26

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Search Tool

The Search tool, enabled by clicking the search icon, allows for searching and,
optionally, replacing text across files. You can search for one or more words, including
special characters (such as * and ?), and you can even search based on regular
expressions. Figure 2-8 shows the Search tool in action, with advanced options expanded
(files to include and files to exclude), which you enable by clicking the ... button located
under Replace. In the example, search is performed only within .cs files.

>° File Edit Selection View Go Run Terminal Help MainPage.xaml.cs - App2 - Visual Studio Code = O X
SEARCH LE D & C© MainPagexamlcs X m
\pp2 > App2 > € Main xami.
page : :
0 B 1 using System;]}
4 Replace &5 2 using System.Collections.Generic; —_
e o nciode 3 using System.ComponentModel;
4 using System.Ling;
xS 5 using System.Text;
files 1o exclude [using System.Threading.Tasks;
I| Q| 7 using Xamarin.Forms;

20 results in 4 files - Open in editor

a namespace App2
~ € Appxamlcs App2\App2 2 18 {
MainPage = new MainPage); 11 public partial class MainPage : ContentPage
MainPage = new MainPage(); e { A F
= = 13 public MainPage()
~ C MainPagexaml.cs App2\ippZ (3 14 {
public partial class MainPage : Cont... 15 InitializeComponent();
partial class MainPage : ContentPage 16 }
public MainPage(17 }
~ € MainPage.xaml.g.cs App2\Ap...(7 18 }
19

XamlResourceldAttribute("App2.Mai...
App2MainPagexaml®, “MainPage.x...
*, typeofiglobal:app2.MainPage))]
XamilFilePathattribute("MainPage.xa...
public partial class MainPage : globa...
global::Xamarin.Forms.ContentPage {
LoadFromXaml(this, typeof(MainPag..
~ C Resource.designer.cs App2\A...(8
browser_actions_context_menu_pag...
browser_actions_context_menu_page;
Android.Resource.ld main_viewpage...
Droid Resource.ld main_viewpager;
Platform.Resource.ld.main_viewpage...
Droid.Resource.id.main_viewpager;
public const int main_viewpager = 2...

browser_actions_context_menu_pag...

Ln1,Col1 Spacesd UTF-B8withBOM CRIF C& & O

Figure 2-8. The Search tool

27

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

Search results are presented in a hierarchical view that groups all the files that contain
the specified search key, showing an excerpt of the line of code that contains it. Occurrences
are also highlighted in both the list of files and in the code editor. You can finally clean up
search results by clicking the Clear Search Results button located in the toolbar close to the
SEARCH header. If you instead wish to replace some text with a new text, you can do this by
entering the new text into the Replace text box and then clicking the Replace All button.

The Git Bar

The Side Bar provides access to Git integration for version control. Git integration is a
core topic and will be thoroughly discussed in Chapter 7, but a quick look is provided
here for the sake of completeness about the Side Bar.

The Git bar can be enabled by clicking the third button from the top of the side
bar (with a kind of fork icon) and provides access to all of the common source control
operations, such as initializing a repository, committing code files, and synchronizing
branches. The Git icon also shows the number of files that have been modified locally.
Figure 2-9 shows an example. Modified files are listed under the Changes group. Three
buttons are available for each listed file: Open File, Discard Changes, and Stage
Changes. In Git, as you will learn in Chapter 7, the concept of staging changes means
keeping changes separate from the main code branch so that a developer can evaluate
whether to commit the changes or discard them. Clicking a file name enables a split view
that shows the differences between the modified code and the original code; this topic
will also be more thoroughly discussed in Chapter 7.

] File Edit Selection View Go Run Terminal H

SOURCE CONTROL E v O
Message (Ctrl+Enter to commit on ‘master’)

~ Changes 2
& MainPage.xaml App2\App2 D2+ ™

g% C: MainPagexaml.cs App2\App2 M

Figure 2-9. The Git bar

28

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Git bar also provides a pop-up menu that contains the list of supported Git
commands in Visual Studio Code organized into submenus, such as Commit, Push, Pull,
and several more you will discover later in the book. Click the ... button in the top-right
corner of the Git bar to open the menu.

The Run and Debug Bar

Visual Studio Code is not only a simple code editor, but also a fully featured development
tool that ships with an integrated debugger for .NET Core and that can be extended with
third-party debuggers for other platforms and languages. Chapter 9 describes in more
detail this important part of Visual Studio Code, but for now note that you can access the
debugging tools by clicking the fourth icon from the top of the side bar. This opens the
Run and Debug bar, shown in Figure 2-10.

% File Edit Selection View Go Run Terminal Help

RUN AND DEBUG: RUN

Open a file which can be debugged or run.

To customize Run and Debug create a launch.json file.

Show all automatic debug configurations.

ﬁr>
Figure 2-10. The Run and Debug bar

In Chapter 9 you will see how to configure the debugging tools and how powerful
they are in Visual Studio Code. You will also see how easy it is to install additional
debuggers.

The Extensions Bar

The Extensions bar can be enabled by clicking the fifth button from the top in the
Activity Bar and allows for searching and installing extensions for Visual Studio Code,
which include additional languages, debuggers, code snippets, and much more.
Extensibility will be discussed in Chapter 6, but Figure 2-11 provides an example of how
the Extensions bar appears.

29

CHAPTER 2

GETTING TO KNOW THE ENVIRONMENT

] File Edit

EXTENSIONS

“}-:ra':i" Exte

Selection View Go Run Terminal H

A

1sions in Marketplace

E

Figure 2-11. The Extensions bar

~ INSTALLED 4

C/C++ 113
C/C++ IntelliSense, debugging, and co...
Microsoft

> 162M K 35

Ch 1238
C# for Visual Studio Code (powered by ...
Microsoft

DOTM * 35

SQL Server (mssql) 1100 D3EM x4
Develop Microsoft SQL Server, Azure S...

Microsoft

~ RECOMMENDED 8
Docker 150 DEEM k45
Makes it easy to create, manage, and d...
Microsoft [Install |
npm 0313 D3AM k35
npm support for VS Code
egamma m

npm Intellisense 131 D 26M K 45
Visual Studio Code plugin that autocom...

Christian Kohler [Install |

markdownlint 0.25.0 D22M k45

Markdown linting and style checking fo...

David Anson Install
Debugger for Chro... 21211 @M % 4
Debug your JavaScript code in the Chro...
Microsoft

Debugger for Firef... 291 @ 8amk % 45

Debug your web application or browser...

Firefox Devlools

You not only can search online for extensions, but also see the list of installed

extensions as well as disabled and recommended extensions.

The Accounts Button

One of the biggest benefits of Visual Studio Code is that you can customize it in many

ways by arranging the development environment in whichever configuration is most

convenient for you. This includes extensions, keyboard shortcuts, general settings, and

much more.

30

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

If you run VS Code on multiple machines, it would be very useful if you could re-
create your environment automatically on all the machines, without the need to set your
preferences manually on each machine. Fortunately, this is possible using the Accounts
button on the Side Bar.

With this tool, you can sign in with a Microsoft or GitHub account and your settings
will be synchronized across all the VS Code installations to which you have signed in
with the same account. Following is a list of settings that can be synchronized:

e General settings

¢ Keyboard shortcuts

o Extensions

o User-defined code snippets
o State of the user interface

You enable settings synchronization by clicking the Accounts button and then Turn
on Settings Sync. At this point Code shows a list of settings that you can sync across
machines, selecting all of them by default, as shown in Figure 2-12.

®J File Edit Selection View Go Run Terminal Help react-typescript-todo-list-master - Visual Studio Code - O X
Settings Sync
Please sign in to synchronize your data across devices.
Settings
Keyboard Shortcuts for each platform
User Snippets
Extensions
Ul State

Figure 2-12. The selection of settings to synchronize

Select the settings you want to sync, then click Sign in & Turn on. At this point you
will be asked to specify which kind of account you want to use, such as Microsoft or
GitHub. Obviously, you need to use the same account on all the other Code installations.
A browser window opens in which you enter your credentials, and you will quickly get a

confirmation message when sign-in is completed.

31

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

Note On Windows, the Firewall might prompt you with a warning saying that VS
Code is trying to open a resource on the Web. If this happens, you can safely allow
this action.

At this point Visual Studio Code starts synchronizing all the selected settings,
which might take a while. Behind the scenes, settings synchronization is based on two
files, settings.json and extensions.json, which VS Code needs to merge from different
installations. If it encounters problems in merging these files automatically, VS Code
gives you an option to manually merge settings with the same merging tool used with
Git. This is a very useful feature and it will save you a lot of time in getting the same

comfortable environment across machines.

The Settings Button

The Settings button is represented with the gear icon, at the bottom of the Activity Bar. If
you click it, you will see a pop-up menu with a list of commands that represent shortcuts
for customizing Visual Studio Code (and that will be discussed more thoroughly in
Chapter 5). Among others, a command in the menu enables you to manually search for
product updates.

Navigating Between Files

Other than clicking the tab of an editor, Visual Studio Code provides two ways of
navigating between files. The quickest way is to press Alt+Left or Alt+Right to switch
between active files.

If you instead press Ctrl+Tab, you will be able to browse the list of currently open files
and select one for editing, as shown in Figure 2-13.

32

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

lo Eile Edit Selection View Go Run Jerminal Help Program.cs - CryptoService - Visual Studio Code [Administrator] = m] x
EXFLORER € Program.cs CryptoService
B CryptoService.csproj CryptoService b
* OPEN EDITORS 7
% €+ Program.cs CryptoService

& CryptoService.csprof CryptoService

S ERIEIDS AL 31 public static class CryptoService
v s\ CryptoService 32 {
~ DesignTimeBuild 33 f/ 24 = 192 bits
.dtbcache reference
3 v16 34 private const int SaltByteSize = 24;

Figure 2-13. Navigating between active files

The Command Palette

Together with the code editor and the Activity Bar and Side Bar, the Command Palette
is another very important tool in Visual Studio Code, which enables you to access
Visual Studio Code built-in commands and also commands added by extensions via
the keyboard. You can open the Command Palette, shown in Figure 2-14 with View »
Command Palette or via the Ctrl+Shift+P keyboard shortcut (38+P on macOS).

33

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

ld File Edit Selection View Go Run Terminal Help CryptoService.csproj - CryptoService - Visual Studio Code [Administrator] = m] >
EXPLORER > | m
* OPEN EDITORS Configure Display Language recently used {5 b
C Program.cs Cryptof Taam: Create Pull Request 1]
X & CryploService.cspro Team: Signin
* CRYPTOSERVICE Team: View Pull Requests
~ ws\ CryptoService Emmet: Update Image Size Wit
v DesignTimeBuild .MET: Generate Assets for Build and Debug other commands
«dibecache JNET: Restore All Projects
> w16 .NET: Restore Project
»> wscode (Preview) PowerShell Command Explorer: Focus on PowerShell Commands View
~ CryptoService Add Browser Breakpoint
* bin Add Cursor Above Cul + At + UpAmow
> obj Add Cursor Below Qr + ARt + DownAmow
A CryptoSenvice.csproj | add Cursors To Bottom
C Program.cs Add Cursors to Line Ends Shift + At + |

CryptoServicesin

2 OUTLINE
2> NPM SCRIPTS

®O0AD 4 LveShare & BICryptoServicesin In1,Col1 Spaces=2 UTF-8 CRIF XML & Q

Figure 2-14. The Command Palette

The Command Palette is not just about menu commands or to user interface
instrumentation but also to other actions that are not accessible elsewhere. For instance,
the Command Palette enables you to install extensions as well as restore NuGet packages
over the current project or folder. You can simply move up and down to see the full list
of available commands, and you can type in some characters to filter the list. You will
notice how many of them map actions available within menus and that, for many of
them, there is a keyboard shortcut available. Other commands related to extensions,
debugging, and Git, will be discussed in the following chapters, so it is important that
you get started with the Command Palette at this point.

34

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Panels Area

Visual Studio Code very often needs to display not only information about source
code but also information coming from the Git engine, external tools, or debuggers.
To accomplish this in an organized way, the environment provides the so-called Panels
area, which appears by default at the bottom of the user interface.

The Panels area is composed of four built-in panels: Problems, Output, Debug
Console, and Terminal, each discussed in this section. The Panels area is not visible
by default, and it usually pops up when the information the panels represent becomes
available (such as the debugger sending information about symbols in the source
code). Additionally, by default Panels area appears at the bottom of the VS Code’s user
interface, but you can move it to the side of the workspace by right-clicking a panel and
then selecting Move Panel Right or Move Panel Left, or restore the original position
with Move Panel to Bottom. In addition, you can now drag and drop panels in a
different position using the mouse. Let’s now discuss each panel in more detail.

The Problems Panel

With languages that have built-in enhanced editing support, such as TypeScript
(https://www.typescriptlang.org), or for which an extension has been added to
provide advanced editing features, such as C#, Visual Studio Code can detect code

issues as you type. In the code editor, these are usually highlighted with red squiggles
(for blocking errors) and in green (for warnings). The list of errors, warnings, and
informational messages is also displayed in the Problems panel. This can be enabled by
clicking the number of errors at the bottom-left corner of the Status Bar (see Figure 2-15).

35

https://www.typescriptlang.org

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

The Problems panel makes it easy to distinguish between errors and warnings due to
different icons (a white x over red background for errors and a black exclamation mark
over yellow background for warnings). Figure 2-15 shows an example based on some
C# code that contains an unused variable (warning) and a syntax error.

Program.cs - hellocode - Visual Studio Code [Administrator] — = X

C* Program.cs X M

€ Program.cs > {} hellocode > %3 hellocode.Program > @ Main(string[] args)
L USLiE Dysiem; =

2
3 namespace hellocode
4

{
5 class Program
6 { 1
0 references
7 static void Main(string[] args)
8 {
] ® int a;
10 Console.Writeline("Hello World!")
11 }
12 }
13 H
14
TERMIMAL PROBLEMS (@) DEBUG CONSOLE Filter (e.g. text, **/~s, **/node_modules/**) Y 8 ~ Xx

~ © Program.cs (2

® : expected [hellocode] csharp(CS1002) [10, 4

N\ The variable 'a’ is declared but never used [hellocode] csharp(CS0168) [9, 17
2})

Ln 9, Col 18 (1 selected) Spaces:4 UTF-8withBOM CRLF c# & Q

Figure 2-15. The Problems panel

If you have multiple files open, the Problems panel groups problems by file name.
Also, for each problem, you will be able to see the folder name and the position within
the source code file. Just double-click a problem, and VS Code will move the cursor to
the selected item in the code editor.

36

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Note The code editor also provides a way to quickly fix code issues while typing,
but this is not related to the Problems panel and will instead be discussed in the
next chapter.

The Output Panel

The Output panel is the place where Visual Studio Code displays messages from
internal and external tools, such as runtime tools, Git commands, extensions, and tasks.
Figure 2-16 shows an example based on the output of .NET’s NuGet package manager.

TERMINAL OUTPUT PROBLEMS DEBUG CONSOLE .NET hd | = 5] X

Determining projects to restore... Tasks
All projects are up-to-date for restore. Extensions
Done: ©. Microsoft Authentication
GitHub Pull Request —
Git
Git History
.NET
.NET Test Log
C#
OmniSharp Log
Razor Log

Ln8, Col10 Spacess4 UTF-8withBOM CRLF Cc# & Q

Figure 2-16. The Output panel

Because multiple tools might run concurrently during an operation against source
code files (e.g., package restore and then compilation) or during the Visual Studio Code
lifetime (such as extensions), you can use the dropdown box in the panel to change the
view and see the output of each tool. This tool is particularly useful if the execution of
external tools fails and you want to get more information about what happened.

The Debug Console Panel

As the name implies, the Debug Console panel is a specialized panel used by debuggers
to display information about code execution. Figure 2-17 shows an example based on
the execution of a simple C# application.

37

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

%] File Edit Selection View Go Run Terminal Help Program.cs - heflocods - Visual Studio Code [Administrator] =] x
RUN AND DESUG [» NET Core Launch fo~ | & - CPog E I 2 ¥ T 9 O m
“ VARIABLES € Program.cs > {} hellocode > 42 hellocode.Program > & Main{string]] args
v Locals 1 using System; =
args [string[1]: {string[e]} 2
a [int]: 10 j :{\amesuace hellocode
b [int]: 20 I
c [int]: 30 5 class Program
23 5 t
7 static void Main{string[] args) ~
8 {
9 int a = 18;
10 int b = 20;
1 int ¢ = a+ b;
12 Console Writeline("Hello World!™);
“ WATCH ® 13 e Console.ReadLine();|
14 }
15 1
16 }
17
“w CALL STACK PALISED ON BREAKPOINT
st = ~ x

hellocode.dlllhellocode. Program. Main{string[] TERMINAL FROBLEMS DEBUG CONSOLE Filter {e.g. text, lexchude)

ystem.Text.Encodi

Pl - BREAKPOINTS i ; ¥ A
o Il modulo e ottimizzato e 1'o

Tutte le eccezioni
Eccezioni non gestite dall utente

& M Program.cs)

pzicne de

@odMo & NETCore Launch (console) (hellocode) & Lve Share @ P hellocode Ln 13, Col 32 (19 selected) Spaces 4 UTE-BwithBOM criF o0 & 0O

Figure 2-17. The Debug Console panel

The Debug Console not only shows information about code execution, debug
symbols, and any other information a debugger needs to display, but also acts as an
interactive console where you can evaluate expressions. Figure 2-17 shows that a
mathematical expression has been manually evaluated using variables defined in the
code. Debugging is a very important topic in Visual Studio Code and is thoroughly
discussed in Chapter 9, where you will find additional information about the Debug
Console.

Working with the Terminal

Visual Studio Code allows executing commands against the operating system directly
from within the development environment. In fact, you can select the Terminal » New
Terminal command to open a new terminal instance in a panel at the bottom of the
work area. Figure 2-18 shows an example based on Windows.

38

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

TERMINAL ~ PROBLEMS DEBUG CONSOLE 2: powershell v+ D @ ~ x

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreé

PS C:\Temp\hellocode> [

® Blhellocode Ln 13, Col 32 (19 selected) Spaces:4 UTF-8 with BOM CRLF C# & Q

Figure 2-18. The Terminal panel

On macOS and Linux, the terminal tool is based on the bash shell of each system.
On Windows, the terminal is based on PowerShell by default. However, you can select a
different tool by clicking the drop-down menu on the panel’s toolbar and then clicking
Select Default Shell. At this point you will be able to select, from the Command Palette,
from among the Windows command prompt, PowerShell, and the Git bash command-
line tool. You can also open multiple terminal instances by clicking the New Terminal
button (the icon with the + symbol).

The Terminal panel is also used by Visual Studio Code to launch automatic scripts
and commands against the operating system. For example, when you build a C#
application, Visual Studio Code starts the .NET Core compiler, whose output is displayed
in the Terminal panel, as shown in Figure 2-19.

TERMINAL PROBLEMS ({ DEBUG CONSOLE 2: Task - build v + D @ ~ x
> Executing task: C:\Program Files\dotnet\dotnet.exe build C:\Temp\dotnetapp/dot

netapp.csproj /property:GenerateFullPaths=true /consoleloggerparameters:NoSummar

y <

Microsoft (R) Build Engine version 16.8.8+126527Ff1 for .NET

Copyright (C) Microsoft Corporation. All rights reserved.

Determining projects to restore...
A1l projects are up-to-date for restore.
dotnetapp -> C:\Temp\dotnetapp\bin\Debug\nets.@\dotnetapp.dll

Terminal will be reused by tasks, press any key to close it.

@041 g NET Core Launch (conscle) (dotnetapp) % Live Share & Pl dotnetapp Ln 14, Col 40 (27 selected) Spaces:4 UTF-8withBOM CRIF ¢ & Q

Figure 2-19. The Terminal panel used for automatic scripting

39

CHAPTER2 GETTING TO KNOW THE ENVIRONMENT

Summary

In this chapter, you got an overview of the workspace in Visual Studio Code and of the
tools you will interact with frequently. You saw how to take advantage of quick shortcuts
in the Welcome page and how you can arrange editor windows.

You saw how the Status Bar provides information about the active file and how the
Activity Bar is a collapsed container of shortcuts for the tools contained in the Side Bar:
the Explorer bar, the Search tool, the Git bar, the Debug bar, the Extensions bar, the
Accounts button, and the Settings button. You saw how to quickly navigate between
files and how the Command Palette provides a way for accessing commands via the
keyboard, both Visual Studio Code commands and extensions’ commands. You have
also walked through another important area in the environment, the Panels area, where
you can get information about code issues, get messages from internal and external tools
and debuggers, and execute commands and scripts via the Terminal.

Now that you have seen how the environment is organized, it is time to have some
fun walking through all the powerful productivity features in the code editor. This is the
topic of the next chapter.

40

CHAPTER 3

Language Support and
Code Editing Features

Visual Studio Code is not just another evolved text editor with syntax colorization
and automatic indentation. Instead, it is a very powerful codefocused development
environment expressly designed to make it easier to write web, mobile, and cloud
applications using languages that are available to different development platforms.

With the ambition to provide a powerful, rich development environment, Visual
Studio Code integrates a number of editing features that are focused on improving
the productivity and quality of your code. This chapter discusses what languages are
supported in Visual Studio Code and all the available code editing features, starting from
the most basic that are available to all the supported languages to the most advanced
productivity tools that are available to specific languages such as C#, JavaScript, and
TypeScript.

Note Keyboard shortcuts used in this chapter are based on the default settings in
Visual Studio Code.

Language Support

Out of the box, Visual Studio Code has built-in support for many languages. Table 3-1
groups supported languages by editing features.

41
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_3

https://doi.org/10.1007/978-1-4842-6901-5_3#DOI

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Table 3-1. Language Support by Feature

Languages Editing Features
Batch, C, C#, C++, Clojure, CoffeeScript, Diff, Dockerfile, Common features (syntax coloring,
F#, Go, HLSL, Jade, Java, HandleBars, Ini, Lua, Makefile, bracket matching, basic word

Objective-C, Objective-C++, Perl, PowerShell, Properties, Pug, completion)
Python, R, Razor, Ruby, Rust, SCSS, ShaderLab, Shell Script,
SQL, Visual Basic, XML

Groovy, Markdown, PHP, Swift Common features and code
snippets
CSS, HTML, JSON, JSON with Comments, Less, Sass Common features, code snippets,

IntelliSense, Outline

TypeScript, TypeScript React, JavaScript, JavaScript React Common features, code snippets,
IntelliSense, Qutline, parameter hints,
refactoring, Find All References, Go
to Definition, Peek Definition

Visual Studio Code can be extended with additional languages produced by the
developer community and downloadable from the Visual Studio Marketplace. This is
discussed in more detail in Chapter 6, but, in the meantime, you can have a look at the
available languages out of the box. For the purposes of this book, an introduction to C#
and C++ is provided for your convenience.

Working with C# and C++

The C# programming language deserves a more detailed introduction, because of its
popularity and because it is now a cross-platform language that you can use not only
on Windows but also on macOS and Linux. As you can see from Table 3-1, the editing
experience that Visual Studio Code offers out of the box for C# is limited to common
features.

However, full and rich support for the coding experience with C# is offered via the Microsoft
C# free extension (https://marketplace.visualstudio.com/items?itemName=ms-vscode.
csharp). This provides an optimized experience for .NET Core development and includes all
the support and tools you need to build apps with C#, including the necessary support for the
.NET Core debugger. With this extension, you basically get the same experience available to

42

https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

TypeScript, including advanced editing capabilities based on the .NET Compiler Platform (also
known as Roslyn) that makes it easier to fix code issues as you type. If you plan to work with C#,
I definitely recommend that you install this extension, especially because this chapter discusses
some editing features that are available only through the extension.

Extensibility is explained in more detail in Chapter 6, but you can easily install the
C# extension without further information by opening any C# code file (.cs) and following
the instructions shown by Visual Studio Code when it detects that a proper extension is
available for that file type.

Similarly, you might want to install the Microsoft C/C++ extension that adds
enhanced editing features to the C and C++ languages, plus debugging support for
Windows (PDB, MinGW, Cygwin), macOS, and Linux. The extension is available at
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools, and
you can follow the same easy installation steps just described for the C# extension by
opening a .c, .h, or .cpp file.

Basic Code Editing Features

Visual Studio Code provides many of the features you would expect from a powerful
code editor. This section describes what editing features make your coding experience
amazing with this tool. If you are familiar with Microsoft Visual Studio, you will also see
how some features have been inherited from this IDE. It is worth mentioning that Visual
Studio Code provides keyboard shortcuts for almost all the editing features, giving you
an option to edit code faster. For this reason, the keyboard shortcut is also mentioned for
many of the described features.

Note Features described in this section apply to all the supported languages
described in Table 3-1, except where expressly specified.

Working with Text

As you would expect, the code editor in VS Code offers commands for text manipulation
and text selection. The Edit menu provides the Undo, Redo, Copy, Cut, Paste, Find,
Replace, Find in Files, and Replace in Files commands. These commands are available
in every text editor and do not require any further explanation.

43

https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

The Edit menu also includes the Toggle Line Comment and Toggle Block
Comment commands, which add a single-line comment or a block comment,
respectively, depending on the language. For instance, in C# the first command would

comment a line like this:
// int a = 0;
By contrast, the block comment tool would add a multiline comment as follows:

/* int a = 0;
int b = 0; */

The Edit menu also provides a command to work with code snippets, Emmet:
Expand Abbreviation. This command is the menu representation of keyboard shortcuts
offered by the code editor to add a code snippet. Code snippets are discussed in more
detail in the “Reusable Code Snippets” section in this chapter.

The Selection menu not only provides commands for text selection but also provides
commands that make it easier to move or duplicate lines of code above and below the
current line. The Add Cursor Above, Add Cursor Below, and Add Cursors To Line
Ends commands allow working with multicursors, described in the “Multicursors”
section in this chapter.

Ifyou click an identifier, reserved word, or type name in the editor, you can use
the Add Next Occurrence, Add Previous Occurrence, and Select All Occurrences
commands that allow to quickly select occurrences of the selected word, and
occurrences will be highlighted in a different color, which differs depending on the
current theme.

Syntax Colorization

For all the languages summarized in Table 3-1, the code editor in Visual Studio Code
provides the proper syntax colorization. Figure 3-1 shows an example based on a
TypeScript code file.

44

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

’G File Edit Selection View Go Run Terminal Help App.tsx - react-typescript-todo-list-master - Visual Studio Code = o X
TS Appdsx X i
src > TS Appusx » $ App

R e e T o
13 const [todos, setTodos] = useState<ITodo[]>([]):
14 /{ debugger;
15
16 const handleSubmit = (e: FormElement): void => { 1
17 e.preventDefault();
18 addTodo(value);
19 setValue('');]
20 }: el
21
22 const addTodo = (text: string): void => {
23 const newTodos: ITodo[] = [...todos, { text, complete: false }];
24 setTodos(newTodos);
5 H
26 console. log(todos);
27
28 const completeTodo = (index: number): veid => {
29 const newTedos: ITodo[] = [...tedos];
e // switch complete state
31 newTodos[index].complete = !newTodos[index].complete;
32 setTodos(newTodos);
33 IH
34
35 const deleteTodo = (index: number): void =» {
36 const newTedos: ITodo[] = [...tedos];
37 newTodos.splice(index, 1);
38 // newTodos = todos.filter((todo: ITodo) => todo !== newTodos[index]); This also work but mus'
39 setTodos(newTodos);
4@ b
41
42 return (
43 <Fragment>
a4 <h1>Todo List</hl>
) as <form onSubmit={handleSubmit}>
46 <input
a7 type="text’
48 value={value}
49 onChange={e =» setValue(e.target.value

& Live Share Ln21,Col3 Spaces:2 UTF-8 LF TypeScriptReact 412 & (0

Figure 3-1. Syntax colorization

Syntax colorization is available for other languages via extensibility. If you need to
work with a language that is not included with Visual Studio Code out of the box, you
can check the Visual Studio Marketplace and see if an extension is available to support
such a language. See Chapter 6 for information about extensibility. As a side note, syntax
colorization is the minimum that an extension must provide to add support for a new
language.

45

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Delimiter Matching and Text Selection

The code editor can highlight matching delimiters such as brackets and parentheses
(both square and round). This feature is extremely useful to delimit code blocks and is
triggered once the cursor gets near one of the delimiters. Figure 3-2 shows an example
based on bracket matching in a constructor definition.

)Q File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code = — o X
€ Program.cs X 0 e
€ Program.cs > ..

Y int a = 1v; —

16 int b = 20; B

11 int c = a + b; !

12 string message = "Hello World!";

13

14 Console.WriteLine{message);

15 }

16 3

17

18 class Person

19 {

28 | public Person(}

21 | f M
22 !
23 | B

24 h

i
Figure 3-2. Delimiter matching

This feature is also very useful when you need to visually delimit nested blocks and
with complex and long expressions. It is worth mentioning that you can press Ctrl+D to
quickly select a word or identifier at the right of the cursor. You can also quickly select all
the text within the delimiters of a code block by pressing Shift+Alt+Arrow Right, and you
can quickly deselect the same code block by pressing Shift+Alt+Arrow Left.

Code Block Folding

The code editor allows folding delimited code blocks. Just hover your cursor over line
numbers and a symbol representing a down arrow will appear near the start of a code
block. Simply click to fold, and you will see the > symbol at this point, which you click to
unfold the code block. Figure 3-3 provides an example.

46

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

ﬂ File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code = O X
C Program.cs X o
€* Program.cs » ...

using System; e

1
2
3 namespace dotnetapp
4

{

5 class Program

6 { =
7 > static void Main(string[] args) -
16 }

17

Figure 3-3. Code block folding

Note If code block folding is not enabled in the code editor, open VS Code’s
Settings, then in the Text Editor group enable both the Folding and Folding
Highlight options.

Multicursors

The code editor supports multicursors. Each cursor operates independently, and you
can add secondary cursors by pressing Alt+Click at the desired position. The most typical
situation in which you want to use multicursors is when you want to add (or replace) the
same text in different positions of a code file.

Reusable Code Snippets

Visual Studio Code ships with a number of built-in code snippets that you can easily
add by using the Emmet abbreviation syntax and pressing Tab. See Table 3-1 in the
“Language Support” section to review which languages support code snippets natively.
For instance, in a Swift file, you can easily add a do. . catch block definition by using the
do code snippet, as shown in Figure 3-4.

47

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

s File Edit Selection View Go Run Terminal Help e Untitled-1 - dotnetapp - Visual Studio Code —] X
C* Program.cs 3 Untitled-1 ® o
1
2 class Person
3 f
4 —
5 | 4
6 ¥ Mdo do
do statement (Swift Language Basics) X
do {

} catch error {

}

Figure 3-4. Adding code snippets

Code snippets are available as you type within the code editor, and you can
recognize them by the icon representing a small, white sheet. Notice how a tooltip shows
a preview of the code snippet. Pressing Tab over the previous snippet produces the result
shown in Figure 3-5.

)q File Edit Selection View Go Run Terminal Help » Untitled-1 - dotnetapp - Visual Studio Code — O X
C* Program.cs 3 Untitled-1 ® i}
5
2 class Person
3
4
5 do { =
6
7 } catch er'ror-| {
8
9 }
10 }

Figure 3-5. A newly added code snippet with a variable name highlighted

48

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Notice that if the code snippet contains variable names or identifiers, these might be
highlighted to suggest that you give them a different name (like for the error identifier in
Figure 3-5). When you rename a highlighted identifier, all occurrences are also renamed.

Visual Studio Code is not limited to built-in code snippets. You can download code
snippets produced by other developers for many languages from the Visual Studio
Marketplace. Actually, most of the extensions that introduce or extend support for
programming languages also include a number of code snippets.

Word Completion

Out of the box, the code editor in Visual Studio Code implements basic word completion for
all the supported languages. This feature helps you complete words and statements as you
type. For example, Figure 3-6 shows how the code editor suggests terminating a statement
with the Class keyword in a Visual Basic file, based on what the developer is typing.

)q File Edit Selection View Go Run Terminal Help » Untitled-1 - dotnetapp - Visual Studio Code — (] X
C* Program.cs Untitled-1 @ o
i
2 Namespace Foo
3 H
4 —
5 Class Bar
6
7 End C
8 abc Class
9 abc catch

10
11

19

Figure 3-6. Completing a statement with word completion

49

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Simply press Enter or Tab to insert the suggested word. The word completion engine
learns as you code and can provide suggestions based on variables and member names
you declare. For example, Figure 3-7 demonstrates how the editor suggests adding the
name of a variable called Test, declared previously in the code.

)q File Edit Selection View Go Run Terminal Help » Untitled-1 - dotnetapp - Visual Studio Code — (] X
C* Program.cs Untitled-1 ® D
i
2 Namespace Foo
3 [
4
5 Class Bar o}
o
7 Private Test As String
g
9 Public Sub New
10 1
11 End S abc Test
12 End Class
13 [

Figure 3-7. The code editor can suggest identifiers declared in the code

Minimap Mode

Sometimes it is difficult to find the position of the cursor inside a source code file,
especially with very long files. Visual Studio Code provides the Minimap, a small preview
of the source code file on the code editor’s scrollbar. Figure 3-8 provides an example.

50

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

] File Edit Selecion View Go Run Terminal Help FileHelper.s - BackupForTonePrint - Visual Studio.. — O X
C FileHelper.cs X D 0 o ® O
ackupForTonePrint > © FileHelper.cs > ...
84 if(File.Exists(TonePrintFullPath))
85 File.Delete(TonePrintFullPath);
86
87 File.Move(newName, TonePrintFullPath);
88 }
89
9@ public static TonePrintResult RestoreTonePrintBackup(string fileName)
91 {
92 try
93 {
94 if (IsTonePrintRunning)
95 return new TonePrintResult { OperationResult = FileResult.Tc s
96
97 RenamePreviusDbFile();
98 if(!dataBaselWasRenamed)
99 {
1066 CheckAndRestorePreviousDbFile();
101 return new TonePrintResult { OperationResult = FileResult.Er
102 }
103
104 var file = ZipFile.Open(fileName, ZipArchiveMode.Read);
105 file.ExtractToDirectory(TonePrintFolder);
106 file.Dispose();
107 return new TonePrintResult { OperationResult = FileResult.Succes
" 108
109 }
110 catch (Exception ex)
111 {

@ EﬁackupForTonEPnanln Spaces:4 UTF-8 with BOM CRLF C# A

Z-’ master < ®@oho ﬁ? Live Share

Figure 3-8. The Minimap allows for previewing source code on the scrollbar

If you click the Minimap, the portion of source code that is visible in the code editor
is highlighted in the scrollbar, so that you can have a better perception of the current
position of the cursors. The Minimap can be disabled and enabled using the View »
Show Minimap command.

Whitespace Rendering and Breadcrumbs

A very common feature with text editors is the option to show light dots instead of white
spaces. In Visual Studio Code, this is possible for white spaces within indentations. To
accomplish this, you select View » Render Whitespace. Figure 3-9 shows an example
of how white spaces for indentations are replaced with dots. For this figure, the Solarized
Light color theme has been used for better visualization on the paper.

51

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

ﬂ File Edit Selection View Go Run Terminal Help FileHelper.cs - BackupForTonePrint - Visual Studio... —— O x
ﬁ C* FileHelper.cs X 9 N 0 o o @ 0O
BackupForTonePrint > € FileHelper.cs > ...
/Q 84 . s «-+-if(File.Exists(TonePrintFullPath)) ==
85 -+--|----File.Delete(TonePrintFullPath); e
86 =
i—o 87 -File.Move(newName, - TonePrintFullPath); "am
88 }
ﬂr\;» = 1 reference ! _"
¢] public-static-TonePrintResult-RestoreTonePrintBackup(string-fileName) s =
Etlvj 91 { :
92 try =
93 . P :
G_\:J 94] R e -«if-(IsTonePrintRunning)
as return-new-TonePrintResult - { -OperationResult-=-FileResult.Tc
96
gl 97 . RenamePreviusDbFile();
98 «« v« - -if(dataBaseWasRenamed)
] 99 o I |- {
100 CheckAndRestorePreviousDbFile();
101 return-new-TonePrintResult - { -OperationResult-=-FileResult.Er
o 102 “ ol }
< 103
104 . veusoeovar-file.=. ZipFile.Open(fileName, - ZipArchiveMode.Read);
105 |---cfoeeefreeeloen- file.ExtractToDirectory(TonePrintFolder);
106 file.Dispose();
P 107 . . return-new-TonePrintResult - { -OperationResult-=-FileResult.Succes
G 108
110 - -catch. (Exception-ex)
{ﬁ} 111 {
119 CharlsAndDArkamaDeaaiis siseNhEs 1Al
3—" master < ®@o0AMA0 £ Live Share B3 BackupForTonePrint.sin Spaces:4 UTF-8 withBOM CRLF C# A 0

Figure 3-9. Rendering indentation spaces with dots

Simply use the same command to return to white spaces. Another very useful
command is Toggle Breadcrumbs, available in the View menu. With supported
languages, such as JavaScript, TypeScript, and C# with the extension installed, this
command shows the list of types and members defined in the current code file at the top
of the editor, which you can expand to see their members, as shown in Figure 3-10.

52

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

¢ File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code ~ — O X

C* Program.cs X D

C* Program.cs > {} dotnetapp > %2 dotnetapp.Program > €@ Main(string[] args)
1 using System;) e
2 v {} dotnetapp S
3 namespace dotnetapp v % dotnetapp.Program
4 { & Main(string]] args)

eferer > % dotnetapp.Person T

5 class Program
6 {
7 static void Main(string[] args) i
8 {
g int a = 18;
1@ int b = 20;
11 intc=a+b;
12 string message = "Hello World!™;
13
14 Console.WriteLine(message);
15 !
16 }
17
18 class Person
19 {
20 public Person()
21 {

®ofo & LiveShare @& Bdotnetapp In8 Col10 Spacess4 UTF-8withBOM CRIF c# & 0

Figure 3-10. Navigating between types and members with breadcrumbs

Clicking a type or member name moves the cursor to its definition and highlights the
related code block, making code navigation much easier.

Markdown Preview

Visual Studio Code supports the Markdown syntax for producing documents in the very
popular .md file format. Other than syntax colorization, for this particular language
Visual Studio Code also provides a preview of what the document will look like. Simply
press Ctrl+Shift+V (Cmd+Shift+V on macOS) in the code editor, and the preview will
appear in a separate window, as demonstrated in Figure 3-11.

53

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

] File Edit Selection View Go Run Terminal Help Preview Untitled-1 - Visual Studio Code - o X
¥ # DeviceFontSize plug-in for Xamarin.For Untitled-1 ® B Preview Untitled-1 X L]
1 # DeviceFontSize plug-in for Xamarin.Forms

DeviceFontSize plug-in for
Xamarin.Forms

3 With this plugin for Xamarin.Forms, you have
a cross-platform way to detect if an Android
or i05 device has:

5 - accessibility fonts enabled (from extra With this plugin for Xamarin.Forms, you have a cross-
small to XX large) platform way to detect if an Android or iOS device has:
6 - the current font size
; = accessibility fonts enabled (from extra small to XX
8 ## Target platforms large)
9 « the current font size
1@ The plugin supports Android and i0S on
Xamarin. Forms Target platforms
11

12 ## NuGet Package The plugin supports Android and iOS on Xamarin.Forms

14 The plugin is available as a [NuGet package] NuGet PaCkage

(https://www.nuget.org/packages/Plugin. The plugin is available as a NuGet package for easy
DeviceFontSize/) for easy installation in
Visual Studio.

installation in Visual Studio.

15 L
16 [1(https://img.shields.io/badge/NuGet-1.9.0.

1-brightgreen) AP|
17
18 ## APT The library exposes the singleton CrossDeviceFontSize
19 class, which you access via its Current property.

20 The library exposes the singleton
CrossDeviceFontSize class, which you access
via its Current property.

A bool isEnabled =

22 You can detect if accessibility fonts are CrossDeviceFontSize.Current.HasAccessibilit

You can detect if accessibility fonts are enabled like this:

@oMo £ LiveShare

Figure 3-11. Integrated Markdown preview

This feature is very useful because it allows you to preview your documents without
the need of an external program such as a web browser.

Evolved Code Editing

Visual Studio Code is an extremely powerful code editing tool and brings to a cross-
platform and multilanguage environment many features that have been available in
Microsoft Visual Studio for many years, providing what is called evolved code editing.
This section explains all the advanced code editing features that are available, out of the
box, to languages such as TypeScript and JavaScript and, with the appropriate extensions
installed, to languages like C#, C++, and Python.

54

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Working with IntelliSense

IntelliSense provides rich, advanced word completion via a convenient pop-up list

that appears as you type. In the developer tools from Microsoft, such as Visual Studio,
IntelliSense has always been one of the most popular features, and the reason is that it

is not simply word completion. In fact, IntelliSense provides suggestions as you type,
showing the documentation about a member (if available) and displaying an icon near
each suggestion that describes what kind of syntax element a word represents. Figure 3-12
shows IntelliSense in action with a C# code file.

] File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code - =] X

€ Program.cs X

€ Program.cs > {} d t @ !
1 using System;
2 =
3 namespace dotnetapp
a
5 class Program
6 {
7 static void Main(string[] args) = |
8 { "
9 int a = 18;
18 int b = 28;
11 int c = a+b; L]
12 string message = "Hello Worldl™;
13
14 Console.WriteLine{message);
15 Console.
16 } D Beep void Console.Clear() x
17 ¥ /Z* BufferHeight
18 & BufferWidth Clears the console buffer and
19 class Person ## CancelKeyPress corresponding console window of
20 { 2% CapslLock display information.
21 public Perso @ Clear
22 N { &2 CursorLeft
23 &2 CursorSize
24 } £* CursorTop
25 } /2 CursorVisible
1 26}) Equals
27 & Error

@7Mh0 SlUveShae & Bdotnetapp Ln15.Col21 Spacess4 UTF-BwithBOM CRIF ¢ & 0O

Figure 3-12. IntelliSense showing suggestions as you type and advanced word
completion

55

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

As you can see in Figure 3-12, IntelliSense shows the list of available members as
you write, for the given type (in this case Console). When you scroll the list with the
keyboard and stop on a word from the completion list, Visual Studio Code shows the
member documentation. The little arrow at the right of the dialog can be used to turn the
documentation off.

Note The documentation for a type or member is available only if it has been
supplied by the developers. For example, in C# the documentation for types and
members must be provided with XML comments. This enables IntelliSense to
display it in a tooltip, like in Figure 3-12.

Press either Tab or Enter to complete the word insertion, or simply click. Not limited
to this, IntelliSense in Visual Studio code supports suggestion filtering: based on the
CamelCase convention, you can type the uppercase letters of a member name to filter
the suggestion list. For instance, if you are working against the System.Console type and
you type cv, the suggestion list will show the CursorVisible property, as demonstrated
in Figure 3-13.

56

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

] File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Co... — O x
€ Program.cs X D

{} dotnetapp > % dotnetapp.Program > £ Main(string[] args

using System;

1
2
3 namespace dotnetapp
4

{
5 class Program
6 ¢
7 static void Main(string[] args) m
8 { 1
9 int a = 18;
16 int b = 28;
11 int c =a+b; 1
12 string message = "Hello World!";
13
14 Console.Writeline(message);
15 Ccnsole.gﬂ
16 ¥ 22 CursorVisible
}'; 1 bool Console.CursorVisible { get; set; } b4)
1
19 class Person Gets or sets a value indicating whether the cursor is visible. f
20 { ’
21 public Person(
22 " {
13
24 }

®7MAo0 & LveShare & Eldotnetapp Ln15 Col23 Spaces4 UTF-BwithBOM CRIF ¢ & 0

Figure 3-13. Suggestion filtering in IntelliSense

IntelliSense also provides the foundation for other advanced features in the code
editor that depend on it, described in the next subsections.

Parameter Hints

When you write a function invocation, IntelliSense also shows a tooltip that describes
each parameter. This feature is called parameter hints and is available only if the
documentation for function parameters has been implemented. An example is visible in
Figure 3-14.

57

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

30 File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Co... — O e
C* Program.cs X (1]
© Program.cs > {} dotnetap s dotnetapp.Program » @ Main(string

1 using System;

2

3 namespace dotnetapp

a {

5 class Program

6 {

7 static void Main(string[] args) 1
8 { void Console.Writeline(string? value)

9 int a = 10;

10 int b = 20; value: The value to write.

11 int ¢ = a+b; _— . :
3 ! o~ Writes the specified string value, followed by the current line
12 string message = % 3

13 terminator, to the standard output stream.

14 Console.HriteLine(p

15 }n

16 l

17

18 class Person

19 {

20 public Person()

21 {

@ado ? LiveShare @& B3 dotnetapp Ln 14, Col 31 Spaces4 UTF-8 with BOM CRLF C# 2 N0

Figure 3-14. IntelliSense showing parameter hints

For languages such as C# and TypeScript or, more generally, languages that allow
for function overloads, parameter hints show the description for the parameters of each
overload. You can also scroll the list of overloads with the up and down arrow keys to
select a different overload.

Inline Documentation with Tooltips

If you hover your cursor over types, variables, and type members, Visual Studio Code
shows a tooltip that contains the documentation for the selected object. Figure 3-15

provides an example.

58

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

30 File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Co... — m] x

C Program.cs X m

5 class Program
6 {

5 static void Mainictrinall anmc) 1
g { void Console.WriteLine(string? value) (+ 17 overloads)

9 | int a
1@ int b
11 int ¢
12 string m
13 System.I0.I0Exception
14 | Console.WriteLine(message);

15)

16)

Writes the specified string value, followed by the current line terminator, to
the standard output stream.

Exceptions:

18 class Person

19 {
20 public Person()

21 {

®@3Mo LveShare & BPldotnetapp Ln14, Col 25 Spaces:4 UTF-BwithBOM CRLF c# & 0

Figure 3-15. Tooltips provide quick, inline documentation

Like parameter hints, this feature is available only if the documentation has been

implemented

Note If you hover your cursor over a variable name, the tooltip shows only the
type for the variable.

59

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Go to Definition and Peek Definition

Visual Studio Code provides another interesting feature called Go fo Definition. If you
hover your cursor over a symbol and press Ctrl (or 38 on macOS), the symbol appears
as a hyperlink; also, a tooltip shows the code that declares that symbol. If you click the
type name while pressing Ctrl, you will be redirected to the code that defines that type.
Figure 3-16 shows how the code editor appears when you press Ctrl and hover over a

ty})e name.

)Q File Edit Selection View Go Run Terminal Help Program.cs - webapp - Visual Studio Code — a X
C* Program.cs X i
C Pro nes > {} yram > €@ CreateH iild ring[

b 1s1ng M1 : _Extens - gurati
7 using Microsoft.Extensions.Hosting;
g R et Erotactaroi spine
9
10 namespace webapp
11
12 public class Program
13 {
14 public static void Main(string[] args)
15 {
16 CreateHostBuilder(args).Build().Run();
17 } T
18
19 public static IHnstBuild?r CreateH public ciass Startup gs) =»
20 Host.CreateDefaultBuilder(args
21 .ConfigureWebHostDefaults(
22 { class webapp.Startup
23 webBuilder.UseStartup<Startup>();
24 3
25 }
26}
27

®oM0o #LiveShare @& Bwebapp Ln23, Col47 Spacess4 UTF-8 CRIF c# & (2

Figure 3-16. Ctrl+ hovering over a type enables Go to Definition

60

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

The same tool is available if you select a type name and press F12 or if you right-
click a type name and then select Go to Definition from the context menu. This is an
extremely useful feature that lets you quickly browse between type definitions that are in

different code files.

Note For C#, Go to Definition can also open the definition of a type exposed by
the .NET Core libraries and any NuGet package that includes the type definition
information, not just your code.

Now suppose that you have dozens of code files and want to see or edit the definition
of a type you are currently using. With other editors, you would search among the code
files, which not only can be annoying but also moves your focus away from the original
code. Visual Studio Code brilliantly solves this problem with a feature called Peek
Definition.

You can simply right-click a type name and then select Peek » Peek Definition (the
keyboard shortcut is Alt+F12); an interactive pop-up window appears, showing the code
that defines the type, giving you not only an option to look at the code but also of direct
editing. Figure 3-17 shows the Peek Definition window in action. You can press Esc to
quickly close the Peek Definition window as an alternative to clicking the Close button.

61

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

3] File Edit Selection View Go Run Terminal Help DemoFile.cs - webapp - Visual Studio Code = o X

C* DemoFile.cs X O
© DemofFile.cs > %8 DemcfFile
1 using webapp;

2 public class DemoFile —

{

4 private Startup appStartup;
.
DemofFile.cs CA\Temp\webapp - References (3) X
1 using webapp; ~ DemofFile.cs 2

; rivate Startup appStartup;
2 public class DemoFile P "R P

3 ¢ appStartup = new Startup();
> Program.cs 1

a ! private Startup appStartup; [l

5

6 public DemoFile()

7 {

8

9 appStartup = new Startup();

1@ j
11 §

5

6 public DemoFile()

1 7 {

8

9 appStartup = new Startup();

16 }

®oho &lveshare @ Flwebapp Ind,Col 17 Spaces:d4 UTF8 CRIF cf & (2

Figure 3-17. Working on a type defined in another file with Peek Definition

As you can see, the Peek Definition window is very similar to the Find All References
feature, and it still shows the file name that defines the type at its top. Simply click the file
name to open the code file in a separate editor.

Go to Implementation and Peek Implementations

Sometimes you might need to understand how many times and where an interface or an
abstract class has been implemented.

Though you can accomplish this by finding a type’s references (see the next section),
Visual Studio Code now offers more convenient ways that work similarly to Go to
Definition and Peek Definition, respectively called Go to Implementation and Peek
Implementations. You can right-click an interface or abstract class definition and then
select Go to Implementation or Peek » Peek Implementations. Both actions bring up

62

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

an interactive, nested editor that shows the list of implementations of the selected type
on the right, and the code for the first occurrence of the implementation, as you can see
in Figure 3-18.

3] File Edit Selection View Go Run Terminal Help IDemoFile.cs - webapp - Visual Studio Code = O X

C* IDemoFilecs X @

€ IDemcFile.cs > *© IDemofFile

1 public interface IDemiile

Order.cs C\Temp\webapp - Implementations (2) X

— DemoFile.cs 1

x c;l.ass BRER : IDemoFile public class DemoFile: IDemoFile

~ Order.cs 1
3 public int Counter { get; set; } class Order : IDemoFile
4 3
2
3 int Counter { get; set; }
4 }

®oMho Flveshare @ Flwebapp Ln1,Col23 Spaces:d4 UTF8 CRIF c# & (2

Figure 3-18. Navigating among type implementations

The difference between the two actions is the following: with Go to Implementation,
when you click an implementation in the list, VS Code opens a new editor window
pointing to the file that contains the implementation; with Peek Implementations, when
you click an implementation in the list, it is displayed in an interactive pop-up window
similarly to how Peek Definition works.

Finding References

You will often need to know where types or members have been used across your code,
and Visual Studio Code provides two nice tools to retrieve references.

63

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

The first tool is called Find All References, which you might already be familiar with
if you have experience with Visual Studio on Windows. There are different options to run
this tool: you can right-click a type or member name and then select Find All References
or you can press Shift+Alt+F12 (Option+Shift+F12 on macOS). Figure 3-19 shows an
example based on finding all references of a type called Startup.

3] File Edit Selection View Go Run Terminal Help Program.cs - webapp - Visual Studio Code = O X
VD = @ C Program.cs X @
3 results in 2 files € Program.cs
iv lGEEspaLE weuapp Wi
~ € DemofFile.cs 11 { ¥
private Startup appStartup;
appStartup = new Startup(); 12 public class Program
~ € Program.cs 13 {
UseStartup <Startup> () X ;
P R0 14 public static void Main(string[] args)
15 {
16 CreateHostBuilder(args).Build().Run();
17 }
18
C'E]'ﬂ 19 public static IHostBuilder CreateHostBuilder(stri
20 Host.CreateDefaultBuilder(args)
21 .ConfigurellebHostDefaults(webBuilder =>
22 { -
23 webBuilder.UseStartup<Startup>();
24 s
25 }
26 ¥

27|

@oMho & Liveshare & Plwebapp Ln27,Col1 Spaces:4 UTF-8 CRLF c¢¥ & (2

Figure 3-19. Finding all references of types and members

The References panel opens on the left side of the screen and shows a list of
references grouped by code file, together with the total number of references and of code
files involved. It also adds a new entry to the Side Bar that is disabled once you close
the References panel. The occurrences are highlighted; when you click one of them, an
editor opens on the file that contains the selected occurrence, which will be highlighted
inside the code.

64

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

There is also another tool called Go to References (Shift+F12), which works inside
the active editor window. You enable Go to References either by right-clicking the object
name and then selecting Go to References or by clicking the number of references at the
top of the member definition (see Figure 3-19). You can use the first option anywhere
in the code, whereas you can use the second option only when the type or member
definition is focused in the code editor.

The user interface for Go to References is the same as for Find All References. Visual
Studio Code also provides another useful tool to find type and member references,
called Peek References. You can enable this tool by right-clicking an object name and
then selecting Peek » Peek References. As the name implies, Peek References displays
all the references in the active editor, inside an interactive panel similar to what you saw
previously with Peek Definition. Figure 3-20 shows an example, again based on finding
all references of a type called Startup.

3] File Edit Selection View Go Run Terminal Help DemoFile.cs - webapp - Visual Studio Code = o X

C* DemoFile.cs X O
€ DemoFilecs > %
1 using webapp;

2 public class DemoFile —

3

4 private Startup appStartup;
.
DemoFile.cs C\Temp\webapp - References (3) x
1 using webapp; ~ DemofFile.cs 2

: % 3 private Startup appStartup;
2 public class DemoFile
appStartup = new Startup();

3
> Program.cs 1
a private Startup appStartup; [l
5
6 public DemoFile()
7 {
8
9 appStartup = new Startup();
1@ j
11 §
5
6 public DemoFile()
1 7 {
8
9 appStartup = new Startup();
16 }

®oho &lveshare @ Flwebapp Ind,Col 17 Spaces:d4 UTF8 CRIF cf & (2

Figure 3-20. Finding references with Peek References

65

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Ifyou click an occurrence in the list on the right, the code editor opens a pop-up
window containing the code where that occurrence has been found. It is very important
to note that this pop-up window is interactive, which means that you can edit the code
directly without the need to open the containing code file separately. This enables you
to keep your focus on the code, saving time. Also, notice that the interactive pop-up
window shows, at the top, the file name that contains the selected reference.

Similar to Find All References is Find All Implementations, which makes it easy to
find implementations of an interface or abstract class. Figure 3-21 shows an example
where an interface called IPerson is implemented by two classes, Person and Employee.
Find All Implementations shows in a tree view all the implementations of the interface
and highlights the class definition in the code editor.

’Q File Edit Selection View Go Run Terminal Help Program.cs - hellocode - Visual Studic Code [Administrator] —= (] x

REFERENCES: IMPLEMENTATIONS B o= a8 € Program.cs X m

2 results in 1 file € Program.cs » {} hellocode > % hellocode.Employee
18

~ € Program.cs

public class Person : IPerson 19 public class Person : IPerson
public class Employee : IPerson X 20 {
21 public string FullMame { get => throw ne
32 }
23
24 ® public class Employee : IPerson
25 { L.
B} 26 public string FullMame { get => throw nel
27 }
28
29 public interface IPerson
30 {
il string FullName {get;set;}
32 T
2 33 [k
34
@oAo £ LveShare @ Elhellocode Ln24,Col 31 Spaces:4 UTF-BwithBOM CRLF c# & 0

Figure 3-21. Finding all type implementations

66

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Renaming Symbols and Identifiers

Renaming a symbol is a frequent task, so Visual Studio Code offers a convenient way to
accomplish this. If you press F2 over the symbol you wish to rename or right-click and
then select the Rename Symbol command, a small interactive pop-up box appears.
There you can write the new name without any dialogs, keeping your focus on the code.

Figure 3-22 shows an example based on a symbol called app.

3] File Edit Selection View Go Run Terminal Help IDemoFile.cs - webapp - Visual Studio Code = O X
@ EXPLORER C* |DemoFilecs X Cr Dx m
> OPEN EDITORS € IDemofFile.cs > »0 IDemoFile > 4% Counter
~ WEBAPP fe
3 bin 1 public interface IDemoFile
> obj 2 { =
Proj ies = i
SRR 3 int Counter { get; set; }
appsettings.Development.json r
il el e b 4) NewCounter
appsettings.json i
© DemoFile.cs
C* IDemoFile.cs
C* Order.cs
C* Program.cs
C* Startup.cs
& webapp.csproj
REFACTOR PREVIEW /S = X

public int NewCounter { get; set; }

> OUTLINE
» NPM SCRIPTS
®@oMo & Lliveshare @ Plwebapp Ln3,Col14 Spaces:4 UTF-8 CRLF c# & [

Figure 3-22. Renaming symbols

If you press Shift+Enter before renaming, Visual Studio Code shows a preview of how
symbols will be renamed (see the REFACTOR PREVIEW tab at the bottom of Figure 3-22).
Toolbar buttons in the tab enable you to accept changes (Apply Refactoring button) and
reject changes (Discard Refactoring button).

67

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

By pressing Enter, all references of that symbol will be renamed accordingly.
Additionally, you can rename all the occurrences of an identifier. You simply right-click
the identifier, then select Change All Occurrences (or press Ctrl+F2 on Windows/Linux
and 38+F2 on macOS); all the occurrences will be highlighted and updated with the new
name as you type.

Live Code Analysis

With C#, TypeScript, and languages whose support can be enhanced via extensions
like Python, Visual Studio Code can detect code issues as you type, suggesting fixes and
offering code refactorings. This is one of the most powerful features in this tool, which
is something that you will not find in most other code editors. The next examples are
based on the C# programming language, since (together with TypeScript) this supports
the richest experience possible in Visual Studio Code, and therefore it is a good choice
to discuss the powerful coding features available. Of course, everything discussed here
applies to all other languages that support the same enhanced features.

According to the severity level of a code issue, Visual Studio Code underlines with
squiggles the pieces of code that need your attention. Green squiggles mean a warning;
red squiggles mean an error that must be fixed. If you hover over the line or symbol
with squiggles, you get a tooltip that describes the issue. Figure 3-23 shows two code
issues, one with green squiggles (an unused local variable) and one with red squiggles (a
symbol that does not exist).

68

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

3] File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code = =] X
C Program.cs X m
€ Program.cs > {} dotnetapy %s dotnetapp.Program > @ Main(string[] arg
1 using System; s
2
3 namespace dotnetapp
4
5 cl‘ass Program —I
6 {
7 static void Main(string[] args)
8 {
9 int anInteger;
1@ Console. lwriteLine(_rﬂg'sl\iggk) 5
11 }
12 }
13

PROELEMS @@ DEEUG CONSOLE Filter (e.g. text, **/™.ts, I**/node_modules/** 7 & ~ x

~ € Program.cs (2
& The name ‘message’ does not exist in the current context [dotnetapp] csharp(CS0103) [10

The variable ‘aninteger’ is declared but never used [dotnetapp]

@1M1 Blveshare & Bldotnetapp Ln10.Col37 Spaces4 UTF-8withBOM CRIF c¥# & Q

Figure 3-23. Code issue detection as you type

Code issues are detected as you type and they are also listed in the Problems panel.
Look again at Figure 3-23 and note the icon with the shape of a light bulb. This icon
is a shortcut for a tool called Light Bulb. When you click the icon, Visual Studio Code
shows possible code fixes for the current context. For example, Figure 3-24 shows the
suggestions that the Light Bulb provides to fix the missing symbol underlined with red
squiggles.

69

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

¥ File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code = =] X
C Program.cs X m
€ Program.cs > {} dotnetapy %s dotnetapp.Program > @ Main(string[] arg
1 using System; -
2
3 namespace dotnetapp
4 4
5 class Program
6 { -I
7 static void Main(string[] args)
8 {
9 int anInteger;
1@ Console.WriteLine(message);
11 =
12 Generate variable ‘message’ -> Generate field ‘Program.message’
13 Generate variable ‘messag y field ‘Program.message’
14} . .
ic messa > property ‘Program.message

message cal ‘'message’

variable ‘message’ -> Generate parameter ‘message’

@1M1 Blveshare & Bldotnetapp Ln10.Col37 Spaces4 UTF-8withBOM CRIF c# & Q

Figure 3-24. Potential fixes suggested by the Light Bulb

In this particular case, the editor suggests five options: create a field, create a
read-only field, create a property, create a local variable, or create a parameter. In this
particular case, a field would be created as follows:

private static bool welcomeMessage;
A property would be generated like this:
public static bool welcomeMessage { get; private set; }

Probably bool is not the type you would expect here, but Visual Studio Code does
not have enough information to infer a different type so it will generate one based on
the type parameter accepted by the first overload of the method, which is bool for
WritelLine. However, when the code contains some information that Visual Studio Code
could use to understand the proper type, it generates properties, fields, local variables,
and parameters of the expected type. With the Light Bulb, it is also easier to generate

70

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

types on the fly. Figure 3-25 shows an example based on an object called person, for
which a type has not been defined yet. As you can see, for this context the code editor
shows a larger list of possible fixes, including generating a new class, either in the current
file or in a separate file, including the option of a nested class.

¥ File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code = =] X
C Program.cs X m

© Program.cs > {} dotnetapp > ¢ dotnetappProgram > § Main(string[] args

using System;

|
2
3 namespace dotnetapp
4

{
5 class Program
6 { _{
7 static void Main(string[] args)
8 {
9 int anInteger;
18 Console. le'riteLi.ne(_Eg'r‘ign_. ToString())};
11
12 Generate variable ‘person’ -> Generate field ‘Program.person’
13 Generate variable ‘person’ -> Generate read-only field "Program.person
14]
15 Generate variable ‘person’ -> Generate property "Program.person’

Generate variable 'person’ -> Generate local "person

variable ‘person te parameter ‘person’

‘person’ in new file

Generate type "person erate class "person’

Generate type "person’ -3 erate nested class ‘person’

Change "person’ to "Version'.

@1M1 Blveshare & Bldotnetapp Ln10.Col32 Spaces4 UTF-8withBOM CRIF c# & Q

Figure 3-25. Generating types on the fly

The Light Bulb also can help you refactor your code and keep it cleaner. For example,
you can click any of the using directives (or equivalent in other languages) and, when
the Light Bulb appears, you can see how it offers to remove unused code, as shown in
Figure 3-26.

71

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

)Q File Edit Selection View Go Run Terminal Help Program.cs - dotnetapp - Visual Studio Code

C* Program.cs X

C* Program.cs > ...

1 na CSyuctam:
2 sing System.Text;

3

. T——
5 A

6 class Program

7 {

Figure 3-26. Code refactoring made easy

Actually, the Light Bulb tool offers even more power. Suppose you want to create a
class that implements the IDisposable interface. As you can see in Figure 3-27, the code
editor cannot find the definition of such interface and shows a red squiggle, but the Light
Bulb provides shortcuts for quickly fixing this issue. For example, it suggests adding a
using System; directive, which is what the code needs.

)G File Edit Selection View Go Run Terminal Help Person.cs - dotnetapp - Visual Studio Code

C* Program.cs C* Personcs X

C* Person.cs > 4g Person

T
System.IDisposable
Generate type 'IDisposable’ -> Generate interface 'IDisposable’ in new file

Generate type ‘IDisposable’ -> Generate interface 'IDisposable’

Figure 3-27. Adding missing directives

At this point, IDisposable is still underlined with a red squiggle because the code is
not implementing the interface yet. When a code issue is detected on the usage of a type,
you can hover your cursor over the underlined code and see an informational tooltip, as
demonstrated in Figure 3-28.

72

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

%] File Edit Selection View Go Run Terminal Help « IDemoFile.cs - helloweb - Visual Studio Code [Administrator] =] X
C* IDemoFilecs ®]
1

€ IDemcFile.cs > {} helloweb > % helloweb.Person
1 a8
2 namespace helloweb The type or namespace name 'IDispecsable’ could not be found (are you
3 { missing a using directive or an assembly reference?)
a [helloweb] csharp({C58246)

referen View Problem (Alt+FB8) No quick fixes available I

5 public class Person: IDisposable =l
6 { |
2 |
8 l

@340 A lLiveShare @ B helloweb Ln7.Col1 Spacess4 UTF-8 CRIF C# & Q

Figure 3-28. Informational tooltips about code issues

Tooltips disappear when you move the cursor off the issue, but you can click Peek
Problem and dock the error description inside a red box that stays in the code editor. If
you still have the Light Bulb enabled, you will see how the code editor suggests potential
fixes based on the current context, such as implementing the interface in different ways
(see Figure 3-29).

73

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

%] File Edit Selection View Go Run Terminal Help « IDemoFile.cs - helloweb - Visual Studio Code [Administrator] =] X
C* IDemoFilecs @]

€ IDemoFilecs > {} helloweb >

o

% helloweb.Person

using System;

{

2
3
4 namespace helloweb
5
6

7 ® public class Person: IDisposable

9 Implement interface

Implement interface with Dispose pattern
Implement all members explicitly
Implement interface explicitly with Dispose pattern

Generate constructor "Person()’

@340 A lLiveShare @ B helloweb Ln7.Col33 Spaces:4 UTF-8 CRIF C# & Q

Figure 3-29. The Light Bulb provides suggestions based on the current context

Just to give you an idea of the power of this tool, following is the code that is
generated if you choose the Implement interface with Dispose pattern option:

using System;

public class Person: IDisposable

{
#iregion IDisposable Support

private bool disposedValue = false; // To detect redundant calls

protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)

74

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

// TODO: dispose managed state (managed objects).
}

// TODO: free unmanaged resources (unmanaged objects)
// TODO: set large fields to null.
disposedValue = true;

}

// // TODO: override a finalizer only if Dispose(bool disposing) above
has code to free unmanaged resources.
// ~Person() {

// Do not change this code. Put cleanup code in Dispose(bool
disposing) above.
// Dispose(false);
/1 }

// This code added to correctly implement the disposable pattern.
public void Dispose()

{
// Do not change this code. Put cleanup code in Dispose(bool
disposing) above.
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
#endregion

You would get a similar result, but with different implementation, if you choose
one of the other possible code fixes. Though it is not possible to show examples for all
the code fixes that Visual Studio Code can apply, what you have to keep in mind is that
suggestions and code fixes are based on the context for the code issue, which is a very
powerful feature that makes Visual Studio Code a unique editor.

75

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Summary

Visual Studio Code is a code-centric tool that supports out of the box a wide variety of
languages, offering coding features such as syntax colorization, delimiter matching, code
block folding, multicursors, code snippets, and code completion that are common to all
the supported languages.

In addition, languages such as TypeScript and C# provide the so-called evolved code
editing experience via integrated tools such as IntelliSense, Go to Definition and Peek
Definition, Find All References, and the extremely powerful Light Bulb that detects code
issues as you type and suggests potential fixes based on the context.

Now that you have knowledge of the powerful coding features that Visual Studio
Code offers, it is time to see how to use them with individual source code files and
structured folders in Chapter 4.

76

CHAPTER 4

Working with Files
and Folders

Being the powerful editor it is, Visual Studio Code provides a convenient way of working
with code files and folders containing both loose files and projects. In this chapter you
will learn how to work with individual files, with folders containing source code files, and
with workspaces. You will also learn about VS Code’s independence from proprietary
project systems as well as its built-in support for a few popular project types.

Visual Studio Code and Project Systems

Visual Studio Code is file and folder based. This means that you can open one or more
code files distinctly, but it also means that you can open a folder that contains source
code files and treat them in a structured, organized way. When you open a folder, Visual
Studio Code searches for one of the following files to organize a structured view of the list
of files in the folder:

o Tsconfig.json
e Jsconfig.json
o Package.json
o Project.json

e .sln Visual Studio solutions for and .csproj project files for .NET with
the C# extension installed

77
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_4

https://doi.org/10.1007/978-1-4842-6901-5_4#DOI

CHAPTER 4 WORKING WITH FILES AND FOLDERS

If VS Code finds one of these files, it is able to organize the file structure into a
convenient editing experience and can offer additional rich editing features such as
IntelliSense and code refactoring. If a folder only contains source code files, without any
of the aforementioned .json or .sln files, it still opens and shows all the source code files
in that folder, providing a convenient way to switch between all of them. This chapter
describes how to work with individual files and with folders in Visual Studio Code, and
more details about how it manages projects will be provided in the subsection “Working
with Folders and Projects.”

Working with Individual Files

The easiest way to get started editing with Visual Studio Code is to work with one code
file. You can open an existing supported code file with File » Open (Ctrl+O or 38+0 on
macOS). Visual Studio Code automatically detects the language for the code files and
enables the proper editing features. In addition, it checks if an extension is available

on the Marketplace for the selected language and, if so, offers to install it to improve

the editing experience. Of course, you can certainly open more files and easily switch
between files by pressing Ctrl+Tab (or A+Tab on macOS). As you can see in Figure 4-1, a
convenient pop-up box shows the list of open files; by pressing Ctrl+Tab, you can browse
files and cycle through the files in the list, and when you release the keys, the selected file

becomes the active editing window.

78

CHAPTER 4 WORKING WITH FILES AND FOLDERS

)IG File Edit Selection View Go Run Terminal Help MotifyTaskCompletion.cs - Visual Studio Code [Administ... — (m] x

: C i ior A \adelsole o C.Diait: IMAE .
© NotifyTaskCorr MotifyTaskCompletion.cs C:\Users\adelsole\source\repos\FMC.Digital MVVM\FMC Digit... m
€ RelayCommand.cs C\Users\adelsole\source\repos\FMC.DigitalMVVM\FMC.Digital.... X

¢ > Users > adels_.. .Completion.c

9 [/ <summary>
10 /// Factory for task completion notifiers.
11 /1] </summary>
12 public static class NotifyTaskCompletion
13 {
14 /[<summary>
15 /// Creates a new task notifier watching the specified task.
16 /1] </summary>
17 /// <param name="task">The task to watch.</param>
18 /// <returns>A new task notifier watching the specified task.</returns>
19 public static INotifyTaskCompletion Create(Task task)
20 {
21 return new NotifyTaskCompletionImplementation(task);
22 }
23
24 /] <summary>
25 /// Creates a new task notifier watching the specified task.
26 [/ </summary>
27 /// <typeparam name="TResult">The type of the task result.</typeparam>
28 /// <param name="task">The task to watch.</param>
29 /// <returns>A new task notifier watching the specified task.</returns>
38 public static IMotifyTaskCompletion<TResult> Create<TResult>(Task<TResult> t
31 {
32 return new NotifyTaskCompletionImplementation<TResult>(task);
L 33 }
34
35 /1] <summary>
36 I /// Executes the specified asynchronous code and creates a new task notifier

@o0MA0 £ Live Share Ln1,Col1 Spacess4 UTF-8withBOM CRLF c# & [0

Figure 4-1. Quickly navigating between open editors

You can close an editor simply by clicking the Close button in the upper-right corner
of each tab, or by using File » Close Editor. You can also quickly close all open editors
with the Close All command in the top-right options, under the ... shortcut.

Note InVisual Studio Code terminology, it is common to refer to open files as
active editors or open editors. This is because editor windows are not limited to
code files, but can also display documentation files or provide formatted previews
of the content of other types of files (e.g., images and spreadsheets).

79

CHAPTER 4

WORKING WITH FILES AND FOLDERS

Creating Files

You have several ways to create a new file:

Via File » New File
By pressing Ctrl+N (38+N on macOS)
By using the New File shortcut on the Welcome page

By clicking the New File button in the Explorer bar when a folder is

currently opened

By default, new files are treated as plain text files. To change the language for a new
file, click the Select Language Mode item in the right corner of the Status Bar, near the
smile icon. In this case, you will see Plain Text as the current mode, so click it. As you can
see in Figure 4-2, you will be presented with a list of supported languages from which
you can select the new language for the current file. You can also start typing a language

name to filter the list.

) File Edit Selection View Go Run Terminal Help Untitled-1 - Visual Studio Code - o X

Untitled-1 X | Select Language Mode

1

Azure CLI Scrapbook (azcli)
ER Batch (bat)
CC
C* C# (csharp)
G C++ (cpp)
CSS (cs5)
@ Clojure (clojure)
% CoffeeScript (coffeescript)

@oMo *g? Live Share Ln1.Col1 Spaces:4 UTF-8 CRLF Plain Text I

Figure 4-2. Selecting the language for a new file

80

CHAPTER 4 WORKING WITH FILES AND FOLDERS

When you select a new language, the Select Language Mode item is updated with
the current language, and the editor enables the supported features for the selected
language, such as syntax colorization, word completion, and code snippets.

Obviously, you can change the language of any open code file, not just new files.

File Encoding, Line Terminators, and Line Browsing

Visual Studio Code allows you to specify an encoding for new and existing files. Default
encoding for new files is UTF-8. You can change the current encoding by clicking the
Select Encoding item in the Status Bar (in the previous figures, it is represented with
UTF-8, the current encoding). You are first asked to select an action between Reopen
with Encoding and Save with Encoding. Click the first option to be presented with a
long list of supported encodings and a search box where you can filter the list as you type
(see Figure 4-3).

i) File Edit Selection View Go Run Terminal Help Untitled-1 - Visual Studio Code - O X
Untitled-1 kelect File Encoding to Save with m -
1 UTF-8 utfs
UTF-8 with BOM utf8bom
UTF-16 LE utf16le

UTF-16 BE utf16be

Western (Windows 1252) windows1252
Western (ISO 8859-1) is088591
Western (IS0 8859-3) is088593
Western (ISO 8859-15) iso885915

oMo & Live Share Ln1,Col1 Spacess4 UTF-8 CRLF PlainTet & (%

Figure 4-3. Selecting the file encoding

Similarly, you can change the line terminator by clicking the Select End of Line
Sequence item (in previous figures it’s represented by CRLF). Visual Studio Code
supports CRLF (Carriage Return and Line Feed) and LF (Line Feed), and the default
selection is CRLE. On Windows, the default sequence is CRLE while on macOS and

81

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Linux it is LE You can also move fast to a line of code by clicking the Go to Line item,
represented by the line number/column group in the Status Bar. This opens a search
box in which you can type the line number you want to go to, and the line of code is
immediately highlighted as you type (see Figure 4-4). When you press Enter, the cursor is
moved to the start of the selected line.

:-Q File Edit Selection View Go Run Terminal Help Startup.cs - webapp - Visual Studio Code — O X

C* IDemoFile.cs :;35{ o

C Startup.cs > Go to line 35. nment env)

22 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
23 {
24 if (env.IsDevelopment())
25 {
26 app.UseDeveloperExceptionPage();
27 }
28
29 app.UseRouting();
3e
31 app.UseEndpoints(endpoints =>
32 {
33 endpoints.MapGet("/", async context =>
34 { H
35 await context.Response.WriteAsync("Hello World!™);
36 s
37 1
38 }
39 }
1 49 ¥
41

@oMho S Lveshare @ Ewebapp Ln34,Col 18 Spacesid UTF8 CRLF C# & [

Figure 4-4. Quickly moving to a specific line of code with Go to Line

Working with Folders and Projects

Unlike other development environments, such as Microsoft Visual Studio, Visual Studio
Code is folder based, not project based. This makes Visual Studio Code independent
from proprietary project systems. VS Code can open folders on disk containing multiple
code files and organize them the best way possible in the environment, and it also
supports a variety of project files. More specifically, when you open a folder, VS Code
first searches for the following:

82

CHAPTER 4 WORKING WITH FILES AND FOLDERS

e MSBuild solution files (.sln): In this case, VS Code expects to find a
.NET Core solution made of C# projects, so it scans the referenced
projects (*.csproj files) and organizes files and subfolders in the
proper way. Remember that VS Code needs the Microsoft C#
extension installed to properly treat solution files. Note that VS Code
can open any .sln solution, but full support is currently offered only for
.NET Core. An example of this scenario will be offered in Chapter 8.

o tsconfig.json files: If found, VS Code knows these represent the root of
a TypeScript project, so it scans for the referenced files and provides
the proper file and folder representation.

o jsconfig.json files: If found, VS Code knows these represent the
root of a JavaScript project. So, similarly to TypeScript, it scans
for the referenced files and provides the proper file and folder

representation.

e package.json files: These are typically included with JavaScript
projects and .NET Core projects, so VS Code automatically resolves
the project type based on the folder’s content.

o project.json files: If found, VS Code treats the folder as a .NET Core project.

Note Opening a .sln, .csproj, or .json file directly will result in editing the content
of the individual file. For this reason, you must open a folder, not a solution or a
project file.

Additional project systems might be supported via extensibility. If none of the
supported projects is found, Visual Studio Code loads all the code files in the folder as
aloose assortment, organizing them into a virtual folder for easy navigation. Now let’s
explore how to work with folders and supported projects in Visual Studio Code, with
corresponding examples.

Opening a Folder

You open a folder via File » Open Folder or via the Open Folder shortcut on the
Welcome page. You can also drag and drop a folder name from Windows Explorer or
macOS Finder onto Visual Studio Code.

83

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Note On Windows, the VS Code installer also provides an option to enable a
shortcut called Open With Code when you right-click a folder or file name in File
Explorer.

Whatever folder you open, VS Code creates a structured view in the Explorer bar,
where it shows all files and subfolders that belong to the main folder. Figure 4-5 shows an

example based on a TypeScript project.

] File Edit Selection View Go Run Terminal H
EXPLORER
> OPEN EDITORS
~ REACT-TYPESCRIPT-TODO-LIST-MASTER
> .wscode
v img
& 190901todo.gif
v public
* favicon.ico
<> index.html
& logo192.png
& logo512.png
{} manifestjson
robots.txt
v sic
TS App.tsx
J5 index.js
I5 serviceWorker.js
% _gitignore
{} package-lockjson
package json
® README.md

4 yarn.lock

Figure 4-5. The structured view of files and folders in Explorer

The root container is the folder name. Nested you see files and subfolders, and you
can expand each subfolder to browse every file it contains. Simply click a file to open an

editor window on it.

84

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening .NET Solutions

When you open a folder that contains a .NET solution based on the MSBuild project
system (.sln file) or a C# project (.csproj file), Visual Studio Code organizes all the code
files into the Explorer bar and enables all the available editing features for C#. Figure 4-6
shows an example.

] File Edit Selection View Go Run Terminal Help Startup.cs - wabapp - Visual Studio Code = g X
@ EXPLORER =5 © Startupcs X 11
» OPEN EDITORS © Startuy ihow
 WEBAPP 1 t [
F VSCOO0e

on 5 using Microsoft.AspNetCore.Builder; -
6 using Microsoft. AspletCore.Hosting;
7 using Microsoft.AspletCore.Http;
& using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;

11 namespace webapp

12 |
1 public class Startup
1 {
15 // This method gets called by the runtime. Use this method to add services to t
1 // For more information on how to configure your application, wisit https://go.
17 public void ConfigureServices(IServiceCollection services) g
18 {
19 3
21 f/ This method gets called by the runtime. Use this method to configure the HT1
22 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
23 i
24 if (env.IsDevelopment())
25 {
2 26 app.UseDeveloperExceptionPage();

27 }

» OUTLINE 28

> NPM SCRIPTS 9 |} app. UseRouting();

@DoMo & LveShare & EIwebapp Ln12.Col2 Spacesd UTF-8 CRIF ce¢ & (2

Figure 4-6. A .NET solution opened in Visual Studio Code

Notice how the root level in Explorer is the project name. You can browse folders,
browse code files, and edit anything that Visual Studio Code can properly recognize. It is
worth mentioning that VS Code can certainly open any MSBuild solution, not only .NET
Core solutions, but it is only able to run and debug .NET Core applications, not .NET
Framework solutions. For instance, the most recent version of .NET Core allows creating
Windows Presentation Foundation (WPF) and Windows Forms projects; Visual Studio
Code and the C# extension support opening this type of solutions as well as running and
debugging code. WPF and Windows Forms projects created for the NET Framework
can still be opened in VS Code, and you will still benefit from the structured folder view
in the Explorer bar and the full C# language support, but you will not be able to build,

85

CHAPTER 4 WORKING WITH FILES AND FOLDERS

run, and debug the code. Instead, with .NET Core you also have integrated debugging
support, which allows running, debugging, and testing code directly within VS Code.
This will be discussed in Chapter 9.

Opening JavaScript and TypeScript Projects

Similarly to .NET Core solutions, Visual Studio Code can manage JavaScript folders
by searching for jsconfig.json or package.json files. If found, Code organizes the list of
folders and files the proper way and enables all the available editing features for all the

files it supports, as shown in Figure 4-7.

] File Edit Selection View Go Run Terminal Help functionsjs - whatsapp-bot-master - Visual Studio Code - 8 X
@ EXPLORER - functionsjs % m -
» OPEN EDITORS Ik funct
-+ WHATSAPP-BOT-MASTER 1 const { default: got } = require(’got/dist/source’);

2 const fetch = require('node-feteh')

» github

2 !:’ : 3 const { getBase6d } = require(”./fetcher”)
4 const request = require(’'request’)
5 const emoji = require{ 'emoji-regex')
] const fs = require(’ fs-extra')
7
& const liriklagu = async (lagu) => {
] const response = await fetch(http://scrap.terhambar.com/lirik?word=${logu})
18 if (lresponse.ok) throw new Error(unexpected response ${response.statusText});
11 const json = await response.json()
12 if (json.status === true) return "Lirik Lagu ${lagu}i\n\n${json.result.lirik}”
13 return “[Error] Lirik Lagu ${lagu} tidak di temukan!®
14 } e
15
16
17 const quotemaker = async (quotes, author = 'EmditorBerkelas’, type = ‘random’) =» {
18 var q = quotes.replace(/ /g, '%28").replace(’\n’, "%5Cn")
19 const response = await fetch{ https://terhambar.com/aw/qgts/?kata=${q}hauthor=${autk
] if (lresponca ok) throw new Error(unexpected response ${response.statusText})
21 const jso @nY .ait response.json{)
22 if (json.status) {
23 if (json.result le= '") {
24 const basebd = await getBase64(json,result)
25 return basetd
26 }

= 27 }
indexjs 28 }
NSE 29

3@ const emojiStrip = (string) s> {

> OUTLINE 31 return string.replace(emoji, ')

» NPM SCRIPTS 32 }

@DoM0 P Live Share Ln1.Col1 Spacessd UTF-8 CALF JaaScript & 0

Figure 4-7. A JavaScript project opened in Visual Studio Code

TypeScript projects’ behavior is the same as for JavaScript, except that Visual Studio
Code searches for a file called tsconfig.json as the root.

86

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening Loose Folders

Visual Studio Code supports opening folders that contain unrelated, loose assortments
of files. VS Code creates a logical root based on the folder name, showing files and
subfolders. Figure 4-8 shows an example based on a sample folder called MyFiles that
contains files in different languages.

ﬂ Fille Edit Selection View Go Run Terminal Help Functions.vb - MyFiles - Visual Studic Code - (= | x
“ OPEN EDITORS nct
1 Public Class SomeFunctions ==]

Public Function FunctionName(ParameterList) As ReturnType
Try

~ MYFILES

© Demo Catch ex As Exception
End Try

Return ReturnType

@ End Function

Public Sub ProcedureMame(ParameterlList) T
Try

Catch ex As Exception
End Try

End Sub
9 End Class

> OUTLINE
> NPM SCRIPTS

@DoMo & Live Share Ln19,Col 10 Spaces:4 UTF-8 CRIF VsualBasic & 0

Figure 4-8. A folder containing a loose assortment of files

With this option, you can basically open any folder in VS Code and edit all supported
files, taking advantage of the code editing features for each file individually.

Working with Workspaces

Visual Studio Code has the concept of a workspace. A workspace can be thought of as a
logical container of folders.

Note If you have experience with Microsoft Visual Studio, a workspace in Visual
Studio Code can be compared to a Visual Studio solution as a container of projects.

87

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Workspaces are extremely useful to organize multiple projects and/or folders into
one place. For example, you might have a .NET Core Web API project, a JavaScript
application that consumes such API, and a folder containing documentation. Instead
of working on each folder separately, you can put them all under the same workspace
and have them all available in Visual Studio Code at the same time. Figure 4-9 shows
a workspace, called SampleWorkspace, that includes a .NET Core Web API project, a

JavaScript project, and a loose folder.

Figure 4-9. A workspace can group multiple projects and folders into one logical

container

88

] File Edit Selection View Go Run Terminal

EXPLORER
~ OPEN EDITORS
X2 Welcome
~ SAMPLEWORKSPACE (WORKSPACE)
v multeor-master
> designs
> public
© _gitignore
& config.rb
multeor.service
B multeor.sh
} package-lockjson
[} package.json
@® README.md
Is serverjs
~ webapp
» wvscode
> bin
> obj
> Properties
} appsettings.Development.json
{} appsettings.json
C* DemoFile.cs
C* IDemofFile.cs
C* Order.cs
C* Program.cs
€ Startup.cs

A wehann csnrni

> OUTLINE
> NPM SCRIPTS
®0.‘.’I\0 ’?Live Share é Ewebapp

CHAPTER 4 WORKING WITH FILES AND FOLDERS

The multeor-master folder contains the files for a sample open source project called
Multeor that you can download for instructional purposes from https://github.
com/filidorwiese/multeor. The Explorer bar shows the name of the workspace in
uppercase together with the (WORKSPACE) literal so that it’s easier to recognize it. In
the next sections, I will explain in more detail how to create and open workspaces and
what is the structure of a workspace file.

Creating Workspaces

You can create a workspace regardless of whether you already have a folder open. If
you do already have a folder open, select File » Save Workspace As and VS Code will
ask you to specify the location and file name for the new workspace. A workspace is
represented by a JSON file with the .code-workspace extension, the structure of which
will be explained shortly.

The workspace name is simply the file name without the .codeworkspace extension
and is shown in the Explorer bar (see Figure 4-9). Then you can add other folders to the
workspace by selecting File » Add Folder to Workspace. Added folders are displayed in
the Explorer bar under the workspace root.

If you do not have any folders already open, you can start either with File » Save
Workspace As or with File » Add Folder to Workspace. With the first option, you
basically create an empty workspace with a name, and then you add folders as described
in the preceding text. With the second option, you instead create an empty, untitled
workspace starting from an existing folder. In this case, in fact, the Explorer bar shows
UNTITLED (WORKSPACE) as the new workspace name. When you save the workspace
as described in the preceding text, the Explorer bar shows the new name based on the
workspace file name. Remember that workspaces are only logical containers and do not
affect the structure or behavior of your projects and folders in any manner.

Note Folders you add to a workspace can be anywhere on disk; Visual Studio
Code will group their content under the workspace root and let you work as if they
were in the same location.

89

https://github.com/filidorwiese/multeor
https://github.com/filidorwiese/multeor

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening Existing Workspaces

You can open an existing workspace via File » Open Workspace. You can also drag and
drop a workspace file name from your operating system’s file browsing program onto
the Visual Studio Code surface. Opening a .code-workspace file directly simply results
in viewing the file content, not opening the workspace. Similarly, opening a folder that
contains a .code-workspace file results in opening only the folder, not the workspace.
You can only use the specific commands described at the beginning of this paragraph.

Workspace Structure

The information of a Visual Studio Code workspace is stored inside a file with a .code-
workspace extension. A workspace file is a JSON file with a root element called folders.
This is an array of path elements, each assigned with the name of a folder that is
included in the workspace. The following JSON markup represents how the workspace
file of the example shown in Figure 4-9 looks on my machine, and will vary on your

computer:
{
"folders": |
{
"path": ".\MyFiles"
b
{
"path": "C:\\Source\\webapp"
b
{
"path": "C:\\Source\\multeor-master"
}
]
}

Notice that the full pathname of a folder is provided only if the folder is not in the
same location of the workspace file. In this case, the .code-workspace file, the webapp
folder, and the multeor-master folders are all in the same location; instead, the MyFiles
folder is located under a different folder. If you want to see for yourself the structure of a
workspace file, you can open it in Visual Studio Code via File » Open File.

90

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Summary

Visual Studio Code is file and folder based, and it allows for working with individual
files as well as with folders that contain source code files and treat them in a structured,
organized way.

Visual Studio Code also supports a number of project systems such as .NET Core,
TypeScript, and JavaScript, and it allows for creating and managing workspaces.
Workspaces are logical containers of folders that make it easy to have multiple projects
and folders under the same visual root. VS Code is not only a very powerful code
editor but also a very flexible environment that can be customized in many ways.
Customization is the topic of the next chapter.

91

CHAPTER 5

Customizing Visual
Studio Code

Visual Studio Code is an extremely versatile development tool that can be customized
and extended in many ways. In fact, you can customize its appearance, the code editor,
and key shortcuts to make your editing experience extremely personalized.

Additionally, you can install third-party extensions such as new languages,
debuggers, themes, linters, and code snippets. This chapter explains how to customize
Visual Studio Code, explaining the difference between customizations and extensions.
Then, in the next chapter, you will learn how to work with extensions.

Customizations and Extensions Explained

You can personalize the environment of Visual Studio Code with both customizations
and extensions. The difference is that extensions add new instrumentation or they add
functionalities to a tool or change the behavior of existing functionalities. Implementing
IntelliSense for a language that does not have it by default, adding commands to the
Status Bar, and adding custom debuggers are examples of extensions.

Customizations are instead related to environment settings and do not add
functionalities to a tool. Examples of popular customizations are color themes and key
bindings. Table 5-1 summarizes customizations and extensions in VS Code.

93
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_5

https://doi.org/10.1007/978-1-4842-6901-5_5#DOI

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Table 5-1. Customizations and Extensions

Feature

Description

Type

Color themes

User and workspace
settings

Key bindings

Language grammar
and syntax colorizers

Code snippets

Debuggers
Language servers

Activation

Editor

Workspace
Eventing

Evolved editing

Style the environment layout with different colors.

Specify environment preferences.

Redefine keyboard shortcuts.

Add support to additional languages with syntax colorizers.

Add TextMate and Sublime Text snippets and type repetitive
code faster.

Add new debuggers for specific languages and platforms.
Implement your validation logic for files opened in VS Code.

Load an extension when a specific file type is detected or
when a command is selected in the Command Palette.

Work against the code editor’s content, including text
manipulation and selection.

Enhance the Status Bar, working file list, and other tools.
Interact with VS Code’s lifecycle events such as open and close.

Improve language support with IntelliSense, Peek Definition,
Go to Definition, and all the advanced, supported editing
capabilities.

Customization

Customization

Customization

Customization

Customization

Extension
Extension

Extension

Extension

Extension
Extension

Extension

In this chapter, you will see how to customize Visual Studio Code by changing the

existing preferences. Then in the next chapter, you will see how to install extensions,

including extensions that add new customizations to the development environment,

such as themes and key bindings.

Customizing Visual Studio Code

In this section, you will discover how easy it is to customize Visual Studio Code by

walking through the customization types described in Table 5-1.

94

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Theme Selection

You can select among several themes to give Visual Studio Code a different look and feel.
A brief introduction to color themes was given at the beginning of Chapter 1, but now
you will get more details.

You select a color theme with File » Preferences » Color Theme or by clicking the
Settings button and then Color Theme. The list of available color themes is shown in the
Command Palette, as you can see in Figure 5-1.

> File Edit Selection View Go Run Terminal Help Welcome - Visual Studio Code —] X
’0 Welcome X | Select Color Theme (Up/Down Keys to Preview) M
Light (Visual Studio) light themes
Start Light+ (default light)

e fii PowerShell ISE
Open folder. Quiet Light
Solarized Light va, PHP, Azure, D...
Visual Studio 2019 Light
Abyss dark themes
Recent Dark (Visual Studio)
SampleWork Dark+ (default dark)
multeor-mas Kimbie Dark

uts of Vim, Subli...

MyFiles C\ Monokai

whatsapp-be Monokai Dimmed way you love
Wpfappl C . :

More... (Ctrl+R)
Learn

Find and run all commands
Help Rapidly access and search commands from the Comman...

Printable keyboard cheatsheet

Introductory videos ;
Tips and Tricks Interface overview

Product documentation Get a visual overlay highlighting the major components ...
GitHub repository

Stack Overflow

Join our Newsletter Interactive playground

Try out essential editor features in a short walkthrough

Show welcome page on startup

®oM0o # Live Share

Figure 5-1. Selecting a theme

95

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Themes are divided into light themes, dark themes, and high-contrast themes. Once
you select a different color theme, it is applied immediately. Also, you can get a preview
of the theme as you scroll the list with the keyboard. Figure 5-2 shows the Dark (Visual
Studio) theme applied to VS Code, which is a very popular choice; try out the other
themes to find one that suits you.

File Edit Selection View Go Run Terminal Help MainWindow.xaml.cs - WpfApp1 - Visual S Y =i = O X

EXPLORER € MainWindow.xamlcs X M
> OPEN EDITORS WpfApp1 > © MainWindow.xaml.cs
 WPFAPP1 1 using System; E]EK—
2 e 2 using System.Collections.Generic;
S vsconz 3 LIS:!_ﬂg System.Ling;
. 4 using System.Text;
£} launchjson 5 using System.Threading.Tasks;
~ WpfApp1 6 using System.Windows;
» bin 7 using System.Windows.Controls;
> obj 8 using System.Windows.Data;
> Properties 9 sing System.Windows.Documents;
© App.config 10 “‘*%-"E SysteM-H%ndows.Inm_lt;
11 using System.Windows.Media;
& Appxaml 3 s 2 ; o
12 using System.Windows.Media.Imaging;
€ Appxaml.cs 13 using System.Windows.Navigation;
» MainWindow.xaml 14 using System.Windows.Shapes;
€ MainWindow.xaml.cs 15
3 WpfApp1l.csproj 16 namespace WpfAppl
£ WpfAppisin 17 {
18 [/ <summary>
19 /// Interaction logic for MainWindow.xam]l
20 Hl/ </summary>
21 public partial class MainWindow : Window
22 {
23 public MainWindow()
24 {
25 InitializeComponent();
26 }
27 }
28}
29
> OUTLINE
> NPM SCRIPTS
@oMA0 £ LiveShare & Ln1,Col1 Spaces:4 UTF-BwithBOM CRLF c# & Q

Figure 5-2. The Dark (Visual Studio) theme applied to Visual Studio Code

As you might expect, applying a theme also affects colors used in the code editor so
that there is an appropriate brightness and contrast balance. In the next chapter, you will
see how to install additional themes as extensions.

96

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Customizing the Environment

In most applications, including other IDEs, you set environment settings and preferences
via a convenient user interface, and VS Code is no exception. There are two different
types of settings: user settings and workspace settings. User settings apply globally to the
development environment, while workspace settings only apply to the current project or
folder. The following subsections cover both user setting and workspace settings.

Understanding User Settings

User settings globally apply to the VS Code’s development environment. Customizing
user settings is accomplished by selecting File » Preferences » Settings. When you do
this, the settings editor appears, as represented in Figure 5-3.

> File Edit Selection View Go Run Terminal Help Settings - Visual Studio Code —] X
Settings X a9 O
Search settings

User Last synced: now

Commonly Used ‘

Commonly Used

v Text Editor
i Files: Auto Save
i Controls auto save of dirty editors. Read more about autosave here.
Font
Formatting afterDelay v
Diff Editor
Minimap Editor: Font Size
Suggestions Controls the font size in pixels.
Files 14
> Workbench
> Window
> Features Editor: Font Family

; s Controls the font family.
> Application

> Extensions Consolas, 'Courier New', monospace

Editor: Tab Size
The number of spaces a tab is equal to. This setting is overridden based on the file contents
when Editor: Detect Indentation is on.

1 4

Editor: Render Whitespace

@ oo l? Live Share

Figure 5-3. Working with user settings
97

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

On the left side of the editor, settings are grouped by category. In the Search settings
bar, you can quickly search settings based on what you type, and you can also see the
number of total settings found, which varies depending on the version of VS Code and
on the number of extensions you have installed. You can manually expand settings
categories manually, or you can just scroll the list of settings, and the related category is
automatically highlighted as you scroll. For instance, you could control the behavior of
the Explorer bar by locating and selecting Explorer under the Features category, and
there you could change the current settings, as shown in Figure 5-4.

> File Edit Selection View Go Run Terminal Help Settings - Visual Studio Code - (] *x
Settings X a9 O
Search settings

User Last synced: 1 min ago

Commonly Used
; Explorer
> Text Editor
> Waorkbench
: Auto Reveal
? Window Controls whether the explorer should automatically reveal and select files when opening
~ Features them.
Explorer
true e
Search
Debug
SCM Compact Folders
Extensions v/| Controls whether the explorer should render folders in a compact form. In such a form
: - single child folders will be compressed in a combined tree element. Useful for Java
derminal package structures, for example
Task
Problems
Output Confirm Delete
CHmranis +/| Controls whether the explorer should ask for confirmation when deleting a file via the
trash.
Remote
Timeline
Notebook Confirm Drag And Drop
> Application /| Controls whether the explorer should ask for confirmation to move files and folders via

> Extensions drag and drop.

Decorations: Badges
v'| Controls whether file decorations should use badges.

@ oMo & Live Share

Figure 5-4. Changing user settings

Similarly, you could change settings and preferences for the text editor, the whole
application, and extension settings. In fact, extensions that allow for customizing
preferences store their settings in the same place as VS Code does, so that you have a

98

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

unique settings editor. There are hundreds of settings and the number varies depending
on your configuration and installed extensions, so it’s not possible to list all settings here.
For more details about available settings, visit the official documentation (https://
code.visualstudio.com/docs/getstarted/settings).

Behind the Scenes: The settings.json File

Behind the scenes, VS Code (and extensions) stores settings inside a file called settings.
json. In this file, each key/value pair represents a specific setting and its value.

It is important to understand how this file works, so click the Open Settings (JSON)
button located above the search bar and represented by a sheet icon with a plus symbol
overlayed (the first from left to right). Figure 5-5 shows how the editor appears at this point.

] File Edit Selection View Go Run Terminal Help settings.json - Visual Studio Code - | i
Settings settingsjson X 0 O
ers » sssandrodelsole AppData > Roaming
T R i
2 "workbench.colorTheme": "Visual Studio Light",
3 "http.proxyStrictssL”: false,
4 "editor.renderWhitespace”: "none",
5 "editor.renderControlCharacters”: false,
6 "editor.minimap.enabled”: true,
7 "breadcrumbs .enabled”: true,
8 : false,
9 "editor.suggestSelection™: "first",
10 "vsintellicode.modify.editor.suggestSelection”: "automaticallyOverrodeDefaultV:
11 "files.autoSave": "afterDelay”,
12 "files.autoSaveDelay": 10000,
13 "java.configuration.checkProjectSettingsExclusions": false,
14 t alse, T
15 "window.zoomLevel": 1,
16 "mssql.connections™: [
17 {
18 "server": "{{put-server-name-here}}",
19 "database": "{{put-database-name-here}}",
20 "user": "{{put-username-here}}",
7§ "password": "{{put-password-here}}"
22 }
23]
24}

@00 £ Live Share Ln24,Col2 Spaces:4 UTF-8 CRLE JSON with Comments &7

Figure 5-5. Working with the settings.json file

99

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

As you can see, the editor for settings.json allows you to define custom settings by
overriding one or more default settings. It is worth mentioning that changes you do in
this file are at the user or workspace level only, and do not affect general settings of VS
Code. Figure 5-5 shows an example of how to change the theme, how to control white
characters, how to control characters and breadcrumbs in the code editor, and how to
enable the Minimap mode. Also, you will see how IntelliSense helps you choose among
available settings as you type. The code editor also reports errors, such as missing
commas or curly braces, as you would expect when editing a JSON file. In Figure 5-5 you
can also see that it is possible to customize settings for an extension: I have the Microsoft
SQL Server extension installed on my machine, and settings.json allows for specifying
the extension settings such as the server address and credentials. Every time you modify
a setting in the user interface, the related JSON is updated in settings.json.

IntelliSense also allows you to get more information about a given settings by clicking
the rollover, which shows hints about the setting with a convenient tooltip, exactly as
you would expect after learning about IntelliSense’s features in Chapter 3. When you are
done, do not forget to save settings.json; otherwise your changes will be lost.

A Real-World Example: Working with Proxies

If you work for an enterprise, the network probably is behind a proxy server. In this case,
you or the system administrator might need to configure Visual Studio Code to work
with the proxy. If you do not, you will not be able to download packages, extensions,
and product updates. Visual Studio Code should automatically detect proxies and ask
for your credentials, but this does not always happen, so you might need to take some
manual steps.

The first thing to do is make sure that the sites described in Table 5-2 are in the
allowed applications list of the firewall.

100

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Table 5-2. Sites to Be Allowed by a Firewall

URL

Description

update.code.visualstudio.com
code.visualstudio.com
go.microsoft.com
vscode.blob.core.windows.net
marketplace.visualstudio.com
*.gallery.vsassets.io
*.gallerycdn.vsassets.io
rink.hockeyapp.net
bingsettingssearch.trafficmanager.net
vscode.search.windows.net
raw.githubusercontent.com
vsmarketplacebadge.apphb.com

az764295.vo.msecnd.net

download.visualstudio.microsoft.com

Visual Studio Code download and update server
Visual Studio Code documentation
Microsoft link forwarding service

Blob storage for Visual Studio Code
Visual Studio Marketplace

Visual Studio Marketplace

Visual Studio Marketplace

Crash reporting service

In-product settings search

In-product settings search

GitHub repository raw file access

Visual Studio Marketplace badge service

Content Delivery Network (CDN) for Visual Studio Code
downloads

Visual Studio download service, which includes
dependencies for extensions such as C# and C++

The next step is to configure VS Code to work with the proxy. Actually, if the

http_proxy and https_proxy environment variables have been defined at the system

level, VS Code uses their values. If these variables have not been set, you must provide

the proxy address in the user settings. In the settings editor, locate Proxy under the

Application category. Then, as you can see in Figure 5-6, enter the proxy address in the

Proxy text box.

101

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

) File Edit Selection View Go Run Terminal Help Settings - Visual Studio Code - (] X
Settings X bk 11
Search settings

User Last synced: 28 mins ago

Commonly Used P
rox
> Text Editor y
> Workbench
Proxy

7 Window The proxy setting to use. If not set, will be inherited from the http_proxy and https_proxy
> Features environment variables.
v Application

idd httpy//127.0.0.1

Proxy

Update

Telemetry | Proxy Authorization

Settings Sync The value to send as the Proxy-Authorization header for every network request.

Extensions Edit in settings.json

L

| Proxy Strict S5L
Controls whether the proxy server certificate should be verified against the list of
supplied CAs.

Proxy Suppeort
Use the proxy support for extensions.

override v

System Certificates
v'| Controls whether CA certificates should be loaded from the OS. (On Windows and

@00 £ Live Share

Figure 5-6. Configuring VS Code to work behind a proxy server

If your proxy also requires an authorization header, this must be specified in the
settings.json file, so you have to click the Edit in settings.json hyperlink and then
enter the value supplied by your network administrator as the value for the http.
proxyAuthorization key. Also, check the Proxy Strict SSL checkbox if the certificate
should be verified against the list of supplied certification authorities.

Save your changes and check if Visual Studio Code is able to download extensions,
packages and libraries required by some languages, and product updates. If you still
encounter network issues, you should ask your network administrator to help you
configure the proxy settings.

102

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Note Some protection programs such as Symantec Endpoint Protection

block some Visual Studio Code installation (and update) files because they are
recognized as CryptoLocker virus instances. Obviously, these are false positives,
but you might want to talk to your network administrator to review the protection
rules for Visual Studio Code.

Privacy Settings: Telemetry

By default, Visual Studio Code anonymously collects and sends to Microsoft information
about usage, errors, and crashes. You can disable one or more of these telemetry settings
by scrolling the user settings to the Telemetry group, located under the Application
category (see Figure 5-7).

%] File Edit Selection View Go - Settings - react-typescript-todo-list-master .. ~— (m} X

TS App.tsx Settings X « am -

Search settings

User Workspace Last synced: 1 mo ago

Commoanly Used
> Text Editor
> Workbench

Telemetry

Enable Crash Reporter

> Window Enable crash reports to be sent to a Microsoft online service.
> Features This option requires restart to take effect.
~ Application
Proxy
Update Enable Telemetry)) .
Enable usage data and errors to be sent to a Microsoft online
Telemetry service. Read our privacy statement here.

Settings Sync

Figure 5-7. Managing telemetry in Visual Studio Code

The Enable Crash Reporter option allows sending crash reports to Microsoft, while
the Enable Telemetry allows sending usage data and errors. A shortcut to the privacy
policy is also available, and I recommend that you read it before enabling one or both
the options.

103

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Synchronization Settings

In Chapter 1 you learned that Visual Studio Code allows for synchronizing settings across
different installations. You have full control over items that can be synchronized through
the Settings Sync group under the Application category.

You can decide which extension will be synchronized and which not, you can
exclude specific settings from synchronization, and you can disable or re-enable
keybinding synchronization. Apart from the latter, which is managed via a simple check
box, you need to make your changes in the settings.json file. The Ignored Extensions
and Ignored Settings hyperlinks enable you to edit specific blocks of settings about
extensions and general settings, respectively. As mentioned previously, IntelliSense will
help adding the available settings. Figure 5-8 shows an example, but keep in mind that
available settings may vary on your machine, especially depending on the extensions
you have installed.

30 File Edit Selection View Go - settings,json - react-typescript-todo-list-mast... — O X
TS App.tsx Settings settingsjson X Gl 0
B » alessandrodelsole > AppData > Roaming > Code > User > settings.json > [)sett

- ER]

42 "python.languageServer": "Pylance",

43 "python.defaultInterpreterPath”: "C:\\Users\\alessandrodelsols
a4 "python.autoComplete.addBrackets™: true,

45 "python.linting.enabled": true,

46 "python.analysis.completeFunctionParens": true,

a7 "settingsSync.ignoredSettings": [

48 |

49 =" "-C_Cpp.clang_format_fallbackStyle"

50 } 57 "-C_Cpp.clang_format_path"

@ "-C_Cpp.clang_format_style"
29 "-C_Cpp.default.browse.databaseFilename"
@' "-C_Cpp.default.browse.path"
g’ "-C_Cpp.default.compileCommands"
=" "-C_Cpp.default.compilerArgs" =
=% "-C_Cpp.default.cppStandard”

9 "-C_Cpp.default.cStandard"

1 =’ "-C_Cpp.default.customConfigurationVariables"
' "-C_Cpp.default.defines"”
@ "-C_Cpp.default.forcedInclude”

Ln 48 ColS Spaces:4 UTF-8 CRLF JSON with Comments 2 0

Figure 5-8. IntelliSense helps manage synchronization settings

104

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Understanding Workspace Settings

Differently from user settings, which globally apply to VS Code’s environment,

workspace settings apply to the current workspace and folders in the workspace. As an

implication, you first need to open an existing workspace, or add an existing folder to a

new workspace, to customize workspace settings.

Next you still select File » Preferences » Settings. At this point the settings

editor shows three tabs: one for user settings, one for workspace settings, and one for

individual folders within the workspace, as demonstrated in Figure 5-9.

)q File Edit Selection View Go Run Terminal Help Settings - SampleWorkspace (Workspace) - Visual Studi.. — O P4

Settings X

0 M

I’:}ea:'ch settings

User

N

W

W

Workspace multeor-master Folder Last synced: 2 mins ago

Commonly Used
Text Editor
Workbench
Window

Features
Application

Extensions

Commonly Used
Files: Auto Save (Modified in: User)
Controls auto save of dirty editors. Read more about autosave here,

off w

Editor: Font Size
Controls the font size in pixels.

14

Editor: Font Family
Controls the font family.

Consolas, 'Courier New', monospace

Editor: Tab Size
The number of spaces a tab is equal to. This setting is overridden based on the file contents
when Editor: Detect Indentation is on.

4

Editor: Render Whitespace (Modified in: User)

® oMo %’ Live Share

® B webapp

Figure 5-9. Customizing workspace settings

105

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

You customize workspace and folders settings exactly as you do with user settings,
so you have not only a second view in the settings editor but also two other JSON files
where you can specify your preferences. More specifically, workspace settings are stored
in the .code-workspace file (you can see this in the Explorer), while folder settings are
stored in the settings.json file. The .code-workspace file is saved under the workspace
folder, while settings.json is saved under the .vscode subfolder that Visual Studio Code
creates inside the opened folder, restricting settings availability to the current folder only.

Customizing Keyboard Shortcuts

Visual Studio Code includes a huge number of keyboard shortcuts that you can override
with custom values. This is particularly useful if you are used to working with other
development tools and you want to have the same keyboard shortcuts in Visual Studio
Code.

Note In the next chapter you will learn how to download ready-to-use keyboard
shortcuts that will save you a lot of time, but it’s first important for you to know
how they actually work.

Like user and workspace settings, keyboard shortcuts are represented with JSON
markup, and each is made of two elements: key, which stores one or more keys to be
associated to an action, and command, which represents the action to invoke. In some
cases, VS Code might offer the same shortcuts for different scenarios. This is the typical
case of the Esc key, which targets a number of actions depending on what you are
working with, such as the code editor or a tool window. To identify the proper action,
keyboard shortcut settings support the when element, which specifies the proper action
based on the context. You can quickly get the list of current keyboard shortcuts by
selecting File » Preferences » Keyboard Shortcuts. At this point, Visual Studio Code
displays a nicely formatted list of commands and shortcuts, as you can see in Figure 5-10.

106

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

) File Edit Selection View Go Run Terminal Help Keyboard Shortcuts - Visual Studio Code - (] X
Keyboard Shortcuts X 9 O
‘ |Iype to search in keybindings E
Command Keybinding Source
Add Cursor Above Ctl + Alt + UpArrow Default
Add Cursor Below Ctrl + Akt + Downarrow edi Focus Default
Add Cursors to Line Ends shift + ARt + 1 Default
Add Line Comment ol + Kt | +| C &% 'editorReadonly Default
Add Selection To Next Find Match ol + D editorFocus Default
Auto Fix... Shift + Alt + . && !editorReadonly && suppo.. Default
Azure CLI: Run Line in Editor Ctrl + Shift + a editorTextFocus && editorLangld == ‘azcli® Extension
Azure CLI: Run Line in Terminal ctl + a tFocus && edi Extension
Azure CLI: Toggle Live Query cl o+ @ editorTextFocus && e Extension
C/C++: Switch Header/Source Alt + O editorTextFocus & Extension
C/C++: Switch Header/Source Alt + O editorTextFocus && editorLangld == 'c' Extension
Calls: Show Call Hierarchy shift + Alt + H editorHasCallHierarchyProvider Default
Cancel Selection Anchor Sscape editorTextFocus && selectionAnchorsSet Default
Change All Occurrences Cirl + F2 rTextFocus && editorTextFocus && !edit.. Default
Change Language Mode ctl + K M — Default
Close Exception Widget Escape exceptionWidgetvisible Default
Close Window Ctrl + shift + W — Default
Close Window cil + W leditorIsOpen && !multipleEditorGroups Default
&£ Copy Ctrl + Insert — Default
Copy Ctil + C — Default
Copy Line Down Shift + Alt + DownAmoweditorTextFocus && !editorReadonly Default
CopyLine Up shift + Alt + UpArrow editorTextFocus && !editorReadonly Default

®oM0 % Live Share

Figure 5-10. The list of current keyboard shortcuts

To customize keyboard shortcuts, all you need to do is click the Open Keyboard
Shortcuts button, represented by a sheet icon with a plus symbol overlayed, located at
the top-right corner of the window. This opens the keybindings.json file, where you can
override default shortcuts with custom ones (see Figure 5-11).

Note Remember that Visual Studio Code has (and allows for customizing)
different default keyboard shortcuts depending on what operating system it is
running on.

107

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

You can quickly add a custom keyboard shortcut by clicking the Define Keybinding
button or by using the shortcut suggested in the button text (which varies depending on

your operating system). When you do this, a pop-up box appears and asks you to specify
the keyboard shortcut, as shown in Figure 5-11.

|>Q File Edit Selection View Go Run Terminal Help

keybindings.json - Visual Studio Code [Administrater] — O X
Keyboard Shortcuts I keybindings,json X ™ @
C: » Users » adelscle > AppData > Roaming > Code » User > {} keybindingsjson
1 // Place your key bindings in this file to overwrite the defaults
2 [ol
3
4 [

Press desired key combination and then press ENTER.

ctrl+q

crrl + Q

Define Keybinding (Ctrl+K Ctrl+K)

®@oMo 4 LiveShare

Ln3, Col5 Spaces:4 UTF-8 LF JSON with Comments

Figure 5-11. Adding a keyboard shortcut

When you press Enter, the JSON markup for the new keyboard shortcut is added, as
shown in Figure 5-12.

108

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

’O File Edit Selection Miew Go Run JTerminal Help ® keybindings.json - Visual Studio Code [Administrat.. — O X
Keyboard Shortcuts (} keybindingsjson ® t O
1

C: » Users > adelsole > AppData > Roaming » Code > User > keybindings,json > @ ctrl+q
1 // Place your key bindings in this file to overwrite the defaults
21
3 {
4 "key": "ctrl+q”, i
5 "command”: "commandId”,
6 "when": "editorTextFocus"
B
g]

Define Keybinding (Ctrl+K Ctrl+K)

@ oo %’ Live Share Ln 5, Col 30 (9 selected) Spaces:4 UTF-8 LF JSON with Comments F 13

Figure 5-12. Editing the new keyboard shortcut

You need to edit the command and when elements with the command you want to map
and for which scenario. Additionally, when editing keybindings.json manually, you need
to supply the markup for both the old shortcut and the new one. For example, suppose
you want to replace the Alt+O shortcut for the C/C++ extension (Switch: Header/Source)
with Shift+Alt+0. The markup you would need to write looks like the following:

{
"key": "shift+alt+o",
"command": "C Cpp.SwitchHeaderSource",
"when": "editorTextFocus && editorlLangId == ‘cpp'"

b

109

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

{

"key": "alt+o",

"command": "-C_Cpp.SwitchHeaderSource",

"when": "editorTextFocus && editorlLangId == ‘cpp'"
}

Actually, the when element is optional. Save your changes to the keybindings.json file
to get your new keyboard shortcuts ready.

Summary

Visual Studio Code enables you to make several customizations that will help you
feel at home, especially if you are used to working with other development tools or
code editors. You can select a different color theme from a list, you can customize the
environment settings globally or for a specific folder, and you can even create custom
keyboard shortcuts.

But the very good news is that customizations can also be downloaded as extensions,
as well as new languages, debuggers, and tools. Extensibility is discussed in the next
chapter.

110

CHAPTER 6

Installing and Managing
Extensions

Extensibility is one of the key features in Visual Studio Code, because you can add
tools, languages, code snippets, debuggers, key bindings, and themes. Extensibility is
especially beneficial in the area of languages, because Visual Studio Code enables you to
extend the code editor with specific syntax support, which can also include IntelliSense,
code snippets, and code refactoring.

This all means that Visual Studio Code has open support for any language and any
tool on any platform, opening the possibilities to infinite development scenarios. This
chapter explains how to find and install extensions and how to manage extensions on

your system.

Installing Extensions

You have two ways of browsing and installing extensions: from the Visual Studio
Marketplace and from within Visual Studio Code. The Visual Studio Marketplace is a
website that contains extensions for the most popular Microsoft development tools and
services, such as Visual Studio, Visual Studio Code, and Azure DevOps. It is available at
https://marketplace.visualstudio.com, and you need to click the Visual Studio Code
tab to see a list of extensions for Visual Studio Code. Figure 61 shows the Marketplace for
Visual Studio Code.

111
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_6

https://doi.org/10.1007/978-1-4842-6901-5_6#DOI
https://marketplace.visualstudio.com

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

B | B Extensions for Visual S X |4 - (u] 4

| € - O m & httpsy/marketplace visualstudiocom vieod < S BT

dio | Marketplace

Visual Studio Visual Studio Code Azure DevOps Subscriptions Build your own Publish extensions
Extensions for the Visual Studio family of products
Search Visual Studio Code extensions
Featured
- E n’ @ @ B
change-case Live Share Whiteboa OcCaml Platform VSCode Notion Luna Paint Stripe
wmamre 402K onathan Cart 51K OCami Labs 82K Frenco 188 Janiel lmams 1K 873
*hkk ok FREE *hkkok FREE * Kk kk ok FREE h kK4 FREE *hkkok FREE FREE
Trending this week ~
2 e B 2 I

Figure 6-1. The Visual Studio Marketplace

You can search for extensions by typing in the search box, or you can browse
the groups below, such as Featured, Trending, Most Popular, and Recently Added. If
you scroll to the bottom of the page, you can also browse extensions by category or
collection. Once you have found an extension of your interest, click its name to see a
detail page. Figure 6-2 shows an example based on the C# extension by Microsoft.

112

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

1@ | B ce-visual Studio Mark % | 4 e -

<« - 0O o £ | hitpsy//marketplace visualstudio.com/items?itemName =ms-dotnettools.csharp e = L =

5 | Marketplace

C#

Microsoft | & 10,003,425 installs | Y dr % ¥+ (257) | Free

C# for Visual Studio Code (powered by OmniSharp).

Overview Version History Q& A Rating & Review
C# for Visual Studio Code (powered by OmniSharp) Categories
Programming Languages Snippets Linters
Master Release Debuggers
Tags
NET .NETCore ASPNET aspnetcorerazor C#
Welcome to the C# extension for Visual Studio Code! This extension provides the following features inside VS color-theme csharp debuggers dotnet | json
Code: .
keybindings =~ multi-root ready | smippet | theme
« Lightweight development tools for .NET Core.
« Great C# editing support, including Syntax Highlighting, IntelliSense, Go to Definition, Find All References,
Resources
elc.
- Debugging support for NET Core (CoreCLR). NOTE: Mona debugging is not supported. Desktop CLR Issues

debugging has lir

« Support for project,json and csproj projects on Windows. macO5 and Linuwe

The O nctemsing ie maumend b ConniGhaes T

Figure 6-2. Detail page for an extension

An extension’s page provides a detailed description and guidance about using
the extension, often providing links to additional documentation, resources, and the
source code (if open source). I strongly recommend that you read the detail page to
get information about what the extension includes, especially with extensions that add
language support, because it is important to know if there is support only for a new
syntax or also for IntelliSense, code snippets, and debugging.

If you click the Install button, your browser will ask your confirmation to open
the download link with Visual Studio Code. When this starts, the extension will
automatically be installed. You can also download the offline installer of the extension
for later reuse. To do so, click the Download Extension hyperlink under the Resources
group, on the right of the page. In this way you will be able to download a .vsix installer
file that you can then launch manually.

113

CHAPTER 6

INSTALLING AND MANAGING EXTENSIONS

Note

If you have experience with the Microsoft Visual Studio development
environment, you probably know that VSIX is the format used by Microsoft for
extension installer files. However, the VSIX format for Visual Studio Code is not the
same. Extensions for Visual Studio Code are packaged with a tool called vsce and
cannot work with Visual Studio 2019 on Windows or with Visual Studio for Mac.

The second way of installing extensions is from within Visual Studio Code. You can

open the Extensions bar and search for an extension and then click a specific extension

to get the details, as shown in Figure 6-3.

] File Edit Selection View Go Run Terminal Help

EXTENSH

c#

(a]
L

as

OGa

Py

©)

000

@oho &L

OMNS: MARKETPLACE Y U E
C# 1238 D 10M
C# for Visual Studio Code (powered by ...
Microsoft Install
Kite Al Code Aut... 01350 <19M % 35

Al powered autocomplete, code snippe...

Kite
C# XML Documen.., 0120 431K ¥ 45

Generate C# XML documentation com...

Kelsuke Kato
C# Extensions 131 DIETK k4

C# IDE Extensions for V5Code

jchannan
C# Snippets 1.0 D2OK k5

C# Snippets for Visual Studio Code

Jorge Serrano
eppz! (C# theme f... 1252 D174K k45
Carefully designed colors with meanings.
eppz! Install [~
Cit Extensions 13.6 K k35
C# IDE Extensions for VSCode

JosKreativ
Tabnine Autocomp.,, 323 E1EK ¥ 45

JavaScript, Python, Java, Typescript & all...

TabNine

Auto-Using for C# 0715 @ 141K % 45
Provides intellisense for and imports ref...

Fudge

Extension: C# - Visual Studio Code = =] X

Extension: C# X 11

Details Feature Contributions Changelog

C# ms-dotnettools.csharp

Microsoft | < 10.001.569 | %4k Repository | Licer
C# for Visual Studio Code (powered by OmniSharp)
[instan | e

This extension is recommended based on the files you recently opened,

C# for Visual Studio Code (powered by OmniSharp)

Master Release

build passing build passing

wallaby.js configured

Welcome to the C# extension for Visual Studio Code! This extension provides the following features
inside VS Code:

» Lightweight development tools for NET Core.

* Great C# editing support, including Syntax Highlighting, IntelliSense, Go to Definition, Find All
References, etc.

* Debugging support for NET Core (CoreCLR). NOTE: Mono debugging is not supported. Desktop
CLR debugging has limited support.

* Support for projectjson and csproj projects on Windows, macOS and Linux,

The C# extension is powered by OmniSharp.

Figure 6-3. Installing extensions from within Visual Studio Code

You can click the Install button when ready. You need to click the Reload button

(that appears once the installation completes) to enable the extension in VS Code. You

can also filter the search results; for instance, if you type category:linters in the search

box, Visual Studio Code will list all the extensions that provide linting support with

114

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

syntax colorization to specific languages. You can use the same category names you see
in the Visual Studio Marketplace.

As an alternative, you can use the Command Palette to download (and manage)
extensions. Open the Command Palette, type in ext, and a list of self-explanatory
commands related to extension management will appear. You will typically prefer
working with extensions from the Command Palette when you do not want to lose focus
on the active editor window; otherwise, using the Extensions bar’s user interface is
definitely easier.

Note Many extensions, especially extensions that provide full language support
such as C# and C/C++, rely on additional tools like debuggers and libraries. These
additional tools are usually downloaded the first time you use the extension.

For example, in the case of the C# extension, required tools and libraries are
downloaded the first time you create or open a C# file. These include libraries

to support .NET Core debugging and tools to improve the editing experience via
IntelliSense and live static analysis. Also, newly downloaded extensions might need
some initial configuration. In this case, a pop-up box will appear explaining what
you need to do to get started.

Extension Recommendations

Visual Studio Code can provide suggestions about recommended extensions based
on your activity. When you open the Extensions bar, you will see a group called
RECOMMENDED, under the list of installed extensions.

The list of recommended extensions varies on your activity and might be empty
the first time you work with Visual Studio Code. As one option, Visual Studio Code
can suggest extensions based on the file you open. For example, suppose you open a
code file written with the Go language but you do not have installed any Go extension
yet. Visual Studio Code has built-in support for the Go language syntax, so the editor
provides syntax colorization and basic word completion, but you might want to work
with a richer editing experience that includes code snippets, code navigation, and rich
IntelliSense support. In this case, VS Code will suggest that an extension is available to
help you work with Go files and will offer to install it, as represented in Figure 6-4.

115

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

] File Edit Selection View Go Run Terminal Help Directories.go - Visual Studic Code = m] X
@0 Directories.go X m
Temp » 00 Directories.go

package main

1
2
3 import (
4
5

- |
"fmt"
"io/ioutil”
6 "os"
7 “path/filepath”
8)
9
18 func check(e error) {
11 if e 1= nil {
12 panic{e)
13 3
14}
15
16 func main() {
17
18 err := os.Mkdir({"subdir", 8755)
19 check{err)
28
21 defer os.RemoveAll{"subdir")
22
23 createEmptyFile := func(name string) {
24 d := [Jbyte("")
25 check({ioutil . WriteFile(name, d, #644))
26 3
27 . " - = e
1 8 createEmptyFile("subdir/file1") Do you want to install the recommended extensions for Go? & X
38 err = 0s5.MkdirAll("subdir/parent/child”, @755) I
31 check{err)

@00 £ Live Share N8 Col2 Spacess4 UTF-8 CRF Go & (2

Figure 6-4. Extension recommendations based on the current file

You can click Install and Visual Studio Code will automatically install the extension
that it thinks to be the most appropriate, or you can click Show Recommendations to
see a list of possible extensions. In both cases, the Extensions bar will open and you
will see the list of available recommended extensions, but when you click Install, the
proposed extension will be already installing.

Useful Extensions

The Visual Studio Marketplace contains tons of useful extensions, but there is a set that
I personally recommend after using Visual Studio Code for a long time in my daily job.
Table 6-1 summarizes this set of useful extensions.

116

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Table 6-1. Recommended Extensions for Visual Studio Code

Name Description Type

C# C# full language support Language,
debugger, editing

C/C++ C and C++ full language support Language,
debugger, editing

Python Python full language support Language,
debugger, editing

Language Support for Java full language support Language, editing

Java

SQL Server (mssql) SQL Server support Language, editing,
tools

Debugger for Chrome JavaScript debugging with the Chrome browser Debugger

Debugger for Java Java debugging support Debugger
Debugger for Microsoft ~ JavaScript debugging with the Edge browser Debugger
Edge
Cordova Tools Mobile development with Apache Cordova Editing, tools
Node Debug Debug support for Node.js Debugger
Visual Studio Keymap Keyboard shortcuts based on Microsoft Visual Studio Key binding
Atom Keymap Keyboard shortcuts based on Atom Key binding
Notepad++ Keymap Keyboard shortcuts based on Notepad++ Key binding
Docker Language support for Dockerfile Language, editing,
tools
vscode-icons Colored icons for the Explorer bar Tools
GitLens Extend Git integrated features for Visual Studio Code Tools
PowerShell PowerShell scripting support Language, editing,
tools
Live Share Extension for collaborative, real-time development Tools
that shares your instance of VS Code with other
developers

117

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

As you work with Visual Studio Code on your projects and on the operating system of
your choice, you will be able to find and fine-tune extensions that will help you be more
productive.

Managing Extensions

The Extensions bar allows you to quickly manage extensions. It shows the list of installed
extensions, as shown in Figure 6-5. Then, for each extension, the button with the gear
icon opens a pop-up menu that contains commands for disabling or uninstalling an

extension.
] File Edit Selection View Go Run Terminal Help Extension: C/C++ - Visual Studio Code = a X
EXTENSIONS ¥ O 00 Directories.go Extension: C/C++ X m

Search Extensions in Marketplace

Cfc 4 4 ms-vscode.cpptools

~ INSTALLED 32 7
e Fctione 0 S Microsoft | @ 16939.066 | * k%% Repository | Licer
/-/_ \ An Azure Functions extension for Vi‘“]dfl‘;“ C/c+ + C/C++ IntelliSense, debugging, and code |JFCW‘Si.‘!g.
Microsoft i
m EEEEIH O 8 omis ion (s encbled
mmmmm Azure Storage 0110 358K % 35
mess Manage your Azure Storage accounts in...
—
Microsoft ; . B
o Details Feature Contributions Changelog
B:J CfCa+ 113 DI6IM * 35
C/e++] CfC++ IntelliSense, debugging, and co...
Micrasoft . .
% i . C/C++ for Visual Studio Code
238 D 10M
@ C# for Visual Studio Code (powered by
Microsoft Doc ion | Code ples | Offline Installers
Cordova Tools 220 B I19K .
e . 5 Disable
Code-hinting, debugging and integrat
Micrasoft
* ds lan e support for C/C++ to Visual Studio Code, including features such
Debugger for Chr... 41211 ®LIM 1 rinaay) guage supp ¢/ ISURLSPAN Including features su
() Debug your JavaScript code in the Chr e i i Jging.
Microsoft Install Another Version...
B torials

Debugger for Firef.., 261 843K & Copy

e D.e:)ug your web application or browst Copy Extension Id W
Firefox DevTools
Debugger for Java 0300 72M 1 Extension Settings Is per compiler and platform
@ A lightweight Java debugger for Visua Synec This Extension
1 Microsoft mpiler (MSVC) on Windows
CC and Mingw-we L Wi s
_ Debugger for Mic... 1 ¢ GCC and Mingw-w64 on Windows °
R ey e A AT * GCC on Windows Subsystem for Linux (WSL)
7 RECOMMENDED 3 -~ 5

@ oMo £ LiveShare

Figure 6-5. Shortcuts for extension management

You can also click an extension name, and the detail page will show the Disable and
Uninstall buttons. Notice that when you disable or uninstall an extension, in most cases
you will need to click a button called Reload (that appears when the extension has been
disabled or uninstalled) to refresh the development environment. It is worth mentioning

118

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

that you can change the default view of the Extensions bar (displaying the list of installed
extensions) by clicking the ... button at the top of the EXTENSIONS group and selecting the
Views submenu. You then can choose among different options, such as viewing popular
extensions, checking for extension updates, and installing extensions from .vsix files.

Note Shortcuts for extension management are also available in the Command
Palette.

Configuring Extensions

Visual Studio Code has some options that allow you to control the global behavior of
extensions. You can see these options in the user settings, under the Extensions group,
as shown in Figure 6-6 (which is based on the list of extensions installed on my machine
and likely differs from yours).

»J File Edit Selection View Go Run Terminal Help Settings - Visual Studio Code = =] X
Settings X o m -
Searc v
User a nced: 58 secs ago

: Extensions
': Azure App Service

App Service: Connections
ation y

~ Extensions

Azure App Senvic

Array of web apps with its connections

Edit in settingsjson

App Service: Default Web App To Deploy
The defa

workspac

s full Azure id. Every subsequent deployment of this
setting to “None”

App Service: Deploy Subpath

The default subpath of a workspace folder to use when deploying.

Emmet App Service: Enable Output Timestamps

Firefox debug +*| Prepends each line rIi_\'“"n:,-.-;J in the Azure App Service output channel with a timestamp

@00 £ Live Share

Figure 6-6. Customizing options about extension management

119

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

There are detailed comments that explain what each option is about. Each extension
allows for customizing its own behavior in the user settings and edits can also be done
in the well-known settings.json file. For instance, suppose you have the C# extension
installed. If you look in the user settings, you will find a group called C# Configuration. If
you expand this group, you will see the full list of options about the C# extension, which
include options for code editing and for tools the extensions add. Figure 6-7 shows these

OptlonS.
] File Edit Selection View Go Run Terminal Help Settings - Visual Studio Code = a X
Settings X ™ @
Search settings
User Last synced: now

C# configuration

Format: Enable

+ Enable/disable default C# formatter (rec

Max Project File Count For Diagnostic Analysis
5 um number of f

ce, If this limi

o55 to disa

References Code Lens: Enabled

+| Specifies whether the references Codelens should be shown,

CfC+s

2 confifurétion

Cordova Tools Semantic Highlighting: Enabled

S5

Deploy to Azure

Emmet Suppress Build Assets Notification

Suppress the notification window to add missing assets to build or debug the application.

@oMo £ LiveShare

Figure 6-7. Customizing extension options

If you want to instead edit extension settings in the settings.json file, IntelliSense will
simplify your work by showing setting names and a tooltip with the setting description
when you scroll the list. Figure 6-8 shows an example where IntelliSense is showing
some settings for the C# extension, identified with the csharp literal.

120

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

] File Edit Selection View Go Run Terminal Help settingsjson - Visual Studio .. — O X
3 Welcome Settings {} settingsjson X O M
C: > Users > alessandrodelsole > AppData > Roaming > Code > User > {} settings.json > ...
37 {
38 "label": "Created Issues",
Suppress the warning that x r.envFile ${re s
projectjson is no longer a 1.runArguments
supported project format for format.enable
.NET Core applications maxProjectFileCountForDiagnosticAnalysis
a3 "p /2 csharp.referencesCodelens.enabled sole
a4 "p £ csharp. showOmnisharpLogOnError
a5 "p /2 csharp.suppressBuildAssetsNotification
46 "p /2 csharp.suppressDotnetInstallWarning
a7 "s /% csharp.suppressDotnetRestoreNotification
a8 /% csharp.suppressHiddenDiagnostics
49 1, /% csharp.suppressProjectIsonlarning
50 "¢ /2 esharp.testsCodelens.enabled
51 " M
52}

Ln 51, Col 7 Spaces:4 UTF-8§ CRLF JSON with Comments & 0

Figure 6-8. Customizing extension options in settings.json

Normally, extension authors provide detailed comments that explain what an option
is about so that it is easier for you to fine-tune an extension behavior, such as in the case
of the C# extension.

Hints About Extension Authoring

You can build extensions for Visual Studio Code and share them through the Visual
Studio Marketplace. You can basically build any type of supported extension, such as
language support, editing features, themes, code snippets, debugger adapters, and key
bindings. You will also need to register as a publisher on the Marketplace, which requires
you to have a Microsoft account.

121

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Extensions are usually written with TypeScript and, for most of them, you can
use an extension generator such as the Yeoman tool on Node.js. As you can imagine,
extension authoring is a complex task, and it is out of scope in a book from the Distilled
series. If you are interested in extension authoring, you can walk through the official
documentation (https://code.visualstudio.com/api), which provides examples and
guidance for many scenarios.

Summary

Extensibility is a key feature in Visual Studio Code, because it allows you to add power to
the development environment. Extensions can add new languages (with or without rich
editing support), debuggers, keyboard shortcuts, themes, code snippets, and tools. You
can install extensions from the Visual Studio Marketplace or from within Visual Studio
Code, through the Extensions bar or the Command Palette.

Visual Studio Code can also provide extension recommendations based on the
context, such as when you open a file written in a language for which there is no built-
in support. Visual Studio Code makes also makes managin extensions simple, with
shortcuts to disable and uninstall extensions and the capability to configure extensions’
behavior via the user settings file. In the next chapter, you will see how to leverage
extensions to add features to Visual Studio Code to another core feature that makes it a
step forward compared to its competitors: version control with Git.

122

https://code.visualstudio.com/api

CHAPTER 7

Source Control with Git

Writing software often involves collaboration. This is true whether you are part of a
development team, are involved in open source projects, or are an individual developer
who has interactions with customers. Microsoft strongly supports both collaboration and
open source, so Visual Studio Code provides an integrated source control system that is
based on Git and can be extended to other providers.

This chapter describes not only all the integrated tools for collaboration over source
code from within Visual Studio Code that are available out of the box, but also how to
use extensions that you will find very useful on the job to better review your code and
to push your work to Azure DevOps. Notice that the source control and version control
terms are used interchangeably.

Source Control in Visual Studio Code

Visual Studio Code supports different source control providers via extensibility, but

it offers integrated support for Git. Git (https://git-scm.com/) is a very popular
distributed, cross-platform version control engine that makes collaboration easier for
small and large projects. One of the reasons for its popularity is that Git is open source,
and therefore it has always been loved by large open source communities.

Visual Studio Code works with any Git repository, such as GitHub or Azure DevOps,
and provides an integrated way to manage your code commits.

Note that this chapter is not a guide to Git; rather, it is a place to learn how Visual
Studio Code works with it, so for further information, visit the Git official page. Also,
remember that Visual Studio Code requires the Git engine to be installed locally, so
make sure it is available on your machine or download it from https://git-scm.com/
downloads. To demonstrate how Git version control works with Visual Studio Code, I
will use a small TypeScript project called Greeter, available in the TypeScript Samples
repository from Microsoft (https://github.com/Microsoft/TypeScriptSamples).

123
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_7

https://doi.org/10.1007/978-1-4842-6901-5_7#DOI
https://git-scm.com/
https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/Microsoft/TypeScriptSamples

CHAPTER 7 SOURCE CONTROL WITH GIT

You can download the repository on your system and extract the Greeter subfolder on
your disk. Obviously, you are totally free to use another example or another project of
your choice, regardless of the language, but to follow along with the examples in this
chapter, you'll need Greeter. At this point, open the project in Visual Studio Code to start
collaborating over the source code.

Downloading Other Source Control Providers

As I mentioned earlier, VS Code supports additional source control managers, also
referred to as SCM, via extensibility. You can open the Extensions bar and type SCM
providers in the search box to find third-party extensions that target other source
control engines. Figure 7-1 shows an example of selecting an extension that adds support
for the Subversion engine (https://subversion.apache.org).

)Q File Edit Selection View Go Run Terminal Help Extension: SVN - Visual Studio Code = a >

EXTENSIONS: MARKETPLACE Y LU =E - Extension: SVN % m -

SVN johnstoncode.svn-scm

SVN 2135 DAKK K AS r"_ :
- ‘ 0.5 .

9 Integrated Subversion source control Chris Johnston | @ 450523 | %%k %%
jCIxis Jotmaton M r‘ Integrated Subversion source control
SVN 0028 10K v 10 b @
simple svn implements for vscode.
Tianwu

5 o SN 2123 ! @77 Details Feature Contributions Changelog
Bj =y Integrated Subversion source control
Robert Roman [install |+
SVN Gutter 052 PAK kS .
ik : Sl Subversion source control for VS Code

Visually blame SVN-stored code line-by..
beaugust 1
SVN Changes 010 DI k4 VS Marketplace v2.13.5 m rating 4.41/5 (29)

Show list of files that are modified in lo...
eliean build passing | B semantic-release
rabbitves-syn 006 DI kS

: : ; g Dependabot enabled

rabbitves linux T Atortoisesvn
rabbitves-svn m
SVN-EXT 121 DEK

—

|

Extended functionality for svn-sem
[install [} :

Scott Meesseman

vscode-svn-pelarion-bran... 003 @1 tssue resolution |20 h | open issues 6%
thd
Jesper Raemaekers | install ||
1

SVN commit message (1.1 B4
Automatically generate svn commit me... Fa)
i Prerequisites

oo G LiveShare 2

Figure 7-1. Installing additional source control providers

Because VS Code provides in-the-box support only for Git, other source control
providers are not discussed in this chapter. If you wish to install SCM extensions, make
sure you refer to the documentation provided by the producer.

124

https://subversion.apache.org

CHAPTER 7 SOURCE CONTROL WITH GIT

Managing Repositories

With Git, version control supports both a local repository and a remote repository to
work. This section explains how to create both, supplying information that you will not
find in the documentation, especially for remote repositories.

Note A very popular abbreviation for repository is repo. Although this term is
not used in this book, you will encounter it often, especially when searching for
information about open source projects.

Initializing a Local Git Repository

As a starting point for the following examples, open the Greeter project downloaded
previously. The first thing you need to do is create a local repository for the current
project. This is accomplished by opening the Git tool from the Side Bar, as shown in

Figure 7-2.

125

CHAPTER 7 SOURCE CONTROL WITH GIT

) File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = O X

SOURCE CONTROL E T8 greeterts X m

TS greeterts » %2 Greeter

class Greeter {

constructor(public greeting: string) { }

greet() {]
return "<hl>" + this.greeting + "</h1>";

The folder currently open doesn’t have a git

repository. You can initialize a repository which
will enable source control features powered by
git.

Initialize Repository

To learn more about how to use git and source
contrel in VS Code read our docs.

}

var greeter = new Greeter("Hello, world!™);

You can also directly publish this folder to a
GitHub repository. Once published, you'll have
access to source control features powered by git
and GitHub.

@ Publish to GitHub

document.body.innerHTML = greeter.greet();

1
2
3
4
5
6 1
7
8
9
o
1

®0M0 £ Live Share Ln1,Col1 Spaces:d4 UTF-8 LF TypeScript 412 & 2

Figure 7-2. Readly to initialize a local Git repository

Clicking the Publish to GitHub button would allow you to initialize a local repository
and publish to GitHub at the same time, but because it is important to understand how
the flow works and how to properly authorize VS Code to GitHub, the steps here are split
into creating a local repository first and then publishing to the remote one. Click the
Initialize Repository button at the top (see Figure 7-2). Visual Studio Code will initialize
the local repository and show the list of files that now are under version control but not
committed yet (see Figure 7-3).

126

CHAPTER 7 SOURCE CONTROL WITH GIT

) File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = O X
SOURCE CONTROL 1S greeterts X D % O
~ SOURCE CONTROL s

Message (Ctrl+Enter to commit on ‘'master’)

constructor(public greeting: string) { }

greet() {
return "<hl>" + this.greeting + "</h1>";

~ Changes

g.‘«'-’ <> greeter.html
TS greeter.ts
® README.md
{} tsconfigjson

}

IH

cccc@

var greeter = new Greeter("Hello, world!");

document . body . innerHTML = greeter.greet();

H O W 0~ bW e

[

> COMMITS

> FILE HISTORY
"l > ERANCHES

> REMOTES

> STASHES

> TAGS

P masterr @ ®@0A0 £ Live Share Ln1,Col1 Spaces:d UTF-8 LF TypeScript 412 & £

Figure 7-3. Files are under version control but not committed yet

Notice how the Git icon shows the number of pending changes. This is an important
indicator that you will always see anytime you have pending, uncommitted changes.
Write a commit description and then press Ctrl+Enter. You will see a warning message
saying that there are no staged files at the moment, and you will be offered to stage and
commit directly all files. Staging will be discussed in the next section, so for now click
Yes. At this point, files are committed to the local repository, and the list of pending
changes will be cleaned. Now there is a problem: you need a remote repository, but the
official documentation does not describe how to associate one to VS Code. The next
section explains how to accomplish this.

127

CHAPTER 7 SOURCE CONTROL WITH GIT

Creating a Remote Repository

Visual Studio Code works with any Git repository. There are plenty of platforms that use
Git as the version control engine, but probably the most popular platforms are GitHub,
Atlassian Bitbucket, and Microsoft Azure DevOps. This section shows you how to create
aremote repository on GitHub. I chose GitHub not only because of the popularity of the
platform but also because Visual Studio Code includes a built-in extension called GitHub
that is expressly designed to simplify the workflow against GitHub itself. This requires
you to have an existing GitHub account or to create one for free at https://github.
com/join. Visual Studio Code makes it very easy to publish repositories to GitHub with

a single mouse click, but VS Code first needs to be authorized by the GitHub engine, so
there are some preliminary steps to do just once.

Note GitHub no longer supports Microsoft browsers such as Edge and Internet
Explorer. Though you can open the website with both, some actions will not be
available. | recommend opening GitHub with a browser such as Chrome or Firefox.

On the Status Bar, click the Publish to GitHub button, identified by an icon
representing a cloud with an arrow and located to the right of the master branch name.
Figure 7-4 shows this button inside the green box.

P masterr | @ ®oAo

Figure 7-4. The Publish to GitHub button

An alert will inform you that VS Code wants to access GitHub and, after you click
OK to accept, it will open the default browser pointing to a GitHub page where it will be
possible to authorize VS Code. Click Authorize, then enter your GitHub credentials and
accept the access requirements that the extension requires. Next, GitHub generates an
authorization token that is specific for Visual Studio Code and that looks like the one
generated on my machine, visible in Figure 7-5.

128

https://github.com/join
https://github.com/join

CHAPTER 7 SOURCE CONTROL WITH GIT

- (m] *
@ GitHub for VS Code x -+

&« c @ vscode-auth.github.com/?browser_session_id=b6c974af0d4265¢940e7564a4744619a0818ec881dbf0659666e686b165379da.. 1r e i

O

Success!

3 Apps ™ Gmail D YouTube BF Maps

Authorization was successful. You will be redirected back to Visual Studic Code

Didn't work?

If you aren't redirected, you can add the token manually.
Your authorization token:

vscodey/fvscode.github-authentication/did-authenticate?

windowid=18code-8b340856a74376a01d3ba:state -

1. Copy the token.

2. Switch back to VS code.

3. Click Signing in to github.com... in the status bar.
4. Paste the teken and hit enter.

This service is needed to connect Visual Studio Code to GitHub and does not store any sensitive information.

Figure 7-5. An authorization token generated for Visual Studio Code

Your browser will ask your permission to open an URL with Visual Studio Code.
Allow this, so that Visual Studio Code will be able to complete the authentication process
automatically. (This is an improvement over previous versions, which required entering
the token manually.) At this point VS Code is enabled to access GitHub. As I mentioned
previously, the steps required to authorize Visual Studio Code need to be done only
once. Note that you will not get confirmation that the authorization has completed...it is
a silent process.

At this point you need to click again the Publish to GitHub button on the Status Bar.
VS Code shows a text box containing the repository name; by default, this is based on the
current folder name, but you can write a different name. It also provides two options to
publish the repository to GitHub based on the folder name, as you can see in Figure 7-6;
one option is to publish to a private repository, and the other option is to publish to a
public repository.

129

CHAPTER 7 SOURCE CONTROL WITH GIT

30 File Edit Selection View Go Run Terminal Help Welcome - greeter - Visual Studio Code - m] s |

SOURCE CONTROL |M m -

Message (Ctrl+En B Publish to GitHub private repository () AlessandroDelSole/greeter

] publish to GitHub public repository @) AlessandroDelSole/grester

~ Changes

Figure 7-6. Available options to publish the repository remotely

For the current example, the public option will be used, but you are free to choose
whichever option you prefer. When publishing is completed, you will get a confirmation
message and an option to open the GitHub repository in the browser.

Note If you work with platforms different from GitHub, you can easily associate a
remote repository by clicking the ... button located in the upper-right corner of the
Source Control bar and then selecting Remote » Add Remote. This is explained
in practice in the section “Working with Azure DevOps and Team Foundation
Server” toward the end of this chapter.

Handling File Changes

Git locally tracks changes on your code files, and the Giticon in VS Code shows the
number of files with pending changes. This number is actually updated only after you
save your files. In VS Code, handling file changes is very straightforward. In Figure 7-7
you can see how the number of pending changes is highlighted in the Git icon but also
how files that have changes are marked with a brown M (where M stands for Modified),
whereas deleted files are marked with a red D (where D stands for Deleted). Note that
these markers are also visible in the Explorer bar.

130

CHAPTER 7 SOURCE CONTROL WITH GIT

ad File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code - m] 4
SOURCE CONTROL E v O - TS greeterts X < greeter.html W M
Message (Ctrl+Enter to commit on ‘master’) TS greeterls > (@] greeter

1 class Greeter {
~ Changes 3 2 constructor(public greeting: string) { }
<> greeter.html M 3 greet () {
TS greeter.ts VI2+ ™ 4 return "<h1>" + this.greeting + "</h1>";
@ REABMEmS D 5 ¥
5 +; —
!
8| var greeter = new Greeter("Hello, developers!™);
9

10 document.body.innerHTML = greeter.greet();

P masterr & ®@0A0 £ Live Share Ln 8, Col45 Spaces:4 UTF-8 LF TypeScript 412 & (2

Figure 7-7. Identifying the number of pending changes

By clicking a file in the list, you can see the differences between the current and
previous versions of the file with the Diff tool. Figure 7-8 shows an example.

The left side shows the old version and the right side shows the new one. The line
highlighted in red represents code that has been removed, whereas the line highlighted
in green represents new code. Specific changes inside the lines of code are represented
with darker shades of red and green, as you can see for the words world and developers
in Figure 7-8. This is a very important tool when working with any version control

engine.

131

CHAPTER 7 SOURCE CONTROL WITH GIT

ﬂ File Edi Go FRun Terminal Help greeter.ts (Working Tree) - greeter - Visual Stu O X

TS greeter.ts TS greeter.ts (Working Tree) X <> greeter.html it I A 1]

TS greeterts » ...
1 class Greeter { 1 class Greeter {
2 constructor(public greeting: string) { } 2 constructer(public greeting: string) { }
3 greet() { 3 greet() {
4 return “<hl>" + this.greeting + "</hl>"; 4 return "<hl>" + this.greeting + "</hl>";

3 5 } 5 }

6) 6 1 m |
7 7
8— var greeter = new Greeter(“"Hello, world!"); | 8+ var greeter = new Greeter("Hello, developers!");
9 9
18 document.body.innerHTHML = greeter.greet(); 18 document.body.innerHTML = greeter.greet();

11 11

¥ masterr & @o0Mo0 4 Live Share LnB Col1 Spaces4 UTF-8 LF TypeScript 412 & [2

Figure 7-8. Comparing file versions with the Diff tool

Staging Changes

You can promote files for staging, which means marking them as ready for the next
commit. This is actually not mandatory, as you can commit directly, but it is useful to
have a visual representation of your changes. You can stage a file by simply clicking the
+ symbol near its name, or you can stage all files by right-clicking the Changes title and
then selecting Stage All Changes or clicking the plus icon on the bar. Visual Studio Code
organizes staged files into a logical container, as you can see in Figure 7-9. Similarly, you
can unstage files by clicking the - symbol.

132

CHAPTER 7 SOURCE CONTROL WITH GIT

3 File Edit Selecton View Go Run Terminal F

SOURCE CONTROL E v U

Message (Ctrl+Enter to commit on ‘master’)

v Staged Changes 3
<> greeter.html M
393 TS greeter.ts M
® REABMEmd D
v Changes 0

Figure 7-9. The view of staged and unstaged changes

The workflow based on staging is very convenient, because if you no longer want
to commiit a file, you can simply unstage it before the code gets committed to the
repository.

Managing Commits

The ... button provides access to additional actions, such as Commit, Sync, Pull,
Stash, and Pull (Rebase). Figure 7-10 shows the full list of builtin Git synchronization
commands available in VS Code. Notice that some of them are grouped into submenus,
such as Pull, Push that you can see in Figure 7-10.

133

CHAPTER 7 SOURCE CONTROL WITH GIT

] File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = o X

SOURCE CONTROL E v D - TS greeterts X < greeterhtml W @

trl+Enter to commit on 'master’) Views b

eter {
v Staged Changes View & Sort 3 ~uctor{public greeting: string) { }
< greeter.html 0 A{
3_03 T8 greeter.ts 0= Pull =turn "<h1>" + this.greeting + "</h1:";
@ REABMEmMd Push
 Changes Clone
Checkout to.. 2r = new Greeter("Hello, developers!™); —_
Commi > s
S sody.innerHTML = greeter.greet();
Changes s
Branch > Bull
e »
Remcte Pull (Rebase)
task > i
Stash Pull from...
lags >
Push
Show Git Output Push to

Fetch
Fetch (Prune)

Fetch From All Remotes

¥ mastersr © ®0A0 £ Live Share In11,Col1 Spaces4 UTF-8 LF TypeScript 412 & 2

Figure 7-10. Shortcuts to commit and synchronize changes

When you are satisfied with your work on the source code, you can select the
Commit » Commit All command to commit your changes. Remember that this action
commits files to the local repository. Also, before you commit, you might want to check
staged and nonstaged changes so that the code is committed without missing any files.
You have to use the Push command to send changes to the remote repository.

You also have an option to undo the last commit and revert to the previous version
with the Commit » Undo Last Commit command. Pull and Pull (Rebase), both in
the Pull, Push submenu, allow you to merge a branch into another branch; Pull is
nondestructive and merges the history of the two branches, while Pull (Rebase) rewrites
the project history by creating new commits for each commit in the local branch. The
Sync command in the same submenu performs a Pull first and then a Push operation,
so that both the local and remote repositories are synchronized.

134

CHAPTER 7 SOURCE CONTROL WITH GIT

There is also a command called Stash, which allows for storing modified tracked
changes and staged changes in a cache, so that you can switch to another branch while
having unfinished work on the current branch. Then, with the Pop Latest Stash and Pop
Stash commands, under the Stash submenu, you can retake the latest version of your
unfinished work or a specific version of the unfinished work, respectively.

Every time you work with Git commands, such as Commit and Push, Visual Studio
Code redirects the output of the Git command line to the Output panel. Figure 7-11
shows an example.

TERMINAL PROBLEMS OUTPUT DEBUG CONSOLE Git

2 BLL TOP-gdCN-reT “-S00L -CUmBLLLENUELE - -TOMEL | PETHENE) Al UL JECLIENE) 6| UL JEC LNdNe |
> git remote --verbose

» git config --get commit. template

> git push origin master:master

Everything up-to-date

» git status -z -u

> git symbolic-ref --short HEAD

» git rev-parse master

> git rev-parse --symbolic-full-name master@{u}

» git rev-list --left-right master...refs/remotes/origin/master

» git for-each-ref --sort -committerdate --format X(refname) %{cbjectname) ¥(*cbjectname)
» git remote --verbose

» git config --get commit.template

I
o

>
®

<& @oMo & LiveShare In11,Col1 Spaces:4 UTF-8 LF TypeScript 412

Figure 7-11. Messages from the Git command line are shown in the Output panel

You will need to select Git from the drop-down menu in the Output panel in order
to see the Git output. You can also open the Output panel using the Show Git Qutput
command from the pop-up menu shown in Figure 7-10.

Working with the Git Command-Line Interface

The Command Palette has support for specific Git commands that you can type as if
you were in a command-line terminal. Figure 7-12 shows a partial list of available Git
commands, displayed by typing Git in the Command Palette. The full list of commands
is quite long and cannot be totally included in Figure 7-12, but you can type Git on your
own computer and scroll the list to see all available commands.

135

CHAPTER 7 SOURCE CONTROL WITH GIT

] File Edit Selection View Go Run Terminal Help greeter.ts - greater - Visual Studio Code = o X
TS greeterts X ¢ | »git W O
T8 greeterts > . Git Add to .gitignore
1 class Gret gy Apply Latest Stash
2 t .
sen=g Git Apply Stash...
3 greet:
Git: Checkout to (Detached)...
4 r
3 5 } Git: Checkout to...
6 3: Git: Cherry Pick...
7 Git Clone
8 var greett git Clone (Recursive) W
B Git Close Repository
10 document.l _ X
11 Git Commit
Git Commit All

Git Commit All (Amend)

¥ mastersr © ®0A0 £ Live Share In11,Col1 Spacesd4 UTF-8 LF TypeScript 412 & 2

Figure 7-12. Supported Git commands in the Command Palette

It is worth mentioning that the list of commands is also grouped by most recently
used and all commands.

For instance, you can use Git Sync to synchronize the local and remote repositories,
or you can use Git Push to send pending changes to the remote repository. A common
scenario in which you use Git commands is with branches.

Creating and Managing Branches

For a better understanding of what a branch is, suppose you have a project that, at a
certain point of its life cycle, goes to production. You need to continue the development
of your project, but you do not want to do it over the code you have written so far.

You can create two histories by using a branch. When you create a repository, you
also get a default branch called master.

136

CHAPTER 7 SOURCE CONTROL WITH GIT

Note There have been recent changes in GitHub, so if you first create a remote
repository on this platform directly, the main branch is no longer called master,
but instead is called main. This change is specific to GitHub, so if you create a Git
repository either locally or on other platforms, you still get the master branch.

Continuing with the example, the master branch could contain the code that has
gone to production, and now you can create a new branch, such as development, based
on master but different from it. In Visual Studio Code, you have different options to
create a new branch: The first option is to create a branch from the Command Palette
by typing Git branch, selecting the Git: Create Branch option, and specifying a new
branch name, such as development. This creates a new branch locally, based on
master. The second option is to click the current branch name in the Status Bar (master
in this case) and then click the Create new branch command (see Figure 7-13). Enter
the new branch name, and then press Enter.

] File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = o >

SOURCE CONTROL “'\?isr‘. a ref to checkout | 2 @M -

Message (Ctrl+Enter =+ Create new branch...

3 =+ Create new branch from...
~ Changes E
27 Checkout detached...

3_9 master 63a2c9fa
5 ¥

Figure 7-13. Creating a branch

In addition, you can use the Create new branch from command to create a new
branch from a branch that is not the active one. When a new branch is created, the Status
Bar shows it as the active branch; when you are ready, you can publish the new branch
to the remote repository with the Publish Changes button, represented by the cloud

% development @

Figure 7-14. The new branch is set as active and ready to be published

icon (see Figure 7-14).

137

CHAPTER 7 SOURCE CONTROL WITH GIT

Switching to a Different Branch

Switching to a different branch is very easy. Simply click the name of the active branch in
the Status Bar, and VS Code displays the list of branches, as shown in Figure 7-15. If the
repository already has a remote branch, it will also be visible in the list.

»] File Edit Selection View Go Run Terminal Help greeter.is - greeter - Visual Studio Code = =] X

kel f - H
Belect a ref to checkout M -

trl+Enter -+ Create new branch..

ot =+ Create new branch from...
~ Changes
&7 Checkout detached...

g_p development 63a2cofa
master 63a2c9fa
I H
7

Figure 7-15. Selecting a different branch

Click the desired branch, and VS Code checks it out and sets it as the active branch.

Merging from a Branch

Suppose you have completed and tested some work on the development branch and
you want this work to be published to production. Because the production code is on the
master branch, you must bring all the work from the development branch to the master
branch. This is a merge operation (which normally happens via pull requests, described
later in this chapter). You can merge from a branch into another one via the Command
Palette, using the Git: Merge Branch command. VS Code shows the list of branches,

and you need to select the branch you want to merge from into the current branch

(see Figure 7-16).

Note Remember that the branch that receives the merge is the active branch,
S0 make sure you have switched to the proper branch before starting a merge
operation.

138

CHAPTER 7 SOURCE CONTROL WITH GIT

»] File Edit Selection View Go Run Terminal Help greeter.is - greeter - Visual Studio Code = =] X

from | o -

merge fr

SOURCE CONTROL select a branch to

Message (Ctrl+Enter development development

(Ct
master master

~ Changes
origin/development origin/development

return "<hl1>" + this.greeting + "</h1>";

}
IH

~N oo

Figure 7-16. Merging from a branch

In the example, some changes were made and pushed to the development
branch, then the master branch has been selected as the active one and changes from
development will be merged into master.

Once the merge operation is completed, remember to push your changes to the
remote repository.

Resolving Merge Conflicts

When you merge branches in which the same code files were modified, Visual Studio
Code leverages the Git tooling to combine the different edits into one code inside the
target files. However, sometimes VS Code is not able to automatically combine the edits,
in which case it raises a merge conflict. If this happens, VS Code shows an editor where
it highlights the code on which a conflict exists, displaying the current version and the
incoming version with different colors, as you can see in Figure 7-17, which shows an
example of one conflict due to edits on the same line of code in different branches.

139

CHAPTER 7 SOURCE CONTROL WITH GIT

) file Edit Selection View Go Bun Terminal Help

SOURCE CONTROL

Program.cs - hefioweb - Visial Studio Code [Administrator]

C Programas X

» SOURCE CONTROL (=
~ COMMITS cevalog D& - ol i
=) Lo, 1@ namespace helloweb
) Compare develop (working) with <branch, tag. or ref> 11
i Resolve conflicts before merging feature2 into develop 1 i — . is &
o 1
.i", ~ © Program.cs Nar| 12 public class Program
% Current changes cevelop (b2d13fd) 13 {
% Incoming changes feature2 (62615b8) refarences
14 public static void Main(string[] args)
o 15 {
> T {featurel ¥ Added startup message You 3 minutes ago 16 CreateHostBuilder(args) . Build().Run{);
* % {master ¥ First setup You, & minutes sgo 17 1
> REPOSITORIES 18
 FILE HISTORY
~ BRANCHES () 19 public static IHostBuilder CreateHostBuilder(string[] args) s> 1
5§ master 4. 20 Host.CreateDefaultBuilder{args) '
v P develop 3 minutes ago [LR 2 &I'nﬂriEl;r'(‘..k‘hi-!nﬁt‘i]t‘fall|t‘<[w:bBll'i|dEl" =3 1
- : = 22
t} Empare develop it sbranlveg, of ref 23 webBuilder.UseStartupestartupy(); -
iy Resolve conflicts before merging feature2 into develop. e s L z e
> © Program.cs 3.k 24| <€<<<s< HERD) (Ciirrent Change)
— 25 Console.WriteLine("Startup initialization™);
» T tfeaturel 3> Added stariup message Yow 3 minutes ago /]
> & Cmaster 3> First setup You, & minutes ago 7 Syst.:em.DiagnDstics.Debug.i.'r'iteLins["Startup initializatic
> § featwrel 3min 28| >35> feature? (Incoming Change)
> $ feawre2 2m 29 B
eature? 2 0 y
1)
32
» REMOTES
> STASHES
* TAGS

Pdveopt @ @340 SlveShure & B heloweb

Ln32,Col1 Spacesd UTF-3 CRLE <0 R (F

Figure 7-17. Resolving merge conflicts

Conflicts are also visible in the COMMITS panel of the Side Bar, and must be
resolved before merging can be completed. As you can see in Figure 7-17, the code editor
provides inline shortcuts to quickly resolve the conflict:

e Accept Current Change: Keeps the existing code and rejects the
incoming change.

e Accept Incoming Change: Overwrites the existing code with the
incoming edits.

o Accept Both Changes: Keeps both the existing and incoming code.
Incoming code is appended to the existing code.

o Compare Changes: With several conflicts, allows for deciding which
of the existing code or incoming code should be merged.

o Start Live Share: Only available with the Live Share extension
installed, allows starting a live sharing session to ask for help from
other developers.

140

CHAPTER 7 SOURCE CONTROL WITH GIT

What the right choice is only depends on your preference. Visual Studio Code gives
you an integrated and user-friendly way to quickly solve merge conflicts without dealing
with complex Git commands.

Hints About Rebasing Branches

Among the available commands for Git in Visual Studio Code, you will find one called
Rebase. In Git, rebasing still allows you to include the changes made by a branch in
another branch, but rebasing and merging accomplish this task differently.

More specifically, rebasing does not create overlaps between branches but rather
appends code changes to the end of the target branch, which means that the history of
the code is easier to understand, even if there is a need to frequently incorporate the
commits of one branch into the other.

Rebasing therefore offers the possibility of accessing a more linear history, because,
unlike merging, it allows you to not incorporate unnecessary commits into the target
branch.

However, rebasing should be used with care. For example, if another team member
is working on the same branch, it is preferable to avoid rebasing because this might lead
to the duplication of the branch instead of merging changes.

Deleting Branches

Sometimes you might have branches that have been created only for testing some code
and that are not really necessary in the application lifecycle management. In this case, in
the Command Palette, you can use the Git: Delete Branch command.

With a user interface like what you see in Figure 7-16, VS Code shows the list of
branches. Select the branch you want to delete and press Enter. Remember that the
active branch cannot be deleted, and you first need to switch to a different branch. Also,
remember that you can delete remote branches only if you created them.

Adding Power to the Git Tooling with Extensions

The integrated tools for Git cover all the needs that you, as a developer, may have when
working with local and remote repositories to manage your source code, but there are
extensions that provide additional power to the integrated tools.

141

CHAPTER 7 SOURCE CONTROL WITH GIT

This section describes the most useful free extensions that will improve your
collaboration experience in Visual Studio Code.

Git History

Git History is a free extension that enables you to view the history of your source code, such
as information and author about each commit and that can display how a file has gone
through branches; plus it adds commands that make it easier to manage your code against
Git. After you have installed the extension, you can right-click a file inside the folder view of
Explorer bar and select Git: View File History.

Figure 7-18 shows an example based on a file that has three commits. If available, the
view shows the branches where the file has been included, comments and author for the
commit, and the commit ID, and it allows for searching and filtering contents by branch
and author. Local branches are highlighted in green and remote branches in red.

%] File Edit Selection View Go Run Terminal Help File Histary (greeter.ts) - greater - Visual Studio Code =] x
O File History (greeter.ts) X m .-
Enter term and press enter to search Search master » All Authors = Clear Refresh o

Greeting update ¥ origin/development |

Alessandro Del Sele cr
© ! cboeasT B} [#Soft BaHard +Tag + Branch -o-Mare

second commit

Alessandro Del Sole on 1/26/2021, 12:21:40 PM
© €3a2c9f 2 [FSoft BaHard +Tag + Branch o More

First commit

Alessandro Del Sole on 1/26/2021, 2:22:18 AN
= Skaze4s 3 [5ot BaHard +Tag + Branch -o-More

Greeting update B Find file =
@ Alessandro Del Sole on 1/26/2021, 12:28:23 PM
EEEEE O gecteris © View) Workspace [Previous (P History

P master & ®0MA0 & Live Share

Figure 7-18. Viewing the history of commits with Git History

142

CHAPTER 7 SOURCE CONTROL WITH GIT

Note If the commit author has associated a picture to the Git credentials, Git
History shows the picture near the author name.

Ifyou click the More shortcut at the right of each commit, a menu appears showing
a number of very useful commands that make it easier to work with commits (see
Figure 7-19).

ﬁ File Edit Selection View Go Run Terminal Help File History (greeter.ts) - greeter - Visual Studio Code O X

€ File History [greete| 1R

and pressen & Cherry pick this (bb9ea67) commit into current branch
1l Checkout (bb9ea67) commit
Greeting update) Select this commit (Alessandro Del Sole <progalex@hotmail.com> on 2021-01-26711:29:23.00... 1=

@ Alessandre Del Sole on X Revert this (bb9ea67) commit | BaHard +Tag + Branch o Mare

i Merge this (bbSeab7) commit into current branch

second commit %o Rebase current branch onto this (bb9ea67) commit

Alessandro Del Sole on sewpcver, 10.c 1w riw
© \ 63azcor @ [soft BaHard +Tag + Branch < More

Figure 7-19. Git History provides commands that make it easier to work with
commits

At the bottom of the view, you will see the list of files involved in the selected
commit. If you click a file name, you also get shortcuts to compare the file with the
previous version and to view the history of that file. Git History is a very useful extension
especially when your team works with the Agile methodologies, because for each task in
the backlog, a new branch is created and then merged into one branch at the end of the
sprint, making it easier to walk through the history of the work.

GitLens

Another extremely useful extension that will boost your productivity is GitLens. At first
usage, GitLens requires you to be authorized by GitHub, so VS Code will invite you to
follow the same steps you did when creating your first remote repository. GitLens adds to
VS Code many features and commands related to Git. For example, GitLens extends the
Source Control bar (see Figure 7-20) with a number of useful Git groups.

143

CHAPTER 7 SOURCE CONTROL WITH GIT

30 File Edit Selection View Go Run Terminal
SOURCE CONTROL
» SOURCE CONTROL
> COMMITS
~ FILE HISTORY
dll Greeting update You, 27 minutes ago
g’o il second commit You, 35 minutes ago

ol First commit You, 4 hours ago

~ BRANCHES (2)
)

WSS L e U UEVERIIENL * S i
%) Compare development with <branch, tag...
~ Wil Cmaster, ...}» Greeting update You, 27 ...
€ greeter.ts
~ ¥ second commit You, 35 minutes... T} @
(4] greeter.htm
© greeterts
© READMEmd
> il First commit You, 4 hours ago
~ REMOTES (1)
~ €) origin = GitHub « AlessandroDelSole/greeter
> 33 development 27 minutes ago
~ §° master 27 minutesago & O D) B
> il ¢ development, ... }» Greeting update...
> il second commit You, 35 minutes ago

> @il First commit You, 4 hours ago

» STASHES
> TAGS
x-’ master ¥ @ oo ?Live Share

Help
TS

T

Figure 7-20. The Source Control bar extended by GitLens

The GitLens extension adds several areas to the Source Control bar. The BRANCHES
and REMOTES areas show the list of local and remote branches, respectively, and, for
each branch, GitLens displays the list of commits. Each commit can be expanded to see
the commit message, the list of files involved in the commit, and an icon that represents
the operation made on the file. The STASHES area shows stashed changes with a similar
structure (if any). The FILE HISTORY area shows the list of commits for a file (this
requires an open editor). For each commit, you can see the name, the author, and the

time of last edit.

The Status Bar in VS Code now provides, with GitLens, a field containing the current
commit’s author name and time of last edit. If you click this information, VS Code shows

a list of commands, as shown in Figure 7-21.

144

CHAPTER 7 SOURCE CONTROL WITH GIT

] File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = = X
SOURCE CONTROL & Commit 5ba2645 (First commit) 200 ® @ -
> SOURCE CONTROL Commit 5ba2645 (First commit)
» COMMITS

First commit You, 4 hours ago 9 5ba2645 o
~ FILEHISTORY gresterd i 4 filae addad

3_9 ulll Greeting update ¥ &\ Reyeal Commit in Side Bar can take a while
il second commit Yo

JO search for Commit in Side Bar
ol First commit You 4

Revert Commit...
Reset Commit... —
Reset master to Commit...

. i io Code!™);
~ BRANCHES (2) Push to Commit...
s

S Rebase master onto Commit...

m’ Compare dev Switch to Commit...

Create Branch at Commit...
& ‘ € master, ...) Create Tag at Commit...
6 greeterts
Y ‘ second commit You, 35 minutes... U} (3 @

Figure 7-21. GitLens commands

These commands allow you to not only open the commit in your remote repository
but also open the commit revisions. Additionally, you can copy the commit ID or
message to the clipboard. You can also expand the file names below and see individual
details for the current code commit.

GitLens also adds summary information about edits made on a specific code
snippet, right above the code snippet itself. Figure 7-22 shows an example where GitLens
highlights that a code change to the Greeter class was made 4 hours earlier by the
author.

Note If you hover your cursor over the GitLens, you will see some information
such as author, code differences, and commit number inside an interactive
pop-up box.

145

CHAPTER 7 SOURCE CONTROL WITH GIT

] File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = a *
TS greeterts X Dty «© ® O
T8 greeter.ts 4 Greeter

1]

class Greeter {

2

3 constructor(public greeting: string) { }

4 greet() {

5 return "<hl>" + this.greeting + "</hl>";
6 }

705

8

9 var greeter = new Greeter("Hello, Visual Studio Code!");
16

11 document.body . innerHTML = greeter.greet();

12

Figure 7-22. GitLens adds summary information about a code snippet.

If you click at the left side of the divider, you get to the menu shown in Figure 7-21.
Ifyou instead click the author name, VS Code shows a pop-up box that contains the list
of commits made by the selected author, and if you hover over a commit name, you see
the full commit details (see Figure 7-23).

>Q File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code - m] X
TS greeterts X D U oo ® O
5 greeter.ts >

| i |

2 il First commit 5 hours ago class Greeter {

: vl

4 You, 5 hours ago (January 26th, 2021
5 9:22am)

&

7 First commit

8

9 gl Greeting update 2 hours ago $5ba264s | T | ® | -

1@ il First commit 5 hours ago

11 document.body.innerHTML = gree
12 |

Figure 7-23. GitLens showing information about a commit

Other commands are available in the context menu when you right-click the code
editor, such as Copy Commit ID to Clipboard, Copy Message to Clipboard, and Copy
Remote File URL to Clipboard, all selfexplanatory.

146

CHAPTER 7 SOURCE CONTROL WITH GIT

Note All the preceding commands described are also available via shortcuts that
you can find in the upper-right corner of the code editor bar (see Figure 7-23).

GitHub Pull Requests and Issues

Pull requests in Git make it easier to perform code reviews, while issues enable you

to keep track of feedback from other developers. With pull requests, your code is not
automatically merged into a branch until someone else on the team reviews the code
and accepts it. If you use GitHub for your repositories, an extension called GitHub Pull
Requests and Issues is available to introduce support for pull requests in Visual Studio
Code. When you first install the extension (and reload the environment), you are asked
to sign into GitHub. To accomplish this, you can either click Settings in the Side Bar and
then click Sign in to use GitHub Pull Requests and Issues, or click the Sign in button in
the GitHub bar. Simply follow the same steps you did to authorize GitLens.

After you provide your GitHub credentials and open a folder that is associated to a
remote repository hosted on GitHub, you will be able to leverage the GITHUB bar, which
you enable by clicking the GitHub icon on the Side Bar. An example of the GITHUB view
is provided in Figure 7-24.

147

CHAPTER 7 SOURCE CONTROL WITH GIT

>Q File Edit Selection View Go Run Terminal Help Pull Request #1 - greeter - Visual Studio Code - o X
GITHUE Pull Request #1 X m
=~ CHAMNGES IN PULL REQUEST

~ il small fix O Small fix (#1) VR T IOT Exit Review Mode m
~ Files

TS greeterts M iessnndroDeFSo[e_\-.'antsto merge changes into

Open AlessandroDelSole:master from Created a few seconds ago
> Commits

AlessandroDelSole:development

Reviewers + Labels +
~ PULL REQUESTS
v Local Pull Request Branches ““kmm’mmlsﬂ. commantsd 16 minutes ago
> I < #1: Small fix by @AlessandroDeiScle
> Waiting For My Review No description provided.
~ Assigned To Me
Iil‘l 0 pull requests in this category O Alessandro Del Sole Small fix
Y > Created By Me
> Al

B4dBff1 a minute ago

This branch has no conflicts with the base branch.

LLEGERSTIGEVTES S using method Create Merge Commit ~

~ ISSUES

~ My Issues ra
5 Leave a comment

v Created Issues

(D 2 Problem at startup

P dovelopment & @0A0 & LiveShare P Pull Request #1

Figure 7-24. The GitHub Pull Requests view

The extension supports both viewing and submitting pull requests, regardless of
their source, which can be VS Code, GitHub, or another development environment
connected to the same repository. When pull requests are available, you see them listed
in the view. If you select a pull request, a new editor window appears showing all the pull
request details, and you have the option of adding comments and then closing, rejecting,
or approving the pull request (see Figure 7-24).

You can also work on the pull request locally by clicking the Checkout button, which
displays it under the Local Pull Request Branches node in the tree view.

You can create issues from within Visual Studio Code by using the + button, after
which you can edit and then save them so that they are associated to the remote
repository. Viewing issues happens inside the browser, so when you click the globe icon
at the right side of an issue, the default web browser opens the GitHub page for the issue.

This is a very useful extension especially if you work within Agile teams, but
remember it only supports GitHub as the host.

148

CHAPTER 7 SOURCE CONTROL WITH GIT

Working with Azure DevOps and Team Foundation
Server

Azure DevOps (https://dev.azure.com) and Team Foundation Server are the complete
solutions from Microsoft to manage the entire application life cycle, from development
to testing to continuous integration and delivery. Azure DevOps is a cloud service,
whereas Team Foundation Server works on premises. Among the many features, they
both provide source control capabilities based on two engines: Git and the Microsoft
Team Foundation Server engine.

In this section I will explain how to configure a Git repository that you can use for
source control with Visual Studio Code, and the good news is that you do not need any
extensions. I will use Azure DevOps so that you do not need to have an on-premises
installation of Team Foundation Server. Also, I will reuse the Greeter project described
in the previous sections. If you want to do the same, you can simply delete the local .git
folder located under the project folder.

You obviously need an account on Azure DevOps, which you can create by using
a Microsoft account. If you do not have one, you can get a Microsoft account at www.
outlook.com, and then you can get an account on Azure DevOps at https://aka.ms/
SignupAzureDevOps. Follow all the instructions required to configure your account for
the first time.

Creating a Team Project

From the home page, click the New Project button. As you can see in Figure 7-25, you
need to supply a team project name, a source control engine, and a work item process.

149

https://dev.azure.com
http://www.outlook.com
http://www.outlook.com
https://aka.ms/SignupAzureDevOps
https://aka.ms/SignupAzureDevOps

CHAPTER 7 SOURCE CONTROL WITH GIT

T 1 -

Create new project X
Project name ™
Greeter -]

Description
Sample preject for Visual Studio Code Quyjjgd

Visibility
® a ®

Public Private

' Advanced

Figure 7-25. Creating a team project in Azure DevOps

Enter a project name and click Create. After a few seconds, your new team project
will be ready. At this point, the Azure DevOps site shows a page with all the information
about your new team project. Now click Repos on the left side of the screen so that you
can see all the information about the new Git repository (see Figure 7-26). Notice that the
new repository is created with the same name as the new project. Copy the repository
URL into the clipboard, as it will be necessary very shortly.

150

CHAPTER 7 SOURCE CONTROL WITH GIT

X [+~ - o8 x

£ | hitps:aledslsole visalstudio.com/_git/Greeter * Hw L o'

ﬂ Graster eE 3
Greeter is empty. Add some code!
B owerview
Clone to your computer
-
m 55H visualstusdio.com/Greeter/_git/Greeter 0y OR O CloneinVsCode
Repos

Generate Git Credentials

B Fites
fi indh 1} o nd firve.

7 Commits
& Pushes

ush an existing repository from command line
- Beanchies Push 1 tory fi d |l

g

2 Tags 55H
Tl Pull requests git remote add origin https:/faledelsole visualstudio.comGreetes/_git/Greeter [T

git push -u origin --all
o ripeine
& Testpuns Import a repository
B aitacs

Import

Initialize §*main branch with a README or gitignore

& Project settings &« B AcdaREADME Add a gitignore: None ™ Initialize

Figure 7-26. Information about a Git repository on Azure DevOps

Now that a remote repository is set up, you have several options to associate it to
Visual Studio Code. You could clone the repository to the local machine, or you could
even use the Git CLI. However, the simplest yet most effective option is to use the VS
Code tools you have seen in the first part of this chapter, as described next.

Connecting Visual Studio Code to a Remote Repository

Go back to Visual Studio Code. The first thing to do is initialize a local Git repository
(see the “Initializing a Local Git Repository” section earlier in the chapter for a refresher).
Once you have a local repository set up, you can connect it to the remote Azure DevOps
repository with little effort.

In the Source Control bar, click the ... button, then Remote » Add Remote. You
first need to specify the name of the remote repository (which is the one you specified
in Azure), then you will have the option to enter the URL of the remote repository you
created, so paste the URL and press Enter (see Figure 7-27).

151

CHAPTER 7 SOURCE CONTROL WITH GIT

] File Edit Selection View Go Run Terminal Help greeter.ts - greeter - Visual Studio Code = o x|
SOURCE CONTROL https://aledelsole.visualstudio.com/Greeter/_git/Greeter =3 B
* SOURCE CONTROL Add remote from URL https://aledelsolevisualstudio.com/Greeter/_git/Greeter

Message (Cirl+Enter to ¢ @ Add remote from GitHub

~ Changes 0 3 greet() {
2‘9 4 return "<hl1>" + this.greeting + "<¢/h1>";
5 }

6 };
Figure 7-27. Specifying an Azure DevOps remote repository

You are also asked to provide a name, which is used as a project identifier. Enter
a name of your choice, with no blank spaces, then press Enter. At this point Visual
Studio Code links the local repository to the remote one, but note that you do not get
any confirmation message of the operation completion, only indicators running on the
Status Bar.

The very last step is to push the branch to the remote repository, using any of the
options described in the first part of this chapter; however, you need to take care about
the main branch. As previously mentioned, due to recent changes in Azure DevOps that
reflect what GitHub also does, when you create a repository on Azure DevOps, the main
branch is now named main rather than master. The problem is that VS Code still creates
amaster branch. So basically you need to push the master branch from VS Code and
then create a pull request to merge master into main so that you will be able to work with
the new branch.

Note All these steps are necessary if you connect existing code to a remote
repository. If you start from creating a remote repository for a new project, you can
clone the repository in VS Code so that you start with the main branch directly.

Once changes are pushed, they are visible in the Repos view of the Azure DevOps
project (see Figure 7-28).

152

CHAPTER 7 SOURCE CONTROL WITH GIT

BR[OS -
« » O @ £ hitps/aledelsolevisualsiadio.com, git/Greeter e g
) Azure DevOps sledeisole ’ @ Gree D Search = a4 ® A& 0
Groater ar 4 Greeter i 1 master > L

' s =1
ﬂ Ovarview [greater.ntm = .
TS gresterts Contents History 2
B eoars
D) ssconfigisen
sl ame 1
Repos
B L3 grestechimi 2m ago 285360F¢ First commit Alessan

¢ Commits TS greeterts 2m ago AB536dFC First com:
Py D tsconfigjson 2m age 48536dFc First comenit &

i
P eranches
& Tags

11 Pull requests

f Fipelines
B Testpians
A Artifacts

£ Project sextings &«

Figure 7-28. The source code has been pushed to Azure DevOps

Now that your code has been pushed remotely, other developers will be able to
collaborate on the project. The key point is how easy it has been to set up a connection
between a local Git repository and a remote Azure DevOps one, all from within Visual

Studio Code.

Summary

Writing software involves collaboration, whether you are part of a development team,
involved in open source projects, or are an individual developer who has interactions
with customers. In this chapter you have explored how Visual Studio Code provides
integrated tools to work with Git, the popular open source and cross-platform source
control provider.

You have seen how to create a local repository with the Git bar and how to associate
it to a remote repository with a couple of commands from the integrated terminal. You
have also seen how you can handle file changes, including commits, and how you can
create and manage branches directly from within the environment. In addition, you were
introduced to some useful extensions, such as Git History, Git Lens, and GitHub Pull

153

CHAPTER 7 SOURCE CONTROL WITH GIT

Requests and Issues, that will boost your productivity by adding important features that
every developer needs when it comes to team collaboration. Finally, you learned how
easy it is to link a local repository to a remote Git repository hosted on Azure DevOps,
the premiere cloud solution from Microsoft to manage the whole application life cycle.
Behind the scenes, Visual Studio Code invokes the Git commands to execute operations
over your source code, and it is preconfigured to work with this external tool.

However, Visual Studio Code is not limited to work with a small set of predefined
tools; rather, it can be configured to work with basically any external program. This is
what you will learn about in the next chapter.

154

CHAPTER 8

Automating Tasks

As described in previous chapter, Visual Studio Code is more than a simple code editor
because it enables you to execute operations such as compilingand testing code by
running external tools. In this chapter you will learn how VS Code can execute external
programs via tasks, by both existing tasks and customized tasks. To run the examples
provided in this chapter, you need the following software:

e Node.js, a free and open source JavaScript runtime based
upon Chrome’s JavaScript engine, which you can download from
https://nodejs.org

e The TypeScript compiler (tsc), which you install via the Node.js
command line with the following command:

> npm install -g typescript

Using Node.js and TypeScript helps you to avoid dependencies on the operating
system and proprietary development environments. Obviously, all the topics discussed
in this chapter apply to other languages and platforms as well. For the last example in this
chapter about MSBuild tasks on Windows, you instead need Microsoft Visual Studio 2019.
The Community edition is available for free at https://visualstudio.microsoft.com.

Understanding Tasks

At ts core, Visual Studio Code is a code-centric tool, so it often requires executing
external programs to complete operations that are part of the application life cycle, such
as compilation, debugging, and testing.

155
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_8

https://doi.org/10.1007/978-1-4842-6901-5_8#DOI
https://nodejs.org
https://visualstudio.microsoft.com

CHAPTER 8 AUTOMATING TASKS

In Visual Studio Code terminology, integrating with an external program within the
flow of the application life cycle is a task. Running a task means not only executing an
external program but also getting the output of the external program and displaying it in
the most convenient way inside the user interface, such as the integrated Terminal.

Note Tasks are only available with folders, not individual code files.

A task is basically a set of instructions and properties represented with the JSON
notation, stored in a special file called tasks.json. If VS Code is able to detect the type of
project or source code inside the folder, a tasks.json file is not always necessary, and VS
Code does all the work for you. If VS Code cannot detect the type of project or source
code, or if you are not satisfied with the default settings of a task, under the current
folder, it generates a hidden subfolder called .vscode and, inside this folder, generates
a tasks.json file. If VS Code is able to detect the type of project or source code inside the
folder, it also prefills the tasks.json content with the proper information; otherwise, you
need to configure tasks.json manually. For a better understanding, I will explain tasks
that VS Code can detect and that it configures on your behalf, and then I will discuss how
to create and configure tasks manually.

Tasks Types

There is no limit to how many types of tasks could be available for a source code folder,
but the most common are the following:

e Build task: A build task is configured to compile the source code,
assets, metadata, and resources into a binary or executable file, such

as libraries or programs.
o Test task: A test task is configured to run unit tests in the source code.

o Watch task: A watch task starts a compiler in the so-called watch
mode. In this mode, a compiler always watches for changes to any
unresolved files after the latest build and recompiles them at every

save.

156

CHAPTER 8 AUTOMATING TASKS

Visual Studio Code provides built-in shortcuts to execute a build task. When new tasks
are added, VS Code updates itself to provide shortcuts for the new tasks. Additionally, you
can differentiate tasks of the same type. For example, you can have a default build task and
other custom build tasks that can be executed only in specific situations.

Running and Managing Tasks

The first approach to understanding tasks in practice is to run existing, preconfigured
tasks. For the sake of simplicity, start Visual Studio Code and open the project folder called
simple from the collection of examples you downloaded previously from the TypeScript
Samples repository on GitHub (https://github.com/Microsoft/TypeScriptSamples).
Visual Studio Code detects it as a TypeScript project, and therefore it preconfigures
some tasks (in the next section, I will provide more details about task auto-detection).
Now open the Terminal menu. As you can see in Figure 8-1, there are several commands

related to tasks.

] File Edit Selection View Go Run Terminal Help animals.ts - simple - Visual Studio Code = O X
@ EXPLORER New Terminal Ctrl+Shift+d
» OPEN EDITORS
~ SIMPLE
TS animals.ts public name) { }
® README.md Ctrl+Shift+B i { .
: log(this.name + " moved " + meters + "m.");
tsconfig.json

nds Animal {

log("Slithering...");
we(5);

efault Build Task..

15 class Horse extends Animal {
16 move() {

17 console.log("Galloping...");
18 super.move(45);

19 }

20 1}

22 var sam = new Snake("Sammy the Python"™)
23 var tom: Animal = new Horse("Tommy the Palomino")

25 sam.move()
26 tom.move(34)

» OUTLINE
> NPM SCRIPTS

@oMdho £ LveShare Ln1,Col1 Spaces:d UTF-8 LF TypeScript 412 & 0O

Figure 8-1. Commands for running and managing tasks in the Terminal menu

157

https://github.com/Microsoft/TypeScriptSamples

CHAPTER 8 AUTOMATING TASKS

An explanation of each command is provided in Table 8-1.

Table 8-1. Commands for Task Execution and Management

Command

Description

Run Task

Run Build Task
Terminate Task
Restart Running Task
Show Running Tasks

Configure Tasks

Configure Default Build Task

Shows the list of available tasks in the Command Palette and runs
the selected task

Runs the default, preconfigured build task (if any)

Forces a task to be stopped

Restarts the currently running task

Shows the output of the currently running task in the Terminal panel

Shows the list of available tasks in the Command Palette and allows
editing the selected task inside the tasks.json file editor

Shows the list of available tasks in the Command Palette and allows
selection of the task to use as the build task

If you select Run Task, VS Code opens the Command Palette showing the list of

available task categories, as represented in Figure 8-2.

158

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help animals.ts - simple - Visual Studio Code = (=] X

@ EXPLORER Il ect the task to run . o

» OPEN EDITORS =+ Configure a Task configured
 SIMPLE B vsls contributed
18 animals.ts B3 typescript
(0 README.md B3 grunt rs + "m.");
tsconfig.json B3 quip
B3 jeke
B3 npm
B3 docker-build
B3 docker-run
B3 docker-compose

Show All Tasks..
12}
14
15 class Horse extends Animal {

16 move() {

17 console.log("Galloping...");
18 super.move(45);

19 }

0 }

21

22 var sam = new Snake("Sammy the Python"™)

23 var tom: Animal = new Horse("Tommy the Palomino")
24

25 sam.move()

26 tom.move(34)

27

» OUTLINE
> NPM SCRIPTS

@oMAo £ LveShare Ln1,Col1 Spaces:d UTF-8 LF TypeScript 412 & 0O

Figure 8-2. Selecting task categories from the Command Palette

From here you can pick up a group of available tasks by category. In this case, you
need to select the typescript category. At this point the Command Palette displays the
list of available tasks for that category, as you can see in Figure 8-3.

] File Edit Selection View Go Run Terminal Help animals.ts - simple - Visual Studio Code = D X

select the task to run

2 EYOws tsc: build - tsconfigjson &

~ SIMPLE tsc: watch - tsconfigjson

TS animals.ts
(i README.md

Go back «

4 console.log(this.name + " moved " + meters + "m.");

Figure 8-3. Running a task from the Command Palette

As you can see, there are two tasks, tsc: build and tsc: watch, both pointing to the
tsconfig.json project file. This means that either task will run against the specified file. tsc
is the name of the command-line TypeScript compiler, whereas build and watch are two

159

CHAPTER 8 AUTOMATING TASKS

preconfigured tasks whose description has been provided previously. If you select tsc
build, Visual Studio Code launches the tsc compiler and compiles the TypeScript code

into JavaScript code, as shown in Figure 8-4.

Note In the case of TypeScript, the build task compiles TypeScript code into
JavaScript code. In the case of other languages, the build task generates binaries
from the source code. More generally, a build task produces the expected output
from the compilation process depending on the language. Also, the list of available
tasks varies depending on the type of project or folder you are working with. For
example, for .NET Core projects, only a task called build is available.

] File Edit Selection View Go Run Terminal Help animals.ts - simple - Visual Studio Code [Administrator] = (=] X
@ EXPLORER S animals.ts X 11
> OPEN EDITORS T8 animalsts > %2 Animal
« SIMPLE 1 klass Animal {
animals.js 2 constructor(public name) { }
: 3 move(meters) {
animals.js.map * o 1 " " ow
. 4 console.log(this.name + * moved “ + meters + "m.");
TS animals.ts
5 }
@ README.md 3 }
tsconfig.json 7
8 class Snake extends Animal {
9 move() {
10 console.log("Slithering...");
i super.move(5);
12 }
12}
14
15 class Horse extends Animal {
16 move() {
17 roncnle Inof"Gallanine "\-
TERMINAL PROBLEMS DEBUG CONSOLE 2:Task-build-tsconfic~ | + D & ~
> Executing task: tsc -p c:\simple\tsconfig.json <
Terminal will be reused by tasks, press any key to close it.
» OUTLINE

> NPM SCRIPTS
@odo £ LiveShare

Ln1,Col1 Spaces:d UTF-8 LF TypeScript 412 & 0

Figure 8-4. Executing a build task

160

CHAPTER 8 AUTOMATING TASKS

The Terminal panel shows the progress and result of the task execution. In this case,
the result of the task is also represented by the generation of a .js file and a .js.map file,
now visible in the Explorer bar.

Note If the Terminal shows an error message saying that a .ps1 file could not be
loaded because running scripts is disabled on the systems, try to first restart VS
Code as an administrator and to repeat the steps. If this does not solve the issue,
you need to enable script execution on your machine. You can do this on your own
if you are the computer administrator; otherwise you need to ask the administrator
of your network. You can find more detailed information on how to enable script
execution depending on your environment and on how to enable specific privileges
at https:/go.microsoft.com/fwlink/?LinkID=135170.

You can stop and restart a task using the Terminate Task and Restart Running Task
commands, respectively, both described in Table 8-1. Now suppose there is a critical
error that prevents the build task from completing successfully. For demonstration
purposes, remove a closing bracket from the code of the simple.ts file and run again the
build task. At this point, Visual Studio Code will show the detailed log from the tsc tool in
the Terminal panel, as shown in Figure 8-5, describing the error and the line of code that
caused it.

161

https://go.microsoft.com/fwlink/?LinkID=135170

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help animals.ts - simple - Visual Studio Code [Administrator] = (=] X
@ EXPLORER T8 animalsts X 1
> OPEN EDITORS T8 animalsis > & Horse
~ SIMPLE 1 class Animal {
animals.js 2 constructor(public name) { } o
fradant 3 move(meters) { .
al\l-'\‘.a-SJS_m\’.p s " " " "
. 4 console.log(this.name + " moved “ + meters + "m.");
TS animals.ts
5 }
(0 README.md 6 '
tsconfig.json 7
8 class Snake extends Animal { L

9 move() {

10 console.log("Slithering...");
i super.move(5);

12 }

13 3

15 class Horse extends Animal {
16 move() {

TERMINAL ROBLEMS i EBUG CONSOLE 2: Task - build - tsconfic ~ + 0 & ~ x

animals.ts:8:1 - error TS1068: Unexpected token. A constructor, method, accessor,
or property was expected.

I class Snake extends Animal {
Found 1 error.

The terminal process "C:\Windows\System32\WindowsPowerShell\vl.@\powershell.exe -
Command tsc -p c:\simple‘\tsconfig.json™ terminated with exit code: 1.

Terminal will be reused by tasks, press any key to close it.
» OUTLINE

> NPM SCRIPTS

@140 % LiveShare Ln20,Col2 Spaces:d UTF-8 LF TypeScript 412 & 0Q

Figure 8-5. Visual Studio Code shows the output of the external tool in a
convenient way

In the real world, this error probably would not happen because you have the
Problems panel and red squiggles in the code editor that both highlight the error. But
this is actually an example of how Visual Studio Code integrates with an external tool
and shows its output directly in the Terminal panel, helping to solve the problem with
the most detailed information possible.

The Default Build Task

Because building the source code is the most frequently used task, Visual Studio Code
provides a built-in shortcut to run this task in the Terminal menu, called Run Build
Task (Ctrl+Shift+B on Windows and {}+38+B on macOS). However, you first need to set a
default build task, because otherwise the Run Build Task command will behave like the
Run Task command.

162

CHAPTER 8 AUTOMATING TASKS

To accomplish this, select Terminal » Configure Default Build Task. When the
Command Palette appears, select the task you want to be set as the default build task,
in this case select tsc build. When you do this, Visual Studio Code is actually changing
its default configuration and therefore generates a new tasks.json file under the .vscode
folder, and it then opens this file in a new editor window. The content and structure of
tasks.json will be discussed in the upcoming “Configuring Tasks” section, so for now
let’s focus on the new default build task. Select Terminal » Run Build Task, or use the
keyboard shortcut, and you will see how the default build task will be executed, without
the need to specify it every time from the Command Palette.

Auto-Detected Tasks

Visual Studio Code can auto-detect tasks for the following environments: Grunt, Gulp,
Jake, and Node.js. Auto-detecting tasks means that Visual Studio Code can analyze a
project built for one of the aforementioned platforms and generate the appropriate
tasks without the need of creating custom ones. Figure 8-6 shows an example based on
the Node debugger extension for Visual Studio Code, whose source code is available at
https://github.com/Microsoft/vscode-node-debug.

163

https://github.com/Microsoft/vscode-node-debug

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go Run Terminal Help Welcome - vscode-node-debug-master - Visual Studio Code [Administrator] = O X

@ Il ect the task to run m -

> OPEN EDITORS npm build configured {3

v VSCODE-NODE-DEBUG-MA 1 \uoichy
> .github B9 npm contributed
> wscode B vsls
> images B3 grunt o
5 JavaScript, Python, Java, P.
fmE B3 gulp
> testdata B jake
€ _gitignore B typescript ndings
! travisyml P9 docker-build and keyboard shorteuts of...

== yscodeignore B3 docker-run
! appveyorymi B3 docker-compose
F_CONDUCT.r

Show All Tasks..
¥ guipfilejs SampleWorkspace (Workspace) C:\MyFiles
LICENSE.txt e y

More... (Ctri+R)
package.json
package.nls.json
() README.md
ThirdPartyNotices.txt Help

@ webpack.configjs g
Printable keyboard cheatsheet
Intraductory videos

Tips and Tricks

Product documentation Get a visu
GitHub repository

Stack Overflow

Join our Newsletter Interactive playground

& yarnlock

y highlighting the major co...

Try cut essential editor features in a short wal...

> OUTLINE Show welcome page on startup

> NPM SCRIPTS

@odo £ LiveShare

Figure 8-6. Auto-detected tasks

The source code of this extension is made of JavaScript and TypeScript files and is
built upon the Node.js runtime. So Visual Studio Code has been able to detect a number
of tasks that work well with this kind of project, such as the npm build and npm watch
tasks. You can then open the npm category to view the full list of preconfigured tasks that
can run against npm.

Auto-detected tasks are very useful because they allow you to save a lot of time in
terms of task automation. However, more often than not, you will have needs that are not
satisfied by existing tasks, so you will need to make your own customizations.

Note In order to auto-detect tasks, behind the scenes VS Code requires that
specific environments are installed. For example, VS Code can auto-detect tasks
based on Node.js only if Node.js is installed; similarly, it can auto-detect tasks
based on Gulp only if Gulp is installed, and so on.

164

CHAPTER 8 AUTOMATING TASKS

Configuring Tasks

When Visual Studio Code cannot auto-detect tasks for a folder, or when auto-detection
does not satisfy your needs, you can create and configure custom tasks by editing the
tasks.json file. In this section I will present two examples that will help you understand
how to configure your own tasks.

More specifically, I will explain how to compile Pascal source code files using the
OmniPascal extension and the Free Pascal compiler, available to all operating systems,
and how to build a Visual Studio solution based on the full .NET Framework on Windows
by invoking the MSBuild.exe compiler.

To complete both the examples, you need the following:

e The OmniPascal language extension for Visual Studio Code, which
you can download via the Extensions panel. This extension is useful
to enable Pascal syntax highlighting and code navigation, though you
can still compile source files without it.

e The Free Pascal compiler, which includes all you need to develop
applications using Pascal and provides a free command-line
compiler. Free Pascal is available for Windows, macOS, Linux,
and other systems, and you can download it from https://www.
freepascal.org.

e On Windows only, download the latest version of the .NET
Framework (4.8 at this writing), which includes the MSBuild.exe tool.

Let’s start with an example based on the Pascal language.

First Example: Compiling Pascal Source Code

In this section, I will explain how to create a custom task that allows for compiling
Pascal source code files by invoking the Free Pascal command-line compiler from VS
Code. Assuming you have downloaded and installed the required software as listed in
the preceding text, locate the Free Pascal folder installation on disk (usually C:\FPC\
VersionNumber on Windows and /FPC/VersionNumber on macOS and Linux), then
open the examples folder. In Visual Studio Code, open any folder containing some
Pascal source code. I will use one called fcl-json.

Figure 8-7 shows how Visual Studio Code appears with Pascal source files currently
opened.

165

https://www.freepascal.org
https://www.freepascal.org

CHAPTER 8 AUTOMATING TASKS

»J File Edit Selection View Go Run Terminal Help i2y.pp - fcl-json - Visual Studio Code - o x
jype =
22 IFN,OFN : String;

23 D : TISONData;

24 IFS,0FS : TStream;

25 jtoy : TISONToYaml;

26

27

28 begin

29 If ParamCount=0 then g
38 writeln(Usage j2y infile [outfile]');
31 IFN:=ParamStr(l);

32 OFN:=Param5tr{2);

33 if OFN="" then

34 OFN:=Changefileext(IFN, ‘yaml®);

35 D:=Nil;

36 OF5:=Nil;

37 Jtoy:=Nil;

38 IFS:=TFileStream.Create(IFN,fmOpenRead or fmShareDenylrite);
EL] try

48 D:=GetISON{IFS);

41 OFS:=TFileStream.Create{0OFN, fmCreate);
42 JTOY: =TISONToYaml.Create;

43 ITOY . Convert(D,0F5);

44 finally

45 D.Free;

46 IFS.Free;

47 OF5.Free;

48 ITOY.Free;

49 end;

50

51 end

52

@160 £ Live Share OmniPascal: Select project Ln 1,Col 1 Spaces:2 UTF-8 |F ObjectPascal & 0

Figure 8-7. Editing Pascal source code

The OmniPascal extension installed previously enables syntax colorization and
the other common editing features. Now imagine you want to compile the source code
into an executable binary by invoking the Free Pascal command-line compiler. You can
accomplish this by creating a custom task. Follow these steps to create a new tasks.json
file and set up the custom task:

1. Select Terminal » Configure Tasks. When the Command Palette
appears asking for a task to configure, select Create tasks.json file
from template (see Figure 8-8). There is no existing task to configure at
this particular point, so the only thing you can do is create a new tasks.
json file.

166

CHAPTER 8 AUTOMATING TASKS

] File Edit Selection View Go FRun Terminal Help j2y-pp - fel-json - Visual Studio Code - o X
> i2vpp X I,l elect a task to configure
| g

o 1Y Create tasks.json file from template

22 IFN,OFN : Stf_..,

23 D : TISONData;

24 IFS,0F5 : TStream;

25 jtoy : TISONToYaml; =

*

26

Figure 8-8. Creating a new task from scratch

2. The Command Palette shows the list of available task templates:
MSBuild, maven, .NET Core, and Others (see Figure 8-9). Select
Others to create a new task that is independent from other

systems.
] File Edit Selection View Go Run Terminal Help j2y-pp - fel-json - Visual Studic Code == =] X

> j2ypp x |I:- ect a Task Template m -
> j2ypp 3. MSBuild Executes th

22 IFN,OFN : Str enE

23 D : TISONDat: “F_‘C

24 IFS,0F5 : TS1 0 =

25 jtoy : TISONI Others Example to run an arbitrary external command

76

Figure 8-9. Selecting a task template

Visual Studio Code generates a subfolder called .vscode and, inside this folder, a new

tasks.json file whose content at this point is the following:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [

{

"label": "echo",
"type": "shell",
"command": "echo Hello"

167

CHAPTER 8 AUTOMATING TASKS

for each task, you can specify the text that VS Code will use to display it in the Command
Palette (1abel), the type of task (type), and the external program that will be executed
(command). An additional JSON property called args allows you to specify command-line
arguments for the program you invoke. The list of supported JSON properties is available
in Table 8-2 in the upcoming “Understanding tasks.json Properties” section, but if you

The core node of this JSON file is an array called tasks. It contains a list of tasks, and

are impatient, you can quickly look at the table and then return here.

task you use to compile source code. You can accomplish this by modifying tasks.json as

Now suppose you want to create a build task, which, by convention, is the type of

follows:

{

168

// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"]

The key points are the following:

e The label property value is now build so that the task is clearly
provided as the build task.

o The type property value is shell, meaning it will be executed by the
operating system'’s shell.

e The command property value is fpc, which is the file name of the Free
Pascal compiler.

o The args property value is an array of command-line arguments to be
passed to the external program,; in this case there is only one argument,
which is the active source file, represented by the $(file) variable.

CHAPTER 8 AUTOMATING TASKS

Note Asa general rule, an external program can be invoked without specifying
its full path only if such a path has been registered in the operating system’s
environment variables, such as PATH on Windows. In the case of Free Pascal, the
installer claims to take care of registering the program’s path, but remember to
take a look at the environment variables for other programs.

You could certainly specify the name of the file you want to compile, but using a
variable is more flexible so that you can simply compile any file that is currently active
in the code editor. Variables are discussed in the section “Understanding Substitution
Variables” and summarized in Table 8-3 later in this chapter. Notice how IntelliSense
helps you find the appropriate properties in tasks.json, as shown in Figure 8-10.

] File Edit Selection View Go FRun Terminal Help tasksjson - fel-json - Visual Studio Code - o X

tasksjson X

2 [/ See https://go.microsoft.com/fwlink/?LinkId=733558
3 [/ for the documentation about the tasks.json format
4 “version": "2.0.0",
5 "tasks": [
6 {
7 "label™: "build", L}
8 "type": "shell”, 1
9 “command”: "fpc",
18 "args": ["${file}"],
11
12 ¥ |/ dependsOn Either a string representing another task oran X
1] ¢ dependsOrder array of other tasks that this task depends on.
14} 22 detail
15 &2 group
/% isBackground
A& linux
2 options
& osx
Z% presentation

22 problemMatcher
A% promptOnClose
4% runOptions

@17MA0 £ Live Share OmniPascal: Select project Ln 11, Col 14 Spaces:4 UTF-8 LF ISON with Comments & 0

Figure 8-10. IntelliSense helps defining task properties

Save and close tasks.json, then open one of the Pascal source files. Now you can run
the newly created build task. Select Terminal » Run Task and, from the Command
Palette, select the build task (see Figure 8-11).

169

CHAPTER 8 AUTOMATING TASKS

)q File Edit Selection View Go Run Terminal Help j2y.pp - fcl-json - Visual Studio Code —] X
> J2ypp Select the task to run 1]
& j2y.PP > . build recently used £8% X
22 IF 5
23 0 P9 vsls contributed
24 IF B3 typescript
25 | jt Blgrunt -
26 B gulp -
27 B3 jake
28 begi pyppm
;g I B9 docker-build
31 IF B3 docker-run
32 OF B3 docker-compose
33 if B3 rake
34 Show All Tasks...
35 D:=N11;

Figure 8-11. Selecting the new task

At this point, VS Code asks what would you like to do to detect any problems
encountered during the execution of the external program so that it can display them in
the Problems panel. Detecting problems in the program'’s output is the job of a so-called
problem matcher. This is a more complex topic and will be discussed in the section
“Understanding Problem Matchers” later in this chapter. For now, select Continue
without scanning the task output (see Figure 8-12).

170

CHAPTER 8 AUTOMATING TASKS

Jq File Edit Selection View Go Run Terminal Help j2y.pp - fcl-json - Visual Studio Code —] X

u i C . . 1 . 1
<~ J2y.pp Select for which kind of errors and warnings to scan the task output 1]

" J2Y-PP > . Continue without scanning the task output

4a ;F Never scan the task output for this task

;i IF Never scan the task output for shell tasks

25 jt Learn more about scanning the task output |
26 ESLint compact problems Seslint-compact associate
27 ESLint stylish problems Seslint-stylish

28 begi gee o
29 If Go problems $go

;i} IF Gulp TSC Problems $gulp-tsc

32 o JSHint problems $jshint

33 if JSHint stylish problems $jshint-stylish

34 Lessc compiler Slessc

35 D:=n11;

36 OFS:=Nil;

37 jtoy:=Nil;

38 IFS:=TFileStream.Create(IFM,fmOpenRead or fmShareDenyWrite);
39 try

48 D:=GetJISON(IFS);

41 OFS:=TFileStream.Create(OFN, fmCreate);

42 JTOY:=TJISONToYaml.Create;

43 JTOY . Convert(D,0FS);

44 finally

45 D.Free;

46 IFS.Free;

47 OFS.Free;

48 JTOY.Free;

49 end;

50

51 end.

52

53

® 16 M0 £ Live Share OmniPascal: Select project Ln1,Col 1 Spaces:2 UTF-8 LF ObjectPascal & [

Figure 8-12. Selecting a problem matcher

The Free Pascal compiler is executed in the Terminal panel, where you also see the
program output, as demonstrated in Figure 8-13.

171

CHAPTER 8 AUTOMATING TASKS

TERMINAL PROBLEMS (@B) DEBUG CONSOLE 1: Task - build v+ @M w ~ X

> Executing task: fpc C:\FPC\3.2.8\examples\fcl-json\j2y.pp <

Free Pascal Compiler version 3.2.0 [2020/06/04] for i386
Copyright (c) 1993-2020 by Florian Klaempfl and others

Target 0S: Win32 for i386

Compiling C:\FPC\3.2.8\examples\fcl-json\j2y.pp

Linking C:\FPC\2.2.@\examples\fcl-json\j2y.exe

52 lines compiled, 1.7 sec, 256384 bytes code, 18772 bytes data

Terminal will be reused by tasks, press any key to close it.

® 16 A0 £ Live Share OmniPascal: Select project Ln 1, Col 1 UTF-8 LF

A 0

Spaces: 2 ObjectPascal

Figure 8-13. Executing the Free Pascal compiler

If the execution succeeds, you will find a new binary file in the source code’s folder.
If it fails, the compiler’s output displayed in the Terminal panel will help you understand
what the problem was. Before moving to a second example, I will now explain more
about default tasks, task templates, JSON properties in tasks.json, and variables.

Multiple Tasks and Default Build Tasks

The tasks.json file can define multiple tasks. As introduced earlier in this chapter, among
others, common tasks are build and test, but you might want to implement multiple
tasks that are specific to your scenario. For example, suppose you want to use the Free
Pascal compiler to build Delphi source code files.

The Free Pascal command-line compiler provides the -Mdelphi option, which
enables compilation based on the Delphi compatibility mode. You can therefore modify
tasks.json as follows:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",

172

CHAPTER 8 AUTOMATING TASKS

"command": "fpc",
"args": ["${file}"]
}J
{
"label": "Delphi build",
"type": "shell",
"command": "fpc",
"args": [
"${file}",
"-Mdelphi"
]
}

Asyou can see, there is a new custom task called Delphi build in the tasks array,
which still invokes the Free Pascal compiler on the active file, but with the -Mdelphi
option being passed as a command-line argument. Now if you select Terminal » Run
Task again, you see both tasks in the Command Palette, as demonstrated in Figure 8-14.

®) File Edit Selection View Go Run Terminal Help ficl-fson - Visual Studic Code = o x

Figure 8-14. All defined tasks are displayed in the Command Palette

It is common to have multiple build tasks, and even multiple tasks of the same
type, but in most cases, you will usually run the same task and keep other tasks for very
specific situations. Related to the current example, you will usually build Pascal source
files and sometimes build Delphi source files, so a convenient choice is to configure a

173

CHAPTER 8 AUTOMATING TASKS

default build task for Pascal files. As you learned in the “The Default Build Task” section
previously, you can easily accomplish this with the following steps:

1. Select Terminal » Configure Default Build Task.

2. Inthe Command Palette, select the build task defined previously by
adding an isDefault parameter (as you will see shortly in code).

3. With a Pascal source file active, select Terminal » Run Build
Task, or press the keyboard shortcut for your system.

This command automatically starts the default build task, without the need of
manually selecting a task every time.

Understanding tasks.json Properties

There are a number of properties available to customize a task. Table 8-2 provides a
summary of common properties that you can use with custom tasks.

Table 8-2. Available Properties for Task Customization

Property Name Description

label A string used to identify the task (e.g., in the Command Palette).

type Represents the task type. For custom tasks, supported values are shell and
process. With shell, the command is interpreted as a shell command (such
as bash, cmd, or PowerShell). With process, the command is interpreted as a
process to be executed.

command The command or external program to be executed.

args An array of command-line arguments to be passed to the command.

windows Allows specifying task properties that are specific to the Windows operating
system.

0SX Allows specifying task properties that are specific to macOS.

linux Allows specifying task properties that are specific to Linux and its distributions.

group Allows for defining task groups and for specifying to which group a task
belongs to.

(continued)

174

CHAPTER 8 AUTOMATING TASKS

Table 8-2. (continued)

Property Name Description

presentation Defines how Visual Studio Code handles the task output in the user interface

(see the following example).

options Allows for providing custom values about the cwd (current working directory),

env (environment variables), and shell (default shell) options.

The windows, osx, and linux properties will be discussed separately in the next

section. The group property allows grouping tasks by category. For instance, if you

consider the two multiple tasks created previously, they are both related to building

code, so they might be grouped into a category called build. This is accomplished by

modifying tasks.json as follows:

{

// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"],
"group": "build",

1
{
"label": "Delphi build",
"type": "shell",
"command": "fpc",
"args": ["${file}", "-Mdelphi"],
"group": "build"
}

175

CHAPTER 8 AUTOMATING TASKS

Notice how IntelliSense shows the built-in supported values for the group property
(see Figure 8-15).

3§ File Edit Selection View Go Run Terminal Help tasksjson - fcl-json - Visual Studio Co... — m] P

b tasksjson X 1]

wscode > {1} tasksjson » [] tasks > {} 0> B9 group

LA S L T e

4 "versien": “2.0.0", &=
5 “tasks™: [
6 {
7 “label": "build”,
8 "type": "shell",
9 "args": ["${file}"], —
10 "command”: "fpc”,
11 "group": "|“
12 ¥, & "build"
13 { &2 "none"
14 "label": " g "test"
15 "type": "sg&? {"kind":"build","isDefault":true}
16 “command": ¢ {"kind": "test", "isDefault":true}
17 "args": [" . . .

: w. w Marks the task as a build task accessible through the 'Run Build %
18 group”: :

Task' command.

19 }
20 1
21 7§
22

Figure 8-15. IntelliSense helping with groups

You can also specify additional values for individual tasks in a group. For example,
if you want to set a task as the default one in the group, you might change the JSON as
follows:

"group": {
"kind": "build",
"isDefault": true

The kind property represents the group name and isDefault is self-explanatory.
You can also customize the way VS Code handles the task output via the presentation
property. When you type presentation and then press Tab, IntelliSense adds a number
of key/value pairs with some default values, as follows:

176

CHAPTER 8 AUTOMATING TASKS

"presentation”: {

"echo": true,

"reveal”: "always",
"focus": false,

"panel": "shared",
"showReuseMessage": true

Following is the description of each key and its values:

echo can be true or false and specifies whether the task output is
actually written to the Terminal panel.

reveal can be always, never, or silent and specifies whether the
Terminal panel where the task is running should be always visible,
never visible, or visible only when a problem matcher is not specified

and some errors occur.

focus can be true or false and specifies if the Terminal panel should
get focus when the task is running.

panel can be shared, dedicated, or new and specifies if the terminal
instance is shared across tasks or if an instance must be dedicated to
the current task or if a new instance should be created at every task run.

showReuseMessage can be true or false and specifies whether a
message should be displayed to inform that the Terminal panel will
be reused by a task and that therefore it is possible to close it.

The values you see in the preceding snippet are the default values. In case of default

values, a key can be omitted. For example, the following markup demonstrates how to

create a new Terminal panel at every run without showing a reuse message:

"presentation”: {
“panel”: "new",
"showReuseMessage": false

Other values can be omitted because we are okay with the default values seen in the

preceding text.

177

CHAPTER 8 AUTOMATING TASKS

Note The list of supported properties is much longer, but most of them are not
of common use. If you want to get deeper knowledge about the full list of available
properties, you can look at the tasks.json schema, which provides detailed
comments about each property; the schema is available at https://code.
visualstudio.com/docs/editor/tasks-appendix.

Understanding Substitution Variables

Visual Studio Code also offers several predefined variables that you can use instead of
regular strings and that are useful to represent file and folder names when passing these
to a command. Table 8-3 provides a summary of supported variables.

Table 8-3. Supported Substitution Variables

Variable Description

${workspaceFolder} Represents the path of the currently opened folder.

${workspaceFolderBasename} Represents the name of the currently opened folder without
any slashes.

${file} The path to the active code file.

${relativeFile} The active code file relative to ${workspaceFolder}.

${fileBasename} The active code file’s base name, without path and leading
slash.

${fileBasenameNoExtension} The active code file’s base name without the extension.

${fileDirname} The path of the directory that contains the active code file.
${fileExtname} The file extension of the active code file.

${cwd} The current working directory of the task.

${1lineNumber} The currently selected line number in the active file.
${selectedText} The currently selected text in the active file.
${env.VARIABLENAME } References an environment variable, such as {$env.PATH}.

178

https://code.visualstudio.com/docs/editor/tasks-appendix
https://code.visualstudio.com/docs/editor/tasks-appendix

CHAPTER 8 AUTOMATING TASKS

Using variables is very common when you run a task that works at the project/folder
level or against file names that you either cannot predict or do not want to hardcode.
You can check the variables documentation for further details at https://code.
visualstudio.com/docs/editor/variables-reference.

Operating System-Specific Properties

Sometimes you might need to provide task property values that are different based on
the operating system. In Visual Studio Code, you can use the windows, 0sx, and 1inux
properties to specify different values of a property, depending on the target.

For example, the following tasks.json implementation shows how to explicitly specify
the path of an external tool for Windows and Linux (the directory names might not be
the same on your machine):

{
// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"args": ["${file}"],
"windows": {
"command": "C:\\Program Files\\FPC\\fpc.exe"
})
"linux": {
"command": "/usr/bin/fpc"
}
}
]
}

More specifically, you need to move the property of your interest under the operating
system property and provide the desired value. In the preceding code, the command
property has been moved from the higher level down to the windows and linux property
nodes.

179

https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/variables-reference

CHAPTER 8 AUTOMATING TASKS

Reusing Existing Task Templates

In the previous example about compiling Pascal source code, you saw how to create

a custom task from scratch. However, for some particular scenarios, you can leverage
existing task templates, which consists of tasks.json files already preconfigured to work
with specific commands and settings.

The list of task templates may vary depending on the extensions you have installed,
but assuming you have installed only the C# extension, your list should look like that
shown in Figure 8-9. The first template is called MSBuild and generates the following
tasks.json file:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "msbuild",
"args": [

// Ask msbuild to generate full paths for file names.
"/property:GenerateFullPaths=true",
"/t:build",
// Do not generate summary otherwise it leads to duplicate errors in
Problems panel
"/consoleloggerparameters:NoSummary"
]J
"group": "build",
"presentation”: {

// Reveal the output only if unrecognized errors occur.
"reveal": "silent"

1

180

CHAPTER 8 AUTOMATING TASKS

// Use the standard MS compiler pattern to detect errors, warnings and infos
"problemMatcher": "$msCompile"

This template is very useful if you want to work with Microsoft Visual Studio
solutions inside VS Code, and a more specific example is coming in the next subsection.
It is worth mentioning that this template has been included thinking about C# solutions
(such as web applications and desktop projects built upon the .NET Framework), but
MSBuild can build any kind of solution so it can be reused for different purposes.

The second template is called Maven and is tailored to support the same-named
build automation tool for Java. Such a template generates the following tasks.json file:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "verify",
"type": "shell",
"command": "mvn -B verify",
"group": "build"

})

{
"label": "test",
"type": "shell",
"command": "mvn -B test",
"group": "test"

}

181

CHAPTER 8 AUTOMATING TASKS

Obviously, Maven must be installed on your machine (you can find it at
https://maven.apache.org). The third template is called .NET Core and, as the name
implies, it generates a tasks.json file that is tailored to automate the build of .NET Core

projects. The configuration looks like the following:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"command": "dotnet",
"type": "shell",
"args": [
"build",
// Ask dotnet build to generate full paths for file names.
"/property:GenerateFullPaths=true",
// Do not generate summary otherwise it leads to duplicate
errors in Problems panel
"/consoleloggerparameters:NoSummary"
]J
"group": "build",
"presentation”: {
"reveal”: "silent"

1

"problemMatcher": "$msCompile"

182

https://maven.apache.org

CHAPTER 8 AUTOMATING TASKS

In this case, the command is not MSBuild; instead it is dotnet. These templates are
useful for at least two reasons:

e They provide ready-to-use configurations for projects of the targeted
type, where you might need only a few adjustments.

o They provide a complete task structure, where you only need to
replace the command and target and optionally the presentation and
the problem matcher.

You will now see an example based on the MSBuild task template.

Second Example: Building an MSBuild Solution (Windows Only)

MSBuild has been the Microsoft build engine since the very first release of the .NET
Framework back in 2002. It is a very powerful tool, because it can build a Visual Studio
solution with no effort. So, a very nice-to-have feature would be the possibility of
compiling your solutions and projects inside Visual Studio Code.

Note Starting with .NET Core 3, it is possible to build desktop apps with C#
and Visual Studio Code will be able to debug and run them without any additional
configuration. However, desktop apps have been built for decades with Windows
Presentation Foundation and Windows Forms upon the full .NET Framework.
Because Visual Studio Code has no direct support for .NET Framework, you will
need to customize the tasks configuration as explained in this section.

You can configure a task to run MSBuild.exe, the build engine used by Visual Studio.
In the next example, you will see how to compile an MSBuild solution made of a Visual
Basic project based on Windows Presentation Foundation (WPF), but of course all the
steps apply to any .sln file and to any supported languages. If you do not have one, in
Visual Studio 2019 create a blank WPF project with Visual Basic as the language. There’s
no need to write code, as the focus is on the project type. Save the project, then open the
project folder in VS Code.

183

CHAPTER 8 AUTOMATING TASKS

Before configuring a task; it is worth mentioning that, by default, the MSBuild path is
not registered in the Windows environment variables, so you have two possible alternatives:

e Add the MSBuild directory to the PATH environment variable
via Control Panel » System » Advanced system settings >
Environment Variables.

o Specify the full MSBuild pathname in tasks.json. This is the quickest
option and the one I will demonstrate.

Select Terminal » Configure Tasks. Select the Create template from task.json
option first, then select the MSBuild template from the list of templates. When tasks.json
has been created, change the value of the command property as follows, also replacing
Enterprise (this is what I have on my machine) with the name of the Visual Studio
edition you have on your machine, for example:

"command": "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\
Enterprise\\MSBuild\\Current\\Bin\\MSBuild"

Also, change the value of the reveal property from silent to always for
demonstration purposes, so that you can see the output of MSBuild in the Terminal
panel. Now select Terminal » Run Task and select the preconfigured build task, and
MSBuild will be started and the solution will be built, as you can see in Figure 8-16.

1: Task - build v 4+ @D &

ip-to-date with respect to the input files.

Terminal will be reused by tasks, press any key to close it.

@oho & LiveShare Ln1.Col1 Spaces:4 UTF-EwithBOM CRIF VisualBasic & 0

Figure 8-16. Compiling a WPF project written in Visual Basic with the MSBuild
task

The preconfigured MSBuild task uses the $msCompile problem matcher to detect
problems related to C# and Visual Basic in the build output, so that they can be
presented in a convenient way in the user interface. Let’s delve into problem matchers in
a bit more detail.

184

CHAPTER 8 AUTOMATING TASKS

Understanding Problem Matchers

Problem matchers scan the task output text for known warning or error strings and
report these inline in the editor and in the Problems panel. Visual Studio Code ships
with a number of built-in problem matchers for TypeScript, JSHint, ESLint, Go, C#
and Visual Basic, Lessc, and Node Sass (see https://code.visualstudio.com/docs/
editor/tasks# processingtaskoutput-with-problem-matchers).

Built-in problem matchers are extremely useful, because for the aforementioned
environments, VS Code can present problems that occurred at build time in the
Problems panel, but it can also highlight the line of code in the code editor that caused
the problem.

You can also define custom problem matchers to scan the output of an external
program. For instance, a problem matcher for scanning the Free Pascal compiler could
look like the following:

"problemMatcher": {
"owner": "external",
"filelocation": ["relative", "${workspaceRoot}"],
"pattern”: {

"regexp": "((([A-Za-z]) :\\\\(2:[M\\/¥2\\\"
& NADANTHANN)F) 21NN\ RN NN TR ((\Wd+) L) :
\\s.*(fatal|error|warning|hint)\\s(.*):\\s(.*)",

// The first match group matches the file name which is relative.
"file": 1,

// The second match group matches the line on which the problem occurred.
"line": 2,

// The third match group matches the column at which the problem occurred.
"column": 3,

// The fourth match group matches the problem's severity. Can be ignored.
Then all problems are captured as errors.
"severity": 4,
// The fifth match group matches the message.
"message": 5

}

185

https://code.visualstudio.com/docs/editor/tasks#_processing­task­output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing­task­output-with-problem-matchers

CHAPTER 8 AUTOMATING TASKS

The owner property represents the language service, whose value is external in this
case, but it could be, for example, cpp in the case of a C++ project. But the most important
property is pattern, where you specify a regular expression (regexp) to match error strings
sent by the external program. Also notice, with the help of comments, how matches are
grouped by target. Building problem matchers can be tricky and it is out of the scope of
this book, so I recommend that you read the official documentation available at https://
code.visualstudio.com/docs/editor/tasks# defining-a-problem-matcher.

Running Files with a Default Program

In case you are editing in VS Code a file whose type is associated with the operating
system, you do not need to create custom tasks to run it. For example, you can run a
batch program (.bat) in Windows or a shell script file (.sh) on macOS by simply clicking
Terminal » Run Active File.

The file name is passed to the current terminal program on your system (PowerShell
on Windows or the bash shell on Linux and macOS) so that the operating system tries
to open the file with the program that is registered with the file extension, if any. In the
case of a batch or shell script file, the operating system executes the file. The output is

displayed in the Terminal panel.

Note Only the output of the operating system or of command-line tools will be
redirected to the Terminal panel. For instance, if you try to edit a .txt file and then
select Terminal » Run Active File, such a file will be opened inside the default
text editor on your system, and there will be no additional interactions with the
Terminal panel.

Summary

There are many features in Visual Studio Code that make it different from a simple code
editor. Tasks are among these features. With tasks you can attach external programs to
the application life cycle and run tools like compilers. VS Code ships with task auto-
detection for some environments, but it allows for creating custom tasks when you need
to associate specific tools to a project or folder.

186

https://code.visualstudio.com/docs/editor/tasks#_defining-a-problem-matcher
https://code.visualstudio.com/docs/editor/tasks#_defining-a-problem-matcher

CHAPTER 8 AUTOMATING TASKS

By working on the tasks.json file and with the help of IntelliSense, you can include
the execution of any external program in your folders. The execution of external
programs like compilers is certainly useful, but it would not be so important if VS Code
could not make a step forward: debugging code, which is discussed in the next two
chapters, first with C# and then with Python.

187

CHAPTER 9

Building and Debugging
Applications: .NET 5
and Other Platforms

Being an end-to-end development environment, Visual Studio Code offers opportunities
that you will not find in other code editors. In fact, in Visual Studio Code, you can work
with many project types and debug your code in several languages. This chapter first
provides a general overview of application development, and then it explains how to
build .NET 5 projects supported in Visual Studio Code and how to use all the built-in,
powerful debugging features. Even if you do not plan to use C# with Visual Studio Code,
I recommend that you read this chapter because most of the concepts are applicable to
other languages as well, especially TypeScript, JavaScript, and Python.

Creating Applications

Visual Studio Code is independent from proprietary project systems and platforms
and, consequently, it does not offer any built-in options to create projects. This means
that you need to rely on the tools offered by each platform. This section explains how to
build projects based on the new .NET 5, but you can similarly create projects with the
command-line interface offered by other platforms.

I also recommend that you create a dedicated folder on disk for the following
examples. With the help of the file manager tool on your system (Windows Explorer on
Windows, Finder on macOS, and Nautilus on Linux distributions such as Ubuntu), create
a folder called VSCode under the root folder, such as C:\VSCode or ~/Library/VSCode.
In this folder, you will shortly create new applications.

189
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_9

https://doi.org/10.1007/978-1-4842-6901-5_9#DOI

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

Note The following topics are discussed in the context of .NET 5, but Visual
Studio Code supports all .NET Core versions up to 3.1. All explanations and
examples therefore apply to .NET Core as well.

Introducing .NET 5

.NET 5 is the new major release of the Microsoft .NET technology. After releasing .NET
Core a few years ago, Microsoft has had in mind the vision of a complete unification
between .NET Framework and .NET Core, working on a single, cross-platform API that
could bring the great power of .NET to any developer on any system.

As you might know, .NET Core is a cross-platform, open source, modular runtime
to build applications using C#, F#, and Visual Basic that run on Windows, macOS, and
Linux distributions. With .NET Core, you can create different kinds of applications such
as web applications, Web API REST services, Console applications, and class libraries.
Its bigger brother, the .NET Framework, also includes the ability to create desktop
applications, such as Windows Forms and Windows Presentation Foundation, but the
.NET Framework’s biggest limitation is that it only runs on Windows.

So .NET 5 can be considered as an update for both .NET Core and .NET Framework;
with it, Microsoft brings together the two technologies and offers a unified development
platform that has the flexibility and portability of .NET Core, plus the full power of
.NET Framework. .NET 5 also includes C# 9 and F# 5, but it does not support mobile
development with C# and F#, which is planned for .NET 6 with the inclusion of Xamarin.
Additionally, at this writing, with .NET 5 you can only create desktop apps on Windows.

There are several ways to get .NET 5. As a developer working with Visual Studio
Code, the easiest way is to download the latest release from the official website
(https://dotnet.microsoft.com). This website enables you to select the installation
package that matches your operating system. For the following explanations and
examples, I'm assuming you have downloaded and installed .NET 5 on your machine.

190

https://dotnet.microsoft.com

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

Creating .NET 5 Projects

.NET 5 ships with a rich command-line interface that provides many options to create

different kinds of projects and individual files. You can create projects and files from the

command line by using the dotnet tool, more specifically by invoking the dotnet new

command. For example, if you want to create a Console application with C#, you would

enter the following command:

> dotnet new console

By default, the dotnet tool assumes you want to use C# unless you explicitly specify a

different language. For example, the following command enables you to create a Console

application with Visual Basic:

> dotnet new console -lang VB

Table 9-1 provides a comprehensive list and description of all the available

templates.

Table 9-1. Available NET Project and File Templates

Template Name Short Name Language
Console Application console C#, F#,VB
Class Library classlib C#, F#,VB
WPF Application wpf C#,VB
WPF Class Library wpflib C#,VB
WPF Custom Control Library wpfcustomcontrollib C#,VB
WPF User Control Library wpfusercontrollib C#,VB
Windows Forms (WinForms) Application winforms C#,VB
Worker Service worker C#

Unit Test Project mstest C#, F#,VB
NUnit 3 Test Project nunit C#, F#,VB

(continued)

191

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

Table 9-1. (continued)

Template Name Short Name Language
NUnit 3 Test Item nunit-test C#, F#,VB
xUnit Test Project xunit C#, F#,VB
Razor Component razorcomponent C#

Razor Page page C#

MVC Viewlmports viewimports C#

MVC ViewStart viewstart C#

Blazor Server App blazorserver C#

Blazor WebAssembly App blazorwasm C#
ASP.NET Core Empty web C#, F#
ASP.NET Core Web App (Model-View-Controller) mvc C#, F#
ASP.NET Core Web App webapp, razor C#
ASP.NET Core with Angular angular C#
ASP.NET Core with React.js react C#
ASP.NET Core with React.js and Redux reactredux C#

Razor Class Library razorclasslib C#
ASP.NET Core Web API webapi C#, F#
ASP.NET Core gRPC Service grpc C#

dotnet gitignore file gitignore

global.json file globaljson

NuGet Config nugetconfig

Dotnet local tool manifest file tool-manifest

Web Config webconfig

Solution File sin

Protocol Buffer File proto

192

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

Note All Windows Forms and WPF templates are available to Visual Basic only
with .NET 5. For C# and F# they have already been available since .NET Core 3.1.
However, the majority of the templates described in Table 9-1 have been available
since previous versions.

In this section I will show an example based on C# and an ASP.NET Core web
application built upon the Model-View-Controller (MVC) pattern. Open a command
prompt or a terminal instance on the VSCode folder created previously, depending on
your system.

Type the following command to create a new empty folder called HelloWeb:

> mkdir HelloWeb
Then, move into the new directory. On Windows and Linux, you can type
> chdir HelloWeb

On macOS, the command is instead cd, which is also commonly used on Windows
as a shortcut for chdir.
Next, type the following command to build a new .NET 5 web application using C#:

> dotnet new mvc

The mvc command-line switch specifies that the new web application is based on the
MVC pattern and the .NET SDK will generate all the plumbing code for some controllers
and views. You could also use the web switch and create an empty web application, but
having some autogenerated pages will help with describing the debugging features.
Once the project has been created, .NET 5 will automatically restore NuGet packages for
the solution. You could also do this manually by typing the following command:

> dotnet restore

If you were to type dotnet run, the development server would start running and
then you would need to open your browser and launch the application manually.
However, the goal is understanding how to run and debug the application in Visual
Studio Code. So, open the project folder with VS Code. You can also type code . to
open Visual Studio Code from the command line. Thanks to the C# extension, VS Code
recognizes the presence of the .csproj project file, organizing files and folders and
enabling all the powerful code editing features you learned previously.

193

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

The next step is to run the application. As a general rule, in Visual Studio Code you
have two options:

¢ Running the application with an instance of the debugger attached,
where a debugger is available for the current project type. In the case
of .NET 5, this ships with its own debugger that integrates with VS
Code.

e Running the application without an instance of the debugger
attached.

Let’s start with the second option, and then the debugging features are described in
detail in the next section. You can select Run » Run Without Debugging. Visual Studio
Code first asks you to specify an environment, so select .NET Core, then it starts the
default build task. For Web applications, VS Code starts an instance of the development
server, but in order to run the application you need to manually open the browser and
enter the Web address you see in the Terminal panel.

Note The first time you run some code, VS Code might show a pop-up message
saying that required assets are needed to enable building and debugging. Accept
the offer and VS Code will do the rest.

Figure 9-1 shows the web application built previously.

194

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

| Home Page - helloweb * +

C A Notsecure | localhost:5001 ¥ e :

I Apps M Gmail D YouTube B¥ Maps

helloweb Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

© 2021 - helloweb - Privacy

Figure 9-1. The .NET web application running

Note Your browser might show a warning saying that the website is not secure.
Because the local development environment is currently being used, you can
ignore the warning and proceed to display the web page. Also, some browsers
might ask to add a security exception for the current site, which you might want to
accept to avoid the warning every time.

ASP.NET web applications use an open source development server called Kestrel
(https://github.com/aspnet/AspNetCore), which allows for independence from
proprietary systems. By default, Kestrel listens for the application on port 5001, which
means your application can be reached at http://localhost:5001. You can change the
default port setting in a file called launch.json, which is discussed more thoroughly in
the later section “Configuring the Debugger”

195

https://github.com/aspnet/AspNetCore

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

With the preceding simple steps, you have been able to create and run a .NET 5
project in VS Code that you can certainly edit as you need with the powerful C# code
editing features.

Creating Projects on Other Platforms

Obviously, .NET 5 is not the only platform you will use with VS Code. Depending on the
platform, you will use specific command-line tools to build a new project. In the next
chapter you will learn how to work with Python projects, but providing some context
in this chapter is worthwhile as well. For example, with Node.js you can quickly create
JavaScript projects based on the Express.js framework (https://expressjs.com).
Express is a minimal and flexible Node.js web application framework that provides
arobust set of features to develop web and mobile applications. It facilitates the rapid
development of Node-based web applications and includes features such as setting
up middleware to respond to HTTP requests, defining a routing table used to perform
different actions based on HTTP methods and URL, and dynamically rendering HTML
pages based on passing arguments to templates. An easy way to start creating apps
with Express is to use the Express application generator (https://expressjs.com/en/
starter/generator.html), which you install with the following command:

> npm install -g express-generator
Next, you can generate a JavaScript project with the following command:
> express expressexample

Note that npm requires using all lowercase letters. You can then type code . to open
the new project in Visual Studio Code. Figure 9-2 shows a JavaScript project created with
the Express JavaScript framework inside Visual Studio Code.

196

https://expressjs.com
https://expressjs.com/en/starter/generator.html
https://expressjs.com/en/starter/generator.html

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

)d Welcome X
Ja File Edit Selection View Go Run Terminal Help app.js - expresssample - Visual Studio Code —] X
@ EXPLORER 5 app.js * (]

> OPEN EDITORS

@
w

GO O B W R g
<
o
=

}.rar‘ createError = require('http-errors’);
var express = require('express’);

~ EXPRESSSAMPLE

> bin
+ public var path = require('path');
,I var cookieParser = require('cookie-parser');
> images

logger = require('morgan’);
v javascripts

> stylesheets var indexRouter = require('./routes/index');

~ routes var usersRouter = require(’./routes/users');
J5 index.js 9
5 usersjs 18 var app = express();
. 11
vlwews . 12 J// view engine setup
® errorjade 13 app.set('views', path.join(__dirname, 'views')
indexjade 14 app.set('view engine', 'jade');
& layoutjade 15
5 appjs 16 app.use(logger('dev'));
packagejson 17 app.use(express.json());
18 app.use(express.urlencoded({ extended: false }
19 app.use(cookieParser());
20 app.use(express.static(path.join(__dirname, 'p
21
22 app.use('/"', indexRouter);
23 app.use('/users', usersRouter);
24

%]
w

// catch 484 and forward to error handler

app.use(function(reg, res, next) {
next(createError(464));

1)

[
(=3}

> OUTLINE
2> NPM SCRIPTS

[
[

®odo £ Live Share Ln1.Col1 Spaces:2 UTF-8 LF JavaScript & 0

Figure 9-2. A JavaScript project created with the Express JavaScript framework in
VS Code

You follow a similar process with other command-line tools that allow for generating
projects, such as the Yeoman generator (https://yeoman.io/), still available for Node.
js, and that also allow for generating ASP.NET Core projects and VS Code extensions.

For example, you could create mobile apps with the Apache Cordova framework
(https://cordova.apache.org). Cordova is a JavaScript-based framework, and it works
very well with Node.js. Apps you build with Cordova are based on JavaScript, HTML,
and Cascading Style Sheets (CSS). First, you can install Cordova with the following

command:

> npm install -g cordova

197

https://yeoman.io/
https://cordova.apache.org

CHAPTER 9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS
Then you can easily build a Cordova project with the following command:
> cordova create mycordovaproject

where mycordovaproject is the name of the new project. Once you have a new or
existing Cordova project, you can install the Cordova Tools extension for Visual Studio
Code (https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-
tools). This extension adds support for Cordova projects to the integrated debugger for
Node.js, providing specific configurations to target Android and iOS devices, as well as
simulators.

Note You also need some additional specific tools for Cordova, depending on
what system you intend to target. For i0S, you need to install the tools described
in the i0S Platform Guide from Apache Cordova (https://cordova.apache.
org/docs/en/latest/guide/platforms/ios/index.html). For Android,
you need to install the tools described in the Android Platform Guide from Apache
Cordova (https://cordova.apache.org/docs/en/latest/guide/
platforms/android/index.html).

Debugging Your Code

The code debugging capability of Visual Studio Code is one of its most powerful features
and probably the one that makes it a notch above other code editors. Visual Studio Code
ships with an integrated debugger for Node.js applications and can be extended with
third-party debuggers. For instance, if you have .NET 5 installed, the C# extension for
Visual Studio Code detects the availability of a compatible debugger and takes care of
attaching it to VS Code.

We will consider the scenario of using C# and .NET Core as the example of how
debugging works, so reopen the HelloWeb folder that you created previously.

Note All the features discussed in this chapter apply to all the supported
debuggers (both built-in and via extensibility), so they are not specific to C#
and .NET 5.

198

https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

The Run view provides a way to interact with the debugger. Figure 9-3 shows how it

appears at this point.

] File Edit Selection View Go Run Terminal Help Program.cs - helloweb - Visual Studic Code [Administrator] = (=] *
RUM AND DEBUG | [» | MET Core Launch (w~ | & - € Program.cs % m
+ VARIABLES -NET Core Launch (web) © Program.cs > {} helloweb » 48 helloweb.Program > & CreateHostBuilder(string(args)
NET Core Attach oS g :
= 2
Mode js... 3
LAdd Cenfiguration... 4 .
5 using Microsoft.AsphetCore.Hosting;
[i .
é‘) Ty using Microsoft.Extensions.Hosting;
g :
9
10 namespace helloweb
11 {
12 public class Program
13 {
14 public static woid Main(string[] args)
15 {
16 CreateHostBuilder{args).Build().Run();
17 }
18
19 public static IHostBuilder CreateHostBuilder(string[] args) =
20 Host.CreateDefaultBuilder(args)
21 | .ConfigureWebHostDefaults{webBuilder =>
22 {
 WATCH 23 webBuilder.UseStartup<Startup>();
24 DH
> CALL STACK 25 }
~+ BREAKPOINTS % 1}
[Tutte le eccezicni 27

Eccezioni non gestite dall'utente

@oMo #lveshare @& Elhelloweb In20, Cold44 Spaces:4 UTF-8 CHIF C#

Figure 9-3. Run view

At the top of the view, you can see the RUN toolbar, which provides the following items:

e The Start Debugging button, represented with the play icon (the
white and green arrow). Clicking this button starts the application
with an instance of the debugger attached.

e The configuration drop-down box. Here you can select a debugger

configuration for running the application.

o The settings button, represented with the gear icon and whose tooltip

says Open launch.json (details coming shortly).

e Asubmenu represented by the ... button that contains the list of
available and selected views, plus the Debug Console command,
which opens the Debug Console panel where you see the output

messages from the debugger.

199

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

After this quick overview, you are ready to learn about debugger configurations, and
then you will walk through the debugging tools available in VS Code.

Configuring the Debugger

Before a debugger can inspect an application, it must be configured. For Node.js and for
platforms like .NET 5, where an extension takes care of everything, default configurations
are provided. Figure 9-3 shows the two predefined configurations, .NET Core Launch
(web) and .NET Core Attach.

The first configuration is used to run the application within the proper host, with
an instance of the debugger attached. For an ASP.NET Core web application like in the
current example, the host is the web browser. In the case of a Console application, the
host would be the Windows Console or the Terminal in macOS and Linux. The second
configuration can be used to attach the debugger to another running .NET 5 application.

Note Actually, there is a .NET Core Launch configuration that is different for each
kind of application you create with .NET Core. For example, the configuration for
Console applications is called .NET Core Launch (console). The concept to keep

in mind is that a Launch configuration is provided to attach an instance of the
debugger to the current project.

Debugger configurations are stored in a special file called launch.json. Visual Studio
Code stores this file in the .vscode subfolder (along with tasks.json). This special JSON
file contains the markup that instructs Visual Studio Code about the output binary that
must be debugged and about the application host. The content of launch.json for the
current .NET Core sample looks like the following:

{

"version": "0.2.0",
"configurations": [

{
// Use IntelliSense to find out which attributes

// exist for C# debugging
// Use hover for the description of the
// existing attributes

200

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

// For further information visit https://github.com/OmniSharp/
omnisharp-vscode/blob/master/debugger-launchjson.md

"name": ".NET Core Launch (web)",
"type": "coreclr",
"request": "launch",

"preLaunchTask": "build",
// If you have changed target frameworks, make sure to update
the program path.
"program": "${workspaceFolder}/bin/Debug/net5.0/HelloWeb.d11",
"args”: [],
"cwd": "${workspaceFolder}",
"stopAtEntry": false,
// Enable launching a web browser when ASP.NET Core starts.
For more information: https://aka.ms/VSCode-CS-LaunchJson-
WebBrowser
"serverReadyAction": {
"action": "openExternally",
"pattern”: "\\\\bNow listening on:\\\\s+(https?://\\\\S+)"

}s
"env": {

"ASPNETCORE_ENVIRONMENT": "Development"
}s

"sourceFileMap": {
"/Views": "${workspaceFolder}/Views"

"name": ".NET Core Attach",

"type": "coreclr",

"request": "attach",

"processId": "${command:pickProcess}"

201

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

As you can see, the syntax of this file is similar to the syntax of tasks.json. In this case
you have an array called configurations. For each configuration in the array, the most
important properties are

e name, which represents the configuration-friendly name.

o type, which represents the type of runtime the debugger is running
on.

o request (launch or attach), which determines whether the debugger
is attached to the current project or to an external application.

o prelaunchTask, which contains any task to be executed before the
debugging session starts. Usually, this property is assigned with the
default build task.

o program, which represents the binary that will be the subject of the
debugging session.

¢ env, which represents the environment. In the case of .NET 5, a value
of Development instructs VS Code to run the Kestrel development
server.

If you wanted to implement custom configurations, launch.json is the place where
you would add them. Because these two configurations, and more generally default
configurations, are enough for most of the common needs, custom configurations
are not covered in this book. The documentation provides additional details about
this topic (https://code.visualstudio.com/docs/editor/debugging# add-a-new-
configuration).

Note If you click the Add Configuration button located at the bottom-right
corner of the code editor when launch.json is the active file, you will be able to
select from a built-in list of configurations that you can add to launch.json. This can
be useful especially in those cases where VS Code should detect a project type and
its configuration but doesn’t.

202

https://code.visualstudio.com/docs/editor/debugging#_add-a-new-­configuration
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-­configuration

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

Managing Breakpoints

Before starting a debugging session, it is useful to place one or more breakpoints to
discover the full debugging capabilities in VS Code. You place breakpoints by clicking
the white space near the line number of by pressing F9 on the line of your interest. For
instance, place a breakpoint on line 18 of the Startup.cs file, as shown in Figure 9-4.

%] File Edit Selection View Go Run Terminal Help Startup.cs - helloweb - Visual Studio Code = (] x
Cr Startup.cs X M

€ Startup.cs > {} helloweb > % helloweb.Startup > @ Startup(IConfiguration configuration)

4 using System.Threading.Tasks;

5 using Microsoft.AspNetCore.Builder;
[using Microsoft.AspNetCore.Hosting;
7
8

using Microsoft.AspletCore.HttpsPolicy;
using Microsoft.Extensions.Configuration;
9 using Microsoft.Extensions.DependencyInjection; =
10 using Microsoft.Extensions.Hosting;
11
12 namespace helloweb
13
14 public class Startup
15 {
16 public Startup(IConfiguration configuration)
17 {
e 18 Configuration = configuration;
19 }
20
21 public IConfiguration Configuration { get; }
22
23 // This method gets called by the runtime. Use this methed to add services to the co
1 references
24 public void ConfigureServices(IServiceCollection services)
25 {
26 services.AddControllersWithViews();

oMo & Lveshare & EIhelloweb Ln 18, Col 43 (42 selected) Spaces:4 UTF8 CRUF c# & 0

Figure 9-4. Adding breakpoints

203

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

You can remove a breakpoint by simply clicking it again, or you can manage
breakpoints in the Breakpoints area of the Run view (see Figure 9-5).

4 BREAKPOINTS + & &
All Exceptions
#| User-Unhandled Exceptions
@ v Startup.cs 19

0 P .NET Core Launch (web) (helloweb) I helloweb

Figure 9-5. Managing breakpoints

Here you can see the list of files that contain any breakpoint and the line numbers.
You can also cause the debugger to break on userunhandled exceptions (default) and on
all exceptions. You can click the Add Function Breakpoint (+) button. Instead of placing
breakpoints directly in source code, a debugger can support creating breakpoints by
specifying a function name. This is useful in situations where source is not available but
a function name is known.

Debugging an Application

Now it is time to start a debugging session so that you can see in action all the debugging
tools and make decisions when breakpoints are hit. In the Run view, make sure the .NET
Core Launch (web) configuration is selected, then click the Start button or press F5.
Visual Studio Code launches the debugger, and it will display the output of the debugger
in the Debug Console panel. It will also break when it encounters an exception or a
breakpoint, like in the current example.

Figure 9-6 shows VS Code hitting a breakpoint and all the debugging
instrumentation. The line of code highlighted in yellow is the line that will be executed
as the next one.

204

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

A Startup.cs - helloweb - Visual Studio Code - (m] X
File Edit Selection View Go Debug Terminal Help
[_ﬁ\l DEBUG P MNETCorelaunch(web)* £ = ¢ I 2 ¢+ T O n ¢ m
= 4 VARIABLES C-. Startup.cs b (ﬁ-_, Startup * @ Sta on)
,(j 4 Locals 14
b this: {helleweb.Startup} 1 reference
. i - B . ~ 15 public class Startup
4 configuration [ICenfiguration]: {Microsoft.E- 16 g
Providers [IEnumerable]: Count = 5 S
¢ [@] [IConfigur ider]: {Microsoft.. 17 public Startup(IConfiguration configuration)
b [1] [IConfigurationProvider]: {Microsoft.. 18 {
b [2] [ICenfigurat rovider]: {Microsoft. ® 19 - Configuration = configuration;
[3] [IConfigurationProvider]: {Microsoft.. e }
4 WATCH 21
22 public IConfiguration Configuration { get; }
23
24 // This method gets called by the runtime. Use this method
25 public veid ConfigureServices(IServiceCellection services)
26 {
27 services,ConfigurecCookiePolicyOptions>{options =>
4 CALL STACK 28 {
4 Main Thread SALEED N BREAKDOINT 29 /{ This lambda determines whether user consent for

helloweb.d11l!hellowebh.Startup.Startup(Microso 3@ options.CheckConsentheeded = context => true;

helloweb.dl1!helloweb.Program.Main(string[] a

P <No Name> PALISED

Console logger queue processing thread RUNNING

4 BREAKPOINTS

All Exceptions
Wi User-Unhandled Exceptions
® ¥ Startup.cs i >
©O0A0) .NET Core Launch (web) (helloweb) I helloweb Ln 19, Col 43 (30 selected) Spacess4 UTF-BwithBOM CRIF C¢ @ A

Figure 9-6. The debugging tools available when a breakpoint is hit

Notice that the status bar becomes orange while debugging and the Debug Console
window shows information about the debugging process. On the left side, the Debug
view shows a number of tools:

e VARIABLES, which shows the list of variables that are currently
under the debugger control and that you can investigate by
expanding each variable. This panel includes a sublist called Locals,
which displays the list of the variables that are currently in scope.
Each can be further expanded to see their details.

e WATCH, a place where you can evaluate expressions.

e CALL STACK, where you can see the stack of method calls. If you
click a method call, the code editor takes you to the code that is
making that call.

o BREAKPOINTS, where you can manage breakpoints.

205

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

At the top of the window, also notice the debugging toolbar (see Figure 9-6) called
Debug action pane, which is composed of the following commands (from left to right):

o Continue, which allows continuing the application execution after
breaking on a breakpoint or an exception.

o Step Over, which executes one statement at a time, except for
method calls, which are invoked without stepping into.

o Step Into, which executes one statement at a time. Statements within
method bodies are also executed one at a time.

o Step Out, which executes the remaining lines of a function starting
from the current breakpoint.

o Restart, which you select to restart the application execution.
e Stop, which you invoke to stop debugging.

These commands are also available in the Run menu, together with their keyboard
shortcuts. For example, if you click the Step Over button, the highlighted line runs
and the execution advances one line (see Figure 9-7). If you hover your cursor over
avariable name in the code editor, a convenient pop-up box enables you to easily
investigate values and property values (depending on the type of the variable), as
demonstrated in Figure 9-7, which shows a pop-up box that includes information about
the configuration variable. You can expand properties and see their values, and you
can also investigate properties in the VARIABLES area of the Run and Debug bar.

206

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

- O X
ci b 2 ¢ 1t O = © m -
C Startup.cs b {} helloweb ¢ *g helloweb.Startup b @ Startup(iConfiguration configuration)
14 {
1 reference

15 public class Startup
16 {

0 refereny (Microsoft.Extensions.Configuration.Configuration..
17 public | |4 Providers [IEnumerable]: Count =5
18 { 4 [@] [IconfigurationProvider]: {Microsoft.E

® 19 Con | 4 MNon-Public members

20 } b _config [IConfiguration]: {Microsoft.Ext
21 b [1] [IConfigurationProvider]: {Microsoft.E

. .| b [2] [IConfigurationProvider]: {Microsoft.E
22 pL;;f:ll.Zr b [3] [IConfigurationProvider]: {Microsoft.E

b [4] [IConfigurationProvider]: {Microsoft.E

#3 : b Raw View
- /1 Thls b Non-Public members i —Eho

0 reterences
25 public void ConfigureServices(IServiceCollection services)
26 {
27 services.Configure<CookiePolicyOptions>(options =>
28 {
29 // This lambda determines whether user consent for

| 30 s options:CheckConsentileeded = context => true;

Figure 9-7. Investigating property values at debugging time

Evaluating Expressions

You have an option to use the Watch tool to evaluate expressions. While debugging, click
the Add Expression (+) button in the Watch box, then type the expression you want to
evaluate. For instance, if you type configuration != null, the Watch tool returns true
or false depending on whether or not the object has an instance. Figure 9-8 shows an
example.

207

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

v WATCH

configuration != null: true

Figure 9-8. Evaluating expressions

The Call Stack

The debugger also offers the Call Stack feature, which allows stepping through the
hierarchy of method calls. When you click a method call in the stack, the code editor
opens the containing file, highlighting the method call (see Figure 9-9).

A Program.cs - helloweb - Visual Studie Code = (m] X
File Edit Selection View Go Debug Terminal Help
ﬁl DEBUG P MNETCorelaunch(web)* £ = ¢ I 2 ¢+ T O n ¢ m
B . onissies C Program.cs » {1 helloweb » % helloweb.Program * @ Main
,Cj 4 Locals 9 using Microsoft.Extensions.logging;
args [string[]]: {string[@]} 10
6 11 namespace helloweb
Y 12
‘Q 13 public class Program
0 |
[u] 15 public static void Main(string[] args)
4 WATCH 16 {
Configuration != null: error C50183: The name. B 17 ¥ CreatelWebHostBuilder({args).Build().Run();
18 3
19
28 public static IWebHostBuilder CreateWebHostBuilder(string[’
21 WebMost.CreateDefaultBuilder(args)
22 JUseStartup<Startup>();
23]
4 CALL STACK 2}
4 Main Thread FAUSED ON STEP 25
helloweb.d1l!hallowebh. Startup.Startup(Microso
E A~ 0O x
helloweb.d11!helloweb. Program.Main(string[] a o
b <No Name> PAUISED
* Console logger queue processing thread PALISED
4 BREAKPOINTS
All Exceptions
ﬂ' Wi User-Unhandled Exceptions
® ¥ Startup.cs i >
©0A0 P .NET Core Launch (web) (helloweb) [im helloweb Ln 17, Col 54 (41 selected) Spaces4 UTF-8withBOM CRIF C2 @ A

Figure 9-9. Walking through method calls
208

CHAPTER9 BUILDING AND DEBUGGING APPLICATIONS: .NET 5 AND OTHER PLATFORMS

As you walk through method calls, the Locals subview of the VARIABLES panel also
updates to show variables that are in the current scope. The code editor can highlight
method calls only if the method is part of the source code, so it does not allow further
control over the methods marked as [External Code] in the CALL STACK (see Figure 9-9),
but this feature is very useful especially when you encounter errors and you need to step
back through the code.

The Debug Console Panel

The Debug Console is certainly the place where VS Code shows the debugger output,
but, as the name implies, it is also an interactive panel where you can evaluate
expressions. You can type the expression near the > symbol and then press Enter.

Figure 9-10 shows an example that evaluates if the configuration variable is not null.

PROBLEMS DEBUG CONSOLE TERMINAL = A 0O x
+ configuration != null
true

>

Ln 19, Col 43 (30 selected) Spaces:4 UTF-8withBOM CRIF C¢ @ A

Figure 9-10. Evaluating expressions in the Debug Console panel

Summary

The power of Visual Studio Code as a development environment comes out when you
work with real applications. With the help of specific generators, you can easily generate
.NET 5 projects using C# or Node.js projects. This chapter described how you can leverage
a powerful, built-in debugger that offers all the necessary tools you need to write great
apps, such as breakpoints, variable investigation, call stack, and expression evaluators.

By completing this chapter, you have walked through all the most important and
powerful features you need to know to write great cross-platform applications using
Visual Studio Code.

209

CHAPTER 10

Building Applications
with Python

Python is a very popular and powerful programming language that can be used to
develop applications of any kind, and it is especially useful to build data science and
data analysis applications.

Python is an interpreted, object-oriented programming language that can be
learned by developers of any experience. This chapter describes how Visual Studio Code
supports building and debugging Python code, including specific code editing features.
Obviously, the chapter’s focus is not the Python language but rather how Python can find
used with VS Code.

Chapter Prerequisites

In this chapter, I provide examples of running and debugging Python code. Following
along with these examples requires that you install the following components before you
continue reading:

o The Python interpreter with its tools, which you can download from
the Python official site (https://www.python.org/downloads). The
download page automatically detects your operating system and
offers the appropriate download package for Windows, macOS, and
Linux distributions.

o The Python extension for Visual Studio Code provided by Microsoft,
which you can install via the Extensions panel. There are several
extensions for Python in the Marketplace, but I recommend that
you download the official one, shown in Figure 10-1, because it
dramatically improves the development experience with a debugger
and additional coding tools.

211
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_10

https://doi.org/10.1007/978-1-4842-6901-5_10#DOI
https://www.python.org/downloads

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

) rFile Edit Selection View Go Run Terminal Help Extension: Python - Visual Studio Code - g X

EXTENSIONS: MARKETPLACE T O =E - Extension: Python X ol

Pyth on ms-pythonpython
Microsoft | @ 31.760.855 # % 9 % % Repository | License

Linting, Debugging (multi-threaded, remote), Intellisense, Jupyter Notebooks, code formatting...

[nstat | IR

Details Feature Contributions Changelog Dependencies

Python extension for Visual Studio Code

o i Gamertor 0540 5 7Eks A Visual Studio Code extension with rich support for the Python language (for all actively supported versions of the language:
Automatically generates detailed docstrings for ... ==1.6), including features such as IntelliSanse, linting, debugging. code navigation, code fi ing, Jupyter book support,
Nils Werner refactoring, variable explorer, test explorer, and more!

Python Indent 1120 DASEC WS X

Corect python indentation Quick start

Kevin Rose [install [~

> SN * Step 1. Instzll a supported version of Python on your system (note: that the system install of Python on macO5S is not
5 AREPL for python 201 2K * 5
ey real-time python soratchpad
Almenon

supported).
= Step 2. Install the Python extension for Visual Studio Code.

* Step 3. Open or create a Python file and start coding!

Set up your environment

P P)Rhcm Praviag A0 i sl « Select your Python interpreter by clicking on the status bar
Provide Preview for Python Execution.
dongli | install [}
200K & 5

Python Path 0011

Figure 10-1. The official Python extension from Microsoft

Note This chapter walks through a simple code example, but in the real world
you might want to build more complex applications, in which case you need
additional components. For instance, building data science applications requires
Anaconda (https://www.anaconda. com), a distribution that includes Python
and the R programming languages, plus a set of libraries specific for data science.
If you instead need to do web development, you might want to consider Django
(https://www.djangoproject.com), a web framework built with Python.

If you haven'’t already created a dedicated folder on disk for the code examples (mine
is called VSCode), as suggested in the previous chapters, I recommend doing so for this
chapter.

Now that you have all the minimum required tools installed, you are ready to start
coding and debugging with Python in Visual Studio Code.

212

https://www.anaconda.com
https://www.djangoproject.com

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Creating Python Applications

Previously in the book you learned that Visual Studio Code is independent from
proprietary project systems and platforms and, consequently, does not offer any built-in
options to create projects, and this is also true for the Python programming language.

What you can do with Visual Studio Code is open existing Python files and projects,
or create new code files from within the development environment. As an example, let’s
consider a simple battleships game available in one code file at pythonfiddle.com/
battleships-game-in-python/.In Visual Studio Code, create a new file and then select
Python as the language from the well-known drop-down menu located in the bottom-
right corner. The source code in its current state will not work with the latest versions of
the Python interpreter, because it is missing parentheses enclosing parameters of the
print function and some string-to-integer conversions. The modified and working code
for Python is listed here for your convenience:

import random
board = []

for x in range(0,5):
board.append(["0"] * 5)

def print board(board):
for row in board:
.join(row))

print (

print ("Let's play Battleship!")
print board(board)

def random row(board):
return random.randint(0,len(board)-1)

def random col(board):
return random.randint(0,len(board[0])-1)

ship_row = random_row(board)
ship col = random col(board)
print (ship row)
print (ship col)

213

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

for turn in range(4):
guess_row = int(input("Guess Row:"))
guess_col = int(input("Guess Col:"))

if guess row == ship row and guess col == ship col:
print ("Congratulations! You sunk my battleship!")

break
else:

if turn ==
board[guess row][guess col] = "X"
print_board(board)
print ("Game Over")
print ("My ship was here:
[" + str(ship row) + "][" + str(ship col)
+ ")

else:

if (guess_row < O or guess row > 4) or
(guess_col < 0 or guess col > 4):
print ("Oops, that's not even in the ocean.")
elif(board[guess row][guess col] == "X"):
print
("You guessed that one already.")
else:
print ("You missed my battleship!")
board[guess row][guess col] = "X"
print (turn + 1)
print_board(board)

Save the file as BattleshipsGame.py. This is a simplified implementation of the
battleships game and is mostly for learning purposes, but it is enough to understand
how Visual Studio Code can support Python development. You will immediately notice
powerful editing features as you type the source code, such as (but not limited to)
IntelliSense and parameter hinting, but before highlighting Python-specific editing
features, I will walk you through running and debugging Python code.

214

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Running Python Code

Visual Studio Code automatically attempts to retrieve an appropriate Python interpreter
on your machine when you assign this language to a code file or open an existing file.
Sometimes VS Code might not be able to do this even if you previously installed a Python
interpreter successfully, in which case you receive a warning similar to the one shown in
Figure 10-2.

® No Python interpreter is selected. You need to select a Python 483 X
interpreter to enable features such as IntelliSense, linting, and

2 debugging.

Source: Python (Extension) Select Python Interpreter

A\ Select Python Interpreter @0 A0 2 Live Share Ln1,Col1 Spaces:4 UTF-8 CRLF Python

Figure 10-2. Visual Studio Code could not find a Python interpreter

Clicking the Select Python Interpreter button in the warning card or the same-
named item at the bottom-left corner of the Status Bar enables you to pick your favorite
version of the Python interpreter (see Figure 10-3).

3 File Edit - ¢ "'This will be a Python scrip... — O

|Cu rrent: C

Enter interpreter path...

& T

20

21 , ks I .
Enter path or find an existing interpreter
22 ' : ;
23 Python 3.9.2 64-bit + (se
24 ~\AppData\Local\Programs\Python\Python39\pyt...
25

Figure 10-3. Selecting a version of the Python interpreter

This is a very nice option in case you need to select a specific version and not
necessarily the most recent one. Once you have selected a Python interpreter, the name
appears on the Status Bar, replacing the Select Python Interpreter button, and you
can either run or debug your code. Let’s start with running code, which you can do by

215

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

selecting Run » Run Without Debugging. The Python runtime builds the code file and,
if no error is found, the output of the code is displayed in an instance of the Terminal
panel. Figure 10-4 shows an example based on the sample game provided previously.

TERMINAL PROBLEMS DEBUG CONSOLE 1:Python Debug Consc ~ | + [0 @ -~ x

Try the new cross-platform PowerShell https://aka.ms/pscored

PS C:\VSCode>» & °
thon.python-2821.2
Let's play Battleshipl
coo0O00

o000

o0
coo0o0
o000

NN -1

Guess Row:3
Guess Col:2
You missed my battleshipl

1

oooO0O0
oooQo0O0
00000
Oo0oX00
coo00O0
Guess Row:]

Figure 10-4. Output of Python code in the Terminal

The Terminal allows user input, so you will be able to enter the values for the
battleships. Behind the scenes, Visual Studio Code invokes a tool called Launcher, which
is installed together with the Python interpreter and makes it possible to run Python
code from the command line.

Note In more specific development scenarios based on the Anaconda libraries,
such as data science, Visual Studio Code is able to display additional tool windows
and show charts and calculation results inside the development environment. More
details are available in the official Data Science Tutorial (code.visualstudio.
com/docs/python/data-science-tutorial).

For the next example, make sure you add a breakpoint at line 30 (as described in
Chapter 9). This is to demonstrate how debugging tools for Python work. You start
debugging Python code by pressing F5, by clicking the Run and Debug button in the
Run panel, or by selecting Run » Start Debugging. At this point Visual Studio Code asks
you what file or program you want to debug, as shown in Figure 10-5.

216

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

View Go Run Terminal Help BattleshipsGame.py - Visual Studio Cade

% BattleshipsGame, Select a debug configuration

jattleshipsGame.py > |[Debug Configuration

:l_'less—r‘ou == ship Python File Debug the currently active Python file
int (“"Congratula

o Module Debug a Python module by invoking it with -m*
ea

2 Remote Attach Attach to a remote debug server

if turn == 3: Attach using Process ID Attach to a local process
board[guess_ Django Launch and debug a Django web application
print_board(FastAPl Launch and debug a FastAPl web application

print ("Game gack aunch and debug a Flask web application
print ("My s
else:
if (guess_row < @ or guess_row > 4) or (guess_col < @ or guess_col > 4):
print ("Oops, that's not even in the ocean.™)
elif(board[guess_row][guess_col] == "X"):

Pyramid Launch and debug a Pyramid web application

Figure 10-5. Selecting the debugging target

You can select any one of the configurations, which are provided by the Python
extension for VS Code, described in Table 10-1.

Table 10-1. Debug Configurations for Python

Configuration VS Code Description

Name Description

Python File Debug the currently Starts debugging the currently active Python file, where
active Python file “active” means the file in the active editor.

Module Debug a Python A Python module can be considered as a code library,
module by invoking comparable to namespaces in a C# library. Debugging with
it with -m the -m switch enables VS Code to also debug a module.

Remote Attach Attach to a remote Allows connecting VS Code to a remote debug service.
debug server

Attach using Attach to a local Allows connecting the debugger to a process that is
Process ID process already running. You need to retrieve the process ID (e.g.,
on Windows you can do so via the Task Manager).
(continued)

217

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Table 10-1. (continued)

Configuration VS Code Description
Name Description
Django Launch and debug Django is a high-level Python web framework that enables
a Django web rapid development of secure and maintainable websites.
application With this option, you can debug a Django project in VS
Code.
FastAPI Launch and debug FastAPI is a modern web framework for building APls
a FastAPIl web with Python (requires version 3.6 or higher). With this
application configuration, you can use VS Code to debug a FastAPI
project.
Flask Launch and debug Flask is another framework that allows building web
a Flask web applications with Python. With this configuration, VS Code
application makes it possible to debug Flask projects.
Pyramid Launch and debug Pyramid is a framework for Python that allows for creating
a Pyramid web web applications based on the Model-View-Controller
application (MVC) pattern. With this configuration, you can debug a

Pyramid project in VS Code.

For the current example, select the first option, Python File, which allows for
debugging the current code file. The application starts in the integrated Terminal and
VS Code’s Status Bar becomes orange, which indicates that the application is in debug
mode. In the Terminal you will be able to enter the values for the battleships game, and
then, because you previously set a breakpoint, the execution will break at line 30. This
will enable all the toolboxes in the Run panel as well as data tips in the code editor (see
Figure 10-6).

218

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

] File Edit Selection View Go Run Terminal Help BattleshipsGame.py - Visual Studio Code = o x
RUN o WY weloe 0 ¥ T D 0O Al
 VARIABLES & > VSCode > @ Battle
1 PRGN 1SIGO ERULIL D, L Uuai U = L) =
~ Locals 3 =
? special variables 18 def random_col(board):
19 [L00, "e, o, 0, f0tl, [0°, '@, CBY, t@, CB'D, [0, teT, '0, C0t, 0], ['0, 0%, '0t, for
208 > special variable | |

21 sk > function varisbles
[2 s ve: o, o',
o £ 23 p » special variables
24 pd |3 function varisbles
5 8: 0’
% f 1: ‘0’
: 27 2:°0
% 4 28 300
~ Glabals 29 :
5 tal takl e
> special variables 2
32
EE
» WATCH 34 i
~ CALLSTACK PAUSED ON BREAKPOINT 35 T
s o 2 6 print_boal oar
<module> BattleshipsGamepy (301 27 AP TR ama Ry
TERMINAL FROBLEMS DEBUG CONSOLE 1:Python DebugConsc ~ + [& ~ x
cooO0OQ
ooo0O0OQ
cocoO0OQ
“ BREAKPOINTS 00000
[Raised Exceptions 4
Uncaught Exceg 3
= ; Guess Row:3
® Eean epy Chlemp L Guess Col:2
® [BartleshipsGame.py i

Python 39.264-bit @0 M0 & G Live Share Ln30,Col1 TabSize:d UTF-3 CRLF Python & 0

Figure 10-6. The application in debug mode and debugging tools enabled

If you hover your cursor over a variable name in the code editor, you will be able to
see its current value. For instance, if you hover over the guess_col variable, you will see
that it contains the integer value you entered during the execution. However, Python
debugging tools offer more: if you hover over a complex type like the board variable,
which is a 1ist of arrays, you will see how a sophisticated data tip shows values for each
array in the list. You can expand the Special variables and Function variables groups to
get more information about runtime functions.

The values you see through data tips are also visible in the Locals group of the
VARIABLES tool in the Run panel. Debugging tools for Python are also able to catch
runtime exceptions and to display appropriate information to solve them. To understand
how this works, you can intentionally introduce a runtime exception in the current
sample file. Consider line 27, which looks like the following:

guess_row = int(input("Guess Row:"))
Change the line as follows:

guess_row = input("Guess Row:")

219

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

This particular line will still work, because it still waits for the user to enter
something from the keyboard; the difference from the original line is simply that the
input, of type strz, is not converted into an int. However, while comparisons with the
equality operator will succeed, comparisons made with the < and > operators at line 40
will fail, because this line attempts to compare the user input, which is now a string, with
an integer value, and such a comparison is not supported, so a runtime exception will
happen. Figure 10-7 shows how Visual Studio Code breaks the application execution
when it encounters a runtime exception.

] File Edit Selection View Go Run Terminal Help BattleshipsGame py - Visual Studio Code — o =
] welcor | S B o | B m -
~ VARIABLES e > & BattleshipsGame.r
- Locals 28 guess_col = int(input(“Guess Col:"))
IT 29
. 38 if guess_row == ship_row and guess_col == ship_col:
n print (“Congratulations! You sunk my battleship!™)
32 break
33 else:
ﬁ‘\‘;‘ o 34 if turn == 3:
ule 35 board[guess_row][guess_col] = "X"
36 print_board(board)
37 print (“Game Owver"}
38 print ("My ship was here: [" + str{ship_row) + "][" + str{ship_col) + |
g 39 else:
& ;.I 48 if (guess_row < O or guess_row > 4) or (guess_col < © or guess_col >
v Globals L
ption has d: Typ 5
\ e ‘<" not supported between instances of ‘str’ and ‘int’
> board: [['0D', 'O, : 2Lt ot File "Ci\WSCode\BattleshinsGame.pyv", line 48, in <module>
- if (guess_row < @ or guess_row > 4) or (guess_col < @ or guess_col > 4):
> WATCH
“ CALLSTACK =" NOT SUFPORTED BETWEEM INSTANCES OF ‘STR AND INT a1 print ("Oops, that's not even in the ocean.™)
<module> et nepy (4 42 elif(board[guess_row][guess_col] == "X"}:

1: Python Debug Conse ~

00000
coo0O0O0Q
cocoO0O0Q
“ BREAKPOINTS 00000
|| Raised Exceg 1
au] 2
7 Guess Row:3
L Guess Col:2

Live Share Ln40,Col1 TabSwe:d UTF-8 CRLF Python F 0

Figure 10-7. Debugging runtime exceptions in Python

More specifically, the exception information is displayed in a different-colored
tooltip that is displayed right below the line of code that caused the error. In this tooltip,
you can see the exception type (TypeError in this case), the number and content of the
line of code, and the full error message. Actually, the tooltip also displays the name of
the file that caused the exception in the form of a hyperlink. This is very useful when
the exception was raised by a different file in the execution hierarchy, enabling you to
quickly go to the problem by clicking the file name.

220

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

As you have seen, debugging Python code in Visual Studio Code is a rich experience,
but actually the Python extension offers even more functionality, such as a dedicated
language service and additional features, discussed in the next section.

Code Editing Features for Python

The Python extension for Visual Studio Code brings most of the powerful code editing
features described in Chapter 3 to Python files. This section walks you through the
evolved code editing features, describing how these can improve your productivity.

Enhanced Word Completion with IntelliSense

Probably the most productive code editing feature with any language is an enhanced
word completion engine, and VS Code brings IntelliSense to Python. IntelliSense shows
up as you type and displays documentation tooltips about the type or member currently
selected in the IntelliSense pop-up box. Figure 10-8 shows an example based on the bin
function, where you can also see how syntax colorization is available in the tooltip to
provide easier understanding of the method usage.

] File Edit Selection View Go Run Terminal Help BattleshipsGame.py - Visual Studio Code - o =

% BattleshipsGamegy X P e

print ("You guessed that one already.™)
a4 else:
a5 print ("You missed my battleship!
board[guess_row] [guess_col] = "X"
7 print (turn + 1)
48 print_board(board)

49
58 o
@ bin bin{nusber)
(@] board
- ::Td Return the binary representation of an integer.
22 break »>» bin(2796202)
9 breakpeoint ‘@bloleleleleleleiglelola’

% builtin_function_or_method

3 bytearray

%3 bytes

%3 bytes_iterator

+ BaseException

%2 BlockingIOError =

Ln50.Col14 TabSize:d4 UTF-8 CRLF Python A

Figure 10-8. IntelliSense in action with Python
221

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Understanding Function Parameters With Parameter Hints

Connected to IntelliSense is Parameter Hints. When you type the name of a function, you
get suggestions on how to provide parameters, as demonstrated in Figure 10-9, which is
based on the pow function.

] File Edit Selection View Go Run Terminal Help = BattleshipsGame.py - Visual Studic Code — (a } =
% BattleshipsGame.py @ ¢
& Bant
EUESS_row = 1NT{INPUT({ Gu Kow:))
28 guess_col = int(input("Guess Col:"))
29
® 3@ if guess_row == ship_row and guess_col == ship_col:
31 print ("Congratulations! You sunk my battleship!™)
32 break
33 else:
3 if turn == 3:
board[guess_row][guess_col] = "X
print_board(boa
print (“Game Over™)

8 print (“My s
39 else:

ip was here: [* + str(ship_row) + "][" + str(ship_col) + "]")

if (guess_row < @ or guess_row > 4) or (guess_col < @ or guess_col > 4):
a1 prisTes T .
i elif(bo pow(base, exp, mod)

pri

a7 print (
a8 print_b
. wher

5@ pow(®, [

Ln50.Col20 TabSized UTF-8 CRLF Python & O

Figure 10-9. Parameter Hints explains how to provide function parameters

As you can see, the parameter you are currently supplying is highlighted in bold and
underlined, while a description of the parameter itself is provided as the text content of
the tooltip.

Quickly Retrieving Type Definitions

Among the code editor productivity features, Go to Definition and Peek Definition (see
Chapter 3) are certainly very useful and popular, and these are also available to Python
code files. To understand how they work in Python, right-click the board parameter of
the print_board statement in the last line of the code file.

222

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

If you click Go to Definition, the cursor moves to the place where the board
variable is declared. If you instead select Peek and then Peek Definition, the definition
is shown inside an interactive pop-up box, where you can make your edits directly
(see Figure 10-10).

] File Edit Selection View Go Run Terminal Help BattleshipsGame py - Visual Studio Code - (a } =
% BattleshipsGame.py X ¢
L]
34 it turn == 3:
35 board[guess_row] [guess_col] = "X"
36 print_board(board)
37 print (“Game Cver™)
print (“My ship was here: [" + str(ship_row) + "][" + str{ship_cel) + "]")
39 else:
48 if (guess_row < @ or guess_row > 4) or (guess_ccl < @ or guess_col > 4):
41 print ("Oops, that's not even in the ocean.™)
42 elif(board[guess_row][guess_col] == "X"):
a3 print (“You guessed that one already.™)
a4 else:
as print ("You missed my battleship!™)
: board[guess_row][guess_col] = "X"
a7 print (turn + 1)
48 print_board(board)
-
BattieshipsGame.py CAVSCode - Definitions (1) % i
o sl S = e
2

3 board = []
for x in range(8,5):

6 board.append(["0"] * 5)

g def print_board(board):
9 for row in board:
1@ print (" “.jein(row))

12 print ("Let's play Battleshipl”™)
13 print_board{board)

@ 0o £ LiveShare Lnd8 Col26 TabSize:d UTF-8 CRLF Python & 0

Figure 10-10. Peeking type definitions

Finding References

As explained in Chapter 3 and exactly like for other languages such as C#, you can
quickly search for all references of a given type, member, or variable in Python. Simply
right-click the object of your choice in the code editor and select Find All References.
For instance, you can do this with the board variable in the sample code file and you

will see where it was used across the code via the already well-known interactive editor,
which highlights occurrences and shows a list of references on the right side of the panel.
Figure 10-11 demonstrates this.

223

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

] File Edit Selection View Go Run Terminal Help BattleshipsGame.py - Visual Studio Code - o *
% BattleshipsGame.py X M -
& Bant
it turn == 3:

35 board[guess_row] [guess_col] = "X"

36 print_board{board)

37 print (“Game COver™)

print ("My ship was here: [" + str(ship_row) + "][" + str(ship_col) + "]")

9 else:

48 if (guess_row < @ or guess_row > 4) or (guess_ccl < @ or guess_col > 4):

1 print ("Oops, that's not even in the ocean.™)

2 elif(board|guess_row][guess_col] == “X"):

43 print (“You guessed that one already.™)

a4 else:

a5 print (“You missed my battleship!™) ;

board[guess_row][guess_col] = "X"

&7 print (turn + 1)

48 print_board(board) 0
BattleshipsGame.py CAVSCode - References (10} * o
a7 print (“Game Over™)

k] print ("My ship was here: [" + str(ship_row) + "][" + str(ship_cel) + "]"}

L] else:

48 if (guess_row < @ or guess_row > 4) or (guess_col < @ or guess_col > 4):

41 print ("Dops, that's not even in the ocean.™)

42 elif(board[guess_row][guess_col] == "X"):

print ("You guessed that one already.™)

4 else:

45 print (“You missed my battleship!®)

5 board[guess_row][guess_col] = "x"

47 print (turn + 1)

a8 print_board(board)

49 L

Figure 10-11. Finding object references

Note The Find All References user interface is basically an extended version
of Peek Definition. The latter shows an individual reference of an object, which
represents the place where it was defined. Find All References shows instead all
the type or member references.

Renaming Symbols

With the Python extension, renaming symbols is an easy task. You can just right-click
a symbol, select Rename Symbol (or press F2), and provide the new name, and all the
occurrences in the source code will be renamed accordingly. When typing the new
name, you can also press Shift+Enter and see a preview of all the occurrences that will be
renamed.

Figure 10-12 shows an example based on the board variable, with the preview
enabled.

224

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

) File Edit Selection View Go Run Terminal Help BattheshipsGame py - Visual Studio Code = o x
@ BattleshipsGamepy X = M@

* g P bl
1 import random - B

6 écoru.apprnd(l"”"l ‘.\J.
def print_board(board):
9 for row in board:

18 print (" “".join(row))

12 print ("Let's play Battleshipl™)
13 print_board(board)

def random_row(board):
return random.randint (@, len(board)-1)

B def random_col({board):
3 return random.randint(@, len(board(8])-1)

21 ship_row = random_row(board)

Figure 10-12. Renaming symbols

If you enabled the Refactor Preview panel, you need to click the tick icon in order to
accept your changes. If you instead entered a new name without looking at the preview,
simply press Enter and all the occurrences of (including references to) the symbol will be
renamed.

Finding Code Issues with Linters

Linters highlight syntactical and stylistic problems in your code. Just as an example,
linters highlight missing brackets or parentheses in a code block or highlight the

usage of an undefined variable, underlining the code with squiggles. Linting is not
enabled by default, but you can quickly do this via the Command Palette. You can type
Python Select Linter directly, or just Python and then pick the appropriate command.
Figure 10-13 shows how to enable linting with the list of commands filtered as I was

typing.

225

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

e board [] » Untitled-1 - Visual Studio Code [Administrator]

>python select?

Python: Select Linter recently used 8%
Python: Run Selection/Line in Django Shell other commands
Python: Run Selection/Line in Python Terminal Shift + Enter

Python: Select Interpreter

Figure 10-13. Enabling Python linters

When you select this command, the Command Palette also displays a list of available
linters for Python. This is actually up to your choice, but I would suggest to use pylint,
which is the official Microsoft linter provided via the Python extension. When the linter
is enabled, the code editor displays squiggles under code that has issues, and these code
issues are also detailed in the Problems panel, as shown in Figure 10-14.

Note If you have experience with C# in Visual Studio Code, you might expect the
same behavior of live code analysis as you type, but, with Python, linters are able
to show squiggles under code that has issues only after saving a code file or by
explicitly invoking the linter from the Command Palette. An enhancement to this is
provided by the Pylance extension, described shortly.

226

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

%] FEile Edit Selection Yiew Go Run Jerminal Help o Untitled-1 - Visual Studio Code [Administrator] =) X
@ Untitled-1 ® Python - Get Started D
1
% =
2 board [} 1
3
MINAL PROBLEMS (B Filter (e.g. text. **/*1s, I"*/node_modules/**) Y| 8 ~ X

v @ Untitled-1 (3
® unexpected token ']' Python(parser-16) [2, 8]

(%) unexpected token ‘<newline>"' Pyth

M\ Undefined variable: 'board’ Python{undefined-variable) [2, 1]

Python 3.70 32-bit @2 A1 £ Live Share Ln2 Col1 Spaces:4 UTF-8 CRLF Python & 0

Figure 10-14. Linters highlight code issues in the editor and in the Problems panel

Note Linters, as well as the other editing features, can be further customized
with the Settings user interface and via the Settings.json file. Because the goal

of this book is to provide guidance on the most effective ways to get productive
quickly, I am showing the fastest configuration options available with a few

mouse clicks. If you want to dig deep into setting customizations, bookmark

the related documentation at https://code.visualstudio.com/docs/
python/linting, where you will also find more details about the pylint linter and
summary information about the other linters listed in the Command Palette.

Advanced Code Editing with Pylance

Without a doubt, the Python extension for Visual Studio Code tremendously improves
developer productivity and the coding experience, but Microsoft is doing even more. In
fact, Microsoft is offering a new extension called Pylance, currently in preview, which

227

https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/linting

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

introduces code refactorings, IntelliCode (an evolved code completion engine powered
by artificial intelligence), and other improvements.

When you open (or create) a Python code file, Visual Studio Code shows a pop-up
box that offers to install Pylance, as shown in Figure 10-15. As an alternative, you can
download the Pylance extension from the Extensions tool directly (see Figure 10-16).

Try out a new faster, feature-rich language server for Python by £8 X
Microsoft, Pylance! Install the extension now.

o

Ln 21,Col29 TabSize:4 UTF-8 CRLF Python & 2

Figure 10-15. Visual Studio Code offering to install the Pylance extension

Visual Studio Code (n] x

exmensionsmaRe. W U = oo me.py Extension: Pylance X (11

pylance

Py]an ce ms-pythonvscode-pylance
Pylance 202131 i s ” " i e
SR e e e Microsoft | o 1346413 | *dk Repository | License | 20213,
i A performant, feature-rich language server for Python in VS Code
B:L? Details Feature Contributions Changelog Dependencies
Pylance
Fast, feature-rich language support for Python
Pylance is an extension that werks alengside Python in Visual Studio Code to provide performant language support. Under the hood, Pylance is
powered by Pyright, Microsoft's static type checking tocl. Using Pyright, Pylance has the ability to supercharge your Python IntelliSense
per with rich type inf ion, helping you write better code faster.
The Pylance name is a small ede 1o Menty Python's Lancelot who was the first knight to answer the bridgekesper's questions in the Hely Grall
Quick Start
1. Install the Pylance extension from the marketplace.
2. Open a Python (.py) file and the Pylance extension will activate.
3. Select Yes when prompted to make Pylance the default language server. This will update your preferences, which you can alsa do
manually by adding "python. languageServer”: "Pylance” to your settingsjson file using the text editor. °

1 Features

0 4 Live Share

Figure 10-16. The Pylance extension details

228

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Once Pylance has been installed, IntelliSense will be powered by IntelliCode. This
tool learns from your code and from your patterns and offers an improved editing
experience based on your coding styles, enabling IntelliSense to provide even better
suggestions based on the coding context.

Pylance is not limited to offering an improved IntelliSense engine, but it makes
it easier to write better code with new code refactorings and live code analysis. For
instance, Pylance enables linters to show error squiggles as you type. As another example,
whereas the Python extension, by default, only allows sorting import directives, Pylance
introduces new refactorings: Extract method, Extract variable and automatic addition
of the required import directives when adding code via IntelliSense or code snippets.
For a better understanding of how this works, select the code block from line 5 to line 13
of the sample file, as shown in Figure 10-17. You will see a light bulb icon appear, which
means that there are some suggestions to refactor the selected code block.

3'0 File Edit Selection View Go Run Terminal Help BattleshipsGame.py - Visual Studio Code
%@ BattleshipsGame.py X
¢ > VSCode > % BattleshipsGame.py > ...

import random

board = []

~-=<<] ey

1

2

3

4

5 for x in range(@,5):
6 " -

7

g det print_board(board):

9 for row in board:
1@ print (" ".join(row))
11

12 print (“"Let's play Battleship!™)
12 print_board(board)

44

Figure 10-17. Enabling suggestions for code fixes

If you hover your cursor over the light bulb icon, you will see a tooltip saying Show
fixes. Click it to see available suggestions for the current context; in this case there is
one suggestion, Extract method. Click this suggestion and VS Code will extract a new
method for the selected block, adding the related method call. This is demonstrated in
Figure 10-18.

229

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

3'0 File Edit Selection View Go Run Terminal Help BattleshipsGame.py - Visual Studio Code

% BattleshipsGame.py X

¢ > VSCode > % BattleshipsGame.py > (@] print_board
import random

board = []

for x in range(@,5):
board.append(["0"] * 5)

1
2
3
4
5 def new_func(board):
6
7
8 def print_board(board):

9 for row in board:

10 print (" ".join(row))

11 print ("Let's play Battleship!”)
12 print_board(board)

13 return print_board

14

15 print_board = new_func(board)

16

Figure 10-18. Extracting a method

You need to manually rename the new method, because Pylance provides a default
name and does not enter in rename mode. Similarly, the code fix called Extract variable
enables you to extract a variable from a code block, and it is available through the light
bulb icon only if the context of the code allows for extracting variables. The light bulb
icon is not the only shortcut to retrieve code fixes for a code block; you can also select a
code block, right-click, and then select Refactor from the context menu.

Managing Pylance Settings

As I mentioned previously, at this writing Pylance is in a preview state, but you can have
a look at what Microsoft is working on by enabling the Insiders Channel for the extension
updates. You can do so in the VS Code’s Settings (see Figure 10-19) by changing to daily
the value for the Pylance: Insiders Channel option.

230

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

] File Edit Selection View Go FRun Terminal Help Settings - Visual Studic Code = o x

BattleshipsGame.py Settings ¥ D m -

Pylance

Pylance: Insiders Channel
ders download channe

off

Pythan » Analysic: Auto Impert Completians
v Offer auto-import completions.

Python » Analysis: Auta Search Paths
+| Automatically add common search paths like ‘src

Python » Analysis: Complete Function Parens
| Add paren 22 to function completions.
Python » Analysis: Diagnostic Mode
Analysi 3 nostics.

openFilesOnly

Pythen » Analysis: Diagnostic Severity Overrides
o Vst ol Allows a user 1o override the severity levels for indl

Figure 10-19. Changing Pylance settings

Itis reasonable to expect more additions and improvements to Pylance once it
reaches a production milestone.

Running Python Scripts

Python is also an interpreted language, so it allows for running arbitrary code without
the need of a backing build process. Visual Studio Code supports Python as an
interpreter, providing an option to write and run code via an REPL (read-eval-print-loop)
interactive console, available within the Terminal.

You enable the Python REPL in the Command Palette by selecting the Python: Start
REPL command (see Figure 10-20).

231

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Go Run Terminal Help BattleshipsGame.py - Visual Studio Code

>python r'epq

psGamepy > python: Start REPL b
dom_col(bo.. ..,

)
Figure 10-20. Enabling the Python REPL console

At this point the Terminal appears and loads the Python REPL, where you will be
able to write and run arbitrary code. Figure 10-21 shows an example based on declaring
avariable and printing its content onscreen.

TERMINAL PROBLEMS DEBUG CONSOLE 1: REPL «| + M 8 ~ x
Windows Powershell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoret

PS C:\Users\alessandrodelsoler &
Python 3.9.2 (taps/v3.0.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMDG4)] on win32
Type "help”, "copyright”, "credits” or "license” for more information.

Ln48, Col4? TabSip:d UTF-E CRIF Pyhon & 0

Figure 10-21. Running arbitrary code in the Python REPL console

This is another important tool for Python developers, because it is a very common
way to use this language and certainly a way that leverages one of the most powerful of
its characteristics.

Summary

Python is a very popular and powerful programming language which is fully supported
by Visual Studio Code. It offers full support for evolved code editing, debugging, and
even for advanced development with data science tools and libraries.

Visual Studio Code enhances support for Python with the official Python extension,
which makes working with Python very similar to working with other languages and
platforms, so you can apply existing skills and knowledge if you are approaching Python
for the first time but have existing experience with C# or Node.js.

232

CHAPTER 10 BUILDING APPLICATIONS WITH PYTHON

Microsoft is also investing in a new extension called Pylance, which provides an
improved IntelliSense experience with IntelliCode and additional code refactorings. An
interactive REPL for interpreted code completes the integrated tooling for Python.

Once again, Visual Studio Code demonstrates how versatile it is, providing a perfect
environment for Python and its most popular flavors.

233

CHAPTER 11

Deploying Applications
to Azure

Microsoft Azure is Microsoft’s premiere cloud solution that offers many services, from
hosting web applications and SQL databases to remote virtual machines, artificial
intelligence services, and many more.

With Visual Studio Code, it is easy to deploy your code to Azure through a number
of extensions that support multiple environments, such as Node.js and .NET, and that
offer an integrated experience so that you can work directly within your development
environment. Many extensions for Azure development are available, each targeting
different scenarios, but it would require an entire book to describe them all, so in this
chapter I will cover two of the most popular extensions: Azure App Services, which
supports publishing web applications, and Azure Functions, which enables you to work
with serverless apps directly from Visual Studio Code.

Note This chapter requires an active Microsoft Azure subscription to complete
the examples. If you do not have one, you can get a free trial at https://azure.
microsoft.com/en-us/free.

Introducing Azure Extensions

Visual Studio Code supports developing with the most popular and powerful Azure
services. Support is integrated in the development environment with specific extensions
available in the Visual Studio Marketplace. Table 11-1 lists and describes common

extensions for Azure development.

235
© Alessandro Del Sole 2021
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5_11

https://doi.org/10.1007/978-1-4842-6901-5_11#DOI
https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Table 11-1. Common Extensions for Azure Development

Extension

Description

Azure Account
Azure App Service
Azure CLI Tools

Azure Databases

Azure Functions
Azure Machine
Learning

Azure Resource
Manager

Azure Storage
Deploy to Azure

Docker

Kubernetes

Allows signing into one or more Azure subscriptions.
Provides integrated support to deploy web applications to the cloud.
Installs all the command-line tools required to work with all the Azure services.

Allows for creating, browsing, and managing SQL Azure, MongoDB, Cosmos
DB, PostgreSQL, and DocumentDb databases directly within VS Code via an
integrated browser.

Provides integrated support for writing, testing and deploying Azure Functions.

Formerly called Visual Studio Code for Al Tools, allows for creating, building,
training, and deploying machine learning models based on your Azure
subscriptions.

Allows managing Azure resource groups in VS Code.

Allows connecting to blobs, tables, files, and queue storage in your Azure
subscriptions. It also allows uploading folders directly from within VS Code.

Allows for setting up continuous integration and continuous deployment
pipelines for Azure DevOps code repositories.

Allows for publishing containerized applications from Visual Studio Code, with
improved code editing features for Docker and YAML files.

Provides integrated support to deploy Docker containers to Kubernetes, an
open source system for automating deployment, scaling, and management of
containerized applications, supported by Azure.

Irecommend that you bookmark the official documentation, available at https://

code.visualstudio.com/docs/azure/extensions, for further details and examples.

Noteworthy is that Visual Studio Code can support Docker and Kubernetes for

containerized applications, which is something very important for many developers.

236

https://code.visualstudio.com/docs/azure/extensions
https://code.visualstudio.com/docs/azure/extensions

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Deploying Web Applications

Deploying web applications to Azure with Visual Studio Code is very easy. You can
retake the helloweb sample applications created with C# and .NET Core in Chapter 9,
but it’'s worth remembering that publishing to Azure is not limited to these technologies,

but is also possible for Node.js.

Note Visual Studio Code, the Microsoft Azure platform, and Azure extensions for
VS code continuously evolve. New releases might introduce changes to what is
described in this chapter.

Installing Extensions

The first thing you need to do is install the Azure App Service extension from the
Marketplace. This extension also needs the Azure Account and the Azure Resources
extensions, but these are installed together with the App Service, so you do not need to
take any additional steps.

The Azure Account extension is actually required to enable developers to log into
their Azure account from within Visual Studio Code and to select which subscription to
use. The Azure Resources extension is used to manage resources groups, which are the
places where your cloud services are organized. Figure 11-1 shows the Azure App Service

extension in the Extensions panel.

237

CHAPTER 11

] File Edit

¥ L=

NSIONS: MARK

An Azure App Ser

Microsoft Install

ervices for Angular templates
Irstall |

Azure Account 05.7
A commaon Sign-In and Subscription ma..
install |~

Microsoft

Azure Functions 130

An Azure Functions extension for Visual ...
Microsoft

Azure Databases 0160
Create, browse, and update ghobally dist...
Microsaft

5
- B
<

Azure Resource Manager (AR... ©

Selection View Go Run Terminal Help

DEPLOYING APPLICATIONS TO AZURE

Extension: Azure App Service - Visual Studic Code - o X

Extension: Arure App Service X mi}ien

=

Details Feature Contributions Changelog Dependencies

Azu re App Ser\”ce ms-azuretools.vscode-azureappsenvice. (e

Microsoft < 5764839 * Ak Repository License vD.21.2

An Azure App Senvice management extension for idio Code.

Azure App Service for Visual Studio Code (Preview)

App Service is Azure’s fully-managed Platform as & Service (PaaS) that lets you deploy and scale web, mobile, and API apps. Use the Azure App
Service extension for VS Code to quickly create, manage, and deploy your websites.

Visit the wiki for more information about Azure App Service and how to use the advanced features of the extension.

Language server, editing tools and snipp... = " e, o oo 5 ; a credi e . 3

S o Sign up teday for your free Azure account and receive 12 months of free popular services, $200 free credit and 25+ always free services
&r Start Free.

Azure Kubernetes Service (.05

Display Azure Kubemmetes Services within..
restall [

Microsoft
Azure Logic Apps 107

Visual Studic Code extension for Azure L.
Microsoft install | v

Azure loT Hub 2165
This extension is now a part of Azure loT...

t

Microsoft

Azure Storage 0120

®@odo & LveShare

Installation
1. Download and install the Azure App Service extension for Visual Studic Code

If you're interested in deploying single page web apps or progressive web apps (something without an express server). install the
Azure Storage extension

2. Wait for the extension to finish installing then refoad Visual Studio Code when prompred

3. Once complete, you'll see an Azure icon in the Activity Bar

Figure 11-1. The Azure App Service extension from Microsoft

Signing into Azure Subscriptions

Once the Azure App Service extension has been installed, along with the Azure Account
and Azure Resource Groups extensions, you need to sign in before you can use any
service.

To accomplish this, you can use the Azure: Sign In command from the Command
Palette or the Sign in to Azure shortcut in the App Service node of the Azure side
bar. Either action opens an instance of your default browser pointing to the Microsoft
Account login service. Simply enter your credentials, sign in, and close the browser
window once you are logged in. Now in Visual Studio Code you can open the Azure
extension and see the list of services associated to your subscription. Figure 11-2 shows
an example based on my subscription.

238

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

’o File Edit Selection View Go Run Terminal Help
AZURE

» RESOURCE GROUPS
» HELP AND FEEDBACK
~ APP SERVICE + F 0O &

v § Windows Azure MSDN - Visual Studio Ulti...

v (@ vscodedistilled

> #i Application Settings
» &@ Databases

> & Deployments

> Files

> Logs Read-only

> @ WebJobs

> i, Deployment Slots

A

Figure 11-2. The Azure services view

Note The Microsoft Azure offering is very extensive and spans a plethora of
services, so | recommend that you look at the official website (https://azure.
microsoft.com/en-us/free) for detailed information. In addition, do not
forget to enter the management portal (https://portal.azure.com), which
gives you access to the full tools and options to create and manage your services
and resources.

The hierarchical view displays resource groups and the services they contain, and it
also supports multiple subscriptions.

You can quickly interact with each service by expanding its group and accessing the
available options by right-clicking its name.

239

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://portal.azure.com

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Publishing Web Applications

Visual Studio Code makes the process of publishing web apps to Azure very easy.

The goal of this section is to demonstrate how quick and easy it is to publish a web

application to Azure. Assuming you have opened the helloweb sample project, in the

Azure view, right-click the name of your subscription and select Create New Web App.
A three-step wizard guides you through the creation of the application. The first

step asks you to supply a unique name for your new web application in the Command

Palette, as shown in Figure 11-3.

Run Terminal Help helloweb - Visual Studio Code

Create new web app (1/3)

vscodedistilled

Enter a globally unique name for the new web app. (Press ‘Enter’ to confirm or 'Escape’ to cancel)

Figure 11-3. Specifying a name for the web application

Because the name you specify will be combined with the azurewebsites.net domain
and represents the web address of your applications, if the name is already taken, a
validation message appears, inviting you to choose a different name. You might want to
specify a name that is different from vscodedistilled, which is the name I use for the
examples in this chapter.

The next step is to specify the target environment for your web application; this is
necessary because the Azure extension cannot detect which technology your app is
based on. Figure 11-4 shows the list of available options.

240

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

’Q File Edit Selection View Go Run Terminal Help Startup.cs - helloweb - Visual Studio Code - O X
@ EXPLORER | Eelect Environment | [
> OPEN EDITORS MET Core
~ HELLOWEB Blazor WebAssembly Debug
~ vscode C++ (GDB/LLDB)
settings.json C++ (Windows)
tasks.json Chrome
> bin Chrome (legacy)
> Controllers Cordova
» Models Edge
> obj - e o A A A AR G A
S rnenics EII_:j using Microsoft.Extensions.Hosting;
3 i A
i 12 |namespace helloweb
2 WWWroot 13 {
appsettings.Development.json 14 public class Startup
appsettings.json 15 {
A helloweb,csproj 16 public Startup(IConfiguration configuration)
€ Program.cs 24 { = o : :
18 Configuration = configuration;
C Startup.cs 19 }
28
> OUTLINE 21 public IConfiguration Configuration { get; }
> NPM SCRIPTS .

Ln 18, Col 43 (30 selected) Spaces:4 UTF8 CRIF C¢ & (2

Figure 11-4. Specifying a target platform

Because the sample application was written on .NET 5, select this as the target
platform. The last step of the wizard asks you to specify a pricing tier. I suggest using the
Free tier, as shown in Figure 11-5.

Run Terminal Help helloweb - Visual Studio Code

= Create new web app (3/3)

belect a pricing tier

Free Try out Azure at no cost
Basic Develop and test
Premium Use in production

[2 Show pricing information...

Figure 11-5. Specifying a pricing tier

After you complete these three easy steps, Visual Studio Code first builds the project
in Release mode (and the result will be visible in the Terminal) and then starts creating
the necessary resources inside your Azure subscription, and you will be able to see the
progress in a pop-up box that appears in the bottom-right corner of the environment.

241

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

When everything is ready, a pop-up message asks if you want to enable automatic
deployment. Click Always Deploy so that the application will be published.

When deployment is completed, the browser automatically launches the newly
published application (see Figure 11-6). If this does not happen, you can right-click the
application name in the APP SERVICE view of the Azure side bar and select Browse
Website, then click the Open button in the dialog that informs you about the fact that an
external program is being launched.

I Home Page - heboweb x4+ - 8 x

C | & yscodedistSed azurewebsites.net TSN - I
P Apps P Geail B VouTube EF Maps

helloweb Home Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

Figure 11-6. The web application running in the cloud

You need no additional steps. Your application is up and running in the browser,
hosted in your Azure subscription. You can further manage your Azure services and
resources, both within Visual Studio Code and in the Azure portal (https://portal.
azure.com). Though managing resources in the Azure portal is a bigger topic and is out
of the scope of this chapter, Figure 11-7 shows the management page for the sample
web application, where you can see the full list of available settings on the left side and
information on the deployment, the data center, and statistics in the main view.

242

https://portal.azure.com
https://portal.azure.com

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Hittp Six rd Data In & Data Out P

Figure 11-7. Managing app services in the Azure portal

Creating and Deploying Azure Functions

Put succinctly, Azure Functions (https://docs.microsoft.com/en-us/azure/azure-
functions) is a service that allows for running code on-demand in the cloud, and it

is considered part of the growing trend of serverless computing. The biggest benefit of
using Azure Functions is that functions are triggered only when invoked, which not only
reduces the usage of cloud resources but also reduces maintenance and infrastructure
needs, thereby providing more cost saving.

Configuring Visual Studio Code

Azure supports writing Functions in several languages, such as C#, Python, Java,
JavaScript, and Rust. Usually, tools are available for different development environments
to write Azure Functions, such as Visual Studio 2019, and Visual Studio Code is no
exception.

The first thing you need to develop Azure Functions with VS Code is Azure Functions
Core Tools. This set of command-line tools is required to run the tasks necessary to develop,
debug, and publish functions. On Windows, you have two ways to install these tools:

243

https://docs.microsoft.com/en-us/azure/azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

download the installer for Windows from the official website (https://bit.1ly/3f11HxR)
or use the following command that leverages npm on Node.js and that you can run from
a Terminal window in VS Code or from a developer command prompt:

> npm 1 -g azure-functions-core-tools@3 --unsafe-perm true

I recommend using the latter command-line method to install the tools, because
Visual Studio Code might not recognize that the tools were installed via the installer
package.

On macOS§, you need to run the following commands:

> brew tap azure/functions
> brew install azure-functions-core-tools@3

On the latest version of Ubuntu, the required commands are the following:

> wget

-q https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-
prod.deb

> sudo dpkg -i packages-microsoft-prod.deb

The installation commands vary depending on the Linux distribution, so you can
locate the appropriate commands at https://github.com/Azure/azure-functions-
core-tools#linux.

Once you have installed Azure Functions Core Tools, you need to install the Azure
Functions extension for Visual Studio Code (see Figure 11-8).

244

https://bit.ly/3f1lHxR
https://github.com/Azure/azure-functions-core-tools#linux
https://github.com/Azure/azure-functions-core-tools#linux

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

®) File Edit Selection View Go Run Terminal Help Extension: Azure Functions - Visual Studio Code = o x

Y L = Extension: Azure Functions X

Azure Functions ms-azuretoclsvscode-azurefunctions

/ \ Microsoft

- An Azure Fun
Azure Account 057 vy -
4 &

A common Sign-In and Subscr / mu

Microsoft & This extension is recommended because you have Azure Function SDK installed,

4 81 TRk k Repaository License v130
ual F

An Azure Functions extension for
mstall

Microsoft

Azure Functions 130
&

sion for Visual Studio Code.

4% Azure App Service 021 Eh5TIK % 4 i 3 i 5
(Q PR e S Details Feature Contributions Changelog Dependencies
& icroson &

Azure Databases 0.16.0

v Create, browse, and update globs rib,

Azure Functions for Visual Studio Code

Microsoft
Azure Functions snippets 0.1 13K Use the Azure Functions e; quickly create, debug, manage, and deploy serverless apps directly from VS Code. Check out
Azure Functions snippets for C# and JavaSc... s B sl mas oo ry to view sample projects.
Harnza Hawkins | imstall |~}
> Azure Resource Ma... 0150 cSI0K % 45 Visit the wiki for more about Azure and how to use the advanced features of this extension.
Language server, editing tools and snippets.. [: 7 ;
[.] n.\.::;goFtL - S £ Sign up today for your free Azure account and receive 12 months of free popular services, $200 free credit and 25+ always

free services @ Start Free,
Azure Tools 010 =

Get web site hosting, SQL and M

M bt Create your first serverless app

1. Select the button to create a new project in the Azure Functions explorer
This extension is naw a part of Az
Micrasaft

Azure Storage 0120

Manage your Azure Storage accounts inch... L
Microsolt | imstail [+ - = - °
R ~ FUNCTIONS OWN=

Azure Pipelines 11820

; = Azure loT Hub 216¢
L
—

F- e

Figure 11-8. The Azure Functions extension for VS Code

The Azure Functions extension also needs the Azure Account one, which you already
installed previously.

Creating Azure Functions

With the Azure Functions extension installed, VS Code simplifies the way you can create
Azure Functions projects. For the current example about deploying Azure Functions,

I will show how to create a function stub using the built-in templates, but you can
certainly use existing Azure Functions projects created with other environments or
sample projects.

If you are starting with new code, you first need to have (or create) a new folder on
disk where the new projects will be created. For the next example, I have created a folder
on disk called C:\AzureFunctionsDistilled.

When you have the folder ready, in Visual Studio Code enable the Command
Palette and search for the command called Azure Functions: Create New Project
(see Figure 11-9).

245

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Terminal Help Welcome - Visual Studio Code

Azure Functions: Create New Project... recently used 8%
Azure: Sign In

Azure Functions: Deploy to Function App...

Figure 11-9. Creating a new Azure Functions project

Note There are two additional commands available to create Functions: Create
Function App in Azure and Create Function App in Azure (Advanced). Both
commands allow to create a project that is automatically provisioned in your Azure
subscription, together with a local project for development and debugging. In

this book, I’'m not using these commands in order to better highlight the different
phases of development and debugging, and then deployment.

When you click this command, an eight-step wizard starts. First, you are asked to
select a target folder on disk, so pick the one you created previously. Then you are asked
to select a language. For the sake of consistency with the previous examples, I have
selected C#, but you are free to use a different one. In the third step, you are asked to
specify a runtime platform. If you selected C#, the wizard shows .NET versions and you

can select the latest.

Note The wizard identifies .NET 5 as .NET 5 (Isolated). Understanding what this
means requires taking a step back into the previous versions of Azure Functions.
Previously, Azure Functions only supported a tightly integrated mode for .NET
functions, which run as a class library in the same process as the host. Though this
mode provides deep integration between the host process and the functions, this
integration also requires a tighter coupling between the host process and the .NET
function. For example, .NET functions running in-process are required to run on the
same version of .NET as the Functions runtime. To enable you to run outside these
constraints, you can now choose to run in an isolated process. .NET 5 (Isolated)
then means that support for running functions out-of-process is now allowed.

246

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Ifyou selected another language, the list of target platforms will change depending
on your language of choice.
In the fourth step, you have the option to select a project template (see Figure 11-10).

(& Create new project -
Eelect a template for your project’s first function |
0 Skip for now)|

HttpTrigger

TimerTrigger

QueueTrigger

BlobTrigger ﬂ
EventHubTrigger
ServiceBusQueueTrigger
ServiceBusTopicTrigger
EventGridTrigger
CosmosDBTrigger "
HTTP trigger(s) from OpenAPI V2/V3 Specification (Preview)

83 Change template filter Current: Verified

Figure 11-10. Selecting an Azure Functions project template

The project template you select here is not really relevant for the current example,
whose goal is not to go into the details of Azure Functions development but rather to
show how quick and easy building and deploying functions is. I selected the HttpTrigger
template, which generates simple code that defines a function that is triggered on Azure
when an HTTP/HTTPS request is intercepted, sending a response back.

In the fifth and sixth steps, you first enter a name for the new project (or leave the
default project name, like AzureFunctionsDistilled in the current example) and then
enter a namespace that will be used in the code. The namespace should be in the
form CompanyName. Function; for example, my namespace is AlessandroDelSole.
AzureFunctionsDistilled.

In the seventh step of the wizard, you specify a security access level: Anonymous,
Functions, or Admin. Table 11-2 provides a short description of each authorization
level.

247

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Table 11-2. Azure Functions Authorization Levels

Level Description

Anonymous No authorization required; all HTTP requests pass.

Function Function authorization level is based on security keys generated in the Azure portal.
Host keys (at the application level) and function keys (at the function level) can work
as security keys in the Function level.

Admin Similar to the Function level, but only works with host keys (at the app level).

For the current example, you can just select the Anonymous level. In the final step
of the wizard, you decide where to open the new project: Current Window (current
instance of Visual Studio Code), New Window (new instance of Visual Studio Code), or
Add to WorkSpace (the new project is added to an existing folder to create a workspace).
Select Current Window and, after a few seconds, the new project will be available and
you will be ready to edit the code depending on your needs (see Figure 11-11).

Note The function name defined by the FunctionName attribute must always
be lowercase, otherwise the runtime will throw an exception. In the current
example, make sure to change from FunctionName("AzureFunctions
Distilled") to FunctionName("azurefunctionsdistilled").

248

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

] File Edit Selection View Go Run Terminal Help Funct i o Distilled - Visual Studio Code = o X

EXPLORER © AzureFunctionsDistilled.cs X

~ OPEM EDITORS wDistilled > 1sDistilled > @ Ru ntext exe {
% © AzureFunctionsDistilled.cs 1 E Sy
“ AZUREFUNCTIONSDISTILLED 2. Valng Systes.Net;
e 3 using Microsoft.Azure.Functions.Worker;
h a4 using Microsoft.Azure.Functions.Worker Http;
2 bin 5 using Microsoft.Extensions.Llogging;
> obj 6
© AzureFunctionsDistilled.cs 7 nemespace AlessandroDelSole.AzureFunctionsDistilled
& AzureFunctionsDistilled.csproj 8 B
{1 hostjson .
0 local sertinasis public static class AzurefunctionsDistilled
ocalsettingsjson P ¢
O Frdiam.ce 11 [Function("AzureFunctionsDistilled")]
12 public static HttpResponseData Run([HttpTrigger(AuthorizationLevel.Anonymous,
13 4 r'gor", “post"”)] HttpRegquestData regq,
14 FunctionContext executionContext)
15 {
16 var logger = executionContext.GetLogger("AzureFunctionsDistilled");
17 logger.LogInformation("C# HTTP trigger function processed a request.");
18
19 var response = req.CreateResponse(HttpStatusCode.0K);
20 response.Headers . Add{"Centent-Type", “text/plain; charset=utf-8");
21
22 response WriteString("Welcome to Azure Functions!®};
23
24 return response;
25 }
26 }
> OUTLINE r 3
> NPM SCRIPTS 28

¥ @oho @& B AzrcFunctionsDistilled Azure: progalex@hotmail.oom In13.Col9 Spaces4 UTF8 CRLF o0 & 0

Figure 11-11. Editing the Azure Functions project in VS Code

You are now working fully locally, which is a good opportunity to debug your
code on a development environment before promoting the code to the Azure, remote
environment. Press F5 to start debugging, exactly as you would do with any C# project,
and after a few seconds the Terminal will show not only the compiler output but also a
local URL that you can use to test the code (see Figure 11-12).

249

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

] File Edit Selection View Go Run Terminal Help Funct i o istilbed - Visual Studio Code = o b

I B Attach to NET~ {3

~ VARIABLES

sDistilled AzureFunctionsDistilled > & Run(Hitg

space AlessandroDelScle.AzurefunctionsDistilled

9 public static class AzureFunctionsDistilled

10 {
11 [Function("azurefunctionsdistilled”}]
12 public static HttpResponseData Run([HttpTrigger{AuthorizationLevel.Anonymous, "get™, "p
13 FunctionContext executionContext)
14 {
~ WATCH 5 . , e
15 var logger = exgcutwn':clntext.ﬁetLDgger("AzureFunctionsDistilled");
TERMINAL 2: Task - host start |+ 0 &8 ~ x
Terminal will be reused by tasks, press any key to close it.
» Executing task: func host start <
v CALL STACK RUNNING
Thread #9512 RUNNING Azure Functions Core Tools
Thread #5096 snnmGg Core Tools Version: 3.0.3388 Commit hash: fb42ade@b7fdcaSFbdebefcBd743F7d5001228e
Function Runtime Version: 3.8.15371.8
Thread #3332 RUNNING
Thread #4188 RUNNING

: [GET,POST] http://localhost:7871/api/azurefunctionsdistilled

For detailed output, run fi ith --verbose flag.

A [2821-83-31T14:54:18.9832] process started and initialized.

[Tutte le eccezion: [2021-03-31T14:54:22.5592] Host lock lease acquired by instance ID "O000000000000000000000007S6D0D4F" .
Eccezioni non gestite dall'ut.,

#* @odo R1 & Attach to NET Functions (AzureFunctionsDistilled) @ B3 AzureFunctionsDistilled Azure: progalex@hotmail.com

~ BREAKPOINTS

In15.Col35 Spacessd UTF8 CRLF o8 & 0O

Figure 11-12. Debugging an Azure Function

The URL shown in the Terminal is the following: http://localhost:7071/api/
azurefunctionsdistilled. 7071 is the port of the local development server, while
azurefunctionsdistilled is the name (all lowercase) of the function defined in
the code, and both will vary depending on the projects you create. You can paste
the aforementioned URL into the address bar of your browser, and then press Enter.
Figure 11-13 shows the function running in the browser and listening for HTTP GET and
POST calls.

250

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

e localhost: 707 1/apifazurefunctior X +
&« c @ localhost:7071/apifazurefunctionsdistilled ¥ e 3
25 Apps M Gmail @B YouTube B Maps

Welcome to Azure Functions!

Figure 11-13. Running an Azure Function locally

Assuming that you have done all your local development, debugging, and testing,
you can publish the Azure Function to the cloud, as described next.

Deploying Azure Functions

Deploying Azure Functions to your subscription in Visual Studio Code is an easy task.
In the FUNCTIONS area of the Azure panel, you can click the Deploy to Function App
button, highlighted in Figure 11-14, or you can right-click the subscription name in the
FUNCTIONS view and then select the same command.

251

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

v FUNCTIONS

> € Windows Azure MSDN - Visual Studio U| Baploy o Fiinciion App-

>0

v % Local Project AzureFunctionsDistilled

> = Functions Read-only

3-9 master* @ ®oAo K1 £ Attach to .NET Functions (AzureFunctionsD

Figure 11-14. Initiating the deploy process with the Deploy to Function App
button

Once you click this button, the Command Palette shows a quick wizard consisting of
three steps. In the first step, specify if you want to create a new Azure Function app with
default settings or with advanced settings (see Figure 11-15).

Select Function App in Azure

=+ Create new Function App in Azure... g
=+ Create new Function App in Azure... Advanced
functiondistilled

ey vienAare

Figure 11-15. Choosing default or advanced settings to create a new Function app

Select the first (default) option and then press Enter. You are asked again to specify
a unique name (for the current example it is azurefunctionsdistilled) and then to
specify the target platform, and available options depends on the technology you used to
build the app. Select the same platform you selected when creating the project.

Note You might see the (non-LTS) phrase close to a .NET version in the
Command Palette. At this writing, it is .NET 5 (non-LTS). This phrase means that the
identified version of .NET is not supported to long term (LTS stands for Long Term
Support). The reason is that Microsoft plans to release .NET 6 by the end of 2021,
and that will provide extensive support for this new version once it ships.

252

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE
In the last step of the wizard, you need to specify a data center location (see

Figure 11-16).

Terminal Help HttpTriggerCSharp1.cs - AzureFunctionsDistilled - Visual Studio Code

= Create new Function App in Azure (3/3)

fSeIect a location for new resources.

wdl

West Europe (recently used)
Australia Central
W Australia Central 2
Australia East
Australia Southeast

Brazil South

Brazil Southeast 4
Canada Central
Canada East re
Central India
Central US
East Asia

- e e e ey SRt | |

Figure 11-16. Selecting a location for the data center

If you have experience with Azure development, you know that this is a crucial
choice, because the location you select has an impact on the costs charged to your
subscription. At least for this example related to development purposes, make sure that
you select the data center that is closest to your location (in my case it is West Europe),
which translates to less latency and less bandwidth required and corresponding cost
savings, especially if your subscription does not have a spending limit enabled.

Note Not all Azure regions and data centers offer the same services. For real-world
scenarios, you might want to look at the official documentation about choosing the
appropriate Azure region based on your location, needs, and requested services
(https://azure.microsoft.com/en-us/global-infrastructure/
geographies).

253

https://azure.microsoft.com/en-us/global-infrastructure/geographies
https://azure.microsoft.com/en-us/global-infrastructure/geographies

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

At this point, Visual Studio Code first builds the project in Release mode and then
starts publishing the function to Azure. You can follow the progress in the Terminal and
with the pop-up box that shows the name of the currently running task (see Figure 11-17).

TERMINAL PROBLEMS (B EBUG CONSOLE 2: Task - publish v + M @ ~ x

(s)).
Terminal will be reused by tasks, press any key to close it.

> Executing task: C:\Program Files\dotnet\dotnet.exe publish --configuration Release /property:Generat
eFullPaths=true /consoleloggerparameters:NoSummary <

Microsoft (R) Build Engine version 16.8.3439993bd9d for .NET
Copyright (C) Microsoft Corporation. All rights reserved.

Determining projects to restore...

All projects are up-to-date for restore.

AzureFunctionsDistilled -» C:\AzureFunctionsDistilled\bin\Release\netcoreapp3.1l\AzureFunctionsDistil
led.dll

AzureFunctionsDistilled -» C:\AzureFunctionsDistilled\bin\Release\netcoreapp3.1\publish\

Terminal will be reused by tasks, press any (i) Deploying to “AzureFunctionsDistilled"... Check output window for stat...

Figure 11-17. Publication of the Azure Function is in progress

After the last step, the function will be up and running in the cloud, which you can
easily verify by opening the function’s URL in the browser, as shown in Figure 11-18.
Remember that the function’s URL is made by the unique name you supplied when
creating the project, followed by the azurewebsites.net domain name and by the
/api/<functionname> part. In the case of an Azure Function, you can add the query
string required to trigger the function itself. In Figure 11-18 you can see how the same
query string used locally has also been supplied to the remote URL.

254

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

@ azurefunctionsdistilled azurewet X +

&« @ A Notsecure | azurefunctionsdistilled.azurewebsites.net/api/httpsample?name=Alessandro w e i

82 Apps M Gmail @B YouTube B¥ Maps

Hello, Alessandro. This HTTP triggered function executed successfully.

Figure 11-18. The Azure Function is running in the cloud

As you have seen, Visual Studio Code makes it very simple not only to deploy an
Azure Function, but also to create a project and interact with the Azure subscription
directly from within the environment, which improves overall productivity.

Note To avoid unexpected charges or consumption of your Azure credit, |
recommend deleting all the resources that you no longer use, such as the sample
applications created in this chapter. In VS Code you can quickly delete apps and
functions by right-clicking on their name in the APP SERVICE and FUNCTIONS
panels (respectively) of the Azure side bar and then selecting the appropriate
Delete command. Additional resources can be deleted in the Azure portal.

255

CHAPTER 11 DEPLOYING APPLICATIONS TO AZURE

Summary

Once again, Visual Studio Code demonstrates its power and versatility even with cloud
development based on Microsoft Azure. With the Azure extensions, you have direct
access to your subscriptions directly from within the environment.

With specialized extensions, such as Azure App Service and Azure Functions, you
can create, configure, and deploy your web applications and functions with limited effort
and a few mouse clicks, reducing the need to manage resources in the Azure portal only
to situations in which you need custom configurations. In addition, multiple languages
and environments are supported, including .NET Core, Java, Python, and Node.js,
extending the cloud development possibilities to a larger number of companies and
developers.

256

Index

A Code snippets, 47, 48
Command-line interface (CLI), 3
Command Palette, 226

C# programming language, 42
Customizations, 93, 94

Automation task

auto-detected tasks, 163, 164

configure
compiling Pascal source code files,

165-169, 171, 172

examples, 165 D
MSBuild solution, 183, 184
multiple tasks/default build, 172-174
operating system, 179
problem matchers, 185
reusing task template, 180, 181, 183
substitution variables, 178, 179

Debug action pane, 206

Debug Console, 35, 37, 199, 205, 209
Delete Branch command, 141
Delimiter matching, 46, 76

task.json properties, 174-177 E
default build task, 162 Editing features
definition, 156 breadcrumbs, 53
running files, default program, 186 code blocks, 46
running/managing, 157-159, 161, 162 code snippets, 47, 49
types, 156 markdown, 53, 54
Azure DevOps, 111, 123, 149, 151, 153 matching delimiters, 46

minimap mode, 50, 51
B multicursors, 47
rendering, 51, 52

branch command, 137, 138, 142 R
syntax colorization, 44, 45

text, 43, 44
C word completion, 49, 50
Call Stack feature, 208, 209 Evolved code editing, 54, 76
Carriage Return and Line Feed (CRLF), 81 Find All References, 64, 66
Cascading Style Sheets (CSS), 197 Go to Definition, 60-62

257
© Alessandro Del Sole 2021

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-6901-5

https://doi.org/10.1007/978-1-4842-6901-5#DOI

INDEX

Evolved code editing (cont.)
Go to Implementation, 62, 63
intelliSense, 55-57
identifiers, 67, 68
live code analysis, 68-75
parameter hints, 57
tooltips, 58, 59

Extensions, 93, 94
authoring, 122
configure, 119
customize, 120, 121
detail page, 113
install, 111,112,114, 115
managing, 118
recommended, 115, 116
useful, 116

F

File changes, handling, 130
manage commits, 133-135
pending, 131
staging, 132, 133

Find All References, 64, 223

Free Pascal compiler, 165, 168, 171

G

GIT command-line
interface, 135, 136
Git History, 142, 143
GitHub Pull Requests, 147, 148
GitLens, 143-146
Git repository, 123
authorization, 129
create remote, 128
local, 125-127
manage, 125

258

publish remotely, 130
source control providers, 124
Go to Definition, 60

H

HelloWeb, 193, 198

|, J
Individual files, 78
create, 80
encode, 81
Integrated development environment
(IDE), 3
IntelliSense, 55-57

K

kind property, 176

L

Language support
C#, 42
features, 41, 42

Markdown syntax, 53
Merge Branch command, 138, 139, 201
Merge conflict, 139, 140
Microsoft Azure
creating/deploying
Azure extensions, 245-251
deploying Azure functions, 251-255
Visual Studio Code,
configure, 243-245

definition, 235

extensions, 236

web applications
extensions, installing, 237, 238
publishing, 240-243
signing subscriptions, 238, 239

Model-View-Controller (MVC), 192, 193
Multicursors, 44, 47

INDEX

parameter hints, 222
renaming symbols, 224, 225
retrieving type definitions, 222, 223
creating applications, 213, 214
definition, 211
extension, 212
Pylance, 227-231
running code, 215, 216, 218-220

N,O

.NET Compiler Platform, 43

.NET 5 projects, 189
application running, 195
breakpoints, 203, 204
Call Stack feature, 208, 209
code debugging, 198, 199
create, 189-191, 193, 194
Debug Console, 209
debugger, 200, 202
debugging, 204, 205, 207
evaluate expressions, 207, 208
platforms, 196, 197

Node.js, 155

P, Q

Project systems, 82, 83
JavaScript, 86
loose folders, 87
.NET solution, 85
open folder, 83, 84
TypeScript, 86
Python
code editing features
finding references, 223, 224
IntelliSense, 221
Linters, 225-227

running scripts, 231, 232

R

Remote repository, 151, 152

Rename Symbol command, 67, 68, 224

Roslyn, 43

S

Syntax colorization, 1, 44, 45, 53, 76

T, U
Team Foundation Server, 130, 149

Team project, 150
TypeScript, 86, 155

\"

Visual Studio (VS) Code
Activity Bar, 22
code editor, 19, 20
coding environment, 3
color themes, 2
Command Palette, 33, 34
considerations, 3, 4
cross-platform applications, 2
customize, 94
customize environment, 97

259

INDEX

Visual Studio (VS) Code (cont.) Extensions bar, 29, 30
dark theme, 96 Git bar, 28, 29
download page, 4, 5 Run/Debug bar, 29
features, 2, 3 search tool, 27, 28
insiders builds, 13, 14 settings button, 32
installation Status Bar, 20, 21

Linux, 8, 9 synchronizing
localization support, 10, 11 settings, 104
macOS, 8 telemetry, 103
Windows, 6, 7 theme
keyboard shortcuts, 106-110 selection, 95, 96
nature, 2 updating, 11-13
navigation, files, 32 user interface/layout, 17
Panels area, 35 user settings, 97, 98
Debug Console panel, 37, 38 Welcome page, 18
Output panel, 37 workspace
Problems panel, 35, 36 settings, 105

Terminal panel, 38, 39
Portable Mode, 5
privacy settings, 103

W XY,Z

proxies, 100-102 Windows Presentation
purpose, 2 Foundation (WPF), 85, 183
settings.json file, 99, 100 Workspace, VS code, 87, 88
Side Bar, 22 create, 89
Accounts button, 30-32 open existing, 90
Explorer bar, 23, 24, 26 structure, 90

260

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Visual Studio Code
	Visual Studio Code, a Cross-platform Development Tool
	When and Why Visual Studio Code
	Installing and Configuring Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on macOS
	Installing Visual Studio Code on Linux
	Localization Support
	Updating Visual Studio Code
	Previewing Features with Insiders Builds

	Summary

	Chapter 2: Getting to Know the Environment
	The Welcome Page
	The Code Editor
	Reordering, Resizing, and Zooming Editor Windows

	The Status Bar
	The Activity Bar
	The Side Bar
	The Explorer Bar
	The Outline View

	The Search Tool
	The Git Bar
	The Run and Debug Bar
	The Extensions Bar
	The Accounts Button
	The Settings Button

	Navigating Between Files
	The Command Palette
	The Panels Area
	The Problems Panel
	The Output Panel
	The Debug Console Panel
	Working with the Terminal

	Summary

	Chapter 3: Language Support and Code Editing Features
	Language Support
	Working with C# and C++

	Basic Code Editing Features
	Working with Text
	Syntax Colorization
	Delimiter Matching and Text Selection
	Code Block Folding
	Multicursors
	Reusable Code Snippets
	Word Completion
	Minimap Mode
	Whitespace Rendering and Breadcrumbs
	Markdown Preview

	Evolved Code Editing
	Working with IntelliSense
	Parameter Hints
	Inline Documentation with Tooltips
	Go to Definition and Peek Definition
	Go to Implementation and Peek Implementations
	Finding References
	Renaming Symbols and Identifiers
	Live Code Analysis

	Summary

	Chapter 4: Working with Files and Folders
	Visual Studio Code and Project Systems
	Working with Individual Files
	Creating Files
	File Encoding, Line Terminators, and Line Browsing

	Working with Folders and Projects
	Opening a Folder
	Opening .NET Solutions
	Opening JavaScript and TypeScript Projects
	Opening Loose Folders

	Working with Workspaces
	Creating Workspaces
	Opening Existing Workspaces
	Workspace Structure

	Summary

	Chapter 5: Customizing Visual Studio Code
	Customizations and Extensions Explained
	Customizing Visual Studio Code
	Theme Selection
	Customizing the Environment
	Understanding User Settings
	Behind the Scenes: The settings.json File
	A Real-World Example: Working with Proxies
	Privacy Settings: Telemetry
	Synchronization Settings

	Understanding Workspace Settings

	Customizing Keyboard Shortcuts

	Summary

	Chapter 6: Installing and Managing Extensions
	Installing Extensions
	Extension Recommendations
	Useful Extensions

	Managing Extensions
	Configuring Extensions

	Hints About Extension Authoring
	Summary

	Chapter 7: Source Control with Git
	Source Control in Visual Studio Code
	Downloading Other Source Control Providers

	Managing Repositories
	Initializing a Local Git Repository
	Creating a Remote Repository

	Handling File Changes
	Staging Changes

	Managing Commits
	Working with the Git Command-Line Interface
	Creating and Managing Branches
	Switching to a Different Branch
	Merging from a Branch
	Resolving Merge Conflicts

	Hints About Rebasing Branches
	Deleting Branches

	Adding Power to the Git Tooling with Extensions
	Git History
	GitLens
	GitHub Pull Requests and Issues

	Working with Azure DevOps and Team Foundation Server
	Creating a Team Project
	Connecting Visual Studio Code to a Remote Repository

	Summary

	Chapter 8: Automating Tasks
	Understanding Tasks
	Tasks Types
	Running and Managing Tasks
	The Default Build Task
	Auto-Detected Tasks
	Configuring Tasks
	First Example: Compiling Pascal Source Code
	Multiple Tasks and Default Build Tasks
	Understanding tasks.json Properties
	Understanding Substitution Variables
	Operating System–Specific Properties
	Reusing Existing Task Templates
	Second Example: Building an MSBuild Solution (Windows Only)
	Understanding Problem Matchers

	Running Files with a Default Program

	Summary

	Chapter 9: Building and Debugging Applications: .NET 5 and Other Platforms
	Creating Applications
	Introducing .NET 5
	Creating .NET 5 Projects
	Creating Projects on Other Platforms

	Debugging Your Code
	Configuring the Debugger
	Managing Breakpoints
	Debugging an Application
	Evaluating Expressions
	The Call Stack
	The Debug Console Panel

	Summary

	Chapter 10: Building Applications with Python
	Chapter Prerequisites
	Creating Python Applications
	Running Python Code

	Code Editing Features for Python
	Enhanced Word Completion with IntelliSense
	Understanding Function Parameters With Parameter Hints
	Quickly Retrieving Type Definitions
	Finding References
	Renaming Symbols
	Finding Code Issues with Linters

	Advanced Code Editing with Pylance
	Managing Pylance Settings

	Running Python Scripts
	Summary

	Chapter 11: Deploying Applications to Azure
	Introducing Azure Extensions
	Deploying Web Applications
	Installing Extensions
	Signing into Azure Subscriptions
	Publishing Web Applications

	Creating and Deploying Azure Functions
	Configuring Visual Studio Code
	Creating Azure Functions
	Deploying Azure Functions

	Summary

	Index

