
Essential ASP.NET
Web Forms
Development

Full Stack Programming with C#, SQL,
Ajax, and JavaScript
—
Robert E. Beasley

Essential ASP.NET Web
Forms Development

Full Stack Programming with C#,
SQL, Ajax, and JavaScript

Robert E. Beasley

Essential ASP.NET Web Forms Development: Full Stack Programming with C#, SQL,
Ajax, and JavaScript

ISBN-13 (pbk): 978-1-4842-5783-8   		 ISBN-13 (electronic): 978-1-4842-5784-5
https://doi.org/10.1007/978-1-4842-5784-5

Copyright © 2020 by Robert E. Beasley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257838. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Robert E. Beasley
Franklin, IN, USA

https://doi.org/10.1007/978-1-4842-5784-5

To Elizabeth, Zachariah, Isaac, Nathanael, and Elijah
I Love You

v

Table of Contents

Part I: Overview��� 1

Chapter 1: Web Application Development��� 3

1.1 Introduction�� 3

1.2 Client-Server Model��� 4

1.3 .NET Framework�� 8

1.4 Object-Orientation Concepts�� 9

1.4.1 Classes and Objects�� 10

1.4.2 Properties�� 12

1.4.3 Methods��� 12

1.4.4 Events�� 13

1.4.5 Encapsulation�� 13

1.4.6 Inheritance�� 14

1.5 ASP.NET and C# Programming��� 21

1.6 Visual Studio�� 22

1.7 Starting a New Project��� 23

1.8 Solution Explorer�� 24

About the Author��xv

Acknowledgments��xvii

Preface��xix

vi

Part II: Single-Page Web Application Development��������������������������������������� 27

Chapter 2: Page Development��� 29

2.1 Introduction�� 29

2.2 Identifier Naming Standards�� 29

2.3 Page Class��� 30

2.4 Adding a Page Class��� 32

Chapter 3: Basic Server Controls��� 39

3.1 Introduction�� 39

3.2 Toolbox��� 39

3.3 Label Class��� 40

3.4 TextBox Class��� 43

3.5 Button Class��� 45

3.6 Table Class��� 52

3.7 TableRow Class�� 53

3.8 TableCell Class��� 54

Chapter 4: More Server Controls��� 59

4.1 Introduction�� 59

4.2 Calendar Class��� 59

4.3 CheckBox Class�� 63

4.4 RadioButton Class�� 65

4.5 FileUpload Class��� 68

4.6 HyperLink Class��� 71

4.7 Image Class��� 72

4.8 ImageButton Class��� 74

4.9 ImageMap Class��� 77

4.10 RectangleHotSpot Class��� 78

4.11 LinkButton Class�� 82

4.12 ListControl Class�� 87

4.13 ListItem Class��� 89

Table of Contents

vii

4.14 DropDownList Class��� 90

4.15 ListBox Class�� 92

4.16 Panel Class�� 94

Chapter 5: Data Validation Controls��� 99

5.1 Introduction�� 99

5.2 Script Manager Package�� 101

5.3 BaseValidator Class��� 101

5.4 RequiredFieldValidator Class��� 103

5.5 CompareValidator Class��� 105

5.6 RangeValidator Class��� 107

5.7 RegularExpressionValidator Class�� 110

5.8 CustomValidator Class��� 114

5.9 ValidationSummary Class�� 117

Part III: C# Programming��� 123

Chapter 6: Assignment Operations�� 125

6.1 Introduction�� 125

6.2 Types�� 125

6.3 Variable Declarations��� 127

6.4 Constant Declarations�� 130

6.5 Assignment Operators�� 130

6.6 Enumerations��� 133

6.7 Exception Handling�� 134

6.8 Exception Class�� 135

6.8.1 DivideByZeroException Class�� 137

6.8.2 FormatException Class�� 138

6.8.3 IndexOutOfRangeException Class�� 139

6.8.4 OverflowException Class��� 141

6.8.5 Multiple Exceptions��� 142

Table of Contents

viii

Chapter 7: Conversion Operations��� 145

7.1 Introduction�� 145

7.2 Widening Conversions�� 145

7.3 Narrowing Conversions�� 148

7.4 Convert Class��� 153

Chapter 8: Control Operations��� 161

8.1 Introduction�� 161

8.2 Relational Operators�� 162

8.3 Equality Operators�� 162

8.4 Logical Operators��� 163

8.5 Decision Structures�� 164

8.5.1 If Structure�� 164

8.5.2 If-Else Structure�� 167

8.5.3 If-Else-If Structure��� 168

8.5.4 Nested-If Structure�� 169

8.5.5 Switch Structure�� 171

8.5.6 Switch-Through Structure��� 173

8.6 Iterative Structures�� 174

8.6.1 While Structure�� 174

8.6.2 Do-While Structure�� 175

8.6.3 For Structure��� 176

8.6.4 For-Each Structure�� 178

8.6.5 Break Statement�� 180

8.6.6 Continue Statement��� 180

Chapter 9: String Operations��� 183

9.1 Introduction�� 183

9.2 Concatenations�� 183

9.3 Escape Sequences��� 184

9.4 Verbatim Literals�� 186

9.5 String Class�� 186

Table of Contents

ix

Chapter 10: Arithmetic Operations�� 193

10.1 Introduction�� 193

10.2 Arithmetic Operators�� 194

10.3 Order of Precedence and Associativity�� 197

10.4 Parentheses��� 199

10.5 Math Class��� 201

Chapter 11: Date and Time Operations�� 207

11.1 Introduction�� 207

11.2 DateTime Structure�� 208

11.3 Date-Related Properties��� 211

11.4 Date-Related Methods��� 212

11.5 Date Formatting��� 213

11.6 Date Parsing��� 214

11.7 Time-Related Properties�� 216

11.8 Time-Related Methods��� 216

11.9 Time Formatting��� 218

Chapter 12: Array Operations�� 221

12.1 Introduction�� 221

12.2 Array Class��� 222

12.3 One-Dimensional Arrays�� 224

12.4 Two-Dimensional Arrays�� 231

Chapter 13: Collection Operations��� 241

13.1 Introduction�� 241

13.2 Stack Class�� 242

13.3 Queue Class��� 244

13.4 LinkedList Class��� 246

13.5 SortedList Class��� 250

Table of Contents

x

Chapter 14: File System Operations�� 253

14.1 Introduction�� 253

14.2 File Class�� 254

Chapter 15: Custom C# Classes��� 265

15.1 Introduction�� 265

15.2 Class Design�� 266

15.3 C# Class��� 267

15.4 Adding a Classes Folder��� 268

15.5 Adding a Non-static C# Class��� 268

15.6 Adding a Static C# Class�� 273

Part IV: Multiple-Page Web Application Development��������������������������������� 279

Chapter 16: State Maintenance��� 281

16.1 Introduction�� 281

16.2 Client-Based State Maintenance��� 282

16.2.1 View State�� 282

16.2.2 Cookies�� 284

16.2.3 Query Strings��� 289

16.3 Server-Based State Maintenance�� 294

16.3.1 Session State��� 294

16.3.2 HttpSessionState Class��� 296

16.4 Maintaining the State of a Data Structure��� 301

Chapter 17: Master Pages��� 303

17.1 Introduction�� 303

17.2 MasterPage Class�� 303

17.3 Adding a MasterPage Class��� 305

17.4 Adding a Page Class with a MasterPage�� 309

Table of Contents

xi

Chapter 18: Themes��� 323

18.1 Introduction�� 323

18.2 Adding a Theme��� 323

18.3 Skin Files��� 325

18.4 Adding a Skin File�� 325

18.5 Cascading Style Sheet Files��� 332

18.6 Adding a Cascading Style Sheet File�� 333

Chapter 19: Navigation�� 343

19.1 Introduction�� 343

19.2 SiteMap Class�� 344

19.3 Adding a SiteMap Class��� 345

19.4 Menu Class�� 349

19.5 TreeView Class��� 353

Part V: Database Connectivity��� 357

Chapter 20: Database Design, SQL, and Data Binding��� 359

20.1 Introduction�� 359

20.2 Database Schema�� 360

20.3 Tables��� 361

20.4 Attributes��� 362

20.5 Relationships��� 363

20.6 Structured Query Language��� 364

20.6.1 Select Statement��� 366

20.6.2 Insert Statement�� 374

20.6.3 Update Statement�� 377

20.6.4 Delete Statement��� 378

20.7 DataBoundControl Class�� 379

20.8 SqlDataSource Class�� 380

20.8.1 Connection Strings�� 383

20.8.2 Data-Bound Control Population��� 384

20.8.3 Data-Bound Control Filtering��� 386

Table of Contents

xii

Chapter 21: Single-Row Database Table Maintenance�� 395

21.1 Introduction�� 395

21.2 FormView Class��� 395

Chapter 22: Multiple-Row Database Table Maintenance��������������������������������������� 419

22.1 Introduction�� 419

22.2 ListView Class�� 420

22.3 DataPager Class��� 441

22.4 NextPreviousPagerField Class��� 442

22.5 NumericPagerField Class��� 445

Chapter 23: Code Behind Database Operations��� 449

23.1 Introduction�� 449

23.2 SqlConnection Class�� 450

23.3 WebConfigurationManager Class��� 452

23.4 SqlCommand Class�� 453

23.5 SqlDataReader Class�� 455

23.6 Non-parameterized Queries��� 458

23.7 Parameterized Queries��� 463

23.7.1 SqlParameterCollection Class��� 464

23.7.2 SqlParameter Class��� 465

23.8 Stored Procedures��� 471

Part VI: Additional Functionality�� 487

Chapter 24: Email Messaging�� 489

24.1 Introduction�� 489

24.2 Development Machine Email Server�� 490

24.3 MailMessage Class�� 490

24.4 SmtpClient Class�� 492

Table of Contents

xiii

Chapter 25: Ajax Programming��� 499

25.1 Introduction�� 499

25.2 ScriptManager Class�� 500

25.3 Extension Classes�� 501

25.3.1 UpdatePanel Class��� 501

25.3.2 UpdateProgress Class��� 504

25.4 Ajax Control Toolkit��� 507

25.4.1 Installing the Ajax Control Toolkit�� 507

25.4.2 Control Classes�� 509

25.4.3 Control Extender Classes��� 517

Chapter 26: JavaScript Programming��� 533

26.1 Introduction�� 533

26.2 Browser Compatibility�� 534

26.3 Script Elements�� 535

26.4 Functions��� 535

26.5 HTML Document Object Model��� 536

26.6 Examples��� 537

26.6.1 Assignment Operations��� 538

26.6.2 Confirm Dialogs and Alert Messages��� 544

26.6.3 Control Property Manipulation��� 547

26.6.4 Date and Time Display��� 550

26.6.5 Iterative Operations��� 553

Index�� 559

Table of Contents

xv

About the Author

Robert E. Beasley is Professor of Computing at Franklin College in Franklin, Indiana,

USA, where he teaches a variety of software engineering courses. He received both his

BS and MS degrees from Illinois State University and his PhD from the University of

Illinois at Urbana-Champaign. He has been developing software since 1981, has been

an active software consultant in both the public and private sectors since 1987, and has

been teaching software engineering since 1995. He has authored three books on software

engineering, contributed chapters to two books, published over 50 articles in refereed

journals and conference proceedings, and delivered numerous speeches and keynote

addresses at international conferences.

xvii

Acknowledgments

For any project like this to be successful, input is required from a number of people.

I would like to thank David G. Barnette for providing a significant amount of technical

feedback on the entire book, Elijah M. Beasley for providing a number of suggestions

for improving the flow and continuity of the book, and my other software engineering

students for reporting misspellings, typos, and other defects as they were encountered.

xix

Preface

�Audience
This book was written for anyone interested in learning the ASP.NET Web Forms,

C#.NET, SQL, Ajax, and JavaScript Web application development stack, including

novice software developers, professional software developers, and college or university

students enrolled in a one-semester course or two-semester sequence of courses in Web

application development.

�Organization
This book helps you become a pro in one of the most effective and widely used

technology stacks for developing highly interactive, professional-grade, database-driven

Web applications—ASP.NET Web Forms, C#.NET, SQL, Ajax, and JavaScript. It takes

you from beginner to pro in no time. In Part 1, you become familiar with some of the

major concepts, methodologies, and technologies associated with .NET Web application

development. In this part, you learn about the client-server model, the .NET Framework,

the ASP.NET and C# programming languages, and the Visual Studio integrated

development environment. In Part 2, you learn how to develop a single-page .NET

Web application. In this part, you learn how to create a page and add server and data

validation controls to it. The concepts in this part of the book lay the foundation required

for learning the C# programming language in the context of an ASP.NET Web application.

In Part 3, you learn how to program in the C# programming language. In this part, you

learn how to perform assignment operations, conversion operations, control operations,

string operations, arithmetic operations, date and time operations, array operations,

collection operations, and file system operations, as well as create custom C# classes—in

the context of a .NET Web application. In Part 4, you learn how to develop a multiple-

page .NET Web application. In this part, you learn how to maintain state between pages

and create master pages, themes, and navigation controls. In Part 5, you learn how to

connect a .NET Web application to a SQL Server database. In this part, you learn to read

a database schema, program in the SQL programming language, utilize data binding,

xx

perform single- and multiple-row database table maintenance, and write code behind

database operations. And in Part 6, you learn how to enhance the interactivity of a .NET

Web application. In this part, you learn to generate email messages, make use of basic

Ajax controls and the Ajax Control Toolkit, and program in the JavaScript programming

language.

�Features
�Class Focus
A class diagram is included for every class discussed in the text. Each class diagram

articulates some of the most important properties, methods, and events of the class. For

those properties, methods, and events that are not included in the class diagram, a link

to the official class reference is provided.

�Real-Life Examples
A significant proportion of the examples in the text are drawn from the real-life

experiences of the author’s own software development practice that began in 1987.

�Clear-Minded, Consistent, and Concise Prose
Every effort has been made to present concepts clearly and logically, utilize consistent

language and terminology across all chapters and topics, and articulate concepts fully

yet concisely.

�Accessible Language
Although the subject matter of this book is highly technical and specialized, trendy and/

or arcane language that is inaccessible to the average learner is either clearly defined or

replaced in favor of clear and generalizable terminology.

Preface

PART I

Overview

3
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_1

CHAPTER 1

Web Application
Development
1.1	 �Introduction
The concept of hypermedia (i.e., the combination of hypertext and media) was first

envisioned in 1945 by American engineer, inventor, and science administrator Vannevar

Bush. However, it wasn’t until much later that the technology required to support such a

concept was mature enough to make hypermedia something most of us take for granted today.

In 1969, the Advanced Research Projects Agency Network (ARPANET) became the

first computer network to implement packet switching using the Transmission Control

Protocol/Internet Protocol (TCP/IP) suite—the protocol suite that forms the technical

foundation of the Internet today. Packet switching is a method of data transmission

that requires three basic steps to get data (e.g., remote computer screens, files, email

messages, Web pages) from one computer on a network to another. First, at its origin, the

data to be transmitted is separated into a sequenced set of relatively small parts called

packets. Second, the packets are transmitted independently from their origin to their

final destination over routes that have been determined to be optimal for each packet.

And third, after all the packets have made their way to their final destination, the data is

reassembled from its packets. Early TCP/IP Application Layer protocols included Telnet

for logging in to remote computers, File Transfer Protocol (FTP) for transmitting files

from one computer to another, and Simple Mail Transfer Protocol (SMTP) for sending

email messages. These protocols are still in heavy use today.

Although the Internet was alive, well, and growing from the late 1960s through the late

1980s, there was no World Wide Web (a.k.a., Web). However, this was about to change.

In 1989, development of the Hypertext Transfer Protocol (HTTP) was initiated by English

scientist Tim Berners-Lee at the European Organization for Nuclear Research (a.k.a., CERN)

in Meyrin, Switzerland—a suburb of Geneva. This protocol was to become the standard for

4

governing the communication between distributed hypermedia systems. With the definition

of the first official version of HTTP in 1991, the Web, the hypermedia part of the Internet, was

born, and HTTP became another TCP/IP Application Layer protocol like its predecessors

Telnet, FTP, and SMTP. Shortly thereafter, Berners-Lee created the very first Web browser.

This browser became available to other researchers in January 1991 and was released to the

public in August 1991.

Early on, the Web was simply a large collection of static Web pages. These pages

did little more than display formatted text and visual media (i.e., images, graphics,

animations, videos) and permit us to download files and play audio recordings. Today,

however, the Web is a massive collection of both static and dynamic Web pages. And

thanks to programming languages like ASP.NET, dynamic Web pages can do much more

than static Web pages can. In addition to the things static Web pages allow us to do,

dynamic Web pages allow us to interact with the items displayed on a Web page. They

also permit us to do things like edit the data on a page, check the data for errors, and save

the data to a database.

In this chapter, we will begin by looking at the client-server model, which is a

computing approach that distributes processing between servers and clients. Next, we

will introduce the .NET Framework. The .NET Framework is Microsoft’s Windows-based

software development and execution framework. Then, we will discuss ASP.NET and

C# programming. ASP.NET is a software development framework that includes all of

the classes necessary for building modern, sophisticated Web applications, and C# is

a general-purpose programming language for building a variety of application types,

including Web applications and Windows applications. After that, we will look at Visual

Studio, which is Microsoft’s flagship integrated development environment (IDE). This

development environment permits us to code and test in several different programming

languages via a consistent user interface. And finally, we will learn how to start a new

ASP.NET Web Application project.

1.2	 �Client-Server Model
The client-server model is a computing approach that distributes processing between

a server (i.e., the provider of a resource, service, or application) and its clients (i.e.,

the users of a resource, service, or application). A server is composed of a server host,

which is a physical computing device connected to a network, and a server application,

which is a software program that manages multiple, simultaneous client access to the

Chapter 1 Web Application Development

5

server. Likewise, a client is composed of a client host, which is a physical computing

device connected to a network, and a client application, which is a software program

that initiates a session with a server so that it can access the server’s resources, services,

and/or applications. Examples of client-server systems include Web servers and Web

clients, email servers and email clients, and FTP servers and FTP clients. Examples of

Web server applications include Internet Information Services (IIS), Apache HTTP Server,

and Oracle iPlanet Web Server. Examples of Web client applications include Microsoft

Internet Explorer, Google Chrome, and Mozilla Firefox. Web client applications are

usually called Web browsers.

Figure 1-1 shows an example of the client-server model as it applies to a Web

application. In the middle of the figure, we see a Web server. As mentioned previously,

this server is composed of a server host and a server application that manages client

access to the host. Connected to this server via a network (e.g., the Internet) are a

number of different clients, including a tablet client, a laptop client, a Mac client, a PC

client, and a phone client. The dotted line in the figure indicates that the phone client

is connected to the Internet wirelessly. Of course, any server or client can be connected

to the Internet wirelessly. Again, each of these clients is composed of a client host and a

client application that initiates a session with the server and then accesses the server’s

resources, services, and/or applications.

Figure 1-1.  Example of the client-server model as it applies to a Web
application

Chapter 1 Web Application Development

6

Recall that Web pages are either static or dynamic. The content and appearance of

a static Web page doesn’t change each time it is requested. Instead, it always looks the

same no matter how many times it is requested or who requests it. It is easy to tell if a

Web page is static because it has a file extension of .htm or .html. As we will see in the

next figure, this type of Web page only requires the attention of a Web server.

Figure 1-2 shows the processing cycle of a static Web page. As can be seen, a Web

client (e.g., a laptop computer running Internet Explorer) requests a Web page from a

Web server (e.g., a tower computer running IIS) via an HTTP request. One important

part of this request is the name of the requested Web page (e.g., Display_Products.html).

Two other important parts of the request are the IP addresses (i.e., the unique Internet

addresses) of the server and client. These are necessary so that the HTTP request can

make its way to the Web server and so that the requested Web page can make its way

back to the requesting Web client. When the Web server receives the HTTP request, it

locates the desired Web page file on its hard drive, attaches the file’s Hypertext Markup

Language (HTML) code to an HTTP response, and then sends the response to the

requesting Web client. When the Web client receives the HTTP response, it uses the

attached HTML code to format and display the requested Web page for the end user. If

the requested Web page does not exist on the server, the infamous 404 (i.e., Page Not

Found) error is passed back to the Web client where it is displayed for the end user.

Figure 1-2.  Processing cycle of a static Web page

Unlike the content and appearance of a static Web page, a dynamic Web page can

(and usually does) change each time it is requested. In fact, depending on when it is

requested and by whom, it usually contains different information (e.g., different customer

information) and can look completely different (e.g., different fields, different images). It is

easy to tell if a Web page is dynamic because it has a file extension that is associated with

dynamic Web pages. Examples of such file extensions are .aspx (active server page), .php

(hypertext preprocessor), and .jsp (java server page). As we will see in the next figure, this

type of Web page is processed by both a Web server and an application server. When a Web

application requires database functionality, a database server is required as well.

Chapter 1 Web Application Development

7

Figure 1-3 shows the processing cycle of a dynamic Web page. As before, a Web client

requests a Web page from a Web server via an HTTP request. In this case, however, the

request contains the name of a dynamic Web page (e.g., Display_Products.aspx) and the

state of any Web page controls (e.g., a name entered into a text box, a check mark placed

into a checkbox, a date selected from a calendar). When the Web server receives the

HTTP request and sees that the Web page has a file extension of .aspx, it passes processing

control to the application server where the business logic (e.g., ASP.NET and C# code)

of the Web page is executed. If the business logic of the Web page requires the services

of a database server (i.e., reading, inserting, updating, or deleting data), the application

server passes processing control to the database server (along with any pertinent input

parameters) where the database call (usually a Structured Query Language [SQL] call)

of the Web page is executed. Once the database call is executed, the response from the

database server (e.g., the retrieved data and/or the status of the call) is passed back to the

application server where it is processed (e.g., the retrieved data is formatted and/or the

status of the call is handled). After this, the application server passes its work back to the

Web server, where it locates the desired Web page file on its hard drive, formats the Web

page’s HTML based on the results of the application server’s work, attaches the resulting

HTML code to an HTTP response, and then sends the response to the requesting Web

client. When the Web client receives the HTTP response, it uses the attached HTML code

to format and display the requested Web page for the end user. Again, if the requested Web

page does not exist on the server, the infamous 404 (i.e., Page Not Found) error is passed

back to the Web client where it is displayed for the end user.

Figure 1-3.  Processing cycle of a dynamic Web page

Keep in mind that although servers and clients usually run on separate computing

devices, they can run on the same device. As an example of the latter, we often use a Web

server (e.g., IIS Express), an application server (e.g., .NET Framework), a database server

(e.g., SQL Server), and a Web client (e.g., Internet Explorer) all installed on the same

machine when developing ASP.NET Web applications.

Chapter 1 Web Application Development

8

1.3	 �.NET Framework
The .NET Framework is a Windows-based software development and execution

framework from Microsoft. This framework consists of two main parts—the Framework

Class Library (FCL) and the Common Language Runtime (CLR).

The Framework Class Library is a large library of classes. These classes perform many

of the functions needed to develop modern, state-of-the-art software applications, such

as Windows applications and Web applications. The classes in the FCL can be utilized

by any of the programming languages associated with the .NET Framework (e.g., Visual

Basic, Visual C++, Visual C#, Visual F#) and include user interface classes, file access

classes, database access classes, and network communication classes. By combining

our own custom programming code with the classes in the FCL, we can develop

sophisticated software applications relatively efficiently.

The Common Language Runtime is an environment in which all .NET applications

execute. These applications do not interact with the operating system directly like some

software applications do. Instead, regardless of the programming language used to

develop them, .NET applications are compiled into a Microsoft Intermediate Language

(MSIL) assembly and then executed by the CLR. Thus, it is the CLR that interacts with the

operating system, which then interacts with the computer’s hardware via device drivers.

An important aspect of the CLR is the Common Type System. The Common Type System

defines how all of the value types, reference types, and other types are declared, used,

and managed across all of the programming languages of the .NET Framework. Since

the CLR provides for its own security, memory management, and exception handling,

code running in the CLR is referred to as managed code. Figure 1-4 summarizes the

organization of the .NET Framework.

Chapter 1 Web Application Development

9

1.4	 �Object-Orientation Concepts
Object Orientation is a software development paradigm where virtually everything is

viewed in terms of classes (e.g., customers, Web pages, buttons on a Web page) and

objects (e.g., a specific customer, a specific Web page, a specific button on a Web page).

A class can contain properties (i.e., the data of the class) and methods (i.e., the

functionality of the class) and can handle events (i.e., end-user actions or other things

that occur in time). The properties, methods, and events of a class are referred to as its

members. A class encapsulates its properties, methods, and events by bundling them

together into a single unit and by hiding the details of those internals from other classes.

And finally, a class can inherit (i.e., take on and utilize) the properties, methods, and

events of other classes. We will learn more about these concepts next.

Figure 1-4.  Organization of the .NET Framework

Chapter 1 Web Application Development

10

1.4.1  �Classes and Objects
Classes are like “templates” that represent the characteristics and behaviors of things

we encounter in the real world. In our professional lives, we would likely encounter

things like customers, employees, products, and orders. On a Web page, we would

normally interact with things like buttons, checkboxes, calendars, and text boxes. When

developing software applications that involve such things, we typically design and/or

utilize classes that model their attributes and actions.

In the .NET Framework, there are two types of classes—non-static classes and static

classes. As a general rule, a non-static class contains non-static properties, non-static

methods, and non-static events that we can utilize, but only after an object has been

instantiated from the class.1 A static class, on the other hand, contains static properties,

static methods, and static events that we can utilize immediately, without having to

instantiate an object from the class.

When describing a class in this book, we will include a class diagram. Table 1-1 shows

the general format of a class diagram. Such a diagram will always contain the name of the

class and the namespace in which it resides. A namespace contains classes that provide

specific functionality (e.g., page functionality, email functionality, database access

functionality) or specialized types (e.g., interface types, array types, value types, reference

types, enumeration types). A class diagram will also list some selected properties, methods,

and events of the class. The descriptions of these items will be taken directly from

Microsoft’s official documentation so that they can be trusted as authoritative. And finally,

a class diagram will provide a reference to Microsoft’s official documentation of the class.

To see all of a class’s properties, methods, and events, as well as see code samples of how

the class can be used, the interested reader can refer to this documentation.

1�A non-static class can also contain static properties, static methods, and static events that we can
utilize immediately, without having to instantiate an object from the class.

Chapter 1 Web Application Development

11

There is one more very important thing to remember about the class diagrams used

in this book. The event handler methods used to handle the events of a class will be

omitted to conserve space. Event handler methods are those methods that begin with

the word “On” and end with an event name. For example, OnInit is an event handler

method that is raised by the Init event. If the Init event is already displayed in the Events

section of the class diagram, then the OnInit event handler method will be omitted from

the Methods section of the class diagram to conserve space.

An object is a single instance of a class. For example, say we have an Employee class that

serves as the “template” for all employees. In this case, we might have an Employee object

that represents Jim J. Jones who has an email address of jjones@mail.com and a password of

abc123. We might also have an Employee object that represents Mary M. Morris who has an

email address of mmorris@work.com and a password of xyz789. These two distinct objects,

both of which are viewed as independent items, were instantiated from the Employee

class by constructing each one and then setting their respective Name, EmailAddress, and

Password properties. The ability to instantiate multiple objects from a single class is why, for

example, we can have several text box and button objects on a single Web page, and each one

of them can look and behave similarly yet differently.

Table 1-1.  General format of a class diagram

Class

Namespace

Properties

Methods

Events

Reference

Chapter 1 Web Application Development

12

1.4.2  �Properties
Properties represent the data of a class. Properties are read from (via a get method) and

written to (via a set method). For example, the .NET TextBox class has a Text property.

If we wish to retrieve the value entered into a text box object, we would need to get this

property. As another example, the .NET Button class has a BackgroundColor property,

a ForegroundColor property, and a Text property. If we wish to display a gray button

with red lettering that says “Submit,” we would need to set these three properties

appropriately. Properties can be non-static or static.

1.4.3  �Methods
Methods perform a function (i.e., a task that returns a value) or a procedure (i.e., a task that

does not return a value) and are invoked or called. There are two types of methods—non-static

methods and static methods.

A non-static method is a method that can be invoked, but only after an object

has been instantiated from its associated non-static class. For example, if we have an

Employee object that has been created from a non-static Employee class, and this class

includes a non-static ModifyPassword method, then we can invoke the Employee object’s

ModifyPassword method to update the employee’s password, something like this

booSuccess = Employee.ModifyPassword("abc123");

where Employee is an object of the non-static Employee class and ModifyPassword is a

non-static method of the Employee object.

A static method, on the other hand, is a method that can be invoked immediately,

without having to instantiate an object from a class. For example, if we have a static Math

class that includes a static Sqrt method, and we want to take the square root of 100, then

we can invoke the Math class’s Sqrt method directly (i.e., without having to instantiate a

Math object from the Math class) to get the square root of 100, something like this

bytResult = Math.Sqrt(100);

where Math is a static class and Sqrt is a static method of the Math class.

Chapter 1 Web Application Development

13

1.4.4  �Events
Events are things that happen. Events are raised by an end-user action or by something

else that occurs in time. When an event is raised, and we wish to handle that event, we

invoke a corresponding method. For example, the .NET Page class raises a Load event

every time a Web page loads. If we want to display something for the end user every time

the page loads, we would need to handle that event by adding the necessary code to the

corresponding OnLoad method. Keep in mind that we need not handle every event that

is raised. Events can be non-static or static.

1.4.5  �Encapsulation
Encapsulation has two meanings in the context of object orientation. First, it refers to

the notion that a class’s properties (i.e., data) and methods (i.e., the processing that

operates on that data) are bundled together and treated as a single unit. Second, it refers

to the notion that a class’s properties and methods cannot be directly accessed by code

that resides outside of the class itself. Thus, in order to get or set a class’s properties

or execute a class’s methods, a class that requires such operations must request them

from the class that contains the desired properties or methods. This idea is referred

to as information hiding. Although the concept of information hiding is an important

guideline of object orientation, the .NET programming languages permit us to explicitly

relax or enforce such access restrictions by declaring properties and methods as private

(i.e., they can only be accessed by code within the same class), protected (i.e., they can

be accessed by code within the same class and by any related subclasses), or public (i.e.,

they can be accessed by code in any other class).

One of the benefits of encapsulation is that it shields the internals of a class from

other classes so that they can utilize the class’s functionality without concern for how the

class actually performs its duties. The only thing the other classes need to know about

the class is what inputs it requires and what outputs it produces—that is, knowledge of

the class’s interface. In addition, encapsulation facilitates code refactoring (e.g., making a

method more efficient or easier to maintain). This is because we can modify the methods

of a class without disrupting the class’s use by other classes—as long as the modifications

do not affect the class’s interface. Another benefit of encapsulation is that it encourages

us to think through all of a class’s properties and methods and to keep them together in

one place. This makes coding, testing, and maintenance much easier.

Chapter 1 Web Application Development

14

1.4.6  �Inheritance
Inheritance permits a child class (a.k.a., subclass, derived class) to take on and utilize

the properties, methods, and events of its parent class (a.k.a., superclass)—as well as its

parent’s parent class and so on. A child class inherits all of the properties, methods, and

events of its parent class (with the exception of its constructor methods and destructor

methods), but it also contains properties, methods, and/or events of its own. Thus, a

child class always extends the attributes and functionality of its parent class. A parent

class that does not inherit any of its properties, methods, or events from another class

is referred to as a base class. In a class inheritance hierarchy, the relationship that exists

between a parent class and its child class is an is-a-type-of relationship.

As will become apparent, the main benefits of class inheritance are that code redundancy

is minimized and code reuse is maximized. This is because a child class can use all of the

properties, methods, and events of its parent class as if they were its own—we need not

write that code again. Keep in mind that inherited properties, methods, and events can be

overridden by a child class when necessary.

Figure 1-5 shows an example of a class inheritance hierarchy for an employee.

In the figure, we can see that the base class in the hierarchy is the Employee class.

This class contains the most fundamental properties and methods of the class.2 The

Employee class’s child classes (i.e., the Salaried class and the Hourly class) not only

inherit all of the properties and methods of the Employee class, but they each include

additional properties and methods that extend the characteristics and functionality of

the Employee class. Looking farther down the hierarchy, we can see that the Salaried

class’s child classes (i.e., the Administrator class and the Faculty class) not only inherit

all of the properties and methods of the Salaried class and the Employee class, but they

each include additional properties and methods that extend the characteristics and

functionality of those classes. Thus, we can see, for example, that a faculty member is a

type of salaried employee, who is a type of employee, who works in a department, who

has a list of degrees, has a title, gets paid a salary, has a name, has an email address, and

has a password. The Faculty class also inherits all of the methods of the classes above

it, so in addition to a ModifyDepartment method, the Faculty class has a ModifyTitle

method, a ModifyName method, and so on.

2�No events are shown in this example.

Chapter 1 Web Application Development

15

3�For brevity, not all of the properties and methods of the classes in the figure are shown, and none
of the events of the classes in the figure are shown.

Now let us turn our attention to an example of how class inheritance manifests itself

within the .NET Framework generally and within the Framework Class Library specifically.

A solid understanding of .NET Framework class inheritance is important because it will help

us make the most of the classes available to us as we develop ASP.NET Web applications.

Figure 1-6 shows an example of the (partial) class inheritance hierarchy of the

Framework Class Library.3 In the figure, we can see that the base class of the FCL

is the Object class. This class, which has no properties or events, contains the most

fundamental methods of the class inheritance hierarchy. These methods provide low-

level services to all of the other classes in the FCL. For example, the ToString method of

the Object class can be used to convert any object (instantiated from a class in the FCL)

to its equivalent string representation. The Object class’s child classes (i.e., the Control

class and some other classes) not only inherit all of the methods of the Object class, but

they each include additional properties and methods that extend the characteristics and

functionality of the Object class. Looking farther down the hierarchy, we can see that the

Figure 1-5.  Example of a class inheritance hierarchy for an employee

Chapter 1 Web Application Development

16

Control class’s child classes (i.e., the WebControl class, the FormControl class, and some

other classes) not only inherit all of the properties and methods of the Control class and

the Object class, but they each include additional properties and methods that extend

the characteristics and functionality of those classes. Looking even farther down the

hierarchy, we can see that the WebControl class’s child classes (i.e., the Page class, the

Button class, and some other classes) not only inherit all of the properties and methods

of the WebControl class, the Control class, and the Object class, but they each include

additional properties and methods that extend the characteristics and functionality

of those classes. Thus, we can see that, for example, a button is a type of Web control,

which is a type of control, which is a type of object, that can cause validation, can contain

text, has a background color, can be enabled or disabled, has a height, has an ID, has a

skin ID, can be made visible or invisible, and can be converted to a string. The Button

class also inherits all of the methods of the classes above it, so in addition to an OnClick

method, the Button class has an ApplyStyle method, a DataBind method, a GetType

method, and so on.

Figure 1-6.  Example of the (partial) class inheritance hierarchy of the Framework
Class Library

Chapter 1 Web Application Development

17

We will now take a closer look at the Object, Control, and WebControl classes in

more detail. Although we have little context for these at the moment, it is important to at

least become familiar with them as we will refer to them later in this book.

1.4.6.1  �Object Class

As mentioned previously, the Object class is the base class of the .NET Framework Class

Library. As such, it is said to be the root of the .NET class inheritance hierarchy, and all of

the other classes in the FCL are derived from it. The Object class provides methods that

can be used by the Control class, the WebControl class, and all of the ASP.NET server

control classes (e.g., the Page class, the Button class, the TextBox class). Table 1-2 shows

some of the methods of the Object class. As can be seen, this class has no properties or

events—just a description of two of its methods.

Table 1-2.  Some of the methods of the Object class

Class Object4

Namespace System

Properties

NA

Methods

GetType() Gets the type of the current instance.

ToString() Returns a string that represents the current

object.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 1 Web Application Development

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

18

1.4.6.2  �Control Class

The Control class provides properties, methods, and events that can be used by the

WebControl class and all of the ASP.NET server control classes (e.g., the Page class, the

Button class, the TextBox class). Table 1-3 shows some of the properties, methods, and

events of the Control class.

Table 1-3.  Some of the properties, methods, and events of the Control class

Class Control5

Namespace System.Web.UI

Properties

ClientID Gets the control ID for HTML markup that is generated by ASP.NET.

ClientIDMode Gets or sets the algorithm that is used to generate the value of the

ClientID property.

EnableTheming Gets or sets a value indicating whether themes apply to this control.

ID Gets or sets the programmatic identifier assigned to the server control.

Page Gets a reference to the Page instance that contains the server control.

SkinID Gets or sets the skin to apply to the control.

Visible Gets or sets a value that indicates whether a server control is rendered as

UI on the page.

Methods

DataBind() Binds a data source to the invoked server control and all its child controls.

FindControl(String) Searches the current naming container for a server control with the specified

ID parameter.

Focus() Sets input focus to a control.

(continued)

5�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 1 Web Application Development

19

1.4.6.3  �WebControl Class

The WebControl class provides properties, methods, and events that can be used by all

of the ASP.NET server controls classes (e.g., the Page class, the Button class, the TextBox

class). Table 1-4 shows some of the properties, methods, and events of the WebControl

class. Notice that this class has several properties that affect a control’s appearance (e.g.,

BackColor property, ForeColor property, Height property) and that it has a number of

properties that affect a control’s behavior (e.g., Enabled property, TabIndex property,

ToolTip property).

Table 1-3.  (continued)

Events

DataBinding Occurs when the server control binds to a data source.

Disposed Occurs when a server control is released from memory, which is the last stage

of the server control life cycle when an ASP.NET page is requested.

Init Occurs when the server control is initialized, which is the first step in its

life cycle.

Load Occurs when the server control is loaded into the Page object.

PreRender Occurs after the Control object is loaded but prior to rendering.

Unload Occurs when the server control is unloaded from memory.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.control(v=vs.110).aspx

Chapter 1 Web Application Development

https://msdn.microsoft.com/en-us/library/system.web.ui.control(v=vs.110).aspx

20

Table 1-4.  Some of the properties, methods, and events of the WebControl class

Class WebControl6

Namespace System.Web.UI.WebControls

Properties

AccessKey Gets or sets the access key that allows you to quickly navigate to the Web server

control.

BackColor Gets or sets the background color of the Web server control.

CssClass Gets or sets the cascading style sheet (CSS) class rendered by the Web server

control on the client.

Enabled Gets or sets a value indicating whether the Web server control is enabled.

Font Gets the font properties associated with the Web server control.

ForeColor Gets or sets the foreground color (typically the color of the text) of the

Web server control.

Height Gets or sets the height of the Web server control.

IsEnabled Gets a value indicating whether the control is enabled.

TabIndex Gets or sets the tab index of the Web server control.

ToolTip Gets or sets the text displayed when the mouse pointer hovers over the

Web server control.

Width Gets or sets the width of the Web server control.

Methods

ApplyStyle(Style) Copies any nonblank elements of the specified style to the Web control,

overwriting any existing style elements of the control. This method is primarily

used by control developers.

(continued)

6�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 1 Web Application Development

21

1.5	 �ASP.NET and C# Programming
ASP.NET is a software development framework that includes all of the classes necessary

for building modern, sophisticated Web applications. Since ASP.NET is part of the .NET

Framework, we have access to all of the classes of the .NET Framework when coding ASP.

NET Web applications.

When developing in ASP.NET, we can code in any of the programming languages

compatible with the .NET Framework. These languages include Visual Basic, Visual C++,

Visual C#, and Visual F#. Several other programming languages are compatible with the

.NET Framework as well. However, this book focuses on the C# programming language,

which is a sophisticated, general-purpose, object-oriented programming language

developed by Microsoft for building a variety of application types, including Web Forms

applications and Windows Forms applications. It is important to keep in mind that C# is

also a type-safe programming language, meaning that an invalid computing operation on

an object will be detected at design time (i.e., when the operation is parsed) instead of at

runtime (i.e., when the operation is executed). For example, the operation x = “abc” + 123

would throw a type error during coding because abc is a string, 123 is a number, and C#

will not implicitly convert the string to a number (or the number to a string) to perform

the addition (or the concatenation) operation. Anyone familiar with C, C++, Java, and/or

similar languages will have little difficulty learning C# with its familiar curly bracket style.

Table 1-4.  (continued)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

webcontrol(v=vs.110).aspx

Chapter 1 Web Application Development

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.webcontrol(v=vs.110).aspx

22

1.6	 �Visual Studio
Visual Studio is Microsoft’s flagship integrated development environment (IDE). While

many available IDEs are dedicated to a specific programming language, Visual Studio

permits us to code and test in several different programming languages via a consistent

user interface. In this book, we will demonstrate how to use Visual Studio to write and

test code in ASP.NET, C#, SQL, Ajax (Asynchronous JavaScript and XML), and JavaScript.

Visual Studio is designed to maximize developer productivity by providing us with

an array of interrelated tools with a common user interface. It includes source code

editing tools, debugging tools, unit testing tools, compiling tools, class browsing tools,

application deployment tools, code management tools (i.e., Team Foundation Server),

and so on. Visual Studio also includes a built-in Web server called Internet Information

Services Express (IIS Express) that permits us to execute and test our ASP.NET Web

applications on our own computer. Visual Studio can be downloaded for free from

microsoft.com.

Figure 1-7 shows the Visual Studio environment. Notice the Toolbox tab in the upper

left-hand corner of the environment and the Solution Explorer tab in the upper right-

hand corner of the environment. We will use these tools frequently when developing

ASP.NET Web applications. Keep in mind that this environment may look a little different

depending on how the environment has been configured or which version of Visual

Studio has been installed. If the Toolbox tab isn’t visible, we can select View ➤ Toolbox

from the main menu. If the Solution Explorer tab isn’t visible, we can select View ➤

Solution Explorer from the main menu.

Chapter 1 Web Application Development

23

1.7	 �Starting a New Project
Now that we have seen a little bit of the Visual Studio environment, it is time to start a

brand new project. To start a brand new ASP.NET Web Application project

	 1.	 Select File ➤ New ➤ Project… from the main menu.

When the New Project dialog appears

	 1.	 Select Installed ➤ Templates ➤ Visual C# ➤ Web from the left

pane of the dialog.

	 2.	 Select ASP.NET Web Application (.NET Framework) from the

middle pane of the dialog.

	 3.	 Give the project a Name (e.g., SportsPlay) at the bottom of the

dialog.

	 4.	 Give the project a Location by typing in a file path or by browsing

to an existing folder.

	 5.	 Check the Create directory for solution checkbox.

Figure 1-7.  Visual Studio environment

Chapter 1 Web Application Development

24

	 6.	 Click OK.

When the New ASP.NET Web Application dialog appears

	 1.	 Select Empty from the pane of the dialog.

	 2.	 Unselect any checkboxes.

	 3.	 Click OK.

1.8	 �Solution Explorer
Once we have created a new project, we can view it using the Solution Explorer. The

Solution Explorer is used to manage solutions, which themselves contain one or more

projects. Within the Solution Explorer, we can add, modify, and delete projects as well

as add, modify, and delete any other items associated with a project (e.g., folders, Web

pages, images).

Figure 1-8 shows the Solution Explorer. To open the Solution Explorer, click the

Solution Explorer tab. Notice that we can auto hide the Solution Explorer by clicking

the pin icon in the upper right-hand corner of the Solution Explorer. Notice as well that

we can close the Solution Explorer by clicking the Solution Explorer tab again. If we

click the x icon, which removes the Solution Explorer tab, we can restore it by selecting

View ➤ Solution Explorer from the main menu. We can also drag the Solution Explorer

to another location in the Visual Studio environment. To do this, click and hold the

top of the Solution Explorer and drag it to the desired location in the Visual Studio

environment. Note that all of the other tabs we will see in the Visual Studio environment

behave the same way. Thus, it is easy to adjust the Visual Studio environment to the way

we want it. By the way, notice that there are a number of other icons at the top of the

Solution Explorer. We can ignore these for now.

Chapter 1 Web Application Development

25

Figure 1-8.  Solution Explorer

As we make changes to our ASP.NET Web Application project, we will need to save

those changes. To do this, we can select File ➤ Save (name of the project) from the main

menu, or we can just click the blue disk icon at the top of the Visual Studio environment.

Keep in mind, however, that every time we execute a project in the Visual Studio

environment, any changes we have made to the project will be saved automatically first.

Thus, it is not necessary to save a project immediately prior to executing it.

Chapter 1 Web Application Development

PART II

Single-Page Web
Application Development

29
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_2

CHAPTER 2

Page Development
2.1	 �Introduction
A Web page is a document with a unique Uniform Resource Locator (URL) or Web address.

This document is served by a Web server and is displayed in a Web client (i.e., browser).

Web pages are formatted using the Hypertext Markup Language (HTML), which is a

standardized coding system that uses tags to affect a page’s basic display characteristics

(e.g., font, color, layout) and create simple functionality (e.g., transitions to other pages).

Transitions to other pages are achieved through hypertext links (a.k.a., hyperlinks), where

a hypertext link is associated with a single URL. When clicked, a hypertext link causes a

transition from one Web page to another.

In this chapter, we will begin by looking at the identifier naming standards we will

apply throughout this book. These standards will be applied when naming variables,

constants, server controls, and other items. Next, we will discuss the Page class (a.k.a.,

the Web Forms Page class), which is the class we will use to create ASP.NET Web pages.

And finally, we will learn how to add a page to an ASP.NET Web Application project

using Visual Studio. As we will see throughout this book, we will add a Page class to our

project for every Web page we want to display in our ASP.NET Web application.

2.2	 �Identifier Naming Standards
An identifier is the name we give a variable, constant, server control, or other items.

Using identifier naming standards makes reading the source code of a class much

easier—especially when maintaining the code later.

30

When naming variables and constants, we should use names that make the content

of the item as obvious as possible. This is accomplished by doing two things. First, it is

accomplished by beginning the name of the item with a three-letter prefix that reflects

the type of data the item will contain. And second, it is accomplished by completing the

name of the item with a suffix that reflects what data the item will contain. For example,

when declaring a string variable that will hold a person’s last name, we would give the

variable the name strLastName. This shows the type of data the variable will hold (i.e.,

string data) as well as what data the variable will hold (i.e., a person’s last name).

When naming server controls, on the other hand, we should use names that make the

use of the control as obvious as possible. This is also accomplished by doing two things.

First, it is accomplished by beginning the name of the control with a three-letter prefix that

reflects the type of control the control is. And second, it is accomplished by completing

the name of the control with a suffix that reflects what control the control is. For example,

when creating a text box that will accept a person’s last name, we would give the control

the name txtLastName. This shows the type of control the control is (i.e., TextBox control)

as well as what control the control is (i.e., the last name text box).

2.3	 �Page Class
The Page class is a container that holds other ASP.NET server classes, such as Label

classes, TextBox classes, and Button classes. Thus, the Page class is the foundation of the

user interface of a .NET Web application. Web pages are requested from the server by

a client. In the .NET Framework, the first time a Web page is requested by a client, it is

compiled on the server, served to the client, and cached in server memory to be used for

subsequent client requests. A given Page class is stored on the server in a .aspx file.

Table 2-1 shows some of the properties, methods, and events of the Page class.

Although we have little context for these at the moment, it is important to at least

become familiar with them as we will refer to them later.

Chapter 2 Page Development

31

Table 2-1.  Some of the properties, methods, and events of the Page class

Class Page1

Namespace System.Web.UI

Properties

ClientQueryString Gets the query string portion of the requested URL.

IsPostBack Gets a value that indicates whether the page is being rendered for the first

time or is being loaded in response to a postback.

IsValid Gets a value indicating whether page validation succeeded.

Master Gets the master page that determines the overall look of the page.

MasterPageFile Gets or sets the virtual path of the master page.

Request Gets the HttpRequest object for the requested page.

Response Gets the HttpResponse object associated with the Page object. This object

allows you to send HTTP response data to a client and contains information

about that response.

Server Gets the Server object, which is an instance of the HttpServerUtility class.

Session Gets the current Session object provided by ASP.NET.

Theme Gets or sets the name of the page theme.

Title Gets or sets the title for the page.

Methods

(See reference.)

Events

InitComplete Occurs when page initialization is complete.

LoadComplete Occurs at the end of the load stage of the page’s life cycle.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 2 Page Development

32

2.4	 �Adding a Page Class
In the last chapter, we learned how to start a brand new ASP.NET Web Application

project. Now, it is time to add a Page class to that project. If not already open, we need to

open the ASP.NET Web Application project created in the last chapter. To do this

	 1.	 Execute Visual Studio.

	 2.	 Select File ➤ Open ➤ Project/Solution… from the main menu.

	 3.	 When the Open Project dialog appears, navigate to the .sln file for

the project.

	 4.	 Select the .sln file.

	 5.	 Click Open.

The .sln file, by the way, is the solution file. As the name implies, this file contains

information about the solution, including the individual projects it contains. This can

be a little confusing in Visual Studio because when we create a new ASP.NET Web

Application project, we are actually creating a new solution that contains a new project.

Assuming that the project is open, we can now add a Page class to our project. To add

a Page class to an ASP.NET Web Application project

Table 2-1.  (continued)

Class Page1

PreInit Occurs before page initialization.

PreLoad Occurs before the page Load event.

PreRenderComplete Occurs before the page content is rendered.

SaveStateComplete Occurs after the page has completed saving all view state and control state

information for the page and controls on the page.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.page(v=vs.110).aspx

Chapter 2 Page Development

https://msdn.microsoft.com/en-us/library/system.web.ui.page(v=vs.110).aspx

33

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the project (not the solution).

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Web ➤ Web Forms from the left

pane of the dialog.

	 2.	 Select Web Form from the middle pane of the dialog.

	 3.	 Give the Web Form (i.e., Page class) a Name (e.g., HelloWorld.

aspx) at the bottom of the dialog.

	 4.	 Click Add.

Figure 2-1 shows the Aspx file of the newly added Page class. Notice the tab between

the Visual Studio menu and the top of the code. This tab displays the name of the Page

class file just created (i.e., HelloWorld.aspx). It is in this file that we will code the user

interface of the page. Now look at the code itself. The very first line of code on this page is

a page directive. This page directive indicates, among other things, that C# is used as the

programming language for the class and that the name of the code behind file (i.e., where

we will write our server-side ASP.NET and C# code) is HelloWorld.aspx.cs. Notice that

the remainder of this file contains a number of basic HTML tags, such as <head>, <title>,

<body>, and <div>. And finally, notice in the Solution Explorer that the Page class has

been added to the project. Whenever we want to access the code of this Page class in the

future, we will simply double-click it in the Solution Explorer.

Chapter 2 Page Development

34

The Page class has two main (and deliberately separate) parts—the user interface

part and the code behind part. The .aspx file of a Page class contains the user interface

part of the class. This part of the class is coded using HTML tags, ASP.NET tags, or a

combination of both. The .aspx.cs file of a Page class contains the code behind part of the

class. This part of the class is coded using ASP.NET and C#. The beauty of this separation

of concerns is that we can make changes to a page’s user interface without affecting its

functionality and we can make changes to a page’s functionality without affecting its user

interface. We will find this separation of concerns extremely beneficial in the future.

To write ASP.NET and C# code, we need to open the code behind file of the class. To

access the code behind file

	 1.	 Expand the Page class by clicking the triangle icon next to the

.aspx file in the Solution Explorer.

	 2.	 Double-click the associated .aspx.cs file.

Figure 2-2 shows the code behind file of the newly added Page class. Notice the tab

between the Visual Studio menu and the top of the code. This tab displays the name of

the code behind file of the Page class (i.e., HelloWorld.aspx.cs). It is in this file that we will

write the ASP.NET and C# code of our page. Now look at the code itself. Notice at the very

Figure 2-1.  Aspx file of the newly added Page class

Chapter 2 Page Development

35

top of the code that there are a number of C# directives that begin with the word using.

These using directives refer to the namespaces included in the class. Namespaces can

contain classes that provide the Page class with additional functionality (e.g., email classes,

database classes), or they can contain types (e.g., interface types, array types, value types,

reference types, enumeration types) that provide the Page class with specialized types. As

we progress through this book, we will include additional namespaces in our Page classes

as the need arises. Now look at the line of code that starts with the word namespace. This

indicates that the HelloWorld Page class is in the SportsPlay namespace. If for some reason

we need to refer to the properties and/or methods of the HelloWorld Page class from some

other class in the future, we will need to include the SportsPlay namespace in that class.

Next, take a look at the line of code that starts with the phrase public partial class. The word

partial here indicates that this file (i.e., HelloWorld.aspx.cs) contains only a part of the

HelloWorld Page class. The other files (i.e., HelloWorld.aspx and HelloWorld.aspx.designer.

cs) contain the other parts of the HelloWorld Page class. And finally, look at the line of code

that starts with protected void. This line of code identifies the Page_Load event handler

method of the class, which is generated automatically when the Page class is added to the

project. If there is any ASP.NET and/or C# code that needs to be executed when the page

loads (i.e., when the page’s Load event is raised), it will be coded here.

Figure 2-2.  Code behind file of the newly added Page class

Chapter 2 Page Development

36

At this point, we are ready to write some code. To begin, let’s give our HelloWorld

page a title. This title will be displayed at the top of the browser—usually as the title of

a browser tab. To give the page a title, type “Hello World!” between the <title> tag and

the </title> tag in the HelloWorld.aspx file. Note that these two tags are HTML tags. An

HTML tag of the form <something> is referred to as an open tag or start tag, whereas an

HTML tag of the form </something> is referred to as a close tag or end tag. As we will see

later, ASP.NET server tags have a similar form. Now, let’s display some text in the body of

the page. To do this, type the sentence “This is my Hello World page!” between the <div>

tag and the </div> tag. Figure 2-3 shows our Aspx code with a page title and text added.

Figure 2-3.  Aspx code with a page title and text added

Now that we have written some code, it is time to test our Web page. To test our page,

we must first set it as the start page of our project. To do this

	 1.	 Right-click the HelloWorld.aspx file in the Solution Explorer.

	 2.	 Select Set as Start Page.

Chapter 2 Page Development

37

Now, when we run our ASP.NET Web Application project in Visual Studio, the

HelloWorld.aspx page will be displayed. Keep in mind that if we neglect to set a start

page for a project before we run it, we will receive a 403 error. This error means that the

IIS server understood the HTTP request but cannot fulfill it for some reason.

Now that we have set our start page, we are ready to test it. To test the page, click the

green triangle icon at the top of the Visual Studio environment. The name of the browser

next to the green triangle icon should default to Internet Explorer. To select a different

browser to test the page, click the black triangle icon next to the current browser name

and select the desired browser. The list of browsers to choose from should contain all

of the browsers currently installed on the development machine. Figure 2-4 shows the

HelloWorld page displayed in Internet Explorer. Notice the title of the Web page in the

browser tab that says “Hello World!” Also notice the sentence “This is my Hello World

page!” in the body of the Web page.

Figure 2-4.  HelloWorld page displayed in Internet Explorer

Chapter 2 Page Development

39
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_3

CHAPTER 3

Basic Server Controls
3.1	 �Introduction
A server control is an object that is displayed on an ASP.NET Web page. When a Web

page is requested from a server via an HTTP request, the server processes the page

request (as described in Chapter 1, titled “Web Application Development”) and then

sends the client the resulting HTML code via an HTTP response. When the Web browser

receives the HTTP response, it renders the page and displays it for the end user. In the

context of an ASP.NET Web application, the term render refers to the process of creating

a visual representation of the page, including all of its associated server controls, based

on the HTML code received from the server in its HTTP response.

In this chapter, we will begin by looking at Visual Studio’s Toolbox. This toolbox

contains most of the ASP.NET server controls we will be studying in this book. Next, we

will discuss six basic server control classes: the Label class, the TextBox class, the Button

class, the Table class, the TableRow class, and the TableCell class. As we look at these

classes, keep in mind that all of them inherit the properties, methods, and events of their

parent classes. Thus, we will focus mostly on the properties, methods, and events of the

classes being studied.

3.2	 �Toolbox
The Visual Studio Toolbox contains most of the ASP.NET server controls we will be

studying in this book. To open the Toolbox, click the Toolbox tab in the upper left-hand

corner of the Visual Studio environment. We can auto hide the Toolbox by clicking the

pin icon in the upper right-hand corner of the Toolbox. We can also close the Toolbox by

clicking the Toolbox tab again. If we click the x icon in the upper right-hand corner of the

Toolbox, which removes the Toolbox tab, we can restore it by selecting View ➤ Toolbox

from the main menu.

40

Figure 3-1 shows the standard server control classes in the Toolbox. If the classes

displayed in the figure aren’t visible, we may need to expand the Standard tab by clicking

the triangle icon. Keep in mind that the classes in the Toolbox will only be displayed

when a .aspx file is being viewed. Notice that the Button class, the Label class, the Table

class, and the TextBox class are included in this alphabetical listing of classes. We will

make use of these four classes in this chapter, and we will explore many of the others in

the next chapter.

Figure 3-1.  Standard server control classes in the Toolbox

3.3	 �Label Class
The Label class displays text. Unlike the text displayed on a static Web page, the text

displayed on an ASP.NET Web page using a Label control can change dynamically by

modifying the value of the control’s Text property in the code behind. Table 3-1 shows

some of the properties, methods, and events of the Label class. Although the only member

displayed in the table is the Text property, the Label class contains additional members

and inherits many other properties, methods, and events from its parent classes.

Chapter 3 Basic Server Controls

41

Figure 3-2 shows an example of the Label class.

Notice at 01 the Label control and its associated properties. As can be seen, the

Label control starts with an ASP.NET server tag. This tag begins with <asp: and ends

with />. As we will see throughout this book, all ASP.NET server tags begin and end

this way. Note that this is in stark contrast to HTML tags, which begin with < and

end with />.

Also notice that the runat property is set to server. This indicates that the control

is to be treated as a dynamic ASP.NET server control—not a static HTML control. The

need to specify the value of this property for every ASP.NET server control is tedious

and redundant and could probably have been defaulted by Microsoft. Nevertheless, if

we don’t set this property to true in the definition of an ASP.NET server control, a syntax

error will occur.

Table 3-1.  Some of the properties, methods, and events of the Label class

Class Label1

Namespace System.Web.UI.WebControls

Properties

Text Gets or sets the text content of the

Label control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

label(v=vs.110).aspx

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 3 Basic Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.label(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.label(v=vs.110).aspx

42

Notice as well that the Font-Bold property is set to true. This indicates that the text

in the Text property of the control will be displayed in bold when the control is rendered

on the page. Note that this property is not part of the Label class itself but is, instead,

inherited from the Font class. The default value of the Font-Bold property is false.

We can also see that the Text property is set to Employee. This indicates that the word

“Employee” will be displayed in the label when it is rendered on the page. Of course,

since the Label class is a dynamic server control class, we can modify the value of its

Text property (and most of its other properties) in the code behind at will. Note that this

property is not inherited like the Font-Bold property but is, instead, defined in the Label

class itself (see Table 3-1).

Also notice that the runat property is coded first followed by the other properties

of the class (i.e., Font-Bold and Text), which are coded in alphabetical order after the

runat property. As a coding standard, we will always code the runat property first, the

ID property (to be discussed later) second, and then any other properties and methods

next in alphabetical order. We will do this because coding properties and methods in

alphabetical order will make it much easier to visually reference the properties and

methods that have been coded for a control—especially when the list of properties and

methods gets long.

And finally, notice that the end of the line contains a
 tag. This is an HTML

tag that forces a line break on the page. This is one of the few HTML tags we will use to

format ASP.NET pages in this book, since most HTML tags have an equivalent ASP.NET

server tag. The result of the Aspx code is displayed at the bottom of the figure.

Figure 3-2.  Example of the Label class

Chapter 3 Basic Server Controls

43

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

3.4	 �TextBox Class
The TextBox class displays an input field that can be used by an end user to enter

information. A TextBox control contains a number of properties that permit us to control

the appearance of the control. For example, we can set the TextMode property of the

control to SingleLine if we want the text box to permit the entry of one line of end-user

data. Or, we can set it to MultiLine if we want the text box to permit the entry of multiple

lines of end-user data. Or, we can set it to Password if we want the characters to be

masked as they are typed into the text box. Many other properties are available as well.

Table 3-2 shows some of the properties, methods, and events of the TextBox class.

Table 3-2.  Some of the properties, methods, and events of the TextBox class

Class TextBox2

Namespace System.Web.UI.WebControls

Properties

AutoPostBack Gets or sets a value that indicates whether an automatic postback to the server

occurs when the TextBox control loses focus.

CausesValidation Gets or sets a value indicating whether validation is performed when the TextBox

control is set to validate when a postback occurs.

Columns Gets or sets the display width of the text box in characters.

MaxLength Gets or sets the maximum number of characters allowed in the text box.

Rows Gets or sets the number of rows displayed in a multiline text box.

Text Gets or sets the text content of the TextBox control.

TextMode Gets or sets the behavior mode (such as single line, multiline, or password) of the

TextBox control.

(continued)

Chapter 3 Basic Server Controls

44

Figure 3-3 shows an example of the TextBox class.

Notice at 01 the TextBox control and its associated properties. As can be seen, the

Columns property of the control is set to 50. This indicates that the width of the text box

will be 50 characters when it is rendered in the browser. Notice as well that the Rows

property is set to 5. This indicates that five rows will be displayed when the text box is

rendered in the browser. We can also see that the TextMode property is set to MultiLine,

which indicates that the text box will be rendered in the browser as a multiple-line text

box that can accept several lines of input from the end user. And finally, notice that the

Wrap property is set to true. This indicates that the content of the text box will wrap

to the next line if it contains more than one line of text. The result of the Aspx code is

displayed at the bottom of the figure. As can be seen, several lines of information have

been entered into the text box.

Table 3-2.  (continued)

ValidationGroup Gets or sets the group of controls for which the TextBox control causes validation

when it posts back to the server.

Wrap Gets or sets a value indicating whether the text content wraps within a

multiline text box.

Methods

(See reference.)

Events

TextChanged Occurs when the content of the text box changes between posts to the server.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

textbox(v=vs.110).aspx

Chapter 3 Basic Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.textbox(v=vs.110).aspx

45

3.5	 �Button Class
The Button class displays a button that can be used by an end user to invoke an action.

When a Button control is clicked, its Click and Command events are raised. To handle

one of these events, we must code the appropriate event handler method. More about

that in a moment. A Button control can behave like a Submit button (i.e., a button that

posts the page back to the server where we can handle its Click event), or it can behave

like a Command button (i.e., a button that posts the page back to the server where we

can handle the Click events of several buttons in one event handler method by passing

the event handler method a command name and [optionally] a command argument).

By default, a Button control behaves like a Submit button. Table 3-3 shows some of the

properties, methods, and events of the Button class.

Figure 3-3.  Example of the TextBox class

Chapter 3 Basic Server Controls

46

Table 3-3.  Some of the properties, methods, and events of the Button class

Class Button3

Namespace System.Web.UI.WebControls

Properties

CausesValidation Gets or sets a value indicating whether validation is performed when the

Button control is clicked.

CommandArgument Gets or sets an optional parameter passed to the Command event along with

the associated CommandName.

CommandName Gets or sets the command name associated with the Button control that is

passed to the Command event.

Text Gets or sets the text caption displayed in the Button control.

ValidationGroup Gets or sets the group of controls for which the Button control causes

validation when it posts back to the server.

Methods

(See reference.)

Events

Click Occurs when the Button control is clicked.

Command Occurs when the Button control is clicked.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

button(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 3 Basic Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.button(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.button(v=vs.110).aspx

47

Figure 3-4 shows how to create a new Click event handler method for a Button

control. As can be seen, we have already added a Button control to the .aspx file of a Page

class, and this control has its ID property set to btnSave. To create the control’s Click

event handler method in the code behind of the Page class, all we must do is

	 1.	 Place the mouse cursor at an appropriate place in the Button

control.

	 2.	 Type OnClick.

	 3.	 When the options of the OnClick method appear, select <Create

New Event>. This will create a new Click event handler method for

the btnSave button in the code behind of the Page class.

Figure 3-4.  How to create a new Click event handler method for a Button control

Figure 3-5 shows the newly created Click event handler method for the Button control.

Notice that the name of the event handler method is btnSave_Click. This method name

reflects both the ID of the Button control (i.e., btnSave) and the event that is being handled

in the code behind of the Page class (i.e., Click). Whatever code is written in this event

handler method will be executed when the end user clicks the Save button.

Chapter 3 Basic Server Controls

48

Figure 3-6 shows an example of the Button class behaving like a Submit button.

Notice at 01 that the ID property of the TextBox control is set to txtEmailAddress. By

giving this control an ID, we can reference it in the code behind of the page. If we try to

reference a control that has not been given an ID, a syntax error will occur. As can be

seen, the ID property of this control begins with the three-letter prefix txt to indicate in

the code behind that this ID is referring to a text box, and it ends with EmailAddress to

indicate in the code behind that this control will contain an email address.

Notice at 02 that the ID property of the Button control is set to btnSave. As can be seen,

the ID property of this control begins with the three-letter prefix btn to indicate in the code

behind that this ID is referring to a button, and it ends with Save to indicate in the code

behind that this control will perform a save function. Notice as well that the OnClick method

is set to btnSave_Click. It is in this event handler method that we will write code to handle the

Click event. In addition, we can see that the Text property is set to Save. This indicates the text

that will be displayed in the button when the button is rendered in the browser.

Notice at 03 that the ID property of the Label control is set to lblMessage. As can be

seen, the ID property of this control begins with the three-letter prefix lbl to indicate in

the code behind that this ID is referring to a label, and it ends with Message to indicate in

the code behind that this control will contain a message.

Figure 3-5.  Newly created Click event handler method for the Button class

Chapter 3 Basic Server Controls

49

Notice at 04 that two lines of comments have been added to the event handler

method. In C#, comments are indicated by two forward slashes (i.e., //).

Notice at 05 that the ForeColor property of the lblMessage control is set to Green. The

ForeColor property refers to the color of the text displayed in the label.

Notice at 06 that the Text property of the lblMessage control is set to The email

address concatenated with the value of the Text property of txtEmailAddress control

concatenated with was successfully saved. Notice that the concatenation character is a

plus (+) sign in C#.

The screenshot in the Result section of the figure shows the result of clicking the Save

button.

Figure 3-6.  Example of the Button class behaving like a Submit button

Chapter 3 Basic Server Controls

50

Figure 3-7 shows an example of the Button class behaving like a Command button.

Notice at 01 that the CommandArgument property is set to Adidas and the

CommandName property is set to View. These two properties will be passed to the

button’s event handler method in the code behind when the button is clicked. Notice

as well that the OnCommand property is set to Button_Command. This is the name of

the event handler method that will handle the Click event of the button. As can be seen,

none of the buttons on the page require an ID in this scenario and that the first five

buttons have different command arguments but have the same command name.

Notice at 02 that the last button does not have a command argument and has a

different command name than the other buttons.

Notice at 03 that the command name passed to the event handler method is being

tested. If the value of the CommandName property is set to View, the block of code inside

the If structure will be executed. If not (i.e., the value of the CommandName property is set

to Cancel), the block of code in the Else part of the If structure will be executed.

Notice at 04 that the command argument passed to the event handler method is

being evaluated using a Switch structure to determine which case to execute. If the value

of the CommandArgument property is set to Adidas, the Text property of the message

label will be set appropriately. If it is set to something else, the Text property of the

message label will be set to something else.

The screenshot in the Result section of the figure shows the result of clicking the

Adidas button.

Chapter 3 Basic Server Controls

51

Figure 3-7.  Example of the Button class behaving like a Command button

Chapter 3 Basic Server Controls

52

3.6	 �Table Class
The Table class displays a table that can be used to organize the layout of a Web page’s

controls. A Table control consists of one or more table rows, and each table row consists

of one or more table cells. These table rows and table cells, which will be discussed in a

moment, are constructed from the TableRow class and the TableCell class, respectively.

A table can be created at design time by specifying its format and content in Aspx code,

or it can be generated at runtime by writing the necessary code in the code behind.

Tables can contain other tables. Table 3-4 shows some of the properties, methods, and

events of the Table class.

Figure 3-7.  (continued)

Chapter 3 Basic Server Controls

53

Table 3-4.  Some of the properties, methods, and events of the Table class

Class Table4

Namespace System.Web.UI.WebControls

Properties

BackImageUrl Gets or sets the URL of the background image to display behind the Table control.

CellPadding Gets or sets the amount of space between the contents of a cell and the cell's

border.

CellSpacing Gets or sets the amount of space between cells.

GridLines Gets or sets the grid line style to display in the Table control.

HorizontalAlign Gets or sets the horizontal alignment of the Table control on the page.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

table(v=vs.110).aspx

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

3.7	 �TableRow Class
The TableRow class defines a row in a table. Each TableRow control consists of one or more

table cells, each of which is constructed from the TableCell class (discussed next). The

TableRow class permits us to control how the contents of a table row are displayed. For

example, the HorizontalAlign property of a TableRow control can be set to center, left, right, or

some other value depending on how we want to display the contents of the row from left to

right. Likewise, the VerticalAlign property of a TableRow control can be set to bottom, middle,

top, or some other value depending on how we want to display the contents of the row from top

to bottom. Table 3-5 shows some of the properties, methods, and events of the TableRow class.

Chapter 3 Basic Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.table(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.table(v=vs.110).aspx

54

5�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

3.8	 �TableCell Class
The TableCell class defines a cell in a row. This class controls how the contents of a cell

are displayed. For example, the HorizontalAlign property of a TableCell control can be

set to center, left, right, or some other value depending on how we want to display the

contents of the cell from left to right. Similarly, the VerticalAlign property of a TableCell

control can be set to bottom, middle, top, or some other value depending on how

we want to display the contents of the cell from top to bottom. In addition, the Wrap

property of a TableCell control can be set to true or false depending on whether or not we

want the contents of the cell (e.g., text) to wrap to the next line if it contains more than

it can contain on a single line. Table 3-6 shows some of the properties, methods, and

events of the TableCell class.

Table 3-5.  Some of the properties, methods, and events of the TableRow class

Class TableRow5

Namespace System.Web.UI.WebControls

Properties

HorizontalAlign Gets or sets the horizontal alignment of the contents in the row.

VerticalAlign Gets or sets the vertical alignment of the contents in the row.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

tablerow(v=vs.110).aspx

Chapter 3 Basic Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.tablerow(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.tablerow(v=vs.110).aspx

55

6�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Table 3-6.  Some of the properties, methods, and events of the TableCell class

Class TableCell6

Namespace System.Web.UI.WebControls

Properties

ColumnSpan Gets or sets the number of columns in the Table control that the cell spans.

HorizontalAlign Gets or sets the horizontal alignment of the contents in the cell.

RowSpan Gets or sets the number of rows in the Table control that the cell spans.

VerticalAlign Gets or sets the vertical alignment of the contents in the cell.

Wrap Gets or sets a value that indicating whether the contents of the cell wrap.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

tablecell(v=vs.110).aspx

Figure 3-8 shows an example of the Table, TableRow, and TableCell classes.

Notice at 01 and 06 the Table control’s start tag and corresponding end tag,

respectively. As can be seen, the Table control’s GridLines property is set to Horizontal.

Notice at 02 and 05 the TableRow control’s start tag and corresponding end tag,

respectively.

Chapter 3 Basic Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.tablecell(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.tablecell(v=vs.110).aspx

56

Notice at 03 and 04 the TableCell control’s start tag and corresponding end tag,

respectively.

As we can see in the figure, each TableRow control is indented four spaces within its

associated Table control, and each TableCell control is indented four spaces within its

associated TableRow control. This coding style for tables makes it clear what table rows

are contained within what table and what table cells are contained within what table

rows. Thus, this coding style for tables will be the standard we will follow throughout

this book. Another thing to notice in the code is that the runat property is only set in the

Table control—it is not set in the TableRow or TableCell controls.

The screenshot in the Result section of the figure shows the three row by two column

table defined in the associated Aspx code. Because this table was used to lay out the

controls on the page, the controls are more nicely aligned, which produces a more

professional-looking page.

Chapter 3 Basic Server Controls

57

Figure 3-8.  Example of the Table, TableRow, and TableCell classes

Chapter 3 Basic Server Controls

59
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_4

CHAPTER 4

More Server Controls
4.1  �Introduction
As mentioned in the previous chapter, a server control is an object that is displayed on an

ASP.NET Web page. When a Web page is requested from a server via an HTTP request,

the server processes the page request (as described in Chapter 1, titled “Web Application

Development”) and then sends the client the resulting HTML code via an HTTP response.

When the Web browser receives the HTTP response, it renders the page and displays it for

the end user. In the context of an ASP.NET Web application, the term render refers to the

process of creating a visual representation of the page, including all of its associated server

controls, based on the HTML code received from the server in its HTTP response. In that

chapter, we looked at six basic server control classes: the Label class, the TextBox class, the

Button class, the Table class, the TableRow class, and the TableCell class. Although these

six classes provided us with enough ASP.NET functionality to get started, there are many

other server control classes in the .NET Framework Class Library.

In this chapter, we will look at a number of ASP.NET server control classes that can

be used to build more interesting and sophisticated Web applications than we have

built to this point. The server control classes that will be described in this chapter are

the Calendar class, the CheckBox class, the RadioButton class, the FileUpload class,

the Hyperlink class, the Image class, the ImageButton class, the ImageMap class, the

RectangleHotSpot class, the LinkButton class, the ListControl class, the ListItem class,

the DropDownList class, the ListBox class, and the Panel class.

4.2  �Calendar Class
The Calendar class displays a monthly calendar that can be used by an end user to select

a single date or a range of dates (e.g., an entire week or an entire month). By default, a

Calendar control displays a Gregorian calendar, but other calendars can be specified.

Also by default, a Calendar control displays the current month of the current year. In

60

terms of appearance, a Calendar control displays a title that includes the month and the

year, links for moving backward and forward to previous and future months, headings for

the days of the week, and an array of selectable days. The Calendar class contains myriad

formatting properties that permit us to customize the appearance of a Calendar control.

In addition, there are a number of properties that permit us to show and hide the various

parts of a Calendar control. Since there are entirely too many formatting properties to list

here, the interested reader should see the reference at the bottom of Table 4-1. Table 4-1

shows some of the properties, methods, and events of the Calendar class.

Table 4-1.  Some of the properties, methods, and events of the Calendar class

Class Calendar1

Namespace System.Web.UI.WebControls

Properties

FirstDayOfWeek Gets or sets the day of the week to display in the first day column of the

Calendar control.

NextMonthText Gets or sets the text displayed for the next month navigation control.

PrevMonthText Gets or sets the text displayed for the previous month navigation control.

SelectedDate Gets or sets the selected date.

VisibleDate Gets or sets the DateTime value that specifies the month to display on the

Calendar control.

Methods

(See reference.)

Events

SelectionChanged Occurs when the user selects a day, a week, or an entire month by clicking

the date selector controls.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

calendar(v=vs.110).aspx

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.calendar(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.calendar(v=vs.110).aspx

61

Figure 4-1 shows an example of the Calendar class.

Notice at 01 the Calendar control and its associated properties. Specifically, notice

the name of the event handler method that will be executed when its SelectionChanged

event is raised.

Notice at 02 that we are setting the SelectedDate property of the Calendar control

to the current date when the page loads so that today’s date will be highlighted on the

calendar.

Notice at 03 that we are setting the Text property of the date label when the date

selected on the calendar is changed.

The first screenshot in the Result section of the figure shows the calendar with the

default date set to the current date. The second screenshot shows the result of selecting

another date on the calendar. Notice the selected date displayed under the calendar.

Chapter 4 More Server Controls

62

Figure 4-1.  Example of the Calendar class

Chapter 4 More Server Controls

63

4.3  �CheckBox Class
The CheckBox class displays a small box that can be used by an end user to check or uncheck

an item. When an end user checks a CheckBox control, its Checked property is set to true.

Conversely, when an end user unchecks a CheckBox control, its Checked property is set to false.

After an end user has checked or unchecked a CheckBox control, we can evaluate the control’s

Checked property in the code behind to perform an action based on the truth or falseness of

the Checked property. By default, a CheckBox control is unchecked. Also by default, a checkbox

doesn’t perform an action upon being checked or unchecked. If we want an action to be

performed when a checkbox is checked or unchecked, we must set its AutoPostBack property

to true. Table 4-2 shows some of the properties, methods, and events of the CheckBox class.

Table 4-2.  Some of the properties, methods, and events of the CheckBox class

Class CheckBox2

Namespace System.Web.UI.WebControls

Properties

AutoPostBack Gets or sets a value indicating whether the CheckBox state automatically posts

back to the server when clicked.

CausesValidation Gets or sets a value indicating whether validation is performed when the

CheckBox control is selected.

Checked Gets or sets a value indicating whether the CheckBox control is checked.

Text Gets or sets the text label associated with the CheckBox.

ValidationGroup Gets or sets the group of controls for which the CheckBox control causes

validation when it posts back to the server.

Methods

(See reference.)

Events

CheckedChanged Occurs when the value of the Checked property changes between posts to the server.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

checkbox(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.checkbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.checkbox(v=vs.110).aspx

64

Figure 4-2 shows an example of the CheckBox class.

Notice at 01 the CheckBox control and its associated properties.

Notice at 02 the Button control and its associated properties. Specifically, notice the

name of the event handler method that will be executed when its Click event is raised.

Notice at 03 that the chkFootwear checkbox is being tested to determine whether or

not it has been checked.

The screenshot in the Result section of the figure shows the result of checking the

first two checkboxes and clicking the Set Filter button.

Figure 4-2.  Example of the CheckBox class

Chapter 4 More Server Controls

65

4.4  �RadioButton Class
The RadioButton class displays a group of related buttons that can be used by an end

user to select an option from a set of mutually exclusive options. When an end user

clicks a RadioButton control, the Checked property of the control is set to true, and

the Checked properties of the related controls are set to false. When an end user clicks

a RadioButton control, we can evaluate the control’s Checked property in the code

behind and perform an action based on the truth or falseness of the Checked property.

By default, a RadioButton control is unselected. Also by default, a radio button doesn’t

perform an action upon being selected. If we want an action to be performed when a

radio button is selected, we must set its AutoPostBack property to true. In order for a

group of RadioButton controls to be related to one another and thus be treated as a set

of mutually exclusive options, we must set their GroupName properties to the same

value. Table 4-3 shows some of the properties, methods, and events of the RadioButton

class. Note that the RadioButton class is derived from the CheckBox class. Thus, we

should see the properties, methods, and events of the CheckBox class in addition to

the ones below.

Figure 4-2.  (continued)

Chapter 4 More Server Controls

66

Figure 4-3 shows an example of the RadioButton class.

Notice at 01 the RadioButton control and its associated properties. As can be seen,

the GroupName property of this control is set to Shipper, which is the same for all three

radio buttons. Thus, these radio buttons are treated as a group of mutually exclusive

options.

Notice at 02 the Button control and its associated properties. Specifically, notice the

name of the event handler method that will be executed when its Click event is raised.

Notice at 03 that each radio button (except the last one) is being tested to determine

whether or not it has been checked.

The first screenshot in the Result section of the figure shows that the first radio

button is the default option in the group of options. The second screenshot shows the

result of selecting the third option and clicking the Select Shipper button.

Table 4-3.  Some of the properties, methods, and events of the RadioButton class

Class RadioButton3

Namespace System.Web.UI.WebControls

Properties

GroupName Gets or sets the name of the group that the radio button belongs to.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

radiobutton(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.radiobutton(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.radiobutton(v=vs.110).aspx

67

Figure 4-3.  Example of the RadioButton class

Chapter 4 More Server Controls

68

4.5  �FileUpload Class
The FileUpload class displays a text box and browse button that can be used by an end

user to enter or select a file (or files) to be uploaded to the server. To enter the name of

a file to be uploaded, the end user must enter the full path of the file in the text box. To

select the name of a file to be uploaded, the end user must click the browse button, use the

Choose File to Upload dialog to locate the file, and then select the file. A FileUpload control

does not automatically upload a file to the server when a file name is entered or selected.

Instead, a separate mechanism that performs the actual upload must be employed. One

way to do this is to use a Button control with an event handler method that contains the

code necessary to upload the file to the server. Such a method would invoke the SaveAs

method of the FileUpload control after setting the target location for the file on the server.

Before attempting to upload a file to the server, we typically check the HasFile property of

the FileUpload control to make sure that a file has been entered or selected for upload. By

default, the size limit of a file to be uploaded is 4MB. However, larger files can be uploaded

as well. To upload larger files, see the reference at the bottom of Table 4-4. Table 4-4 shows

some of the properties, methods, and events of the FileUpload class.

Table 4-4.  Some of the properties, methods, and events of the FileUpload class

Class FileUpload4

Namespace System.Web.UI.WebControls

Properties

AllowMultiple Gets or sets a value that specifies whether multiple files can be selected for upload.

FileName Gets the name of a file on a client to upload using the FileUpload control.

HasFile Gets a value indicating whether the FileUpload control contains a file.

HasFiles Gets a value that indicates whether any files have been uploaded.

Methods

SaveAs(String) Saves the contents of an uploaded file to a specified path on the Web server.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

fileupload(v=vs.110).aspx

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload(v=vs.110).aspx

69

Figure 4-4 shows an example of the FileUpload class. In this example, a FileUpload

control is being used to upload images to an Images folder. We will assume that this

folder has already been added to the project. Keeping our images together in such a

folder will help us keep our Web application organized.

Notice at 01 the FileUpload control and its associated properties.

Notice at 02 the Button control that will be used by the end user to actually upload

the file to the server. Specifically, notice the name of the event handler method that will

be executed when its Click event is raised.

Notice at 03 that we are using the HasFile property of the FileUpload control to

confirm that a file has been entered or selected for upload before performing the upload.

Notice at 04 that we are constructing the full path of the file to be uploaded using the

physical path of the application on the server, the Images directory of the application,

and the FileName property of the FileUpload control.

Notice at 05 that we are using the SaveAs method of the FileUpload control to

perform the actual upload of the file.

The first screenshot in the Result section of the figure shows the FileUpload control

after the end user has clicked the Browse… button and selected a file for upload. The

second screenshot shows the result of uploading the file to the server.

Chapter 4 More Server Controls

70

Figure 4-4.  Example of the FileUpload class

Chapter 4 More Server Controls

71

4.6  �HyperLink Class
The HyperLink class displays a link that can be used by an end user to navigate from

one Web page to another. The Web page to navigate to is specified in the NavigateUrl

property of a HyperLink control. By default, a HyperLink control is displayed as clickable

text. The content of that text is specified in the Text property of the HyperLink control.

However, a HyperLink control can also be displayed as a clickable image by specifying

an image using the ImageUrl property of the HyperLink control. If for some reason

the image is not available for display at runtime, the text in the Text property of the

HyperLink control will be displayed. Also by default, the Web page that is navigated to

is displayed in the current browser tab. If we want the new Web page to be displayed in

a new browser tab, we must set the Target property of the HyperLink control to _blank.

Table 4-5 shows some of the properties, methods, and events of the HyperLink class.

Table 4-5.  Some of the properties, methods, and events of the HyperLink class

Class HyperLink5

Namespace System.Web.UI.WebControls

Properties

ImageHeight Gets or sets the height of the hyperlink when the hyperlink is an image.

ImageUrl Gets or sets the path to an image to display for the HyperLink control.

ImageWidth Gets or sets the width of the hyperlink when the hyperlink is an image.

NavigateUrl Gets or sets the URL to link to when the HyperLink control is clicked.

Target Gets or sets the target window or frame in which to display the Web page

content linked to when the HyperLink control is clicked.

Text Gets or sets the text caption for the HyperLink control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

hyperlink(v=vs.110).aspx

5�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.hyperlink(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.hyperlink(v=vs.110).aspx

72

Figure 4-5 shows some examples of the HyperLink class. Note that no code behind

code is required to utilize a HyperLink control.

Notice at 01 the first HyperLink control and its associated properties. As can be seen,

the NavigateUrl property of the control is set to http://google.com, the Target property

of the control is set to _blank, and the Text property of the control is set to Go to Google.

Notice at 02 the second HyperLink control and its associated properties. As we can

see, this control displays an image. Notice that the ImageUrl property of the control is

set to ~/Images/Google.png, which indicates that the Google.png image resides in the

Images folder of the application. When the end user clicks either of these HyperLink

controls, google.com will be displayed in a new Web browser tab.

The screenshot in the Result section of the figure shows the first HyperLink control,

which is being displayed in the form of clickable text, and the second HyperLink control,

which is being displayed in the form of a clickable image.

Figure 4-5.  Examples of the HyperLink class

4.7  �Image Class
The Image class displays an image that can be used by an end user to view a photograph,

drawing, chart, graph, or other two-dimensional visual aid. Any type of image can be

displayed using an Image control as long as the image type (e.g., .bmp, .gif, .jpg, .png)

is supported by the end user’s browser. The image to be displayed in an Image control

is specified in its ImageUrl property. If for some reason the image is not available for

display at runtime, the text in the AlternateText property of the control will be displayed.

Table 4-6 shows some of the properties, methods, and events of the Image class.

Chapter 4 More Server Controls

http://google.com

73

Figure 4-6 shows an example of the Image class. Note that no code behind code is

required to utilize an Image control.

Notice at 01 the Image control and its associated properties. As can be seen, the

ImageUrl property of the Image control is set to ~/Images/NZV9.5T.jpg, which indicates

that the NZV9.5T.jpg image resides in the Images folder of the application.

The screenshot in the Result section of the figure shows the image being displayed.

Table 4-6.  Some of the properties, methods, and events of the Image class

Class Image6

Namespace System.Web.UI.WebControls

Properties

AlternateText Gets or sets the alternate text displayed in the Image control when the image is

unavailable. Browsers that support the ToolTips feature display this text as a ToolTip.

ImageAlign Gets or sets the alignment of the Image control in relation to other elements on the

Web page.

ImageUrl Gets or sets the URL that provides the path to an image to display in the Image control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

image(v=vs.110).aspx

6�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.image(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.image(v=vs.110).aspx

74

4.8  �ImageButton Class
The ImageButton class displays an image that can be used by an end user to perform

an action. When an ImageButton control is clicked, its Click and Command events

are raised. To handle one of these events, we must code the appropriate event handler

method. When handling the Click event of an ImageButton control, we can identify

where on the image button the end user has clicked. This permits us to perform different

actions depending on the location of the click. To see how this is done, see the reference

at the bottom of Table 4-7. Table 4-7 shows some of the properties, methods, and events

of the ImageButton class.

Figure 4-6.  Example of the Image class

Chapter 4 More Server Controls

75

Table 4-7.  Some of the properties, methods, and events of the ImageButton class

Class ImageButton7

Namespace System.Web.UI.WebControls

Properties

CausesValidation Gets or sets a value indicating whether validation is performed when the

ImageButton control is clicked.

CommandArgument Gets or sets an optional argument that provides additional information about

the CommandName property.

CommandName Gets or sets the command name associated with the ImageButton control.

OnClientClick Gets or sets the client-side script that executes when an ImageButton

control's Click event is raised.

PostBackUrl Gets or sets the URL of the page to post to from the current page when the

ImageButton control is clicked.

ValidationGroup Gets or sets the group of controls for which the ImageButton control causes

validation when it posts back to the server.

Methods

(See reference.)

Events

Click Occurs when the ImageButton is clicked.

Command Occurs when the ImageButton is clicked.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

imagebutton(v=vs.110).aspx

7�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Figure 4-7 shows an example of the ImageButton class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.imagebutton(v=vs.110).aspx

76

Figure 4-7.  Example of the ImageButton class

Notice at 01 the ImageButton control and its associated properties. Specifically,

notice the name of the event handler method that will be executed when its Click event

is raised. As can be seen, the ImageUrl property of the ImageButton control is set to ~/

Images/PTW100.jpg, which indicates that the PTW100.jpg image resides in the Images

folder of the application.

Notice at 02 that we are setting the Text property of the description label when the

end user clicks the image button.

The screenshot in the Result section of the figure shows the image button and the

result of clicking it.

Chapter 4 More Server Controls

77

4.9  �ImageMap Class
The ImageMap class displays an Image with discrete hot spot regions that can be used by an

end user to invoke an action based on where on the Image he or she clicks. The ImageUrl

property of an ImageMap control indicates the image to be displayed in the control. The

HotSpotMode property of an ImageMap control indicates the behavior of the control when

it is clicked by the end user (i.e., do nothing, navigate to another URL, or post back to the

server). Hot spot regions are defined using a hot spot class, such as the RectangleHotSpot

class, the CircleHotSpot class, or the PolygonHotSpot class. Custom hot spot classes can

also be defined and used as hot spot regions on an ImageMap control. We will only discuss

the RectangleHotSpot class in this chapter since the other hot spot classes behave similarly.

Table 4-8 shows some of the properties, methods, and events of the ImageMap class.

Table 4-8.  Some of the properties, methods, and events of the ImageMap class

Class ImageMap8

Namespace System.Web.UI.WebControls

Properties

HotSpotMode Gets or sets the default behavior for the HotSpot objects of an ImageMap control

when the HotSpot objects are clicked.

ImageUrl Gets or sets the URL that provides the path to an image to display in the Image

control. (Inherited from Image.)

Target Gets or sets the target window or frame that displays the Web page content linked

to when the ImageMap control is clicked.

Methods

(See reference.)

Events

Click Occurs when a HotSpot object in an ImageMap control is clicked.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

imagemap(v=vs.110).aspx

8�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.imagemap(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.imagemap(v=vs.110).aspx

78

4.10  �RectangleHotSpot Class
The RectangleHotSpot class defines a four-sided hot spot region within an ImageMap

control that can be used by an end user to invoke an action. When a RectangleHotSpot

control is clicked, one of three things can happen depending on the value of the

associated ImageMap control’s HotSpotMode property—the current Web page can

do nothing, the current Web page can transition to the Web page specified in the

RectangleHotSpot control’s NavigateUrl property, or the current Web page can post

back to the server where the Click event of the ImageMap control can be handled. The

region of a RectangleHotSpot control within an ImageMap control is defined by setting

its Top property (i.e., the y-coordinate of the top side of the rectangular region in pixels),

Left property (i.e., the x-coordinate of the left side of the rectangular region in pixels),

Bottom property (i.e., the y-coordinate of the bottom side of the rectangular region in

pixels), and Right property (i.e., the x-coordinate of the right side of the rectangular

region in pixels). Table 4-9 shows some of the properties, methods, and events of the

RectangleHotSpot class.

9�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

(continued)

Table 4-9.  Some of the properties, methods, and events of the RectangleHotSpot class

Class RectangleHotSpot9

Namespace System.Web.UI.WebControls

Properties

Bottom Gets or sets the y-coordinate of the bottom side of the rectangular region defined

by this RectangleHotSpot object.

HotSpotMode Gets or sets the behavior of a HotSpot object in an ImageMap control when the

HotSpot is clicked. (Inherited from HotSpot.)

Left Gets or sets the x-coordinate of the left side of the rectangular region defined by

this RectangleHotSpot object.

NavigateUrl Gets or sets the URL to navigate to when a HotSpot object is clicked. (Inherited

from HotSpot.)

Chapter 4 More Server Controls

79

Figure 4-8 shows an example of the ImageMap and RectangleHotSpot classes that

cause a transition to another URL. Note that no code behind code is required to utilize

an ImageMap and RectangleHotSpot control.

Notice at 01 the ImageMap control and its associated properties. As can be seen, the

ImageUrl property of the control is set to ~/Images/ShipperMap.jpg, which indicates

that the ShipperMap.jpg image resides in the Images folder of the application. Also

notice that the HotSpotMode property of the ImageMap control is set to Navigate. This

indicates that clicking the control will cause a transition to another Web page. Notice as

well that the Target property of the control is set to _Blank, which indicates that a new

browser tab will be opened when the end user clicks one of the rectangle hot spots on

the image.

Notice at 02 the RectangleHotSpot control and its associated properties. As we

can see, the Top, Left, Bottom, and Right properties of the control are set to reflect

the desired dimensions of the rectangle hot spot, and the NavigateUrl property is set

to http://usps.com.

The screenshot in the Result section of the figure shows the result of clicking the

second rectangle hot spot. Notice that a new browser tab has been opened for ups.com.

PostBackValue Gets or sets the name of the HotSpot object to pass in the event data when the

HotSpot is clicked. (Inherited from HotSpot.)

Right Gets or sets the x-coordinate of the right side of the rectangular region defined

by this RectangleHotSpot object.

Top Gets or sets the y-coordinate of the top side of the rectangular region defined by

this RectangleHotSpot object.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

rectanglehotspot(v=vs.110).aspx

Table 4-9.  (continued)

Chapter 4 More Server Controls

http://usps.com
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.rectanglehotspot(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.rectanglehotspot(v=vs.110).aspx

80

Figure 4-9 shows an example of the ImageMap and RectangleHotSpot classes that

cause a postback to the server.

Notice at 01 the ImageMap control and its associated properties. Specifically,

notice the name of the event handler method that will be executed when its Click event

is raised. As can be seen, the ImageUrl property of the ImageMap control is set to ~/

Images/ShipperMap.jpg, which indicates that the ShipperMap.jpg image resides in

the Images folder of the application. Also notice that the HotSpotMode property of the

ImageMap control is set to PostBack. This indicates that clicking the control will cause a

postback to the server.

Notice at 02 the RectangleHotSpot control and its associated properties. As we can

see, the Top, Left, Bottom, and Right properties of the control are set to reflect the desired

dimensions of the rectangle hot spot, and the PostBackValue property of the control is

set differently for each rectangle hot spot.

Notice at 03 that we are checking the PostBackValue passed to the event handler

method to determine which RectangleHotSpot control was clicked by the end user.

The screenshot in the Result section of the figure shows the result of clicking the

second rectangle hot spot.

Figure 4-8.  Example of the ImageMap and RectangleHotSpot classes that cause a
transition to another URL

Chapter 4 More Server Controls

81

Figure 4-9.  Example of the ImageMap and RectangleHotSpot classes that cause a
postback to the server

Chapter 4 More Server Controls

82

4.11  �LinkButton Class
The LinkButton class displays a hyperlink-style button that can be used by an end

user to invoke an action. Although a LinkButton control looks like a HyperLink

control, it behaves like a Button control. (A HyperLink control should be used when

we simply want to navigate from one Web page to another.) Since a LinkButton

control is rendered in a browser with some associated JavaScript code, the end

user’s browser must be script enabled for this control to work. When a LinkButton

control is clicked, its Click and Command events are raised. To handle one of these

events, we must code the appropriate event handler method. A LinkButton control

can behave like a Submit button (i.e., a button that posts the page back to the server

where we can handle its Click event), or it can behave like a Command button (i.e.,

a button that posts the page back to the server where we can handle the Click events

of several buttons in one event handler method by passing the event handler method

a command name and [optionally] a command argument). By default, a LinkButton

control behaves like a Submit button. Table 4-10 shows some of the properties,

methods, and events of the LinkButton class.

(continued)

Table 4-10.  Some of the properties, methods, and events of the LinkButton class

Class LinkButton10

Namespace System.Web.UI.WebControls

Properties

CausesValidation Gets or sets a value indicating whether validation is performed when the

LinkButton control is clicked.

CommandArgument Gets or sets an optional argument passed to the Command event handler

along with the associated CommandName property.

CommandName Gets or sets the command name associated with the LinkButton control.

This value is passed to the Command event handler along with the

CommandArgument property.

10�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

83

Figure 4-10 shows an example of the LinkButton class behaving like a Submit button.

Notice at 01 the LinkButton control and its associated properties. More specifically,

notice the name of the event handler method that will be executed when the control’s

Click event is raised.

Notice at 02 and 03 the code that will be executed when the associated event handler

method is executed.

The screenshot in the Result section of the figure shows the result of clicking the

Modify link button.

OnClientClick Gets or sets the client-side script that executes when a LinkButton control's

Click event is raised.

PostBackUrl Gets or sets the URL of the page to post to from the current page when the

LinkButton control is clicked.

Text Gets or sets the text caption displayed on the LinkButton control.

ValidationGroup Gets or sets the group of controls for which the LinkButton control causes

validation when it posts back to the server.

Methods

(See reference.)

Events

Click Occurs when the LinkButton control is clicked.

Command Occurs when the LinkButton control is clicked.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

linkbutton(v=vs.110).aspx

Table 4-10.  (continued)

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.linkbutton(v=vs.110).aspx

84

Figure 4-11 shows an example of the LinkButton class behaving like a Command

button.

Notice at 01 the LinkButton control and its associated properties. More specifically,

notice the name of the event handler method that will be executed when the control’s

Command event is raised. As can be seen, the CommandArgument property is set to

Adidas, and the CommandName property is set to View. These two properties will be

passed to the link button’s event handler method in the code behind when the link

button is clicked. As can be seen, none of the link buttons on the page require an ID in

this scenario and that the first five link buttons have different command arguments but

have the same command name.

Notice at 02 that the last link button does not have a command argument and has a

different command name than the other buttons.

Figure 4-10.  Example of the LinkButton class behaving like a Submit button

Chapter 4 More Server Controls

85

Notice at 03 that the command name passed to the event handler method is being

tested. If the value of the CommandName property is set to View, the block of code

inside the If structure will be executed. If not (i.e., the value of the CommandName

property is set to Cancel), the block of code in the Else part of the If structure will be

executed.

Notice at 04 that the command argument passed to the event handler method is

being evaluated using a Switch structure to determine which case to execute. If the value

of the CommandArgument property is set to Adidas, the Text property of the message

label will be set appropriately. If it is set to something else, the Text property of the

message label will be set to something else.

The screenshot in the Result section of the figure shows the result of clicking the

Adidas button.

Chapter 4 More Server Controls

86

Figure 4-11.  Example of the LinkButton class behaving like a Command button

Chapter 4 More Server Controls

87

4.12  �ListControl Class
The ListControl class serves as the base class for all list-type classes. As such, all list-type

classes inherit properties, methods, and events from this class. The ListControl classes

include the BulletedList class, the CheckBoxList class, the DropDownList class, the

ListBox class, and the RadioButtonList class. In this chapter, we will limit our discussion

to the DropDownList class and ListBox class. The items displayed in a list-type control

are stored in its Items collection.

To access the zero-based index of the selected item in a list-type control, we get or set

the SelectedIndex property of the control. To retrieve the selected item from a list-type

control, we get the SelectedItem property of the control. The SelectedIndexChanged event

is raised when the end user selects a different item in a list-type control. The TextChanged

event is raised when the Text or SelectedValue property changes in a list-type control. If

we want a postback to the server to occur so that we can handle these events when they

happen, we must set the AutoPostBack property of the list-type control to true. Table 4-11

shows some of the properties, methods, and events of the ListControl class.

Figure 4-11.  (continued)

Chapter 4 More Server Controls

88

Table 4-11.  Some of the properties, methods, and events of the ListControl class

Class ListControl11

Namespace System.Web.UI.WebControls

Properties

AutoPostBack Gets or sets a value indicating whether a postback to the server

automatically occurs when the user changes the list selection.

CausesValidation Gets or sets a value indicating whether validation is performed when a

control that is derived from the ListControl class is clicked.

DataSourceID Gets or sets the ID of the control from which the data-bound control retrieves

its list of data items. (Inherited from DataBoundControl.)

DataTextField Gets or sets the field of the data source that provides the text content of the

list items.

DataValueField Gets or sets the field of the data source that provides the value of each list item.

Items Gets the collection of items in the list control.

SelectedIndex Gets or sets the lowest ordinal index of the selected items in the list.

SelectedItem Gets the selected item with the lowest index in the list control.

SelectedValue Gets the value of the selected item in the list control, or selects the item in

the list control that contains the specified value.

Text Gets or sets the SelectedValue property of the ListControl control.

ValidationGroup Gets or sets the group of controls for which the control that is derived from

the ListControl class causes validation when it posts back to the server.

Methods

(See reference.)

Events

SelectedIndexChanged Occurs when the selection from the list control changes between posts

to the server.

TextChanged Occurs when the Text and SelectedValue properties change.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

listcontrol(v=vs.110).aspx

11�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listcontrol(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listcontrol(v=vs.110).aspx

89

4.13  �ListItem Class
The ListItem class represents an individual item in a list-type control. To specify the

text that is displayed in a ListItem control, we set its Text property. To specify the value

that is associated with a ListItem control, we set its Value property. To indicate that a list

item should be selected upon display of the page, we set its Selected property to true. To

indicate that a list item should be disabled upon display of the page, we set its Enabled

property to false. Setting the Enabled property of a list item to false will result in the list

item not being displayed in the list-type control. We can define any number of ListItem

controls in a list-type control. Table 4-12 shows some of the properties, methods, and

events of the ListItem class.

Table 4-12.  Some of the properties, methods, and events of the ListItem class

Class ListItem12

Namespace System.Web.UI.WebControls

Properties

Enabled Gets or sets a value indicating whether the list item is enabled.

Selected Gets or sets a value indicating whether the item is selected.

Text Gets or sets the text displayed in a list control for the item represented by the

ListItem.

Value Gets or sets the value associated with the ListItem.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

listitem(v=vs.110).aspx

12�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listitem(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listitem(v=vs.110).aspx

90

4.14  �DropDownList Class
The DropDownList class displays a collection of items that can be used by an end user to

select a single option. To specify the items that should be displayed in a DropDownList

control, we add the necessary ListItem controls between the opening and closing tags of

the DropDownList control. Since the DropDownList class inherits many of its properties,

methods, and events from the ListControl class, we can see that class for more details.

Table 4-13 shows some of the properties, methods, and events of the DropDownList class.

Table 4-13.  Some of the properties, methods, and events of the DropDownList class

Class DropDownList13

Namespace System.Web.UI.WebControls

Properties

(See reference.)

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

dropdownlist(v=vs.110).aspx

13�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Figure 4-12 shows an example of the DropDownList and ListItem classes.

Notice at 01 the DropDownList control and its associated properties. More

specifically, notice the name of the event handler method that will be executed when

the control’s SelectedIndexChanged event is raised. As can be seen, the AutoPostBack

property of the control is set to true. Thus, the page will automatically post back to the

server when the value of the SelectedIndex property changes.

Notice at 02 the ListItem control and its associated properties. As can be seen, the

Text property of the control is set to Adidas, and the Value property of the control is

set to A. The other ListItem controls have different Text and Value properties.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.dropdownlist(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.dropdownlist(v=vs.110).aspx

91

Notice at 03, 04, and 05 that the zero-based SelectedIndex property, the value of

the SelectedItem property, and the text of the SelectedItem property will be displayed

whenever the SelectedIndex changes.

The first screenshot in the Result section of the figure shows the drop-down list

before it has been clicked. The second screenshot shows the result of clicking the

drop-down list. The third screenshot shows the result of selecting the third option in the

list. Notice that the SelectedIndex property, the value of the SelectedItem property, and

the text of the SelectedItem property are displayed.

Figure 4-12.  Example of the DropDownList and ListItem classes

Chapter 4 More Server Controls

92

4.15  �ListBox Class
The ListBox class displays a collection of items that can be used by an end user to select

one or more options. To specify the items that should be displayed in a ListBox control, we

add the necessary ListItem controls between the opening and closing tags of the ListBox

control. To permit the end user to select more than one option in a ListBox control, we

set its SelectionMode to Multiple. Since the ListBox class inherits many of its properties,

methods, and events from the ListControl class, we can see that class for more details.

Table 4-14 shows some of the properties, methods, and events of the ListBox class.

RESULT

Figure 4-12.  (continued)

Chapter 4 More Server Controls

93

14�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Table 4-14.  Some of the properties, methods, and events of the ListBox class

Class ListBox14

Namespace System.Web.UI.WebControls

Properties

SelectionMode Gets or sets the selection mode of the ListBox control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

listbox(v=vs.110).aspx

Figure 4-13 shows an example of the ListBox and ListItem classes.

Notice at 01 the ListBox control and its associated properties. More specifically,

notice the name of the event handler method that will be executed when the control’s

SelectedIndexChanged event is raised. As can be seen, the AutoPostBack property of the

control is set to true. Thus, the page will automatically post back to the server when the

value of the SelectedIndex property changes.

Notice at 02 the ListItem control and its associated properties. As can be seen, the

Text property of the control is set to Adidas, and the Value property of the control is set to

A. The other ListItem controls have different Text and Value properties.

Notice at 03, 04, and 05 that the zero-based SelectedIndex property, the value of

the SelectedItem property, and the text of the SelectedItem property will be displayed

whenever the SelectedIndex changes.

The first screenshot in the Result section of the figure shows the list box before it has

been clicked. The second screenshot shows the result of selecting the second option in

the list. Notice that the SelectedIndex property, the value of the SelectedItem property,

and the text of the SelectedItem property are displayed.

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listbox(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listbox(v=vs.110).aspx

94

Figure 4-13.  Example of the ListBox and ListItem classes

4.16  �Panel Class
The Panel class is a container that holds groups of related ASP.NET server classes,

such as Label classes, TextBox classes, and Button classes. Panels are useful when we

want to programmatically show and hide groups of related controls without having to

show and hide all the related controls individually. We can just show and hide panels.

Chapter 4 More Server Controls

95

15�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

To display a custom background on a panel, we set its BackImageUrl property to a

valid image file path. To identify the default button in a panel, we set its DefaultButton

property to the ID of the button that should be “clicked” when the end user hits the

Enter key on his or her keyboard. To display a descriptive caption for the group of

controls in a panel, we specify its GroupingText property. And to display scroll bars on

a panel, we set its ScrollBars property to Horizontal, Vertical, Both, or Auto. By default,

scroll bars are not displayed on a panel. Table 4-15 shows some of the properties,

methods, and events of the Panel class.

Table 4-15.  Some of the properties, methods, and events of the Panel class

Class Panel15

Namespace System.Web.UI.WebControls

Properties

BackImageUrl Gets or sets the URL of the background image for the Panel control.

DefaultButton Gets or sets the identifier for the default button that is contained in the Panel control.

GroupingText Gets or sets the caption for the group of controls that is contained in the Panel control.

ScrollBars Gets or sets the visibility and position of scroll bars in a Panel control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

panel(v=vs.110).aspx

Chapter 4 More Server Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.panel(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.panel(v=vs.110).aspx

96

Figure 4-14 shows an example of the Panel class.

Notice at 01 the first Panel control and its associated properties. As can be seen, this

panel’s GroupingText property is set to Billing Address. Since this panel’s Visible property

is set to true, it will be rendered in the browser by default.

Notice at 02 the second Panel control and its associated properties. As we can see,

this panel’s GroupingText property is set to Shipping Address. Since this panel’s Visible

property is set to false, it will not be rendered in the browser by default.

Notice at 03 the first RadioButton control and its associated properties. More

specifically, notice the name of the event handler method that will be executed when the

control’s CheckedChanged event is raised.

Notice at 04 the second RadioButton control and its associated properties. More

specifically, notice the name of the event handler method that will be executed when the

control’s CheckedChanged event is raised.

Notice at 05 and 06 that the TogglePanel method at 07 will be invoked whenever the

billing address radio button or the shipping address radio button is clicked.

The first screenshot in the Result section of the figure shows the billing address panel

that has been displayed by default. The second screenshot shows the result of clicking

the shipping address radio button.

Chapter 4 More Server Controls

97

Figure 4-14.  Example of the Panel class

ASPX CODE

<asp:Label runat="server" Font-Bold="true" Text="Customer" />

01 <asp:Panel runat="server" ID="panBillingAddress"

GroupingText="Billing Address" Visible="true">
<asp:Label runat="server" Text="Address " />

<asp:TextBox runat="server" ID="txtBillingAddress" />

<asp:Button runat="server" ID="btnSaveBillingAddress"

OnClick="btnSaveBillingAddress_Click" Text="Save" />
</asp:Panel>

02 <asp:Panel runat="server" ID="panShippingAddress"
GroupingText="Shipping Address" Visible="false">
<asp:Label runat="server" Text="Address " />

<asp:TextBox runat="server" ID="txtShippingAddress" />

<asp:Button runat="server" ID="btnSaveShippingAddress"

OnClick="btnSaveShippingAddress_Click" Text="Save" />
</asp:Panel>

03 <asp:RadioButton runat="server" ID="radBillingAddress"
AutoPostBack="true" Checked="true" GroupName="AddressGroup"
OnCheckedChanged="radBillingAddress_CheckedChanged"
Text="Billing Address" />

04 <asp:RadioButton runat="server" ID="radShippingAddress"
AutoPostBack="true" GroupName="AddressGroup"
OnCheckedChanged="radShippingAddress_CheckedChanged"
Text="Shipping Address" />

CODE BEHIND

protected void radBillingAddress_CheckedChanged(object sender,
EventArgs e)

{

05 TogglePanel();

}

protected void radShippingAddress_CheckedChanged(object sender,
EventArgs e)

{

06 TogglePanel();

}

Chapter 4 More Server Controls

98

Figure 4-14.  (continued)

Chapter 4 More Server Controls

99
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_5

CHAPTER 5

Data Validation Controls
5.1	 �Introduction
Data validation controls ensure that bad data does not make its way into a software

system. If we allow bad data into a system, we will get bad information out of it.

This reflects the age-old principle: garbage in, garbage out (GIGO). The importance

of allowing only good data into a software system is that good data leads to good

information, good information leads to good decision making, and good decision

making leads to organizational stability (in a not-for-profit context) or competitive

advantage (in a for-profit context).

Several of the graphical user interface (GUI) controls we discussed in the previous

chapter (e.g., the Calendar control, the CheckBox control, the DropDownList control)

can be used to help us ensure that only good data is allowed into an ASP.NET Web

application. By requiring the end user to select inputs using GUI controls (as opposed

to requiring him or her to type the data into a text box or similar control), the problems

associated with misspelling, incorrect formatting, and so on are significantly reduced.

There are times, however, when data must be entered into a text box or similar

control manually. When this is the case, we need to validate the data before it is

processed and/or stored in the system. Such validations include existence checks (e.g.,

ensuring that a customer’s last name is entered), data type checks (e.g., ensuring that

a monetary value contains only numbers), reasonableness checks (e.g., ensuring that

a patient’s blood pressure reading makes sense), range checks (e.g., ensuring that a

discount rate falls within a valid range), format checks (e.g., ensuring that an email

address is in the correct format), combination checks (e.g., ensuring that a pregnant

patient’s sex is female), and self-checking digit checks (e.g., ensuring that a credit card

number is valid). The good news is we can use the data validation classes in the .NET

Framework Class Library to perform all of these types of checks.

100

The validation operations described in this chapter can be performed on the client

(as long as the browser being used is script enabled) or on the server.1 When validation

is to be performed on the client (like most of the examples in this chapter), JavaScript

validation code is generated on the server, embedded in the HTML code of its associated

page, returned to the client via an HTTP response, and executed in the browser. In this

scenario, the Web application is much more efficient since any end-user inputs must

pass browser-side validation before the page is posted back to the server for further

processing.

In this chapter, we will begin by installing the Script Manager package. This package

makes available the jQuery (i.e., JavaScript) scripts required for validating data using

the validator classes we will be discussing. Next, we will look at the BaseValidator class.

This class serves as the base class for all of the validator classes we will be discussing, so

familiarity with its properties, methods, and events is important. We will then discuss the

RequiredFieldValidator class, which ensures that text has been entered into a TextBox

control or FileUpload control or that the text in one of these controls has been changed

from some specified initial value. This class also ensures that a selection has been made

from a DropDownList control, ListBox control, or RadioButtonList control or that the

selection has been changed from some specified initial value. After that, we will consider

the CompareValidator class. This class compares the value entered into one input

control (e.g., a TextBox control) with the value entered into a second input control. This

class also compares the value entered into an input control with a constant (e.g., zero)

or ensures that the value entered into an input control is of a specific type (e.g., date).

Next, we will look at the RangeValidator class, which ensures that the value entered

into an input control (e.g., a TextBox control) lies within a range of acceptable values.

We will then discuss the RegularExpressionValidator class. This class ensures that the

value entered into an input control (e.g., a TextBox control) matches some predefined

pattern. After that, we will consider the CustomValidator class, which ensures that the

value entered into an input control (e.g., a TextBox control) passes some custom-defined

validation criterion or criteria. And finally, we will look at the ValidationSummary class.

This class displays a summary of all the validation errors that occur on an ASP.NET Web

page.

1�When a page with validation controls is posted back to the server, validation is performed on the
server as well—even if all the validation operations pass on the client. This prevents the end user
from bypassing validation by disabling script code execution in his or her browser.

Chapter 5 Data Validation Controls

101

5.2	 �Script Manager Package
Before the validator classes described in this chapter will work, we must add a NuGet

package called AspNet.ScriptManager.jQuery. Installing this package makes available the

jQuery (i.e., JavaScript) scripts required for validating data using the validator classes.

If the AspNet.ScriptManager.jQuery package is not installed, an error will occur when a

page attempts to validate data. To install the AspNet.ScriptManager.jQuery package

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the Project.

	 3.	 Select Manage NuGet Packages….

	 4.	 Search for AspNet.ScriptManager.jQuery.

	 5.	 Select AspNet.ScriptManager.jQuery.

	 6.	 Click Install.

	 7.	 Click OK when asked to review the changes to the project.

	 8.	 Close the NuGet Package Manager.

Once this process is complete, notice that a Scripts folder has been added to the

project. This folder contains the jQuery scripts required for validating data using the

validator classes.

5.3	 �BaseValidator Class
The BaseValidator class serves as the base class for all validator classes. As such, all

validator classes inherit properties, methods, and events from this class. The Validator

classes include the RequiredFieldValidator class, the CompareValidator class, the

RangeValidator class, the RegularExpressionValidator class, the CustomValidator class,

and the ValidationSummary class. As we consider these validator classes individually,

keep in mind that multiple validation controls can be used to validate the data in a single

input control. This permits us to validate an individual end-user input according to more

than one criterion.

Table 5-1 shows some of the properties, methods, and events of the BaseValidator

class. Notice in the table the Display property of the BaseValidator class. This property

indicates the display behavior of the error message in a validation control. When this

Chapter 5 Data Validation Controls

102

property is set to None, a generated validation message will not be displayed in the Web

page. When the property is set to Static, space for a validation message will be set aside

in the Web page—even if no validation message is generated. And when the property is

set to Dynamic, space for a validation message will not be set aside in the Web page but

will be added to the page when a validation message is generated.

Table 5-1.  Some of the properties, methods, and events of the BaseValidator class

Class BaseValidator2

Namespace System.Web.UI.WebControls

Properties

ControlToValidate Gets or sets the input control to validate.

Display Gets or sets the display behavior of the error message in a validation control.

ErrorMessage Gets or sets the text for the error message displayed in a ValidationSummary

control when validation fails.

IsValid Gets or sets a value that indicates whether the associated input control passes

validation.

SetFocusOnError Gets or sets a value that indicates whether focus is set to the control specified

by the ControlToValidate property when validation fails.

Text Gets or sets the text displayed in the validation control when validation fails.

ValidationGroup Gets or sets the name of the validation group to which this validation control

belongs.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

basevalidator(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.basevalidator(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.basevalidator(v=vs.110).aspx

103

5.4	 �RequiredFieldValidator Class
The RequiredFieldValidator class ensures that text has been entered into a TextBox

control or FileUpload control or that the text in one of these controls has been changed

from some specified initial value. It also ensures that a selection has been made from a

DropDownList control, ListBox control, or RadioButtonList control or that the selection

has been changed from some specified initial value. The InitialValue property of a

RequiredFieldValidator control indicates the text or selection that we do not want

the end user to enter into or select from an input control. Thus, an error message

will be displayed when an input control contains the same value as its associated

RequiredFieldValidator control’s InitialValue property. By default, the initial value of a

TextBox control is blank. Table 5-2 shows some of the properties, methods, and events of

the RequiredFieldValidator class.

Table 5-2.  Some of the properties, methods, and events of the

RequiredFieldValidator class

Class RequiredFieldValidator3

Namespace System.Web.UI.WebControls

Properties

InitialValue Gets or sets the initial value of the associated input control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.require

dfieldvalidator(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.requiredfieldvalidator(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.requiredfieldvalidator(v=vs.110).aspx

104

Figure 5-1 shows an example of the RequiredFieldValidator class.

Notice at 01 the RequiredFieldValidator control and its associated properties. As can

be seen, the ControlToValidate property of the control is set to txtPrice, which identifies

the TextBox control to validate. Notice that the Display property of the control is set to

Dynamic. This indicates that space for the validation message will not be set aside in the

Web page but will only be added to the page when the control’s validation message is

generated. Notice as well that the SetFocusOnError property of the control is set to true.

Thus, when validation fails, the focus of the page will be set to the associated text box to

make it easier for the end user to correct the problem. And finally, notice the Text property

of the control that contains the error message that will be displayed if the validation fails.

The screenshot in the Result section of the figure shows the result of clicking the Save

button without entering anything into the Price field on the Web page. Notice that the

error message describes both the nature of the problem and what the end user must do

to correct it.

Figure 5-1.  Example of the RequiredFieldValidator class

Chapter 5 Data Validation Controls

105

5.5	 �CompareValidator Class
The CompareValidator class compares the value entered into one input control

(e.g., a TextBox control) with the value entered into a second input control. It also

compares the value entered into an input control with a constant (e.g., zero) or

ensures that the value entered into an input control is of a specific type (e.g., date).

The ControlToCompare property of a CompareValidator control indicates the

input control to be compared to the input control being validated. The Operator

property indicates the type of comparison operation to be performed (i.e., equal

to, not equal to, greater than, greater than or equal to, less than, less than or equal

to, or data type check). The Type property indicates the kind of values being

compared (i.e., currency, date, double, integer, or string). And the ValueToCompare

property indicates the value to be compared to the input control being validated. A

CompareValidator control displays an error message when the value in its associated

input control does not pass the validation criteria specified in the Operator property

of the control and the ControlToCompare property or the ValueToCompare property

of the control. Note that if the input control associated with a CompareValidator

control is left empty, no validation will occur, the validation will be considered a

success, and no message will be displayed. Thus, if leaving the associated input

control empty is not acceptable, we must pair up the CompareValidator control with

a RequiredFieldValidator control. Table 5-3 shows some of the properties, methods,

and events of the CompareValidator class.

Chapter 5 Data Validation Controls

106

Figure 5-2 shows an example of the CompareValidator class.

Notice at 01 the CompareValidator control and its associated properties. As can

be seen, the ControlToValidate property of the control is set to txtReorderLevel, which

identifies the TextBox control to validate. Notice that the Display property of the control

is set to Dynamic. This indicates that space for the validation message will not be set

aside in the Web page but will only be added to the page when the control’s validation

message is generated. Also notice that the SetFocusOnError property of the control is

set to true. Thus, when validation fails, the focus of the page will be set to the associated

Table 5-3.  Some of the properties, methods, and events of the CompareValidator

class

Class CompareValidator4

Namespace System.Web.UI.WebControls

Properties

ControlToCompare Gets or sets the input control to compare with the input control being

validated.

Operator Gets or sets the comparison operation to perform.

Type Gets or sets the data type that the values being compared are converted to

before the comparison is made. (Inherited from BaseCompareValidator.)

ValueToCompare Gets or sets a constant value to compare with the value entered by the user

in the input control being validated.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

comparevalidator(v=vs.110).aspx

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.comparevalidator(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.comparevalidator(v=vs.110).aspx

107

text box to make it easier for the end user to correct the problem. Notice as well the

Text property of the control that contains the error message that will be displayed

if the validation fails. And finally, notice that the Operator property of the control is

set to GreaterThanEqual, the Type property of the control is set to Integer, and the

ValueToCompare property of the control is set to 0. Thus, for validation to pass, the

value in the associated text box must be greater than or equal to zero when an integer

comparison is performed.

The screenshot in the Result section of the figure shows the result of clicking the Save

button without having entered a valid value into the Reorder Level field on the Web page.

Notice that the error message describes both the nature of the problem and what the end

user must do to correct it.

Figure 5-2.  Example of the CompareValidator class

5.6	 �RangeValidator Class
The RangeValidator class ensures that the value entered into an input control (e.g., a

TextBox control) lies within a range of acceptable values. The MinimumValue property

of a RangeValidator control indicates the minimum acceptable value that can be

entered into an input control. The MaximumValue property indicates the maximum

acceptable value that can be entered into an input control. Note that the acceptable

range of values is inclusive of the values specified in the MinimumValue property and

Chapter 5 Data Validation Controls

108

the MaximumValue property of the RangeValidator control. The Type property indicates

the kind of values being compared (i.e., currency, date, double, integer, or string). A

RangeValidator control displays an error message when the value in its associated input

control does not pass the validation criteria specified in its MinimumValue property,

MaximumValue property, and Type property. Note that if the input control associated

with a RangeValidator control is left empty, no validation will occur, the validation will be

considered a success, and no message will be displayed. Thus, if leaving the associated

input control empty is not acceptable, we must pair up the RangeValidator control with

a RequiredFieldValidator control. Table 5-4 shows some of the properties, methods, and

events of the RangeValidator class.

Table 5-4.  Some of the properties, methods, and events of the RangeValidator class

Class RangeValidator5

Namespace System.Web.UI.WebControls

Properties

MaximumValue Gets or sets the maximum value of the validation range.

MinimumValue Gets or sets the minimum value of the validation range.

Type Gets or sets the data type that the values being compared are converted to

before the comparison is made. (Inherited from BaseCompareValidator.)

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

rangevalidator(v=vs.110).aspx

5�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.rangevalidator(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.rangevalidator(v=vs.110).aspx

109

Figure 5-3 shows an example of the RangeValidator class.

Notice at 01 the RangeValidator control and its associated properties. As can be seen,

the ControlToValidate property of the control is set to txtReorderLevel, which identifies

the TextBox control to validate. Notice that the Display property of the control is set to

Dynamic. This indicates that space for the validation message will not be set aside in

the Web page but will only be added to the page when the control’s validation message

is generated. Also notice that the SetFocusOnError property of the control is set to true.

Thus, when validation fails, the focus of the page will be set to the associated text box to

make it easier for the end user to correct the problem. Notice as well the Text property

of the control that contains the error message that will be displayed if the validation

fails. And finally, notice that the MinimumValue property of the control is set to 0, the

MaximumValue property of the control is set to 10, and the Type property of the control

is set to Integer. Thus, for validation to pass, the value in the associated text box must be

an integer between 0 and 10, inclusive.

The screenshot in the Result section of the figure shows the result of clicking the Save

button without having entered a valid value into the Reorder Level field on the Web page.

Notice that the error message describes both the nature of the problem and what the end

user must do to correct it.

Figure 5-3.  Example of the RangeValidator class

Chapter 5 Data Validation Controls

110

5.7	 �RegularExpressionValidator Class
The RegularExpressionValidator class ensures that the value entered into an input

control (e.g., a TextBox control) matches a pattern defined by a regular expression. This

class is helpful when we want to check an input control for a predictable sequence of

characters like those found in postal codes, phone numbers, and email addresses. The

ValidationExpression property of a RegularExpressionValidator control indicates the

regular expression to be matched. A RegularExpressionValidator control displays an

error message when the value in its associated input control does not match the pattern

specified in the ValidationExpression property of the control. Note that if the input control

associated with a RegularExpressionValidator control is left empty, no validation will

occur, the validation will be considered a success, and no message will be displayed.

Thus, if leaving the associated input control empty is not acceptable, we must pair up the

RegularExpressionValidator control with a RequiredFieldValidator control. Table 5-5 shows

some of the properties, methods, and events of the RegularExpressionValidator class.

Table 5-5.  Some of the properties, methods, and events of the

RegularExpressionValidator class

Class RegularExpressionValidator6

Namespace System.Web.UI.WebControls

Properties

ValidationExpression Gets or sets the regular expression that determines the pattern used to

validate a field.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regular

expressionvalidator(v=vs.110).aspx

6�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.regularexpressionvalidator(v=vs.110).aspx

111

Table 5-6 shows some of the .NET regular expressions. These expressions can be

used in isolation, or they can be combined to form more complex validation expressions.

Table 5-6.  Some of the .NET regular expressions

Expression Description

[set] Matches any character in the set.

[^set] Matches any character not in the set.

[a–z] Matches any character in the a–z range.

[^a–z] Matches any character not in the a–z range.

\ Matches the character that follows.

\w Matches any word character.

\W Matches any nonword character.

\d Matches any decimal digit.

\D Matches any non-decimal digit.

\s Matches any white-space character.

\S Matches any non-white-space character.

* Matches the preceding item 0 or more times.

+ Matches the preceding item 1 or more times.

? Matches the preceding item 0 or 1 time.

{n} Matches the preceding item exactly n times.

{n,} Matches the preceding item at least n times.

{n,m} Matches the preceding item n to m times.

Reference

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

Figure 5-4 shows an example of the RegularExpressionValidator class. Notice in the

figure that the Display properties of the RegularExpressionValidator controls are set to

Dynamic. This indicates that spaces for the validation messages will not be set aside

in the Web page but will only be added to the page when a given control’s validation

message is generated. Also notice that the SetFocusOnError properties of the controls

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx

112

are set to true. Thus, when a particular validation fails, the focus of the page will be set to

the associated text box to make it easier for the end user to correct the problem. Notice

as well the Text properties of the controls that contain the error messages that will be

displayed if a validation fails.

Notice at 01 the first RegularExpressionValidator control and its associated

properties. As can be seen, the ControlToValidate property of the control is set to

txtZipCode, which identifies the TextBox control to validate. Notice as well that the

ValidationExpression property of the control is set to \d{5}. Thus, for validation to pass,

the value in the associated text box must contain exactly five decimal digits.

Notice at 02 the second RegularExpressionValidator control and its associated

properties. As can be seen, the ControlToValidate property of the control is set to

txtPhone, which identifies the TextBox control to validate. Notice as well that the

ValidationExpression property of the control is set to \d{3}\-\d{3}\-\d{4}. Thus, for

validation to pass, the value in the associated text box must contain exactly three digits,

followed by a dash, followed by exactly three digits, followed by a dash, followed by

exactly four digits.

Notice at 03 the third RegularExpressionValidator control and its associated

properties. As can be seen, the ControlToValidate property of the control is set to

txtEmailAddress, which identifies the TextBox control to validate. Notice as well that the

ValidationExpression property of the control is set to \S+\@\S+\.\S+. Thus, for validation

to pass, the value in the associated text box must contain any non-white-space character

(one or more times), followed by an at sign, followed by any non-white-space character

(one or more times), followed by a period, followed by any non-white-space character

(one or more times). Note that this is a relatively primitive pattern check for an email

address and that more sophisticated pattern checks are possible.

Notice at 04 the fourth RegularExpressionValidator control and its associated

properties. As can be seen, the ControlToValidate property of the control is set to

txtPassword, which identifies the TextBox control to validate. Notice as well that the

ValidationExpression property of the control is set to \S{5,10}. Thus, for validation to

pass, the value in the associated text box must contain any non-white-space character

(five to ten times).

The screenshot in the Result section of the figure shows the result of clicking the Save

button without having entered any valid values into the fields on the Web page. Notice

that all of the error messages describe both the nature of the problem and what the end

user must do to correct it.

Chapter 5 Data Validation Controls

113

Figure 5-4.  Example of the RegularExpressionValidator class

Chapter 5 Data Validation Controls

114

Figure 5-4.  (continued)

5.8	 �CustomValidator Class
The CustomValidator class ensures that the value entered into an input control (e.g., a

TextBox control) passes some custom-defined validation criterion or criteria. This class

is helpful when none of the other validation controls meet our needs. We can define a

CustomValidator control that executes on the client by writing JavaScript code in our

.aspx file, or we can define a CustomValidator control that executes on the server by

writing C# code in our code behind file.7 The former is useful when we want to perform

the validation on an input control before permitting the page to post back to the server.

7�We will learn about JavaScript later in this book.

Chapter 5 Data Validation Controls

115

The latter is useful when we want to perform the validation on an input control when the

page is posted back to the server, such as when we need to perform a database lookup

for the validation. The ClientValidationFunction property of a CustomValidator control

indicates the name of the JavaScript function used to perform a client-side validation.

The ServerValidate method contains the C# validation code used to perform a server-side

validation. A CustomValidator control displays an error message when the value in its

associated input control does not pass the custom-defined validation criterion or criteria.

Note that if the input control associated with a CustomValidator control is left empty, no

validation will occur, the validation will be considered a success, and no message will be

displayed. Thus, if leaving the associated input control empty is not acceptable, we must

pair up the CustomValidator control with a RequiredFieldValidator control. Table 5-7

shows some of the properties, methods, and events of the CustomValidator class.

Table 5-7.  Some of the properties, methods, and events of the CustomValidator class

Class CustomValidator8

Namespace System.Web.UI.WebControls

Properties

ClientValidationFunction Gets or sets the name of the custom client-side script function used

for validation.

ValidateEmptyText Gets or sets a Boolean value indicating whether empty text should be

validated.

Methods

(See reference.)

Events

ServerValidate Occurs when validation is performed on the server.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

customvalidator(v=vs.110).aspx

8�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.customvalidator(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.customvalidator(v=vs.110).aspx

116

Figure 5-5 shows an example of the CustomValidator class.

Notice at 01 the CustomValidator control and its associated properties. As can be

seen, the ID property of the control is set to cuvCategory. We must give this control

an ID since we will be referring to it in the code behind. We can also see that the

ControlToValidate property of the control is set to txtCategory, which identifies the

TextBox control to validate. Notice that the Display property of the control is set to

Dynamic. This indicates that space for the validation message will not be set aside

in the Web page but will only be added to the page when the control’s validation

message is generated. Also notice that the OnServerValidate property of the control

is set to cuvCategory_ServerValidate, which is the name of the event handler method

that will be executed when the ServerValidate event is raised. Notice as well that the

SetFocusOnError property of the control is set to true. Thus, when validation fails, the

focus of the page will be set to the associated text box to make it easier for the end user to

correct the problem. And finally, notice the Text property of the control that contains the

error message that will be displayed if the validation fails.

Notice at 02 the validation event handler method that will be executed when the

page is posted back to the server. Notice as well the ServerValidateEventArgs object (and

its alias args) that is passed to this event handler method as a parameter. This object

provides data for the ServerValidate event handler method. It is the Value property of the

ServerValidateEventArgs object that contains the string passed from the input control to

validate, and it is the IsValid property of the ServerValidateEventArgs object that is set to

indicate the result of the validation.

Notice at 03 that we are testing the Value property of the ServerValidateEventArgs

object for a valid input value—Clothing, Footwear, or Accessories. If the input value is one

of these, the IsValid property of the ServerValidateEventArgs object will be set to true,

and the error message will not be displayed. If the input value is not one of these, the

IsValid property of the ServerValidateEventArgs object will be set to false, and the error

message will be displayed.

The screenshot in the Result section of the figure shows the result of clicking the Save

button without having entered a valid value into the Category field on the Web page.

Notice that the error message describes both the nature of the problem and what the end

user must do to correct it.

Chapter 5 Data Validation Controls

117

Figure 5-5.  Example of the CustomValidator class

5.9	 �ValidationSummary Class
The ValidationSummary class displays a summary of the validation errors that occur on a

Web page. A ValidationSummary control can display validation errors in the page itself, or

it can display validation errors in a separate message box.9 A ValidationSummary control

is helpful when we want to display all validation errors in one location. The DisplayMode

9�It can display validation errors in both as well.

Chapter 5 Data Validation Controls

118

property of a ValidationSummary control indicates whether the validation summary

is to be displayed in the form of a list, a bulleted list, or a paragraph. The HeaderText

property indicates the text to be displayed at the top of the validation summary. The

ShowMessageBox property indicates whether or not the validation summary is to be

displayed in a message box that is separate from the page itself. The ShowSummary

property indicates whether or not the validation summary is to be displayed in the page

itself. The ShowValidationErrors property indicates whether the validation summary is to

be displayed or not displayed. And the ValidationGroup property indicates the group of

controls associated with the validation summary. This property permits us to associate

one group of validation controls with one validation summary and another group of

validation controls with another validation summary. Table 5-8 shows some of the

properties, methods, and events of the ValidationSummary class.

10�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Table 5-8.  Some of the properties, methods, and events of the ValidationSummary

class

Class ValidationSummary10

Namespace System.Web.UI.WebControls

Properties

DisplayMode Gets or sets the display mode of the validation summary.

HeaderText Gets or sets the header text displayed at the top of the summary.

ShowMessageBox Gets or sets a value indicating whether the validation summary is

displayed in a message box.

ShowSummary Gets or sets a value indicating whether the validation summary is

displayed inline.

ShowValidationErrors Gets or sets a value that specifies whether the validation summary from

validator controls should be displayed.

ValidationGroup Gets or sets the group of controls for which the ValidationSummary object

displays validation messages.

(continued)

Chapter 5 Data Validation Controls

119

Figure 5-6 shows an example of the ValidationSummary class.

Notice at 01 that the ErrorMessage property and the Text property of the

RequiredFieldValidator control have been set. The ErrorMessage property indicates

the message that is to be displayed in the ValidationSummary control, whereas the Text

property indicates the message that is to be displayed in the RequiredFieldValidator

control itself. Thus, when a validation error occurs, the error message will be displayed

in the validation summary, and the asterisk (∗) will be displayed directly next the zip

code text box. This pattern holds true for the validator controls at 02, 03, and 04 as well.

Notice at 05 the ValidationSummary control and its associated properties. As can

be seen, the DisplayMode property of the control is set to BulletedList, the HeaderText

property contains information about what has occurred and what should be done, the

ShowMessageBox property is set to false, and the ShowSummary property is set to true.

The first screenshot in the Result section of the figure shows the result of clicking

the Save button without having entered valid values into the fields on the Web page.

In this example, the ShowMessageBox property of the control is set to false, and the

ShowSummary property is set to true. Thus, the validation summary is displayed in

the page itself. The second screenshot also shows the result of clicking the Save button

without having entered valid values into the fields on the Web page. In this example, the

ShowMessageBox property of the control is set to true, and the ShowSummary property

is set to false. Thus, the validation summary is displayed in a message box that is separate

from the page.11 Notice that the error messages in the screenshots describe both the

nature of the problems on the page and what the end user must do to correct them.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

validationsummary(v=vs.110).aspx

Table 5-8.  (continued)

11�When data is validated in the code behind (e.g., when using a CustomValidator control to perform
data validation on the server), errors cannot be displayed in a message box since message boxes
are displayed in the client via JavaScript. However, they can be displayed in the page itself.

Chapter 5 Data Validation Controls

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.validationsummary(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.validationsummary(v=vs.110).aspx

120

Figure 5-6.  Example of the ValidationSummary class

Chapter 5 Data Validation Controls

121

Figure 5-6.  (continued)

Chapter 5 Data Validation Controls

PART III

C# Programming

125
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_6

CHAPTER 6

Assignment Operations
6.1	 �Introduction
An assignment operation sets the value of a variable, constant, or other item in the

code behind of a Page class. The assignment statement is so fundamental to computer

programming that every procedural/imperative programming language requires such a

statement—regardless of its syntax. The general syntax of an assignment statement in the

C# programming language is

Operand1 Operator Operand2;

where Operand1 is a variable, constant, or other item, Operator is an equal sign (=) or

other assignment operator, and Operand2 is the value (or the result of an expression) to

be assigned to Operand1.

In this chapter, we will begin by looking at types. A type holds either a value or

a pointer to a memory address. We will then describe how to declare variables and

constants in the C# programming language. Next, we will discuss the different types

of assignment operators—simple and compound—and how they are used. After that,

we will look at enumerations, which provide us with a way to declare and use related

constants that can be assigned to variables in the code behind. And finally, we will

discuss exception handling. Exception handling provides us with a way to catch runtime

errors in our code and handle them gracefully.

6.2	 �Types
In the .NET Framework, there are two important types—value types and reference types. A

value type holds a value (not a pointer to another memory address) that has a set memory

allocation size. For example, a Byte variable is a value type that is allocated exactly one byte

in memory and can contain any positive integer between 0 and 255. A reference type, on

126

the other hand, holds a pointer to another memory address (not a value) that does not have

a set memory allocation size. For example, a String variable is a reference type that can be

allocated a different amount of memory depending on the contents of the string.

Table 6-1 shows the some of the types of the .NET Framework and their equivalent

generic C# types and code prefixes. In this book, our standard will be to use the .NET

type form (e.g., Boolean, Int16, String) as opposed to the generic C# type form (e.g.,

bool, short, string) when declaring program variables and constants—even though the

corresponding types are equivalent. In addition, our standard will be to start all variables

and constants with the three-letter prefixes shown in the table. Keep in mind that these

particular standards are not universal across all software development organizations.

However, the adoption of such standards is essential to good code quality.

Notice that all of the types in the table are value types, except for the String type,

which is a reference type. As can be seen, the String type is described as immutable (i.e.,

unchangeable) and fixed length. This is because the result of modifying a string in C#

is the creation of a new string in memory—not the modification of an existing one. The

maximum size of a String type is about one billion characters. The String type is also

described as a string of Unicode characters. The String type represents text as a sequence

of UTF-16 (16-bit Unicode Transformation Format) code units, where a code unit is

two bytes. The UTF-16 uses one or two code units to represent up to 1,114,112 possible

Unicode code points, where a code point is a sequence of bits (i.e., 16 bits or 32 bits)

that represents a Unicode character. Although a full discussion of UTF-16 is beyond the

scope of this book, the important thing to remember is that some Unicode characters are

represented using 16 bits, whereas other Unicode characters are represented using 32

bits. For example, the Unicode character “A” is represented using the bit pattern

0000000001000001 (i.e., hexadecimal 0041)

Thus, the English letter “A” requires one 16-bit code unit. In fact, all of the characters

that make up the English language are represented in one 16-bit code unit and are

referenced by one Char object.

The Unicode character “ ”, on the other hand, is represented using the bit pattern

00000000000000010011000011100001 (i.e., hexadecimal 000130E1 surrogate pair)

Thus, the Egyptian hieroglyph “ ” requires two 16-bit code units. Since UTF-16

encoding has only 16 bits, characters that require more than 16 bits are represented

using UTF-16 surrogate pairs, like that shown in the preceding text. So, we must keep in

Chapter 6 Assignment Operations

127

mind that a single Unicode character might need to be referenced by more than one

Char object. Keep in mind that new characters are being added to the Unicode character

set all the time, so the Unicode character set should be seen as a work in progress.

Table 6-1.  Some of the types of the .NET Framework and their equivalent generic

C# types and code prefixes

.NET Type C# Type Prefix Description

Boolean bool boo A Boolean value (true or false).

Byte byte byt An 8-bit unsigned integer.

Char char cha A Unicode (16-bit) character.

Decimal decimal dec A decimal (128-bit) value.

Double double dbl A double-precision (64-bit) floating-point number.

Int16 short i16 A 16-bit signed integer.

Int32 int i32 A 32-bit signed integer.

Int64 long i64 A 64-bit signed integer.

SByte sbyte sby An 8-bit signed integer.

Single float sin A single-precision (32-bit) floating-point number.

String string str An immutable, fixed-length string of Unicode characters.

UInt16 ushort u16 A 16-bit unsigned integer.

UInt32 uint u32 A 32-bit unsigned integer.

UInt64 ulong u64 A 64-bit unsigned integer.

6.3	 �Variable Declarations
To declare a variable in the C# programming language, we define its type (e.g., Boolean,

Int16, String) and then give it a name according to the identifier naming standards

discussed earlier. We can also give the variable an initial value—as long as that value

lies within the domain of allowed values for its type. In some programming languages,

the value of a variable is not automatically set to a default value when the variable is

declared. In C#, however, the value of a variable is automatically set to a default value

Chapter 6 Assignment Operations

128

when the variable is declared. Thus, if a variable’s default value is logically correct

already (i.e., the variable’s value need not be initialized to something else), there is

no need to explicitly state the initial value of the variable in the variable’s declaration.

However, it is often useful to explicitly state the initial value of the variable in the

variable’s declaration to improve the clarity of the code—just in case the default initial

value of the variable is unclear. So, while it might be unnecessary to do so, we will usually

assign a default value to a variable when we declare it. Table 6-2 shows some of the .NET

types and their respective domains and default values.

Table 6-2.  Some of the .NET types and their respective domains and default values

.NET Type Domain Default Value

Boolean 0 (false) and 1 (true) 0 (false)

Byte 0 to 255 0

Char Any Unicode symbol used in text ‘\0’

Decimal ±1.0 × 10e–28 to ±7.9 × 10e28 0.0m

Double –1.79769313486232e308 to

1.79769313486232e308

0.0d

Int16 –32,768 to 32,767 0

Int32 –2,147,483,648 to 2,147,483,647 0

Int64 –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

0l

SByte –128 to 127 0

Single –3.402823e38 to 3.402823e38 0.0f

String 0 to 1,073,741,824 characters null

UInt16 0 to 65,535 0

UInt32 0 to 4,294,967,295 0

UInt64 0 to 18,446,744,073,709,551,615 0

Chapter 6 Assignment Operations

129

Figure 6-1 shows some examples of Boolean declarations.

Figure 6-2 shows some examples of character declarations. Note that a Char is

treated as an array where individual characters are accessible via an index.

Figure 6-1.  Examples of Boolean declarations

Figure 6-2.  Examples of character declarations

Figure 6-3 shows some examples of string declarations

Figure 6-3.  Examples of string declarations

Figure 6-4 shows some examples of numeric declarations. The variables assigned

negative numbers in these examples illustrate that their types can accommodate signs.

Chapter 6 Assignment Operations

130

6.4	 �Constant Declarations
A constant is a fixed value that cannot be modified during the execution of a program.

A constant can be a value type (e.g., Byte, Decimal, Int32), or it can be a reference type

(e.g., String). The fixed value that a constant takes on is called a literal (e.g., 31, 0.07m,

“Last Name:”). To declare a constant in the C# programming language, we specify the

word const, define its type, and then give it a name according to the identifier naming

standards discussed earlier in this book. Next, we assign the constant a literal value. We

can assign a constant any value—as long as it lies within the domain of allowed values

for its type. Figure 6-5 shows some examples of constant declarations.

Figure 6-4.  Examples of numeric declarations

Figure 6-5.  Examples of constant declarations

6.5	 �Assignment Operators
An assignment operator assigns a value to a variable, constant (upon declaration only),

or other item in the C# programming language. Recall from earlier that the general

syntax of an assignment statement in C# is

Chapter 6 Assignment Operations

131

Operand1 Operator Operand2;

where Operand1 is a variable, constant, or other item, Operator is an equal sign (=) or

other assignment operator, and Operand2 is the value (or the result of an expression) to

be assigned to Operand1.

There are two kinds of assignment operators—simple assignment operators and

compound assignment operators. A simple assignment operator just stores in Operand1

the value of Operand2. A compound assignment operator, on the other hand, stores in

Operand1 the value of Operand2 after some kind of arithmetic or logical operation occurs.

Table 6-3 shows some commonly used assignment operators, where Operand1 is x and

Operand2 is y. Notice that all of the assignment operators in the table are compound

assignment operators, except the first one, which is a simple assignment operator. Also,

notice the equivalent compound assignment statements in the comments.

Table 6-3.  Some commonly used assignment operators, where Operand1 is x

and Operand2 is y

Operator Type Comment

x = y Simple assignment

x += y Compound assignment Equivalent to x = x + y.

x -= y Compound assignment Equivalent to x = x - y.

x *= y Compound assignment Equivalent to x = x * y.

x /= y Compound assignment Equivalent to x = x / y.

x %= y Compound assignment Equivalent to x = x % y.

Figure 6-6 shows some examples of simple and compound assignment operators.

Chapter 6 Assignment Operations

132

Figure 6-6.  Examples of simple and compound assignment operators

Chapter 6 Assignment Operations

133

6.6	 �Enumerations
An enumeration is a set of named constants of a specific type. In the .NET Framework,

the Enum class serves as the base class for all enumerations. Enumerations provide a

way to declare and use a set of related constants that can be assigned to a variable in the

code behind. For example, since there are only seven days in a week, where Sunday is

day 1, Monday is day 2, and so forth, we can create a DayOfWeek enumeration of type

Byte (Int32 is the default Enum type) that permits us to access the value of a named

(i.e., spelled out) day of the week in the code behind. Figure 6-7 shows an example of an

enumeration. In this example, we have a DiscountRate enumeration with three named

constants—Standard, Select, and Preferred. Each of these constants refers to a type of

customer, and each has a specific discount rate value.

Notice at 01 that the enumeration is declared using the enum keyword, the name of

the enumeration is DiscountRate, and the type of enumeration is Byte. Thus, the literals

associated with each named constant will be of type Byte.

Notice at 02 that we are setting the value of bytCustomerDiscountRate to the

value of DiscountRate.Preferred, which we know is 30. As can be seen, we must cast

DiscountRate.Preferred to a Byte type even though bytCustomerDiscountRate is

already declared as a Byte type. Casting will be discussed in detail in Chapter 7, titled

“Conversion Operations.”

Notice at 03 that we are setting the value of strCustomerType to DiscountRate.

Preferred, which is Preferred. As can be seen, the value of DiscountRate.Preferred must

be converted to a string before it can be assigned to strCustomerType.

Chapter 6 Assignment Operations

134

Figure 6-7.  Example of an enumeration

6.7	 �Exception Handling
An exception occurs in response to a runtime error—an error that arises during the

execution of a computer program. In C#, exception handling permits us to detect these

errors and handle them gracefully. The advantage of exception handling is that our Web

applications don’t crash (i.e., abnormally terminate) when a runtime error occurs but

instead behave in a predictable and professional way. When an exception occurs during

the execution of a Web application, the .NET Common Language Runtime throws an

exception of a specified type (e.g., a divide by zero exception, an overflow exception).

When testing code in Visual Studio, an exception will result in the display of the

Exception Helper, which points out the nature of the runtime error for us.

Figure 6-8 shows an example of the Exception Helper. Notice at the very top of the

Exception Helper dialog that an exception was thrown that was not handled by us in

the code. Notice as well that the type of exception that occurred was a divide by zero

exception.

Chapter 6 Assignment Operations

135

6.8	 �Exception Class
The Exception class serves as the base class for all exception classes. Table 6-4 shows

some of the properties, methods, and events of the Exception class. Notice the Message

property in the class. As we will soon see, this property contains the description of a

runtime error that has occurred during program execution.

Figure 6-8.  Example of the Exception Helper

Chapter 6 Assignment Operations

136

There are currently over 20 exceptions that the .NET Common Language Runtime can

throw and that we can handle using the Exception class and its child classes. Table 6-5

shows some common exceptions and the conditions under which they are thrown.

Table 6-4.  Some of the properties, methods, and events of the Exception class

Class Exception1

Namespace System

Properties

Message Gets a message that describes the current exception.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.exception(v=vs.113).aspx

Table 6-5.  Some common exceptions and the conditions under which they

are thrown

Exception Condition

DivideByZeroException The denominator in an integer or decimal division operation is zero.

FormatException A value is not in an appropriate format to be converted from a string by

a conversion method such as Parse.

IndexOutOfRangeException An index is outside the bounds of an array or collection.

OverflowException An arithmetic, casting, or conversion operation results in an overflow.

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 6 Assignment Operations

https://msdn.microsoft.com/en-us/library/system.exception(v=vs.113).aspx

137

As we will see, exception handling is accomplished via the Try-Catch-Finally

structure. In the Try part of the structure, we code the statement or statements that

can potentially cause an exception in our program. In the Catch part of the structure,

we specify what to do if an exception is actually thrown. And in the Finally part of the

structure, we specify what to do whether or not an exception is thrown. The Finally part

of the Try-Catch-Finally structure is optional.

6.8.1  �DivideByZeroException Class
As the name implies, a divide by zero exception is thrown when we attempt to perform an

integer or decimal division operation with a zero in the denominator of a mathematical

expression. Figure 6-9 shows an example of using the DivideByZeroException class to

catch a divide by zero exception.

Notice at 01 that bytDenominator has been set to 0 to set up our divide by zero

exception.

Notice at 02 the Try part of the Try-Catch-Finally structure, which contains the

assignment statement that will be tested for a divide by zero exception. If a divide by zero

exception is not thrown, processing will continue after the division, and the message will

be set to The division was successful.

Notice at 03 the Catch part of the Try-Catch-Finally structure. This part of the

structure contains a DivideByZeroException object. We have given this object the alias

“Exception” so that we can refer to the object in shorthand. As can be seen, if a divide

by zero exception is thrown, the message will be set to The division was NOT successful.

In addition, the Message property of the Exception object, which describes the current

exception, will be appended to the end of the message.

Notice at 04 the Finally part of the Try-Catch-Finally structure. The code inside

this part of the structure will be executed whether or not an exception is thrown.

Thus, the message will always end with Thank you. The result of the Try-Catch-Finally

code is shown at the bottom of the figure. Notice that a divide by zero exception has

been thrown since we cannot perform integer or decimal division with a zero in the

denominator of a mathematical expression.

Chapter 6 Assignment Operations

138

6.8.2  �FormatException Class
A format exception is thrown when we attempt to convert a string value that is not in an

appropriate format to be converted to some other type (e.g., Boolean, Decimal, Int32).

Figure 6-10 shows an example of using the FormatException class to catch a format

exception.

Notice at 01 that txtNumber.Text (presumably entered by the end user via a TextBox

control) has been set to abc to set up our format exception.

Notice at 02 the Try part of the Try-Catch-Finally structure, which contains the

assignment statement that will be tested for a format exception. If a format exception is

not thrown, processing will continue after the conversion, and the message will be set to

The conversion was successful.

Notice at 03 the Catch part of the Try-Catch-Finally structure. This part of the

structure contains a FormatException object. We have given this object the alias

“Exception” so that we can refer to the object in shorthand. As can be seen, if a format

Figure 6-9.  Example of using the DivideByZeroException class to catch a divide by
zero exception

Chapter 6 Assignment Operations

139

Figure 6-10.  Example of using the FormatException class to catch a format
exception

exception is thrown, the message will be set to The conversion was NOT successful. In

addition, the Message property of the Exception object, which describes the current

exception, will be appended to the end of the message.

Notice at 04 the Finally part of the Try-Catch-Finally structure. The code inside this

part of the structure will be executed whether or not an exception is thrown. Thus, the

message will always end with Thank you. The result of the Try-Catch-Finally code is

shown at the bottom of the figure. Notice that a format exception has been thrown since

we cannot convert a String type to a Byte type.

6.8.3  �IndexOutOfRangeException Class
An index out of range exception is thrown when we attempt to reference an item

that is not within the bounds of an array or collection. We will learn more about

arrays and collections later in this book. Figure 6-11 shows an example of using the

IndexOutOfRangeException class to catch an index out of range exception.

Chapter 6 Assignment Operations

140

Notice at 01 that an array of strings called strNameArray has been declared that

contains three elements. The element at index 0 contains Bill, the element at index 1

contains Mary, and the element at index 2 contains Steve.

Notice at 02 the Try part of the Try-Catch-Finally structure, which contains the

assignment statement that will be tested for an index out of range exception. If an index

out of range exception is not thrown, processing will continue after the lookup, and the

message will be set to The lookup was successful.

Notice at 03 the Catch part of the Try-Catch-Finally structure. This part of the

structure contains an IndexOutOfRangeException object. We have given this object the

alias “Exception” so that we can refer to the object in shorthand. As can be seen, if an

index out of range exception is thrown, the message will be set to The lookup was NOT

successful. In addition, the Message property of the Exception object, which describes

the current exception, will be appended to the end of the message.

Notice at 04 the Finally part of the Try-Catch-Finally structure. The code inside this part

of the structure will be executed whether or not an exception is thrown. Thus, the message

will always end with Thank you. The result of the Try-Catch-Finally code is shown at the

bottom of the figure. Notice that an index out of range exception has been thrown since we

cannot refer to an array element at index 5 when the only valid indexes are 0, 1, and 2.

Figure 6-11.  Example of using the IndexOutOfRangeException class to catch an
index out of range exception

Chapter 6 Assignment Operations

141

6.8.4  �OverflowException Class
An overflow exception is thrown when we attempt to perform an arithmetic, casting, or

conversion operation that results in a value that is too large or too small to fit into the

assigned variable. Figure 6-12 shows an example of using the OverflowException class to

catch an overflow exception.

Notice at 01 that i32Number has been set to 256 to set up our overflow exception.

An overflow exception will be thrown in this scenario because 256 is too large to fit into

a variable of type Byte (i.e., an 8-bit unsigned integer). Note that if we set i32Number

to -12, an overflow exception would also be thrown because -12 is too small to fit into a

variable of type Byte.

Notice at 02 the Try part of the Try-Catch-Finally structure, which contains the

assignment statement that will be tested for an overflow exception. If an overflow

exception is not thrown, processing will continue after the assignment, and the message

will be set to The assignment was successful.

Notice at 03 the Catch part of the Try-Catch-Finally structure. This part of the

structure contains an OverflowException object. We have given this object the alias

“Exception” so that we can refer to the object in shorthand. As can be seen, if an overflow

exception is thrown, the message will be set to The assignment was NOT successful. In

addition, the Message property of the Exception object, which describes the current

exception, will be appended to the end of the message.

Notice at 04 the Finally part of the Try-Catch-Finally structure. The code inside this

part of the structure will be executed whether or not an exception is thrown. Thus, the

message will always end with Thank you. The result of the Try-Catch-Finally code is

shown at the bottom of the figure. Notice that an overflow exception has been thrown

since we cannot assign a value to a Byte type that is not between 0 and 255.

Chapter 6 Assignment Operations

142

6.8.5  �Multiple Exceptions
It is also possible to test for multiple exceptions in one Try-Catch-Finally structure—

both specific and unanticipated exceptions. We have already learned how to catch some

specific exceptions (e.g., divide by zero exceptions, format exceptions, index out of range

exceptions, overflow exceptions). However, we have not yet discussed how to catch

exceptions that we do not anticipate. To do this, we use the Exception class as a “catch

all” to catch any unanticipated exceptions. One thing that is important to remember is

that the Exceptions class catches all exceptions, including all of the specific exceptions.

Because of this, it is important to test for any specific exceptions first so that when they

are thrown, we can catch and handle them in a way that is appropriate for those types

of exceptions. Then, if none of the specific exceptions are thrown, we can catch any

unanticipated exceptions that are thrown using the Exceptions class. Figure 6-13 shows

an example of catching multiple exceptions in a single Try-Catch-Finally structure.

Notice at 01 that txtNumber.Text (presumably entered by the end user via a TextBox

control) has been set to 256 to set up an overflow exception. (Had the end user entered

abc into the TextBox control, a format exception would be thrown.)

Figure 6-12.  Example of using the OverflowException class to catch an overflow
exception

Chapter 6 Assignment Operations

143

Notice at 02 the Try part of the Try-Catch-Finally structure. As can be seen, the value

entered into the text box is being converted to a Byte type. If an overflow exception is not

thrown, processing will continue after the assignment, and the message will be set to The

conversion and assignment were successful.

Notice at 03 the first Catch part of the Try-Catch-Finally structure. This part of

the structure contains a FormatException object. We have given this object the alias

“Exception” so that we can refer to the object in shorthand. As can be seen, if a format

exception is thrown, the message will be set to The conversion was NOT successful. In

addition, the Message property of the Exception object, which describes the current

exception, will be appended to the end of the message.

Notice at 04 the second Catch part of the Try-Catch-Finally structure. This part of

the structure contains an OverflowException object. We have given this object the alias

“Exception” so that we can refer to the object in shorthand. As can be seen, if an overflow

exception is thrown, the message will be set to The assignment was NOT successful. In

addition, the Message property of the Exception object, which describes the current

exception, will be appended to the end of the message.

Notice at 05 the third Catch part of the Try-Catch-Finally structure. This part of the

structure contains an Exception object. We have given this object the alias “Exception”

to be consistent with the aliases of the other Exception objects. This is the “catch all”

exception handler that will catch any unanticipated exceptions. Thus, if an exception

other than a format exception or an overflow exception is thrown, the message will

be set to Something else was NOT successful. In addition, the Message property of the

Exception object, which describes the current exception, will be appended to the end of

the message.

Notice at 06 the Finally part of the Try-Catch-Finally structure. The code inside this

part of the structure will be executed whether or not an exception is thrown. Thus, the

message will always end with Thank you. The result of the Try-Catch-Finally code is

shown at the bottom of the figure. Notice that an overflow exception has been thrown

since we cannot assign a value to a Byte type that is not between 0 and 255.

Chapter 6 Assignment Operations

144

Figure 6-13.  Example of catching multiple exceptions in a single Try-Catch-
Finally structure

Chapter 6 Assignment Operations

145
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_7

CHAPTER 7

Conversion Operations
7.1	 �Introduction
A conversion operation alters the value in a variable of one type so that it can be used

in a variable of another type. Conversions can be widening or narrowing. A widening

conversion always preserves the value of the source variable since the target variable can

fully accommodate the range of possible values of the source variable. Thus, this type of

conversion always succeeds during program execution because it cannot result in the

loss of data. A narrowing conversion, on the other hand, may not preserve the value of

the source variable since the target variable cannot fully accommodate the entire range

of possible values of the source variable. Thus, this type of conversion may not succeed

during program execution since an OverflowException may occur.

In this chapter, we will begin by looking at widening conversions. As we will see,

widening conversions are performed automatically in a C# program since data cannot

be lost in the conversion. Such conversions are performed implicitly (i.e., special

syntax is not required for the conversion to take place). Next, we will discuss narrowing

conversions, which are not performed automatically in a C# program since data can be

lost in the conversion. These conversions are performed explicitly (i.e., special syntax is

required for the conversion to take place). And finally, we will discuss the Convert class.

This static class converts the value in a variable of one type so that it can be used in a

variable of another type.

7.2	 �Widening Conversions
A widening conversion (a.k.a., an implicit conversion or coercion) can be performed

whenever the target type can fully accommodate the range of possible values of the

source type. Thus, widening conversions can always be performed implicitly. For

example, a widening conversion can be performed when we want to convert an Int16

146

(i.e., a 16-bit signed integer) to an Int32 (i.e., a 32-bit signed integer) or when we want to

convert an Int32 (i.e., a 32-bit signed integer) to a Double (i.e., a 64-bit double-precision

floating-point number).

Widening conversions require no special syntax and are automatically performed

because no data can be lost in the conversion—that is, no data will be rounded off (in

the case of converting from a less precise type to a more precise type) or truncated (in

the case of converting from a smaller magnitude type to a larger magnitude type). Such

conversions are said to be type safe.

Table 7-1 shows the list of widening numeric conversions. Notice in the table

that there are no widening conversions to the Char type. Nor are there any widening

conversions between the Single and Double types and the Decimal type. Keep in mind

that precision (but not magnitude) can be lost when converting from Int32, UInt32,

Int64, or UInt64 to Single and from Int64 or UInt64 to Double.

Table 7-1.  List of widening numeric conversions

.NET Type Description Can be implicitly converted to…

Boolean A Boolean value (true or false). NA

Byte An 8-bit unsigned integer. Int16, UInt16, Int32, UInt32, Int64, UInt64, Single,

Double, Decimal

Char A Unicode (16-bit) character. UInt16, Int32, UInt32, Int64, UInt64, Single, Double,

Decimal

Decimal A decimal (128-bit) value. NA

Double A double-precision (64-bit)

floating-point number.

NA

Int16 A 16-bit signed integer. Int32, Int64, Single, Double, Decimal

Int32 A 32-bit signed integer. Int64, Single, Double, Decimal

Int64 A 64-bit signed integer. Single, Double, Decimal

Sbyte An 8-bit signed integer. Int16, Int32, Int64, Single, Double, Decimal

Single A single-precision (32-bit)

floating-point number.

Double

(continued)

Chapter 7 Conversion Operations

147

Widening conversions can also occur when a mathematical expression that

contains a mixture of numeric variables of differing type precisions and/or magnitudes

is evaluated. When this is the case, the operands with less precise types or smaller

magnitude types are automatically converted to the most precise type or largest

magnitude type used in the expression before the expression is evaluated. Figure 7-1

shows some examples of widening conversions.

Notice at 01 and 02 that smaller magnitude types are being implicitly converted to

larger magnitude types.

Notice at 03 and 04 that less precise types are being implicitly converted to more

precise types. As can be seen at 04, not all floating-point numbers can be represented

exactly in binary. This is why the single-precision value 12345.56789f is represented

by the double-precision value 12345.568359375, which is a close approximation of

12345.56789f.

Notice at 05 that i16Number2 and i16Number3 (both 16-bit signed integers) are

being implicitly converted to the same type as dblNumber1 (a double-precision 64-bit

floating-point number) before the evaluation of the expression.

.NET Type Description Can be implicitly converted to…

UInt16 A 16-bit unsigned integer. Int32, UInt32, Int64, UInt64, Single, Double, Decimal

UInt32 A 32-bit unsigned integer. Int64, UInt64, Single, Double, Decimal

UInt64 A 64-bit unsigned integer. Single, Double, Decimal

Reference

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/

keywords/implicit-numeric-conversions-table

Table 7-1.  (continued)

Chapter 7 Conversion Operations

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/implicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/implicit-numeric-conversions-table

148

7.3	 �Narrowing Conversions
A narrowing conversion (a.k.a., an explicit conversion or cast) must be performed whenever

the target type cannot fully accommodate the range of possible values of the source type.

Thus, narrowing conversions must always be performed explicitly. For example, a narrowing

conversion must be performed when we want to convert an Int32 (i.e., a 32-bit signed

integer) to an Int16 (i.e., a 16-bit signed integer) or when we want to convert a Double (i.e., a

64-bit double-precision floating-point number) to an Int32 (i.e., a 32-bit signed integer).

Figure 7-1.  Examples of widening conversions

Chapter 7 Conversion Operations

149

Narrowing conversions require special syntax and are not automatically performed

since data can be lost in the conversion. To be more specific, data can be rounded

toward zero to the nearest integer (e.g., when converting from a decimal type to an

integer type), or data can be truncated (e.g., when converting from a double or single

type to an integer type). Such conversions are not type safe.

In C#, narrowing conversions require the use of a cast operator. A cast operator takes

the form of a type between two parentheses. For example, to cast a variable of type Single

to a variable of type SByte, we would need to include (SByte) immediately before the

Single variable to be assigned to the SByte variable like

sbyNumber = (SByte)sinNumber;

When we use a cast operator, we are telling the compiler that we want to force a

conversion from a wider type to a narrower type and that we are aware of the fact that data

might be lost in the process. When casting one type to another type, keep in mind that

•	 When a decimal type is cast to an integer type, the decimal value will be

rounded toward zero to the nearest integer. If the resulting integer value

lies outside the range of the integer type, an OverflowException will

occur.

•	 When a double or single type is cast to an integer type, the double or

single value will be truncated. If the resulting integer value lies outside

the range of the integer type, an OverflowException will occur.

•	 When a double type is cast to a single type, the double value will be

rounded to the nearest single value. If the double value is too small to fit

into the single type, the single value will be zero. If the double value is

too large to fit into the single type, the single value will be infinity.

•	 When a single or double type is cast to a decimal type, the single or

double value will be rounded to the nearest decimal number (after

the 28th decimal place if necessary). If the single or double value is

too small to be represented as a decimal type, the decimal value

will be zero. If the single or double value is not a number (NaN),

is infinity, or is too large to be represented as a decimal type, an

OverflowException will occur.

•	 When a decimal type is cast to a single or double type, the decimal

value will be rounded to the nearest double or single value.

Chapter 7 Conversion Operations

150

Table 7-2 shows the list of narrowing numeric conversions. Notice in the table that

the Boolean type cannot be explicitly converted to another type.

Table 7-2.  List of narrowing numeric conversions

.NET Type Description Can be explicitly converted to…

Boolean A Boolean value (true or false). NA

Byte An 8-bit unsigned integer. SByte, Char

Char A Unicode (16-bit) character. SByte, Byte, Int16

Decimal A decimal (128-bit) value. SByte, Byte, Int16, UInt16, Int32, UInt32, Int64,

UInt64, Char, Single, Double

Double A double-precision (64-bit)

floating-point number.

SByte, Byte, Int16, UInt16, Int32, UInt32, Int64,

UInt64, Char, Single, Decimal

Int16 A 16-bit signed integer. SByte, Byte, UInt16, UInt32, UInt64, Char

Int32 A 32-bit signed integer. SByte, Byte, Int16, UInt16, UInt32, UInt64, Char

Int64 A 64-bit signed integer. SByte, Byte, Int16, UInt16, Int32, UInt32, UInt64,

Char

Sbyte An 8-bit signed integer. Byte, UInt16, UInt32, UInt64, Char

Single A single-precision (32-bit)

floating-point number.

SByte, Byte, Int16, UInt16, Int32, UInt32, Int64,

UInt64, Char, Decimal

UInt16 A 16-bit unsigned integer. SByte, Byte, Int16, Char

UInt32 A 32-bit unsigned integer. SByte, Byte, Int16, UInt16, Int16, Char

UInt64 A 64-bit unsigned integer. SByte, Byte, Int16, UInt16, Int32, UInt32, Int64, Char

Reference

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/

keywords/explicit-numeric-conversions-table

Chapter 7 Conversion Operations

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/explicit-numeric-conversions-table

151

Figure 7-2 shows some examples of narrowing conversions (i.e., casts).

Notice at 01 and 02 that larger magnitude types are being explicitly converted to

smaller magnitude types.

Notice at 03 and 04 that larger magnitude and more precise types are being explicitly

converted to smaller magnitude and less precise types. As can be seen at 04, the decimal

part of the number is truncated.

Notice at 05 that a larger magnitude signed type is being explicitly converted to a

smaller magnitude unsigned type. As can be seen, the sign is truncated, and the result

is strange. This underscores the importance of carefully testing code that contains

casting.

Notice at 06 that a larger magnitude type is being explicitly converted to a smaller

magnitude type, but the smaller magnitude type is too small to accommodate the larger

magnitude type. Note that no overflow error occurs in this scenario, and the result is

strange. Again, this underscores the importance of carefully testing code that contains

casting.

Chapter 7 Conversion Operations

152

Figure 7-2.  Examples of narrowing conversions

Chapter 7 Conversion Operations

153

7.4	 �Convert Class
The Convert class is a static class that converts the value in a variable of one type so that

it can be used in a variable of another type. Supported types include Boolean, Byte, Char,

DateTime, Decimal, Double, Int16, Int32, Int64, SByte, Single, String, UInt16, UInt32, and

UInt64. Depending on the value in the source variable and the precision and magnitude

of the target value, five things can happen when invoking a method of the Convert class.

These are

•	 No conversion is performed. This occurs when we attempt to convert

a variable of one type to a variable of the same type (e.g., converting

a Double to a Double). In this case, the method simply returns the

value of the source variable.

•	 A successful conversion is performed. This occurs when a widening

conversion is performed or when a narrowing conversion is

performed without the loss of data. In either case, the method returns

a value identical to that in the source variable. A conversion is also

considered successful when the conversion only results in the loss of

precision (e.g., the loss of decimal points due to rounding).

•	 A FormatException is thrown. This occurs when we attempt to

convert a String type to another type, and the value of the string is not

in an appropriate format. A FormatException is thrown when a String

type to be converted to a

•	 Boolean type does not equal “True” or “False”

•	 Char type consists of multiple characters

•	 DateTime type is not a valid date and time

•	 Numeric type is not a valid number

•	 An InvalidCastException is thrown. This occurs when we

attempt to perform a conversion that doesn’t make sense. An

InvalidCastException is thrown when we attempt to convert from

•	 Char to Boolean, DateTime, Decimal, Double, or Single

•	 Boolean, DateTime, Decimal, Double, or Single to Char

Chapter 7 Conversion Operations

154

•	 DateTime to any other type (except String)

•	 Any other type (except String) to DateTime

•	 An OverflowException is thrown. This occurs when we attempt to

perform a narrowing conversion that results in the loss of data (e.g.,

converting a UInt16 with a value of 256 to a Byte, the latter of which

can only store values up to 255).

Table 7-3 shows some of the properties, methods, and events of the Convert class. In

the table, the term Valuetype represents any of the value types supported in .NET. Note

that both widening and narrowing conversions are supported.

Table 7-3.  Some of the properties, methods, and events of the Convert class

Class Convert1

Namespace System

Properties

NA

Methods

ToBoolean(Valuetype) Converts the value of the specified value type to an equivalent Boolean

value.

ToByte(Valuetype) Converts the value of the specified value type to an equivalent 8-bit

unsigned integer.

ToChar(Valuetype) Converts the value of the specified value type to an equivalent Unicode

character.

ToDateTime(Valuetype) Converts the value of the specified value type to an equivalent date and

time value.

ToDecimal(Valuetype) Converts the value of the specified value type to an equivalent decimal

number.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 7 Conversion Operations

155

Table 7-3.  (continued)

ToDouble(Valuetype) Converts the value of the specified value type to an equivalent double-

precision floating-point number.

ToInt16(Valuetype) Converts the value of the specified value type to an equivalent 16-bit

signed integer.

ToInt32(Valuetype) Converts the value of the specified value type to an equivalent 32-bit

signed integer.

ToInt64(Valuetype) Converts the value of the specified value type to an equivalent 64-bit

signed integer.

ToSByte(Valuetype) Converts the value of the specified value type to an equivalent 8-bit

signed integer.

ToSingle(Valuetype) Converts the value of the specified value type to an equivalent single-

precision floating-point number.

ToString(Valuetype) Converts the value of the specified value type to an equivalent string

representation.

ToUInt16(Valuetype) Converts the value of the specified value type to an equivalent 16-bit

unsigned integer.

ToUInt32(Valuetype) Converts the value of the specified value type to an equivalent 32-bit

unsigned integer.

ToUInt64(Valuetype) Converts the value of the specified value type to an equivalent 64-bit

unsigned integer.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/system.convert(v=vs.110).aspx

Chapter 7 Conversion Operations

https://msdn.microsoft.com/en-us/library/system.convert(v=vs.110).aspx

156

It is important to exercise caution when deciding whether to use a narrowing

conversion (i.e., a cast) or a seemingly equivalent Convert class method when converting

from a more precise numeric type to a less precise numeric type. This is because

numeric casts truncate, whereas numeric conversions round to the nearest even number.

In C#, decimal values that end in 5 are, by default, rounded up or down to the nearest

even value during the rounding process depending on the number being rounded. For

example, the numbers 1.5 and 3.5 would be rounded up to 2 and 4, respectively, whereas

the numbers 2.5 and 4.5 would be rounded down to 2 and 4, respectively. Thus, rounding

to an odd value would never occur. This approach follows the standard banker’s

rounding convention. The reason given for using this particular method of rounding

is that it avoids roundup bias when rounding a large set of numbers. Figure 7-3 shows

some examples of converting one type to another type. As can be seen, there are both

widening and narrowing conversions being performed.

Notice at 01–03 that smaller magnitude types are being converted to larger

magnitude types.

Notice at 04 that a smaller magnitude type is being converted to a larger magnitude

type as well. Note that not all floating-point numbers can be represented exactly in

binary. This is why the single-precision value 7.1234f is represented by the double-

precision value 7.1234002113342285, which is a close approximation of 7.1234f.

Notice at 05–09 that larger magnitude types are being converted to smaller

magnitude types.

Notice at 10 that a larger magnitude type is being converted to a smaller magnitude

type as well. Note that the result is rounded according to the rules of banker's rounding.

Chapter 7 Conversion Operations

157

Figure 7-3.  Examples of converting one type to another type

Chapter 7 Conversion Operations

158

Having the end user enter a value into a TextBox control and then converting that

input (which is stored in the Text property of the control as a String type) to another

type is a very common operation in ASP.NET Web applications. This is because we must

often use that input in a non-string operation (e.g., a numeric computation) in the code

behind. Figure 7-4 shows some examples of converting the Text property of a TextBox

control to another type.

Notice at 01 and 02 that a single step is required for the conversion.

Notice at 03–06, however, that two steps are required for the conversion. In these

examples, notice the significant potential for exception throwing due to the possibility

of bad data being entered by the end user. This underscores the importance of the data

validation techniques discussed in Chapter 5, titled “Data Validation Controls,” and the

exception handling techniques discussed in Chapter 6, titled “Assignment Operations.”

Figure 7-3.  (continued)

Chapter 7 Conversion Operations

159

Figure 7-4.  Examples of converting the Text property of a TextBox control to
another type

Chapter 7 Conversion Operations

161
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_8

CHAPTER 8

Control Operations
8.1	 �Introduction
Control operations fall into two general categories—decision operations (a.k.a., selection

operations, condition operations) and iterative operations (a.k.a., repeating operations,

looping operations). Decision operations alter the path of a program’s execution based

on the truth or falseness of a relational, equality, and/or logical operation when multiple

paths through a program are required. Iterative operations, on the other hand, execute

a block of code repeatedly while or until a certain condition (i.e., a relational, equality,

and/or logical condition) is true. Decision operations and iterative operations are so

fundamental to computer programming that every procedural/imperative programming

language requires such operations—regardless of their syntax.

In this chapter, we will begin by looking at the four relational operators. These are

the less than operator, the greater than operator, the less than or equal to operator, and

the greater than or equal to operator. Next, we will discuss the two equality operators—

the equal to operator and the not equal to operator. After that, we will consider several

logical operators, including the And operator, the Or operator, the Conditional And

operator, the Conditional Or operator, and the Xor operator. We will then look at a

number of decision structures, including the If structure, the If-Else structure, the If-

Else-If structure, the Nested-If structure, the Switch structure, and the Switch-Through

structure. Next, we will look at several iterative structures, including the While structure,

the Do-While structure, the For structure, and the For-Each structure. And finally, we

will consider two C# statements that permit us to alter the execution of the iterative

structures discussed in the chapter—namely, the Break statement and the Continue

statement.

162

8.2	 �Relational Operators
There are four fundamental relational operators. These are the less than operator (<), the

greater than operator (>), the less than or equal to operator (<=), and the greater than or

equal to operator (>=). A relational operation contains an operator and two operands.

The general syntax of a relational operation in the C# programming language is

(Operand1 Operator Operand2);

The < operator returns true if Operand1 is less than Operand2. Otherwise, false is

returned. The > operator returns true if Operand1 is greater than Operand2. Otherwise,

false is returned. The <= operator returns true if Operand1 is less than or equal to

Operand2. Otherwise, false is returned. And, the >= operator returns true if Operand1

is greater than or equal to Operand2. Otherwise, false is returned. As with any other

operator in C#, there is an order of precedence in play when multiple operators are

evaluated as a whole. This order of precedence defines the sequence in which the

operations are evaluated. Table 8-1 shows the fundamental relational operators listed by

their order of precedence.

Table 8-1.  Fundamental relational operators listed by their order of precedence

Operator Description Comment

x < y Less than True if x is less than y. Otherwise, false.

x > y Greater than True if x is greater than y. Otherwise, false.

x <= y Less than or equal to True if x is less than or equal to y. Otherwise, false.

x >= y Greater than or equal to True if x is greater than or equal to y. Otherwise, false.

8.3	 �Equality Operators
There are two equality operators. These are the equal to operator (==) and the not equal

to operator (!=). An equality operation contains an operator and two operands. The

general syntax of an equality operation in the C# programming language is

(Operand1 Operator Operand2);

Chapter 8 Control Operations

163

The == operator returns true if Operand1 is equal to Operand2. Otherwise, false is

returned. The != operator returns true if Operand1 is not equal to Operand2. Otherwise,

false is returned. As with any other operator in C#, there is an order of precedence in

play when multiple operators are evaluated as a whole. This order of precedence defines

the sequence in which the operations are evaluated. Table 8-2 shows some equality

operators listed by their order of precedence.

Table 8-2.  Equality operators listed by their order of precedence

Operator Description Comment

x == y Equal to True if x is equal to y. Otherwise, false.

x != y Not equal to True if x is not equal to y. Otherwise, false.

8.4	 �Logical Operators
Logical operators permit us to construct compound conditions. A compound condition

is composed of two or more conditions that are evaluated as a whole. There are two

fundamental logical operators. These are the And operator (&) and the Or operator (|).

In addition to these, there is a conditional And operator (&&), a conditional Or operator

(||), and an Xor operator (^). A logical operation contains an operator and two or more

conditions, where the conditions are relational operations and/or equality operations.

The general syntax of a logical operation in the C# programming language is

(Condition1 Operator Condition2 [Operator Condition3...]);

where Condition1 Operator Condition2 is required and [Operator Condition3...] is

optional. The ellipse indicates that additional operators and conditions are permitted

as well.

The & operator returns true if Condition1 and Condition2 are both true. Otherwise,

false is returned. The | operator returns true if Condition1 or Condition2 is true.

Otherwise, false is returned. The && operator returns true if Condition1 and Condition2

are both true. Otherwise, false is returned. However, Condition2 will not be evaluated

if Condition1 is not true. Thus, this operator is referred to as the shortcut And operator.

The || operator returns true if Condition1 or Condition2 is true. Otherwise, false is

returned. However, Condition2 will not be evaluated if Condition1 is true. Thus, this

operator is referred to as the shortcut Or operator. And finally, the ^ operator returns true

Chapter 8 Control Operations

164

if Condition1 or Condition2 is true, but both are not true. Otherwise, false is returned.

As with any other operator in C#, there is an order of precedence in play when multiple

operators are evaluated as a whole. This order of precedence defines the sequence in

which the operations are evaluated. Table 8-3 shows some logical operators listed by

their order of precedence.

Table 8-3.  Logical operators listed by their order of precedence

Operator Description Comment

x & y And True if x and y are both true. Otherwise, false.

x | y Or True if x or y is true. Otherwise, false.

x && y Conditional And True if x and y are both true. Otherwise, false. Do not evaluate y if x is

not true.

x || y Conditional Or True if x or y is true. Otherwise, false. Do not evaluate y if x is true.

x ^ y Xor True if x or y is true, but both are not true. Otherwise, false.

8.5	 �Decision Structures
Decision structures (a.k.a., selection structures, condition structures) alter the path

of a program’s execution based on the truth or falseness of a relational, equality, and/

or logical operation when multiple paths through a program are possible. When a

given relational, equality, and/or logical operation evaluates to true, a block of code is

executed. When it evaluates to false, either no block of code is executed or a different

block of code is executed. In this section, we will look at the If structure, the If-Else

structure, the If-Else-If structure, the Nested-If structure, the Switch structure, and the

Switch-Through structure.

8.5.1  �If Structure
An If structure (a.k.a., If statement) identifies the condition (or conditions) under which

a single block of code (i.e., one or more imperative programming statements) will be

executed. The general syntax of the If structure in the C# programming language is

Chapter 8 Control Operations

165

if (Condition)

{

 Block of code

}

Notice that one alternative program path is possible when an If structure is

employed. As can be seen, if the condition evaluates to true, the block of code will be

executed. If the condition evaluates to false, the block of code will not be executed. In

either case, program flow will continue at the point immediately after the last bracket of

the If structure. Figure 8-1 shows an example of the If structure with a relational operator.

Figure 8-1.  Example of the If structure with a relational operator

Figure 8-2 shows an example of the If structure with an equality operator.

Figure 8-2.  Example of the If structure with an equality operator

Chapter 8 Control Operations

166

Figure 8-3 shows an example of the If structure with an Or operator.

Figure 8-3.  Example of the If structure with an Or operator

Figure 8-4 shows an example of the If structure with a conditional And operator.

Notice at 01 that if the first condition evaluates to false, the second condition will not

be evaluated, thus improving program efficiency.

Figure 8-4.  Example of the If structure with a conditional And operator

Chapter 8 Control Operations

167

8.5.2  �If-Else Structure
An If-Else structure (a.k.a., If-Else statement) identifies the condition (or conditions)

under which two distinct blocks of code (i.e., one or more imperative programming

statements) will be executed. The general syntax of the If-Else structure in the C#

programming language is

if (Condition)

{

 Block of code 1

}

else

{

 Block of code 2

}

Notice that two alternative program paths are possible when an If-Else structure is

employed. As can be seen, if the condition evaluates to true, the first block of code will be

executed. If the condition evaluates to false, the second block of code will be executed.

In either case, program flow will continue at the point immediately after the last bracket

of the If-Else structure. Figure 8-5 shows an example of the If-Else structure.

Figure 8-5.  Example of the If-Else structure

Chapter 8 Control Operations

168

8.5.3  �If-Else-If Structure
An If-Else-If structure (a.k.a., If-Else-If statement) identifies the condition (or conditions)

under which two or more distinct blocks of code (i.e., one or more imperative

programming statements) will be executed. The general syntax of the If-Else-If structure

in the C# programming language is

if (Condition 1)

{

 Block of code 1

}

else if (Condition 2)

{

 Block of code 2

}

else

{

 Block of code 3

}

Notice that at least two alternative program paths are possible when an If-Else-If

structure is employed, since a matching Else may not be required for a given If condition.

As can be seen, if the first condition evaluates to true, the first block of code will be

executed. Otherwise, if the second condition evaluates to true, the second block of code

will be executed. Otherwise, the third block of code will be executed. In all three cases,

program flow will continue at the point immediately after the last bracket of the If-Else-If

structure. Keep in mind that more than one else if condition can be included in a single

If-Else-If structure. Figure 8-6 shows an example of the If-Else-If structure.

Chapter 8 Control Operations

169

8.5.4  �Nested-If Structure
A Nested-If structure (a.k.a., Nested-If statement) identifies the condition (or conditions)

under which two or more distinct blocks of code (i.e., one or more imperative

programming statements) will be executed. The general syntax of the Nested-If structure

in the C# programming language is

if (Condition 1)

{

 Block of code 1

 if (Condition 2)

 {

 Block of code 2

 }

}

CODE BEHIND

// Declare the variables.
const Double dblDiscountRateStandard = 0.10;
const Double dblDiscountRateSelect = 0.20;
const Double dblDiscountRatePreferred = 0.30;
Double dblSubtotal = 100;
String strCustomerType = "Select";

// Apply the discount rate based on the type of customer.
if (strCustomerType == "Standard")
{

dblSubtotal = dblSubtotal * (1 - dblDiscountRateStandard);
}
else if (strCustomerType == "Select")
{

dblSubtotal = dblSubtotal * (1 - dblDiscountRateSelect);
}
else if (strCustomerType == "Preferred")
{

dblSubtotal = dblSubtotal * (1 - dblDiscountRatePreferred);
}
else
{

// Do not apply a discount.
}
// dblSubtotal = 80

Figure 8-6.  Example of the If-Else-If structure

Chapter 8 Control Operations

170

Notice that two alternative program paths are possible when a Nested-If structure is

employed. As can be seen, if the first condition evaluates to true, the first block of code

(which includes a second condition) will be executed. If the second condition evaluates

to true, the second block of code will be executed. In either case, program flow will

continue at the point immediately after the last bracket of the Nested-If structure. Keep

in mind that any of the If structures discussed in this section (i.e., If, If-Else, and If-Else-If

structures) can be nested. Figure 8-7 shows an example of the Nested-If structure. Notice

in this particular example that the Nested-If structure nests two If-Else-If structures.

Figure 8-7.  Example of the Nested-If structure

Chapter 8 Control Operations

171

8.5.5  �Switch Structure
A Switch structure (a.k.a., Switch statement) identifies the condition (or conditions)

under which one or more distinct blocks of code (i.e., one or more imperative

programming statements) will be executed. The general syntax of the Switch structure in

the C# programming language is

switch (Expression)

{

 case Matched Expression 1

 Block of code 1

 case Matched Expression 2 (optional)

 Block of code 2

 default (optional)

 Block of code 3

}

}
else if (strCustomerType == "Select")
{

dblSubtotal = dblSubtotal * (1 - dblDiscountRateSelect);
}
else if (strCustomerType == "Preferred")
{

dblSubtotal = dblSubtotal * (1 - dblDiscountRatePreferred);
}
else
{

// Do not apply a discount.
}

}
// dblSubtotal = 60

else
{

// Apply the discount rate based on the type of customer.
if (strCustomerType == "Standard")
{

dblSubtotal = dblSubtotal * (1 - dblDiscountRateStandard);

Figure 8-7.   (continued)

Chapter 8 Control Operations

172

Notice that at least one alternative program path is possible when a Switch structure

is employed, since neither a second case nor a default case may be required. As can be

seen, if the first case matches the expression, the first block of code will be executed.

Otherwise, if the second case matches the expression, the second block of code will be

executed. Otherwise, the third block of code will be executed. In all cases, program flow

will continue at the point immediately after the last bracket of the Switch structure.

There are several things to remember about the Switch structure. First, any number

of cases can be included in a single Switch structure. Second, cases are always evaluated

in order from top to bottom, except for the default case, which is always evaluated last.

Third, only one case is executed. Fourth, the block of code that is executed within a case

always ends with a break statement. And fifth, the Switch structure is often used as an

alternative to the If-Else-If structure when a single expression is evaluated with two or

more cases. This is because the Switch structure is easier to read and maintain than

the If-Else-If structure—as we will see in a moment. Figure 8-8 shows an example of

the Switch structure. Notice how much cleaner the Switch structure in the figure looks

compared to the equivalent If-Else-If structure in Figure 8-6.

Figure 8-8.  Example of the Switch structure

Chapter 8 Control Operations

173

8.5.6  �Switch-Through Structure
The Switch-Through structure is not a different type of Switch structure. Instead, it is a

variation of the Switch structure just discussed. In fact, the Switch-Through structure

follows all the same rules of the Switch structure. The only difference is that the Switch-

Through structure permits us to execute the same block of code in multiple cases, thus

avoiding the need to write and maintain duplicate code. Figure 8-9 shows an example of

the Switch-Through structure.

Notice at 01 that a discount will not be applied when a customer purchases 1 to 3 items.

Notice at 02, 03, and 04, however, that a 10%, 20%, or 30% discount will be applied

when a customer purchases 4 to 6, 7 to 9, or 10 or more items, respectively.

Figure 8-9.  Example of the Switch-Through structure

Chapter 8 Control Operations

174

8.6	 �Iterative Structures
Iterative structures (a.k.a., repeating structures, looping structures) execute a block of

code repeatedly while or until a certain condition (i.e., a relational, equality, and/or

logical operation) is true. In this section, we will look at the While structure, the Do-

While structure, the For structure, and the For-Each structure. In addition, we will look

at two C# statements that permit us to alter the execution of the iterative structures

discussed in this chapter—namely, the Break statement and the Continue statement.

8.6.1  �While Structure
A While structure (a.k.a., While loop) identifies the condition (or conditions) under

which a block of code (i.e., one or more imperative programming statements) will be

executed repeatedly. The general syntax of the While structure in the C# programming

language is

while (Condition)

{

 Block of code

}

As can be seen, the While loop is a pretest loop. When a While loop is employed, the

block of code in the body of the loop will be executed as long as the condition remains

true. Since the condition is tested at the top of the While loop (i.e., before the block of

code is executed), the block of code can be executed zero or more times. If the condition

evaluates to true, the block of code will be executed. If the condition evaluates to false,

the block of code will not be executed, and program flow will continue at the point

immediately after the last bracket of the While loop. Figure 8-10 shows an example of the

While structure.

Notice at 01 the definition of an array that contains three customers.1

Notice at 02 the declaration and initialization of the variable used to control the

execution of the loop (i.e., i16Index).

Notice at 03 the postfix increment of i16Index. Observe that this postfix increment

may affect the truth or falseness of the loop condition, which is tested again at the top of

the loop after the body of the loop is executed.

1�See Chapter 12, titled “Array Operations,” for an explanation of this array definition.

Chapter 8 Control Operations

175

8.6.2  �Do-While Structure
A Do-While structure (a.k.a., Do-While loop, Do-Until loop) identifies the condition (or

conditions) under which a block of code (i.e., one or more imperative programming

statements) will be executed repeatedly. The general syntax of the Do-While structure in

the C# programming language is

do

{

 Block of code

} while (Condition)

As can be seen, the Do-While loop is a posttest loop. When a Do-While loop is

employed, the block of code in the body of the loop will be executed at least once and

then as long as the condition remains true. Since the condition is tested at the bottom of

the Do-While loop (i.e., after the block of code is executed), the block of code is executed

one or more times. If the condition evaluates to true, the block of code will be executed

again. If the condition evaluates to false, the block of code will not be executed again,

and program flow will continue at the point immediately after the last bracket of the Do-

While loop. Figure 8-11 shows an example of the Do-While structure.

Notice at 01 the definition of an array that contains three customers.2

2�See Chapter 12, titled “Array Operations,” for an explanation of this array definition.

CODE BEHIND

// Define an array of customers.
01 String[] strCustomerArray = new String[] {"Davis, Dan", "Jones, Jerry",

"Smith, Sally"};
02 Int16 i16Index = 0;

String strCustomerList = "";

// Add customers to the customer list while i16Index is less than or equal
// to 2.
while (i16Index <= 2)
{

strCustomerList = strCustomerList + strCustomerArray[i16Index] + "; ";
03 i16Index++;

}
// strCustomerList = "Davis, Dan; Jones, Jerry; Smith, Sally; "

Figure 8-10.  Example of the While structure

Chapter 8 Control Operations

176

Notice at 02 the declaration and initialization of the variable used to control the

execution of the loop (i.e., i16Index).

Notice at 03 the postfix increment of i16Index. Observe that this postfix increment

may affect the truth or falseness of the loop condition, which is tested again at the

bottom of the loop after the body of the loop is executed. And finally, notice that the first

customer was added to the customer list, even though i16Index was initialized to 0.

Figure 8-11.  Example of the Do-While structure

8.6.3  �For Structure
A For structure (a.k.a., For loop) identifies the condition (or conditions) under which a

block of code (i.e., one or more imperative programming statements) will be executed

repeatedly. The general syntax of the For structure in the C# programming language is

for (Initializer; Condition; Iterator)

{

 Block of code

}

As can be seen, the For loop is a pretest loop. When a For loop is employed, the

block of code in the body of the loop will be executed as long as the condition remains

true. Since the condition is tested at the top of the For loop (i.e., before the block of code

is executed), the block of code can be executed zero or more times. If the condition

Chapter 8 Control Operations

177

evaluates to true, the block of code will be executed. If the condition evaluates to false,

the block of code will not be executed, and program flow will continue at the point

immediately after the last bracket of the For loop.

The For loop is, essentially, a While loop with some special characteristics. Unlike

the While loop, which only contains a condition at the top of the loop, the For loop

contains an initializer, a condition, and an iterator at the top of the loop. The initializer

initializes the variable used to control the loop. This variable is local to the loop, so it

cannot be used outside the body of the loop. However, it can be used as desired inside

the body of the loop. The initializer is executed before any other part of the loop, and it

is executed only once—immediately before the condition is tested for the first time. The

iterator, on the other hand, defines what is to happen after the block of code in the body

of the loop is executed. Although other types of expressions can be used as iterators, they

usually take the form of a postfix increment (i++) or a postfix decrement (i--). For loops

are typically used when we know (or will know by the time the loop is encountered) the

number of times the block of code in the body of the loop should be executed, such as

when we need to iterate over all the elements of an array. Figure 8-12 shows an example

of the For structure.

Notice at 01 the definition of an array that contains five suppliers.3

Notice at 02 the top of the For structure. There are three things to notice here. The first

is the initialization of the variable used to control the execution of the loop (i.e., i = 0). As

can be seen, we have suspended the variable naming standards established earlier in this

book, since For structure indices have traditionally taken the form i, j, k, and so on. The

second is the condition of the loop. Notice that the code within the loop will continue to

execute while i is less than or equal to 4. And the third is the postfix increment of i. Observe

that this postfix increment may affect the truth or falseness of the loop condition, which is

tested again at the top of the loop after the body of the loop is executed.

3�See Chapter 12, titled “Array Operations,” for an explanation of this array definition.

Chapter 8 Control Operations

178

8.6.4  �For-Each Structure
A For-Each structure (a.k.a., For-Each loop) executes a block of code (i.e., one or more

imperative programming statements) for every item encountered in a collection of items

(e.g., an array, a queue, a linked list). The general syntax of the For-Each structure in the

C# programming language is

foreach (Item in Collection)

{

 Block of code

}

As can be seen, the For-Each loop is a pretest loop. When a For-Each loop is

employed, the block of code in the body of the loop will be executed as long as items

are encountered in the collection as the collection is being traversed from beginning to

end. Since the condition (i.e., there are still items to be processed) is tested at the top of

the For-Each loop (i.e., before the block of code is executed), the block of code can be

executed zero or more times. If the condition evaluates to true, the block of code will be

executed. If the condition evaluates to false, the block of code will not be executed, and

program flow will continue at the point immediately after the last bracket of the For-Each

loop.

Figure 8-12.  Example of the For structure

Chapter 8 Control Operations

179

The For-Each loop is similar to the For loop, except that the For-Each loop has no

explicit initializer (e.g., i = 0) or iterator (e.g., i++). Instead, the For-Each loop is initialized

and iterated implicitly. In other words, the For-Each loop always initializes to the first

item in the collection and always iterates through every item in the collection until no

more items are left to be traversed (or the loop is terminated prematurely). For-Each

loops are often used in place of For loops when there is a need to iterate over all the

items of a collection, since the For-Each loop requires no explicit initializer or iterator

and is, thus, easier to read and maintain. Figure 8-13 shows an example of the For-Each

structure.

Notice at 01 the definition of an array that contains five suppliers.4

Notice at 02 the top of the For-Each structure. There are two things to notice here.

The first is that no explicit initialization of a loop-controlling variable is being performed.

This is because the loop will always begin with the first item in the collection. The

second is that no explicit iteration of a loop-controlling variable is being performed.

This is because the loop will automatically move to the next item in the collection and

will terminate only after the last item in the collection is processed—unless the loop

is terminated prematurely. Observe that attempting to move to the next item in the

collection may affect the truth or falseness of the loop condition, which is tested again at

the top of the loop after the body of the loop is executed.

4�See Chapter 12, titled “Array Operations,” for an explanation of this array definition.

CODE BEHIND

// Define an array of suppliers.
01 String[] strSupplierArray = new String[] { "Adidas", "Babolat", "Head",

"Nike", "Prince" };
String strSupplierList = "";

// Add suppliers to the supplier list while suppliers remain in the array.
02 foreach (String strSupplier in strSupplierArray)

{
strSupplierList = strSupplierList + strSupplier + "; ";

}
// strSupplierList = "Adidas; Babolat; Head; Nike; Prince; "

Figure 8-13.  Example of the For-Each structure

Chapter 8 Control Operations

180

8.6.6  �Continue Statement
The Continue statement passes control to the next iteration of a loop. Whenever such

a statement is encountered in a loop, program flow is transferred directly back to the

condition of the loop, where it is evaluated again for truth or falseness. Any of the

iterative structures described in this chapter can pass control to the next iteration of

a loop using the Continue statement. Figure 8-15 shows an example of the Continue

statement.

8.6.5  �Break Statement
The Break statement prematurely terminates a loop. Whenever such a statement is

encountered in a loop, the loop is exited, and program flow continues at the point

immediately after the last bracket of the loop. Any of the iterative structures described

in this chapter can be prematurely terminated using the Break statement. Figure 8-14

shows an example of the Break statement. Notice 01 that a Break statement is being used

to terminate a For loop if i is not less than or equal to 2.

CODE BEHIND

// Define an array of suppliers.
String[] strSupplierArray = new String[] { "Adidas", "Babolat", "Head",

"Nike", "Prince" };
String strSupplierList = "";

// Add suppliers to the supplier list while i is less than or equal to 4
// or until 3 suppliers have been added to the supplier list.
for (Int16 i = 0; i <= 4; i++)
{

if (i <= 2)
{

strSupplierList = strSupplierList + strSupplierArray[i] + "; ";
}
else
{

01 break;
}

}
// strSupplierList = "Adidas; Babolat; Head; "

Figure 8-14.  Example of the Break statement

Chapter 8 Control Operations

181

Figure 8-15.  Example of the Continue statement

Notice at 01 that a Continue statement is being used to pass control to the next

iteration of a For loop if i is not evenly divisible by 2.

Chapter 8 Control Operations

183
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_9

CHAPTER 9

String Operations
9.1	 �Introduction
A string operation is a process that is performed on a String object. A String object is a

String type that has been instantiated from the String class—usually when a string literal

is assigned to it. As an example, consider the following String object declaration:

String strLastName = "Jones";

In this example, the newly instantiated String object is strLastName. Once this String

object is instantiated, we can use its methods to manipulate the string.

In this chapter, we will begin by looking at concatenations. Concatenations join two or

more separate items (including strings) so that they can be treated as a single item. Next,

we will discuss escape sequences, which permit us to include formatting information or

special characters in a string. After that, we will look at verbatim literals. Verbatim literals

allow us to add new lines, tabs, backslashes, and other formatting commands and special

characters to a string without using escape sequences. And finally, we will discuss the

String class, which permits us to perform many useful string manipulations.

9.2	 �Concatenations
The word concatenate comes from the Latin word concatenare, which means to link

together or join. Thus, to concatenate means to take two or more distinct items and

place them next to each other so that they can be treated as a single item. In computer

programming, the concatenation operation is often used to link two or more strings

together so that they can be utilized as a single string. Other types (e.g., Byte, Decimal,

Int32) can be concatenated with strings as well. Figure 9-1 shows some examples of

string concatenations. Notice in the figure that the plus sign (+) concatenates Strings

types and other types together.

184

9.3	 �Escape Sequences
An escape character is a character that changes the meaning of the character (or

characters) that follow it within a string. Thus, an escape character is treated as a

command in a string—not as data. In C#, the escape character is the backslash (\). An

escape sequence, on the other hand, is a series of characters that begins with the escape

character and ends with a character (or characters) that has a predefined meaning.

Such a sequence includes either formatting information or special characters. Common

escape sequences include

•	 \n to include a new line in a string

•	 \t to include a tab in a string

Figure 9-1.  Examples of string concatenations

Chapter 9 String Operations

185

•	 \\ to include a backslash in a string

•	 \” to include a quote in a string

Figure 9-2 shows some examples of escape sequences. Notice in these examples

that we are concatenating a number of strings and that some of them contain escape

sequences.

Figure 9-2.  Examples of escape sequences

Chapter 9 String Operations

186

9.4	 �Verbatim Literals
The word verbatim comes from the Latin word verbātim, which means “word for word”

or “in exactly the same form as the original.” Many programming languages permit the

declaration and use of verbatim literals. Verbatim literals allow us to add to new lines,

tabs, backslashes, and other formatting commands and special characters to a string

without using escape sequences. In C#, a verbatim literal always begins with an at sign

(@) and a double quote (”) and always ends with another double quote (”). Inside these

double quotes, we can format a string that will be treated (e.g., displayed) verbatim. That

is, we can format a string that will be treated exactly as it appears in the string. The only

exception to this is when we want to display a double quote itself. In this case, we must

enter two double quotes. Thus, the only special character in a verbatim literal is the

double quote character. Figure 9-3 shows some examples of verbatim literals.

Figure 9-3.  Examples of verbatim literals

9.5	 �String Class
The String class permits us to manipulate the string contained in a String object. The

string in a String object is zero based. Thus, the first character in the string is at position

zero, the second character in the string is at position one, and so on. Table 9-1 shows

some of the properties, methods, and events of the String class. Notice the number of

methods available to us via this class. Although there are many others, the methods

shown in the figure are used relatively frequently. Also notice that the methods of

the class return one of four things—a new string, a value indicating whether or not

something was found in the string, a zero-based index identifying the location of

something in the string, or an array of strings. In addition, notice that some of the

methods of the class require one or more parameters of type Int32. These parameters

must be nonnegative integers. Keep in mind that if we attempt to invoke the methods of

Chapter 9 String Operations

187

a String object that has been set to null, a NullReferenceException will be thrown. To test

for a String object that may have been set to null, we can use the static IsNullOrEmpty

method of the String class.

Table 9-1.  Some of the properties, methods, and events of the String class

Class String

Namespace System1

Properties

Length Gets the number of characters in the current String object.

Methods

Concat(String,  String) Concatenates two specified instances of String.

Contains(String) Returns a value indicating whether a specified substring occurs

within this string.

EndsWith(String) Determines whether the end of this string instance matches the

specified string.

IndexOf(String) Reports the zero-based index of the first occurrence of the

specified string in this instance.

Insert(Int32,  String) Returns a new string in which a specified string is inserted at a

specified index position in this instance.

IsNullOrEmpty(String) Indicates whether the specified string is null or an Empty string.

LastIndexOf(String) Reports the zero-based index position of the last occurrence of a

specified string within this instance.

PadLeft(Int32) Returns a new string that right aligns the characters in this

instance by padding them with spaces on the left, for a specified

total length.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 9 String Operations

188

Figure 9-4 shows some examples of the String class.

Table 9-1.  (continued)

PadRight(Int32) Returns a new string that left aligns the characters in this string

by padding them with spaces on the right, for a specified total

length.

Remove(Int32) Returns a new string in which all the characters in the current

instance, beginning at a specified position and continuing

through the last position, have been deleted.

Replace(String,  String) Returns a new string in which all occurrences of a specified

string in the current instance are replaced with another specified

string.

Split(String[ ],  StringSplitOptions) Splits a string into substrings based on the strings in an array.

You can specify whether the substrings include empty array

elements.

StartsWith(String) Determines whether the beginning of this string instance

matches the specified string.

Substring(Int32, I nt32) Retrieves a substring from this instance. The substring starts at a

specified character position and has a specified length.

ToLower() Returns a copy of this string converted to lowercase.

ToUpper() Returns a copy of this string converted to uppercase.

Trim() Removes all leading and trailing white-space characters from

the current String object.

Trim(Char[]) Removes all leading and trailing occurrences of a set of

characters specified in an array from the current String object.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx

Chapter 9 String Operations

https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx

189

Figure 9-4.  Examples of the String class

Chapter 9 String Operations

190

Figure 9-4.  (continued)

Chapter 9 String Operations

191

// Split the string up by " ", ",", and "." and
// place each word in an array.
Char[] chaSeparator = new Char[] {' ', ',', '.'};
String[] strMessageArray = new String[5];
String strMessage = "For today's special, see below.";
strMessageArray = strMessage.Split(chaSeparator,

StringSplitOptions.RemoveEmptyEntries);
// strMessageArray[0] = "For"
// strMessageArray[1] = "today's"
// strMessageArray[2] = "special"
// strMessageArray[3] = "see"
// strMessageArray[4] = "below"

// Check to see if the string begins with "Nike".
String strProduct = "Nike Flare Women's Shoe";
Boolean booNike = strProduct.StartsWith("Nike");
// booNike = true

// Extract characters from the string beginning at position
// 5 for a length of 2.
String strDate = "20xx-07-10";
String strMonth = strDate.Substring(5, 2);
// strMonth = "07"

// Force all of the characters in the string to lower case.
String strPasswordOld = "ABC123";
String strPasswordNew = strPasswordOld.ToLower();
// strPasswordNew = "abc123"

// Format the number as a string.
Decimal decPrice = 199.00m;
String strPrice = decPrice.ToString();
// strPrice = "199.00"

// Format the number as currency with the specified
// number of decimal places.
decPrice = 199.00m;
strPrice = decPrice.ToString("c2");
// strPrice = "$199.00"

// Format the number with the specified number of decimal places.
decPrice = 10.99m;
strPrice = decPrice.ToString("f4");
// strPrice = "10.9900"

Figure 9-4.   (continued)

Chapter 9 String Operations

192

Figure 9-4.   (continued)

Chapter 9 String Operations

193
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_10

CHAPTER 10

Arithmetic Operations
10.1  �Introduction
An arithmetic operation is a process that takes one or more input values (i.e., operands),

performs some kind of mathematical function with those values, and then assigns the

result to an output. The most basic arithmetic operations are addition, subtraction,

multiplication, and division. However, there are many more arithmetic operations,

including comparison operations (e.g., minimum, maximum), exponential operations

(e.g., kn), logarithmic operations (e.g., log2 n, ln n), magnitude operations (e.g., absolute

value), power operations (e.g., nk), radical operations (e.g., square root, cube root),

rounding operations (e.g., round, floor, ceiling, truncate), and trigonometric operations

(e.g., sine, cosine, tangent).

In this chapter, we will begin by looking at several arithmetic operators, including

the addition, subtraction, multiplication, division, modulo, postfix increment, postfix

decrement, prefix increment, and prefix decrement operators. Next, we will look at

the concept of order of precedence, which defines the sequence in which multiple

arithmetic operations are performed in a single mathematical expression. We will also

discuss the concept of associativity, which defines the sequence in which multiple

arithmetic operations are performed in a single mathematical expression—when two

or more arithmetic operators have the same order of precedence. After that, we will

consider parentheses. Parentheses make the intent of a multiple-operator mathematical

expression easier to understand, and they override the default order of precedence

or associativity. And finally, we will look at the Math class, which is a powerful static

class that permits us to perform comparison operations, exponential operations,

logarithmic operations, magnitude operations, power operations, radical operations,

rounding operations, trigonometric operations, and many other common mathematical

operations very easily.

194

10.2  �Arithmetic Operators
An arithmetic operator invokes a mathematical operation. All imperative programming

languages contain at least a minimal set of arithmetic operators, including addition,

subtraction, multiplication, and division. The C# programming language also includes

the modulo operator as one of its basic operators. The addition operator (+) computes

the sum of two operands (i.e., one addend plus another addend). The subtraction

operator (-) is the opposite of the addition operator. The subtraction operator computes

the difference between two operands (i.e., the minuend minus the subtrahend). The

multiplication operator (∗) computes the product of two operands (i.e., the multiplicand

times the multiplier). The division (/) operator is the opposite of the multiplication

operator. The division operator computes the quotient of two operands (i.e., the dividend

split into equal quantities by the divisor). And finally, the modulo operator (%) computes

the remainder (a.k.a., modulus) after the division of one operand by another operand.

In addition to the addition, subtraction, multiplication, division, and modulo

operators, the C# programming language includes the postfix increment and decrement

operators and the prefix increment and decrement operators. The postfix increment

operator (operand++) increments an operand after its associated assignment operation

is performed. Thus, after the statement is executed, the value of the assigned variable

will be different than the value of the operand. The postfix decrement operator

(operand--) decrements an operand after its associated assignment operation is

performed. Again, after the statement is executed, the value of the assigned variable will

be different than the value of the operand. The prefix increment operator (++operand)

increments an operand before its associated assignment operation is performed. Thus,

after the statement is executed, the value of the assigned variable will be the same as the

value of the operand. And finally, the prefix decrement operator (--operand) decrements

an operand before its associated assignment operation is performed. Again, after the

statement is executed, the value of the assigned variable will be the same as the value of

the operand. As can be seen, there is a subtle difference between the postfix operators

and the prefix operators. This is why we must carefully test any code that contains these

operators to make sure they are behaving as expected.

Table 10-1 summarizes the common C# arithmetic operators and their respective

descriptions. Notice that there are no arithmetic operators in C# for exponentiation and

roots. This is because the Math class, which we will discuss later, contains methods for

performing these operations.

Chapter 10 Arithmetic Operations

195

Figure 10-1 shows some examples of the common arithmetic operators.

Table 10-1.  Common C# arithmetic operators and their respective descriptions

Operator Description

z = x + y Addition (i.e., compute the sum of x and y)

z = x – y Subtraction (i.e., compute the difference between x and y)

z = x * y Multiplication (i.e., compute the product of x and y)

z = x / y Division (i.e., compute the quotient of x and y)

z = x % y Modulo (i.e., compute the remainder after the division of x and y)

z = x++ Postfix increment (i.e., increment x after the assignment operation)

z = x-- Postfix decrement (i.e., decrement x after the assignment operation)

z = ++x Prefix increment (i.e., increment x before the assignment operations)

z = --x Prefix decrement (i.e., decrement x before the assignment operation)

Chapter 10 Arithmetic Operations

196

Figure 10-1.  Examples of the common arithmetic operators

Chapter 10 Arithmetic Operations

197

10.3  �Order of Precedence and Associativity
Arithmetic operations are performed according to an order of precedence. Order of

precedence (i.e., operator precedence) defines the sequence in which arithmetic

operations are performed in a multiple-operator mathematical expression. Associativity,

on the other hand, defines the sequence in which arithmetic operations are performed

in a multiple-operator mathematical expression when two or more arithmetic operators

have the same order of precedence. Left-associative operators are evaluated from left to

right, whereas right-associative operators are evaluated from right to left. When coding in

any programming language, it is important to have a clear understanding of the order of

precedence and associativity that that programming language applies when evaluating

multiple-operator mathematical expressions. A lack of such an understanding can lead

to unexpected results.

Table 10-2 shows the common C# arithmetic operators and their respective orders

of precedence and associativities. Notice that the arithmetic operators in the figure are

arranged in their order of precedence from high (1) to low (5) indicating the sequence

in which the arithmetic operations are performed in a multiple-operator mathematical

expression.

Figure 10-1.  (continued)

Chapter 10 Arithmetic Operations

198

Figure 10-2 shows some examples of order of precedence and associativity. Notice

in the figure that all of the examples of order of precedence and associativity have

equivalent examples. The parentheses in these equivalent examples demonstrate how

order of precedence and associativity are actually carried out. The arithmetic operations

in the innermost parentheses are carried out first, the arithmetic operations in the next

most innermost parentheses are carried out next, and so on.

Table 10-2.  Common C# arithmetic operators and their respective orders of
precedence and associativities

Operator Order of Precedence Associativity

Operand++, Operand-- 1 Left to right

++Operand, --Operand 2 Right to left

*, /, % 3 Left to right

+, - 4 Left to right

= 5 Right to left

Chapter 10 Arithmetic Operations

199

Figure 10-2.  Examples of order of precedence and associativity

10.4  �Parentheses
Parentheses are used for two reasons when coding arithmetic operations. First, they

clarify the order in which the operations in a multiple-operator mathematical expression

Chapter 10 Arithmetic Operations

200

are evaluated. That is, they make the intent of the expression easier to understand. This

practice was applied in the previous section to demonstrate how order of precedence

and associativity are actually carried out and is recommended when coding all but the

simplest of multiple-operator expressions. Second, parentheses override the default

order in which the operations in a multiple-operator mathematical expression are

evaluated. In other words, they override the default order of precedence or associativity.

Figure 10-3 shows some examples of using parentheses to override order of precedence

and associativity. Again, the arithmetic operations in the innermost parentheses are

carried out first, the arithmetic operations in the next most innermost parentheses are

carried out next, and so on.

Figure 10-3.  Examples of using parentheses to override order of precedence and
associativity

Chapter 10 Arithmetic Operations

201

10.5  �Math Class
In addition to the basic arithmetic operations of addition, subtraction, multiplication,

division, modulo, postfix increment, postfix decrement, prefix increment, and prefix

decrement, C# provides a number of more sophisticated operations via the methods

of the Math class. The Math class is a static class whose methods include comparison

operations, exponential operations, logarithmic operations, magnitude operations,

power operations, radical operations, rounding operations, trigonometric operations,

and other common arithmetic operations.

Table 10-3 shows some of the properties, methods, and events of the Math class. Note

that all of the methods shown in the table operate on the Double type. However, many of

them can operate on other numeric types as well. See the reference for more information.

Table 10-3.  Some of the properties, methods, and events of the Math class

Class Math1

Namespace System

Properties

(See reference.)

Methods

Abs(Double) Returns the absolute value of a double number.

Ceiling(Double) Returns the smallest integral value that is greater than or equal to

the specified double number.

Floor(Double) Returns the largest integer less than or equal to the specified

double number.

Max(Double,  Double) Returns the larger of two double numbers.

Min(Double,  Double) Returns the smaller of two double numbers.

Pow(Double,  Double) Returns a specified number raised to the specified power.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 10 Arithmetic Operations

202

Figure 10-4 shows some examples of the Math class. The results returned from the

methods in the figure are described in Table 10-3. However, there is one method that

requires some additional explanation.

Notice at 01–04 that the Round method of the Math class is being employed. In some

programming languages, decimal values that end in 5 are, by default, rounded up to

the nearest value during the rounding process. For example, the numbers 1.5 and 2.5

would be rounded up to 2 and 3, respectively, thus following the standard mathematical

rounding convention. However, in C#, decimal values that end in 5 are, by default,

rounded up or down to the nearest even value during the rounding process depending

on the number being rounded. For example, the numbers 1.5 and 3.5 would be rounded

up to 2 and 4, respectively, whereas the numbers 2.5 and 4.5 would be rounded down to

2 and 4, respectively. Thus, rounding to an odd value would never occur. This approach

follows the standard banker’s rounding convention. The reason given for using this

particular method of rounding is that it avoids roundup bias when rounding a large set

of numbers. So, if our intention is to perform standard mathematical rounding, we must

use the MidpointRounding.AwayFromZero parameter in the Math.Round method.

Table 10-3.  (continued)

Round(Double, I nt32, 

MidpointRounding)

Rounds a double value to a specified number of fractional digits. A

parameter specifies how to round the value if it is midway between

two numbers.

Sign(Double) Returns an integer that indicates the sign of a double number.

Sqrt(Double) Returns the square root of a specified number.

Truncate(Double) Calculates the integral part of a specified double number.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.math(v=vs.110).aspx

Chapter 10 Arithmetic Operations

https://msdn.microsoft.com/en-us/library/system.math(v=vs.110).aspx

203

Figure 10-4.  Examples of the Math class

Chapter 10 Arithmetic Operations

204

Figure 10-4.  (continued)

Chapter 10 Arithmetic Operations

205

Figure 10-4.  (continued)

Chapter 10 Arithmetic Operations

207
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_11

CHAPTER 11

Date and Time Operations
11.1  �Introduction
Date and time operations manipulate temporal values (i.e., values related to time).

Common date and time operations include retrieving the current date and time from the

operating system, extracting the components of a date (e.g., year, month, day) or time

(e.g., hour, minute, second), adding to or subtracting from the components of a date or

time, comparing one date or time with another date or time, determining whether or not

daylight saving time is in effect, determining whether or not it is a leap year, determining

the interval between two dates or times, formatting a date or time, and parsing a date

and time.

In this chapter, we will begin by looking at the DateTime structure, which permits us

to create and work with dates and times. Next, we will discuss the date-related properties

of the DateTime structure that permit us to retrieve the date from the operating system

and extract the components of a date. Then, we will look at the date-related methods

that permit us to add to or subtract from the components of a date, compare one date

with another, determine whether or not daylight saving time is in effect, determine

whether or not it is a leap year, and determine the time interval between two dates. After

that, we will discuss the date-related methods that permit us to format a date to look

the way we want it to. We will also look at the date-related method that permits us to

parse a date (and time). After considering the date-related properties and methods of

the DateTime structure, we will discuss the time-related properties and methods of the

DateTime structure. First, we will consider the time-related properties of the DateTime

structure that permit us to retrieve the time from the operating system and extract the

components of a time. After that, we will look at the time-related methods that permit

us to add to or subtract from the components of a time, compare one time with another,

and determine the interval between two times. And finally, we will discuss the time-

related methods that permit us to format a time to look the way we want it to.

208

11.2  �DateTime Structure
The DateTime structure permits us to create and work with dates and times. This

structure is capable of representing dates and times between 00:00:00 AM on January 1, 1

A.D., and 11:59:59 PM on December 31, 9999 A.D. In C#, time is measured in ticks, where

1 tick is equal to 100 nanoseconds (i.e., 1 billionth of a second). Thus, a given date and

time is equal to the number of ticks that have occurred since 00:00:00 AM on January 1,

1 A.D. DateTime values are stated in terms of a calendar. The default calendar in .NET is

the Gregorian calendar (a.k.a., the Western calendar or the Christian calendar), but other

calendars can be used as well. The Gregorian calendar is the most widely used calendar

in the world today and is based on a 365-day year that is divided into 12 months of

irregular length. While most of the months in the Gregorian calendar have 30 or 31 days,

one month (i.e., February) has 28 days—plus one day during a leap year, which makes

the Gregorian leap year 366 days long.

Notice that the DateTime structure is referred to as a structure—not a class. This is

because the DateTime structure is a value type, which holds a date and time value that

has a set memory allocation size (i.e., 64 bits or 8 bytes). A class, on the other hand, is a

reference type, which holds a pointer to another memory address that does not have a set

memory allocation size. However, as we will soon see, the DateTime structure looks and

behaves much like a class.

Table 11-1 shows some of the properties, methods, and events of the DateTime

structure. Notice in the table that there are no methods shown for subtracting years,

months, days, hours, minutes, seconds, and so on. This is because we can perform these

operations by passing negative values to the associated Add methods. Notice as well the

reference to local time in the description of the Now property. Local time is associated

with a particular time zone—the time zone in which the server resides. US time zones

include Hawaii, Alaska, Pacific, Mountain, Central, and Eastern. Depending on the

how the date is configured on a particular server, the local time zone may automatically

adjust to daylight saving time at 2:00 AM on the second Sunday in March and then revert

back to standard time at 2:00 AM on the first Sunday in November—at least for most of

the United States. If it were desirable for the local time of the client to be displayed in the

Web browser, we would need to use JavaScript (discussed later in this book) to retrieve

the local time from the client’s operating system.

Chapter 11 Date and Time Operations

209

Table 11-1.  Some of the properties, methods, and events of the DateTime structure

Structure DateTime1

Namespace System

Properties

Day Gets the day of the month represented by this instance.

DayOfWeek Gets the day of the week represented by this instance.

DayOfYear Gets the day of the year represented by this instance.

Hour Gets the hour component of the date represented by this instance.

Minute Gets the minute component of the date represented by this instance.

Month Gets the month component of the date represented by this instance.

Now Gets a DateTime structure that is set to the current date and time on

this computer, expressed as the local time.

Second Gets the seconds component of the date represented by this instance.

TimeOfDay Gets the time of day for this instance.

Today Gets the current date.

Year Gets the year component of the date represented by this instance.

Methods

AddDays(Double) Returns a new DateTime that adds the specified number of days to the

value of this instance.

AddHours(Double) Returns a new DateTime that adds the specified number of hours to the

value of this instance.

AddMinutes(Double) Returns a new DateTime that adds the specified number of minutes to

the value of this instance.

AddMonths(Int32) Returns a new DateTime that adds the specified number of months to

the value of this instance.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 11 Date and Time Operations

210

Table 11-1.  (continued)

AddSeconds(Double) Returns a new DateTime that adds the specified number of seconds to

the value of this instance.

AddYears(Int32) Returns a new DateTime that adds the specified number of years to the

value of this instance.

CompareTo(DateTime) Compares the value of this instance to a specified DateTime value and

returns an integer that indicates whether this instance is earlier than,

the same as, or later than the specified DateTime value.

IsDaylightSavingTime() Indicates whether this instance of DateTime is within the daylight

saving time range for the current time zone.

IsLeapYear(Int32) Returns an indication whether the specified year is a leap year.

Subtract(DateTime) Subtracts the specified date and time from this instance.

ToLongDateString() Converts the value of the current DateTime structure to its equivalent

long date string representation.

ToLongTimeString() Converts the value of the current DateTime structure to its equivalent

long time string representation.

ToShortDateString() Converts the value of the current DateTime structure to its equivalent

short date string representation.

ToShortTimeString() Converts the value of the current DateTime structure to its equivalent

short time string representation.

ToString() Converts the value of the current DateTime structure to its equivalent

string representation using the formatting conventions of the current

culture.

ToString(String) Converts the value of the current DateTime structure to its equivalent

string representation using the specified format and the formatting

conventions of the current culture.

TryParse(String, DateTime) Converts the specified string representation of a date and time to its

DateTime equivalent and returns a value that indicates whether the

conversion succeeded.

(continued)

Chapter 11 Date and Time Operations

211

11.3  �Date-Related Properties
The date-related properties described in this section permit us to retrieve the date from

the operating system and extract the components of a date. Figure 11-1 shows some

examples of date-related properties.

Notice at 01 that we are getting today’s date from the operating system using the

Today property. As can be seen, when we use this property to get the current date, the

time part of the date is set to 12:00:00 AM. This is because we are only asking for the date.

Table 11-1.  (continued)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

Figure 11-1.  Examples of date-related properties

Chapter 11 Date and Time Operations

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx

212

11.4  �Date-Related Methods
The date-related methods described in this section permit us to add to or subtract from

the components of a date, compare one date with another, determine whether or not

daylight saving time is in effect, determine whether or not it is a leap year, and determine

the time interval between two dates. Figure 11-2 shows some examples of date-related

methods.

CODE BEHIND

// Create a new DateTime structure.
DateTime datDateCurrent = new DateTime();
datDateCurrent = DateTime.Today;
// datDateCurrent = {7/18/2017 12:00:00 AM}
String strDateNew = "";
// strDateNew = ""

// Add 1 year to the current date.
strDateNew = datDateCurrent.AddYears(1).ToString();
// strDateNew = "7/18/2018 12:00:00 AM"

// Add 3 months to the current date.
strDateNew = datDateCurrent.AddMonths(3).ToString();
// strDateNew = "10/18/2017 12:00:00 AM"

// Add 5 days to the current date.
strDateNew = datDateCurrent.AddDays(5).ToString();
// strDateNew = "7/23/2017 12:00:00 AM"

// Compare the current date to the first-of-year date.
// Less than zero = The current date is earlier than the first-of-year
// date.
// Zero = The current date is the same as the first-of-year date.
// Greater than zero = The current date is later than the first-of-year
// date.
DateTime datDateFirstOfYear = new DateTime(2017, 01, 01);
Int32 i32Result = datDateCurrent.CompareTo(datDateFirstOfYear);
// i32Result = 1

// Check to see if daylight saving time is in effect.
Boolean booDaylightSavingTime = datDateCurrent.IsDaylightSavingTime();
// booDaylightSavingTime = true

// Check to see if this is a leap year.
Boolean booLeapYear = DateTime.IsLeapYear(datDateCurrent.Year);
// booLeapYear = false

// Determine how many days have elapsed since the first-of-year date
// using a TimeSpan structure.
TimeSpan timTimeSpan = datDateCurrent.Subtract(datDateFirstOfYear);
Int32 i32DifferenceDays = timTimeSpan.Days;
// i32DifferenceDays = 198

Figure 11-2.  Examples of date-related methods

Chapter 11 Date and Time Operations

213

11.5  �Date Formatting
The date-related methods described in this section permit us to format a date to look

the way we want it to. Since dates must often be displayed differently depending on

cultural norms, international standards, application requirements, personal preference,

and so on, the DateTime structure permits us to format dates via special formatting

methods (e.g., the ToLongDateString method, the ToShortDateString method) and via

the ToString method overloaded with format specifiers. Essentially, the ToString method

is overloaded when we pass format specifiers to it as a parameter. Table 11-2 shows some

of the custom date format specifiers.

Table 11-2.  Some of the custom date format specifiers

Format Specifier Description

“d” The day of the month, from 1 through 31.

“dd” The day of the month, from 01 through 31.

“ddd” The abbreviated name of the day of the week.

“dddd” The full name of the day of the week.

“g” The period or era.

“M” The month, from 1 through 12.

“MM” The month, from 01 through 12.

“MMM” The abbreviated name of the month.

“MMMM” The full name of the month.

“y” The year, from 0 to 99.

“yy” The year, from 00 to 99.

“yyyy” The year as a four-digit number.

Reference

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-

and-time-format-strings

Chapter 11 Date and Time Operations

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

214

Figure 11-3 shows some examples of date formatting.

11.6  �Date Parsing
The date-related method described in this section permits us to parse a date.2 To

parse a date means to take a date that is in the form of a string, break it down into its

component parts, and convert it to a valid DateTime structure. To parse a date in the

C# programming language, we can use the TryParse method of the DateTime structure.

Figure 11-4 shows some examples of date parsing.

Notice at 01 that the TryParse method contains two parameters. The first is the

method’s input parameter. This parameter requires a date in the form of a String type.

The second is the method’s output parameter. This parameter returns a date in the form

of a DateTime type. As can be seen in this example, since the parse was successful, the

parsed date was placed in the output DateTime structure, and the method returned a

true.

CODE BEHIND

// Declare the date string.
String strDateNew = "";

// Format the date as a long date.
strDateNew = DateTime.Today.ToLongDateString();
// strDateNew = "Tuesday, July 18, 2017"

// Format the date as a short date.
strDateNew = DateTime.Today.ToShortDateString();
// strDateNew = "7/18/2017"

// Customize the date using format specifiers.
strDateNew = DateTime.Today.ToString("yyyy.MM.dd");
// strDateNew = "2017.07.18"

// Customize the date using format specifiers.
strDateNew = DateTime.Today.ToString("dddd, MMMM dd, yyyy g");
// strDateNew = "Tuesday, July 18, 2017 A.D."

Figure 11-3.  Examples of date formatting

2�A time can be parsed as well.

Chapter 11 Date and Time Operations

215

Notice at 01–03 that we are attempting to parse a date that contains dashes, a date

that contains slashes, and a date that is written out. As can be seen, the parse was

successful in all three cases. This demonstrates the flexibility of the TryParse method.

Notice at 04 that we are attempting to parse an invalid date. As can be seen in

this example, since the parse was not successful, 1/1/0001 12:00:00 AM was placed

in the output DateTime structure, and the method returned a false. This parse was

unsuccessful because 02-29-2017 is not a valid date during a non-leap year.

CODE BEHIND

// Declare the date structure and variables.
DateTime datDate = new DateTime();
String strDate = "";
Boolean booSuccessful = false;

// Attempt to parse a valid date (with dashes) from a string.
// Check to make sure the parse was successful.
strDate = "02-28-2017";

01 booSuccessful = DateTime.TryParse(strDate, out datDate);
// datDate = {2/28/2017 12:00:00 AM}, booSuccessful = true

// Attempt to parse a valid date (with slashes) from a string.
// Check to make sure the parse was successful.
strDate = "02/28/2017";

02 booSuccessful = DateTime.TryParse(strDate, out datDate);
// datDate = {2/28/2017 12:00:00 AM}, booSuccessful = true

// Attempt to parse a valid date (written out) from a string.
// Check to make sure the parse was successful.
strDate = "February 28, 2017";

03 booSuccessful = DateTime.TryParse(strDate, out datDate);
// datDate = {2/28/2017 12:00:00 AM}, booSuccessful = true

// Attempt to parse an invalid date from a string. Check to make
// sure the parse was successful.
strDate = "02-29-2017";

04 booSuccessful = DateTime.TryParse(strDate, out datDate);
// datDate = {1/1/0001 12:00:00 AM}, booSuccessful = false

Figure 11-4.  Examples of date parsing

Chapter 11 Date and Time Operations

216

11.7  �Time-Related Properties
The time-related properties described in this section permit us to retrieve the time from

the operating system and extract the components of a time. Figure 11-5 shows some

examples of time-related properties.

Notice at 01 that we are getting the current date and time from the operating system

using the Now property.

CODE BEHIND

// Get today's date and time.
01 String strDateTime = DateTime.Now.ToString();

// strDateTime = "7/18/2017 10:09:08 AM"

// Hardcode the date and time for the following examples.
DateTime datTimeCurrent = new DateTime(2017, 7, 18, 15, 30, 25);
// datTimeCurrent = {7/18/2017 3:30:25 PM}

// Get the time of day.
String strTimeOfDay = datTimeCurrent.TimeOfDay.ToString();
// strTimeOfDay = "15:30:25"

// Get the hour.
Int32 i32Hour = datTimeCurrent.Hour;
// i32Hour = 15

// Get the minute.
Int32 i32Minute = datTimeCurrent.Minute;
// i32Minute = 30

// Get the second.
Int32 i32Second = datTimeCurrent.Second;
// i32Second = 25

Figure 11-5.  Examples of time-related properties

11.8  �Time-Related Methods
The time-related methods described in this section permit us to add to or subtract from

the components of a time, compare one time with another, and determine the interval

between two times. Figure 11-6 shows some examples of time-related methods.

Chapter 11 Date and Time Operations

217

Figure 11-6.  Examples of time-related methods

Chapter 11 Date and Time Operations

218

11.9  �Time Formatting
The time-related methods described in this section permit us to format a time to look

the way we want it to. Since times must often be displayed differently depending on

cultural norms, international standards, application requirements, personal preference,

and so on, the DateTime structure permits us to format times via special formatting

methods (e.g., the ToLongTimeString method, the ToShortTimeString method) and

via the ToString method overloaded with format specifiers. As mentioned previously,

the ToString method is overloaded when we pass format specifiers to it as a parameter.

Table 11-3 shows some of the custom time format specifiers.

Table 11-3.  Some of the custom time format specifiers

Format Specifier Description

“f” The tenths of a second in a date and time value.

“ff” The hundredths of a second in a date and time value.

“h” The hour, using a 12-hour clock from 1 to 12.

“hh” The hour, using a 12-hour clock from 01 to 12.

“H” The hour, using a 24-hour clock from 0 to 23.

“HH” The hour, using a 24-hour clock from 00 to 23.

“m” The minute, from 0 through 59.

“mm” The minute, from 00 through 59.

“s” The second, from 0 through 59.

“ss” The second, from 00 through 59.

“t” The first character of the AM/PM designator.

“tt” The AM/PM designator.

Reference

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-

and-time-format-strings

Figure 11-7 shows some examples of time formatting. Recall from Chapter 9, titled

“String Operations,” that escape sequences include formatting information or special

characters in a string.

Chapter 11 Date and Time Operations

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

219

Notice at 01 that there are no escape sequences present in the time formatting

parameter passed to the ToString method. As can be seen, the result of the formatting

operation is quite strange.

Notice at 02 the same time formatting parameter but with escape sequences added.

The result of this formatting operation is much more meaningful.

Notice at 03 that there are again no escape sequences present in the time formatting

parameter passed to the ToString method. As can be seen, this operation throws a

Format exception.

Notice at 04 the same time formatting parameter but with escape sequences added.

This formatting operation now works as expected.

Figure 11-7.  Examples of time formatting

Chapter 11 Date and Time Operations

221
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_12

CHAPTER 12

Array Operations
12.1  �Introduction
An array is a container that holds data while it is being manipulated by a computer

program. More specifically, it is a data structure that consists of a collection of elements

of the same type, where each element contains its own value and is identified by one or

more indices (a.k.a., subscripts). Arrays can be one-dimensional or multidimensional.1

The elements of a one-dimensional array are referenced by a single index, the elements

of a two-dimensional array are referenced by two indices, and so on. It is not uncommon

to see arrays of three or more dimensions.2 The total number of elements in an array

is its length. Each dimension of an array has a lower bound (i.e., the index of the first

element of the array) and an upper bound (i.e., the index of the last element of the array).

Since arrays are zero based in C# by default, the index of the first element in a one-

dimensional array is [0], the index of the second element is [1], and so on. The index of

the first element in a two-dimensional array is [0, 0], the index of the second element is

[0, 1], and so on.3 An array is statically allocated. That is, its capacity cannot be altered

once it is declared. An array is considered an internal data structure because it resides

in RAM and only remains there until the program that utilizes it terminates. Thus, the

data in an array is said to be nonpersistent. This is in contrast to a database table, which

is considered an external data structure because it resides on a peripheral device (e.g.,

a magnetic disk) and remains there even after the program that utilizes it terminates.

Thus, the data in a database table is said to be persistent.

1�Arrays can even contain other arrays. These arrays are called jagged arrays. We will not consider
jagged arrays in this book.

2�In C#, multidimensional arrays of up to 32 dimensions can be declared.
3�The Array class permits us to define different lower bounds if desired.

222

In this chapter, we will begin by looking at the Array class. The Array class provides

methods (some of them static) that permit us to get information about arrays, populate

them with data, retrieve data from them, sort them, search them, copy them, or

manipulate them in some other way. Next, we will discuss the one-dimensional array.

A one-dimensional array is the simplest array to declare and utilize since it only

embodies a single dimension and only utilizes a single index for referencing its elements.

And finally, we will consider the two-dimensional array. A two-dimensional array is also

relatively simple to declare and utilize since it embodies just two dimensions and utilizes

just two indices for referencing its elements.

12.2  �Array Class
The Array class provides methods (some of them static) that permit us to get information

about arrays, populate them with data, retrieve data from them, sort them, search them,

copy them, or manipulate them in some other way. In .NET, the Array class is considered

a collection, even though it is not part of the System.Collections namespace that defines

the Stack class, the Queue class, the LinkedList class, and the SortedList class. We will

discuss those collections in Chapter 13, titled “Collection Operations.” Table 12-1 shows

some of the properties, methods, and events of the Array class.

Chapter 12 Array Operations

223

Table 12-1.  Some of the properties, methods, and events of the Array class

Class Array4

Namespace System

Properties

Length Gets the total number of elements in all the dimensions of the

Array.

Methods

BinarySearch(Array,  Object) Searches an entire one-dimensional sorted array for a specific

element.

Clear(Array, I nt32, I nt32) Sets a range of elements in an array to the default value of each

element type.

Copy(Array, I nt32, A rray, 

Int32, I nt32)

Copies a range of elements from an Array starting at the specified

source index and pastes them to another Array starting at the

specified destination index. The length and the indexes are

specified as 32-bit integers.

GetLength(Int32) Gets a 32-bit integer that represents the number of elements in

the specified dimension of the Array. The parameter is the zero-

based dimension of the array.

GetLowerBound(Int32) Gets the index of the first element of the specified dimension in

the array. The parameter is the zero-based dimension of the array.

GetUpperBound(Int32) Gets the index of the last element of the specified dimension in

the array. The parameter is the zero-based dimension of the array.

GetValue(Int32) Gets the value at the specified position in the one-dimensional

Array. The index is specified as a 32-bit integer.

GetValue(Int32, I nt32) Gets the value at the specified position in the two-dimensional

Array. The indexes are specified as 32-bit integers.

Reverse(Array) Reverses the sequence of the elements in the entire one-

dimensional Array.

(continued)

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 12 Array Operations

224

12.3  �One-Dimensional Arrays
A one-dimensional array is the simplest array to declare and utilize since it only

embodies a single dimension and only utilizes a single index for referencing its

elements. Conceptually, a one-dimensional array is like a chest of drawers with, say,

undergarments in the top drawer, socks in the second drawer, shirts in the third drawer,

shorts in the fourth drawer, and trousers in the fifth drawer. When we want to put away

a pair of socks, we go directly to the second drawer and place the pair of socks in it.

Conversely, when we want to retrieve a pair of socks, we go directly to the second drawer

and take the pair of socks out. Thus, we have direct access to any of the drawers in the

chest of drawers. A one-dimensional array operates in the same way. Figure 12-1 shows

some examples of declaring a one-dimensional array.

Notice at 01 that we are declaring a three-element one-dimensional array of strings.

In this example, the String[] indicates that we are defining a one-dimensional array

(not a single-value variable), and the String[3] indicates that we are defining an array of

three elements. As can be seen, the first element of the array is at index [0], and the last

element of the array is at index [2]. Notice in this example that all of the elements in the

array contain null values since nothing has been assigned to them yet.

Table 12-1.  (continued)

SetValue(Object, I nt32) Sets a value to the element at the specified position in the one-

dimensional Array. The index is specified as a 32-bit integer.

SetValue(Object, I nt32, I nt32) Sets a value to the element at the specified position in the two-

dimensional Array. The indexes are specified as 32-bit integers.

Sort(Array) Sorts the elements in an entire one-dimensional Array.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/system.array(v=vs.110).aspx

Chapter 12 Array Operations

https://msdn.microsoft.com/en-us/library/system.array(v=vs.110).aspx

225

Notice at 02 that we are declaring a five-element one-dimensional array of strings.

In this example, the String[] indicates that we are defining a one-dimensional array

(not a single-value variable), and the String[5] indicates that we are defining an array of

five elements. As can be seen, the first element of the array is at index [0], and the last

element of the array is at index [4]. Notice in this example that all of the elements in the

array contain data. This data was assigned to the elements of the array via the comma-

separated list within the array definition itself. Keep in mind that we can declare arrays

of virtually any .NET type.

Figure 12-1.  Examples of declaring a one-dimensional array

In addition to declaring one-dimensional arrays, we must often get information

about them, populate them with data, retrieve data from them, sort them, search them,

copy them, or manipulate them in some other way. Figure 12-2 shows an example of

getting the total number of elements in a one-dimensional array.

Figure 12-2.  Example of getting the total number of elements in a
one-dimensional array

Chapter 12 Array Operations

226

Figure 12-3 shows an example of populating the elements of a one-dimensional

array using indices.

CODE BEHIND

// Add values to the elements of the array.
strCategoryArray[0] = "Footwear - Men's";
strCategoryArray[1] = "Clothing - Men's";
strCategoryArray[2] = "Racquets";
strCategoryArray[3] = "Footwear - Women's";
strCategoryArray[4] = "Clothing - Women's";
// strCategoryArray[0] = "Footwear - Men's"
// strCategoryArray[1] = "Clothing - Men's"
// strCategoryArray[2] = "Racquets"
// strCategoryArray[3] = "Footwear - Women's"
// strCategoryArray[4] = "Clothing - Women's"

Figure 12-3.  Example of populating the elements of a one-dimensional array
using indices

Figure 12-4 shows an example of populating the elements of a one-dimensional

array using the SetValue method. As can be seen in this example, using the SetValue

method of the Array class produces the same results as using indices. However, using

indices produces cleaner code. On the other hand, the SetValue method has some

additional functionality that may be useful in some situations. The interested reader is

encouraged to explore the SetValue method on his or her own.

CODE BEHIND

// Add values to the elements of the array.
strCategoryArray.SetValue("Footwear - Men's", 0);
strCategoryArray.SetValue("Clothing - Men's", 1);
strCategoryArray.SetValue("Racquets", 2);
strCategoryArray.SetValue("Footwear - Women's", 3);
strCategoryArray.SetValue("Clothing - Women's", 4);
// strCategoryArray[0] = "Footwear - Men's"
// strCategoryArray[1] = "Clothing - Men's"
// strCategoryArray[2] = "Racquets"
// strCategoryArray[3] = "Footwear - Women's"
// strCategoryArray[4] = "Clothing - Women's"

Figure 12-4.  Example of populating the elements of a one-dimensional array
using the SetValue method

Chapter 12 Array Operations

227

Figure 12-5 shows some examples of retrieving the elements of a one-dimensional

array using indices.

CODE BEHIND

// Declare the variables.
String strCategory = "";
String strCategoryList = "";

// Get the third element of the array.
strCategory = strCategoryArray[2];
// strCategory = "Racquets"

// Get all the elements of the array and add them to the list using
// a For structure.
for (int i = 0; i < strCategoryArray.Length; i++)
{

strCategoryList = strCategoryList + strCategoryArray[i] + "; ";
}
// strCategoryList = "Footwear - Men's; Clothing - Men's; Racquets;
// Footwear - Women's; Clothing - Women's; "

Figure 12-5.  Examples of retrieving the elements of a one-dimensional array using
indices

Figure 12-6 shows some examples of retrieving the elements of a one-dimensional

array using the GetValue method. As can be seen in this example, using the GetValue

method of the Array class produces the same results as using indices. However, keep in

mind that the GetValue method has some additional functionality that may be useful in

some situations. The interested reader is encouraged to explore the GetValue method on

his or her own.

Chapter 12 Array Operations

228

Figure 12-7 shows an example of sorting the elements of a one-dimensional array.

As can be seen, the Sort method is a static method of the Array class.

Figure 12-6.  Examples of retrieving the elements of a one-dimensional array using
the GetValue method

Figure 12-7.  Example of sorting the elements of a one-dimensional array

Figure 12-8 shows some examples of searching the elements of a one-dimensional

array. Keep in mind that the array used in a sequential search need not be sorted to

work. However, a sequential search can be made much more efficient if the array to be

searched is sorted. An array used in a binary search must be sorted in ascending order

to work. When performing a binary search, a positive value (i.e., the index of the item) is

returned if the search item is found in the array. Otherwise, a negative value is returned.

As can be seen, the BinarySearch method is a static method of the Array class.

Chapter 12 Array Operations

229

Figure 12-9 shows an example of copying the elements of a one-dimensional array to

another one-dimensional array. As can be seen, the Copy method is a static method of

the Array class. Note that this method not only copies the elements between arrays of the

same type but also copies the elements between arrays of different types. Any necessary

casting is done automatically.

Figure 12-8.  Examples of searching the elements of a one-dimensional array

Chapter 12 Array Operations

230

Figure 12-10 shows an example of reversing the elements of a one-dimensional

array. As can be seen, the Reverse method is a static method of the Array class.

Figure 12-9.  Example of copying the elements of a one-dimensional array to
another one-dimensional array

Figure 12-10.  Example of reversing the elements of a one-dimensional array

Figure 12-11.  Example of clearing the elements of a one-dimensional array

Figure 12-11 shows an example of clearing the elements of a one-dimensional array.

As can be seen, the Clear method is a static method of the Array class.

Chapter 12 Array Operations

231

12.4  �Two-Dimensional Arrays
A two-dimensional array (a.k.a., a rectangular array) is also relatively simple to declare

and utilize since it embodies just two dimensions and utilizes just two indices for

referencing its elements. Conceptually, a two-dimensional array is like theater seating

with rows of seats extending from the front of the theater to the back of the theater and

individual seats stretching from the right side of the theater to the left side of the theater.

To locate a reserved seat, say row 10 seat 15, we would first locate row 10, and then we

would locate seat 15. A two-dimensional array operates in the same way. In C#, the first

index of a two-dimensional array refers to the row of the array, whereas the second index

refers to the column of the array. Figure 12-12 shows some examples of declaring a two-

dimensional array.

Notice at 01 that we are declaring a six-element two-dimensional array of decimals.

In this example, the Decimal[,] indicates that we are defining a two-dimensional array

(not a single-value variable), and the Decimal[3, 2] indicates that we are defining an

array of 3 rows and 2 columns for a total of six elements. As can be seen, the first element

of the array is at index [0, 0], and the last element of the array is at index [2, 1]. Notice

in this example that all of the elements in the array contain 0 since nothing has been

assigned to them yet.

Notice at 02 that we are declaring a 21-element two-dimensional array of decimals.

In this example, the Decimal[,] indicates that we are defining a two-dimensional array

(not a single-value variable), and the Decimal[3, 7] indicates that we are defining an

array of 3 rows and 7 columns for a total of 21 elements. As can be seen, the first element

of the array is at index [0, 0], and the last element of the array is at index [2, 6]. Notice in

this example that all of the elements in the array contain data. This data was assigned to

the elements of the array via the comma-separated list within the array definition itself.

Again, keep in mind that we can declare arrays of virtually any .NET type.

Chapter 12 Array Operations

232

In addition to declaring two-dimensional arrays, we must often get information

about them, populate them with data, retrieve data from them, sort them, search them,

copy them, or manipulate them in some other way.5 Figure 12-13 shows an example of

getting the total number of elements, rows, and columns in a two-dimensional array.

Figure 12-12.  Examples of declaring a two-dimensional array

5�Although sorting was mentioned in this list of array operations, the Array class does not contain a
static Sort method for sorting two-dimensional arrays. If sorting such an array were required, we
would have to write the code necessary to sort it.

Chapter 12 Array Operations

233

Figure 12-14 shows an example of populating the elements of a two-dimensional

array using indices.

Figure 12-13.  Example of getting the total number of elements, rows, and columns
in a two-dimensional array

Chapter 12 Array Operations

234

Figure 12-15 shows an example of populating the elements of a two-dimensional

array using the SetValue method. As can be seen in this example, using the SetValue

method of the Array class produces the same results as using indices. However, using

indices produces cleaner code. On the other hand, the SetValue method has some

additional functionality that may be useful in some situations. The interested reader is

encouraged to explore the SetValue method on his or her own.

CODE BEHIND

// Add values to the elements of the array.
decEquipmentSalesArray[0, 0] = 0;
decEquipmentSalesArray[0, 1] = 119.99m;
decEquipmentSalesArray[0, 2] = 170.92m;
decEquipmentSalesArray[0, 3] = 134.50m;
decEquipmentSalesArray[0, 4] = 234.76m;
decEquipmentSalesArray[0, 5] = 102.99m;
decEquipmentSalesArray[0, 6] = 0;
decEquipmentSalesArray[1, 0] = 145.78m;
decEquipmentSalesArray[1, 1] = 200.12m;
decEquipmentSalesArray[1, 2] = 409.11m;
decEquipmentSalesArray[1, 3] = 102.99m;
decEquipmentSalesArray[1, 4] = 189.99m;
decEquipmentSalesArray[1, 5] = 209.34m;
decEquipmentSalesArray[1, 6] = 379.99m;
decEquipmentSalesArray[2, 0] = 230.45m;
decEquipmentSalesArray[2, 1] = 0;
decEquipmentSalesArray[2, 2] = 0;
decEquipmentSalesArray[2, 3] = 0;
decEquipmentSalesArray[2, 4] = 0;
decEquipmentSalesArray[2, 5] = 0;
decEquipmentSalesArray[2, 6] = 172.65m;
// decEquipmentSalesArray[0, 0] = 0
// decEquipmentSalesArray[0, 1] = 119.99
// decEquipmentSalesArray[0, 2] = 170.92
//
// (Data continues.)
//
// decEquipmentSalesArray[2, 4] = 0
// decEquipmentSalesArray[2, 5] = 0
// decEquipmentSalesArray[2, 6] = 172.65

Figure 12-14.  Example of populating the elements of a two-dimensional array
using indices

Chapter 12 Array Operations

235

CODE BEHIND

// Add values to the elements of the array.
decEquipmentSalesArray.SetValue(0m, 0, 0);
decEquipmentSalesArray.SetValue(119.99m, 0, 1);
decEquipmentSalesArray.SetValue(170.92m, 0, 2);
decEquipmentSalesArray.SetValue(134.50m, 0, 3);
decEquipmentSalesArray.SetValue(234.76m, 0, 4);
decEquipmentSalesArray.SetValue(102.99m, 0, 5);
decEquipmentSalesArray.SetValue(0m, 0, 6);
decEquipmentSalesArray.SetValue(145.78m, 1, 0);
decEquipmentSalesArray.SetValue(200.12m, 1, 1);
decEquipmentSalesArray.SetValue(409.11m, 1, 2);
decEquipmentSalesArray.SetValue(102.99m, 1, 3);
decEquipmentSalesArray.SetValue(189.99m, 1, 4);
decEquipmentSalesArray.SetValue(209.34m, 1, 5);
decEquipmentSalesArray.SetValue(379.99m, 1, 6);
decEquipmentSalesArray.SetValue(230.45m, 2, 0);
decEquipmentSalesArray.SetValue(0m, 2, 1);
decEquipmentSalesArray.SetValue(0m, 2, 2);
decEquipmentSalesArray.SetValue(0m, 2, 3);
decEquipmentSalesArray.SetValue(0m, 2, 4);
decEquipmentSalesArray.SetValue(0m, 2, 5);
decEquipmentSalesArray.SetValue(172.65m, 2, 6);
// decEquipmentSalesArray[0, 0] = 0
// decEquipmentSalesArray[0, 1] = 119.99
// decEquipmentSalesArray[0, 2] = 170.92
//
// (Data continues.)
//
// decEquipmentSalesArray[2, 4] = 0
// decEquipmentSalesArray[2, 5] = 0
// decEquipmentSalesArray[2, 6] = 172.65

Figure 12-15.  Example of populating the elements of a two-dimensional array
using the SetValue method

Figure 12-16 shows an example of retrieving all the elements of a two-dimensional

array using indices.

Notice at 01 the outer loop of the code. For this loop, i will be initialized to 0 and will

continue to be incremented while it is less than the length of the first dimension of the

array (i.e., 3).

Notice at 02 the inner loop of the code. For this loop, j will be initialized to 0 and will

continue to be incremented while it is less than the length of the second dimension of the

array (i.e., 7). Notice that i and j will be 0 and 0, respectively, the first time the code inside

the inner loop is executed. This will retrieve the value of first element [0, 0] in the array.

Chapter 12 Array Operations

236

Next, j will be incremented, and the code inside the inner loop will be executed again.

This will retrieve the value of second element [0, 1] in the array. The code inside the

inner loop will continue to execute while j is less than the length of the second dimension

of the array. When j becomes not less than the length of the second dimension of the

array, the inner loop will be exited, program control will be passed back to the outer

loop, i will be incremented, program control will be passed to the inner loop, j will be

reinitialized to 0, and the inner loop will be executed again. This process will continue

until all of the elements in the array have been traversed.

Figure 12-16.  Example of retrieving all the elements of a two-dimensional array
using indices

Figure 12-17 shows an example of retrieving all the elements of a two-dimensional

array using the GetValue method. As can be seen in this example, using the GetValue

method of the Array class produces the same results as using indices. However, keep in

mind that the GetValue method has some additional functionality that may be useful in

some situations. The interested reader is encouraged to explore the GetValue method on

his or her own.

Chapter 12 Array Operations

237

Notice at 01 the outer loop of the code. For this loop, i will be initialized to 0 and will

continue to be incremented while it is less than the length of the first dimension of the

array (i.e., 3).

Notice at 02 the inner loop of the code. For this loop, j will be initialized to 0 and will

continue to be incremented while it is less than the length of the second dimension of the

array (i.e., 7). Notice that i and j will be 0 and 0, respectively, the first time the code inside

the inner loop is executed. This will retrieve the value of first element [0, 0] in the array.

Next, j will be incremented, and the code inside the inner loop will be executed again.

This will retrieve the value of second element [0, 1] in the array. The code inside the

inner loop will continue to execute while j is less than the length of the second dimension

of the array. When j becomes not less than the length of the second dimension of the

array, the inner loop will be exited, program control will be passed back to the outer

loop, i will be incremented, program control will be passed to the inner loop, j will be

reinitialized to 0, and the inner loop will be executed again. This process will continue

until all of the elements in the array have been traversed.

Figure 12-17.  Example of retrieving all the elements of a two-dimensional array
using the GetValue method

Chapter 12 Array Operations

238

Figure 12-18 shows an example of searching the elements of a two-dimensional array.

Notice at 01 the outer loop of the code. For this loop, i will be initialized to 0 and will

continue to be incremented while it is less than the length of the first dimension of the

array (i.e., 3).

Notice at 02 the inner loop of the code. For this loop, j will be initialized to 0 and will

continue to be incremented while it is less than the length of the second dimension of the

array (i.e., 7). Notice that i and j will be 0 and 0, respectively, the first time the code inside

the inner loop is executed. Next, j will be incremented, and the code inside the inner

loop will be executed again. The code inside the inner loop will continue to execute

while j is less than the length of the second dimension of the array. When j becomes not

less than the length of the second dimension of the array, the inner loop will be exited,

program control will be passed back to the outer loop, i will be incremented, program

control will be passed to the inner loop, j will be reinitialized to 0, and the inner loop will

be executed again. This process will continue until all of the elements in the array have

been traversed or until the condition inside the inner loop is true, which indicates that

the search item was found in the array.

Keep in mind that the array used in a sequential search need not be sorted to

work. However, a sequential search can be made much more efficient if the array to be

searched is sorted. Also note that the Array class does not contain a static BinarySearch

method that can search an array of more than one dimension.

Chapter 12 Array Operations

239

Figure 12-19 shows an example of copying the elements of a two-dimensional array

to another two-dimensional array. As can be seen, the Copy method is a static method of

the Array class. Note that this method not only copies the elements between arrays of the

same type but also copies the elements between arrays of different types. Any necessary

casting is done automatically.

Figure 12-18.  Example of searching the elements of a two-dimensional array

Chapter 12 Array Operations

240

Figure 12-19.  Example of copying the elements of a two-dimensional array to
another two-dimensional array

Chapter 12 Array Operations

241
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_13

CHAPTER 13

Collection Operations
13.1  �Introduction
A collection is a container that holds data while it is being manipulated by a computer

program. More specifically, it is a data structure that consists of zero or more items,

where each item contains its own value or values. Examples of collections include stacks,

queues, linked lists, and sorted lists. The total number of items in a collection is its count.

Unlike an array, a collection is dynamically allocated in memory. That is, its capacity is

automatically increased (through memory reallocation) as additional items are added to

it. Like an array, a collection is considered an internal data structure because it resides in

RAM and only remains there until the program that utilizes it terminates. Thus, the data

in a collection is said to be nonpersistent. This is in contrast to a database table, which

is considered an external data structure because it resides on a peripheral device (e.g.,

a magnetic disk) and remains there even after the program that utilizes it terminates.

Thus, the data in a database table is said to be persistent.

In this chapter, we will begin by looking at the Stack class. The Stack class permits

us to create and manipulate a one-dimensional last-in-first-out (LIFO) data structure

analogous to a stack of books that we want to read in order of priority from top to

bottom. Next, we will discuss the Queue class. The Queue class enables us to create and

manipulate a one-dimensional first-in-first-out (FIFO) data structure analogous to a

line of people waiting to be checked out at a grocery store. After that, we will consider

the LinkedList class. The LinkedList class permits us to create and manipulate a one-

dimensional linear data structure analogous to a group of alphabetized folders in a file

cabinet. And finally, we will look at the SortedList class. The SortedList class enables us

to create and manipulate a two-dimensional key-based data structure analogous to a

dictionary of alphabetized terms and their respective definitions.

242

13.2  �Stack Class
A stack is a one-dimensional last-in-first-out (LIFO) data structure that contains zero or

more objects. The first object on a stack is at the bottom of the stack, whereas the last object

on a stack is at the top of the stack. Operations on a stack can only occur at the top of the

stack. Conceptually, a stack is like a stack of books that we want to read in order of priority

from top to bottom. First, we place the book of least priority on a table. Then, we place the

book of next least priority on top of that, and so on. Once we have a stack of books with the

most important book on top, the process is complete. Now we can simply pull the books off

the top of the stack one at a time and read them in order of importance.

In C#, objects are pushed onto a stack and popped off a stack. Retrieving an object

that is not on top of the stack requires popping one or more objects off the stack. This is

because direct access to the objects under the object on the top of the stack is not possible.

Table 13-1 shows some of the properties, methods, and events of the Stack class.

Table 13-1.  Some of the properties, methods, and events of the Stack class

Class Stack1

Namespace System.Collections

Properties

Count Gets the number of elements contained in the Stack.

Methods

Clear( ) Removes all objects from the Stack.

Peek( ) Returns the object at the top of the Stack without removing it.

Pop( ) Removes and returns the object at the top of the Stack.

Push(Object) Inserts an object at the top of the Stack.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/system.collections.stack(v=vs.110).aspx

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 13 Collection Operations

https://msdn.microsoft.com/en-us/library/system.collections.stack(v=vs.110).aspx

243

Figure 13-1 shows an example of the Stack class.

Notice at 01 that we are declaring a stack of String types. Keep in mind, however, that

we can declare stacks of any type. Notice as well that we are not specifying the size of the

stack in the declaration. This is because a stack is dynamically allocated in memory. That

is, its capacity is automatically increased (through memory reallocation) as additional

items are added to it.

CODE BEHIND

// Declare the stack.
01 Stack<String> strProductStack = new Stack<String>();

// Add items to the stack.
strProductStack.Push("Nike Men's Summer Flex Ace 7 Inch Short");
strProductStack.Push("Nike Men's Summer RF Premier Jacket");
strProductStack.Push("Nike Zoom Vapor 9.5 Tour");
strProductStack.Push("Babolat Pure Aero French Open");
// strProductStack[0] = "Babolat Pure Aero French Open" (Top)
// strProductStack[1] = "Nike Zoom Vapor 9.5 Tour"
// strProductStack[2] = "Nike Men's Summer RF Premier Jacket"
// strProductStack[3] = "Nike Men's Summer Flex Ace 7 Inch Short"
// (Bottom)

// Get the number of items in the stack.
Int32 i32Count = strProductStack.Count;
// i32Count = 4

// See what the next item on the stack is without removing it.
String strProduct = "";
strProduct = strProductStack.Peek();
// strProduct = "Babolat Pure Aero French Open"
// strProductStack[0] = "Babolat Pure Aero French Open" (Top)
// strProductStack[1] = "Nike Zoom Vapor 9.5 Tour"
// strProductStack[2] = "Nike Men's Summer RF Premier Jacket"
// strProductStack[3] = "Nike Men's Summer Flex Ace 7 Inch Short"
// (Bottom)

// Remove an item from the stack.
strProduct = strProductStack.Pop();
// strProduct = "Babolat Pure Aero French Open"
// strProductStack[0] = "Nike Zoom Vapor 9.5 Tour" (Top)
// strProductStack[1] = "Nike Men's Summer RF Premier Jacket"
// strProductStack[2] = "Nike Men's Summer Flex Ace 7 Inch Short"
// (Bottom)

// Clear the stack.
strProductStack.Clear();
// strProductStack = empty

Figure 13-1.  Example of the Stack class

Chapter 13 Collection Operations

244

13.3  �Queue Class
A queue is a one-dimensional first-in-first-out (FIFO) data structure that contains zero

or more objects. The first object in a queue is at the beginning of the queue, whereas the

last object in a queue is at the end of the queue. Operations on a queue can only occur

at the beginning of the queue. Conceptually, a queue is like a line of people waiting to

be checked out at a grocery store. The person at the beginning of the line is checked out

first, the people in the middle of the line are checked out next, and the person at the end

of the line is checked out last.

In C#, objects are enqueued onto a queue and dequeued from a queue. Retrieving an

object that is not at the beginning of the queue requires dequeueing one or more objects

from the queue since direct access to the objects after the object at the beginning of the

queue is not possible. Table 13-2 shows some of the properties, methods, and events of

the Queue class.

Table 13-2.  Some of the properties, methods, and events of the Queue class

Class Queue2

Namespace System.Collections

Properties

Count Gets the number of elements contained in the Queue.

Methods

Clear( ) Removes all objects from the Queue.

Dequeue( ) Removes and returns the object at the beginning of the Queue.

Enqueue(Object) Adds an object to the end of the Queue.

Peek( ) Returns the object at the beginning of the Queue without removing it.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/system.collections.queue(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 13 Collection Operations

https://msdn.microsoft.com/en-us/library/system.collections.queue(v=vs.110).aspx

245

Figure 13-2 shows an example of the Queue class.

Notice at 01 that we are declaring a queue of String types. Keep in mind, however,

that we can declare queues of any type. Notice as well that we are not specifying the

size of the queue in the declaration. This is because a queue is dynamically allocated in

memory. That is, its capacity is automatically increased (through memory reallocation)

as additional items are added to it.

Figure 13-2.  Example of the Queue class

Chapter 13 Collection Operations

246

13.4  �LinkedList Class
A linked list is a one-dimensional linear data structure that contains zero or more nodes.

The first node in a linked list is at the start of the linked list, whereas the last node in a

linked list is at the end of the linked list. Operations on a linked list can occur anywhere

in the linked list. Conceptually, a linked list is like a group of alphabetized folders in a

file cabinet. When we want to add a new folder to the group of folders, we scan the set of

ordered folders, locate the point at which the folder should be added, and then add the

folder. Conversely, when we want to remove an existing folder from the group of folders,

we scan the set of ordered folders, locate the folder that we wish to remove, and then

remove the folder.

In C#, nodes are added to a linked list, found in a linked list, and removed from a

linked list. A node can be added to the start of a linked list, added immediately before a

specified node in the linked list, added immediately after a specified node in the linked

list, and added to the end of the linked list. In addition, a linked list can be searched in

an effort to find a given node and/or retrieve its associated data. And finally, a node can

be removed from the start of the linked list, removed from anywhere in the middle of

the linked list, and removed from the end of the linked list. Table 13-3 shows some of the

properties, methods, and events of the LinkedList class.

Chapter 13 Collection Operations

247

Table 13-3.  Some of the properties, methods, and events of the LinkedList class

Class LinkedList3

Namespace System.Collections.Generic

Properties

Count Gets the number of nodes actually contained in the LinkedList.

First Gets the first node of the LinkedList.

Last Gets the last node of the LinkedList.

Methods

AddAfter(LinkedListNode<T>, T) Adds a new node containing the specified value after the

specified existing node in the LinkedList.

AddBefore(LinkedListNode<T>, T) Adds a new node containing the specified value before the

specified existing node in the LinkedList.

AddFirst(T) Adds a new node containing the specified value at the start of

the LinkedList.

AddLast(T) Adds a new node containing the specified value at the end of

the LinkedList.

Clear( ) Removes all nodes from the LinkedList.

Contains(T) Determines whether a value is in the LinkedList.

Find(T) Finds the first node that contains the specified value.

Remove(T) Removes the first occurrence of the specified value from the

LinkedList.

RemoveFirst( ) Removes the node at the start of the LinkedList.

RemoveLast( ) Removes the node at the end of the LinkedList.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/he2s3bh7(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 13 Collection Operations

https://msdn.microsoft.com/en-us/library/he2s3bh7(v=vs.110).aspx

248

Figure 13-3 shows an example of the LinkedList class.

Notice at 01 that we are declaring a linked list of String types. Keep in mind, however,

that we can declare linked lists of any type. Notice as well that we are not specifying

the size of the linked list in the declaration. This is because a linked list is dynamically

allocated in memory. That is, its capacity is automatically increased (through memory

reallocation) as additional items are added to it.

Figure 13-3.  Example of the LinkedList class

Chapter 13 Collection Operations

249

Figure 13-3.  (continued)

Chapter 13 Collection Operations

250

13.5  �SortedList Class
A sorted list is a two-dimensional key-based data structure that contains zero or more

elements, each of which contains a key/value pair.4 The first element in a sorted list is at the

start of the sorted list, whereas the last element in a sorted list is at the end of the sorted list.

Operations on a sorted list can occur anywhere in the sorted list. Conceptually, a sorted list

is like a dictionary of alphabetized terms and their respective definitions. When we want

to add a new term (i.e., key) and definition (i.e., value) to the dictionary, we scan the set

of ordered terms, locate the point at which the term and definition should be added, and

then add the term and definition. Conversely, when we want to remove an existing term

and definition from the dictionary, we scan the set of ordered terms, locate the term and

definition that we wish to remove, and then remove the term and definition.

In C#, elements are added to a sorted list, looked up in a sorted list, and removed

from a sorted list. When an element is added to a sorted list, the sorted list is

automatically adjusted so that its keys remain in the proper sort sequence. Duplicate

keys are not permitted in a sorted list since a given key must uniquely identify an

element in the sorted list. When an element is looked up in a sorted list, it is looked up

by its key.5 And when an element is removed from a sorted list, the sorted list is again

automatically adjusted so that its keys remain in the proper sort sequence. Table 13-4

shows some of the properties, methods, and events of the SortedList class.

4�The key is the first dimension of a sorted list, whereas the value is the second dimension of a
sorted list.

5�Elements in a sorted list can also be accessed by their index.

Figure 13-3.  (continued)

Chapter 13 Collection Operations

251

Figure 13-4 shows an example of the SortedList class.

Notice at 01 that we are declaring the key of the key/value pair as a String type and

the value of the key/value pair as a String type. Keep in mind, however, that we can

declare keys and values of any type. Notice as well that we are not specifying the size of

the sorted list in the declaration. This is because a sorted list is dynamically allocated in

memory. That is, its capacity is automatically increased (through memory reallocation)

as additional items are added to it.

Notice at 02 that although the elements are not added to the sorted list in

alphabetical order, they are placed in alphabetical order automatically as they are added.

Notice as well that United States Postal Service is misspelled.

Notice at 03 that United States Postal Service is no longer misspelled.

Table 13-4.  Some of the properties, methods, and events of the SortedList class

Class SortedList6

Namespace System.Collections

Properties

Count Gets the number of elements contained in a SortedList object.

Item[Object] Gets and sets the value associated with a specific key in a SortedList object.

Methods

Add(Object,  Object) Adds an element with the specified key and value to a SortedList object.

Clear( ) Removes all elements from a SortedList object.

ContainsKey(Object) Determines whether a SortedList object contains a specific key.

ContainsValue(Object) Determines whether a SortedList object contains a specific value.

Remove(Object) Removes the element with the specified key from a SortedList object.

Events

NA

Reference

https://msdn.microsoft.com/en-us/library/system.collections.

sortedlist(v=vs.110).aspx

6�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 13 Collection Operations

https://msdn.microsoft.com/en-us/library/system.collections.sortedlist(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.sortedlist(v=vs.110).aspx

252

Figure 13-4.  Example of the SortedList class

CODE BEHIND

// Declare the sorted list.
01 SortedList<String, String> strShipperSortedList = new SortedList<String,

String>();

// Add an element with the specified key and value to the sorted list.
02 strShipperSortedList.Add("FedEx", "Federal Express");

strShipperSortedList.Add("DHL", "Dalsey, Hillblom, and Lynn");
strShipperSortedList.Add("UPS", "United Parcel Service");
strShipperSortedList.Add("USPS", "Un St Po Se");
// strShipperSortedList[0] = {[DHL, Dalsey, Hillblom, and Lynn]} (Start)
// strShipperSortedList[1] = {[FedEx, Federal Express]
// strShipperSortedList[2] = {[UPS, United Parcel Service]}
// strShipperSortedList[3] = {[USPS, Un St Po Se]} (End)

// Get the number of elements in the sorted list.
Int32 i32Count = strShipperSortedList.Count;
// i32Count = 4

// Set the value associated with a specific key in the sorted list.
03 strShipperSortedList["USPS"] = "United States Postal Service";

// strShipperSortedList[0] = {[DHL, Dalsey, Hillblom, and Lynn]} (Start)
// strShipperSortedList[1] = {[FedEx, Federal Express]
// strShipperSortedList[2] = {[UPS, United Parcel Service]}
// strShipperSortedList[3] = {[USPS, United States Postal Service]} (End)

// Get the value associated with a specific key in the sorted list.
String strShipper = "";
strShipper = strShipperSortedList["FedEx"];
// strShipper = "Federal Express"

// Determine whether or not the sorted list contains a specific key.
Boolean booFound = false;
booFound = strShipperSortedList.ContainsKey("UPS");
// booFound = true

// Determine whether or not the sorted list contains a specific value.
booFound = strShipperSortedList.ContainsValue("United Parcel Service");
// booFound = true

Chapter 13 Collection Operations

253
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_14

CHAPTER 14

File System Operations
14.1  �Introduction
A file system defines how a computer’s data is stored on and retrieved from a mass

storage device. Without a file system, the information on a mass storage device would

be an accumulation of unorganized and non-retrievable data. The files in a file system

are typically arranged into a set of hierarchically organized directories (a.k.a., folders)

and subdirectories (a.k.a., subfolders). Among other things, a file system permits a

computer’s operating system to

•	 Maintain its system of directories and subdirectories

•	 Create, copy, move, store, retrieve, and delete its files

•	 Track the areas of its mass storage device(s) that contain files

•	 Track the areas of its mass storage device(s) that are unused and

available for allocation to files

•	 Track the properties (e.g., owners, created dates and times, modified

dates and times, accessed dates and times) and attributes (e.g.,

compressed, encrypted, read-only, hidden) of its files

When developing Web applications, we often encounter the need to interact with the

Web server’s file system to perform such operations.

In this chapter, we will look at the File class. The File class permits us to do such

things as create a new file, write to or read from a file, delete a file, check for the existence

of a file, get or set the properties and attributes of a file, and copy or move a file from one

location to another.

254

14.2  �File Class
The File class provides static methods that permit us to create, write to, read from,

delete, check for the existence of, get the properties and attributes of, set the properties

and attributes of, copy, and move a single file. All the methods of the File class require

a path. A path is a unique location within the hierarchy of a file system’s directories

and subdirectories. A path can be a directory, subdirectory, or file. The full path of a

directory, subdirectory, or file includes the entire path leading from the file system’s root

directory (e.g., c:\). The relative path of a directory, subdirectory, or file only includes the

path leading from the current directory or subdirectory (e.g., c:\myfiles\). When a file

is first created, full read/write access is granted to all users by default. Table 14-1 shows

some of the properties, methods, and events of the File class.

Table 14-1.  Some of the properties, methods, and events of the File class

Class File1

Namespace System.IO

Properties

(See reference.)

Methods

AppendAllText(String,  String) Opens a file, appends the specified string to the file, and

then closes the file. If the file does not exist, this method

creates a file, writes the specified string to the file, then

closes the file.

Copy(String,  String,  Boolean) Copies an existing file to a new file. Overwriting a file of

the same name is allowed.

Create(String) Creates or overwrites a file in the specified path.

Delete(String) Deletes the specified file.

Exists(String) Determines whether the specified file exists.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 14 File System Operations

255

Table 14-1.  (continued)

GetAttributes(String) Gets the FileAttributes of the file on the path.

GetCreationTime(String) Returns the creation date and time of the specified file or

directory.

GetLastAccessTime(String) Returns the date and time the specified file or directory

was last accessed.

GetLastWriteTime(String) Returns the date and time the specified file or directory

was last written to.

Move(String,  String) Moves a specified file to a new location, providing the

option to specify a new file name.

ReadAllText(String) Opens a text file, reads all lines of the file, and then

closes the file.

SetAttributes(String,  FileAttributes) Sets the specified FileAttributes of the file on the

specified path.

SetCreationTime(String,  DateTime) Sets the date and time the file was created.

SetLastAccessTime(String,  DateTime) Sets the date and time the specified file was last

accessed.

SetLastWriteTime(String,  DateTime) Sets the date and time that the specified file was last

written to.

WriteAllText(String,  String) Creates a new file, writes the specified string to the file,

and then closes the file. If the target file already exists, it

is overwritten.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.io.file(v=vs.110).aspx

Methods

Chapter 14 File System Operations

https://msdn.microsoft.com/en-us/library/system.io.file(v=vs.110).aspx

256

Figure 14-1 shows an example of creating a file using the File class.

Notice at 01 that the System.IO namespace has been added to the list of using

directives (which appears at the top of the code behind file) to obviate the need to

specify the fully qualified name of the File class (i.e., System.IO.File) each time we want

to use one of its methods.

Notice at 02 that we are constructing the full path of the file to be created using the

physical path of the application on the server, the Contracts directory of the application,

and the name of the file.

Notice at 03 that we are using the Exists method of the File class to see if the file to be

created already exists. If it does exist, we do not create the file. However, if it doesn’t exist,

we do create the file.

Notice at 04 that we are using the Create method of the File class to create the new

file.

The first screenshot in the Result section of the figure shows the Contracts directory

before the file has been created. The second screenshot shows the Contracts directory

after the file has been created.

Chapter 14 File System Operations

257

Figure 14-2 shows an example of writing to a file using the File class.

Notice at 01 that the System.IO namespace has been added to the list of using

directives (which appears at the top of the code behind file) so we are not required to

specify the fully qualified name of the File class (i.e., System.IO.File) each time we want

to use one of its methods.

Notice at 02 that we are constructing the full path of the file to write to using the

physical path of the application on the server, the Contracts directory of the application,

and the name of the file.

Figure 14-1.  Example of creating a file using the File class

Chapter 14 File System Operations

258

Notice at 03 that we are using the AppendAllText method of the File class to write a

newly constructed and formatted string to the file. Note that this method opens the file,

appends the string to the file, and closes the file. If the file does not exist, the method will

create the file first.

The screenshot in the Result section of the figure shows the contents of the file after it

has been written to.

Figure 14-2.  Example of writing to a file using the File class

Chapter 14 File System Operations

259

Figure 14-3 shows an example of reading from a file using the File class.

Notice at 01 that the System.IO namespace has been added to the list of using

directives (which appears at the top of the code behind file) to avoid the need to specify

the fully qualified name of the File class (i.e., System.IO.File) each time we want to use

one of its methods.

Notice at 02 that we are constructing the full path of the file to be read from using the

physical path of the application on the server, the Contracts directory of the application,

and the name of the file.

Notice at 03 that we are using the ReadAllText method of the File class to read from

the file. Note that this method opens the file, reads the text from the file, and closes the

file. As can be seen, the contents of the file have been read into a string variable.

Figure 14-3.  Example of reading from a file using the File class

Chapter 14 File System Operations

260

Figure 14-4 shows an example of deleting a file using the File class.

Notice at 01 that the System.IO namespace has been added to the list of using

directives (which appears at the top of the code behind file) so we are not required to

specify the fully qualified name of the File class (i.e., System.IO.File) each time we want

to use one of its methods.

Notice at 02 that we are constructing the full path of the file to be deleted using the

physical path of the application on the server, the Contracts directory of the application,

and the name of the file.

Notice at 03 that we are using the Exists method of the File class to see if the file to be

deleted exists. If it does exist, we delete the file. If it doesn’t exist, we do not attempt to

delete the file.

Notice at 04 that we are using the Delete method of the File class to delete the

existing file.

The screenshot in the Result section of the figure shows the Contracts directory after

the file has been deleted.

Figure 14-4.  Example of deleting a file using the File class

Chapter 14 File System Operations

261

Figure 14-5 shows some examples of getting and setting the properties and attributes

of a file using the File class.

Notice at 01 that the System.IO namespace has been added to the list of using

directives (which appears at the top of the code behind file) to avert the need to specify

the fully qualified name of the File class (i.e., System.IO.File) each time we want to use

one of its methods.

Notice at 02 that we are constructing the full path of the file whose properties and

attributes are to be modified using the physical path of the application on the server, the

Contracts directory of the application, and the name of the file.

The first screenshot in the Result section of the figure shows the properties (i.e.,

Created date and time, Modified date and time, and Accessed date and time) and

attributes (i.e., Read-only and Hidden) of the file before they have been modified. The

second screenshot shows the properties and attributes of the file after they have been

modified. Note that the operating system has been configured to show hidden files for

this example.

Figure 14-5.  Examples of getting and setting the properties and attributes of a file
using the File class

Chapter 14 File System Operations

262

Figure 14-5.  (continued)

Chapter 14 File System Operations

263

Figure 14-5.  (continued)

Chapter 14 File System Operations

264

Figure 14-6 shows an example of copying a file using the File class.

Notice at 01 that the System.IO namespace has been added to the list of using

directives (which appears at the top of the code behind file) so we are not required to

specify the fully qualified name of the File class (i.e., System.IO.File) each time we want

to use one of its methods.

Notice at 02 that we are constructing the full path of the files to be used in the copy

operation using the physical path of the application on the server and the Contracts

directory of the application.

Notice at 03 that we are using the Copy method of the File class to copy the original

file. As can be seen, the new file will be created in the same directory as the original file.

The screenshot in the Result section of the figure shows the Contracts directory after

the original file has been copied.

Figure 14-6.  Example of copying a file using the File class

Chapter 14 File System Operations

265
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_15

CHAPTER 15

Custom C# Classes
15.1  �Introduction
Like the other C# classes we have discussed in this book, a custom C# class can contain

properties, methods, and events. These classes are considered “custom” because the

only properties, methods, and events they contain are the ones we define. Because of

this, they do exactly what we want them to do—nothing more, nothing less. Custom

C# classes are helpful when there are functions or procedures that we must perform

in many places within a single Web application or across multiple Web applications.

So, instead of writing a segment of code to perform a function or procedure and then

copying that code to many places, we can write a single method within a custom C# class

and then invoke that method as needed. This way, when a change to the logic of the code

is required, we need only make the change in one place.

In C#, we can create both non-static classes and static classes. As a general rule, a

non-static class contains non-static properties, non-static methods, and non-static

events that we can utilize, but only after an object has been instantiated from the class.1

We usually create non-static classes when their properties, methods, and events are

intended to represent something in the real world, such as an employee or product.

A static class, on the other hand, contains static properties, static methods, and static

events that we can utilize immediately, without having to instantiate an object from

the class. We usually create static classes when their properties, methods, and events

are intended to perform a function or procedure, such as generating a password or

constructing a login name.

1�A non-static class can also contain static properties, static methods, and static events that we can
utilize immediately, without having to instantiate an object from the class.

266

In this chapter, we will begin by looking at class design. Class design is the process

of planning the properties, methods, and events of a class. As we will see, if we do a

good job of class design, we can expect to develop custom classes that are reusable and

methods that are relatively easy to read, understand, locate semantic errors in, debug,

modify, and unit test. Next, we will discuss the C# class itself. The C# class permits us to

create custom classes that contain our own properties, methods, and events. After that,

we will add a folder to our project that will house our classes. We will then learn how to

add a non-static C# class to our project, code it, and invoke it. And finally, we will learn

how to add a static C# class to our project, code it, and invoke it. Note that, from this

point forward, we will refer to custom C# classes as C# classes for convenience.

15.2  �Class Design
Class design is the process of planning the properties, methods, and events of a class.

One of the major goals of class design is reuse. When we are designing a class, and that

class seems to have broad applicability (e.g., we expect that it might be usable across

several applications in the future), we should design it with an eye toward reuse so that

we don’t spend time reinventing the wheel by writing the same code more than once.

When a class is designed well, there is an increased probability that we will be able to

reuse it when augmenting an existing application or developing a new one.

Another major goal of class design is the creation of methods that exhibit a high

degree of cohesion. Cohesion is the degree to which a method’s instructions are

functionally related. In other words, it is the extent to which a method’s programming

statements work together to perform a singular task. The main problem with methods

that do not perform a singular task is that they are relatively difficult to read, understand,

locate semantic errors in, and modify.

A third major goal of class design is the creation of methods that exhibit a low degree

of coupling. Coupling is the degree to which two or more methods are interdependent.

Put another way, it is the extent to which two or more methods depend on one another

for functionality or data. The main problem with methods that depend on one another

for functionality or data is that changes in one method may require changes in other

methods potentially creating a ripple effect of required changes. As can be imagined, this

can lead to more difficult unit testing as well as the need to retest any related methods

that have been modified.

Chapter 15 Custom C# Classes

267

15.3  �C# Class
A C# class is a custom class that can contain any number of properties, methods, and/

or events. Once a C# class is created, it can be used within a single application or across

multiple applications. Again, this avoids the need to write the same code in more than

one place. Table 15-1 shows the properties, methods, and events of a C# class. As can

be seen, all the members of a C# class are custom. There are no predefined properties,

methods, and events—only the ones we define. Notice that the name of the class in the

table is MyClass. This indicates that we provide the name of the class when we create

it. Notice as well that the namespace of the class is MyProject.MyFolder. This indicates

that the class’s definition resides in a folder that we have created inside a project that

we have created. Although placing our C# classes in a folder is optional, doing so will

help us keep them together in one place and will help us keep our Web applications well

organized in general.

Table 15-1.  The properties, methods, and events of a C# class

Class MyClass

Namespace MyProject.MyFolder

Properties

Custom

Methods

Custom

Events

Custom

Reference

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/

classes-and-structs/classes

Chapter 15 Custom C# Classes

https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/classes
https://docs.microsoft.com/en-us/dotnet/articles/csharp/programming-guide/classes-and-structs/classes

268

15.4  �Adding a Classes Folder
Before we add non-static and static C# classes to our project, we will add a folder called

Classes to house them and any others we may need to create in the future. As mentioned

earlier, adding a Classes folder to our project will help us keep our C# classes together in

one place and will help us keep our Web application well organized in general. To add a

Classes folder to a project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the project (not the solution).

	 3.	 Select Add ➤ New Folder.

	 4.	 Rename the folder Classes.

15.5  �Adding a Non-static C# Class
In this section, we will create a new non-static C# class in our Classes folder. Recall from

earlier that a non-static class contains non-static properties, non-static methods, and

non-static events that we can utilize, but only after an object has been instantiated from

the class.2 We will call our new class Employee. This class will contain several properties

and a single method called GenerateEmailAddress that will generate an employee email

address for us whenever we need one. Keep in mind that we can add as many methods

to a class as we want. To add a new non-static C# class to the Classes folder of the project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the Classes folder.

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Code from the left pane of the dialog.

	 2.	 Select Class from the middle pane of the dialog.

	 3.	 Give the class a Name (Employee.cs) at the bottom of the dialog.

	 4.	 Click Add.

2�A non-static class can also contain static properties, static methods, and static events that we can
utilize immediately, without having to instantiate an object from the class.

Chapter 15 Custom C# Classes

269

Figure 15-1 shows an example of a non-static class. As can be seen, the class contains

a number of properties and a method that generates an email address that is composed

of an employee’s first initial and last name and the domain of his or her company. Thus,

if this method is invoked with the arguments Billingsley and Beth, respectively, the

method will return bbillingsley@sportsplay.com.

Notice at 01 that our Employee class resides in the SportsPlayCSharp.Classes

namespace, where SportsPlayCSharp is the name of the project and Classes is the name

of the folder in which the class resides.

Notice at 02 the declaration of the Employee class. By default, this is a non-static

class.

Notice at 03 the declarations of the class’s properties. As can be seen, each of these

has a set method that assigns a value to the property and a get method that retrieves a

value from the property.

Notice at 04 the declaration of the GenerateEmailAddress method. Again, by default,

this is a non-static method. There are a few other things to notice about the declaration

of this method. First, the word String indicates that this method will return a value

of type String to the method that invokes it. Second, the word GenerateEmailAddress

indicates the name of the method itself. And third, the method has two input

parameters—a last name of type String and a first name of type String. Thus, the invoking

method is expected to pass this method two associated arguments.

Notice at 05 that once the logic of the method is executed, the value in the variable

strEmailAddress will be returned to the invoking method.

Chapter 15 Custom C# Classes

270

Figure 15-1.  Example of a non-static class

Chapter 15 Custom C# Classes

271

Figure 15-2 shows an example of creating an instance of a non-static class, setting

and getting its properties, and invoking its method. Note that instances of this class can

be created and used in any class in the Web application that requires its functionality.

Thus, this class is reusable.

Notice at 01 that the SportsPlayCSharp.Classes namespace has been added to the

list of using directives (which appears at the top of the code behind file) so that we don’t

have to specify the fully qualified name of the Employee class (i.e., SportsPlayCSharp.

Classes.Employee) each time we want to use it.

Notice at 02 that we are assigning values to the variables we will be assigning to the

properties of the soon-to-be-created Employee object. A close inspection of this list of

assignment statements reveals that we have not assigned a value to the strEmailAddress

variable. This is because we will be generating this email address automatically.

Notice at 03 that we are creating an instance of the Employee class. That is, we are

creating an Employee object from the Employee class.

Notice at 04 that we are invoking the Employee object’s GenerateEmailAddress

method with two input parameters, and we are expecting an email address of type String

to be returned.

Notice at 05 that we are setting the properties of the Employee object.

Notice at 06 that we are getting the properties of the Employee object.

Chapter 15 Custom C# Classes

272

Figure 15-2.  Example of creating an instance of a non-static class, setting and
getting its properties, and invoking its method

Chapter 15 Custom C# Classes

273

15.6  �Adding a Static C# Class
In this section, we will create a new static C# class in our Classes folder. Recall from

earlier that a static class contains static properties, static methods, and static events that

we can utilize immediately, without having to instantiate an object from the class. We

will call our new class Password. This class will contain a single method called Generate

that will generate a partially random password for us whenever we need one. Keep in

mind that we can add as many methods to a class as we want. To add a new static C#

class to the Classes folder of the project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the Classes folder.

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Code from the left pane of the dialog.

	 2.	 Select Class from the middle pane of the dialog.

Figure 15-2.  (continued)

Chapter 15 Custom C# Classes

274

	 3.	 Give the class a Name (Password.cs) at the bottom of the dialog.

	 4.	 Click Add.

Figure 15-3 shows an example of a static class. As can be seen, the class contains a

method that generates a password of a given length that is composed of the initials of a

person’s first name and last name followed by a group of randomly generated characters.

Thus, if this method is invoked with the arguments Jones, Jerry, and 7, respectively, the

method will return something like jj14$%5.

Notice at 01 that our Password class resides in the SportsPlayCSharp.Classes

namespace, where SportsPlayCSharp is the name of the project and Classes is the name

of the folder in which the class resides.

Notice at 02 the declaration of the Password class. Note that we have added the word

static immediately after the word public to indicate that this is a static class.

Notice at 03 the declaration of the Generate method. Again, we have added the

word static immediately after the word public to indicate that this is a static method.

There are a few other things to notice about the declaration of this method. First, the

word String indicates that this method will return a value of type String to the method

that invokes it. Second, the word Generate indicates the name of the method itself. And

third, the method has three input parameters—a last name of type String, a first name of

type String, and a length of type Byte. Thus, the invoking method is expected to pass this

method three associated arguments.

Notice at 04 and 05, respectively, the instantiation of a new Random object from

the Random class and the generation of a new random number between 1 and 10

(inclusive).

Notice at 06 that once the logic of the method is executed, the value in the variable

strPassword will be returned to the invoking method.

Chapter 15 Custom C# Classes

275

Figure 15-3.  Example of a static class

Chapter 15 Custom C# Classes

276

Figure 15-4 shows an example of invoking a static method in a static class. Note

that this method can be invoked from any class in the Web application that requires its

functionality. Thus, this class is reusable.

Figure 15-3.  (continued)

Chapter 15 Custom C# Classes

277

Notice at 01 that the SportsPlayCSharp.Classes namespace has been added to the

list of using directives (which appears at the top of the code behind file) so that we don’t

have to specify the fully qualified name of the Password class (i.e., SportsPlayCSharp.

Classes.Password) each time we want to use it.

Notice at 02 that we are invoking the Password class’s Generate method with three

input parameters, and we are expecting a password of type String to be returned.

Figure 15-4.  Example of invoking a static method in a static class

Chapter 15 Custom C# Classes

PART IV

Multiple-Page Web
Application Development

281
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_16

CHAPTER 16

State Maintenance
16.1  �Introduction
State maintenance is the process of preserving the state of an end user’s data as he or she

navigates the pages of a Web application. This process is necessary because client-server

Web applications are stateless, which means that once a server serves a page to a client,

the server completely forgets about the client, the page it just served, and the state of

any data associated with the page. In other words, once a page has been requested by

the client via an HTTP request, and once the server has responded with the page via an

HTTP response, any connection between the client and the server is lost. In fact, each

new page request results in the creation and return of a brand new page, whether the

end user is re-requesting the page he or she is currently on or is requesting a completely

different page.

Because client-server Web applications are stateless, we need a way of preserving

page data so that we can develop applications with multiple pages that work together as

a coherent whole. When developing Web applications in ASP.NET, there are a number

of methods we can use to preserve page data. However, the method (or methods) we

choose depends mostly on how we would answer questions like

•	 How much data will need to be maintained between postbacks to the

server?

•	 Will the data be sensitive?

•	 How long will the data need to persist?

•	 How many end users will be using the system at one time?

•	 How much RAM will the server have?

282

We have two fundamental options when it comes to maintaining state in a Web

application. We can maintain state on the client, or we can maintain state on the server.

We can maintain state using some combination of these as well.

In this chapter, we will begin by looking at client-based state maintenance. If we

choose to maintain state on the client, we have a number of options. These include the

use of view state, control state, hidden fields, cookies, and query strings. Next, we will

discuss server-based state maintenance. If we decide to maintain state on the server,

we also have some options. These include the use of session state, profile properties,

database support, and application state. And finally, we will look at the process of

maintaining the state of a data structure (e.g., an array, stack, queue, linked list, sorted

list) so that it can be used across the pages of a Web application.

16.2  �Client-Based State Maintenance
To maintain state on the client, we can utilize view state, control state, hidden fields,

cookies, and/or query strings. In this section, we will limit our discussion to view state,

cookies, and query strings as those methods seem to be the most commonly used

methods of client-based state maintenance. Of course, control state and hidden fields

are also useful methods of state maintenance, so the interested reader is encouraged to

explore those methods as well.

16.2.1  �View State
View state is a state-maintenance method that automatically preserves the values of the

controls on a page (using a structure that resides in the page’s source code) so that we

can retrieve and use those values after a postback to the server that requests the same

page. For example, when an end user selects an item from a drop-down list, enters a

value into a text box, and then submits the page, the same drop-down list selection

and the same text box value will be displayed on the page after the page completes its

round trip from the client to the server and back to the client—all without the need to

store the values of the controls on the page programmatically. View state data is hashed,

compressed, encoded, and stored in a structure on the client in the page’s source code.

View state is turned on by default.

Chapter 16 State Maintenance

283

The advantages of using view state include

•	 Since view state data is stored in a page’s source code, it does not

require server memory.

•	 Since view state does not require any special programming, it is easy

to implement.

•	 Since view state data is hashed, compressed, and encoded, it is

relatively secure.

The disadvantages of using view state include

•	 Since view state data is stored in a page’s source code, large amounts

of page data can cause page requests and responses to be relatively

slow.

•	 Since view state data is stored in a page’s source code, large amounts

of page data can overwhelm the memory of some mobile devices.

•	 Since view state data is stored in a page’s source code, it can be

accessed directly by viewing the page’s source code and can thus be

tampered with.

Figure 16-1 shows an example of page values before and after a postback to the

server that requests the same page. As can be seen in the first screenshot of the figure,

selections have been made from the two drop-down lists, and entries have been made in

the seven text boxes. The second screenshot shows the result of clicking the Save button,

which requested a postback to the server requesting the same page. Notice that both

drop-down list selections and all of the text box entries have been preserved and that no

code was required to preserve this data.

Chapter 16 State Maintenance

284

16.2.2  �Cookies
Cookies is a state-maintenance method that permits us to programmatically preserve

the values of the controls on a page (using the client’s memory or using a file that resides

on the client’s hard drive) so that we can retrieve and use those values on subsequent

pages of the application. For example, when an end user selects an item from a drop-

down list, enters a value into a text box, and then submits the page, the same drop-down

list selection and the same text box value can be retrieved and used on the page that is

displayed next.

Figure 16-1.  Example of page values before and after a postback to the server that
requests the same page

Chapter 16 State Maintenance

285

There are two types of cookies—nonpersistent cookies and persistent cookies. A

nonpersistent cookie (a.k.a., an in-memory cookie or a session cookie) is stored in the

client’s memory and expires (i.e., is automatically deleted) when its associated session

terminates. Thus, a nonpersistent cookie is available to an application until the client’s

browser is closed. A persistent cookie, on the other hand, is stored in a browser file on

the client’s hard drive and does not expire (i.e., is not automatically deleted) when its

associated session terminates. Thus, a persistent cookie is available to an application

even after the client’s browser is closed. In fact, a persistent cookie is available to an

application until the date and time stored in the cookie’s Expires property. Persistent

cookies are often used to identify the language, theme, and menu preferences of end

users who return to an application at some later time without requiring them to log into

the application first. Whether nonpersistent or persistent, a cookie contains a simple

text-based key-value pair (or set of simple text-based key-value pairs). Most browsers

restrict the size of a cookie to between 4,096 and 8,192 bytes.

The advantages of using cookies include

•	 Since cookie data is stored in the client’s memory or on the client’s

hard drive, it does not require server memory.

•	 Since a cookie contains a simple text-based key-value pair (or set

of simple text-based key-value pairs), little processing overhead is

required.

The disadvantages of using cookies include

•	 Since most browsers restrict the size of a cookie to between 4,096 and

8,192 bytes, there is a practical limit to how much data can be stored

in a cookie.

•	 Since some end users configure their browsers so that they won’t

accept cookies, an application that relies on cookies for state

maintenance will not always work properly.

•	 Since persistent cookie data is stored in a file on the client’s hard

drive, it can be accessed directly (by the end user or a hacker)

by viewing the contents of the file and can thus be tampered

with creating a potential security risk or causing an application

malfunction.

Chapter 16 State Maintenance

286

Figure 16-2 shows an example of saving cookies on the client for use on another

page.

Notice at 01 that we are saving the SelectedValue property of the first DropDownList

control to the Value property of a cookie named ddlCategory.

Notice at 02 that we are saving the Text property of the first TextBox control, which

is a string, to the Value property of a cookie named strProduct. Although such a naming

standard is not technically required, we will adopt this standard as it will make keeping

track of our cookies and their respective types much easier.

Notice at 03 that we are redirecting the current page to the next page (i.e., the

confirmation page) after all of our cookies have been saved. By the way, if we want a

cookie to persist on the client for, say, six months from now, we would modify its Expires

property like this:

Response.Cookies["Cookie Name"].Expires = DateTime.Now.AddMonths(6);

where Cookie Name is the name of the cookie.

The screenshot in the Result section of the figure shows the current page after

selections have been made from the two drop-down lists, and entries have been made in

the seven text boxes.

Chapter 16 State Maintenance

287

Figure 16-3 shows an example of retrieving cookies from the client.

Notice at 01 that we are retrieving the cookies in the Page_Load event handler

method of the next page (i.e., the confirmation page).

Notice at 02 that we are retrieving the SelectedValue property of the DropDownList

control from the Value property of its associated cookie.

Notice at 03 that we are retrieving the Text property of the TextBox control, which is a

string, from the Value property of its associated cookie.

Figure 16-2.  Example of saving cookies on the client for use on another page

Chapter 16 State Maintenance

288

Notice at 04 that we are converting the Value property of the cookie to a Decimal

type. This is necessary because all cookie values are stored as strings and, thus, must be

converted appropriately if we wish to use them in the form of a different type.

The screenshot in the Result section of the figure shows the next page (i.e., the

confirmation page) after it has been rendered in the browser. Notice that both drop-

down list selections and all text box entries have been preserved from the previous page.

Figure 16-3.  Example of retrieving cookies from the client

Chapter 16 State Maintenance

289

16.2.3  �Query Strings
Query string is a state-maintenance method that permits us to programmatically

preserve the values of the controls on a page (using a string that is appended to the

page’s URL) so that we can retrieve and use those values on subsequent pages of the

application. For example, when an end user selects an item from a drop-down list, enters

a value into a text box, and then submits the page, the same drop-down list selection and

the same text box value can be retrieved and used on the page that is displayed next.

A query string can be used, for example, to pass a selected product number from one

page to another or to pass an email address to a login page so that the end user need not

manually enter it to login (à la Facebook). Query string data is passed from one page to

another via the page’s URL. A query string contains a set of simple text-based key-value

parameter pairs. Most browsers restrict the size of an encoded URL (i.e., a URL that

contains a query string) to between 2,000 and 6,000 characters.

The advantages of using query strings include

•	 Since query string data is passed from one page to another via the

page’s URL, it does not require server memory.

•	 Since a query string contains a set of simple text-based key-value

pairs, little processing overhead is required.

•	 Since virtually all browsers support the use of query strings, they can

be used with relative confidence.

The disadvantages of using query strings include

•	 Since query string data is passed from one page to another via the

page’s URL, it can be seen by the end user and can thus be tampered

with creating a potential security risk or causing an application

malfunction.

•	 Since query string data is passed from one page to another via the

page’s URL, it can be bookmarked or sent to another person, thus

creating a potential security risk.

•	 Since some browsers restrict the size of an encoded URL, a URL with

too much query string data will cause a page malfunction.

Chapter 16 State Maintenance

290

Figure 16-4 shows an example of passing a query string via an encoded URL for use

on another page.

Notice at 01 that we are redirecting the current page to the next page (i.e., the

confirmation page). As can be seen, the query string, which follows the name of the

.aspx file, begins with a question mark (?), and all query string key-value parameter pairs

are separated by ampersands (&). Also notice that we are attaching the SelectedValue

property of the first DropDownList control to a query string parameter named

ddlCategory. Notice as well that we are attaching the Text property of the first TextBox

control, which is a string, to its associated query string parameter named strProduct.

Although such a naming standard is not technically required, we will adopt this standard

as it will make keeping track of our query string parameters and their respective types

much easier.

The screenshot in the Result section of the figure shows the current page after

selections have been made from the two drop-down lists, and entries have been made in

the seven text boxes.

Chapter 16 State Maintenance

291

Figure 16-4.  Example of passing a query string via an encoded URL for use on
another page

Chapter 16 State Maintenance

292

Figure 16-5 shows an example of retrieving a query string’s parameters from an

encoded URL.

Notice at 01 that we are retrieving the query string’s parameters in the Page_Load

event handler method of the next page (i.e., the confirmation page).

Notice at 02 that we are retrieving the SelectedValue property of the DropDownList

control from its associated query string parameter.

Notice at 03 that we are retrieving the Text property of the TextBox control, which is a

string, from its associated query string parameter.

Notice at 04 that we are converting the value of the query string parameter to a

Decimal type. This is necessary because all query string parameter values are passed as

strings and, thus, must be converted appropriately if we wish to use them in the form of a

different type.

The screenshot in the Result section of the figure shows the next page (i.e., the

confirmation page) after it has been rendered in the browser. Notice that both drop-

down list selections and all of the text box entries have been preserved from the previous

page.

Chapter 16 State Maintenance

293

Figure 16-5.  Example of retrieving a query string’s parameters from an encoded
URL

Chapter 16 State Maintenance

294

16.3  �Server-Based State Maintenance
To maintain state on the server, we can utilize session state, profile properties, database

support, and/or application state.1 In this section, we will limit our discussion to session

state as that method seems to be the most commonly used method of server-based

state maintenance, and learning about it will be more than enough to get us started. Of

course, profile properties, database support, and application state are all useful methods

of state maintenance. The interested reader is encouraged to explore those methods as

well.

16.3.1  �Session State
Session state is a state-maintenance method that permits us to programmatically

preserve the values of the controls on a page (using an object that resides in memory

on the server) so that we can retrieve and use those values on subsequent pages of the

application. For example, when an end user selects an item from a drop-down list, enters

a value into a text box, and then submits the page, the same drop-down list selection and

the same text box value can be retrieved and used on the page that is displayed next.

Session-state data is stored in the properties of a session object in RAM on the

server—although it can also be stored in a database on the server or in a custom data

source on the server. When a client contacts the server for the first time via an HTTP

request, the server creates a session object and then passes the page and the newly

created session object’s ID back to the client via an HTTP response. The session object’s

ID (i.e., the session ID) is the unique identifier of the session object. It is this ID that

enables the server to identify the unique sessions that exist between itself and all of

the clients it serves. The session ID is (by default) stored as a cookie on the client and

is passed to the server each time the client requests a page.2 Since the session ID that

1�Application state maintains state across multiple end-user sessions instead of within a single
end-user session. Thus, the scope of an application variable includes all of the pages of an
application for all of the end-user sessions of the application. In essence, an application variable
is a global variable that any end-user session has access to. For this reason, application variables
should be used with caution. Unlike session state that remains active until the end user closes his
or her browser, application state remains active until the application is stopped.

2�If a browser doesn’t accept cookies, ASP.NET will attempt to pass the session ID between the
client and the server via an encoded URL (i.e., a URL with the session ID in a query string) or via
some other method.

Chapter 16 State Maintenance

295

is passed by the client is known to the server, the server can retrieve the data from the

associated session object as required to instantiate any control values on the requested

page before the page is sent back to the client for rendering.

By default, an unreferenced session object persists on the server for 20 minutes. If the

session object is not accessed within that 20-minute time period, a session timeout will

occur. When a session times out, the session object is deleted from the server’s memory,

and the session is terminated. This means that the session that once existed between the

client and the server no longer exists. Fortunately, the 20-minute time period restarts

each time the session object is referenced by a page request from the associated client.

This way, sessions can last much longer than 20 minutes.

By the way, if an application requires it for some reason, we can allow more time

between page requests. For example, if we have a situation where we need to permit

the end user to remain on a page for up to 60 minutes before they submit the page for

processing, we can modify the session object’s Timeout property in the <system.web>

section of the Web.config file. Figure 16-6 shows an example of extending the duration

of an application’s session state. Keep in mind that we may also need to configure IIS to

allow for a session timeout greater than the default.

The advantages of using session state include

•	 Since session state is class based, it is familiar to .NET developers and

is thus easy to use.

•	 Since session state is class based, session events can be raised and

handled during a session.

•	 Since session-state data is preserved during an Internet Information

Services (IIS) restart, session state is very reliable.

Figure 16-6.  Example of extending the duration of an application’s session state

Chapter 16 State Maintenance

296

•	 Since session-state data can be preserved in multiple processes

and/or on multiple servers, session state can be utilized in Web

garden and Web farm environments, thus enhancing an application’s

scalability and reliability.

•	 Since a session ID can be passed via a query string in an encoded

URL, session state can work with browsers that do not accept cookies.

The disadvantages of using session state include

•	 When a session ID is passed to the server via a query string in

an encoded URL, it can be seen by the end user and can thus be

tampered with creating a potential security risk or causing an

application malfunction.

•	 When a session ID is passed to the server via a query string in an

encoded URL, the URL can be bookmarked or sent to another

person, thus creating a potential security risk.

•	 Since session-state data is stored and maintained in RAM on the

server, server performance can degrade as more and more sessions

require tracking.

16.3.2  �HttpSessionState Class
The HttpSessionState class permits us to manage client-server sessions using

session state. Table 16-1 shows some of the properties, methods, and events of the

HttpSessionState class. Although most of the properties, methods, and events of this

class will not be demonstrated in this chapter, they are displayed for reference, since

they are so commonly used. For example, notice the Abandon method of the class.

This method is often used when, for some reason, we want to permit the end user to

terminate his or her session before they close their browser, such as when we provide

them with a Logout or Sign out button.

Chapter 16 State Maintenance

297

Table 16-1.  Some of the properties, methods, and events of the HttpSessionState

class

Class HttpSessionState3

Namespace System.Web.SessionState

Properties

Contents Gets a reference to the current session-state object.

CookieMode Gets a value that indicates whether the application is configured for

cookieless sessions.

Count Gets the number of items in the session-state collection.

IsCookieless Gets a value indicating whether the session ID is embedded in the URL or

stored in an HTTP cookie.

SessionID Gets the unique identifier for the session.

Timeout Gets and sets the amount of time, in minutes, allowed between requests

before the session-state provider terminates the session.

Methods

Abandon( ) Cancels the current session.

Add(String,  Object) Adds a new item to the session-state collection.

Clear( ) Removes all keys and values from the session-state collection.

Remove(String) Deletes an item from the session-state collection.

RemoveAll( ) Removes all keys and values from the session-state collection.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.sessionstate.

httpsessionstate(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 16 State Maintenance

https://msdn.microsoft.com/en-us/library/system.web.sessionstate.httpsessionstate(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.sessionstate.httpsessionstate(v=vs.110).aspx

298

Figure 16-7 shows an example of saving session variables on the server for use on

another page.

Notice at 01 that we are saving the SelectedValue property of the first DropDownList

control to a session variable named ddlCategory.4

Notice at 02 that we are saving the Text property of the first TextBox control, which

is a string, to a session variable named strProduct. Although such a naming standard is

not technically required, we will adopt this standard as it will make keeping track of our

session variables and their respective types much easier.

Notice at 03 that we are redirecting the current page to the next page (i.e., the

confirmation page) after all of our session variables have been saved.

The screenshot in the Result section of the figure shows the current page after

selections have been made from the two drop-down lists, and entries have been made in

the seven text boxes.

4�We could have saved this session variable using the Add method of the Session class like this:
Session.Add(“ddlCategory”, ddlCategory.SelectedValue). However, we prefer the shortcut
method shown in the example as it is more similar to the way we retrieve session variables.

Chapter 16 State Maintenance

299

Figure 16-8 shows an example of retrieving session variables from the server.

Notice at 01 that we are retrieving the session variables in the Page_Load event

handler method of the next page (i.e., the confirmation page).

Notice at 02 that we are retrieving the SelectedValue property of the DropDownList

control from its associated session variable.

Notice at 03 that we are retrieving the Text property of the TextBox control, which is a

string, from its associated session variable.

Figure 16-7.  Example of saving session variables on the server for use on another
page

Chapter 16 State Maintenance

300

Notice at 04 that we are converting the session variable to a Decimal type. This

is necessary because all session variables are stored as objects and, thus, must be

converted appropriately if we wish to use them in the form of a different type.

The screenshot in the Result section of the figure shows the next page (i.e., the

confirmation page) after it has been rendered in the browser. Notice that both drop-down

list selections and all of the text box entries have been preserved from the previous page.

Figure 16-8.  Example of retrieving session variables from the server

Chapter 16 State Maintenance

301

16.4  �Maintaining the State of a Data Structure
When using a data structure (e.g., an array, stack, queue, linked list, sorted list) in a Web

application, it is often necessary to maintain the state of that data structure so that it can

be used in the same page (i.e., after a postback to the server that requests the same page)

or in another page of the application. One way to do this is to save the data structure to

a session variable. Figure 16-9 shows an example of saving a one-dimensional array to a

session variable for use on another page.

Notice at 01 that we are declaring and loading a one-dimensional array that contains

five elements.

Notice at 02 that we are saving the array to a session variable.

Notice at 03 that we are redirecting the current page to the next page.

Figure 16-10 shows an example of retrieving a one-dimensional array from a session

variable.

Figure 16-9.  Example of saving a one-dimensional array to a session variable for
use on another page

Chapter 16 State Maintenance

302

Notice at 01 that we are looking at the btnLookup_Click event handler method of the

next page.

Notice at 02 that we are declaring a new one-dimensional array with five elements.

Notice at 03 that we are retrieving the existing one-dimensional array from the

session variable.

Notice at 04 that we are using the array as normal.

The screenshot in the Result section of the figure shows the result of entering an

array index into the text box and clicking Lookup. This result clearly demonstrates that

the state of the array was maintained from the previous page to the current page. Keep

in mind that this approach to maintaining the state of a data structure will work for any

type of data structure—not just one-dimensional arrays.

Figure 16-10.  Example of retrieving a one-dimensional array from a session
variable

Chapter 16 State Maintenance

303
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_17

CHAPTER 17

Master Pages
17.1  �Introduction
A master page is a template that contains page elements (e.g., text, HTML, ASP.NET server

controls) and a content placeholder that reserves space for its associated content pages.

Every page element that is placed in a master page (outside of the content placeholder)

is displayed on every content page associated with the master page. Thus, when a master

page is employed, the master page itself remains consistent from one content page to the

next. The only thing that changes is what is displayed in the content pages.

Master pages are useful because they permit us to display common page elements

consistently across many pages of a Web application. For example, a well-designed Web

application will consistently display in its master page elements like an organizational

logo, a place to display the name of the application, a place to display the end user’s

name, a place to display the name of the current page, and a place to display messages.

When such elements are included in an application’s master page, their locations remain

consistent from one content page to the next, which results in an application that is

easier to use and more professional looking.

In this chapter, we will begin by looking at the MasterPage class. We will use this

class to display a consistent structure, look, and feel across all of the content Page classes

of our Web application. Next, we will learn how to add a master page to an ASP.NET Web

Application project using Visual Studio. And finally, we will learn how to add a content

Page class that is associated with the MasterPage class.

17.2  �MasterPage Class
The MasterPage class serves as a container for the content pages of a .NET Web

application. As such, it permits us to display a consistent structure, look, and feel across

all of the content Page classes of an application. Although most Web applications

have a single master page that is applied to all of the content pages of the application,

304

some Web applications have multiple master pages that are applied to groups of content

pages within the application. In ASP.NET, a master page can be statically associated with

a content page at design time (i.e., we can hard code the association in the Aspx code

of the content page), or it can be programmatically associated with a content page at

runtime (i.e., we can establish the association in the code behind of the content page).

In this chapter, we will associate our master page with our content pages statically.

Before going much further, it would be a good idea to discuss the basics of how

master pages work in ASP.NET. When a client requests a content page from the server,

the server merges the content page and its associated master page into a single page with

the same name as the content page. This results in a combination of the master page,

which is the same for all of its associated content pages, and the content page, which is

different from all of the other content pages. Although a content page and its associated

master page are merged into a single page, it is very important to know that they are

treated as separate objects from a coding perspective. In effect, the master page is treated

as a control on the content page. Thus, if we wish to gain access to (i.e., get or set) the

properties of the page elements in the master page, we must “expose” those properties

to the content page. We will see an example of this later. Also, since the MasterPage class

and the Page class raise some of the same events (e.g., the Load event), it is a good idea

to look at the order in which these events are raised. For reference purposes, this order is

•	 Content page’s PreInit event

•	 Master page controls’ Init events

•	 Content page controls’ Init events

•	 Master page’s Init event

•	 Content page’s Init event

•	 Content page’s Load event

•	 Master page’s Load event

•	 Master page controls’ Load events

•	 Content page controls’ Load events

•	 Content page’s PreRender event

•	 Master page’s PreRender event

Chapter 17 Master Pages

305

•	 Master page controls’ PreRender events

•	 Content page controls’ PreRender events

•	 Master page controls’ Unload events

•	 Content page controls’ Unload events

•	 Master page’s Unload event

•	 Content page’s Unload event

Table 17-1 shows some of the properties, methods, and events of the MasterPage class.

17.3  �Adding a MasterPage Class
When beginning a new Web application, it is almost always a good idea to add a

MasterPage class to the project before adding any content Page classes to the project.

This is because it is much easier to associate a content Page class with an existing

Table 17-1.  Some of the properties, methods, and events of the MasterPage class

Class MasterPage1

Namespace System.Web.UI

Properties

MasterPageFile Gets or sets the name of the master page that contains the current content.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.masterpage(v=vs.110).aspx

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 17 Master Pages

https://msdn.microsoft.com/en-us/library/system.web.ui.masterpage(v=vs.110).aspx

306

MasterPage class when the content Page class is created than it is to convert a content

Page class that is not associated with a MasterPage class to a content Page class that is

associated with a MasterPage class. Thus, as a general rule, a master page should be one

of the very first things we create when starting a new project. To add a MasterPage class

to an ASP.NET Web Application project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the project (not the solution).

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Web ➤ Web Forms from the left

pane of the dialog.

	 2.	 Select Web Forms Master Page from the middle pane of the dialog.

	 3.	 Give the master page (i.e., MasterPage class) a Name at the bottom

of the dialog.

	 4.	 Click Add.

Figure 17-1 shows the Aspx file of the newly added MasterPage class. Notice in the

Solution Explorer that the MasterPage class has been added to the project. Whenever

we want to access the code of this MasterPage class in the future, we will simply

double-click it in the Solution Explorer. Next, notice the tab between the Visual Studio

menu and the top of the code. This tab displays the name of the MasterPage class file

(i.e., MasterPage.Master). It is in this file that we will design the master page of our

application. Now look at the code itself. Notice the master page directive at the very top

of the code. This master page directive indicates, among other things, that C# is used as

the programming language for the class and that the name of the code behind file (i.e.,

where we will write our server-side ASP.NET and C# code) is MasterPage.Master.cs. And

finally, notice that the remainder of this file contains a number of basic HTML tags, such

as <head>, <title>, <body>, and <div>, and two ASP.NET server control tag pairs (i.e.,

<asp:ContentPlaceHolder> and </asp:ContentPlaceHolder>). We will concentrate on

the second pair of content placeholder tags in this chapter.

Chapter 17 Master Pages

307

Like the Page class, the MasterPage class has two main (and separate) parts—the

user interface part and the code behind part. The .Master file contains the user

interface part of the class. This part of the class is coded using HTML tags, ASP tags, or

a combination of both. The Master.cs file, on the other hand, contains the code behind

part of the class. This part of the class is coded using ASP.NET and C#. The beauty

of this separation of concerns is that we can make changes to a master page’s user

interface without affecting its functionality, and we can make changes to a master page’s

functionality without affecting its user interface.

To write ASP.NET and C# code, we need to open the code behind file of the class.

To access the code behind file

	 1.	 Expand the MasterPage class by clicking the triangle icon next to

the MasterPage.Master file in the Solution Explorer.

	 2.	 Double-click the associated MasterPage.Master.cs file.

Figure 17-2 shows the code behind file of the newly added MasterPage class. Notice

the tab between the Visual Studio menu and the top of the code. This tab displays the

name of the code behind file of MasterPage class (i.e., MasterPage.Master.cs). It is in this

file that we will write the ASP.NET and C# code of our master page. Now look at the code

itself. Notice, at the very top of the code, a number of C# directives that begin with the

Figure 17-1.  Aspx file of the newly added MasterPage class

Chapter 17 Master Pages

308

word using. These code behind directives refer to the namespaces included in the class.

Namespaces can contain other classes that provide the MasterPage class with additional

functionality, or they can contain types (e.g., interface types, array types, value types,

reference types, enumeration types) that are required by other namespaces. Now look at

the line of code that starts with the word namespace. This indicates that our MasterPage

class is in the SportsPlaySite namespace. If for some reason we need to refer to the

properties and/or methods of this MasterPage class from some other class in the future,

we will need to include the SportsPlaySite namespace in that class. Next, take a look at

the line of code that starts with the phrase public partial class. The word partial here

indicates that this file (i.e., MasterPage.Master.cs) contains one part of the MasterPage

class. The other files (i.e., MasterPage.Master and MasterPage.Master.designer.cs) contain

the other parts of the MasterPage class. And finally, look at the line of code that starts with

the phrase protected void. This is the Page_Load event handler method of the class, which

is generated automatically when the MasterPage class is added to the project. If there is

any ASP.NET and/or C# code that needs to be executed when the master page loads

(i.e., when the master page’s Load event is raised), we will code it here.

Figure 17-2.  Code behind file of the newly added MasterPage class

Chapter 17 Master Pages

309

17.4  �Adding a Page Class with a MasterPage
Now that we have added a MasterPage class to our project, we can begin adding any

associated content Page classes. To add a Page class with a MasterPage to an ASP.NET

Web Application project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the project (not the solution).

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Web ➤ Web Forms from the left

pane of the dialog.

	 2.	 Select Web Form with Master Page from the middle pane of the

dialog.

	 3.	 Give the Web page (i.e., Page class) a Name at the bottom of the

dialog.

	 4.	 Click Add.

When the Select a Master Page dialog appears

	 1.	 Select the master page from the right pane of the dialog.

	 2.	 Click OK.

Figure 17-3 shows the Aspx file of the newly added content Page class. Notice in the

Solution Explorer that the content Page class has been added to the project. Whenever we

want to access the code of this content Page class in the future, we will simply double-click

it in the Solution Explorer. Next, notice the tab between the Visual Studio menu and the

top of the code. This tab displays the name of the content Page class file (i.e., Home.aspx).

Now look at the code itself. Notice the page directive at the very top of the code. This page

directive indicates, among other things, that C# is used as the programming language for

the class, that the associated master page file is MasterPage.Master, and that the name

of the code behind file (i.e., where we will write our server-side ASP.NET and C# code) is

Home.aspx.cs. And finally, notice that this file contains no HTML tags. It only contains two

ASP.NET server control tag pairs (i.e., <asp:Content> and </asp:Content>). It is between

the second pair of content tags that we will design the user interface for this content page.

Chapter 17 Master Pages

310

Like the MasterPage class, the content Page class has two main (and separate)

parts—the user interface part and the code behind part. The .aspx file contains the user

interface part of the class. This part of the class is coded using HTML tags, ASP tags, or

a combination of both. The .aspx.cs file, on the other hand, contains the code behind

part of the class. This part of the class is coded using ASP.NET and C#. The beauty of this

separation of concerns is that we can make changes to a content page’s user interface

without affecting its functionality, and we can make changes to a content page’s

functionality without affecting its user interface.

To write ASP.NET and C# code, we need to open the code behind file of the class. To

access the code behind file

	 1.	 Expand the content Page class by clicking the triangle icon next to

the .aspx file in the Solution Explorer.

	 2.	 Double-click the associated .aspx.cs file.

Figure 17-4 shows the code behind file of the newly added content Page class. Notice

the tab between the Visual Studio menu and the top of the code. This tab displays the name

of the code behind file of content Page class (i.e., Home.aspx.cs). It is in this file that we

will write the ASP.NET and C# code of our content page. Now look at the code itself. At

the very top of the code, notice a number of C# directives that begin with the word using.

Figure 17-3.  Aspx file of the newly added content Page class

Chapter 17 Master Pages

311

These code behind directives refer to the namespaces included in the class. Namespaces

can contain other classes that provide the content Page class with additional functionality,

or they can contain types (e.g., interface types, array types, value types, reference types,

enumeration types) that are required by other namespaces. Now look at the line of

code that starts with the word namespace. This indicates that the Home class is in the

SportsPlaySite namespace. If for some reason we need to refer to the properties and/or

methods of the Home class from some other class in the future, we will need to include

the SportsPlaySite namespace in that class. Next, take a look at the line of code that starts

with the phrase public partial class. The word partial here indicates that this file (i.e.,

Home.aspx.cs) contains one part of the Home class. The other files (i.e., Home.aspx and

Home.aspx.designer.cs) contain the other parts of the Home class. And finally, look at the

line of code that starts with the phrase protected void. This is the Page_Load event handler

method of the class, which is generated automatically when the content Page class is

added to the project. If there is any ASP.NET and/or C# code that needs to be executed

when the page loads (i.e., when the page’s Load event is raised), we will code it here.

Figure 17-5 shows an example of the MasterPage class.

Notice at 01 the master page directive. This directive indicates, among other things,

that C# is used as the programming language for the class and that the name of the

Figure 17-4.  Code behind file of the newly added content Page class

Chapter 17 Master Pages

312

code behind file (i.e., where we will write our server-side ASP.NET and C# code) is

MasterPage.Master.cs.

Notice at 02 the table that lays out the controls in the header of the master page. We

know that this table is displayed in the header of the master page because it is located

above the (second) content placeholder, which can be seen at 04.

Notice at 03 the Label control that will be used to display all of the messages in

the application. Since this label exists in the master page, we will need to expose its

properties in the code behind of the class.

Notice at 04 the (second) content placeholder. When the master page and an

associated content page are merged during compilation, the controls on the content

page will be placed in this location.

Notice at 05 the table that lays out the controls in the footer of the master page. We

know that this table is displayed in the footer of the master page because it is located

below the (second) content placeholder.

Now look at the code behind of the master page. Toward the top of this file, we have

written the code necessary to expose some of the properties of four of the controls in

the header of the master page (i.e., lblUser, lblPageTitle, lblMessage, and lblLog). By

doing this, the content pages of the application have access to these controls and can

manipulate them as desired.

Notice at 06 that we have defined a public MessageForeColor property for the

MasterPage class. The System.Drawing.Color part of the declaration indicates the type of

the property. In this case, the property is a color. The statement inside the curly brackets

of the declaration indicates that the ForeColor property of the lblMessage control will

be set to whatever color is indicated when the property is set from the code behind of an

associated content page.

Notice at 07 that we have defined a public Message property for the MasterPage

class. The String part of the declaration indicates the type of the property. In this case,

the property is a string. The statement inside the curly brackets of the declaration

indicates that the Text property of the lblMessage control will be set to whatever string is

indicated when the property is set from the code behind of an associated content page.

Notice that both of these public properties (i.e., MessageForeColor and Message) refer to

the lblMessage control defined at 03.

Notice at 08 the Page_Load event handler method where we are setting the

properties of several of the Label controls (i.e., lblServerName, lblVersion, lblDate, and

lblContact) in the footer part of the master page’s Aspx code. Thus, these properties are

set every time the master page and its associated content page load.

Chapter 17 Master Pages

313

Figure 17-5.  Example of the MasterPage class

Chapter 17 Master Pages

314

Figure 17-5.  (continued)

Chapter 17 Master Pages

315

Figure 17-5.  (continued)

Chapter 17 Master Pages

316

Figure 17-6 shows an example of a home page with a master page.

Notice at 01 the page directive at the very top of the code. This page directive

indicates, among other things, that the associated master page file is MasterPage.Master.

Notice at 02 the master type directive. This directive provides access to the properties

of the master page that we have exposed. If we do not provide access to these properties

by including this directive, we will not be able to manipulate the properties of the master

page in the code behind of the content page.

Notice at 03 the content placeholder tag. Every page element that we place between

this tag and its associated end tag will be displayed between the header and the footer of

the master page.

Notice at 04 the Page_Load event handler method of the content page. As can

be seen, it is in this event handler method that we are setting several of the exposed

properties of the MasterPage class.

Notice at 05 that we are setting the MessageForeColor property of the MasterPage

class to green to indicate to the end user that all is well.

Notice at 06 that we are setting the Message property of the MasterPage class to

Please click [Login] to login to the system.

Figure 17-5.  (continued)

Chapter 17 Master Pages

317

The screenshot in the Result section of the figure shows the content page

(i.e., Home.aspx) and its associated master page after the two have been merged,

executed, and displayed in the browser.

Figure 17-6.  Example of a home page with a master page

Chapter 17 Master Pages

318

Figure 17-7 shows an example of a login page with a master page.

Notice at 01, 02, and 03 the page directive, the master type directive, and the content

placeholder tag, respectively. These were discussed previously. As can be seen, the code

between the content placeholder tag and its associated end tag is different from that in

the Home.aspx file.

Notice at 04 the Page_Load event handler method of the content page. Again, it is

in this event handler method that we are setting several of the exposed properties of the

MasterPage class.

Notice at 05 that we are setting the MessageForeColor property of the MasterPage

class to green to indicate to the end user that all is well.

Notice at 06 that we are setting the Message property of the MasterPage class to

Please enter your email address and password and click Login.

The screenshot in the Result section of the figure shows the content page (i.e., Login.

aspx) and its associated master page after the two have been merged, executed, and

displayed in the browser, and the end user has typed in his or her email address and

password.

Figure 17-7.  Example of a login page with a master page

Chapter 17 Master Pages

319

Figure 17-7.  (continued)

Chapter 17 Master Pages

320

Figure 17-8 shows an example of an options page with a master page.

Notice at 01, 02, and 03 the page directive, the master type directive, and the content

placeholder tag, respectively. These were discussed previously. Notice that the code

between the content placeholder tag and its associated end tag is different from that in

the Home.aspx file and the Login.aspx file.

Notice at 04 the Page_Load event handler method of the content page. Once again,

it is in this event handler method that we are setting several of the exposed properties of

the MasterPage class.

Notice at 05 that we are setting the User property of the MasterPage class to the name

of the end user that logged in. We can assume that this name was saved to the session

variable when the end user successfully logged in.

Notice at 06 that we are setting the MessageForeColor property of the MasterPage

class to green to indicate to the end user that all is well.

Notice at 07 that we are setting the Message property of the MasterPage class to

Please choose from the options below.

The screenshot in the Result section of the figure shows the content page (i.e.,

Options.aspx) and its associated master page after the two have been merged, executed,

and displayed in the browser. Notice that the end user’s name is displayed on the page.

Chapter 17 Master Pages

321

Figure 17-8.  Example of an options page with a master page

Chapter 17 Master Pages

323
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_18

CHAPTER 18

Themes
18.1  �Introduction
A theme allows us to define, in one place, the default display characteristics of a Web

application’s page controls so that they have a consistent appearance within a single

page and across multiple pages. In an ASP.NET Web application, themes are defined in

a special directory called App_Themes. A single theme, which is itself a directory within

the App_Themes directory, contains zero or more skin files and zero or more cascading

style sheet (css) files.

In this chapter, we will begin by adding a theme to a project. As we will see, adding

a theme to a project early (i.e., before coding any of the display properties of the

application’s page controls) will save us a lot of time and effort when we want to change

the display characteristics of the ASP.NET server controls and HTML elements across the

pages of an application. Next, we will look at skin files. A skin file is where we define the

display characteristics (i.e., skins) of an application’s ASP.NET server controls. We will

then add a skin file to our theme so that it can be applied to the ASP.NET server controls

of our application. Then, we will discuss cascading style sheet files. A cascading style

sheet file is where we define the display characteristics (i.e., styles) of an application’s

HTML elements. We will then add a cascading style sheet to our theme and apply it to the

HTML elements of our application.

18.2  �Adding a Theme
When beginning a new Web application, it is almost always a good idea to add a theme

(and its associated skin and css files) to the project and then use that theme to format the

application’s ASP.NET server controls and HTML elements. If we fail to do this, we will

be inclined to set the formatting properties of these items individually throughout the

entire application as we develop it. We will then need to go back at a later time

324

(after we have finally made the wise decision to employ a theme) and remove these

individual formatting properties—a tedious task indeed. So, as a general rule, creating a

theme should be one of the very first things we do when starting a new project. To add a

theme to an ASP.NET Web Application project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the project (not the solution).

	 3.	 Select Add ➤ Add ASP.NET Folder ➤ Theme.

Figure 18-1 shows the newly added theme. Notice in the Solution Explorer that

Theme1 (the name given to the theme by default) has been added to the project. We

can rename this theme if we want to, but we will keep the name for the examples in this

chapter.

Once we have added a theme to our project, we can apply it to the individual pages

of an application by setting the Theme property of each page’s Page directive, or we can

apply it to all of the pages of the application by setting the theme property of the <pages>

element in the Web.config file of the application. Although most applications utilize a

single theme, we can add and utilize multiple themes if we so desire. For example,

we may want to modify the BackColor and Font-Names properties of all our application’s

Figure 18-1.  Newly added theme

Chapter 18 Themes

325

TextBox controls depending on the season of the year or the type of end user that is

logged in—just to give the pages a different look. Keep in mind that themes can only be

used to define the properties of ASP.NET server controls and HTML elements that deal

with appearance or static content. They cannot be used to define the properties of ASP.

NET server controls and HTML elements that deal with behavior.

18.3  �Skin Files
A skin file has a .skin file extension and is where we define the display characteristics

(i.e., skins) of an application’s ASP.NET server controls, such as its Button controls, Label

controls, and TextBox controls. There are two types of skins—default skins and named

skins. A default skin does not have a SkinID and is applied to all of the controls of a given

type (e.g., all Button controls, all Label controls, all TextBox controls). For example, if we

wish to format all of the ASP.NET Button controls in an application so that they display

with a double border style and an Arial font, we would define the default skin like this in

our skin file:

<asp:Button runat="server" BorderStyle="Double" Font-Names="Arial" />

A named skin, on the other hand, has a SkinID and is only applied to those controls

of a given type that have the same SkinID. Named skins permit us to apply different

formatting to different controls of the same type. For example, if we wish to format only

those ASP.NET Button controls in an application with a SkinID of skiButton so that they

display with a double border style and an Arial font, we would define the named skin like

this in our skin file:

<asp:Button runat="server" SkinID="skiButton" BorderStyle="Double"

 Font-Names="Arial" />

18.4  �Adding a Skin File
To add a skin file to an ASP.NET Web Application project

	 1.	 Open the Solution Explorer.

	 2.	 Expand the App_Themes folder by clicking the triangle icon next

to it.

Chapter 18 Themes

326

	 3.	 Right-click the Theme.

	 4.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Web ➤ Web Forms from the left

pane of the dialog.

	 2.	 Select Web Form Skin File from the middle pane of the dialog.

	 3.	 Give the skin file a Name at the bottom of the dialog.

	 4.	 Click Add.

Figure 18-2 shows the code of the newly added skin file. Notice in the Solution

Explorer that the skin file has been added to the theme. We can rename this skin file

if we want to, but we will keep the name for the examples in this chapter. Now take a

look at the contents of the skin file. As can be seen, a couple of skin examples have been

automatically generated for us and commented out. We will remove these and write our

own skin code.

Figure 18-2.  Code of the newly added skin file

Chapter 18 Themes

327

Figure 18-3 shows an example of a skin file’s contents and its associated Web.

config file entry. The first thing to notice in the figure is that the skins for the individual

ASP.NET server controls are listed in alphabetical order. Although placing the skins

in order may seem like a trivial detail from what can be seen in the figure, it becomes

an important detail when we have dozens of skins in the file. When this is the case,

having the skins in order will permit us to locate individual skins quickly and will help

us avoid duplicate skins as such duplicates will be easy to see. The second thing to

notice in the figure is that the formatting properties of the individual skins are placed

on separate lines and are listed in alphabetical order. Since a single skin can contain

dozens of formatting properties, it is a good idea to place them on separate lines and

order them alphabetically for the same reasons just mentioned. The third thing to

notice in the figure is that all of the SkinID properties begin with the three-letter prefix

ski and end with the type of control of the skin (possibly followed by a qualifier of some

kind to further identify the skin—like at 03 and 06, where we have added PageTitle and

MultiLine, respectively, to further identify the skins). This is not a requirement of the

language, but it will be the naming standard we use in this chapter.

Notice at 01 that the Button skin does not have a SkinID. Thus, this skin is a default

skin that will be applied to all of the Button controls in the application, except for those

that have their SkinID property set to a skin or those that have their EnableTheming

property set to false. Setting the EnableTheming property of a given control to false keeps

the control from taking on the formatting characteristics defined in its skin.

Notice at 02–06 that all of the skins have a SkinID. Thus, these skins are all named

skins that will be applied to all of the controls (of the same type) in the application that

have their SkinID property set to the name of a skin (of the same type) and that don’t

have their EnableTheming property set to false.

Notice at 07 that we have added to our Web.config file a <system.web> section

that includes a <pages> tag with its theme property set to the name of the theme we

created earlier. This configuration setting identifies the theme we want to apply to our

application and can be changed manually or programmatically.

Chapter 18 Themes

328

Figure 18-4 shows an example of skins applied in a page.

Notice at 01–04 that the SkinID properties of the controls have been set. Thus, the

formatting that will be applied to these controls is defined in the associated named skins

in the skin file.

Notice at 05 that no SkinID property has been set for the Button control. Thus, the

formatting that will be applied to this control is defined in the associated default skin in

the skin file.

Figure 18-3.  Example of a skin file’s contents and its associated Web.config file
entry

Chapter 18 Themes

329

The screenshot in the Result section of the figure shows the Enter Product page of the

application with the Theme1 skin file applied to it. Notice the larger font of the page title,

the shaded back color of the table cells that contain labels, the shaded back color of the

drop-down lists, the consistent widths of the drop-down lists and text boxes, the different

fonts used to display the data in the drop-down lists and text boxes, and the modified

font and border style of the button.

Figure 18-4.  Example of skins applied in a page

Chapter 18 Themes

330

Figure 18-5 shows an example of skins applied in another page.

Notice at 01–04 that the SkinID properties of the controls have been set. Thus, the

formatting that will be applied to these controls is defined in the associated named skins

in the skin file.

Notice at 05 and 06 that no SkinID property has been set for these Button controls.

Thus, the formatting that will be applied to these controls is defined in the associated

default skin in the skin file.

The screenshot in the Result section of the figure shows the Enter Order page of the

application with the Theme1 skin file applied to it. Notice the larger font of the page title,

the shaded back color of the table cells that contain labels, the shaded back color of the

drop-down lists, the consistent widths of the drop-down lists and text boxes, the different

fonts used to display the data in the drop-down lists and text boxes, and the modified

font and border styles of the buttons. As can be seen, the display properties of this page

are exactly the same as those displayed in Figure 18-4.

Figure 18-4.  (continued)

Chapter 18 Themes

331

Figure 18-5.  Example of skins applied in another page

Chapter 18 Themes

332

The main takeaway here is that if we use a skin file and we want to change the display

characteristics of the server controls across all the pages of an ASP.NET Web application,

we need only modify those display characteristics in one place—the skin file.

18.5  �Cascading Style Sheet Files
A cascading style sheet file has a .css file extension and is where we define the display

characteristics (i.e., styles) of an application’s HTML elements, such as its input elements,

label elements, and table row elements. A cascading style sheet file contains one or more

css selectors. There are many types of css selectors, including element selectors and class

selectors. An element selector has an HTML element type followed by its related css

formatting declarations. This type of selector is applied to all of the HTML elements of

that type (e.g., all h1 elements, all input elements, all label elements). For example, if we

wish to format all of the HTML label elements in an application so that they display with

a 20-pixel font size and a bold font weight, we would define the element selector like this

in our css file:

label {font-size: 20px; font-weight: bold;}

Figure 18-5.  (continued)

Chapter 18 Themes

333

A class selector, on the other hand, has a period followed by a class name followed

by its related css formatting declarations. This type of selector is only applied to those

HTML elements that have their class property set to the name of a class selector. Class

selectors permit us to apply different formatting to different HTML elements of the same

type. For example, if we wish to format only those HTML label elements in an application

with a class property of .LabelPageTitle so that they display with a 20-pixel font size and a

bold font weight, we would define the class selector like this in our css file:

.LabelPageTitle {font-size: 20px; font-weight: bold;}

18.6  �Adding a Cascading Style Sheet File
To add a cascading style sheet file to an ASP.NET Web Application project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the Theme.

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Web ➤ Markup from the left pane

of the dialog.

	 2.	 Select Style Sheet from the middle pane of the dialog.

	 3.	 Give the cascading style sheet file a Name at the bottom of the

dialog.

	 4.	 Click Add.

Figure 18-6 shows the code of the newly added cascading style sheet file. Notice in

the Solution Explorer that the css file has been added to the theme. We can rename this

css file if we want to, but we will keep the name for the examples in this chapter. Now

take a look at the contents of the css file. As can be seen, a css <body> element selector

has been automatically generated for us. We will remove this and write our own css code.

Chapter 18 Themes

334

Figure 18-7 shows an example of a cascading style sheet’s contents and its associated

Web.config entry. The first thing to notice in this figure is that there is a one-to-one

relationship between the default and named skins shown in Figure 18-3 and the element

and class selectors shown in this figure. This was done to help illustrate the fact that ASP.

NET server controls and HTML elements can be formatted identically. The second thing

to notice in the figure is that the element selectors and the class selectors are separated

and listed in alphabetical order. Although separating the element selectors from the class

selectors and listing them in order may seem like a minor issue from what can be seen

in the figure, it becomes an important issue when we have dozens of selectors in the file.

When this is the case, having the selectors in order will permit us to locate the individual

selectors quickly and will help us avoid duplicate selectors as such duplicates will be

easy to see. The third thing to notice in the figure is that the formatting properties of the

individual selectors are placed on separate lines and are listed in alphabetical order.

Since a single selector can contain dozens of formatting properties, it is a good idea to

place them on separate lines and order them alphabetically for the same reasons just

mentioned. The fourth thing to notice in the figure is that all of the class selectors begin

with a period (.) and end with the type of control of the selector (possibly followed by a

qualifier of some kind to further identify the selector—like at 03 and 07, where we have

Figure 18-6.  Code of the newly added cascading style sheet file

Chapter 18 Themes

335

added PageTitle and MultiLine, respectively, to further identify the selectors). Again, this

is not a requirement of the language, but it will be the naming standard we use in this

chapter.

Notice at 01 that the input button selector is an element selector. Thus, this selector

will be applied to all of the input button controls in the application, except for those that

have their class property set to a class selector.

Notice at 02–07 that all of the selectors are class selectors. Thus, these selectors will

be applied to all of the controls (of the same type) in the application that have their class

property set to the name of the class selector.

Notice at 04 the special MenuCursor class selector. This selector makes the end

user’s mouse pointer look like a mouse pointer, instead of an I-beam, as it hovers over an

ASP.NET Menu control.

Notice at 08 that we have added to our Web.config file a <system.web> section

that includes a <pages> tag with its theme property set to the name of the theme we

created earlier. This configuration setting identifies the theme we want to apply to our

application and can be changed manually or programmatically.

Chapter 18 Themes

336

Figure 18-7.  Example of a cascading style sheet’s contents and its associated
Web.config entry

Chapter 18 Themes

337

Figure 18-8 shows an example of css selectors applied in a page. The first thing to

notice in the figure is that the page is marked up using HTML elements instead of ASP.

NET server controls. This was done to illustrate the use of css selectors. However, as a

general rule, we will use skins in this book instead of css selectors to perform control

formatting.

Notice at 01–04 that class properties have been set for the controls. Thus, the

formatting that will be applied to these controls is defined in the associated class selectors

in the css file.

Notice at 05 that no class property has been set for the input button control. Thus,

the formatting that will be applied to this control is defined in the associated element

selector in the css file.

The screenshot in the Result section of the figure shows the Enter Product page of the

application with the Theme1 css file applied to it. Notice the larger font of the page title,

the shaded back color of the table cells that contain labels, the shaded back color of the

drop-down lists, the consistent widths of the drop-down lists and text boxes, the different

fonts used to display the data in the drop-down lists and text boxes, and the modified

font and border style of the button. As can be seen, this page appears identical to the

page shown in Figure 18-4.

Chapter 18 Themes

338

Figure 18-8.  Example of css selectors applied in a page

Chapter 18 Themes

339

Figure 18-9 shows an example of css selectors applied in another page.

Notice at 01–03 that class properties have been set for the controls. Thus, the

formatting that will be applied to these controls is defined in the associated class selectors

in the css file.

Notice at 04 and 05 that no class property has been set for the input button controls.

Thus, the formatting that will be applied to these controls is defined in the associated

element selector in the css file.

The screenshot in the Result section of the figure shows the Enter Order page of the

application with the Theme1 css file applied to it. Notice the larger font of the page title,

the shaded back color of the table cells that contain labels, the shaded back color of the

drop-down lists, the consistent widths of the drop-down lists and text boxes, the different

fonts used to display the data in the drop-down lists and text boxes, and the modified

font and border styles of the buttons. As can be seen, the display properties of this page

are exactly the same as those displayed in Figure 18-5.

Figure 18-8.  (continued)

Chapter 18 Themes

340

Figure 18-9.  Example of css selectors applied in another page

Chapter 18 Themes

341

The main thing to remember is that if we use a css file and we want to change the

display characteristics of the HTML elements across all the pages of an ASP.NET Web

application, we need only modify those display characteristics in one place—the css file.

And finally, it is important to understand one more technical detail. If a change

is made to a css file, and that change does not appear when a page is requested, the

browser’s cache probably needs to be cleared. This is because cascading style sheet

information is, by default, cached once by a browser and then reused by subsequent

pages of the application as needed. Because of this, it may be a good idea to configure

the development browser to delete its browsing history upon exiting while its HTML

elements are being formatted using CSS selectors.

Chapter 18 Themes

343
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_19

CHAPTER 19

Navigation
19.1  �Introduction
ASP.NET provides a number of classes that can be used to help the end user navigate

the pages of a Web application. These classes not only make it easy for the end user to

jump directly to a desired page within the application, but they also make it easy for

us to manage how the pages of the application are organized. There are four main site

navigation classes in ASP.NET. These are the SiteMap class, the Menu class, the TreeView

class, and the SiteMapPath class.

In this chapter, we will begin by looking at the SiteMap class. The SiteMap class

stores a hierarchically organized list of SiteMapNode objects, each of which contains

a menu option and/or a page URL. Using a SiteMap class permits us to define a Web

application’s structure and store its page links in a single location. Next, we will learn

to add a SiteMap class to a project. After that, we will discuss the Menu class, which

displays a list of options and sub-options that the end user can use to navigate the pages

of an application. And finally, we will consider the TreeView class. The TreeView class

displays an expandable tree structure that the end user can use to navigate the pages of

an application.

We won’t be discussing the SiteMapPath class in this chapter, except to say that it

displays the path the end user has taken from the home page of an application to the

page he or she is currently viewing. Thus, a SiteMapPath control is sometimes referred

to as a breadcrumb, which is an allusion to the story of Hansel and Gretel, where Hansel

leaves a trail of breadcrumbs to help him and his sister find their way back home as they

walk through the trees. The interested reader is encouraged to explore the SiteMapPath

class on his or her own.

344

19.2  �SiteMap Class
The SiteMap class stores a hierarchically organized list of SiteMapNode objects, each

of which contains a menu option and/or a page URL. As we will soon see, the layout

and link options of a Menu control and a TreeView control typically correspond to the

hierarchical organization of the SiteMapNode objects in the SiteMap class. Using a

SiteMap class permits us to define a Web application’s structure and store its page links

in a single location, which makes it much easier for us to manage the organization of the

application’s pages as we add new pages to the application or modify the application’s

structure. The SiteMap class in an application has a .sitemap file extension. Table 19-1

shows some of the properties, methods, and events of the SiteMap class.

Table 19-1.  Some of the properties, methods, and events of the SiteMap class

Class SiteMap1

Namespace System.Web

Properties

Providers Gets a read-only collection of named SiteMapProvider objects that are

available to the SiteMap class.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.sitemap(v=vs.110).aspx

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 19 Navigation

https://msdn.microsoft.com/en-us/library/system.web.sitemap(v=vs.110).aspx

345

19.3  �Adding a SiteMap Class
To add a SiteMap class to an ASP.NET Web Application project

	 1.	 Open the Solution Explorer.

	 2.	 Right-click the project (not the solution).

	 3.	 Select Add ➤ New Item….

When the Add New Item dialog appears

	 1.	 Select Installed ➤ Visual C# ➤ Web ➤ General from the left pane

of the dialog.

	 2.	 Select Site Map from the middle pane of the dialog.

	 3.	 Give the sitemap (i.e., SiteMap class) a Name at the bottom of the

dialog.

	 4.	 Click Add.

Figure 19-1 shows the code of the newly added SiteMap class. Notice in the Solution

Explorer that the SiteMap class has been added to the project. Also notice the tab

between the Visual Studio menu and the top of the code. This tab displays the name

of the SiteMap class file (i.e., Web.sitemap). It is in this file that we will lay out the

hierarchical organization of our application. Now look at the code itself. Notice all of the

SiteMapNode objects. The URL property of a SiteMapNode object indicates the page

address of the page to be displayed when the end user clicks the associated menu or

tree view option. The Title property indicates the text to be displayed in the associated

menu or tree view option. And the Description property indicates the tooltip text to

be displayed when the end user hovers over the associated menu or tree view option.

In addition, notice that some of the SiteMapNode objects are nested within other

SiteMapNode objects. As we will see, nesting the SiteMapNode objects in a SiteMap class

is what creates the hierarchical organization of a Web application.

Chapter 19 Navigation

346

Figure 19-2 shows an example of a complete SiteMap class and its associated

Web.config entry. The first thing to notice in the figure is that there are a number of

SiteMapNode objects that are nested within other SiteMapNode objects. Again, the

nesting of these objects will give our Menu and TreeView controls their hierarchical

organization.

Notice at 01 that the highest-level SiteMapNode points to the application’s Home

page (i.e., Home.aspx) and that this item will display the word “Home” in the associated

menu or tree view.

Notice at 02 and 03 the Database option and the Maintain Products sub-option,

respectively. As can be seen, the Database option doesn’t have a URL—just a title. Thus,

clicking this option won’t take the end user to a page. It will simply reveal its sub-options

(e.g., Maintain Categories, Maintain Customers, Maintain Employees). In addition, notice

the tooltip text (i.e., “Add/modify/delete products.”) that will be displayed when the end

user hovers over the Maintain Products option with his or her mouse pointer.

Notice at 04–08 the progression of the menu options from Products to Clothing to

Women’s to Adidas and Nike.

Figure 19-1.  Code of the newly added SiteMap class

Chapter 19 Navigation

347

Notice at 09 that we have added a sitemap provider in the <system.web> <sitemap>

<providers> section of the Web.config file. As can be seen, we have given the provider a

name (i.e., SiteMap). We will use this name when we are ready to connect our sitemap

to a Menu or TreeView control via a SiteMapDataSource. We have also specified the

sitemap file (i.e., Web.sitemap), which points to the file in the project that contains our

sitemap code. Once we have coded the structure and link options of our sitemap file, we

can use it as the source of a Menu control and/or TreeView control.

Note that a misspelled URL in the url property of a SiteMapNode object (including

the omission of the .aspx file extension) will result in a 404 error. A 404 error is a standard

HTTP response code that is sent from the server to the browser when the requested

page on the server cannot be found. A misspelled URL in the argument of a Response.

Redirect() method will also result in a 404 error.

Figure 19-2.  Example of a complete SiteMap class and its associated Web.config
entry

Chapter 19 Navigation

348

Figure 19-2.  (continued)

Chapter 19 Navigation

349

19.4  �Menu Class
The Menu class displays a list of options and sub-options that the end user can use

to navigate the pages of a Web application. A menu item that contains subitems is

automatically expanded when the end user hovers over the item with his or her mouse

pointer. Although most Menu controls are populated statically from the SiteMapNode

objects in the SiteMap class, a Menu control can also be populated programmatically

from other hierarchically organized data sources. In addition, a Menu control can be

customized via a skin.

A Menu control actually contains two menus—a static menu and a dynamic menu.

The static menu is always displayed. By default, all of the items at the root level of the

menu (i.e., level 0) are displayed in the static menu. Additional levels of the static menu

can be displayed by setting the StaticDisplayLevels property of the Menu control. Any

items with a higher level than that specified in the StaticDisplayLevels property are

displayed in the dynamic menu. The dynamic menu is only displayed when the end user

uses his or her mouse pointer to hover over an item that contains a dynamic submenu.

A dynamic submenu automatically disappears when the end user clicks outside of the

submenu. The number of levels to display in the dynamic menu can be controlled by

setting the MaximumDynamicDisplayLevels property of the Menu control. Any items

with a higher level than the level specified in the MaximumDynamicDisplayLevels

property of the Menu control are not displayed. Table 19-2 shows some of the properties,

methods, and events of the Menu class.

Chapter 19 Navigation

350

Table 19-2.  Some of the properties, methods, and events of the Menu class

Class Menu2

Namespace System.Web.UI.WebControls

Properties

DataSourceID Gets or sets the ID of the control from which the data-bound control

retrieves its list of data items.

DynamicHoverStyle Gets a reference to the Style object that allows you to set the

appearance of a dynamic menu item when the mouse pointer is

positioned over it.

DynamicMenuItemStyle Gets a reference to the MenuItemStyle object that allows you to set

the appearance of the menu items within a dynamic menu.

MaximumDynamic

DisplayLevels

Gets or sets the number of menu levels to render for a dynamic menu.

Orientation Gets or sets the direction in which to render the Menu control.

StaticDisplayLevels Gets or sets the number of menu levels to display in a static menu.

StaticHoverStyle Gets a reference to the Style object that allows you to set the

appearance of a static menu item when the mouse pointer is

positioned over it.

StaticMenuItemStyle Gets a reference to the MenuItemStyle object that allows you to set

the appearance of the menu items in a static menu.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

menu(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 19 Navigation

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.menu(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.menu(v=vs.110).aspx

351

Figure 19-3 shows an example of the Menu class.

Notice at 01 the SiteMapDataSource control. As can be seen, the SiteMapProvider

property of this control is set to SiteMap, which is the name of the sitemap provider we

added to the <system.web> <sitemap> <providers> section of the Web.config file (see

Figure 19-2).

Notice at 02 that the DataSourceID property of the Menu control is set to

smdSiteMap, which is the same as the ID property of the SiteMapDataSource control at

01. This connects the Menu control to the SiteMapDataSource control. Also notice that

the DynamicMenuItemStyle-CssClass property and the StaticMenuItemStyle-CssClass

property are both set to MenuCursor. This will make the end user’s mouse pointer

look like a mouse pointer, instead of an I-beam, as it hovers over the Menu control

(see the .MenuCursor class selector in Figure 18-7). Notice as well that the Orientation

property is set to Horizontal, which will display the menu from side to side instead of

from top to bottom. In addition, notice that the StaticDisplayLevels property is set to 2.

This means that the number of menu levels to display in the static menu is two, where

the Home option is at level one and the Database, Products, Contact Us, Site Map, and

About options are at level two. And finally, notice that the formatting properties of the

Menu control are listed on separate lines and in alphabetical order. Although listing the

properties like this may seem like a trivial detail from what can be seen in the figure,

it becomes an important detail when we are setting and maintaining dozens of Menu

control properties. When this is the case, having the properties listed in alphabetical

order will permit us to locate the individual properties quickly.

The first screenshot in the Result section of the figure shows the menu after the end

user has hovered over the Database and Maintain Products options. Notice the tooltip

text that is displayed as the end user hovers over the Maintain Products option. The

second screenshot shows the menu after the end user has hovered over the Products,

Clothing, and Women’s options. Selecting the Adidas option or the Nike option will

take the end user directly to the associated page. By the way, in this example, the

SiteMapDataSource control and the Menu control are defined in the project’s master

page. By placing these controls in the master page, we are able to display the menu on all

of the application’s pages.

Chapter 19 Navigation

352

Figure 19-3.  Example of the Menu class

Chapter 19 Navigation

353

19.5  �TreeView Class
The TreeView class displays an expandable tree structure that the end user can use to

navigate the pages of a Web application. A tree view item that contains subitems can

be expanded or collapsed when the end user clicks it with his or her mouse pointer.

Although most TreeView controls are populated statically from the SiteMapNode objects

in the SiteMap class, a TreeView control can also be populated programmatically from

other hierarchically organized data sources. In addition, a TreeView control can be

customized via a skin.

A TreeView control contains a set of nodes, each of which is represented by a

TreeNode object. This type of control contains a root node, one or more parent nodes,

one or more child nodes, and one or more leaf nodes. The root node of a TreeView

control has no parent node and is the ancestor of all the other nodes in the control,

whereas a parent node has one or more child nodes, a child node has a parent node,

and a leaf node has no child nodes. The ExpandDepth property of a TreeView control

indicates the number of levels that should be displayed when the control is displayed for

the first time. The ShowExpandCollapse property indicates whether or not the control

should be expandable and collapsible. The nodes of a TreeView control can be displayed

in text form or in hyperlink form, and they can have a checkbox displayed next to them

for selection purposes. Table 19-3 shows some of the properties, methods, and events of

the TreeView class.

Chapter 19 Navigation

354

Figure 19-4 shows an example of the TreeView class.

Notice at 01 the SiteMapDataSource control. As can be seen, the SiteMapProvider

property of this control is set to SiteMap, which is the name of the sitemap provider we

added to the <system.web> <sitemap> <providers> section of the Web.config file (see

Figure 19-2).

Table 19-3.  Some of the properties, methods, and events of the TreeView class

Class TreeView3

Namespace System.Web.UI.WebControls

Properties

ExpandDepth Gets or sets the number of levels that are expanded when a TreeView

control is displayed for the first time.

NodeIndent Gets or sets the indentation amount (in pixels) for the child nodes of the

TreeView control.

NodeStyle Gets a reference to the TreeNodeStyle object that allows you to set the

default appearance of the nodes in the TreeView control.

ShowExpandCollapse Gets or sets a value indicating whether expansion node indicators are

displayed.

ShowLines Gets or sets a value indicating whether lines connecting child nodes to

parent nodes are displayed.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

treeview(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 19 Navigation

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.treeview(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.treeview(v=vs.110).aspx

355

Notice at 02 that the DataSourceID property of the TreeView control is set to

smdSiteMap, which is the same as the ID property of the SiteMapDataSource control

at 01. This connects the TreeView control to the SiteMapDataSource control. Also

notice that the ExpandDepth property is set to 1. This means that the level one node

(i.e., the Home node) will be expanded when the tree view is initially displayed, thus

exposing the Database, Products, Contact Us, Site Map, and About nodes. Notice

as well that the NodeIndent property is set to 15, which will indent all child nodes

by 15 pixels to enhance the readability of the tree view. In addition, notice that the

ShowExpandCollapse property is set to true. Because of this, the end user will be able to

expand and collapse the nodes of the tree view. Notice too that the ShowLines property

is set to true, which will display lines connecting any parent nodes to their child nodes,

which will, once again, enhance the readability of the tree view. And finally, notice that

the formatting properties of the TreeView control are listed on separate lines and in

alphabetical order. Although listing the properties like this may seem like a trivial detail

from what can be seen in the figure, it becomes an important detail when we are setting

and maintaining dozens of TreeView control properties. When this is the case, having the

properties listed in alphabetical order will permit us to locate the individual properties

quickly.

The first screenshot in the Result section of the figure shows the tree view upon its

initial display. Notice that the level one node (i.e., the Home node) is expanded, all child

nodes are indented by 15 pixels, all parent nodes are expandable and collapsible, and all

parent nodes are connected to their child nodes via lines. The second screenshot shows

the tree view after the end user has expanded the Products node.

Chapter 19 Navigation

356

Figure 19-4.  Example of the TreeView class

Chapter 19 Navigation

PART V

Database Connectivity

359
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_20

CHAPTER 20

Database Design, SQL,
and Data Binding
20.1  �Introduction
Many contemporary Web applications require the use of a relational database. Such

a database is used to store the application’s data and produce the application’s

information. For a database to be effective, we must carefully plan its details. This

is usually done by constructing one or more data models. The importance of good

database design cannot be understated. A database that is well designed will make the

development of an application much easier and more efficient. What’s more is the fact

that good database design leads to good data, which leads to good information, which

leads to good decision making, which leads to organizational stability (in a not-for-profit

context) or competitive advantage (in a for-profit context).

Relational databases are created and maintained via a relational database

management system (RDBMS), which we will call a database management system

(DBMS) from this point forward. Examples of DBMSs include Access (Microsoft), DB2

(IBM), Informix (IBM), MySQL (Open Source), Oracle (Oracle Corporation), Postgres

(Global Development Group), SQL Server (Microsoft), and Sybase (SAP). Since we will

be developing database-driven Web applications in this part of the book, it would be

a good idea at this point to install one of these DBMSs and become familiar with how

to use it. The process of installing and using a DBMS is beyond the scope of this book;

however, tutorials should be easy to find. Note that the examples in this book were

created using Microsoft SQL Server and Microsoft SQL Server Management Studio, where

SQL Server is the DBMS that will manage our database and SQL Server Management

Studio is the user interface that will permit us to interact directly with SQL Server.

360

In this chapter, we will begin by looking at the concept of a database schema.

A database schema is a data model that represents the structure of a database. Next, we

will discuss the concepts of tables, attributes, and relationships, where a table is a two-

dimensional data structure that stores the data of something of interest in an application,

an attribute stores a specific characteristic of something of interest in an application,

and a relationship indicates the logical association between two tables. After that, we

will examine the Structured Query Language. The Structured Query Language is a

fourth-generation programming language that retrieves (i.e., queries) and manages (i.e.,

inserts, updates, and deletes) the data in a relational database. We will then discuss the

DataBoundControl class, which serves as the base class for all of the data-bound classes

that display data in tabular or list form. And finally, we will look at the SqlDataSource

class, which can be used in conjunction with a data-bound control to retrieve data from,

insert data into, update data in, and delete data from a SQL Server database.

20.2  �Database Schema
A database schema is a data model that represents the structure of a database in terms of

its tables, attributes, and relationships. When designing and coding a Web application,

it is important to keep a correct and up-to-date database schema handy as it is central

to the correct design and implementation of the application. In fact, the database

schema informs many of the other processes required to bring an application to fruition,

including the modeling process, the input design process, the user interface design

process, the output design process, the coding process, and the testing process.

Figure 20-1 shows the database schema of the SportsPlay database. This database

is used by SportsPlay, Inc., a hypothetical online sporting goods store that specializes

in men’s and women’s equipment, footwear, and clothing. We will make use of this

database in many of the examples in this chapter and subsequent chapters. The

database schema shown in the figure was implemented in SQL Server. The details of this

schema are described next.

Chapter 20 Database Design, SQL, and Data Binding

361

20.3  �Tables
A database table is a two-dimensional data structure that contains one or more rows

(a.k.a., records, tuples) and one or more columns (a.k.a., attributes, fields). A table

stores the data of something of interest in an application. As can be seen in Figure 20-1,

there are eight tables in the SportsPlay database, each of which represents something

of interest to SportsPlay, Inc. These are the Category table, the Customer table, the

Employee table, the Order table, the OrderLine table, the Product table, the Shipper

table, and the Supplier table. Notice that these tables are named using a singular noun

(or singular noun phrase). Naming tables in this way will be our standard.

Figure 20-1.  Database schema of the SportsPlay database

Chapter 20 Database Design, SQL, and Data Binding

362

20.4  �Attributes
As just mentioned, a database table contains one or more columns. In this book, we will

refer to columns as attributes as this terminology is more consistent with the language

associated with data modeling in general. An attribute stores a characteristic of something

of interest in an application. As can be seen in Figure 20-1, there are nine attributes in the

Supplier table, each of which represents a characteristic of a supplier. In addition, there are

ten attributes in the Product table, each of which represents a characteristic of a product.

Notice that these attributes are named using a singular noun (or singular noun phrase).

Naming attributes in this way will be our standard. Also notice that the first attribute in

each table has a key symbol next to it. This indicates that the attribute is the table’s primary

key, which we will define in the next section. And finally, notice that each attribute is of a

specific type and size. Figure 20-2 shows some of the data in the Supplier table.

Figure 20-2.  Some of the data in the Supplier table

Figure 20-3 shows some of the data in the Product table.

Figure 20-3.  Some of the data in the Product table

Chapter 20 Database Design, SQL, and Data Binding

363

20.5  �Relationships
A database relationship is the logical association between two database tables. This

relationship is implemented via a primary key in one table and a foreign key in another

table. A primary key is the attribute (or combination of attributes) in a table that

uniquely identifies each row in the table. There are two rules associated with the creation

of a primary key value. These are

	 1.	 A primary key value must be unique.

	 2.	 A primary key value must not be null.

These are the rules of entity integrity. There are no exceptions. A foreign key, on the

other hand, is an attribute (or combination of attributes) in a table that corresponds to

the primary key in a related table. There are two rules associated with the creation of a

foreign key value. These are

	 1.	 A foreign key value must exist as a primary key value in a related

table.

	 2.	 A foreign key value must be null.

These are the rules of referential integrity. There are no exceptions. As can be seen

in Figure 20-1, there are seven relationships in the SportsPlay database, each of which

is represented by a line that terminates as either a key symbol or an infinity symbol.

The key symbol represents the one side of a relationship, whereas the infinity symbol

represents the many side of a relationship. Thus, according to the database schema in the

figure, the following relationships exist between the tables of the SportsPlay database:

•	 A supplier supplies one or more products, and a product is supplied

by exactly one supplier.

•	 A category is associated with one or more products, and a product is

associated with exactly one category.

•	 A product appears on one or more order lines, and an order line

contains exactly one product.

•	 An order contains one or more order lines, and an order line appears

on exactly one order.

Chapter 20 Database Design, SQL, and Data Binding

364

•	 A shipper ships one or more orders, and an order is shipped by exactly

one shipper.

•	 A customer places one or more orders, and an order is placed by

exactly one customer.

•	 An employee can take one or more orders, and an order can be taken

by exactly one employee.

Notice that the last bullet point is written in can language. This is because an

employee can place an order for a customer or a customer can place an order online. In

the latter scenario, the value in the EmployeeID attribute in the Order table, which is a

foreign key, would be set to null. Notice as well that the relationships (shown in italics

and read in both directions) are described using either an action verb (or action verb

phrase) or a linking verb (or linking verb phrase). An action verb is a verb that expresses

a physical or mental action, whereas a linking verb is a verb that expresses a state of

being. Naming relationships in this way will be our standard.

By looking at the data in the Supplier table in Figure 20-2 and the data in the Product

table in Figure 20-3, we can see how the relationship between suppliers and products

is actually maintained. Notice that the primary key attribute in the Supplier table is

SupplierID. As can be seen, the values in this attribute uniquely identify the rows in the

table as they are all unique and not null. Notice as well that the associated foreign key

attribute in the Product table is also SupplierID. The values in this attribute correspond

to the values in the SupplierID attribute of the Supplier table. As can be seen, all of the

values in the SupplierID attribute in the Product table exist as primary key values in the

SupplierID attribute in the Supplier table. If a given product were not associated with a

supplier for some reason, the value in that product’s SupplierID attribute would be null.

20.6  �Structured Query Language
The Structured Query Language (SQL) is a fourth-generation programming language

that retrieves (i.e., queries) and manages (i.e., inserts, updates, and deletes) the data

in a relational database. First-, second-, and third-generation programming languages

are imperative programming languages. These programming languages require the

software developer to write code that instructs the computer how to do something.

Chapter 20 Database Design, SQL, and Data Binding

365

Thus, loops, conditionals, and other imperative statements are required. Fourth-

generation programming languages, on the other hand, are declarative programming

languages. These programming languages require the software developer to write code

that instructs the computer what to do. Thus, loops, conditionals, and other imperative

statements are not required. As we will see, SQL does not require us to describe how to

query, insert, update, or delete a database’s data. Instead, it only requires us to describe

what database data to query, insert, update, or delete.1 The required imperative code is

generated for us in the background.

SQL is, by far, the most widely used relational database language. The language is

standardized by the American National Standards Institute (ANSI) and the International

Organization for Standardization (ISO), so most SQL code is portable from one DBMS to

another—often with no (or just a few) tweaks to its syntax. The programming statements

of the Structured Query Language are divided into four categories—data definition

language (DDL) statements (e.g., statements for creating, altering, and dropping tables,

attributes, and relationships), data control language (DCL) statements (e.g., statements

for granting, revoking, and denying end user and application access privileges), data

query language (DQL) statements (e.g., statements for selecting and displaying table

data), and data manipulation language (DML) statements (e.g., statements for inserting,

updating, and deleting table data). The first two categories of SQL statements are related

to database administration, whereas the last two categories of SQL statements are

related to database usage. Thus, we will focus mostly on the last two categories of SQL

statements as they are the most germane to our discussion.

Before we look at specific SQL statements, we should say something about the

standards we will apply when formatting SQL statements. First, although it is not

necessary to capitalize the reserved words of a SQL statement, we will always do so as

this will enhance the readability of the SQL statement. And second, although it is not

necessary to write a SQL statement on multiple lines, we will always do so as this will

make the SQL statement much easier to write, read, and maintain. These standards

become especially important as the SQL statements we write become more complex.

1�SQL does include some procedural statements.

Chapter 20 Database Design, SQL, and Data Binding

366

20.6.1  �Select Statement
The Select statement queries a database. More specifically, it retrieves one or more rows

from one or more tables in a database and then displays the result. Again, since SQL is a

declarative programming language, we need not specify how to retrieve and display the

data. We need only specify what data we want to retrieve and display. How to retrieve

and display the data from a database is done by the DBMS, which translates the SQL

query we write into a query plan. This query plan is then optimized by the DBMS’s query

optimizer, which determines the best possible execution plan for the query. The Select

statement has two required clauses. These are

•	 Select clause – Specifies the attributes that should be returned from a

query

•	 From clause – Specifies the table or tables from which the data should

be retrieved

The order in which these clauses are included in a Select statement is very

important. If they are not included in the correct order, a syntax error will occur.

Figure 20-4 shows an example of the Select statement.

Notice at 01 the asterisk (∗) after the Select clause of the statement. This asterisk means

that all of the attributes in the table (i.e., SupplierID, Supplier, PointOfContact, Address, City,

State, ZipCode, Phone, and EmailAddress) should be displayed in the result of the SQL call.

Notice at 02 the name of the table after the From clause of the statement. This

indicates the name of the table (i.e., Supplier) from which the data should be retrieved.

The screenshot in the Result section of the figure shows the result of the query.

Figure 20-4.  Example of the Select statement

Chapter 20 Database Design, SQL, and Data Binding

367

Figure 20-5 shows an example of the Select statement with specific attributes

displayed.

Notice at 01 that specific attributes have been listed after the Select clause of the

statement. This means that only those attributes in the table (i.e., Supplier, PointOfContact,

Phone, and EmailAddress) should be displayed in the result of the SQL call.

The screenshot in the Result section of the figure shows the result of the query.

Figure 20-5.  Example of the Select statement with specific attributes displayed

The Select statement has several optional clauses that we can use to qualify (i.e.,

fine-tune) the results we want a query to return. These are

•	 Order By clause – Specifies the order (i.e., ascending or descending)

in which the rows should be returned

•	 Where clause – Specifies the subset of rows that should be returned

•	 Group By clause – Specifies the rows that should be treated as a group

when an aggregate function (e.g., Count, Avg, Sum) is applied

•	 Having clause – Specifies the subset of rows that should be returned

when a Group By clause is used

•	 As clause – Specifies the alias (e.g., an abbreviated name, a different

name) that should be used when referring to a table or attribute

Chapter 20 Database Design, SQL, and Data Binding

368

Again, the order in which these clauses are included in a Select statement is very

important. If they are not included in the correct order, a syntax error will occur.

Figure 20-6 shows an example of the Select statement with an Order By clause.

Notice at 01 that the result of the SQL call should be sorted in ascending order (the

default) by Supplier.

The screenshot in the Result section of the figure shows the result of the query.

Figure 20-6.  Example of the Select statement with an Order By clause

Figure 20-7 shows an example of the Select statement with a Where clause (equality).

Notice at 01 that only those products with a SupplierID equal to 6 should be

returned.

The screenshot in the Result section of the figure shows the result of the query.

Chapter 20 Database Design, SQL, and Data Binding

369

Figure 20-8 shows an example of the Select statement with a Where clause

(relational).

Notice at 01 that only those products with a price less than or equal to 100 should be

returned.

Notice at 02 that the result of the SQL call should be sorted in descending order by

Price.

The screenshot in the Result section of the figure shows the result of the query.

Figure 20-7.  Example of the Select statement with a Where clause (equality)

Figure 20-8.  Example of the Select statement with a Where clause (relational)

Chapter 20 Database Design, SQL, and Data Binding

370

Figure 20-9 shows an example of the Select statement with a Where clause (And

compound condition).

Notice at 01 that only those products with a CategoryID equal to 2 and where the

number in stock is less than or equal to the reorder level should be returned.

The screenshot in the Result section of the figure shows the result of the query.

Figure 20-9.  Example of the Select statement with a Where clause (And
compound condition)

Figure 20-10 shows an example of the Select statement with a Where clause (Or

compound condition).

Notice at 01 that only those products with a CategoryID equal to 2 or a CategoryID

equal to 3 should be returned.

Notice at 02 that the result of the SQL call should be sorted in ascending order (the

default) by CategoryID, then by SupplierID (within CategoryID), then by Product (within

SupplierID).

The screenshot in the Result section of the figure shows the result of the query.

Chapter 20 Database Design, SQL, and Data Binding

371

Although the ability to query the data of a single database table is a powerful feature

of the Structured Query Language, its ability to query the data of two or more related

tables is where the real power of the language lies. Querying the data of two or more

related tables is accomplished via a join operation. Although there are many types of join

operations (e.g., cross joins, natural joins, inner joins, outer joins, left joins, right joins),

we will discuss the most basic and most frequently used one—the inner join. From this

point forward, we will use the term join to refer to an inner join. Figure 20-11 shows an

example of a two-table join operation.

Notice at 01 that we are qualifying the SupplierID attribute by coding the name of a

table (i.e., Supplier) followed by a period (.) followed by the name of the attribute itself

(i.e., SupplierID). This is necessary because the SupplierID attribute is found in both

the Supplier table and the Product table—the two tables we are joining. Thus, we must

specify which SupplierID we want to display. Note that since the other attributes in the

Select clause are not found in both the Supplier table and the Product table, we need not

qualify them with a table name.

Figure 20-10.  Example of the Select statement with a Where clause (Or compound
condition)

Chapter 20 Database Design, SQL, and Data Binding

372

Notice at 02 that the From clause indicates the two tables we are joining—the

Supplier table and the Product table.

Notice at 03 that we have set the SupplierID of the Supplier table equal to the

SupplierID of the Product table. It is this condition that joins the two tables together.

This part of the Where clause is telling the DBMS to return a row of data wherever a

SupplierID in the Supplier table matches a SupplierID in the Product table. As can be

seen, there are the other qualifiers in the Where clause as well. These qualifiers ensure

that only the products with a SupplierID of 2, 5, or 6 are displayed.

The screenshot in the Result section of the figure shows the result of the query.

Figure 20-11.  Example of a two-table join operation

Chapter 20 Database Design, SQL, and Data Binding

373

Figure 20-12 shows an example of a six-table join operation.

Notice at 01 that we have enclosed the word Order in square brackets ([]). This was

done because Order is a SQL reserved word that is associated with the Order By clause.

By placing square brackets around Order, we are indicating to the DBMS that Order

is the name of a table and not part of an Order By clause. Notice as well that we have

specified the table from which the OrderID should be retrieved. This is necessary since

this attribute is found in two of the tables being joined—Order and OrderLine. Likewise,

we have specified the tables from which the LastName and FirstName should be

retrieved. This is necessary since these attributes are found in three of the tables being

joined—Customer, Employee, and Order. In addition, notice that we are concatenating

each customer’s last name with a comma, a space, and a first name and then displaying

that as the single attribute called CustomerName. The EmployeeName attribute is

constructed in the same way.

Notice at 02 that the From clause indicates the six tables we are joining—the

Customer table, the Employee table, the Order table, the OrderLine table, the Product

table, and the Shipper table.

Notice at 03 that we have set the CustomerID of the Order table equal to the

CustomerID of the Customer table, we have set the EmployeeID of the Order table equal

to the EmployeeID of the Employee table, we have set the ShipperID of the Order table

equal to the ShipperID of the Shipper table, and so on. It is these conditions that join the

six tables together. This part of the Where clause is telling the DBMS to return a row of

data wherever a CustomerID in the Order table matches a CustomerID in the Customer

table, an EmployeeID in the Order table matches an EmployeeID in the Employee table,

a ShipperID in the Order table matches a ShipperID in the Shipper table, and so on. As

can be seen, the only order that should be returned is OrderID 2.

The screenshot in the Result section of the figure shows the result of the query.

Chapter 20 Database Design, SQL, and Data Binding

374

20.6.2  �Insert Statement
The Insert statement adds one or more rows to a database table. When inserting a

row, the values to be inserted into the table must satisfy all of the applicable table

constraints (i.e., entity integrity constraints, referential integrity constraints, and not null

constraints). Otherwise, the DBMS will not insert the row into the table and will return

an error message. Figure 20-13 shows an example of the Insert statement.

Notice at 01 that we will be inserting a row of data into the Product table. As can be

seen, we have articulated all of the attributes that will be inserted into the table—except

for the ProductID, which is the primary key of the table. We won’t be inserting a primary

key value because, when we created the table, we instructed the DBMS to automatically

generate a primary key value (i.e., an automatically incremented integer) for a newly

inserted row. Keep in mind that we need only list the attributes we wish to add to an

Figure 20-12.  Example of a six-table join operation

Chapter 20 Database Design, SQL, and Data Binding

375

inserted row. For any attribute values we don’t list, the DBMS will automatically insert

the default values we specified when we created the table. However, our standard will be

to list all of the attributes in an Insert statement—except for any automatically generated

primary keys.

Notice at 02 that the list and sequence of the attribute values in the Values

clause correspond directly to the list and sequence of the attribute names at 01.

If these do not match exactly, the Insert statement will not work as expected. It is

important to note that when an Insert statement is part of an application, we almost

never hard code the attribute values like they are hard coded in the figure. Instead,

we typically code variables in the Values clause of the Insert statement and then

programmatically instantiate those variables with values before the Insert statement

is executed.

The screenshot in the Result section of the figure shows the result of the insert.

Notice the newly inserted row that appears at the very bottom of the table. Also notice

the automatically generated ProductID value.

Chapter 20 Database Design, SQL, and Data Binding

376

Figure 20-13.  Example of the Insert statement

Chapter 20 Database Design, SQL, and Data Binding

377

20.6.3  �Update Statement
The Update statement modifies one or more rows in a database table. When updating

a row, the values to be updated in the table must satisfy all of the applicable table

constraints (i.e., entity integrity constraints, referential integrity constraints, and not null

constraints). Otherwise, the DBMS will not update the row in the table and will return

an error message. When updating a specific row in a table, we must be very careful to

include a Where clause that identifies the primary key value of the row to be updated. If

we include a nonexistent primary key value in the Where clause, no row will be updated.

If we include an incorrect primary key value in the Where clause, the wrong row will be

updated. And if we neglect to include a Where clause altogether, all of the rows in the

table will be updated. Figure 20-14 shows an example of the Update statement.

Notice at 01 that we will be updating the Product table.

Notice at 02 that we will be updating the Price and NumberInStock attribute

values. It is important to note that when an Update statement is part of an application,

we almost never hard code the attribute values like they are hard coded in the figure.

Instead, we typically code variables in the Set clause of the Update statement and then

programmatically instantiate those variables with values before the Update statement is

executed.

Notice at 03 that we will be updating the row whose primary key is 23.

The screenshot in the Result section of the figure shows the result of the update.

Notice the newly updated row that appears at the very bottom of the table. Also notice

the new Price and NumberInStock values.

Chapter 20 Database Design, SQL, and Data Binding

378

20.6.4  �Delete Statement
The Delete statement removes one or more rows from a database table. When deleting

a row, all referential integrity constraints must remain satisfied. Otherwise, the DBMS

will not delete the row from the table and will return an error message. When deleting

a specific row from a table, we must be very careful to include a Where clause that

identifies the primary key value of the row to be deleted. If we include a nonexistent

primary key value in the Where clause, no row will be deleted. If we include an incorrect

primary key value in the Where clause, the wrong row will be deleted. And if we

neglect to include a Where clause altogether, all of the rows in the table will be deleted.

Figure 20-15 shows an example of the Delete statement.

Notice at 01 that we will be deleting a row from the Product table.

Notice at 02 that we will be deleting the row whose primary key is 23.

The screenshot in the Result section of the figure shows the result of the delete.

Notice that the row with the primary key of 23 has been removed from the table.

Figure 20-14.  Example of the Update statement

Chapter 20 Database Design, SQL, and Data Binding

379

20.7  �DataBoundControl Class
The DataBoundControl class serves as the base class for all of the data-bound classes

that display data in tabular or list form. As such, all data-bound classes inherit

properties, methods, and events from this class. The data-bound classes include the

AdRotator class, the BulletedList class, the CheckBoxList class, the DetailsView class,

the DropDownList class, the FormView class, the GridView class, the ListBox class,

the ListView class, the Menu class, the RadioButtonList class, the Repeater class, and

the TreeView class. We have already seen some of these classes in action (e.g., the

DropDownList class, the ListBox class, the Menu class, the TreeView class), and we

will see others in the chapters that follow (e.g., the FormView class, the ListView class).

Table 20-1 shows some of the properties, methods, and events of the DataBoundControl

class.

Figure 20-15.  Example of the Delete statement

Chapter 20 Database Design, SQL, and Data Binding

380

20.8  �SqlDataSource Class
The SqlDataSource class accesses an application’s underlying SQL Server database.

A SqlDataSource control can be used in conjunction with a data-bound control to

retrieve data from, insert data into, update data in, and delete data from a SQL Server

database. The data-bound controls that can be used with a SqlDataSource control to

perform such operations are listed in the previous section.

Table 20-2 shows some of the properties, methods, and events of the SqlDataSource

class. The ConnectionString property of the SqlDataSource class indicates the

connection string associated with an underlying SQL Server database. The

SelectCommand property indicates the SQL call used to retrieve data from a SQL Server

database, and the SelectParameters property contains the collection of parameters

used by the SQL call defined in the SelectCommand property. The InsertCommand

property indicates the SQL call used to insert data into a SQL Server table, and the

Table 20-1.  Some of the properties, methods, and events of the DataBoundControl

class

Class DataBoundControl2

Namespace System.Web.UI.WebControls

Properties

DataSourceID Gets or sets the ID of the control from which the data-bound control

retrieves its list of data items.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

databoundcontrol(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 20 Database Design, SQL, and Data Binding

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.databoundcontrol(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.databoundcontrol(v=vs.110).aspx

381

InsertParameters property contains the collection of parameters used by the SQL

call defined in the InsertCommand property. The Inserting method is invoked before

an insert operation occurs, whereas the Inserted method is invoked after an insert

operation occurs. The UpdateCommand property indicates the SQL call used to

update data in a SQL Server table, and the UpdateParameters property contains the

collection of parameters used by the SQL call defined in the UpdateCommand property.

The Updating method is invoked before an update operation occurs, whereas the

Updated method is invoked after an update operation occurs. The DeleteCommand

property indicates the SQL call used to delete data from a SQL Server table, and the

DeleteParameters property contains the collection of parameters used by the SQL call

defined in the DeleteCommand property. The Deleting method is invoked before a

delete operation occurs, whereas the Deleted method is invoked after a delete operation

occurs.

Keep in mind that the value of the SelectCommand, InsertCommand,

UpdateCommand, and DeleteCommand property can be a SQL call in string form,

or it can be the name of a stored procedure. Furthermore, the SelectParameters,

InsertParameters, UpdateParameters, and DeleteParameters property collections

can contain control parameters (which bind to server control properties), cookie

parameters (which bind to cookies), form parameters (which bind to form fields),

profile parameters (which bind to profile fields), query string parameters (which bind to

query string parameters), route parameters (which bind to route URL parameters), and

session parameters (which bind to session variables). As we will soon see, these types of

parameters are used in parameterized queries.

Chapter 20 Database Design, SQL, and Data Binding

382

Table 20-2.  Some of the properties, methods, and events of the SqlDataSource

class

Class SqlDataSource3

Namespace System.Web.UI.WebControls

Properties

ConnectionString Gets or sets the ADO.NET provider–specific connection string that the

SqlDataSource control uses to connect to an underlying database.

DeleteCommand Gets or sets the SQL string that the SqlDataSource control uses to delete data

from the underlying database.

DeleteParameters Gets the parameters collection that contains the parameters that are used

by the DeleteCommand property from the SqlDataSourceView object that is

associated with the SqlDataSource control.

InsertCommand Gets or sets the SQL string that the SqlDataSource control uses to insert data

into the underlying database.

InsertParameters Gets the parameters collection that contains the parameters that are used

by the InsertCommand property from the SqlDataSourceView object that is

associated with the SqlDataSource control.

OldValuesParameter

FormatString

Gets or sets a format string to apply to the names of any parameters that are

passed to the Delete or Update method.

SelectCommand Gets or sets the SQL string that the SqlDataSource control uses to retrieve

data from the underlying database.

SelectParameters Gets the parameters collection that contains the parameters that are used

by the SelectCommand property from the SqlDataSourceView object that is

associated with the SqlDataSource control.

UpdateCommand Gets or sets the SQL string that the SqlDataSource control uses to update

data in the underlying database.

(continued)

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 20 Database Design, SQL, and Data Binding

383

Table 20-2.  (continued)

UpdateParameters Gets the parameters collection that contains the parameters that are used

by the UpdateCommand property from the SqlDataSourceView control that is

associated with the SqlDataSource control.

Methods

DataBind() Binds a data source to the invoked server control and all its child controls.

(Inherited from Control.)

Events

Deleted Occurs when a delete operation has completed.

Deleting Occurs before a delete operation.

Inserted Occurs when an insert operation has completed.

Inserting Occurs before an insert operation.

Updated Occurs when an update operation has completed.

Updating Occurs before an update operation.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

sqldatasource(v=vs.110).aspx

20.8.1  �Connection Strings
A connection string provides an application with the details of its underlying SQL Server

database. Figure 20-16 shows the connection string associated with the SportsPlay database.

As can be seen, this connection string is defined in the <connectionStrings> section of the

application’s Web.config file. Notice that the name of the computer on which SQL Server

resides is MATRBeasley-18, the name of the SQL Server instance4 is SQLEXPRESS, the name

of the initial catalog (i.e., the database) is SportsPlay, and the type of integrated security is SSPI

(Security Support Provider Interface). SSPI (the preferred type of integrated security) permits

our application (as a Windows server user) to connect to the database without having to

provide additional SQL Server username and password credentials. We place the connection

4�A SQL Server instance is a complete SQL Server service with its own databases, credentials, and so
forth. A computer can have more than one SQL Server instance installed and running at one time.

Chapter 20 Database Design, SQL, and Data Binding

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.sqldatasource(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.sqldatasource(v=vs.110).aspx

384

string in the Web.config file so that it can be modified in one place yet can be referred to in many

places in the application. Thus, if we need to install the database on a different computer, add

the database to a different SQL Server instance, and/or change the name of the database, we

need only change the connection string in the Web.config file. The references to the connection

string throughout the application need not be modified.

Figure 20-16.  Connection string associated with the SportsPlay database

In the sections that follow, we will employ a ListBox data-bound control to illustrate

the use of the SqlDataSource class and its SelectCommand property. In Chapter 21,

titled “Single-Row Database Table Maintenance,” and Chapter 22, titled “Multiple-Row

Database Table Maintenance,” we will employ the InsertCommand, UpdateCommand,

and DeleteCommand properties of the SqlDataSource class as well.

20.8.2  �Data-Bound Control Population
We often need to populate a data-bound control with data from a SQL Server database.

For example, we may need to provide the end user with a list box for selecting products.

Figure 20-17 shows an example of populating a ListBox control with a SqlDataSource

control. In this example, we will be populating the list box with all of the products from

the Product table. No row filtering will be done.

Notice at 01 the SqlDataSource control. This data source will be used to populate

the list box at 02. As can be seen, the ConnectionString property of the SqlDataSource

control is set to <%$ConnectionStrings:SportsPlay%> to indicate the connection string

(i.e., SportsPlay) associated with the application’s underlying SQL Server database.

Notice in the SelectCommand property of the control that we will be returning the

ProductID and the Product from the Product table and that the result will be sorted in

ascending order by Product. This way, the end user will be able to easily locate products

in the list box.

Chapter 20 Database Design, SQL, and Data Binding

385

Figure 20-17.  Example of populating a ListBox control with a SqlDataSource control

Notice at 02 the ListBox control used to display the products in the Product table.

Observe that the DataSourceID of this control is set to the ID of the SqlDataSource

control at 01 to identify the data source associated with the list box. Also notice that

the DataTextField property is set to Product to indicate that the Product attribute is to

be displayed in the list box. Notice as well that the DataValueField property is set to

ProductID to indicate that the ProductID attribute (i.e., the primary key of the Product

table) is to be placed in the SelectedValue property of the list box when the end user

selects a product.

Notice at 03 that we have added a <connectionStrings> section to our Web.config file

as well as a connection string called SportsPlay.

The screenshot in the Result section of the figure shows the list box populated with

all of the products in the Product table.

Chapter 20 Database Design, SQL, and Data Binding

386

20.8.3  �Data-Bound Control Filtering
Sometimes populating a data-bound control with data from a database (like we did in

the previous section) would return so many rows of data that the page would take an

unacceptable amount of time to load, or the control would contain so many items that

it would be inefficient for the end user to use (e.g., selecting a product from a ListBox

control that contains ten thousand products). In this situation, we need a way of limiting

the number of rows of data returned from the database. To do this, we need to apply one

or more filters to our database call. Filtering is accomplished by adding a Where clause to

the Select statement of the database call that includes one or more parameters that limit

the number of rows of data returned. In the sections that follow, we will discuss two of

the more common types of parameters used to filter the data of a data-bound control—

control parameters and session parameters.

20.8.3.1  �Filtering with Control Parameters

One way to filter the rows returned from a database is to employ one or more control

parameters. A control parameter is associated with an ASP.NET server control. Such a

control can contain a naturally occurring subsetting criterion (e.g., a product category),

or it can contain a custom subsetting criterion (e.g., an end user–supplied string). Figure 20-18

shows an example of filtering a ListBox control with a DropDownList control. As we

learned earlier in this chapter, a category is associated with one or more products, and a

product is associated with exactly one category. Since category is a naturally occurring

subsetting criterion for products in the SportsPlay database, we are populating the list

box with only those products associated with the category selected from the drop-down

list.

Notice at 01 the SqlDataSource control for the drop-down list of categories. This

data source will be used to populate the category drop-down list at 05. Notice in the

SelectCommand property of the control that we will be returning the CategoryID and the

Category from the Category table and that the result will be sorted in ascending order

by Category. Such a sort order will permit the end user to easily locate categories in the

drop-down list.

Notice at 02 the SqlDataSource control for list box of products. This data source will

be used to populate the product list box at 06. Notice in the SelectCommand property

of the control that we will be returning the ProductID and the Product from the Product

table and that the result will be sorted in ascending order by Product. Such a sort order

Chapter 20 Database Design, SQL, and Data Binding

387

will permit the end user to easily locate products in the list box. Notice as well that we

have included a Where clause in the Select statement. This Where clause will be used to

limit the products returned from the Product table to those that have a CategoryID equal

to @CategoryID. Here, @CategoryID is a control parameter that is defined within the

collection of select parameters.

Notice at 03 the data source’s <SelectParameters> tag, which identifies the

beginning of the data source’s select parameters collection. This collection contains any

parameters required by the Select command. In this case, the Select command requires

the @CategoryID parameter.

Notice at 04 that we have added a control parameter to the select parameters

collection. The first thing to notice about this control parameter is that its Name property

is set to CategoryID. This associates the control parameter with the @CategoryID

parameter in the Where clause of the Select command at 02. The next thing to notice is

that the ControlID property is set to ddlCategory (which is the ID of the category drop-

down list at 05), and the PropertyName property is set to SelectedValue. This indicates

that the @CategoryID parameter of the Where clause comes from the SelectedValue

property of the category DropDownList control. Also notice that the Direction property

is set to Input to indicate that this is an input parameter, and the Type property is set to

Int32 to indicate that the data type of the control parameter is a 32-bit integer.

Notice at 06 the ListBox control used to display the products in the Product table.

Observe that the DataSourceID of this control is set to the ID of the SqlDataSource

control at 02 to identify the data source associated with the list box. Also notice that

the DataTextField property is set to Product to indicate that the Product attribute is to

be displayed in the list box. Notice as well that the DataValueField property is set to

ProductID to indicate that the ProductID attribute (i.e., the primary key of the Product

table) is to be placed in the SelectedValue property of the list box when the end user

selects a product.

Notice at 07 that we have added a <connectionStrings> section to our Web.config file

as well as a connection string called SportsPlay.

The first screenshot in the Result section of the figure shows the list box populated

with only those products associated with women’s footwear. The second screenshot

shows the list box populated with only those products associated with racquets.

Chapter 20 Database Design, SQL, and Data Binding

388

Figure 20-18.  Example of filtering a ListBox control with a DropDownList control

Chapter 20 Database Design, SQL, and Data Binding

389

Figure 20-19 shows an example of filtering a ListBox control with a TextBox control.

In this example, we are populating the list box with only those products that contain the

string entered into the associated text box.

Notice at 01 the SqlDataSource control for the list box of products. This data source

will be used to populate the product list box at 06. Notice in the SelectCommand

property of the control that we will be returning the ProductID and the Product from

the Product table and that the result will be sorted in ascending order by Product. Such

a sort order will permit the end user to easily locate products in the list box. Notice as

well that we have included a Where clause in the Select statement. This Where clause

will be used to limit the products returned from the Product table to those that contain

@Product anywhere in the Product attribute. This is accomplished by including the key

word LIKE in the Where clause with percent signs (%), which are wildcard characters in

SQL, on both sides of the @Product parameter. Here, @Product is a control parameter

that is defined within the collection of select parameters.

Notice at 02 the data source’s <SelectParameters> tag, which identifies the

beginning of the data source’s select parameters collection. This collection contains any

parameters required by the Select command. In this case, the Select command requires

the @Product parameter.

Figure 20-18.  (continued)

Chapter 20 Database Design, SQL, and Data Binding

390

Notice at 03 that we have added a control parameter to the select parameters

collection. The first thing to notice about this control parameter is that its Name property

is set to Product. This associates the control parameter with the @Product parameter

in the Where clause of the Select command at 01. The next thing to notice is that the

ControlID property is set to txtProduct (which is the ID of the product text box at 04), and

the PropertyName property is set to Text. This indicates that the @Product parameter

of the Where clause comes from the Text property of the product TextBox control.

Also notice that the Direction property is set to Input to indicate that this is an input

parameter and the Type property is set to String to indicate that the data type of the

control parameter is a string.

Notice at 05 the Button control used to filter the items displayed in the product list

box. When this button is clicked, the page will post back to the server, where the filter

will be applied to the list of products returned from the database.

Notice at 06 the ListBox control used to display the products in the Product table.

Observe that the DataSourceID of this control is set to the ID of the SqlDataSource

control at 01 to identify the data source associated with the list box. Also notice that

the DataTextField property is set to Product to indicate that the Product attribute is to

be displayed in the list box. Notice as well that the DataValueField property is set to

ProductID to indicate that the ProductID attribute (i.e., the primary key of the Product

table) is to be placed in the SelectedValue property of the list box when the end user

selects a product.

Notice at 07 that we have added a <connectionStrings> section to our Web.config file

as well as a connection string called SportsPlay.

The first screenshot in the Result section of the figure shows the list box populated

with only those products that contain the word women somewhere in the product. The

second screenshot shows the list box populated with only those products that contain

the characters prin somewhere in the product.

Chapter 20 Database Design, SQL, and Data Binding

391

Figure 20-19.  Example of filtering a ListBox control with a TextBox control

Chapter 20 Database Design, SQL, and Data Binding

392

20.8.3.2  �Filtering with Session Parameters

Another way to filter the rows returned from a database is to employ one or more session

parameters. A session parameter is associated with a session variable that has already

been set (perhaps on a previous page of the application) and thus resides in RAM on

the server. Such a variable can contain a naturally occurring subsetting criterion (e.g.,

a product category), or it can contain a custom subsetting criterion (e.g., an end user–

supplied string). Figure 20-20 shows an example of filtering a ListBox control with a

session variable. As we learned earlier in this chapter, a category is associated with one or

more products, and a product is associated with exactly one category. Since category is a

naturally occurring subsetting criterion for products in the SportsPlay database, we are

populating the list box with only those products associated with the category selected

from, say, a drop-down list that exists on a previous page of the application.

Notice at 01 the SqlDataSource control for the list box of products. This data source

will be used to populate the product list box at 04. Notice in the SelectCommand

property of the control that we will be returning the ProductID and the Product from

the Product table and that the result will be sorted in ascending order by Product. Such

a sort order will permit the end user to easily locate products in the list box. Notice as

well that we have included a Where clause in the Select statement. This Where clause

will be used to limit the products returned from the Product table to those that have

a CategoryID equal to @CategoryID. Here, @CategoryID is a session parameter that is

defined within the collection of select parameters.

Notice at 02 the data source’s <SelectParameters> tag, which identifies the

beginning of the data source’s select parameters collection. This collection contains any

parameters required by the Select command. In this case, the Select command requires

the @CategoryID parameter.

Notice at 03 that we have added a session parameter to the select parameters

collection. The first thing to notice about this session parameter is that its Name property

is set to CategoryID. This associates the session parameter with the @CategoryID

parameter in the Where clause of the Select command at 01. The next thing to notice is

that the SessionField property is set to intCategoryID. This is the session variable that

contains the ID of the category selected from a drop-down list that exists on a previous

page of the application. Also notice that the Direction property of the session parameter

is set to Input to indicate that this is an input parameter and the Type property of the

session parameter is set to Int32 to indicate that the data type of the session parameter is

a 32-bit integer.

Chapter 20 Database Design, SQL, and Data Binding

393

Notice at 04 the ListBox control used to display the products in the Product table.

Observe that the DataSourceID of this control is set to the ID of the SqlDataSource

control at 01 to identify the data source associated with the list box. Also notice that

the DataTextField property is set to Product to indicate that the Product attribute is to

be displayed in the list box. Notice as well that the DataValueField property is set to

ProductID to indicate that the ProductID attribute (i.e., the primary key of the Product

table) is to be placed in the SelectedValue property of the list box when the end user

selects a product.

Notice at 05 that we have added a <connectionStrings> section to our Web.config file

as well as a connection string called SportsPlay.

The first screenshot in the Result section of the figure shows the list box populated

with only those products associated with racquets. The second screenshot shows the list

box populated with only those products associated with men’s clothing. In both cases, it

is assumed that the category was selected from a drop-down list that exists on a previous

page of the application and that the CategoryID associated with the selection was saved

in a session variable.

Chapter 20 Database Design, SQL, and Data Binding

394

Figure 20-20.  Example of filtering a ListBox control with a session variable

Chapter 20 Database Design, SQL, and Data Binding

395
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_21

CHAPTER 21

Single-Row Database
Table Maintenance
21.1  �Introduction
Many modern Web applications require pages that maintain database table data. Such

table maintenance implies the addition of new rows of table data and the modification

and deletion of existing rows of table data. Although it is sometimes appropriate to

display several rows of data simultaneously when maintaining table data, there are other

times when it is better to display a single row of data. Displaying a single row of data on

a page is most appropriate when the table being maintained contains so many attributes

that those attributes cannot be displayed comfortably across the page (i.e., horizontally

without the attributes disappearing off the page).

In this chapter, we will look at the FormView class. This class maintains the data in a

database table (or other data sources) one row at a time. The FormView class has built-in

insert, update, and delete functionality making table maintenance much easier than it

would be if we were to code such functionality manually. A FormView control is bound

to a data source control, and this data source control references an underlying data

structure of some type. In the section that follows, we will bind a FormView control to a

SqlDataSource control that will reference a SQL Server database table.

21.2  �FormView Class
The FormView class displays a form that can be used by an end user to maintain the data

in a database table (or other data sources) one row at a time. This class has built-in insert,

update, delete, and paging functionality and can be customized using themes. To use a

FormView control, we must define one or more templates. These templates correspond

to the different modes that the control can be in and provide a great deal of flexibility

396

in terms of how the data in a table row is displayed. There are a number of FormView

control templates. The ItemTemplate is the only template that is required. However, we

must define a template for each mode that the control can be in. The seven FormView

control templates are

•	 EditItemTemplate – Specifies the content and layout of the FormView

control when it is in Edit mode. This template usually contains input

controls and command buttons that the end user can use to modify

an existing row of data in a table.

•	 EmptyDataTemplate – Specifies the content and layout of the

FormView control when it does not contain any data. This template

usually contains a message that alerts the end user to the fact that no

data is available for display.

•	 FooterTemplate – Specifies the content and layout of the FormView

control’s footer row. This template usually contains any additional

content that should be displayed in the footer row of the control.

•	 HeaderTemplate – Specifies the content and layout of the FormView

control’s header row. This template usually contains any additional

content that should be displayed in the header row of the control.

•	 InsertItemTemplate – Specifies the content and layout of the

FormView control when it is in Insert mode. This template usually

contains input controls and command buttons that the end user can

use to add a new row of data to a table.

•	 ItemTemplate – Specifies the content and layout of the FormView

control when it is in Read-Only mode and is, thus, only being used

to display data. This template is required and can contain command

buttons that the end user can use to place the control into Insert or

Edit mode. It can also contain a command button that the end user

can use to delete an existing row of data from a table.

•	 PagerTemplate – Specifies the content and layout of the FormView

control’s pager row when the control’s AllowPaging property is set to

true. This template usually contains controls that the end user can

use to move between the rows of data in a table.

Chapter 21 Single-Row Database Table Maintenance

397

A FormView control is bound to a data source control, and this data source control

references an underlying data structure of some type. FormView controls can be

bound to different kinds of data source controls, including SqlDataSource controls,

ObjectDataSource controls, and AccessDataSource controls. They can also be bound

to collections, like array lists. In this chapter, we will bind a FormView control to a

SqlDataSource control that will reference a SQL Server database table. To bind a

FormView control to a SqlDataSource control, we will set the DataSourceID property

of the FormView control to the ID of the associated SqlDataSource control. By doing

this, the FormView control will be able to exploit the insert, update, delete, and paging

functionality of the SqlDataSource control.

A FormView control recognizes a number of special buttons. Each of these buttons

behaves in a specific way, and each one invokes its own set of FormView control events.

These buttons are

•	 Cancel button – Cancels an insert or update operation and discards

any values entered by the end user. When this button is clicked,

the FormView control is returned to the mode specified in the

DefaultMode property.

•	 Delete button – Attempts to delete the displayed row from the

data source. When this button is clicked, the ItemDeleting and

ItemDeleted events are raised.

•	 Edit button – Puts the FormView control into Edit mode. When this

button is clicked, the content specified in the EditItemTemplate

property is displayed. The EditItemTemplate property is usually

defined in such a way that the Edit button is replaced with Update

and Cancel buttons when the end user clicks it.

•	 Insert button – Attempts to insert a new row into the data source

using the values supplied by the end user. When this button is

clicked, the ItemInserting and ItemInserted events are raised.

•	 New button – Puts the FormView control into Insert mode. When this

button is clicked, the content specified in the InsertItemTemplate

property is displayed. The InsertItemTemplate property is usually

defined in such a way that the New button is replaced with Insert and

Cancel buttons when the end user clicks it.

Chapter 21 Single-Row Database Table Maintenance

398

•	 Page button – Represents a button in the pager row of the

FormView control. To specify a paging operation, we set the

CommandArgument property of the button to First, Prev, Next, or

Last or to the index of a specific page. When a page button is clicked,

the PageIndexChanging and PageIndexChanged events are raised.

•	 Update – Attempts to update the displayed row in the data source

using the values supplied by the end user. When this button is

clicked, the ItemUpdating and ItemUpdated events are raised.

Table 21-1 shows some of the properties, methods, and events of the FormView class.

Table 21-1.  Some of the properties, methods, and events of the FormView class

Class FormView1

Namespace System.Web.UI.WebControls

Properties

AllowPaging Gets or sets a value indicating whether the paging feature is enabled.

DataKeyNames Gets or sets an array that contains the names of the key fields for the data

source.

DefaultMode Gets or sets the data-entry mode to which the FormView control returns

after an update, insert, or cancel operation.

DeleteMethod Gets or sets the name of the method on the page that is called when the

control performs a delete operation.

EditItemTemplate Gets or sets the custom content for an item in edit mode.

EmptyDataTemplate Gets or sets the user-defined content for the empty data row rendered when

a FormView control is bound to a data source that does not contain any

records.

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

(continued)

Chapter 21 Single-Row Database Table Maintenance

399

EmptyDataText Gets or sets the text to display in the empty data row rendered when a

FormView control is bound to a data source that does not contain any

records.

EnableModelValidation Gets or sets a value that indicates whether a validator control will handle

exceptions that occur during insert or update operations.

FooterTemplate Gets or sets the user-defined content for the footer row in a FormView

control.

FooterText Gets or sets the text to display in the footer row of a FormView control.

GridLines Gets or sets the gridline style for a FormView control.

HeaderTemplate Gets or sets the user-defined content for the header row in a FormView

control.

HeaderText Gets or sets the text to display in the header row of a FormView control.

InsertItemTemplate Gets or sets the custom content for an item in insert mode.

InsertMethod Gets or sets the name of the method on the page that is called when the

control performs an insert operation.

ItemTemplate Defines the content for the data row when the FormView control is in read-

only mode. This template usually contains content to display the values of

an existing record.

PageCount Gets the total number of pages required to display every record in the data

source.

PageIndex Gets or sets the index of the displayed page.

PagerTemplate Defines the content for the pager row displayed when the paging feature is

enabled (when the AllowPaging property is set to true). This template usually

contains controls with which the user can navigate to another record.

SelectedValue Gets the data-key value of the current record in a FormView control.

UpdateMethod Gets or sets the name of the method on the page that is called when the

control performs an update operation.

Table 21-1.  (continued)

(continued)

Chapter 21 Single-Row Database Table Maintenance

400

Methods

DeleteItem( ) Deletes the current record in the FormView control from the data source.

InsertItem(Boolean) Inserts the current record in the data source.

UpdateItem(Boolean) Updates the current record in the data source.

Events

ItemCommand Occurs when a button within a FormView control is clicked.

ItemDeleted Occurs when a Delete button within a FormView control is clicked, but after

the delete operation.

ItemDeleting Occurs when a Delete button within a FormView control is clicked, but

before the delete operation.

ItemInserted Occurs when an Insert button within a FormView control is clicked, but after

the insert operation.

ItemInserting Occurs when an Insert button within a FormView control is clicked, but

before the insert operation.

ItemUpdated Occurs when an Update button within a FormView control is clicked, but

after the update operation.

ItemUpdating Occurs when an Update button within a FormView control is clicked, but

before the update operation.

ModeChanged Occurs when the FormView control switches between edit, insert, and read-

only mode, but after the mode has changed.

ModeChanging Occurs when the FormView control switches between edit, insert, and read-

only mode, but before the mode changes.

PageIndexChanged Occurs when the value of the PageIndex property changes after a paging

operation.

PageIndexChanging Occurs when the value of the PageIndex property changes before a paging

operation.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

formview(v=vs.110).aspx

Table 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.formview(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.formview(v=vs.110).aspx

401

Figure 21-1 shows an example of the FormView class.

Notice at 01 the SqlDataSource for the product DropDownList control. This

data source will be used to populate the drop-down list at 06. As can be seen in the

SelectCommand property, we will be returning the ProductID and the Product from the

Product table, and the result will be sorted in ascending order by Product so that the end

user can easily locate products in the drop-down list.

Notice at 02 the SqlDataSource for the category DropDownList control. This data

source will be used to populate the drop-down list at 10, which is inside the FormView

control. As can be seen in the SelectCommand property, we will be returning the

CategoryID and the Category from the Category table, and the result will be sorted in

ascending order by Category so that the end user can easily locate categories in the drop-

down list.

Notice at 03 the SqlDataSource for the product FormView control. This data source

will be used to insert new rows of data into the Product table and update and delete

existing rows of data in the Product table—all via the form view, which begins at 07. As

we look at this data source in detail, we will see a number of attributes that begin with

an at sign (@). These attributes represent the data source’s input and output parameters.

Notice the OldValuesParameterFormatString property of the data source. As can be

seen, this property is set to original_{0}. We will see the word original again in a moment.

Now look at the OnInserted property of the data source. This property indicates the

event handler method that will be executed immediately after a row is inserted into

the Product table. This event handler method, which is defined at 22, will be used to

get the primary key value of the newly inserted row so that we can position the product

drop-down list and the form view on the newly inserted row. As can be seen in the

SelectCommand property, we will be returning all of the attributes of the Product table

since we will be displaying them for the end user—except when the form view is in Insert

mode. Also, notice the Select statement at the end of the InsertCommand property.

This statement will return the ProductID of the newly inserted product so that we can

position the product drop-down list and the form view on the newly inserted row. And

finally, notice in the Where clauses of the UpdateCommand and DeleteCommand

properties that the ProductID is set to the original ProductID. The word original here

corresponds directly with the word original in OldValuesParameterFormatString

property we just mentioned. Setting the ProductID to the original ProductID in this

fashion will ensure that the product being updated or deleted is the same product that is

currently being displayed.

Chapter 21 Single-Row Database Table Maintenance

402

Notice at 04 the <SelectParameters> section of the data source. As the name implies,

the parameters in this section correspond to the parameters in the Select statement of the

SelectCommand property, which is defined at 03. As can be seen, we have a single select

parameter. This parameter is a control parameter (i.e., its value comes from a control)

and has the name ProductID, which corresponds directly to the @ProductID parameter

in the Where clause of the Select statement. The value of this parameter comes from the

SelectedValue property of the ddlProduct drop-down list and is a 32-bit integer.

Notice at 05 the <InsertParameters> section of the data source. As the name implies,

the parameters in this section correspond to the parameters in the Insert statement of

the InsertCommand property, which is defined at 03. As can be seen, we have a single

insert parameter. This parameter has the name ProductID, which corresponds directly to

the @ProductID parameter in the Select statement at the bottom of the InsertCommand

property. Observe that this parameter is an output parameter that will hold the primary

key value of the newly inserted row and that it is a 32-bit integer.

Notice at 06 the product DropDownList control. This drop-down list will be used to

select the product that is displayed in the form view. There are several things to notice in

this control. First, its DataSourceID property is set to sdsDropDownListProduct, which

is the ID of the SqlDataSource defined at 01. Second, its DataTextField property is set to

Product, which is the table attribute that will be displayed in the drop-down list. Third,

its DataValueField property is set to ProductID, which is the primary key of the item that

will be displayed in the drop-down list. And fourth, its AutoPostBack property is set to

true so that whenever the end user selects a new product, the page will post back to the

server and the newly selected product will be displayed in the form view.

Notice at 07 the product FormView control. This control will be used to insert new

rows into the Product table, update existing rows in the Product table, and delete existing

rows from the Product table. Notice that the DataKeyNames property of the control is

set to ProductID. This indicates that the primary key of the data source (i.e., the Product

table) is the ProductID. Notice as well the four event handler method properties. The

OnItemInserted property indicates the event handler method that will be executed

immediately after a row is inserted into the Product table. This event handler method,

which is defined at 23, will be used to make sure that the insert was successful. The

OnItemUpdated property indicates the event handler method that will be executed

immediately after a row is updated in the Product table. This event handler method,

which is defined at 24, will be used to make sure that the update was successful.

The OnItemDeleted property indicates the event handler method that will be executed

Chapter 21 Single-Row Database Table Maintenance

403

immediately after a row is deleted from the Product table. This event handler method,

which is defined at 25, will be used to make sure that the delete was successful. The

OnItemDeleting property indicates the event handler method that will be executed

immediately before a row is deleted from the Product table. This event handler method,

which is defined at 26, will be used to delete the product’s image file from the hard drive.

Since we need the name of the image file to be deleted before the product is deleted

from the table (and removed from the form view), we must execute the code at 26 before

the row is deleted from the Product table.2 And finally, the OnModeChanging property

indicates the event handler method that will be executed when the form view switches

from Insert to Read-Only mode or from Edit to Read-Only mode. This event handler

method, which is defined at 27, will be used to display a message for the end user

indicating that the insert or update operation has been canceled.

Notice at 08 the beginning of the ItemTemplate, which specifies the content and

layout of the FormView control when it is in Read-Only mode and is, thus, only being

used to display data. As can be seen, three buttons will be displayed when the form view

is initially rendered—Add, Modify, and Delete. When the Add button is clicked, the form

view will go into Insert mode, since the CommandName property of the button is set

to New. This mode will display the InsertItemTemplate at 13. When the Modify button

is clicked, the form view will go into Edit mode, since the CommandName property

of the button is set to Edit. This mode will display the EditItemTemplate at 16. And

when the Delete button is clicked, the form view will go into Delete mode, since the

CommandName property of the button is set to Delete. Note that this mode will continue

to display the ItemTemplate since the end user will not be adding for modifying data.

As can be seen, the OnClientClick property of the button is set to execute a JavaScript

confirm function. If the end user clicks OK when the confirmation message is displayed,

the delete command will be executed. However, if the end user clicks Cancel when the

confirmation message is displayed, the delete command will not be executed.

Notice at 09 and 12 the Copy Area Start and Copy Area End comments, respectively.

The technique we will use to ensure that the ItemTemplate, the InsertItemTemplate, and

the EditItemTemplate are all identical (and thus look consistent from mode to mode)

is to code and test the table rows between these two comments first and then copy and

2�If the product’s image file is deleted from the hard drive and the database table delete is
unsuccessful, the product will still exist in the Product table, but the image file will no longer
exist on the hard drive. Thus, a more sophisticated approach to keeping the two in sync may be
necessary.

Chapter 21 Single-Row Database Table Maintenance

404

paste those table rows between the Copy Area Start and Copy Area End comments at 14

and 15 and between the Copy Area Start and Copy Area End comments at 17 and 18.

If the code between any of the comments in the ItemTemplate, the InsertItemTemplate,

or the EditItemTemplate is modified, that code should be copied and pasted between the

comments in the other two templates. A failure to employ this technique (or something

similar to it) will almost certainly result in more expensive modifications to the three

templates down the road in an effort to keep the templates in sync.

Notice at 10 the category DropDownList control. There are several things to notice

about this control. First, its DataSourceID property is set to sdsDropDownListCategory,

which is the ID of the SqlDataSource defined at 02. Second, its DataTextField property is set

to Category, which is the table attribute that will be displayed in the drop-down list. Third,

its DataValueField property is set to CategoryID, which is the primary key of the item that

will be displayed in the drop-down list. And fourth, its SelectedValue property is set to <%#

Bind(“CategoryID”) %>, which binds the CategoryID of the currently selected category to

the CategoryID of the currently displayed product. Thus, when a new row is inserted into the

Product table or an existing row is updated in the Product table, the CategoryID attribute of

the product will be set to the CategoryID attribute of the currently selected category.

Notice at 11 the product TextBox control. There are two things to notice about this

control. First, its MaxLength property is set to 50 so that the end user cannot enter a

product longer than 50 characters. If he or she were permitted to enter a product longer

than 50 characters and did so, the insert or update would fail due to a truncation error.

This is because the maximum size of the Product attribute in the Product table is 50

characters (see Figure 20-1). Keep in mind that, in a real-world application, we would

also need to use the validation controls supplied by ASP.NET to help us avoid other

types of insert and update failures (e.g., null errors, type errors) and to make sure we

keep bad data out of the database in general. And second, its Text property is set to <%#

Bind(“Product”) %>, which binds the Text property of the TextBox control to the Product

attribute of the currently displayed product. Thus, when a new row is inserted into the

Product table or an existing row is updated in the Product table, the Product attribute of

the product will be set to the Text property of the TextBox control.

Notice at 13 the beginning of the InsertItemTemplate, which specifies the content

and layout of the FormView control when it is in Insert mode. As can be seen, two

buttons will be displayed when the form view is in Insert mode—Save and Cancel. When

the Save button is clicked, the form view will attempt to insert a new product into the

Product table, since the CommandName property of the button is set to Insert. When

the Cancel button is clicked, the form view will cancel the insert operation, discard any

Chapter 21 Single-Row Database Table Maintenance

405

values entered by the end user, return to Read-Only mode, and display the ItemTemplate

at 08, since the CommandName property of the button is set to Cancel.

Notice at 16 the beginning of the EditItemTemplate, which specifies the content and

layout of the FormView control when it is in Edit mode. As can be seen, two buttons

will be displayed when the form view is in Edit mode—Save and Cancel. When the Save

button is clicked, the form view will attempt to update the currently displayed product

in the Product table, since the CommandName property of the button is set to Update.

When the Cancel button is clicked, the form view will cancel the update operation,

discard any values entered by the end user, return to Read-Only mode, and display the

ItemTemplate at 08, since the CommandName property of the button is set to Cancel.

Notice at 19 that the System.Data.SqlClient namespace has been added to the list

of using directives (which appears at the top of the code behind file). This was done

to obviate the need to specify the fully qualified name of the SqlException class (i.e.,

System.Data.SqlClient.SqlException) each time we want to use one of its properties. We

will need the SqlException class to check for foreign key constraint violations at 25.

Notice at 20 that the System.IO namespace has also been added to the list of using

directives so we are not required to specify the fully qualified name of the File class (i.e.,

System.IO.File) each time we want to use one of its methods. We will need the File class

to delete a file from the server’s hard drive after we have checked for its existence. This

code is shown at 26.

Notice at 21 that we have defined a variable that will store the primary key value of a

newly inserted product.

Notice at 22 that we are getting the primary key value of a newly inserted product

and assigning that value to the variable defined at 21. Note that the primary key value of

a newly inserted row is retrieved from the database by the Select statement at the end of

the InsertCommand property at 03. After the primary key value is saved, it will be used in

the FormViewItemInserted method at 23 to position the product drop-down list and the

form view itself on the newly inserted product.

Notice at 23 the ItemInserted event handler method of the product form view. This

method is executed when the ItemInserted event of the form view is raised, which is

immediately after an insert operation is attempted. Notice in the definition of the event

handler method the FormViewInsertedEventArgs class—the alias of which is e. This

class is passed to the event handler method so we can determine the status of our insert

operations. As can be seen, if an exception is not returned from the database and exactly

one row in the database is affected (i.e., inserted), we will display a message stating that

the product was successfully added. In addition, we will rebind the Product table (with

Chapter 21 Single-Row Database Table Maintenance

406

its new product) to the product drop-down list, set the SelectedValue property of the

product drop-down list to the value of the newly inserted primary key, and rebind the

Product table (with its new product) to the form view. This process is necessary if we

want the newly inserted product to immediately display in the product drop-down list

and form view. If an exception is not returned from the database, but something other

than one row in the database is affected (i.e., inserted), we will display an appropriate

error message and keep the form view in insert mode. And finally, if an exception is

returned from the database, we will display an appropriate error message, keep the form

view in insert mode, and indicate that we are handling the exception programmatically.

Notice at 24 the ItemUpdated event handler method of the product form view. This

method is executed when the ItemUpdated event of the form view is raised, which is

immediately after an update operation is attempted. Notice in the definition of the event

handler method the FormViewUpdatedEventArgs class—the alias of which is e. This

class is passed to the event handler method so we can determine the status of our update

operations. As can be seen, if an exception is not returned from the database and exactly

one row in the database is affected (i.e., updated), we will display a message stating

that the product was successfully modified. In addition, we will rebind the Product

table (with its updated product) to the product drop-down list and rebind the Product

table (with its updated product) to the form view. This process is necessary if we want

the newly updated product to immediately display in the product drop-down list and

form view. If an exception is not returned from the database, but something other than

one row in the database is affected (i.e., updated), we will display an appropriate error

message and keep the form view in edit mode. And finally, if an exception is returned

from the database, we will display an appropriate error message, keep the form view in

edit mode, and indicate that we are handling the exception programmatically.

Notice at 25 the ItemDeleted event handler method of the product form view. This

method is executed when the ItemDeleted event of the form view is raised, which is

immediately after a delete operation is attempted. Notice in the definition of the event

handler method the FormViewDeletedEventArgs class—the alias of which is e. This

class is passed to the event handler method so we can determine the status of our delete

operations. As can be seen, if an exception is not returned from the database, and exactly

one row in the database is affected (i.e., deleted), we will display a message stating that the

product was successfully deleted. In addition, we will rebind the Product table (without the

deleted product) to the product drop-down list and rebind the Product table (without the

deleted product) to the form view. This process is necessary if we no longer want the newly

Chapter 21 Single-Row Database Table Maintenance

407

deleted product to display in the product drop-down list and form view. If an exception

is not returned from the database, but something other than one row in the database is

affected (i.e., deleted), we will display an appropriate error message. If an exception is

returned from the database and the SqlException number is 547, which indicates that

a foreign key constraint violation has occurred, we will display an appropriate error

message and indicate that we are handling the exception programmatically. And finally, if

some other exception is returned from the database, we will display an appropriate error

message and indicate that we are handling the exception programmatically.

Notice at 26 the ItemDeleting event handler method of the product form view. This

method is executed when the ItemDeleting event of the form view is raised, which is

immediately before a delete operation is attempted. Notice in this method that we are

deleting from the server’s hard drive the image file associated with the product to be

deleted from the Product table (if the file exists). Note that since the image TextBox

control exists within the form view, it is not directly accessible in the code behind of the

page like the other server controls are. Thus, we must first locate the TextBox control in

the form view (via its ID property using the FindControl method of the Control class) and

then get the Text property of the control as usual.

Notice at 27 the ModeChanging event handler method of the product form view.

This method is executed when the ModeChanging event of the form view is raised,

which is when the form view switches from Insert mode to Read-Only mode or from

Edit mode to Read-Only mode. Notice in the definition of the event handler method

the FormViewModeEventArgs class—the alias of which is e. This class is passed to the

event handler method so that we can determine, among other things, whether or not

the end user is canceling an insert or update operation. As can be seen, if the end user

cancels such an operation, we will display a message indicating that the insert or update

operation was canceled and that no data was affected.

Notice at 28 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides

the details of the SQL Server database that will be used by the data sources at 01, 02,

and 03. See Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed

description of this connection string.

The first screenshot in the Result section of the figure shows the product form view

in Read-Only mode. Thus, the ItemTemplate is being displayed. The second screenshot

shows the product form view in Insert mode. Thus, the InsertItemTemplate is being

displayed. The third screenshot shows the product form view in Edit mode. Thus, the

Chapter 21 Single-Row Database Table Maintenance

408

EditItemTemplate is being displayed. Notice that the product description is being

modified. The fourth screenshot shows the product form view in Read-Only mode

again—after the product description has been modified. Thus, the ItemTemplate is

being displayed once again. And the fifth screenshot shows the product form view in

Read-Only mode after the end user has clicked the Delete button.

Figure 21-1.  Example of the FormView class

Chapter 21 Single-Row Database Table Maintenance

409

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

410

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

411

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

412

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

413

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

414

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

415

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

416

Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

417
Figure 21-1.  (continued)

Chapter 21 Single-Row Database Table Maintenance

419
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_22

CHAPTER 22

Multiple-Row Database
Table Maintenance
22.1  �Introduction
Many modern Web applications require pages that maintain database table data. Such

table maintenance implies the addition of new rows of table data and the modification

and deletion of existing rows of table data. Although it is sometimes appropriate to

display a single row of data when maintaining table data, there are other times when it

is better to display several rows of data simultaneously. Displaying several rows of data

on a page is most appropriate when the table being maintained contains few enough

attributes that those attributes can be displayed comfortably across the page (i.e.,

horizontally without the attributes disappearing off the page). When the table being

maintained contains so many rows that those rows cannot be displayed comfortably

down the page (i.e., too much scrolling is required to locate a given row), we can employ

a row filter of some kind, or we can utilize data paging (discussed later).

In this chapter, we will begin by looking at the ListView class. This class maintains

the data in a database table (or other data sources) several rows at a time. The ListView

class has built-in insert, update, delete, sort, and item selection functionality making

table maintenance much easier than it would be if we were to code such functionality

manually. A ListView control is bound to a data source control, and this data source

control references an underlying data structure of some type. We will bind a ListView

control to a SqlDataSource control that will reference a SQL Server database table. After

that, we will discuss the DataPager class, which displays paging controls that can be

used by an end user to view the data pages of a ListView control. Next, we will consider

the NextPreviousPagerField class. This class displays navigation controls in a DataPager

control that can be used by an end user to jump to the first page of a ListView control,

420

move to the previous page of a ListView control, move to the next page of a ListView

control, and/or jump to the last page of a ListView control. And finally, we will look at the

NumericPagerField class, which displays navigation controls in a DataPager control that

can be used by an end user to select a page in a ListView control by its page number.

22.2  �ListView Class
The ListView class displays a list that can be used by an end user to maintain the data

in a database table (or other data sources) several rows at a time. This class has built-in

insert, update, delete, sort, and item selection functionality, can be used in conjunction

with a DataPager control for paging functionality, and can be customized using themes.

To use a ListView control, we must define one or more templates. These templates

correspond to the different modes that the control can be in and provide a great deal

of flexibility in terms of how the data in a table row is displayed. There are a number

of ListView control templates. The ItemTemplate is the only template that is required.

However, we must define a template for each mode that the control can be in. The eleven

ListView control templates are

•	 AlternatingItemTemplate – Specifies alternating ItemTemplates

so that it is easier to distinguish between consecutive items in the

ListView control. (See the ItemTemplate below.)

•	 EditItemTemplate – Specifies the content and layout of an individual

item in the ListView control when the control is in Edit mode. This

template usually contains input controls and command buttons that

the end user can use to modify an existing row of data in a table.

•	 EmptyDataTemplate – Specifies the content and layout of the

ListView control when it does not contain any data. This template

usually contains a message that alerts the end user to the fact that no

data is available for display.

•	 EmptyItemTemplate – Specifies the content and layout of the

individual items in the ListView control when there are no more

items to display in the last row of the current data page.

•	 GroupSeparatorTemplate – Specifies the content and layout to

display between the groups of items in the ListView control.

Chapter 22 Multiple-Row Database Table Maintenance

421

•	 GroupTemplate – Specifies a container control (e.g., table)

that will hold the content defined in the ItemTemplate or

EmptyItemTemplate.

•	 InsertItemTemplate – Specifies the content and layout of an individual

item in the ListView control when the control is in Insert mode. This

template usually contains input controls and command buttons

that the end user can use to add a new row of data to a table. The

InsertItemTemplate can be positioned at the top of the ListView control

or at the bottom of the ListView control by specifying the desired

location in the InsertItemPosition property of the ListView control. The

InsertItemTemplate will only be displayed if the InsertItemPosition

property of the ListView control is set to FirstItem or LastItem.

•	 ItemSeparatorTemplate – Specifies the content and layout to display

between individual items.

•	 ItemTemplate – Specifies the content and layout of an individual item

in the ListView control when the control is in Read-Only mode and is,

thus, only being used to display data. This template is required and

can contain command buttons that the end user can use to place the

control into Edit mode. It can also contain a command button that

the end user can use to delete an existing row of data from a table.

•	 LayoutTemplate – Specifies the content of the root container of a

ListView control.

•	 SelectedItemTemplate – Specifies the content and layout of an

individual item in the ListView control after the item has been

selected so that it can be differentiated from the other items in the

ListView control. This template can contain input controls and

command buttons that the end user can use to modify an existing

row of data in a table or delete an existing row of data from a table.

A ListView control is bound to a data source control, and this data source control

references an underlying data structure of some type. ListView controls can be

bound to different kinds of data source controls, including SqlDataSource controls,

ObjectDataSource controls, and AccessDataSource controls. They can also be bound

to collections, like array lists. In this chapter, we will bind a ListView control to a

Chapter 22 Multiple-Row Database Table Maintenance

422

SqlDataSource control that will reference a SQL Server database table. To bind a

ListView control to a SqlDataSource control, we will set the DataSourceID property

of the ListView control to the ID of the associated SqlDataSource control. By doing

this, the ListView control will be able to exploit the insert, update, delete, and sorting

functionality of the SqlDataSource control.

A ListView control recognizes a number of special buttons. Each of these buttons

behaves in a specific way, and each one invokes its own set of ListView control events.

These buttons are

•	 Cancel button – Cancels an insert or update operation and discards

any values entered by the end user. When this button is clicked, the

ItemCanceling event is raised.

•	 Delete button – Attempts to delete the selected row from the

data source. When this button is clicked, the ItemDeleting and

ItemDeleted events are raised.

•	 Edit button – Puts the selected item of the ListView control into

Edit mode. When this button is clicked, the content specified in the

EditItemTemplate property is displayed and the ItemEditing event is

raised. The EditItemTemplate property is usually defined in such a

way that the Edit button is replaced with Update and Cancel buttons

when the end user clicks it.

•	 Insert button – Attempts to insert a new row into the data source

using the values supplied by the end user. When this button is

clicked, the ItemInserting and ItemInserted events are raised.

•	 Select button – Sets the SelectedIndex property of the ListView

control to the DisplayIndex property value of the selected item.

When this button is clicked, the SelectedIndexChanging and

SelectedIndexChanged events are raised.

•	 Sort – Sorts the columns listed in the CommandArgument property of

the button. When this button is clicked, the Sorting and Sorted events

are raised.

•	 Update – Attempts to update the selected row in the data source

using the values supplied by the end user. When this button is

clicked, the ItemUpdating and ItemUpdated events are raised.

Chapter 22 Multiple-Row Database Table Maintenance

423

Table 22-1 shows some of the properties, methods, and events of the ListView class.

Table 22-1.  Some of the properties, methods, and events of the ListView class

Class ListView1

Namespace System.Web.UI.WebControls

Properties

AlternatingItemTemplate Gets or sets the custom content for the alternating data item in a

ListView control.

DataKeyNames Gets or sets an array that contains the names of the primary key fields

for the items displayed in a ListView control.

DeleteMethod Gets or sets the name of the method to call in order to delete data.

EditItemTemplate Gets or sets the custom content for the item in edit mode.

EmptyDataTemplate Gets or sets the user-defined content for the empty template that is

rendered when a ListView control is bound to a data source that does

not contain any records.

EmptyItemTemplate Gets or sets the user-defined content for the empty item that is

rendered in a ListView control when there are no more data items to

display in the last row of the current data page.

GroupSeparatorTemplate Gets or sets the user-defined content for the separator between groups

in a ListView control.

GroupTemplate Gets or sets the user-defined content for the group container in a

ListView control.

InsertItemPosition Gets or sets the location of the InsertItemTemplate template when it is

rendered as part of the ListView control.

InsertItemTemplate Gets or sets the custom content for an insert item in the ListView

control.

InsertMethod Gets or sets the name of the method to call in order to insert data.

(continued)

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 22 Multiple-Row Database Table Maintenance

424

Table 22-1.  (continued)

ItemSeparatorTemplate Gets or sets the custom content for the separator between the items in

a ListView control.

ItemTemplate Gets or sets the custom content for the data item in a ListView control.

LayoutTemplate Gets or sets the custom content for the root container in a ListView

control.

SelectedDataKey Gets the data-key value for the selected item in a ListView control.

SelectedIndex Gets or sets the index of the selected item in a ListView control.

SelectedItemTemplate Gets or sets the custom content for the selected item in a ListView

control.

SelectedValue Gets the data-key value of the selected item in a ListView control.

SortDirection Gets the sort direction of the field or fields that are being sorted.

SortExpression Gets the sort expression that is associated with the field or fields that

are being sorted.

UpdateMethod Gets or sets the name of the method to call in order to update data.

Methods

DeleteItem(Int32) Deletes the record at the specified index from the data source.

InsertNewItem(Boolean) Inserts the current record in the data source.

UpdateItem(Int32, B oolean) Updates the record at the specified index in the data source.

Events

ItemCanceling Occurs when a cancel operation is requested, but before the ListView

control cancels the insert or edit operation.

ItemCommand Occurs when a button in a ListView control is clicked.

ItemDataBound Occurs when a data item is bound to data in a ListView control.

ItemDeleted Occurs when a delete operation is requested, after the ListView control

deletes the item.

(continued)

Properties

Chapter 22 Multiple-Row Database Table Maintenance

425

Figure 22-1 shows an example of the ListView class.

Notice at 01 the SqlDataSource for the category DropDownList control. This data source

will be used to populate the drop-down list at 09, which is inside the ListView control. As

can be seen in the SelectCommand property, we will be returning the CategoryID and

the Category from the Category table, and the result will be sorted in ascending order by

Category so that the end user can easily locate categories in the drop-down list.

Table 22-1.  (continued)

ItemDeleting Occurs when a delete operation is requested, but before the ListView

control deletes the item.

ItemEditing Occurs when an edit operation is requested, but before the ListView

item is put in edit mode.

ItemInserted Occurs when an insert operation is requested, after the ListView

control has inserted the item in the data source.

ItemInserting Occurs when an insert operation is requested, but before the ListView

control performs the insert.

ItemUpdated Occurs when an update operation is requested, after the ListView

control updates the item.

ItemUpdating Occurs when an update operation is requested, but before the ListView

control updates the item.

SelectedIndexChanged Occurs when an item’s Select button is clicked, after the ListView

control handles the select operation.

SelectedIndexChanging Occurs when an item’s Select button is clicked, but before the ListView

control handles the select operation.

Sorted Occurs when a sort operation is requested, after the ListView control

handles the sort operation.

Sorting Occurs when a sort operation is requested, but before the ListView

control handles the sort operation.

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

listview(v=vs.110).aspx

Events

Chapter 22 Multiple-Row Database Table Maintenance

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listview(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listview(v=vs.110).aspx

426

Notice at 02 the SqlDataSource for the product ListView control. This data source

will be used to insert new rows of data into the Product table and update and delete

existing rows of data in the Product table—all via the list view, which begins at 03. As

we look at this data source in detail, we will see a number of attributes that begin with

an at sign (@). These attributes represent the data source’s input parameters. Notice

the OldValuesParameterFormatString property of the data source. As can be seen, this

property is set to original_{0}. We will see the word original again in a moment. Notice in

the SelectCommand property that we will be joining the Category, Supplier, and Product

tables and returning all of their respective attributes since we will be displaying most of

them for the end user—except when the list view is in Insert mode. And finally, notice

in the Where clauses of the UpdateCommand and DeleteCommand properties that the

ProductID is set to the original ProductID. The word original here corresponds directly

with the word original in OldValuesParameterFormatString property just mentioned.

Setting the ProductID to the original ProductID in this fashion will ensure that the

product being updated or deleted is the same product that is currently being displayed.

Notice at 03 the product ListView control. This control will be used to insert new

rows into the Product table, update existing rows in the Product table, and delete existing

rows from the Product table. Notice that the DataKeyNames property of the control

is set to ProductID. This indicates that the primary key of the data source (i.e., the

Product table) is the ProductID. Also notice that the InsertItemPosition property is set

to FirstItem, which indicates that the InsertItemTemplate will be positioned at the top

of the ListView control. Although we can position the InsertItemTemplate at the bottom

of a ListView control, doing so can be quite inefficient from the end user’s perspective—

especially when many table rows will be displayed or when data paging will be used.

Notice as well the five event handler method properties. The OnItemInserted property

indicates the event handler method that will be executed immediately after a row is

inserted into the Product table. This event handler method, which is defined at 20,

will be used to make sure that the insert was successful. The OnItemUpdated property

indicates the event handler method that will be executed immediately after a row is

updated in the Product table. This event handler method, which is defined at 21, will

be used to make sure that the update was successful. The OnItemDeleted property

indicates the event handler method that will be executed immediately after a row is

deleted from the Product table. This event handler method, which is defined at 22,

will be used to make sure that the delete was successful. The OnItemDeleting property

indicates the event handler method that will be executed immediately before a row is

Chapter 22 Multiple-Row Database Table Maintenance

427

deleted from the Product table. This event handler method, which is defined at 23, will

be used to delete the product’s image file from the hard drive. Since we need the name

of the image file to be deleted before the product is deleted from the table (and removed

from the list view), we must execute the code at 23 before the row is deleted from the

Product table.2 And finally, the OnItemCanceling property indicates the event handler

method that will be executed when a cancel operation is requested. This event handler

method, which is defined at 24, will be used to display a message indicating that the

insert or update operation has been canceled.

Notice at 04 the beginning of the LayoutTemplate, which specifies the content of the

root container of the ListView control. In this case, the layout template consists of an

HTML table of clickable column headings. We will see in a moment why we have defined

this table using HTML tags and not ASP.NET server tags.

Notice at 05 that we have defined column headings for the HTML table. As can be

seen, each of these headings is displayed as a LinkButton control. Notice that the first

link button has its CommandArgument property set to Category and its CommandName

property set to Sort. This combination indicates that the list view will be sorted by the

Category attribute when the link button is clicked. The other column headings are

defined and behave similarly.

Notice at 06 the HTML table row that has its ID property set to itemPlaceholder.

This placeholder indicates where in the LayoutTemplate (i.e., the root container of the

ListView control) to place the ItemTemplate when the list view is rendered on the page. It

is the function of this placeholder that requires us to use HTML elements when defining

the layout template of the list view. Although it is a clear deviation from our normal

practice of using only ASP.NET server controls, using an <asp:TableRow> server control

will not work in this particular scenario.

Notice at 07 the beginning of the ItemTemplate, which specifies the content and

layout of an individual item in the ListView control when the control is in Read-Only

mode and is, thus, only being used to display data. As can be seen, two buttons will

be displayed when the list view is initially rendered—Modify and Delete. When the

Modify button is clicked, the list view will go into Edit mode, since the CommandName

property of the button is set to Edit. This mode will display the EditItemTemplate at 15.

2�If the product’s image file is deleted from the hard drive, and the database table delete is
unsuccessful, the product will still exist in the Product table, but the image file will no longer
exist on the hard drive. Thus, a more sophisticated approach to keeping the two in sync may be
necessary.

Chapter 22 Multiple-Row Database Table Maintenance

428

When the Delete button is clicked, the list view will go into Delete mode, since the

CommandName property of the button is set to Delete. Note that this mode will continue

to display the ItemTemplate since the end user will not be adding for modifying data.

As can be seen, the OnClientClick property of this button is set to execute a JavaScript

Confirm function. If the end user clicks OK when the confirmation message is displayed,

the delete command will be executed. However, if the end user clicks Cancel when the

confirmation message is displayed, the delete command will not be executed.

Notice at 08 and 11 the Copy Area Start and Copy Area End comments, respectively.

The technique we will use to ensure that the ItemTemplate, the InsertItemTemplate, and

the EditItemTemplate are all identical (and thus look consistent from mode to mode) is

to code and test the table columns between these two comments first and then copy and

paste those table columns between the Copy Area Start and Copy Area End comments at

13 and 14 and between the Copy Area Start and Copy Area End comments at 16 and 17.

Notice in each of these copy areas that the Enabled and ValidationGroup properties of

the server controls should be set differently depending on the template they are in. Thus,

if the code between any of the comments in the ItemTemplate, the InsertItemTemplate,

or the EditItemTemplate is modified, that code should be copied and pasted between the

comments in the other two templates, and the Enabled and ValidationGroup properties

should be set appropriately. A failure to employ this technique (or something similar to

it) will almost certainly result in more expensive modifications to the three templates

down the road in an effort to keep the templates in sync.

Notice at 09 the category DropDownList control. There are several things to notice

about this control. First, its DataSourceID property is set to sdsDropDownListCategory,

which is the ID of the SqlDataSource defined at 01. Second, its DataTextField property is

set to Category, which is the table attribute that will be displayed in the drop-down list.

Third, its DataValueField property is set to CategoryID, which is the primary key of the

item that will be displayed in the drop-down list. And fourth, its SelectedValue property

is set to <%# Bind(“CategoryID”) %>, which binds the CategoryID of the category to the

CategoryID of the product. Thus, when a new row is inserted into the Product table or an

existing row is updated in the Product table, the CategoryID attribute of the product will

be set to the CategoryID attribute of the currently selected category.

Notice at 10 the product TextBox control. There are two things to notice about this

control. First, its MaxLength property is set to 50 so that the end user cannot enter a

product longer than 50 characters. If he or she were permitted to enter a product longer

than 50 characters and did so, the insert or update would fail due to a truncation error.

This is because the maximum size of the Product attribute in the Product table is 50

Chapter 22 Multiple-Row Database Table Maintenance

429

characters (see Figure 20-1). Keep in mind that, in a real-world application, we would

also need to use the validation controls supplied by ASP.NET to help us avoid other

types of insert and update failures (e.g., null errors, type errors) and keep bad data out

of the database in general. And second, its Text property is set to <%# Bind(“Product”)

%>, which binds the Text property of the TextBox control to the Product attribute of the

product. Thus, when a new row is inserted into the Product table or an existing row is

updated in the Product table, the Product attribute of the product will be set to the Text

property of the TextBox control.

Notice at 12 the beginning of the InsertItemTemplate, which specifies the content

and layout of the ListView control when it is in Insert mode. As can be seen, two buttons

will be displayed when the list view is in Insert mode—Save and Cancel. When the Save

button is clicked, the list view will attempt to insert a new product into the Product table,

since the CommandName property of the button is set to Insert. When the Cancel button

is clicked, the list view will cancel the insert operation and discard any values entered by

the end user, since the CommandName property of the button is set to Cancel.

Notice at 15 the beginning of the EditItemTemplate, which specifies the content and

layout of the ListView control when it is in Edit mode. As can be seen, two buttons will be

displayed when the list view is in Edit mode—Save and Cancel. When the Save button is

clicked, the list view will attempt to update the currently selected product in the Product

table, since the CommandName property of the button is set to Update. When the Cancel

button is clicked, the list view will cancel the update operation and discard any values

entered by the end user, since the CommandName property of the button is set to Cancel.

Notice at 18 that the System.Data.SqlClient namespace has been added to the list

of using directives (which appears at the top of the code behind file). This was done

to obviate the need to specify the fully qualified name of the SqlException class (i.e.,

System.Data.SqlClient.SqlException) each time we want to use one of its properties. We

will need the SqlException class to check for foreign key constraint violations at 22.

Notice at 19 that the System.IO namespace has also been added to the list of using

directives so we don’t have to specify the fully qualified name of the File class (i.e.,

System.IO.File) each time we want to use one of its methods. We will need the File class

to delete a file from the server’s hard drive after we have checked for its existence. This

code is shown at 23.

Notice at 20 the ItemInserted event handler method of the product list view. This

method is executed when the ItemInserted event of the list view is raised, which is

immediately after an insert operation is attempted. Notice in the definition of the

event handler method the ListViewInsertedEventArgs class—the alias of which is e.

Chapter 22 Multiple-Row Database Table Maintenance

430

This class is passed to the event handler method so we can determine the status of our

insert operations. As can be seen, if an exception is not returned from the database and

exactly one row in the database is affected (i.e., inserted), we will display a message

stating that the product was successfully added. If an exception is not returned from the

database, but something other than one row in the database is affected (i.e., inserted),

we will display an appropriate error message and keep the list view in insert mode. And

finally, if an exception is returned from the database, we will display an appropriate

error message, keep the list view in insert mode, and indicate that we are handling the

exception programmatically.

Notice at 21 the ItemUpdated event handler method of the product list view. This

method is executed when the ItemUpdated event of the list view is raised, which is

immediately after an update operation is attempted. Notice in the definition of the event

handler method the ListViewUpdatedEventArgs class—the alias of which is e. This class

is passed to the event handler method so we can determine the status of our update

operations. As can be seen, if an exception is not returned from the database and exactly

one row in the database is affected (i.e., updated), we will display a message stating

that the product was successfully modified. If an exception is not returned from the

database, but something other than one row in the database is affected (i.e., updated),

we will display an appropriate error message and keep the list view in edit mode. And

finally, if an exception is returned from the database, we will display an appropriate error

message, keep the list view in edit mode, and indicate that we are handling the exception

programmatically.

Notice at 22 the ItemDeleted event handler method of the product list view. This

method is executed when the ItemDeleted event of the list view is raised, which is

immediately after a delete operation is attempted. Notice in the definition of the event

handler method the ListViewDeletedEventArgs class—the alias of which is e. This class

is passed to the event handler method so we can determine the status of our delete

operations. As can be seen, if an exception is not returned from the database and exactly

one row in the database is affected (i.e., deleted), we will display a message stating that

the product was successfully deleted. If an exception is not returned from the database,

but something other than one row in the database is affected (i.e., deleted), we will

display an appropriate error message. If an exception is returned from the database

and the SqlException number is 547, which indicates that a foreign key constraint

violation has occurred, we will display an appropriate error message and indicate that

we are handling the exception programmatically. And finally, if some other exception is

Chapter 22 Multiple-Row Database Table Maintenance

431

returned from the database, we will display an appropriate error message and indicate

that we are handling the exception programmatically.

Notice at 23 the ItemDeleting event handler method of the product list view. This

method is executed when the ItemDeleting event of the list view is raised, which is

immediately before a delete operation is attempted. Notice in this method that we are

deleting from the server’s hard drive the image file associated with the product to be

deleted from the Product table (if the file exists). Note that since the image TextBox

control exists within the list view, it is not directly accessible in the code behind of the

page like the other server controls are. Thus, we must first locate the TextBox control in

the list view (via its ID property using the FindControl method of the Control class) and

then get the Text property of the control as usual.

Notice at 24 the ItemCanceling event handler method of the product list view. This

method is executed when the ItemCanceling event of the list view is raised, which is

when a cancel operation is requested. When this event handler method is executed, we

will display a message indicating that the insert or update operation was canceled and

that no data was affected.

Notice at 25 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides the

details of the SQL Server database that will be used by the data sources at 01 and 02. See

Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed description

of this connection string.

The first screenshot in the Result section of the figure shows the product list view.

Notice the clickable column headings that we defined in the LayoutTemplate of the list

view. As mentioned earlier, clicking one of these column headings will sort the list view

by its corresponding attribute. Notice as well that the InsertItemTemplate is located

at the top of list view, since we set the InsertItemPosition property of the list view to

FirstItem. To insert a new product into the Product table, the end user need only select

the appropriate category and supplier, enter the required values into their respective text

boxes, and click Save. The second screenshot shows the currently selected product row

in Edit mode. Thus, the EditItemTemplate is being displayed. Notice that the product

description is being modified. Once the product description is modified, the end user

need only click Save to update the product in the Product table. The third screenshot

shows the previously selected product row in Read-Only mode again—after the product

description has been modified. Thus, the ItemTemplate is being displayed once again.

And the fourth screenshot shows the currently selected product row in Read-Only mode

after the end user has clicked the Delete button.

Chapter 22 Multiple-Row Database Table Maintenance

432

Figure 22-1.  Example of the ListView class

Chapter 22 Multiple-Row Database Table Maintenance

433

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

434

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

435

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

436

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

437

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

438

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

439

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

440

Figure 22-1.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

441

Table 22-2.  Some of the properties, methods, and events of the DataPager class

Class DataPager3

Namespace System.Web.UI.WebControls

Properties

Fields Gets a collection of DataPagerField objects that represent the pager fields that are

specified in a DataPager control.

PagedControlID Gets or sets the ID of the control that contains the data that will be paged by the

DataPager control.

PageSize Gets or sets the number of records that are displayed for each page of data.

Methods

(See

reference.)

22.3  �DataPager Class
The DataPager class displays paging controls that can be used by an end user to view the

data pages of a ListView control (or other pageable controls). To associate a DataPager

control with a ListView control, we set the PagedControlID property of the DataPager

control to the ID property of the ListView control. To set the number of ListView control

items to be displayed in a single page of data, we set the PageSize property of the

DataPager control. And to display navigation controls in a DataPager control, we add one

or more paging controls to the Fields property of the DataPager control. These paging

controls are the NextPreviousPagerField control, the NumericPagerField control, and

the TemplatePagerField control. The first two paging controls will be discussed in more

detail soon. The third paging control won’t be discussed in this chapter. Suffice it to say

that we can utilize the TemplatePagerField if we want to define our own paging controls.

Table 22-2 shows some of the properties, methods, and events of the DataPager class.

(continued)

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 22 Multiple-Row Database Table Maintenance

442

22.4  �NextPreviousPagerField Class
The NextPreviousPagerField class displays navigation controls in a DataPager control

that can be used by an end user to jump to the first page of a ListView control, move

to the previous page of a ListView control, move to the next page of a ListView control,

and/or jump to the last page of a ListView control. To indicate the type of button to

display, we set the ButtonType property of the control to Button, Image, or Link. To

specify the text to display in the buttons, we set the FirstPageText, PreviousPageText,

NextPageText, and LastPageText properties of the control. To hide the buttons, we

set the ShowFirstPageButton, ShowPreviousPageButton, ShowNextPageButton, and

ShowLastPageButton properties of the control to false. Table 22-3 shows some of the

properties, methods, and events of the NextPreviousPagerField class.

Events

(See

reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

datapager(v=vs.110).aspx

Table 22-2.  (continued)

Chapter 22 Multiple-Row Database Table Maintenance

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datapager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datapager(v=vs.110).aspx

443

Table 22-3.  Some of the properties, methods, and events of the

NextPreviousPagerField class

Class NextPreviousPagerField4

Namespace System.Web.UI.WebControls

Properties

ButtonType Gets or sets the button type to display in the pager field.

FirstPageText Gets or sets the text that is displayed for the first-page button.

LastPageText Gets or sets the text that is displayed for the last-page button.

NextPageText Gets or sets the text that is displayed for the next-page button.

PreviousPageText Gets or sets the text that is displayed for the previous-page button.

ShowFirstPageButton Gets or sets a value that indicates whether the first-page button is

displayed in a NextPreviousPagerField object.

ShowLastPageButton Gets or sets a value that indicates whether the last-page button is

displayed in a NextPreviousPagerField object.

ShowNextPageButton Gets or sets a value that indicates whether the next-page button is

displayed in a NextPreviousPagerField object.

ShowPreviousPageButton Gets or sets a value that indicates whether the previous-page button is

displayed in a NextPreviousPagerField object.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.nextpre

viouspagerfield(v=vs.110).aspx

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 22 Multiple-Row Database Table Maintenance

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.nextpreviouspagerfield(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.nextpreviouspagerfield(v=vs.110).aspx

444

Figure 22-2 shows an example of the DataPager and NextPreviousPagerField classes.

Notice at 01 that the PagedControlID property of the DataPager control is set to

livProduct, which is the ID of the ListView control that begins at 03 in Figure 22-1. Notice

as well that we will be displaying five list view items in each page of the list view.

Notice at 02 the Fields property of the control. As can be seen, this is a collection

property that contains a single NextPreviousPagerField control.

Notice at 03 that Next will be displayed as the Next button, Prev will be displayed

as the Previous button, and since all four of the “show” properties of the control are set

to true, the NextPreviousPagerField control will permit the end user to jump to the first

page of the list view, move to the previous page of the list view, move to the next page of

the list view, and jump to the last page of the list view.

By the way, the left-to-right ordering of the paging options in the figure is very

deliberate. This order corresponds to the way we typically navigate the pages of a book,

so displaying the options in this way will avoid confusion in the end user.

The screenshot in the Result section of the figure shows the list view we created

earlier being used in conjunction with our DataPager control and its associated

NextPreviousPagerField control.

Figure 22-2.  Example of the DataPager and NextPreviousPagerField classes

Chapter 22 Multiple-Row Database Table Maintenance

445

22.5  �NumericPagerField Class
The NumericPagerField class displays navigation controls in a DataPager control that

can be used by an end user to select a page in a ListView control by its page number.

To indicate the type of button to display, we set the ButtonType property of the control

to Button, Image, or Link. To indicate the number of buttons to display, we set the

ButtonCount property of the control. Table 22-4 shows some of the properties, methods,

and events of the NumericPagerField class.

Table 22-4.  Some of the properties, methods, and events of the NumericPagerField

class

Class NumericPagerField5

Namespace System.Web.UI.WebControls

Properties

ButtonCount Gets or sets the number of buttons to display in a NumericPagerField

object.

ButtonType Gets or sets the button type to display in the pager field.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.

numericpagerfield(v=vs.110).aspx

5�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 22 Multiple-Row Database Table Maintenance

https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.numericpagerfield(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.numericpagerfield(v=vs.110).aspx

446

Figure 22-3 shows an example of the DataPager and NumericPagerField classes.

Notice at 01 that the PagedControlID property of the DataPager control is set to

livProduct, which is the ID of the ListView control that begins at 03 in Figure 22-1. Notice

as well that we will be displaying five list view items in each page of the list view.

Notice at 02 the Fields property of the control. As can be seen, this is a

collection property that contains a single NumericPagerField control between two

NextPreviousPagerField controls. Notice that we will be hiding the last-page button

and the next-page button of the first NextPreviousPagerField control. Notice as well

that we will be hiding the first-page button and the previous-page button of the second

NextPreviousPagerField control. Hiding the buttons in this manner is necessary so that

the combination of the NextPreviousPagerField control and the NumericPagerField

control makes sense.

Notice at 03 that we will be displaying three NumericPagerField buttons. When the

ListView control contains more than three data pages, their presence will be indicated

with an ellipse (…).

The screenshot in the Result section of the figure shows the list view we created

earlier being used in conjunction with our DataPager control and its associated

NextPreviousPagerField controls and NumericPagerField control.

Chapter 22 Multiple-Row Database Table Maintenance

447

Figure 22-3.  Example of the DataPager and NumericPagerField classes

Chapter 22 Multiple-Row Database Table Maintenance

449
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_23

CHAPTER 23

Code Behind Database
Operations
23.1  �Introduction
There are many times when it is necessary to establish a connection to a database and

execute SQL commands against that database from the code behind of a page. For

example, we may require the end user to click a Display button to display the contact

information of his or her organization’s customers in a non-data-bound control like a

multiline text box. Or we may require the end user to enter his or her login credentials

and click a Login button to gain access to their application’s functionality. In both of

these scenarios, we would need a page that interacts with a database from the button

Click event handler method in the page’s code behind.

In this chapter, we will begin by looking at the SqlConnection class. This

class defines, opens, and closes a connection to a SQL Server database. Next, we

will consider the WebConfigurationManager class, which provides access to the

connection string we have defined in our Web.config file so that we can create a new

SqlConnection object. After that, we will discuss the SqlCommand class. This class

executes SQL commands (e.g., Select, Insert, Update, and Delete commands) against

a SQL Server database. We will then consider the SqlDataReader class. This class

creates a read-only, move-forward-only data structure that holds the data retrieved

by a SqlCommand object so that we can read and process that data one row at a time.

Next, we will contrast two types of SQL queries—non-parameterized queries and

parameterized queries. And finally, we will discuss stored procedures, where a stored

procedure is a group of one or more SQL statements stored in a database.

450

23.2  �SqlConnection Class
The SqlConnection class defines, opens, and closes a connection to a SQL Server

database. The ConnectionString property of a SqlConnection object provides the details

of the SQL Server database that an application will utilize. Although a connection string

can take many forms, the syntax we will use in this chapter is

Data Source=Computer Name\SQL Server Instance; Initial Catalog=Database Name;

 Integrated Security=SSPI

where the items in italics are modifiable. In this book, we will place our connection

string in the Web.config file so that it can be modified in one place in the application

yet can be referred to in many places in the application. Thus, if we need to install the

database on a different computer, add the database to a different SQL Server instance,1

or change the name of the database, we need only change the connection string in the

Web.config file. The references to the connection string throughout the application need

not be modified.

The ConnectionTimeout property indicates the amount of time an application

should wait on a database connection attempt before terminating the attempt and

generating an error. And finally, the SqlCredential property indicates the credentials (i.e.,

login ID and password) of a database connection. In this chapter, we will not require our

application to provide special login credentials to access the database.

It is important to remember that once a connection to a database is opened, it is not

automatically closed when an application is done with it. Thus, we must be careful to

close any connections we have opened by invoking the SqlCommand class’s Close (or

Dispose) method. Table 23-1 shows some of the properties, methods, and events of the

SqlConnection class.

1�A SQL Server instance is a complete SQL Server service with its own databases, credentials, and
so forth. A computer can have more than one SQL Server instance installed and running at one
time.

Chapter 23 Code Behind Database Operations

451

Table 23-1.  Some of the properties, methods, and events of the SqlConnection class

Class SqlConnection2

Namespace System.Data.SqlClient

Properties

ConnectionString Gets or sets the string used to open a SQL Server database.

ConnectionTimeout Gets the time to wait while trying to establish a connection before

terminating the attempt and generating an error.

Credential Gets or sets the SqlCredential object for this connection.

Methods

Close( ) Closes the connection to the database. This is the preferred method of

closing any open connection.

Open( ) Opens a database connection with the property settings specified by the

ConnectionString.

Events

InfoMessage Occurs when SQL Server returns a warning or informational message.

Reference

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.

sqlconnection(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 23 Code Behind Database Operations

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlconnection(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlconnection(v=vs.110).aspx

452

23.3  �WebConfigurationManager Class
The WebConfigurationManager class provides access to the information in an

application’s Web.config file. In this chapter, we will need to access the connection string

we defined in our Web.config file so that we can create a new SqlConnection object for

opening and closing a connection to our SQL Server database. The syntax used to access

a connection string that exists in the Web.config file is

WebConfigurationManager.ConnectionStrings["Connection String Name"].

ConnectionString

where the item in italics is the name of the connection string in the <connectionStrings>

section of the Web.config file. Table 23-2 shows some of the properties, methods, and

events of the WebConfigurationManager class.

Table 23-2.  Some of the properties, methods, and events of the

WebConfigurationManager class

Class WebConfigurationManager3

Namespace System.Web.Configuration

Properties

ConnectionStrings Gets the Web site’s connection strings.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.

configuration.webconfigurationmanager(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 23 Code Behind Database Operations

https://msdn.microsoft.com/en-us/library/system.web.configuration.webconfigurationmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.configuration.webconfigurationmanager(v=vs.110).aspx

453

23.4  �SqlCommand Class
The SqlCommand class executes SQL commands against a SQL Server database.

A SqlCommand object contains several methods that we can use to retrieve and

manipulate the data in a database. These include the ExecuteScalar method, the

ExecuteReader method, and the ExecuteNonQuery method. The ExecuteScalar method

retrieves the first column of the first row of the result set returned by a SQL query. Any

additional columns and rows are ignored. This is the method of choice when we wish to

determine whether or not at least one row of data is returned from a SQL query or when

we wish to retrieve a single aggregate value (e.g., average, sum) from a SQL query. The

ExecuteReader method loads a SqlDataReader object, which is a move-forward-only,

read-only data structure that we can use to process the entire result set returned from

a SQL query—one row at a time. And the ExecuteNonQuery method executes Insert,

Update, and Delete commands. After SQL Server completes one of these operations, the

number of rows affected by the operation is returned so that we can determine the status

of the operation (e.g., successful, unsuccessful).

A SqlCommand object also contains a number of properties that we can use to

describe the nature of the object. The CommandText property indicates the name of

a stored procedure, the name of a table, or the name of a string that contains a SQL

statement. The CommandType property indicates how the CommandText property

is to be interpreted. This property can be set to StoredProcedure, TableDirect, or

Text (the default). When the CommandType property is set to StoredProcedure,

we set the CommandText property to the name of a stored procedure in the SQL

Server database. Stored procedures are discussed later in this chapter. When the

CommandType property is set to TableDirect, we set the CommandText property

to the name of a table in the SQL Server database. And when the CommandType

property is set to Text, we set the CommandText property to a string that contains

a valid SQL command. The CommandTimeout property indicates the amount of

time the application should wait while attempting to execute a SQL command

before terminating the command attempt and generating an error. And finally, the

Connection property associates the SqlCommand object with a previously created

SqlConnection object. Table 23-3 shows some of the properties, methods, and events

of the SqlCommand class.

Chapter 23 Code Behind Database Operations

454

Table 23-3.  Some of the properties, methods, and events of the SqlCommand class

Class SqlCommand4

Namespace System.Data.SqlClient

Properties

CommandText Gets or sets the Transact-SQL statement, table name, or stored procedure

to execute at the data source.

CommandTimeout Gets or sets the wait time before terminating the attempt to execute a

command and generating an error.

CommandType Gets or sets a value indicating how the CommandText property is to be

interpreted.

Connection Gets or sets the SqlConnection used by this instance of the SqlCommand.

Parameters Gets the SqlParameterCollection.

Methods

ExecuteNonQuery( ) Executes a Transact-SQL statement against the connection and returns

the number of rows affected.

ExecuteReader( ) Sends the CommandText to the Connection and builds a SqlDataReader.

ExecuteScalar( ) Executes the query and returns the first column of the first row in the

result set returned by the query. Additional columns or rows are ignored.

Events

StatementCompleted Occurs when the execution of a Transact-SQL statement completes.

Reference

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.

sqlcommand(v=vs.110).aspx

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 23 Code Behind Database Operations

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand(v=vs.110).aspx

455

23.5  �SqlDataReader Class
The SqlDataReader class creates a move-forward-only, read-only object that holds the

data retrieved by a SqlCommand object’s ExecuteReader method. This object resembles

a set of database table rows that we can read from (one row at a time) as if we were

reading the rows from an actual table. To read a row of data from a data reader (and

move to the next row of data), we invoke the Read method of the SqlDataReader object.

Since a SqlDataReader object is a move-forward-only data structure, we cannot move to

a previous row in the data reader once a row has been read. And since a SqlDataReader

object is a read-only data structure, we cannot change the data in a data reader.

It is important to remember that a SqlDataReader object is not automatically closed

when an application is done with it. Thus, we must be careful to close any data readers

we have opened by invoking the SqlDataReader object’s Close method. Table 23-4 shows

some of the properties, methods, and events of the SqlDataReader class.

Table 23-4.  Some of the properties, methods, and events of the

SqlDataReader class

Class SqlDataReader5

Namespace System.Data.SqlClient

Properties

(See reference.)

Methods

Close( ) Closes the SqlDataReader object.

Read( ) Advances the SqlDataReader to the next record.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.

sqldatareader(v=vs.110).aspx

5�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 23 Code Behind Database Operations

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqldatareader(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqldatareader(v=vs.110).aspx

456

Figure 23-1 shows an example of the SqlDataReader class. The SqlDataReader object

in this example will hold the results of a query that returns a list of customers.

Notice at 01 that the System.Data namespace has been added to the list of using

directives (which appears at the top of the code behind file) to obviate the need

to specify the fully qualified name of the CommandType class (i.e., System.Data.

CommandType) each time we want to use one of its enumerations—StoredProcedure,

TableDirect, or Text.

Notice at 02 that the System.Data.SqlClient namespace has also been added to the

list of using directives. This was done so we are not required to specify the fully qualified

name of the SqlConnection class (i.e., System.Data.SqlClient.SqlConnection), the

SqlCommand class (i.e., System.Data.SqlClient.SqlCommand), and the SqlDataReader

class (i.e., System.Data.SqlClient.SqlDataReader) each time we want to use one of their

respective properties or methods.

Notice at 03 that the System.Web.Configuration namespace has been added

to the list of using directives to avoid the need to specify the fully qualified

name of the WebConfigurationManager class (i.e., System.Web.Configuration.

WebConfigurationManager) each time we want to use one of its properties.

Notice at 04–05 that we are constructing a SQL Select command. This command will

return the last name, first name, middle initial, and phone number of every customer

in the Customer table and will order those customers by last name, first name, and

middle initial. As mentioned previously, the result of this query will be stored in a

SqlDataReader object from which we will read and display each customer’s data—one

row at a time.

Notice at 06 that we are defining the network connection to our SQL Server database.

As can be seen, this connection is defined in the SportsPlay connection string that

resides in the <connectionStrings> section of our Web.config file.

Notice at 07–08 that we are creating a new SqlCommand object and readying it for

execution by setting its Connection, CommandType, and CommandText properties.

Notice at 09–10 that we are opening the connection to our SQL Server database,

creating a new SqlDataReader object, and loading it with the results of the Select

command defined at 04–05.

Notice at 11 that we are retrieving the rows from the data reader using the Read

method of the SqlDataReader object—while there are rows of data to be read. For each row

of data that is returned from the data reader, we are appending the customer’s last name,

first name, middle initial, and phone number (along with some formatting punctuation

and a new line escape sequence) to the Text property of the txtCustomers object.

Chapter 23 Code Behind Database Operations

457

Figure 23-1.  Example of the SqlDataReader class

Notice at 12–13 that we are closing both the data reader and the connection to the

database as these are not done automatically.

Notice at 14 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides

the details of the SQL Server database that will be used by the SqlConnection object

at 06. See Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed

description of this connection string.

The screenshot in the Result section of the figure shows the result of clicking the

Display button to display the alphabetical listing of customers.

Chapter 23 Code Behind Database Operations

458

Figure 23-1.  (continued)

23.6  �Non-parameterized Queries
It is often necessary to supply the Where clause of a SQL query with one or more input

parameter arguments to limit the number of rows the query returns. One way to do

this is by constructing and executing a non-parameterized query. A non-parameterized

query is programmatically constructed in the code behind after the end user supplies

the necessary input parameter arguments. To be more specific, a non-parameterized

query is built at runtime by concatenating the Where clause of a SQL call with any inputs

supplied by the end user.

Chapter 23 Code Behind Database Operations

459

One caveat should be stated right upfront regarding the construction and execution

of non-parameterized queries: they can be very problematic from a security point of

view. More on that in the next section of this chapter. Even though we would normally

not want to utilize non-parameterized queries, we will discuss them here for two

reasons. First, discussing them will help us illustrate the difference between non-

parameterized and parameterized queries. And second, discussing them will help us

spot non-parameterized queries in existing code so that we can correct the potential

security risks.

Figure 23-2 shows an example of a non-parametrized query. This query is used to

validate the login credentials of an employee.

Notice at 01 and 02 that the end user will be supplying an email address and

password, respectively. These items will be used to construct our non-parameterized

query.

Notice at 03 that the System.Data namespace has been added to the list of using

directives (which appears at the top of the code behind file) so we don’t have to specify

the fully qualified name of the CommandType class (i.e., System.Data.CommandType)

each time we want to use one of its enumerations—StoredProcedure, TableDirect, or Text.

Notice at 04 that the System.Data.SqlClient namespace has also been added to the

list of using directives. This was done to obviate the need to specify the fully qualified

name of the SqlConnection class (i.e., System.Data.SqlClient.SqlConnection), the

SqlCommand class (i.e., System.Data.SqlClient.SqlCommand), and the SqlDataReader

class (i.e., System.Data.SqlClient.SqlDataReader) each time we want to use one of their

respective properties or methods.

Notice at 05 that the System.Web.Configuration namespace has been added

to the list of using directives so we are not required to specify the fully qualified

name of the WebConfigurationManager class (i.e., System.Web.Configuration.

WebConfigurationManager) each time we want to use one of its properties.

Notice at 06–07 that we are constructing a dynamic SQL Select command using the

email address and password supplied by the end user. Here, we are building the Where

clause of the Select statement by concatenating it with the end user’s email address and

password.

Notice at 08 that we are defining the network connection to our SQL Server database.

As can be seen, this connection is defined in the SportsPlay connection string that

resides in the <connectionStrings> section of our Web.config file.

Chapter 23 Code Behind Database Operations

460

Notice at 09–10 that we are creating a new SqlCommand object and readying it for

execution by setting its Connection, CommandType, and CommandText properties.

Notice at 11–13 that we are opening the connection to our SQL Server database,

creating a new SqlDataReader object, loading it with the results of the Select command

defined at 06–07, and attempting to retrieve a row from the data reader using the

Read method of the SqlDataReader object. If a row is retrieved from the data reader,

which indicates that the end user was found in the Employee table, we save his or her

EmployeeID to a session variable (so we can identify who is logged in on subsequent

pages) and display a welcome message. If a row is not retrieved from the data reader,

which indicates that the end user was not found in the Employee table, we display an

error message.

Notice at 14–15 that we are closing both the data reader and the connection to the

database as these are not done automatically.

Notice at 16 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides

the details of the SQL Server database that will be used by the SqlConnection object

at 08. See Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed

description of this connection string.

The first screenshot in the Result section of the figure shows the end user entering

an invalid email address and password combination. The second screenshot shows

the error message displayed as a result of entering the invalid combination. The

third screenshot shows the end user entering a valid email address and password

combination. And the fourth screenshot shows the welcome message displayed as a

result of entering the valid combination.

Chapter 23 Code Behind Database Operations

461

Figure 23-2.  Example of a non-parametrized query

Chapter 23 Code Behind Database Operations

462

Figure 23-2.  (continued)

Chapter 23 Code Behind Database Operations

463

Figure 23-2.  (continued)

23.7  �Parameterized Queries
In the previous section, we discussed the concept of a non-parameterized query. We said

that a non-parameterized query is programmatically constructed in the code behind

after the end user supplies the necessary input parameter arguments. Although non-

parameterized queries work, they present a potential problem in that they do not protect

against a common security threat called SQL injection.

Chapter 23 Code Behind Database Operations

464

One type of SQL injection occurs when an end user with malicious intent enters (i.e.,

injects) SQL calls into the text box fields of a login page (e.g., an email address field and a

password field) that permits him or her to gain access to the application’s functionality.

This works by tricking the application into thinking the end user has entered valid login

credentials. Another type of SQL injection occurs when an end user enters a SQL call

into a text box field that permits him or her to add data to the application’s database (via

a SQL Insert command), modify data in the application’s database (via a SQL Update

command), delete data from the application’s database (via a SQL Delete command),

modify the structure of a table in the application’s database (via a SQL Alter command),

remove a table from the application’s database (via a SQL Drop command), or otherwise

corrupt the data in the application’s database. This works by tricking the application into

executing SQL commands.

SQL injection works because when a SQL call is programmatically constructed

(i.e., the SQL call is built at runtime by concatenating the parts of the SQL call with

the end user’s inputs), the SQL call is altered dynamically before it is submitted to

the DBMS for execution. However, when a parameterized query is used, the SQL call

is statically constructed (i.e., the SQL call is built at design time using predefined

parameters). Thus, the SQL call is not altered dynamically before it is submitted to

the DBMS for execution. So, when a parameterized query is used, a string intended to

be used for SQL injection will always and only be interpreted as an input parameter

argument to the SQL call.

As can be seen, it is important to construct parameterized queries (instead of

non-parameterized queries) when developing software applications that make calls

to a database. Before we can construct such queries in ASP.NET, we need to have a

basic understanding of two additional classes—the SqlParameterCollection class

and the SqlParameter class. These classes are discussed next.

23.7.1  �SqlParameterCollection Class
The SqlParameterCollection class defines the collection of parameters associated

with a SqlCommand object. The Add method of a SqlParameterCollection object adds

a SqlParameter object to the SqlParameterCollection, whereas the AddWithValue

method adds a SqlParameter object and its associated parameter value to the

SqlParameterCollection object. Table 23-5 shows some of the properties, methods, and

events of the SqlParameterCollection class.

Chapter 23 Code Behind Database Operations

465

Table 23-5.  Some of the properties, methods, and events of the

SqlParameterCollection class

Class SqlParameterCollection6

Namespace System.Data.SqlClient

Properties

(See reference.)

Methods

Add(Object) Adds the specified SqlParameter object to the

SqlParameterCollection.

AddWithValue(String, O bject) Adds a value to the end of the SqlParameterCollection.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.

sqlparametercollection(v=vs.110).aspx

6�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

23.7.2  �SqlParameter Class
The SqlParameter class defines a single parameter within a SqlParameterCollection

object. The Direction property of a SqlParameter object indicates whether a parameter

is input-only, output-only, bidirectional, or a value returned from a stored procedure.

The ParameterName property indicates the name of a parameter, and the SqlDbType

property indicates the data type of a parameter. SqlDbTypes include Bit, Char, Date,

Decimal, Float, Int, Money, NVarChar, SmallInt, Text, and TinyInt. Many other

SqlDbTypes are available as well. Table 23-6 shows some of the properties, methods, and

events of the SqlParameter class.

Chapter 23 Code Behind Database Operations

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlparametercollection(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlparametercollection(v=vs.110).aspx

466

Figure 23-3 shows an example of a parametrized query. This query is used to validate

the login credentials of an employee.

Notice at 01 and 02 that the end user will be supplying an email address and

password, respectively. These items will be used to construct our parameterized query.

Notice at 03 that the System.Data namespace has been added to the list of using

directives (which appears at the top of the code behind file) to avoid the need to

specify the fully qualified name of the CommandType class (i.e., System.Data.

CommandType) each time we want to use one of its enumerations—StoredProcedure,

TableDirect, or Text.

Table 23-6.  Some of the properties, methods, and events of the SqlParameter class

Class SqlParameter7

Namespace System.Data.SqlClient

Properties

Direction Gets or sets a value that indicates whether the parameter is input-only,

output-only, bidirectional, or a stored procedure return value parameter.

ParameterName Gets or sets the name of the SqlParameter.

SqlDbType Gets or sets the SqlDbType of the parameter.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.

sqlparameter(v=vs.110).aspx

7�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 23 Code Behind Database Operations

https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlparameter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlparameter(v=vs.110).aspx

467

Notice at 04 that the System.Data.SqlClient namespace has also been added to the

list of using directives. This was done so we don’t have to specify the fully qualified

name of the SqlConnection class (i.e., System.Data.SqlClient.SqlConnection), the

SqlCommand class (i.e., System.Data.SqlClient.SqlCommand), and the SqlDataReader

class (i.e., System.Data.SqlClient.SqlDataReader) each time we want to use one of their

respective properties or methods.

Notice at 05 that the System.Web.Configuration namespace has been added

to the list of using directives to obviate the need to specify the fully qualified

name of the WebConfigurationManager class (i.e., System.Web.Configuration.

WebConfigurationManager) each time we want to use one of its properties.

Notice at 06–07 that we are constructing a static SQL Select command. That is, we

are coding the structure of our Select command fully using email address and password

parameters, which are designated by the at signs (@). This way, the parameters supplied

by the end user will always and only be interpreted as parameters for the SQL call’s

Where clause. So, for example, if an end user with malicious intent attempts to delete

a table from the database by injecting a Drop command into the email address field of

the page, the word “Drop” would simply be interpreted as an email address for lookup

purposes.

Notice at 08 that we are defining the network connection to our SQL Server database.

As can be seen, this connection is defined in the SportsPlay connection string that

resides in the <connectionStrings> section of our Web.config file.

Notice at 09–10 that we are creating a new SqlCommand object and readying it for

execution by setting its Connection, CommandType, and CommandText properties.

Notice at 11–12 that we are taking the email address and password supplied by the

end user and adding them as input parameter arguments to our SqlCommand object. The

@ signs in these lines of code correspond with the @ signs in the Where clause at 06–07.

Notice at 13–14 that we are opening the connection to our SQL Server database,

creating a new SqlDataReader object, loading it with the results of the Select command

defined at 06–07, and attempting to retrieve a row from the data reader using the

Read method of the SqlDataReader object. If a row is retrieved from the data reader,

which indicates that the end user was found in the Employee table, we save his or her

EmployeeID to a session variable (so we can identify who is logged in on subsequent

pages) and display a welcome message. If a row is not retrieved from the data reader,

which indicates that the end user was not found in the Employee table, we display an

error message.

Chapter 23 Code Behind Database Operations

468

Figure 23-3.  Example of a parametrized query

Notice at 15–16 that we are closing both the data reader and the connection to the

database as these are not done automatically.

Notice at 17 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides

the details of the SQL Server database that will be used by the SqlConnection object

at 08. See Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed

description of this connection string.

The first screenshot in the Result section of the figure shows the end user entering

an invalid email address and password combination. The second screenshot shows

the error message displayed as a result of entering the invalid combination. The

third screenshot shows the end user entering a valid email address and password

combination. And the fourth screenshot shows the welcome message displayed as a

result of entering the valid combination.

Chapter 23 Code Behind Database Operations

469

Figure 23-3.  (continued)

Chapter 23 Code Behind Database Operations

470

Figure 23-3.  (continued)

Chapter 23 Code Behind Database Operations

471

23.8  �Stored Procedures
A stored procedure is a standalone file that contains one or more SQL commands.

Unlike the SQL commands we have seen so far (which were embedded in our Aspx and

C# source code), the SQL commands in a stored procedure reside in a database on a

database server. Like other software components, stored procedures can be called from

other software components, can accept input parameters, can perform programming

operations, can return output parameters, and can call other software components.

There are at least three advantages to storing SQL commands in stored procedures

(as opposed to embedding them in source code). First, since stored procedures permit

us to store SQL commands in one place (i.e., in a database), they eliminate duplicate

code when the same SQL command must be executed from many locations. As can be

imagined, this approach maximizes code reuse and makes changing a SQL command

or group of SQL commands much more efficient as the change need only be made once.

Second, since the SQL commands that reside in a stored procedure are parsed and

optimized once (when they are created) and are compiled once (when they are used for

the first time), they execute much faster than the SQL commands that are embedded

in source code, which are parsed, optimized, and compiled every time they are used.

And third, since the SQL commands that reside in a stored procedure are already on

the database server, they produce less network traffic than the SQL commands that are

embedded in source code because the latter must be sent to the database server from

the application server via a network connection.

Figure 23-3.  (continued)

Chapter 23 Code Behind Database Operations

472

Of course, there are also advantages to embedding SQL commands in source code.

First, when SQL commands are embedded in source code, it is easier for us to write,

modify, and test our source code, since all of the source code (e.g., ASP.NET, C#, and

SQL) is available in a single development application (e.g., Visual Studio). Thus, we need

not switch between two development applications (e.g., Visual Studio and SQL Server

Management Studio) when coding and testing. And second, when SQL commands are

embedded in source code, we are able to step through the source code line by line to

observe how a given SQL command is constructed on the fly—assuming we are using a

modern IDE like Visual Studio.

The bottom line is that while both approaches have their advantages, neither

approach is always better under all circumstances. Thus, it is a good idea to weigh the

relative advantages of these approaches when making decisions about storing SQL

commands in stored procedures or embedding them in source code.

Figure 23-4 shows an example of a SQL Server stored procedure that performs a

query. This query is used to validate the login credentials of an employee.

Notice at 01 that this stored procedure is used by the SportsPlay database.

Notice at 02 the comment section of the stored procedure. This section indicates

who wrote the procedure, when the procedure was created, and what the procedure

does. If this procedure were to be modified, we would also indicate in this section who

modified the procedure, when the procedure was modified, and what the nature of the

modification was.

Notice at 03 the name of the stored procedure. As the name implies, this procedure

will be used to log employees into the SportsPlay application.

Notice at 04–05 that we are defining two input parameters for the stored procedure—

EmailAddress and Password. As can be seen, these parameters are preceded by at signs

(@). Arguments for these parameters will be received from the code behind of the page

that calls the procedure.

Notice at 06 the SQL Select statement that will be executed to validate an employee’s

login credentials, which are based on the email address and password he or she supplies.

Notice in the Where clause of the statement the two items preceded by at signs (@).

These items correspond directly to the input parameters defined previously.

Chapter 23 Code Behind Database Operations

473

Figure 23-5 shows an example of calling a stored procedure that performs a

query. Note that the stored procedure that is called in this example is the same stored

procedure just described (see Figure 23-4).

Notice at 01 and 02 that the end user will be supplying an email address and

password, respectively.

Figure 23-4.  Example of a SQL Server stored procedure that performs a query

Chapter 23 Code Behind Database Operations

474

Notice at 03 that the System.Data namespace has been added to the list of using

directives (which appears at the top of the code behind file) so we are not required

to specify the fully qualified name of the CommandType class (i.e., System.Data.

CommandType) each time we want to use one of its enumerations—StoredProcedure,

TableDirect, or Text.

Notice at 04 that the System.Data.SqlClient namespace has also been added to the

list of using directives. This was done to avoid the need to specify the fully qualified

name of the SqlConnection class (i.e., System.Data.SqlClient.SqlConnection), the

SqlCommand class (i.e., System.Data.SqlClient.SqlCommand), and the SqlDataReader

class (i.e., System.Data.SqlClient.SqlDataReader) each time we want to use one of their

respective properties or methods.

Notice at 05 that the System.Web.Configuration namespace has been added

to the list of using directives so we don’t have to specify the fully qualified

name of the WebConfigurationManager class (i.e., System.Web.Configuration.

WebConfigurationManager) each time we want to use one of its properties.

Notice at 06 that we are defining the network connection to our SQL Server database.

As can be seen, this connection is defined in the SportsPlay connection string that

resides in the <connectionStrings> section of our Web.config file.

Notice at 07–08 that we are creating a new SqlCommand object and readying it

for execution by setting its Connection property as usual. However, since we will be

calling a stored procedure to validate the end user’ login credentials, we are setting

the CommandType property to StoredProcedure and the CommandText property to

EmployeeLogin, which is the name of the stored procedure we will be executing (see

Figure 23-4).

Notice at 09–10 that we are taking the email address and password supplied by the

end user and adding them as input parameter arguments to our SqlCommand object.

Notice at 11–12 that we are opening the connection to our SQL Server database, creating

a new SqlDataReader object, loading it with the results of the Select command defined

in our stored procedure, and attempting to retrieve a row from the data reader using the

Read method of the SqlDataReader object. If a row is retrieved from the data reader, which

indicates that the end user was found in the Employee table, we save his or her EmployeeID

to a session variable (so we can identify who is logged in on subsequent pages) and display

a welcome message. If a row is not retrieved from the data reader, which indicates that the

end user was not found in the Employee table, we display an error message.

Notice at 13–14 that we are closing both the data reader and the connection to the

database as these are not done automatically.

Chapter 23 Code Behind Database Operations

475

Figure 23-5.  Example of calling a stored procedure that performs a query

Notice at 15 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides

the details of the SQL Server database that will be used by the SqlConnection object

at 06. See Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed

description of this connection string.

The first screenshot in the Result section of the figure shows the end user entering

an invalid email address and password combination. The second screenshot shows the

error message displayed as a result of the invalid combination. The third screenshot

shows the end user entering a valid email address and password combination. And

the fourth screenshot shows the welcome message displayed as a result of the valid

combination.

Chapter 23 Code Behind Database Operations

476

Figure 23-5.  (continued)

Chapter 23 Code Behind Database Operations

477

Figure 23-5.  (continued)

Chapter 23 Code Behind Database Operations

478

Figure 23-6 shows an example of a SQL Server stored procedure that performs a non-

query. This query is used to update an existing product in the Product table. Although

this example illustrates an update procedure, all of the ingredients are present for an

insert or delete procedure. Thus, creating those from the example shown should be

relatively straightforward.

Notice at 01 that this stored procedure is used by the SportsPlay database.

Notice at 02 the comment section of the stored procedure. This section indicates

who wrote the procedure, when the procedure was created, and what the procedure

does. If this procedure were to be modified, we would also indicate in this section who

modified the procedure, when the procedure was modified, and what the nature of the

modification was.

Notice at 03 the name of the stored procedure. As the name implies, this procedure

will be used to modify a product in the SportsPlay database.

Notice at 04–05 that we are defining ten input parameters for the stored procedure—

Product ID through ReorderLevel. Arguments for these parameters will be received

from the code behind of the page that calls the procedure. Notice as well that we are

defining one output parameter for the stored procedure—RowCount. The argument for

this parameter (i.e., the number of rows affected by the SQL call) will be returned to the

code behind of the page that called the procedure. As can be seen, all of the procedure’s

parameters are preceded by at signs (@).

Notice at 06 the SQL Update statement that will be executed to modify an existing

product in the Product table using the input parameter arguments supplied by

the end user. Notice in the Set and Where clauses of the statement the ten items

preceded by at signs (@). These items correspond directly to the input parameters

defined previously.

Notice at 07 that we are executing a special kind of Select statement. This

statement retrieves the number of rows affected by the previous SQL call and places

that value in the RowCount output parameter. This information will be used in the

code behind of the page that invoked the stored procedure to determine the success or

failure of the update.

Chapter 23 Code Behind Database Operations

479

Figure 23-6.  Example of a SQL Server stored procedure that performs a
non-query

Chapter 23 Code Behind Database Operations

480

Figure 23-7 shows an example of calling a stored procedure that performs a

non-query. Note that the stored procedure that is called in this example is the same

stored procedure just described (see Figure 23-6).

Notice at 01 that the ProductID will be entered into a TextBox control by the end

user. Keep in mind that, in a real-world application, the ProductID would not likely be

entered into a text box, since primary keys like this are meaningless to the end user (e.g.,

no one knows what ProductID 3712 represents). Instead, the ProductID would probably

be set when the end user selects a meaningful option from some other control, like a

DropDownList control.

Notice at 02 and 03 that the end user will be selecting a category and supplying a

product name. As can be seen, several other inputs from the end user (i.e., supplier,

description, image, price, number in stock, number on order, and reorder level) have

been omitted for brevity.

Notice at 04 that the System.Data namespace has been added to the list of using

directives (which appears at the top of the code behind file) to obviate the need

to specify the fully qualified name of the CommandType class (i.e., System.Data.

CommandType) each time we want to use one of its enumerations—StoredProcedure,

TableDirect, or Text.

Notice at 05 that the System.Data.SqlClient namespace has also been added to the

list of using directives. This was done so we are not required to specify the fully qualified

name of the SqlConnection class (i.e., System.Data.SqlClient.SqlConnection), the

Figure 23-6.  (continued)

Chapter 23 Code Behind Database Operations

481

SqlCommand class (i.e., System.Data.SqlClient.SqlCommand), and the SqlDataReader

class (i.e., System.Data.SqlClient.SqlDataReader) each time we want to use one of their

respective properties or methods.

Notice at 06 that the System.Web.Configuration namespace has been added

to the list of using directives to avoid the need to specify the fully qualified

name of the WebConfigurationManager class (i.e., System.Web.Configuration.

WebConfigurationManager) each time we want to use one of its properties.

Notice at 07 that we are defining the network connection to our SQL Server database.

As can be seen, this connection is defined in the SportsPlay connection string that

resides in the <connectionStrings> section of our Web.config file.

Notice at 08–09 that we are creating a new SqlCommand object and readying it

for execution by setting its Connection property as usual. However, since we will be

calling a stored procedure to update the product in the Product table, we are setting

the CommandType property to StoredProcedure and the CommandText property to

ProductModify, which is the name of the stored procedure we will be executing (see

Figure 23-6).

Notice at 10–11 that we are taking the ProductID, CategoryID, SupplierID, Product,

Description, Image, Price, NumberInStock, NumberOnOrder, and ReorderLevel

supplied by the end user and adding them as input parameter arguments to our

SqlCommand object.

Notice at 12 that we are also adding an output parameter to our SqlCommand object.

This parameter will return the number of rows affected by the SQL Update command in

the stored procedure.

Notice at 13–14 that we are opening the connection to our SQL Server database,

executing the non-query defined in our stored procedure (i.e., the Update command),

and checking our RowCount output parameter to determine how many rows of

data were affected by the SQL call. If a single row of data was affected by the Update

command, which indicates that the update was successful, we display a success

message. If something other than a single row of data was affected by the Update

command, which indicates that the update was not successful, we display an error

message.

Notice at 15 that we are closing the connection to the database as this is not done

automatically.

Chapter 23 Code Behind Database Operations

482

Notice at 16 that we have added a <connectionStrings> section to our Web.config

file as well as a connection string called SportsPlay. This connection string provides

the details of the SQL Server database that will be used by the SqlConnection object

at 07. See Chapter 20, titled “Database Design, SQL, and Data Binding,” for a detailed

description of this connection string.

The screenshot in the Result section of the figure shows a product after it has been

modified successfully.

Figure 23-7.  Example of calling a stored procedure that performs a non-query

Chapter 23 Code Behind Database Operations

483
Figure 23-7.  (continued)

Chapter 23 Code Behind Database Operations

484

Figure 23-7.  (continued)

Chapter 23 Code Behind Database Operations

485

Figure 23-7.  (continued)

Chapter 23 Code Behind Database Operations

PART VI

Additional Functionality

489
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_24

CHAPTER 24

Email Messaging
24.1  �Introduction
Email messaging is the process of distributing written messages to computer users over

a network. Although there are several email protocols in use today, the Simple Mail

Transfer Protocol (SMTP) is the standard protocol for sending emails over the Internet.

In fact, most of us use SMTP-based client-server email systems regularly for delayed,

asynchronous, two-way communication with others.

The Simple Mail Transfer Protocol utilizes a store-and-forward model for data

transmission. Within this model, the sender’s email client forwards a message to the

sender’s email server. When the sender’s email server receives the message, it stores

the message until it is ready to pass the message on. When the sender’s email server is

ready, it forwards the message to an intermediate server. When the intermediate server

receives the message, it stores the message until it is ready to pass the message on.

When the intermediate server is ready, it forwards the message to another intermediate

server. This process continues until the message arrives at the recipient’s email server.

At this point, the recipient’s email server stores the message until the recipient’s email

client requests that the message be delivered. When the recipient’s email client requests

that the message be delivered, the recipient’s email server forwards the message to the

recipient’s email client for display.

In this chapter, we will begin by installing an email server on our development

machine so that we can test our Web applications that send email messages. This server,

called Papercut, is a simplified SMTP server that receives and displays email messages

without forwarding them to real recipients. Next, we will discuss the MailMessage class,

which constructs the email messages we wish to send. And finally, we will examine the

SmtpClient class. This class sends the email messages we have constructed to an SMTP

server for forwarding for delivery.

490

24.2  �Development Machine Email Server
Before we discuss the classes required for implementing email functionality, we need

to install an email server on our development machine so that we can test our Web

applications that send email messages. Although there are several SMTP servers

available, we will download, install, and use Papercut. Papercut is a simplified SMTP

server that receives and displays email messages without forwarding them to real

recipients. Since the Papercut server only displays the email messages it receives (i.e., it

doesn’t forward them), we can safely test our email message code without cluttering the

inboxes of real people. The Papercut server is available for free, and the Papercut.Setup.

exe file can be downloaded and run from the GitHub Web site:

https://github.com/ChangemakerStudios/Papercut/releases

There are three things to remember when using the Papercut server. First, the

Papercut server must be running to receive and display email messages. When the

Papercut server is running, its icon will appear in the system tray. Second, when the

Papercut server receives an email message, it will display a notification above the

system tray. To view the email message, we can click the notification, or we can click the

Papercut icon itself. And third, when we are ready to deploy our Web application to a real

server, we will only need to modify our Web.config file to point to a real SMTP server so

that our email messages can be forwarded to real recipients.

24.3  �MailMessage Class
The MailMessage class constructs the email messages we wish to send. A MailMessage

object has a number of properties that we can set when constructing an email message.

The From property specifies the email address of the sender of the message. If the

recipient replies to the message, the sender will be sent the reply. The ReplyToList

property contains the collection of email addresses that will be sent the reply if the

recipient replies to the message. The To property contains the collection of email

addresses that will receive the message. The CC property contains the collection of

email addresses that will receive a carbon copy of the message. The recipients of a

carbon copy of the message will be seen by the other recipients of the message. The Bcc

property contains the collection of email addresses that will receive a blind carbon copy

of the message. The recipients of a blind carbon copy of the message will not be seen

Chapter 24 Email Messaging

https://github.com/ChangemakerStudios/Papercut/releases

491

by the other recipients of the message. The Subject property specifies the subject line

of the message. The Body property specifies the content of the message. The body of

the message can contain text, images, hyperlinks, and so on. The IsBodyHtml property

specifies whether or not the body of the message is in HTML form. If the IsBodyHtml

property is set to true, any HTML markup (e.g.,
, , <i>) will be interpreted

as such by the recipient’s email client and will thus be used to format the message.

If the IsBodyHtml property is set to false, any HTML markup will be interpreted as

regular text by the recipient’s email client and will thus be displayed as is. The Priority

property specifies the urgency (i.e., low, medium, high) of the message. And finally, the

Attachments property contains the collection of attachments we wish to send along

with the message. Table 24-1 shows some of the properties, methods, and events of the

MailMessage class.

1�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Table 24-1.  Some of the properties, methods, and events of the MailMessage class

Class MailMessage1

Namespace System.Net.Mail

Properties

Attachments Gets the attachment collection used to store data attached to this email message.

Bcc Gets the address collection that contains the blind carbon copy (BCC) recipients

for this email message.

Body Gets or sets the message body.

CC Gets the address collection that contains the carbon copy (CC) recipients for this

email message.

From Gets or sets the from address for this email message.

IsBodyHtml Gets or sets a value indicating whether the mail message body is in Html.

Priority Gets or sets the priority of this email message.

(continued)

Chapter 24 Email Messaging

492

24.4  �SmtpClient Class
The SmtpClient class sends the email messages we have constructed to an SMTP server

for forwarding for delivery. To send an email message using the SmtpClient class, we

must specify the name of the host email server and any required server credentials (i.e.,

username and password). As a general rule, we will specify these things in the Web.

config file so that any changes to the host email server configuration can be made in

one place. When a host email server requires credentials, the syntax used to identify the

server and its associated credentials in the <system.net> <mailSettings> <smtp> section

of the Web.config file is

<network host="Host Email Server" userName="Username" password="Password"

 port="Port Number" />

where the items in italics are the name of the host email server (e.g., mail.company.com,

localhost), the username of the email account on the server, the password of the email

account on the server, and the port number on the server, respectively. The port number

may or may not be required. When a host email server does not require credentials, we

need not include the entries for the username and password.

Table 24-1.  (continued)

ReplyToList Gets or sets the list of addresses to reply to for the mail message.

Subject Gets or sets the subject line for this email message.

To Gets the address collection that contains the recipients of this email message.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.net.mail.

mailmessage(v=vs.110).aspx

Chapter 24 Email Messaging

https://msdn.microsoft.com/en-us/library/system.net.mail.mailmessage(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.mail.mailmessage(v=vs.110).aspx

493

Table 24-2.  Some of the properties, methods, and events of the SmtpClient class

Class SmtpClient2

Namespace System.Net.Mail

Properties

Credentials Gets or sets the credentials used to authenticate the sender.

Host Gets or sets the name or IP address of the host used for SMTP transactions.

Port Gets or sets the port used for SMTP transactions.

Methods

Dispose() Sends a QUIT message to the SMTP server, gracefully ends the TCP

connection, and releases all resources used by the current instance of the

SmtpClient class.

Send(MailMessage) Sends the specified message to an SMTP server for delivery.

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.net.mail.

smtpclient(v=vs.110).aspx

To send an email message to a host email server so that it can be forwarded for

delivery, we use the Send method of an SmtpClient object. After an email message has

been sent, and we are done with the SmtpClient object, we must make sure to invoke

the Dispose method of the SmtpClient object. This method sends a quit message to the

host email server, ends the TCP/IP connection to the server, and releases the memory

resources used by the SmtpClient object. Table 24-2 shows some of the properties,

methods, and events of the SmtpClient class.

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 24 Email Messaging

https://msdn.microsoft.com/en-us/library/system.net.mail.smtpclient(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.mail.smtpclient(v=vs.110).aspx

494

Figure 24-1 shows an example of the MailMessage and SmtpClient classes. These

classes are being used to send the end user a forgotten password.

Notice at 01 and 02 that the end user will be entering his or her email address into a

text box and clicking the Send Password button.

Notice at 03 that the System.Net.Mail namespace has been added to the list of using

directives (which appears at the top of the code behind file). This was done so we are

not required to specify the fully qualified name of the MailMessage class (i.e., System.

Net.Mail.MailMessage), the SmtpClient class (i.e., System.Net.Mail.SmtpClient), and the

MailAddress class (i.e., System.Net.Mail.MailAddress) each time we want to use one of

their respective properties or methods.

Notice at 04–05 that we are saving the end user’s full name and password to two

string variables. As we will see in a moment, the values of these variables will be

displayed in the body of the email message to personalize it and make it appear more

professional.

Notice at 06–07 that we are building the email message using the MailMessage class.

First, we are creating a new MailMessage object from the MailMessage class. Next, we

are setting the From property of the message using a MailAddress object. In this case,

we are setting the property to a “noreply” email address. Of course, we could have set

the property to an active email address if that is what the application required. After

that, we are adding the recipient’s email address to the To property of the message using

a MailAddress object. Notice that this email address is coming from the email address

text box on the page. We are then setting the Subject property of the message so that the

recipient will know the purpose of the message at a glance. Next, we are setting the Body

property of the message. Notice that the end user’s full name and password (both of

which we saved previously) are being embedded in the message. Notice as well that we

have included some HTML markup in the message. We are then setting the IsBodyHtml

property of the message to true to indicate that the body of the email message is in

HTML form. Thus, the HTML markup in the message will be interpreted as such by the

recipient’s email client, which will cause the message to be formatted according to our

intentions.

Notice at 08–09 that we are creating a new SmtpClient object from the SmtpClient

class, using that object to send the MailMessage object we just created to the SMTP

server, and disposing of the SmtpClient object, which sends a quit message to the

host email server, ends the TCP/IP connection to the server, and releases the memory

resources used by the SmtpClient object.

Chapter 24 Email Messaging

495

Figure 24-1.  Example of the MailMessage and SmtpClient classes

Notice at 10 that we have specified the name of the host email server and port

number in the <system.net> <mailSettings> <smtp> section of the Web.config file. This

particular configuration permits us to send messages to the Papercut server on our

development machine.

The first screenshot in the Result section of the figure shows the error message

displayed as a result of entering an invalid email address when attempting to retrieve

and send a password. The second screenshot shows the message displayed as a result of

entering a valid email address when attempting to retrieve and send a password. And the

third screenshot shows the email message displayed by the Papercut server.

Chapter 24 Email Messaging

496

Figure 24-1.  (continued)

Chapter 24 Email Messaging

497

Figure 24-1.  (continued)

Chapter 24 Email Messaging

498

Figure 24-1.  (continued)

Chapter 24 Email Messaging

499
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_25

CHAPTER 25

Ajax Programming
25.1  �Introduction
Ajax (Asynchronous JavaScript and XML) is a collection of special script-based classes.

These classes enable the client and the server to interact in such a way that only a

region of a page is re-created, re-formatted, sent back to the client, and re-rendered in

the client’s browser. To understand how the Ajax classes work, we need to contrast the

concepts of synchronous postbacks and full-page rendering with asynchronous postbacks

and partial-page rendering.

A synchronous postback occurs when a page is sent to the server and processed (all

of the server-side events are processed), and the entire page is re-created, re-formatted,

sent back to the client, and re-rendered in the client’s browser. Since the entire page is

re-created, re-formatted, sent back to the client, and re-rendered in the client’s browser,

full-page rendering occurs. Synchronous postbacks can be inefficient for a few reasons.

First, since the entire page is re-created, re-formatted, sent back to the client, and re-

rendered in the client’s browser, the server must perform some unnecessary processing

when only a part of the page needs to be updated. Second, since the entire page is

re-rendered in the client’s browser, he or she must wait for the entire page to re-display

before continuing their work on the page. And third, since the entire page is re-rendered

in the client’s browser, the top of the page is, by default, automatically re-aligned with the

top of the browser when the page re-displays.1 This can make for a frustrating experience

since the end user may be required to scroll down the page to where he or she was

when they submitted the page for processing. By default, the ASP.NET page model uses

synchronous postbacks.

1�This can be avoided by setting the maintainScrollPositionOnPostBack property of the <pages>
tag to true in the <system.web> section of the Web.config file.

500

An asynchronous postback, on the other hand, occurs when a page is sent to the

server and processed (all of the server-side events are still processed), but only a part

of the page is re-created, re-formatted, sent back to the client, and re-rendered in the

client’s browser. Since only a part of the page is re-created, re-formatted, sent back

to the client, and re-rendered in the client’s browser, partial-page rendering occurs.

Asynchronous postbacks can be more efficient for a few reasons. First, since only a part

of the page is re-created, re-formatted, sent back to the client, and re-rendered in the

client’s browser, the server need not perform as much unnecessary processing when

only a part of the page needs to be updated. Second, since only a part of the page is re-

rendered in the client’s browser, he or she need not wait for the entire page to re-display

before continuing their work on the page. And third, since only a part of the page is

re-rendered in the client’s browser, the top of the page is not automatically re-aligned

with the top of the browser when the page re-displays. This can make for a much less

frustrating experience since the end user may not be required to scroll down the page to

where he or she was when they submitted the page for processing.

Ajax classes are implemented in HTML, CSS, and JavaScript. Because of this, Ajax

controls will not function properly in browsers that do not support scripting or have

browser scripting disabled. In addition, some smartphones and other special devices

may not support the use of Ajax controls. Thus, it is important that alternative non-Ajax

code be in place when such devices may be used to access an application.

In this chapter, we will begin by looking at the ScriptManager class. This class

manages a Web page’s Ajax resources, including the automatic download of Ajax scripts

that enable asynchronous postbacks and partial-page rendering. Next, we will discuss

the Ajax extension classes, which are part of the .NET Framework, and add basic Ajax

functionality to Web applications. And finally, we will consider the Ajax Control Toolkit.

This toolkit is an open-source class library that we can use to enhance the interactivity

and overall experience of the Web applications we develop.

25.2  �ScriptManager Class
The ScriptManager class manages a Web page’s Ajax resources. This management

includes, among other things, the automatic download of Ajax scripts that enable

asynchronous postbacks and partial-page rendering. A ScriptManager control must be

included in a Page class that contains Ajax controls, and only one ScriptManager control

can be included in a Page class. Table 25-1 shows some of the properties, methods, and

events of the ScriptManager class.

Chapter 25 Ajax Programming

501

25.3  �Extension Classes
The Ajax extension classes are part of the .NET Framework and add basic Ajax

functionality to Web applications. The Ajax extension classes include the UpdatePanel

class, the UpdateProgress class, and the Timer class. We will discuss the first two of these

classes in this section. Together, they will permit us to exploit the use of asynchronous

postbacks and partial-page rendering and will allow us to provide feedback to the end

user with regard to the status of an asynchronous postback.

25.3.1  �UpdatePanel Class
The UpdatePanel class defines a page region that will be asynchronously posted back to

the server and re-rendered in the browser. Thus, this class is an essential part of the Ajax

model. The ContentTemplate property of an UpdatePanel control defines the content of

the update panel, which typically includes one or more server controls. More than one

UpdatePanel control can be included in a single Page class, which permits us to define

discrete regions on a page that can be posted back and re-rendered independently.

Table 25-1.  Some of the properties, methods, and events of the ScriptManager class

Class ScriptManager2

Namespace System.Web.UI

Properties

(See reference.)

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.

scriptmanager(v=vs.110).aspx

2�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Chapter 25 Ajax Programming

https://msdn.microsoft.com/en-us/library/system.web.ui.scriptmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.scriptmanager(v=vs.110).aspx

502

When a page is first requested, all of the page regions (i.e., all of the UpdatePanel

controls) on the page are rendered in the browser. However, when an individual page

region (i.e., an individual UpdatePanel control) is requested, only that page region is re-

rendered in the browser. An UpdatePanel control can be included in a MasterPage class

or a content Page class, can be defined in a template control like a FormView control or

a ListView control, or can be nested in another UpdatePanel control. We can also apply

styles to an UpdatePanel control using CSS. Table 25-2 shows some of the properties,

methods, and events of the UpdatePanel class.

Table 25-2.  Some of the properties, methods, and events of the UpdatePanel class

Class UpdatePanel3

Namespace System.Web.UI

Properties

ContentTemplate Gets or sets the template that defines the content of the UpdatePanel control.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.

updatepanel(v=vs.110).aspx

3�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Figure 25-1 shows an example of the UpdatePanel class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the UpdatePanel control. This control defines the page region that will

be asynchronously posted back to the server and re-rendered in the browser.

Notice at 03 the ContentTemplate property of the UpdatePanel control, which

defines the content of the update panel. As can be seen, the contents of the update panel

include a text box, a button, and a message label.

Chapter 25 Ajax Programming

https://msdn.microsoft.com/en-us/library/system.web.ui.updatepanel(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.updatepanel(v=vs.110).aspx

503

Notice at 04 the event handler method that is invoked when the end user clicks the

Save button. When this occurs, only the page region defined by the update panel will be

re-created, re-formatted, sent back to the client, and re-rendered in the client’s browser.

The remainder of the page will not be updated.

The screenshot in the Result section of the figure shows the message displayed as a

result of saving an email address. If we could have observed the behavior of the browser

when the Save button was clicked, we would have noticed that the entire page was not

re-rendered in the client’s browser. In addition, we would have noticed the absence of

the familiar “page flicker” that normally occurs during a synchronous postback.

Figure 25-1.  Example of the UpdatePanel class

Chapter 25 Ajax Programming

504

25.3.2  �UpdateProgress Class
The UpdateProgress class provides the end user with feedback regarding the progress of an

asynchronous postback. It is the ProgressTemplate property of an UpdateProgress control

that defines the control’s content, which usually contains some kind of message asking the

end user to wait while the process (i.e., the asynchronous postback) completes. When a

page is initially rendered in the browser, the content in the ProgressTemplate property of

the UpdateProgress control is not displayed. However, subsequent asynchronous postbacks

may cause the content in the ProgressTemplate property to display.

To connect an UpdateProgress control to its associated UpdatePanel control, we

set the AssociatedUpdatePanelID property of the UpdateProgress control to the ID

property of the associated UpdatePanel control. If we wish to display the content in

the ProgressTemplate property of an UpdateProgress control after a given amount of

time (in milliseconds), we set the DisplayAfter property of the UpdateProgress control.

By default, an UpdateProgress control will wait for 500 milliseconds (i.e., 0.5 seconds)

before it displays the content defined in its ProgressTemplate property. We can also

apply styles to an UpdateProgress control using CSS. Table 25-3 shows some of the

properties, methods, and events of the UpdateProgress class.

4�All property, method, and event descriptions were taken directly from Microsoft’s official
documentation. The event handler methods used to handle the events of this class were omitted
to conserve space. See the reference for all of the methods of this class.

Table 25-3.  Some of the properties, methods, and events of the

UpdateProgress class

Class UpdateProgress4

Namespace System.Web.UI

Properties

AssociatedUpdatePanelID Gets or sets the ID of the UpdatePanel control that the UpdateProgress

control displays status for.

DisplayAfter Gets or sets the value in milliseconds before the UpdateProgress

control is displayed.

ProgressTemplate Gets or sets the template that defines the content of the

UpdateProgress control.

(continued)

Chapter 25 Ajax Programming

505

Figure 25-2 shows an example of the UpdateProgress class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the UpdatePanel control that defines the page region that will be

asynchronously posted back and re-rendered in the browser.

Notice at 03 the UpdateProgress control. As can be seen, we have associated this

control with the UpdatePanel control at 02 by setting the AssociatedUpdatePanelID

property of the UpdateProgress control to the ID property of the UpdatePanel control.

Notice as well that we have set the DisplayAfter property of the control to 2000. This

means that we want the UpdateProgress control to display if the asynchronous postback

takes longer than 2,000 milliseconds (i.e., 2 seconds).

Notice at 04 the ProgressTemplate property of the UpdateProgress control. As can be

seen, we have included a label in this template that displays a message asking the end

user to wait for the asynchronous postback to complete.

Notice at 05 that we have included a line of code at the very bottom of the event

handler method that is invoked when the end user clicks the Save button. This line

of code was added to slow down the processing on the server—that is, to simulate a

5,000-millisecond (i.e., 5-second) response time. This line of code would not normally

be included in such an event handler method, but it serves as a good example of how to

test an UpdateProgress control.

The first screenshot in the Result section of the figure shows the message displayed

as a result of the (artificial) delay in the progress of the asynchronous postback. The

second screenshot shows the message displayed after the email address is saved.

Methods

(See reference.)

Events

(See reference.)

Reference

https://msdn.microsoft.com/en-us/library/system.web.ui.

updateprogress(v=vs.110).aspx

Table 25-3.  (continued)

Chapter 25 Ajax Programming

https://msdn.microsoft.com/en-us/library/system.web.ui.updateprogress(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.ui.updateprogress(v=vs.110).aspx

506

Figure 25-2.  Example of the UpdateProgress class

Chapter 25 Ajax Programming

507

25.4  �Ajax Control Toolkit
The Ajax Control Toolkit is an open-source class library that is built on top of the basic

Ajax functionality provided by the .NET Framework.5 This class library contains over 30

classes that can be used to enhance the interactivity and overall experience of the Web

applications we develop. All of the classes in the Ajax Control Toolkit can be used “out of

the box” and require no knowledge of the Ajax extension classes (discussed earlier) or

JavaScript (discussed in Chapter 26, titled “JavaScript Programming”).

The classes in the Ajax Control Toolkit can be divided into Ajax control classes and

Ajax control extender classes. Control classes are used to create standalone (i.e., self-

contained) ASP.NET server controls, whereas control extender classes are used to extend

or enhance the behavior of standard ASP.NET server controls. The control classes in the

Ajax Control Toolkit include the Accordion class and the AjaxFileUpload class. The control

extender classes in the Ajax Control Toolkit include the BalloonPopupExtender class,

the CalendarExtender class, the ModalPopupExtender class, and the PasswordStrength

(extender) class. Although there are many more classes than these in the Ajax Control

Toolkit, we will limit our discussion to these six. Together, they will give us a good feel for

how to use the Ajax Control Toolkit to further exploit the use of asynchronous postbacks

and partial-page rendering. The interested reader is encouraged to explore the use of the

other classes in the Ajax Control Toolkit on his or her own.

25.4.1  �Installing the Ajax Control Toolkit
Before the classes in the Ajax Control Toolkit will work, we need to install the toolkit in

our development environment (i.e., Visual Studio). Installing this toolkit makes available

all of the Ajax scripts necessary for using the Ajax controls and Ajax control extenders.

If the Ajax Control Toolkit has not been installed, an error will occur when a page

containing an Ajax Control Toolkit class is requested. To install the Ajax Control Toolkit

	 1.	 Navigate to www.devexpress.com/Products/ajax-control-toolkit/.

	 2.	 Click Download.

	 3.	 Follow the installation directions.

5�The Ajax Control Toolkit is the result of a joint effort between Microsoft and the ASP.NET Ajax
community. The Toolkit is currently managed by DevExpress—a software organization that
specializes in the development of GUI classes, including Ajax classes for ASP.NET.

Chapter 25 Ajax Programming

http://www.devexpress.com/Products/ajax-control-toolkit/

508

Once the Ajax Control Toolkit is installed, its classes will appear in the Visual Studio

Toolbox. There is no need to reinstall the Toolkit for each new application we create as

the installation results in the Toolkit being installed in Visual Studio itself. For demos

of all of the controls and control extenders in the Ajax Control Toolbox, see https://

ajaxcontroltoolkit.devexpress.com/.

When creating a new project after the Ajax Control Toolkit has been installed, we

may need to add the Toolkit’s assembly reference to the project. To do this

	 1.	 Open the Solution Explorer.

	 2.	 Right-click References.

	 3.	 Select Add Reference….

	 4.	 Click Browse….

	 5.	 Locate the AjaxControlToolkit.dll file.

	 6.	 Select the file.

	 7.	 Click Add.

	 8.	 Make sure that the AjaxControlToolkit.dll file is checked in the

Reference Manager.

	 9.	 Click OK to close the Reference Manager.

By default, the Aspx tag prefix for the Ajax Control Toolkit is ajaxToolkit. Although it

is not necessary to do so, we will create a shorter tag prefix (i.e., act) that looks similar to

the asp tag prefix we are used to (for readability and standardization purposes). To do

this, all we must do is add a reference to the new tag prefix in the <system.web> <pages>

<controls> section of the Web.config file. Figure 25-3 shows the Web.config file with the

act (Ajax Control Toolkit) tag prefix reference.

Figure 25-3.  Web.config file with the act (Ajax Control Toolkit) tag prefix reference

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/
https://ajaxcontroltoolkit.devexpress.com/

509

25.4.2  �Control Classes
The Ajax Control Toolkit control classes are used to create standalone (i.e., self-

contained) ASP.NET server controls. These classes include the Accordion class and the

AjaxFileUpload class. Although there are many more control classes than these in the

Ajax Control Toolkit, we will limit our discussion to these two as they will sufficiently

illustrate the use of such classes to further exploit the use of asynchronous postbacks and

partial-page rendering.

25.4.2.1  �Accordion Class

The Accordion class displays an expandable/collapsible collection of panes that can

be used by an end user to display information one pane at a time. The AccordionPane

property of an According control defines the header and content areas of a child pane

within the accordion’s pane collection. The ContentCssClass property indicates the

default CSS class used to format the content areas of the accordion’s child panes. The

FadeTransitions property indicates whether or not a fade effect will be used when

transitioning from one accordion pane to another. The HeaderCssClass property

indicates the default CSS class used to format the header areas of the accordion’s child

panes. The Panes property contains the collection of child accordion panes. And finally,

the TransitionDuration property indicates the length of time it will take to transition

from one accordion pane to another. By default, this transition is 500 milliseconds

(i.e., 0.5 seconds). Table 25-4 shows some of the properties, methods, and events of the

Accordion class.

Chapter 25 Ajax Programming

510

Figure 25-4 shows an example of the Accordion class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the Accordion control. As can be seen, we have set the ContentCssClass

property of the control to AccordionContent to indicate the default CSS class selector

used to format the content areas of the accordion’s child panes. This class selector can

be seen at 07. Similarly, we have set the HeaderCssClass property to AccordionHeader to

indicate the default CSS class selector used to format the header areas of the accordion’s

child panes. This class selector can be seen at 08. Note that the class selectors can

contain other CSS formatting declarations as well. We can also see that we have set

the FadeTransitions property to true to indicate that we want to use a fade effect when

Table 25-4.  Some of the properties, methods, and events of the Accordion class

Class Accordion6

Namespace NA

Properties

AccordionPane A child pane in the Accordion.

ContentCssClass The CSS class used to format the content area of the control.

FadeTransitions Whether or not to use a fade effect when transitioning between selected

Accordion Panes. The default is false.

HeaderCssClass The CSS class used to format the header area of the control.

Panes A collection of child panes in the Accordion.

TransitionDuration Length of the transition animation in milliseconds. The default is 500.

Methods

(See reference.)

Events

(See reference.)

Reference

https://ajaxcontroltoolkit.devexpress.com/Accordion/Accordion.aspx

6�See the reference for all of the properties, methods, and events of this class.

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/Accordion/Accordion.aspx

511

transitioning from one accordion pane to another. In addition, we can see that we have

set the TransitionDuration property to 1000 to indicate that we want the control to take

1,000 milliseconds (i.e., 1 second) to transition from one accordion pane to another.

Notice at 03 the Panes property of the Accordion control, which contains the

collection of child accordion panes. In this example, there are three accordion panes.

Notice at 04 the AccordionPane property of the Accordion control. This property

defines the header and content areas of a child pane within the accordion’s pane

collection. These areas are seen at 05 and 06, respectively.

The first screenshot in the Result section of the figure shows the first child pane of

the Accordion control being displayed. This child pane is automatically displayed by

default. The second screenshot shows the result of clicking the header area of the second

child pane.

Figure 25-4.  Example of the Accordion class

Chapter 25 Ajax Programming

512

Figure 25-4.  (continued)

Chapter 25 Ajax Programming

513

25.4.2.2  �AjaxFileUpload Class
The AjaxFileUpload class displays a control that can be used by an end user to upload

files to the server. This control is often used instead of the FileUpload control provided by

the .NET Framework as it is more user-friendly, performs file uploads asynchronously,

and contains more sophisticated features. When a file to be uploaded is selected, an

AjaxFileUpload control temporarily stores the file in a temporary folder on the Web

server’s hard drive. Then, when the SaveAs method of the control is invoked, the file

is copied to its permanent location on the Web server’s hard drive (i.e., the location

specified in the code behind), and the temporary file is deleted from the temporary

folder on the Web server’s hard drive.

The AllowedFileTypes property of an AjaxFileUpload control indicates the types of

files (as indicated by their file extensions) that are allowed to be uploaded. The CssClass

property indicates the CSS class used to format the control. The MaxFileSize property

indicates the maximum size (in kilobytes) that a file can be to be uploaded by the control.

If the size of a file to be uploaded should be unlimited, this property should be set to a

nonpositive integer. The MaximumNumberOfFiles property indicates the maximum

number of files that can selected and uploaded at one time. The SaveAs method saves an

uploaded file to its permanent location on the Web server’s hard drive. And finally, the

UploadComplete event is raised when the file upload is complete. Table 25-5 shows some

of the properties, methods, and events of the AjaxFileUpload class.

Figure 25-4.  (continued)

Chapter 25 Ajax Programming

514

Table 25-5.  Some of the properties, methods, and events of the AjaxFileUpload class

Class AjaxFileUpload7

Namespace NA

Properties

AllowedFileTypes A comma-separated list of allowed file extensions. The default is an

empty string.

CssClass The CSS class used to format the control.

MaxFileSize The maximum size of a file to be uploaded in Kbytes. A nonpositive

value means the size is unlimited. The default is 0.

MaximumNumberOfFiles A maximum number of files in an upload queue. The default is 10.

Methods

SaveAs(fileName) Saves the uploaded file with the specified file name.

Events

UploadComplete An event raised when the file upload is complete.

Reference

https://ajaxcontroltoolkit.devexpress.com/AjaxFileUpload/AjaxFileUpload.aspx

Figure 25-5 shows an example of the AjaxFileUpload class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the AjaxFileUpload control. As can be seen, we have set the

AllowedFileTypes property of the control to gif,jpg,png to indicate that only .gif, .jpg,

and .png files are allowed to be uploaded. We have also set the CssClass property to

AjaxFileUpload to indicate the default CSS class selector used to format the control.

This class selector can be seen at 06. Note that the class selector can contain other CSS

formatting declarations as well. In addition, we have set the MaxFileSize property to

1000 to indicate that the largest file that can be uploaded is 1000KB (i.e., 1MB). We have

also set the MaximumNumberOfFiles property to 1 to indicate that only one file can

be selected and uploaded at a time. And finally, we have set the OnUploadComplete

property to afuImage_UploadComplete to indicate the event handler method that will be

invoked after the end user selects a file to be uploaded and clicks the Upload button.

7�See the reference for all of the properties, methods, and events of this class.

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/AjaxFileUpload/AjaxFileUpload.aspx

515

Notice at 03 the UploadComplete event handler method that will be invoked after

the end user selects a file to be uploaded and clicks the Upload button.

Notice at 04 that we are programmatically constructing the full path of the file to

be saved to the server. First, we are using the PhysicalApplicationPath property of the

HttpRequest class to get the physical file system path of the application’s root directory.

Using this property permits us to get the path of the application’s root directory without

having to hard code it. This way, if we install the application on another server (or in

a different location on the same server), the path to the application’s root directory is

always correct. Second, we are concatenating the application’s root directory with its

Images subdirectory. And third, we are concatenating the result of that concatenation

with the name of the file to be saved. As can be seen, the name of the file to be saved is

passed to the event handler method via the AjaxFileUploadEventArgs class—the alias of

which is e.

Notice at 05 that we are using the SaveAs method of the AjaxFileUpload control to

permanently save the file on the server in the desired location.

Notice at 07 that we have added a reference to the AjaxFileUploadHandler in the

<system.webServer> <handlers> section of the Web.config file. If we do not include this

entry in the Web.config file, the AjaxFileUpload control will not work.

The first screenshot in the Result section of the figure shows the AjaxFileUpload

control before a file has been selected for upload. Notice that the end user can drop a

file into the control or select one by clicking the Select File button. Clicking the Select

File button results in a Choose File to Upload dialog that the end user can use to locate

and select the desired file. The second screenshot shows the control after a file has

been selected for upload. Notice that the upload is now pending and that the control is

awaiting further instructions from the end user. At this point, the end user can remove

the file from the list of pending files by clicking the Remove button, or he or she can

permanently upload the file to the Images folder by clicking the Upload button. Finally,

the third screenshot shows the control after the file has been permanently uploaded to

the Images folder.

Chapter 25 Ajax Programming

516

Figure 25-5.  Example of the AjaxFileUpload class

Chapter 25 Ajax Programming

517

25.4.3  �Control Extender Classes
The Ajax Control Toolkit control extender classes are used to extend or enhance

the behavior of standard ASP.NET server controls. These classes include the

BalloonPopupExtender class, the CalendarExtender class, the ModalPopupExtender

class, and the PasswordStrength (extender) class. Although there are many more control

extender classes than these in the Ajax Control Toolkit, we will limit our discussion to

these four as they will sufficiently illustrate the use of such classes to further exploit the

use of asynchronous postbacks and partial-page rendering.

Figure 25-5.  (continued)

Chapter 25 Ajax Programming

518

25.4.3.1  �BalloonPopupExtender Class

The BalloonPopupExtender class displays a graphic that can be used by an end

user to get additional information about a standard ASP.NET server control. A

BalloonPopupExtender control can contain content of any kind, including text and

images. The BalloonPopupControlID property of a BalloonPopupExtender control

indicates the ID of the Panel control that contains the balloon popup’s content. The

BalloonStyle property indicates the type of balloon popup (i.e., cloud, custom, or

rectangle) to be displayed. The DisplayOnMouseOver property indicates whether or not

the balloon popup should be displayed when the end user hovers over the associated

ASP.NET server control. If this property is set to true, the balloon popup will be displayed

when the end user hovers over the associated server control. If it is set to false, the

balloon popup will be displayed when the end user clicks the associated server control.

The TargetControlID property indicates the ID of the ASP.NET server control that the

BalloonPopupExtender control extends. And finally, the UseShadow property indicates

whether or not to display a drop shadow when displaying the balloon popup. A drop

shadow gives the balloon popup a more three-dimensional look. Table 25-6 shows some

of the properties, methods, and events of the BalloonPopupExtender class.

8�See the reference for all of the properties, methods, and events of this class.

Table 25-6.  Some of the properties, methods, and events of the

BalloonPopupExtender class

Class BalloonPopupExtender8

Namespace NA

Properties

BalloonPopupControlID The ID of the control to display.

BalloonStyle Optional setting specifying the theme of balloon popup. Default value is

Rectangle.

DisplayOnMouseOver Optional setting specifying whether to display balloon popup on the client

onMouseOver event. Default value is false.

TargetControlID The ID of the control that the extender extends.

UseShadow Optional setting specifying whether to display shadow of balloon popup or not.

(continued)

Chapter 25 Ajax Programming

519

Figure 25-6 shows an example of the BalloonPopupExtender class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the ASP.NET TextBox control we are extending. When the end user

hovers over this text box, the balloon popup will display.

Notice at 03 the BalloonPopupExtender control. As can be seen, we have set the

BalloonPopupControlID of the control to panPrice to indicate the ID of the Panel control

that contains the balloon popup’s content. This panel is shown at 04. Notice as well that

we have set the BalloonStyle property to Cloud to indicate the type of balloon popup

to be displayed. We have also set the DisplayOnMouseOver property to true to indicate

that we want the balloon popup to be displayed when the end user hovers over the

associated TextBox control. In addition, we have set the TargetControlID property to

txtPrice to indicate the ID of the ASP.NET server control that the BalloonPopupExtender

control extends. And finally, we have set the UseShadow property to true to indicate that

we want the balloon popup to include a drop shadow when it displays.

Notice at 04 the Panel control. This control contains the content that will be

displayed when the BalloonPopupExtender control becomes visible. In this case, the

panel contains a label with some instructions for the end user regarding what he or she

should enter into the associated text box. Notice as well that we have set the CssClass

property of the control to BalloonPopupExtenderPanel to indicate the default CSS class

selector used to format the control. This class selector can be seen at 05. Note that the

class selector can contain other CSS formatting declarations as well.

The screenshot in the Result section of the figure shows the result of hovering over

the price text box. Notice how helpful a balloon popup extender can be when specific

instructions are required for inputting data.

Methods

(See reference.)

Events

(See reference.)

Reference

https://ajaxcontroltoolkit.devexpress.com/BalloonPopup/BalloonPopup.aspx

Table 25-6.  (continued)

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/BalloonPopup/BalloonPopup.aspx

520

25.4.3.2  �CalendarExtender Class

The CalendarExtender class displays a monthly calendar that can be used by an end user

to select a date. A CalendarExtender control is attached to an ASP.NET TextBox control and

thus extends the text box. In terms of appearance, a calendar extender displays a header

section that includes the month, year, and links for moving backward and forward to

previous and future months, a body section that includes headings for the days of the week

and an array of selectable days, and a footer section that displays today’s date. By clicking

the title section of the control, the end user can select other months or other years directly.

By default, a calendar extender displays the current month of the current year.

Figure 25-6.  Example of the BalloonPopupExtender class

Chapter 25 Ajax Programming

521

The appearance and behavior of an Ajax CalendarExtender control is, in many ways,

superior to that of an ASP.NET Calendar control. For example, an ASP.NET Calendar

control takes up significantly more room on a page than an Ajax CalendarExtender

control. And, unlike an Ajax CalendarExtender control, an ASP.NET Calendar control

always performs an auto postback when a date is selected, which can be very annoying

when such behavior is not required. On the other hand, unlike an ASP.NET Calendar

control, an Ajax CalendarExtender control cannot be used to select a range of dates (e.g.,

an entire week, an entire month).

The CssClass property of a CalendarExtender control indicates how the control

should be formatted. A CalendarExtender control is highly customizable via several

predefined CSS class selectors. The interested reader should see the reference at the

bottom of Table 25-7 for more information on these class selectors. The FirstDayOfWeek

property indicates which day (i.e., Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, or Sunday) should be displayed in the leftmost column of the calendar. The

SelectedDate property indicates the date that the calendar extender should be initialized

to or the date that was selected by the end user. The TargetControlID property indicates

the ID of the TextBox control that the calendar extender extends. And finally, the

TodaysDateFormat property indicates how the date (i.e., today’s date) that is displayed in

the footer section of the calendar extender should be formatted. Table 25-7 shows some

of the properties, methods, and events of the CalendarExtender class.

9�See the reference for all of the properties, methods, and events of this class.

Table 25-7.  Some of the properties, methods, and events of the CalendarExtender class

Class CalendarExtender9

Namespace NA

Properties

CssClass The CSS class used to format the control.

FirstDayOfWeek The first day of the week. The default value is Sunday.

SelectedDate The date that the calendar is initialized with.

TargetControlID The ID of the control that the extender extends.

TodaysDateFormat A format string used to display today's date. The default value is

MMMM d, yyyy.

(continued)

Chapter 25 Ajax Programming

522

Figure 25-7 shows an example of the CalendarExtender class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the ASP.NET TextBox control we are extending. When the end user clicks

this text box, the calendar extender will display, and the end user can select a date.

Notice at 03 the CalendarExtender control. As can be seen, we have set the

TargetControlID property to txtDate to indicate the ID of the TextBox control that the

calendar extender extends. Notice as well that we have set the CssClass property of the

control to CalendarExtender to indicate the default CSS class selector used to format the

control. This class selector can be seen at 04.

Notice at 04 that the CalendarExtender class selector has been defined as an ajax

calendar container. This indicates that the class selector contains one or more predefined

child class selectors (see the reference at the bottom of Table 25-7) and their associated

formatting declarations.

Notice at 05 and 06 that the child class selectors are the ajax calendar title class

selector (for formatting the title of the calendar extender) and the ajax calendar footer

class selector (for formatting the footer of the calendar extender), respectively. Note that

the class selectors can contain other CSS formatting declarations as well.

The first screenshot in the Result section of the figure shows the result of clicking the

order date text box. Notice that the background color of the calendar extender is light

gray, whereas the background color of the title and footer is dark gray. These were set in

the CSS code. Notice as well that the current date is April 17, which can be seen in the

footer of the calendar extender. The second screenshot shows the result of selecting a

different date—April 10.

Methods

(See reference.)

Events

ClientDateSelectionChanged A script that is executed when a new date is selected.

Reference

https://ajaxcontroltoolkit.devexpress.com/Calendar/Calendar.aspx

Table 25-7.  (continued)

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/Calendar/Calendar.aspx

523

Figure 25-7.  Example of the CalendarExtender class

Chapter 25 Ajax Programming

524

25.4.3.3  �ModalPopupExtender Class

The ModalPopupExtender class displays a panel that can be used by an end user to

acknowledge a message or make a decision. A ModalPopupExtender control behaves

like a modal dialog in that it does not permit the end user to interact with other parts of

the page until he or she dismisses the modal popup extender. A modal popup extender

is always displayed on top of its associated page and is, by default, centered on it.

Once a button on a modal popup extender is clicked, the control is dismissed, and the

event handler method of the button clicked (if any) is executed to perform the desired

processing. A ModalPopupExtender control can contain any of the ASP.NET server

controls that are permitted inside a Panel control.

The BackgroundCssClass property of a ModalPopupExtender control indicates

how the background of the control should be formatted. This property is often used to

“gray out” the associated page while the end user gives his or her attention to the modal

popup extender. The DropShadow property indicates whether or not a drop shadow

should be added to the modal popup extender to give it a more three-dimensional

look. The PopupControlID property indicates the ID of the panel to display that

contains the content of the modal popup extender. And finally, The TargetControlID

property indicates the ID of the ASP.NET server control that the modal popup

extender extends. Table 25-8 shows some of the properties, methods, and events of the

ModalPopupExtender class.

10�See the reference for all of the properties, methods, and events of this class.

Table 25-8.  Some of the properties, methods, and events of the ModalPopupExtender

class

Class ModalPopupExtender10

Namespace NA

Properties

BackgroundCssClass A CSS class to apply to the background when the modal popup is displayed.

DropShadow Set to True to automatically add a drop shadow to the modal popup.

PopupControlID ID of an element to display as a modal popup.

TargetControlID The ID of the control that the extender extends.

(continued)

Chapter 25 Ajax Programming

525

Figure 25-8 shows an example of the ModalPopupExtender class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the ASP.NET Button control we are extending. When the end user

clicks this button, the modal popup extender will display, and the end user can select a

shipper.

Notice at 03 the ModalPopupExtender control. As can be seen, we have set the

BackgroundCssClass property of the control to ModalPopupExtenderBackground to

indicate the default CSS class selector used to format the control. This class selector can

be seen at 07. Note that the class selector can contain other CSS formatting declarations

as well. We have also set the DropShadow property to true to indicate that we want the

modal popup extender to include a drop shadow when it displays. In addition, we have

set the PopupControlID property to panSelectShipper to indicate the ID of the Panel

control that contains the modal popup extender’s content. This panel is shown at 04.

And finally, we have set the TargetControlID property to btnSelectShipper to indicate the

ID of the ASP.NET server control that the ModalPopupExtender control extends.

Notice at 04 the Panel control. This control contains the content that will be

displayed when the ModalPopupExtender control becomes visible. In this case, the

panel contains a label that includes some instructions for the end user regarding what

he or she should do, three radio buttons, and two buttons. As can be seen, we have set

the CssClass property of the control to ModalPopupExtenderPanel to indicate the default

CSS class selector used to format the control. This class selector can be seen at 08. Note

that the class selector can contain other CSS formatting declarations as well.

Notice at 05 the event handler method that is invoked when the end user clicks the

Select button. If the end user chooses a shipper, a message is displayed indicating which

Methods

(See reference.)

Events

(See reference.)

Reference

https://ajaxcontroltoolkit.devexpress.com/ModalPopup/ModalPopup.aspx

Table 25-8.  (continued)

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/ModalPopup/ModalPopup.aspx

526

shipper he or she selected. If the end user does not choose a shipper, an appropriate

message is displayed.

Notice at 06 the event handler method that is invoked when the end user clicks the

Cancel button. When the end user clicks the Cancel button, an appropriate message is

displayed.

The first screenshot in the Result section of the figure shows the page before the

Select Shipper button is clicked. The second screenshot shows the result of clicking the

Select Shipper button and choosing the UPS option on the modal popup extender. And

finally, the third screenshot shows the result of clicking the Select button on the modal

popup extender.

Figure 25-8.  Example of the ModalPopupExtender class

Chapter 25 Ajax Programming

527

Figure 25-8.  (continued)

Chapter 25 Ajax Programming

528

Figure 25-8.  (continued)

Chapter 25 Ajax Programming

529

25.4.3.4  �PasswordStrength Class

The PasswordStrength (extender) class displays the strength of a password as it is being

entered into a text box and thus can be used by an end user to create more secure

passwords. A PasswordStrength control extends an ASP.NET TextBox control. We define

the strength criteria of a password in the properties of a PasswordStrength control.

As the end user enters a password, the PasswordStrength control displays, by default,

nonexistent, very weak, weak, poor, almost OK, barely acceptable, average, good, strong,

excellent, or unbreakable. However, these descriptions can be customized via the

TextStrengthDescriptions property of the control.

The DisplayPosition property of the PasswordStrength class indicates where a

PasswordStrength control should be displayed relative to the TextBox control that it

extends (i.e., above left, above right, below left, below right, left side, or right side). The

MinimumLowerCaseCharacters property, the MinimumNumericCharacters property,

the MinimumSymbolCharacters property, and the MinimumUpperCaseCharacters

property indicate the minimum number of these characters necessary to fully satisfy the

security requirements of a password. The PreferredPasswordLength property indicates

the preferred length of a password. The StrengthIndicatorType property indicates

whether the strength indicator displays text or a bar indicator. The latter requires the use

of an associated CSS class. The TargetControlID property indicates the ID of the TextBox

control that the PasswordStrength control extends. And finally, the TextCssClass property

indicates the CSS class used to format the control when the StrengthIndicatorType

property is set to Text. Table 25-9 shows some of the properties, methods, and events of

the PasswordStrength class.

Chapter 25 Ajax Programming

530

Table 25-9.  Some of the properties, methods, and events of the PasswordStrength

class

Class PasswordStrength11

Namespace NA

Properties

DisplayPosition Positioning of the strength indicator relative to the target control.

MinimumLowerCaseCharacters Minimum number of lowercase characters required when

requiring mixed case characters as part of your password strength

considerations.

MinimumNumericCharacters Minimum number of numeric characters.

MinimumSymbolCharacters Minimum number of symbol characters (e.g., $ ^ *).

MinimumUpperCaseCharacters Minimum number of uppercase characters required when

requiring mixed case characters as part of your password strength

considerations.

PreferredPasswordLength Preferred length of the password.

StrengthIndicatorType Strength indicator type (Text or BarIndicator).

TargetControlID The ID of the control that the extender extends.

TextCssClass CSS class applied to the text display when

StrengthIndicatorType=Text.

TextStrengthDescriptions List of semicolon separated descriptions used when

StrengthIndicatorType=Text (Minimum of 2, maximum of 10; order

is weakest to strongest).

Methods

(See reference.)

Events

(See reference.)

Reference

https://ajaxcontroltoolkit.devexpress.com/PasswordStrength/PasswordStrength.aspx

11�See the reference for all of the properties, methods, and events of this class.

Chapter 25 Ajax Programming

https://ajaxcontroltoolkit.devexpress.com/PasswordStrength/PasswordStrength.aspx

531

Figure 25-9 shows an example of the PasswordStrength class.

Notice at 01 the ScriptManager control, which automatically downloads the Ajax

scripts necessary for asynchronous postbacks and partial-page rendering.

Notice at 02 the ASP.NET TextBox control we are extending. As the end user enters a

password into this text box, the password strength extender will display the strength of

the password with respect to the password strength criteria specified.

Notice at 03 the PasswordStrength control. As can be seen, we have set the

DisplayPosition property of the control to RightSide to indicate that the password strength

message should be displayed to the right of the password text box. We have also set the

MinimumLowerCaseCharacters property, the MinimumNumericCharacters property,

the MinimumSymbolCharacters property, and the MinimumUpperCaseCharacters

property to 1 to indicate the minimum number of these characters necessary to

fully satisfy the security requirements of the password. In addition, we have set the

PreferredPasswordLength property to 10 to indicate the preferred length of a password.

Note that this is the preferred length of a password. The length of a password is not

enforced by this property. We have also set the StrengthIndicatorType property to Text

to indicate that we want the strength indicator to display as text—not as a bar indicator.

We have also set the TargetControlID property to txtPassword to indicate the ID of the

TextBox control that the PasswordStrength control extends. And finally, we have set the

TextCssClass property to PasswordStrengthText to indicate the default CSS class selector

used to format the control. This class selector can be seen at 04. Note that the class selector

can contain other CSS formatting declarations as well.

The screenshot in the Result section of the figure shows the result of entering a

password that is deemed “average” by the standards we set in the properties of the

PasswordStrength control.

Chapter 25 Ajax Programming

532

Figure 25-9.  Example of the PasswordStrength class

Chapter 25 Ajax Programming

533
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5_26

CHAPTER 26

JavaScript Programming
26.1  �Introduction
JavaScript is a sophisticated, general-purpose, object-oriented, interpreted programming

language originally developed by Netscape Communications Corporation for building

Web applications that require client-side processing (i.e., processing that occurs in the

browser).1 In addition, JavaScript is a non-type-safe programming language. This means

that an invalid operation on an object (e.g., adding a string value to an integer value)

will not be detected at design time (i.e., when the source code is parsed and compiled)

but will be detected at runtime (i.e., when the operation is executed). However, before

an invalid operation occurs during execution, JavaScript will attempt to convert the

objects (i.e., operands) of the operation to types that are compatible with the operation

so that the operation can be executed without causing a program crash. For example, the

operation x = “abc” + 123 would not throw a type error during execution (and thus cause

the program to crash) even though abc is a string and 123 is an integer. This is because

JavaScript can (and will) convert the 123 to a string before the concatenation occurs.

Anyone familiar with C, C++, Java, or similar language will have little difficulty learning

JavaScript with its familiar curly bracket style.

In this chapter, we will begin by looking at browser compatibility and the importance

of testing the applications we develop with JavaScript using all of the browsers we expect

our end users to use. We will then discuss the script element. A script element contains

a script tag (<script>) and an associated end script tag (</script>) and defines an area

in a .aspx file that contains JavaScript code or points to an external file that contains

JavaScript code. Next, we will discuss the JavaScript function, which contains one or

more JavaScript statements and either performs a function (i.e., a task that returns a

value) or performs a procedure (i.e., a task that does not return a value). After that, we

1�Although JavaScript was initially designed to execute exclusively in Web browsers, it can now be
executed on Web servers, in desktop applications, and in runtime environments.

534

will examine the HTML Document Object Model. This model is the standard object

model and application programming interface for HTML documents that will permit us

to access the HTML elements that are rendered in the browser. And finally, we will look

at a number of JavaScript function examples. These examples will illustrate the use of

the JavaScript programming language to perform some commonly required client-side

tasks. Although there are many more aspects of the JavaScript programming language

than we will discuss in this chapter, we will learn enough to give us a good feel for how to

use JavaScript to perform client-side processing. The interested reader is encouraged to

explore the JavaScript programming language in more detail on his or her own.

26.2  �Browser Compatibility
All modern Web browsers (e.g., Internet Explorer, Chrome, Firefox) permit the execution

of JavaScript code via their own built-in JavaScript interpreters. Since a given Web

browser has its own JavaScript interpreter, it may or may not support all of the JavaScript

functionality defined in the ECMAScript Language Specification.2 The purpose of the

ECMAScript Language Specification is to standardize the JavaScript programming

language across all of the JavaScript interpreter implementations. Although JavaScript

is the most commonly used implementation of the ECMAScript Language Specification,

other commonly used implementations are JScript (i.e., Microsoft's dialect of the

ECMAScript standard used in Internet Explorer), V8 (i.e., Google’s dialect of the

ECMAScript standard used in Chrome), and SpiderMonkey (i.e., Mozilla’s dialect of the

ECMAScript standard used in Firefox).

Since browser compatibility is an important attribute of a robust Web application, it

is important that we thoroughly test the applications we develop with JavaScript using

all of the browsers we expect our end users to use. It is also important to remember

that JavaScript will not function in a browser that does not support scripting. Nor will

it function in a browser that has browser scripting disabled. Thus, we should code our

pages so that they remain useable in the absence of the features provided by JavaScript.

A good technique for ensuring this is called progressive enhancement. Progressive

enhancement requires that we code the pages of an application so that they work well

in the absence of JavaScript and then enhance those pages so that they work well in the

presence of JavaScript. This way, an application that makes use of JavaScript will work

properly whether or not a given browser permits the execution of JavaScript code.

2�ECMA stands for the European Computer Manufacturers Association.

Chapter 26 JavaScript Programming

535

26.3  �Script Elements
A script element contains a script tag (<script>) and an associated end script tag (</

script>). A script element either defines an area in a .aspx file that contains JavaScript

code, or it points to an external file (via the URL specified in the script element’s src

property) that contains JavaScript code. Although we will focus on the former approach

in this chapter, the latter approach is helpful when there are JavaScript functions or

procedure that must be performed in many places within a single Web application or

across multiple Web applications. So, instead of writing a segment of JavaScript code

to perform a function or procedure and then copying that code to many places, we

can write a single JavaScript function or procedure, save it in a JavaScript file, and then

call that function or procedure as needed. That way, when a change to the logic of the

JavaScript code is required, we need only make the change in one place.

Figure 26-1 shows an example of a script element. As we will soon see, we place

the JavaScript code we write between the <script> tag and the associated </script> tag.

Keep in mind that we can place a script element anywhere in a .aspx file. However, our

standard practice will be to place script elements at the bottom of our .aspx files.

Figure 26-1.  Example of a script element

26.4  �Functions
A JavaScript function contains one or more JavaScript statements and either performs a

function (i.e., a task that returns a value) or performs a procedure (i.e., a task that does

not return a value). A properly constructed JavaScript function begins with the word

function (in lower case) and is followed by the name of the function, a left parenthesis, a

comma-separated list of parameters (if any), a right parenthesis, a left curly bracket, one

or more JavaScript statements, and a right curly bracket.

Chapter 26 JavaScript Programming

536

When a parameter argument is a primitive data type (e.g., string, integer, decimal

number), it is passed by value. This means that a copy of the argument is passed by the

calling function to the called function. Thus, if the value of the argument is modified in

the called function, only the copy of the argument is modified. The associated argument

value in the calling function is left untouched. When a parameter argument is an object

(i.e., a collection of properties and methods), it is passed by reference. This means that

a reference to the object’s memory location is passed by the calling function to the

called function. In this scenario, if the object is modified in the called function, the

modification will be present in the calling function as well.

All of the variables declared inside a JavaScript function are local in scope. Thus,

they can only be accessed and/or manipulated by the code in that function. All of the

variables declared outside a JavaScript function, on the other hand, are global in scope.

Thus, they can be accessed and/or manipulated by the code in any function. Keep in

mind that the use of global variables can lead to unintended results, since multiple

functions can access and modify such variables independently. For this reason, the use

of global variables is usually discouraged.

26.5  �HTML Document Object Model
The HTML Document Object Model (DOM) is the object model and application

programming interface standard for HTML documents. In this model, all of the HTML

elements on a page are represented as objects, and each of these objects can contain

properties, methods, and events. Each time an HTML page is loaded into a Web browser,

an HTML document object is created that represents the page and its collection of HTML

elements. It is the presence of this object that permits us to programmatically (via

JavaScript) add new HTML elements to a page, modify existing HTML elements on a

page, and delete existing HTML elements from a page.

One of the methods of the HTML document object that we will make heavy use

of in this chapter is the getElementById method. This method permits us to retrieve

an individual HTML element in a page by referring to its unique ID property. The

invocation of this method takes the form

document.getElementById(HTML Element ID)

Chapter 26 JavaScript Programming

537

where HTML Element ID is the unique ID of the HTML element that we wish to access

and/or manipulate in the client via JavaScript.

Notice that the getElementById method refers to an HTML element in a page.

However, we typically don’t code HTML elements when developing ASP.NET Web

applications. Instead, we code ASP.NET server controls. The thing to keep in mind

is that all of the ASP.NET server controls on a page are translated to their equivalent

HTML elements by the server before the server sends the page back to the browser

for rendering. Thus, in the browser, there are no ASP.NET server controls per se—just

their equivalent HTML elements. So, the question becomes: How do we refer to an ASP.

NET server control by its ID property in JavaScript if only its equivalent HTML element

resides in the document object? The answer is: We set the ClientIDMode property of the

ASP.NET server control to Static. When we do this, the HTML element in the document

object is given the same ID as the ASP.NET server control (e.g., ddlState, radBasic,

txtLastName) when the ASP.NET server control is translated to its equivalent HTML

element. This makes it very easy for us to know the name of the HTML element we wish

to access and/or manipulate in the client via JavaScript.

As we write JavaScript code, it is important to remember that a JavaScript function

will not execute if even the smallest syntax error occurs (e.g., declaring a function with

the word Function instead of function). This can make JavaScript difficult to debug. Thus,

it is important to code and test carefully before deploying an application that includes

JavaScript.

26.6  �Examples
For the remainder of this chapter, we will learn from looking at some JavaScript

examples. These examples will illustrate the use of the JavaScript programming language

to perform some commonly required client-side processing tasks. Since JavaScript is

so similar to C# in terms of its structure and syntax, only a few examples are necessary

to illustrate the basics of the language. In the sections that follow, we will learn

about assignment operations, confirm dialogs and alert messages, control property

manipulation, date and time display, and iterative operations.

Chapter 26 JavaScript Programming

538

26.6.1  �Assignment Operations
In this section, we will learn how to assign values to control properties. Figure 26-2

shows an example of a JavaScript function that sets shipping information.

Notice at 01 and 02 the txtBillingLastName control and the ddlBillingState control,

respectively. These controls are associated with the person to be billed. As can be seen,

the ClientIDMode properties of these controls are set to Static so that we can refer to the

equivalent HTML elements by their ASP.NET server control IDs in the JavaScript code.

Notice at 03 the chkSameAsBilling control. This control indicates whether or not

the shipping information should be the same as the billing information. As can be seen,

the onClick property of this control is set to SetShippingInformation(). This is the name

of the JavaScript function that will be executed when the chkSameAsBilling control is

clicked.

Notice at 04 and 05 the txtShippingLastName control and the ddlShippingState

control, respectively. These controls are associated with the person to receive the

shipment. As can be seen, the ClientIDMode properties of these controls are set to Static

so that we can refer to the equivalent HTML elements by their ASP.NET server control

IDs in the JavaScript code.

Notice at 06 and 20 the script tag and its associated end tag. Together, these tags

define the area in the .aspx file that contains the page’s JavaScript code.

Notice at 07 the SetShippingInformation function that is executed when the

chkSameAsBilling control at 03 is clicked.

Notice at 08 that we are checking to see if the chkSameAsBilling control has been

checked. If it has been checked, we are setting the shipping fields to their corresponding

billing fields. If it has not been checked, we are setting the shipping fields to their default

values.

Notice at 09 that we are setting the value of the txtShippingLastName control to the

value of the txtBillingLastName control.

Notice at 10 that we are creating a local object called ddlBillingState and assigning it

the HTML element of the same name. This will permit us to refer to the HTML element

in shorthand form.

Notice at 11 that we are creating a local variable called strBillingSelectedValue and

assigning it the value of the billing state selected by the end user.

Notice at 12 that we are creating a local variable called strBillingSelectedText and

assigning it the text of the billing state selected by the end user.

Chapter 26 JavaScript Programming

539

Notice at 13 that we are setting the value of the ddlShippingState control to the value

in the strBillingSelectedValue variable.

Notice at 14 that we are setting the text of the ddlShippingState control to the text in

the strBillingSelectedText variable.

Notice at 15 that we are setting the value of txtShippingLastName control to its

default (i.e., blank).

Notice at 16 that we are creating a local object called ddlShippingState and assigning

it the HTML element of the same name. This will permit us to refer to the HTML element

in shorthand form.

Notice at 17 that we are setting the value of the ddlShippingState control to its default

(i.e., IN).

Notice at 18 that we are setting the text of the ddlShippingState control to its default

(i.e., Indiana).

Notice at 19 that we are ending the execution of the JavaScript function.

The first screenshot in the Result section of the figure shows the billing information

fields as entered by the end user. The second screenshot shows the result of checking

the checkbox to make the shipping information fields the same as their corresponding

billing information fields. And the third screenshot shows the result of unchecking the

checkbox to set the shipping information fields back to their default values.

Chapter 26 JavaScript Programming

540

Figure 26-2.  Example of a JavaScript function that sets shipping information

Chapter 26 JavaScript Programming

541

Figure 26-2.  (continued)

Chapter 26 JavaScript Programming

542

Figure 26-2.  (continued)

Chapter 26 JavaScript Programming

543

Figure. 26-2  (continued)

Chapter 26 JavaScript Programming

544

26.6.2  �Confirm Dialogs and Alert Messages
In this section, we will learn how to display confirm dialogs and alert message. Figure 26-3

shows an example of a JavaScript function that confirms the modification of an email address.

Notice at 01 the txtEmailAddress control that contains the email address to be modified.

Notice at 02 the btnModify control. As can be seen, the ClientIDMode property of

this control is set to Static so that we can refer to the equivalent HTML element by its

ASP.NET server control ID in the JavaScript code. We can also see that the OnClientClick

property of the control is set to return ConfirmModification(). The return part of this

property indicates that the called JavaScript function will return a value to the control.

The ConfirmModification() part of the property indicates the name of the JavaScript

function that will be executed when the btnModify control is clicked.

Notice at 03 and 10 the script tag and its associated end tag. Together, these tags

define the area in the .aspx file that contains the page’s JavaScript code.

Notice at 04 the ConfirmModification function that is executed when the btnModify

control at 02 is clicked.

Notice at 05 that we are creating a local variable called booConfirm. As can be seen

by how this variable is named, the intent of the variable is to contain a Boolean value.

Notice at 06 that we are displaying a confirm dialog and then assigning to the

booConfirm variable either true (if the end user selects OK) or false (if the end user

selects Cancel).

Figure 26-2.  (continued)

Chapter 26 JavaScript Programming

545

Notice at 07 that we are checking to see if the end user has selected OK or Cancel. If

he or she has selected OK, we are displaying an alert message indicating that the email

address will be changed. In addition, we are returning true to the btnModify control

so that the page will be posted back to the server and the code at 09 will be executed.

If the end user has selected Cancel, we are displaying an alert message indicating that

the email address will not be changed. We are also returning false to the btnModify

control so that the page will not be posted back to the server and the code at 09 will not

be executed.

The first screenshot in the Result section of the figure shows the result of clicking

the Modify button on the page. As can be seen, this displays the confirm dialog with

its two options—OK and Cancel. The second screenshot shows the result of clicking

the OK button on the confirm dialog, which displays an alert message stating that

the email address will be changed. When the OK button on this dialog is clicked,

the dialog will be dismissed, the page will be posted back to the server, and the

code required to update the email address will be executed. And finally, the third

screenshot shows the result of clicking the Cancel button on the confirm dialog,

which displays an alert message stating that the email address will not be changed.

When the OK button on this dialog is clicked, the dialog will be dismissed, but the

page will not be posted back to the server. Thus, the code required to update the

email address will not be executed.

Chapter 26 JavaScript Programming

546

Figure 26-3.  Example of a JavaScript function that confirms the modification of
an email address

Chapter 26 JavaScript Programming

547

26.6.3  �Control Property Manipulation
In this section, we will learn how to manipulate control properties. Figure 26-4 shows

an example of a JavaScript function that selects and deselects shippers and displays a

message.

Notice at 01 the chkAll control. When this control is clicked, all of the other

checkboxes on the page will be checked or unchecked depending on the current value

of the control’s Checked property. Also notice that the OnClick property of the control is

set to CheckAll(). This indicates the name of the JavaScript function that will be executed

when the chkAll control is clicked.

Notice at 02–05 the chkFedEx, chkUPS, chkUSPS, and lblMessage controls,

respectively. As can be seen, the ClientIDMode properties of these controls are set to

Static so that we can refer to the equivalent HTML elements by their ASP.NET server

control IDs in the JavaScript code.

Figure 26-3.  (continued)

Chapter 26 JavaScript Programming

548

Notice at 06 and 09 the script tag and its associated end tag. Together, these tags

define the area in the .aspx file that contains the page’s JavaScript code.

Notice at 07 the chkAll function that is executed when the chkAll control at 01 is

clicked.

Notice at 08 that we are checking to see if the chkAll control is checked. If the chkAll

control is checked, we are checking the other three checkboxes and disabling them

so that they cannot be manipulated by the end user. In addition, we are setting the

innerText property of the lblMessage control to an appropriate message. If the chkAll

control is not checked, we are unchecking the other three checkboxes and enabling them

so that they can be manipulated by the end user. In addition, we are setting the innerText

property of the lblMessage control to an appropriate message.

The first screenshot in the Result section of the figure shows the four checkbox

controls before a shipper has been selected. The second screenshot shows the result

of checking the Any checkbox. As can be seen, the three shippers have been checked

and disabled indicating that the shipment should be sent via the cheapest shipper.

And finally, the third screenshot shows the result of unchecking the Any checkbox and

selecting two individual shippers indicating that the shipment should be sent via the

cheapest selected shipper.

Chapter 26 JavaScript Programming

549

Figure 26-4.  Example of a JavaScript function that selects and deselects shippers
and displays a message

Chapter 26 JavaScript Programming

550

26.6.4  �Date and Time Display
In this section, we will learn how to display a running date and time. This date and time

will be displayed inside a label and will be updated every second. Figure 26-5 shows an

example of a JavaScript function that displays a running date and time inside a label.

Notice at 01 the HTML body element of the page. As can be seen, the onload

property of this element is set to StartClock(). This indicates the name of the JavaScript

function that will be executed when the body of the page is loaded into the browser.

Notice at 02 the lblDateTime control. The ClientIDMode property of this control is

set to Static so that we can refer to the equivalent HTML element by its ASP.NET server

control ID in the JavaScript code.

Notice at 03 and 10 the script tag and its associated end tag. Together, these tags

define the area in the .aspx file that contains the page’s JavaScript code.

Notice at 04 the StartClock function that is executed when the body of the page is

loaded into the browser.

Figure 26-4.  (continued)

Chapter 26 JavaScript Programming

551

Notice at 05 that we are immediately calling the UpdateClock function when the

StartClock function is executed. This sets into motion the continually updating date and

time.

Notice at 06 the UpdateClock function, which displays and updates the date and

time displayed in the label on the page.

Notice at 07 that we are creating a new Date object called objDate from the Date

class. Note that this automatically retrieves the current date and time from the client’s

operating system.

Notice at 08 that we are getting the locale-sensitive (e.g., language-sensitive) date

and time from the objDate object, concatenating them, and assigning the result to the

innerText property of the lblDateTime control.

Notice at 09 that we are calling the UpdateClock function again after waiting 1,000

milliseconds (i.e., 1 second). As can be seen, this creates an infinite loop that redisplays

the date and time in the label every one second.

The screenshot in the Result section of the figure shows the date and time as they

are displayed in the date/time label on the page. If we were able to view the page in real

time, we would see the date and time update every second.

Chapter 26 JavaScript Programming

552

Figure 26-5.  Example of a JavaScript function that displays a running date and
time inside a label

Chapter 26 JavaScript Programming

553

26.6.5  �Iterative Operations
In this section, we will learn how to perform iterative operations (i.e., repeating

operations, looping operations). Figure 26-6 shows an example of a set of JavaScript

functions that modify the product information in a drop-down list.

Notice at 01 the HTML body element of the page. As can be seen, the onload

property of this element is set to SaveProductOptions(). This indicates the name of the

JavaScript function that will be executed when the body of the page is loaded into the

browser.

Notice at 02–04 the radBasic, radPlus, and radDeluxe controls, respectively.

When these controls are clicked, the prices of the items in the drop-down list at

05 will be modified. Notice that the onClick properties of these controls are set to

UpdateProductPrice(). This indicates the name of the JavaScript function that will be

executed when these controls are clicked. Also notice that a parameter value of Basic,

Plus, or Deluxe is passed to the function depending on the radio button that is selected.

Notice as well that the ClientIDMode properties of these controls are set to Static so that

we can refer to the equivalent HTML elements by their ASP.NET server control IDs in the

JavaScript code.

Notice at 05 the ddlProduct control. As will be seen, the prices of the items in this

drop-down list will be modified to reflect the end user’s selection with regard to the

selected package—Basic, Plus, or Deluxe.

Notice at 06 and 11 the script tag and its associated end tag. Together, these tags

define the area in the .aspx file that contains the page’s JavaScript code.

Notice at 07 the SaveProductOptions function that is executed when the body of

the page is loaded into the browser. In this function, we are creating a new array object

from the Array class that contains three elements. We are then saving the three product

options in the drop-down list to the array so that we can restore them to their original

values when necessary (i.e., when a different radio button is selected). This function is

only invoked once.

Notice at 08 the UpdateProductPrice function that is executed when one of the radio

buttons is selected. In this function, we are using a switch structure to identify the type

of package the end user has selected—Basic, Plus, or Deluxe. If the end user has selected

the Basic package, we are calling the RestoreDropDownListOptions function to restore

the options in the drop-down list to their original values. If the end user has selected

the Plus package, we are calling the RestoreDropDownListOptions function to restore

the options in the drop-down list to their original values, defining an upcharge of $10,

Chapter 26 JavaScript Programming

554

and calling the UpdateDropDownListOptions function with the upcharge to increase

the prices of the items displayed in the drop-down list. If the end user has selected the

Deluxe package, we are calling the RestoreDropDownListOptions function to restore the

options in the drop-down list to their original values, defining an upcharge of $40, and

calling the UpdateDropDownListOptions function with the upcharge to increase the

prices of the items displayed in the drop-down list.

Notice at 09 the RestoreDropDownListOptions function. In this function, we are

looping through the elements of the array to restore the options in the drop-down list to

their original values.

Notice at 10 the UpdateDropDownListOptions function. As can be seen, this

function receives an upcharge value from the UpdateProductPrice function at 08. In this

function, we are looping through the items in the product drop-down list and modifying

their associated prices. Within the loop, we are getting the product from the drop-down

list and placing it into a product string that is easy to modify, locating and extracting the

original price of the product in the string, computing the new price of the product and

formatting it, replacing the old price with the new price, and replacing the product in the

drop-down list with the modified product string.

The first screenshot in the Result section of the figure shows the product drop-down

list with the Basic product package selected (the default). The second screenshot shows

the result of clicking the drop-down list to view the product options. Notice the options

in the drop-down list and their respective prices. The third screenshot shows the result of

selecting the Plus product package and clicking the drop-down list to view the modified

product options. Notice that the prices in the drop-down list have been increased by

$10. And finally, the fourth screenshot shows the result of selecting the Deluxe product

package and clicking the drop-down list to view the modified product options. Notice

that the prices in the drop-down list have been increased by $40.

Chapter 26 JavaScript Programming

555

Figure 26-6.  Example of a set of JavaScript functions that modify the product
information in a drop-down list

Chapter 26 JavaScript Programming

556

Figure 26-6.  (continued)

Chapter 26 JavaScript Programming

557

Figure 26-6.  (continued)

Chapter 26 JavaScript Programming

559
© Robert E. Beasley 2020
R. E. Beasley, Essential ASP.NET Web Forms Development, https://doi.org/10.1007/978-1-4842-5784-5

Index

A
Adding a cascading style sheet file, 333
Adding a Classes folder, 268
Adding a MasterPage class, 305
Adding a non-static C# class, 268
Adding a Page class, 32
Adding a Page class with a MasterPage, 309
Adding a SiteMap class, 345
Adding a skin file, 325
Adding a static C# class, 273
Adding a theme, 323
Advanced Research Projects Agency

Network (ARPANET), 3
Ajax

accordion class, 509
Ajax Control Toolkit, 507
AjaxFileUpload class, 513
BalloonPopupExtender class, 518
CalendarExtender class, 520
control classes, 509
control extender classes, 517
extension classes, 501
installing the Ajax Control Toolkit, 507
ModalPopupExtender class, 524
PasswordStrength class, 529
ScriptManager class, 500
UpdatePanel class, 501
UpdateProgress class, 504

Ajax programming, 499
Apache HTTP server, 5
Application layer, 3
Application server, 6
Arithmetic

operations, 193
Arithmetic operators, 194
Array class, 222
Array operations, 221
As Clause, 367
ASP.NET and C# Programming, 21
AspNet.ScriptManager.jQuery, 101
ASP.NET Server tags, 36
Assembly, 8
Assignment operations, 125
Assignment operators, 130
Asynchronous postbacks, 499
Attributes, 362

B
Banker’s rounding, 156, 202
Base class, 14
BaseValidator class, 101
Basic server controls, 39
Breadcrumb, 343
Break statement, 180
Business logic, 7
Button class, 45

https://doi.org/10.1007/978-1-4842-5784-5

560

C
Calendar class, 59
Cascading style sheet files, 332
Cast, 133
Cast operator, 149
C# Class, 267
CheckBox class, 63
Child class, 14
Class design, 266
Class diagram, 10
Classes, 8
Classes and objects, 10
Class selectors, 332
Client application, 5
Client-based state maintenance, 282
Client host, 5
Clients, 4
Client-server model, 4
Client-side processing, 533
Client-side validation, 115
Close tag, 36
Code behind database operations, 449
Code behind directives, 308, 311
Code behind file, 33
Code points, 126
Code redundancy, 14
Code reuse, 14
Code units, 126
Cohesion, 266
Collection operations, 241
Common Language Runtime (CLR), 8
Common type system, 8
CompareValidator class, 105
Compound assignment operators, 131
Concatenations, 183
Constant declarations, 130
Constructor methods, 14

Content pages, 303
Content placeholder, 303
Continue statement, 180
Control class, 18
Control operations, 161
Control parameters, 381
Conversion operations, 145
Convert class, 153
Cookie parameters, 381
Cookies, 284
Copy area end, 403, 428
Copy area start, 403, 428
Coupling, 266
Css selectors, 332
Custom C# classes, 265
Custom subsetting criterion, 386, 392
CustomValidator class, 114

D
Database administration, 365
Database design, SQL, and Data binding, 359
Database management

system (DBMS), 359
Database schema, 360
Database server, 6
Database usage, 365
DataBoundControl class, 379
Data control language, 365
Data definition language, 365
Data manipulation language, 365
Data models, 359
DataPager class, 441
Data pages, 441
Data query language, 365
Data source, 395, 420
Data source control, 397, 421

Index

561

Data validation controls, 99
Date and time operations, 207
Date formatting, 213
Date parsing, 214
Date-related methods, 212
Date-related properties, 211
DateTime structure, 208
Decision structures, 164
Declarative programming languages, 365
Default skins, 325
Design time, 21
Destructor methods, 14
Development machine email server, 490
DivideByZeroException class, 137
Domain, 127
.NET Framework, 8
Do-While Structure, 175
DropDownList class, 90
Dynamic menu, 349
Dynamic web pages, 4

E
ECMAScript Language Specification, 534
Element selectors, 332
Email messaging, 489
Encapsulation, 13
Encoded URL, 289
End tag, 36
Entity integrity, 363
Enumerations, 133
Equality operators, 162
Escape sequences, 184
Event handler methods, 11
Events, 13
Exception, 134
Exception class, 135
Exception handling, 134

Exception helper, 134
Execution plan, 366

F
File class, 254
File system operations, 253
File transfer protocol (FTP), 3
FileUpload class, 68
Filters, 386
Footer, 312
For-Each structure, 178
Foreign key, 363
FormatException class, 138
Format specifiers, 213, 218
Form parameters, 381
FormView class, 395
For structure, 176
Fourth generation programming

language, 364
403 Error, 37
404 Error, 347
Framework class library, 8
From clause, 366
Full-Page rendering, 499
Full path, 254

G
Google chrome, 5
Gregorian calendar, 208
Group By Clause, 367

H
Having clause, 367
Header, 312
HTML document object, 536

INDEX

562

HTML elements, 332
HTML tags, 36
HTTP request, 6
HTTP response, 6
HttpSessionState class, 296
HyperLink class, 71
Hypermedia, 3
Hypertext links, 29
Hypertext markup language (HTML), 6, 29
Hypertext transfer protocol (HTTP), 3

I
Identifier, 29
Identifier naming standards, 29
If-Else-If structure, 168
If-Else structure, 167
If structure, 164
ImageButton class, 74
Image class, 72
ImageMap class, 77
Imperative programming languages, 364
IndexOutOfRangeException class, 139
Information hiding, 13
Inheritance, 14
Instance, 11
Integrated development environment

(IDE), 22
Internet Information Services (IIS), 5
Internet Information Services Express (IIS

Express), 22
IP addresses, 6
Iterative structures, 174

J, K
JavaScript

assignment operations, 538
browser compatibility, 534

confirm dialogs and alert
messages, 544

control property manipulation, 547
date and time display, 550
examples, 537
functions, 535
HTML Document Object Model, 536
iterative operations, 553
script elements, 535

JavaScript programming, 533
Join operation, 371

L
Label class, 40
LinkButton class, 82
LinkedList class, 246
ListBox class, 92
ListControl class, 87
ListItem class, 89
ListView class, 420
Literal, 130
Logical operators, 163

M
MailMessage class, 490
Maintaining the state of a data

structure, 301
Managed code, 8
MasterPage class, 303
Master page directive, 306
Master pages, 303
Master type directive, 316
Math class, 201
Mathematical rounding, 202
Members, 9
Menu class, 349

INDEX

563

Menu Cursor, 351
Methods, 12
Microsoft Intermediate Language, 8
Microsoft Internet Explorer, 5
Microsoft SQL Server, 359
Microsoft SQL Server Management

Studio, 359
More Server Controls, 59
Mozilla Firefox, 5
Multiple exceptions, 142
Multiple-Row Database Table

Maintenance, 419

N
Named skins, 325
Namespace, 10
Narrowing conversions, 148
Naturally-occurring subsetting

criterion, 386, 392
Navigation, 343
Nested-If structure, 169
NextPreviousPagerField class, 442
Non-parameterized queries, 458
Non-persistent cookies, 285
Non-static classes, 10, 265
Non-type-Safe programming

language, 533
NuGet package, 101
NumericPagerField class, 445

O
Object class, 17
Object-orientation concepts, 9
One-dimensional arrays, 224
Open tag, 36
Oracle iPlanet Web Server, 5

Order By clause, 367
Order of precedence and associativity, 197
Original_{0}, 401, 426
OverflowException class, 141

P
Packets, 3
Packet switching, 3
Page class, 30
Page development, 29
Page directive, 33
Page region, 501
Paging controls, 441
Panel class, 94
Papercut, 490
Parameterized queries, 463
Parent class, 14
Parentheses, 199
Partial-page rendering, 499
Path, 254
Persistent cookies, 285
PostBack, 80
Primary key, 362, 363
Profile parameters, 381
Progressive enhancement, 534
Projects, 24
Properties, 12
Protected void, 35, 308
Public partial class, 35, 311

Q
Query optimizer, 366
Query plan, 366
Query string parameters, 381
Query strings, 289
Queue class, 244

INDEX

564

R
RadioButton class, 65
RangeValidator class, 107
RectangleHotSpot class, 78
Reference types, 125
Referential integrity, 363
RegularExpressionValidator class, 110
Relational database, 359
Relational database management system

(RDBMS), 359
Relational operators, 162
Relationships, 363
Relative path, 254
Render, 39
RequiredFieldValidator class, 103
Reserved words, 365
Result set, 453
Reuse, 266
Root directory, 254
Route parameters, 381
Run time, 21
Runtime error, 134

S
Script Manager, 100
Script Manager package, 101
Select clause, 366
Select parameters, 387
Separation of concerns, 34
Server, 4
Server application, 4
Server-based state maintenance, 294
Server host, 4
Server-side validation, 115
Session, 5
Session ID, 294
Session object, 294

Session parameters, 381
Sessions, 294
Session state, 294
Session timeout, 295
Simple assignment operators, 131
Simple Mail Transfer Protocol, 3, 489
Single-Row Database Table

Maintenance, 395
SiteMap class, 344
Skin files, 325
SmtpClient class, 492
Solution Explorer, 24
Solution file, 32
Solutions, 24
SortedList class, 250
SqlCommand class, 453
SqlConnection class, 450
SqlDataReader class, 455
SqlDataSource

Connection strings, 383
Data-bound control filtering, 386
Data-bound control population, 384
Filtering with control parameters, 386
Filtering with session parameters, 392

SqlDataSource class, 380
SQL injection, 463
SqlParameter class, 465
SqlParameterCollection class, 464
Stack class, 242
Starting a new project, 23
Start page, 36
Start tag, 36
Stateless, 281
State maintenance, 281
Static classes, 10, 265
Static menu, 349
Static Web pages, 4
Store-and-forward model, 489

INDEX

565

Stored procedures, 471
String class, 186
String operations, 183
Structure, 208
Structured Query Language (SQL), 364

Delete Statement, 378
Insert Statement, 374
Select Statement, 366
Update Statement, 377

Surrogate pairs, 126
Switch structure, 171
Switch-Through structure, 173
Synchronous postbacks, 499

T
TableCell class, 54
Table class, 52
TableRow class, 53
Tables, 361
Tags, 29
TCP/IP, 3
Telnet, 3
Templates, 395, 420
TextBox class, 43
Themes, 323
Ticks, 208
Time formatting, 218
Time-related methods, 216
Time-related properties, 216
Toolbox, 39
TreeView class, 353

Try-Catch-Finally structure, 137
Two-dimensional arrays, 231
Types, 125
Type safe, 146
Type-safe programming language, 21

U
Unicode characters, 126
Uniform Resource Locator, 29
Using directives, 35
UTF-16, 126

V
ValidationSummary class, 117
Value types, 125
Variable declarations, 127
Verbatim literals, 186
View state, 282
Visual Studio, 22

W, X, Y, Z
Web address, 29
Web Application Development, 3
Web browsers, 5
WebConfigurationManager class, 452
WebControl class, 19
Where clause, 367
While structure, 174
Widening conversions, 145

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Preface
	Part I: Overview
	Chapter 1: Web Application Development
	1.1	 Introduction
	1.2	 Client-Server Model
	1.3	 .NET Framework
	1.4	 Object-Orientation Concepts
	1.4.1 Classes and Objects
	1.4.2 Properties
	1.4.3 Methods
	1.4.4 Events
	1.4.5 Encapsulation
	1.4.6 Inheritance
	1.4.6.1 Object Class
	1.4.6.2 Control Class
	1.4.6.3 WebControl Class

	1.5	 ASP.NET and C# Programming
	1.6	 Visual Studio
	1.7	 Starting a New Project
	1.8	 Solution Explorer

	Part II: Single-Page Web Application Development
	Chapter 2: Page Development
	2.1	 Introduction
	2.2	 Identifier Naming Standards
	2.3	 Page Class
	2.4	 Adding a Page Class

	Chapter 3: Basic Server Controls
	3.1	 Introduction
	3.2	 Toolbox
	3.3	 Label Class
	3.4	 TextBox Class
	3.5	 Button Class
	3.6	 Table Class
	3.7	 TableRow Class
	3.8	 TableCell Class

	Chapter 4: More Server Controls
	4.1 Introduction
	4.2 Calendar Class
	4.3 CheckBox Class
	4.4 RadioButton Class
	4.5 FileUpload Class
	4.6 HyperLink Class
	4.7 Image Class
	4.8 ImageButton Class
	4.9 ImageMap Class
	4.10 RectangleHotSpot Class
	4.11 LinkButton Class
	4.12 ListControl Class
	4.13 ListItem Class
	4.14 DropDownList Class
	4.15 ListBox Class
	4.16 Panel Class

	Chapter 5: Data Validation Controls
	5.1	 Introduction
	5.2	 Script Manager Package
	5.3	 BaseValidator Class
	5.4	 RequiredFieldValidator Class
	5.5	 CompareValidator Class
	5.6	 RangeValidator Class
	5.7	 RegularExpressionValidator Class
	5.8	 CustomValidator Class
	5.9	 ValidationSummary Class

	Part III: C# Programming
	Chapter 6: Assignment Operations
	6.1	 Introduction
	6.2	 Types
	6.3	 Variable Declarations
	6.4	 Constant Declarations
	6.5	 Assignment Operators
	6.6	 Enumerations
	6.7	 Exception Handling
	6.8	 Exception Class
	6.8.1 DivideByZeroException Class
	6.8.2 FormatException Class
	6.8.3 IndexOutOfRangeException Class
	6.8.4 OverflowException Class
	6.8.5 Multiple Exceptions

	Chapter 7: Conversion Operations
	7.1	 Introduction
	7.2	 Widening Conversions
	7.3	 Narrowing Conversions
	7.4	 Convert Class

	Chapter 8: Control Operations
	8.1	 Introduction
	8.2	 Relational Operators
	8.3	 Equality Operators
	8.4	 Logical Operators
	8.5	 Decision Structures
	8.5.1 If Structure
	8.5.2 If-Else Structure
	8.5.3 If-Else-If Structure
	8.5.4 Nested-If Structure
	8.5.5 Switch Structure
	8.5.6 Switch-Through Structure

	8.6	 Iterative Structures
	8.6.1 While Structure
	8.6.2 Do-While Structure
	8.6.3 For Structure
	8.6.4 For-Each Structure
	8.6.5 Break Statement
	8.6.6 Continue Statement

	Chapter 9: String Operations
	9.1	 Introduction
	9.2	 Concatenations
	9.3	 Escape Sequences
	9.4	 Verbatim Literals
	9.5	 String Class

	Chapter 10: Arithmetic Operations
	10.1 Introduction
	10.2 Arithmetic Operators
	10.3 Order of Precedence and Associativity
	10.4 Parentheses
	10.5 Math Class

	Chapter 11: Date and Time Operations
	11.1 Introduction
	11.2 DateTime Structure
	11.3 Date-Related Properties
	11.4 Date-Related Methods
	11.5 Date Formatting
	11.6 Date Parsing
	11.7 Time-Related Properties
	11.8 Time-Related Methods
	11.9 Time Formatting

	Chapter 12: Array Operations
	12.1 Introduction
	12.2 Array Class
	12.3 One-Dimensional Arrays
	12.4 Two-Dimensional Arrays

	Chapter 13: Collection Operations
	13.1 Introduction
	13.2 Stack Class
	13.3 Queue Class
	13.4 LinkedList Class
	13.5 SortedList Class

	Chapter 14: File System Operations
	14.1 Introduction
	14.2 File Class

	Chapter 15: Custom C# Classes
	15.1 Introduction
	15.2 Class Design
	15.3 C# Class
	15.4 Adding a Classes Folder
	15.5 Adding a Non-static C# Class
	15.6 Adding a Static C# Class

	Part IV: Multiple-Page Web Application Development
	Chapter 16: State Maintenance
	16.1 Introduction
	16.2 Client-Based State Maintenance
	16.2.1 View State
	16.2.2 Cookies
	16.2.3 Query Strings

	16.3 Server-Based State Maintenance
	16.3.1 Session State
	16.3.2 HttpSessionState Class

	16.4 Maintaining the State of a Data Structure

	Chapter 17: Master Pages
	17.1 Introduction
	17.2 MasterPage Class
	17.3 Adding a MasterPage Class
	17.4 Adding a Page Class with a MasterPage

	Chapter 18: Themes
	18.1 Introduction
	18.2 Adding a Theme
	18.3 Skin Files
	18.4 Adding a Skin File
	18.5 Cascading Style Sheet Files
	18.6 Adding a Cascading Style Sheet File

	Chapter 19: Navigation
	19.1 Introduction
	19.2 SiteMap Class
	19.3 Adding a SiteMap Class
	19.4 Menu Class
	19.5 TreeView Class

	Part V: Database Connectivity
	Chapter 20: Database Design, SQL, and Data Binding
	20.1 Introduction
	20.2 Database Schema
	20.3 Tables
	20.4 Attributes
	20.5 Relationships
	20.6 Structured Query Language
	20.6.1 Select Statement
	20.6.2 Insert Statement
	20.6.3 Update Statement
	20.6.4 Delete Statement

	20.7 DataBoundControl Class
	20.8 SqlDataSource Class
	20.8.1 Connection Strings
	20.8.2 Data-Bound Control Population
	20.8.3 Data-Bound Control Filtering
	20.8.3.1 Filtering with Control Parameters
	20.8.3.2 Filtering with Session Parameters

	Chapter 21: Single-Row Database Table Maintenance
	21.1 Introduction
	21.2 FormView Class

	Chapter 22: Multiple-Row Database Table Maintenance
	22.1 Introduction
	22.2 ListView Class
	22.3 DataPager Class
	22.4 NextPreviousPagerField Class
	22.5 NumericPagerField Class

	Chapter 23: Code Behind Database Operations
	23.1 Introduction
	23.2 SqlConnection Class
	23.3 WebConfigurationManager Class
	23.4 SqlCommand Class
	23.5 SqlDataReader Class
	23.6 Non-parameterized Queries
	23.7 Parameterized Queries
	23.7.1 SqlParameterCollection Class
	23.7.2 SqlParameter Class

	23.8 Stored Procedures

	Part VI: Additional Functionality
	Chapter 24: Email Messaging
	24.1 Introduction
	24.2 Development Machine Email Server
	24.3 MailMessage Class
	24.4 SmtpClient Class

	Chapter 25: Ajax Programming
	25.1 Introduction
	25.2 ScriptManager Class
	25.3 Extension Classes
	25.3.1 UpdatePanel Class
	25.3.2 UpdateProgress Class

	25.4 Ajax Control Toolkit
	25.4.1 Installing the Ajax Control Toolkit
	25.4.2 Control Classes
	25.4.2.1 Accordion Class
	25.4.2.2 AjaxFileUpload Class

	25.4.3 Control Extender Classes
	25.4.3.1 BalloonPopupExtender Class
	25.4.3.2 CalendarExtender Class
	25.4.3.3 ModalPopupExtender Class
	25.4.3.4 PasswordStrength Class

	Chapter 26: JavaScript Programming
	26.1 Introduction
	26.2 Browser Compatibility
	26.3 Script Elements
	26.4 Functions
	26.5 HTML Document Object Model
	26.6 Examples
	26.6.1 Assignment Operations
	26.6.2 Confirm Dialogs and Alert Messages
	26.6.3 Control Property Manipulation
	26.6.4 Date and Time Display
	26.6.5 Iterative Operations

	Index

