
Beginning gRPC
with ASP.NET Core 6

Build Applications using ASP.NET
Core Razor Pages, Angular,
and Best Practices in .NET 6
—
Anthony Giretti

Beginning gRPC with
ASP.NET Core 6

Build Applications using ASP.NET
Core Razor Pages, Angular, and Best

Practices in .NET 6

Anthony Giretti

Beginning gRPC with ASP.NET Core 6: Build Applications using ASP.NET Core Razor
Pages, Angular, and Best Practices in .NET 6

ISBN-13 (pbk): 978-1-4842-8007-2		 ISBN-13 (electronic): 978-1-4842-8008-9
https://doi.org/10.1007/978-1-4842-8008-9

Copyright © 2022 by Anthony Giretti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano
Copyeditor: Bill McManus

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza,
Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at https://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page at https://github.com/Apress/beg-grpc-w-asp.net-core-6.

Printed on acid-free paper

Anthony Giretti
La Salle, QC, Canada

https://doi.org/10.1007/978-1-4842-8008-9

iii

Part I: �Getting Started with .NET 6��� 1

Chapter 1: �Welcome to Modern .NET��� 3

A Brief History of .NET��� 3

.�NET Framework��� 4

.�NET Core�� 5

.�NET Standard��� 6

Modern .NET: A Unified Platform�� 7

Mono and CoreCLR��� 8

.�NET Schedule and What It Means��� 9

How to Explore .NET 6�� 9

.�NET 5 and 6 Improvements��� 10

Get Started with .NET 6�� 11

Recap of C# 9 and Introduction to C# 10��� 17

Recap of C# 9��� 17

Introduction to C# 10�� 29

Summary��� 31

Chapter 2: �Introducing ASP.NET Core 6�� 33

ASP.NET Core Fundamentals�� 34

ASP.NET Core Web API�� 42

ASP.NET Core MVC��� 53

Table of Contents

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

iv

ASP.NET Core Razor Pages��� 59

ASP.NET Core Blazor�� 64

ASP.NET Core SignalR�� 72

ASP.NET Core gRPC�� 76

ASP.NET Core Minimal APIs�� 77

Summary��� 81

Part II: �gRPC Fundamentals��� 83

Chapter 3: �Understanding the gRPC Specification�� 85

Introduction to Remote Procedure Calls�� 85

gRPC Concepts��� 87

Protocol Buffers�� 87

gRPC Channel��� 88

Types of gRPC Services�� 91

Trailers�� 93

gRPC Status�� 94

Deadline and Cancellation�� 95

gRPC Requests and Responses over HTTP/2��� 95

Introduction to the HTTP/2 Protocol��� 97

Multiplexing�� 98

Compression and Binary Data Transport�� 99

Flow Control��� 99

Server Push�� 99

Benefits, Drawbacks, and Use Cases��� 99

Benefits�� 100

Drawbacks�� 100

Use Cases��� 101

Summary��� 102

Chapter 4: Protobufs�� 103

About Protocol Buffers��� 103

Individual Declarations��� 104

Table of Contents

v

Services Declaration�� 108

Messages Declaration�� 111

Scalar Type Values�� 113

Collections�� 113

Enumerations��� 119

Nested Types�� 122

Import Types��� 122

Any, Value, Struct, Wrappers, Dates, and Times (Well-Known Types)������������������������������������ 123

Bytes��� 137

One of��� 141

Empty Messages�� 147

Comments�� 149

Summary��� 151

Part III: �gRPC and ASP.NET Core�� 153

Chapter 5: Creating an ASP.NET Core gRPC Application�� 155

Create an ASP.NET Core gRPC Application��� 155

Create and Compile Protobuf Files��� 160

Write, Configure, and Expose gRPC Services��� 165

Test Using gRPCurl and gRPCui Tools�� 180

gRPCurl��� 180

gRPCui�� 189

TLS Certificates�� 195

Manage Errors, Handle Responses, and Perform Logging��� 196

Perform Message Validation�� 214

Support of ASP.NET Core gRPC on Microsoft Azure�� 219

Summary��� 221

Chapter 6: �API Versioning�� 223

Version gRPC Services��� 223

Expose the Versions of Your Protobuf with ASP.NET Core Minimal APIs������������������������������������� 232

Summary��� 237

Table of Contents

vi

Chapter 7: �Create a gRPC Client�� 239

Create a Console Application��� 240

Compile Protobuf Files and Generate gRPC Clients��� 244

Consume gRPC Services with .NET 6��� 252

Optimize Performance��� 268

Take Advantage of Compression�� 268

Define a Limit to Message Size�� 272

Keep HTTP/2 Connections Open��� 273

Increase HTTP/2 Maximum Connections�� 277

Get Message Validation Errors from the Server��� 278

Summary��� 281

Chapter 8: �From WCF to gRPC��� 283

Differences and Similarities Between WCF and gRPC��� 283

What and What Not to Migrate from WCF to gRPC��� 286

Summary��� 298

Chapter 9: �Import and Display Data with ASP.NET Core Razor Pages, Hosted
Services, and gRPC�� 299

Scenario Explanation��� 300

Create and Layer the ASP.NET Core gRPC Application��� 301

Set Up a SQL Server Database and Use Entity Framework Core to Access Data����������������������� 310

Set Up a SQL Server Database��� 310

Using Entity Framework Core to Access Data�� 311

Write the Business Logic and Expose the Country gRPC Microservice������������������������������������� 330

Write the Business Logic into the CountryService.BLL Layer��� 330

Write the Country gRPC Service��� 332

Create and Layer the ASP.NET Core Razor Application��� 341

Create the Application Skeleton��� 342

Define Contracts and Domain Objects�� 343

Implement the Data Access Layer with the gRPC Client�� 348

Table of Contents

vii

Implement the Business Logic Layer�� 353

Configure the ASP.NET Core Razor Pages Application�� 358

Upload a Data File with a Form, Display and Manage Data on Razor Pages����������������������������� 367

Summary��� 385

Part IV: �gRPC-web and ASP.NET Core�� 387

Chapter 10: �The gRPC-web Specification�� 389

History and Specification of gRPC-web��� 389

History of gRPC-web�� 389

The gRPC-web Specification�� 391

The gRPC-web JavaScript Libraries��� 392

gRPC-web vs. REST APIs��� 393

Summary��� 394

Chapter 11: �Create a gRPC-web service from a gRPC-service with
ASP.NET Core�� 395

Working with gRPC-web and the .NET Ecosystem�� 396

gRPC-web and ASP.NET Core 6�� 396

gRPC-web and All .NET Clients��� 399

gRPC-web and ASP.NET Core 3+ Clients�� 402

Reworking the CountryService gRPC service for Browser Apps�� 404

Support of ASP.NET Core gRPC-web on Microsoft Azure��� 416

Summary��� 417

Chapter 12: �Import and Display Data with Angular 12 and gRPC-web����������������� 419

Introduction to SPAs��� 419

Generate TypeScript Stubs with Protoc�� 421

Download the Correct Version of Protoc and Protobuf Well-Known Types��������������������������� 422

Download the ts-protoc-gen Plug-in�� 426

Download Improbable’s gRPC-web Library and Google Protobufs Library��������������������������� 426

Executing the Protoc Command��� 426

Table of Contents

viii

Write Data Access with Improbable’s gRPC-web Client��� 430

Upload a Data File and Display Data with TypeScript, a Web Worker, and gRPC-web��������������� 440

Manage Data with TypeScript and gRPC-web�� 450

Summary��� 456

Part V: �Security�� 457

Chapter 13: �Secure Your Application with OpenId Connect����������������������������������� 459

Introduction to OpenId Connect��� 459

Configure ASP.NET Core��� 462

Use gRPCurl and gRPCui with a JWT��� 469

gRPCurl��� 469

gRPCui�� 471

Use a C# Client with a JWT�� 473

Use a gRPC-web Client with a JWT��� 476

Get User Identity Server Side��� 478

Summary��� 478

�Index�� 481

Table of Contents

ix

About the Author

Anthony Giretti is a senior lead software developer at OneOcean in Montreal, Canada.

He is a technical leader and four-time Microsoft MVP award recipient. Anthony

specializes in web technologies (17 years’ experience) and .NET. His expertise in

technology and IT, and a heartfelt desire to share his knowledge, motivates him to dive

into and embrace any web project, complex or otherwise, in order to help developers

achieve their project goals. He invites challenges such as performance constraints, high

availability, and optimization with open arms. He is a certified MCSD who is passionate

about his craft and always game for learning new technologies.

xi

About the Technical Reviewer

Fiodar Sazanavets is an experienced full-stack lead software

engineer who mainly works with the Microsoft software

development stack. The main areas of his expertise include

ASP.NET (Framework and Core), SQL Server, Azure, Docker,

Internet of Things (IoT), microservices architecture, and

various front-end technologies. 

Fiodar has built his software engineering experience

while working in a variety of industries, including water

engineering, financial, retail, railway, and defense. He has

played a leading role in various projects and, as well as

building software, his duties have included performing architectural and design tasks.

He has also performed a variety of technical duties on clients’ sites, such as in-house

software development and deployment of both software and IoT hardware.

Fiodar is passionate about teaching other people programming skills. He has

published a number of programming courses on various online platforms.

Fiodar regularly writes about software development on his personal website,

https://scientificprogrammer.net. He has also published a number of articles on

other websites.

https://scientificprogrammer.net

xiii

Acknowledgments

The completion of this book could not have been possible without the participation and

assistance of many people and I would like to express my special thanks to them.

First, thanks to Camille Viot, my boss, for accommodating me so that I could

overcome this immense challenge.

Next, I would like to thank my friend Dave Brock (Madison, Wisconsin) for both

his moral but technical support; he was a great help when I felt overwhelmed by the

magnitude of the task. I also thank him for reviewing my chapters one by one—many

thanks for his contribution! Thanks also to Damien Vande Kerckhove for his technical

support, which allowed me to adjust the shot when I was not going in the right direction.

He was also an essential asset for ensuring this book was able to see the light of day.

I also thank all my family for their unwavering support. Finally, I would like to thank

a special member of my family that I unfortunately lost recently; he was there every night

next to me when I was writing my lines. Thank you, Ulysse, you helped me so much and

kept me company.

xv

Introduction

Take a new technological turn with gRPC and ASP.NET Core while discovering .NET 6,

the latest release of the Microsoft .NET platform, and C# 10.

gRPC has become more and more famous because of its performance compared to

JSON/XML APIs. In this book, you’ll discover how to develop ASP.NET Core APIs with

the gRPC specification, and gRPC will no longer be mysterious to you.

After you discover how gRPC works, you’ll learn how to use it to build high-

performance web applications with the best development standards. You’ll use gRPC

with various ASP.NET Core 6 project types such as Razor Pages and minimal APIs. You’ll

also discover gRPC-web and the great mix it does with Angular 12.

For Windows Communication Foundation (WCF) developers, you will learn how to

migrate from WCF to gRPC by comparing the similarities and differences between the

two frameworks.

We’ll also explore using gRPC and gRPC-web with OpenId Connect authentication

and authorization to secure your applications.

Let’s go!

PART I

Getting Started with .NET 6

3
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_1

CHAPTER 1

Welcome to Modern .NET
.NET is 20 years old, having been introduced in 2002 with the release of the .NET

Framework, .NET 1. Since then, it has evolved with the needs of the computing industry

to become even faster, lightweight, and cross-platform. As I write this book, we are

at a crossroads, if you will, of the original .NET Framework and the newer .NET Core

framework coming together under one new .NET. Microsoft has recently released .NET 5

and .NET 6 in November 2021, and with it, you can build powerful web applications with

ASP.NET Core 6.

For those of you who are already .NET developers, feel free to skip this chapter. For

the rest of you, this chapter is designed to give you just enough history and background

to provide some foundation for your learning moving forward. We’ll cover the

following topics:

•	 A brief history of .NET

•	 Modern .NET, a unified platform

•	 .NET schedule and what it means

•	 How to explore .NET 6

•	 Recap of C# 9 and introduction to C# 10

�A Brief History of .NET
A .NET application is developed for and runs in one or more implementations of .NET.

Implementations include the .NET Framework, .NET Core, Mono, .NET 5 and now

.NET 6. There is an API specification common to several implementations of .NET,

called .NET Standard. This section introduces these concepts.

https://doi.org/10.1007/978-1-4842-8008-9_1

4

�.NET Framework
Since Microsoft’s release of .NET 1, there have been nine releases of the .NET

Framework, with seven of them released with a new version of Visual Studio. Two

of these releases, .NET Framework 2.0 and .NET Framework 4.0, have upgraded the

Common Language Runtime (CLR), which runs .NET applications. When the CLR

version is the same, new versions of the .NET Framework replace older versions. .NET

Framework 4.8 is the latest version of the .NET Framework. Table 1-1 shows .NET

Framework releases from .NET 1 to .NET 4.8.

Table 1-1.  All .NET Framework Versions Released

Version Release Date Visual Studio Version

1.0 (major version) 2/13/2002 VS.NET

1.1 (minor version) 4/24/2003 VS.NET 2003

2.0 (major version) 11/7/2005 VS 2005

3.0 (major version) 11/6/2006 VS 2005

3.5 (major version) 11/19/2007 VS 2008

4.0 (major version) 4/12/2010 VS 2010

4.5 (major version) 8/15/2012 VS 2012

4.5.1 (minor version) 10/17/2013 VS 2013

4.5.2 (minor version) 5/5/2014 VS 2015

4.6 (major version) 7/20/2015 VS 2015

4.6.1 (minor version) 11/30/2015 VS 2015

4.6.2 (minor version) 8/2/2016 VS 2017

4.7 (major version) 4/5/2017 VS 2017

4.7.1 (minor version) 10/17/2017 VS 2017

4.7.2 (minor version) 4/30/2018 VS 2017

4.8 (major version) 4/18/2019 VS 2019

Chapter 1 Welcome to Modern .NET

5

The .NET Framework was designed to develop Windows-only applications, as

Windows is heavily reliant on the .NET Framework. Its successor, .NET Core, changed

that by becoming open source software and providing cross-platform support.

�.NET Core
In June 2016, Microsoft announced the .NET Core project, an open source, cross-

platform successor with compatibility for Windows, macOS, and Linux. Since then,

Microsoft has released two significant versions, .NET Core 2.0 and .NET Core 3.0, both

of which have minor releases associated with them. .NET Core 3.1 is the latest version of

.NET Core and will be supported until December 2022. Table 1-2 shows the .NET Core

releases since 2016.

Table 1-2.  All .NET Core Versions Released

Version Release Date Visual Studio Version

.NET Core 1.0 (major version) 6/27/2016 VS 2015

.NET Core 1.1 (minor version) 11/16/2016 VS 2017

.NET Core 2 (major version) 8/14/2017 VS 2017

.NET Core 2.1 (minor version) 5/30/2018 VS 2017

.NET Core 2.2 (minor version) 12/4/2018 VS 2019

.NET Core 3.0 (major version) 9/23/2019 VS 2019

.NET Core 3.1 (minor version) 12/3/2019 VS 2019

In addition to .NET Core and .NET Framework, Microsoft also maintains the Mono

project, an open source implementation of Microsoft’s .NET Framework. Launched in

2004 to allow developers to create cross-platform applications easily, it’s based on the

European Computer Manufacturers Association (ECMA) standards for C# and the CLR.

Note  ECMA is a European nonprofit organization responsible for defining IT
standards, both for hardware and software (programming languages), ECMAScript
being the most famous standard developed by this organization. ECMA is also
known for having developed the Near Field Communication (NFC) standard.

Chapter 1 Welcome to Modern .NET

6

When it comes to API surface area, .NET Core 3 is not as robust as .NET Framework

4.8, a mature platform with a 15-year head start. However, Microsoft has added about

50,000 .NET APIs to the .NET Core platform to date. To continue closing this gap, Microsoft

has built on the efforts made with .NET Core and taken the best of Mono to create a unique

platform that you can use for all your .NET programs: .NET 5 and so on with .NET 6.

Microsoft has named this new version simply .NET 5 (and then .NET 6) so as not to

confuse developers, because it’s not the successor to .NET Framework 4.8.

�.NET Standard
In 2011, Microsoft released the Portable Class Libraries (PCL), which are binaries that are

compatible with many frameworks. PCLs were a significant improvement because they

were supported by several runtimes such as Mono, Universal Windows Platform (UWP),

and .NET. In the meantime, it was hard to find information on what APIs were available

or not. To help with this confusion, .NET Standard was born.

.NET Standard is a bunch of APIs implemented by the Base Class Library (BCL).

It’s a specification of .NET APIs that proposes a unified set of contracts that you can

compile in your compatible projects. These contracts are implemented in several

.NET implementations. Various .NET implementations target specific versions of .NET

Standard. Table 1-3 shows the minimum implementation versions that support each

.NET Standard version.

Table 1-3.  All .Net Standard Versions Supported by .NET Implementations

.NET Standard Versions 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1

.NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.1

.NET Framework 4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1 N/A

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4 6.4

Xamarin.iOS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14 12.16

Xamarin.Mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8 5.16

Xamarin.Android 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0 10.0

UWP 10.0 10.0 10.0 10.0 10.0 10.0.x 10.0.x 10.0.x N/A

Unity 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 N/A

Chapter 1 Welcome to Modern .NET

7

.NET 6 implements .NET Standard 2.1 (and earlier), which is not deprecated, but

.NET 6 (unified across platforms) is the new Microsoft implementation of .NET to share

code between .NET projects.

�Modern .NET: A Unified Platform
Released in November 2020, .NET 5 is the next major evolution of .NET after .NET Core.

The later has been followed by .NET 6 released in November 2022. You can now create

various applications with the same runtime, allowing uniformity in the execution behaviors

of your .NET applications, all with a homogeneous development experience (single code

base). Therefore, code in your applications and your project files will look similar regardless

of the type of your project. To make all this possible, .NET 5 & NET 6 combines the best of

.NET Core and Mono. Figure 1-1 shows the unified ecosystem of .NET 5. In November 2021,

.NET 6 has came and offers everything that has been brought by .NET 5 plus huge features

like Multi-platform App UI (MAUI) and ahead-of-time (AOT) compilation.

Figure 1-1.  .NET 5/6 unified ecosystem (source: Microsoft)

Note  .NET 5 was released after this diagram was released. Since then, Microsoft
pushed the launch of Xamarin in the .NET unified platform to .NET 6.

Chapter 1 Welcome to Modern .NET

8

�Mono and CoreCLR
We’ll discuss two different development experiences with .NET: .NET with Mono and

.NET with CoreCLR.

�Differences and Commonalities

Mono is the cross-platform implementation of .NET. It started as an open source

alternative to the .NET Framework and made the transition to targeting mobile devices

like iOS and Android much easier. Mono is the runtime used to run Xamarin. Mono

allows developers to run .NET applications cross-platform (even older game consoles

such as PlayStation 3 and Xbox 360) and provides powerful development tools for Linux.

Core Common Language Runtime (CoreCLR) is the runtime used as part of .NET Core.

.NET Core and Mono have a lot of similarities but also many differences. As a

developer, you have the capability to select the desired development experience you

want while making the switch from one to the other as straightforward as possible.

JIT

Since the beginning of .NET, .NET was based on a just-in-time (JIT) compiler to translate

Intermediate Language (IL) code into optimized code. Microsoft built an efficient,

high-performance runtime that made programming easy and efficient.

The default experience for most .NET 6 applications will use the JIT-based CoreCLR

runtime, but there are exceptions: Xamarin and Blazor WebAssembly. Microsoft delivers

AOT compilation for both projects in .NET 6.

Note AO T support has been planned for .NET 5 but finally postponed to .NET 6.

AOT

The Mono compiler is an AOT compiler that allows you to compile native code that can

be executed everywhere. The Blazor project uses Mono AOT compilation since .NET 6.

However, AOT compilation is required for Xamarin (Android/iOS) and gaming consoles

(Unity). AOT compilation is mostly intended for applications that need a quick start and

a small footprint.

Chapter 1 Welcome to Modern .NET

https://en.wikipedia.org/wiki/Cross-platform

9

�The Best of Both Worlds

Microsoft will invest effort in improving throughput and reliability in CoreCLR while

working further to improve bootability and memory consumption with the Mono AOT

compiler.

Since the effort is not identical in these aspects, this doesn’t mean that the

investment in others will be different. For example, the diagnostic capabilities must be

the same on .NET 6 for all kinds of diagnostics.

Finally, all .NET 6 applications will also build with the .NET command-line interface

(.NET CLI), providing developers the same command-line tools.

�.NET Schedule and What It Means
.NET 6 will be supported in the long term (LTS release), unlike .NET 5, which is why many

companies have waited for .NET 6 instead of jumping on .NET 5. Only even-numbered

versions will be supported in the long term. Finally, Microsoft plans to release no (or

few) minor versions, and instead intends to release a major version of .NET once a year.

Figure 1-2 shows Microsoft’s .NET release cadence.

Figure 1-2.  .NET release cadence (source: Microsoft)

To stay informed about upcoming releases, support information, and .NET release

schedules, visit the Microsoft page “.NET and .NET Core Support Policy”: https://

dotnet.microsoft.com/platform/support/policy/dotnet-core.

�How to Explore .NET 6
While this chapter aims to introduce you to .NET 6, this book will not cover this

framework in detail. The primary focus of this book is to help you learn how to begin

using gRPC and ASP.NET Core 6. However, I will list some notable improvements made

Chapter 1 Welcome to Modern .NET

https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

10

since .NET Core 3.1 and explain why they are so good, then show you how to install .NET

6 so you can take full advantage. Because .NET 5 is a lightweight version of .NET 6, I will

recap what .NET 5 introduced so that you understand why .NET 6 and its improvements

make it a modern .NET platform.

�.NET 5 and 6 Improvements
Before .NET 5, Microsoft was responsible for maintaining about 100 repositories

between ASP.NET Core, .NET Core, and Entity Framework Core—making things quite

difficult. Microsoft has significantly simplified this by offering three consolidated

repositories; if you want to find out more about .NET 6 (or even contribute to the open

source projects), you can visit the following repositories, which will make it easier for you

to understand what’s going on and what you can do if you want to contribute:

•	 The runtime, which combines the previous repositories dotnet/

corefx, dotnet/coreclr, and dotnet/core-setup (https://github.com/

dotnet/runtime)

•	 ASP.NET Core, which combines several repositories from the ASP.

NET organization (https://github.com/dotnet/aspnetcore)

•	 The .NET SDK, which combines the previous repositories dotnet/sdk

and dotnet/cli (https://github.com/dotnet/sdk)

In terms of performance, .NET 5 has several huge improvements, which makes .NET

6 (and 5) significantly faster:

•	 Much more efficient machine code generated by the JIT compiler.

While I can’t list them all here, the following is the GitHub repository

if you want to know more: https://github.com/dotnet/runtime

•	 Many improvements to the garbage collector (GC).

•	 Improved HTTP/1.1 and HTTP/2 performance.

•	 Improved performance of extensions on strings (two to five times

faster).

•	 Performance improvement for ARM64-type processors.

•	 Reduction in the size of container images such as Docker.

Chapter 1 Welcome to Modern .NET

https://github.com/dotnet/runtime
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/sdk
https://github.com/dotnet/runtime

11

The list of other improvements is too extensive to include here. However, you can

check out the interesting links on Microsoft’s blog detailing their announcements as the

previews were released: https://devblogs.microsoft.com/dotnet/.

Regarding .NET 6 specifically, here is what it offers:

•	 Support of HTTP/3, which offers development opportunities in the

web world

•	 Unification of Xamarin through MAUI, which provides a unified .NET

experience across many devices

•	 AOT compilation in MAUI and Blazor, which makes applications

faster because the code is not compiled at the first application

execution (which can cause slowness)

•	 Hot reload, which allows you to modify your code without restarting

your app, making the development experience faster

�Get Started with .NET 6
Now let’s take a quick tour of .NET. Before we get started, you will want to set up

your environment. If you haven’t already done so, go ahead and download Visual Studio

2022 from here: https://visualstudio.microsoft.com/vs/. The latter included all

what you need to get started, even the .NET 6 SDK.

Now that you have your environment set up, let’s begin by looking at the templates

you can use in Visual Studio 2022. Figure 1-3 shows the main Visual Studio project

creation window with all available project types.

Chapter 1 Welcome to Modern .NET

https://devblogs.microsoft.com/dotnet/
https://visualstudio.microsoft.com/vs/

12

Figure 1-3.  Visual Studio 2022 main project creation window

Visual Studio 2022 introduced a great context menu to choose the language,

the project type, and the platform you want to use for your new project, as shown in

Figure 1-4.

Chapter 1 Welcome to Modern .NET

13

Figure 1-4.  Visual Studio’s 2022 context menu

If you prefer, you can also use the .NET CLI to get the same information by opening a

terminal window and entering the following:

dotnet new –-list

The output of this command is shown in Figure 1-5.

Chapter 1 Welcome to Modern .NET

14

Figure 1-5.  All available project types and languages from the command line

Personally, I like both ways to create a project. Both are simple. Let’s now create a

new project named MyMVCApp, where -o allows to specify the project name (and its

folder name), which uses an ASP.NET MVC template with the command as seen here:

dotnet new mvc -o MyMVCApp

The command output is shown in Figure 1-6.

Chapter 1 Welcome to Modern .NET

15

Figure 1-6.  The output generated after creating a new project with the .NET CLI

To confirm your project is set up to use .NET 6, you can build it by running the

following command:

dotnet build

Or, if you want to build and run your project, you can use the following command:

dotnet run

You can integrate the new Windows Terminal with Visual Studio. To enable it in

Visual Studio 2022, click the View menu and choose Terminal, as shown in Figure 1-7.

Chapter 1 Welcome to Modern .NET

16

Figure 1-7.  Enabling the new Windows Terminal in Visual Studio 2022

Once completed, the terminal window appears in the bottom panel. Then, you’ll be

able to run any command you want—such as PowerShell, Git, and CLI commands, as

shown in Figure 1-8.

Chapter 1 Welcome to Modern .NET

17

Figure 1-8.  Running a command in the terminal window

It’s is my favorite feature because I don’t need to open a new window on my

computer. I don’t know about you, but I find it a bit annoying to deal with multiple

windows. On Visual Studio, no problem! The Terminal is integrated into the existing

menu, positioned by default at the bottom of the menu, and you can easily drag it and

drop it elsewhere!

�Recap of C# 9 and Introduction to C# 10
We can’t discuss the C# language without mentioning the latest updates with C# 9 and

C# 10. Although this isn’t a C# programming book, I’ll help you discover the new features

because most of my examples use C# 9 and C# 10 features. Going into detail about each

version of C# is beyond the scope of this book, so I strongly recommend that you visit

this web page that describes all the C# versions and their main features: https://docs.

microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history.

�Recap of C# 9
Here are the most important improvements introduced in C# 9:

•	 Init-only properties

•	 Records

•	 Improved pattern matching

Chapter 1 Welcome to Modern .NET

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history

18

•	 Improved target typing

•	 Covariant returns

•	 Static anonymous functions

�Init-Only Properties

C# 9 introduced an init accessor, a variant of the set accessor. This accessor allows

properties to be assigned once during object initialization. If you apply this accessor to

all the properties of your object, it makes the object immutable. If you try to reassign a

property initialized with this accessor, the compiler will warn you of an error. Listing 1-1

shows an example of a Product class with its immutable CategoryId property; this code

could be created in any C# project.

Listing 1-1.  Product Class with CategoryId Property and Its init Accessor

using System;

namespace CSharp9Demo.Models

{

 public class Product

 {

 public string Name { get; set; }

 public int CategoryId { get; init; }

 }

}

�Records

C# 9 added a new record keyword. A record makes it possible to create an immutable

reference type object (either with the init accessor or a primary constructor) and give it

a value type object for comparison. Listing 1-2 shows an immutable record with init-

only properties, and Listing 1-3 shows an immutable record with a primary constructor.

Chapter 1 Welcome to Modern .NET

19

Listing 1-2.  Immutable Product Record with init-Only Properties

using System;

namespace CSharp9Demo.Models

{

 public record Product

 {

 string Name { get; init; }

 int CategoryId { get; init; }

 }

}

Listing 1-3.  Immutable Product Record with a Primary Constructor

using System;

namespace CSharp9Demo.Models

{

 public record Product(string Name, int CategoryId);

}

Suppose you want to create a new object from another object because the new object

requires all but one of the same property values. Unfortunately, your existing object is

immutable. The with keyword fixes that. It allows you to create an object from another

object and specify which properties to change; Listing 1-4 shows an example of the usage

of the with keyword.

Listing 1-4.  Example of the Use of the with Keyword

var product = new Product

 {

 Name = "VideoGame",

 CategoryId = 1

 };

var newProduct = product with { CategoryId = 2 };

Chapter 1 Welcome to Modern .NET

20

Interestingly, the record keyword makes the virtual Equals method overridden

and allows value-based comparison between records. On that point, it behaves as a

struct, but it’s not. Records may be appreciated for that possibility. Listing 1-5 shows an

example of a comparison between two records.

Listing 1-5.  Records Comparison

var product = new Product

{

 Name = "VideoGame",

 CategoryId = 1

}

var anotherProduct = new Product

{

 Name = "VideoGame",

 CategoryId = 1

};

product.Equals(anotherProduct); // returns true

I love that feature, and I try to use the record keyword as much as I can. I often use

it on Data Transfert Object (DTO) to carry data between layers because they must not

mutate, and I can enforce immutability easily

�Improved Pattern Matching

First introduced with C# 6, pattern matching has evolved. C# 8, released in 2019, brought

many pattern-matching improvements. Miguel Bernard has an excellent article on

the C# 8 improvements: https://blog.miguelbernard.com/pattern-matching-in-

csharp/. If you want a primer on the C# 8 features, check out his great series here:

https://blog.miguelbernard.com/csharp-8-0-new-features/.

C# 9 allows you to use relational patterns, enabling the usage of <, >, <=, and >=, and

allows you to use logical operators such as and, or, and not—and the great thing is they

can be combined!

Listing 1-6 shows a tax selector depending on the CategoryId property of a

Product object.

Chapter 1 Welcome to Modern .NET

https://blog.miguelbernard.com/pattern-matching-in-csharp/
https://blog.miguelbernard.com/pattern-matching-in-csharp/
https://blog.miguelbernard.com/csharp-8-0-new-features/

21

Listing 1-6.  Tax Selector Using C# 9 Improved Pattern Matching

using System;

namespace CSharp9Demo

{

 class Program

 {

 static void Main(string[] args)

 {

 var product = new Product { Name = "Food", CategoryId = 4 };

 GetTax(product); // Returns 5

 }

 // Relational pattern combined with logical patterns

 private static int GetTax(Product p) => p.CategoryId switch

 {

 0 or 1 => 0,

 > 1 and < 5 => 5,

 > 20 => 15,

 _ => 10

 };

 }

 public class Product

 {

 public string Name { get; set; }

 public int CategoryId { get; set; }

 }

}

The not pattern is also making an appearance—you’ll see the not logical

operator can also be used in an if statement (it also works with a ternary statement).

Listing 1-7 shows a discount selector based on an object type, ElectronicProduct,

which is a Product child object.

Chapter 1 Welcome to Modern .NET

22

Listing 1-7.  Discount Selector Using the not Pattern

using System;

namespace CSharp9Demo

{

 class Program

 {

 static void Main(string[] args)

 {

 var product = new Product { Name = "Food", CategoryId = 4 };

 GetDiscount(product); // Returns 25

 GetDiscountTernary(product); // Returns 25

 }

 // Not pattern

 private static int GetDiscount (Product p)

 {

 if (p is not ElectronicProduct)

 return 25;

 return 0;

 }

 �private static int GetDiscountTernary (Product p) => p is not

ElectronicProduct ? 25 : 0;

 }

 public class Product

 {

 public string Name { get; set; }

 public int CategoryId { get; set; }

 }

 public class ElectronicProduct : Product

 {

 }

}

Chapter 1 Welcome to Modern .NET

23

�Improved Target Typing

With C# 9, Microsoft improved target typing: “In C# 9.0 some expressions that weren’t

previously target typed become able to be guided by their context” (https://devblogs.

microsoft.com/dotnet/welcome-to-c-9-0/#improved-target-typing).

You can now infer the object type you are instantiating, meaning you don’t have to

write the object type on the right side of the new keyword. You can’t combine it with the

var keyword, but you can combine it with a conditional statement. In other words, you

can’t infer types on both sides of the equal sign.

Listing 1-8 shows an omitted type on instantiating Book and Headset classes and

comparing them with a conditional operator (not allowed before C# 9). Both examples

use Product as a base type.

Listing 1-8.  Omitted Type and Conditional Operator Usage on Book and

Headset Objects

namespace CSharp9Demo

{

 class Program

 {

 static void Main(string[] args)

 {

 Book aBook = new ("gRPC", 1);

 Headset headset = new ("Logitech", 2);

 Product anotherProduct = aBook ?? headset;

 }

 }

 public class Product

 {

 private string _name;

 private int _categoryId;

 public Product(string name, int categoryId)

 {

 _name = name;

Chapter 1 Welcome to Modern .NET

https://devblogs.microsoft.com/dotnet/welcome-to-c-9-0/#improved-target-typing
https://devblogs.microsoft.com/dotnet/welcome-to-c-9-0/#improved-target-typing

24

 _categoryId = categoryId;

 }

 }

 public class Book : Product

 {

 }

 public class Headset : Product

 {

 }

}

�Covariant Returns

One of the most underrated features of C# 9 is covariant returns. Usually, in C#, when

you inherit from a class, you can override a method if it is declared abstract or virtual,

but you can’t change the return type of this method. C# 9 allows you to do this. In

addition to overriding a virtual or abstract method, you can now return a covariant type

of the initial type declared in the parent class.

Listing 1-9 shows a covariant return usage on the Book class, inheriting from the

Product abstract class. The abstract Order method that returns a ProductOrder object

can be overridden within the Book class by returning a BookOrder object that inherits

from the ProductOrder class.

Listing 1-9.  Covariant Return Usage on Order Method of the Book Class

public abstract class Product

{

 protected string Name { get; }

 protected int Id { get; }

 protected Product(string name, int id)

 {

 Name = name;

 Id = id;

 }

Chapter 1 Welcome to Modern .NET

25

 public abstract ProductOrder Order(int quantity);

}

public class Book : Product

{

 public string ISBN { get; }

 �public Book(string name, int categoryId, string Isbn) : base(name,

categoryId)

 {

 ISBN = Isbn;

 }

 �public override BookOrder Order(int quantity) => new BookOrder {

Quantity = quantity, Product = this };

}

public class ProductOrder

{

 public int Quantity { get; set; }

}

public class BookOrder : ProductOrder

{

 public Book Product { get; set; }

}

�Static Anonymous Functions

In C# 9, Microsoft introduced an important improvement to anonymous functions by

allowing the static modifier on them, bringing us static anonymous functions! Why?

Because allocation matters! The Microsoft DevBlogs article “Dissecting the local

functions in C# 7” explains as follows why lambdas bring a cost (https://devblogs.

microsoft.com/premier-developer/dissecting-the-local-functions-in-c-7/):

Chapter 1 Welcome to Modern .NET

https://devblogs.microsoft.com/premier-developer/dissecting-the-local-functions-in-c-7/
https://devblogs.microsoft.com/premier-developer/dissecting-the-local-functions-in-c-7/

26

“If you ever work on a performance critical application, then you know that

anonymous methods are not cheap:

•	 Overhead of a delegate invocation (very small, but it does exist).

•	 2 heap allocations if a lambda captures local variable or argument

of enclosing method (one for closure instance and another one for a

delegate itself).

•	 1 heap allocation if a lambda captures an enclosing instance state

(just a delegate allocation).

•	 0 heap allocations only if a lambda does not capture anything or

captures a static state.”

Listing 1-10 shows the contextual private property _text captured by the anonymous

function, which can cause unintended allocation consequences.

Listing 1-10.  Example of Unintended Memory Allocation on the Contextual

_text Variable

using System;

namespace CSharp9Demo

{

 class Program

 {

 private string _text = "{0} is a beautiful product !";

 static void Main()

 {

 �PromoteProduct(product => string.Format(this._text, "Surface

book 3"));

 }

 private void PromoteProduct(Func<string, string> func)

 {

 Console.WriteLine(func(country));

 }

 }

}

Chapter 1 Welcome to Modern .NET

27

C# 9 fixed that. Listing 1-11 shows the fix achieved by applying the const keyword on

the _text variable and by adding the static keyword to the lambda expression.

Listing 1-11.  Example of the Unintended Memory Allocation Fix on the

Contextual _text Variable

using System;

namespace CSharp9Demo

{

 class Program

 {

 private const string _text = "{0} is a beautiful product !";

 static void Main()

 {

 �PromoteProduct(static product => string.Format(this._text,

"Surface book 3"));

 }

 private void PromoteProduct(Func<string, string> func)

 {

 Console.WriteLine(func(country));

 }

 }

}

�Top-Level Programs

C# 9 introduced a fun and practical feature: top-level programs. A top-level program

is the simplest way to write a program on its top level. Concretely in your .NET 5+

applications, you’ll be able to write a lighter Program.cs file. This feature allows you to

remove all enclosing declarations (namespace declaration, Program class declaration,

Main method declaration).

Everything works the same (accessing arguments, making async calls, declaring local

functions, etc.). Listing 1-12 shows a lighter Program.cs file in ASP.NET Core 5 where the

application namespace is named CountryService.Web.

Chapter 1 Welcome to Modern .NET

28

Listing 1-12.  Top-Level Programs in ASP.NET Core 5

using CountryService.Web;

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Hosting;

CreateHostBuilder(args).Build().Run();

static IHostBuilder CreateHostBuilder(string[] args) =>

Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

Before ASP.NET Core 5, you would have written your Program.cs file as shown in

Listing 1-13.

Listing 1-13.  Program.cs File Before ASP.NET Core 5

using Microsoft.AspNetCore.Hosting;

using Microsoft.Extensions.Hosting;

namespace CountryService.Web

{

 public class Program

 {

 public static void Main(string[] args)

 {

 CreateHostBuilder(args).Build().Run();

 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)

 .ConfigureWebHostDefaults(webBuilder =>

 {

 webBuilder.UseStartup<Startup>();

 });

 }

}

Chapter 1 Welcome to Modern .NET

29

In C# 10, this feature has been improved so that the Startup.cs file is no longer

helpful for the Program.cs file is sufficient on its own, and I’ll show you that in the next

section.

�Introduction to C# 10
C# 10 is the major new version of C # shipped with .NET 6, and following on from C# 9, it

brings remarkable changes, not to say a real breakthrough in coding .NET applications.

C# 10 includes the following most important features:

•	 Global usings

•	 File-scoped namespaces

•	 Record struct

•	 Improved top-level program

�Global Usings

C# 10 brings an attractive feature that will simplify and lighten your C# files: global

usings. What is a global using? It’s simply a manner to declare once a using statement

in a single C# project. In this way, you can create a single file and declare globally all the

needed using statements for your project. This simplifies your code greatly, and you no

longer need to repeat the using statement across files. To declare a using statement as

global, you have to write it like this:

global using AssemblyToImport;

For example, it could give the following as shown on Listing 1-14 if you decide

to declare all usings in a single file. I prefer to name it GlobalUsings.cs, which is

meaningful, and you’ll find this convention in several chapters in this book.

Listing 1-14.  Declaring All Necessary Usings in the Same File

global using System;

global using System.Threading.Tasks;

global using System.IO;

global using System.IO.Compression;

global using System.Collections.Generic;

Chapter 1 Welcome to Modern .NET

30

global using System.Linq;

global using Microsoft.Data.SqlClient;

global using Microsoft.EntityFrameworkCore;

global using Microsoft.Extensions.Logging;

global using Microsoft.AspNetCore.Hosting;

global using Microsoft.AspNetCore.Builder;

global using Microsoft.AspNetCore.Http;

global using Microsoft.Extensions.DependencyInjection;

global using Microsoft.Extensions.Configuration;

Convenient, isn’t it?

�File-Scoped Namespaces

Still, to continue with the simplification of the code, I suggest you discover another

feature of C# 10 that you will often review in this book: file-scoped namespaces.

Namespaces declared in a file (without braces, but whose instruction ends with a

semicolon) will apply to all elements declared in the same file. It’s practical, and it

lightens the code. However, there is a limitation: only one namespace can be declared in

the file. I love this new feature of C# 10, and I’m sure you’ll love it too. Listing 1-15 shows

a sample of a file-scoped namespace. The CountryModel class is defined in another file.

Listing 1-15.  Example of a File-Scoped Namespace

namespace CountryService.gRPC.Mappers;

public static class CountryReplyMapper

{

 public static CountryReply ToReply(this CountryModel country)

 {

 if (country is null)

 return null;

 var countryReply = new CountryReply

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

Chapter 1 Welcome to Modern .NET

31

 Anthem = country.Anthem,

 CapitalCity = country.CapitalCity,

 FlagUri = country.FlagUri

 };

 countryReply.Languages.AddRange(country.Languages);

 return countryReply;

 }

}

Combined with the global usings feature, file-scoped namespaces results in much

more readable C# files.

�Record struct

In .NET 5 and C# 9, the record keyword is applied only to classes. Starting with .NET 6

and C# 10, the record keyword can be applied to a struct. To avoid confusing the two,

declare a record applied to a class as public record class MyClass and declare a

record applied to a struct as public record struct MyStruct. If you omit the class or

the struct keyword, it will behave as a record class by default. Record struct works like a

record class (with-expressions, equality comparison), except it’s a struct and not a class,

and positional records work differently: positional records on a struct don’t make the

record immutable as a record class. Because it’s a struct, you have to set the readonly

keyword to make the record struct immutable. The major fact with record struct is that

reading/writing performance is higher than a regular struct. Interesting too!

�Summary
In this chapter, you were given a primer on modern .NET. You learned about its origins

and why Microsoft made some of the developer choices that it did. You were also given

a quick primer on C# 10 and even a recap of C# 9, whose features often appear in this

book. The next chapter briefly introduces ASP.NET Core 6, which runs on .NET 6.

Chapter 1 Welcome to Modern .NET

33
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_2

CHAPTER 2

Introducing
ASP.NET Core 6
Microsoft released its first ASP.NET framework in 2002 with ASP.NET Webform. The

years that followed were rich in developments such as ASP.NET MVC, ASP.NET WebAPI,

and SignalR. The framework evolved a little too quickly with new functionalities without

changing its core, more precisely the assembly named System.Web. Very quickly, new

challenges appeared, such as performance, the possibility of running ASP.NET on servers

other than IIS, increasing the framework’s affinity with the cloud to significantly facilitate its

deployment, and greatly improving its configuration by making it more flexible. ASP.NET

Core is born! ASP.NET Core is even designed to support containerization such as Docker.

ASP.NET Core is a complete overhaul of the trendy ASP.NET framework and allows

you to develop four types of applications:

•	 Web apps

•	 Web APIs

•	 Remote Procedure Call (RPC) apps

•	 Real-time apps

At the time of writing, ASP.NET Core 6 (delivered with .NET 6) is the latest version.

This chapter introduces you to ASP.NET Core 6, as we’ll use it throughout this book.

Note that ASP.NET Core 6 no longer supports ASP.NET WebForms and Windows

Communication Foundation (WCF).

In this chapter, I’ll teach you ASP.NET Core fundamentals and the following

application types:

•	 ASP.NET Core fundamentals

•	 ASP.NET Core Web API (web API)

https://doi.org/10.1007/978-1-4842-8008-9_2

34

•	 ASP.NET Core MVC (web app)

•	 ASP.NET Core Razor Pages (web app)

•	 ASP.NET Core Blazor (web app)

•	 ASP.NET Core SignalR (real-time app)

•	 ASP.NET Core gRPC (Remote Procedure Call app)

•	 ASP.NET Core minimal APIs (web API)

�ASP.NET Core Fundamentals
Before diving into ASP.NET Core, let’s talk about the fundamentals. Once you know the

fundamentals of ASP.NET Core, you can use this knowledge to build any web application

you’d like, including gRPC.

For an ASP.NET Core application, the entry point of the application is the Program.

cs file, an example of which is shown in Listing 2-1. In this file, you start creating

your application by instantiating a WebApplicationBuilder with the static method

WebApplication.CreateBuilder. The WebApplicationBuilder allows customization by

adding the desired components (configuration) and activating them (activations).

Listing 2-1.  Example of Program.cs File

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

Note  This is the default Program.cs file generated from the ASP.NET Core 6
template. It implements the C# 9 top-level programs feature (introduced in Chapter 1).
The same remark applies to using statements, and the default ASP.NET Core 6
template uses the C# 10 global usings feature (also introduced in Chapter 1).

Chapter 2 Introducing ASP.NET Core 6

35

The Program.cs file has two distinct parts:

•	 Services configuration: Includes the type of application, third-

party libraries, authentication, authorization, and the registration of

services with dependency injection.

•	 Services activation: Defines the ASP.NET Core middleware pipeline.

Middleware is a component that, once assembled (in a particular

order) into an application, can handle requests and responses and

perform operations before and after the next component, as shown

in Figure 2-1.

Figure 2-1.  The ASP.NET Core middleware pipeline

Service configuration is implemented at the beginning of the file, before building

the app with the builder.Build() method, and services activation occurs after the

latter but before the app.Run() method, as shown in Listing 2-2, which is a sample of a

configuration of an ASP.NET Core Razor Pages application.

Listing 2-2.  Example of Configured Program.cs File

var builder = WebApplication.CreateBuilder(args);

// Services configuration

builder.Services.AddRazorPages();

var app = builder.Build();

// Services activation

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

Chapter 2 Introducing ASP.NET Core 6

36

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

This discussion may still seem blurry to you; don’t be concerned, because the rest

of this section explains the architecture of ASP.NET Core, summarized in Figure 2-2, in

more detail.

Figure 2-2.  ASP.NET Core architecture

First, you must understand dependency injection since it’s central to ASP.NET Core.

Dependency injection is a technique that weakly couples objects and service classes with

each other and their dependencies. Instead of directly instantiating services in methods

through constructors or using statements, the class declares what dependencies it needs.

In this book, we’ll use services configured with their implemented interface. These

interfaces will be injected into the constructors of the classes calling these services. This

decoupling allows our code to be abstracted and also facilitates testability. Later in this

Chapter 2 Introducing ASP.NET Core 6

37

book, we’ll see how to easily test our code and take advantage of dependency injection.

The service lifetime injected by dependencies is essential. Depending on the injected

services, some need to be used once or several times for the Hypertext Transfer Protocol

(HTTP) request context or even used only once for all users making an HTTP request to

the server. ASP.NET Core supports three service lifetimes:

•	 Transient: A new instance of the service is created for each new

incoming request. This means that on the same incoming HTTP

request, the developer can deal with a new instance of the same

service for each HTTP request.

•	 Scoped: The service is instantiated once per incoming request. This

is the most commonly used lifetime. It guarantees the uniqueness of

a service instance per user.

•	 Singleton: The service is instantiated once for the entire application’s

lifetime (as long as it is not restarted), and all users share this

instance. In ASP.NET Core, Singleton lifetime is thread-safe (during

object construction); ASP.NET Core manages it for you as long as you

register your service correctly in the dependency injection container.

However, if you need to modify a property, such as a Dictionary,

you’ll need to use a ConcurrentDictionary instead.

Listing 2-3 shows how to configure the three different lifetimes. Note that the

parameter on the left is the interface and the parameter on the right is the concrete

class which implements this interface. A compilation error will occur if the class doesn’t

implement the interface to be injected by dependency.

Listing 2-3.  Configure Each Lifetime Type

var builder = WebApplication.CreateBuilder(args);

services.AddControllers();

services.AddSingleton<ISingletonService, SingletonService>();

services.AddScoped<IScopedService, ScopedService>();

services.AddTransient<ITransientService, TransientService>();

var app = builder.Build();

Chapter 2 Introducing ASP.NET Core 6

38

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

Listing 2-4 shows how to inject services with an MVC controller.

Listing 2-4.  Example of MVC Controller Where Services Are Injected by

Constructor

public class DemoController : Controller

{

 private readonly ISingletonService _singletonService;

 private readonly IScopedService _scopedService;

 private readonly ITransientService _transientService;

 public DemoController(ISingletonService singletonService,

 IScopedService scopedService,

 ITransientService transientService)

 {

 _singletonService = singletonService;

 _scopedService = scopedService;

 _transientService = transientService;

 }

}

Chapter 2 Introducing ASP.NET Core 6

39

Depending on your needs, you might sometimes want to use a service as Singleton,

Scoped, or Transient, but you must be aware of the scope hierarchy.

A Scoped service can directly access a Singleton service or Transient service, which

can directly access a Singleton service. The opposite is impossible because any object

with a longer life than another cannot access it directly. Figure 2-3 summarizes the scope

hierarchy.

Figure 2-3.  The scope hierarchy

ASP.NET Core provides a way to add extra configuration within your application that

dependency injection can access to anywhere in the application. You can customize and

store the additional configuration in an appsettings.json file. You can store settings

here that differ by environment. For example, in development mode, the appsettings.

development.json file can contain configuration specific to development mode. If

a JSON key/value pair is present in both files, the more specific file (appsettings.

development.json) will override the value presented in the main file for a given key. You

can create an Options object to populate with your configuration—this is referred to as

the Options pattern. Listing 2-5 shows an SMTP configuration in appsettings.json that

maps the SmtpConfiguration object shown in Listing 2-6, then uses the dependency

injection system as shown in Listing 2-7. Finally, the IOptions<TOptions> interface is

injected in the DemoController, as shown in Listing 2-8.

Chapter 2 Introducing ASP.NET Core 6

40

Listing 2-5.  SMTP Configuration in appsettings.json

{

 "SmtpConfiguration": {

 "Domain": "smtp.gmail.com",

 "Port": 465

 }

}

Listing 2-6.  SMTP Configuration object in Program.cs

public record class SmtpConfiguration

{

 public string Domain { get; init; }

 public int Port { get; init; }

}

Listing 2-7.  SmtpConfiguration Object Bound and Registered in the Dependency

Injection System

var builder = WebApplication.CreateBuilder(args); services.Configure<Smt

pConfiguration>(Configuration.GetSection("SmtpConfiguration"));

....

Listing 2-8.  Injecting SmtpConfiguration Options into DemoController

public class DemoController : Controller

{

 private readonly SmtpConfiguration _smtpConfiguration;

 �public DemoController(IOptions<SmtpConfiguration> smtpConfiguration

Options)

 {

 _smtpConfiguration = smtpConfigurationOptions.Value;

 }

}

Chapter 2 Introducing ASP.NET Core 6

41

This is the simplest way to use options in ASP.NET Core. You can also leverage

IOptionsSnapshot<TOptions> and IOptionsMonitor<TOptions>, depending on your

needs. To learn more, read Microsoft’s documentation: https://docs.microsoft.com/

en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-6.0.

The last important option to mention is the possibility of setting up development

mode in ASP.NET Core by configuration. What is development mode? It allows

developers to configure a different behavior of the application (for example, set

up connection strings that are encrypted in production but not encrypted in

development mode). Another important feature is the ability to display more detailed

information about the unhandled error that occurred. Because it’s more detailed,

developers should not enable development mode in production. To enable it, you

need to set the ASPNETCORE_ENVIRONMENT environment variable to Development in the

launchSettings.json file or within the project properties panel. Further in this book,

you’ll see a concrete example of using environment variables and encrypted connection

strings. Listing 2-9 shows a launchSettings.json file configured for development mode

with IIS and self-hosted mode.

Listing 2-9.  Development Mode Enabled Within lauchSettings.json File

{

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:57090",

 "sslPort": 44366

 }

 },

 "profiles": {

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

Chapter 2 Introducing ASP.NET Core 6

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-6.0

42

 "MVCDemo": {

 "commandName": "Project",

 "dotnetRunMessages": "true",

 "launchBrowser": true,

 "applicationUrl": "https://localhost:5001;http://localhost:5000",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

�ASP.NET Core Web API
ASP.NET Core Web API allows you to…you guessed it...create web APIs.

A web API is an application programming interface (API) that is used in conjunction

with HTTP. Currently, web APIs use the Representational State Transfer (REST) protocol,

which associated with the JavaScript Object Notation (JSON) interchange format, and

Extensible Markup Language (XML), though less commonly. APIs use HTTP features

such as Uniform Resource Identifiers (URIs).

Because Internet users access the Web using a wide variety of terminals and we want

to provide data to browsers and more recent device applications in a fast and secure

manner, we need a web API that is compatible with all access points. ASP.NET Core

Web API is designed specifically to be an efficient framework for building web services

that many users can use.

 ASP.NET Core Web API follows the Model-View-Controller (MVC) pattern. In

traditional web apps, the V (view) in MVC is the web page. With web APIs, it’s a response

in JSON, XML, or any other format. Figure 2-4 gives an overview of this pattern.

Chapter 2 Introducing ASP.NET Core 6

43

Figure 2-4.  ASP.NET Core Web API architecture

Now, let’s explore how to create a web API in Visual Studio 2022. As shown in

Figure 2-5, select Web in the drop-down list to more easily find the project type you’re

looking for: ASP.NET Core Web API.

Figure 2-5.  How to find the project type: ASP.NET Core Web API

Chapter 2 Introducing ASP.NET Core 6

44

Choose ASP.NET Core Web API, click Next, and then configure the project name, the

location on your computer, and the solution name, as shown in Figure 2-6.

Figure 2-6.  How to create your new ASP.NET Core Web API project

After that, you get the opportunity to select a variety of options to customize your

application. As shown in Figure 2-7, you can choose the runtime to run your ASP.NET

Core Web API, and I strongly suggest that you select the latest (.NET 6) in the Framework

drop-down list; ASP.NET Core 6 can only be run by this framework. You can also set

the authentication type (Windows, Microsoft identity Platform, or no authentication),

configure for HTTPS, enable Docker, and enable OpenAPI support.

Chapter 2 Introducing ASP.NET Core 6

45

Figure 2-7.  How to configure the ASP.NET Core Web API

If you aren’t familiar with Docker, it is an open source containerization platform.

Docker enables developers to containerize their applications that combine application

source code with all the operating system (OS) libraries and dependencies required

to run the code in any environment. To learn more, visit https://www.docker.com/

why-docker. As for OpenAPI, it’s a specification that defines a standard, language-

agnostic interface to RESTful APIs, allowing humans (and the machine) to discover

and understand features of a service without reading the source code. For details, refer

to https://swagger.io/specification/. Swagger is the set of tools built on top of

OpenAPI.

To follow along with the example, check the boxes to configure for HTTPS and

enable OpenAPI support and then click the Create button. Visual Studio will generate

your project with a default template, including a WeatherForecast model and controller.

Figure 2-8 shows the default project created by Visual Studio.

Chapter 2 Introducing ASP.NET Core 6

https://www.docker.com/why-docker
https://www.docker.com/why-docker
https://swagger.io/specification/

46

Figure 2-8.  Default ASP.NET Core WebAPI WeatherForecast template app

Let’s take a quick look at the controller, WeatherForecastController.cs, shown in

Figure 2-9.

Chapter 2 Introducing ASP.NET Core 6

47

Figure 2-9.  The WeatherForecastController class

Let’s take a look at the Program.cs file, the entry point of the application. As you can

see in Figure 2-10, we previously opted to enable OpenAPI, and Swagger UI is using it.

Chapter 2 Introducing ASP.NET Core 6

48

Figure 2-10.  Startup.cs file configured with OpenAPI (Swagger)

Visual Studio will open the browser with the OpenAPI web page and display

all endpoints within the app if you run the app. At this point, it will show only the

WeatherForecast GET endpoint. To try it, click the Execute button and view the data

returned in the Response section, as shown in Figure 2-11.

Chapter 2 Introducing ASP.NET Core 6

49

Figure 2-11.  Swagger UI web page

The Swagger UI web page is open by default. When we enabled OpenAPI, Visual

Studio configured it to open in launchSettings.json with the "launchUrl" value, as

shown in Figure 2-12.

Chapter 2 Introducing ASP.NET Core 6

50

Figure 2-12.  "launchUrl" parameter set to "swagger" value

In addition to Swagger, it is possible to use a command-line tool, HttpRepl (HTTP

Read-Eval-Print Loop), which is lightweight, cross-platform, and can be used not only

on ASP.NET Core APIs but also other kinds of APIs. This tool is used for making HTTP

requests and viewing their results wherever the API is hosted. HttpRepl supports all of

the following verbs: DELETE, GET, HEAD, OPTIONS, PATCH, POST, and PUT.

To install HttpRepl, run the following command in a PowerShell window:

dotnet tool install -g Microsoft.dotnet-httprepl

If you want to discover all the commands supported by this tool, enter the following

command:

httprepl --help

Figure 2-13 shows the commands available in the output window.

Chapter 2 Introducing ASP.NET Core 6

51

Figure 2-13.  Available commands for HttpRepl

Figure 2-14 shows the exploration, navigation, and execution of the endpoints

available in the API you want to discover. Endpoints are known because of the parsing of

the swagger.json file, which is done automatically by typing the command (connection

to the API) shown in Listing 2-10.

Listing 2-10.  Connection to the Local API Base URL

httprepl https://localhost:5001

Note in Figure 2-14 that HttpRepl uses MS-DOS commands for endpoint exploration,

navigation, and execution, such as ls to list endpoints (listing files in a directory in

Windows) and cd to position itself on an endpoint (moving to a directory in Windows).

Chapter 2 Introducing ASP.NET Core 6

52

Figure 2-14.  Exploration, navigation, and execution of API endpoints

Finally, if you do not want to use the generated Swagger web page or HttpRepl, you

can use a tool named Postman, which is a GUI for generating HTTP requests to test the

endpoints of a given API. This tool allows you to configure all the possible parameters of a

request, such as the URL, headers, verbs, query string, and body. To download Postman,

go to https://www.postman.com. Figure 2-15 shows what the Postman interface looks like.

Chapter 2 Introducing ASP.NET Core 6

https://www.postman.com

53

Figure 2-15.  Postman GUI tool

The most popular of these three tools is Postman, maybe you already know it, but I

admit that using HttpRepl online is quite lovely, and if you are a fan of command-line

tools, this one is for you. Especially if you are a Linux pro! If you are not, I hope this

section has tempted you to try HttpRepl.

�ASP.NET Core MVC
ASP.NET Core MVC enables you to create web applications.

ASP.NET MVC first became part of the .NET ecosystem in 2008. Originally, ASP.

NET WebForms appeared in 2002. The framework was based on events (click, page

load, etc.), so it tended to be complex, heavy, and inefficient. Microsoft’s quest to create

a lightweight and more efficient ASP.NET framework resulted in ASP.NET MVC. ASP.

NET MVC follows the Model-View-Controller (MVC) pattern (previously discussed) and

introduces many advantages to ASP.NET (and ASP.NET Core), such as the following:

•	 Clean architecture with the separation of concerns (SoC) principle

•	 Efficient and easy combination with JavaScript libraries like JQuery or

Prototype.js

Chapter 2 Introducing ASP.NET Core 6

54

•	 Search engine optimization (SEO), ASP.NET Core Routing feature

provides more affinities with search engines

•	 No application state

•	 Complete control of HTML rendering, unlike ASP.NET WebForms

•	 Test-driven development (TDD) capabilities

In ASP.NET Core, MVC is architected like this:

	 1.	 Model is the component in the MVC design pattern that manages

data to be displayed in the view component.

	 2.	 View is the component used to display the model data.

	 3.	 Controller is the component in an ASP.NET MVC application used

to handle the incoming HTTP request generated by a user action.

The controller deals with the model and view through an Action,

which is a controller method and then sends the response to

the user.

Figure 2-16 gives an overview of the MVC pattern.

Figure 2-16.  ASP.NET Core MVC architecture

How do you create an ASP.NET Core MVC application? Similar to the instructions for

ASP.NET Core WebAPI earlier in the chapter, you need to create a new project in Visual

Studio 2022 by selecting the dedicated template: ASP.NET Core Web App (Model-View-

Controller), as shown in Figure 2-17.

Chapter 2 Introducing ASP.NET Core 6

55

Figure 2-17.  Create an ASP.NET Core MVC application

From here, you’ll repeat the same steps as the ASP.NET Core Web API creation,

choosing .NET 6 as the runtime and choosing customization options such as setting the

authentication type, configuring for HTTPS, enabling Docker, and enabling OpenAPI

support.

After you click the Create button, Visual Studio creates the default application with

CSS, JavaScript, and other static assets in the wwwroot folder. Controllers, models, and

views are listed in their respective folders, as shown in Figure 2-18.

Chapter 2 Introducing ASP.NET Core 6

56

Figure 2-18.  The default template of ASP.NET Core MVC

The HomeController class is created by default and implements the Index page as

well as a Privacy page and an Error page, as shown in Figure 2-19.

Chapter 2 Introducing ASP.NET Core 6

57

Figure 2-19.  The HomeController created by default, with the Index(), Privacy()
and Error() Actions

If you look at the Program.cs file, shown in Figure 2-20, you’ll see that other features

specific to ASP.NET Core MVC were added, such as default routing rules, error pages and

views, and middleware to enable MVC controllers.

Chapter 2 Introducing ASP.NET Core 6

58

Figure 2-20.  Default Program.cs file in ASP.NET Core MVC

ASP.NET views use the Razor syntax, which is straightforward: a mix between C#

and HTML. You can invoke C# code in Razor Pages using the @ symbol, as shown in

Figure 2-21 (the Error.cshtml file that displays the error page).

Figure 2-21.  Error.cshtml view with C# instructions and data binding

The launchSettings.json file is the same as for the ASP.NET Core Web API project.

If you run the project, you’ll land on the Index page, the default launch page for when

the application starts, as shown in Figure 2-22.

Chapter 2 Introducing ASP.NET Core 6

59

Figure 2-22.  Default Index page

If you configure the "launchUrl" property with another page, the application starts

on that page. If nothing is specified, the Index page is the default start page.

�ASP.NET Core Razor Pages
ASP.NET Core Razor Pages enables you to create web applications with complete control

of HTML, just as ASP.NET Core MVC does. ASP.NET Core Razor Pages and ASP.NET Core

MVC are similar but also have their differences.

The main similarities lie with Razor’s views. Both ASP.NET Core MVC and ASP.NET

Core Razor Pages render HTML pages with the Razor syntax, but ASP.NET Core Razor

Pages doesn’t have a model or controller. Instead, a “code-behind” C# class sits behind

a Razor view. Figure 2-23 shows the comparison between ASP.NET Core MVC and

Razor Pages.

Chapter 2 Introducing ASP.NET Core 6

60

Figure 2-23.  Difference between ASP.NET Core MVC and ASP.NET Core
Razor Pages

The code-behind class acts like a controller. It implements HTTP handlers instead of

Actions and communicates with the view using a Model inherited from a PageModel class

that exposes objects like ControllerBase does for MVC. We’ll talk more about this later

in this section.

If you are wondering how to decide whether to choose ASP.NET Core Razor Pages or

ASP.NET Core MVC in any particular scenario, the following discussion provides some

guidance.

Choose ASP.NET Core MVC if you need to do the following:

•	 Build dynamic server views in the same application

•	 Work with a single-page application (SPA) model

•	 Use REST APIs with Asynchronous JavaScript and XML

(AJAX) queries

ASP.NET Core Razor Pages works well for the following scenarios:

•	 No use of REST endpoints

•	 Simple and basic data manipulation

Chapter 2 Introducing ASP.NET Core 6

61

Choosing ASP.NET Core Razor Pages brings other advantages like:

•	 Better organization (view and its code-behind versus view, controller,

model, and routing)

•	 Single responsibility (clean and clear endpoint responsibility with

GET, POST, PUT, etc. endpoints versus Actions in MVC controllers)

•	 Less complexity than MVC (like no TempData, ViewData concepts,

and more)

•	 Possibility to reuse UI components with Blazor

Creating an ASP.NET Core Razor Pages application is similar to creating applications

in ASP.NET Core Web API and MVC, previously discussed in this chapter. You start

the process by selecting ASP.NET Core Web App in Visual Studio 2022, as shown in

Figure 2-24. Then click the Next button, and you’ll have the same customization options

as offered for ASP.NET Core MVC to configure your app.

Figure 2-24.  Select ASP.NET Core Web App

Chapter 2 Introducing ASP.NET Core 6

62

After choosing your customization options and clicking the Create button, Visual Studio

creates the default app shown in Figure 2-25. It looks like an MVC web application without

models and views. Code-behind classes are now coupled to their respective Razor views.

Figure 2-25.  The default ASP.NET Core Razor Pages template

As discussed previously, controllers and models make way in Razor Pages for a

PageModel class, where endpoints act as Actions in the ASP.NET Core MVC world. The

default template generated by Visual Studio only implements the OnGet() method—it

serves the requested page with the GET verb. You can implement all the HTTP verbs you

desire, as shown in Figure 2-26.

Chapter 2 Introducing ASP.NET Core 6

63

Figure 2-26.  A PageModel class with its all HTTP verbs available for implementation

Chapter 2 Introducing ASP.NET Core 6

64

Before we finish our discussion of Razor Pages, let’s review the Program.cs file. It

looks similar to all the other Program.cs files we’ve worked with so far. To activate Razor

Pages, just configure the AddRazorPages() and MapRazorPages() extension methods for

the endpoints as shown in Figure 2-27.

Figure 2-27.  A Program.cs file that configures an ASP.NET Core Razor Pages app

If you run the application, the rendering is identical to the rendering of ASP.NET

Core MVC. Personally, I find ASP.NET Core Razor Pages more straightforward than ASP.

NET Core MVC. Further in this book, I’ll demonstrate how to build an application with

gRPC, and I’ll choose ASP.NET Core Razor Pages for this reason.

�ASP.NET Core Blazor
ASP.NET Core Blazor is the latest framework for developing web pages with C#, HTML,

and Razor syntax. The originality here is that the application is not executed on the

server side but on the client side. But how is this possible? Through WebAssembly

(WASM)! WebAssembly is a web standard that is implemented across all modern

browsers without the need for plug-ins. You can take code from compiled languages like

C# and run it in your browser. It’s like a secure virtual machine (VM) in the browser. The

code is compiled and run in your browser quickly, close to a native app speed. This code

is in a binary file that you can use directly from JavaScript as a module.

Chapter 2 Introducing ASP.NET Core 6

65

Blazor is a framework that supports building components and web pages on top of

WebAssembly. The name Blazor comes from the contraction of “browser” and “Razor,”

the HTML templating engine described in the previous section. Blazor is a single-page

application framework that runs on .NET (with Mono) in the browser. Figure 2-28 shows

the Blazor client-side stack.

Figure 2-28.  The Blazor client-side stack

ASP.NET Core Blazor is not limited to WebAssembly. Blazor also supports a server

model. With the Blazor Server hosting model, the app is executed on the server from

within an ASP.NET Core app. All interactions with the server are handled over a SignalR

connection. Figure 2-29 shows the Blazor server-side stack.

Chapter 2 Introducing ASP.NET Core 6

66

Figure 2-29.  Blazor server-side stack

Why choose one hosting model or the other? Here is a short summary.

Blazor WebAssembly hosting model
Pros:

•	 No .NET server-side dependency. The app is running after it’s

downloaded to the client.

•	 The client, not the server, handles work.

•	 Can connect to databases directly.

•	 Can store connection strings and secrets securely.

•	 Can access Windows and .NET Framework APIs.

•	 An ASP.NET Core web server isn’t needed.

Cons:

•	 Depends on the browser’s capability, and WebAssembly support is

required.

•	 Needs to download the entire app before it runs, so it takes longer

to start.

Chapter 2 Introducing ASP.NET Core 6

67

Blazor Server hosting model
Pros:

•	 Faster loading; no need to download the entire app before.

•	 Takes full advantage of server capabilities, like a regular ASP.NET

Core app.

•	 Works with any browser.

Cons:

•	 Lots of interaction with the server might slow the experience

sometimes.

•	 If the client connection breaks, like a standard ASP.NET Core app, it

stops working.

•	 Needs to handle client state like a regular ASP.NET Core app.

•	 An ASP.NET Core server is necessary to serve the app.

Mobile developers are not forgotten, because Blazor also supports Progressive Web

Application (PWA) development. If you are not familiar with PWA development, a PWA

is a website that looks and behaves like a native mobile application. It can

•	 Load fast

•	 Send push notifications

•	 Work offline

•	 Access device features, such as compass, GPS, etc.

A PWA offers additional benefits:

•	 No installation required (and no need to push the app on stores like

Google Play)

•	 Fully responsive, runs well on any devices (phones, tablets)

In this book, we will build an application with Blazor WebAssembly and gRPC-Web,

so I’m not going to mention server-side Blazor further. It’s not relevant because a Blazor

Server App is simply an ASP.NET Core app.

Chapter 2 Introducing ASP.NET Core 6

68

Now, let’s create a Blazor app with WebAssembly. To create a Blazor app (client side),

select Blazor WebAssembly App in Visual Studio 2022, as shown in Figure 2-30.

Figure 2-30.  Create a Blazor app

After selecting Blazor WebAssembly App and clicking Next, Visual Studio enables

you to customize your app, like any ASP.NET Core app, but suggests two unique options

for Blazor WebAssembly, as shown in Figure 2-31. If you enable ASP.NET Core hosted,

the ASP.NET Core server serves up the client and provides a great place to host APIs. If

you enable the Progressive Web Application option, you can deliver an app experience

through the Web, built using standard web technologies including HTML, CSS, and

JavaScript. PWA is intended to work on any platform that uses a standards-compliant

browser, including desktop and mobile devices.

Chapter 2 Introducing ASP.NET Core 6

69

Figure 2-31.  Customize a Blazor app (WebAssembly)

After you select your desired options and click Create, Visual Studio creates your

app with HTML, CSS content, Razor Pages (notice this time the file extension is .razor,

unlike ASP.NET MVC and Razor Pages, which are .cshtml), a Program.cs file, and

an entry point component named App.razor. Figure 2-32 shows a default Blazor app

configured for WebAssembly.

Chapter 2 Introducing ASP.NET Core 6

70

Figure 2-32.  A Blazor WebAssembly app

Let’s take a look at the entry point. As you can see, the Razor syntax remains the same

compared to ASP.NET Core MVC and Razor Pages. However, the Razor Page file contains

Blazor components that are missing in .cshtml files (MVC/Razor Pages), as shown in

Figure 2-33.

Chapter 2 Introducing ASP.NET Core 6

71

Figure 2-33.  App.razor page

Note that for Blazor WebAssembly apps, Program.cs is different from other Program.

cs files for regular ASP.NET Core project types. In a WebAssembly scenario, ASP.NET

Core configures and runs a WebAssemblyHost instead with a WebAssemblyHostBuilder,

asynchronously to avoid browser blocking the UI thread, as shown in Figure 2-34.

Figure 2-34.  A Blazor WebAsssembly Program.cs file

If you run the Blazor app, you’ll notice all the DLLs are downloaded when loading

the app (only in development mode), as shown in Figure 2-35.

Chapter 2 Introducing ASP.NET Core 6

72

Figure 2-35.  First page load

In production, there is linking and tree shaking (elimination of dead code).

Therefore, the download size is significantly smaller and the browser cache allows a

faster load time after the first visit.

Blazor WebAssembly is genuinely innovative. If you feel like trying something other

than JavaScript/TypeScript, Blazor WebAssembly is the right choice!

�ASP.NET Core SignalR
ASP.NET Core SignalR allows web apps to maintain a persistent connection and enable

developers to add event notification functionality. So, when a new event is triggered, the

app generates a notification to the user. This allows new web applications that require

high-frequency updates from the server, such as real-time gaming. While this is a great

way to make the web app much more engaging and intuitive, what exactly is SignalR?

SignalR is a real-time, cross-browser, and open source two-way RPC protocol. So, each

side in the connection can invoke procedures on the other side of the connection.

Chapter 2 Introducing ASP.NET Core 6

73

SignalR uses WebSockets when available and will gracefully fall back to other techniques

like Ajax long polling; the application code remains the same whatever the fallback

method used. As depicted in Figure 2-29 in the previous section, SignalR makes Blazor

Server work.

SignalR provides an API for creating server-to-client Remote Procedure Calls (RPCs)

that invoke JavaScript functions client side, like a browser or an Electron app which

allows desktop application development with JavaScript. SignalR is also compatible

with other client platforms, like C# in WPF. It also automatically handles connection

management, such as connection/disconnection events, and lets the developer

simultaneously broadcast messages to all connected clients. You can also send messages

to specific clients. The connection between the client and server is persistent, unlike

a classic HTTP connection, which is reestablished for each communication. From the

server side, you define methods within a Hub that calls the client code. From the client

side, you define methods within a Hub proxy that are called from the server, as shown in

Figure 2-36.

Figure 2-36.  ASP.NET Core SignalR client/server interaction

Let’s explore how to create an ASP.NET Core SignalR application. Unlike other

projects in this chapter, there is no template for SignalR. You have to choose the ASP.NET

Core Empty template, as Figure 2-37 shows.

Chapter 2 Introducing ASP.NET Core 6

74

Figure 2-37.  Create an ASP.NET Core Empty app

Visual Studio creates your project and only adds a few files, such as Program.cs and

appsettings.json. Of course, the necessary assemblies are already imported—since

SignalR is an ASP.NET Core component, we don’t have to import anything ourselves.

Figure 2-38 shows the project created by Visual Studio.

Chapter 2 Introducing ASP.NET Core 6

75

Figure 2-38.  ASP.NET Core app for SignalR

Now, we must configure the application ourselves. To create our first Hub, we’ll

create a new class called MyHub.cs that we’ll put in a dedicated Hubs directory. Before

writing our method, we need to import the Microsoft.AspNetCore.SignalR namespace

and inherit our MyHub class from the Hub class. We can then create our SendMessage

method, which takes two parameters. The latter method will send all the connected

clients a message using the ReceivedMessage client method. This example is shown in

Figure 2-39.

Figure 2-39.  Create a Hub class and a server method

Chapter 2 Introducing ASP.NET Core 6

76

Finally, we need to configure our Program.cs file to enable SignalR with the

AddSignalR extension method and related endpoints by declaring each Hub in the ASP.

NET Core pipeline with the MapHub extension method, as shown in Figure 2-40.

Figure 2-40.  Configure the Program.cs for enabling SignalR endpoints

�ASP.NET Core gRPC
ASP.NET Core gRPC is the newest ASP.NET Core framework. Google Remote Procedure

Call (gRPC) was introduced on ASP.NET Core 3.1 in November 2019. gRPC is a Google-

created, open source, schema-first Remote Procedure Call framework that takes

advantage of the HTTP/2 protocol to transport messages in binary. These messages

are serialized and deserialized using Protocol Buffers, which are a type of Interface

Definition Language (IDL).

Because this chapter aims to introduce ASP.NET Core before working with gRPC, I

won’t dive deep into gRPC. In future chapters, we’ll explore gRPC in greater detail, how it

works in ASP.NET Core, and, finally, how to take advantage of its potential by coupling it

with other ASP.NET Core features.

Chapter 2 Introducing ASP.NET Core 6

77

�ASP.NET Core Minimal APIs
ASP.NET Core 6 introduces a new feature that is not a new framework like Blazor or

gRPC, but I want to tell you about it because it’s a feature that I like and I think you will

too: minimal APIs.

Why do I like minimal APIs? For the simple reason that sometimes I have to write

minimalistic APIs, one or two endpoints maximum with data to manipulate quite

simply. How do minimal APIs work? There is no need to implement controllers, and

only one file is necessary: the Program.cs file (which, as you already know, enables you

to start an application with a minimal configuration). Note that all the ASP.NET Core

pipeline remains the same: the dependency injection system, and the middleware that

follows one another and manages HTTP requests and responses.

To get started, create an ASP.NET Core Empty project, as shown in Figure 2-41.

Figure 2-41.  Create an ASP.NET Core Empty project

Chapter 2 Introducing ASP.NET Core 6

78

After you have named your project and clicked Create, Visual Studio 2022 will

create the a minimalistic project with its default endpoint “Hello World”, as shown in

Figure 2-42.

Figure 2-42.  Minimalistic ASP.NET Core project

Figure 2-43 shows the minimal API configured to serve the Swagger documentation

to reveal the “Hello” endpoint declared in the Program.cs file. Dependency injection is

used for the IHelloService declared at the top of the file as a scoped service. C# 10 also

introduces a new feature that allows developers to decorate lambdas expression with

attributes, such as a FromRoute attribute that maps the route attribute name to the string

parameter name.

Chapter 2 Introducing ASP.NET Core 6

79

Figure 2-43.  An example minimal API that uses dependency injection attributes
on lambdas and serves as an endpoint with its Swagger documentation

Figure 2-44 shows the Swagger UI generated from the code shown in Figure 2-43.

Chapter 2 Introducing ASP.NET Core 6

80

Figure 2-44.  An example of a minimal API Swagger UI

I like this way of developing APIs. I use it almost automatically, as long as the project

is not too big. I suggest you give it a try. Later in this book, we will return to it because

inside our gRPC application, I will expose REST endpoints in our gRPC application. You

will see that will be very practical in the use scenario that I will propose to you.

Chapter 2 Introducing ASP.NET Core 6

81

�Summary
In this chapter, you’ve learned what ASP.NET Core is, its basics, and the frameworks

it supports. ASP.NET Core is a vibrant framework. All kinds of web technologies are

supported and well documented by Microsoft, which is why it’s my favorite web

application development framework, and I hope you enjoy it just as much as I do.

Throughout this book, you’ll see how I’ll mix gRPC and gRPC-web with technologies

I introduced in this chapter to take advantage of the robust framework that is ASP.

NET Core.

Chapter 2 Introducing ASP.NET Core 6

PART II

gRPC Fundamentals

85
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_3

CHAPTER 3

Understanding the gRPC
Specification
Before we jump into the power of gRPC and ASP.NET Core, it is essential that you learn

the gRPC specification and how it works. This is crucial because gRPC is much different

from other technologies that you may be accustomed to working with, such as web

APIs and Simple Object Access Protocol (SOAP) services. The gRPC specification is

language-agnostic, which means that this specification not only is implemented with

ASP.NET Core, but also can be integrated with other stacks like Java, PHP, and Node.js.

We’ll cover the following content in this chapter:

•	 Introduction to Remote Procedure Calls

•	 gRPC concepts

•	 Introduction to the HTTP/2 protocol

•	 Benefits, drawbacks, and use cases

�Introduction to Remote Procedure Calls
Remote Procedure Call (RPC) is a network protocol for establishing procedure calls on a

remote computer using an application server—also known as a client/server model. The

first description of Remote Procedure Call dates back to 1976 in the RFC 707 standard

(https://www.rfc-editor.org/info/rfc707). Understanding the RPC principles

and the RFC 707 standard was helpful for me to understand gRPC. It’s always good to

understand the basis of a system.

https://doi.org/10.1007/978-1-4842-8008-9_3
https://www.rfc-editor.org/info/rfc707

86

With RPC, a client invokes a function, a server procedure with parameters. When the

server receives the request, it sends the required response back to the client. The client

waits for the server to respond and cannot perform other operations until the server has

finished the request. Figure 3-1 shows the RPC model principle.

Figure 3-1.  The RPC model principle

You need to understand that gRPC is influenced by this RPC model established long

before gRPC. However, an important question to address is how an RPC call differs from

a REST API call. After all, if you are accustomed to working with REST APIs, that could be

a point of reference in your way of thinking.

•	 In an RPC API, an entity’s feature is exposed (such as an entity

creation or deletion) over a procedure, a function that has input

parameters and returns a result. There is no significant dependency

on HTTP verbs and URLs.

•	 In a REST API, an entity is considered a resource and uses HTTP

verbs and specific URLs to expose operations on this resource.

RESTful convention tends to encourage developers to use specific

verbs in a particular situation: GET to retrieve data, POST to create

data, PUT to replace data, PATCH to update data, and DELETE to delete

data. Developers commonly use these verbs to perform Create,

Retrieve, Update, Delete (CRUD) operations on data. REST is reliant

on HTTP status codes. For example, if successful, a GET operation

returns HTTP 200 OK status or HTTP 404 (NotFound) if the resource

has not been found.

Despite the differences between these two protocols, they both use HTTP! With this

basic knowledge of RPC, let’s move on to gRPC concepts and learn how gRPC works.

Chapter 3 Understanding the gRPC Specification

87

�gRPC Concepts
When I discover new technologies, I like to learn their history, and I will share the

gRPC history with you. gRPC is an open source RPC framework initially developed by

Google. The project started in the 2000s, and Google made it open source in 2014. gRPC

uses Protocol Buffers (Protobuf) as the Interface Description Language, and message

serialization and deserialization are done in binary over an HTTP/2 connection (I’ll dive

into specifics in a subsequent section). gRPC allows developers to build client/server

applications with a wide choice of programming languages, such as:

•	 Java

•	 C

•	 C++

•	 Node.js (JavaScript/TypeScript)

•	 Python

•	 Ruby

•	 GO

•	 Dart

•	 PHP

•	 C#

Like any Remote Procedure Call, gRPC defines one or several procedures(s) that can

be called remotely with their input parameter. On the server side, a gRPC server runs,

which exposes functions to handle client calls. The client is implemented from a any

language among languages shown above that supports the same gRPC methods (stubs)

as the server.

�Protocol Buffers
The gRPC client is aware of the available gRPC procedures (functions) and their input/

output parameters (messages) due to sharing Protocol Buffers between the client and

the server, which are language descriptors—much like WSDL for SOAP web services

such as Windows Communication Foundation (WCF), which is a Microsoft SOAP

implementation. Chapter 8 will cover WCF and how it differs from gRPC.

Chapter 3 Understanding the gRPC Specification

88

The Protocol Buffers are stored in a .proto file. Listing 3-1 gives an example of the

Protobuf syntax to build a service named CountryService, which exposes a procedure

called GetById(), taking itself a message parameter named CountrySearchRequest and

returning a message named CountryReply.

Listing 3-1.  CountryService Described with the Protobuf Syntax

syntax = "proto3";

service CountryService {

 rpc GetById (CountrySearchRequest) returns (CountryReply) {}

}

message CountrySearchRequest {

 int32 CountryId = 1;

}

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

}

You define the syntax using the syntax keyword, define services with the service

and rpc keywords, and define entities with the message keyword. The next chapter will

detail the Protobuf syntax and how a stub (client generated in a particular language)

is made.

�gRPC Channel
Any request to a gRPC server from any client is made through a channel. A gRPC channel

is used to establish a connection to the server and allow Remote Procedure Calls. A

Channel requires the following information to be initialized:

•	 The address of the remote host

•	 The port

•	 Connection credentials

Chapter 3 Understanding the gRPC Specification

89

A channel supports the configuration of the server’s connection credentials and the

credentials for each RPC request made to the server.

Three types of connection are supported:

•	 SSL/TLS: Secure Sockets Layer (SSL) and Transport Layer Security

(TLS) are both cryptographic protocols that encrypt data and

authenticate a connection when transferring data over the Internet.

To use SSL/TLS, you need to install an SSL/TLS certificate on

your web server. It includes a public key and a private key that

authenticate your server and allow it to encrypt and decrypt data.

•	 ALTS: Application Layer Transport Security (ALTS) is an

authentication and encryption protocol designed by Google that uses

the Diffie-Hellman key exchange system. It looks like TLS, but both

the client and the server need the certificate.

•	 Token-based authentication: This is used to authenticate a user

from a token named JWT (JSON Web Token), which contains the

identity of a user issued by a third-party identity manager and not

by the application itself. The initiator of the request will ask the

server for a token, then pass it in the headers of the HTTP request.

The client will validate its authenticity by reading the metadata

provided for the third-party identity server, by checking the signature

of the token received (check that the token actually comes from the

supposed issuer). This is the type of authentication most commonly

used for web applications.

Most of the time, the credentials for each RPC request made to the server are configured

on the calls themselves, especially when using tokens. In the .NET implementation of gRPC,

Microsoft encapsulates this in its custom gRPC client implementation. You just have to add

your JWT within your request headers on the procedure call.

Finally, a channel supports options such as the maximum size of messages sent or

messages received. If you want to learn all available options, go to the gRPC GitHub

repository: https://grpc.github.io/grpc/core/group__grpc__arg__keys.html.

Listing 3-2 shows the creation of a channel in C# (whatever the .NET framework used)

with a custom SSL certificate (myCertificate.pem, which includes the public certificate)

and an option that limits the size of received messages to 5 MB. Then this channel is used

to initialize a client (stub) that has been auto-generated from Protocol Buffers.

Chapter 3 Understanding the gRPC Specification

https://grpc.github.io/grpc/core/group__grpc__arg__keys.html

90

Listing 3-2.  Creation of a Secured gRPC Channel in C# with Limitation of

Messages Size

var channel = new Channel("https://localhost:5001", new

SslCredentials("myCertificate.pem"), new [] {

 �new ChannelOption("grpc.max_receive_message_

length","5242880") // 5 MB

 });

var countryClient = new CountryServiceClient(channel);

Listing 3-3 shows the same channel without any encryption or authentication (this is

not recommended—always use HTTPS).

Listing 3-3.  Creation of an Unsecured gRPC Channel in C#

var channel = new Channel("https://localhost:5001", ChannelCredentials.

Insecure, new [] {

 �new ChannelOption("grpc.max_receive_message_

length","5242880") // 5 MB

 });

var countryClient = new CountryServiceClient(channel);

In Chapter 7, we’ll revisit that piece of code, and I’ll show you all the required

dependencies to write this Channel in C# for .NET Framework. In the case of .NET 6, it

will be quite different.

While using the created Channel, you can check its status. It has a property named

State that can have the following values:

•	 Idle

•	 Connecting (to the remote server)

•	 Ready (to handle RPCs)

•	 TransientFailure: An error occurred, but the error is not fatal, and

the Channel can be reused, after returning to Ready state over the

ConnectAsync method with a C# client

•	 Shutdown: A fatal error occurred, or the Channel has been shut down

programmatically

Chapter 3 Understanding the gRPC Specification

91

�Types of gRPC Services
gRPC supports four types of calls to the server:

•	 Unary

•	 Server-streaming

•	 Client-streaming

•	 Bidirectional

Unlike a REST API, which only supports unary type calls (the client sends a request,

and the server receives it and returns the response with its status to the client), gRPC

supports all four types, as described next.

�Unary Calls

The client initiates the remote procedure call with the method name, metadata, and

the request message. Then the server returns the response with the gRPC status, the

response message, and metadata. Figure 3-2 shows the unary RPC sequence diagram.

Figure 3-2.  Unary RPC sequence

�Server-Streaming Calls

The client initiates the remote procedure call with the method name, metadata, and the

request message. Then it receives a streaming response from the server. The request’s

status is sent to the client at the end of the streaming response (all data has been

transmitted to the client along with its metadata). Figure 3-3 shows the server-streaming

RPC sequence diagram.

Chapter 3 Understanding the gRPC Specification

92

Figure 3-3.  Server-streaming RPC sequence

�Client-Streaming Calls

The client initiates the remote procedure call with the method name and metadata.

Then the client sends streaming messages. However, the server can send the request

status code and metadata before sending the client’s messages. If a problem occurs on

the server and it has already sent the status and metadata, detecting errors is difficult.

Figure 3-4 shows the client-streaming RPC sequence diagram.

Figure 3-4.  Client-streaming RPC sequence

�Bidirectional Streaming Calls

Each party sends its messages by streaming, and this can be done in parallel, which

means there is no order in which client/server messages are sent and received. The

client initiates the remote procedure call with the method name and metadata. Then the

server can respond to it immediately by returning the status and its metadata (or when

the client has finished sending all of its messages). Figure 3-5 shows the bidirectional

streaming RPC sequence diagram.

Chapter 3 Understanding the gRPC Specification

93

Figure 3-5.  Bidirectional streaming RPC sequence

Later in this book, you’ll discover how to implement these sequences in C#.

�Trailers
gRPC allows metadata to be used in the form of trailers. Trailers are HTTP request

headers but work differently. In a gRPC request, the Headers and Trailers are sent

at the beginning of the request before the data (messages). In a gRPC response, the

headers are received at the start of the response before the data (message), and trailers

are received at the end with the gRPC status. This is not the HTTP status of the request

but represents the status of the gRPC request, much like an HTTP status). To support

streaming, the metadata must be sent after the streamed response is completed. Trailers

allow transport between the client and any data type but always contain the gRPC status.

Figure 3-6 summarizes how headers, data, and trailers are sent to and received from

the server.

Figure 3-6.  Headers, Data, Trailers over gRPC requests and responses
sequence diagram

Chapter 3 Understanding the gRPC Specification

94

�gRPC Status
I mentioned that trailers are metadata that contain all the additional information needed

for a gRPC application but is not mandatory. However, the gRPC status in the response

of a gRPC request is compulsory, and it must indicate if the request was successful or

not and why, with its specific status code. Table 3-1 describes all of the available gRPC

statuses, as listed in the gRPC open source documentation (https://grpc.github.io/

grpc/core/md_doc_statuscodes.html).

Table 3-1.  gRPC Statuses

Code Number Description

OK 0 Success.

CANCELLED 1 The operation was cancelled.

UNKNOWN 2 Unknown error.

INVALID_ARGUMENT 3 The client specified an invalid argument.

DEADLINE_EXCEEDED 4 The deadline expired before the operation could complete.

NOT_FOUND 5 The requested entity was not found.

ALREADY_EXISTS 6 The entity already exists.

PERMISSION_DENIED 7 The caller doesn’t have the required permission.

RESOURCE_EXHAUSTED 8 The requested resource has been exhausted.

FAILED_PRECONDITION 9 A precondition has failed.

ABORTED 10 The operation was aborted.

OUT_OF_RANGE 11 An invalid argument causes that exception during its cast.

UNIMPLEMENTED 12 The operation is not implemented.

INTERNAL 13 Internal error.

UNAVAILABLE 14 The service is currently unavailable.

DATA_LOSS 15 Unrecoverable data loss or corruption.

UNAUTHENTICATED 16 The request does not have valid authentication credentials

for the operation.

Chapter 3 Understanding the gRPC Specification

https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html

95

�Deadline and Cancellation
With gRPC, it is possible, just like a REST call with an HttpClient in .NET, to specify a

timeout. In the gRPC specification, this is called a Deadline (a maximum execution

time for a request). If the Deadline is exceeded, the client throws a DEADLINE_EXCEED

gRPC error status. Then, the server will abort the request. In the .NET ecosystem, a

Cancellation Token is generated server-side, allowing the cancellation to be propagated

to the underlying services.

If no Deadline is specified in a .NET stub, the request will continue its execution

until it is completed. No Deadline duration is specified by default. Figure 3-7 shows the

workflow of a gRPC request with a 5-second deadline in a .NET context.

Figure 3-7.  Deadline exceeded workflow in a .NET implementation

�gRPC Requests and Responses over HTTP/2
With a basic knowledge of gRPC concepts, let’s explore how gRPC works through

HTTP/2 framing.

We already know that gRPC works like this:

•	 It uses the classic headers of an HTTP request.

•	 It uses specific headers called trailers.

•	 The response contains the gRPC status in the trailers, informing the

client of the result of the request.

•	 The response is encoded in binary.

However, gRPC also sends an HTTP request to the server as follows:

•	 It works with TLS (in other words, HTTPS). It works also without TLS,

which is not recommended. In this book I will always use HTTPS.

•	 It uses POST exclusively.

Chapter 3 Understanding the gRPC Specification

96

•	 The Content-Type is "application/grpc" or "application/

grpc+proto" or "application/grpc+json".

•	 It uses an Authority header, which is the server domain name.

•	 It uses a Path header, which is the RPC URI.

•	 The HTTP status of the response is always 200 OK from the moment

the server processes the request. However, if the server does not

process the request because of unavailability, it could then return

Service Unavailable 503.

If you are curious to learn more, you can read the complete operation of gRPC with

the HTTP/2 framing on GitHub: https://github.com/grpc/grpc/blob/master/doc/

PROTOCOL-HTTP2.md.

As depicted in the sequence previously shown in Figure 3-6, we can now complete it

with HTTP frames. Figure 3-8 shows the CountryService hosted on a local machine, using

port 5001, set with a Deadline of 5 seconds and secured with a JWT. GZIP compression is

enabled, and the call succeeds.

On the request, the end of stream (EOS) flag (END_STREAM) set on the DATA frame

signifies that no more data is expected. In the case of streaming, this flag is set on the last

DATA frame sent to the server. The end of headers (EOH) flag (END_OF_HEADERS) signifies

all headers have been sent to the server.

On the response, the EOH is the same as the request, but the last frame that sends

Trailers to the client means that no more headers exist and no more data is expected to

be sent.

In both request and response, <Length-Prefixed Message> represents the data

(message), with some associated metadata (which is different from Trailers).

Chapter 3 Understanding the gRPC Specification

https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md

97

�Introduction to the HTTP/2 Protocol
The benefits of gRPC can be attributed to the robust capabilities of HTTP/2, which set it

apart from HTTP/1.

HTTP was born in the 1990s. HTTP has evolved since then but any revolutionary

changes. The latest version of HTTP/1 is HTTP/1.1, which has been around for 15 years

but is no longer suited to the growing needs of today’s Web. The main goal of HTTP/2 is

to increase the performance and robustness of the HTTP network protocol by reducing

the processing latency of HTTP requests with new strategies for delivering data between

a client and a server, such as:

•	 Multiplexing

•	 Compression and binary data transport

•	 Flow control

•	 Server push

Figure 3-8.  gRPC request and response with the related HTTP frames

Chapter 3 Understanding the gRPC Specification

98

�Multiplexing
Multiplexing is a new strategy for dialogue between a server and a client. With the same

connection between the client and the server, the client can send several requests to the

server. It’s much more efficient than opening a connection for each request, as HTTP/1

does. You certainly want to save load on your server, so that’s a great feature of HTTP/2.

gRPC streaming requests are based on this. Figure 3-9 shows this difference between

HTTP/2 and HTTP/1.9

Figure 3-9.  Multiplexing in HTTP/2 versus HTTP/1

Chapter 3 Understanding the gRPC Specification

99

�Compression and Binary Data Transport
HTTP/2 allows data transport in binary and incidentally allows efficient compression

(repeated strings of bytes offer remarkable compression efficiency). This is reflected in

performance:

•	 Network latency is reduced because the data is less voluminous.

•	 Network traffic is reduced and allows better use of the network.

As we have already seen, gRPC is also based on this principle.

In HTTP/2, headers can be compressed with the HPACK specification. This

specification is described in the RFC 7541 standard (https://tools.ietf.org/html/

rfc7541).

�Flow Control
HTTP/2 allows you to prioritize the data flow between the client and the server. The

client decides on the priority to be given to a flow. This allows the server to optimize

the network resources for the processing of the flow and the latency. The gRPC

documentation does not specify whether this strategy is used.

�Server Push
HTTP/2 supports server push, but it doesn’t work the same as SignalR (introduced in

Chapter 2) push (which is an RPC framework and uses WebSockets), because HTTP/2

server push relies on (obviously) HTTP. gRPC does not support this communication

strategy.

�Benefits, Drawbacks, and Use Cases
Throughout this chapter, you learned how gRPC works with its inherent behavior and

performance benefit, taking advantage of HTTP/2. If we take a step back to observe

better what gRPC is and can do, we can understand its main benefits and drawbacks

compared to a SOAP web service or even REST.

Chapter 3 Understanding the gRPC Specification

https://tools.ietf.org/html/rfc7541
https://tools.ietf.org/html/rfc7541

100

�Benefits
While SOAP is based on XML and REST is common with JSON, gRPC uses binary, which

enables it to perform better than SOAP and JSON (binary serialization/deserialization

uses less memory than JSON serialization/deserialization, and the same payload

serialized in binary is 40% lighter than its JSON serialized version).

Regarding convenience, REST cannot provide two-way streaming, while gRPC

and SOAP (WCF, for example) support it, but gRPC offers it over HTTP/2, which is an

undeniable advantage. Note that SOAP supports different types of transport, unlike REST

and gRPC, such as SMTP and FTP.

�Drawbacks
Unlike REST, gRPC is not compatible with browsers because of HTTP/2. HTTP/2 is not

fully supported in today’s browsers because they can’t interpret binary data. The binary

data that gRPC renders also make debugging impossible for humans but more secure

because binary is hard to decode without knowing the schema. However, later in this

book, we will dive into gRPC-web, a particular implementation of gRPC to overcome

browsers incompatibility. This lack of compatibility is the main drawback of gRPC.

Lastly, gRPC is not cacheable like SOAP, but REST is, which is a clear disadvantage

of gRPC. However, there is another way to implement caching: using an in-memory

cache instead of an HTTP cache. Microsoft describes this alternative here: https://

docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspne

tcore-6.0.

Table 3-2 gives a summary of the comparison between gRPC, REST, and SOAP.

Chapter 3 Understanding the gRPC Specification

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-6.0

101

�Use Cases
From the comparison in Table 3-2, you better understand the advantages and

disadvantages of gRPC. You can imagine common scenarios for gRPC compared to

other types of services. gRPC services can replace the architectures in service mode and

machine-to-machine microservices (back end to back end). gRPC can replace REST and

SOAP in the following types of applications (illustrated in Figure 3-10):

•	 API to API, often used in complex architectures that require many

services talking to others. No browser is needed, so gRPC could be a

great fit there.

•	 A monolithic application in a service-oriented architecture (SOA),

like the preceding scenario; if the browser does not call services,

gRPC could also be a great fit.

•	 Background jobs (Windows service, CRON, etc.) connected to one

or more web service(s), which is purely a back-end scenario; gRPC

could replace REST or SOAP web services.

•	 A browser web app connected to a service or microservices over a

REST API acting as a proxy. This scenario is more common than you

might think. For example, a browser may talk directly to a single REST

API, but the latter may talk to many back-end services. No browser is

needed, so once again, gRPC may be a great fit.

Table 3-2.  Comparison Between gRPC, REST, and SOAP

gRPC REST SOAP

Browser support No Yes No

HTTP/2 support Yes Yes Yes

Human readability No Yes Yes

Exchange format Binary JSON /XML XML

Performance High Medium Low

Caching No Yes No

Bidirectional streaming Yes No Yes

Chapter 3 Understanding the gRPC Specification

102

�Summary
In this chapter, you discovered the operating principle of gRPC, its advantages,

and its disadvantages, enabling you to understand which scenarios might be more

advantageous to use gRPC in place of REST or SOAP services. Finally, you learned about

the benefits of HTTP/2. If you want to learn more about the comparison of gRPC and

REST APIs, Microsoft summarizes it well at https://docs.microsoft.com/en-us/

aspnet/core/grpc/comparison?view=aspnetcore-6.0.

In the next chapter, we’ll look in more depth at Protocol Buffers by exploring the

syntax of this Interface Description Language and how to generate a stub.

Figure 3-10.  gRPC use cases

Chapter 3 Understanding the gRPC Specification

https://docs.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-6.0

103
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_4

CHAPTER 4

Protobufs
So far, you’ve discovered the fundamentals of .NET 6, ASP.NET Core 6, and gRPC. You’re

almost ready to develop gRPC applications with ASP.NET Core. First, though, you need

to understand language Protocol Buffers, the topic of this chapter. That will enable you to

build your first gRPC service in the next chapter.

In this chapter, you will learn about the following:

•	 About Protocol Buffers

•	 Individual declarations

•	 Services declarations

•	 Messages declarations

Note  All C# code in this chapter has been developed with Visual Studio 2022
and the Visual Studio gRPC service template. Chapters 5 and 7 will show how to
generate server and client C# stubs.

�About Protocol Buffers
Protocol Buffers language, as you will see, is a relatively simple language. One takeaway

is that messages do not support inheritance. If you want to define messages that are

similar to each other, you cannot make them inherit from a base message.

A Protobuf file contains three main sections:

•	 Individual declarations such as the choice of the language version,

options, and import another proto file (.proto is the extension of a

protobuf file)

•	 Services declaration

•	 Messages declaration

https://doi.org/10.1007/978-1-4842-8008-9_4
https://ssl.microsofttranslator.com/bv.aspx?ref=TAns&from=&to=en&a=ASP.NET

104

I will show you how to define a CountryService class in a Protobuf file and the

generated code after compilation. A Protobuf file is complete when the three Protobuf

sections are defined, as described in the rest of this chapter.

�Individual Declarations
You must always define the version of the Protobuf syntax you want to use. There are

three versions of this syntax:

•	 Proto3

•	 Proto2

•	 Proto1 (deprecated)

In this chapter (and for the rest of the book), I will only focus on version 3 (proto3).

Although version 2 (proto2) is not deprecated, it is still recommended to use version 3.

For example, version 3 brings new features such as JSON encoding, Well-Known Types,

and strict UTF-8 enforcement.

A Protobuf file begins with the definition of the syntax, with the syntax keyword, as

shown in Listing 4-1.

Listing 4-1.  Definition of the Proto3 Syntax

syntax = "proto3";

Protocol Buffers language lets you define namespaces for your services and

messages, using the package keyword. The generated code will be encapsulated within a

namespace, its name matches the package name setup into the proto file. In Listing 4-2,

the package name is specified as gRPCDemo.v1.

Listing 4-2.  Protobuf file defined with gRPCDemo.v1 Package Name

syntax = "proto3";

package gRPCDemo.v1;

Chapter 4 Protobufs

105

The generated code gives the result shown in Listing 4-3, which corresponds to

messages generated in C#. Protocol Buffers compilation generates two files: one for

messages and another one for services. We haven’t defined a message yet, but the

generated file contains code needed for reflection information (FileDescriptor and

CountryReflection). I’ll expand on this later in this section.

Listing 4-3.  Generated Messages File from a Proto File Defined with

gRPCDemo.v1 Package Name

// <auto-generated>

// Generated by the protocol buffer compiler. DO NOT EDIT!

// source: Protos/country.proto

// </auto-generated>

#pragma warning disable 1591, 0612, 3021

#region Designer generated code

using pb = global::Google.Protobuf;

using pbc = global::Google.Protobuf.Collections;

using pbr = global::Google.Protobuf.Reflection;

using scg = global::System.Collections.Generic;

namespace GRPCDemo.V1 {

 �/// <summary>Holder for reflection information generated from Protos/

country.proto</summary>

 public static partial class CountryReflection {

 #region Descriptor

 /// <summary>File descriptor for Protos/country.proto</summary>

 public static pbr::FileDescriptor Descriptor {

 get { return descriptor; }

 }

 private static pbr::FileDescriptor descriptor;

 static CountryReflection() {

 byte[] descriptorData = global::System.Convert.FromBase64String(

 string.Concat(

 "ChRQcm90b3MvY291bnRyeS5wcm90bxILZ1JQQ0RlbW8udjFiBnByb3RvMw=="));

Chapter 4 Protobufs

106

 descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData,

 new pbr::FileDescriptor[] { },

 new pbr::GeneratedClrTypeInfo(null, null, null));

 }

 #endregion

 }

}

#endregion Designer generated code

The C# namespace is generated from the package name with the initial casing. If

special characters exist, like an underscore, they will be removed. Unlike C#, where

dashes or question marks are legal, they are strictly forbidden in Protobuf syntax. Dots

are allowed and not removed after compilation.

The package keyword is optional, so it’s possible not to use it at all. If you do this,

C# generated code won’t be encapsulated in a particular namespace. With C#, the

generated code will belong to the global namespace, so your services and messages are

invokable, as shown in Listing 4-4.

Listing 4-4.  Instantiate a Class from Global Namespace

var instance = new global::SomeService();

I don’t recommend using global namespaces, so I strongly suggest that you define

a namespace with the package keyword or with an option named csharp_namespace

(Protocol Buffers allows some options like defining a C# namespace with the option

keyword), as shown in Listing 4-5.

Listing 4-5.  Defining optional C# Apress.Sample.gRPC namespace

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

Now, you might be wondering about the possible values of this option. It allows the

generated namespace to be overriden in C# with the package’s name. The file generated

in C# for messages and services will have the namespace Apress.Sample.gRPC rather

than gRPCDemo.v1. So, if we use the csharp_namespace option, what is the use of the

Chapter 4 Protobufs

107

package name? The package name will be used to give a name to the generated service,

and this name will be used to generate the URL, which will be invoked during the call

to the remote procedure. (Chapter 6 will cover this in more detail.) Listing 4-6 shows

the services file generated in C#. I removed all code and left only the service name and

namespace for clarity.

Listing 4-6.  Generated C# Namespace and Service Name

// <auto-generated>

// Generated by the protocol buffer compiler. DO NOT EDIT!

// source: Protos/country.proto

// </auto-generated>

#pragma warning disable 0414, 1591

#region Designer generated code

using grpc = global::Grpc.Core;

namespace Apress.Sample.gRPC {

 public static partial class CountryService

 {

 static readonly string __ServiceName = "gRPCDemo.v1.CountryService";

 }

}

#endregion

Note that the gRPCDemo.v1.CountryService value is populated from concatenating

the package name and the service name defined in the Protobuf file, as shown in

Listing 4-7.

Listing 4-7.  Defining a Service Named CountryService

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

service CountryService {

 rpc GetById (CountrySearchRequest) returns (CountryReply) {}

}

Chapter 4 Protobufs

108

If a package name is not set, then the __ServiceName property will have the value of

CountryService.

To view all options, visit the Google Protocol Buffers documentation at this URL:

https://developers.google.com/protocol-buffers/docs/proto3#options.

We’ll get back to individual declarations in the “Messages Declaration” section. I’ll

introduce you to the import keyword, designed to import other messages from other

Protobuf files.

�Services Declaration
The services declaration is the second part of a Protobuf file. Here, we declare the

name of the service, as well as its procedures and their parameters. The service’s name

is preceded by the service keyword and encapsulates all the service functions with

brackets. Each function is preceded by the RPC keyword and followed by the signature of

the input message in parentheses, then followed by the return keyword indicating the

output message, also in parentheses, as shown in Listing 4-8.

Listing 4-8.  Services Declaration Pattern

service ServiceName {

 rpc FunctionName1 (InputMessage1) returns (OutputMessage1) {}

 rpc FunctionName2 (InputMessage2) returns (OutputMessage2) {}

}

In the previous chapter I introduced you to the four types of RPC services available

with gRPC. I’ll show you how to define these different services in a Protobuf file. When a

service sends or receives a streamed message, it prefixes the messages declaration with

the stream keyword, as shown in Listing 4-9.

Listing 4-9.  Declare a Unary Function, Client-Streaming Function, Server-

Streaming Function, and Bidirectional Streaming Function

service ServiceName {

 rpc UnaryFunction (InputMessage1) returns (OutputMessage1) {}

 �rpc ClientStreamingFunction (stream InputMessage2) returns

(OutputMessage2) {}

Chapter 4 Protobufs

https://developers.google.com/protocol-buffers/docs/proto3#options

109

 �rpc ServerStreamingFunction (InputMessage3) returns (stream

OutputMessage3) {}

 �rpc BidirectionalStreamingFunction (stream InputMessage4) returns

(stream OutputMessage4) {}

}

Imagine building a service, still the same for the moment, CountryService, with a

function for each type of service:

•	 Creation of several countries in bidirectional streaming, client

streaming for each country to be created, and server streaming in

response for each country created

•	 Deletion of several countries in client streaming and receipt of a

message from the server once client streaming is done

•	 Country search that sends search parameters in a message and

expects found countries in server streaming as a response

•	 Search for a country by its identifier in a unary call, and send and

receive a message

Listing 4-10 shows the Protobuf file’s syntax definition, package name, C#

namespace, and services. In the meantime, use this naming convention:

•	 Function name is prefixed with an explicit action name

•	 Input messages are suffixed with Request, indicating the client origin

of the message

•	 Output messages are suffixed with Reply, indicating the server origin

of the message

This convention is not mandatory, but I recommend establishing a convention to

keep some clarity in your code.

Listing 4-10.  Definition of CountryService

service CountryService {

 rpc GetById(CountryByIdRequest) returns (CountryReply) {}

 rpc Delete(stream CountryRequest) returns (CountryDeletionReply) {}

Chapter 4 Protobufs

110

 rpc Search(CountrySearchRequest) returns (stream CountryReply) {}

 �rpc Create(stream CountryCreateRequest) returns (stream

CountryCreationReply) {}

}

Listing 4-11 shows generated RPC functions. I modified the code to show only the

four generated methods (GetById(), Delete(), Search(), and Create()) defined in the

generated CountryServiceBase class (stub). Note that CountryServiceBase is abstract,

and when you write your gRPC services, you need to override RPC functions because

their default implementation throws an exception with UNIMPLEMENTED status. An

RpcException is the specific exception returned each time an exception is thrown while

the gRPC application runs. In later chapters, we’ll cover RpcException in detail.

Listing 4-11.  CountryServiceBase Class and GetById(), Delete(), Search(),

and Create() RPC Functions

/// <summary>Base class for server-side implementations of CountryService</

summary>

[grpc::BindServiceMethod(typeof(CountryService), "BindService")]

public abstract partial class CountryServiceBase

{

 �public virtual global::System.Threading.Tasks.Task<global::Apress.

Sample.gRPC.CountryReply> GetById(global::Apress.Sample.gRPC.

CountryByIdRequest request, grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

 �public virtual global::System.Threading.Tasks.Task<global::Apress.

Sample.gRPC.CountryDeletionReply> Delete(grpc::IAsyncStreamRea

der<global::Apress.Sample.gRPC.CountryRequest> requestStream,

grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

Chapter 4 Protobufs

111

 �public virtual global::System.Threading.Tasks.Task

Search(global::Apress.Sample.gRPC.CountrySearchRequest request, gr

pc::IServerStreamWriter<global::Apress.Sample.gRPC.CountryReply>

responseStream, grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

 �public virtual global::System.Threading.Tasks.Task Create(grpc::

IAsyncStreamReader<global::Apress.Sample.gRPC.CountryCreateRequest>

requestStream, grpc::IServerStreamWriter<global::Apress.Sample.gRPC.

CountryCreationReply> responseStream, grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

}

In the previous chapter, we compared gRPC services and REST services. Unlike

REST, the gRPC service is not based on verbs, so we cannot associate an operation

with a verb. It’s now your responsibility to create your own conventions to clarify which

operations perform which actions.

�Messages Declaration
This section introduces you to the message declaration syntax. Then, you’ll be ready to

create gRPC services with ASP.NET Core!

The message declaration syntax supports the following:

•	 Scalar type values

•	 Collections

•	 Enumerations

•	 Nested types

•	 Import types

Chapter 4 Protobufs

112

•	 Any, Value, Wrappers, dates, and times (Well-Known Types)

•	 Bytes

•	 One of

•	 Empty messages

•	 Comments

This same syntax does not support the following:

•	 Message inheritance, so sometimes you have to rewrite redundant

code (similar messages).

•	 Message validation, the proto3 syntax (unlike proto2), does not allow

you to define verifications. They must be implemented in your client

application and/or gRPC server.

•	 The absence of a message as the parameter of a function; indeed,

even if you have no parameter to send to the server or to return to the

client, it is mandatory to create an empty message without properties.

And finally, all messages share the same rule: any message must be defined with

the message keyword, and each property is optional by default. Each message must be

assigned a position required for the serialization/deserialization process and must be

unique. Any generated message inherits from the IMessage<T> interface, which gives

the generated C# class the identity of a message resulting from a compilation from the

Protobuf language. Listing 4-12 shows a CountryReply message with three properties.

Listing 4-12.  CountryReply Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

}

Chapter 4 Protobufs

113

�Scalar Type Values
Once compiled, I’ll list all the scalar variables supported by the Protocol Buffers syntax and

their type in C#. Please note that these variables cannot be declared directly as a parameter

in an RPC function but instead must be declared in a message in the current Protobuf

file or imported from another. It’s essential to know them. They are crucial in any project.

I included in Table 4-1 their default value when the developer does not set them.

Table 4-1.  Protocol Buffer Supported Types and Their Default Values

Protocol Buffer Type C# Type C# Default Value

double double 0

float float 0

int32 int 0

int64 long 0

uint32 uint 0

uint64 ulong 0

sint32 int 0

sint64 long 0

fixed32 unit 0

fixed64 ulong 0

sfixed32 int 0

sfixed64 long 0

bool bool false

string string string.Empty

bytes ByteString empty bytes

�Collections
Collections, also essential in any project type, are supported in the Protobuf syntax with

the following two types:

•	 Lists

•	 Dictionaries

Chapter 4 Protobufs

114

�Lists

To declare a list in a message, the keyword to use is repeated. Once the code is generated

in C#, the type will be generated in Repeated<T>. Listing 4-13 gives an example of a

CountrySearchRequest message containing a list of CountryId of type int32.

Listing 4-13.  CountrySearchRequest Message with Repeated int32 CountryId

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountrySearchRequest {

 repeated int32 CountryIds = 1;

}

Listing 4-14 shows the generated code; as you can see, CountryIds is a typed

RepeatedField<int>.

Listing 4-14.  CountrySearchRequest Message Generated in C#

public const int CountryIdsFieldNumber = 1;

private static readonly pb::FieldCodec<int> _repeated_countryIds_codec =

pb::FieldCodec.ForInt32(10);

private readonly pbc::RepeatedField<int> countryIds_ = new

pbc::RepeatedField<int>();

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public pbc::RepeatedField<int> CountryIds {

 get { return countryIds_; }

}

RepeatedField<T> is a sealed class (another class cannot inherit from it) from

the Google.Protobuf assembly that implements many C# interfaces, such as

IList<T>, ICollection<T>, IEnumerable<T>, IEnumerable, IList, ICollection,

IEquatable<RepeatedField<T>>, IReadOnlyList<T>, and IReadOnlyCollection<T>,

and another interface, IDeepCloneable<RepeatedField<T>>, from the same Google.

Protobuf assembly, which allows cloning. Figure 4-1 shows the methods and properties

that the RepeatedField<T> class exposes.

Chapter 4 Protobufs

115

Figure 4-1.  The Repeated<T> class

In practice, it acts like a list, so working with RepeatedField<T> fields is shown in

Listing 4-15.

Chapter 4 Protobufs

116

Listing 4-15.  Read/Write CountrySearchRequest Message

using Apress.Sample.gRPC;

namespace Server

{

 public class Program

 {

 public static void Main(string[] args)

 {

 // Write

 var countrySearchRequest = new CountrySearchRequest();

 countrySearchRequest.CountryIds.Add(1);

 countrySearchRequest.CountryIds.Add(2);

 countrySearchRequest.CountryIds.Add(3);

 // Read

 foreach (var countryId in countrySearchRequest.CountryIds)

 {

 // code

 }

 }

 }

}

�Dictionaries

Who has never needed a dictionary? Nobody! To declare a dictionary, you need to use

the map<TKey, TValue> keyword, which, once generated in C#, will give you a MapField.

Listing 4-16 shows the example of a CountryReply message having as a property

a dictionary with a key of type int32 (TKey) and its associated value (TValue) of

type string.

Chapter 4 Protobufs

117

Listing 4-16.  CountryReply Message with a Dictionary Property

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountryReply {

 map<int32, string> countries = 1;

}

Listing 4-17 shows the generated code.

Listing 4-17.  countries field generated code

public const int CountriesFieldNumber = 1;

private static readonly pbc::MapField<int, string>.Codec _map_countries_

codec = new pbc::MapField<int, string>.Codec(pb::FieldCodec.ForInt32(8, 0),

pb::FieldCodec.ForString(18, ""), 10);

private readonly pbc::MapField<int, string> countries_ = new

pbc::MapField<int, string>();

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public pbc::MapField<int, string> Countries {

 get { return countries_; }

}

If you view the same assembly, you’ll see that MapField<TKey, TValue> implements

IDictionary<TKey, TValue> but also implements IEquatable<T> like many C#

collection interfaces (as well as the IDeepCloneable<MapField<TKey, TValue>>

interface from the Google.Protobuf assembly). Figure 4-2 shows the methods and

properties that the MapField<TKey, TValue> class exposes.

Chapter 4 Protobufs

118

Figure 4-2.  The MapField<TKey, TValue> class

Reading and writing on MapField<TKey, TValue> fields act like a C# dictionary.

Each item added to the MapField<TKey, TValue> field is a KeyValuePair<TKey,

TValue>. Listing 4-18 shows the CountryReply message.

Listing 4-18.  Read/Write CountryReply Message

using Apress.Sample.gRPC;

namespace Server;

// Write

var countryReply = new CountryReply();

countryReply.Countries.Add(1, "Canada");

Chapter 4 Protobufs

119

countryReply.Countries.Add(2, "USA");

countryReply.Countries.Add(3, "Mexico");

// Read

foreach (var country in countryReply.Countries) // country:

KeyValuePair<int, string>

{

 var countryId = country.Key;

 var CountryName = country.Value;

}

�Enumerations
Enumerations syntax is identical (enum keyword and key/value association) to a C#

enumeration and can be used as a property in a message. You won’t get lost here.

Enumerations are essential to keep code clean and help you avoid hard-coding values

in your code. Plus, it allows you to keep values defined in one place. Listing 4-19 shows a

Continent enumeration. Note here that the value 0 .. n (through 6 here) do not represent

the position for serialization/deserialization.

Listing 4-19.  Continent Enumeration

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountryReply {

 int32 CountryId = 1;

 Continent Continent = 2;

}

enum Continent {

 Unknown = 0;

 NorthAmerica = 1;

 SouthAmerica = 2;

 Europe = 3;

Chapter 4 Protobufs

120

 Africa = 4;

 Asia = 5;

 Australia = 6;

}

Note U nlike C# (in terms of syntax analogy), the association of a key to a value
(constant) is mandatory in Protobuf and must start at 0 to service the default value.

Enumerations with Protobuf support a practical feature that I greatly appreciate,

aliases. Several keys can be associated with the same constant value. You need to set the

option allow_alias = true within the enumerator, as shown in Listing 4-20.

Listing 4-20.  Continent Enumeration Declared with Aliases Australia/Oceania

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountryReply {

 int32 CountryId = 1;

 Continent Continent = 2;

}

enum Continent {

 option allow_alias = true;

 Unknown = 0;

 NorthAmerica = 1;

 SouthAmerica = 2;

 Europe = 3;

 Africa = 4;

 Asia = 5;

 Australia = 6;

 Oceania = 6;

}

Chapter 4 Protobufs

121

The generated code will look as shown in Listing 4-21.

Listing 4-21.  Generated Continent Enumeration

public enum Continent {

 [pbr::OriginalName("Unknown")] Unknown = 0,

 [pbr::OriginalName("NorthAmerica")] NorthAmerica = 1,

 [pbr::OriginalName("SouthAmerica")] SouthAmerica = 2,

 [pbr::OriginalName("Europe")] Europe = 3,

 [pbr::OriginalName("Africa")] Africa = 4,

 [pbr::OriginalName("Asia")] Asia = 5,

 [pbr::OriginalName("Australia")] Australia = 6,

 [pbr::OriginalName("Oceania", PreferredAlias = false)] Oceania = 6,

}

You’ll notice that the C# enum is created, but each item has an attribute set named

OriginalName defined within the Google.Protobuf assembly, as shown in Figure 4-3.

Figure 4-3.  The OriginalName attribute

The last thing to mention is the ability to reserve Protobuf enumeration values to

prevent breaking code in future updates. I do not recommend adding breaking changes

in your proto files but instead recommend using API versioning. However, if you are

interested in reserved values, review the Google documentation: https://developers.

google.com/protocol-buffers/docs/proto3#reserved_values.

Chapter 4 Protobufs

https://developers.google.com/protocol-buffers/docs/proto3#reserved_values
https://developers.google.com/protocol-buffers/docs/proto3#reserved_values

122

�Nested Types
The protocol buffer support syntax supports nested types. Depending on your

programming habits, you can nest your messages in a single message. For example, you

can nest enumerations in a message, but you have to use a different case on the property

name (not the same as the type declared). Listing 4-22 shows nested CountryReply and

Continent messages.

Listing 4-22.  Nested CountryReply and Continent Messages

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountryReply {

 message Continent {

 string Name = 1;

 }

 int32 CountryId = 1;

 Continent continent = 2; // �Not working if Continent property name

declared with the same case of its type

}

�Import Types
Fortunately, you can store your type definitions in separate files, which supports the

notion of reusability. I think you will agree that you may often have to use the same

message for several services. As with any programming language, arranging classes is

essential to maintain code clarity.

With the language Protocol Buffers, you can import a type with the keyword import

and then declare the Protobuf file’s path to import. This path is relative to the compilation’s

execution directory by the Protocol Buffer Compiler (Protoc). Still, Protoc needs to know

where are stored all Protobufs, an option to locate them can be set up, and Chapter 12 will

cover that by showing an example with manual execution of Protoc, unlike Visual Studio,

which manages all by itself, and Chapters 5 and 7 will cover that. Listing 4-23 shows the

same CountryReply Protobuf file importing the Continent Protobuf file.

Chapter 4 Protobufs

123

Listing 4-23.  CountryReply Proto File Importing Continent Proto File

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "continent.proto";

message CountryReply {

 int32 CountryId = 1;

 Continent continent = 2;

}

�Any, Value, Struct, Wrappers, Dates, and
Times (Well-Known Types)
Any, Value, Struct, Wrappers, dates, and times are types that have a particular behavior

and require special treatment. They cannot be compiled as-is in C# and therefore need

to be encapsulated in specific features so that the .NET runtime knows what to do with

them. To do this, Google has provided proto files to import; then, during compilation,

.NET can interpret them with C# extensions, which are called Protobuf’s Well-Known

Types extensions.

�Any

Any fields (or properties) are typed but not “strongly typed” fields. The type is not known

in advance, which means that we can pass any type in an Any field, but we will have to

infer its type to know its type. Any is intended for any arbitrary message types but not

primitive types. C# will not allow you to pack an object into it if it doesn’t implement the

IMessage interface.

Let’s revisit our example with the CountryReply message containing a field that

could be typed Continent or anything else but declared as Any.

Note  You must have the proto definition to infer the type. The message descriptor
is required to infer the type that is implemented in generated code.

Chapter 4 Protobufs

124

To declare a field of type Any (google.protobuf.Any), you must import the proto file

"google/protobuf/any.proto" as shown in Listing 4-24. You don’t need to have the file

physically somewhere on your computer. The file is known from the Protobuf compiler

as a “global variable.”

Listing 4-24.  CountryReply with Any field supposedly to be a Continent Type

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "google/protobuf/any.proto";

message CountryReply {

 int32 CountryId = 1;

 google.protobuf.Any Whatever = 2; // �Could be Continent type or could

be something

}

Recall the FileDescriptor introduced at the beginning of this chapter in the context

of Listing 4-3. As I mentioned, FileDescriptor is used for reflection, a Protobuf file

contains messages, and the FileDescriptor contains Base64 encoded the signature of all

types included inside it. They are generated from each message’s name and properties,

making them a unique signature (for a given namespace). This FileDescriptor is an

array of GeneratedClrTypeInfo type objects containing the signature of each message.

To access a given message’s signature (description), you can invoke a static property

generated when compiling the Protobuf file. An example of the Continent message,

Continent.Descriptor, is shown in Figure 4-4.

Chapter 4 Protobufs

125

Figure 4-4.  The Continent message descriptor

This descriptor allows us to infer the Any type from the Whatever field of the

CountryReply message. Listing 4-25 shows the different ways to infer the desired type.

Listing 4-25.  Infer Continent Message

using Apress.Sample.gRPC;

using Google.Protobuf.WellKnownTypes;

namespace Server;

// Write

var country = new CountryReply();

country.Whatever = Any.Pack(new Continent

{

 ContinentId = 1,

 ContinentName = "North America"

});

Chapter 4 Protobufs

126

// Read

Continent continent;

if (country.Whatever.Is(Continent.Descriptor))

{

 continent = country.Whatever.Unpack<Continent>();

}

// OR

country.Whatever.TryUnpack(out continent);

To start, you need to import the namespace Google.Protobuf.WellKnownTypes,

which is part of the Google.Protobuf assembly.

As Listing 4-25 shows, to pass from client to server or from server to client a message

containing an Any type, you need to use the Any class exposing a Pack method that

serializes any object to type ByteString (array of bytes). On the other side, you must

use the Unpack method, which takes care of the byte array’s serialization in the desired

type. To make the deserialization reliable, you can test whether a message corresponds

to a specific type using the method Is(), which takes the descriptor as a parameter,

Continent.Descriptor. You can directly use the tryUnpack method, which will return

null if the deserialization fails. An exciting feature, isn’t it? You may love it. Sometimes, I

need to infer type because I’m not sure what I will receive, which makes this feature very

welcome!

�Wrappers

By default, the Protobuf syntax does not allow nullable fields, and if you fail to pass a

value to your scalar types, they will have a default value. A nullable boolean in .NET

(bool?) has no equivalent in the Protobuf language. To overcome this, there are Well-

Known Type wrappers that allow compatibility with nullable fields in .NET. Table 4-2,

which is based on Microsoft’s documentation (https://docs.microsoft.com/en-us/

aspnet/core/grpc/protobuf?view=aspnetcore-6.0), shows all wrapper types.

Chapter 4 Protobufs

https://docs.microsoft.com/en-us/aspnet/core/grpc/protobuf?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/grpc/protobuf?view=aspnetcore-6.0

127

Table 4-2.  Wrapper Types for .NET (source: Microsoft)

C# Type Well-Known Type Wrapper

bool? google.protobuf.BoolValue

double? google.protobuf.DoubleValue

float? google.protobuf.FloatValue

int? google.protobuf.Int32Value

long? google.protobuf.Int64Value

uint? google.protobuf.UInt32Value

ulong? google.protobuf.UInt64Value

string google.protobuf.StringValue

ByteString google.protobuf.BytesValue

To use wrappers, you have to import the "google/protobuf/wrappers.proto" proto

file, as shown in Listing 4-26.

Listing 4-26.  Import wrappers.proto

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "google/protobuf/wrappers.proto";

message Continent {

 int32 ContinentId = 1;

 string ContinentName = 2;

 google.protobuf.BoolValue IsSeparatedByASea = 3

}

The generated code gives the expected type (bool?) for the IsSeparatedByASea field,

as shown in Listing 4-27.

Chapter 4 Protobufs

128

Listing 4-27.  IsSeparatedByASea Field Generated Code

/// <summary>Field number for the "IsSeparatedByASea" field.</summary>

public const int IsSeparatedByASeaFieldNumber = 3;

private static readonly pb::FieldCodec<bool?> _single_isSeparatedByASea_

codec = pb::FieldCodec.ForStructWrapper<bool>(26);

private bool? isSeparatedByASea_;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public bool? IsSeparatedByASea {

 get { return isSeparatedByASea_; }

 set {

 isSeparatedByASea_ = value;

 }

}

�Value

You can pass messages with fields whose type was not known in advance. You can also

pass messages with fields that are not typed, such as dynamic objects that can take any

scalar values we saw previously, and collections null values are allowed.

To do so, import the proto file "google/protobuf/struct.proto" and declare the

dynamic type as google.protobuf.Value. Listing 4-28 shows the CountryReply message

with dynamic fields.

Listing 4-28.  CountryReply Message with Dynamic Fields

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "google/protobuf/struct.proto";

message CountryReply {

 google.protobuf.Value CountryId = 1;

 google.protobuf.Value Continent = 2;

}

Chapter 4 Protobufs

129

Listing 4-29 shows the generated code.

Listing 4-29.  CountryReply Message Generated Code

/// <summary>Field number for the "CountryId" field.</summary>

public const int CountryIdFieldNumber = 1;

private global::Google.Protobuf.WellKnownTypes.Value countryId_;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Google.Protobuf.WellKnownTypes.Value CountryId {

 get { return countryId_; }

 set {

 countryId_ = value;

 }

}

/// <summary>Field number for the "Continent" field.</summary>

public const int ContinentFieldNumber = 2;

private global::Google.Protobuf.WellKnownTypes.Value continent_;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Google.Protobuf.WellKnownTypes.Value Continent {

 get { return continent_; }

 set {

 continent_ = value;

 }

}

The generated type in C# is Value and belongs to the Google.Protobuf.

WellKnownTypes namespace, which belongs itself to the Google.Protobuf assembly.

This type inherits from the IMessage<T>, IMessage, IEquatable<T>, IDeepCloneable<T>,

and IBufferMessage interfaces that all belong to the Google.Protobuf assembly, except

for IEquatable<T>, which comes from the .NET System.Runtime assembly.

To write and read dynamic values, we have a set of methods available. Table 4-3

shows the available write static functions.

Chapter 4 Protobufs

130

Table 4-3.  Available Write Static Functions

Type Method Comment

Number Value.ForNumber Support all .NET number types

String Value.ForString

Objects Value.ForStruct Not the same type as C# structs

Boolean Value.ForBool

Null Value.ForNull

Collections Value.ForList

Struct is a bit special: it’s not at all the native C# type. Struct in Protobuf is a Well-

Known Type that inherits from the same interfaces as Value, as shown in Figure 4-5.

Figure 4-5.  The Struct type

Each Struct property is set in a dictionary named Fields, typed MapField<TKey,

TValue>. Listing 4-30 shows how to populate the CountryReply message defined above.

Chapter 4 Protobufs

131

Listing 4-30.  Fill the Dynamic CountryReply Message

using Apress.Sample.gRPC;

using Google.Protobuf.WellKnownTypes;

using System;

namespace Server;

var country = new CountryReply();

country.CountryId = Value.ForNumber(1);

country.Continent = Value.ForStruct(new Struct

{

 Fields = {

 ["ContinentId"] = Value.ForNumber(1),

 ["ContinentName"] = Value.ForString("North America"),

 ["IsSeparatedByASea"] = Value.ForBool(false)

 }

});

The read Value type is straightforward. The Value type has a set of properties that

exposes its value in the wanted type. Table 4-4 shows the available properties.

Table 4-4.  Available Read Properties

Type Method Comment

Number NumberValue Exposes number value as Double .NET type

String StringValue

Objects StructValue Needs to access a property from the Fields dictionary property

Boolean BoolValue

Null NullValue

Collections ListValue

Continuing with the same dynamic CountryReply message, I offer an example of

implementation on the program’s side that will read this message. Assume that we want

to populate domain objects from a dynamic message. Listing 4-31 shows what that

would look like.

Chapter 4 Protobufs

132

Listing 4-31.  Map Dynamic CountryReply to Domain Objects

using Apress.Sample.gRPC;

using System;

namespace Server;

var country = new CountryReply(); // Received filled from a gRPC call

// Read

var countryModel = new CountryModel

{

 CountryId = Convert.ToInt32(country.CountryId.NumberValue),

 Continent = new ContinentModel

 {

 �CountryId = Convert.ToInt32(country.Continent.StructValue.

Fields["ContinentId"].NumberValue),

 �ContinentName = country.Continent.StructValue.

Fields["ContinentId"].StringValue,

 �IsSeparatedByASea = country.Continent.StructValue.

Fields["ContinentId"].BoolValue,

 }

};

public class CountryModel

{

 public int CountryId { get; set; }

 public ContinentModel Continent { get; set; }

}

public class ContinentModel

{

 public int CountryId { get; set; }

 public string ContinentName { get; set; }

 public bool IsSeparatedByASea { get; set; }

}

Chapter 4 Protobufs

133

�Dates and Times

The .NET types DateTimeOffset, DateTime, and TimeSpan have no equivalent in

Protobuf languages, so Protobuf provides some Well-Known Types to manage these

unsupported types in .NET.

TimeSpan requires you to import the "google/protobuf/duration.proto" file and

DateTime/DateTimeOffset require you to import the "google/protobuf/timestamp.

proto" file. Table 4-5 is based on Microsoft documentation (https://docs.microsoft.

com/en-us/aspnet/core/grpc/protobuf?view=aspnetcore-5.0#dates-and-times)

and shows each .NET type has a related Protobuf Well-Known Type.

Table 4-5.  Date and Times Types in .NET and Their Equivalent

Protobuf Well-Known Type Extensions (source: Microsoft)

.NET Type Protobuf Well-Known Type

DateTimeOffset google.protobuf.Timestamp

DateTime google.protobuf.Timestamp

TimeSpan google.protobuf.Duration

Listing 4-32 shows a FlightBooking message that defines a booking ID, flight

duration, and the departure time.

Listing 4-32.  FlightBooking Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "google/protobuf/duration.proto";

import "google/protobuf/timestamp.proto";

message FlightBooking {

 int32 BookingId = 1;

 google.protobuf.Duration FlightDuration = 2;

 google.protobuf.Timestamp DepartureTime = 3;

}

Chapter 4 Protobufs

https://docs.microsoft.com/en-us/aspnet/core/grpc/protobuf?view=aspnetcore-5.0#dates-and-times
https://docs.microsoft.com/en-us/aspnet/core/grpc/protobuf?view=aspnetcore-5.0#dates-and-times

134

Listing 4-33 shows generated FlightDuration and DepartureTime fields.

Listing 4-33.  Generated FlightDuration and DepartureTime Fields

/// <summary>Field number for the "FlightDuration" field.</summary>

public const int FlightDurationFieldNumber = 2;

private global::Google.Protobuf.WellKnownTypes.Duration flightDuration_;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Google.Protobuf.WellKnownTypes.Duration FlightDuration {

 get { return flightDuration_; }

 set {

 flightDuration_ = value;

 }

}

/// <summary>Field number for the "departureTime" field.</summary>

public const int DepartureTimeFieldNumber = 3;

private global::Google.Protobuf.WellKnownTypes.Timestamp departureTime_;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Google.Protobuf.WellKnownTypes.Timestamp DepartureTime {

 get { return departureTime_; }

 set {

 departureTime_ = value;

 }

}

The Timestamp type inherits from the IMessage<Timestamp>, IMessage,

IEquatable<Timestamp>, IDeepCloneable<Timestamp>, IBufferMessage,

ICustomDiagnosticMessage, and IComparable<Timestamp> interfaces. Figure 4-6 shows

the methods and properties that the Timestamp class exposes.

Chapter 4 Protobufs

135

Figure 4-6.  The Timestamp class

The Duration type inherits from the IMessage<Duration>, IMessage,

IEquatable<Duration>, IDeepCloneable<Duration>, IBufferMessage,

ICustomDiagnosticMessage, and IComparable<Duration> interfaces. Figure 4-7 shows

the methods and properties that the Duration class exposes.

Chapter 4 Protobufs

136

Figure 4-7.  Duration class

Listing 4-34 shows how to write and read the FlightBooking message set with

TimeStamp and Duration Well-Known Types.

Listing 4-34.  Read/Write FlightBooking Message

using Apress.Sample.gRPC;

using Google.Protobuf.WellKnownTypes;

using System;

Chapter 4 Protobufs

137

namespace Server;

// Write

var flightBooking = new FlightBooking();

flightBooking.BookingId = 1;

flightBooking.FlightDuration = Duration.FromTimeSpan(new TimeSpan(2, 0, 0));

// 2h

flightBooking.DepartureTime = Timestamp.FromDateTime(DateTime.

SpecifyKind(new DateTime(2021, 7, 1), DateTimeKind.Utc)); // July 1st

2021 or FromDateTimeOffset(DateTime.SpecifyKind(new DateTime(2021, 7, 1),

DateTimeKind.Utc));

// Read

var bookingId = flightBooking.BookingId;

var bookingDuration = flightBooking.FlightDuration.ToTimeSpan();

var bookingDepartureTime = flightBooking.DepartureTime.ToDateTime();

// or TodateTimeOffset()

To set the FlightDuration field, which is typed Duration and corresponds to a

TimeSpan in .NET, the Duration class exposes the static method FromTimeSpan(). It takes

in parameter the .NET TimeSpan object.

Set DepartureTime field which is typed Timestamp and corresponds to

DateTime/DateTimeOffset types in .NET use from Timestamp class FromDateTime()

static method, and pass in parameter the a .NET DateTime or DateTimeOffset object.

On the other side, when you read Duration and Timestamp Protobuf Well-Known

Types, invoke the ToTimeSpan() method on a field typed Duration to give a .NET

TimeSpan, and invoke the ToDateTime() or ToDateTimeOffset() method on a field typed

Timestamp to give a.NET DateTime or DateTimeOffset.

�Bytes
Protobuf language (and gRPC) support binary payloads transport (yes, gRPC can

transport binary data within binary payloads). The most obvious example I can give you

is the file upload/download process. Let’s consider the CountryImageUpload message,

which contains the FileName, the MimeType, and the file content in binary. Keeping

MIME type information is always helpful, especially if your gRPC app serves a file to an

ASP.NET Core app, which itself will serve a file to the browser. You’ll need to tell the latter

app what kind of file is being downloaded.

Chapter 4 Protobufs

138

Listing 4-35 shows the CountryImageUpload proto file.

Listing 4-35.  CountryImageUpload Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message CountryImageUpload {

 string FileName = 1;

 string MimeType = 2;

 bytes Content = 3;

}

Listing 4-36 shows the generated code, in which FileName and MimeType are

generated as C# strings and the Content field is generated as a Protobuf ByteString.

Notice that the ByteString default value is ByteString.Empty, as I mentioned earlier in

this chapter. I lightened the generated code for more clarity.

Listing 4-36.  CountryImageUpload Message

/// <summary>Field number for the "FileName" field.</summary>

public const int FileNameFieldNumber = 1;

private string fileName_ = "";

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public string FileName {

 get { return fileName_; }

 set {

 fileName_ = pb::ProtoPreconditions.CheckNotNull(value, "value");

 }

}

/// <summary>Field number for the "MimeType" field.</summary>

public const int MimeTypeFieldNumber = 2;

private string mimeType_ = "";

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

Chapter 4 Protobufs

139

public string MimeType {

 get { return mimeType_; }

 set {

 mimeType_ = pb::ProtoPreconditions.CheckNotNull(value, "value");

 }

}

/// <summary>Field number for the "Content" field.</summary>

public const int ContentFieldNumber = 3;

private pb::ByteString content_ = pb::ByteString.Empty;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public pb::ByteString Content {

 get { return content_; }

 set {

 content_ = pb::ProtoPreconditions.CheckNotNull(value, "value");

 }

}

The ByteString C# type (which is not a Well-Known Type) inherits from the

IEnumerable<byte>, IEnumerable, and IEquatable<ByteString> .NET interfaces.

Figure 4-8 shows the methods and properties that the ByteString class exposes.

Chapter 4 Protobufs

140

Figure 4-8.  The ByteString class

Read/write operations on the ByteString type are straightforward. The Protobuf

language exposes the static method CopyFrom on the ByteString class and the

ToByteArray on a ByteString instance object. The ByteString class offers other

alternatives to bytes, such as Base64 (FromBase64/ToBase64 methods) or Stream

usage (FromStream/FromStreamAsync/WriteTo methods). Listing 4-37 shows a read/

write sample with the CountryImageUpload message. This sample simulates a .png file

upload/download.

Listing 4-37.  Read/Write on CountryImageUpload Message

using Apress.Sample.gRPC;

using Google.Protobuf;

using System.IO;

using System.Threading.Tasks;

namespace Server;

Chapter 4 Protobufs

141

// Write

var uploadFile = new CountryImageUpload();

uploadFile.FileName = "Canada_flag.png";

uploadFile.MimeType = "image/png";

uploadFile.Content = ByteString.CopyFrom(File.ReadAllBytes("C:\\countries\\

flags\\Canada_flag.png"));

uploadFile.Content = await ByteString.FromStreamAsync(new FileStream("C:\\

countries\\flags\\Canada_flag.png", FileMode.Open)); // from Stream async

// uploadFile.Content = ByteString.FromStream(new FileStream("C:\\

countries\\flags\\Canada_flag.png", FileMode.Open)); // from Stream

// uploadFile.Content = ByteString.FromBase64("MDExMTExMDAwMDAwMTEwMTAw

MTAxMDEwMTAxMDEwMTAxMTAxMTAxMDA...."); // from base64 encoded file

// Read

var fileName = uploadFile.FileName;

var mimeType = uploadFile.MimeType;

var contentInBytes = uploadFile.Content.ToByteArray();

var contentInBase64 = uploadFile.Content.ToBase64();

var contentInStream = new MemoryStream();

uploadFile.Content.WriteTo(contentInStream);

�One of
One of is an exciting feature. When a service fails, the Protobuf language makes it

possible to intelligently manage the information sent back to the customer.

Let’s take a concrete example. A user searches for a country by name, but no

country is found (input error or the user entered a continent name). The service will

return a typed error response without returning an exception to the client, and in this

particular case, the error message is the alternative information. Alternative answers

are not limited in number. The initial search can be a country, but alternatively can

be a continent or an error. The role of the feature One of here is to allow the setup of a

single message as a response; that is, if a continent is found from the input search name,

neither the country will be set nor the error, and if an error is encountered, neither the

country nor the continent will be set. This mechanism saves memory by not serving

unset objects. Note that the fields subject to a grouping uniqueness with One of must be

wrapped in a named One of statement.

Chapter 4 Protobufs

142

Listing 4-38 shows the use of the Oneof feature on the CountryOrContinentReply

message allowing the search for a country or a continent or an error if nothing is found;

each message is stored in its proto file.

Listing 4-38.  CountryOrContinentReply Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "Protos/country.proto";

import "Protos/continent.proto";

import "Protos/error.proto";

message CountryOrContinentReply {

 oneof countryOrContinent {

 Country Country = 1;

 Continent Continent = 2;

 Error Error = 3;

 }

}

Listings 4-39, 4-40, and 4-41 show, respectively, the Country, Continent, and Error

messages in their dedicated proto file.

Listing 4-39.  The Country Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message Country {

 int32 CountryId = 1;

 string CountryName = 2;

}

Chapter 4 Protobufs

143

Listing 4-40.  The Continent Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message Continent {

 int32 ContinentId = 1;

 string ContinentName = 2;

}

Listing 4-41.  The Error Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

message Error {

 string SearchContent = 1;

 string Message = 2;

}

If we observe the generated code, we see that it’s simply a switch / case statement

of three possible types (defined by enum) to be returned, as shown in Listing 4-42. I

voluntarily lightened the generated code.

Listing 4-42.  Generated CountryOrContinent Message

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public CountryOrContinentReply(CountryOrContinentReply other) : this() {

 switch (other.CountryOrContinentCase) {

 case CountryOrContinentOneofCase.Country:

 Country = other.Country.Clone();

 break;

 case CountryOrContinentOneofCase.Continent:

 Continent = other.Continent.Clone();

 break;

Chapter 4 Protobufs

144

 case CountryOrContinentOneofCase.Error:

 Error = other.Error.Clone();

 break;

 }

 _unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);

}

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public CountryOrContinentReply Clone() {

 return new CountryOrContinentReply(this);

}

/// <summary>Field number for the "Country" field.</summary>

public const int CountryFieldNumber = 1;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Apress.Sample.gRPC.Country Country {

 �get { return countryOrContinentCase_ == CountryOrContinentOneofCase.

Country ? (global::Apress.Sample.gRPC.Country) countryOrContinent_

: null; }

 set {

 countryOrContinent_ = value;

 �countryOrContinentCase_ = value == null ?

CountryOrContinentOneofCase.None : CountryOrContinentOneofCase.

Country;

 }

}

/// <summary>Field number for the "Continent" field.</summary>

public const int ContinentFieldNumber = 2;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Apress.Sample.gRPC.Continent Continent {

 �get { return countryOrContinentCase_ == CountryOrContinentOneofCase.

Continent ? (global::Apress.Sample.gRPC.Continent) countryOrContinent_

: null; }

Chapter 4 Protobufs

145

 set {

 countryOrContinent_ = value;

 �countryOrContinentCase_ = value == null ?

CountryOrContinentOneofCase.None : CountryOrContinentOneofCase.

Continent;

 }

}

/// <summary>Field number for the "Error" field.</summary>

public const int ErrorFieldNumber = 3;

[global::System.Diagnostics.DebuggerNonUserCodeAttribute]

public global::Apress.Sample.gRPC.Error Error {

 �get { return countryOrContinentCase_ == CountryOrContinentOneofCase.

Error ? (global::Apress.Sample.gRPC.Error) countryOrContinent_ : null; }

 set {

 countryOrContinent_ = value;

 �countryOrContinentCase_ = value == null ?

CountryOrContinentOneofCase.None :

CountryOrContinentOneofCase.Error;

 }

}

private object countryOrContinent_;

/// <summary>Enum of possible cases for the "countryOrContinent"

oneof.</summary>

public enum CountryOrContinentOneofCase {

 None = 0,

 Country = 1,

 Continent = 2,

 Error = 3,

}

Let’s simulate a search that matches a Continent message result. Listing 4-43 shows

how to set the Continent response and read the Continent response message. It results

in a switch / case statement to determine what kind of type is returned by the server.

Chapter 4 Protobufs

146

Listing 4-43.  Read/Write the Continent Message from

CountryOrContinentReply Message

using Apress.Sample.gRPC;

using System;

namespace Server;

// Write

var countryOrContinentReply = new CountryOrContinentReply();

countryOrContinentReply.Continent = new Continent

{

 ContinentId = 1,

 ContinentName = "Americas"

};

// Read

switch (countryOrContinentReply.CountryOrContinentCase)

{

 case CountryOrContinentReply.CountryOrContinentOneofCase.Country:

 Console.Write("Country found.");

 break;

 case CountryOrContinentReply.CountryOrContinentOneofCase.Continent:

 Console.Write("Continent found.");

 break;

 case CountryOrContinentReply.CountryOrContinentOneofCase.Error:

 Console.Write("None of country or continent found");

 break;

 default:

 throw new ArgumentException("Unhandled response");

}

This is especially useful when you know in advance what you can return to the

customer based on certain conditions. For example, this can be used when you want

to return typed data, something did not happen as expected, for example, an error, and

you send an alternate data back to the client. It’s completely different from Value, which

allows you to manipulate untyped objects, or Any when you have no idea what you are

manipulating even though it is typed data.

Chapter 4 Protobufs

147

�Empty Messages
As I previously mentioned, sometimes we call remote procedures without any

parameters. However, the Protobuf language makes it mandatory to pass parameters in

these functions. You have two possibilities:

•	 Create yourself a message without any properties

•	 Use a Protobuf Well-Known Type named Empty

Listing 4-44 shows the CountryService that define a GetAll RPC function that takes,

as input parameter, a custom message, the EmptyRequest message.

Listing 4-44.  CountryService Using EmptyRequest Custom Empty Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

service CountryService {

 rpc GetAll(EmptyRequest) returns (CountriesReply) {}

}

message EmptyRequest {

}

message CountriesReply {

 repeated CountryReply = 1;

}

message CountryReply {

 int32 CountryId = 1;

 string CountryName = 2;

}

Once compiled, you need to instantiate the generated class and pass it as is to the

RPC call, as shown in Listing 4-45.

Chapter 4 Protobufs

148

Listing 4-45.  Instantiate and Pass EmptyRequest Message to RPC Function

//

var emptyRequest = new EmptyRequest();

var countries = await countryClient.GetAllAsync(emptyRequest);

Instead of using your empty message, you can use the Empty Protobuf Well-Known

Type message. You have to import it with the path google/protobuf/Empty.proto and

use it like this: google.protobuf.Empty.

Protoc knows it, and you don’t need to have it stored somewhere on your computer.

Listing 4-46 shows how to proceed.

Listing 4-46.  CountryService Using google.protobuf.Empty Message

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "google/protobuf/Empty.proto";

service CountryService {

 rpc GetAll(google.protobuf.Empty) returns (CountryReplies) {}

}

message CountryReplies {

 repeated CountryReply = 1;

}

message CountryReply {

 int32 CountryId = 1;

 string CountryName = 2;

}

Like the EmptyRequest custom message, all you need to do is to instantiate it and

pass it as is to the RPC call, as shown in Listing 4-47.

Chapter 4 Protobufs

149

Listing 4-47.  Instantiate and Pass google.protobuf.Empty Message to RPC

Function

//

var emptyRequest = new Empty();

var countries = await countryClient.GetAllAsync(emptyRequest);

�Comments
You can easily add comments to your Protobuf files, and it’s often useful. I have tons of

comments in my code. Like in C#, you can use the syntax shown in Listing 4-48.

Listing 4-48.  Comments Syntax

/* Comment here */

and

// Comment here

Listing 4-49 shows the Error message commented out with both types of

allowed syntax.

Listing 4-49.  Comments Error Message

/*

Author: Anthony Giretti

Example for Apress book

*/

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

// The Error message entity

message Error {

 string SearchContent = 1; // The initial search keyword

 string Description = 2; // The error description

}

Chapter 4 Protobufs

150

The commented code is reported to the C# generated class, as shown in Listing 4-50.

Note that only commented code will be reported to the generated class. Comments that

don’t surround any code, such as the header comment shown in the previous listing,

won’t be part of the generated code. I voluntarily lightened the generated code.

Listing 4-50.  Generated Error Message Class with Comments Set in the

Proto File

/// <summary>

/// The Error message entity

/// </summary>

public sealed partial class Error : pb::IMessage<Error>

{

 /// <summary>Field number for the "SearchContent" field.</summary>

 public const int SearchContentFieldNumber = 1;

 private string searchContent_ = "";

 /// <summary>

 /// The initial search keyword

 /// </summary>

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute]

 public string SearchContent {

 get { return searchContent_; }

 set {

 �searchContent_ = pb::ProtoPreconditions.CheckNotNull(value,

"value");

 }

 }

 /// <summary>Field number for the "Description" field.</summary>

 public const int DescriptionFieldNumber = 2;

 private string description_ = "";

 /// <summary>

 /// The error description

 /// </summary>

Chapter 4 Protobufs

151

 [global::System.Diagnostics.DebuggerNonUserCodeAttribute]

 public string Description {

 get { return description_; }

 set {

 description_ = pb::ProtoPreconditions.CheckNotNull(value, "value");

 }

 }

}

�Summary
In this chapter, you have seen all the power of the Protocol Buffers language. As you

discovered, there is no limit to what you can transport in two systems that communicate

with each other. In the following chapters, you will find out how to create a server (and

client) application from the sample features you learned in this chapter. Exploration of

the most exciting aspects of gRPC and ASP.NET Core is finally about to begin!

Chapter 4 Protobufs

PART III

gRPC and ASP.NET Core

155
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_5

CHAPTER 5

Creating an ASP.NET Core
gRPC Application
Here we are at the heart of the matter. Up to this point, you have discovered the

prerequisites for building a gRPC service with ASP.NET Core by exploring .NET 6, ASP.

NET Core 6, the fundamentals of gRPC, and the Protocol Buffers language, which is

essential for any gRPC service creation (whatever the final language or framework used).

It’s time to put into practice everything you have learned in the previous chapters.

In this chapter, you will learn how to do the following:

•	 Create an ASP.NET Core gRPC application

•	 Create and compile Protobuf files

•	 Write, configure, and expose gRPC services, and register

dependencies

•	 Test using gRPCurl and gRPCui tools

•	 Manage errors, handle responses, and perform logging

•	 Perform messages validation

•	 Explore support of ASP.NET Core gRPC on Microsoft Azure

�Create an ASP.NET Core gRPC Application
In this section, I will show you how to create a server gRPC application with Visual

Studio 2022. Note that discussion of an ASP.NET Core gRPC application refers to the

server part that exposes the service, not the client that consumes it. Chapter 7 will

demonstrate how to create a client with a console application in .NET 6.

https://doi.org/10.1007/978-1-4842-8008-9_5

156

To start, It is necessary to use Visual Studio 2022 to create a gRPC application with

ASP.NET Core 6. Open Visual Studio 2022 and select the ASP.NET Core gRPC Service

template. You can type grpc in the search bar to find it more quickly, as shown in

Figure 5-1.

Figure 5-1.  Find and select the ASP.NET Core gRPC Services template

Chapter 5 Creating an ASP.NET Core gRPC Application

157

Once you have selected it, click Next to move to the configuration options, shown in

Figure 5-2. Name your project, select the location where to create your application, name

your solution, and then click Next.

Figure 5-2.  Set the project name, solution name, and application location on
the disk

The last step is to choose the .NET 6 runtime, as shown in Figure 5-3. We won’t use

Docker here, so click Create.

Chapter 5 Creating an ASP.NET Core gRPC Application

158

Figure 5-3.  Select .NET 6 runtime

Visual Studio generates the solution with the default files, such as the standard

ASP.NET Core files introduced in Chapter 2 (lauchSettings.json, Program.cs, and

appsettings.json). There are extra files that you won’t need. You can delete the

following files, which are default files created by Visual Studio:

•	 greet.proto

•	 GreeterService.cs

I will show you how to create a Protobuf file, compile it, and write the related gRPC

service from the generated code.

Regarding NuGet packages, you do not need to install anything. Everything is

ready to write, compile, and write gRPC services from generated code. The three main

packages included with the template are

•	 Google.Protobuf: Used for generated code (Google Protobuf types

and Well-Known Types).

Chapter 5 Creating an ASP.NET Core gRPC Application

159

•	 Grpc.Asp.NetCore.Server.ClientFactory: Includes all you need

to write a gRPC service in ASP.NET Core, including the necessity to

write gRPC clients within the ASP.NET Core gRPC application (you

might need to connect to another gRPC service, for example) with the

Grpc.Net.ClientFactory package. Grpc.Net.ClientFactory is the

package we will use to write a gRPC client in any .NET application.

•	 Grpc.Tools: Contains all proto files (references) you might want to

import in your proto file (Well-Known Types, for example, as you

have seen in the previous chapter).

Figure 5-4 shows the default ASP.NET Core gRPC template generated by

Visual Studio.

Figure 5-4.  The default ASP.NET Core gRPC application template

Chapter 5 Creating an ASP.NET Core gRPC Application

160

�Create and Compile Protobuf Files
This section will teach you how to create and compile a Protobuf file to describe a set of

services in Visual Studio. I will continue the same example from the previous chapters.

Together, we will build a service (class) called CountryService that enables users to

create, update, delete and find countries, and import a file containing a list of countries

to be saved in a database.

I will create CRUD operations with all possible gRPC services (introduced in

Chapter 3): unary, client-streaming, server-streaming, and bidirectional streaming.

Streaming services provide significant performance gains when transporting large

amounts of data, whether from the client to the server or from the server to the client

(or bidirectionally). To do so, here are the services that we will implement:

•	 Create a list of multiple countries that will be imported with a

bidirectional service (creation/creation confirmation sent to

the client)

•	 Delete one or more countries with a client-streaming service

•	 Retrieve all countries with a server-streaming service

•	 Get a country with a unary service

•	 Update a country with a unary service

A country has properties such as the following:

•	 ID

•	 Name

•	 Description

•	 Flag (image)

•	 Creation date

•	 Update date

Listing 5-1 shows the country.proto file to be created.

Chapter 5 Creating an ASP.NET Core gRPC Application

161

Listing 5-1.  country.proto File

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC";

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

service CountryService {

 rpc GetAll(google.protobuf.Empty) returns (stream CountryReply) {}

 rpc Get(CountryIdRequest) returns (CountryReply) {}

 rpc Delete(stream CountryIdRequest) returns (google.protobuf.Empty) {}

 rpc Update(CountryUpdateRequest) returns (google.protobuf.Empty) {}

 �rpc Create(stream CountryCreationRequest) returns (stream

CountryCreationReply) {}

}

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

 bytes Flag = 4;

 google.protobuf.Timestamp CreateDate = 5;

 google.protobuf.Timestamp UpdateDate = 6;

}

message CountryIdRequest {

 int32 Id = 1;

}

message CountryUpdateRequest {

 int32 Id = 1;

 string Description = 3;

 google.protobuf.Timestamp UpdateDate = 6;

}

Chapter 5 Creating an ASP.NET Core gRPC Application

162

message CountryCreationRequest {

 string Name = 2;

 string Description = 3;

 bytes Flag = 4;

 google.protobuf.Timestamp CreateDate = 5;

}

message CountryCreationReply {

 int32 Id = 1;

 string Name = 2;

}

Let’s go now to Visual Studio and create country.proto. Right-click the Protos folder

in the Solution Explorer, choose Add, and click New Item, as shown in Figure 5-5.

Figure 5-5.  Add a new item to the solution

Chapter 5 Creating an ASP.NET Core gRPC Application

163

The Add New Item window opens, as shown in Figure 5-6. Scroll down and select the

Protocol Buffer File type and name the file country.proto. Then click the Add button.

Figure 5-6.  Add a Protocol Buffer file (country.proto)

Add the Protocol Buffers code (Listing 5-1) within the country.proto file (ensure that

it’s registered in the CountryService.Web.csproj file) like this:

 <ItemGroup>

 �<Protobuf Include="Protos\country.proto" Link="country.proto"

GrpcServices="Server" />

 </ItemGroup>

Then compile the solution by running the command dotnet build in the Terminal

window. The build should succeed, as shown in Figure 5-7.

Chapter 5 Creating an ASP.NET Core gRPC Application

164

Figure 5-7.  Running dotnet build command in Terminal window

Visual Studio is executing the Protoc.exe executable file that compiles proto

files to C# stubs behind the scenes. The reason why I did not give many details in the

previous chapter is that Visual Studio handles its execution. You don’t need to learn

Protoc commands. You can check detailed compilation logs in the Output window to see

what Visual Studio does, as shown in Figure 5-8. The Protoc command requires absolute

paths to be executed on Windows, so I cut the command for easier readability.

Figure 5-8.  The Protoc command execution handled by Visual Studio

Even If Visual Studio manages everything for you, you can override many

compilation options. If you are interested, you can read the following tutorial on GitHub:

https://github.com/grpc/grpc/blob/master/src/csharp/BUILD-INTEGRATION.md.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://github.com/grpc/grpc/blob/master/src/csharp/BUILD-INTEGRATION.md

165

Once the compilation is done, go to the obj/Debug/.NET6.0/Protos folder (in your

solution folder) and you should see two generated files, as mentioned in Chapter 4:

•	 Country.cs: Contains messages compiled to C#

•	 CountryGrpc.cs: Contains the services definition compiled to C#

Figure 5-9 shows the generated files in the {SolutionPath}/obj/Debug/.net6.0/

Protos folder.

Figure 5-9.  Generated files

The combination of these two files is named gRPC stubs, aka Protocol Buffers

compiled into a specific language, C# here.

Now you are ready to write the concrete implementation of CountryService!

�Write, Configure, and Expose gRPC Services
As you have just read, the services are now compiled into gRPC stubs (in C#). Now you

must write the services from the abstract class (a base class that cannot be instantiated

directly) generated by Protoc. Listing 5-2 shows the abstract CountryServiceBase class

generated in the CountryGrpc.cs file.

Listing 5-2.  CountryServiceBase Class

[grpc::BindServiceMethod(typeof(CountryService), "BindService")]

public abstract partial class CountryServiceBase

{

 �public virtual global::System.Threading.Tasks.Task GetAll(global::

Google.Protobuf.WellKnownTypes.Empty request, grpc::IServerStream

Writer<global::Apress.Sample.gRPC.CountryReply> responseStream,

grpc::ServerCallContext context)

Chapter 5 Creating an ASP.NET Core gRPC Application

166

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

 �public virtual global::System.Threading.Tasks.Task<global::Apress.

Sample.gRPC.CountryReply> Get(global::Apress.Sample.gRPC.

CountryIdRequest request, grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

 �public virtual global::System.Threading.Tasks.Task<global::Google.

Protobuf.WellKnownTypes.Empty> Delete(grpc::IAsyncStreamReader

<global::Apress.Sample.gRPC.CountryIdRequest> requestStream,

grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

 �public virtual global::System.Threading.Tasks.Task<global::Google.

Protobuf.WellKnownTypes.Empty> Update(global::Apress.Sample.gRPC.

CountryUpdateRequest request, grpc::ServerCallContext context)

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

 �public virtual global::System.Threading.Tasks.Task Create(grpc::IAs

yncStreamReader<global::Apress.Sample.gRPC.CountryCreationRequest>

requestStream, grpc::IServerStreamWriter<global::Apress.Sample.gRPC.

CountryCreationReply> responseStream, grpc::ServerCallContext context)

Chapter 5 Creating an ASP.NET Core gRPC Application

167

 {

 �throw new grpc::RpcException(new grpc::Status(grpc::StatusCode.

Unimplemented, ""));

 }

}

To write the gRPC services, create a new class in your Services folder as shown in

Figure 5-10.

Figure 5-10.  Create a new class

Name the new class CountryGrpcService and click Create. Once created, it should

look like Listing 5-3.

Listing 5-3.  CountryGrpcService Class Newly Created

namespace CountryService.Web.Services

{

 public class CountryGrpcService

 {

 }

}

Chapter 5 Creating an ASP.NET Core gRPC Application

168

Note that by default the file-scoped namespace is not applied, so you can remove

the brackets below the namespace declaration. The next step is to implement the

CountryGrpcService gRPC service to inherit from the CountryServiceBase class. This

class is nested to the generated CountryService that belongs to the Apress.Sample.gRPC

namespace. To make the code clearer, I’m using the static statement to shorten the

declaration Apress.Sample.gRPC.CountryService.CountryServiceBase, as shown in

Listing 5-4.

Listing 5-4.  Inherit from CountryServiceBase Class

using static Apress.Sample.gRPC.CountryService;

namespace CountryService.Web.Services;

public class CountryGrpcService : CountryServiceBase

{

}

Next, copy and paste the CountryServiceBase virtual methods in Listing 5-2 and

make the following modifications:

•	 Replace the virtual keyword with override because you are

rewriting methods

•	 Remove the global::System.Threading.Tasks namespace because

it’s already imported as a using statement at the top of the file

•	 Remove the global::Google.Protobuf.WellKnownTypes namespace

from every declared Empty type and add it once in the using

statement at the top of the file

•	 Remove global::Apress.Sample.gRPC everywhere and add it as a

using statement as well

•	 Remove all remaining grpc:: namespaces and import the Grpc.Core

namespace as a using statement instead

•	 Add the async keyword before the Task keyword

Chapter 5 Creating an ASP.NET Core gRPC Application

169

After that quick cleanup, the CountryGrpcService class should look like Listing 5-5.

Listing 5-5.  CountryService Exposing Wanted gRPC Services

using Apress.Sample.gRPC;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using static Apress.Sample.gRPC.CountryService;

namespace CountryService.Web.Services;

public class CountryGrpcService : CountryServiceBase

{

 �public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

 {

 throw new RpcException(new Status(StatusCode.Unimplemented, ""));

 }

 �public override async Task<CountryReply> Get(CountryIdRequest request,

ServerCallContext context)

 {

 throw new RpcException(new Status(StatusCode.Unimplemented, ""));

 }

 �public override async Task<Empty> Delete(IAsyncStreamReader<CountryId

Request> requestStream, ServerCallContext context)

 {

 throw new RpcException(new Status(StatusCode.Unimplemented, ""));

 }

 �public override async Task<Empty> Update(CountryUpdateRequest request,

ServerCallContext context)

 {

 throw new RpcException(new Status(StatusCode.Unimplemented, ""));

 }

Chapter 5 Creating an ASP.NET Core gRPC Application

170

 �public override async Task Create(IAsyncStreamReader<CountryCreation

Request> requestStream, IServerStreamWriter<CountryCreationReply>

responseStream, ServerCallContext context)

 {

 throw new RpcException(new Status(StatusCode.Unimplemented, ""));

 }

}

This code is ready to run, but it will only return a gRPC status of

UNIMPLEMENTED to the client. To return an error status (all statuses except OK were

introduced in Chapter 3), you have to throw an RpcException that takes in parameter

a StatusCode and a string that you can add details within. We’ll delve a bit further into

error management later in this chapter.

You may notice that each gRPC function takes a message (Empty or designed by

you) in input and returns a message (Empty or created by you) when it’s not streamed

in output. Input- and output streamed messages are not returned by the gRPC

function but are parameters of the function. Any input streamed message is typed

IAsyncStreamReader<TMessage>, and any output streamed message is typed IServer

StreamWriter<TMessage>.

The ServerContext parameter is the gRPC HttpContext containing all contextual

information of the current request, even user data if a user is authenticated. We’ll return

to this parameter in Chapter 14, where I’ll explain authentication in ASP.NET Core gRPC.

This code is ready to run, but it’s not ready to be exposed to the Web yet. To expose

it, you’ll have to go to the Program.cs file and declare the service in the UseEndpoints

middleware, as shown in Listing 5-6.

Listing 5-6.  Configuring Program.cs file to Expose CountryGrpcService

using CountryService.Web.Services;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc();

var app = builder.Build();

app.MapGrpcService<CountryGrpcService>();

Chapter 5 Creating an ASP.NET Core gRPC Application

https://doi.org/10.1007/978-1-4842-8008-9_14

171

// Configure the HTTP request pipeline.

app.MapGet("/", () => "Communication with gRPC endpoints must be made

through a gRPC client. To learn how to create a client, visit: https://

go.microsoft.com/fwlink/?linkid=2086909");

app.Run();

To complete your gRPC service, add a service layer that manages CRUD operations

on a Country entity and write your gRPC services class with that service. Let’s name it

CountryManagementService. You’ll need to register it into the ASP.NET Core dependency

injection system, inject it within the CountryGrpcService constructor that needs to

be added. ASP.NET Core gRPC supports dependency injection like any ASP.NET Core

apps, as you’ve seen in Chapter 2. To guide you as smoothly as possible writing these

gRPC services, we’ll write a simple CountryManagementService class that exposes a

hard-coded collection of countries. We’ll revisit that service in Chapter 9, where you’ll

learn to build a fully layered app with a database, a data access layer, a service layer, and

Data Transfer Objects (DTO) as domain entities, and discover dependency injection best

practices.

Listing 5-7 shows the CountryManagementService class with basic CRUD operations.

I’m implementing asynchronous operations with async and await keywords.

Listing 5-7.  Simple CountryManagementService Class

using Google.Protobuf.WellKnownTypes;

using Apress.Sample.gRPC;

namespace CountryService.Web;

public class CountryManagementService

{

 �private readonly List<CountryReply> _countries = new(); // C# 9 syntax

"Improved target typing"

 public CountryManagementService()

 {

 �_countries.Add(new CountryReply { Id = 1, Name = "Canada",

Description = "Canada has at least 32 000 lakes", CreateDate =

Timestamp.FromDateTime(DateTime.SpecifyKind(new DateTime(2021,

1, 2), DateTimeKind.Utc)) });

Chapter 5 Creating an ASP.NET Core gRPC Application

172

 �_countries.Add(new CountryReply { Id = 2, Name = "USA", Description

= "Yellowstone has 300 to 500 geysers", CreateDate = Timestamp.

FromDateTime(DateTime.SpecifyKind(new DateTime(2021, 1, 2),

DateTimeKind.Utc)) });

 �_countries.Add(new CountryReply { Id = 3, Name = "Mexico",

Description = "Mexico is crossed by Sierra Madre Oriental and

Sierra Madre Occidental mountains", CreateDate = Timestamp.

FromDateTime(DateTime.SpecifyKind(new DateTime(2021, 1, 2),

DateTimeKind.Utc)) });

 }

 public async Task<IEnumerable<CountryReply>> GetAllAsync()

 {

 return await Task.FromResult(_countries.ToArray());

 }

 public async Task<CountryReply> GetAsync(CountryIdRequest country)

 {

 �return await Task.FromResult(_countries.FirstOrDefault(x => x.Id ==

country.Id));

 }

 public async Task DeleteAsync(IEnumerable<CountryIdRequest> countries)

 {

 var ids = countries.Select(x => x.Id).ToList();

 _countries.RemoveAll(x => ids.Contains(x.Id));

 await Task.CompletedTask;

 }

 public async Task UpdateAsync(CountryUpdateRequest country)

 {

 �var countryToUpdate = _countries.FirstOrDefault(x => x.Id ==

country.Id);

 if (countryToUpdate != null)

 {

 countryToUpdate.Description = country.Description;

 countryToUpdate.UpdateDate = country.UpdateDate;

 }

Chapter 5 Creating an ASP.NET Core gRPC Application

173

 await Task.CompletedTask;

 }

 �public async Task<IEnumerable<CountryCreationReply>> CreateAsync(List

<CountryCreationRequest> countries)

 {

 var countryCreationReply = new CountryCreationReply();

 var newCountries = new List<CountryReply>();

 var count = _countries.Count;

 countries.ForEach(country => {

 �var existingCountry = _countries.FirstOrDefault(x => x.Name ==

country.Name);

 if (existingCountry == null)

 {

 newCountries.Add(new CountryReply

 {

 Id = ++count,

 Name = country.Name,

 Description = country.Description,

 Flag = country.Flag,

 �CreateDate = Timestamp.FromDateTime(DateTime.

SpecifyKind(new DateTime(2021, 1, 2),

DateTimeKind.Utc))

 });

 }

 });

 _countries.AddRange(newCountries);

 �return await Task.FromResult(newCountries.Select(x => new

CountryCreationReply { Id = x.Id, Name = x.Name }).ToList());

 }

}

Chapter 5 Creating an ASP.NET Core gRPC Application

174

To use the CountryManagementService class consume it in the gRPC services you

have created before, you must register it in the dependency injection system, as shown

in Listing 5-8. Note that the service is registered in Singleton lifetime, which means only

one instance of the service will be created, so any operation on the country hard-coded

list will be kept in memory unless you stop and restart the app.

Listing 5-8.  Registering the CountryManagementService Class as Singleton

using CountryService.Web;

using CountryService.Web.Services;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc();

builder.Services.AddSingleton<CountryManagementService>();

var app = builder.Build();

app.MapGrpcService<CountryGrpcService>();

// Configure the HTTP request pipeline.

app.MapGet("/", () => "Communication with gRPC endpoints must be made

through a gRPC client. To learn how to create a client, visit: https://

go.microsoft.com/fwlink/?linkid=2086909");

app.Run();

Next, you need to add a constructor in the CountryGrpcService class if you have

not done so yet and inject the CountryManagementService class in the constructor.

Then you can write your gRPC service final implementation. As you can see, it’s

straightforward to read or write streamed messages. Use the ReadAllAsync() method

on the IAsyncStreamReader<T> parameter and the WriteAsync method on the

IAsyncStreamWriter<T> parameter, then iterate on items. Unary services are the

simplest to implement, as shown in Listing 5-9.

Chapter 5 Creating an ASP.NET Core gRPC Application

175

Listing 5-9.  The CountryGrpcService Class Implemented with Several gRPC

Services

using Apress.Sample.gRPC;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using static Apress.Sample.gRPC.CountryService;

namespace CountryService.Web.Services;

public class CountryGrpcService : CountryServiceBase

{

 private readonly CountryManagementService _countryManagementService;

 �public CountryGrpcService(CountryManagementService countryManagement

Service)

 {

 _countryManagementService = countryManagementService;

 }

 �public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

 {

 // Streams all found countries to the client

 var countries = await _countryManagementService.GetAllAsync();

 foreach (var country in countries)

 {

 await responseStream.WriteAsync(country);

 }

 await Task.CompletedTask;

 }

 �public override async Task<CountryReply> Get(CountryIdRequest request,

ServerCallContext context)

 {

 // Send a single country to the client in the gRPC response

 return await _countryManagementService.GetAsync(request);

 }

Chapter 5 Creating an ASP.NET Core gRPC Application

176

 �public override async Task<Empty> Delete(IAsyncStreamReader<CountryId

Request> requestStream, ServerCallContext context)

 {

 // Read and store all streamed input messages

 var countryIdRequestList = new List<CountryIdRequest>();

 �await foreach (var countryIdRequest in requestStream.

ReadAllAsync())

 {

 countryIdRequestList.Add(countryIdRequest);

 }

 // Delete in one shot all streamed countries

 await _countryManagementService.DeleteAsync(countryIdRequestList);

 return new Empty();

 }

 �public override async Task<Empty> Update(CountryUpdateRequest request,

ServerCallContext context)

 {

 // read input message from the gRPC request

 await _countryManagementService.UpdateAsync(request);

 return new Empty();

 }

 �public override async Task Create(IAsyncStreamReader<CountryCreation

Request> requestStream, IServerStreamWriter<CountryCreationReply>

responseStream, ServerCallContext context)

 {

 // �Read and store all streamed input messages before performing

any action

 �var countryCreationRequestList = new List<CountryCreation

Request>();

 �await foreach (var countryCreationRequest in requestStream.

ReadAllAsync())

 {

 countryCreationRequestList.Add(countryCreationRequest);

 }

Chapter 5 Creating an ASP.NET Core gRPC Application

177

 // �Call in one shot the countryManagementService that will perform

creation operations

 �var createdCountries = await _countryManagementService.CreateAsync(

countryCreationRequestList);

 // Stream all created countries to the client

 foreach (var country in createdCountries)

 {

 await responseStream.WriteAsync(country);

 }

 }

}

The following task is optional, but it’s possible to add some options to change/

improve your gRPC service’s behavior. Chapter 3 introduced you the procedure for

adding some options within a gRPC Channel class used to build a gRPC client, and

you can do the same server-side. You can apply the following options globally (on each

service once) or on a specific service:

•	 MaxSendMessageSize: Corresponds to the maximum size in bytes

of the message sent by the server. If no value is set, the size is not

limited, and if a value is set and the message exceeds that limit, an

RpcException will be raised.

•	 MaxReceivedMessageSize: The same as the previous option except

for the message sent to the server. If no value is set, the default value

set is 4 MB. To set the value to unlimited, you must set it to null. An

RpcException will be raised if the size exceeds the limit.

•	 CompressionProviders: A collection of compression providers.

When no provider is set, the default compression used is Gzip. You

can customize the Gzip compression and/or add your compression

provider.

•	 ResponseCompressionAlgorithm: The string value of the algorithm

to be applied for message compression. If not set, the selected

algorithm will be the first in the CompressionProviders collection

that matches the client’s algorithm over the grpc-accept-encoding

header. Gzip is the default compression algorithm. It doesn’t need to

be added to the CompressionProviders collection.

Chapter 5 Creating an ASP.NET Core gRPC Application

178

•	 ResponseCompressionLevel: The compression level passed to the

compression provider. If not set, the compression provider should

implement a default compression level.

Listing 5-10 illustrate the custom compression provider based on the Brotli

compression algorithm.

Listing 5-10.  A Custom gRPC Compression Provider Using Brotli

using Grpc.Net.Compression;

using System.IO;

using System.IO.Compression;

namespace CountryService.gRPC.Compression;

public class BrotliCompressionProvider : ICompressionProvider

{

 private readonly CompressionLevel? _compressionLevel;

 public BrotliCompressionProvider(CompressionLevel compressionLevel)

 {

 _compressionLevel = compressionLevel;

 }

 public BrotliCompressionProvider()

 {

 }

 public string EncodingName => "br"; // Must match grpc-accept-encoding

 �public Stream CreateCompressionStream(Stream outputStream,

CompressionLevel? compressionLevel)

 {

 if (_compressionLevel.HasValue)

 �return new BrotliStream(outputStream, compressionLevel ??

_compressionLevel.Value, true);

 else if (!_compressionLevel.HasValue && compressionLevel.HasValue)

 �return new BrotliStream(outputStream, compressionLevel.

Value, true);

Chapter 5 Creating an ASP.NET Core gRPC Application

179

 �return new BrotliStream(outputStream, CompressionLevel.

Fastest, true);

 }

 public Stream CreateDecompressionStream(Stream stream)

 {

 return new BrotliStream(stream, CompressionMode.Decompress);

 }

}

Note T he Brotli compression algorithm provides highly efficient compression,
higher than Gzip. I strongly recommend using it.

Listing 5-11 shows message size and compression options in the Program.cs file.

Listing 5-11.  Message Size and Compression Options

builder.Services.AddGrpc(options => {

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 �options.CompressionProviders = new List<ICompression

Provider>

 {

BrotliCompressionProvider(CompressionLevel.Optimal) // br

 };

 �options.ResponseCompressionAlgorithm = "br"; // grpc-

accept-encoding, and must match the compression provider

declared in CompressionProviders collection

 �options.ResponseCompressionLevel = CompressionLevel.

Optimal; // compression level used if not set on the

provider

});

Chapter 5 Creating an ASP.NET Core gRPC Application

180

Tip A lthough the MaxSendMessageSize and MaxReceiveMessageSize
options are optional, it’s highly recommended to consider using them to limit
resources and keep performance and stability to an acceptable level.

There are three more options that I haven’t talked about yet: EnableDetailedErrors,

Interceptors, and IgnoreUnknownServices. I’ll introduce them in the next section

because they are more closely related to logging and tracing and/or error management.

�Test Using gRPCurl and gRPCui Tools
gRPCurl and gRPCui are similar tools that allow developers to test their gRPC

services. gRPCurl is the curl tool for gRPC services that is a command-line tool for

invoking remote URI. You can learn more about the curl tool here: https://curl.se/).

gRPCui is based on gRPCurl. It’s merely a graphical user interface (GUI) built on

gRPCurl, which runs behind the scenes.

Throughout this section, we’ll continue to use the gRPC.v1.CountryService that we

have been using since the beginning of this book.

�gRPCurl
gRPCurl is a great tool that allows you to call your gRPC endpoints like Postman, for

example, but offers more than that: it enables you to list available services and describe

them (showing services definition). To be able to do that, it needs to know the services

definition (protos). There are two ways to provide this to gRPCurl:

•	 Passing to gRPCurl command-line proto files as arguments

•	 Using reflection with gRPC reflection

In this book, I’ll only introduce the usage of gRPCurl with gRPC reflection because

it’s the easiest way to proceed. ASP.NET Core natively supports it.

First, you need to install the Grpc.AspNetCore.Server.Reflection Nuget package

from the Package Manager window with the command shown in Listing 5-12.

Listing 5-12.  Install Grpc.AspNetCore.Server.Reflection

Install-Package Grpc.AspNetCore.Server.Reflection

Chapter 5 Creating an ASP.NET Core gRPC Application

https://curl.se/

181

Figure 5-11 shows the command executed in the Package Manager window.

Figure 5-11.  Install Grpc.AspNetCore.Server.Reflection from Package
Manager window

Once you have installed Grpc.AspNetCore.Server.Reflection, go to the Program.cs

file to register the gRPC reflection with the AddGrpcReflection method and apply it

with the MapGrpcReflectionService method on endpoints, as shown in Listing 5-13

(I removed options added in the previous section for more clarity).

Listing 5-13.  Register and Apply gRPC Reflection

using CountryService.Web;

using CountryService.Web.Services;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc();

builder.Services.AddGrpcReflection();

builder.Services.AddSingleton<CountryManagementService>();

var app = builder.Build();

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

// Configure the HTTP request pipeline.

app.MapGet("/", () => "Communication with gRPC endpoints must be made

through a gRPC client. To learn how to create a client, visit: https://

go.microsoft.com/fwlink/?linkid=2086909");

app.Run();

The gRPC server is ready to request gRPCurl, but the latter is not set yet. Because it’s

a tool implemented with the Go programming language, you have to install Go to run it.

You can download Go https://golang.org/doc/install.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://golang.org/doc/install

182

If you are using Windows, you have to run the installer that you just downloaded, as

shown in Figure 5-12.

Figure 5-12.  Install Go on Windows

Ensure that Go is installed in your Windows Environments Variables. If you

don’t know how to proceed, you can follow a complete tutorial at https://www.

geeksforgeeks.org/how-to-install-go-on-windows/.

You can now download and install gRPCurl with two commands in a PowerShell

command window, as shown in Listing 5-14.

Listing 5-14.  Download and Install gRPCurl via Command Line

go get github.com/fullstorydev/grpcurl/...

go install github.com/fullstorydev/grpcurl/cmd/grpcurl@latest

Tip I suggest running PowerShell as Administrator. PowerShell did not work for
me on my computer without doing so.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://www.geeksforgeeks.org/how-to-install-go-on-windows/
https://www.geeksforgeeks.org/how-to-install-go-on-windows/

183

If everything goes well, no error message appears, and you should be able to run the

grpcurl -help command as shown in Figure 5-13.

Figure 5-13.  Verify gRPCurl installation with the grpcurl -help command

Chapter 5 Creating an ASP.NET Core gRPC Application

184

You can now test your gRPC ASP.NET Core app. Don’t forget to run your app first, as

shown in Figure 5-14, with the dotnet run command.

Figure 5-14.  Run ASP.NET Core gRPC application

In another PowerShell window, type the command shown in Listing 5-15 to list all

gRPC services your app is exposing.

Listing 5-15.  List of gRPC Services Exposed by the App

grpccurl localhost:{yourport} list

Figure 5-15 shows the output result.

Figure 5-15.  Listing exposed gRPC services

Chapter 5 Creating an ASP.NET Core gRPC Application

185

As expected, the output result is gRPC.v1.CountryService. Recall that we set the

package directive value to gRPCDemo.v1 in the country.proto file, and as you can see, it

prefixes the gRPC service CountryService.

From this, you can now reuse the same command by adding the service name as the

argument to list each RPC function of that service, as shown in Listing 5-16.

Listing 5-16.  List RPC Functions with gRPCurl list Command

grpccurl localhost:{yourport} list gRPCDemo.v1.CountryService

Figure 5-16 shows the output result.

Figure 5-16.  Listing RPC function output result with gRPCurl list command

As expected again, all RPC functions we have defined previously are listed here. If

you now want to get the description of an RPC function, you can do so with the describe

command argument, which takes the RPC function full name as an argument, as shown

in Listing 5-17 using as an example the gRPCDemo.v1.CountryService.Create RPC

function.

Listing 5-17.  Get the gRPCDemo.v1.CountryService.Create RPC Function

Description with the describe Command Argument

grpccurl localhost:{yourport} describe gRPCDemo.v1.CountryService.Create

Chapter 5 Creating an ASP.NET Core gRPC Application

186

Figure 5-17 shows the output result that is the Create function proto definition.

Figure 5-17.  The gRPCDemo.v1.CountryService.Create function
definition output

You can even use the describe command argument on gRPCDemo.v1.CountryService,

which gives you more detailed information on that service than the list command

argument, as shown in Listing 5-18.

Listing 5-18.  Describe gRPCDemo.v1.CountryService

grpccurl localhost:{yourport} describe gRPCDemo.v1.CountryService

Figure 5-18 shows the output result.

Figure 5-18.  Describe the gRPCDemo.v1.CountryService output result

And now, what about messages description? It’s also possible to fetch them

with the same command. Like RPC functions, you have to pass the full name of the

message as an argument; for example, Listing 5-19 shows getting the description of

the gRPCDemo.v1.CountryCreationRequest message.

Listing 5-19.  Get the gRPCDemo.v1.CountryCreationRequest Message

Description

grpccurl localhost:{yourport} describe gRPCDemo.v1.CountryCreationRequest

Chapter 5 Creating an ASP.NET Core gRPC Application

187

Figure 5-19 shows the output result for the gRPCDemo.v1.CountryCreationRequest

message.

Figure 5-19.  The gRPCDemo.v1.CountryCreationRequest message
description output

It’s time to test your endpoints! gRPCurl supports empty message requests

(no parameters), empty message responses, streaming requests, and streaming

responses. All data passed in parameters can be in JSON format or text. I’ll show you

examples in JSON format for purposes of readability. Google well documents the

JSON representation of your message at https://developers.google.com/protocol-

buffers/docs/proto3#json.

For example, let’s test the GetAll() RPC function that doesn’t take parameters and

stream a collection of the CountryReply message. An argument that matches the desired

RPC function should match the following pattern: {ServiceFullName}/{FunctionName}.

Listing 5-20 shows the command to invoke the GetAll gRPC endpoint.

Listing 5-20.  Invoke GetAll gRPC Endpoint

grpcurl localhost:{yourport} gRPCDemo.v1.CountryService/GetAll

Figure 5-20 shows the output result of the command. Note that results have been

streaming one by one to the output.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://developers.google.com/protocol-buffers/docs/proto3#json
https://developers.google.com/protocol-buffers/docs/proto3#json

188

Figure 5-20.  The GetAll invocation output result

Let’s now try a unary function, like the Get gRPC endpoint. This gRPC endpoint

takes as a parameter the CountryIdRequest message. When you try to call a gRPC

function with parameters, you have to add the argument -d followed by the JSON

representation of the message before the gRPC endpoint’s full name. Listing 5-21 shows

the parameterized command to invoke the Get gRPC endpoint (note that a backslash

must escape double quotes).

Listing 5-21.  Invoke Get gRPC Endpoint with CountryIdRequest Message

grpcurl localhost:{yourport} -d '{\"\Id" : 1}' gRPCDemo.

v1.CountryService/Get

Figure 5-21 shows the output result after the Get gRPC endpoint invocation.

Figure 5-21.  Get invocation output result

Chapter 5 Creating an ASP.NET Core gRPC Application

189

As a last test here, let’s try a client-streaming function, the Delete gRPC endpoint.

This function takes as a parameter a streamed CountryIdRequest message. To pass

a collection of messages streamed into a gRPC request, you have to concatenate the

message’s JSON representation. Don’t be confused with an array of parameters that is

the way to pass a collection of the same message on a non-streamed request. Listing 5-22

shows the command to invoke the Delete gRPC endpoint with two streamed

CountryIdRequest messages:

Listing 5-22.  Invoke the Delete gRPC Endpoint with Two Streamed

CountryIdRequest Messages

grpcurl localhost:{yourport} -d '{\"\Id" : 1}{\"\Id" : 2}' gRPCDemo.

v1.CountryService/Delete

Figure 5-22 shows the Delete gRPC endpoint invocation output result.

Figure 5-22.  Delete invocation output result

As expected, the returned message is an empty JSON object.

This tutorial introduced you to gRPCurl. I did not cover all its capabilities. However,

if you want to learn more about gRPCurl capabilities, you can read the GitHub

documentation here: https://github.com/fullstorydev/grpcurl#installation.

I find this tool very useful, but some people won’t like it because it’s a command-line

tool. Many developers (except Linux developers, maybe) might prefer gRPCui, the focus

of the next section.

�gRPCui
gRPCui is another excellent tool to test your ASP.NET Core gRPC app. In terms of

functionalities, it’s the same as gRPCurl. It’s merely a UI built on top of it, similar to

Swagger for REST services. If you are more comfortable with a GUI than a command-line

tool, gRPCui is made for you!

Chapter 5 Creating an ASP.NET Core gRPC Application

https://github.com/fullstorydev/grpcurl#installation

190

To download and install gRPCui, run the two commands (as Administrator, as with

gRPCurl) shown in Listing 5-23.

Listing 5-23.  Download and Install gRPCui from a Command Line

go get github.com/fullstorydev/grpcui/...

go install github.com/fullstorydev/grpcui/cmd/grpcui@latest

If the download and installation succeed, no error should be displayed, as shown in

Figure 5-23.

Figure 5-23.  Download and install gRPCui

You can now launch gRPCui and test if it’s well set up. You have to set from the

command line the URL of the gRPC server to make gRPCui aware of which gRPC server

to connect to, as shown in Listing 5-24.

Listing 5-24.  Launch gRPCui and Specify gRPC Server URL

grpcui localhost:{yourport}

The command should receive a response with a successful message and give you the

local URL of the GUI. Then your default browser should open that URL automatically, as

shown in Figure 5-24.

Chapter 5 Creating an ASP.NET Core gRPC Application

191

Figure 5-24.  Launch gRPCui from a command line

It’s super simple to invoke a gRPC function: select the method name in the drop-

down list first, fill in the Request Metadata fields, and then set the Request Timeout field.

Figure 5-25 shows the GetAll() function invocation form, which does not have any

input message.

Chapter 5 Creating an ASP.NET Core gRPC Application

192

Figure 5-25.  Invoke GetAll gRPC function via gRPCui form

Click the Invoke button, and the results will appear in the Response panel. Displayed

results are

•	 Response Headers

•	 Response Data

•	 Response Trailers

Chapter 5 Creating an ASP.NET Core gRPC Application

193

Figure 5-26 shows output results after GetAll gRPC function invocation in gRPCui.

Figure 5-26.  The GetAll() gRPC function invocation results in gRPCui

Setting up streamed request messages is straightforward as well. If you test the

Delete() gRPC function with gRPCui again, you’ll see that it’s intuitive. You need to fill a

collection of CountryIdRequest and gRPCui streams them for you. Figure 5-27 shows the

request form to invoke the Delete() gRPC function.

Chapter 5 Creating an ASP.NET Core gRPC Application

194

Figure 5-27.  Invoke Delete gRPC function over gRPCui form

After clicking the Invoke button, you can verify the response panel’s response status.

As expected for this function, there is no data in the response (Empty message), as shown

in Figure 5-28.

Chapter 5 Creating an ASP.NET Core gRPC Application

195

Figure 5-28.  The Delete() gRPC function invocation results in gRPCui

This tutorial introduced you to gRPCui. I did not cover all its capabilities. However,

if you want to learn more about gRPCui capabilities, you can read the GitHub

documentation: https://github.com/fullstorydev/grpcui#installation.

�TLS Certificates
So far, in the examples with gRPCurl and gRPCui, no HTTPS certificates were

configured because ASP.NET Core in development mode has an HTTPS certificate by

default. Therefore, you do not need to configure any one on Kestrel. However, once in

production, you will need to configure a certificate for Kestrel in the appsettings.json

file, as shown in Listing 5-25.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://github.com/fullstorydev/grpcui#installation

196

Listing 5-25.  Configure an HTTPS Certificate on Kestrel

"Kestrel": {

 "Endpoints": {

 "HttpsInlineCertFile": {

 "Url": "https: // localhost: 5001",

 "Protocols": "Http2",

 "Certificate": {

 "Path": "{yourcertificatepath} / {yourcertificate} .pfx",

 "Password": "{yourcertificatepassword}"

 }

 }

 }

 }

�Manage Errors, Handle Responses,
and Perform Logging
Suppose that you are developing an application and things are not going as expected.

Your application encounters an unexpected behavior that causes a crash. You are faced

with an exception. On ASP.NET Core gRPC, it’s possible to handle exceptions easily, and

I’ll show how in this section.

Let’s consider that a gRPC endpoint like GetAll raises an exception with the simple

example shown in Listing 5-26.

Listing 5-26.  GetAll Raises an Unexpected Exception

public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

{

 //////////// simulating an exception here ////////////

 throw new Exception("Something got really wrong here");

 // Streams all found countries to the client

 var countries = await _countryManagementService.GetAllAsync();

 foreach (var country in countries)

Chapter 5 Creating an ASP.NET Core gRPC Application

197

 {

 await responseStream.WriteAsync(country);

 }

 await Task.CompletedTask;

}

As you can see, the error is not handled, which means nothing is done to continue

the app’s regular operation. Figure 5-29 shows the gRPCui client receiving the error from

the server.

Figure 5-29.  Client receiving error from the server

Chapter 5 Creating an ASP.NET Core gRPC Application

198

As you can see, the server sent an UNKNOWN (2) gRPC status, and the client is not

aware of what happened server side. However, on the server side, the error has been

logged correctly by default (we’ll get back to logging a bit later), as shown in Figure 5-30.

Figure 5-30.  The logged error on the server side

There is nothing on the client side that helps to make the link with the error on the

server side, but we can definitely do something to remedy this. First, we can enable

an option that allows error details to be sent to the client. Listing 5-27 shows the

EnableDetailedError option enabled in the Program.cs file.

Listing 5-27.  Enabling EnableDetailedError in the Program.cs File

services.AddGrpc(options => {

 options.EnableDetailedErrors = true; // Enabling error details

 options.MaxReceiveMessageSize = 6291456;

 options.MaxSendMessageSize = 6291456;

 options.CompressionProviders = new List<ICompressionProvider>

 {

 new GzipCompressionProvider(CompressionLevel.Optimal), // gzip

 new BrotliCompressionProvider(CompressionLevel.Optimal) // br

 };

 options.ResponseCompressionAlgorithm = "br";

 options.ResponseCompressionLevel = CompressionLevel.Optimal;

});

Chapter 5 Creating an ASP.NET Core gRPC Application

199

If you retry now, you should see more information about the error sent from the

server, as shown in Figure 5-31.

Figure 5-31.  Detailed errors enabled and displayed client side

Caution I t’s always helpful to get more information from the server when an
error occurs, but keep in mind that you have to be careful with this so as not to
expose clients’ sensitive data!

OK, it was helpful to get some more details. Still, it’s not enough. We need to handle

the error correctly on the server side because the client has received an UNKNOWN gRPC

status, which is not relevant—it’s too generic, and the server should be more precise on

the status to be sent. Let’s go back to the gRPC endpoint and improve this by handling

any error with a try/catch statement and the RpcException designed for gRPC error

handling. RpcException should return the correct gRPC status. The response should

contain in the Trailers a correlationId: Imagine, you can send that id (for debugging

purpose) to the developers working on the server app. You really could do a great team

job by identifying and fixing issues encountered more easily by linking the client error

Chapter 5 Creating an ASP.NET Core gRPC Application

200

log and the server error log. While catching the real error and handling it with a proper

RpcException, you are losing the original error. In that case, logging must be performed

to log the error and its correlationId.

Listing 5-28 shows the GetAll endpoint rearranged with logging (ILogger is injected

by constructor allows performing logging within the service), error handling with a

try/catch statement, managed response with RpcException setup with INTERNAL

gRPC status, an error message sent to the client, a correlationId sent over trailers, and

another error message dedicated for server logging (not sent to the client).

Listing 5-28.  Handling, Logging gRPC Error and Managing Response with an

RpcException and INTERNAL gRPC Status

using Apress.Sample.gRPC;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using static Apress.Sample.gRPC.CountryService;

namespace CountryService.Web.Services;

public class CountryGrpcService : CountryServiceBase

{

 private readonly CountryManagementService _countryManagementService;

 private readonly ILogger<CountryGrpcService> _logger;

 �public CountryGrpcService(CountryManagementService,

ILogger<CountryGrpcService> logger)

 {

 _countryManagementService = countryManagementService;

 _logger = logger;

 }

 �public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

 {

 try

 {

 //////////// Something is going wrong here ////////////

 throw new Exception("Something got really wrong here");

Chapter 5 Creating an ASP.NET Core gRPC Application

201

 // Streams all found countries to the client

 var countries = await _countryManagementService.GetAllAsync();

 foreach (var country in countries)

 {

 await responseStream.WriteAsync(country);

 }

 await Task.CompletedTask;

 }

 catch (Exception e)

 {

 var correlationId = Guid.NewGuid();

 _logger.LogError(e, "CorrelationId: {0}", correlationId);

 var trailers = new Metadata();

 �trailers.Add("CorrelationId", correlationId.ToString());

// Adding the correlation to Response Trailers

 �throw new RpcException(new Status(StatusCode.Internal,

$"Error message sent to the client with a CorrelationId:

{correlationId}"), trailers,

 �"Error message that will appear in log

server");

 }

............

 }

}

Server logs should now include a correlationId that will help to correlate server

and client errors. Server logs also contain the original error (exception + error message)

and the RpcException (logged as info and not as fail) with the error message we set up.

Figure 5-32 shows the server logs arranged with these improvements.

Chapter 5 Creating an ASP.NET Core gRPC Application

202

Figure 5-32.  Server-side error handled with a custom message and a
correlationId

In the meantime, Figure 5-33 shows what the client received.

Figure 5-33.  Client-side error handled with a custom message, a correlationId,
and a proper gRPC status

Chapter 5 Creating an ASP.NET Core gRPC Application

203

It’s better, isn’t it? But we can do even better. It’s possible with interceptors!

Interceptors are another option that can be set in the gRPC configuration in the

Program.cs file. What’s an interceptor? It’s a kind of middleware that defines, in one place,

pieces of code to be executed at each gRPC request. It operates only during a gRPC request

execution, unlike ASP.NET Core middlewares that are operating all over the ASP.NET Core

request lifecycle. What does it mean concretely? ASP.NET Core middlewares run before

any gRPC interceptor. Still, the main difference is that the message is not serialized to bytes

yet in Interceptors, unlike middleware that can access the bytes message content.

An interceptor is a class that must inherit the Interceptor abstract class, and can

be applied globally or specifically on a particular service. Several Interceptors can be

defined and are executed in the order in which they are declared. A custom Interceptor

allows you to define specific behavior for each kind of gRPC service. The Interceptor

abstract class provides four virtual methods that can be overridden:

•	 UnaryServerHandler

•	 ClientStreamingServerHandler

•	 ServerStreamingServerHandler

•	 DuplexStreamingServerHandler

Note that interceptors support dependency injection, and we can use the ILogger

interface there. Listing 5-29 shows a custom interceptor that handles errors and manages

them with the proper gRPC status.

Listing 5-29.  Custom Interceptor that Handles Errors and Manages gRPC Status

Properly

using Grpc.Core;

using Grpc.Core.Interceptors;

using CountryService.Web.Interceptors.Helpers;

namespace CountryService.Web.Interceptors;

public class ExceptionInterceptor : Interceptor

{

 private readonly ILogger<ExceptionInterceptor> _logger;

 private readonly Guid _correlationId;

Chapter 5 Creating an ASP.NET Core gRPC Application

204

 public ExceptionInterceptor(ILogger<ExceptionInterceptor> logger)

 {

 _logger = logger;

 _correlationId = Guid.NewGuid();

 }

 �public override async Task<TResponse> UnaryServerHandler<TRequest,

TResponse>(

 TRequest request,

 ServerCallContext context,

 UnaryServerMethod<TRequest, TResponse> continuation)

 {

 try

 {

 return await continuation(request, context);

 }

 catch (Exception e)

 {

 throw e.Handle(context, _logger, _correlationId);

 }

 }

 �public override async Task<TResponse> ClientStreamingServerHandler

<TRequest, TResponse>(

 IAsyncStreamReader<TRequest> requestStream,

 ServerCallContext context,

 ClientStreamingServerMethod<TRequest, TResponse> continuation)

 {

 try

 {

 return await continuation(requestStream, context);

 }

 catch (Exception e)

 {

 throw e.Handle(context, _logger, _correlationId);

 }

 }

Chapter 5 Creating an ASP.NET Core gRPC Application

205

 �public override async Task ServerStreamingServerHandler<TRequest,

TResponse>(

 TRequest request,

 IServerStreamWriter<TResponse> responseStream,

 ServerCallContext context,

 ServerStreamingServerMethod<TRequest, TResponse> continuation)

 {

 try

 {

 await continuation(request, responseStream, context);

 }

 catch (Exception e)

 {

 throw e.Handle(context, _logger, _correlationId);

 }

 }

 �public override async Task DuplexStreamingServerHandler<TRequest,

TResponse>(

 IAsyncStreamReader<TRequest> requestStream,

 IServerStreamWriter<TResponse> responseStream,

 ServerCallContext context,

 DuplexStreamingServerMethod<TRequest, TResponse> continuation)

 {

 try

 {

 await continuation(requestStream, responseStream, context);

 }

 catch (Exception e)

 {

 throw e.Handle(context, _logger, _correlationId);

 }

 }

}

Chapter 5 Creating an ASP.NET Core gRPC Application

206

Error management is handled entirely within the Handle extension method that

returns an RpcException with the proper gRPC status and error message sent to the

client. This logic is defined into a custom class named ExceptionHelpers and manages

specifically exceptions depending on their types, like SQL timeouts, generic SQL errors,

generic timeout exceptions, and even RPC exceptions thrown by another piece of code

or default exceptions, as shown in Listing 5-30.

Listing 5-30.  Exception Management Provided by a Custom

ExceptionHelpers Class

using Grpc.Core;

using Microsoft.Data.SqlClient;

namespace CountryService.Web.Interceptors.Helpers;

public static class ExceptionHelpers

{

 �public static RpcException Handle<T>(this Exception exception,

ServerCallContext context, ILogger<T> logger, Guid correlationId) =>

 exception switch

 {

 �TimeoutException => HandleTimeoutException((TimeoutException)

exception, context, logger, correlationId),

 �SqlException => HandleSqlException((SqlException)exception,

context, logger, correlationId),

RpcException => HandleRpcException((RpcException)exception, context,

logger, correlationId),

 _ => HandleDefault(exception, context, logger, correlationId)

 };

 �private static RpcException HandleTimeoutException<T>(TimeoutException

exception, ServerCallContext context, ILogger<T> logger, Guid

correlationId)

 {

 �logger.LogError(exception, $"CorrelationId: {correlationId} - A

timeout occurred");

 Status status;

Chapter 5 Creating an ASP.NET Core gRPC Application

207

 �status = new Status(StatusCode.Internal, "An external resource did

not answer within the time limit");

 return new RpcException(status, CreateTrailers(correlationId));

 }

 �private static RpcException HandleSqlException<T>(SqlException

exception, ServerCallContext context, ILogger<T> logger, Guid

correlationId)

 {

 �logger.LogError(exception, $"CorrelationId: {correlationId} - An

SQL error occurred");

 Status status;

 if (exception.Number == -2)

 {

 �status = new Status(StatusCode.DeadlineExceeded, "SQL

timeout");

 }

 else

 {

 status = new Status(StatusCode.Internal, "SQL error");

 }

 return new RpcException(status, CreateTrailers(correlationId));

 }

 �private static RpcException HandleDefault<T>(Exception exception,

ServerCallContext context, ILogger<T> logger, Guid correlationId)

 {

 �logger.LogError(exception, $"CorrelationId: {correlationId} - An

error occurred");

 �return new RpcException(new Status(StatusCode.Internal, exception.

Message), CreateTrailers(correlationId));

 }

Chapter 5 Creating an ASP.NET Core gRPC Application

208

 �private static RpcException HandleRpcException<T>(RpcExcepti

on exception, ServerCallContext context, ILogger<T> logger, Guid

correlationId)

 {

 �logger.LogError(exception, $"CorrelationId:

{correlationId} - An error occurred");

 var trailers = exception.Trailers;

 trailers.Add(CreateTrailers(correlationId)[0]);

 �return new RpcException(new Status(exception.StatusCode, exception.

Message), trailers);

 }

 /// <summary>

 /// Adding the correlation to Response Trailers

 /// </summary>

 /// <param name="correlationId"></param>

 /// <returns></returns>

 private static Metadata CreateTrailers(Guid correlationId)

 {

 var trailers = new Metadata();

 trailers.Add("CorrelationId", correlationId.ToString());

 return trailers;

 }

}

I love that way of handling errors. Suppose you have another kind of error to manage.

In that case, it will be easy to add it in the extension class designed for this and keep the

ExceptionInterceptor class readable and maintainable.

Note that this code sample uses a C# 9 improved pattern matching named “Simple

pattern matching” that allows that allows you to omit the discard parameter within the

switch statement when a type matches. To learn more about it, check out my blog post

at https://anthonygiretti.com/2020/06/23/introducing-c-9-improved-pattern-

matching/.

Listing 5-31 shows the ExceptionInterceptor registration within the Interceptors

collection option in the Program.cs file.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://anthonygiretti.com/2020/06/23/introducing-c-9-improved-pattern-matching/
https://anthonygiretti.com/2020/06/23/introducing-c-9-improved-pattern-matching/

209

Listing 5-31.  Set Up the ExceptionInterceptor Registration

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 new GzipCompressionProvider(CompressionLevel.Optimal), // gzip

 new BrotliCompressionProvider(CompressionLevel.Optimal) // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal; //

compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>(); // Register custom
ExceptionInterceptor interceptor

});

You can now perform a cleanup within your gRPC services. No need to use

try/catch statements anymore. But the choice is up to you. Both ways to handle errors

in a gRPC service are valid. Listing 5-32 shows the GetAll gRPC endpoint cleared.

Listing 5-32.  The GetAll gRPC endpoint cleared from any error handling and

response management

public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

{

 //////////// Something is going wrong here ////////////

 throw new TimeoutException("Something got really wrong here");

 // Streams all found countries to the client

 var countries = await _countryManagementService.GetAllAsync();

 foreach (var country in countries)

 {

 await responseStream.WriteAsync(country);

 }

 await Task.CompletedTask;

}

Chapter 5 Creating an ASP.NET Core gRPC Application

210

Server logs are still efficient, as shown in Figure 5-34.

Figure 5-34.  Server logs after performing error handling in the
ExceptionInterceptor Interceptor

And client side as well, as shown in Figure 5-35.

Figure 5-35.  Client response after performing error handling in the
ExceptionInterceptor Interceptor

Chapter 5 Creating an ASP.NET Core gRPC Application

211

Sometimes the client Protobufs definition doesn’t match the server Protobufs

description because there is a version mismatch between them. Calls on unknown

services result from an UNKNOWN gRPC status in the response. It’s possible to ignore that

kind of error and provide your custom answer using ASP.NET Core middlewares.

Enabling the IgnoreUnknownServices option will allow the request to go through the

next middleware declared after the gRPC endpoint middleware declaration. Without that

option set to true, when an unknown service or method is invoked, the server returns

the gRPC response immediately with the UNIMPLEMENTED gRPC status. It doesn’t go

through the next middleware. Listing 5-33 shows IgnoreUnknownServices enabled and a

custom middleware that handles the gRPC response with a NOTFOUND gRPC status.

Listing 5-33.  Enable IgnoreUnknownServices Option and Set Up a Custom

ASP.NET Core Middleware to Handle the Response

using System.IO.Compression;

using ICompressionProvider = Grpc.Net.Compression.ICompressionProvider;

using GzipCompressionProvider = Grpc.Net.Compression.

GzipCompressionProvider;

using BrotliCompressionProvider = CountryService.Web.Compression.

BrotliCompressionProvider;

using CountryService.Web.Services;

using CountryService.Web.Interceptors;

using Grpc.Core;

using CountryService.Web;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.IgnoreUnknownServices = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 �new GzipCompressionProvider(CompressionLevel.

Optimal), // gzip

Chapter 5 Creating an ASP.NET Core gRPC Application

212

 �new BrotliCompressionProvider(CompressionLevel.

Optimal) // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal; //

compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>(); // Register custom

ExceptionInterceptor interceptor

});

builder.Services.AddGrpcReflection();

builder.Services.AddSingleton<CountryManagementService>();

var app = builder.Build();

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

// Configure the HTTP request pipeline.

app.MapGet("/", () => "Communication with gRPC endpoints must be made

through a gRPC client. To learn how to create a client, visit: https://

go.microsoft.com/fwlink/?linkid=2086909");

app.Use(async (context, next) =>

{

 context.Response.ContentType = "application/grpc";

 �context.Response.Headers.Add("grpc-status", ((int)StatusCode.NotFound).

ToString());

 await next();

});

app.Run();

Be very careful here, because this middleware will run, and you’ll have to perform

your own rules to not interfere with the gRPC response. For example, while streaming

data, you’ll receive streaming data server side while receiving a NOTFOUND gRPC status.

Chapter 5 Creating an ASP.NET Core gRPC Application

213

Figure 5-36 shows the response client side when IgnoreUnknownServices is not

enabled.

Figure 5-36.  Client-side response when IgnoreUnknownServices is not enabled

Figure 5-37 shows the response client side when IgnoreUnknownServices is enabled

and the response is handled into an ASP.NET Core middleware.

Chapter 5 Creating an ASP.NET Core gRPC Application

214

Figure 5-37.  Client-side response when IgnoreUnknownServices is enabled and
the response handled by a custom ASP.NET Core middleware

As you can see, you have options to handle unknown services. I have no preference

between handling them or not, except that I have less code to type if I don’t configure

unknown services!

�Perform Message Validation
Validating user input is very important because users can be clumsy or even malicious

and bypass specific application business rules. This section shows you how to verify

the data entered by a user in ASP.NET Core gRPC. First, be aware that there is no native

validation in the ASP.NET Core gRPC framework. For example, if you are familiar

with data annotations such as required attributes applied to C# object properties, be

aware that this is inoperative here. But then how do you accomplish it? Well, I have

the solution! I designed a Nuget package that you can download with the following

command:

Install-Package Calzolari.Grpc.AspNetCore.Validation

Chapter 5 Creating an ASP.NET Core gRPC Application

215

At the time of this writing, the package has been downloaded 44,000 times, and I

have received very few bug reports, so let’s say it’s pretty reliable, and I invite you to use

it. It works in a relatively simple way. This package is based on the FluentValidation

library, which makes it possible to identify an object even before it has been passed

into the function called by the client by recognizing its signature. You can find the

documentation on its syntax here: https://fluentvalidation.net/; you will need it to

create your validation rules in ASP.NET Core gRPC. This package was initially developed

for ASP.NET Core MVC, WebAPI type applications, and I reuse the same mechanics to

apply it to gRPC by taking advantage of interceptors, allowing an object sent by the client

to be intercepted and validated before any RPC function is executed. If the validation

succeeds, the code is executed as expected. Otherwise, an RpcException is thrown with

an InvalidArgument gRPC status.

Let’s create a validator that validates the CountryCreationRequest message, where

the Name property is mandatory, as is the Description property, which must be longer

than five characters. Listing 5-34 shows the CountryCreateRequestValidator that

performs the validation.

Listing 5-34.  The CountryCreateRequestValidator Class

using Apress.Sample.gRPC;

using FluentValidation;

namespace CountryService.Web.Validator;

public class CountryCreateRequestValidator : AbstractValidator<Country

CreationRequest>

{

 public CountryCreateRequestValidator()

 {

 �RuleFor(request => request.Name).NotEmpty().WithMessage("Name is

mandatory.");

 �RuleFor(request => request.Description).MinimumLength(5).

WithMessage("Description is mandatory and be longer than 5

characters");

 }

}

Chapter 5 Creating an ASP.NET Core gRPC Application

https://fluentvalidation.net/;

216

As you can see, it’s pretty simple. We next need to register the validator in the

dependency injection system in the Program.cs file. We also need to enable the

validation feature with the EnableMessageValidation() extension method within

the gRPC options and configure the validation feature within the dependency

injection system with the EnableMessageValidation() extension method.

Listing 5-35 shows the validation enabled in the ASP.NET Core gRPC app and the

CountryCreateRequestValidator class registered in the Program.cs file.

Listing 5-35.  Enabling Input Validation on ASP.NET Core gRPC and the

CountryCreateRequestValidator Class

using System.IO.Compression;

using ICompressionProvider = Grpc.Net.Compression.ICompressionProvider;

using BrotliCompressionProvider = CountryService.Web.Compression.

BrotliCompressionProvider;

using CountryService.Web.Services;

using CountryService.Web.Interceptors;

using CountryService.Web;

using Calzolari.Grpc.AspNetCore.Validation;

using CountryService.Web.Validator;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 �new BrotliCompressionProvider(CompressionLevel.

Optimal) // br

 };

Chapter 5 Creating an ASP.NET Core gRPC Application

217

 options.ResponseCompressionAlgorithm = "gzip"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal;

// compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>();

// Register custom ExceptionInterceptor interceptor

 options.EnableMessageValidation();

});

builder.Services.AddGrpcValidation();

builder.Services.AddValidator<CountryCreateRequestValidator>();

builder.Services.AddGrpcReflection();

builder.Services.AddSingleton<CountryManagementService>();

var app = builder.Build();

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

// Configure the HTTP request pipeline.

app.MapGet("/", () => "Communication with gRPC endpoints must be made

through a gRPC client. To learn how to create a client, visit: https://

go.microsoft.com/fwlink/?linkid=2086909");

app.Run();

Let’s test what this looks like. Using gRPCui, try to create a country without

complying with the rule that says the country description must be more than five

characters; for this example, type leaf, as shown in Figure 5-38.

Chapter 5 Creating an ASP.NET Core gRPC Application

218

Figure 5-38.  Attempting to create a country without adhering to the five-
character-minimum rule in the Description field

You should expect to receive an error from the server stating that the description

length is too short, and this is indeed what happens, as shown in Figure 5-39.

Chapter 5 Creating an ASP.NET Core gRPC Application

219

Figure 5-39.  Validation error returned by the server because the Description field
entry is too short

As you can see, an INVALIDARGUMENT is returned by the server with a validation

message previously defined in the CountryCreateRequestValidator class.

This is pretty cool and perfectly fulfills the job of a validator that gRPC does not

implement natively. This validation can be applied to all types of gRPC services. If

you want to understand how this library works, the source code is freely available and

can be consulted here: https://github.com/AnthonyGiretti/grpc-aspnetcore-

validator. You can even contribute to the project if you wish! We will revisit this library

in Chapter 7; a client-side library is also available.

�Support of ASP.NET Core gRPC on Microsoft Azure
While this book doesn’t cover cloud hosting on Microsoft Azure (nor AWS or GCP), I still

want to touch on it here so that you are aware of some Azure services that you can use

with ASP.NET Core gRPC.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://github.com/AnthonyGiretti/grpc-aspnetcore-validator
https://github.com/AnthonyGiretti/grpc-aspnetcore-validator

220

There are four main ways to host ASP.NET Core applications on Microsoft Azure:

•	 Hosting on a Windows Virtual machine or Linux Virtual machine

•	 Hosting on a Windows App Service or Linux App Service

•	 Hosting on a Windows Docker container with Azure Container

Instances (ACI)

•	 Hosting on a Kubernetes cluster

Regarding hosting a gRPC application on an AppService, be aware that Azure

AppServices are not compatible with gRPC because of HTTP/2 and the response trailers

at the time of writing. Internet Information Services (IIS), the famous Microsoft web

server, is also not compatible for the same reasons. If you are interested in following the

progress on this subject, Microsoft regularly updates its documentation here: https://

docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-5.0&

tabs=visual-studio.

Regarding ACI, it’s a bit special: ACI supports gRPC and HTTP/2, but ACI doesn’t

provide static IP addresses, which change at each container deployment or restart. To

figure that capability, ACI needs a component named Azure Application Gateway, which

is a web traffic load balancer. At the time of writing, the latter doesn’t support HTTP/2

traffic to the back end; only traffic coming from clients to the AppGateway is supported.

If you want to learn more about ACI and AppGateway, Microsoft provides excellent

documentation here: https://docs.microsoft.com/en-us/azure/container-

instances/ and https://docs.microsoft.com/en-us/azure/application-gateway/.

Regarding Azure Virtual Machines, there is no limitation on gRPC application

hosting. As long as you are self-hosting your ASP.NET Core gRPC application in Kestrel,

the cross-platform web server for ASP.NET Core, unlike IIS, is not cross-platform. If

you want to learn more about Azure Virtual Machines, you can read the complete

documentation here: https://docs.microsoft.com/en-us/azure/virtual-machines/.

And finally, Azure Kubernetes Service (AKS), a service that allows managing

Kubernetes clusters, supports gRPC and HTTP/2. If you want to learn more about AKS,

Microsoft also provides excellent documentation at https://docs.microsoft.com/

en-us/azure/aks/. If you are not familiar with Kubernetes, which is an open source

system designed for deployment automation, scaling, and managing a containerized

application, you can discover its features here: https://kubernetes.io/.

Chapter 5 Creating an ASP.NET Core gRPC Application

https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/grpc/aspnetcore?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/azure/container-instances/
https://docs.microsoft.com/en-us/azure/container-instances/
https://docs.microsoft.com/en-us/azure/application-gateway/
https://docs.microsoft.com/en-us/azure/virtual-machines/
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/
https://kubernetes.io/

221

�Summary
Since Chapter 4, you have learned a lot, but almost everything you need to know about

protobufs to build any gRPC service effectively.

Chapter 5, meanwhile, allowed you to show how to build your services. You also

learned how to configure them according to your needs, I think, in particular, about

performance optimizations of the serialization and the volume of data to transfer.

You saw how it’s essential to handle errors properly, including validating inputs,

because, as you know, gRPC always returns an HTTP 200 OK status even in the event of

an error. Hence, you have to be vigilant about error handling by allowing the client to

manage errors as much as possible on the client side. Finally, you saw that testing the

services with a tool such as gRPCui or gRPCurl (without coding any client in C#) is also

very useful and efficient for your development.

In the next chapter, I will talk about versioning gRPC services, and then you will be

ready to build web applications while implementing gRPC clients to access data.

Chapter 5 Creating an ASP.NET Core gRPC Application

223
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_6

CHAPTER 6

API Versioning
Developing APIs often leads you to have different versions of APIs, especially when

delivering to several consumers. For example, some may need a specific version, some

use a particular version, and some might want to stay on the bleeding edge. As a result,

API developers need to maintain different versions of the same API. In this chapter, I will

explain to you how to:

•	 Version gRPC services

•	 Expose the versions of your Protobuf files with minimal APIs

�Version gRPC Services
Recall from Chapter 4 the package directive in the Protobuf files. This directive

enables us to manage our version of APIs. Imagine that we have two versions of our

CountryService Protobuf example. One controls the country flag and the deletion

capability, and the second does not because we will handle them in another dedicated

service. Listings 6-1 and 6-2 show how you should declare CountryService version 1 and

CountryService version 2, respectively.

Listing 6-1.  CountryService v1 Protobuf

syntax = "proto3";

package gRPCDemo.v1;

option csharp_namespace = "Apress.Sample.gRPC.v1";

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

https://doi.org/10.1007/978-1-4842-8008-9_6

224

service CountryService {

 rpc GetAll(google.protobuf.Empty) returns (stream CountryReply) {}

 rpc Get(CountryIdRequest) returns (CountryReply) {}

 rpc Delete(stream CountryIdRequest) returns (google.protobuf.Empty) {}

 rpc Update(CountryUpdateRequest) returns (google.protobuf.Empty) {}

 �rpc Create(stream CountryCreationRequest) returns (stream

CountryCreationReply) {}

}

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

 bytes Flag = 4;

 google.protobuf.Timestamp CreateDate = 5;

 google.protobuf.Timestamp UpdateDate = 6;

}

message CountryIdRequest {

 int32 Id = 1;

}

message CountryUpdateRequest {

 int32 Id = 1;

 string Description = 3;

 google.protobuf.Timestamp UpdateDate = 6;

}

message CountryCreationRequest {

 string Name = 2;

 string Description = 3;

 bytes Flag = 4;

 google.protobuf.Timestamp CreateDate = 5;

}

Chapter 6 API Versioning

225

message CountryCreationReply {

 int32 Id = 1;

 string Name = 2;

}

Listing 6-2.  CountryService v2 Protobuf

syntax = "proto3";

package gRPCDemo.v2;

option csharp_namespace = "Apress.Sample.gRPC.v2";

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

service CountryService {

 rpc GetAll(google.protobuf.Empty) returns (stream CountryReply) {}

 rpc Get(CountryIdRequest) returns (CountryReply) {}

 rpc Update(CountryUpdateRequest) returns (google.protobuf.Empty) {}

 �rpc Create(stream CountryCreationRequest) returns (stream

CountryCreationReply) {}

}

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

 google.protobuf.Timestamp CreateDate = 5;

 google.protobuf.Timestamp UpdateDate = 6;

}

message CountryIdRequest {

 int32 Id = 1;

}

Chapter 6 API Versioning

226

message CountryUpdateRequest {

 int32 Id = 1;

 string Description = 3;

 google.protobuf.Timestamp UpdateDate = 6;

}

message CountryCreationRequest {

 string Name = 2;

 string Description = 3;

 google.protobuf.Timestamp CreateDate = 5;

}

message CountryCreationReply {

 int32 Id = 1;

 string Name = 2;

}

As you can see, since you are defining your CountryService version 1 and

version 2, there is no conflict between the same names such as CountryService or

CountryCreationService because each of the namespaces contains the entities Apress.

Sample.gRPC.v1 and Apress.Sample.gRPC.v2. Combining the package and csharp_

namespace keywords will allow you to write different versions of a service, with different

URLs for gRPC endpoints. The package directive is meant to define different gRPC URLs

without any conflict to your C# code since the use of csharp_namespace directive will

allow you to isolate your different versions into different C# namespaces.

I suggest storing each version in its folder named with the corresponding version, as

shown in Figure 6-1, for better organization.

Chapter 6 API Versioning

227

Figure 6-1.  Organize country.proto files in separate folders that match
their version

After compiling, Protoc will generate a C# stub in its folder, as shown in Figure 6-2.

Figure 6-2.  C# stubs generated in their respective folder that matches their version

Now, for writing the CountryGrpcService class, you can follow the same pattern

as above by creating CountryGrpcService.cs files in separate folders that match their

version, as shown in Figure 6-3.

Chapter 6 API Versioning

228

Figure 6-3.  Organize CountryGrpcService.cs files in separate folders that match
their version

Writing the implementation of each version of the CountryGrpcService class is quite

simple as well. You have to inherit from the right CountryServiceBase class by importing

the right namespace for the version you want to write, as shown in Listing 6-3 for v1 and

Listing 6-4 for v2 (I voluntarily lightened the code to focus on the namespaces).

Listing 6-3.  Import Version 1 of the CountryServiceBase Class and Write

Version 1 of the CountryGrpcService Class

using Apress.Sample.gRPC.v1;

namespace CountryService.Web.Services.v1;

public class CountryGrpcService : Apress.Sample.gRPC.v1.CountryService.

CountryServiceBase

{

 // Implementation

}

Chapter 6 API Versioning

229

Listing 6-4.  Import Version 2 of the CountryServiceBase Class and Write

Version 2 of the CountryGrpcService Class

using Apress.Sample.gRPC.v2;

namespace CountryService.Web.Services.v2;

public class CountryGrpcService : Apress.Sample.gRPC.v2.CountryService.

CountryServiceBase

{

 // Implementation

}

The last thing you have to do is register each version of the CountryGrpcService

class as a gRPC service in the Program.cs file, as shown in Listing 6-5 (I voluntarily

lightened the code to focus on namespaces (and the usage of C# aliases).

Listing 6-5.  Register Versions 1 and 2 of CountryGrpcService gRPC Service

using System.IO.Compression;

using ICompressionProvider = Grpc.Net.Compression.ICompressionProvider;

using BrotliCompressionProvider = CountryService.Web.Compression.

BrotliCompressionProvider;

using CountryService.Web.Interceptors;

using CountryService.Web;

using Calzolari.Grpc.AspNetCore.Validation;

using CountryService.Web.Validator;

using v1 = CountryService.Web.Services.v1;

using v2 = CountryService.Web.Services.v2;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

Chapter 6 API Versioning

230

 options.CompressionProviders = new List<ICompressionProvider>

 {

 �new BrotliCompressionProvider(CompressionLevel.

Optimal) // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal;

// compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>();

// Register custom ExceptionInterceptor interceptor

 options.EnableMessageValidation();

});

builder.Services.AddGrpcValidation();

builder.Services.AddValidator<CountryCreateRequestValidator>();

builder.Services.AddGrpcReflection();

builder.Services.AddSingleton<CountryManagementService>();

var app = builder.Build();

app.MapGrpcReflectionService();

app.MapGrpcService<v1.CountryGrpcService>();

app.MapGrpcService<v2.CountryGrpcService>();

app.MapGet("/", () => "Communication with gRPC endpoints must be made

through a gRPC client. To learn how to create a client, visit: https://

go.microsoft.com/fwlink/?linkid=2086909");

app.Run();

If you now test your application with gRPCui, you’ll see that you can access both

services, as shown in Figure 6-4.

Chapter 6 API Versioning

231

Figure 6-4.

Invoke both versions of the GetAll gRPC endpoint, and you should see that they are

targeting their respective version by checking the URL called by gRPCui, as shown in

Figure 6-5.

Figure 6-5.  Invoke Versions 1 and 2 of the GetAll gRPC endpoint

Chapter 6 API Versioning

232

�Expose the Versions of Your Protobuf with ASP.NET
Core Minimal APIs
It is not always easy to share Protobuf files with clients, especially if you have

more than one file and have different versions of each. It could be challenging to

manage versioning, and therefore you could mislead a client if you upgrade or

downgrade a version without notifying your client. With ASP.NET Core, exposing content

through an endpoint that does not require any particular framework is possible. This

is particularly interesting in the case of an ASP.NET Core gRPC application that could

expose content with REST endpoints while serving gRPC endpoints.

Introduced in Chapter 2, this feature is called ASP.NET Core minimal APIs. Thanks

to this feature, you will be able to expose your Protobuf files and each of their versions to

your clients with ease and without any additional framework in your gRPC application.

Based on minimal APIs, I will show how to implement three GET endpoints to expose

Protobuf files:

•	 /protos: Exposes in JSON format all versions for each service.

•	 /protos/v{version:int}/{protoName}: Allows downloading the

Protobuf file for a given version of a given service. Minimal APIs URL

pattern supports templated routes (accept route parameters).

•	 /protos/v{version:int}/{protoName}/view: Allows services to serve

the Protobuf file in text format for a given version of a given service.

Let’s implement a new ProtoService class. This service parses a “Protos” folder in

the application using two methods. The first method returns a stringified representation

of a dictionary in JSON. This dictionary contains the version as a key and a collection of

services as a value. The second method returns the content of a proto file from a given

service name and a given version, as shown in Listing 6-6.

Listing 6-6.  Create ProtoService Class that Exposes Protobuf files Versions for a

Given Service and Its Proto File Content

namespace CountryService.gRPC.Services;

public class ProtoService

{

 private readonly string _baseDirectory;

Chapter 6 API Versioning

233

 public ProtoService(IWebHostEnvironment webHost)

 {

 _baseDirectory = webHost.ContentRootPath;

 }

 public Dictionary<string, IEnumerable<string>> GetAll() =>

 Directory.GetDirectories($"{_baseDirectory}/protos")

 �.Select(x => new { version = x, protos = Directory.

GetFiles(x).Select(Path.GetFileName) })

 �.ToDictionary(o => Path.GetRelativePath("protos",

o.version), o => o.protos);

 public string Get(int version, string protoName)

 {

 var filePath = $"{_baseDirectory}/protos/v{version}/{protoName}";

 var exist = File.Exists(filePath);

 return exist ? filePath : null;

 }

 public async Task<string> ViewAsync(int version, string protoName)

 {

 var filePath = $"{_baseDirectory}/protos/v{version}/{protoName}";

 var exist = File.Exists(filePath);

 �return exist ? await File.ReadAllTextAsync(filePath) :

string.Empty;

 }

}

Register your ProtoService class and write the endpoints as shown in Listing 6-7.

Listing 6-7.  Register ProtoService and Write Minimal Endpoints to Expose

Protobuf files Version and Files Content

using System.IO.Compression;

using ICompressionProvider = Grpc.Net.Compression.ICompressionProvider;

using BrotliCompressionProvider = CountryService.Web.Compression.

BrotliCompressionProvider;

Chapter 6 API Versioning

234

using CountryService.Web.Interceptors;

using CountryService.Web;

using Calzolari.Grpc.AspNetCore.Validation;

using CountryService.Web.Validator;

using v1 = CountryService.Web.Services.v1;

using v2 = CountryService.Web.Services.v2;

using CountryService.gRPC.Services;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 �new BrotliCompressionProvider(CompressionLevel.

Optimal) // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal; //

compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>(); // Register custom

ExceptionInterceptor interceptor

 options.EnableMessageValidation();

});

builder.Services.AddGrpcValidation();

builder.Services.AddSingleton<ProtoService>();

builder.Services.AddValidator<CountryCreateRequestValidator>();

builder.Services.AddGrpcReflection();

builder.Services.AddSingleton<CountryManagementService>();

var app = builder.Build();

app.MapGrpcReflectionService();

app.MapGrpcService<v1.CountryGrpcService>();

Chapter 6 API Versioning

235

app.MapGrpcService<v2.CountryGrpcService>();

app.MapGet("/protos", (ProtoService protoService) =>

{

 return Results.Ok(protoService.GetAll());

});

app.MapGet("/protos/v{version:int}/{protoName}", (ProtoService

protoService, int version, string protoName) =>

{

 var filePath = protoService.Get(version, protoName);

 if (filePath != null)

 return Results.File(filePath);

 return Results.NotFound();

});

app.MapGet("/protos/v{version:int}/{protoName}/view", async (ProtoService

protoService, int version, string protoName) =>

{

 var text = await protoService.ViewAsync(version, protoName);

 if (!string.IsNullOrEmpty(text))

 return Results.Text(text);

 return Results.NotFound();

});

app.Run();

If you open a browser and call these endpoints, you should get all versions for the

country.proto file as shown in Figure 6-6 and the content of country.proto as shown in

Figure 6-7.

Figure 6-6.  Get all versions of country.proto via /protos endpoint

Chapter 6 API Versioning

236

Figure 6-7.  Get country.proto file content via /protos/v{version:int}/
{protoName}/view endpoint

Chapter 6 API Versioning

237

�Summary
This chapter has taught you how to expose your customers to your Protobuf files easily.

It is a simple, fast, and efficient solution, but it is not the only option. For example, you

can proceed differently to automate sending a Protobuf file to your clients in FTP or

create file storage and send the link to your clients. I found that the possibility of creating

REST endpoints without a particular framework and exposing Protobuf files was the best

example.

You have learned how to create a server-side gRPC application and distribute your

proto files. Next you will learn how to create .NET 6 applications that use gRPC services.

See you in Chapter 7!

Chapter 6 API Versioning

239
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_7

CHAPTER 7

Create a gRPC Client
You learned everything you need to know in the previous chapters to build an ASP.NET

Core gRPC server application. Now we will tackle the client part: how to create a client,

consume data coming from a gRPC server, handle errors, and much more (in fact, the

whole base of gRPC on the client side) with a console application in .NET 6 before going

more into the concrete task of building a complete web application in the following

chapters. In this chapter, you’ll learn how to

•	 Create a console application

•	 Compile Protobuf files and generate gRPC clients

•	 Consume gRPC services with .NET 6

•	 Optimize performance

•	 Get message validation errors from the server

https://doi.org/10.1007/978-1-4842-8008-9_7

240

�Create a Console Application
We’ll start by creating a gRPC client with a console application. I always start by testing

my functionality quickly with a console application. It’s quick and easy, so let’s go!

Figure 7-1 shows the Visual Studio template to create a console application.

Figure 7-1.  Select the Console Application template

Click Next, and then configure the project name as CountryService.Client and

choose the project location, as shown in Figure 7-2.

Chapter 7 Create a gRPC Client

241

Figure 7-2.  Configure project name and project location

Click Next, and Visual Studio 2022 will display a window named “Additional

information” that allows you to choose the runtime you want to use, .NET 6.0 here, as

shown in Figure 7-3.

Chapter 7 Create a gRPC Client

242

Figure 7-3.  Select the .NET 6.0 runtime

Click Create, and Visual Studio will create your .NET 6 console application.

To get ready to create a .NET 6 gRPC client, you need to download these NuGet

packages:

•	 Google.Protobuf: Provides all Google Protobuf classes like Well-

Known Types

•	 Grpc.Net.ClientFactory: Provides the .NET 6 HTTP client factory

to create gRPC clients (encapsulates the gRPC Channel class, for

example)

•	 Grpc.Tools: Allows Protobufs compilation

Chapter 7 Create a gRPC Client

243

To download these packages, use the commands shown in Listing 7-1.

Listing 7-1.  Download Google.Protobuf, Grpc.Net.ClientFactory, and

Grpc.Tools NuGet packages

Install-Package Google.Protobuf

Install-Package Grpc.Net.ClientFactory

Install-Package Grpc.Tools

If you have followed all previous steps correctly, your CountryServiceClient.csproj

file should look like the content shown in Figure 7-4, and that means you are ready to

create a gRPC client in .NET 6.

Figure 7-4.  CountryServiceClient.csproj file configured to run with .NET 6
gRPC clients

Chapter 7 Create a gRPC Client

244

�Compile Protobuf Files and Generate gRPC Clients
Like a server-side project, you have to add, manually or not, your Protobuf files to your

.NET 6 client application. I suggest, for reasons of clarity, creating a Protos directory

and possible subdirectories for versioning, as shown in Figure 7-5, with version 1 and

version 2 of the country.proto file.

Figure 7-5.  Adding versions 1 and 2 of the country.proto file in Protos folder

Chapter 7 Create a gRPC Client

245

Client side, you have the option to add your Protobuf files other than manually.

Recall that Chapter 6 showed you how to expose Protobuf files over REST endpoints.

Now we are going to import them through the Visual Studio Service Reference wizard,

and I’m sure you’ll like this easy way to import your Protobuf files. Right-click the

CountryService.Client project, select Add, and then click Service Reference, as shown

in Figure 7-6.

Figure 7-6.  Add service reference on .NET 6 console application

Chapter 7 Create a gRPC Client

246

Then the “Add service reference” window appears, as shown in Figure 7-7. For the

gRPC client context, select gRPC. Note that you can add a WCF service and a REST

service via the OpenAPI item.

Figure 7-7.  Select gRPC in the "Add service reference” window

Chapter 7 Create a gRPC Client

247

Click the Next button and then provide the path to where the Protobuf file is stored

on your computer, as shown in Figure 7-8. Ensure that the type of class to be generated is

set to Client.

Figure 7-8.  Add new gRPC service reference from a file

Chapter 7 Create a gRPC Client

248

Click the Next button and then the gRPC service reference should be successfully

added, as shown in Figure 7-9.

Figure 7-9.  gRPC service reference added successfully

Finally, repeat this operation for each Protobuf file you want to add. As I previously

mentioned, you can add new gRPC service references from a URL like the REST endpoint

exposed with the minimal API feature of ASP.NET Core, as shown in Figure 7-10.

Chapter 7 Create a gRPC Client

249

Figure 7-10.  Add new gRPC service reference from a URL

Don’t forget to modify the names of the C# namespaces to fit your needs. You

may need it. For example, it’s easy to keep the server C# namespace, which could be

inappropriate for your client project. I’m sure you don’t want to modify the names of the

C# namespaces to fit your needs that you have not designed yourself. In my example, I’ll

keep the following namespaces in the Protobuf file, depending on the version:

option csharp_namespace = "Apress.Sample.gRPC.v1";

or

option csharp_namespace = "Apress.Sample.gRPC.v2";

Chapter 7 Create a gRPC Client

250

Once you are done with your gRPC services referencing, you’ll see all your

referenced services in the Connected Services window, as shown in Figure 7-11. As you

can see, country.proto version 1 has been referenced from a file, and country.proto

version 2 has been referenced from a URL. For Protobuf files imported via a URL, you’ll

have to move the file to the correct version folder, as shown at the beginning of the

section. Importation by URL drops it off at the Protos root folder.

Figure 7-11.  All referenced gRPC services are visible in the Connected
Services window

Note that to be able to download proto files from Visual Studio 2022, you need to

ensure that server-side HTTP/1 is enabled (as well as HTTP/2) by adding within the

appsettings.json file the configuration shown on Listing 7-2.

Listing 7-2.  Enabling HTTP/1 and HTTP/2 in Kestrel Configuration in

appsettings.json

{

 "AllowedHosts": "*",

 "Kestrel": {

 "EndpointDefaults": {

 "Protocols": "Http1AndHttp2"

 }

 }

}

Chapter 7 Create a gRPC Client

251

Assuming you are done with Protobufs referencing, you can build your project, such

as the server application it should generate (if you are using versioning) and a folder

for each version that contains two files, one for the messages and another for the gRPC

client. Figure 7-12 shows the Country.cs file containing the messages definition and

the CountryGrpc.cs file containing the gRPC client definition. They are both in the v1

(version 1) folder.

Figure 7-12.  Generated Country.cs and CountryGrpc.cs files in the v1 folder

These files are similar to their server version, except CountryGrpc.cs contains the

gRPC client. Listing 7-3 shows the generated CountryServiceClient class.

Listing 7-3.  The Generated CountryServiceClient Class

/// <summary>Client for CountryService</summary>

public partial class CountryServiceClient : grpc::ClientBase<Country

ServiceClient>

{

 /// <summary>Creates a new client for CountryService</summary>

 /// �<param name="channel">The channel to use to make remote

calls.</param>

 public CountryServiceClient(grpc::ChannelBase channel) : base(channel)

 {

 }

 /// �<summary>Creates a new client for CountryService that uses a custom

<c>CallInvoker</c>.</summary>

 /// �<param name="callInvoker">The callInvoker to use to make remote

calls.</param>

Chapter 7 Create a gRPC Client

252

 �public CountryServiceClient(grpc::CallInvoker callInvoker) :

base(callInvoker)

 {

 }

 /// �<summary>Protected parameterless constructor to allow creation of

test doubles.</summary>

 protected CountryServiceClient() : base()

 {

 }

 // Other pieces of generated code

}

There are three different constructors. You can use each of them depending on how

you are building your gRPC client:

•	 The parameterless constructor is protected, so you’ll use it directly.

•	 The second constructor takes as a parameter a CallInvoker class

that allows invoking a single gRPC function.

•	 The third constructor takes as a parameter a Channel class, which is

the most often used, as we have seen in Chapter 4.

I’ll show you how to create a gRPC client using the Channel class in the next

section. Using the CallInvoker class is more recommended for more advanced gRPC

developers, so I won’t cover this part in this book.

�Consume gRPC Services with .NET 6
We’ll build together a simple gRPC client, and in this section I’ll show you the basics

before we create a complete web application in Chapter 9. We will therefore go step

by step.

Listing 7-4 shows the creation of the CountryServiceClient class that takes as

a parameters the Channel class. Note that this code sample uses the C# 9 top-level

statements feature to build a lighter Program.cs file.

Chapter 7 Create a gRPC Client

253

Listing 7-4.  Instantiate the CountryServiceClient Class Using the

Channel Class

using Grpc.Net.Client;

using static Apress.Sample.gRPC.v1.CountryService;

var channel = GrpcChannel.ForAddress("https://localhost:5001");

var countryClient = new CountryServiceClient(channel);

Creating a gRPC client in this way is the simplest method. You can add some

options to the Channel class through an override of the ForAddress() method. For

example, you can add a logger (and I’ll show you how in the following code sample)

that allows you to log certain information during a gRPC call. I won’t describe right

here all possible options, but I will show some of them in this chapter (like options for

managing message size or compression) and introduce others, such as for security,

in Chapter 14. Listing 7-5 shows the command to download the NuGet package that

enables logging within a console application.

Listing 7-5.  Install Microsoft.Extensions.Logging.Console Package That

Enables Logging in Console Applications

Install-Package Microsoft.Extensions.Logging.Console

Listing 7-6 shows a Channel created using the GrpcChannelOptions class, allowing

passing options to this Channel, here, a LoggerFactory which allows to implement and

configure a logger. The AddConsole() method enables logging in the console, and the

minimum level of logging is set to Trace, which enables any log for display.

Listing 7-6.  Add a LoggerFactory to a Channel Class

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

Chapter 7 Create a gRPC Client

https://doi.org/10.1007/978-1-4842-8008-9_14

254

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

var countryClient = new CountryServiceClient(channel);

If you now call a gRPC endpoint—for example, GetAll function, which is a server-

streamed RPC function—you should see all logs (trace, debug, etc.), as shown in

Figure 7-13.

Figure 7-13.  Logging enabled in the console application

You are now ready to consume the CountryServiceClient class. I’ll show you how to

invoke and consume returned data by using the following gRPC endpoints:

•	 GetAll: A server-streaming function

•	 Get: A unary function

Chapter 7 Create a gRPC Client

255

•	 Create: A bidirectional streaming function

•	 Delete: A client-streaming function

The principle is the same as the server regarding streaming methods (client, server,

and bidirectional). Streamed data to be read or written must be iterated:

•	 Streamed responses must be iterated with the

ReadAllAsync() method.

•	 Streamed requests must be iterated with the WriteAsync() method.

Streaming methods also have some particularities:

•	 A gRPC function invocation is an object that implements the

IDisposable interface. Then you have to dispose the invocation

object after you read the response.

•	 A streamed gRPC function invocation is awaitable (async / await),

but it doesn’t have the async suffix on its method name. The streamed

response reading/writing is asynchronous, and the call completion is

asynchronous as well.

•	 When you finish streaming messages into a request to the gRPC

server, you have to tell the server you are done with the streamed data

transmission with the CompleteAsync() method.

•	 If you expect a non-streamed response at the end of client-streamed

call execution, you have to use the await keyword on the invocation

object to get the final response message. If it doesn’t return any

non-streamed response message, you have to use the await keyword

anyway without getting any data. Finally, using await on a call object

completes the call (tells the server the request is made).

Listing 7-7 shows the GetAll RPC method invocation, the asynchronous streamed

response to be read, and headers and trailers accessed, respectively, from the

ResponseHeadersAsync property (which is asynchronous) and GetTrailers() method

(which is synchronous). Trailers must be read after completing the reading of streamed

response messages. Headers can be read before.

Chapter 7 Create a gRPC Client

256

Listing 7-7.  The GetAll Function Invocation, the Streamed Response Read

Asynchronously, and Headers and Trailers Read

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

var countryClient = new CountryServiceClient(channel);

using var serverStreamingCall = countryClient.GetAll(new Empty());

await foreach (var response in serverStreamingCall.ResponseStream.

ReadAllAsync())

{

 Console.WriteLine($"{response.Name}: {response.Description}");

}

// Read headers and trailers

var serverStreamingCallHeaders = await serverStreamingCall.Response

HeadersAsync;

var serverStreamingCallTrailers = serverStreamingCall.GetTrailers();

var myHeaderValue = serverStreamingCallHeaders.GetValue("myHeaderName");

var myTrailerValue = serverStreamingCallTrailers.GetValue("myTrailerName");

Chapter 7 Create a gRPC Client

257

Note that I didn’t used the explicit Dispose() method. Instead, I used the using

keyword, which disposes automatically the serverStreamingCall object at the end of

the statement.

Listing 7-8 shows the Delete() gRPC function invocation. Request messages are

streamed. Once done, the CompleteAsync() method needs to be invoked, and the call is

ended by awaiting the call object named here clientStreamingCall. Note that trailers

can be read before the ResponseAsync property, unlike trailers, which can be read only

after the ResponseAsync property.

Listing 7-8.  The Delete gRPC Function Invocation, Read the Streamed

Response, Complete Message Reading, Finish the Call, and Read Headers and

Trailers

using Apress.Sample.gRPC.v1;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

var countryClient = new CountryServiceClient(channel);

Chapter 7 Create a gRPC Client

258

using var clientStreamingCall = countryClient.Delete();

var countriesToDelete = new List<CountryIdRequest>

{

 new CountryIdRequest {

 Id = 1

 },

 new CountryIdRequest {

 Id = 2

 }

};

// Write

foreach (var countryToDelete in countriesToDelete)

{

 await clientStreamingCall.RequestStream.WriteAsync(countryToDelete);

 �Console.WriteLine($"Country with Id {countryToDelete.Id} set for

deletion");

}

// Tells server that request streaming is done

await clientStreamingCall.RequestStream.CompleteAsync();

// Finish the call by getting the response

var emptyResponse = await clientStreamingCall.ResponseAsync;

// Read headers and Trailers

var clientStreamingCallHeaders = await clientStreamingCall.ResponseHeadersAsync;

var clientStreamingCallTrailers = clientStreamingCall.GetTrailers();

var myHeaderValue = clientStreamingCallHeaders.GetValue("myHeaderName");

var myTrailerValue = clientStreamingCallTrailers.GetValue("myTrailerName");

// var emptyResponse = await clientStreamingCall; // Works as well but

cannot read headers and Trailers

Listing 7-9 shows the Create RPC method, which is a bidirectional streaming

function. A bidirectional RPC method combines the server-streaming reading feature

and client-streaming writing feature. A bidirectional RPC method also needs to invoke

the CompleteAsync() method to tell the server the client is done with streamed request

Chapter 7 Create a gRPC Client

259

messages and then read the server’s streamed response. Headers can be read before

completion of reading streamed response messages and trailers can be read only after.

Note that I chose (for simplicity purposes) to stream all messages to the server before

reading any response, but keep in mind it’s possible to start reading server responses

before all request messages have been sent.

Listing 7-9.  The Create gRPC Function Invocation, Write Streamed Messages to

the Request, Complete the Streaming Request, Read the Streamed Response, and

Read Headers and Trailers

using Apress.Sample.gRPC.v1;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

var countryClient = new CountryServiceClient(channel);

using var bidirectionnalStreamingCall = countryClient.Create();

var countriesToCreate = new List<CountryCreationRequest>

{

 new CountryCreationRequest {

 Name = "France",

Chapter 7 Create a gRPC Client

260

 Description = "Western european country",

 �CreateDate = Timestamp.FromDateTime(DateTime.SpecifyKind

(DateTime.UtcNow, DateTimeKind.Utc))

 },

 new CountryCreationRequest {

 Name = "Poland",

 Description = "Eastern european country",

 �CreateDate = Timestamp.FromDateTime(DateTime.SpecifyKind

(DateTime.UtcNow, DateTimeKind.Utc))

 }

};

// Write

foreach (var countryToCreate in countriesToCreate)

{

 �await bidirectionnalStreamingCall.RequestStream.WriteAsync

(countryToCreate);

 Console.WriteLine($"Country {countryToCreate.Name} set for creation");

}

// Tells server that request streaming is done

await bidirectionnalStreamingCall.RequestStream.CompleteAsync();

// Read

await foreach (var createdCountry in bidirectionnalStreamingCall.Response

Stream.ReadAllAsync())

{

 �Console.WriteLine($"{createdCountry.Name} has been created with Id:

{createdCountry.Id}");

}

// Read headers and Trailers

var bidirectionnalStreamingCallHeaders = await bidirectionnalStreamingCall

.ResponseHeadersAsync;

var bidirectionnalStreamingCallTrailers = bidirectionnalStreamingCall

.GetTrailers();

Chapter 7 Create a gRPC Client

261

var myHeaderValue = bidirectionnalStreamingCallHeaders.GetValue

("myHeaderName");

var myTrailerValue = bidirectionnalStreamingCallTrailers.GetValue

("myTrailerName");

Listing 7-10 shows the Get RPC method. This function can be called synchronously

with the Get method or asynchronously with the GetAsync method. Only Unary

methods have this specificity. The response is directly received after the gRPC function

invocation. Headers can be read before the ResponseAsync property and Trailers can be

read only after.

Listing 7-10.  The Get gRPC Function Invocation (Synchronously and

Asynchronously), the Read Directly from the Server’s Response Message, and

Read Headers and Trailers

using Apress.Sample.gRPC.v1;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

var countryClient = new CountryServiceClient(channel);

var countryCall = countryClient.GetAsync(new CountryIdRequest { Id = 1 });

var country = await countryCall.ResponseAsync;

Console.WriteLine($"{country.Id}: {country.Name}");

Chapter 7 Create a gRPC Client

262

// Read headers and Trailers

var countryCallHeaders = await countryCall.ResponseHeadersAsync;

var countryCallTrailers = countryCall.GetTrailers();

var myHeaderValue = countryCallHeaders.GetValue("myHeaderName");

var myTrailerValue = countryCallTrailers.GetValue("myTrailerName");

// var country = await countryClient.GetAsync(new CountryIdRequest { Id = 1

}); // Works as well but Headers and Trailers cannot be accessed

You may remember from Chapter 3 the introduction of Deadlines, which are

timeouts and are configured on the client side. Listing 7-11 shows how, in any RPC

method (unary, client streaming, server streaming, bidirectional streaming), to configure

a deadline. If a deadline is exceeded, an exception of type RpcException will be thrown.

Note that it is also possible to access trailers in an RpcException, as shown again in

Listing 7-11.

Listing 7-11.  Set a Deadline of 30 Seconds, Catch the Deadline Exception and

Other Exceptions, and Get the Custom correlationId from Trailers Within an

RpcException

using Apress.Sample.gRPC.v1;

using Grpc.Core;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

Chapter 7 Create a gRPC Client

263

var countryClient = new CountryServiceClient(channel);

var countryIdRequest = new CountryIdRequest { Id = 1 };

try

{

 �var countryCall = countryClient.GetAsync(countryIdRequest, deadline:

DateTime.UtcNow.AddSeconds(30));

 var country = await countryCall.ResponseAsync;

 Console.WriteLine($"{country.Id}: {country.Name}");

 // Read headers and Trailers

 var countryCallHeaders = await countryCall.ResponseHeadersAsync;

 var countryCallTrailers = countryCall.GetTrailers();

 var myHeaderValue = countryCallHeaders.GetValue("myHeaderName");

 var myTrailerValue = countryCallTrailers.GetValue("myTrailerName");

}

catch (RpcException ex) when (ex.StatusCode == StatusCode.DeadlineExceeded)

{

 �Console.WriteLine($"Get country with Id: {countryIdRequest.Id} has

timed out");

 var trailers = ex.Trailers;

 var correlationId = trailers.GetValue("correlationId");

}

catch (RpcException ex)

{

 �Console.WriteLine($"An error occured while getting the country with Id:

{countryIdRequest.Id}");

 var trailers = ex.Trailers;

 var correlationId = trailers.GetValue("correlationId");

}

Chapter 7 Create a gRPC Client

264

A gRPC client allows developers to use Interceptors like the gRPC services server-

side. That’s a great thing because, for example, you can customize your logging message

instead of using the LoggerFactory that is passed as a parameter in the gRPC Channel.

gRPC client Interceptors work quite the same as gRPC server Interceptors, except the

methods you have to implement are different:

•	 AsyncClientStreamingCall: The call Interceptor for client-streaming

functions

•	 AsyncDuplexStreamingCall: The call Interceptor for bidirectional

streaming functions

•	 AsyncServerStreamingCall: The call Interceptor for server-streaming

functions

•	 AsyncUnaryCall: The call Interceptor for unary functions

As with the server Interceptors, you have to inherit from the Interceptor class.

Listing 7-12 shows the TracerInterceptor that perform custom logging, for example.

Listing 7-12.  TracerInterceptor That Perform Simple Tracing

using Grpc.Core;

using Grpc.Core.Interceptors;

using Microsoft.Extensions.Logging;

namespace CountryService.Client

{

 public class TracerInterceptor : Interceptor

 {

 private readonly ILogger<TracerInterceptor> _logger;

 public TracerInterceptor(ILogger<TracerInterceptor> logger)

 {

 _logger = logger;

 }

 �public override AsyncClientStreamingCall<TRequest, TResponse> Async

ClientStreamingCall<TRequest, TResponse>(ClientInterceptorContext

<TRequest, TResponse> context, AsyncClientStreamingCallContinuation

<TRequest, TResponse> continuation)

Chapter 7 Create a gRPC Client

265

 where TRequest : class

 where TResponse : class

 {

 �_logger.LogDebug($"Executing {context.Method.Name} {context.

Method.Type} method on server {context.Host}");

 return continuation(context);

 }

 �public override AsyncDuplexStreamingCall<TRequest, TResponse> Async

DuplexStreamingCall<TRequest, TResponse>(ClientInterceptorContext

<TRequest, TResponse> context, AsyncDuplexStreamingCallContinuation

<TRequest, TResponse> continuation)

 where TRequest : class

 where TResponse : class

 {

 �_logger.LogDebug($"Executing {context.Method.Name} {context.

Method.Type} method on service {context.Method.ServiceName}");

 return continuation(context);

 }

 �public override AsyncServerStreamingCall<TResponse> AsyncServerStre

amingCall<TRequest, TResponse>(TRequest request, ClientInterceptor

Context<TRequest, TResponse> context, AsyncServerStreamingCall

Continuation<TRequest, TResponse> continuation)

 where TRequest : class

 where TResponse : class

 {

 �_logger.LogDebug($"Executing {context.Method.Name} {context.

Method.Type} method on service {context.Method.ServiceName}");

 return continuation(request, context);

 }

 �public override AsyncUnaryCall<TResponse> AsyncUnaryCall<TRequest,

TResponse>(TRequest request, ClientInterceptorContext<TRequest,

TResponse> context, AsyncUnaryCallContinuation<TRequest, TResponse>

continuation)

 where TRequest : class

Chapter 7 Create a gRPC Client

266

 where TResponse : class

 {

 �_logger.LogDebug($"Executing {context.Method.Name} {context.

Method.Type} method on service {context.Method.ServiceName}");

 return continuation(request, context);

 }

 }

}

To use the TracerInterceptor from Listing 7-12, create a logger from the

LoggerFactory class, remove the latter from the gRPC Channel, and use the method

Intercept() (on the same Channel instance) that takes as a parameter an instance

of TracerInterceptor, which take itself an instance of the logger and passes it

to the CountryServiceClient class constructor. Listing 7-13 shows how to use

TracerInterceptor on the GetAll() RPC method.

Listing 7-13.  Add TracerInterceptor to the CountryServiceClient Class

Constructor

using CountryService.Client;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Core.Interceptors;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

Chapter 7 Create a gRPC Client

267

var logger = loggerFactory.CreateLogger<TracerInterceptor>();

var channel = GrpcChannel.ForAddress("https://localhost:5001");

var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(logger)));

using var serverStreamingCall = countryClient.GetAll(new Empty());

await foreach (var response in serverStreamingCall.ResponseStream.

ReadAllAsync())

{

 Console.WriteLine($"{response.Name}: {response.Description}");

}

logger.LogDebug("Call to GetAll function ended");

If you execute now the call on the GetAll function, you should see the logs in the

console as shown in Figure 7-14.

Figure 7-14.  TracerInterceptor in action on GetAll function call

The last thing you should know is that, unlike the HttpClient class for REST calls,

the gRPC client is not disposable, which means it doesn’t inherit from the IDisposable

interface. The gRPC Channel is disposable. Once you don’t need your gRPC Channel,

you should call Dispose() to close all active calls (then ensure you don’t have active

calls by waiting for all of them to complete) and dispose of the HttpMessageInvoker,

which performs HTTP calls. You should also use the ShutDownAsync() method, which

unregisters the gRPC Channel. Listing 7-14 shows how to dispose of and unregister the

gRPC Channel.

Chapter 7 Create a gRPC Client

268

Listing 7-14.  Dispose and Unregister a gRPC Channel

var channel = GrpcChannel.ForAddress("https://localhost:5001");

var countryClient = new CountryServiceClient(channel);

// Perform calls

channel.Dispose();

await channel.ShutdownAsync();

Reusing the same gRPC Channel for all your clients helps keep good performance.

The client doesn’t reopen a new TCP connection after opening a new socket, negotiating

TLS (a secure connection), and opening a new HTTP/2 connection. You have to ensure

that your Channel is not disposed by avoiding calling ShutDownAsync() or Dispose()

methods.

This isn’t the only way to help performance. Keep reading to see more ways to

optimize performance.

�Optimize Performance
In this last section of the chapter, I will show you how to improve the performance of

your gRPC client. We can tweak different options to optimize performance, such as:

•	 Configure compression (we previously configured on the server side,

so now I will show you how to benefit activate it on the client side)

•	 Define the maximum message size

•	 Keep an HTTP/2 connection open to avoid the opening/closing cycle

of a connection, which can prevent a certain delay

•	 Increase the number of HTTP/2 connections when the limit is

reached to avoid calls being queued

�Take Advantage of Compression
Chapter 5 showed you how to configure the compression on the server side,

specifically with a custom compressor provider: Brotli. The compression was

configured but not enabled until a client sends the accept-encoding request header,

Chapter 7 Create a gRPC Client

269

HeaderGrpcAcceptEncoding. Listing 7-15 shows how to check the headers server side

with the help of the GetHttpContext() method (which returns the HttpContext of the

current gRPC request) on the ServerCallContext class.

Listing 7-15.  Get Headers from the Current gRPC Request

var headers = context.GetHttpContext().Request.Headers;

When a client passes in the headers the accept-encoding header with the “br”value

you should be able to see it server side, as shown in Figure 7-15.

Figure 7-15.  Get HeaderGrpcAcceptEncoding server side

To make the compression possible, you have to set up the compression client side by

adding the Brotli compression into the Channel configuration, as shown in Listing 7-16.

(FYI, Brotli is 20% more efficient than Gzip in terms of compression).

Listing 7-16.  Enabling Brotli Compression on the gRPC Channel

using CountryService.Client.Compression;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Net.Client;

using Grpc.Net.Compression;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using static Apress.Sample.gRPC.v1.CountryService;

Chapter 7 Create a gRPC Client

270

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider()

 }

});

// var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(logger)));

var countryClient = new CountryServiceClient(channel);

using var serverStreamingCall = countryClient.GetAll(new Empty());

await foreach (var response in serverStreamingCall.ResponseStream.

ReadAllAsync())

{

 Console.WriteLine($"{response.Name}: {response.Description}");

}

channel.Dispose();

await channel.ShutdownAsync();

Chapter 7 Create a gRPC Client

271

If you run your client (GetAll RPC method), the server should receive the

HeaderGrpcAcceptEncoding header, which you can see in in the server logs, as shown in

Figure 7-16.

Figure 7-16.  Message compression in action when calling GetAll endpoint with
Brotli compression provider enabled client side and configured server side

Note that only responses are compressed, not request messages.

Naturally, the client decompresses messages, which you also can see in the logs, as

shown in Figure 7-17.

Chapter 7 Create a gRPC Client

272

Figure 7-17.  Message decompression client side

�Define a Limit to Message Size
Like the server-side application, a gRPC client also can limit the size of the incoming and

outgoing messages. It’s configurable with the GrpcChannelOptions class, as shown in

Listing 7-17.

Listing 7-17.  Set the Maximum Size to 6 MB for Incoming and Outgoing

Messages

using CountryService.Client.Compression;

using Grpc.Net.Client;

using Grpc.Net.Compression;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using static Apress.Sample.gRPC.v1.CountryService;

Chapter 7 Create a gRPC Client

273

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider()

 },

 MaxReceiveMessageSize = 6291456, // 6 MB,

 MaxSendMessageSize = 6291456 // 6 MB

});

var countryClient = new CountryServiceClient(channel);

An RpcException will be raised if the maximum size is exceeded.

�Keep HTTP/2 Connections Open
Regular pings keep an HTTP/2 connection open. It may be a good idea to

prevent it from closing prematurely by keeping it open for a future call since

opening another connection may take some time. Listing 7-18 shows how to

configure a SocketHttpHandler to be bound to the HttpHandler property of the

GrpcChannelOptions class, that enable, on a Channel, regular pings to be made to the

server, every 15 seconds, for example:

Listing 7-18.  Enabling Pings to the Server Every 15 Seconds to Keep Alive

HTTP/2 Connection

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Net.Http;

using static Apress.Sample.gRPC.v1.CountryService;

Chapter 7 Create a gRPC Client

274

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var handler = new SocketsHttpHandler

{

 KeepAlivePingDelay = TimeSpan.FromSeconds(15)

};

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 HttpHandler = handler

});

// var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(logger)));

var countryClient = new CountryServiceClient(channel);

Note  You must perform at least one call to an RPC method to enable the ping; if
you only create a Channel and/or only create a client without making any call, no
ping will be sent to the server.

It’s possible to set a limit to the reusability of an HTTP/2 connection. Listing 7-19

shows how to set a maximum idle time of 5 minutes for a connection to be reused; after 5

minutes, the idle connection will be closed and no more pings will be sent to the server.

It’s possible to set an infinite idle time.

Listing 7-19.  Set Up a Maximum Idle Time of 5 Minutes for HTTP/2 Connections

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Net.Http;

using static Apress.Sample.gRPC.v1.CountryService;

Chapter 7 Create a gRPC Client

275

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var handler = new SocketsHttpHandler

{

 KeepAlivePingDelay = TimeSpan.FromSeconds(15),

 �PooledConnectionIdleTimeout = TimeSpan.FromMinutes(5),

// Timeout.InfiniteTimeSpan for infinite idle connection

};

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 HttpHandler = handler

});

// var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(logger)));

var countryClient = new CountryServiceClient(channel);

Finally, I recommend ensuring that pings time out after a specified time period,

because sometimes the server may be slow to answer, in which case the pings could

flood the server if they don’t have a timeout set. Listing 7-20 shows how to configure a

timeout for pings to 5 seconds.

Listing 7-20.  Configure a Timeout of 5 Seconds on Pings

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Net.Http;

using static Apress.Sample.gRPC.v1.CountryService;

Chapter 7 Create a gRPC Client

276

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var handler = new SocketsHttpHandler

{

 KeepAlivePingDelay = TimeSpan.FromSeconds(15),

 �PooledConnectionIdleTimeout = TimeSpan.FromMinutes(5),

// Timeout.InfiniteTimeSpan for infinite idle connection

 KeepAlivePingTimeout = TimeSpan.FromSeconds(5)

};

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 HttpHandler = handler

});

// var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(logger)));

var countryClient = new CountryServiceClient(channel);

You can appreciate the regular ping with the logs, as shown in Figure 7-18.

Figure 7-18.  Logging pings that are set up to fire every 15 seconds

Chapter 7 Create a gRPC Client

277

�Increase HTTP/2 Maximum Connections
Like Kestrel, default servers enable 100 active requests simultaneously for a single HTTP/2

connection by default. A gRPC channel uses a single HTTP/2 connection, and sometimes

the workload may require more than 100 concurrent requests. What happens if a single

HTTP/2 connection receives more than 100 calls? They are queued and wait for active

request processing to end. It’s possible to bypass that limitation and tell a gRPC channel to

open additional HTTP/2 connections if needed. Listing 7-21 shows how to enable multiple

HTTP/2 connections for the same Channel over the SocketsHttpHandler class. Note that

it can be combined with other SocketsHttpHandler options.

Listing 7-21.  Enable Multiple HTTP/2 Connections on a gRPC Channel

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Net.Http;

using static Apress.Sample.gRPC.v1.CountryService;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var handler = new SocketsHttpHandler

{

 KeepAlivePingDelay = TimeSpan.FromSeconds(15),

 PooledConnectionIdleTimeout = TimeSpan.FromMinutes(5),

 KeepAlivePingTimeout = TimeSpan.FromSeconds(5),

 EnableMultipleHttp2Connections = true

};

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 HttpHandler = handler

});

Chapter 7 Create a gRPC Client

278

// var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(logger)));

var countryClient = new CountryServiceClient(channel);

�Get Message Validation Errors from the Server
Chapter 5 introduced you to a solution to overcome the lack of native message validation

in ASP.NET Core gRPC. As you can saw, the server throws an RpcException with the

status INVALIDARGUMENT and a message with the errors concatenated together. In

this section, I propose a solution that allows you to get the errors in a more-detailed way

on the client side—that is, to receive the following in a structured way:

•	 The name of the property for which the validation error is raised

•	 The value of the property that caused the validation error

•	 The error message

I think you will agree it is beneficial to retrieve this information. You will interpret

errors more easily than with the gRPC error message coming from the RpcException. To

do so, download the required package with the following command:

Install-Package Calzolari.Grpc.Net.Client.Validation

This package exposes an extension method named GetValidationErrors(). If you

use it, it will return a null result if there is no validation error. But I suggest you use it over

a when statement that catches an INVALIDARGUMENT precisely. Then you’ll have a

catch block dedicated to validation errors, which makes the code cleaner, as shown in

Listing 7-22.

Listing 7-22.  Using GetValidationErrors on a catch Block

using Apress.Sample.gRPC.v1;

using Calzolari.Grpc.Net.Client.Validation;

using Google.Protobuf.WellKnownTypes;

using Grpc.Core;

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using static Apress.Sample.gRPC.v1.CountryService;

Chapter 7 Create a gRPC Client

279

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions

{

 LoggerFactory = loggerFactory

});

var countryClient = new CountryServiceClient(channel);

using var bidirectionnalStreamingCall = countryClient.Create();

try

{

 var countriesToCreate = new List<CountryCreationRequest>

 {

 new CountryCreationRequest

 {

 Name = "Japan",

 Description = "",

 �CreateDate = Timestamp.FromDateTime(DateTime.SpecifyKind

(DateTime.UtcNow, DateTimeKind.Utc))

 }

 };

 // Write

 foreach (var countryToCreate in countriesToCreate)

 {

 �await bidirectionnalStreamingCall.RequestStream.WriteAsync

(countryToCreate);

 �Console.WriteLine($"Country {countryToCreate.Name} set for

creation");

 }

Chapter 7 Create a gRPC Client

280

 // Tells server that request streaming is done

 await bidirectionnalStreamingCall.RequestStream.CompleteAsync();

 // Read

 �await foreach (var createdCountry in bidirectionnalStreamingCall.

ResponseStream.ReadAllAsync())

 {

 �Console.WriteLine($"{createdCountry.Name} has been created with Id:

{createdCountry.Id}");

 }

}

catch (RpcException ex) when (ex.StatusCode == StatusCode.InvalidArgument)

{

 var errors = ex.GetValidationErrors();

 Console.WriteLine(ex.Message);

}

catch (RpcException ex)

{

 Console.WriteLine(ex.Message);

}

It’s cleaner, isn’t it?.

After executing this code, you’ll get the result shown in Figure 7-19.

Figure 7-19.  Get detailed validation errors with the GetValidationErrors
extension method

If you are using my server-side package, I strongly encourage you to use the client-

side package. It really helped me to debug validation errors returned by the server. Enjoy!

Chapter 7 Create a gRPC Client

281

�Summary
In this chapter, you learned the basics of generating C# stubs from local and remote

proto files, configuring a Channel, creating a gRPC client, and performing a call with

any gRPC function type. You learned as well how to take advantage of Interceptors

client side and improve performance for high-load scenarios. I did not cover all gRPC

client features in .NET 6. For example, I presented a simple console application. In

Chapter 9, which is a complete ASP.NET Core 6 project, you’ll learn more about gRPC

clients in ASP.NET Core 6, especially how to use them with dependency injection and

the gRPC client factory. You also learned how to set up a deadline, which is a significant

feature, and cancel a request. Finally, I shared my validation package, which I hope will

help you too. Before you start creating a gRPC application, in the next chapter, we will

see together, for those are interested in, learn how to migrate with some basics tips a

legacy WCF app to gRPC.

Chapter 7 Create a gRPC Client

283
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_8

CHAPTER 8

From WCF to gRPC
Congratulations! At this point, you have learned the gRPC basics. If you aren’t interested

in migrating a Windows Communication Foundation (WCF) application to gRPC, you

can go straight to Chapter 9. Otherwise, this chapter is intended for you, because you’ll

need to identify what and how to migrate from WCF to gRPC. Although I won’t teach you

WCF in this chapter, I’ll guide you with some basics and resources to help you migrate

from WCF to gRPC, which, as you’ll see, is easy! In this chapter, you’ll learn

•	 Differences and similarities between WCF and gRPC

•	 What and what not to migrate from WCF to gRPC

�Differences and Similarities Between WCF
and gRPC
WCF and gRPC work with a code generation approach, unlike REST. WCF is rather code-

first oriented (gRPC is schema-first oriented because of the Protobuf file) because your

first code your data contracts and your services. When you start your WCF application,

it opens a Web Services Description Language (WSDL) file on the Internet to create a

client proxy. But that’s not all. Unlike gRPC, the configuration of a WCF endpoint is

cumbersome. The endpoint XML configuration resides in a configuration file (like the

endpoint URL, the type of binding, and the service behavior). There is no equivalent in

gRPC, except for Kestrel configuration in the appsetting.json file or code within the

Channel options configuration. (The next section provides an example of code migration

from WCF to gRPC so that the process is not so vague.)

https://doi.org/10.1007/978-1-4842-8008-9_8

284

Unlike gRPC, WCF implements the Simple Object Access Protocol (SOAP), which

uses XML to exchange data, and implements Representational State Transfer (REST)

architecture in what is commonly known as WCF REST (which generally is generally

poorly understood by developers). Thus, whereas gRPC can transport data only with

HTTP/2, WCF offers several transport protocols, such as:

•	 HTTP/1.1

•	 HTTP/1.1 with TLS

•	 Transmission Control Protocol (TCP)

•	 Named Pipe

•	 Message Queuing (MSMQ)

Table 8-1 shows each of the transport protocols offered by WCF, as well as the

associated WCF bindings.

A WCF binding is a way to transport data over the network. If you want to learn

more about WCF bindings and each transport protocol, you can read this great article:

https://www.dotnettricks.com/learn/wcf/understanding-various-types-of-wcf-

bindings.

Table 8-1.  All Transport Protocols and Bindings Supported by WCF

Transport Protocol Encoding WCF Bindings

HTTP 1.1/HTTPS 1.1 XML, Text (REST) BasicHttpBinding

WSHttpBinding

WSDualHttpBinding

WSFederationHttpBinding

TCP Binary NetTcpBinding

Named Pipe Binary NetNamedPipeBinding

MSMQ Binary NetMsmqBinding

MsmqIntegrationBinding

Chapter 8 From WCF to gRPC

https://www.dotnettricks.com/learn/wcf/understanding-various-types-of-wcf-bindings
https://www.dotnettricks.com/learn/wcf/understanding-various-types-of-wcf-bindings

285

Table 8-1 doesn’t include CustomBinding, which enables you to create your own

binding rules if none of the listed bindings meet your needs. You can, for example,

implement binary data transport in HTTP/1.1. I won’t go further into this topic because

there is no need to know this for gRPC, but understand that you can’t customize the data

transport in gRPC, whereas as you can with WCF.

WCF’s variety of transport options is the opposite of gRPC with its unique transport

with HTTP/2, which is not a disadvantage. It’s even advantageous since gRPC

standardizes data transport with a single protocol and, therefore, offers more simplicity

while enjoying the best possible performance with HTTP/2 combined with binary data

transport.

In terms of interoperability, both WCF and gRPC support many languages. Still,

if we compare gRPC versus SOAP web services, we can see that many languages

support SOAP:

•	 PHP

•	 Java

•	 Ruby

•	 Python

•	 JavaScript/TypeScript (Node.js)

•	 .NET

•	 C/C++

•	 Go (client only)

Go, introduced in Chapter 5, supports gRPC but doesn’t support SOAP server side

.NET 6 doesn’t support WCF but supports SOAP clients.

Both gRPC and WCF are used to build back-end to back-end web services (and

microservices). Both are not compatible with browsers as well.

Regarding security, WCF is compatible with Windows authentication, whereas

gRPC is not compatible with Windows authentication due to HTTP/2. Both support JWT

(JSON Web Token) authentication.

Chapter 8 From WCF to gRPC

286

�What and What Not to Migrate from WCF to gRPC
To help you understand how to migrate from WCF to gRPC, I will use the

CountryService example we have used so far. I’ll use an original way to migrate from

WCF by showing you how CountryService would look in its WCF version.

If you are a WCF developer, you are already familiar with the DataContract,

DataMember, ServiceContract, OperationContract, and FaultContract attributes.

If you’re a gRPC developer, you need to know that they are class attributes that are

equivalent (in their meaning) to the messages, services, rpc, and oneof Protobuf

keywords. You can define error messages in a Oneof property, and the FaultContract (a

particular DataContract) can take any type like Oneof. Table 8-2 shows that comparison.

Within the C# code, you can convert some functionality to gRPC. You can consider

the WCF headers IncomingMessageHeader class and OutgoingMessageHeader class to

be Trailers (Metadata class), and the FaultContract can be treated in C# code as an

RpcException, as shown in Table 8-3.

Table 8-3.  WCF C# Classes vs. Their gRPC Equivalent

WCF gRPC

MessageHeader/OutgoingMessageHeader Metadata

MessageHeader/IncomingMessageHeader Metadata

FaultContract RpcException

IServiceBehavior, IErrorHandler,

IParameterInspector, IOperationBehavior

Interceptor

Table 8-2.  WCF C# Attributes and Classes vs. Protobuf Keywords

WCF Protobuf

DataContract/DataMember message

ServiceContract service

OperationContract rpc

FaultContract oneof

Chapter 8 From WCF to gRPC

287

The purpose of each of the four WCF interfaces in the final row of Table 8-3 is

described here:

•	 IServiceBehavior: Allows calls to be intercepted on the operations

of a given service

•	 IErrorHandler: Allows catching an error when calling an operation

•	 IParameterInspector: Allows parameters to be intercepted during a

call to an operation

•	 IOperationBehavior: Allows intercepting a particular call on a

service operation

To perform these same actions in gRPC, these four interfaces in WCF can be replaced

with a gRPC interceptor, previously described in detail in Chapter 5. You already know

that gRPC interceptors are very easy to implement and use. You can easily figure out how

to migrate implementations of these four interfaces into one or more interceptors.

WCF supports four types of services like gRPC does. You can convert each type of

WCF service to its gRPC equivalent, as shown in Table 8-4.

There is no equivalent for gRPC client streaming in WCF, so as a WCF developer, it’s a

good reason to jump to gRPC.

Let’s see now what CountryService would look like as a WCF web service. Listing 8-1

shows the CountryService messages implemented in C# directly for WCF as DataContract,

which includes the ErrorContract to be used as FaultContract.

Table 8-4.  WCF Type of Service vs. Equivalent on gRPC

WCF gRPC

Request/reply Unary

Duplex (with session and client callback interface) Server streaming

Full duplex (with session) Bidirectional

One-way Unary without expected response

Chapter 8 From WCF to gRPC

288

Listing 8-1.  CountryService Messages Implemented As DataContract,

Including the ErrorContract to Handle Errors As a FaultContract

using System;

using System.Runtime.Serialization;

namespace Contracts

{

 [DataContract]

 public class CountryReply

 {

 [DataMember]

 public int Id { get; set; }

 [DataMember]

 public string Name { get; set; }

 [DataMember]

 public string Description { get; set; }

 [DataMember]

 public byte[] Flag { get; set; }

 [DataMember]

 public DateTime CreateDate { get; set; }

 [DataMember]

 public DateTime UpdateDate { get; set; }

 }

 [DataContract]

 public class CountryIdRequest

 {

 [DataMember]

 public int Id { get; set; }

 }

 [DataContract]

 public class CountryUpdateRequest

 {

Chapter 8 From WCF to gRPC

289

 [DataMember]

 public int Id { get; set; }

 [DataMember]

 public string Description { get; set; }

 [DataMember]

 public DateTime UpdateDate { get; set; }

 }

 [DataContract]

 public class CountryCreationRequest

 {

 [DataMember]

 public string Name { get; set; }

 [DataMember]

 public string Description { get; set; }

 [DataMember]

 public byte[] Flag { get; set; }

 [DataMember]

 public DateTime CreateDate { get; set; }

 }

 [DataContract]

 public class CountryCreationReply

 {

 [DataMember]

 public int Id { get; set; }

 [DataMember]

 public string Name { get; set; }

 }

 [DataContract]

 public class ErrorContract

 {

 [DataMember]

 public string CorrelationId { get; set; }

Chapter 8 From WCF to gRPC

290

 [DataMember]

 public string Message { get; set; }

 }

}

The DataContract attribute must precede each message class, and DataMember must

decorate each field of the message class. The DataMember indicates that the field is part

of the DataContract and is serializable. Note that the Protobuf language doesn’t have a

similar keyword for this. Only the message property is needed to declare a field to be part

of the message. However, with WCF, there is no need to order fields for serialization like

in the Protobuf language.

Listing 8-2 shows the definition of the CountryService class using

ServicesContract and OperationContract attributes. This example includes a

FaultContract typed ErrorContract, which is the type of the FaultContract returned

to the client in case of error. This example is the simplest way to implement in WCF. No

streaming is required.

Listing 8-2.  CountryService Definition with WCF Including a FaultContract of

Type ErrorContract

[ServiceContract]

public interface ICountryService

{

 [OperationContract]

 [FaultContract(typeof(ErrorContract))]

 Task<CountryReply> Get(CountryIdRequest request);

 [OperationContract(IsOneWay = true)]

 [FaultContract(typeof(ErrorContract))]

 Task Update(CountryUpdateRequest request);

 [OperationContract]

 [FaultContract(typeof(ErrorContract))]

 Task<CountryReply> GetAll();

 [OperationContract(IsOneWay = true)]

 [FaultContract(typeof(ErrorContract))]

 Task Delete(List<CountryIdRequest> requestList);

Chapter 8 From WCF to gRPC

291

 [OperationContract]

 [FaultContract(typeof(ErrorContract))]

 �Task<List<CountryCreationReply>> Create(List<CountryCreationRequest>

requestList);

}

Unlike gRPC, WCF doesn’t require you to send an empty message when expecting

a response. With WCF, adding IsOneWay = true suffices to tell the client that the server

won’t respond. This example doesn’t use any streaming feature with WCF and doesn’t

require complicated operations. But with gRPC, it’s possible to implement streaming to

pass a collection of data between the client and the server for better performance, and

the goal of this section is promoting gRPC streaming features.

Looking at the service’s configuration, we saw in Chapter 7 that it is easy to configure

gRPC with options. With WCF, the configuration is complicated. You must configure the

services in an XML configuration file. In this file, you declare services in a section called

services. You define behaviors, such as a timeout or error details, in a behaviors section.

Finally, you transport data, like with compression and bindings, in a bindings section.

Listing 8-3 shows a CountryService WCF configuration. It limits the size of messages

to 6 MB and enables Brotli compression. It also limits the request execution time to 30

seconds. To limit the execution time, the configuration authorizes the metadata and

error transport with a custom binding. This method allows transporting compressed

data with the HTTP protocol.

Listing 8-3.  Server-Side XML Configuration of the WCF Version of

CountryService

<system.serviceModel>

 <services>

 �<service behaviorConfiguration="WebServiceBehavior" name="Country

Service.Web.Services.V1.CountryService">

 �<endpoint binding="customBinding" bindingConfiguration="custom

Binding_ICountryService" contract="CountryService.Web.Services.

V1.ICountryService"/>

 �<endpoint address="mex" binding="mexHttpBinding"

contract="IMetadataExchange"/>

 </service>

 </services>

Chapter 8 From WCF to gRPC

292

 <behaviors>

 <serviceBehaviors>

 <behavior name="WebServiceBehavior">

 <serviceMetadata httpGetEnabled="true"/>

 <serviceDebug includeExceptionDetailInFaults="true"/>

 <serviceTimeouts transactionTimeout="00:30:00"/>

 </behavior>

 </serviceBehaviors>

 <endpointBehaviors>

 <behavior name="RestBehavior">

 <webHttp helpEnabled="true"/>

 </behavior>

 </endpointBehaviors>

 </behaviors>

 <extensions>

 <bindingElementExtensions>

 �<add name="brotliMessageEncoding" type="CountryService.Web.

Compression.BrotliCompressionProvider, CountryService.Web.

Compression, Version=4.0.0.0, Culture=neutral, PublicKeyToken=null"/>

 </bindingElementExtensions>

 </extensions>

 <bindings>

 <customBinding>

 �<binding name="customBinding_ICountryService"

maxBufferPoolSize="6291456" maxBufferSize="6291456"

maxReceivedMessageSize="6291456" receiveTimeout="00:30:00"

sendTimeout="00:30:00">

 <brotliMessageEncoding innerMessageEncoding="textMessageEncoding"/>

 �<readerQuotas maxDepth="32" maxStringContentLength="6291456"

maxArrayLength="6291456" maxBytesPerRead="6291456"

maxNameTableCharCount="6291456"/>

 </binding>

 </customBinding>

 </bindings>

 �<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSite

BindingsEnabled="true"/>

</system.serviceModel>

Chapter 8 From WCF to gRPC

293

On the client side, WCF requires a configuration as well by code or in XML like the

server part, the configuration need to define the service URL, and the binding required

to define the compression provider, as shown in Listing 8-4.

Listing 8-4.  Client-Side XML Configuration of the WCF Version of

CountryService

<system.serviceModel>

 <extensions>

 <bindingElementExtensions>

 �<add name="brotliMessageEncoding" type="CountryService.Web.

Compression.BrotliCompressionProvider, CountryService.Web.

Compression, Version=4.0.0.0, Culture=neutral, PublicKeyToken=null"/>

 </bindingElementExtensions>

 </extensions>

 <bindings>

 <customBinding>

 �<binding name="customBinding_ICountryService"

receiveTimeout="00:30:00" sendTimeout="00:30:00">

 <brotliMessageEncoding innerMessageEncoding="textMessageEncoding"/>

 �<httpTransport hostNameComparisonMode="StrongWildca

rd" manualAddressing="False" maxBufferPoolSize="6291456"

maxBufferSize="6291456" maxReceivedMessageSize="6291456" authentica

tionScheme="Anonymous" bypassProxyOnLocal="False" realm=""/>

 </binding>

 </customBinding>

 </bindings>

 <client>

 �<endpoint address="https://localhost:5001/CountryService.

svc" binding="customBinding" bindingConfiguration="customBin

ding_ICountryService" contract="CountryService.Web.Services.

V1.ICountryService" name="customBinding_ICountryService"/>

 <metadata>

 <policyImporters>

Chapter 8 From WCF to gRPC

294

 �<extension type="CountryService.Web.Compression.

BrotliCompressionProvider, CountryService.Web.Compression,

Version=4.0.0.0, Culture=neutral, PublicKeyToken=null"/>

 </policyImporters>

 </metadata>

 </client>

</system.serviceModel>

As you can see, the configuration is heavy, and I don’t really like it. gRPC simplifies

configuration. Except for the compression and message size limit, you don’t need to

migrate that part.

For headers, I previously showed you how to read and write into Trailers, the

equivalent of which in WCF is the MessageHeader. I also previously showed you that

you can read incoming headers with the IncomingMessageHeader class and write

outgoing headers with the OutgoingMessageHeader class. Listing 8-5 shows how to

read and write a correlationId into headers on the server side through the WCF

OperationContext class, similar to the ServerCallContext with gRPC. I also take this

opportunity to show you how to expose your endpoints as we would have done with the

CountryGrpcService class.

Listing 8-5.  Read and Write a correlationId into Headers Server side and

Expose Endpoints with WCF

using System.Collections.Generic;

using System.ServiceModel;

using System.ServiceModel.Activation;

using System.ServiceModel.Channels;

using System.Threading.Tasks;

using Apress.Sample.WCF.v1;

namespace CountryService.Web.Services.V1

{

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]

 �[AspNetCompatibilityRequirements(RequirementsMode = AspNet

CompatibilityRequirementsMode.Allowed)]

 public class CountryService : ICountryService

Chapter 8 From WCF to gRPC

295

 {

 private CountryManagementService _countryManagementService;

 �public InvoiceServices(CountryManagementService

countryManagementService)

 {

 _countryManagementService = countryManagementService;

 }

 public async Task<IEnumerable<CountryReply>> GetAllAsync()

 {

 // Read incoming header

 �HttpRequestMessageProperty requestProperty = (HttpRequest

MessageProperty)OperationContext.Current.IncomingMessage

Properties[HttpRequestMessageProperty.Name];

 �string correlationId = requestProperty.Headers

["correlationId"];

 // Write outgoing header

 �MessageHeader outGoingHeader = MessageHeader.CreateHeader

("correlationId", "http://Microsoft.WCF.Documentation",

correlationId); OperationContext.Current.

OutgoingMessageHeaders.Add(outGoingHeader);

 return _countryManagementService.GetAllAsync();

 }

 }

}

You will notice that WCF has quite a few attributes that do not exist in

gRPC. You will not need to migrate them to gRPC, such as the ServiceBehavior

and the AspNetCompatibilityRequirements attributes. The rest remains the same,

such as the GetAllAsync() method’s body and the dependency injection of the

CountryManagementService service.

Client side, it’s pretty much the same piece of code. Within an

OperationContextScope, you can read headers through the same OperationContext

object as server side, as shown in Listing 8-6.

Chapter 8 From WCF to gRPC

296

Listing 8-6.  Read and Write into Headers Client Side Through an

OperationContextScope

using System.Collections.Generic;

using System.ServiceModel;

using System.ServiceModel.Channels;

using System.Threading.Tasks;

using Apress.Sample.WCF.v1;

namespace TIO.Automation

{

 class Program

 {

 static async Task Main(string[] args)

 {

 �using (CountryServiceClient service = new CountryServiceClient

("customBinding_ICountryService"))

 {

 �using (OperationContextScope scope = new OperationContext

Scope(service.InnerChannel))

 {

 // Read incoming header

 �HttpRequestMessageProperty requestProperty = (Http

RequestMessageProperty)OperationContext.Current.

IncomingMessageProperties[HttpRequestMessage

Property.Name];

 �string correlationId = requestProperty.

Headers["correlationId"];

 // Write outgoing header

 �MessageHeader outGoingHeader = MessageHeader.

CreateHeader("correlationId", "http://Microsoft.WCF.

Documentation", correlationId);

 �OperationContext.Current.OutgoingMessageHeaders.

Add(outGoingHeader);

Chapter 8 From WCF to gRPC

297

 �IEnumerable<CountryReply> listClient = await service.

GetAllAsync();

 }

 }

 }

 }

}

As you can see, for this part (headers), there are no considerable changes to make

(only read/write classes differ).

Migrating a duplex or full-duplex WCF service is not complicated but cannot be done

with gRPC in the same way. Unlike WCF, if you remember the previous chapter, gRPC

doesn’t have the notion of callback. A callback is a function that is executed by another

function when a certain event happens. Streaming works without any callback, but let’s see

how would look like the Create() (which is a bidirectional streaming service) RPC method

that accepts as a request parameter a streamed collection of CountryCreationRequest

objects and sends back a streamed collection of CountryCreationReply objects.

Listing 8-7 shows the CreateAsync() method invoked by the client, and the server

replies with a callback that notifies the client of the state of the creation. The concrete

implementation of CreateAsync() is defined server side, and the concrete implementation

of the ReplyAsync() callback method is defined client side. This process is the same for

duplex services (server streaming). A callback is needed to notify the client.

Listing 8-7.  WCF version of the Create Function Defined over a Full-Duplex

Service

using System.ServiceModel;

using System.Threading.Tasks;

using Apress.Sample.WCF.v1;

namespace TIO.WebServices.Services.Interfaces

{

 �[ServiceContract(SessionMode = SessionMode.Required,

CallbackContract = typeof(ICountryServiceCallback))]

 public interface ICountryService

 {

 [OperationContract(IsOneWay = true)]

Chapter 8 From WCF to gRPC

298

 Task CreateAsync(CountryCreationRequest request);

 }

 [ServiceContract]

 public interface ICountryServiceCallback

 {

 [OperationContract(IsOneWay = true)]

 Task ReplyAsync(CountryCreationReply reply);

 }

}

gRPC streaming makes the code simpler compared to WCF, and I love it. You

need to understand here that there is no callback to be implemented. You can easily

migrate the server-side and client-side parts of your WCF application to gRPC using

the IServerStreamWriter and IAsyncStreamReader interfaces, as I showed you in the

Chapter 5.

For more guidance on migration from WCF to gRPC, the following excellent GitHub

repository provides complete code samples of WCF services migrated to gRPC: https://

github.com/dotnet-architecture/grpc-for-wcf-developers.

One more thing: if you are a WCF developer and want to learn gRPC without learning

Protobuf syntax, there is a great tool named protobuf-net.Grpc that allows you to create

a gRPC service from WCF DataContract and ServiceContract. I personally don’t use it,

because I like Protobuf. If you are interested, you can read the tutorial on the protobuf-

net.Grpc website: https://protobuf-net.github.io/protobuf-net.Grpc/.

�Summary
In this short chapter, I have shown you the similarities and differences between WCF

and gRPC. You have learned how to switch from WCF code-first orientation to Protobuf’s

schema-first orientation, how to switch from WCF headers to trailers, how to get rid of

heavy XML configuration, and how to do away with duplex service callbacks to use gRPC

streaming service. From there, you will be able to migrate to gRPC easily! You are now

ready to build a complete gRPC application, and that’s the goal of the next chapter !

Chapter 8 From WCF to gRPC

https://github.com/dotnet-architecture/grpc-for-wcf-developers
https://github.com/dotnet-architecture/grpc-for-wcf-developers
https://protobuf-net.github.io/protobuf-net.Grpc/

299
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_9

CHAPTER 9

Import and Display Data
with ASP.NET Core Razor
Pages, Hosted Services,
and gRPC
You have finally arrived at the chapter in which you will create a complete but simple

application. I will teach you how to develop a web interface for managing a list of

countries. Imagine a wiki, for example a wiki countries, that will be designed with ASP.

NET Core Razor Pages for the web interface, a hosted service running in the background,

gRPC as an API allowing you to manipulate the data between the database and the web

interface, SQL Server for storing data, and Entity Framework Core for data access. Along

with these steps, I’ll also teach you some concepts such as how to layer (architecture) an

application properly. This chapter covers the following:

•	 Scenario explanation

•	 Create and layer the ASP.NET Core gRPC application

•	 Set up an SQL Server database and use Entity Framework Core to

access data

•	 Write the business logic and expose the Country gRPC service

•	 Create and layer the ASP.NET Core Razor application

•	 Upload a data file with a form and display and manage data on

Razor Pages

https://doi.org/10.1007/978-1-4842-8008-9_9

300

�Scenario Explanation
To help you fully understand what I will show you in this chapter, I will describe the

overall solution to achieve our ends. We will have the following components:

	 1.	 A web page with Razor Pages to upload from a JSON file the list of

countries from our wiki.

	 2.	 A second web page with Razor Pages to display the list of countries

and delete them with a check box.

	 3.	 A third web page to update the description of a country

	 4.	 A background task (hosted service) that will allow you to manage

the uploaded JSON file to feed the database with the countries

data. This step is essential because it provides no blocking on the

website while countries information are stored in the database.

	 5.	 A gRPC service to manage country data.

	 6.	 A SQL Server database on Azure, and Entity Framework Core,

which is an object-relational mapping (ORM) tool that allows

developers to abstract SQL queries into LINQ queries and create

the database from code.

Figure 9-1 shows the solution architecture.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

301

Figure 9-1.  The Countries wiki architecture diagram

Don’t be intimidated by the complexity of the diagram! We will gradually go through

each step of the development of the application in detail, and I will explain to you why I

offer you this solution in this way, it is promised you will like!

�Create and Layer the ASP.NET Core
gRPC Application
In this section we’ll create our Country gRPC service with the following layers:

•	 CountryService.gRPC

•	 CountryService.DAL

•	 CountryService.BLL

•	 CountryService.Domain

Chapter 2 showed you how to create a gRPC service from the ASP.NET Core gRPC

template, but now I want to show you good programming practices for adding C#

projects to the solution in a manner that separates code responsibilities that will apply to

the whole solution we’ll design here.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

302

The CountryService.gRPC layer is the C# project that contains the gRPC

services. The CountryService.DAL project will contain all code related to data access.

It’s commonly named the data access layer (DAL). The CountryService.BLL layer will

include all business services, and is also commonly called the business logic layer (BLL).

The fourth layer, named CountryService.Domain, will contain only domain objects,

meaning all classes shared by the whole application, regardless of the layer. This layer

will also include all abstractions, such as interfaces that will be useful to decorrelate each

layer from another by using dependency injection.

These four layers form what is called an N-tier application. Each layer (C# project)

can be reused independently from each other, except the domain layer that contains

abstractions. If you are familiar with the domain-driven design (DDD) architectural

concept, note that my code samples won’t implement DDD, even though I’m using the

“domain” concept; my way to teach you good practices by layering your application is

more straightforward. It’s a good start, for now, to make your code clean. However, if you

want to dive more into DDD architecture, the tutorial at the following link clearly teaches

DDD: https://dzone.com/articles/ddd-part-i-introduction.

To create and add a DAL, a BLL, and a domain layer, right-click the solution name in

Visual Studio (CountryService here), then select Add and click New Project, as shown in

Figure 9-2.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://dzone.com/articles/ddd-part-i-introduction

303

Figure 9-2.  Add a new project to the solution

As shown in Figure 9-3, use the drop-down menus to filter the list and locate

the Class Library template. Create the first project (layer) using the template, as

demonstrated in previous chapters (e.g., Chapter 2), and then repeat the operation for

each of the other application layers.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

304

Figure 9-3.  Filtering to reveal the Class Library template

Once you are done, the solution should look like as Figure 9-4 shows.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

305

Figure 9-4.  Country gRPC service with all its layers

Finally, we will define the relationships (dependencies) between each layer. The

domain layer is at the top of the hierarchy (meaning that all the other layers depend

on it), then comes the DAL BLL layers; they do not depend on each other since the

Domain layer references the abstractions of each. The BLL layer only needs to know the

abstractions of the DAL layer. Finally, the ASP.NET Core gRPC application layer depends

on the DAL and BLL layers to configure the dependency injection of the latter. Figure 9-5

shows the dependency diagram.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

306

Figure 9-5.  Country gRPC service dependency diagram

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

307

Adding a dependency can be done with just a few clicks. Open the Dependencies

submenu of the project to which you want to add a dependency, then choose Add

Project Reference and select the project you want to add as a dependency, as shown

respectively in Figure 9-6 and Figure 9-7.

Figure 9-6.  Add Project Preference option from the context menu

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

308

Figure 9-7.  Select and add a dependency to a layer

If you have referenced dependencies correctly according to the dependency diagram

shown in Figure 9-5, the CountryService.gRPC dependency tree should look like as

Figure 9-8 shows.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

309

Figure 9-8.  The CountryService.gRPC dependency tree

Now the solution is set up correctly. The next step is to set up the SQL Server

database and implement the data access layer (DAL) with Entity Framework Core.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

310

�Set Up a SQL Server Database and Use Entity
Framework Core to Access Data
�Set Up a SQL Server Database
Let’s start by building the foundation for our app, using the famous Microsoft SQL

Server database. SQL Server is a Relational Database Management System (RDBMS)

based on the Structured Query Language (SQL). SQL Server supports management of

queries made by users, most often through an application, as we will do here. However,

to facilitate the development of our application, we will use the object-relational mapper

(O/RM) Entity Framework Core, which will allow us to abstract SQL queries with

Language-Integrated Query (LINQ), so you will not have to write any SQL queries. The

choice here of Microsoft SQL Server is natural, because .NET has a natural and long-

standing affinity with it, and what is nice is that with the installation of Visual Studio,

you get the Express version of SQL Server at the same time—it is a free version of SQL

Server that is used for development purposes. However, although Visual Studio already

has the necessary tools to view SQL Server databases, I recommend that you install

and use Microsoft SQL Server Management Studio (SSMS). This tool will allow you to

do more afterward view and design a database, as it is complete in terms of features.

The following link will enable you to consult its complete documentation but also to

download it: https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-

management-studio-ssms?view=sql-server-ver15.

After you have installed SSMS, use the following server name to connect to the SQL

Server Express database: (LocalDB)\MSSQLLocalDB. Figure 9-9 shows how to connect

to the SQL Server Express database.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15

311

Figure 9-9.  Connecting to the SQL Server Express database

We’ll return to SQL Server Management Studio later, once the database is created.

�Using Entity Framework Core to Access Data
Entity Framework Core allows you to

•	 Design the database by code

•	 Seed the database by code

•	 Query the database with LINQ queries

I’ll walk you through these steps. What’s excellent about Entity Framework Core is

that its documentation is easy to understand and use to develop your application, which

I’m sure you’ll appreciate as much as I do.

�Design the Database by Code

To build our database, we need first to design its model. Figure 9-10 shows the model

that represents three linked SQL tables and their respective properties.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

312

Figure 9-10.  The country service database model

The following list describes the tables shown in Figure 9-10:

•	 Countries: Contains the properties of all countries, including name,

description, capital city, anthem name, and the date of creation in the

database and subsequent dates on which it was updated. As indicated

by the FlagUri property, I chose to store the Uniform Resource Identifer

(URI) [not URL] for locating the image of the country’s flag instead of

storing the actual flag image, to save space in the database. Flag photos

are stored in a content delivery network (CDN), a server that only serves

static items, such as images, for performance purposes.

•	 Languages: Stores a language list that is used for reference purposes.

•	 CountryLanguage: Stores for a given country the languages spoken

in that country. Some countries have several official languages or

commonly used languages. In SQL, this table is a many-to-many

relationship table.

Let’s design these tables in C# entities that are used to generate the SQL database

and mapped to the generated SQL tables while querying the database. Listing 9-1 shows

the C# entity modeling.

Listing 9-1.  C# Entities Model

namespace CountryService.DAL.Database.Entities;

public class Country

{

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

313

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

 public string CapitalCity { get; set; }

 public string Anthem { get; set; }

 public DateTime CreateDate { get; set; }

 public DateTime? UpdateDate { get; set; }

 public ICollection<Language> Languages { get; set; }

}

public class Language

{

 public int Id { get; set; }

 public string Name { get; set; }

 public Icollection<Country> Countries { get; }

}

public class CountryLanguage

{

 public int CountryId { get; set; }

 public Country Country { get; set; }

 public int LanguageId { get; set; }

 public Language Language { get; set; }

}

To use Entity Framework Core will all its features, we have to download the following

Nuget packages with the Visual Studio Package manager window in the CountryService.

DAL project:

Install-Package Microsoft.EntityFrameworkCore.SqlServer

Install-Package Microsoft.EntityFrameworkCore.Tools

Install-Package Microsoft.EntityFrameworkCore.Design

Note  Installation of the Microsoft.EntityFramework.Tools package into the
CountryService.gRPC project is required for the initial database creation and update.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

314

Once you have installed these packages, we must define a class (database context

class) that describes C# entities as entities queryable by to the SQL Server database

and describes the SQL model to generate from these entities. These entities are

commonly named “proxy” classes, DbSet in the Entity Framework Core nomenclature, a

kind of interface between the app and the database.

We’ll name that database context class CountryContext and inherit it from the

DbContext class, the Entity Framework base class. The many-to-many relationship

needs some configuration in a method named OnModelCreating(). Many-to-

many relationships are pretty tricky because we will need to perform insertions

into several tables while creating a country. I will show that a bit further. To learn

more about many-to-many relationships with Entity Framework Core, you can

read the tutorial here: https://docs.microsoft.com/en-us/ef/core/modeling/

relationships?tabs=fluent-api%2Cfluent-api-simple-key%2Csimple-

key#indirect-many-to-many-relationships.

Listing 9-2 shows the CountryContext class. Note that I placed the Microsoft.

EntityFrameworkCore using statement in a GlobalUsings.cs file. You can find its

content in Listing 9-8 at the end of this section.

Note  In each section in this chapter, I’ll place using statements in a
GlobalUsings.cs file that you can peruse at the end of the section. There is one
GlobalUsings.cs file per C# project.

Listing 9-2.  The CountryContext Class

namespace CountryService.DAL.Database;

public class CountryContext : DbContext

{

 �public CountryContext(DbContextOptions<CountryContext> options) :

base(options)

 {

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=fluent-api,fluent-api-simple-key,simple-key#indirect-many-to-many-relationships
https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=fluent-api,fluent-api-simple-key,simple-key#indirect-many-to-many-relationships
https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=fluent-api,fluent-api-simple-key,simple-key#indirect-many-to-many-relationships

315

 �protected override void OnConfiguring(DbContextOptionsBuilder

opBuilder)

 {

 �opBuilder.UseSqlServer(@"Data Source=(LocalDB)\MSSQLLocalDB;Initial

Catalog=CountryService;");

 }

 public DbSet<Country> Countries { get; set; }

 public DbSet<Language> Languages { get; set; }

 public DbSet<CountryLanguage> CountryLanguages { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 modelBuilder.Entity<CountryLanguage>()

 .HasKey(t => new { t.CountryId, t.LanguageId });

 modelBuilder.Entity<CountryLanguage>()

 .HasOne(cl => cl.Country)

 .WithMany(c => c.CountryLanguages)

 .HasForeignKey(cl => cl.CountryId);

 modelBuilder.Entity<CountryLanguage>()

 .HasOne(cl => cl.Language)

 .WithMany(c => c.CountryLanguages)

 .HasForeignKey(cl => cl.LanguageId);

 }

}

Note that I used the LocalDB’s connection string there, as shown in the previous

section. If you are using a remote SQL Server database, please replace this connection

string with the remote server’s connection string.

The OnConfiguring() method allows you to set the SQL Server connection string

to create the database from the entities model on your local development machine. To

perform this operation, open the Package Manager Console window (from the View

panel at the top screen of Visual Studio), select the CountryService.DAL project, and

type the command Add-Migration Initial, as shown in Figure 9-11.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

316

Figure 9-11.  Database initial creation

If the operation succeeds, the console will output Build succeed, and Visual Studio

will open the C# script to create the database in the folder named Migrations suffixed by

_Initial.cs, as shown in Figure 9-12.

Figure 9-12.  The database initial creation file

The CountryContextModelSnapshot.cs file is a snapshot of the current

CountryServiceContext class for backup purposes.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

317

The last step is to create the database on SQL Server from that file. The following

command allows that: Update-Database. Figure 9-13 shows that the operation

succeeded, and the output mentions the initial creation file applied.

Figure 9-13.  The initial migration file applied

Looking at the database with SQL Server Management Studio, as shown in

Figure 9-14, we can now appreciate our great work. We have created a SQL database

with some C# code and some commands. This demonstrates the simplicity of Entity

Framework Core, and that’s why I love it! Note in Figure 9-14 that Entity Framework Core

has created a table named _EFMigrationsHistory, which is a table that keeps a history

of the evolving changes. This is needed for further database model updates.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

318

Figure 9-14.  The CountryService database created

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

319

If it seems to you that Entity Framework Core is doing magic, this is a normal reaction.

It implements many conventions that allow a minimum of code to see none to infer,

for example, primary and foreign keys without defining them explicitly (identical field

names are linked automatically between two tables for example). I won’t describe all the

conventions here. However, if you want to know more, you can check out the following

blog: https://www.learnentityframeworkcore.com/conventions.

�Seed the Database by Code

The CountryService database will be fed from a file that contains all countries’ data.

But the country data file won’t contain languages’ names, only their ID. Consequently,

we need to feed the database with languages references (languages name) into the

Languages table specifically. In this way, we will be able to identify what ID refers to. It

looks awkward, but it happens very often: getting an ID of a particular thing from a data

source that doesn’t contain essential data and then identifying what the ID refers to. In

our example, we will feed the Languages table from code with Entity Framework Core

again, and you’ll see that it will be convenient and simple.

Let’s go back to the CountryContext class and add initial data for the Languages table

within the OnModelCreating() method, as shown in Listing 9-3.

Listing 9-3.  Seed the Languages SQL Table by Code

namespace CountryService.DAL.Database;

public class CountryContext : DbContext

{

 �public CountryContext(DbContextOptions<CountryContext> options) :

base(options)

 {

 }

 �protected override void OnConfiguring(DbContextOptionsBuilder

opBuilder)

 {

 �opBuilder.UseSqlServer(@"Data Source=(LocalDB)\MSSQLLocalDB;Initial

Catalog=CountryService;");

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://www.learnentityframeworkcore.com/conventions

320

 public DbSet<Country> Countries { get; set; }

 public DbSet<Language> Languages { get; set; }

 public DbSet<CountryLanguage> CountryLanguages { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 modelBuilder.Entity<CountryLanguage>()

 .HasKey(t => new { t.CountryId, t.LanguageId });

 modelBuilder.Entity<CountryLanguage>()

 .HasOne(cl => cl.Country)

 .WithMany(c => c.CountryLanguages)

 .HasForeignKey(cl => cl.CountryId);

 modelBuilder.Entity<CountryLanguage>()

 .HasOne(cl => cl.Language)

 .WithMany(c => c.CountryLanguages)

 .HasForeignKey(cl => cl.LanguageId);

 modelBuilder.Entity<Language>()

 .HasData(

 �new Language { Id = 1,

Name = "English" },

 �new Language { Id = 2,

Name = "French" },

 �new Language { Id = 3,

Name = "Spanish" }

);

 }

}

From there, we have to create a new migration with the command we used before to

create the database, but this time, we’ll name the migration to make it more transparent:

Add-Migration SeedInitialData.

This is the same operation in the previous section; a file suffixed by _SeedInitialData

has been created, and we need now to apply it to the database as we did before with the

Update-Database command.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

321

After querying the database, we should see the Languages table fed as shown in

Figure 9-15.

Figure 9-15.  The Languages table fed

�Query the Database with LINQ Queries

We have created our database, fed with reference data. Now we have to make the queries

using LINQ to carry out the following CRUD operations:

•	 Create a country

•	 Update a country

•	 Delete a country

•	 Retrieve a country

•	 Retrieve all countries

In the CountryService.DAL, let’s create a folder named Repositories that will

contain only the concrete implementation of the data access layer. There, we will

create a class called CountryRepository that will consume the CountryContext class.

I suggest you start with the interface that the CountryRepository class will implement

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

322

in the CountryService.Domain layer. In this way, you’ll form the habit of defining the

contract before its implementation. Because good practice is to return domain objects

from a repository, we need to create these domain objects required for our contract

(CountryRepository interface). As a reminder, a domain object is not necessarily

identical to an entity mapped to a database table. The domain objects will have minor

differences with the entities of the data access layer and they are commonly called

Data Transfert Object (DTO). In our example, we will only have one domain object,

CountryModel, which will contain everything needed to define a country. This is why

creating a domain object from one or more raw entities is good practice. Don’t worry, it

will become clearer very soon!

In a Models folder, create the CountryModel class as shown in Listing 9-4.

Listing 9-4.  The CountryModel Domain Object

namespace CountryService.Domain.Models;

public record class CountryModel

{

 public int Id { get; init; }

 public string Name { get; init; }

 public string Description { get; init; }

 public string FlagUri { get; init; }

 public string CapitalCity { get; init; }

 public string Anthem { get; init; }

 public IEnumerable<string> Languages { get; init; }

}

As you can see, I’m using a record class instead of a regular class. I want to keep it

immutable and a reference type; otherwise, we could have used a record struct. This is

the first difference with the data access layer’s Country entity, and the second difference

is that we don’t need in our business logic any dates and we don’t need to send the client

these dates either. Finally, we don’t need to keep the language ID in my domain object.

Keeping the language name (List<string> Languages) is sufficient.

Listing 9-5 shows the CreateCountryModel class, which we will use later to

create a country. I’m building it here because I need to know its type to define the

CountryRepository interface.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

323

Listing 9-5.  The CreateCountryModel Domain Object

namespace CountryService.Domain.Models;

public record class CreateCountryModel

{

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

 public string CapitalCity { get; set; }

 public string Anthem { get; set; }

 public DateTime CreatedDate { get; set; }

 public IEnumerable<int> Languages { get; set; }

}

Listing 9-6 shows the UpdateCountryModel class that will be used later but needs to

be defined now for the same reason as the CreateCountryModel.

Listing 9-6.  The UpdateCountryModel Domain Object

namespace CountryService.Domain.Models;

public record class UpdateCountryModel

{

 public int Id { get; set; }

 public string Description { get; set; }

 public DateTime UpdateDate { get; set; }

}

It’s time to create the contract that defines the Country repository. Listing 9-7 shows

the ICountryRepository interface.

Listing 9-7.  The ICountryRepository Interface

namespace CountryService.Domain.Repositories;

public interface ICountryRepository

{

 Task<int> CreateAsync(CreateCountryModel countryToCreate);

 Task<int> UpdateAsync(UpdateCountryModel countryToUpdate);

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

324

 Task<int> DeleteAsync(int id);

 Task<CountryModel> GetAsync(int id);

 Task<IEnumerable<CountryModel>> GetAllAsync();

}

In most cases, data access is done on external resources, and it is good practice that

these accesses be asynchronous (Task) because we want to prevent thread blocking if

this same resource takes time to respond.

If you have followed the previous instructions correctly, you should have the same

elements in your CountryService.Domain project as shown in Figure 9-16.

Figure 9-16.  The CountryService.Domain layer with its content

After following the instructions correctly, the GlobalUsings.cs file should look like

Listing 9-8.

Listing 9-8.  The CountryService.Domain GloblalUsings.cs File

global using CountryService.Domain.Models;

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

325

We can now create the concrete implementation of the CountryRepository class

using LINQ, as shown in Listing 9-9.

Listing 9-9.  The CountryRepository Concrete Implementation

namespace CountryService.DAL.Repositories;

public class CountryRepository : ICountryRepository

{

 private CountryContext _countryContext { get;set; }

 public CountryRepository(CountryContext countryContext)

 {

 _countryContext = countryContext;

 }

 public async Task<int> CreateAsync(CreateCountryModel countryToCreate)

 {

 var country = new Country

 {

 Name = countryToCreate.Name,

 Description = countryToCreate.Description,

 CapitalCity = countryToCreate.CapitalCity,

 Anthem = countryToCreate.Anthem,

 FlagUri = countryToCreate.FlagUri,

 CreateDate = countryToCreate.CreatedDate,

 �CountryLanguages = countryToCreate.Languages.Select(x => new

CountryLanguage { LanguageId = x }).ToList()

 };

 await _countryContext.Countries.AddAsync(country);

 await _countryContext.SaveChangesAsync();

 return country.Id;

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

326

 public async Task<int> UpdateAsync(UpdateCountryModel countryToUpdate)

 {

 var country = new Country

 {

 Id = countryToUpdate.Id,

 Description = countryToUpdate.Description,

 UpdateDate = countryToUpdate.UpdateDate

 };

 �_countryContext.Entry(country).Property(p => p.Description).

IsModified = true;

 �_countryContext.Entry(country).Property(p => p.UpdateDate).

IsModified = true;

 return await _countryContext.SaveChangesAsync();

 }

 public async Task<int> DeleteAsync(int id)

 {

 var country = new Country

 {

 Id = id

 };

 _countryContext.Entry(country).State = EntityState.Deleted;

 return await _countryContext.SaveChangesAsync();

 }

 public async Task<CountryModel> GetAsync(int id) =>

 await _countryContext.Countries

 .AsNoTracking()

 .ToDomain()

 .FirstOrDefaultAsync(x => x.Id == id);

 public async Task<IEnumerable<CountryModel>> GetAllAsync() =>

 await _countryContext.Countries

 .AsNoTracking()

 .ToDomain()

 .ToListAsync();

}

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

327

Let’s move onto the explanations of the previous code.

The CreateAsync() method is quite simple. It involves mapping between the domain

object CreateCountryModel and the Country entity. However, thanks to the magic of

Entity Framework Core, you can see that adding a CountryLanguage element is to say

the association of a country and a language is done in the simplest way possible. I only

needed to set the LanguageId property because I didn’t know the CountryId value at this

step. Entity Framework Core takes care of setting the CountryId when the Country entity

is created in the database. Amazing, isn’t it? Then I invoke the AddAsync() method, which

is added to the Entity Framework Core context and allows synchronization with the

database through the SaveChangesAsync() method. The return value is the CountryId.

The UpdateAsync() method is a bit special. Here, I needed to instantiate an

entity Country with its Id. It was required to identify what country I needed to update

and the properties I wanted to update: Description and UpdateDate. To tell Entity

Framework Core that these fields need to be updated, I used the method Property(p =>

p.{PropertyToUpdate}).IsModified = true before invoking the SaveChangesAsync()

method. The return value is the SQL affected rows.

The DeleteAsync() method principle is similar, but instead of updating some

properties, we are deleting the whole entity from the Entity Framework Core context

with the following instruction: {EntityToDelete}.State = EntityState.Deleted.

The SaveChangesAsync() is again in charge of sending the instruction to the database.

The return value is the SQL affected rows.

GetAsync() and GetAllAsync() are pretty similar. The first method returns a single

CountryModel object using the FirstOrDefault() LINQ method, and the second one

returns a collection of CountryModel using the ToListAsync() LINQ method. I applied,

on both methods, the AsNoTracking() method, which is used to tell Entity Framework

Core that it doesn’t need to track the entity requested and saves performance because

we are returning it to the client. It won’t be updated further in the same HTTP request.

If you want to learn more about tracking, you can read the following tutorial: https://

docs.microsoft.com/en-us/ef/core/change-tracking/. I have also applied a custom

method, an extension method, ToDomain(), to not repeat the mapping operation

from a Country entity to a CountryModel domain object. Listing 9-10 shows the

CountryLanguageMapper class.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://docs.microsoft.com/en-us/ef/core/change-tracking/
https://docs.microsoft.com/en-us/ef/core/change-tracking/

328

Listing 9-10.  The CountryLanguageMapper Class

namespace CountryService.DAL.Mappers;

public static class CountryLanguageMapper

{

 public static IQueryable<CountryModel> ToDomain(this

IQueryable<Country> countries) =>

 countries.Select(x => new CountryModel

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 CapitalCity = x.CapitalCity,

 Anthem = x.Anthem,

 FlagUri = x.FlagUri,

 Languages = x.CountryLanguages.Select(y => y.Language.Name)

 });

}

And there you go! Our repository is ready and implemented with the best practices.

It was easy thanks to Entity Framework Core. We will move on to developing the service

layer and the ASP.NET Core gRPC layer. If you have followed everything correctly (and

I’m sure you did), the CountryService.DAL project should like Figure 9-17.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

329

Figure 9-17.  The CountryService.DAL project and its content

The GlobalUsings.cs file should look like Listing 9-11.

Listing 9-11.  The CountryService.DAL GloblalUsings.cs File

global using Microsoft.EntityFrameworkCore;

global using CountryService.Domain.Repositories;

global using CountryService.DAL.Mappers;

global using CountryService.DAL.Database;

global using CountryService.Domain.Models;

global using CountryService.DAL.Database.Entities;

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

330

�Write the Business Logic and Expose the Country
gRPC Microservice
Our Country gRPC service is already well advanced. We will write the business logic of

our application in the service layer, more precisely in the CountryService.BLL project,

before writing the ASP.NET Core gRPC layer.

�Write the Business Logic into the CountryService.
BLL Layer
Now let’s go to our service layer to write the CountryServices class. This service will

expose CRUD actions through objects from domains that we have already defined. In

addition to these CRUD operations, a particular business logic to be implemented here

is the reason this layer exists: it provides an intermediary between the ASP.NET Core

layer exposed to the client and the raw data received from a data source. By consuming

the CountryRepository by dependency injection via its ICountryRepository interface,

we will be able to abstract access to data at the service layer, which will allow greater

flexibility. For example, when implementing unit tests, the service layer won’t be aware of

the existence of Entity Framework Core (and it doesn’t need it), and the test will be more

straightforward. Concretely, in our service layer, we will be able to add logic allowing us

to handle the integers returned by the DeleteAsync() and UpdateAsync() operations;

remember, these are the SQL affected rows, and the client does not need to know how

many rows have been affected, but rather whether these operations were successful

(affected rows > 0) or failed (affected rows <= 0). So, understand that the service layer

for some of its operations returns a boolean value that will be used to condition the

gRPC status in the ASP.NET Core gRPC layer. Easy, isn’t it? Listing 9-12 shows the

definition of the ICountryServices contract in the CountryService.Domain layer.

Listing 9-12.  The ICountryServices Interface Definition

namespace CountryService.Domain.Services;

public interface ICountryServices

{

 Task<int> CreateAsync(CreateCountryModel countryToCreate);

 Task<bool> UpdateAsync(UpdateCountryModel countryToUpdate);

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

331

 Task<bool> DeleteAsync(int id);

 Task<CountryModel> GetAsync(int id);

 Task<IEnumerable<CountryModel>> GetAllAsync();

}

Listing 9-13 shows the concrete implementation of the CountryServices class.

Listing 9-13.  The CountryServices Concrete Implementation

namespace CountryService.BLL.Services;

public class CountryServices : ICountryServices

{

 private readonly ICountryRepository _countryRepository;

 public CountryServices(ICountryRepository countryRepository)

 {

 _countryRepository = countryRepository;

 }

 �public async Task<int> CreateAsync(CreateCountryModel

countryToCreate) =>

 await _countryRepository.CreateAsync(countryToCreate);

 �public async Task<bool> UpdateAsync(UpdateCountryModel

countryToUpdate) =>

 await _countryRepository.UpdateAsync(countryToUpdate) > 0;

 public async Task<bool> DeleteAsync(int id) =>

 await _countryRepository.DeleteAsync(id) > 0;

 public async Task<CountryModel> GetAsync(int id) =>

 await _countryRepository.GetAsync(id);

 public async Task<IEnumerable<CountryModel>> GetAllAsync() =>

 await _countryRepository.GetAllAsync();

}

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

332

I wanted to keep the logic simple here, to show the principle of encapsulating

business logic in a separate layer, but, if you wish, you can, for example, add logging with

the ILogger interface, or add caching with the IMemoryCache interface. You can read the

following tutorial if you are interested in further information about caching: https://

docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspne

tcore-6.0.

At this point, your CountryService.BLL project should look like Figure 9-18.

Figure 9-18.  The CountryService.BLL and its content

The GlobalUsings.cs file should look like Listing 9-14.

Listing 9-14.  The CountryService.BLL GloblalUsings.cs File

global using CountryService.Domain.Models;

global using CountryService.Domain.Services;

global using CountryService.Domain.Repositories;

�Write the Country gRPC Service
We can now write our ASP.NET Core gRPC layer. To begin with, let’s take our country.

proto file and adapt it to our new reality. For example, I added Anthem, CapitalCity

and changed the FlagUri so that it is no longer an array of bytes but a URL. I will remove

any dates from the proto file. The service itself can manage them. They don’t need to be

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-6.0

333

sent in the payload. I renamed the package and csharp_namespace directives as well.

Let’s start with version 1 of the service by adding this proto file in the v1 subdirectory of

the Protos directory.

For purposes of this discussion, I’m assuming that you still remember how to

perform the basic steps I taught you in previous chapters, such as adding a Protobuf file

in the csproj file, generating gRPC stubs, configuring dependency injection, managing

errors in gRPC services, etc., so I won’t describe them again.

Listing 9-15 shows the adjusted country.proto file.

Listing 9-15.  The country.proto File

syntax = "proto3";

option csharp_namespace = "CountryService.gRPC.v1";

package CountryService.v1;

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

service CountryService {

 rpc GetAll(google.protobuf.Empty) returns (stream CountryReply) {}

 rpc Get(CountryIdRequest) returns (CountryReply) {}

 rpc Update(CountryUpdateRequest) returns (google.protobuf.Empty) {}

 rpc Delete(CountryIdRequest) returns (google.protobuf.Empty) {}

 �rpc Create(stream CountryCreationRequest) returns (stream

CountryCreationReply) {}

}

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

 string FlagUri = 4;

 string Anthem = 5;

 string CapitalCity = 6;

 repeated string Languages = 7;

}

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

334

message CountryIdRequest {

 int32 Id = 1;

}

message CountryUpdateRequest {

 int32 Id = 1;

 string Description = 2;

}

message CountryCreationRequest {

 string Name = 1;

 string Description = 2;

 string FlagUri = 3;

 string Anthem = 4;

 string CapitalCity = 5;

 repeated int32 Languages = 7;

}

message CountryCreationReply {

 int32 Id = 1;

 string Name = 2;

}

Listing 9-16 shows the implementation of the CountryGrpcService class. This class

depends on the CountryReplyMapper static class, which is described after this listing.

Listing 9-16.  The gRPC Service (CountryGrpcService Class) Implemented

namespace CountryService.gRPC.Services;

public class CountryGrpcService : CountryServiceBase

{

 private readonly ICountryServices _countryService;

 public CountryGrpcService(ICountryServices countryService)

 {

 _countryService = countryService;

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

335

 �public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

 {

 var lst = await _countryService.GetAllAsync();

 foreach (var country in lst)

 {

 �await responseStream.WriteAsync(country.ToReply());

// CountryReplyMapper static class

 }

 await Task.CompletedTask;

 }

 �public override async Task<CountryReply> Get(CountryIdRequest request,

ServerCallContext context)

 {

 var country = await _countryService.GetAsync(request.Id);

 if (country == null)

 �throw new RpcException(new Status(StatusCode.NotFound,

$"Country with Id {request.Id} hasn't been found"));

 �return (await _countryService.GetAsync(request.Id)).ToReply();

// CountryReplyMapper static class

 }

 �public override async Task<Empty> Update(CountryUpdateRequest request,

ServerCallContext context)

 {

 �var updateSucceed = await _countryService.UpdateAsync(new

UpdateCountryModel {

 Id = request.Id,

 Description = request.Description,

 UpdateDate = DateTime.UtcNow

 });

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

336

 if (!updateSucceed)

 �throw new RpcException(new Status(StatusCode.NotFound,

$"Country with Id {request.Id} hasn't been updated, it have

probably been deleted"));

 return new Empty();

 }

 �public override async Task<Empty> Delete(CountryUpdateRequest request,

ServerCallContext context)

 {

 var deleteSucceed = await _countryService.DeleteAsync(request.Id);

 if (!deleteSucceed)

 �throw new RpcException(new Status(StatusCode.NotFound,

$"Country with Id {request.Id} hasn't been updated, it have

probable been deleted"));

 return new Empty();

 }

 �public override async Task Create(IAsyncStreamReader<CountryCreation

Request> requestStream, IServerStreamWriter<CountryCreationReply>

responseStream, ServerCallContext context)

 {

 await foreach (var countryToCreate in requestStream.ReadAllAsync())

 {

 �var createdCountryId = await _countryService.CreateAsync(new

CreateCountryModel

 {

 Name = countryToCreate.Name,

 Description = countryToCreate.Description,

 Anthem = countryToCreate.Anthem,

 CapitalCity = countryToCreate.CapitalCity,

 FlagUri = countryToCreate.FlagUri,

 Languages = countryToCreate.Languages

 });

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

337

 await responseStream.WriteAsync(new CountryCreationReply {

 Id = createdCountryId,

 Name = countryToCreate.Name,

 });

 };

 await Task.CompletedTask;

 }

}

To avoid redundant code in the Get() and GetAll() methods, I have created a mapper

that maps the CountryModel type to the CountryReply type, as shown in Listing 9-17.

Listing 9-17.  The CountryReplyMapper Static Class

namespace CountryService.gRPC.Mappers;

public static class CountryReplyMapper

{

 public static CountryReply ToReply(this CountryModel country)

 {

 if (country is null)

 return null;

 var countryReply = new CountryReply

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 Anthem = country.Anthem,

 CapitalCity = country.CapitalCity,

 FlagUri = country.FlagUri

 };

 countryReply.Languages.AddRange(country.Languages);

 return countryReply;

 }

}

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

338

If you wonder why I set the Languages property after setting the whole object, it’s

because, unfortunately, Repeated<T> properties are readonly. The only way to populate

that kind of property is to use IEnumerable<T> Add() or AddRange() methods to add

items into them.

Instead of using a hard-coded SQL connection string for our application, we will

place it in the appsettings.json file, which is the best practice, as follow:

 "ConnectionStrings": {

 �"CountryService": "Server=(LocalDB)\\MSSQLLocalDB;Database=Country

Service;Integrated Security=True; MultipleActiveResultSets=True"

 }

Then, to get the connection string within the Program.cs file, use the following line

of code:

builder.Configuration.GetConnectionString("CountryService");

After configuring the SQL Server connection string in the appsettings.json

file, completing services registration to run the app, and adding compression, gRPC

reflection, the exception interceptor (introduced in Chapter 5), and REST endpoints to

reveal Protobuf versions (Chapter 6), the Program.cs file should look like Listing 9-18.

Listing 9-18.  The Final Program.cs File Implementation

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.IgnoreUnknownServices = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider() // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

339

 �options.ResponseCompressionLevel = CompressionLevel.Optimal;

// compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>();

// Register custom ExceptionInterceptor interceptor

});

builder.Services.AddGrpcReflection();

builder.Services.AddScoped<ICountryRepository, CountryRepository>();

builder.Services.AddScoped<ICountryServices, CountryServices>();

builder.Services.AddSingleton<ProtoService>();

builder.Services.AddDbContext<CountryContext>(options => options.

UseSqlServer(builder.Configuration.GetConnectionString("CountryService")));

var app = builder.Build();

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

app.MapGet("/protos", (ProtoService protoService) =>

{

 return Results.Ok(protoService.GetAll());

});

app.MapGet("/protos/v{version:int}/{protoName}", (ProtoService, int

version, string protoName) =>

{

 var filePath = protoService.Get(version, protoName);

 if (filePath != null)

 return Results.File(filePath);

 return Results.NotFound();

});

app.MapGet("/protos/v{version:int}/{protoName}/view", async (ProtoService

protoService, int version, string protoName) =>

{

 var text = await protoService.ViewAsync(version, protoName);

 if (!string.IsNullOrEmpty(text))

 return Results.Text(text);

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

340

 return Results.NotFound();

});

// Run the app

app.Run();

Figure 9-19 shows the CountryService.gRPC project after adding all the stuff

discussed thus far.

Figure 9-19.  The final CountryService.gRPC project and its content

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

341

The CountryService.gRPC project GlobalUsings.cs file should look like the

Listing 9-19.

Listing 9-19.  The CountryService.gRPC GloblalUsings.cs File

global using System.IO;

global using System.IO.Compression;

global using Google.Protobuf.WellKnownTypes;

global using Grpc.Core;

global using Grpc.Core.Interceptors;

global using Grpc.Net.Compression;

global using Microsoft.Data.SqlClient;

global using Microsoft.EntityFrameworkCore;

global using CountryService.DAL.Database;

global using CountryService.DAL.Repositories;

global using CountryService.Domain.Repositories;

global using CountryService.gRPC.Services;

global using CountryService.BLL.Services;

global using CountryService.Domain.Models;

global using CountryService.gRPC.Interceptors.Helpers;

global using CountryService.gRPC.v1;

global using CountryService.gRPC.Mappers;

global using CountryService.Domain.Services;

global using CountryService.gRPC.Compression;

global using CountryService.gRPC.Interceptors;

global using static CountryService.gRPC.v1.CountryService;

�Create and Layer the ASP.NET Core
Razor Application
Now that our gRPC service is completed, we will create the web application allowing us

to download the initial country file in the application, then display these countries to

update and delete them. Let’s start by creating the skeleton of our ASP.NET Core Razor

Pages app.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

342

�Create the Application Skeleton
First, let’s organize our solution. We are about to create a new web application in the

same Visual Studio solution. I suggest creating two solution folders, one for everything

related to gRPC and the other for everything related to the web application. Figure 9-20

shows the gRPC solution folder that welcomes all gRPC code and the Web solution folder

for the Country Wiki web application.

Figure 9-20.  gRPC and Web folders

After creating the ASP.NET Core Razor Pages app, and layers similarly to the gRPC

application, the solution should look like Figure 9-21.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

343

Figure 9-21.  The Country Wiki web application

At this point, I will generate gRPC stubs (client stuff) into the CountryWiki.DAL layer,

because my goal is to isolate gRPC as a data access technology into that layer as I did for

Entity Framework Core in the gRPC application.

�Define Contracts and Domain Objects
As we did for the ASP.NET Core gRPC project, we will define the contracts serving as

interfaces between the data access layer and the service layer and the contracts serving

as interfaces between the service layer and the Razor Pages.

Let’s start with the contracts defining the interactions with the CountryWiki.

DAL layer. Listings 9-20, 9-21, 9-22, and 9-23 show, respectively, the CountryModel,

which is a projection (a DTO) of a country obtained from the data access layer,

CreateCountryModel, which is the country definition that needs to be sent to the data

access layer for purposes of syncing with the data source, CreatedCountryModel, which

is a projection of the created country on the data source that contains only the country

name and its id, and UpdateCountryModel, which represents the country metadata to be

updated by the data access layer.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

344

Listing 9-20.  The CountryModel Record Class Definition

namespace CountryWiki.Domain.Models;

public record class CountryModel

{

 public int Id { get; init; }

 public string Name { get; init; }

 public string Description { get; init; }

 public string FlagUri { get; init; }

 public string CapitalCity { get; init; }

 public string Anthem { get; init; }

 public IEnumerable<string> Languages { get; init; }

}

Listing 9-21.  The CreateCountryModel Record Class Definition

namespace CountryWiki.Domain.Models;

public record class CreateCountryModel

{

 public string Name { get; init; }

 public string Description { get; init; }

 public string FlagUri { get; init; }

 public string CapitalCity { get; init; }

 public string Anthem { get; init; }

 public IEnumerable<int> Languages { get; init; }

}

Listing 9-22.  The CreatedCountryModel Record Class Definition

namespace CountryWiki.Domain.Models;

public record class CreatedCountryModel

{

 public int Id { get; init; }

 public string Name { get; init; }

}

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

345

Listing 9-23.  The UpdateCountryModel Record Class Definition

namespace CountryWiki.Domain.Models;

public record class UpdateCountryModel

{

 public int Id { get; init; }

 public string Description { get; init; }

}

The data access layer (ICountryRepository) is defined as shown in Listing 9-24.

Listing 9-24.  The ICountryRepository Interface

namespace CountryWiki.Domain.Repositories;

public interface ICountryRepository

{

 �IAsyncEnumerable<CreatedCountryModel> CreateAsync(IEnumerable<Create

CountryModel> countryToCreate);

 Task UpdateAsync(UpdateCountryModel countryToUpdate);

 Task DeleteAsync(int id);

 Task<CountryModel> GetAsync(int id);

 IAsyncEnumerable<CountryModel> GetAllAsync();

}

I chose to expose IAsyncEnumerable<T> for the CreateAsync() and GetAllAsync()

methods instead of an IEnumerable<T> take advantage of the streaming feature

offered by gRPC into my business logic layer (keeping the streaming feature). I will

demonstrate a bit later the benefit of the IAsyncEnumerable collection type. Note that the

CreateAllAsync() method input parameter is an IEnumerable<CreateCountryModel>,

I prefer to keep a synchronous Enumerable source there. The data access layer will take

the collection and could manage it synchronously or asynchronously. UpdateAsync()

and DeleteAsync() methods don’t return any value, except the Task. They don’t need to

return any value there. They only need to perform the specific action they are designed

for. The business layer doesn’t need to know if actions worked well or not by returning

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

346

a value, like a boolean, as I did in the gRPC application. Instead, the data access layer

will raise an exception if something wrong happens with the data source, which is

gRPC there.

To end with the domain layer, we’ll look at the contracts defining the interactions

with the CountryWiki.BLL layer. Listing 9-25 represents the CountryUploadFileModel

that contains the uploaded metadata file from the user. This file includes countries’ data

to be ingested into the data source to feed the wiki. I’ll go into more detail about this

further in this chapter.

Listing 9-25.  The ICountryRepository Interface

namespace CountryWiki.Domain.Models;

public record class CountryUploadedFileModel

{

 public string FileName { get; init; }

 public string ContentType { get; init; }

}

Listings 9-26 and 9-27 show, respectively, the

ICountryFileUploadValidatorService interface, which has the responsibility to

validate the uploaded file (it’s highly recommended to validate input files in terms of

security and data consistency), and the ICountryServices interface, which defines

business contracts for CRUD operations on countries.

Listing 9-26.  The ICountryFileUploadValidatorService Interface

namespace CountryWiki.Domain.Services;

public interface ICountryFileUploadValidatorService

{

 bool ValidateFile(CountryUploadedFileModel countryUploadedFile);

 Task<IEnumerable<CreateCountryModel>> ParseFile(Stream content);

}

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

347

Listing 9-27.  The ICountryServices Interface

namespace CountryWiki.Domain.Services;

public interface ICountryServices

{

 Task CreateAsync(IEnumerable<CreateCountryModel> countryToCreate);

 Task UpdateAsync(UpdateCountryModel countryToUpdate);

 Task DeleteAsync(int id);

 Task<CountryModel> GetAsync(int id);

 Task<IEnumerable<CountryModel>> GetAllAsync();

}

Since the business layer here has no idea (and should not) of how the data access

layer will sync data with the data source, there is no need to use a IAsyncEnumerable

collection. Using an IEnumerable<T> collection is a generic way to handle

collections, and it’s sufficient here. The CreatedAsync() method here, unlike the

ICountryRepository, won’t return any value. The concrete implementation of this

interface will manage by itself created countries without impacting the front-end layer,

which doesn’t need to know this, and that’s the goal of a business logic layer. The same

reasoning applies to all others methods that return only a Task here. The front-end layer

(CountryWiki.Web project) needs to display data requested only. If an error occurs, the

front end will display an error page automatically (and the error will be logged), and

that’s it.

The GlobalUsing.cs file should look like Listing 9-28.

Listing 9-28.  The CountryWiki.Domain Project GlobalUsings.cs File

global using CountryWiki.Domain.Models;

Figure 9-22 shows what the CountryWiki.Domain project should look like.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

348

Figure 9-22.  The CountryWiki.Domain project

�Implement the Data Access Layer with the gRPC Client
According to the same principle mentioned earlier during the design of the gRPC

application, we can, after defining the domain layer, write the implementation of our

data access layer and business logic layer. Let’s focus here on the data access layer. First,

we will import the country.proto file here to generate the client stubs, as I showed you

in Chapter 7, with the Visual Studio Connected Services window (refer to Figure 7-11);

after compiling the CountryWiki.DAL project, the following class (the gRPC client) will

be generated: CountryServiceClient. Don’t forget to rename the charp_namepace in

the Protobuf file to fit your project namespace (CountryWiki.DAL.v1). Continuing to

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

349

gRPC client implementation, we will implement the concrete CountryRepository class

from the ICountryRepository interface that we created in our domain layer. Listing 9-29

shows this implementation.

Listing 9-29.  The CountryRepository Implementation

namespace CountryWiki.DAL.Repositories;

public class CountryRepository : ICountryRepository

{

 private readonly CountryServiceClient _countryServiceClient;

 public CountryRepository(CountryServiceClient countryServiceClient)

 {

 _countryServiceClient = countryServiceClient;

 }

 �public async IAsyncEnumerable<CreatedCountryModel> CreateAsync(

IEnumerable<CreateCountryModel> countriesToCreate)

 {

 �using var bidirectionnalStreamingCall = _countryServiceClient.

Create();

 foreach (var countryToCreate in countriesToCreate)

 {

 var countryToCreateRequest = new CountryCreationRequest

 {

 Name = countryToCreate.Name,

 Description = countryToCreate.Description,

 Anthem = countryToCreate.Anthem,

 CapitalCity = countryToCreate.CapitalCity,

 FlagUri = countryToCreate.FlagUri

 };

 �countryToCreateRequest.Languages.AddRange(countryToCreate.

Languages);

 �await bidirectionnalStreamingCall.RequestStream.WriteAsync(

countryToCreateRequest);

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

350

 // Tells server that request streaming is done

 await bidirectionnalStreamingCall.RequestStream.CompleteAsync();

 // Read

 while (await bidirectionnalStreamingCall.ResponseStream.MoveNext())

 {

 �var country = bidirectionnalStreamingCall.ResponseStream.

Current;

 yield return new CreatedCountryModel

 {

 Id = country.Id,

 Name = country.Name

 };

 }

 }

 public async Task DeleteAsync(int id) =>

 await _countryServiceClient.DeleteAsync(new CountryIdRequest

 {

 Id = id

 });

 public async IAsyncEnumerable<CountryModel> GetAllAsync()

 {

 �using var serverStreamingCall = _countryServiceClient.GetAll(new

Empty());

 while (await serverStreamingCall.ResponseStream.MoveNext())

 {

 �yield return serverStreamingCall.ResponseStream.Current.

ToDomain();

 }

 }

 public async Task<CountryModel> GetAsync(int id) =>

 (await _countryServiceClient.GetAsync(new CountryIdRequest {

 Id = id

 })).ToDomain();

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

351

 public async Task UpdateAsync(UpdateCountryModel countryToUpdate) =>

 await _countryServiceClient.UpdateAsync(new CountryUpdateRequest

 {

 Id = countryToUpdate.Id,

 Description = countryToUpdate.Description

 });

}

Notice that I’m using CountryServiceClient as an injected dependency. I will show

you how to configure it further when I show you how to configure the Program.cs file of

the ASP.NET Core Razor Pages application.

As I mentioned earlier, because CreateAsync() and GetAllAsync() methods

are talking to a streamed gRPC endpoint, I wanted to keep that opportunity to take

advantage of the IAsyncEnumerable<T> collection by yielding results asynchronously.

Why? Because I want to apply some logic (logging) in the business logic layer while

iterating on the yielded result. I won’t loop again on the result set while logging received

content from the data access layer, unlike a regular collection such as an Array or a

List. If you want to learn more about IAsyncEnumerable<T>, I strongly suggest you

read this article: https://anthonychu.ca/post/async-streams-dotnet-core-3-

iasyncenumerable/.

Listing 9-30 shows the CountryModelMappers class I designed not to repeat the same

mapping logic several times.

Listing 9-30.  The CountryModelMappers Class Implementation

namespace CountryWiki.DAL.Mappers;

public static class CountryModelMappers

{

 public static CountryModel ToDomain(this CountryReply countryReply) =>

 (countryReply == null) ? null :

 new CountryModel

 {

 Id = countryReply.Id,

 Name = countryReply.Name,

 Description = countryReply.Description,

 Anthem = countryReply.Anthem,

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://anthonychu.ca/post/async-streams-dotnet-core-3-iasyncenumerable/
https://anthonychu.ca/post/async-streams-dotnet-core-3-iasyncenumerable/

352

 FlagUri = countryReply.FlagUri,

 CapitalCity = countryReply.CapitalCity,

 Languages = countryReply.Languages

 };

}

The related GlobalUsings.cs file should look like Listing 9-31.

Listing 9-31.  The CountryWiki.DAL Project GlobalUsings.cs File

global using CountryWiki.Domain.Models;

global using CountryWiki.Domain.Repositories;

global using Google.Protobuf.WellKnownTypes;

global using Grpc.Core;

global using static CountryWiki.DAL.v1.CountryService;

global using CountryWiki.DAL.v1;

global using CountryWiki.DAL.Mappers;

Figure 9-23 shows what the CoutryWiki.DAL project should look like.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

353

Figure 9-23.  The CountryWiki.DAL project

�Implement the Business Logic Layer
We have arrived at the layer for managing the business logic. I wanted to implement

a business layer simply because I want to be able to trace (in my application logs) the

result of the streamed data (I remind you that the business layer does not know if the

data are streamed or not; it’s just you and I that know). As I said in the previous section,

I don’t need to iterate a second time on the collection since the items are yielded each

time an item is streamed using gRPC. After that, I no longer need IAsyncEnumerable.

Indeed, I could, however, have returned to an IAsyncEnumerable<CountryModel>,

but I did not want to expose it further than the business logic layer. We never know, its

implementation may change and may never handle any IAsyncEnumerable content from

the repository. Listing 9-32 shows the CountryServices class implementation.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

354

Listing 9-32.  The CountryServices Implementation

namespace CountryWiki.BLL.Services;

public class CountryServices : ICountryServices

{

 private readonly ICountryRepository _countryRepository;

 private readonly ILogger<CountryServices> _logger;

 �public CountryServices(ICountryRepository countryRepository,

ILogger<CountryServices> logger)

 {

 _countryRepository = countryRepository;

 _logger = logger;

 }

 �public async Task CreateAsync(IEnumerable<CreateCountryModel>

countriesToCreate)

 {

 �await foreach (var createdCountry in _countryRepository.CreateAsync

(countriesToCreate))

 {

 �_logger.LogDebug($"Country {createdCountry.Name} has been

created successfully with Id {createdCountry.Id}");

 }

 }

 public async Task DeleteAsync(int id)

 {

 await _countryRepository.DeleteAsync(id);

 �_logger.LogDebug($"Country with Id {id} has been successfully

deleted");

 }

 public async Task<IEnumerable<CountryModel>> GetAllAsync()

 {

 var countries = new List<CountryModel>();

 await foreach (var country in _countryRepository.GetAllAsync())

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

355

 {

 countries.Add(country);

 }

 return countries;

 }

 public async Task<CountryModel> GetAsync(int id)

 {

 return await _countryRepository.GetAsync(id);

 }

 public async Task UpdateAsync(UpdateCountryModel countryToUpdate)

 {

 await _countryRepository.UpdateAsync(countryToUpdate);

 �_logger.LogDebug($"Country with Id {countryToUpdate.Id} has been

successfully updated");

 }

}

Listing 9-33 shows the implementation of the CountryFileUploadValidatorService

class, which allows validating an uploaded file.

Listing 9-33.  The CountryFileUploadValidatorService Implementation

namespace CountryWiki.BLL.Services;

public class CountryFileUploadValidatorService :

ICountryFileUploadValidatorService

{

 public CountryFileUploadValidatorService() { }

 public bool ValidateFile(CountryUploadedFileModel countryUploadedFile)

 {

 �if (!countryUploadedFile.FileName.ToLower().EndsWith(".json") ||

countryUploadedFile.ContentType != "application/json")

 return false;

 return true;

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

356

 �public async Task<IEnumerable<CreateCountryModel>> ParseFile(Stream

content)

 {

 try

 {

 �var parsedCountries = await JsonSerializer.Deserialize

Async<IEnumerable<CreateCountryModel>>(content, new

JsonSerializerOptions {

 PropertyNameCaseInsensitive = true

 });

return parsedCountries.Any(x => string.IsNullOrEmpty(x.Name) ||

 string.IsNullOrEmpty(x.Anthem) ||

 string.IsNullOrEmpty(x.Description) ||

 string.IsNullOrEmpty(x.FlagUri) ||

 string.IsNullOrEmpty(x.CapitalCity) ||

 x.Languages == null ||

 �!x.Languages.Any()) ? null :

parsedCountries;

 }

 catch

 {

 return null;

 }

 }

}

The ValidateFile() method validates the file extension as well as its

contentType. This implementation, therefore, expects to validate a JSON file, but the

ICountryFileUploadValidatorService interface does not know the nature of the file to

be validated, and this is the beauty of abstraction. It’s generic!

The ParseFile() method ensures that the JSON data in the file respects the expected

format defined by the CreateCountryModel domain object. If the format is not respected,

the DeserializeAsync() method will throw an exception or an empty object, but here I

prefer to catch it and return null instead. I don’t want to make the application crash for

this kind of error, but rather send back to the user a message telling him that the contents

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

357

of his file are not valid. Note here that I am using System.Text.Json to manipulate

JSON. If you are familiar with NewtonSoft.Json, which does the same, please be aware

that I highly recommend using System.Text.Json for its performance. To finish my

explanation, the only tolerance (in the serialization/deserialization options with the

JsonSerializerOptions class) that the names of the properties in the JSON file are not

case-sensitive and thus can be either lowercase or uppercase. It doesn’t matter, in my

opinion, as long as the property’s name is valid compared to what is expected, and I

recommend that you do the same.

Listing 9-34 shows the GlobalUsings.cs file for the CountryWiki.BLL project.

Listing 9-34.  The CountryWiki.BLL Project GlobalUsings.cs File

global using CountryWiki.Domain.Models;

global using CountryWiki.Domain.Repositories;

global using CountryWiki.Domain.Services;

global using Microsoft.Extensions.Logging;

global using System.Text.Json;

Figure 9-24 shows what the CountryWiki.BLL project should look like.

Figure 9-24.  The CountryWiki.BLL project

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

358

�Configure the ASP.NET Core Razor Pages Application
Before we develop the user web interface with ASP.NET Core Razor Pages, we need to do

the following:

	 1.	 Create a background task (hosted service) that will handle

uploaded file data and create a channel (it’s different from a

gRPC channel) that will make it possible to transfer data between

the background task and the ASP.NET Core Razor Pages app (it’s

like two applications that are running in the same host). A global

variable stored in an application options object will be used to

display if a file is being synchronized or not.

	 2.	 Create and configure the gRPC client with the

IHttpClientFactory and register all dependencies in the

Program.cs file

�Create a Background Task for Handling Uploaded File Data
and Create a Channel to Store Data

ASP.NET Cores allows running background tasks as hosted services, which run as long

as the ASP.NET Core application runs. It’s useful because developers can handle long-

running operations in the background without blocking the rest of the application. In

our scenario, the uploaded file that contains countries’ data will be synchronized to

the remote data source, over gRPC, and it could be a long-running operation, so right

after the upload is completed (and the file content is validated), the user can browse the

application without waiting for the data synchronization to complete.

Listing 9-35 shows the SyncCountriesChannel class’s implementation, representing

a channel and its interface ISyncCountriesChannel. I created them in the ASP.NET Core

Razor Pages application because they depend entirely on the background task (in terms

of functionality, I won’t reuse them in another service or another application). I put

them in the same file. I don’t need to separate them into other layers.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

359

Listing 9-35.  The SyncCountriesChannel Class and ISyncCountriesChannel

Interface

namespace CountryWiki.Web.Channels;

public interface ISyncCountriesChannel

{

 �IAsyncEnumerable<IEnumerable<CreateCountryModel>>

ReadAllAsync(CancellationToken cancellationToken);

 �Task<bool> SyncAsync(IEnumerable<CreateCountryModel> countriesToCreate,

CancellationToken cancellationToken);

}

public class SyncCountriesChannel : ISyncCountriesChannel

{

 private readonly Channel<IEnumerable<CreateCountryModel>> _channel;

 private readonly ILogger<SyncCountriesChannel> _logger;

 public SyncCountriesChannel(ILogger<SyncCountriesChannel> logger)

 {

 var options = new UnboundedChannelOptions

 {

 SingleWriter = false,

 SingleReader = true

 };

 �_channel = Channel.CreateUnbounded<IEnumerable<CreateCountryModel>>

(options);

 _logger = logger;

 }

 �public async Task<bool> SyncAsync(IEnumerable<CreateCountryModel>

countriesToCreate, CancellationToken cancellationToken)

 {

 �while (await _channel.Writer.WaitToWriteAsync(cancellationToken) &&

!cancellationToken.IsCancellationRequested)

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

360

 {

 if (_channel.Writer.TryWrite(countriesToCreate))

 {

 �_logger.LogDebug("Sending parsed countries to the

background task");

 return true;

 }

 }

 return false;

 }

 �public IAsyncEnumerable<IEnumerable<CreateCountryModel>>

ReadAllAsync(CancellationToken cancellationToken) => _channel.Reader.

ReadAllAsync(cancellationToken);

}

The class constructor instantiates a channel (which is not a gRPC Channel) that

allows data to be stored for a consumer that needs these data. Synchronization between

the “producer” and the consumer is synchronized safely. It’s like a concurrent queue

where only one item (the data) is passed to the Channel at a time and read (one at a

time as well) on the other side. This channel is defined in the System.Thread.Channels

assembly that has been introduced in .NET Core 3.

I used an unbounded Channel (a Channel that doesn’t limit the number of items to

be stored) with the method Channel.CreateUnbounded<T>() that takes as a parameter

an UnboundedChannelOptions class. I don’t need to set a limit there for the simple reason

a file is rarely uploaded. It doesn’t happen often. I set this UnboundedChannelOptions

class with the property SingleWriter set to false. It means that many producers

can write in the queue. Still, each producer has to wait for the preceding producer to

complete the write operation in the Channel. The WaitToWriteAsync() method checks

if the Channel is available and makes the producer wait if the Channel is not. Conversely,

I set the SingleReader property to true because I want (and need) only one reader:

the background task, which runs continuously. Once the Channel is created, I can

implement the SyncAsync() method that verifies if the Channel is available and if the

request has not been canceled with the CancellationToken passed as a parameter from

the Razor Pages (I’ll show it to you further in this chapter).

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

361

The ReadAllAsync() method returns an IAsyncEnumerable<IEnumerable<

CreateCountryModel>> where each item is of a set of countries (each set comes from

a single file). You may have already understood that several sets of countries coming

from their respective files can be handled, but one at a time in a queue, as I told you

before; if you want to learn more about the System.Threading.Channels, you can read

the great Microsoft blog post here: https://devblogs.microsoft.com/dotnet/an-

introduction-to-system-threading-channels/.

Now let’s create a global variable that will handle the upload status of files. Listing 9-36

shows the GlobalOptions class that exposes the ProcessingUpload property.

Listing 9-36.  The GlobalOptions Class

namespace CountryWiki.Web.Options;

public class GlobalOptions

{

 public bool ProcessingUpload { get; set; }

}

To make that object global—by that, I mean Singleton—I’ll need to register it in the

Program.cs file with the Singleton lifetime in the dependency injection system.

This singleton object will switch state (ProcessingUpload = true or false) in the

background task. When data are being processed, the ProcessingUpload will be set to

true, then false when the process is done, or if an exception is raised.

To create this background task, I needed to create a class inherited from the abstract

class named BackgroundService and implement an ExecuteAsync() method. This

abstract class comes from the Microsoft.Extensions.Hosting assembly.

Listing 9-37 shows the SyncUploadedCountriesBackgroundService class that

represents the background task to be implemented.

Listing 9-37.  The SyncUploadedCountriesBackgroundService Class

namespace CountryWiki.Web.Background;

public class SyncUploadedCountriesBackgroundService : BackgroundService

{

 �private readonly ILogger<SyncUploadedCountriesBackgroundService>

_logger;

 private readonly ISyncCountriesChannel _syncCountriesChannel;

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://devblogs.microsoft.com/dotnet/an-introduction-to-system-threading-channels/
https://devblogs.microsoft.com/dotnet/an-introduction-to-system-threading-channels/

362

 private readonly IServiceProvider _serviceProvider;

 private readonly GlobalOptions _globalOptions;

 public SyncUploadedCountriesBackgroundService(�ILogger<SyncUploadedCo

untriesBackgroundService>

logger,

 �ISyncCountriesChannel

syncCountriesChannel,

 �IServiceProvider

serviceProvider,

 �GlobalOptions

globalOptions)

 {

 _logger = logger;

 _syncCountriesChannel = syncCountriesChannel;

 _serviceProvider = serviceProvider;

 _globalOptions = globalOptions;

 }

 �protected override async Task ExecuteAsync(CancellationToken

cancellationToken)

 {

 �await foreach (var uploadedCountries in _syncCountriesChannel.Read

AllAsync(cancellationToken))

 {

 try

 {

 �_logger.LogInformation("Received uploaded countries from

the channel for sync");

 using var scope = _serviceProvider.CreateScope();

 �var countryServices = scope.ServiceProvider.GetRequired

Service<ICountryServices>();

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

363

 try

 {

 // Processing sync

 _globalOptions.ProcessingUpload = true;

 await countryServices.CreateAsync(uploadedCountries);

 }

 catch (RpcException e)

 {

 �var correlationId = e.Trailers.

GetValue("correlationId");

 �_logger.LogError(e, "Background synchronization has

failed. CorrelationId {correlationId}", correlationId);

 }

 finally

 {

 _globalOptions.ProcessingUpload = false;

 }

 }

 catch (Exception e)

 {

 _logger.LogError(e, "Unable to manage uploaded countries");

 }

 finally

 {

 _globalOptions.ProcessingUpload = false;

 }

 }

 }

}

As you can see, I need to inject IServiceProvider by dependency to be

able to create any service instance when I need it, and concretely instantiate the

ICountryServices service to process a set of countries each time a file is uploaded with

the following lines:

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

364

await foreach (var uploadedCountries in _syncCountriesChannel.ReadAllAsync(

cancellationToken))

{

 try

 {

 code

 using var scope = _serviceProvider.CreateScope();

 �var countryServices = scope.ServiceProvider.GetRequiredService

<ICountryServices>();

 code

 }

 code

}

Why am I’m doing this? The background service is Singleton, but I need scoped

instances of ICountryServices (limited lifetime) not to share the same state of the

ICountryServices service between each dataset process.

On the other hand, the other instances, such as GlobalOptions and

ISyncCountriesChannel, must be Singleton to share the same instance through the

application. ILogger<T> is by default Singleton, and I inject it to log each country’s

ingestion operation, logging the start of the process, and the end of the process when

it succeeds. If the process fails, it is enriched with the CorrelationId coming from the

exception of type RpcException.

�Create and Configure the gRPC Client with the
IHttpClientFactory and Register All Dependencies
in the Program.cs File

Chapter 7 taught you how to create a gRPC client with a .NET 6 console application and

import a proto file from the Visual Studio Connected Services window. This time, we

are creating a gRPC client with the HttpClientFactory, which is a bit different, but still

allows creating HttpClient instances and making HTTP calls. IHttpClientFactory is a

.NET 6 built-in feature, and I’ll show you how to use it properly.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

365

After importing the country.proto file in the CountryWiki.Web project, let’s go to

the Program.cs file and configure the gRPC client, set up the compression, define the

maximum messages size, and add the TraceInterceptor as introduced in Chapter 7.

ASP.NET Core exposes extension methods that return an IHttpClientBuilder,

which allows configuring an HttpClient instance managed (reused or disposed)

by the IHttpClientFactory. The suitable extension method for gRPC clients is

AddGrpcClient(). Listing 9-38 shows the configuration of the CountryServiceClient

(the gRPC client) with the base URL of the gRPC server, AddInterceptor() to configure

interceptors (introduced in Chapter 7), ConfigureChannel() to configure channels c,

and all the stuff required to make the application run (including the background task).

Listing 9-38.  Configuring the CountryGrpcServiceClient with the gRPC Server

Address, Logging, Interceptors, Compression, Messages Size Limit, and the Rest

of the Stuff Required to Make the Web Application Run

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddRazorPages();

builder.Services.AddScoped<ICountryRepository, CountryRepository>();

builder.Services.AddScoped<ICountryServices, CountryServices>();

builder.Services.AddScoped<ICountryFileUploadValidatorService,

CountryFileUploadValidatorService>();

builder.Services.AddSingleton<ISyncCountriesChannel,

SyncCountriesChannel>();

builder.Services.AddHostedService<SyncUploadedCountriesBackgroundService>();

builder.Services.AddSingleton(new GlobalOptions

{

 ProcessingUpload = false

});

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

366

builder.Services.AddGrpcClient<CountryServiceClient>(o =>

 {

 �o.Address = new Uri(builder.Configuration.

GetSection("CountryServiceUri").Value);

 })

 �.AddInterceptor(() => new TracerInterceptor(loggerFactory.CreateLogger

<TracerInterceptor>()))

 .ConfigureChannel(o =>

 {

 o.CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider()

 };

 o.MaxReceiveMessageSize = 6291456; // 6 MB,

 o.MaxSendMessageSize = 6291456; // 6 MB

 });

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseDeveloperExceptionPage();

}

else

{

 app.UseExceptionHandler("/Error");

 // �The default HSTS value is 30 days. You may want to change this for

production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

367

app.UseRouting();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

Note that I placed the CountryService server Uri in the appsettings.json file:

{

 ...

 "CountryServiceUri": https://localhost:5001

 ...

}

�Upload a Data File with a Form, Display and Manage
Data on Razor Pages
Let’s move on to viewing country data and uploading country data.

Note T he primary purpose of this book is to show you how to use gRPC to
develop an application with ASP.NET Core and .NET 6 only. So, I will omit some
explanatory details about ASP.NET Core Razor Pages. If you want to learn about
it in depth, you can read Microsoft’s documentation here: https://docs.
microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnet
core-6.0.

Let’s start by going to the Razor Index.cshtml page to implement the file form

upload and the HTML table displaying the list of countries.

Listing 9-39 shows a simple file upload form and a simple HTML table fed by the

Countries property model.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-6.0

368

Listing 9-39.  Index.cshtml File Implements the File Upload Form and an HTML

Table to Display the Countries List

@page

@model IndexModel

@{

 ViewData["Title"] = "Country Wiki main page";

}

<div class="text-center">

 <h1 class="display-5">Country Wiki main page</h1>

</div>

<form method="post" enctype="multipart/form-data">

 <div class="container mb-5 mt-5">

 <div>

 Upload countries (JSON only):

 <input type="file" asp-for="Upload" />

 </div>

 �<div><input type="submit" value="Upload" asp-page-

handler="upload"/></div>

 <div class="text-danger">@Model.UploadErrorMessage</div>

 @if (Model.GlobalOptions.ProcessingUpload) {

 �<div class="text-center text-danger"><h2>A file upload is in

progress...</h2></div>

 }

 </div>

 <table class="table">

 <thead>

 <tr>

 <th>ID</th>

 <th>Name</th>

 <th>Description</th>

 <th>Capital City</th>

 <th>Anthem</th>

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

369

 <th>Spoken languages</th>

 <th>Flag</th>

 <th>Edit</th>

 <th>Delete</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var country in Model.Countries)

 {

 <tr>

 <td>@country.Id </td>

 <td>@country.Name</td>

 <td>@country.Description</td>

 <td>@country.CapitalCity</td>

 <td>@country.Anthem</td>

 <td>@string.Join(", ", country.Languages)</td>

 �<td><img src="@country.FlagUri" alt="@country.Name"

height="25" width="45" /></td>

 �<td><a asp-page="./Edit" asp-route-id="@country.

Id">Edit</td>

 �<td><input type="submit" asp-page-handler="delete"

asp-route-id="@country.Id" value="Delete" /></td>

 </tr>

 }

 </tbody>

 </table>

</form>

Notice the usage of the ProcessingUpload property of the GlobalOptions object to

display (or not) a message that a file upload is being processed.

I added a link to the Edit page and a button to delete a country in the HTML table.

Both actions require the Id of the country.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

370

The Index page’s code behind (the C# code which handles the Index HTML page),

the Index.cshtml.cs file implements the following actions:

•	 The Index page loading with the countries list, performed by the

OnGetAsync() method, which executes the GetAllAsync() method

from the ICountryServices service.

•	 The file upload, performed by the OnPostUploadAsync()

method. This method validates the file using

ICountryFileUploadValidatorService service methods, displays

error validating in the Index file, or sends the data validated and

parsed from the uploaded file to the ISyncCountriesChannel

channel. If the file is correctly sent to the channel, a redirection is

made to the Index page and refreshed with the latest data.

•	 The country deletion, performed by the OnPostDeleteAsync()

method, executes the OnDeleteAsync() method from the

ICountryServices service.

Listing 9-40 shows the Index.cshtml.cs file implementation.

Listing 9-40.  The Index.cshtml.cs File Implementing Actions on the

Index Page

namespace CountryWiki.Web.Pages;

public class IndexModel : PageModel

{

 private readonly ICountryServices _countryServices;

 �private readonly ICountryFileUploadValidatorService _

countryFileUploadValidatorService;

 private readonly ISyncCountriesChannel _syncCountriesChannel;

 public GlobalOptions;

 �public IEnumerable<CountryModel> Countries { get; set; } = new

List<CountryModel>();

 public string UploadErrorMessage { get; set; } = string.Empty;

 [BindProperty]

 public IFormFile Upload { get; set; }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

371

 public IndexModel(ICountryServices countryServices,

 �ICountryFileUploadValidatorService

countryFileUploadValidatorService,

 ISyncCountriesChannel syncCountriesChannel,

 GlobalOptions globalOptions)

 {

 _countryServices = countryServices;

 �_countryFileUploadValidatorService =

countryFileUploadValidatorService;

 _syncCountriesChannel = syncCountriesChannel;

 GlobalOptions = globalOptions;

 }

 public async Task OnGetAsync()

 {

 Countries = await _countryServices.GetAllAsync();

 }

 �public async Task<IActionResult> OnPostUploadAsync(CancellationToken

cancellationToken)

 {

 if (Upload == null)

 {

 return await HandleFileValidation("File is missing");

 }

 var uploadedFile = new CountryUploadedFileModel

 {

 FileName = Upload.FileName,

 ContentType = Upload.ContentType

 };

 if (!_countryFileUploadValidatorService.ValidateFile(uploadedFile))

 {

 �return await HandleFileValidation("Only JSON files are

allowed");

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

372

 �var parsedCountries = await _countryFileUploadValidatorService.

ParseFile(Upload.OpenReadStream());

 if (parsedCountries == null || !parsedCountries.Any())

 {

 �return await HandleFileValidation("Cannot parse the file or the

file is empty");

 }

 �await _syncCountriesChannel.SyncAsync(parsedCountries,

cancellationToken);

 return RedirectToPage("./Index");

 }

 public async Task<IActionResult> OnPostDeleteAsync(int id)

 {

 await _countryServices.DeleteAsync(id);

 return RedirectToPage("./Index");

 }

 �private async Task<PageResult> HandleFileValidation(string

errorMessage)

 {

 UploadErrorMessage = errorMessage;

 Countries = await _countryServices.GetAllAsync();

 return Page();

 }

}

Notice that the GlobalOptions object, injected by dependency as a Singleton,

is assigned to the public GlobalOptions on the Razor Pages. In this way, I keep

the reference of the same object, and I’m sure you understand, the value of the

ProcessingUpload property is synchronized with the rest of the application.

Let’s test the Index page and see what happens if the uploaded file is not a JSON file.

Figure 9-25 shows the displayed error when a text file is uploaded instead of a JSON file.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

373

Figure 9-25.  A specific error message is displayed when the uploaded file is not a
JSON file

Figure 9-26 shows the error message when the data in the JSON file are not valid.

Figure 9-26.  A specific error message is displayed when data are not valid

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

374

Note  Chapter 7 showed you how to validate server-side messages. As you can
see, I did not use server-side validation here, for the simple reason I wanted to
show how you can perform validation on the client side. As a general rule, it is
good to perform validation on both the client side and the server side. As I have
already shown you how to proceed on the server- side, I have decided to show you
only the client -side of the validation here.

Let’s consider now valid data on a valid JSON file, as shown in Listing 9-41.

Listing 9-41.  Valid Data to Be Uploaded

[

 {

 "name": "Canada",

 "description": "Maple leaf country",

 "capitalCity": "Ottawa",

 "anthem": "O Canada !",

 �"flagUri": "https://anthonygiretti.blob.core.windows.net/

countryflags/ca.png",

 "languages": [1, 2]

 },

 {

 "name": "Canada",

 �"description": "Maple leaf country. Imported twice from file,

delete me",

 "capitalCity": "Ottawa",

 "anthem": "O Canada !",

 �"flagUri": "https://anthonygiretti.blob.core.windows.net/

countryflags/ca.png",

 "languages": [1, 2]

 },

 {

 "name": "USA",

 "description": "Uncle Sam country",

 "capitalCity": "Washington",

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

375

 "anthem": "The Star-Spangled Banner",

 �"flagUri": "https://anthonygiretti.blob.core.windows.net/

countryflags/us.png",

 "languages": [2, 3]

 },

 {

 "name": "United Kingdom",

 "description": "Sovereign country of North-western Europe",

 "capitalCity": "London",

 "anthem": "God save the Queen",

 �"flagUri": "https://anthonygiretti.blob.core.windows.net/

countryflags/uk.png",

 "languages": [1]

 },

 {

 "name": "France",

 "description": "Human rights country",

 "capitalCity": "Paris",

 "anthem": "La marseillaise",

 �"flagUri": "https://anthonygiretti.blob.core.windows.net/

countryflags/fr.png",

 "languages": [2]

 },

 {

 "name": "Mexico",

 "description": "Cradle of civilization country",

 "capitalCity": "Mexico City",

 "anthem": "Himno Nacional Mexicano",

 �"flagUri": "https://anthonygiretti.blob.core.windows.net/

countryflags/mx.png",

 "languages": [3]

 }

]

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

376

If we try to upload these data, the magic now happens! After the completed file

upload, the Index page is reloaded with the message that notifies the user a file is being

processed as expected, and after reloading the page, we can, at last, see our countries.

Figure 9-27 shows the message “A file upload is in progress...”

Figure 9-27.  The message "A file upload is in progress..." displayed after the
completed file upload

Figure 9-28 shows the Index page displaying countries.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

377

Figure 9-28.  Displaying countries

If we delete the second row, which is a duplicate of the first row, the Index page

should be appropriately refreshed as expected, as shown in Figure 9-29.

Figure 9-29.  Index page refreshed after deleting a country

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

378

Moving to the Edit page, Listing 9-42 shows the form implementation allowing a

country description to be edited.

Listing 9-42.  Edit Country Description Form Implementation in Edit.

cshtml File

@page

@model EditModel

@{

}

<h1>Edit Country - @Model.CountryName</h1>

<form method="post">

 <div asp-validation-summary="ModelOnly"></div>

 �<input asp-for="CountryToUpdate.Id" type="hidden" value="@Model.

CountryToUpdate.Id" />

 <div>

 <label asp-for="CountryToUpdate.Description"></label>

 <div>

 �<textarea rows="4" cols="50" name="@Html.NameFor(m =>

m.CountryToUpdate.Description)">@Model.CountryToUpdate.

Description</textarea>

 </div>

 �<div><span asp-validation-for="CountryToUpdate.Description"

class="text-danger"></div>

 </div>

 <div>

 <input type="submit" value="Save"/>

 </div>

</form>

The code handling the country description edit in the Edit.cshtml.cs file is shown

in Listing 9-43.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

379

Listing 9-43.  The Edit.cshtml.cs Implementation

namespace CountryWiki.Web.Pages;

public class EditModel : PageModel

{

 private readonly ICountryServices _countryServices;

 public string CountryName { get; set; }

 [BindProperty]

 public UpdateCountry CountryToUpdate { get; set; }

 public EditModel(ICountryServices countryServices)

 {

 _countryServices = countryServices;

 }

 public async Task OnGetAsync(int id)

 {

 await RetrieveCountry(id);

 }

 public async Task<IActionResult> OnPostAsync()

 {

 if (!ModelState.IsValid)

 {

 await RetrieveCountry(CountryToUpdate.Id);

 return Page();

 }

 await _countryServices.UpdateAsync(new UpdateCountryModel {

 Id = CountryToUpdate.Id,

 Description = CountryToUpdate.Description

 });

 return RedirectToPage("./Index");

 }

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

380

 private async Task RetrieveCountry(int id)

 {

 var country = await _countryServices.GetAsync(id);

 CountryName = country.Name;

 CountryToUpdate = new UpdateCountry

 {

 Id = country.Id,

 Description = country.Description

 };

 }

}

Listing 9-44 shows the UpdateCountry class with the validation requirements on the

Description property (required max length of 200 characters and a minimum length of

10 characters).

Listing 9-44.  UpdateCountry Class Definition

namespace CountryWiki.Web.Models;

public class UpdateCountry

{

 public int Id { get; set; }

 [Required, StringLength(200, MinimumLength = 10)]

 public string Description { get; set; }

}

If we click an Edit link in the HTML table (on the Index page), we should be

redirected to the Edit page, as shown in Figure 9-30.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

381

Figure 9-30.  The Edit page

An error message is displayed if the Description field requirements are not met, as

shown in Figure 9-31.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

382

Figure 9-31.  The error message is displayed when the Description field
requirements are not met

If the requirements are met, the update should work, and redirection should be

made to the Index page with the data appropriately updated, as shown in Figure 9-32.

Figure 9-32.  The Index page reloaded with the updated data

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

383

To finish with coding, the GlobalUsings.cs file should look like Listing 9-45.

Listing 9-45.  The CountryWiki.Web GlobalUsings.cs File

global using System.IO.Compression;

global using System.ComponentModel.DataAnnotations;

global using System.Threading.Channels;

global using Microsoft.AspNetCore.Mvc;

global using Microsoft.AspNetCore.Mvc.RazorPages;

global using Grpc.Net.Compression;

global using Grpc.Core;

global using Grpc.Core.Interceptors;

global using CountryWiki.Web.Compression;

global using CountryWiki.Web.Interceptors;

global using CountryWiki.BLL.Services;

global using CountryWiki.DAL.Repositories;

global using CountryWiki.Domain.Repositories;

global using CountryWiki.Domain.Services;

global using CountryWiki.Web.Options;

global using CountryWiki.Web.Channels;

global using CountryWiki.Web.Background;

global using CountryWiki.Web.Models;

global using CountryWiki.Domain.Models;

global using static CountryWiki.DAL.v1.CountryService;

And your CountryWiki.Web project should look like Figure 9-33.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

384

Figure 9-33.  The CountryWiki.Web project

Et voila!

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

385

�Summary
You have just finished an essential stage in this book. You were able to put into practice

what you have learned in the previous chapters by developing a simple but complete

web application, from the conception of the access to the data, to the exposure of this

data with ASP.NET Core gRPC, and, finally, the consumption of this data in an ASP.NET

Core web application, all while respecting current development best practices.

I did not introduce in this chapter all the functionalities that gRPC offers. It would

have been too tedious. I focused on fundamental development with gRPC in .NET 6,

which is enough for you to get started with your own applications. In any case, I hope I

have instilled in you the desire to explore in more depth all that gRPC offers. The source

code of this web application (the ASP.NET Core Razor Pages application and the ASP.

NET Core gRPC application) is available for download on the Apress website at www.

apress.com/9781484280072. You can have fun by developing new services, for example,

by enriching protobufs with more complex messages. Note, however, that we are not

done with gRPC and ASP.NET Core. You will discover in the following chapters an

evolution of gRPC intended for browsers: gRPC-web.

Chapter 9 Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC

http://www.apress.com/9781484280072
http://www.apress.com/9781484280072

PART IV

gRPC-web and ASP.NET
Core

389
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_10

CHAPTER 10

The gRPC-web
Specification
We have seen together a lot things that we can do with gRPC. However, as explained

in Chapter 3, gRPC is not fully supported by browsers because it relies on HTTP/2.

Fortunately, a browser-compatible version of gRPC has emerged: gRPC-web. In this

chapter, you will learn

•	 The history and the specification of gRPC-web

•	 The gRPC-web JavaScript libraries

•	 gRPC-web versus REST APIs

�History and Specification of gRPC-web
�History of gRPC-web
As you already know, gRPC and Protobufs resulted from an open source project

led by Google, initiated in the early 2000s and officially open-sourced in 2014. And

then, Google began looking into the following problem: “How can we run gRPC in a

browser?” Meanwhile, a UK simulation software development company, Improbable,

had also been independently looking at the same problem. In the summer of 2016,

the two companies joined forces to define a standard specification, which led to the

development of the gRPC-web specification.

On the other hand, before 2016, there was a way to use gRPC with a browser, but it

was neither very practical nor very efficient: use a REST API to convert RPC calls into

REST endpoints. Figure 10-1 shows the flow from a gRPC server to a browser app using a

REST API between them.

https://doi.org/10.1007/978-1-4842-8008-9_10

390

Figure 10-1.  The flow from a gRPC server to a browser app with a REST
API between

You surely understand why this solution is neither practical nor efficient and

therefore not viable in the long term. Developing a REST API between the browser and

the gRPC application poses a few problems:

•	 You have to build an additional application, which is tedious (and

managing gRPC trailers and statuses which are not existing in the

REST world, REST uses HTTP headers and HTTP statuses instead).

•	 It poses the risk of having a new application that may contain bugs

and compromise the stability of the application, which is a potential

single point of failure.

•	 It poses potential network problems (also a potential single point of

failure to the application).

•	 Maintain this application if the application on the client side

(browser) and/or server side (gRPC) evolves.

•	 You lose the performance benefit gained from HTTP/2 by going

back to HTTP/1 and converting the binary payloads into JSON and

vice versa, which slows down the application. Streaming data is

not supported in REST APIs except streaming files such as video or

sound files.

Chapter 10 The gRPC-web Specification

391

gRPC-web partially fixes these problems, and I will explain how in the following

subsection.

�The gRPC-web Specification
As previously mentioned, Google and Improbable joined forces to define the common

standard gRPC-web, which supports the following:

•	 Unary calls and streaming server calls

•	 gRPC trailers present in the body of the response, unlike in gRPC

•	 HTTP/2 (yes, gRPC-web supports HTTP/2!) and will be ready when

browsers are

•	 Two different Content-type header values:

•	 application/grpc-web+proto, which handles binary payloads,

but only unary calls are supported

•	 application/grpc-web-text, which handles text payload

encoded in Base64.

The principle remains similar to using a REST API. Still, a mandatory proxy

converts HTTP/2 requests to HTTP/1 and vice versa and converts binary payload to

text if application/grpc-web-test transport is used. But above all, the proxy removes

the REST API potential single point of failure because it’s not an app that you have

developed, so no maintenance is required and no regression may occur. An example of

a proxy that could be used is Envoy, a very efficient and reliable proxy that can take the

gRPC-web flow. To learn more about Envoy and how to configure it for using gRPC-web,

read the following documentation: https://grpc.io/docs/platforms/web/basics/.

Anyway, gRPC-web with ASP.NET Core doesn’t require a proxy, and I’ll explain why

in Chapter 11. Figure 10-2 shows the flow from a gRPC server to a browser app using a

gRPC-web proxy between.

Chapter 10 The gRPC-web Specification

https://grpc.io/docs/platforms/web/basics/

392

Figure 10-2.  The flow from a gRPC server to a browser app with a gRPC-web
proxy between

However, the collaboration between Google and Improbable stops at this common

standard, because each develops its own JavaScript library, which I will present to you in

the next section.

�The gRPC-web JavaScript Libraries
Improbable and Google have each developed their own gRPC-web JavaScript library,

and although they are similar, they still have two main differences, which is why I prefer

one over the other.

The first difference is that, unlike the Google library, the Improbable library supports

XmlHttpRequest (XHR) and the Fetch API to process Asynchronous JavaScript and XML

(AJAX) calls. If you are not sure about the difference between using AJAX calls with

XHR or the Fetch API, the following explains it very well: https://www.sitepoint.com/

xmlhttprequest-vs-the-fetch-api-whats-best-for-ajax-in-2019/.

The second difference is that only the Improbable library manages itself (based on

browser capability), the transport type to use (XHR or Fetch), and what gRPC-web mode

to use (base-64 encoded or binary). This feature is good because binary is not supported

on server-streaming calls, so if you let Improbable manage it for you, you will never get

it wrong.

Based on that explanation, my preference obviously is the Improbable library, and

thus this is the library I will use to show you how to use gRPC-web with Angular 12 in

Chapter 12. If you are interested in the Google library, you can read the tutorial on the

GitHub page at https://github.com/grpc/grpc-web. As for the Improbable library, it is

available here: https://github.com/improbable-eng/grpc-web.

Chapter 10 The gRPC-web Specification

https://www.sitepoint.com/xmlhttprequest-vs-the-fetch-api-whats-best-for-ajax-in-2019/
https://www.sitepoint.com/xmlhttprequest-vs-the-fetch-api-whats-best-for-ajax-in-2019/
https://github.com/grpc/grpc-web
https://github.com/improbable-eng/grpc-web

393

Although Improbable’s implementation doesn’t support deadlines (but does

support cancellation) and interceptors, I still find it more convenient than Google’s

implementation (which has itself two differents behaviors like text or binary data transport).

If you need to implement interceptors in JavaScript, you should use Google’s

implementation and follow its tutorial to implement Interceptors here: https://grpc.io/

blog/grpc-web-interceptor/. Personally, I don’t use those features very often, so the fact

that Improbable’s implementation doesn’t support them isn’t a big deal.

I haven’t forgotten Protoc and the stubs generation in JavaScript/TypeScript either.

We will also see that in Chapter 12.

To finish, Table 10-1 recapitulates the similarities and differences between the

Improbable and Google implementations of gRPC-web in terms of features support.

With all this information about gRPC-web, you must be wondering, as I did initially,

if you can replace the REST APIs and JSON with gRPC-web. I will answer that question in

the next section.

�gRPC-web vs. REST APIs
Since gRPC is not compatible with a browser, it’s not easy to compare gRPC with REST APIs

in applications running on a browser. gRPC-web fixes the compatibility issue, but is that

a reason to replace REST? There is no right or wrong answer, but it’s legitimate to wonder

if gRPC-web can be an excellent alternative to REST APIs or replace them. Chapter 12

may give you the answers you are looking for with the example of the gRPC-web/Angular

couple. For example, would you like to generate your gRPC stubs in JavaScript/TypeScript?

At this stage, however, I can tell you that gRPC-web, in terms of performance, is

superior to JSON (whether binary or base-64 is used for transport). James Newton-King,

Principal Software Engineer at Microsoft, affirms that the reduction in the payload is of

Table 10-1.  Similarities and Differences Between Improbable and Google

Implementations of gRPC-web in Terms of Features Support

Library XHR Fetch Unary Server Streaming Client and Bidirectional Streaming

Improbable Yes Yes Yes Yes No

Google text Yes No Yes Yes No

Google binary Yes No Yes No No

Chapter 10 The gRPC-web Specification

https://grpc.io/blog/grpc-web-interceptor/
https://grpc.io/blog/grpc-web-interceptor/

394

the order of 50%, and the serialization/deserialization is, therefore, faster, so you will

understand that the overall performance is excellent, even with HTTP/1, since browsers

do not yet support HTTP/2 fully. If you are interested in James Newton-King’s exciting

post, you can read it here: https://devblogs.microsoft.com/dotnet/grpc-web-for-

net-now-available/.

Finally, the following are the key takeaways from the gRPC-web versus REST APIs

comparison:

•	 gRPC-web provided higher performance.

•	 gRPC-web web stubs are strongly typed (like gRPC).

•	 Swagger-type documentation no longer is needed. The Protobufs are

there for that.

•	 REST APIs are widely adopted by the industry. It is a standard that

will be difficult to compete with for a long time to come.

Note  Modern browsers support HTTP/2, but not entirely. That’s why it’s
recommended to use HTTP/1 for gRPC-web in HTML/JavaScript apps. If you
want to follow HTTP/2 evolution on browsers, check out the following website:
https://caniuse.com/http2.

�Summary
You have learned in this short chapter what gRPC-web is, its history, and how it works.

I did not go into too much detail here because Chapter 12 explains the client part

(JavaScript/TypeScript) and provides clear examples. Regarding replacing REST APIs

with gRPC-web, the choice is up to you. There is no best choice. For performance

concerns, you might choose gRPC-web but still want to use REST for its approved and

proven technology. I also did not detail how to configure a proxy for gRPC-web because,

with ASP.NET Core, we won’t need it: ASP.NET Core supports it natively. In the next

chapter, I will show you how to configure gRPC in ASP.NET Core to support gRPC-web

and rework our gRPC services to overcome the incompatibility of browsers with the

client streaming and bidirectional streaming…and much more!

Chapter 10 The gRPC-web Specification

https://devblogs.microsoft.com/dotnet/grpc-web-for-net-now-available/
https://devblogs.microsoft.com/dotnet/grpc-web-for-net-now-available/
https://caniuse.com/http2

395
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_11

CHAPTER 11

Create a gRPC-web
service from a
gRPC-service with
ASP.NET Core
ASP.NET Core offers a particular implementation of the gRPC-web specification.

First, it is straightforward to create a gRPC-web application from a gRPC application

without altering the operation of the application and without using any proxy. Also,

the implementation of gRPC-web in ASP.NET Core supports both client streaming and

bidirectional streaming, but only for applications that do not use a browser to operate.

Therefore, it will be necessary to create another version of the Protobufs for applications

running in a browser (apps based on HTML/JavaScript only). Finally, compared to

gRPC, gRPC-web is supported on Microsoft Azure.

In this chapter, you will explore the following:

•	 Working with gRPC-web and the .NET ecosystem

•	 Reworking the CountryService gRPC service to make it work with

browser apps

•	 Support of ASP.NET Core gRPC-web on Microsoft Azure

https://doi.org/10.1007/978-1-4842-8008-9_11

396

�Working with gRPC-web and the .NET Ecosystem
This section is not dedicated to .NET 6 only because it also discusses ASP.NET Core 6

server applications and all other .NET clients (not only .NET 6).

Note  This chapter takes code from Chapter 9 and adds some stuff to make it
compatible with gRPC-web. So, it’s important to read Chapter 9 before reading this
chapter.

�gRPC-web and ASP.NET Core 6
Implementing gRPC-web in ASP.NET Core 6 is surprisingly easy if you already know

gRPC with ASP.NET Core 6. Why? Because ASP.NET Core 6 supports the same features

as gRPC, so no implementation needs to be changed if (and only if) your client is not

a browser. Remember, browsers do not support the client and bidirectional streaming

services. To use your ASP.NET Core gRPC application in a gRPC-web version for the

browser, you will have to rework the protobufs to only implement server streaming

or unary services. This will be the subject of the next major section, “Reworking the

Country gRPC-web Service for Browsers Apps.”

Back to ASP.NET Core 6, what is the point of using gRPC-web if the client

applications are not web applications running in a browser? Well, because there are

a bunch of client applications in the .NET ecosystem that do not support gRPC over

HTTP/2. Therefore, an HTTP/1 alternative to gRPC (gRPC-web) is necessary for the

following types of clients:

•	 .NET Core 2

•	 .NET Framework

•	 Blazor WebAssembly

•	 Mono

•	 Xamarin.IOS and Android

•	 UWP

•	 Unity

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

397

Remember that gRPC-web could be a natural alternative to gRPC because hosting,

for example, Microsoft Azure could be a challenge due to its limited support of HTTP/2.

Any application running at least .NET Core 3 can consume both gRPC and gRPC-web

services.

So, I repeat, because this is very important: if your client is not an HTML/JavaScript app

running in a browser (I also include JavaScript desktop applications such as ElectronJS),

you can configure the previous CountryService gRPC service to run in gRPC-web mode.

Note H TML/JavaScript apps running in a browser, or ElectronJS, are web apps
like the CountryWiki we developed in Chapter 9. The CountryWiki is a monolithic
server-side application that works differently from HTML/JavaScript apps. This
chapter will describe browser-based or HTML/JavaScript apps (commonly
named Single Page Applications) unlike monolithic apps like ASP.NET Core Razor
Pages where rendering is computed server side.

First of all, you need to install the required NuGet Grpc.Asp.NetCore.Web package

from the Visual Studio Package Manager with the following command:

Install-Package Grpc.AspNetCore.Web

Next, add the following middleware, which enables gRPC-web, to the ASP.NET Core

pipeline:

app.UseGrpcWeb(new GrpcWebOptions { DefaultEnabled = true });

The GrpcWebOptions setting enables gRPC-web by default on any gRPC service that

is already set up. If you don’t want to enable gRPC-web by default to gRPC services, you

can proceed as follow:

app.UseGrpcWeb();

app.MapGrpcService<CountryGrpcService>().EnableGrpcWeb();

I prefer to use the first way to proceed. I like to enable gRPC-web by default, because

I think it is much more straightforward.

That’s it! Listing 11-1 shows the Country gRPC service ready for gRPC-web usage

with apps that are not brower based.

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

398

Listing 11-1.  Configure gRPC-web for Non-Browser-Based Apps

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.IgnoreUnknownServices = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider() // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal;

// compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>();

// Register custom ExceptionInterceptor interceptor

});

builder.Services.AddGrpcReflection();

builder.Services.AddScoped<ICountryRepository, CountryRepository>();

builder.Services.AddScoped<ICountryServices, CountryServices>();

builder.Services.AddSingleton<ProtoService>();

builder.Services.AddDbContext<CountryContext>(options => options.

UseSqlServer(builder.Configuration.GetConnectionString("CountryService")));

var app = builder.Build();

app.UseGrpcWeb(new GrpcWebOptions { DefaultEnabled = true });

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

app.MapGet("/protos", (ProtoService protoService) =>

{

 return Results.Ok(protoService.GetAll());

});

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

399

app.MapGet("/protos/v{version:int}/{protoName}", (ProtoService

protoService, int version, string protoName) =>

{

 var filePath = protoService.Get(version, protoName);

 if (filePath != null)

 return Results.File(filePath);

 return Results.NotFound();

});

app.MapGet("/protos/v{version:int}/{protoName}/view", async (ProtoService

protoService, int version, string protoName) =>

{

 var text = await protoService.ViewAsync(version, protoName);

 if (!string.IsNullOrEmpty(text))

 return Results.Text(text);

 return Results.NotFound();

});

// Run the app

app.Run();

�gRPC-web and All .NET Clients
This section aims to show how does look like a non-ASP.NET Core or a lower version of

ASP.NET Core 3.0 client (because it is better to use the integration with the gRPC client

factory that we developed in Chapter 9). These .NET clients use the same client without

distinction by downloading the following Nuget package: Grpc.Net.Client. The latter

targets .NET standard 2.0, .NET standard 2.1, .NET 5, and .NET 6. The implementation

of a gRPC-web client is therefore identical to the implementation of all .NET clients.

Listing 11-2 shows an example of this implementation on a .NET Core 3.1 gRPC-web

client.

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

400

Listing 11-2.  A .NET Core 3.1 gRPC-web Client

using Grpc.Net.Client;

using Microsoft.Extensions.Logging;

using System;

using System.Collections.Generic;

using System.Net.Http;

using CountryService.Client.Compression;

using Grpc.Net.Compression;

using static Apress.Sample.gRPC.v1.CountryService;

using Grpc.Net.Client.Web;

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider() // br

 },

 MaxReceiveMessageSize = 6291456, // 6 MB,

 MaxSendMessageSize = 6291456, // 6 MB,

 HttpHandler = new GrpcWebHandler(new HttpClientHandler())

});

// var countryClient = new CountryServiceClient(channel.Intercept(new

TracerInterceptor(loggerFactory.CreateLogger<TracerInterceptor>())));

var countryClient = new CountryServiceClient(channel);

Passing an instance of the HttpClientHandler class is necessary because it makes

HTTP requests and handles HTTP responses.

Note that it is necessary to instantiate the GrpcWebHandler class because the latter offers

a few options that are not provided by HttpClientHandler class, among them we find:

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

401

•	 InnerHandler, which is the previous HttpClientHandler passed in

the constructor in the Listing 11-2.

•	 GrpcWebMode, which defines the Content-Type header. If you want

to use server-streaming services, use the GrpcWebMode.GrpcWebText

value. By default, if a value is not set, this latter value is used. If you

use only unary calls, you can set it to the GrpcWebMode.GrpcWeb value.

•	 HttpVersion, which tells the client what HTTP version to use; by

default, HTTP/1 is used. This object is typed as version, which takes

as a parameter a string that defines the HTTP version: “1.1” for

HTTP/1, “2.0” for HTTP/2. By default, the client capability, HTTP/2,

will be used first, and if the client is not compatible, it will fall back

to HTTP/1. For example, the Xamarin.Android HttpClient relies on

AndroidClientHandler, which doesn’t support HTTP/2. (An HTTP

handler is the part of an HttpClient that makes the HTTP Request.)

Listing 11-3 shows the client previously shown in Listing 11-2 with GrpcWebHandler

options set manually.

Listing 11-3.  Set Up Manually GrpcWebHandler Options

var gRPCHandler = new GrpcWebHandler()

{

 HttpVersion = new Version("1.1"),

 GrpcWebMode = GrpcWebMode.GrpcWebText,

 InnerHandler = new HttpClientHandler()

};

var channel = GrpcChannel.ForAddress("https://localhost:5001", new

GrpcChannelOptions {

 LoggerFactory = loggerFactory,

 CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider() // br

 },

 MaxReceiveMessageSize = 6291456, // 6 MB,

 MaxSendMessageSize = 6291456, // 6 MB,

 HttpHandler = gRPCHandler

});

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

402

�gRPC-web and ASP.NET Core 3+ Clients
Now let’s move on to ASP.NET Core clients that are at least version 3. Configuration of

these clients is also effortless. As in the previous section, you have to configure the client

with an instance of GrpcWebHandler. The syntax is a little different here. We use the

gRPC client factory. Don’t forget to download the Nuget Grpc.Net.Client.Web package.

Listing 11-4 shows the configuration of the gRPC-web client of the CountryWiki app,

developed with ASP.NET Core Razor Pages.

Listing 11-4.  The Country Wiki App Configured with a gRPC-web Client

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddRazorPages();

builder.Services.AddScoped<ICountryRepository, CountryRepository>();

builder.Services.AddScoped<ICountryServices, CountryServices>();

builder.Services.AddScoped<ICountryFileUploadValidatorService,

CountryFileUploadValidatorService>();

builder.Services.AddSingleton<ISyncCountriesChannel,

SyncCountriesChannel>();

builder.Services.AddHostedService<SyncUploadedCountriesBackgroundService>();

builder.Services.AddSingleton(new GlobalOptions

{

 ProcessingUpload = false

});

var loggerFactory = LoggerFactory.Create(logging =>

{

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Trace);

});

builder.Services.AddGrpcClient<CountryServiceClient>(o =>

 {

 o.Address = new Uri("https://localhost:5001");

 })

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

403

 �.ConfigurePrimaryHttpMessageHandler(() => new GrpcWebHandler(new

HttpClientHandler()))

 �.AddInterceptor(() => new TracerInterceptor(loggerFactory.CreateLogger

<TracerInterceptor>()))

 .ConfigureChannel(o =>

 {

 o.CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider()

 };

 o.MaxReceiveMessageSize = 6291456; // 6 MB,

 o.MaxSendMessageSize = 6291456; // 6 MB

 });

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseDeveloperExceptionPage();

}

else

{

 app.UseExceptionHandler("/Error");

 �// �The default HSTS value is 30 days. You may want to change this for

production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

404

As you can see, the syntax is different here. We must use the

ConfigurePrimaryHttpMessageHandler() extension method to achieve our ends.

The latter returns an IHttpClientBuilder that allows us to chain the other extension

methods AddInterceptor() and ConfigureChannel().

This Country gRPC and gRPC-web service is now ready to serve non-browser-

based apps!

�Reworking the CountryService gRPC service
for Browser Apps
As you already know, browsers do not support client and bidirectional streaming

services. Therefore, it will be necessary to serve the same data to clients regardless of

whether they are using gRPC-web in a browser or not. Let’s first review our interaction

scenario between the client and the gRPC server. Figure 11-1 shows the architecture

diagram of the Countries Wiki application with the gRPC-web service.

Figure 11-1.  The Countries Wiki architecture diagram with gRPC-web

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

405

We can note two significant changes here:

•	 Uploading a file, which is parsed and validated on the front-end side,

with JavaScript for HTML/JavaScript applications and with C # for

Blazor WebAssembly applications.

•	 The absence of a background task allowed streaming the countries

to be synchronized with the database. However, an alternative

exists for HTML/JavaScript applications, whose operation is similar

to background tasks: Web Workers. We will see this in detail in

Chapter 12. As for Blazor WebAssembly, which does not support

background tasks, will also have its alternative to background tasks,

simply .NET Tasks.

I want to keep the responsibility of validating and parsing uploaded files client side

instead of uploading the file to the gRPC server. The gRPC service will perform only

CRUD operations from a strict contract given to clients, which is lightweight. In this

way, the load is mainly on the client side instead of the server side, which helps keep

performance stability.

Now let’s rewrite our Protobufs, considering that we can no longer use a two-way

streaming service. We are therefore going to have two very distinct Protobuf files:

•	 country.proto: A Protobuf file that we’ve already created that serves

server applications or other non-browser-based clients.

•	 country.browser.proto: A new Protobuf file serving HTML/

JavaScript web applications. This name is pretty straightforward so

that the consumer won’t misunderstand the intention of the service

generated from it.

We will use the same messages in each of these files. Therefore, we will create

a Protobuf file containing the messages shared between the two files and then

import them into each. (As mentioned in previous chapters, the Protobuf language

supports reusability, so why deprive yourself of it?) Let’s name the file country.

shared.proto. It contains all the messages from the country.proto file that we

created earlier and the CountriesCreationRequest message, a repeated list of the

CountryCreationRequest message. We can no longer stream from the client, so we

will send a list of CountryCreationRequest to the Create() RPC method. Listing 11-5

shows the country.shared.proto file.

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

406

Listing 11-5.  The country.shared.proto File

syntax = "proto3";

option csharp_namespace = "CountryService.gRPC.Protos.v1";

message CountryReply {

 int32 Id = 1;

 string Name = 2;

 string Description = 3;

 string FlagUri = 4;

 string Anthem = 5;

 string CapitalCity = 6;

 repeated string Languages = 7;

}

message CountryIdRequest {

 int32 Id = 1;

}

message CountryUpdateRequest {

 int32 Id = 1;

 string Description = 2;

}

message CountriesCreationRequest {

 repeated CountryCreationRequest Countries = 1;

}

message CountryCreationRequest {

 string Name = 1;

 string Description = 2;

 string FlagUri = 3;

 string Anthem = 4;

 string CapitalCity = 5;

 repeated int32 Languages = 6;

}

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

407

message CountryCreationReply {

 int32 Id = 1;

 string Name = 2;

}

Now we can write the country.browser.proto file, describing the

CountryServiceBrowser service, as shown in Listing 11-6.

Listing 11-6.  The country.browser.proto File

syntax = "proto3";

option csharp_namespace = "CountryService.gRPC.Browser.v1";

package CountryService.Browser.v1;

import "google/protobuf/empty.proto";

import "Protos/v1/country.shared.proto";

service CountryServiceBrowser {

 rpc GetAll(google.protobuf.Empty) returns (stream CountryReply) {}

 rpc Get(CountryIdRequest) returns (CountryReply) {}

 rpc Update(CountryUpdateRequest) returns (google.protobuf.Empty) {}

 rpc Delete(CountryIdRequest) returns (google.protobuf.Empty) {}

 �rpc Create(CountriesCreationRequest) returns (stream

CountryCreationReply) {}

}

The import directive requires specifying the full path of the Protobuf file from the

Protos directory, which contains all the Protobuf files. Otherwise, Visual Studio will

generate an error indicating that the file was not found.

The same applies for the country.proto file, as Listing 11-7 shows.

Listing 11-7.  The country.proto File

syntax = "proto3";

option csharp_namespace = "CountryService.gRPC.v1";

package CountryService.v1;

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

408

import "google/protobuf/empty.proto";

import "Protos/v1/country.shared.proto";

service CountryService {

 rpc GetAll(google.protobuf.Empty) returns (stream CountryReply) {}

 rpc Get(CountryIdRequest) returns (CountryReply) {}

 rpc Update(CountryUpdateRequest) returns (google.protobuf.Empty) {}

 rpc Delete(CountryIdRequest) returns (google.protobuf.Empty) {}

 �rpc Create(stream CountryCreationRequest) returns (stream

CountryCreationReply) {}

}

You may be wondering why I re-created all the gRPC-web services for browsers in

another Protobuf file when only the Create RPC method changes. Well, for two reasons:

•	 The CountryServiceBrowser service may evolve differently from the

CountryService service (this happens more often than you might

imagine).

•	 I don’t want to tell the client that she needs to import two Protobuf

files, the first country.proto, and a second exposing her only to the

non-bidirectional version of the RPC Create() method.

There is still one step before designing and exposing the new version of the

gRPC-web service dedicated to browsers: compile the Protobufs, as seen in the previous

chapters but with a particular feature to allow Protobuf files to be imported.

Protoc allows declaring Protobuf files to import into others during compilation,

thanks to a directive named proto_path that requires the path where the Protobuf files

to import are located.

Executing the following command generates the stubs in C#; OUT_DIR is the directory

where the stubs are generated, PROTO_DIR is the directory where the Protobuf file is to be

compiled to produce the stubs, and IMPORT_PROTO_PATH is the path to the directory that

contains all Protobufs that need to be resolved with the import directive.

protoc --plugin=protoc-gen-grpc=grpc_csharp_plugin \

 --csharp_out=OUT_DIR \

 --grpc_out=OUT_DIR \

 --grpc_opt=lite_client,no_server PROTO_DIR\country.proto \

 --proto_path=IMPORT_PROTO_PATH

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

409

As you can see, Visual Studio takes care of everything, you do not need to run this

command yourself. However for the Protobufs to be imported with the import directive,

you have to help Visual Studio to generate the right command. You have to modify in the

.csproj files of your client and server application the Protobuf XML tag by adding the

Link property to it. Its value is the name of the Protobuf file, whether it is imported or it

imports another.

Listing 11-8 shows the .csproj file for the CountryService.gRPC project.

Listing 11-8.  CountryService.gRPC File Updated to Import Protobuf File

to Another

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Grpc.AspNetCore" Version="2.39.0" />

 <PackageReference Include="Grpc.AspNetCore.Web" Version="2.39.0" />

 �<PackageReference Include="Grpc.AspNetCore.Server.Reflection"

Version="2.39.0" />

 �<PackageReference Include="Microsoft.EntityFrameworkCore.Tools"

Version="6.0.0">

 <PrivateAssets>all</PrivateAssets>

 �<IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

 <ItemGroup>

 �<ProjectReference Include="..\CountryService.BLL\CountryService.BLL.

csproj" />

 �<ProjectReference Include="..\CountryService.DAL\CountryService.DAL.

csproj" />

 </ItemGroup>

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

410

 <ItemGroup>

 �<Protobuf Include="Protos\v1\country.proto" Link="country.proto"

GrpcServices="Server" />

 �<Protobuf Include="Protos\v1\country.browser.proto" Link="country.

browser.proto" GrpcServices="Server" />

 �<Protobuf Include="Protos\v1\country.shared.proto" Link="country.

shared.proto" GrpcServices="Server" />

 </ItemGroup>

</Project>

The same updates are necessary for the Country.Wiki.DAL project, shown in

Listing 11-9.

Listing 11-9.  CountryWiki.DAL File Updated to Import Protobuf File to Another

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>net6.0</TargetFramework>

 <Nullable>enable</Nullable>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Google.Protobuf" Version="3.13.0" />

 <PackageReference Include="Grpc.Net.ClientFactory" Version="2.32.0" />

 <PackageReference Include="Grpc.Tools" Version="2.32.0">

 <PrivateAssets>all</PrivateAssets>

 �<IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

 </ItemGroup>

 <ItemGroup>

 �<ProjectReference Include="..\CountryWiki.Domain\CountryWiki.Domain.

csproj" />

 </ItemGroup>

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

411

 <ItemGroup>

 �<Protobuf Include="Protos\v1\country.proto" Link="country.proto"

GrpcServices="Client" />

 �<Protobuf Include="Protos\v1\country.shared.proto" Link="country.

shared.proto" GrpcServices="Client" />

 </ItemGroup>

</Project>

We can now compile and write our gRPC-web service dedicated to the browser:

CountryGrpcServiceBrowser.

The only implementation that changes is the Create method. Due to the absence

of streaming from the client, we no longer work with an IAsyncEnumerable but rather a

classic IEnumerable.

The service has duplicate code, I admit, but again, the code may evolve

differently, so I’m not referring to encapsulating redundant code in functions.

However, if you wish to do so, go for it! Listing 11-10 shows the implementation of the

CountryGrpcServiceBrowser class.

Listing 11-10.  Implementation of the CountryGrpcServiceBrowser Class

namespace CountryService.gRPC.Services;

public class CountryGrpcServiceBrowser : CountryServiceBrowserBase

{

 private readonly ICountryServices _countryService;

 public CountryGrpcServiceBrowser(ICountryServices countryService)

 {

 _countryService = countryService;

 }

 �public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

 {

 var lst = await _countryService.GetAllAsync();

 foreach (var country in lst)

 {

 await responseStream.WriteAsync(country.ToReply());

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

412

 }

 await Task.CompletedTask;

 }

 �public override async Task<CountryReply> Get(CountryIdRequest request,

ServerCallContext context)

 {

 var country = await _countryService.GetAsync(request.Id);

 if (country == null)

 �throw new RpcException(new Status(StatusCode.NotFound,

$"Country with Id {request.Id} hasn't been found"));

 return (await _countryService.GetAsync(request.Id)).ToReply();

 }

 �public override async Task<Empty> Update(CountryUpdateRequest request,

ServerCallContext context)

 {

 �var updateSucceed = await _countryService.UpdateAsync

(new UpdateCountryModel

 {

 Id = request.Id,

 Description = request.Description,

 UpdateDate = DateTime.UtcNow

 });

 if (!updateSucceed)

 �throw new RpcException(new Status(StatusCode.NotFound,

$"Country with Id {request.Id} hasn't been updated, it has

probably been deleted"));

 return new Empty();

 }

 �public override async Task<Empty> Delete(CountryIdRequest request,

ServerCallContext context)

 {

 var deleteSucceed = await _countryService.DeleteAsync(request.Id);

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

413

 if (!deleteSucceed)

 �throw new RpcException(new Status(StatusCode.NotFound,

$"Country with Id {request.Id} hasn't been updated, it have

probably been deleted"));

 return new Empty();

 }

 �public override async Task Create(CountriesCreationRequest

request, IServerStreamWriter<CountryCreationReply> responseStream,

ServerCallContext context)

 {

 foreach (var countryToCreate in request.Countries)

 {

 �var createdCountryId = await _countryService.CreateAsync(new

CreateCountryModel

 {

 Name = countryToCreate.Name,

 Description = countryToCreate.Description,

 Anthem = countryToCreate.Anthem,

 CapitalCity = countryToCreate.CapitalCity,

 FlagUri = countryToCreate.FlagUri,

 Languages = countryToCreate.Languages

 });

 await responseStream.WriteAsync(new CountryCreationReply

 {

 Id = createdCountryId,

 Name = countryToCreate.Name,

 });

 };

 await Task.CompletedTask;

 }

}

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

414

We are almost at the end! Just register the CountryGrpcServiceBrowser class as a

gRPC service, like we did for the CountryGrpcService class, in the dependency injection

system and one other thing: enable cross-origin resource sharing (CORS). If you not

familiar with CORS, it is a mechanism that allows a browser (or an ElectronJS app) to

indicate to the server the origin of the HTTP request, for security reasons, to limit its

access from various origins through various HTTP verbs and various headers. For gRPC-

web to work with a browser, it will therefore be necessary to enable CORS. Here we are

going to keep it simple. We will authorize all verbs, all the origins, and all the headers

to facilitate application development. For gRPC-web to work correctly, the following

additional headers are required:

•	 Grpc-Status

•	 Grpc-Message

•	 Grpc-Encoding

•	 Grpc-Accept-Encoding

To save the CORS configuration in the dependency injection system, you must use

the AddCors() extension method to create the AllowAll policy with the AddPolicy()

extension applied to the CORS options. The policy will be applied to the entire

application endpoints (gRPC-web and any REST endpoints) with the UseCors()

extensions, which take the AllowAll CORS policy parameter. To activate CORS properly,

you must declare the UseCors() middleware before the UseGrpcWeb() middleware.

Listing 11-11 shows the CORS configuration and activation in the Program.cs file.

Listing 11-11.  Configuring and Activating CORS in the Program.cs File

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.IgnoreUnknownServices = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

415

 new BrotliCompressionProvider() // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal;

// compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>(); // Register custom

ExceptionInterceptor interceptor

});

builder.Services.AddGrpcReflection();

builder.Services.AddScoped<ICountryRepository, CountryRepository>();

builder.Services.AddScoped<ICountryServices, CountryServices>();

builder.Services.AddSingleton<ProtoService>();

builder.Services.AddDbContext<CountryContext>(options => options.

UseSqlServer(builder.Configuration.GetConnectionString("CountryService")));

builder.Services.AddCors(o => o.AddPolicy("AllowAll", builder =>

{

 builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader()

 �.WithExposedHeaders("Grpc-Status", "Grpc-Message",

"Grpc-Encoding", "Grpc-Accept-Encoding");

}));

var app = builder.Build();

app.UseCors("AllowAll");

app.UseGrpcWeb(new GrpcWebOptions { DefaultEnabled = true });

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

app.MapGrpcService<CountryGrpcServiceBrowser>();

app.MapGet("/protos", (ProtoService protoService) =>

{

 return Results.Ok(protoService.GetAll());

});

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

416

app.MapGet("/protos/v{version:int}/{protoName}", (ProtoService

protoService, int version, string protoName) =>

{

 var filePath = protoService.Get(version, protoName);

 if (filePath != null)

 return Results.File(filePath);

 return Results.NotFound();

});

app.MapGet("/protos/v{version:int}/{protoName}/view", async (ProtoService

protoService, int version, string protoName) =>

{

 var text = await protoService.ViewAsync(version, protoName);

 if (!string.IsNullOrEmpty(text))

 return Results.Text(text);

 return Results.NotFound();

});

// Run the app

app.Run();Our ASP.NET Core CountryService.gRPC app is now ready for any

eventuality!

�Support of ASP.NET Core gRPC-web
on Microsoft Azure
Regarding Microsoft Azure support for ASP.NET Core gRPC-web, well, it’s effortless. As

long as HTTP/1 is enabled on Kestrel in appsettings.json, it will be possible to host on

the following:

•	 A Windows virtual machine or Linux virtual machine

•	 A Windows AppServices or Linux App Services

•	 A Windows Docker container with Azure Container Instance (ACI)

•	 A Kubernetes cluster

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

417

A tiny thing about Azure App Services: Windows App Services work even if you

don’t configure Kestrel on HTTP/1, because App Services have a module named

ASPNetCoreModuleV2 that will translate HTTP/2 requests into HTTP/1, unlike Linux

App Services. So never to go wrong and use the same settings as either to use your service as

a gRPC (the latter requires HTTP/2) or gRPC-web (the latter doesn't require HTTP/2) service,

I suggest that you configure Kestrel with HTTP/1 and HTTP/2 as shown in Listing 11-12.

Listing 11-12.  Configuring Kestrel to Run on HTTP/1 and HTTP/2

{

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft": "Warning",

 "Microsoft.Hosting.Lifetime": "Information"

 }

 },

 "AllowedHosts": "*",

 "Kestrel": {

 "EndpointDefaults": {

 "Protocols": "Http1AndHttp2"

 }

 }

}

With fuller knowledge of of gRPC-web, you now understand the value of using

gRPC-web in all types of clients, as we have seen previously, instead of gRPC, since the

latter is not supported in most cases on Azure services.

�Summary
You now understand the advantages and limitations of gRPC-web with ASP.NET Core 6

and how to expose gRPC-web services for any type of client, browser-based or not. In the

latter case, you have seen that it was possible to use client and bidirectional streaming.

Regarding the limits of gRPC-web compared to gRPC, this is not a big deal since we

have adapted our services so that gRPC-web works almost the same as gRPC. This also

allowed you to reuse Protobuf messages, thanks to the practicality of this language.

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

418

If you have followed everything so far, know that you have implemented clean code,

learned how to reuse the existing code when necessary, I am thinking of the application

layers (BLL, DAL) that have not been rewritten to support gRPC-web. Of course, it’s

possible to do more, such as encapsulating redundant code like code implemented in

gRPC services, but I did not want to go this far for the reasons I have already mentioned.

You now have all the tools to create applications of all kinds with gRPC-web! In the

next chapter, we will put this into practice by creating an application in HTML/JavaScript

with Angular, a fun prospect!

Chapter 11 Create a gRPC-web service from a gRPC-service with ASP.NET Core

419
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_12

CHAPTER 12

Import and Display
Data with Angular 12
and gRPC-web
We continue with the practice of gRPC-web in this chapter but in a different way. Here

we will get out of the ASP.NET Core context a bit to put ourselves on the side of the web

browser: how to use gRPC-web in a purely HTML/JavaScript application. In the industry,

these applications are called single-page applications (SPAs). Their use has turned the

web industry upside down. In this chapter, we will use Angular 12, an HTML/JavaScript

development framework (TypeScript rather), with gRPC-web, and you will learn how to

do the following:

•	 Recognize the advantages of using SPAs such as Angular

•	 Generate TypeScript stubs with Protoc

•	 Write data access with Improbable’s gRPC-web client

•	 Upload a data file and display data with TypeScript, a Web Worker,

and gRPC-web

•	 Manage data with TypeScript and gRPC-web

�Introduction to SPAs
SPAs have revolutionized the web industry by competing with monolithic server

applications. (However, monolithic applications are still widely used and still have a few

good years ahead of them.) So, I felt compelled to write a chapter dedicated to SPAs with

gRPC-web. Before going any further in this chapter, I would like to remind you how SPAs

https://doi.org/10.1007/978-1-4842-8008-9_12

420

work. A SPA is a web application that is accessible via a single HTML page. The goal is

to avoid loading a new page for each user action, to streamline the user’s experience.

You might have understood that the relationship between the browser and server is

somewhat different than the relationship between the browser and monolithic server

app. A request is sent to the server to retrieve information to be displayed subsequently,

and no other HTML page is downloaded from the server. A SPA has the following

advantages:

•	 HTML/JavaScript/CSS content is loaded only once.

•	 The separation between the UI and the data to be displayed is clear

and allows the developer to distribute better the tasks, which in

addition greatly facilitates maintenance afterward.

•	 Performing actions on the HTML page avoids reloading the

whole page from the server, which can be cumbersome if a lot of

information is displayed. Responsibility for display is transferred to

the client side, which is still rather enjoyable (server won’t compute

the rendering, and it saves time processing).

There are, however, downsides to a SPA:

•	 There are as many requests to the server as there are types of

information to display (through AJAX requests), which can be heavy

for the server when the page is loaded for the first time.

•	 The whole application is coded in JavaScript, which can sometimes

be difficult to debug in the event of a problem.

•	 Search engine optimization (SEO) referencing is hard because, again,

the whole application is written in JavaScript, which doesn’t help

SEO robots parse reference content from its HTML content.

As a front-end developer, you may or may not like using SPAs; my goal is to present

all the options available with gRPC-web and let you decide which you like.!

There are quite a few SPA frameworks, but the most popular are the following:

•	 Angular

•	 ReactJS

•	 VueJS

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

421

I realize that I risk frustrating ReactJS and VueJS fans because I chose to use

Angular, my favorite framework, for my gRPC-web demo, but I like Angular over other

frameworks for a few reasons. First, its architecture is a Model-View-ViewModel (MVVM)

model, which supports two-way data binding between the View and the ViewModel

that provides change propagation between the View and the data. The second thing

I like about Angular is that it supports the dependency injection principle, which, as

previously introduced in the context of ASP.NET Core in Chapter 2, is a technique that

weakly couples objects and service classes with each other and their dependencies.

Dependency injection is really convenient and it makes testing your applications easy.

I won’t go further into the details of why I love and chose Angular. That’s not the goal

of this book. However, I do hope this chapter will make you want to discover Angular if you

are not already familiar with it, or at least apply to your own favorite SPA framework the

principles that I will demonstrate with gRPC-web. Note that you will quickly understand

this chapter if you already use Angular or another type of SPA framework. Otherwise,

I strongly encourage you to learn the basics of Angular (version 12 precisely, the most

recent version released) before you proceed further in this chapter so that you get the

most benefit from it. The official Google tutorial at https://angular.io/guide/what-is-

angular is well done and I think you will enjoy starting your first steps with Angular there.

Throughout this chapter, I will be using Visual Studio Code. Even though we can use

Visual Studio 2022 to develop an Angular project, it is best to use Visual Studio Code for

pure HTML/JavaScript/TypeScript applications. Visual Studio 2022 may be perfect for

.NET applications, but it is, on the other hand, a bit heavy for simple HTML/JavaScript/

TypeScript applications. If you are not familiar with Visual Studio Code, it is optimal for

developing an HTML/JavaScript/TypeScript application because it does not contain any

unnecessary functionality. I think in particular of all the menus of Visual Studio, which, for

me, are unnecessary here. Visual Studio Code is also customizable. It allows you to install a

whole bunch of plug-ins to enrich your development experience with a precise language.

�Generate TypeScript Stubs with Protoc
Protoc is back! In Chapter 11, I told you that you don’t need to learn commands with

Protoc to generate your gRPC stubs. Well, that’s true as long as you are using Visual Studio

to generate your C# stubs. In this case, we will generate our stubs in TypeScript (Angular

as a reminder uses TypeScript as programming language, so let’s take advantage of it),

and the only way to do so is to run the command manually in a command prompt.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

https://angular.io/guide/what-is-angular
https://angular.io/guide/what-is-angular

422

�Download the Correct Version of Protoc and Protobuf
Well-Known Types
Download the latest version of Protoc here: https://github.com/protocolbuffers/

protobuf/releases. As of this writing, the latest version is 3.19.3. Choose the

appropriate download file for your operating system, Linux, Windows, or macOS. For

my part, I am using 64-bit Windows, so I downloaded the win64.zip Protoc file. You also

need to download the protobufs-all .zip or .gz file depending on your operating

system. Then locate the folder google/protobuf and copy and paste it somewhere in

your hard disk; I chose to paste directly at the root on the C: drive in a folder named itself

Protobufs. This folder contains Protobuf Well-Known Types (previously introduced

in Chapter 4). While compiling our Protobufs to TypeScript, we must notify Protoc of

the location of these types, unlike with C# in Visual Studio; with the latter (with Protoc

and the C# plug-in that is used), there is no need to specify where these files are. Protoc

knows where to find them. As a reminder from Chapter 4, these files are

•	 any.proto

•	 duration.proto

•	 empty.proto

•	 struct.proto

•	 timestamp.proto

•	 wrappers.proto

Figure 12-1 shows .zip or .gz files to download, you won’t need to download their

JavaScript version pointed with the red arrow if you are using TypeScript, but needed if

you want to use JavaScript.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

https://github.com/protocolbuffers/protobuf/releases
https://github.com/protocolbuffers/protobuf/releases

423

Figure 12-1.  Download the win64 version of Protoc if you are using 64-bit
Windows

Figure 12-2 shows, for example, the any.proto file stored in the C:\Protobufs\

google\protobuf folder.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

424

Figure 12-2.  The any.proto file stored in C:\Protobufs\google\protobuf folder

In Figure 12-1, you may have also have noticed the two arrows pointing to the

Linux and Windows versions of Protoc (protobuf.js), allowing you to generate stubs

in JavaScript. I suggest you download one of them if you plan to use JavaScript only

in your projects; otherwise, download the generic version of Protoc for our Angular

project, because the JavaScript version cannot generate stubs in TypeScript. To create

the TypeScript stubs, we must use the generic version of Protoc, to which we will add a

plug-in to achieve our ends. I suggest registering Protoc in the Windows Path variable

(Environment Variables) to make your life easier. You’ll be able to invoke Protoc from

its name instead of from its absolute path. Figure 12-3 shows the flow from the System

Properties panel to the Windows Path variable.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

425

Figure 12-3.  Registering Protoc in the Windows Path variable

Note B y registering Protoc like this, you will not interfere with the version of
Protoc that Visual Studio uses when compiling a gRPC project. Visual Studio uses
its version.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

426

�Download the ts-protoc-gen Plug-in
Protoc needs the ts-protoc-gen plug-in to be able to generate TypeScript stubs.

After having created the skeleton of the Angular app by your own, named

CountryWiki.Angular, download the following NPM package:

npm install ts-protoc-gen

If you want to read the complete documentation of this package, visit the GitHub

repository: https://github.com/improbable-eng/ts-protoc-gen.

Don’t worry, I will show you to use it correctly a bit later in this chapter.

�Download Improbable’s gRPC-web Library and Google
Protobufs Library
To be ready to use your generated stubs, download the following NPM packages:

npm install @improbable-eng/grpc-web

npm install @types/google-protobuf

npm install google-protobuf

You guessed it, @improbable-eng/grpc-web is Improbable’s gRPC-web client that I

suggested you choose in Chapter 10. As for the google-protobuf package, it allows you

to serialize/deserialize messages. If you do not download it, the gRPC-web client will not

work. Finally, @types/google-protobuf includes the typed definitions for TypeScript of

the classes in the google-protobuf package.

�Executing the Protoc Command
For this project we will reuse the same Protobuf files for browsers as in Chapter 11

(i.e., the country.browser.proto and country.shared.proto files), which I advise you

to put in a protos directory with the subdirectory v1; even though it’s a simple Angular/

TypeScript project, I like to structure my directories and files properly. Figure 12-4 shows

the files arranged in the protos/v1 folder.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

https://github.com/improbable-eng/ts-protoc-gen

427

Figure 12-4.  Storing Protobuf files in protos/v1 folder

As you can see in Figure 12-4, I have also created other folders to store our code. I

will explain them as we progress through the project.

Let’s focus on the generated folder for now. This folder will contain all stubs

generated by Protoc. To generate stubs in this folder, execute the following command in

a terminal—for example, the Visual Studio Code Terminal—from the src project folder:

protoc --plugin=protoc-gen-ts="{ABSOLUTE_PATH}/node_modules/.bin/

protoc-gen-ts.cmd"

--js_out="import_style=commonjs,binary:./app/generated"

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

428

--ts_out="service=grpc-web:./app/generated" country.browser.proto country.

shared.proto

--proto_path="{ABSOLUTE_PATH}/src/protos/v1"

--proto_path="C:/Protobufs"

ABSOLUTE_PATH is the absolute path of the node_modules and the Protobuf files.

This path must be absolute on Windows. On Linux, it could be relative. The path that

contains the protoc-gen-ts file plug-in must include the .cmd extension on Windows

because protoc-gen-ts on this operating system is a CMD file. On Linux, no extension

is necessary. ./app/generated is the folder in which stubs will be generated. Make

sure that before you execute the command, the generated folder already exists, because

Protoc won’t create it if it doesn’t exist. Then separate by a space all your Protobuf files

that you want to compile (even files to be included in others). For example, we need

Protoc to compile the country.shared.proto file even though it’s included in the

country.browser.proto file. This is mandatory because if you don’t add the country.

shared.proto file into the compilation command, generated stubs won’t compile. They

require references to that file.

Finally, there are two --proto_path directives: the first one (src/protos/v1) tells

Protoc where to find Protobufs to compile, and the second one (C:/Protobufs) tells

Protoc where to find Well-Known Type Protobuf files. If you are not using any Well-

Known Types, you don’t need to add their path in the command. The command should

properly generate stubs, as shown in Figure 12-5.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

429

Figure 12-5.  Generated stubs

Each Protobuf file added to the compilation will cause the generation of the

following files:

•	 {ProtobufName}_pb_services.d.ts: The TypeScript definition of the

{ProtobufName} client

•	 {ProtobufName}_pb_services.js: The JavaScript implementation of

the {ProtobufName} client

•	 {ProtobufName}_pb.d.ts: The TypeScript definition of the

{ProtobufName} messages

•	 {ProtobufName}_pb.js: The JavaScript implementation of the

{ProtobufName} messages

In the case of the country.shared.proto file, which contains only messages, the

country.shared_pb.d.ts and country.shared_pb_service.d.ts files will be empty.

Once the files have been generated, I can assure you the most complex task has been

done. Consuming the generated clients will be straightforward with the Improbable

library, and I will show you that in the next section.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

430

�Write Data Access with Improbable’s
gRPC-web Client
Writing a gRPC-web client is easy. Improbable offers a generic function for managing

both unary calls and server streaming, the grpc.invoke method, which is called

statically (it takes care of internally instantiating a gRPC-web client) and takes the

following parameters:

grpc.invoke(methodDescriptor: MethodDescriptor, props: InvokeRpcOptions)

The MethodDescriptor is the TypeScript definition of the method you want to

invoke. This method is defined in the generated {ProtobufName}_pb_services.d.ts

file. It’s a property of the gRPC-web service definition. Figure 12-6 shows the

CountryServiceBrowser, its RPC function definitions, and, as an example, the

CountryServiceBrowserCreate RPC definition highlighted.

If you want to invoke the CountryServiceBrowserCreate RPC function, the

MethodDescriptor parameter value will be CountryServiceBrowser.Create.

Figure 12-6.  The CountryServiceBrowser and its definition with the
CountryServiceBrowserCreate RPC function definition example

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

431

The second parameter, InvokeRpcOptions, has the following properties:

•	 host, which is a string representing the server URI; for example,

https://localhost:5001.

•	 request, the Protobuf message to send to the server; for example, new

Empty().

•	 metadata, Trailers to be sent to the server; for example, new grpc.

Metadata({"TrailerKey": "TrailerValue"}).

•	 onHeaders, a callback that handles Headers received from the server;

for example, (headers: grpc.Metadata) => { const headersValue

= headers.get("HeaderKey"); }.

•	 onMessage, a callback that handles messages received from the

server; for example, (countryReply: CountryReply) => { const

country = countryReply.toObject(); }. Note that any message

received from the server needs to be deserialized with the ToObject

method, which is defined in every message definition. This callback

is invoked once in a unary call, and invoked each time a message is

received in the case of a server-streaming call.

•	 onEnd, a callback that is invoked at the end of the call and allows to

handle the response from the server like the gRPC status, Trailers,

and any string message; for example, (code: grpc.Code, msg:

string | undefined, trailers: grpc.Metadata, endMessage:

String) => { if (code !== grpc.Code.OK) { ... } else {

... } }.

•	 transport, which is optional and allows to send browsers cookies to

the server along with the cross-origin requests; for example, grpc.

CrossBrowserHttpTransport({ withCredentials: true });. The

transport property won’t be used in this chapter, so if you want

to learn more about it, you can read the following documentation:

https://github.com/improbable-eng/grpc-web/blob/master/

client/grpc-web/docs/transport.md.

•	 debug, which is optional and allows the client to print

debug information in the browser’s debug console.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

https://github.com/improbable-eng/grpc-web/blob/master/client/grpc-web/docs/transport.md
https://github.com/improbable-eng/grpc-web/blob/master/client/grpc-web/docs/transport.md

432

Note that the grpc.invoke() method returns an object named Request that

contains a method named close. Invoking that method, like the following, will close the

connection to the server and cancel the request:

const request = grpc.invoke(…, …);

request.close()

Listing 12-1 shows the CountryService.ts file implementing the CountryService

which is injectable, by dependency injection, in any Angular component.

Listing 12-1.  The CountryService Implementation

import { grpc } from "@improbable-eng/grpc-web";

import { Empty } from "google-protobuf/google/protobuf/empty_pb";

import { CountryServiceBrowser } from "../generated/country.browser_pb_

service";

import { CountriesCreationRequest, CountryCreationReply, CountryIdRequest,

CountryReply, CountryUpdateRequest } from "../generated/country.shared_pb";

import { CountryCreationModelMapper } from "../mappers/

countryCreationModelMapper";

import { CountryReplyMapper } from "../mappers/countryReplyMapper";

import { CountryCreationModel } from "../models/countryCreationModel";

import { CountryModel } from "../models/countryModel";

import { environment } from '../../environments/environment';

import { Injectable } from "@angular/core";

import { CountryUpdateModel } from "../models/countryUpdateModel";

import { UploadResultModel } from "../models/uploadResultModel";

@Injectable()

export class CountryService {

 public GetAll(countries: CountryModel[]): void {

 grpc.invoke(CountryServiceBrowser.GetAll, {

 request: new Empty(),

 host: environment.host,

 onMessage: (countryReply: CountryReply) => {

 let country = new CountryModel();

 CountryReplyMapper.Map(country, countryReply.toObject())

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

433

 countries.push(country);

 },

 �onEnd: (code: grpc.Code, msg: string | undefined, trailers:

grpc.Metadata) => this.onEnd(code, msg, trailers, "All countries

have been downloaded")

 });

 }

 �public Create(countriesToCreate: CountryCreationModel[], uploadResult:

UploadResultModel, callback: Function): void {

 let countriesCreationRequest = new CountriesCreationRequest();

 �CountryCreationModelMapper.Maps(countriesCreationRequest,

countriesToCreate);

 grpc.invoke(CountryServiceBrowser.Create, {

 request: countriesCreationRequest,

 host: environment.host,

 �onEnd: (code: grpc.Code, msg: string | undefined, trailers: grpc.

Metadata) => {

 uploadResult.isProcessing = false;

 callback();

 �this.onEnd(code, msg, trailers, "All countries have been

created")

 }

 });

 }

 public Delete(id: number): void {

 let request = new CountryIdRequest();

 request.setId(id);

 grpc.invoke(CountryServiceBrowser.Delete, {

 request: request,

 host: environment.host,

 �onEnd: (code: grpc.Code, msg: string | undefined, trailers: grpc.

Metadata) => this.onEnd(code, msg, trailers, 'Country with Id ${id}

has been deleted')

 });

 }

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

434

 public Get(id: number, country: CountryModel): void {

 let request = new CountryIdRequest();

 request.setId(id);

 grpc.invoke(CountryServiceBrowser.Get, {

 request: request,

 host: environment.host,

 onMessage: (countryReply: CountryReply) => {

 CountryReplyMapper.Map(country, countryReply.toObject());

 },

 �onEnd: (code: grpc.Code, msg: string | undefined, trailers: grpc.

Metadata) => this.onEnd(code, msg, trailers, 'Country with Id ${id}

was successfully found')

 });

 }

 public Update(countryUpdateModel: CountryUpdateModel): void {

 let request = new CountryUpdateRequest();

 request.setId(countryUpdateModel.id);

 request.setDescription(countryUpdateModel.description);

 grpc.invoke(CountryServiceBrowser.Update, {

 request: request,

 host: environment.host,

 �onEnd: (code: grpc.Code, msg: string | undefined, trailers: grpc.

Metadata) => this.onEnd(code, msg, trailers, 'Country with Id

${countryUpdateModel.id} was successfully updated')

 });

 }

 �private onEnd(code: grpc.Code, msg: string | undefined, trailers: grpc.

Metadata, endMessage: String): void {

 if (code == grpc.Code.OK) {

 console.log(endMessage)

 } else {

 console.log('Hit an error status: ${grpc.Code[code]}');

 if (msg) {

 console.log('message: ${msg}');

 }

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

435

 trailers.forEach(trailer => {

 �console.log('With the trailer ${trailer}: ${trailers.

get(trailer)}');

 });

 }

}

The code is pretty straightforward, but I’ll explain each function. First, I have

implemented a generic onEnd method that performs logging and takes as a parameter a

logging message and the gRPC status, Trailers, and a string message received from the

server. This onEnd method does the same in every service method. That’s the reason

why I have created a generic one that is reused on every services below.

•	 GetAll() takes as a parameter an array of CountryModel. Because

the grpc.invoke method doesn’t return any message, we must

pass an array by reference filled in the onMessage method.

Remember, arrays are reference types. I used there a static mapper

CountryReplyMapper.Map that maps the CountryReply message to a

CountryModel. I’ll show you a bit further its signature.

•	 Create() takes as a parameter an array of CountryCreationModel,

which represents countries to be sent to the server. It also takes

a UploadResultModel, filled by reference on the onEnd method,

and will indicate that the upload is done. The third parameter,

a Function, will be executed in the onEnd method and act as

a callback once the upload is done. I’ll give you more details

further. The static method CountryCreationModelMapper.Maps

will map the array of CountryCreationModel to an instance of

CountriesCreationRequest.

•	 Delete() takes as a parameter an Id, a country Id that will be sent

to the server. From this Id will be instantiated a CountryIdRequest

object. As you have probably noticed, the latter is a Protobuf message

and exposes set{property} methods for each property to be set

in the message. Here setId allows setting the Id property of the

CountryIdRequest.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

436

•	 Get() takes as a parameter the country’s Id to retrieve, and a

CountryModel filled by reference. The same principle as before

applies here to set the CountryIdRequest message. The static

CountryReplyMapper.Map method maps the CountryReplyModel

object to the CountryModel object passed by reference.

•	 Update() takes as a parameter a CountryUpdateModel object to be

mapped to a CountryUpdateRequest message in the same manner as

described previously.

Let’s take a look at models used in this CountryService. Listing 12-2 shows the

UploadResultModel class used by the Create() method. The latter inherits from

the ActionResultModel, which contains data (the boolean success and the string

errorMessage properties) necessary to report the state of an action performed by

the user within the app. UploadResultModel is more specific by adding the payload

property, which will contain the data uploaded (array of CountryCreationModel object)

from a file, and the boolean isProcessing property that will indicate whether the data

upload is ongoing or not. Note that dependencies like CountryCreationModel and

ActionResultModel are described further following Listing 12-2.

Listing 12-2.  The UploadResultModel Class

import { ActionResultModel } from "./actionResultModel";

import { CountryCreationModel } from "./countryCreationModel";

export class UploadResultModel extends ActionResultModel {

 payload: CountryCreationModel[];

 isProcessing: boolean;

}

Listing 12-3 shows the ActionResultModel class that the UploadResultModel class

inherits from.

Listing 12-3.  The ActionResultModel Class

export class ActionResultModel {

 success: boolean;

 errorMessage: String;

}

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

437

Listing 12-4 and Listing 12-5 show, respectively, the CountryModel class and the

UpdateCountryModel class used by the CountryService class.

Listing 12-4.  The CountryModel Class

export class CountryModel {

 id: number;

 name: String;

 description: String;

 capitalCity: String;

 anthem: String;

 languages: String[];

 flagUri: String;

}

Listing 12-5.  The UpdateCountryModel Class

export class CountryUpdateModel {

 id: number;

 description: string

}

Now let’s take a look at something really “hot.” Remember, I have used in the

CountryService class the CountryCreationService class that represents countries

to be created from a JSON file. This class has a particular behavior. While writing this

chapter, I discovered an excellent TypeScript library allowing data validation to fill the

CountryCreationModel object. I decided to include that library in this chapter because

I found it exciting to use (and very practical). This library is named ts-json-object and

can be download with the following command:

npm install ts-json-object

This library in an effortless way. The ts-json-object library allows you to add

annotations on the declaration of your property, such as, for example, indicate that your

property is mandatory. Otherwise, the instantiation of the object you want to fill will fail.

For all of this to work, the CountryCreationModel class must inherit from the JSONObject

class. The latter creates a particular constructor of the CountryCreationModel class that

takes as a parameter an anonymous object that will be mapped to the properties you want

to fill. Listing 12-6 shows the CountryCreationModel class with required type annotations.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

438

Listing 12-6.  The CountryCreationModel Class and Its Annotations

import {JSONObject} from 'ts-json-object'

export class CountryCreationModel extends JSONObject {

 @JSONObject.required

 name: string;

 @JSONObject.required

 description: string;

 @JSONObject.required

 capitalCity: string;

 @JSONObject.required

 anthem: string;

 @JSONObject.required

 flagUri: string;

 @JSONObject.required

 languages: number[];

}

For example, if the description and/or any other property is missing, it will raise

an exception. It means that the validation will be performed at the instantiation of

the CountryCreationModel class. Listing 12-7 shows the missing properties while

instantiating the CountryCreationMode class.

Listing 12-7.  Instantiating a CountryCreationModel Object with Missing

Properties

var countryCreationModel = new CountryCreationModel({"name":"Canada",

capitalCity:"Ottawa", "anthem":"Oh Canada !"}); // raises exception

To finish with the data access, Listing 12-8 and Listing 12-9 show, respectively, the

static mapper classes CountryCreationMapper and CountryReplyMapper. They are pretty

straightforward. That’s why I haven’t added more comments here.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

439

Listing 12-8.  The CountryCreationMapper Class

import { CountriesCreationRequest, CountryCreationRequest } from "../

generated/country.shared_pb";

import { CountryCreationModel } from "../models/countryCreationModel";

export class CountryCreationModelMapper {

 �public static Map(countryCreationRequest: CountryCreationRequest,

countryCreationModel: CountryCreationModel) {

 if(!countryCreationModel)

 return;

 countryCreationRequest.setName(countryCreationModel.name);

 �countryCreationRequest.setDescription(countryCreationModel.

description);

 countryCreationRequest.setAnthem(countryCreationModel.anthem);

 �countryCreationRequest.setCapitalcity(countryCreationModel.

capitalCity);

 countryCreationRequest.setFlaguri(countryCreationModel.flagUri);

 �countryCreationRequest.setLanguagesList(countryCreationModel.

languages);

 }

 �public static Maps(countriesCreationRequest: CountriesCreationRequest,

countriesCreationModel: CountryCreationModel[]) {

 if(!countriesCreationModel)

 return;

 countriesCreationModel.map(x => {

 let countryCreationRequest = new CountryCreationRequest();

 CountryCreationModelMapper.Map(countryCreationRequest, x)

 �countriesCreationrequest.addCountries(countryCreation

Request);

 });

 }

}

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

440

Listing 12-9.  The CountryReplyMapper Class

import { CountryReply } from "../generated/country.shared_pb";

import { CountryModel } from "../models/countryModel";

export class CountryReplyMapper {

 �public static Map(country: CountryModel, countryReply:

CountryReply.AsObject) {

 if (country === null || countryReply === null)

 return;

 country.id = countryReply.id;

 country.name = countryReply.name;

 country.description = countryReply.description;

 country.capitalCity = countryReply.capitalcity;

 country.flagUri = countryReply.flaguri;

 country.anthem = countryReply.anthem;

 country.languages = countryReply.languagesList;

 }

}

We are now ready to manage data over a gRPC-web service and focus on the upload

file form and the Web Worker to validate uploaded data.

�Upload a Data File and Display Data with TypeScript,
a Web Worker, and gRPC-web
Let’s start by writing our HTML form and an HTML table to display the countries of our

wiki. The app component (app.component.html and app.component.ts) is the app’s

entry point, and this is where we will write our HTML. Note that the code I present will

remain basic, as this is not a book devoted to Angular. This way, even if you are not an

experienced practitioner of Angular, you can easily understand the code.

The first part of the HTML component is a simple form allowing the user to upload a

JSON type file. The validation of the latter will be done in the TypeScript code managing

this HTML form. An onChange() method will detect the uploaded file that the onUpload()

function of the TypeScript code will then handle the file upload when the user clicks

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

441

the Upload button. We then have two types of messages to display to the user. The first

indicates whether the upload was successful or not, and the second shows whether the

uploaded file is still being uploaded.

The second part of the component displays the list of countries in a table with all

their properties and two buttons, one to modify a country and another to delete it.

Listing 12-10 shows the HTML part of the app component used to display the

countries and upload a file to feed this list.

Listing 12-10.  The app.component.html File

<div class="text-center">

 <h1>CountryWiki.Angular</h1>

</div>

<div class="container mb-5 mt-5 text-center w-25">

 <h2>Upload countries (JSON only): </h2>

 <div class="mb-1 mt-1">

 �<input class="form-control" type="file"

(change)="onChange($event)" />

 </div>

 <div class="mb-1 mt-1">

 <button (click)="onUpload()"

 class="btn btn-success">

 Upload

 </button>

 </div>

 �<div *ngIf="uploadResult !== null && !uploadResult.success" class="mb-2

mt-2 text-danger">

 {{uploadResult.errorMessage}}

 </div>

 �<div *ngIf="(uploadResult !== null && uploadResult.isProcessing) ||

isUploading" class="mb-2 mt-2 text-center text-danger">

 <h2>A file upload is in progress...</h2>

 </div>

</div>

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

442

<div class="container text-center">

 <table class="table">

 <thead>

 <tr>

 <th>ID</th>

 <th>Name</th>

 <th>Description</th>

 <th>Capital City</th>

 <th>Anthem</th>

 <th>Spoken languages</th>

 <th>Flag</th>

 <th>Edit</th>

 <th>Delete</th>

 </tr>

 </thead>

 <tbody>

 <tr *ngFor="let country of countries">

 <td>{{country.id}}</td>

 <td>{{country.name}}</td>

 <td>{{country.description}}</td>

 <td>{{country.capitalCity}}</td>

 <td>{{country.anthem}}</td>

 <td>{{country.languages.join(', ')}}</td>

 �<td><img src="{{country.flagUri}}" alt="{{country.name}}"

height="25" width="45" /></td>

 �<td><button (click)="onUpdate(country.id)" class="btn btn-

secondary">Update</button></td>

 �<td><button (click)="onDelete(country)" class="btn btn-

danger">Delete</button></td>

 </tr>

 </tbody>

 </table>

</div>

<router-outlet></router-outlet>

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

443

TypeScript code in the app component is quite simple too.

The ngOnInit() method feeds the country list when the component loads (recall

that the property countries is filled by reference) and the onChange() method gets the

uploaded file. The onUpdate method redirects simply to the edit component, while the

onDelete() method removes a country with an automatic refresh (thanks to Angular data

binding). The country list is updated without recalling the RPC GetAll endpoint, and a call

to the server is saved, so the performance gain is significant server side. The onUpload()

method retrieves the uploaded file and sends it to a Web Worker with the postMessage()

method, which will validate and parse the file (we will come back to it a little later) and

then will receive in return the status (which is an instance of the UploadResultModel) of

the validation with the onmessage event as well as the list of countries parsed from the file

ready to be sent to the server with gRPC-web. If the upload is a success, the list of countries

will be refreshed with the callback passed to the Create() method of the CountryService

service (which I’ve told you about before). This callback is finally a simple invocation of

the GetAll() method of the CountryService service. Finally, the isProcessing (sending

to the server) and isUploading (uploading the file) action statuses are updated. Note that

the CountryService service is injected by dependency as the Angular framework allows

it. Listing 12-11 shows the app.component.ts file implementation. Note that the project

structure at the end of the section will show you where to place files. I created a folder by

class responsibility: services, models, etc.

Listing 12-11.  The app.component.ts File Implementation

import { Component, OnChanges, OnInit, SimpleChanges } from

'@angular/core';

import { UploadResultModel } from './models/uploadResultModel';

import { CountryModel } from './models/countryModel';

import { CountryService } from './services/countryService';

import { Router } from '@angular/router';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

444

export class AppComponent implements OnInit {

 public title = 'CountryWiki.Angular';

 public countries: CountryModel[] = [];

 public errorMessage: string = null;

 public uploadResult: UploadResultModel = null;

 public isUploading: boolean = false;

 private _file: File = null;

 �constructor(private _countryService: CountryService,

private _router: Router) {

 }

 public ngOnInit() {

 this._countryService.GetAll(this.countries);

 }

 public onChange(event: Event): void {

 const target = event.target as HTMLInputElement;

 this._file = (target.files as FileList)[0];

 }

 public onUpload(): void {

 this.isUploading = this._file != null;

 �const worker = new Worker(new URL('./workers/upload-file.worker',

import.meta.url));

 worker.onmessage = ({ data }) => {

 this.uploadResult = data;

 if (this.uploadResult.success) {

 �this._countryService.Create(this.uploadResult.payload,

this.uploadResult, () => {

 this.countries = [];

 this._countryService.GetAll(this.countries);

 });

 } else {

 this.uploadResult.isProcessing = false;

 }

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

445

 this.isUploading = false;

 this._router.navigate(['']);

 };

 worker.postMessage(this._file);

 }

 public onUpdate(id: number): void {

 this._router.navigate(['edit', id]);

 }

 public onDelete(country: CountryModel): void {

 this._countryService.Delete(country.id);

 this.countries = this.countries.filter(c => c !== country);

 }

}

Now, let’s implement the Web Worker. We’ll name it upload-file.worker.

As a reminder, the Web Worker reads the uploaded file asynchronously (the

onloadend event is triggered once the file is entirely read), validates its format, and

parses its content to return, if successful, a list of CountryCreationModel objects.

Because the task can be long depending on the size of the file, it is preferable to use

a Web Worker for this kind of task, which runs in the background and does not block

the UI. This Web Worker also returns the correct error message when validating the

content and format of the file. As I indicated previously, using ts-json-object requires

error handling, which is why I encapsulate in a try/catch block the instantiation of

the CountryCreationModel object, which could generate an exception if validation

fails. Finally, are you wondering why we do not invoke the gRPC-web client here?

Unfortunately, the gRPC-web client uses the Windows object to function, and the latter

is inaccessible from a Web Worker. It’s a shame, but we already deported a large part of

the task (reading and parsing of the file) in the Web Worker, that is not bad. Listing 12-12

shows the implementation of the Web Worker.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

446

Listing 12-12.  The upload-file.worker.ts Implementation

/// <reference lib="webworker" />

import { CountryCreationModel } from "../models/countryCreationModel";

import { UploadResultModel } from "../models/uploadResultModel";

addEventListener('message', ({ data }) => {

 const file = data as File;

 const reader = new FileReader();

 let result:UploadResultModel = {

 success:false,

 errorMessage: "",

 payload: null,

 isProcessing: true

 };

 let ext = file.name.substr(file.name.lastIndexOf('.') + 1);

 if (ext === "json" && file.type === "application/json") {

 // Read the file

 reader.onloadend = e => {

 try{

 let content = JSON.parse(reader.result.toString());

 result.success = true;

 �result.payload = (content as any[]).map(x => new

CountryCreationModel(x));

 }

 catch {

 �result.errorMessage = "Cannot parse the file or the file

is empty";

 }

 finally {

 postMessage(result);

 }

 };

 reader.readAsText(file);

 }

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

447

 else {

 result.errorMessage = "Only JSON files are allowed";

 postMessage(result);

 }

});

If we execute this code as is and we try to upload a non-JSON file, the appropriate

error message appears, as shown in Figure 12-7.

Figure 12-7.  Proper error message displayed when an attempt is made to upload
a non-JSON file

If a JSON file is uploaded but the JSON file schema is not as expected, the proper

error message will appear, as shown in Figure 12-8.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

448

Figure 12-8.  Proper error message displayed when a JSON file doesn’t meet
expectations

Note  For the reason I explained in Chapter 9, I will only show you how to validate
data on the client side in TypeScript. However, as I mentioned before, it is always a
good practice to validate data both on the client side and server side.

If the file meets the requirements, its data will be uploaded through gRPC-web, and

the right message will be displayed, as shown in Figure 12-9.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

449

Figure 12-9.  Proper information message displayed when a JSON file is correctly
being uploaded

Then if no error occurs server side, the country list should appear as shown in

Figure 12-10.

Figure 12-10.  Upload succeeds, and the country list is displayed correctly

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

450

We managed with gRPC-web the sending and retrieval of data to the server. The

deletion of data is simple and works the same way: sending a request to delete a country

to the server and then the list is refreshed. Our only remaining task is to create the

functionality to edit a country.

�Manage Data with TypeScript and gRPC-web
Based on the same principle in the previous section, i.e., we will detect the elements

modified on the edit component through JavaScript events. This edit component will allow

the modification of the description of a country. Once the revised description is detected, it

will be validated and sent to the server if successful. Let’s look at this in a little more detail.

The ngOnInit() method intercepts the route parameter Id, corresponding to the Id

of the country to modify. Then the Get() method of the CountryService class is called

to retrieve the description of the country to be altered and is displayed in a text area in

HTML. The onChange() method will detect the modifications made on the text area.

The modification validation will be carried out with the onUpdate() method when the

user clicks the Update button. This method validates if the description is a minimum of

20 characters and a maximum of 200 characters. If the validation fails, an error message

will be indicated to the user. Otherwise, the modification will be sent to the server with

the Update() method of the CountryService class. Finally, the page will be refreshed

with the list of recently updated countries.

This example is basic but demonstrates efficiently how CRUD may be performed

using gRPC-web, and Listing 12-13 shows it.

Listing 12-13.  The edit.component.html Implementation

<div class="container mb-5 mt-5 text-center">

 <h2>Edit Country - {{country.name}}</h2>

 <div *ngIf="country">

 <div>

 �<textarea rows="4" cols="50" name="description"

[ngModel]="country?.description" (ngModelChange)="onChange(

$event)">{{country.description}}</textarea>

 </div>

 �<div *ngIf="actionResult !== null && !actionResult.success"

class="text-danger">

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

451

 {{actionResult.errorMessage}}

 </div>

 <div>

 <button (click)="onUpdate()">Update</button>

 </div>

 </div>

</div>

Listing 12-14 shows the TypeScript in the edit.component.ts file that manages the

HTML code in Listing 12-13.

Listing 12-14.  The edit.component.ts File Implementation

import { Component, OnInit } from '@angular/core';

import { ActivatedRoute, Router } from "@angular/router";

import { ActionResultModel } from '../models/actionResultModel';

import { CountryModel } from '../models/countryModel';

import { CountryUpdateModel } from '../models/countryUpdateModel';

import { CountryService } from '../services/countryService';

@Component({

 selector: 'app-edit',

 templateUrl: './edit.component.html',

 styleUrls: ['./edit.component.css']

})

export class EditComponent implements OnInit {

 public country: CountryModel = new CountryModel();

 public actionResult: ActionResultModel = null;

 �private static readonly _errorValidationMessage = "Description is must be

between 20 and 200 characters";

 constructor(private _countryService: CountryService,

 private _route: ActivatedRoute,

 private _router: Router) {

 }

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

452

 ngOnInit(): void {

 this._route.params.subscribe(p => {

 let id = p["id"] as number;

 this._countryService.Get(id, this.country);

 });

 }

 public onChange(event: Event): void {

 let description = event as unknown as string;

 this.country.description = description

 }

 public onUpdate(): void {

 �if (this.country.description.length > 200 || this.country.description.

length < 20) {

 this.actionResult = <ActionResultModel>({

 success: false,

 errorMessage: EditComponent._errorValidationMessage

 });

 }

 else {

 this.actionResult = <ActionResultModel>({

 success: true,

 errorMessage: ""

 });

 this._countryService.Update(<CountryUpdateModel>({

 id: this.country.id,

 description: this.country.description

 }));

 this._router.navigate(['']).then(() => {

 window.location.reload();

 });

 }

 }

}

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

453

Pretty simple but efficient! I wanted to make it simple because, again, the goal here

is not to teach you Angular but rather to give you more practice using gRPC-web with

TypeScript and Angular and to demonstrate that it’s not that complicated. Based on

this project, you should be able to build a great application with Angular (or ReactJS or

VueJS) and TypeScript.

Figure 12-11 shows the validation error message when updating the country

description fails.

Figure 12-11.  Error message displayed when country’s description validation fails

When everything works as expected, the update request is sent to the server, and the

country list is refreshed with updated data, as shown in Figure 12-12.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

454

Figure 12-12.  Country list refreshed when the country’s description update
succeeds

Note  Chapter 10 mentioned that browsers don’t fully support HTTP/2, and
apps that consume APIs through HTTP/2 may not work correctly. Fortunately, this
Angular app works if the server serves endpoints in HTTP/2, but I suggest that you
use HTTP/1 anyway. The HTTP/2 implementation in browsers is not complete. You
might be faced with unintended behaviors.

If you have followed this tutorial correctly, the structure of your Country Wiki app

will look like as shown in Figure 12-13.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

455

Figure 12-13.  Country Wiki app structure in an Angular project

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

456

It’s up to you now to build a more extensive app based on these basic examples.

�Summary
In this chapter I offered only basic CRUD operations to keep it simple so that everyone

could understand gRPC-web and Angular. I tried to teach you here to generate the

stubs in TypeScript and use the gRPC-web library. That was the main challenge here

because, frankly, this chapter was the most complicated to write due to the lack of

clear documentation for generating the TypeScript stubs with Protoc. However, I

enjoyed writing this chapter a lot, and I hope you had the same pleasure reading it.

Together we have gone off the beaten track, this chapter being a little different from

the rest of this book, and I hope I made you want to use gRPC-web with TypeScript

and SPA frameworks. I will meet you in the next chapter to talk about authentication

management with OpenId Connect in ASP.NET Core gRPC.

Chapter 12 Import and Display Data with Angular 12 and gRPC-web

PART V

Security

459
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_13

CHAPTER 13

Secure Your Application
with OpenId Connect
I can’t finish this book without talking to you about safety. Security is essential in an

application, by which I mean that almost all applications need a mechanism to identify

the user attempting to perform actions on your application. This is called authentication,

which should not be confused with authorization, a mechanism allowing privileges to be

given to an authenticated user—that is, allowing the user to perform specific actions that

unauthorized users are not able to perform. In this chapter, you will learn how to do the

following:

•	 Describe OpenId Connect

•	 Configure ASP.NET Core

•	 Use gRPCurl and gRPCui with a JWT

•	 Use a C# client with a JWT

•	 Use a gRPC-web client with a JWT

•	 Get user identity server side

�Introduction to OpenId Connect
OpenId Connect is an identification standard that is layered on top of the OAuth 2.0

protocol, which is itself an authorization protocol. OpenId Connect works on the

principle of delegating user authentication: with OpenId Connect, this responsibility is

entrusted to a third-party service. The latter uses the protocol to ensure that the user is

authenticated, so the application protected by OpenId Connect does not know how the

authentication was performed.

https://doi.org/10.1007/978-1-4842-8008-9_13

460

Being completely independent of the application, this authentication system can be

transverse and reused accross multiple applications to develop a single authentication.

This is the very definition of the single sign-on (SSO) principle. We end up with an

interaction between three actors:

	 1.	 The client, which is a web app, for example

	 2.	 The identity provider

	 3.	 The protected resource

Figure 13-1 shows the relationship between the three actors.

Figure 13-1.  The relationship between the three actors in OpenId Connect

The client authenticates with the service provider, which issues a JSON Web Token

(JWT) that is used to access the protected resource. This resource will validate the

token received by retrieving the metadata from the identity provider to certify that the

identify provider is the issuer of the JWT. Metadata is retrieved only once, and then the

application can validate the JWT autonomously. A JWT is a JSON object accompanied

by a signature and the reference to the key, which allows the signature to be verified.

The whole is encoded in Base64, and dots separate the three parts. They are assembled

as follows: the reference to the key, the JSON object, and then the signature. I will show

you an example in the next section. An RFC standard describes JSON Web Token as an

Internet Engineering Task Force (IETF) proposed standard (RFC 7519), and it can be

found at this address: https://datatracker.ietf.org/doc/html/rfc7519.

Chapter 13 Secure Your Application with OpenId Connect

https://datatracker.ietf.org/doc/html/rfc7519

461

This introduction is brief. The goal is not to teach you OpenId Connect in great

detail but rather to help you understand the basic principle, the minimum, to allow you

to use OpenId Connect as a means of authentication in ASP.NET Core. If you want to

learn more about OpenId Connect, you can consult the official documentation for this

protocol here: https://openid.net/connect/.

To configure ASP.NET Core with OpenId Connect, we must have an identity provider

to achieve our ends. You may not know it, but a lot of applications use OpenId Connect,

and I think you already know the most often used identity providers:

•	 Facebook

•	 Google

•	 Apple

•	 Microsoft (less frequently)

Figure 13-2 shows the https://www.canva.com website offering to authenticate with

different providers.

Figure 13-2.  Canva.com uses Google, Facebook, and Apple as OpenId Connect
providers

Chapter 13 Secure Your Application with OpenId Connect

https://openid.net/connect/
https://www.canva.com

462

In the code samples in this chapter, I’ll be using the Microsoft authentication

platform based on Azure Active Directory. However, I will not go into details about its

configuration. I will show you how to configure ASP.NET Core, and the authentication

part will be up to you. Azure Active Directory and OpenId Connect are big pieces.

To avoid losing the focus on the main subject, I invite you to learn more about the

Microsoft identity platform here: https://docs.microsoft.com/en-us/azure/active-

directory/develop/active-directory-v2-protocols. If you want to get things done

quickly, you can follow my tutorial on setting up OpenId Connect on Microsoft Azure

here: https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-

ad-angular5-and-webapi-core-introduction/.

Note A long with this chapter, I will assume you could obtain the access_token
JWT emitted from your provider, which is used as a bearer token. All my examples
will show how to pass it to their respective client. I won’t talk here about the
id_token and the refresh_token either. These are explained in previous tutorials.

�Configure ASP.NET Core
The configuration of a gRPC application in ASP.NET Core is strictly identical to any other

ASP.NET Core configuration, regardless of the framework used concerning the validation

of a token. The following configuration applies to a web API or other, for example. To get

started, install the required NuGet package with the following command:

Install-Package Microsoft.AspNetCore.Authentication.JwtBearer

Then add the following using statement in your GlobalUsings.cs file:

global using Microsoft.AspNetCore.Authentication.JwtBearer;

Once done, go to the Program.cs file and configure and activate the authentication

and authorization.

The configuration needs several lines of code:

•	 AddAuthentication() extension method: Allows defining the

authentication based on a JWT by using the JwtBearerDefaults.

AuthenticationScheme value.

Chapter 13 Secure Your Application with OpenId Connect

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols
https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-ad-angular5-and-webapi-core-introduction/
https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-ad-angular5-and-webapi-core-introduction/

463

•	 AddJwtBearer() extension method: Allows the setup of the Authority,

which is the authentication server address, and Audience, which is

the target application for which the JWT is emitted. Both of these

values are supplied by the identity provider you have chosen.

Then we will configure parameters used to validate the JWT:

ValidateLifetime and ValidateIssuer, both of which are set to

True, and Clockskew, which is used to manage the time gap between

the JWT issuer and the application and will be set to 5 minutes. In

other words, the latter allows a 5-minute gap between the JWT expiry

Timestamp and the application, where the token lifetime is validated.

•	 AddAuthorization() extension method: Allows configuring

authorization in ASP.NET Core by using the Authorize attribute.

The activation is only about adding two middlewares in the pipeline:

•	 UseAuthentication() extension method: Registers the

Authentication middleware in the pipeline

•	 UseAuthorization() extension method: Activates the Authorization

middleware in the pipeline

Both require being positioned after the UsersCors() and UseGrpcWeb() middlewares.

Listing 13-1 shows the Program.cs file properly configured. Authority and Audience

are partially hidden. They are specific to my Azure Active Directory tenant on Microsoft

Azure. Note that I added the parameters in the code for demo purposes, but keep in

mind the best practice is to add any configuration in the appsettings.json file as we did

in Chapter 9 for the gRPC server Uri.

Listing 13-1.  Configure and Activate OpenId Connect authentication and

Authorization on ASP.NET Core

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddAuthentication(options =>

{

 �options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

 �options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

}).AddJwtBearer(options =>

Chapter 13 Secure Your Application with OpenId Connect

464

{

 �options.Authority = "https://login.microsoftonline.com/136544d9-xxxx-

xxxx-xxxx-10accb370679/v2.0";

 options.Audience = "257b6c36-xxxx-xxxx-xxxx-6f2cd81cec43";

 options.TokenValidationParameters.ValidateLifetime = true;

 options.TokenValidationParameters.ValidateIssuer = true;

 options.TokenValidationParameters.ClockSkew = TimeSpan.FromMinutes(5);

});

builder.Services.AddAuthorization();

builder.Services.AddGrpc(options => {

 options.EnableDetailedErrors = true;

 options.MaxReceiveMessageSize = 6291456; // 6 MB

 options.MaxSendMessageSize = 6291456; // 6 MB

 options.CompressionProviders = new List<ICompressionProvider>

 {

 new BrotliCompressionProvider() // br

 };

 options.ResponseCompressionAlgorithm = "br"; // grpc-accept-encoding

 �options.ResponseCompressionLevel = CompressionLevel.Optimal;

// compression level used if not set on the provider

 �options.Interceptors.Add<ExceptionInterceptor>();

// Register custom ExceptionInterceptor interceptor

});

builder.Services.AddGrpcReflection();

builder.Services.AddScoped<ICountryRepository, CountryRepository>();

builder.Services.AddScoped<ICountryServices, CountryServices>();

builder.Services.AddSingleton<ProtoService>();

builder.Services.AddDbContext<CountryContext>(options => options.

UseSqlServer(builder.Configuration.GetConnectionString("CountryService")));

builder.Services.AddCors(o => o.AddPolicy("AllowAll", builder =>

{

 builder.AllowAnyOrigin()

 .AllowAnyMethod()

 .AllowAnyHeader()

 �.WithExposedHeaders("Grpc-Status", "Grpc-Message",

"Grpc-Encoding", "Grpc-Accept-Encoding");

Chapter 13 Secure Your Application with OpenId Connect

465

}));

builder.Services.AddHttpContextAccessor();

var app = builder.Build();

app.UseCors("AllowAll");

app.UseGrpcWeb(new GrpcWebOptions { DefaultEnabled = true });

app.MapGrpcReflectionService();

app.MapGrpcService<CountryGrpcService>();

app.MapGrpcService<CountryGrpcServiceBrowser>();

app.UseAuthentication();

app.UseAuthorization();

app.MapGet("/protos", (ProtoService protoService) =>

{

 return Results.Ok(protoService.GetAll());

});

app.MapGet("/protos/v{version:int}/{protoName}", (ProtoService

protoService, int version, string protoName) =>

{

 var filePath = protoService.Get(version, protoName);

 if (filePath != null)

 return Results.File(filePath);

 return Results.NotFound();

});

app.MapGet("/protos/v{version:int}/{protoName}/view", async (ProtoService

protoService, int version, string protoName) =>

{

 var text = await protoService.ViewAsync(version, protoName);

 if (!string.IsNullOrEmpty(text))

 return Results.Text(text);

 return Results.NotFound();

});

// Run the app

app.Run();

Chapter 13 Secure Your Application with OpenId Connect

466

To apply authorization on your gRPC services, you’ll need to add the Authorize

attribute to your gRPC service class OR all/some methods. Using it on the class will

enable authorization for all methods. Note that if you apply it on a class, you can still

define methods as anonymous (no authentication required to access this code) by

adding the AllowAnonymous attribute on it. If you intend to use the same authorization

rule on each method, prefer adding the attribute to the class. It’s possible to add the

Authorize attribute to the class and one/several methods simultaneously. In this case,

the method attribute will override the class attribute for this method. Listing 13-2

shows the Authorize attribute applied on the class, and specifically on the GetAll

method, but with an extra parameter, Roles = "SuperAdmin", which tells ASP.NET

Core to allow only authenticated users with the SuperAdmin role defined in the JWT. A

nonauthenticated user will be denied any attempt to access these methods and will

receive an UNAUTHENTICATED gRPC status. If the user is authenticated but doesn’t

have the SuperAdmin role with the token, the user will be denied and receive the

PERMISSIONDENIED gRPC status.

Listing 13-2 shows the CountryGrpcService class protected from any

nonauthenticated user, and its GetAll endpoint only allows authorized users with the

SuperAdmin role.

Listing 13-2.  The CountryGrpcService Protected with an Authorize Attribute

namespace CountryService.gRPC.Services;

[Authorize]

public class CountryGrpcService : CountryServiceBase

{

 private readonly ICountryServices _countryService;

 public CountryGrpcService(ICountryServices countryService)

 {

 _countryService = countryService;

 }

 [Authorize(Roles = "SuperAdmin")]

 �public override async Task GetAll(Empty request, IServerStreamWriter

<CountryReply> responseStream, ServerCallContext context)

Chapter 13 Secure Your Application with OpenId Connect

467

 {

 ...

 }

 �public override async Task<CountryReply> Get(CountryIdRequest request,

ServerCallContext context)

 {

 ...

 }

 �public override async Task<Empty> Update(CountryUpdateRequest request,

ServerCallContext context)

 {

 ...

 }

 �public override async Task<Empty> Delete(CountryIdRequest request,

ServerCallContext context)

 {

 ...

 }

 �public override async Task Create(IAsyncStreamReader<CountryCreation

Request> requestStream, IServerStreamWriter<CountryCreationReply>

responseStream, ServerCallContext context)

 {

 ...

 }

}

This example is simple but allows you to do the necessary authentication and

authorization in a gRPC application. More often, it is the write operations that require

higher privileges with a particular role. I have shown you how to proceed. All you have

to do is follow your organization’s business rules to apply the proper criteria to protect

your application. Before finishing with this introduction to OpenId Connect in ASP.NET

Core, I would like to show you what a JWT looks like with a role assigned to user Anthony

Giretti. First, generate a token, and then go to the https://jwt.io website to observe the

content of your JWT. Figure 13-3 shows the JWT of my decoded provider.

Chapter 13 Secure Your Application with OpenId Connect

https://jwt.io

468

Figure 13-3.  A JWT decoded on the https://jwt.io website

As you can see, we find the information relating to the provider and the expiration

date of the JWT in the first framed block, information on the user for whom the JWT

was issued in the second framed block, and then follows the role(s) that the user has. So

you might have understood, decoding your JWT will help you to debug your application

Chapter 13 Secure Your Application with OpenId Connect

https://jwt.io

469

if you have trouble with the expiration date of your JWT, if you are using the wrong

audience, or if you are not using the roles correctly in your applications (or if you have

improperly set up your JWTs with your identity provider).

In the next section, I’ll show you how to pass the token into the header of the gRPC

request with various clients.

�Use gRPCurl and gRPCui with a JWT
If you recall from Chapter 5, I told you about two gRPC clients, gRPCui and gRPCurl,

that enable you to run functions, but I only showed examples with anonymous calls.

No authentication was required. In this section, I’ll show you how to pass a JWT within

requests.

�gRPCurl
Let’s start with gRPCurl. Figure 13-4 shows what happens if I execute the GetAll function

without passing a token in the request.

Figure 13-4.  Invoke GetAll function without a JWT

As you can see, I do receive an UNAUTHENTICATED gRPC status. The ASP.NET Core

framework warns me anyway that this is an Unauthorized (401) error. I guess that ASP.

NET Core gRPC doesn’t follow gRPC specs here because it should always return an

HTTP 200 OK status no matter what.

Let’s now add a JWT in the request to the same command as follows: -H

"authorization: bearer {TOKEN}" It should produce an Unauthorized response

because this JWT does not contain the expected role "SuperAdmin" as discussed in the

previous section. Figure 13-5 shows the output of the command.

Chapter 13 Secure Your Application with OpenId Connect

470

Figure 13-5.  Call GetAll endpoint with a JWT but missing the correct role
"SuperAdmin"

As expected, we received a PERMISSIONDENIED as grpc-status from the server, with an

error message mentioning the access is Forbidden (403).

If now your JWT contains the correct role, the command should output the expected

result from the service: a list of countries as shown in Figure 13-6.

Figure 13-6.  Call GetAll endpoint with a JWT that contains the correct role

Chapter 13 Secure Your Application with OpenId Connect

471

By using this tutorial to add a JWT in the gRPCurl commands, you can do whatever

you want now; you will no longer be limited in your actions if your gRPC service is

protected with a JWT.

�gRPCui
gRPCui is easier to use than gRPCurl because it’s a GUI, and it also makes it easy to pass

a JWT. But first, let’s see what happens when the JWT is missing or when a JWT is passed

in the request but without the proper role. Figures 13-7 and 13-8 show, respectively,

those scenarios.

Figure 13-7.  Call GetAll endpoint without a JWT

Figure 13-8.  Call GetAll endpoint with a JWT but without the proper role

Chapter 13 Secure Your Application with OpenId Connect

472

Logically, and it won’t surprise you that we have the same errors we got using

gRPCurl. Now let’s see how to pass a JWT in the form provided for this purpose in the

Request Metadata section. Figure 13-9 shows the first input used to define the name of

the "authorization" metadata and its "bearer {TOKEN}" value.

Figure 13-9.  Fill Request Metadata form with the authorization header
(metadata)

If the JWT is valid and contains the correct role, no error should appear, and

expected data should be displayed as shown in Figure 13-10.

Chapter 13 Secure Your Application with OpenId Connect

473

Figure 13-10.  Call GetAll endpoint with a JWT with the proper role

�Use a C# Client with a JWT
Let’s go back to C# and this time see how to pass a JWT into the request from a C#

gRPC client.

First, I invite you to manage authentication errors; that is, manage UNAUTHENTICATED

and PERMISSIONDENIED statuses. It is always valuable for correctly debugging

authentication problems on the client side. Listing 13-3 shows how to use a token and

pass it in the gRPC request by instantiating a Metadata object and adding the token

with the "authorization" key and the "bearer {TOKEN}" value with the Add method.

Listing 13-3 also shows how to handle errors with a try/catch block, using several catch

statements, each involving a when statement allowing a particular filter to be applied on

the exception. For example, we will discriminate according to the grpc-status; otherwise,

handle the error more generically if it is not an authentication or authorization error.

Chapter 13 Secure Your Application with OpenId Connect

474

Listing 13-3.  Passing a JWT Through the Request and Managing Errors

 public async IAsyncEnumerable<CountryModel> GetAllAsync(string token)

 {

 var list = new List<CountryModel>();

 try

 {

 var metadata = new Metadata();

 metadata.Add("authorization", $"bearer {token}");

 �using var serverStreamingCall = _countryServiceClient.

GetAll(new Empty(), metadata);

 while (await serverStreamingCall.ResponseStream.MoveNext())

 {

 �list.Add(serverStreamingCall.ResponseStream.Current.

ToDomain());

 }

 }

 �catch (RpcException ex) when (ex.StatusCode == StatusCode.

Unauthenticated)

 {

 �_logger.LogError(ex, "Token was missing or

invalid");

 }

 �catch (RpcException ex) when (ex.StatusCode ==

StatusCode.PermissionDenied)

 {

 �_logger.LogError(ex, "Token was valid but

missed particular role");

 }

 catch (RpcException ex)

 {

 _logger.LogError(ex, "an error occurred");

 }

Chapter 13 Secure Your Application with OpenId Connect

475

 foreach (var country in list)

 {

 yield return country;

 }

 }

Figures 13-11 and 13-12 show, respectively, that an UNAUTHENTICATED error is issued

when the token is missing and a PERMISSIONDENIED error is issued when the token

misses a particular role.

Figure 13-11.  Call GetAll() method without a JWT

Chapter 13 Secure Your Application with OpenId Connect

476

Figure 13-12.  Call GetAll method with a JWT but missing the correct role

As for C # clients, you are also ready! We have to cover the gRPC-web TypeScript

clients, and that will be in the next section!

�Use a gRPC-web Client with a JWT
We’ve tried passing a token with almost any type of client. All that was missing was

gRPC-web with TypeScript. So how does this work? Well, Improbable exposes a class of

type grpc.Metadata that we will instantiate, then we will use its set method to create the

same "authorization" header name, consistently with its value "bearer {TOKEN}" and,

yes, it is always the same—fantastic, isn’t it? Listing 13-4 shows how to create the header

and pass it as a query parameter by setting up the metadata parameter.

Listing 13-4.  Passing a JWT in a gRPC-web TypeScript Client

public GetAll(countries: CountryModel[], token: String): void {

 const metadata = new grpc.Metadata();

 metadata.set("authorization", 'bearer ${token}');

Chapter 13 Secure Your Application with OpenId Connect

477

 grpc.invoke(CountryServiceBrowser.GetAll, {

 request: new Empty(),

 host: environment.host,

 metadata: metadata,

 onMessage: (countryReply: CountryReply) => {

 let country = new CountryModel();

 CountryReplyMapper.Map(country, countryReply.toObject())

 countries.push(country);

 },

 �onEnd: (code: grpc.Code, msg: string | undefined, trailers: grpc.

Metadata) => this.onEnd(code, msg, trailers, "All countries have

been downloaded")

 });

 }

 Similar to the results shown in the previous sections, Figures 13-13 and 13-14 show,

respectively, errors in the browser console when a JWT is missing or invalid or expired

and when a valid JWT is passed but the required role is missing.

Figure 13-13.  Call GetAll method without a JWT

Figure 13-14.  Call GetAll method with a JWT but missing the correct role

There you go! We have used quite a few clients and played with the Authentication

and Authorization with each one. We have one last point to cover: identifying the current

user by accessing the HTTP context of the current gRPC request.

Chapter 13 Secure Your Application with OpenId Connect

478

�Get User Identity Server Side
To complete the loop, I will show you how to extract the HTTP context of a gRPC

request (i.e., from its ServerCallContext, if you recall from Chapter 5). The HTTP

context contains all the current request information, the headers, etc. but especially the

authenticated user’s information!

The line of code to extract the current user from the request is as follows:

var user = context.GetHttpContext().User;

Figure 13-15 shows the identity of the authenticating user through the Identity

property of the User object.

Figure 13-15.  Accessing the user identity

The circle is finally closed!

�Summary
We’re done. This final chapter of the book has enabled us to revisit concepts that

we have explored throughout this book, quickly and effectively. We have added a

context of closer interaction with the user; that is, identifying users when they access

the gRPC service. You have therefore learned everything you need to know about

Chapter 13 Secure Your Application with OpenId Connect

479

securing your application, and from here you can apply all the business rules as you

wish to the application with an authenticated user. I am thinking in particular of the

implementation of more refined logging when a user has higher privileges than others

(the roles as we have seen); that is, log all the user actions on the application, even the

critical ones with the elevated privilges that this user has. You can now put into practice

what you have learned to build applications around gRPC! Thank you for reading this

book until the end!

Chapter 13 Secure Your Application with OpenId Connect

481
© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9

Index

A
ActionResultModel class, 436
AddAuthentication extension method, 462
AddAuthorization extension method, 463
AddJwtBearer extension method, 463
Ahead-of-time (AOT) compilation, 7, 8
API versioning

CountryGrpcService class, 227–230
CountryService v1 Protobuf, 223, 224
CountryService v2 Protobuf, 225, 226
GetAll RPC method, 231
organization, 226, 227
protobufs files, 232–236

Application Layer Transport
Security (ALTS), 89

Application programming
interface (API), 42

ASP.NET Core
ASP.NET Core 6, 396–399
browsers

architecture diagram, 404
changes, 405
CORS, 414–416
country.browser.proto file, 407
CountryGrpcServiceBrowser

class, 411–413
country.proto file, 407, 408
CountryService.gRPC

project, 409, 410
country.shared.proto file, 405, 406
Country.Wiki.DAL project, 410, 411
Protobuf files, 405, 408

Microsoft Azure, 416, 417
.NET clients

ASP.NET Core 3+ Clients, 402–404
GrpcWebHandler options, 401
HttpClientHandler class, 400, 401
implementation, 399
.NET Core 3.1, 399, 400

ASP.NET Core 3.1, 399
ASP.NET Core 6, 396–399

Blazor, 64–72
fundamentals, 34–41
minimal APIs, 77–80
MVC pattern, 53–59
Razor Pages, 59–64
SignalR, 72–76
WebAPI, 42

configuration, 44, 45
endpoints exploration, navigation,

and execution, 51, 52
HTTP features, 42
HttpRepl, 50, 51
MVC pattern, 42, 43
Postman interface, 52, 53
project creation, 44
project type, 43
Swagger UI, 48–50
WeatherForecast model and

controller, 45–47
ASP.NET Core gRPC application

add a new project, 303
add Project Preference menu, 307
with all layers, 305

https://doi.org/10.1007/978-1-4842-8008-9

482

Brotli compression algorithm, 178, 179
Class Library template, 304
CompressionProviders, 177
configuration, 157
CountryFileUploadValidatorService

class, 355
CountryGrpcService class, 167, 175–177
Configuring

CountryGrpcServiceClient, 365
CountryManagementService

class, 171–174
CountryModel Record Class

Definition, 344
CountryModelMappers class, 351
CountryServiceBase class, 165, 168
CountryService.DAL, 302
CountryService.gRPC dependency

tree, 309
CountryServices class

implementation, 353
CountryWiki.BLL project, 357
CountryWiki web application, 343
create Skeleton application, 342
CreateCountryModel Record Class, 343
define contracts, 343
develop user web interface, 358
errors, handle responses, and

perform logging
client-side error, 202
EnableDetailedError option, 198, 199
ExceptionInterceptor

Interceptor, 210
ExceptionInterceptor

registration, 209
GetAll gRPC endpoint, 209
GetAll Raises an Unexpected

Exception, 196, 197

Handle extension method, 206
IgnoreUnknownServices, 211–214
interceptor, 203
RpcException setup, 200, 201
server-side error, 202

GlobalOptions class, 361
GlobalUsing.cs file, 347, 352
gRPC and Web folders, 342
gRPCurl

CountryIdRequest Message,
188, 189

delete gRPC function, 193–195
downloading and installation,

189, 190
dotnet run command, 184
GetAll gRPC endpoint, 187
GetAll function, 191–193
GetAll invocation output, 188
Go programming language, 182
Grpc.AspNetCore.Server.

Reflection, 180, 181
gRPCDemo.

v1.CountryCreationRequest
message, 186, 187

grpcurl-help command, 183
gRPCurl list Command, 185
launch and specification, 190, 191
MapGrpcReflectionService

method, 181
PowerShell command window, 182
PowerShell window, 184

HttpClientFactory, 364
ICountryFileUploadValidatorService

interface, 346
ICountryRepository Interface, 346
implement business logic layer, 353
implement data access layer, 349
MaxReceivedMessageSize, 177

ASP.NET Core gRPC application (cont.)

INDEX

483

MaxSendMessageSize, 177
message size and compression

options, 179
message validation, 214–219
Microsoft Azure, 219, 220
.NET 6 runtime, 157, 158
N-tier application, 302
NuGet packages, 158, 159
Program.cs file, 170, 171
Protobuf files

country.proto file, 161, 162
dotnet build command, 163, 164
generated files, 165
Protoc command, 164
Protocol Buffer File type, 163

ReadAllAsync method, 361
ResponseCompressionAlgorithm, 177
ResponseCompressionLevel, 178
ServerContext parameter, 170
streaming services, 160
SyncCountriesChannel class’s

implementation, 358
SyncUploadedCountriesBackground

Service class, 361
template, 156
TLS Certificates, 195, 196
upload data file

A file upload is in progress, 376
CountryWiki.Web project, 384
Displaying countries, 377
Edit.cshtml File, 378
error message, 381
GlobalUsings.cs file, 383
Index page refreshed, 377
Index.cshtml File, 367, 368, 370
JSON file, 373
UpdateCountry Class Definition, 380

Visual Studio, 158, 159

ASP.NET Core gRPC application
CountryGrpcService class, 168
CountryServiceBase class, 166–169
errors, handle responses, and

perform logging
ExceptionInterceptor

registration, 209
ExceptionInterceptor

Interceptor, 210
Handle extension method, 206–208
interceptor, 204, 205

gRPCurl
Delete invocation output, 189
gRPCDemo.v1.CountryService, 186
gRPCDemo.v1.CountryService.

Create RPC function, 186
CountryIdRequest Message, 189

message size and compression
options, 180

ASP.NET Core Razor Pages
application, 35, 36

Asynchronous JavaScript and XML
(AJAX), 392

B
Base Class Library (BCL), 6
Blazor, 64–72
Blazor Server hosting model, 67
Blazor WebAssembly hosting model, 66
Brotli compression algorithm, 178, 179
Business logic

CountryGrpcService class, 334
country.proto file, 333
CountryReplyMapper Static Class, 337
CountryService.gRPC project, 340
CountryServices Concrete

Implementation, 331

INDEX

484

GlobalUsings.cs file, 332
gRPC services, 333
ICountryServices Interface

Definition, 330
Program.cs file, 338

Business logic layer (BLL), 302, 345, 347

C
Common Language Runtime (CLR), 4
CompressionProviders, 177
ConcurrentDictionary, 37
Core Common Language Runtime

(CoreCLR), 8, 9
CountryCreateRequestValidator

Class, 215
CountryCreationMapper class, 439, 440
CountryCreationModel class, 437, 438
CountryGrpcServiceBrowser

class, 411–413
CountryGrpcService Class,

167, 168, 175–177
CountryManagementService

class, 171–174
CountryModel class, 437
CountryReplyMapper class, 440
CountryServiceBase class, 165–169
Country.Wiki.DAL project, 410, 411
CreateAsync method, 297, 298
Cross-origin resource sharing

(CORS), 414–416

D
Data access layer (DAL), 302
Dependency injection, 36, 37
Domain-driven design (DDD), 302

E, F
ExceptionInterceptor registration, 209
Extensible Markup

Language (XML), 42

G
Google.Protobuf, 105, 158
gRPC client

create console application, 240
configure project, 241
CountryServiceClient.csproj

file, 243
NET 6, 242

.NET 6
CountryServiceClient class, 252
Create RPC method, 258, 259
Deadline Exception, 262
delete gRPC function, 257
get gRPC Function Invocation, 261
GetAll function, 256, 267
gRPC Channel, 268
gRPC server Interceptors, 264
Add LoggerFactory to Channel

Class, 253
NuGet package, 253
streaming methods, 255
TracerInterceptor, 264
Add TracerInterceptor to

CountryServiceClient, 266
optimize performance

Enabling Brotli Compression, 269
error message, 278
Get Headers, 269
GetValidationErrors extension

method, 280
GetValidationErrors on catch

Block, 278

Business logic (cont.)

INDEX

485

Get HeaderGrpcAcceptEncoding
server, 269

HTTP/2 connections, 277
keep HTTP/2 connection, 273
Limit Message Size, 272
Message decompression

client side, 272
Set Up Maximum Idle Time, 274
Timeout of 5 Seconds on Pings, 275

Protobuf files
Add new gRPC service

reference, 247
Add service reference, 245, 246
Country.cs file, 251
country.proto file, 244
gRPC service reference from

URL, 249
visible gRPC service, 250

gRPCDemo.v1.CountryService.Create
RPC function, 185, 186

gRPC specification
bidirectional streaming

calls, 92, 93
cancellation, 95
channel, 88–90
client calls handling, 87
client-streaming calls, 92
deadline, 95
HTTP/2 protocol

advantages, 100
binary data transport, 99
compression, 99
disadvantages, 100, 101
flow control, 99
latency of, 97
multiplexing, 98
server push, 99
use cases, 101, 102

programming languages, 87
Protocol Buffers, 87, 88
requests and responses, 95–97
RPC, 85, 86
server-streaming calls, 91, 92
status, 94
Trailers, 93
unary type calls, 91

gRPCui tool
Delete gRPC function, 193–195
downloading and installation, 189, 190
GetAll function, 191–193
JWT, 471–473
launch and specification, 190, 191

gRPCurl tool
CountryIdRequest Message, 188, 189
dotnet run command, 184
GetAll gRPC endpoint, 187
GetAll invocation output, 188
Go programming language, 182
Grpc.AspNetCore.Server.Reflection,

180, 181
gRPCDemo.v1.

CountryCreationRequest
message, 186, 187

gRPCDemo.v1.CountryService, 186
gRPCDemo.v1.CountryService.Create

RPC function, 185
grpcurl-help command, 183
gRPCurl list Command, 185
JWT, 469–471
MapGrpcReflectionService

method, 181
PowerShell command window, 182
PowerShell window, 184

gRPCurl tool
Delete invocation output, 189
gRPCDemo.v1.CountryService, 186

INDEX

486

gRPCDemo.v1.CountryService.Create
RPC function, 186

CountryIdRequest Message, 189
GrpcWebHandler options, 401
gRPC-web JavaScript

library, 392, 393
GrpcWebMode, 401
gRPC-web specification

definition, 391
gRPC-web JavaScript library, 392, 393
gRPC-web proxy, 391, 392
history of, 389–391
REST APIs, 393, 394

H
HttpClientHandler class, 400, 401
Hypertext Transfer Protocol (HTTP), 37

I
Interceptor, 203–206
Intermediate Language (IL) code, 8

J, K
JavaScript Object Notation (JSON), 42
JSON Web Token (JWT), 460

C# client, 473–476
gRPCui, 471–473
gRPCurl, 469–471
gRPC-web Client, 476, 477

Just-in-time (JIT) compiler, 8

L
Language-Integrated Query (LINQ), 310

M
MapGrpcReflectionService

method, 181
MaxReceivedMessageSize, 177
MaxSendMessageSize, 177
Message declarations

collections
Dictionary Property, 116
lists, 114

Continent Message, 143
CountryOrContinent Message, 143
Error Message, 143
One of

Country Message, 142
CountryOrContinentReply

message, 142
Middleware

pipeline, 35
Model-View-Controller (MVC)

pattern, 42, 43, 53–59
Model-View-View Model (MVVM)

model, 421
Multi-platform App UI (MAUI)

compilation, 7
MVC controller, 38, 39

N
.NET

C# 9
covariant returns, 24, 25
init-only properties, 18
pattern matching, 20–22
records, 18–20
static anonymous

functions, 25–27
target typing, 23, 24
top-level programs, 27–29

gRPCurl tool (cont.)

Index

487

C# 10
file-scoped namespaces, 30, 31
global usings, 29
record struct, 31

with CoreCLR, 8, 9
history, 3–7
with Mono, 8, 9
.NET 5

improvements, 10, 11
unified ecosystem, 7

.NET 6
improvements, 10, 11
unified ecosystem, 7
Visual Studio project

creation, 11–17
release cadence, 9

.NET Core, 5, 6

.NET Framework, 4, 5

.NET Standard, 6, 7
ngOnInit method, 443, 450

O
onEnd method, 435, 436
OnGet() method, 62
OpenId Connect

actors, 460
ASP.NET Core configuration

activation, 463
authentication and

authorization, 462–466
CountryGrpcService class, 466, 467
GlobalUsings.cs file, 462
JWT, 467–469

definition, 459
identity providers, 461
JWT, 460

C# client, 473–476

gRPCui, 471–473
gRPCurl, 469–471
gRPC-web Client, 476, 477

user identity, 478

P, Q
Progressive Web Application (PWA)

development, 67
Protobuf files

country.proto file, 161, 162
dotnet build command, 163, 164
generated files, 165
Protoc command, 164
Protocol Buffer File type, 163
streaming services, 160

Protobuf Well-Known Types, 422–425
Protoc command, 164
Protocol buffers

individual declarations, 104
Apress.Sample.gRPC

Namespace, 106
Designer generated code, 105
global namespaces, 106
Namespace and Service Name, 107
package gRPCDemo.v1, 104
Proto3 Syntax, 104
service CountryService, 107

message declarations
Any fields, 123
bytes, 137
ByteString class, 140
collections, 113
comments, 149
Continent Message, 143
CountryImageUpload proto file, 138
Country Message, 142
CountryOrContinent Message, 143

Index

488

CountryReply message, 112
Dates and Times, 133
Duration class, 136
Empty Messages, 147
enumerations syntax, 119
Error Message, 143
FlightBooking Message, 133
FlightDuration and DepartureTime

Fields, 134
import types, 122
nested types, 122
One of, 141, 142
Read Properties, 131
scalar type variables, 113
Struct property, 130
Timestamp class, 135
type wrappers, 126
value, 128
Write Static Functions, 130

Services declarations, 108
naming convention, 109
RPC Functions, 110
types of, 109

R
Remote Procedure Call (RPC), 85, 86
ResponseCompressionAlgorithm, 177
ResponseCompressionLevel, 178, 179

S
Search engine optimization (SEO), 420
Secure Sockets Layer (SSL), 89
SignalR, 72–76
Single-page applications (SPAs)

advantages, 420

Angular, 421
definition, 419
disadvantages, 420
gRPC-web client

ActionResultModel class, 436
CountryCreationMapper

class, 437–440
CountryCreationModel class, 438
CountryModel class, 437
CountryReplyMapper class, 440
CountryService

Implementation, 432–435
InvokeRpcOptions, 431, 432
onEnd method, 435, 436
CountryServiceBrowserCreate RPC

function, 430
UpdateCountryModel class, 437
UploadResultModel class, 436

Protoc
execution, 426–429
Improbable’s gRPC-web Library

and Google Protobufs Library, 426
Protobuf Well-Known

Types, 422–425
ts-protoc-gen plug-in, 426

ReactJS and VueJS, 421
TypeScript code

app component, 440–443
app.component.ts file

implementation, 443–445
country list, 449, 453, 454
Country Wiki app, 454, 455
edit.component.html

implementation, 450–452
edit.component.ts file, 451
JSON file, 447–449
ngOnInit method, 450
non-JSON file, 447

Protocol buffers (cont.)

Index

489

onUpload method, 443
upload-file.worker.ts

implementation, 446
validation error message, 453

Singleton service, 39
SQL Server Database

connecting, 311
entity framework

CountryContext class, 314
CountryLanguageMapper class, 327
CountryModel class, 322
CountryRepository Concrete

Implementation, 325, 327
CountryService database, 318
CountryService.Domain layer, 324
CreateAsync method, 327
database initial creation, 316
DeleteAsync method, 327
design by Code, 311
entities Model, 312
GetAsync and GetAllAsync

method, 327
GlobalUsings.cs file, 329
ICountryRepository interface, 323
initial migration file, 317
Languages table, 321
Seed Table by Code, 319
UpdateAsync method, 327
UpdateCountryModel class, 323

Structured Query Language (SQL), 310

T
Transient service, 39
Transport Layer Security (TLS), 89

U, V
Uniform Resource

Identifiers (URIs), 42
UpdateCountryModel class, 437
UploadResultModel class, 436

W
WebAPI, 42
WebApplicationBuilder, 34
WebAssembly, 64
Web Services Description Language

(WSDL) file, 283
Windows Communication Foundation

(WCF), 87
C# Attributes and Classes vs. Protobuf

Keywords, 286
C# Classes vs. gRPC Equivalent, 286
client-side XML configuration, 293, 294
CreateAsync method, 297, 298
FaultContract, 288–290
FaultContract typed ErrorContract,

290, 291
vs. gRPC, 283–285
Headers Server side and Expose

Endpoints, 294, 295
interfaces, 287
OperationContextScope, 295–297
server-side XML configuration,

291, 292
type, 287

X, Y, Z
XmlHttpRequest (XHR), 392

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started with .NET 6
	Chapter 1: Welcome to Modern .NET
	A Brief History of .NET
	.NET Framework
	.NET Core
	.NET Standard

	Modern .NET: A Unified Platform
	Mono and CoreCLR
	Differences and Commonalities
	JIT
	AOT

	The Best of Both Worlds

	.NET Schedule and What It Means
	How to Explore .NET 6
	.NET 5 and 6 Improvements
	Get Started with .NET 6

	Recap of C# 9 and Introduction to C# 10
	Recap of C# 9
	Init-Only Properties
	Records
	Improved Pattern Matching
	Improved Target Typing
	Covariant Returns
	Static Anonymous Functions
	Top-Level Programs

	Introduction to C# 10
	Global Usings
	File-Scoped Namespaces
	Record struct

	Summary

	Chapter 2: Introducing ASP.NET Core 6
	ASP.NET Core Fundamentals
	ASP.NET Core Web API
	ASP.NET Core MVC
	ASP.NET Core Razor Pages
	ASP.NET Core Blazor
	ASP.NET Core SignalR
	ASP.NET Core gRPC
	ASP.NET Core Minimal APIs
	Summary

	Part II: gRPC Fundamentals
	Chapter 3: Understanding the gRPC Specification
	Introduction to Remote Procedure Calls
	gRPC Concepts
	Protocol Buffers
	gRPC Channel
	Types of gRPC Services
	Unary Calls
	Server-Streaming Calls
	Client-Streaming Calls
	Bidirectional Streaming Calls

	Trailers
	gRPC Status
	Deadline and Cancellation
	gRPC Requests and Responses over HTTP/2

	Introduction to the HTTP/2 Protocol
	Multiplexing
	Compression and Binary Data Transport
	Flow Control
	Server Push

	Benefits, Drawbacks, and Use Cases
	Benefits
	Drawbacks
	Use Cases

	Summary

	Chapter 4: Protobufs
	About Protocol Buffers
	Individual Declarations
	Services Declaration
	Messages Declaration
	Scalar Type Values
	Collections
	Lists
	Dictionaries

	Enumerations
	Nested Types
	Import Types
	Any, Value, Struct, Wrappers, Dates, and Times (Well-Known Types)
	Any
	Wrappers
	Value
	Dates and Times

	Bytes
	One of
	Empty Messages
	Comments

	Summary

	Part III: gRPC and ASP.NET Core
	Chapter 5: Creating an ASP.NET Core gRPC Application
	Create an ASP.NET Core gRPC Application
	Create and Compile Protobuf Files
	Write, Configure, and Expose gRPC Services
	Test Using gRPCurl and gRPCui Tools
	gRPCurl
	gRPCui
	TLS Certificates

	Manage Errors, Handle Responses, and Perform Logging
	Perform Message Validation
	Support of ASP.NET Core gRPC on Microsoft Azure
	Summary

	Chapter 6: API Versioning
	Version gRPC Services
	Expose the Versions of Your Protobuf with ASP.NET Core Minimal APIs
	Summary

	Chapter 7: Create a gRPC Client
	Create a Console Application
	Compile Protobuf Files and Generate gRPC Clients
	Consume gRPC Services with .NET 6
	Optimize Performance
	Take Advantage of Compression
	Define a Limit to Message Size
	Keep HTTP/2 Connections Open
	Increase HTTP/2 Maximum Connections

	Get Message Validation Errors from the Server
	Summary

	Chapter 8: From WCF to gRPC
	Differences and Similarities Between WCF and gRPC
	What and What Not to Migrate from WCF to gRPC
	Summary

	Chapter 9: Import and Display Data with ASP.NET Core Razor Pages, Hosted Services, and gRPC
	Scenario Explanation
	Create and Layer the ASP.NET Core gRPC Application
	Set Up a SQL Server Database and Use Entity Framework Core to Access Data
	Set Up a SQL Server Database
	Using Entity Framework Core to Access Data
	Design the Database by Code
	Seed the Database by Code
	Query the Database with LINQ Queries

	Write the Business Logic and Expose the Country gRPC Microservice
	Write the Business Logic into the CountryService.BLL Layer
	Write the Country gRPC Service

	Create and Layer the ASP.NET Core Razor Application
	Create the Application Skeleton
	Define Contracts and Domain Objects
	Implement the Data Access Layer with the gRPC Client
	Implement the Business Logic Layer
	Configure the ASP.NET Core Razor Pages Application
	Create a Background Task for Handling Uploaded File Data and Create a Channel to Store Data
	Create and Configure the gRPC Client with the IHttpClientFactory and Register All Dependencies in the Program.cs File

	Upload a Data File with a Form, Display and Manage Data on Razor Pages
	Summary

	Part IV: gRPC-web and ASP.NET Core
	Chapter 10: The gRPC-web Specification
	History and Specification of gRPC-web
	History of gRPC-web
	The gRPC-web Specification

	The gRPC-web JavaScript Libraries
	gRPC-web vs. REST APIs
	Summary

	Chapter 11: Create a gRPC-web service from a gRPC-service with ASP.NET Core
	Working with gRPC-web and the .NET Ecosystem
	gRPC-web and ASP.NET Core 6
	gRPC-web and All .NET Clients
	gRPC-web and ASP.NET Core 3+ Clients

	Reworking the CountryService gRPC service for Browser Apps
	Support of ASP.NET Core gRPC-web on Microsoft Azure
	Summary

	Chapter 12: Import and Display Data with Angular 12 and gRPC-web
	Introduction to SPAs
	Generate TypeScript Stubs with Protoc
	Download the Correct Version of Protoc and Protobuf Well-Known Types
	Download the ts-protoc-gen Plug-in
	Download Improbable’s gRPC-web Library and Google Protobufs Library
	Executing the Protoc Command

	Write Data Access with Improbable’s gRPC-web Client
	Upload a Data File and Display Data with TypeScript, a Web Worker, and gRPC-web
	Manage Data with TypeScript and gRPC-web
	Summary

	Part V: Security
	Chapter 13: Secure Your Application with OpenId Connect
	Introduction to OpenId Connect
	Configure ASP.NET Core
	Use gRPCurl and gRPCui with a JWT
	gRPCurl
	gRPCui

	Use a C# Client with a JWT
	Use a gRPC-web Client with a JWT
	Get User Identity Server Side
	Summary

	Index

