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ABSTRACT
In teaching an introduction to transport or systems dynamics modeling at the undergraduate level,
it is possible to lose pedagogical traction in a sea of abstract mathematics. What the mathematical
modeling of time-dependent system behavior offers is a venue in which students can be taught that
physical analogies exist between what they likely perceive as distinct areas of study in the physical
sciences.We introduce a storyline whose characters are superheroes that store and dissipate energy
in dynamic systems. Introducing students to the overarching conservation laws helps develop the
analogy that ties the different disciplines together under a common umbrella of system energy. In
this book, we use the superhero cast to present the effort-flow analogy and its relationship to the
conservation principles of mass, momentum, energy, and electrical charge. We use a superhero
movie script common tomechanical, electrical, fluid, and thermal engineering systems to illustrate
how to apply the analogy to arrive at governing differential equations describing the systems’
behavior in time. Ultimately, we show how only two types of differential equation, and therefore,
two types of system response are possible. is novel approach of storytelling and a movie script is
used to help make the mathematics of lumped system modeling more approachable for students.

KEYWORDS
mathematical modeling, systems dynamics, transportmodeling, lumped system anal-
ysis, engineering mechanics, systems modeling, modeling approximation, energy,
storage, effort, flow, multi-disciplinary systems
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Preface

If I make a mark in time,
I can’t say the mark is mine;
I’m only the underline
Of the word.
Like everybody else, I’m searchin’ through
All I’ve heard.

Cat Stevens
“Tuesday’s Dead”

ere is a transparency to my accumulated writing. When I look deep
beneath my declarations, I see the underlying thoughts of others. I
realize now how much of what I have said is neither original nor unique.
ought is forever being revived, recycled and renewed.

Robert Fulghum
Words I Wish I Wrote

e technical content in this book is based on disciplinary physics whose mathematical
modeling is well-known. e overarching concepts of effort and flow variables have been pre-
sented before in a variety of ways [6–8, 18, 19]. Personally, I wish I’d been taught this way of
analogical thinking in my undergraduate studies. Only recently was I taken by the power in the
analogy when tasked to teach a course in systems dynamics. In the course of teaching, I developed
a story to accompany the analogy. What is offered here is this story. e mathematical relations
are not new, but the story is. Like Cat Stevens and Robert Fulghum, I still find value in this
interpretation of “words said before.” As the physicist Joanne Lavvan admits in her interview for
the book Einstein’s God [17], “I have not changed the facts; I’ve only changed the approach to the
facts.”
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THE LANGUAGE OF MATHEMATICS
Schooling, Frey asserts, discriminates against right-brained functions in
favor of left-brain functions. Analogical thinking should be done BEST
by right-brain-dominant individuals, but transport processes are often
taught in an abstract, mathematically oriented manner. us, people
who should be best able to understand transport process applications
must struggle to learn them in the abstract.

Arthur T. Johnson
Biological Process Modeling: An Analogical Approach

Mathematics is the language of modeling. Richard Feynman has called it “the language
Mother Nature speaks” [5]. erefore, it does no good to try to understand her without it. In
the business of mathematically modeling material behavior, it turns out that polymer transport
of embedded fibers, stresses in dry, densely packed granular materials, and anisotropy in crys-
talline metals have something in common. Mathematical models for all of these physical phe-
nomena share a common mathematical formulation based on the discipline-specific underlying
physics. e ultimate commonality between different physical systems is how they are represented
mathematically. What can make studying these fields daunting is the level of abstraction in the
mathematics. is mathematics can seem cumbersome, but it is also the single underlying story-
line, the common thread for which each of the individual applications is but one manifestation.
Mathematics can be like the DNA that is common to two people who are more alike than they
appear.

In usingmathematics tomodel, we draw a unique picture of what is inherently similar about
distinct scientific disciplines under a wide modeling umbrella. Previous treatments have success-
fully applied the principles of mathematical modeling to draw the boundaries of this umbrella.
But mathematical abstraction has often kept the umbrella at bay for those who think less “left-
brained.” In today’s digital world, more and more is done on our behalf by models and simulations
entrusted to the computer and crunching “big data.”

Students don’t understand numbers as well as they once did. ey rely on
the computer’s perfection, and they are unable to check its answers in
case they type the numbers in wrong. Perhaps our society will decide
that the average person does not need to understand numbers and that
we can entrust this knowledge to an elite caste (the computer) [but
either way] there is a catch. In order to say anything about the universe
with mathematics, we have to construct a mathematical model. And
models are always imperfect. ey always oversimplify reality, and every
mathematical model begins with assumptions. Sometimes we forget
these are only assumptions. We fall in love with our models. Major
trauma ensues when we have to modify or discard them.

Dana MacKenzie
e Universe in Zero Words
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Dana MacKenzie may be right that we are possibly moving to a world where mathematics
may be the machine behind the curtain. But engineers will still have to build, maintain, and
ultimately understand the machine. So, math matters! Ultimately what is essential for today’s
engineering student is to understand the implications of mathematical simulation performed on
their behalf. How that is done is not necessarily the end of the story, but it may be finding the
path of least abstract resistance. We ultimately need a way to introduce the mathematics at an
appropriate level for new learners. We too often trudge through a nest of complexity trying to
find the kernel of wisdom that excites. Complexity is often left to “the experts to explain.” e
problem is we don’t often enough pull it off. Fortunately, complex systems have always been, on
some level, simplified through the telling of stories.

THE LANGUAGE OF EXPERTS
Students are challenged by important aspects of engineering that can
seem obvious and easy to experts, the so called “expert-blind-spot”
which can impede effective classroom instruction.

Susan Singer and Karl Smith
Understanding and Improving Learning in Undergraduate Science and

Engineering

Singer and Smith [13] make a salient point: that experts have too often forgottenmore than
students have yet to learn. We’re so far into the forest, we may have forgotten how to describe
the trees. e reason some experts fail to communicate is that they’ve been trained to talk in
jargon and unnecessary precision which begets complexity without understanding. is sentiment
is passionately outlined by Tyler DeWitt, an MIT doctoral student in microbiology and high
school teacher: that good science communication can cut through exhaustive detail by telling a
good story.

In the communication of science, there is this obsession with
seriousness. Science communication has taken on this idea I call the
tyranny of precision where you can’t just tell a story. Good storytelling is
not about detail; it’s all about emotional connection! We have to
convince our audience that what we’re talking about matters by knowing
which details to leave out so that the main point still comes across! e
great architect Mies van der Rohe said “Sometimes you have to learn to
lie in order to tell the truth.” I understand the importance of detailed,
specific scientific communication between experts. But not when we’re
trying to teach young learners. (In this case) leave out the seriousness,
leave out the jargon, leave out those annoying details, and just get to the
point! Make me laugh. Make me care. How should you start? How
about saying “Listen let me tell you a story”?

Tyler DeWitt
TED Talk: Hey Science Teachers, Make It Fun!
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So we set out to tell a story. A story where animation, characters, roles, and a script of-
fer a less formal introduction to the common story of energy storage and loss. e way around
abstraction is through metaphor and analogy.

THE IMPORTANCE OF TRIANGULATION
It is of first rate importance that you know how to “triangulate” – that
is, to know how to figure something out from what you already know.

R.P. Feynman
Tips on Physics

Analogical reasoning is based on the brain’s ability to form patterns by
association. A new idea is compared to an idea that is already
well-understood. e brain may be able to understand (these) new
concepts more easily if they are perceived as being part of a pattern.

Jonah Lehrer
HowWe Decide

Educators can help students change misconceptions by using “bridging
analogies” that link students’ correct knowledge with the situation about
which they harbor false beliefs. Using multiple representations in
instruction is one way to move students to expertise.

Susan Singer and Karl Smith
Understanding and Improving Learning in Undergraduate Science and

Engineering

e common theme of bridging disciplines shines forth. is can be accomplished pow-
erfully by employing analogies. An emphasis on analogical thinking is adopted throughout this
book. e concepts are not new. Only the presentation. ere is a common story, “a single script
to essentially the same movie.” e movie can be set in a variety of stages: electrical current flow,
fluid mass transport, heat flow, and momentum transfer. In each of these distinct applications, we
are essentially watching remakes of this same underlying movie: same script, same characters, but
different actors playing the roles. ese different actors bring their own nuanced interpretation
to the specific characters they play.

If you’ve ever seen a re-make of an old movie, you’ve experienced this sort of thinking.
You’ve seen the story told before through the eyes of one director and a specific cast of actors. In
what follows, our pedagogical approach is simply to view the common script through the eyes of
four distinct casts. We’ll see that the story told is the same, but each cast brings its own distinct
feel to the common script. Also, as is the case whenever one is presented with two tellings of
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essentially the same story, we tend to prefer one cast. People often relate all other interpretations
to this favorite telling.

THE CAPTAINS OF ENERGY STORY
Storytelling provides a method for scholarly discourse in engineering
education to make implicit knowledge more explicit, promote reflective
practice, and provide entry points into a community of practice.

C.J. Atman, et al.
Enabling Engineering Student Success

is book uses storytelling to unify the concepts that underlie transport modeling, and
make that modeling come alive. In IMAGINE: How Creativity Works, Jonah Lehrer [9] describes
how such a premise can dramatically awaken the reader:

Our breakthroughs often arrive when we apply old solutions to new
situations. e best way to understand this conceptual blending is to look
at the classic children’s book Harold and the Purple Crayon. e premise
of the book is simple: Harold has a magic crayon. When he draws with
this purple crayon, the drawing becomes real. If Harold wants to go for a
walk, he simply draws a path with his crayon. But here’s the twist that
makes Harold and the Purple Crayon (so) engaging: it blends together two
distinct concepts of the world. Although the magic crayon is a fantastical
invention Harold still has to obey the rules of reality. When Harold
draws a mountain and tries to climb it, gravity still exists in the crayon
universe. e book is a delicate balance of the familiar and the fictional.

Jonah Lehrer
IMAGINE: How Creativity Works

One of the problems with math is that we learn to speak the language on time scales that are
not always aligned with our understanding of unifying physical concepts such as energy. Energy
is a great unifier of discussions on physical systems, but has not always been exploited as the
storyteller that it can be. Energy illustrates a common pattern in each story. In this book, you
will be introduced to the Captains of Energy who are at work in engineering systems that are
excited by a world outside of themselves, a world controlled by Father Force. Father Force will
deliver energy to the system. e Captains will play a game of catch with the imparted energy, a
game of monkey-in-the-middle where the Evil Dr. Friction eats away at the energy cache as it
is exchanged between Captains Potential and Kinetic Energy again and again. e familiar and
fictional are used to unify the mathematical abstraction in an exercise in conceptual blending. e
purpose is to convince you that there are only three characters, four casts, one script, and only two
equations you need to understand. e purple crayon is tied to reality and made familiar in an
attempt to foster longer lasting learning. We script the movie and screenplay with the different
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actors that appear on the mechanical, electrical, fluid, and thermal stages. One important result
of thinking in this way is that you can learn that “breadth at the expense of depth” has inherent
advantages for life-long learning. e ability to see how “different things look alike” will equip
you with the tools that allow you to adapt to other applications whose underlying physics may be
distinctly different, but whose mathematical formulation you have “already seen” before.

OUTLINE OF THE BOOK
Chapter 1 addresses the overarching analogy of all systems variables as belonging to one of two
categories:

1. Effort variables and

2. Flow variables

We introduce characters that represent the three key system elements in any transport sys-
tem: inertia, stiffness, and friction. ereby, we cast several simple systems in this analogical
framework and set the stage for the analogy’s universality among separate engineering disciplines.
We summarize well-known and essential mathematical relations that correspond to each of the
system elements and their respective characters. We introduce the idea that there are separate
casts of players in each engineering discipline, but they play the same three roles of the system
elements. e script is, in this sense, always the same. Only the actors playing the roles are differ-
ent. As when any movie is cast with different actors, the same script, when played out, can have
a quite different feel, but the storyline remains unchanged.

In Chapter 2, we use the mathematical relations for system elements directly in a conserva-
tion principle resulting in a governing differential equation. We provide an example of how this
is accomplished for an electrical system, as this is most often the discipline to which all others are
made analogous.

In Chapter 3, we illustrate several examples of electrical systems and derive their respective
governing differential equations. We examine several possible systems, but stress the procedure
more than the system specifics. We do this to emphasize that the specifics can be viewed as
incidental. Here, we provide reasoning for students to understand when governing equations will
be first order and second order. We also introduce the notion of a normalized form of these
equations and their solutions.

Chapter 4 presents the mechanical analog of systems similar to those examined in Chap-
ter 3. Actors in the mechanical cast are presented and their roles in specific systems are offered as
examples. We present single and dual energy character scripts that result in first and second order
differential equations, respectively.

In Chapter 5, we exploit linearity to find solutions to the normalized governing differential
equations in the time domain. We offer an examination of dimensionless solutions as a means to
illustrate the concept of a master curve that cements the analogy mathematically. We present the
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forms of master curves for first and second order systems and set the stage for analogies in fluid
and thermal systems.

In Chapter 6, we present classical solutions for systems in steady state that are excited by
harmonic loads. Classically referred to as system response in the frequency domain, solutions
are obtained via use of Laplace transforms and sinusoidal transform functions. It is typical to see
these solutions already in dimensionless form rendering total system solutions that are entirely di-
mensionless. We explain why casting models in dimensionless form is serendipitous for predictive
capability.

In Chapter 7, we present the system analogy for fluid and thermal systems. We illustrate
several examples of where first and second order systems arise and the nonexistence of second
order thermal systems.

roughout this book, our intention is to provide an analogous procedure whereby
students can see that deriving governing differential equations is a task accomplished always in
the same manner, independent of the system’s discipline. In the Chapter Activities following
Chapters 2–7, we present a small series of applications whereby the analogy can be used to
construct equivalent systems that should now “look familiar.” We hope this belies a complexity
that is born of specific detail, a detail which we argue does not actually exist when one approaches
the mathematical model from the perspective of a common movie script merely played out by
new and different casts of actors.

Vincent C. Prantil and Timothy Decker
January 2015
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C H A P T E R 1

If You Push It, It Will Flow
Lenny: “What makes things move, George?”
George: “Forces do, Lenny.”
Lenny: “What makes things stop moving, George?”
George: “Forces do, Lenny.”

Leonard Susskind and George Hrabovsky
eeoretical Miminum:

What You Need to Know to Start Doing Physics

At first glance, it is not often evident that individual disciplines in the physical sciences
exhibit a fascinating similitude. at is, behaviors in distinct fields share a unifying theme. For
instance, a voltage drop across a circuit causes charge or current to flow. Similarly, a temperature
difference causes heat to flow from hot to cold. ewindfall for engineers is that the mathematical
models for these transport processes, either for current or heat, are identical! Richard Feynman
has said that “mathematics are the eyes with which we see physics” [3, 5]. To the more physically
inclined, this may appear to be placing the cart ahead of the horse. But when we view the world
this way, models allow us to “see” a unifying theme that underlies what we physically observe.
Mother Nature, in her sense of orderliness, has chosen to sing a similar song in different keys.
e music is mathematics [2]. But mathematics can be a double-edged sword. While it can help
us to see patterns and maybe even search for physical insight through patterns, it can be abstract
and elusive for the new learner with less experience using their newly acquired tools of calculus.

Here, we define a movie script that has only four character roles. ese will be a character
putting energy into the system, two characters who store energy, and an energy eater. ese roles
will be played by a new and different cast in each discipline (the electrical, mechanical, fluid, and
thermal worlds). When a movie is remade with new actors portraying the characters, often people
will take a liking to one cast over another. In other words, one particular cast of actors bring the
screenplay to life in a particularly more meaningful way for them. So the relationship between
voltage and current above is analogous to an identical relationship between temperature and heat
flow. Often engineers with a propensity for viewing the world “electrically” can translate a thermal
system into an equivalent electrical one for the purposes of understanding “the movie” with a new
and different cast. e reason this is so is because there is a common framework in which current
and heat flow may be cast where the characters are the same; they are merely portrayed by different
actors. is analogical thinking is a formidably powerful tool for fostering learning.
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1.1 THE EFFORT-FLOW ANALOGY
All learning is by analogy.

Albert Einstein

No set of engineering principles is more useful or pervasive than the
concepts of effort variables and flow variables. By analogy, these can be
applied to almost any situation involving transfer of something from one
location or situation to another.

A.T. Johnson
University of Maryland, College Park

e substrate of analogical thinking involves recognizing a commonality between what,
on the surface, may initially appear to be unrelated. For instance, the flow of mass, momentum,
heat, and electrical charge are not as independent as they may appear at first glance. In fact, a
powerful unifying theme or analogy exists linking the transport models in these otherwise distinct
disciplines.

Figure 1.1: A force applied to a mechanical system causes motion to occur. Force must continually
be applied in the presence of friction if motion is to continue.

Effort variables represent the force-like quantities, forces in and on a system. Flow variables
are quantities that change in response to the applied effort. e effort and flow are called con-
jugate pairs because they are necessarily married in a description of work and energy. Consider
the example of a force applied to a block along a frictional surface. If there is sufficient force, the
block will move. e block is a system characterized by its inertia and the friction between the
block and the floor. A character we will call Father Force provides an externally applied effort
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to the block. Father Force lives in a world outside of the system. e external force or effort he
supplies, if high enough to overcome the friction force, will cause a change in the block’s velocity
or flow.

e force on the block and the resulting motion cannot be specified independently, i.e.,
there is an explicit relation between these two quantities. We can associate motions with requisite
forces or, just the same, forces with the ensuing motion. While causality is, in some sense, in the
mind of the observer, we can agree from this point on that a force applied to a system causes
motion to take place. It is these quantities of force and subsequent motion that will form the
basis for an elementary analogy. Consider now an electrical analog to this mechanical system. If
you place a voltage difference across a resistor, current will flow through the resistor. For a known
amount of resistance, you cannot specify the voltage difference applied and the resulting current
independently. ey are related. e electrical voltage difference acts like a net force. is net
force pushes electrical charge through the resistor. e resistor represents an electrical analog to
friction, if you will. And the current is a rate of change of electrical charge with time, just as the
velocity of the block is a rate of change of displacement with time. What remains the same is
that when you place an effort difference or a net effort across a system, flow occurs through the
system.

..

Of Special Note

In any transport process, a difference in an effort variable across a small region
of a system drives a transport or flow of some quantity through the small region.

So, a force difference or net force across a mass will cause a change in its momentum.
A difference in electrical potential (or voltage) causes current to flow. A temperature difference
causes heat to flow while a pressure difference causes fluid to flow. In a unifying template, force,
voltage, temperature, and pressure play analogous roles. ey are the effort driving the flow of,
respectively, momentum, (electrical) charge, (heat) energy, and mass. ese are the four quantities
that are classically conserved or balanced in all systems. ese are four quantities you can neither
create nor destroy. Effort always drives flow. And what flows is usually related to whatever is
conserved. Learn to think this way and almost everything you will learn in engineering will abide
by this same set of rules wherever transport or dynamics are involved.

We list the conjugate effort and flow variables for the four separate disciplines in Table 1.1.
Here, the four disciplines have fostered models that describe how mechanical momentum, fluid
mass, electrical charge, and thermal heat flow under the influence of force, pressure, voltage, and
temperature differences respectively.

In the course of your education, you may come across the nomenclature of a generalized
force. A simple description in the current context is that a generalized force acts through a gen-
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Table 1.1: Effort and flow variables used to describe transport of momentum, mass, heat, and charge

Discipline Effort Flow

Electrical Voltage Current

Mechanical Force Velocity

Fluid Pressure Mass Flow Rate

Thermal Temperature Heat Flow Rate

eralized displacement to produce work [16]. In a mechanical system, forces act through displace-
ments to do work. In rotational mechanical systems, torque acts through an angular displacement
to perform work (see Table 1.2). Note the units of force multiplied by displacement, e.g., N-m
or joules, J, is the same as the product of torque and angular displacement, Nm-rad or N-m or
J, units of work (and energy). In electrical systems, the product of voltage and charge is given by
the product of volts and coulombs. By definition, this product is also measured in joules, J. We
have chosen to associate flow with the time rate of change of a displacement-like quantity, e.g.,
velocity, angular velocity, or current. As such, we will work with the following convention: effort
is a generalized force, while flow is the derivative of a generalized displacement. e product of
effort and flow will result in power or the rate at which work is performed on or energy is input
to a system.

Table 1.2: Concept of generalized force and motion in mechanical systems

Discipline Effort Flow

Mechanical Generalized Force Generalized Motion

Translational Force Velocity

Rotational Torque Angular Velocity

..

Of Special Note

Becausewe follow the flow of a conserved quantity,most often the flowvariable
is the time rate of change of the conserved quantity.

1.1.1 SYSTEM ELEMENTS
e screenplay of the transport process movie is written in terms of energy which is always con-
served. As we will see soon, the concept of conservation plays a critical role in modeling. Since
all real systems involve losses in energy, it would be more correct to say that energy is always bal-
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anced. e balance is composed of two types of stored energy pitted against the eventual losses.
So our movie has two types of characters or elements: those that store energy and those that
dissipate energy. Further, there are two elementary storage characters: those that store potential
energy and those that store kinetic energy.

Storage Elements
e key role of the system elements or components in modeling is that they represent explicit
relations between the effort and flow. A system element will be portrayed by a character in our
movie. Any transport process can, at any moment in time, store energy by virtue of its effort
variable or its flow variable. We call energy stored by virtue of a system’s effort variable potential
energy. Any system element that stores potential energy will play the role of Captain Potential
Energy. is energy is locked inside a system by way of an effort difference that can be relaxed to
allow the energy to be released in a form evidenced by the system’s flow variable. Energy stored
by virtue of a system’s flow variable is kinetic energy. Any system element that stores kinetic
energy will play the role of Captain Kinetic Energy. In what follows, we will write mathematical
expressions for the energy storage that will have analogs in each discipline of study. ey will
always look the same. To plant the analogy, we choose the electrical and mechanical disciplines
to demonstrate examples of the system elements or characters. We will also use these disciplinary
examples to attempt to shed light on “how” potential and kinetic energy are stored and “who”
stores them.

Potential Energy Storage Elements ose elements of transport that store potential energy do
so by virtue of building up an effort difference that can be released to perform useful work. In
these cases, flow is always proportional to a time derivative of effort:

FLOW /
d

dt
ŒEFFORT� (1.1)

where the proportionality constant determines the specific amount of flow released upon relax-
ation of an effort difference or the capacity of the process to perform work. As such, we term this
constant the system capacity or capacitance, C.

..

Of Special Note

Energy stored by virtue of stored differences in effort is potential energy.
Characters that store potential energy follow the equation:

FLOW D C
d

dt
ŒEFFORT� (1.2)

that defines the character’s capacitance.
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Recall that in electrical circuits, capacitors are system elements that store energy through
voltage differences across dielectric plates. Upon discharge, a flow of charge or current is released.
For this process:

i.t/ D C
dV.t/

dt
(1.3)

Analogously, we may ask which system element stores potential energy in a mechanical
system. We typically recall from elementary mechanics that this is a spring. Potential energy is
stored by virtue of a stored effort or mechanical force in the deformed spring. Recall that the force
and displacement are related by Hooke’s law for simple, linear springs.

F D kx (1.4)

No differential relation is evident, so let’s examine our storage a bit more closely. Recall
that the flow variable is velocity, the time derivative of displacement. In fact, flow variables are
often related to conserved or balanced quantities. In mechanical systems, momentum is balanced.
In systems where mass is constant, this implies that velocity is the appropriate flow variable when
linear momentum is conserved. Using the definition of velocity as the time derivative of displace-
ment relates velocity to a time derivative of force:

x.t/ D
1
k
F.t/

) � D
dx.t/

dt
D

1
k

dF .t/
dt

(1.5)

en, by analogy, the mechanical capacitance is given by the reciprocal of the spring stiff-
ness:

CMECH D
1

k
(1.6)

Generalizing, by analogy, a transport process exhibits a capacitance given by:

C D
1

EFFORT

Z
.FLOW/ dt (1.7)

When the energy is stored by virtue of effort, it is potential energy. Energy is given by an
integral of power expended in a process. ereby, the potential energy stored in a capacitor would
be given as: Z

V.t/i.t/ dt D

Z �
1

C

Z
i.t/dt

�
i.t/ dt

D

Z �
1

C
q.t/

�
i.t/ dt D

Z �
1

C
q

�
dq D

1

2

�
1

C

�
q2 (1.8)

where the definition of current is:
i.t/ D

dq.t/

dt
(1.9)
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Once again, analogously in a mechanical system, the potential energy stored by a spring by
virtue of the force within it is given as:Z

F� dt D

Z
.kx/ � dt D

Z
.kx/ dx D

1

2
kx2 (1.10)

You may recall from your elementary physics courses that this is the expression for potential
energy in a deformed spring. To begin our energy story, any system element who stores potential
energy is Captain Potential Energy. He possesses energy by virtue of effort or the force contained
in his springs!

Figure 1.2: Captain Potential Energy stores energy by virtue of effort in his compressed springs. e
containment vessel for the effort is the stiffness or capacitance. Captain Potential Energy is distin-
guished by his possession of a system’s capacitance.

Kinetic Energy Storage Elements ose elements of transport that store kinetic energy do so
by virtue of their flow variable. As a result, effort differential is related to a time derivative of flow:

EFFORT /
d

dt
ŒFLOW� (1.11)

Where the proportionality constant determines the specific amount of effort difference
required to cause the prescribed rate of change of flow. is term is referred to as the system
inductance, L.
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..

Of Special Note

Energy stored by virtue of stored flow is kinetic energy. Characters that store
kinetic energy follow the equation:

EFFORT D L
d

dt
ŒFLOW� (1.12)

that defines the character’s inductance.

Recall that in electrical circuits, inductors are system elements across whose terminals a
voltage drop is related to a time rate of change of current.

V D L
di.t/

dt
(1.13)

Analogously, we may ask which system element stores kinetic energy in a mechanical sys-
tem. We typically recall from elementary mechanics that this is the mass or inertia of the system.
is comes naturally from Newton’s Second Law relating the net force on a mass to its time
rate of change of linear momentum. When mass is constant, the rate of change of momentum is
proportional to the mass’s acceleration.

F D ma D m
d�.t/

dt
(1.14)

us, when a mass exhibits some non-zero speed, it possesses kinetic energy by virtue of
its speed and in proportion to its mass or inertia. If there were no mass, there would be no entity
to have speed! In this interesting way, we can learn to say that the mass stores the kinetic energy
in the form of its speed. Because the mass stores the kinetic energy in a mechanical system, we
can say that

LMECH D m (1.15)

Generalizing, by analogy, a transport process exhibits an inductance given by:

L D
1

FLOW

Z
.EFFORT/ dt (1.16)

With energy being an integral of power, we can work in terms of the flow variable to define
the kinetic energy:Z

V.t/i.t/ dt D

Z �
L
di.t/

dt

�
i.t/ dt D

Z
.Li/ d i D

1

2
Li2 (1.17)
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Once again, analogously in a mechanical systemZ
F�.t/ dt D

Z �
m
d�.t/

dt

�
� dt D

Z
.m�/ d� D

1

2
m�2 (1.18)

is may look familiar to you as the kinetic energy in a moving mass.Continuing our energy story,
any system element who stores kinetic energy is Captain Kinetic Energy. He possesses energy by
virtue of flow or the velocity associated with his mass or inertia!

Figure 1.3: Captain Kinetic Energy stores energy by virtue of his speed. e containment vessel for
the speed is the inertia or mechanical inductance. Captain Kinetic Energy is distinguished by his
possession of a system’s inductance.

So let’s remember that mathematically, both storage elements (or characters) relate flow or
effort to the derivative of the other. Differential relations imply energy storage.

..

Of Special Note

Differential mathematical relationships for system elements imply energy
storage.
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Dissipative Elements
In dynamic transport, dissipative elements relate flow and effort strictly algebraically. Algebraic
relations imply energy dissipation. Resistive elements, in principle, play a part in every disciplinary
story. Flow experiences resistance under the action of any difference in effort that drives it:

EFFORT / FLOW (1.19)
Here the proportionality constant determines the specific amount of resistance that must

be overcome by a given net effort to drive a given amount of flow. is term is referred to as the
system resistance, R.

..

Of Special Note

Characters that dissipate energy follow the equation:

EFFORT D R � FLOW (1.20)

that defines the character’s resistance.

where � indicates multiplication.

Figure 1.4: e Evil Dr. Friction dissipates energy as flow occurs under the driver of an effort dif-
ference across some resistive element. e Evil Dr. Friction is distinguished by his possession of a
system’s resistance to flow.

Recall that in electrical circuits, resistors are system elements across whose terminals a volt-
age drop is proportional to the current flowing through it as prescribed by Ohm’s law:
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V D iR (1.21)

Similarly in a mechanical system, force can be applied to produce motion by overcoming
the effects of friction. For example, when viscous forces oppose the motion, a good representation
of the force required to overcome this resistance is given by:

F D b� (1.22)

where clearly, by analogy,

RMECH D b (1.23)

..

Of Special Note

Algebraic mathematical relations imply energy dissipation. Often, these dissi-
pative relations bear someone’s name, e.g., Ohm, Fourier, Newton, Toricelli,
etc.

Generalizing, by analogy, a transport process exhibits a resistance given by:

R D
EFFORT

FLOW
(1.24)

e energy “eaten by” any resistive element is equivalent to the work done by the dissipating
agent, e.g., friction in a mechanical system. When energy is “eaten” it is no longer available to
be stored in potential and/or kinetic forms. We say it is effectively “lost.” e lost or dissipated
energy is quantified by the work done by the force or effort across the element:

Z
dW

dt
dt D

Z
dW D

Z �
i.t/2R

�
dt D

Z
.V .t/i.t// dt D

Z
V.q/ dq (1.25)

Analogously in a mechanical system, the lost energy is given by:Z
dW

dt
dt D

Z
dW D

Z
FFRICTION� dt D

Z
FFRICTIONdx (1.26)

You may recall from undergraduate engineering dynamics that this expression is equivalent
to the work done or energy dissipated by friction acting on a moving mass. As energy is trans-
ported and exchanged between potential and kinetic forms, resistive agents essentially steal part of
the transfer. ere is a balance between energy transferred and energy lost. e resistive element
acts to transform energy to a form not useful by the particular system, i.e., resistors transform
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useful electrical energy to heat, a loss by-product of current flow in a real circuit. Similarly, fric-
tion in mechanical systems steals energy, transforming it to sound and heat, no longer useful for
producing motion. e Evil Dr. Friction is the character who irreversibly robs energy in a system
as it is being released from either potential or kinetic forms and in any transfer between the two.

1.1.2 THE ENERGY BALANCE PRINCIPLE
In any given system, transport occurs when effort drives flow of some quantity. By defining a
control volume into and out of which flow occurs, one can create a balance of any quantity, Q, by
stating that

PQIN � PQOUT D PQSTORED (1.27)

where PQIN D
dQIN

dt
. As we will see, this simple balance principle is the precursor to every differ-

ential equation governing the transport of conserved or balanced quantities. Generally, input and
output transport will require overcoming some resistance to flow with the net inflow resulting in
storage.
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C H A P T E R 2

Governing Dynamics
Governing dynamics, gentlemen; it’s all governing dynamics

John Nash

In all of science we take certain axioms as given and proceed to model behavior from there.
One such premise is that there is a collection of quantities whose behavior is governed by principles
of conservation and balance. Among these are mass, momentum, energy, and electrical charge.
We accept that these quantities can neither be created nor destroyed. erefore, the amount of
any one of these quantities is a function of how much you begin with and how much is either
transported to you or from you. ere can be external sources and sinks and repositories where
the quantities can be stored. To write a statement that balances any conserved quantity at a point,
we isolate an infinitesimally small volume with inlet and exit windows through which our quantity
of choice can be transported in and out.

It is perhaps best at this point to proceed by example. In an attempt to be consistent with
other treatments of the effort-flow analogy, let’s consider a volume, e.g., a bank vault, into which
money may enter and exit through different ports in the volume boundary, e.g., the bank doors.
In order to introduce the parameter of time, imagine that dollars enter the bank at a rate of PQIN

dollars per day. Say a different amount may be flowing out of the bank at a rate of PQOUT dollars
per day. A balance principle is as simple as tallying how much money enters vs. how much exits.
If the amount entering is greater than the amount exiting in any given interval of time, there is
a net accrual and the amount of money in the bank increases over time. In other words, there
is a net amount of storage of money in the bank. Contrarily, if the amount exiting exceeds the
amount entering in any time interval, the amount of money in the bank will decrease. One can
then conclude that the amount stored in this time interval is a negative value, i.e., there is a net
loss of money when PQSTORED < 0 over this time interval. So the statement of balance (in rate
form) is simply

PQIN � PQOUT D PQSTORED (2.1)

In the absence of a storage mechanism, the amount of the quantity already stored in this
volume remains constant and we say this quantity is conserved. When this is the case, any net
inflow must be accompanied by an equal amount of outflow.
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Figure 2.1: A repository for a balanced quantity that allows inflow and exit from it through virtual
windows and storage on the interior.
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2.1 DERIVING A GOVERNING DIFFERENTIAL EQUATION
We will need to explore some of the more germane properties of differential equations here to
establish the utility of our analogy. When we let the size of the volume into which a balanced or
conserved quantity flows shrink to a point, the balance or net storage principle becomes a differ-
ential equation governing the amount of the quantity present at that point at any given moment
in time. Once again, to make the mathematics more approachable, let’s proceed by example. Let’s
start with a simple story of a passive electrical circuit that contains an energy dissipator, the resis-
tor, connected in series with an electrical potential energy storage device known as the capacitor
as shown in Figure 2.2. At some point in time, a DC battery is connected across the circuit. In
our cartoon version in Figure 2.3, Father Force represents an excitation from the outside world,
an externally applied effort. We can often understand system behavior by associating this force
with a driving external agent from the outside world perturbing the system. Here, the agent of
the outside world, the battery, imposes a voltage difference across the circuit. In our story, we
call this agent of the outside world Father Force because he represents an externally applied effort
difference. He hurls electric charge at the circuit, our system. is electrical voltage difference
drives electrical charge at some rate (known as current) through the resistor. e resistor is an
energy dissipator, the Evil Dr. Friction in our cartoon. His snake “eats charge” and thus electrical
energy. He steals it from the system. is electrical energy will be lost mostly in the form of heat.
What is left exits the resistor and can be stored across the plates of an electrical capacitor. Here
we see Captain Potential Energy as the storage agent in the capacitor.

+
−

V0
C

R

V1

Figure 2.2: A series RC circuit as typically represented with a standard circuit diagram. A represen-
tative volume element of the circuit is examined under the magnifying glass. Given that the circuit is
grounded at the lower battery post, a voltage at the prescribed node represents the voltage drop across
the capacitor, V1.

At this point, we should point out that the system is defined exclusively by the system
element characters, i.e, one character that eats energy and one that stores energy. e battery is
“the outside world.” is agent imposes a voltage difference on the circuit that causes current to
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Figure 2.3: A electrical effort (voltage difference provided by a DC battery) throws charge flow
through a resistor, an energy dissipator, which eats part of the input charge only to have the amount
that gets through be stored by a storage element or character. As the voltage difference across the
capacitor grows storing electrical potential energy, the voltage drop across the resistor decreases and,
along with it, the current in the circuit.

flow. Father Force lives in the outside world and delivers an input to the system whose characters
are Captain Potential Energy and the Evil Dr. Friction!

To derive any governing differential equation, we isolate a small part of the system. Con-
sider a point in the circuit between the resistor and the capacitor (the node under the magnifying
glass in Figure 2.2). is choice of representative volume element (RVE) is somewhat arbitrary.
Since the only charge storage element in our example is the capacitor (and this character is outside
of the RVE), the amount of charge per unit time (or current) flowing into the node must exactly
equal or balance the current flowing out because there is no means by which to allow charge to
accumulate on a wire alone.

is concept must now be rendered mathematically. e current IN must equal current
OUT or the current that passed through the energy dissipator must equal that flowing into the
energy storage element. Material laws usually govern the inflow and outflow of the balanced
quantity.esematerial laws are hypotheses based on observation andmeasurement [1, 2, 12, 14].
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PQIN � PQOUT D PQSTORED

) iR � iC D 0

) iR D iC
VO � V1

R
D C d.V1� VREF /

dt

RC PV1 C V1 D VO.t/

(2.2)

where VO is the battery voltage and V1 is the voltage drop across the capacitor.

CR V1 + V1 =

System

Outside

World 

Vo

•

Figure 2.4: e abstraction of the mathematical governing equation exhibits “sides” belonging to the
system and the outside world which acts to excite the system into some manner of dynamic response.

Because the reference voltage is chosen to be grounded, that is zero voltage, we say that
this differential equation governs the voltage drop, V1 , across the potential energy storage device
or capacitor. It is important to note that the resistor, capacitor, and the interior system voltage,
V1, lie mathematically on one side of the equation while the driver from the outside world lies on
the other side of the equation. e left side contains all system parameters and quantities while
the right hand side represents a “forcing function” that drives the flow.

RC PV1 C V1 D VO.t/ (2.3)

is will be a constant theme in our development. e movie characters and their behavior
live “on the left” while the circumstances presented to them by the outside world (and to which
they must respond) will lie “on the right” (see Figure 2.4).
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2.2 THE FOUR CASTS
Movies are always open to being remade ... I think of it like the James
Bond movies. Different actors can play the same role.

Steve Martin

I think the movie business is all movies that you’ve seen before.
Everything’s a remake; people want things that are familiar.

Graydon Carter

So the story of the evolution of quantity, Q, over time is governed by the balance

PQIN � PQOUT D PQSTORED D PQPOTENTIAL
STORED C PQKINETIC

STORED (2.4)

Here, we must make a statement, though, that while it is allowable, there need not be two
storage characters. Recall, the example given in Section 2.1 had only a potential energy storage
element in its cast. So the transport processes of interest are those that contain:

1. Dissipative elements and a potential energy storage element

2. Dissipative elements and a kinetic energy storage element

3. Dissipative elements and both potential and kinetic energy storage elements

4. Both potential and kinetic energy storage elements and no dissipative elements

It will turn out that systems with only one type of storage element character in their script
are always governed by first order ordinary differential equations in time. Alternatively, systems
whose script contains two types of storage element will always be characterized by second order
ordinary differential equations in time. ese are important characteristics to be aware of before
we discuss the nature of their solutions.

e focus of the analogical approach is its power in describing the similitude between
systems transporting conserved quantities in four otherwise distinct disciplines of engineering.
Dynamic differential equations are statements of how conserved quantities change in time. In
electrical systems, we will always balance electrical charge; in mechanical systems, momentum;
in fluid systems, mass; and in thermal systems, heat energy. ese are summarized in Table 2.1.

2.3 SYSTEM ORDER
In our analogy to a screenplay, we have limited our discussion to two scripts: those associated
with first order governing equations and those associated with second order governing equations.
While it is seldom said in this way, the order of the governing differential equation is defined as
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Table 2.1: Conserved quantities

Discipline Conserved Quantity

Electrical Charge

Translational Mechanical Linear Momentum

Rotational Mechanical Angular Momentum

Fluid Mass

Thermal Internal Energy

the difference between the highest order derivative appearing in the equation and the lowest order
derivative appearing in the equation. It will be shown that the system order is the most important
determinant of the system behavior. We will have more to say about this as we set about solving
these equations in Chapters 5 and 6.

2.4 LINEARITY
It will suffice to say that a differential equation is linear when the system variable and all its deriva-
tives on the left side of the equation, i.e., those associated with the capacitor voltage, V1, in the
example of the previous section, appear only to the first power and there are no transcendental or
trigonometric terms on the left side, e.g., exponential functions, natural logarithms, or periodic
functions of the dependent variable. While analytical, functional solutions do exist for so-called
nonlinear systems, they are mostly rare or difficult. erefore, solutions to nonlinear systems of-
ten require numerical solution techniques. Solutions to governing differential equations are the
mathematical representations of physical system behavior. We will concern ourselves with linear
systems only in this book. We can use the linear story to help us visualize and understand non-
linear behavior once we master a linear understanding. When appropriate, we can then linearize
nonlinear systems to find a simpler story over a limited range of behavior.





21
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e Electrical Cast

An electron’s journey through a circuit can be described as a zigzag path
that results from countless collisions with the atoms of the conducting
wire. Each collision results in the alteration of the path, thus leading to a
zigzag type motion. While the electric potential difference across the
two ends of a circuit encourages the flow of charge, it is the collisions of
charge carriers with atoms of the wire that discourages the flow of
charge.

e Physics Classroom

In Chapter 2, our example system was a passive RC circuit, a system whose script contains
only two character “types”: a potential energy storage character and a dissipative character. In this
system, the battery is an agent of the outside world that continually hurls charge through the
resistive element that “eats charge” and turns its electrical energy to heat or thermal energy. It is
important to note that the energy is not destroyed, but merely transformed to another form that is
no longer available as electrical potential causing current flow through the circuit.is represents a
loss of so-called electrical energy to other non-useful forms (in terms of hurling electrons through
the electrical circuit). e heat in a light bulb is a necessary loss incurred as current flows through
a resistive filament which produces heat AND light. Perhaps ironically, the light is a useful “by-
product” of the circuit, but, from a purely electrical perspective, it represents a loss of electrical
energy that forces the circuit to require constant energy input.

3.1 EFFORT AND FLOW VARIABLES
If you push charge, it will flow. e flow of charge is, by definition, an electrical current. How
you push charge is by creating a difference in electrical potential (or voltage). e electrical po-
tential or voltage drop along a portion of a circuit drives the charge to flow from higher to lower
electrical potential. Electrical charge can be difficult for mechanical engineers to grasp if we look
at the world as driven by external forces that require contact to initiate motion. Electrical charge
responds to force-at-a-distance, force fields that are many orders of magnitude larger than, say,
gravitational forces in mechanical systems. e reason forces are not always seen as this large is
that many, many positive and negative electrical charges end up cancelling each other out. It is
only the sparse imbalances in charge that occasionally occur that tip the balance and end up cre-
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ating a difference in electrical potential. is difference is not an equilibrium state and charges
tend to move to reduce this difference. So charge moves in response to the electromagnetic field,
a force felt by charge when all charges are not paired up [4]. But it is also a known condition
that, like mass and energy, no one can create or destroy charge. Positive and negative charges
exist. On the whole, they cannot be created or destroyed, but they can be collected in such states
that differences in net amounts drive flow of unlike charges toward one another. All governing
equations are based on writing mathematical statements of this conservation of electrical charge.
Given that charge is conserved, governing equations of motion arise out of balancing electrical
“forces” that drive charge to move toward an equilibrium state.

Table 3.1: Effort, flow, and conserved quantities for electrical systems

Conserved Quantity  Units Symbol 

Charge  Coulombs q 

Variable  Units  

Effort 
 

Electrical Potential  

Voltage 

Volts V 

Flow Current Amperes i 

3.2 STORAGE ELEMENTS
All such powered passive electrical circuits can, at most, contain three system element characters.
Recall that two of the characters are capable of storing energy, one in the form of potential energy,
the other in terms of kinetic energy.

3.2.1 POTENTIAL ENERGY STORAGE CHARACTER
Potential energy storage devices store energy in the form of the effort variable. e electrical cast
member who plays the role of Captain Potential Energy is a device that stores a differential of
electrical effort or voltage. is is the capacitor.

e potential energy storage character is described mathematically in the same way for
every disciplinary system.e governingmathematical expression of the storage by virtue of effort
is

FLOW D C
d.EFFORT/

dt
;

iC D C
d.V1.t/ � VREF/

dt
;

where capacitance is measured in farads or ampere-seconds/volt

f PD
A � s

V
:
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Figure 3.1: e electrical potential energy storage character is played by the capacitor.

3.2.2 KINETIC ENERGY STORAGE CHARACTER
Kinetic energy storage devices store energy in the form of the flow variable. e electrical cast
member who plays the role of Captain Kinetic Energy is that device that stores energy by virtue
of electrical flow or current. is is the inductor.

e kinetic energy storage character is described mathematically in the same way for every
disciplinary system. e governing mathematical expression of the storage by virtue of flow is

EFFORT D L
d.FLOW/

dt
;

V1.t/ � V2.t/ D L
d.iL.t//

dt
;

where inductance is measured in henries or volt-seconds/ampere

H
�

D
V � s

A
:

3.3 DISSIPATIVE ELEMENTS
Energy losses occur at the hand of a dissipative element or a character that “eats energy.” e role
of the Evil Dr. Friction in the electrical script is played by the resistor.

Recall, the governing mathematical expression of the dissipation is always algebraic rather
than differential:

EFFORT D R � FLOW;

V1 � V2 D RiR;
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Figure 3.2: e electrical kinetic energy storage character is played by the inductor.

Figure 3.3: e electrical energy dissipative character is played by the resistor.

where resistance is measured in ohms or volts/ampere

˝
�

D
V

A
:
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Although there is no hard and fast rule about this, the mathematical expression governing en-
ergy loss is very often characterized as “someone’s law.” Here, Ohm’s law governs the electrical
energy dissipated in a resistor. Because dissipative elements result in energy losses, a requisite
effort differential, here the voltage drop, V1 � V2, is necessary to drive a current, iR, through the
element.

A summary of the electrical cast and the roles they play is given in Figure 3.4 and a summary
of the relevant system element relations is summarized in Table 3.2.

Table 3.2: Relevant system element relations for electrical systems

Field Effort Variable Flow Variable 

Electrical Voltage Current 

   

Relation Form Analogy 

Dissipative 

Material 

Property Law 

Effort = Resistance x 

Flow 

( )1 2
V V Ri− =  

Resistance =  

 

Resistance 

Energy 

Storage in 

Effort 

Variable 

Flow = Capacitance 

x   d(Effort)/dt 

( )1 2
d V V

i C
dt

−
=  

Capacitance =  

 

Capacitance 

Energy 

Storage in 

Flow 

Variable 

Effort = Inductance 

x   d(Flow)/dt 

( )1 2

di
V V L

dt
− =  

Inductance =  

 

Inductance 

3.4 SINGLE STORAGE ELEMENT SCRIPTS
Recall, single energy storage scripts are capable of storing only one type of system energy, poten-
tial or kinetic. When coupled with an energy dissipating agent, first order ordinary differential
equations are the result. ese first order equations in time govern the system effort and flow
behavior(s). For the electrical cast, the simplest examples are the series RC and LR circuits.

3.4.1 RC CIRCUITS
In the case of the series RC circuit (Section 2.1), electrical energy is provided from “the outside
world” by the electrical potential boost of the DC voltage source or battery. Some energy is lost
through the resistor, yet enough gets through so that a potential difference or voltage builds up
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Figure 3.4: e electrical cast of characters.
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across the plates of the potential energy storage element thereby charging the capacitor through
a differential of voltage or effort. Recall, what results mathematically is a differential equation for
the voltage stored across the capacitor plates that is linear and first order. erefore, the resulting
differential equation is written for the effort variable.

RCV
1 + V

1
 = VO 

(t) CR V1 + V1 =

System

Outside

World 

Vo

•

Figure 3.5: e electrical cast of characters playing out a series RC circuit.

Here, the quantity RC possesses units of time.

RC �
D ˝f;

RC �
D
V

A

A � s

V

�
D s:

It is known as the system time constant, RC D � . Because time is the independent variable and
all responses are time histories, it is of primary importance that the system is characterized by
this special amount of time. Effort (voltage) and flow (current) will change over time. Because
the time constant, � , enters the governing differential equation explicitly, it flavors the entire
system response. How fast or slow effort and flow evolve in time in the system will always be in
quanta of time constants. at is, system variables will change explicitly in “chunks” of time of �
seconds. We will learn to talk in these terms. e amount of time it will take for any change to
occur in a first order system will be N time constants. e number, N , of course, will depend on
what phenomenon we are discussing. We will call the time constant, � , the system parameter. It
parameterizes how fast the system responds to external stimuli.

Electrical systems, it turns out, are “mathematically versatile” in that the resulting ordi-
nary differential equations will as often govern the behavior of the effort variable, V1, as the flow
variable, i . e equation governing the capacitor voltage can be recast as a 1st order ordinary
differential equation governing the system current, i .

VO.t/ � V1.t/

R
D i.t/:



28 3. THE ELECTRICAL CAST

Inverting the potential energy storage relation for the capacitor will give an expression for the
voltage, V1.t/, which may be substituted into this relation:

VO.t/ �

Z
i.t/

C
dt

R
D i.t/

i.t/R D VO.t/ �

Z
i.t/

C
dt

RC
di.t/

dt
C i.t/ D C PVO.t/;

where C PVO.t/ is an equivalent input signal current seen as a forcing function by the differential
equation governing the system current. It is associated with the time rate of change of the imposed
battery voltage, VO.t/. It is important to note that the same system time constant, RC D � , appears
in and characterizes the solution(s) of both differential equations: those governing the capacitor
voltage (effort) and the circuit current (flow)!

3.4.2 RL CIRCUITS
Wemight as easily let the current that passes through the resistor be stored in the form of electrical
kinetic energy. e cast member that plays the character storing kinetic energy is the inductor.

Figure 3.6: An electrical effort (voltage difference) drives charge flow through an energy dissipator,
the resistor, only to have the amount that gets through be stored by a storage element or character, the
inductor, in the form of the flow variable.

We are used to representing this system by a circuit diagram as in Figure 3.7.
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Figure 3.7: An electrical RL circuit as typically represented. Upon applying the battery (an external
voltage difference) across the circuit, charge will respond to the electromagnetic force and flow through
the circuit.

At this point, we should point out that the system is defined only by the element characters,
i.e., the characters that eat energy and those that store energy. e battery is an agent of the
outside world. is agent imposes a voltage differential, i.e., an imposed effort, on the circuit that
causes current to flow. As in Chapter 2, let’s choose a node in the circuit between the resistor
and the storage device, the inductor. Since the only charge storage element is the inductor (and
this character is outside of the RVE), the current flowing into the node must exactly balance the
current flowing out.

is concept must now be rendered mathematically. e current that passed through the
energy dissipater must equal that flowing into the kinetic energy storage element.

VO.t/ � V1.t/

R
D iR.t/ D iL.t/:

We now introduce the relation corresponding to the storage of kinetic energy by virtue of flow:

V1.t/ � VREF D V1.t/ D L
di.t/

dt
:

Substituting for V1.t/ using the dissipation element relation:

V1.t/ � VREF D V1.t/ D L
di.t/

dt
D VO.t/ � i.t/R

L

R

di.t/
dt

C i.t/ D
1

R
VO.t/:

is differential equation governs the circuit current, i . It is important to note at this point that
all the resistance, inductance, and interior system current again lie mathematically on one side of
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the equation while the driver from the outside world, the battery voltage, lies on the other side
of the equation. e left side contains all system parameters and quantities while the right-hand
side represents a forcing function that drives the flow.
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Figure 3.8: e electrical cast of characters playing out a series RL circuit.

..

Of Special Note

is will be a constant theme in our development. e movie characters and
their behavior live “on the left” while the circumstances presented to them by
the outside world will lie “on the right.”

Here, the mathematical term on the right-hand side, 1
R
VO.t/, is a flow-like external signal

input to the system supplied by the battery.

3.4.3 A GENERALIZED MATHEMATICAL FORM FOR THE SINGLE
STORAGE ELEMENT SCRIPT

If we observe the general nature of the governing differential equations for both the RC and RL
circuits, there is a distinct one-to-one correspondence of terms. Single storage element scripts
are characterized by 1st order ordinary differential equations in time. We further see that these
equations can be cast in a form wherein:

(a) Either the effort or flow variable appears isolated with a coefficient of unity and

(b) e coefficient of the effort or flow derivative term (RC or L/R) has units of time
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We generalize the governing ODE for any single storage element script or 1st order system as:

�
d 

dt
C  D 	O.t/ D G � I .t/

where � is the system time constant and is either an effort or flow variable in the system.Here, we
have already seen cases where � D RC and � D L=R. In general, the time constant will be some
function of the system element parameters, � D f .L;C;R/. e forcing function will be some
normalized form of the actual physical input excitation that renders an equivalent effort or flow
driving function. e generalized forcing function is often represented as the actual physically
imposed agent of excitation scaled by a factor called the static gain, G, where 	O .t/ D G � I.t/.

For the series RC circuit, we have the relations summarized in Table 3.3.

Table 3.3: Parts of 1st order governing differential equations for a series RC circuit

Response Variable Capacitor Voltage, ( )1
V t  Circuit Current, ( )i t  

System Parameter RCτ =  RCτ =  

External Excitation ( ) ( )
O O

t V tΨ =  ( ) ( )
O O

t CV tΨ =  

 G = 1; ( ) ( )
O

I t V t=  G = CD
1
; ( ) ( )

O
I t V t=  

 1
 Here, we use the differential operator where, by example, for an arbitrary variable, p: 

dp
Dp p

dt
≡ ≡  

While for the series RL circuit, we arrive at the results summarized in Table 3.4.

Table 3.4: Parts of 1st order governing differential equations for a series RL circuit

Response Variable Inductor Voltage, ( )1
V t  Circuit Current, ( )i t  

System Parameter L
R

τ =  L
R

τ =  

External Excitation ??
2
 

( )
( )

O

O

V t
t

R
Ψ =  

 G = ??  ; ( ) ??I t =  G = 1/R; ( ) ( )
O

I t V t=  

 2
 These quantities will be asked of the reader in the Chapter Activities following this chapter. 

One of the most powerful aspects of the analogical approach is that when systems behave
linearly, the solutions to any equation expressed in this generalized form are essentially equivalent,
i.e., ALL linear first order systems share inherent and important common characteristics in their
system response to input or excitation from “the outside world.” We will examine these common
characteristics in detail when we address time domain solutions in Chapter 5.
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..

Of Special Note
Universal Truths for 1st Order Systems

(a) ey are comprised of system elements (or characters) that store ONLY ONE
form of energy, either potential or kinetic forms of energy, but not both.

(b) eir behavior is characterized by a single system parameter called the system time
constant, � , where

(c) � D f .R;C / or � D g .L;R/

3.5 MULTIPLE STORAGE ELEMENT SCRIPTS
e story changes when a system can store energy in more than one form. A more general circuit
would be able to store electrical energy in both potential and kinetic forms as well as dissipate
energy. e multiple storage element character script involves a capacitor, inductor, and resistor.

3.5.1 SERIES RLC CIRCUITS
Such a system is characterized by system capacitance, inductance, and electrical resistance. Con-
sider a circuit where these elements are connected in series.

+

−
V0

R

V1
L

V2

C

Figure 3.9: A series electrical RLC series circuit. Upon applying the battery to the circuit, current is
driven in a clockwise sense around the circuit.

In this script, the battery hurls charge at the resistor which “eats” a portion, allowing some
residue of the charge through to the inductor and capacitor. Charge build-up across the capacitor
provides a voltage drop whose time rate of change corresponds to a time rate of charge across the
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capacitor plates. What occurs physically is that charge accumulates on one side of the capacitor.
If the rate is sufficient to cause a rate of change of the voltage drop across the capacitor, charge
at the other plate changes over time. Mathematically, at least, this dictates a current or effective
movement of charge. is charge then “gets a boost from the battery” and starts the process all
over again.

Focus on the voltage drop across the capacitor as the relevant system variable whose re-
sponse we desire. Writing a current balance on node 2:

PQIN � PQOUT D PQSTORED

iL.t/ D iC .t/

V1.t/ � V2.t/

LD
D C

d.V2.t/ � VREF/

dt
LC RV2.t/C V2.t/ D V1.t/:

But we do not know the other system voltage, V1.t/. is is because there is now more than one
way to store energy! erefore, we must investigate a second current (or charge) balance at node 1.

PQIN � PQOUT D PQSTORED

iR.t/ D iL.t/:

From the relation governing effort and flow through the resistor:

V1.t/ D VO.t/ �RiR.t/

and
iR.t/ D iL.t/

but
iL.t/ D iC .t/ D C PV2.t/

so

V1.t/ D VO.t/ �RC PV2.t/:

Substituting this into the relation obtained at the first node and rearranging terms:

LC RV2.t/C RC PV2.t/C V2.t/ D VO.t/:

Once again, all the system parameters .R;L; C / and a voltage internal to the system, V2.t/, are
all on one side of the equation while the excitation “force” or effort supplying charge to the system
“from the outside world” appears on the other side of the equation.
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Figure 3.10: A series RLC electrical circuit character equation.

3.5.2 PARALLEL RLC CIRCUITS
One may also investigate a branched loop over which the charge will “choose the path of least
resistance,” or, more properly, the path of least impedance. e impedance is nothing more than
a dynamic resistance. Using the definition of resistance as the ratio of effort/flow:

For the inductor:
�V D LDi.t/

RINDUCTOR
DYNAMIC D LD

For the capacitor:
CD�V D i

�V.t/ D i.t/=CD

RCAPACITOR
DYNAMIC D 1=CD

where, again, we are using the differential operator, D .�/ D
d .�/

dt
.
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Let’s next consider a parallel RLC circuit in Figure 3.11.

+

−

V0 C

R

V1

L

Figure 3.11: A parallel electrical RLC series circuit. Upon applying the battery to the circuit, current
is driven in a clockwise sense around the circuit, but must now “choose the path of least impedance”
at the branch point.

Performing a charge balance over the system at internal node 1:

PQIN � PQOUT D PQSTORED

iR.t/ D iL.t/C iC .t/

VO.t/ � V1.t/

R
D
V1.t/

LD
C C PV1.t/:

Applying the operator LD to both sides of the equation:

LC RV1.t/C
L

R
PV1.t/C V1.t/ D

L

R
PVO.t/:

All the system parameters .R;L;C / and a voltage internal to the system, V1 .t/, are all on one
side of the equation while the excitation “force” supplying charge to the system “from the outside
world” appears on the other side of the equation.

In this script, the battery hurls charge at the resistor (Evil Dr. Friction). Evil Dr. Friction
eats some charge allowing less out which then is stored in the system inductor (in the form of
electrical kinetic energy) and/or the capacitor (in the form of electrical potential energy). How
much is stored in each of these storage elements depends on their impedance or instantaneous
(dynamic) electrical resistance with more energy being stored in the path with least impedance.

When the storage characters dominate over friction, they will pass energy back and forth
with friction eating away at each transfer. In Figure 3.13, a system imparted with potential energy



36 3. THE ELECTRICAL CAST

V1 + V1 =

System

Outside

World 

V1+

R

CL

Vo

··

·

R

L L

Figure 3.12: A parallel electrical RLC series circuit character equation.

(A) will pass it on to Captain Kinetic Energy. Dissipation is eating energy during this transfer
as evidence by Evil Dr. Friction fighting Captain Kinetic Energy (B). Dissipation continues to
degrade the energy cache during each subsequent exchange back to Captain Potential Energy (C)
and back to Captain Kinetic Energy (D) until all the electrical energy has been consumed. In the
case where an input signal delivers energy continually to the system, eventually the amount stored
in potential and kinetic forms reaches a steady state while the energy losses continue to accrue
with time.
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D

C

B

A

Figure 3.13: A second order system with dissipation results in energy being “consumed” within each
exchange from kinetic to potential and back to kinetic.

3.5.3 IDEALIZED LC CIRCUITS
Consider the first series RLC circuit. In the limit as the resistance vanishes, the differential equa-
tion for the capacitor voltage becomes:

LC RV2.t/C V2.t/ D VO.t/:

In this script, the battery provides a voltage or effort difference that drives charge at the inductor.
A charge difference causes a rate of change of current passing through the inductor. is process
creates kinetic energy that is present in the system owing to the presence of the inductor. Be-
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cause charge must be conserved, the rate of change of current in the inductor results in a charge
difference across the capacitor that varies in time, i.e., changes in stored potential energy in the
capacitor. Charge differences that change in time across the plates of the capacitor result in a
flow of charge. is charge flows back to the battery for “a boost” from the “outside world.” e
electrical energy is simply transferred from kinetic to potential and back with no dissipation ad
infinitum. We will “see” this behavior in the structure of the mathematical solutions described in
Chapter 5. is system is a simple frictionless harmonic oscillator where the harmonic response
occurs in the system voltage or effort variable as well as the current or flow variable. is is analo-
gous to motion in a simple, frictionless pendulum where a similar simple harmonic motion results
for the angular velocity and position (flow variables). We can also show that harmonic variation
also occurs in the component of the gravitational force that produces the internal torque driving
the system back again.

            
 

Figure 3.14: A second order system without dissipation results in energy simply being transferred
between potential and kinetic forms, but otherwise being conserved in total. e simple pendulum is
an analog to the LC circuit in the absence of any electrical resistance.

3.5.4 A GENERALIZED MATHEMATICAL FORM FOR THE DUAL
STORAGE ELEMENT SCRIPT

If we examine the governing ordinary differential equations for the system voltages in Sec-
tions 3.5.1, 3.5.2, and 3.5.3, we see that dual storage element scripts are always characterized
by 2nd order ordinary differential equations in time. We can further see that the resulting gov-
erning differential equations can be cast in a form where:

(a) the effort or flow variable appears isolated with a coefficient of unity on “the system side”
of the ODE,

(b) the coefficient of the effort or flow derivative term (RC or L/R) has units of time, and
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(c) the coefficient of the effort or flow second derivative term (LC) has units of ŒT �2

One can then generalize the governing ODE for any dual storage element script or 2nd order
system as:

1

!2
N

d 

dt
C
2�

!N

d 

dt
C  D 	O.t/ D G � I .t/ ;

where !N is the system natural frequency, � is the dimensionless system damping ratio, and  is
either an effort or flow variable in the system. Here, we have already seen a similar situation when
the equation is 1st order. In this case, we saw the � D RC or � D L=R. For 2nd order systems,
there are two system parameters: the natural frequency and damping ratio will be functions of the
system element parameters, f!N ; �g D f .L;C;R/. e forcing function will be some normal-
ized form of the actual physical input excitation that renders an equivalent effort or flow driving
function. e generalized forcing function is often represented as the actual physically imposed
agent of excitation scaled by a factor called the static gain, G, where 	O .t/ D G � I.t/.
For the second order RLC circuits, the results obtained are summarized in Table 3.5.

Table 3.5: Parts of 2nd order governing differential equations for series and parallel RLC circuits

RLC Circuits Series Circuit  Parallel Circuit 

Response Variable Capacitor Voltage, ( )2
V t  Capacitor/Inductor 

Voltage, ( )1
V t  

System Parameter 1
;

2
N

R C

LLC

ω ζ= =  
1 1

;
2

N

L

R CLC

ω ζ= =  

External Excitation ( ) ( )
O O

t V tΨ =  
( ) ( )

O O

L
t V t

R
Ψ =  

 G = 1; ( ) ( )
O

I t V t=  G = LD/R; ( ) ( )
O

I t V t=  

..

Of Special Note
Universal Truths for 2nd Order Systems

(a) ey are comprised of system elements (or characters) that store BOTH potential
AND kinetic forms of energy

(b) eir behavior is characterized by a pair of system parameters, f!N ; �g, where

(c) !N D f .L;C / and � D g .L;C;R/
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One of the most powerful aspects of the analogical approach is that when systems behave
linearly, the solutions to any equation expressed in this generalized form are essentially equivalent,
i.e., ALL linear second order systems share inherent and important common characteristics in
their system response to input or excitation from “the outside world.” We will examine these
common characteristics in detail when we address time domain solutions in Chapter 5.

3.6 CHAPTER ACTIVITIES
Problem 1 Perform a charge balance over an appropriate circuit node in the series RC circuit in

Figure 2.2 to derive a governing differential equation for the circuit’s current (flow variable)
instead of the circuit voltage drop across the capacitor (effort variable).

Problem 2 Perform a charge balance over an appropriate circuit node in the RL circuit in Fig-
ure 3.7 to derive a governing differential equation for the circuit’s voltage drop (effort vari-
able) across the inductor instead of the circuit current (flow variable). Fill in the missing
normalized excitation signal input in Table 3.3.

Problem 3 Recast the nodal balance over the representative circuit nodes in the series RLC circuit
to derive a governing differential equation for the circuit’s current (flow variable) instead of
the system voltage drop across the capacitor (effort variable).

Problem 4 Recast the nodal balance over the representative circuit nodes in the parallel RLC
circuit in to derive a governing differential equation for the circuit’s current (flow variable)
instead of the system voltage drop across the inductor/capacitor pair (effort variable).

Problem 5 Consider the series circuit for which the capacitor and resistor are swapped resulting
in a series CR circuit shown here:

+

−
V0

V1

C

R

Perform a charge balance at an appropriate node and derive the differential equation gov-
erning the voltage drop across the resistor.
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Problem 6 An actual inductor will often contain non-negligible resistance because it is a long
coiled piece of wire. For this more realistic version of the parallel RLC circuit shown here:

+

−
V0 C

R1

R2

V1

L

perform a charge balance at an appropriate node and re-derive the governing differential
equation for the voltage drop across the capacitor.

Problem 7 Consider the circuit shown with parallel system capacitors. At t D 0, a step voltage,
V0, is applied to the circuit by connecting it suddenly across a battery:

+

−

R

C1 C2

V1

V0

e0 D 12V
iR.t D 0/ D 40milliamps:

(a) On the circuit diagram label the relevant nodes and apply the necessary conservation
principles to derive the differential equation governing the response of the voltage drop
across the pair of capacitors in the circuit.
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(b) What order is the equation? Use the potential energy storage system element equation
to find the relevant initial condition or initial conditions for the system effort variable.

(c) Compare the governing equation with that from the simple series RC circuit in Fig-
ure 2.2. What conclusion can you draw about the effective capacitance of a pair of
capacitors in parallel?
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C H A P T E R 4

e Mechanical Cast
A body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
forces impressed.

Sir Isaac Newton

is transfer of knowledge from one branch of science, electrical network
theory, to another branch of science dealing with mechanical structures
is one of a long line of such interchanges (that are) made possible by
fundamental analogies which rest finally on that fact that electrical and
mechanical motions satisfy the same type of differential equations. Since
these interchanges have been going on for hundreds of years, it seems
worthwhile to examine their foundation and development.

W.P. Mason
“Electrical and Mechanical Analogies”

Bell System Technical Journal

In Chapter 1, we examined the concepts of effort and flow which continue to guide and
build our analogy between different disciplines. Recall that we posited that force acts as an effort to
cause motion. ereby, the flow variable can be represented by either the displacement or velocity
variable depending on whether one wishes to choose the motion variable or its rate of change in
time as the pertinent flow variable. With these choices made, rectilinear forces that act on a mass
cause changes to the directional momentum of the mass. As per Newton, the net force acting on
a mass equals the net change in momentum. In the absence of a net force, the linear momentum
of a mass or particle is conserved.

4.1 EFFORT AND FLOW VARIABLES
If you push inertia, it will flow. e flow of mass is, by our definition, velocity. How you push a
mass is by creating a force differential or a net force across the mass. is is clearly evidenced in
a free body diagram. According to Newton’s second law of motion, the net force applied to an
inertial element results in a time rate of change in its linear momentum. is is a statement of the
balance of linear momentum, as summarized in Table 4.1.
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Table 4.1: Effort, flow, and conserved quantities for translational mechanical systems

Conserved Quantity  Units Symbol 

Linear momentum  kg-m/s p 

Variable  Units  

Effort 
 

Force N ; lb F 

Flow Velocity m/s ; ft/s υ  

4.2 STORAGE ELEMENTS

It is now time to identify the mechanical cast that will play the roles of energy storage and dis-
sipation in mechanical systems. Typically, the motion can be separated into translational and
rotational components. ese can be analyzed separately in linear systems.

4.2.1 POTENTIAL ENERGY STORAGE CHARACTER
e mechanical cast member who plays the role of Captain Potential Energy is that device that
stores a force internally that may, at some later time, be released to perform useful mechanical
work on the system. is potential energy storage character is played by the simple spring.

Figure 4.1: e mechanical potential energy storage character is played by the spring. It embodies
the mechanical capacitance of the system.
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e governing mathematical expression of the storage by virtue of effort is

FLOW D CMECH
d.EFFORT/

dt

� D CMECH
d.FNET/

dt
:

Integrating both sides over time results in an expression for the mechanical analog to an electrical
system’s capacitance

1

CMECH

Z
�.t/dt D FNET D kx

CMECH �
1

k
:

4.2.2 KINETIC ENERGY STORAGE CHARACTER
Using the rate form, we address the flow rate of position or velocity. e mechanical cast member
who plays the role of Captain Kinetic Energy is that device that stores energy by virtue of its flow
or velocity. e mechanical actor who stores kinetic energy by virtue of velocity is the system’s
inertia.

Figure 4.2: e mechanical kinetic energy storage character is played by the system’s inertia. Inertia
is embodied in a system’s mass.

e governing mathematical expression of the storage by virtue of flow is

EFFORT D L
d.FLOW/

dt

FNET D LMECH
d�

dt
D ma:
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Since this relation gives us Newton’s second law of motion, one concludes that the mechanical
analog to an electrical system’s inductance is the inertia or mass of the mechanical system

LMECH � m:

4.3 DISSIPATIVE ELEMENTS
e role of the Evil Dr. Friction in a mechanical script is played by the physical presence of
friction. Friction, in a sense, eats energy, reducing the amount available to produce motion.

Figure 4.3: e mechanical energy character that dissipates energy is played by any form of friction.
Here the friction acts physically along the surface of some inertia with the floor on which it is sliding.
Father Force performs work on the mass which it can store as kinetic energy of motion thwarted by
the Evil Dr. Friction who eats a portion of the input work done by Father Force.

e governing mathematical expression of the dissipation is always algebraic rather than
differential. If we consider the source of the friction to be viscous friction as, say, would result
from a thin layer of viscous oil between the box and the floor. Alternatively, the same force would
result in a mechanical damper in which the same shear force is developed in a cylindrical dashpot.
e viscous force resisting the relative motion of the ends of the dashpot is proportional to the
relative velocity

FNET D b�:
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Figure 4.4: e friction force is modeled by the net force across a mechanical dashpot; this viscous
force is proportional to the relative velocity. For many applications, a viscous representation of friction
may suffice.

e resistive effort flow relation is also algebraic

EFFORT D R � FLOW

FNET D RMECH�:

is relation dictates that the mechanical analog to the electrical system’s resistance is the viscous
friction or damping coefficient, b

RMECH � b:

Alternatively, the friction could result from other physical sources such as dry friction, often
termed Coulomb friction. Many systems, however, have friction forces that may be described
as viscous-like in nature, enough so that the algebraic relation between the dissipation and flow
holds. A summary of the mechanical cast and the roles they play is given in Figure 4.5. A list of
corresponding system element equations is given in Table 4.2.

4.4 SINGLE STORAGE ELEMENT SCRIPTS

4.4.1 SPRING-DAMPER SYSTEMS
An idealized case often studied is that of the mass-less spring-damper system. is represents
the bound on behavior of a system with negligible inertia that is dominated by its elasticity and
friction. In the case of the spring-damper system, mechanical energy is lost through the damper
while the residue is stored by virtue of a net force inside the spring.
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Figure 4.5: e mechanical cast of characters.
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Table 4.2: Relevant system element relations for translational mechanical systems

Field Effort Variable Flow Variable 

Mechanical Force Velocity 

   

Relation Form Analogy 

Dissipative 

Material 

Property Law 

Effort = Resistance x 

Flow 

( )2 1
F b x x= −  

Resistance =  

 

Friction; Damping 

coefficient, b 

Energy 

Storage in 

Effort 

Variable 

Flow = Capacitance 

x   d(Effort)/dt 

1 dF

k dt
υ =  

Capacitance =  

 

1 1

k stiffness
=  

Energy 

Storage in 

Flow 

Variable 

Effort = Inductance 

x   d(Flow)/dt 

d
F m

dt

υ
=  

Inductance =  

 

Mass/Inertia, m 

b

k

x

F(t)

Figure 4.6: An idealized mass-less spring-damper system under the influence of an externally applied
force, F.t/.

In order to balance linear momentum of the inertia-less plate, we perform a force balance
on a representative piece of the system, i.e., the plate. For mechanical systems, this part of the
system is that on which all forces act, the mass. e result is a free body diagram (FBD).
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F(t) 
kx 

bv 

Figure 4.7: Free body diagram (FBD) for a mass-less spring-damper system.

..

Of Special Note

Free body diagrams are the representative volume elements (RVE) for all me-
chanical systems.

Summing all forces and assuming the mass is constant:

PQIN � PQOUT D PQSTORED

FO.t/ � kx � b Px D
dp
dt

D m
d�

dt
D 0:

Rearranging terms results in the differential equation governing position of the plate

b Px C kx D FO.t/

b

k
Px C x D

1

k
FO.t/

is differential equation is linear and first order. Appealing to our analogy with electrical systems:

b

k
Px C x D b

1

k
Px C x D RMECHCMECH Px C x D

1

k
FO.t/ D CMECHFO.t/

where

RMECH D b

CMECH D 1=k:

A similar system character equation results analogous to the electrical RC circuit in Figure 4.8.
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b 1

k
x + x = 
•

1

k FO

System
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World 

Figure 4.8: e mass-less spring-damper mechanical system is a purely mechanical analog to the
series RC circuit as evidenced by the character equation.

Unlike electrical systems, mechanical systems’ differential equations are not typically
“mathematically versatile” in that they will almost exclusively appear with the flow variable as
the dependent variable. e equation governing the plate displacement could be re-cast in terms
of the reaction force necessary to cause a given displacement, but this is often relegated to post-
processing the displacement solution, i.e., one typically does NOT see differential equations for
the force stored in or transmitted by the spring where force is solved as the primary variable. In
most, if not all, mechanical systems, the primary solution variable is the flow variable.

4.4.2 MASS-DAMPER SYSTEMS
What if we wanted to examine a system that stored its energy solely in kinetic form? e alter-
native two-character script with a single energy storage character would involve Captain Kinetic
Energy battling the Evil Dr. Friction! Consider a parachutist diving out of an airplane and sud-
denly pulling their chute cord. ey’re subject to a step input force from gravity. Father Force is
instantaneously pulling them toward the Earth, as illustrated in Figure 4.9. e Evil Dr. Friction
is also pushing back the parachute with a drag force due to the air in the parachute. In this case,
one may argue that friction is not so evil as it fights gravity. But if we view motion of the mass as
giving the system kinetic energy, then friction continues to eat that energy away from the diver.
In this case, friction happens to be our friend (if we desire a safe landing), but it is still the enemy
of speed. Aerodynamic drag forces are always functions of the skydiver’s downward velocity. For
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simplicity, let’s say the drag force is linearly proportional to the velocity. We begin modeling this
system with a free body diagram shown in Figure 4.9.

Figure 4.9: Upon diving from an airplane, a skydiver experiences a sudden step input force exerted by
gravity. e parachute provides a velocity-dependent drag force opposing the gravitational force. e
net force results in the diver’s acceleration.

At this point, we should point out that the system is defined only by the element characters.
Father Force is Planet Earth, providing a driving effort that is an energy supply to the system from
the outside world. Normally this energy would turn entirely into kinetic energy of the skydiver
with potentially fatal results. But the Evil Dr. Friction consumes part of the energy. e rest is
stored by way of velocity in the mass of the diver by Captain Kinetic Energy.

Each system element character exhibits its own characteristic effort-flow equation. So by
balancing linear momentum:

PQIN � PQOUT D PQSTORED

mg � b Px.t/ D
dp.t/

dt
D m

d�.t/

dt
D m Rx.t/

m Rx.t/C b Px.t/ D mg:

Recognizing that this differential equation is actually first order in velocity
m

b
Rx.t/C Px.t/ D

1

b
mg D �TERMINAL

m

b
P�.t/C �.t/ D

1

b
mg D �TERMINAL:
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is differential equation governs the system flow variable or velocity of the mass, � . e left side
contains all system parameters and variables while the right-hand side represents a scaled forcing
function that drives the flow to its steady-state value, the so-called terminal velocity! So we don’t
need to solve the equation to see where it’s heading. e equation can be written in an effectively
identical form to that governing the electrical RL circuit in Figure 3.10.

m

b

d�.t/

dt
C �.t/ D

1

b
FO.t/:

is equation, in fact, takes on a form identical to the RL circuit when the analogous mechanical
parameters are introduced

LMECH

RMECH

d .FLOW/
dt

C FLOW D
1

RMECH
FO.t/

D
EXTERNAL EFFORT

RMECH
D FLOWSS:

Figure 4.10: e skydiving mass-damper mechanical system is a purely mechanical analog to the
series RL circuit as evidenced by the character equation.

4.4.3 A GENERALIZED MATHEMATICAL FORM FOR THE SINGLE
STORAGE ELEMENT SCRIPT

If we observe the governing differential equations for both the spring-damper and mass-damper
mechanical systems, we see that single storage element scripts are characterized by the same 1st

order ordinary differential equations in time as 1st order electrical systems:

�
d .t/

dt
C  .t/ D 	O.t/ D G � I.t/
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where � is the system time constant and  is either an effort or flow variable in the system. e
forcing function will be some normalized form of the actual physical input excitation that renders
an equivalent effort or flow driving function.

For the parallel spring-damper system, the first order time constant and signal excitation
are summarized in Table 4.3.

Table 4.3: Parts of 1st order governing differential equations for a parallel k–b system

Response Variable Platform Position, ( )x t  

System Parameter 
MECH MECH

b R C
k

τ = =  

External Excitation 
( )

( )
O

O

F t
t

k
Ψ =  

 G = 1/k  ; ( ) ( )
O

I t F t=  

While for the mass-damper system, an analogous set of relations is summarized in Ta-
ble 4.4.

Table 4.4: Parts of 1st order governing differential equations for a mass-damper system

Response Variable Platform Position, ( )x t  

System Parameter 
MECH

MECH

Lm
b R

τ = =  

External Excitation 
( )

( )
O

O

F t mg
t

b b
Ψ = =  

 G = 1/b  ; ( ) ( )OI t F t mg= =  

One of the most powerful aspects of the analogical approach is that when systems behave
linearly, the solutions to any equation in this generalized form are essentially equivalent, i.e.,
ALL linear first order systems share inherent characteristics in their system response to input or
excitation from “the outside world.”

4.5 MULTIPLE STORAGE ELEMENT SCRIPTS
4.5.1 THE CLASSICAL MASS-SPRING-DAMPER SYSTEM
Introducing non-negligible inertia to the platform in Section 4.3, the two-storage-element-
character script now has the ability to store kinetic as well as potential energy as depicted in
Figure 4.11.
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b

k

x

F(t)m

Figure 4.11: A parallel m–k–b mechanical system. Upon applying the external force to the inertial
element, flow or motion of the mass is driven.

Writing a linear momentum balance on the mass:

PQIN � PQOUT D PQSTORED

FO.t/ � kx.t/ � b Px.t/ D
dp.t/

dt
D m

d�.t/

dt
D m Rx.t/:

Rearranging terms and normalizing the equation

m Rx.t/C b Px.t/C kx.t/ D FO.t/:

After scaling the entire equation by the stiffness to normalize the flow variable term

m

k
Rx.t/C

b

k
Px.t/C x.t/ D

1

k
FO.t/:

Using the mechanical analogs for the electrical system element parameters

LMECHCMECH Rx.t/CRMECHCMECH Px.t/C x.t/ D
1

k
FO.t/

where

LMECH D m

CMECH D 1=k

RMECH D b:

In this script, the external excitation provided by Father Force translates into a change of mo-
mentum of the inertia in the system. e resistance acting against the mass in the form of the
Evil Dr. Friction eats some work performed on the block with the residual work being stored as
potential energy that stretches the spring and kinetic energy stored by virtue of the velocity of the
mass.
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Figure 4.12: A classical mass-spring-damper system is equivalent to the series RLC circuit when
placed in the form of a character equation.

4.5.2 IDEALIZED MASS-SPRING SYSTEMS
An idealized case can be illustrated when the resistance becomes “infinitesimally small” and ALL
of the energy input by the driving force is stored as potential energy in the spring and kinetic
energy in the mass. is is the idealized case of a system without losses. In this case:

m
1

k
Rx.t/C x.t/ D

1

k
FO.t/

LMECHCMECH Rx C x D CMECHFO.t/:

In this script, the external force drives a momentum change in the mass which is slowed down by
the spring opposing its motion. As the kinetic energy imparted to the mass by the force is reduced,
an equivalent amount of potential energy is stored in the spring. e mechanical energy is simply
transferred from kinetic to potential and back with no dissipation ad infinitum. In this sense,
Captain Potential Energy and Captain Kinetic Energy “have a catch” with a ball of energy while
the Evil Dr. Friction gets none. is is the translational mechanical analog to the equivalent LC
electrical circuit. Recall, we made an appeal to our intuition about a simple frictionless pendulum
system at the end of Chapter 3. e frictionless pendulum is a rotational mechanical analog
of the simple mass-spring harmonic oscillator discussed here and the idealized LC circuit of
Section 3.5.3.

It is now a natural excursion to relate the effort-flow story for such rotational mechanical
systems in Section 4.6.
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Figure 4.13: e simple frictionless pendulum is an analog system to the LC circuit in the absence
of any electrical resistance.

Table 4.5: Parts of a 2nd order governing differential equation for a classical m–k–b system

Mechanical Systems Classical m-k-b System 

Response Variable Position, ( )x t  

System Parameter 
;

2
N

k b

m km
ω ζ= =  

External Excitation 
( )

( )
O

O

F t
t

k
Ψ =  

 G = 1/k ; ( ) ( )
O

I t F t=  

4.5.3 A GENERALIZED MATHEMATICAL FORM FOR THE DUAL
STORAGE ELEMENT SCRIPT

All mechanical scripts in which two distinct energy storage characters appear are always char-
acterized by the same 2nd order ordinary differential equations in time as electrical 2nd order
systems:

1

!2
N

d .t/

dt
C
2�

!N

d .t/

dt
C  .t/ D 	O.t/ D G � I .t/

where !N is the system natural frequency, � is the dimensionless system damping ratio, and
f!N ; �g D f .L;C;R/. e dependet variable, , is either an effort or flow variable in the system.
e forcing function will be some normalized form of the actual physical input excitation that
renders an equivalent effort or flow driving function.

Table 4.5 summarizes the results for the second order mechanical systems discussed so far.
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4.6 ROTATIONAL MECHANICAL SYSTEMS

One example is torque, moment of inertia, angular momentum, vs force,
mass and momentum. e possible undistinguishability of translation
and rotation would seem to indicate that they are really two guises for
the same set of phenomena.

e Physics Stack Exchange

4.6.1 EFFORT AND FLOW VARIABLES
If you push a mass with a rectilinear or translational force, translational velocity will evolve over
time as the mass accelerates. You push a mass by creating a difference in rectilinear force across
the mass, i.e., applying a net force. It is precisely analogous to note that if you twist a rotational
inertia, such as a massive disk, for example, it will develop an angular velocity. To do this, you
need to apply a net rotational force or a net torque. All governing equations are based on writing
mathematical statements of the conservation of angular momentum as summarized in Table 4.6.

Table 4.6: Effort, flow, and conserved quantities for rotational mechanical systems

Conserved Quantity  Units Symbol 

Angular momentum  kg-m
2
/s L 

Variable  Units  

Effort 
 

Torque Nm ; ft-lb T 

Flow Angular velocity rad/s  ω  

So, for rotational mechanical systems, one still draws an appropriately labeled free body
diagram, only now one must sum the external torques and relate this to a net change in angular
momentum according to Newton’s laws. is is done in a manner strictly analogous with trans-
lational mechanical systems.

4.6.2 STORAGE ELEMENTS
e energy storage occurs through the same actors: springs for potential energy and masses for
kinetic energy, but these must now be an angular or torsional spring, �, and a measure of inertial
resistance to angular motion or a mass moment of inertia, J .
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Potential Energy Storage Character
e torsional potential energy storage devices store energy in the form of the effort variable or
torque. e mechanical cast member who plays the role of Captain Potential Energy is that device
that stores a torque internally that may, at some later time, be released to perform useful rotational
form of mechanical work on the system. is potential energy storage character is played by the
torsional spring.

Figure 4.14: e rotational mechanical potential energy storage character is played by the torsional
spring. It embodies the rotational mechanical capacitance of the system.

e mathematical expression of the storage by virtue of effort is

FLOW D CROT_MECH
d.EFFORT/

dt

!.t/ D CROT_MECH
dTNET.t/

dt
:

Integrating both sides results in an expression for a rotational mechanical analog to electrical
capacitance

1

CROT_MECH

Z
!.t/dt D TNET.t/ D ��.t/

CROT_MECH �
1

�
:

Kinetic Energy Storage Character
e mechanical cast member who plays the role of Captain Kinetic Energy is that device that
stores energy internally by virtue of its rotational speed. is potential energy storage character is
played by the rotational or mass moment of inertia.

You may recall from your undergraduate dynamics course that the rotational form of New-
ton’s Second Law states that a net torque applied to a system is equal to the time rate of change
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Figure4.15: e rotational mechanical kinetic energy storage character is played by the system’s rotary
or mass moment of inertia. Inertia is embodied in a system’s mass weighted by the square of its distance
about the axis of rotation.

of the system’s angular momentum, H . e mathematical expression of the storage by virtue of
flow is

EFFORT D L
d.FLOW/

dt

TNET.t/ D
dH
dt

D
d.J!.t//

dt
D LROT_MECH

d!.t/

dt
D J˛.t/ D J R�.t/:

Again, applying the effort-flow analogy, one observes that the mass moment of inertia is the
mechanical analog of an electrical inductance

LROT_MECH � J �

Z
r2dm:

4.6.3 DISSIPATIVE ELEMENTS
e role of the Evil Dr. Friction in our rotational mechanical script is played by any physical
presence of friction about the axis of rotation. Let’s consider the source of the friction to be
viscous friction as would result from a thin layer of viscous oil between two rotational elements
as in a sleeve bearing.
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Figure 4.16: e friction force is modeled by the net torque across a mechanical cylindrical dash-
pot; this viscous force is proportional to the relative angular velocity. For many applications, a viscous
representation of friction may suffice.

For which

EFFORT D R � FLOW

TNET D RROT_MECH!.t/ D ˇ!.t/

RROT_MECH � ˇ

where ˇ is a torsional damping coefficient relating the torque necessary to sustain an angular
velocity differential across a rotational frictional element. A summary of the rotational mechan-
ical cast and the roles they play is given in Figure 4.17. A list of corresponding system element
equations is given in Table 4.7.

4.6.4 THE SIMPLE PENDULUM
Consider the swinging pendulum shown in Figure 4.18. If we perform an angular momentum
balance about the pivot point:

PQIN � PQOUT D PQSTORED

TO.t/ �mgL sin �.t/ � ˇ P�.t/ D
dH.t/

dt
D J

d!.t/

dt
D J˛.t/ D J R�.t/:

Assuming small angles of rotation linearizes the system

sin �.t/ � �.t/ ) J R�.t/C ˇ P�.t/CmgL�.t/ D TO.t/:
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Figure 4.17: e rotational mechanical cast of characters.
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Table 4.7: Relevant system element relations for rotational mechanical systems

Field Effort Variable Flow Variable 

Mechanical Torque Angular velocity 

   

Relation Form Analogy 

Dissipative 

Material 

Property Law 

Effort = Resistance x 

Flow 

( )2 1
T β ω ω= −  

Resistance =  

 

Friction; Damping 

coefficient, β  

Energy 

Storage in 

Effort 

Variable 

Flow = Capacitance 

x   d(Effort)/dt 

1 dT

dt
ω

κ
=  

Capacitance =  

 

1 1

stiffnessκ
=  

Energy 

Storage in 

Flow 

Variable 

Effort = Inductance 

x   d(Flow)/dt 

d
T J

dt

ω
=  

Inductance =  

 

Rotary Mass/Inertia, 

J 

Rearranging terms and normalizing by the effective torsional stiffness

J

�EFF

R� C
ˇ

�EFF

P� C � D
1

�EFF
TO.t/

�EFF D mgL:

All the system parameters .J; ˇ; �EFF/ and a flow variable internal to the system, � , are all on one
side of the equation while the excitation effort, now an applied torque, appears on the other side.
If we scale the entire equation by the torsional stiffness to normalize the flow variable term

LROT_MECHCROT_MECH R�.t/CRROT_MECHCROT_MECH P�.t/C �.t/ D
1

�EFF
TO.t/:

Note that while you might not see a torsional spring here, there is one! By virtue of hanging from
a cable of length, L, in a gravitational field, the mass may store maximum potential energy at the
ends of each swing where height of the mass provides potential energy due to the work of the
gravitational field. Gravity is our spring! Possible sources of damping are provided by air resistance
during the swing and friction at the pivot. Rotational inertia is provided by the mass being lumped
a finite distance from the pivot, the center of rotation. is is illustrated in Figure 4.18. Here,
Father Force provides the effort or torque to drive the swinging angular motion. At the ends of
the swing, all energy is potential in form. As the bob gains speed on the downswings, the system
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Figure 4.18: THE rotational pendulum.

gains rotational kinetic energy at the expense of potential energy. All the while, the Evil Dr.
Friction, acting in the air flowing around the bob and in resistance at the pivot, eats away at each
exchange.

4.7 CHAPTER ACTIVITIES
Problem 1 It is somewhat intriguing and not often discussed what the mechanical system analo-

gous to the parallel RLC circuit (discussed in Section 3.4.2) would be. Identify this mechan-
ical system whose governing differential equation would be analogous with that obtained
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for the parallel RLC circuit. Draw the system elements and their relative connectivity and
derive the governing differential equation.

Problem 2 Consider the plate damper, mechanical system from which the spring has been re-
moved. e system is turned vertically and subject to a step input gravitational force as
shown:

x

mg

Two, thin, viscous fluid layers

resulting in a total damping

coefficient = b

If the mass is dropped from the position xO D 0m from rest, write the differential equation
governing the system plate velocity. What order is the equation (and system)? What system
parameter(s) characterize the system?

Problem 3 You’re escaping the East India Trading Company in your trusty vessel “e Black
Pearl.” e Pearl’s sails generate thrust in the following relationship:

FSail D CS .VW � Vp/

where VP is the velocity of the Pearl, VW is the velocity of the wind, and CS is a constant.
e drag on the Pearl’s hull is linearly proportional to her velocity:

FDrag D CDVP

where CD and the Pearl’s mass, m, are constant.
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Use an appropriately labeled free body diagram to derive the differential equation governing
the Pearl’s velocity. Determine an algebraic expression for the Pearl’s terminal, i.e., steady
state, velocity. Identify the time constant, � , for the ship’s velocity response.

Problem 4 Consider the mass-spring-damper system subjected to a ramp input platform dis-
placement, y.t/ D 5t as shown:

k

m

x

b

y

(a) Draw an appropriately labeled free body diagram and derive the governing differential
equation for the displacement of the mass.

(b) What order are the equation and the system?

(c) What is/are the relevant system parameter(s)?

Problem 5 Consider the downhill skier pictured here:



4.7. CHAPTER ACTIVITIES 67

e total drag on the skier, FD , is a combination of man-made-snow surface resistance and
aerodynamic drag resulting in the following relationship for the drag force:

*

FDD CD

*

V

whereCD is the coefficient of drag,
*

V is the velocity of the skier down the inclined slope, and
CD D constant. Draw an appropriately labeled free body diagram and derive the equation
governing the skier’s velocity. Determine the relevant system parameter(s) for the model.

Problem 6 A pressure compensating hydraulic spool valve consists of a bar-bell-like mass in a
cylindrical sleeve (shown below). e valve is moved horizontally by a solenoid that applies
a step input force to the mass. A spring at the far end provides an opposing force. Hydraulic
fluid in a tight clearance of width, h, provides a viscous friction force resisting the motion
and given by the relation:

F� D
C�

h

where C is a constant.

Show that a balance of forces in the horizontal direction gives:

m
d2x

dt2
D F.t/ � kx �

C�

h
:

is equation physically represents a statement of what balance principle? Write algebraic
expressions for the system natural frequency and damping ratio in terms of the provided
quantities.
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Problem 7 Consider the angular position of a 100 kg winter Olympic snowboarder on a circular
pipe of radius, R. e total drag on the snowboarder, FD , is a combination of man-made-
snow surface resistance and aerodynamic drag resulting in the following relationship for the
drag force:

*

FDD CD

*

V where CD is the coefficient of drag and
*

V is the tangential velocity
of the snowboarder and CD D constant. Use I D mR2.

Using an appropriately labeled free body diagram and applying a balance of torques, show
that the differential equation governing the angular position of our snowboarder with re-
spect to time is given by

mR2 R� C CDR
2 P� CmgR sin � D 0:

If the skier could enter the pipe at an angle of 30 degrees and remain at angles equal to
or lower than this, linearize the equation to obtain a linear, ordinary differential equation
governing the skier’s angular position.

Problem 8 Consider the mass-less-platform-spring-damper system subjected to a ramp input
platform displacement, y.t/ D 5t as shown:

k b

y

x
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(a) Draw an appropriately labeled free body diagram and derive the governing differential
equation for the displacement of the mass.

(b) What order are the equation and the system?
(c) What is/are the relevant system parameter(s)?
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C H A P T E R 5

A Common Notion
Euclid’s first common notion is this: things that are equal to the same
thing are equal to each other. at’s a rule of mathematical reasoning.
It’s true because it works. Has done and always will do. Euclid says this
truth is self-evident. You see … there it is, even in that 2000 year old
book of mechanical law. It is a self-evident truth that things which are
equal to the same thing are equal to each other.

Abraham Lincoln quoting Euclid’s
Book of Common Notions

I understand what an equation means if I have a way to figure out the
characteristics of its solution without solving it.

Richard P. Feynman
quoting Paul Dirac

Mr. Lincoln read Euclid wisely: two things equal to the same thing are equal to each other.
is basic premise lies at the notion of a common solution for linear ordinary differential equa-
tions.What we will learn here is that all solutions for first order systems look like “the same thing.”
is will also hold for all 2nd order systems. In Chapters 2 and 3, we motivated the independent
physical principles of inertia, stiffness, and friction (or alternatively inductance, capacitance, and
resistance) by linking them with a cartoon-like characterization in an attempt to illustrate the
analogous roles these play in mechanical and electrical systems. We further made this charac-
terization to create a mnemonic device by which the abstract mathematics used to model such
systems may be more approachable and less daunting. In fact, because the mathematics is essen-
tially “always the same thing,” the analogy serves to teach us that there’s less to learn than we
might otherwise have thought.

We further associated principles of inertia, stiffness, and friction with their physical roles
as agents of storage of kinetic energy, potential energy, and the dissipation of energy, respectively.
We then followed a universal principle of balancing or conserving a basic quantity entering and
leaving a volume element of the system. When we introduce mathematical relations for Captains
Potential and Kinetic Energy and the Evil Dr. Friction using effort and flow variables, it is a
relatively painless procedure to write a governing ordinary differential equation for a system. So
far, the common axioms of systems in different disciplines are:

(a) Each system contains elements represented by characters that:
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(a) Store kinetic energy, e.g., inertia or inductance
(b) Store potential energy, e.g., stiffness or capacitance
(c) Dissipate energy, e.g., friction or electrical resistance.

(b) e governing differential equation results from expressing conservation or balance of ele-
mental quantities, e.g., momentum in a mechanical system, or change through a represen-
tative electrical circuit node, and

(c) Very specific and critically important quantities called system parameters arise out of various
ratios, products, and sums of the system elements, e.g.,

(a) e time constant, � , for linear, 1st order, ordinary differential equations
(b) e natural frequency, !N , and the damping ratio, �, for linear, 2nd order, ordinary

differential equations.

Whatmakes these quantities so crucial is that they characterize everything interesting about
the mathematical solutions. In the following sections, we will discuss and dissect these solutions
for linear, first and second order differential equations in terms of the system parameters. Re-
member, the specific mathematical form of the system parameters, the time constant, natural
frequency, and damping ratio, arise from the individual discipline-specific actors playing out a
common movie script.

5.1 TIME DOMAIN SOLUTIONS OF 1st ORDER SYSTEMS
Consider the movie scripts we discussed in Chapter 2 that correspond to 1st order systems. First
order systems result when the script involves a single type of storage element or character (either
potential or kinetic energy storage) along with dissipative elements. Note there may be multiple
agents of storage, but they must store only one type of energy. So far, we’ve been introduced to:

(a) A single electrical capacitor with a resistor, e.g., a series RC circuit with battery

(b) A single electrical inductor with a resistor, e.g., a series RL circuit with battery

(c) A single mechanical spring with a dashpot or friction element arranged in parallel, e.g., the
idealized, mass-less spring-dashpot system

(d) A single mechanical inertia with a friction element, e.g., the parachutist in free-fall.

In all these cases, the governing differential equation has the form shown in Section 3.4.3:

�
d .t/

dt
C  .t/ D 	.t/

 .t D 0/ D  O
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Table 5.1: Relation of the system time constant to the system element parameters

System Time Constant Electrical Analogy 

Series RC Circuit R*C  

Series RL Circuit L/R  

Massless Spring Dashpot  b/k  Product 

*
MECH MECH

R C  

Freefall Parachutist m/b Ratio /
MECH MECH

L R  

where  is either effort or flow that is stored in the system and the time constant, � , depends on
the individual inertial, stiffness, or friction quantities.

erefore, one needs only identify the storage and dissipative elements and their structural
arrangement to conclude the relevant time constant. Recall, this is illustrated in Figure 2.4. e
system response for  .t/ is then driven by the system’s initial condition and the forcing function
or signal input, 	 .t/.

For linear systems, solutions for  .t/may be obtained by either use of Laplace transforms
in the complex plane or a superposition of homogeneous and complimentary solutions in the time
domain. Laplace transform solutions are available in a number of good texts on systems dynamics
[10, 11, 19]. For the purposes of physical interpretation, we choose here to restrict ourselves to
solutions strictly in the time domain. By doing this, we hope to replace the mathematical jargon
with the physical meaning underlying the math.

From courses in elementary differential equations, we recall that any linear, ordinary, first
order differential equation in a single independent variable exhibits a solution that can be posed
as the sum of the response,  h .t/, to the corresponding homogeneous differential equation

�
d h.t/

dt
C  h.t/ D 0

and the particular response,  p .t/, to the differential equation driven by the external signal input
or forcing function, 	 .t/:

�
d p.t/

dt
C  p.t/ D 	.t/

where the total solution, via linear superposition, is given by:

 .t/ D  h .t/C  p .t/ :

You probably were shown this in your earlier courses in differential equations. e homogeneous
solution is often referred to as the natural or free response as this portion of the solution solves
the equation where only the system parameters appear and there is no forcing function or agent
of change from the outside world. Father Force is AWOL in this part of the response. It’s all
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about the system on the left side of the equation. Recall this from the illustration given by the
character equation in Figure 2.4 for the RC circuit. is part of the solution prescribes how the
system will react when free of external forces or inputs, i.e., how a system responds essentially
to initial conditions. erefore, the natural response will be a function of the system parameters
ONLY, i.e., in the case of a first order system, the time constant, � .

e portion of the solution that responds directly to the excitation from the outside world
is the so-called particular solution. An agent external to the system is forcing the system to respond
to it. We can understand this distinction even more clearly once we have solved both differential
equations.

5.1.1 TRANSIENT RESPONSE
Mathematicians postulate forms for solutions to differential equations …
well, let’s face it, they guess.

P.E. Wellstead
Introduction to Physical System Modeling

While there is, of course, more to it than that, we, as engineers, rather than mathemati-
cians, are happy to take the nod on the form of the solution. Many real physical systems exhibit
exponential behavior. ey can be modeled as first order ordinary differential equations because
an exponential solution works to “solve” it.

 h .t/ D Ae�t

where the unknown quantity, �, results from satisfying the homogeneous form of the governing
differential equation:

�A�e�t
C Ae�t

D 0:

Dividing through by Ae�t renders the characteristic equation:

��C 1 D 0 ) � D �1=�:

So solutions like  h .t/ D Ae�t work when � D �1=� . So we have

 h .t/ D Ae�1=� :

e value of the constant, A, is determined by applying system’s initial conditions after the com-
plete or total solution is found.e natural response is an exponential decay over the dimensionless
time, t=� , and represents the part of the solution that responds to the system’s initial conditions.
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Of Special Note

e free response is a response to initial conditions in the absence of any external
forcing from the outsideworld.We can associate this responsewith the transient
response of the system. As it is purely exponential in nature, it “dies out” in a
finite amount of time we call the settling time.

5.1.2 FORCED RESPONSE
e mathematical particular solution,  p .t/ , responds directly to the forcing function imposed
by the outside world. e proper form for this response is a function that is, in some sense, the
most general form of the function driving the system. Some familiar forms of input excitations
are shown in Table 5.2.

Table 5.2: General forms of particular solutions corresponding to a variety of polynomial input exci-
tations

Input Excitation General Form of ( )p
tψ  

Step  Constant: K 

Ramp or Step-Ramp Linear: Ct + K  

Polynomial Similar Order Polynomial  

( ) 1N N

p
t At Bt Ct Kψ −
= + + + +  

Harmonic  

( ) ( )cos
O IN

t A tψ ω α= +  

Harmonic

( ) ( )cos
p OUT

t A tψ ω α ϕ= + +  

Arbitrary Function Truncated Polynomial Taylor Series 

We can more clearly show the physical interpretation of the forced response by performing
a full solution for a few simple examples.

Step Input
Consider the example of the mass-less plate discussed in Section 4.3 wherein a constant force is
instantaneously applied to the plate and maintained:

F0 .t/ D

�
0 t < 0

P t � 0

for which the appropriate forced response is a constant:

 p .t/ D K D constant:
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is function must now satisfy the inhomogeneous or forced version of the differential equation

�
d

dt
.K/CK D P=k

K D P=k:

So the particular solution is that amount of deformation the spring would experience under a
purely static load P , i.e., P=k D ıSTATIC. e forced system response is then simply the static
deflection of the spring alone. To understand this in more detail, let’s compose the total solution
for the position of the plate

x .t/ D xh .t/C xp .t/ D Ae�t=�P=k

x.0/ D x0 D AC P=k

) A D x0 � P=k

or

x.t/ D .x0 � P=k/ e�t=�
C P=k:

Notice that since the transient, by definition, decays away at long times compared with the system
time constant, � , the particular solution must represent that part of the solution that remains at
long times or the steady state. is solution is shown graphically in Figure 5.1.

We learn several interesting characteristics from this response that, it turns out, are char-
acteristic of all first order responses. Since for our case:

x.0/ D x0 D 2 m
x .t � 4�/ � P=k D xSS D 12m

x.t/ D .x0 � P=k/ e�t=�
C P=k:

e response to the step input force proceeds exponentially from the initial value of 2 meters to
the final value of xSS D P=k D ıSTATIC in approximately four time constants. As engineers, we
choose a somewhat arbitrary datum for the time at which the exponential decay is sufficiently
complete. Here, we adopt as a reference point the time by which 98% of the change from the
initial value to the steady-state value takes place. is is four time constants because 98% of the
exponential decay has occurred within this time frame:

e�t=�
D e�4�=�

D e�4
D 0:018 � 0:02:

We often refer to this regime as the transient because the plate position is changing throughout
this time range. ereafter the response is in the steady-state at a value equaling that given by
the static deflection of the spring alone because the plate is effectively no longer moving and the
internal force in the damper has decayed to some negligibly small value.
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Figure 5.1: e response of a mass-less plate with spring and damper to a step input force of 60 N
(x0 D 2m; k D 5N/m; b D 10Ns/m). e time constant is given by b=k D 2 seconds. e response
is characterized by an exponential approach from an initial value to a final value of ıSTATIC D P=k.

..

Of Special Note

e forced response is a response specifically to the external forcing from the out-
side world. is response is present long after the transient or free response has
decayed away. For this reason, the forced response is often referred to as the
steady-state response.

When one examines these regimes along with the mathematics of the homogeneous and
particular solutions, one can list several observations that are universally true for all first order
systems.
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Of Special Note

Observations regarding solutions to all 1st order differential equations

(a) e homogenous solution responds to the initial conditions and repre-
sents the mathematical structure of the physical transient from initial
to steady-state values.

(b) e particular solution responds specifically to the forcing function im-
posed upon the system by some external agent. It is the only portion of
the solution that survives after the exponential decay of the transient.
As such,  p .t/ represents the response of the system in steady state.

(c) In the parlance of amovie script, from beginning (initial) to end (steady
state) values, the transient part of the movie lasts roughly 4 time con-
stants. Admittedly, this number is somewhat arbitrary and can be ad-
justed to please the precision with which one needs to attain steady
state. What doesn’t change is that the steady state is effectively attained
in quanta of time constants

(d) Lastly, the entire response can be cast in dimensionless form. is is al-
ways an appealing feature in predictive models because it points toward
physically motivated model parameters.

In this language, the steady state is generally a function of time when the input signal is time-dependent.

To see this last point, one can reformulate the solution to take the form of a dimensionless
response variable, O .t/ where

O .t/ D
 .t/ �  SS

 0 �  SS
D e�Ot where Ot D

t

�

which is plotted in Figure 5.2. Often, students will only first see this dimensionless form of solu-
tions to first order differential equations in their undergraduate heat transfer courses. As you may
not have yet had such a course, what is important to point out is that the term  .t/ �  SS is the
driving agent that causes the variable  .t/ to change over time. When the variable eventually
reaches its steady-state value, this driving agent vanishes and the transient is complete. So the
main “take away” concept here is that the driver for dynamic response is the measure by which
the current value of the variable is different from its eventual steady-state value. It is precisely this
difference in values that actually exponentially decays away in time. Because all systems, regard-
less of their initial conditions or forcing function, can be cast in this form, we can refer to this
dimensionless form as a master curve for first order systems. A master curve is a function onto
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which all solutions fall when appropriately normalized or non-dimensionalized. Master curves
are appealing in predictive mathematical modeling because of the physical interpretation given
to the normalizing quantities. Here, these are the difference between the value of the dependent
system variable and its eventual steady-state value, i.e., the driving force, and the system time
constant.
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Figure 5.2: e response of a mass-less plate with spring and damper to a step input force in dimen-
sionless form.

e difference between a system response variable,  .t/, and its value in steady state is the
driver causing the dynamic response. As formostmeaningful dimensionless parameters inmodels,
O .t/ represents a ratio between two physical quantities: the ratio of the current driving agent to
the initial driving agent. erefore, this particular ratio of differences always decays exponentially
in first order systems over time regimes measured in quanta of system time constants.

Ramp Input
We can maintain that the generalization holds when the system is exposed to a time-dependent
forcing function. Consider the ramp input signal:

F0 .t/ D

�
0 t < 0

10 t t � 0
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for which the appropriate normalized signal input in our example is F.t/=k D 10t=k. e most
general form of a linear function is then presumed for the particular solution:

 p .t/ D Ct CK:

Substituting this into the differential equation

�C CK C Ct D .10=k/t

and upon setting like terms equal to one another:

�C CK C Ct D .10=k/t

C D 10=k

0 D C� CK

K D �C� D
�10

k
�

or
 p .t/ D �

10

k
� C

10

k
t D

10

k
.t � �/ :

It is important to note that while the forcing function is a straight line with zero intercept the
eventual steady-state solution has an intercept. is implies there is an offset in time between the
forcing function and the steady response. is steady solution given by  p .t/ D

10
k
.t � �/ is the

straight dotted line in Figure 5.3.
Compiling the total solution and applying the initial conditions:

x .t/ D xh .t/C xp .t/ D Ae�t=�
C 10.t � �/=k

x.0/ D x0 D A � 10�=k

x.t/ D .x0 C 10�=k/ e�t=�
C 10.t � �/=k

which is plotted in Figure 5.3 for several distinct initial displacements along with the asymptotic
steady-state line.

5.1.3 DIMENSIONLESS SOLUTIONS FOR 1st ORDER SYSTEMS
We note that even when the steady state is time-dependent, the entire response can still, for every
first order system, be cast in dimensionless form:

O .t/ D
 .t/ �  SS .t/

 0 �  SS .0/
D e�Ot where Ot D

t

�
:

is dimensionless solution is plotted in Figure 5.4. Note the form is identical with that in Fig-
ure 5.2.
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Figure 5.3: e response of a mass-less plate with spring and damper to a step input force in dimen-
sional form. e response is characterized by an exponential approach or transient from an initial value
to a final value that, like the forcing function, increases linearly in time.

5.1.4 UNIVERSAL TRUTHS FOR 1st ORDER SYSTEM RESPONSE IN THE
TIME DOMAIN

We can now add several observations to our list of universal truths that always characterize how 1st

order systems respond to their environment. We note that 1st order systems always approach a
steady-state response monotonically from their initial condition, and the response never over-
shoots this steady response. e steady response behaves like “a fence” that bounds the total
response. is total response approaches the steady solution “from one side” where the initial
conditions reside, as observed in Figure 5.3 for the ramp input example. We also note that even
when the steady-state solution is time-dependent, the appropriate non-dimensionalization de-
livers a master curve that is identical for all initial conditions, or starting points, and steady-state
solutions or ending points as shown in Figure 5.4.
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Figure 5.4: e response of a mass-less plate with spring and damper to a ramp input force in dimen-
sionless form.

..

Of Special Note
Universal Truths for 1st Order Systems

(a) ey are comprised of system elements (or characters) that store only a single form
of energy, either potential or kinetic energy (but not both).

(b) eir behavior is characterized by a single system parameter called the system time
constant, � , where

� D f1 .R; C / D f2 .b; k/ or � D g1 .L;R/ D g2 .m; b/ :

(c) e system is identified with one characteristic time given by the time constant.

(d) e system transient decays away in a multiple number of system time constants.

(e) e system response approaches steady state monotonically from one side.

(f ) e system is never capable of overshooting the eventual steady-state response.

(g) e system response can be universally placed in a dimensionless form normalized
by the driving agent  �  SS, and the characteristic time constant, � .
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5.2 TIME DOMAIN SOLUTIONS OF 2nd ORDER SYSTEMS
Again, as discussed in detail in Chapter 2, 2nd order systems result when the script involves both
distinct types of storage character, i.e., both potential and kinetic energy storage. Note there may
be multiple agents of storage, but they must be capable of storing both types of energy. So far,
we’ve been introduced to:

(a) An electrical capacitor and inductor with a resistor, e.g., series or parallel RLC circuits with
an external passive power supply, i.e., battery.

(b) An electrical capacitor and inductor with no systemic damping, e.g., a series/parallel LC
circuit with an external passive power supply, i.e., battery.

(c) A mass with mechanical spring and dashpot connected in series or parallel, e.g., the ideal-
ized, mass-spring-dashpot system.

(d) An idealized, undamped mass-spring harmonic oscillator.

In these cases, the normalized governing differential equation has the form:

1

!2
N

d2 .t/

dt2
C
2�

!N

d .t/

dt
C  .t/ D 	.t/

where  reresents the dependent effort or flow variable in the system and the system is charac-
terized by a pair of parameters: the damping ratio and natural frequency, f�; !N g, where each
depends on the individual inertial, stiffness, or friction quantities. Examining the systems in Sec-
tions 3.5 and 4.5, we arrived at the results summarized in Table 5.3.

When viewed from the perspective of the effort-flow analogy with electrical systems, i.e.,
considering the system damping ratio and natural frequency, a parallel mass-spring-damper sys-
tem should behave similarly to the series RLC circuit (see Table 5.3). erefore, one need only
identify the storage and dissipative elements and how they are structured in the system to know
that the relevant natural frequency and damping ratio are particular products and/or ratios of the
respective system element parameters. Recall, this is illustrated in Tables 3.3 and 3.4 for 1st order
electrical systems. e system response for  .t/ is driven by one or both of the system’s initial
conditions and the forcing function or signal input, 	 .t/.

e corresponding transient and steady-state parts of the solution satisfy:

1

!2
N

d2 h.t/

dt2
C

2�

!N

d h.t/

dt
C  h.t/ D 0

and
1

!2
N

d2 p.t/

dt2
C
2�

!N

d p.t/

dt
C  p.t/ D 	.t/
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Table 5.3: Analogous representations for system natural frequency and damping ratio

System Natural 

Frequency  

(rad/s) 

Electrical Analogy Damping Ratio Electrical Analogy 

Series 

RLC 

Circuit 

1
N

LC
ω =  

 

2

R C

L
ζ =  

 

Parallel 

RLC 

Circuit 

1
N

LC
ω =  

 
1

2

L

R C
ζ =  

 

Parallel 

Mass-

Spring-

Damper  

N

k

m
ω =  

1

*
N

MECH MECH
L C

ω =  

2

b

km
ζ =  

2

MECH MECH

MECH

R C

L
ζ =  

Parallel 

Mass-

Spring 
N

k

m
ω =  

1

*
N

MECH MECH
L C

ω =  
 

0ζ =  

 

0ζ =  

respectively, where the total solution, via linear superposition, is given by:

 .t/ D  h .t/C  p .t/ :

e transient response will be a function of the system parameters only, i.e., the system natural
frequency, !N , and system damping ratio, �, and is that portion of the solution that responds
directly to the initial conditions.e portion of the solution that responds directly to the excitation
from the outside world is the particular solution,  p .t/.

5.2.1 FREE RESPONSE
Similar to first order equations, exponential functions also satisfy the second order equation:

 h .t/ D Ae�t

where the unknown exponents result from satisfying the ODE:

1

!2
N

A�2e�t
C
2�

!N

A�e�t
C Ae�t

D 0:

Dividing through by Ae�t renders the characteristic equation for the ODE:

1

!2
N

�2
C
2�

!N

�C 1 D 0 ) two solutions, �1;2:

Because this equation is quadratic, it exhibits two roots, �1;2. Depending on the sign of the dis-
criminant, pairs of roots to this equation correspond to three distinctly different physical regimes
of behavior as in Table 5.4.
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Table 5.4: e three physical scenarios for transient solutions of second order systems

Scenario ζ  Nature of roots Roots Physical 

Regime 

1 1ζ <  Pair of complex 

conjugate roots 
2

1,2
1

N N
jλ ζω ω ζ= − ± −  

Under 

Damped 

2 1ζ =  Pair of two real, 

equal roots 
1 2 N

λ λ ζω= = −  
Critically 

Damped 

3 1ζ >  Pair of two real, 

distinct roots 
2

1,2
1

N N
λ ζω ω ζ= − ± −  

Over 

Damped 

Underdamped Systems
For the first scenario, the system is under-damped. Mathematically, these result when the damp-
ing ratio, �, is less than one. Physically, this happens when elasticity and inertia dominate friction
in a system (see Figure 5.5). Recall, � D b=2

p
km. If the stiffness and inertia,

p
km dominate

relative to dissipation, b, then � < 1. Energy storage, in some sense, is strong enough to overcome
energy dissipation allowing for a transfer back and forth between potential and kinetic forms of
energy in the system.

Figure 5.5: Strength of energy characters in an under-damped 2nd order system.

is is rendered mathematically by the solutions of the characteristic equation. e tran-
sient solution is given by:

 h .t/ D C1e
�1t

C C2e
�2t

where C1 and C2 are constants to be determined later by imposing the initial conditions. When
the roots are complex, they contain a negative real portion corresponding to the exponential de-
cay caused by the energy dissipating character, and a purely imaginary portion that corresponds
to a harmonic oscillation that occurs “inside the decaying envelope” of the exponential part of
the solution. ese are the energy storage characters transferring energy back and forth between
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potential and kinetic forms. Algebraic manipulation results in a solution of the form

 h .t/ D e��!N t ŒA cos .!d t/C B sin .!d t/�

where !d D !N

p
1 � �2 is the damped natural frequency, andA andB are constants determined

by applying the initial conditions. e system will oscillate in the transient with this characteristic
frequency in the presence of energy dissipation. And the natural response decays away exponen-
tially in a time frame prescribed by the system damping ratio and natural frequency. ere is
no time constant, per se, for a second order system. e constants, A and B , are determined by
applying the system’s initial conditions. e under-damped transient response is an exponentially
decaying harmonic that decays over the dimensionless time, Ot D t=.1=�!N /.

..

Of Special Note
It is interesting to note that while resistance is fairly straightforward to quantify in

electrical systems, damping coefficients in mechanical systems have a somewhat higher
degree of uncertainty associated with them. You will not find a value for the damping
coefficient stamped on the container for a damping element. Friction always has an
inherent uncertainty about its actual mathematical representation.

Because of this, and because it is the damping ratio, �, and not the damping
coefficient, b, that matters in our solutions, we point out that there is a straightforward
way to determine the damping ratio directly from experimental data. For this purpose,
imagine that you perturb an under-damped second order system from rest with an initial
displacement and let the system’s free response decay away from the rest. It is easy to
show that the ratio of successive peaks is given by:

xN C1

xN

D e��!N Td

ı � ln
�
xN C1

xN

�
D �!NTd D

2��p
1 � �2

:

ereby, the log decrement, ı, a quantity readily measured from experiment, is a func-
tion solely of the system’s damping ratio. Inverting this relation

� D
ı

p
4�2 C ı2

:

So the damping ratio is easily determined by measuring the log decrement, ı, or loga-
rithm of ratios of successive peaks. e damped period of the free decaying oscillation
is also easy to measure. With the period known, it is straightforward to compute the
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..

system’s natural frequency:

!N D 2�=Td

p
1 � �2:

So the system parameters can be computed directly from simple experimental measure-
ments.

Critically Damped Systems
e second scenario is basically a fence between the 1st and 3rd scenarios. e system is called
critically damped. Physically, this corresponds to a system where the energy storage and dissipa-
tion “have equal strength,” if you will, and b D 2

p
km (see Figure 5.6). e ability of the system’s

elasticity and inertia to store potential and kinetic energy, respectively, is “equal,” in some sense,
to the ability of the system to dissipate energy. Energy storage, then, just rivals energy dissipation.
In this limit, there is just enough friction or dissipation to prevent anything other than a single
transfer of energy between the kinetic and potential forms. As such, there is sufficient enough
energy dissipation to just prevent oscillatory response from occurring.

Figure 5.6: Strength of energy characters in a critically damped 2nd order system.

e solutions contain two negative, equal real parts, �1 D �2 D � D ��!N , corresponding
to the exponential decay caused by the energy dissipating characters. e transient solution is
given by:

 h .t/ D C1e
�t

C C2te
�t

D C1e
��!N t

C C2te
��!N t :

e constants, C1 and C2, are determined by the system’s initial conditions. e critically damped
transient response is a pure exponential decay over the dimensionless time, Ot D t=.1=�!N /. As
we will soon observe, this decay is the fastest decay that does not allow for oscillatory behavior
in the transient. is makes the critically damped response case an important limit solution for
engineering design as there are a number of physical situations in which one desires as fast a decay
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as possible without oscillation from a given prescribed set of initial conditions, e.g., response of a
mass-spring-damper automobile strut to an imposed initial compression.

Overdamped Systems
Physically, the final scenario corresponds to a system where the energy dissipation dominates
the response at the expense of the ability of the system’s elasticity and inertia to store potential
and kinetic energy respectively. Mathematically, b > 2

p
km ) � > 1. In this limit, there is

more energy dissipation than is necessary to prevent oscillatory response from occurring (see
Figure 5.7).

Figure 5.7: Strength of energy characters in an overdamped 2nd order system.

is is rendered mathematically by the solutions of the characteristic equation: two nega-
tive, and distinct real parts, �1;2 D ��!N ˙ !N

p
�2 � 1 corresponding to two distinct rates of

exponential decay caused by the energy dissipating characters. e transient solution is given by:

 h .t/ D C1e
�1t

C C2e
�2t

D C1e

�
��!N C!N

p
�2�1

�
t

C C2e

�
��!N �!N

p
�2�1

�
t
:

e constants, C1 and C2, are determined by the system’s initial conditions. e critically damped
transient response is a pair of pure exponential decays over two distinct dimensionless times:

Ot1 D t=
�
1=
�
��!N C !N

p
�2 � 1

��
and Ot2 D t=

�
1=
�
��!N � !N

p
�2 � 1

��
:

e over damped response is identified by two physical time scales for decay:

(a) one decay time that is larger than that in the critically damped case

(b) a distinct second decay time that is smaller than that in the critically damped case.

us, superposing both solutions results in an overall decay time longer than that observed in the
critically damped case. e more damping or friction added to a system beyond this limit, the
slower the decay to steady state.
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5.2.2 FORCED RESPONSE
e handling of the mathematical particular solution, p .t/, is no different than that for 1st order
systems. e solution to the inhomogeneous differential equation responds directly to the forcing
function. e form for this response is the most general form of the function driving the system
as outlined in Table 5.2. Again, the physical interpretation of the forced response is best shown
by performing several simple examples.

Step Input to an Underdamped System
Consider the example of the parallel mass-spring-damper discussed in Section 4.4 wherein a
constant force is instantaneously applied. e classic step input signal is simply a constant input
suddenly applied:

F0 .t/ D

�
0 t < 0

P t � 0

for which the appropriate forced response is

 p .t/ D K D constant:

is function must now satisfy the inhomogeneous or forced version of the ODE

1

!2
N

RK C
2�

!N

PK CK D
P

k

K D P=k D ıSTATIC:

e forced system response is then simply the static deflection of the spring alone. To understand
this in more detail, let’s compose the total solution for the position of the plate

x .t/ D xh .t/C xp .t/ D e��!N t ŒA cos .!d t/C B sin .!d t /�C P=k:

Applying the initial conditions:

x.0/ D x0 ) A D x0 � P=k

Px.0/ D �0 ) B D
�0 C �!N .x0 � P=k/

!N

p
1 � �2

:

Finally, upon substitution

x.t/ D e��!N t

"
.x0 � P=k/ cos .!d t /C

�0 C �!N .x0 � P=k/

!N

p
1 � �2

sin .!d t/

#
C P=k:

is solution is shown graphically in Figure 5.8 for several sets of initial displacements.
is response exhibits several features characteristic of all under-damped 2nd order re-

sponses: an exponentially decaying, oscillatory, harmonic response that overshoots the eventual
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Figure 5.8: e response of a lumped mass with parallel spring and damper to a step input force of
60 N (x1;2;3

0 D 2m, 8m, 14m; �0 D 0m/s; k D 5N/m; b D 10Ns/m). e response is characterized
by a decaying oscillation from an initial value that overshoots its steady-state value. It oscillates about
and ultimately decays to the steady-state value of ıSTATIC D F0=k.

steady-state solution at xSS D F0=k D ıSTATIC. is eventual steady state is then reached in ap-
proximately four characteristic decay times parameterized by !N , and �. is is the transient
regime where the response is characterized by two characteristic times: the decay time of the
envelope bounding the oscillations and the period of the oscillations as outlined in Table 5.5.

Table 5.5: Characteristic transient time scales for under-damped second order systems

Solution Feature Characteristic Time 

Exponential decay 1
N

ζω
 

Period of damped harmonic response 
2

2 2
1d

N

π π
ω ω ζ

=
−

 

Following the exponential decay, the response is in the steady state at a value equaling that
given by the static deflection of the spring alone because the inertial mass is effectively no longer
moving and the internal force in the damper has decayed to some negligibly small value. Again,
precisely as for first order systems, we observe characteristics common to the solutions of all 2nd

order systems.
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..

Of Special Note
Observations regarding solutions to all 2nd order differential equations

(a) e homogenous solution responds to the initial conditions and represents the
mathematical structure of the physical transient from initial to steady-state values.

(b) e particular solution responds specifically to the signal input or forcing function
imposed upon the system by some external agent, i.e., the outside world. It is
the only portion of the solution that survives after the exponential decay of the
transient. As such,  p .t/ represents the response of the system in steady state.

(c) In the parlance of a movie script, from beginning (initial) to end (steady-state)
values, the movie lasts effectively 4 characteristic decay times as prescribed in Ta-
ble 5.5. So the steady state is effectively attained in quanta of exponential decay
times.

(d) Lastly, the entire response can, for every second order system, be cast in dimen-
sionless form.

To see this last point, one can reformulate the solution to take the form of a dimensionless
response variable, O .t/ where

O .t/ D
 .t/ �  SS

 0 �  SS
D Ge�Ot1 cos

 
2� Ot2 � tan�1

(
�.�C 1/p
1 � �2

)!

G D

s
1C 2��2 C �2�2

1 � �2

� D
�0

�!N .x0 � xSS/

Ot1 D t= .1=�!N /

Ot2 D t= .2�=!d / D t=Td

which is plotted in Figure 5.9. Because all systems, regardless of their initial conditions or forcing
function, can be cast in this form, we can refer to the function in Figure 5.9 as a master curve for
under-damped second order systems.

e difference between the current system response variable,  .t/, and its value in steady
state is the driver causing the dynamic response. In dimensionless form, O .t/ represents the ra-
tio of the current driving agent to the initial driving agent. e master curves are representative
for any initial displacement, any set of system parameters for which the system remains under-
damped, and any step input force.ismaster representation shows explicitly that with a sufficient
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Figure 5.9: e response of a lumped mass with parallel spring and damper to a step input force from
rest. e curves that are distinct in Figure 5.5 all collapse to the same curve (Curve 1). e rest of the
curves correspond to increasing amounts of viscous damping in the system.

amount of damping, any second order system’s response will be nearly indistinguishable from a
corresponding first order-like response.

Further, since there are two initial conditions necessary for second order systems, there
is a natural scaling of the initial velocity with �� D �!N .x0 � xSS/ such that the response is
characterized by a dimensionless form of the initial velocity:

O�0 D �0=�
�

D �0=�!N .x0 � xSS/ :

e response of the original system is plotted in dimensionless form for a variety of initial velocities
in Figure 5.10.

Ramp Input to an Over-damped System
We can maintain that the generalization holds when the system is exposed to a time-dependent
forcing function. Consider the ramp input signal:

F0 .t/ D

�
0 t < 0

Dt t � 0
:

e most general form of a linear function is then presumed for the particular solution:

 p .t/ D K C Ct:
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Figure 5.10: e response of a lumped mass with parallel spring and damper to a step input force for
a variety of initial velocities.

Substituting this into the differential equation and setting like terms equal to one another:

1

!2
N

.0/C
2�

!N

C CK C Ct D
Dt

k

) C D D=k

0 D K C
2�

!N

C

K D � .2�=!N /
D

k

or

 p .t/ D �
2�

!N

D

k
C
D

k
t D

D

k

�
t �

2�

!N

�
:

Compiling the total solution and applying the initial conditions:

x .t/ D xh .t/C xp .t/

D C1e

�
��!N C!N

p
�2�1

�
t

C C2e

�
��!N �!N

p
�2�1

�
t

C
D

k
.t � .2�=!N // :

Applying initial conditions:

x.0/ D x0 ) x0 D C1 C C2 � 2D�=k!N

Px.0/ D x0 ) x0 D C1

�
��!N C !N

p
�2 � 1

�
C C2

�
��!N � !N

p
�2 � 1

�
C
D

k
:
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Figure 5.11: e response of an over-damped mass-spring-damper system to a ramp input force in
dimensional form.e response is characterized by an exponential approach or transient from an initial
value at rest to a final value that, like the forcing function, increases linearly in time.
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Figure 5.12: e response of an overdamped mass-spring-damper system to a ramp input force in
dimensional form. With increasing values for the damping ratio, the response eventually appears first-
order-like.
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After resolving the values ofC1 andC2, we plot the total response in Figure 5.3 for several distinct
initial displacements. As for the under-damped case, systems with increasing damping ratios
eventually respond in a manner that “looks” first-order-like (see Figure 5.12). Finally, solving the
constants C1 and C2 for various initial velocities gives the responses shown in Figure 5.13.
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Figure 5.13: e response of an overdamped mass-spring-damper system to a step input force for
various values of the initial velocity.

5.2.3 DIMENSIONLESS SOLUTIONS FOR 2nd ORDER SYSTEMS
Again, even when the steady state is time-dependent, the entire response can still, for every second
order system, be cast in dimensionless form:

O .t/ D
 .t/ �  SS .t/

 0 �  SS .0/
D =

�
Ot1; Ot2

�
D

8̂<̂
:
e�Ot1

�
A cos

�
2� Ot2

�
C B sin

�
2� Ot2

��
� < 1

Ae Ot C B Ote Ot � D 1

Ae�Ot1 C Be�Ot2 � > 1

where the respective characteristic times are given in Table 5.6.
ese solutions for the under and overdamped systems, respectively (in Section 5.2.2) are

plotted in dimensionless form in Figure 5.14. Note the limit behaviors of under-damped and
damped systems.
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Figure 5.14: e response of a mass-spring-damper to an arbitrary input force in dimensionless form.

5.2.4 CHARACTERISTIC TIMES FOR TRANSIENTS IN 2nd ORDER
SYSTEMS

e characteristic time for transients in any first order system corresponds directly with its system
parameter, � . Alternatively, the characteristic times associated with the transient response in 2nd

order systems are functions of its system parameters as outlined in Table 5.6.

5.2.5 UNIVERSAL TRUTHS FOR 2nd ORDER SYSTEM RESPONSE IN THE
TIME DOMAIN

We can now add several observations to our list of universal truths that always characterize how
2nd order systems respond to their environment. We note that 2nd order systems always ap-
proach a steady-state response from their initial state, and the response overshoots this steady re-
sponse for under-damped systems and does not overshoot for over-damped systems. e steady
response behaves like “a fence” that bounds the total response only when the system is over-
damped. is over-damped response approaches the steady solution “from one side” as observed
in Figure 5.11 for the ramp input example. We also note that even when the steady-state so-
lution is time-dependent, the appropriate non-dimensionalization delivers a master curve that
is identical for all initial conditions, i.e., starting points, and steady-state solutions, i.e., ending
points.
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Table 5.6: Characteristic times for transient solutions of second order systems

Scenario ζ  Physical Regime Characteristic Times 

1 1ζ <

 

Under Damped 1

N
ζω

exponential decay 

2

2

1
N

π
ω ζ−

 damped period 

2 1ζ =

 

Critically Damped 1

N
ζω

exponential decay 

3 1ζ >

 

Over Damped 

( )2

1

1
N N

ζω ω ζ+ −

 first exponential decay 

( )2

1

1
N N

ζω ω ζ+ − −

 second exponential decay 

..

Of Special Note
Universal Truths for 2nd Order Systems

(a) ey are comprised of system elements (or characters) that store both potential
and kinetic forms of energy

(b) eir behavior is characterized by a pair of system parameters, f!N ; �g, where

(c) !N D f1 .L; C / D f2 .m; k/ and � D g1 .L; C;R/ D g2 .m; k; b/

(d) e system transients are identified by two characteristic times

(e) e system, when underdamped, is capable of overshooting the eventual steady-
state response.

(f ) With an appropriate amount of damping, the system response is nearly indistin-
guishable from that of an appropriately parameterized first order system

(g) e system response can be universally placed in dimensionless form, normalized
by two characteristic times.
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5.2.6 ENERGY STORAGE AND DISSIPATION FOR 2nd ORDER SYSTEM
RESPONSE IN THE TIME DOMAIN

Let’s continue with the example of the mass-spring-damper system. e system stores both ki-
netic and potential energy. Now that we have resolved the resultant motion and velocity of the
lumped mass analytically in Section 5.2.2, we may compute the energy partition that results from
an imposed step input force applied to the mass when the system is underdamped (Figure 5.15).

e early transient behavior shows clearly that peak potential energy caches coincide with
the absence of kinetic energy when the mass is at rest at peak values of displacement as shown in
Figure 5.16. Behavior in the steady state shows the continued decay to a state of steady potential
energy corresponding to the spring extended to its static deflection where motion ceases and
kinetic energy decays to zero as shown in Figure 5.17. All the energy is eventually stored in the
spring as the displacement converges on the static value. All the while, an order of magnitude
more energy is dissipated in the damper throughout the transient as evidenced in Figure 5.18.

Note that the dissipated energy only ever increases. e work done by friction, as plotted
in Figure 5.18, can never decrease and only ever accumulates.

is is perhaps more evident in an under-damped system that is given an initial displace-
ment and released from rest. Here the entire response is simply a transient decay from the initial
conditions. Recall from our discussion in Chapter 3 that in this case of a damped harmonic os-
cillator, the kinetic and potential caches are passed back and forth to one another while friction
eats away during each transfer as shown in Figure 5.19. e energy story for each of the three
characters (inertia, stiffness, and friction) is shown for a typical case in Figure 5.20.

In the resulting free response, energy is “consumed” within each exchange from kinetic to
potential and back to kinetic. With each “pass of the energy ball” the total amplitude of stored
energy is decreased by precisely the amount eaten away by friction as shown in Figure 5.21. Neg-
ligible energy is dissipated as the potential energy peaks, i.e., where the kinetic energy (and,
therefore, velocity) is minimal. Most of the energy is dissipated where the kinetic energy (and
velocity) reach their respective maxima.

Finally, consider the case of the over-damped system subjected to a ramp input. We solved
the inertial displacement and velocity in Section 5.2.2. Here, owing to the slope of the ramp
input force, the net kinetic energy stored plateaus at a relatively small value while the spring
continues to stretch storing the lion’s share of the imparted energy as potential. e dissipated
energy also accounts for a substantial energy cache. ese are shown in the early transient in
Figure 5.19. Later, in the steady state the displacement becomes linear in time resulting in a
potential energy cache that accumulates quadratically in time. e friction work is the integral of
an F-v curve in the damper when the force approaches a constant value. In this case, the friction
work increases linearly over long times. e stored kinetic energy plateaus along with the velocity
at long times. Here, we recognize features of the solution without showing its explicit functional
form. As Feynman correctly noted, “(We can) understand what an equation means if (we) have a
way to figure out the characteristics of its solution without solving it.”



5.2. TIME DOMAIN SOLUTIONS OF 2nd ORDER SYSTEMS 99

0 5 10 15 20 25
0

50

100

150

200

250

Time  (s)

S
to

re
d

 S
y
s

te
m

 E
n

e
rg

y
 (

J
)

Total Stored Energy

Stored Potential Energy

Stored Kinetic Energy

Figure 5.15: Energy partition for a mass-spring-damper system subject to a step input force of 60 N
(x0 D 2mI �0 D 0m=sI k D 125N=mI b D 5Ns=mIm D 30 kg).
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Figure 5.16: Energy partition for a mass-spring-damper system subject to a step input force of 60 N
(x0 D 2mI �0 D 0m=sI k D 125N=mI b D 5Ns=mIm D 30 kg).
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Figure 5.17: Steady-state energy partition for a mass-spring-damper system subject to a step input
force of 60 N (x0 D 2mI �0 D 0m=sI k D 125N=mI b D 5Ns=mIm D 30 kg).
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Figure 5.18: Total energy and dissipated energy for a mass-spring-damper system subject to a step
input force.
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Figure 5.19: e second order free response is the story of an energy catch betweenCaptains Potential
and Kinetic Energy while the Evil Dr. Friction “steals away” energy with each transfer.
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Figure 5.20: A second order system with dissipation is excited by an initial displacement from rest
with no external forces applied.
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Figure 5.21: In the free response of an under-damped second order system with dissipation, with
each “pass of the energy ball” the total amplitude of stored energy is decreased by precisely the amount
eaten away by friction.
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Figure 5.22: An over-damped second order system with ramp input experiences a continual intro-
duction of energy to the system.
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Figure 5.23: An over-damped second order systemwith ramp input as it enters steady state. Here, one
can reason the forms of the steady dependence of energy dissipation (linear) and storage (quadratic)
without actually solving the explicit equations.

5.3 CHAPTER ACTIVITIES
Problem 1 Consider the plate damper, mechanical system shown:

If the mass is initially moving to the right with a velocity of 1 m/s from the position x0 D

�2m and a constant, horizontal force is suddenly applied to the mass, as shown, write the
differential equation governing the system plate displacement.What are the system’s natural
frequency and damping ratio? Sketch the system position response as a function of time.
Be sure to specifically label initial conditions, steady-state response, transient response, and
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the settling time with numerical values where possible. Use m D 0:1 kgI k D 40N=mI b D

6Ns=m.

Plot time histories for the system potential and kinetic energy caches as well as the energy
dissipated over time.

Problem 2 Consider the plate damper, mechanical system from which the spring has been re-
moved. e system is turned vertically and subject to a step input gravitational force as
shown:

x

mg

Two, thin, viscous fluid layers

resulting in a total damping

coefficient = b

If the mass is dropped from the position x0 D 0m from rest, write the differential equation
governing the system plate velocity. Sketch the system response as a function of time. Be
sure to specifically label initial conditions, steady-state response, transient response, and
the settling time with numerical values where possible. Use m D 4 kgI b D 6Ns=mIg �

10m=s.

Problem 3 Consider themass-spring-damper system shown subject to a ramp input displacement
of y .t/ D 5t :
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k

m

x

b

y

Derive the governing differential equation for the displacement of the mass. Solve the equa-
tion usingm D 10 kgI k D 40N=mI b D 25Ns=m. Plot the response, labeling the transient
and steady regimes. Plot the displacement response in dimensionless form and compare
with Figure 5.11.

Problem 4 Consider the downhill skier pictured here:

e total drag on the skier, FD , is a combination of man-made-snow surface resistance and
aerodynamic drag resulting in the following relationship for the drag force:

*

FDD CD

*

V

whereCD is the coefficient of drag,
*

V is the velocity of the skier down the inclined slope and
CD D constant. Draw an appropriately labeled free body diagram and derive the equation
governing the skier’s velocity.
If the skier jumps out a gate and starts ideally from rest, determine:

(a) the skier’s eventual terminal downhill velocity
(b) how long it will take to effectively attain this speed.
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Use m D 80 kgI b D 16Ns=mIg � 10m=s. Plot the energy stored and dissipated in the
system over a relevant time scale. What story do they tell?

Problem 5 Consider the idealized windshield wiper mechanism illustrated here.

M R

k

b y(t)

A mass-less blade is rigidly attached to the disk of radius R. Use I � 1=2mR2 for the disk
and wiper blade assembly for all calculations. Assuming the angular rotation of the disk
remains “small,” derive the differential equation governing the sweep of the wiper blade.
Based on your differential equation, derive theoretical expressions for the system’s natural
frequency and damping ratio. What damping coefficient is required to critically damp the
system?
Solve for the total response when the platform is subject to a step input displacement of
y.t/ D 1:2 inches using: YIN D 1:2 inchesIR D 0:5 inchesI k D 1 lb=ft
m D 0:01 slugI b D 0:25 lb-s/ft.

Problem 6 Consider the angular position of a 100 kg winter Olympic snowboarder on a circular
pipe of radius, R. e total drag on the snowboarder, FD , is a combination of man-made-
snow surface resistance and aerodynamic drag resulting in the following relationship for the
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drag force:
*

FDD CD

*

V where CD is the coefficient of drag and
*

V is the tangential velocity
of the snowboarder and CD D constant.

Use I D mR2; R D 10m; g D 10m=s2 for all calculations.
Assuming that the snowboarder enters the pipe at an initial position of � D 30ı and begins
his angular descent from rest, show that the differential equation governing the angular
position of our snowboarder with respect to time is given by

mR2 R� C CDR
2 P� CmgR sin � D 0:

Consider that the small angle approximation is valid and that on two successive passes five
seconds apart, the maximum angular values are:

�N D 30ı and
�N C1 D 25ı:

Using the log decrement, compute the system’s natural frequency and damping ratio. Make
a theoretically informed estimate of the drag coefficient, CD , based on these measurements.
From an initial angular entry point at �0 D 30ı, how long would it take the snowboarder to
effectively come to rest? Present your solution in dimensionless form and compare a graph
of the dimensionless position with Figure 5.11.

Problem 7 You’re escaping the East India Trading Company in your trusty vessel “e Black
Pearl.” e Pearl’s sails generate thrust in the following relationship:

FSail D CS .VW � VP /

where VP is the velocity of the Pearl, VW is the velocity of the wind, and CS is a constant.
e drag on the Pearl’s hull is linearly proportional to her velocity:

FDrag D CDVP

where CD and the Pearl’s mass, m, are constant.
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Use an appropriately labeled free body diagram to derive the differential equation governing
the Pearl’s velocity. Determine an algebraic expression for the Pearl’s terminal, i.e., steady
state, velocity. Determine an algebraic expression for how long it will take the Pearl to
“effectively” attain its terminal velocity. Write out a functional solution for the velocity of
the Pearl. Assume the initial velocity is given by VPO. Sketch the solution for the Pearl’s
velocity. Identify the time constant, � , and the corresponding terminal velocity, �SS, on the
graph.

Problem 8 A pressure-compensating hydraulic spool valve consists of a bar-bell-like mass in a
cylindrical sleeve (shown below). e valve is moved horizontally by a solenoid that applies
a step input force to the mass. A spring at the far end provides an opposing force. Hydraulic
fluid in a tight clearance of width, h, provides a viscous friction force resisting the motion
and given by the relation:

F� D
C�

h

where C is a constant. A balance of forces in the horizontal direction gives:

m
d2x

dt2
D F.t/ � kx �

C�

h
:
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F.t/ D

�
0 t < 0

1N t � 0

m D 0:01 kg
k D 100N=m
h D 20 � 10�6 m

Upon step-input application of the solenoid force, the valve is designed tomove horizontally
as fast as possible to its equilibrium position without overshooting it and without oscillating.

(a) e governing equationmd2x

dt2
D F.t/ � kx �

C�
h

physically represents a statement of
what balance principle?

(b) What value ofC must be used for the steady-state amount of valve travel to be achieved
in the minimum time without oscillation?

(c) What is the steady-state amount of horizontal travel realized by the valve under this
step input force?

(d) Roughly how long will it take for the valve to travel to its equilibrium position?

(e) Plot the system’s total energy stored and dissipated over time.

(f ) Often hydraulic fluid becomes contaminated as wear particles accumulate in the clear-
ance between the spool and its housing. Such particles often jam in the clearance ef-
fectively reducing the clearance width. Using arguments supported by the form of the
solution for the valve motion, explain the effect the particulate contamination will have
on the time necessary to move the valve to its steady-state position.

(g) If the value of the oil drag coefficient, C , used in part (a), were reduced to half its
original value, would the system overshoot and oscillate about its eventual steady state?
If so, with what frequency would it do so?

Problem 9 Consider the circuit shown with parallel system capacitors. At t D 0, a step voltage,
V0, is applied to the circuit by connecting it suddenly across a battery:
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+

−

R

C1 C2

V1

V0

V0 D 12V
iR .t D 0/ D 40mil liamps

On the circuit diagram label the relevant nodes and apply the necessary conservation princi-
ples to derive the differential equation governing the response of the voltage drop across the
pair of capacitors in the circuit. Use the potential energy storage system element equation
to find the relevant initial condition or initial conditions for the system effort variable.
Sketch the system response as a function of time, labeling the output variable (on verti-
cal axis), and the transient and steady-state regimes of behavior using R D 100˝IC1 D

25�fIC2 D 100�f.

Problem 10 Consider the system presented below in which the cord is wrapped around a solid disc
with mass moment of inertia, 1

2
MR2. e cord sticks to the disc without slipping. e disc

is subjected to a ramp input torque, T .t/ D At , applied about the fixed pivot at its center.
e disc starts from rest at �.0/ D 0 rad. Assume the disk rotation remains “small” and use
an appropriately labeled free body diagram to derive the differential equation governing the
disc’s angular position, �.t/. Solve for the functional form of the disc position. At what time
will the assumption of “small” angles break down? Assume angles of 30 degrees or less are
reasonably “small.” Express your answer in terms ofM;R;A; k1, and k2.
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M
R

θ

k1 k2

Problem 11 Consider the situation of drug absorption into a human being. e human body is
your system and a drug is administered by the outside world at a rate given by f .t/. For such
a case, the differential equation governing the amount of medicine in the blood stream, m,
is given by:

dm

dt
C rm D f .t/ t in hours

where r D 0:0833 hr�1.

e drugs are to be administered by injection which may be modeled as a non-zero initial
condition: f .t/ D 0, and m.t D 0/ D m0 D 7mg.

(a) Compute the solution for the presence of drug in the body over a representative time
scale.

(b) What is the settling time for the drug to wear off?

(c) How many drug storage agent types are present in the system? Why?

(d) How many drug dissipation agent types are present in the system? Why?

Problem 12 Consider the mechanical system of the idealized building model below:



112 5. A COMMON NOTION

k k

x(t)
F(t)

m

Rigid
Floor

Massless
columns

Take m D 0:5 slugI k D 8 lb=ftI b D 1 lb � s=ftIF.t/ D F0 D 32 lb. If the mass is initially
at rest at the position x.0/ D 0 ft and a constant, horizontal 32 lb. force is suddenly applied
to the right, as shown

(a) What are the system’s natural frequency and damping ratio?
(b) Sketch the system response as a function of time. Be sure to specifically label initial

conditions, steady-state response, transient response, and the settling time with nu-
merical values where possible.

(c) What internal damping coefficient would be needed in the columnwalls to “just” make
the building’s lateral motion response behave “1st-order-like”?
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C H A P T E R 6

Going Nowhere?
Going from home to work to home to work, I am moving, but in the
end I haven’t gone anywhere … vibrating strings move but go nowhere
… drawers open, close, open, close—all that motion and nothing to
show for it. Oscillatory motion is interesting. Doing the same thing over
and over and going nowhere is pretty important.

e Physics Hypertext Book

e conversion of circular motion into sine waves is a pervasive part of
our daily lives. Sine waves are the atoms of structure. ey’re nature’s
building blocks. Primordial sine waves spanned the stuff of the cosmos.
e ripples of a pond and the ridges of sand dunes are manifestations of
the emergence of sinusoidal structure from a background of bland
uniformity. ere’s something almost spiritual about them.

Steven Strogatz
e Joy of X

We’ve examined polynomial functions as input signals to dynamic systems. e category
of harmonic functions is a special class unto itself and deserves individual treatment. Going to
work and returning home, swinging on a swing in a playground, rotating a drum in a washing
machine, spinning tires on an automobile—all are pervasive manifestations of periodicity in the
world around us. And while one can admit the nature of periodicity is that one “goes nowhere,”
the energy story tells us something different. ere is “something to show for it” in the energy
tale. Response of a building to earthquake loading easily reminds us that only in one peculiar
sense does the building “go nowhere.” e ability of the building to absorb, store, or dissipate the
input energy convinces us there is another side of the story.

ere are myriad examples of periodic input that excite dynamics. Because the periodicity
appears in the forcing function or excitation, we are interested in the steady-state solution long
after the transient has decayed away. Normally such treatments are referred to as the frequency
response of systems because the response is dependent on the frequency of the input excitation
relative to the system. ese solutions naturally appear in terms of the system parameters, where
the specific mathematical form of the system parameters arises from the individual movie script.
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6.1 FREQUENCY DOMAIN SOLUTIONS OF 1st ORDER
SYSTEMS

First order systems result when the script involves a single type of storage element or character:
either Captain Potential Energy or Captain Kinetic Energy. ere may be multiple storage ele-
ments, but they must store only one type of energy. ere can only be one storage superhero. In
these cases, the governing differential equation has the form:

�
d 

dt
C  D 	0.t/ D 	IN.t/ D 	IN cos.!t/:

In the time domain, we used the superposition of homogeneous and complimentary solutions to
determine a total solution composed of both transient and steady state. For the unique case of
periodic loading, the input excitation “never goes away.” erefore, one must be cognizant of the
nature of the steady-state solution because it is the specific response to this ever-present input.
e nature of the steady-state response to periodic input is captured in three characteristics:

(a) the solution to a periodic excitation of frequency, !, is also a periodic function with the
same frequency, !

(b) the magnitude of the steady-state solution is a scale multiple of the input magnitude of the
excitation and

(c) the solution is shifted in time from the input signal.

As such, the steady-state solution is always of the form:

 SS.t/ D 	OUT cos.!t C '/

and we need only determine the magnitude, 	OUT D A	IN , and phase shift, ', in order to com-
pletely determine the periodic steady-state response of the system.

6.1.1 TRANSFER FUNCTION ANALYSIS FOR HARMONIC INPUT
Consider the case where the magnitude of the excitation, 	IN , is constant, i.e., it is not a func-
tion of the excitation frequency. Because the steady state has no memory of the system’s initial
conditions, we assume zero initial conditions and apply the Laplace operator:

L
�
�
d .t/

dt
C  .t/ D 	0.t/ D 	IN.t/ D 	IN cos.!t/

�
D

�s	.s/C 	.s/ D 	IN.s/

.�s C 1/	.s/ D 	IN.s/:
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Since 	.s/ represents the total output of the system when subject to input 	IN.s/, we do not lose
any generality by referring to it as 	OUT.s/ giving

.�s C 1/	OUT.s/ D 	IN.s/ )

G.s/ D
	OUT.s/

	IN.s/
D

1

�s C 1
:

e parameter s is a quantity in the complex plane where s D aC j!. In the case where the time
domain function is periodic and representable by trigonometric functions, the real portion of s
dictates the exponential rate of decay for constant magnitude input. Since there is no decay in a
pure sinusoid, in our case a D 0. e complex part remaining for the steady state is then simply
s D j!. Using this simplification, we arrive at what is often called the sinusoidal transfer function
(STF). For the remainder of this chapter, we will confine our discussions to STF’s only. Making
this substitution:

G.s D j!/ D
	OUT .j!/

	IN .j!/
D

1

1C �!j
:

Now the STF is a function whose numerator and denominator, in general, can be thought of as
vectors in the complex plane

G.s D j!/ D
AC Bj

C CEj

where A D 1; B D 0; C D 1;E D �! for a first order system subject to constant magnitude peri-
odic input. e STF can be used to easily compute the magnitude and phase shift of the resultant
periodic response. e numerator and denominator vectors of the STF can be represented graph-
ically in the complex plane (Figure 6.1), where:

G.s D j!/ D
AC Bj

C CEj
D

N
D

N D AC Bj D Nej˛

D D C CEj D Dejˇ

and

N D

p
A2 C B2

˛ D tan�1 .B=A/

D D

p
C 2 CE2

ˇ D tan�1 .E=C/ :
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Figure 6.1: Graphical representation of the numerator and denominator vectors of the STF in the
complex plane.

Now we may illustrate the utility of the Laplace approach for periodic input excitations.
e STF, G.j!/ in this form can be used to readily obtain the magnitude and phase shift:

G .j!/ D
	OUT.j!/

	IN.j!/
)

8̂̂̂<̂
ˆ̂:

	OUT

	IN
D

k	OUT.j!/k

k	IN.j!/k
D
N

D
D

p
A2 C B2

p
C 2 CE2

D A

' D †	OUT .j!/ � †	IN .j!/ D †N � †D D ˛ � ˇ

:

From this result:
 SS.t/ D 	OUT cos.!t C '/ D A	IN cos.!t C '/

where, A, the amplification ratio, and ', the phase shift, of the response relative to the input
excitation are given above as functions of the excitation frequency, !, and the system parameters
(here, �).

6.1.2 STEADY-STATE RESPONSE AND BODE PLOT ANALYSIS
Frequency response is entirely characterized by the degree to which the output response is am-
plified and the degree to which the output response lags the input signal. Let’s examine how this
plays out for the simple case of the series RC circuit. Recall this circuit in Figure 6.2.

Consider the case where the input battery voltage or effort differential placed on the system
is periodic with input magnitude, VIN D constant, such that

V0.t/ D VIN cos .!t/
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RCV
1 
+ V

1
 = V

O 
(t)

●

+
−

V0
C

R

V1

Figure 6.2: e series RC circuit and its governing differential equation.

where the magnitude VIN ¤ f .!/. en, following the development of Section 6.1.1,

L
�
�
dV1.t/

dt
C V1.t/ D VIN cos.!t/

�
D

�sV1.s/C V1.s/ D VIN.s/ )

.�s C 1/V1.s/ D VIN.s/:

Since V1.s/ represents the output voltage of the system, we can refer to it as VOUT.s/ giving

.�s C 1/VOUT.s/ D VIN.s/

G.s/ D
VOUT.s/

VIN.s/
D

1

�s C 1

which results in a sinusoidal transfer function

G.s D j!/ D
VOUT .j!/

VIN .j!/
D

1

1C �!j
:

From here, it is straightforward to calculate the amplification ratio

A D
kVOUT .j!/k

kVIN .j!/k
D

p
12 C 02q

12 C .�!/2
D

1q
1C .�!/2

and the phase shift
' D †N .j!/ � †D .j!/ D 0 � tan�1 .�!/
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of the system response

V1SS.t/ D AVIN cos.!t C '/ D
VINq

1C .�!/2
cos

�
!t � tan�1 .�!/

�
:

Note that all characteristics of the steady solution are only functions of the dimensionless quantity,
�!. Plots of the amplification ratio (or alternatively the output responsemagnitude) and the phase
shift as functions of the dimensionless quantity, �!, are known as the Bode plots. ese are shown
in Figures 6.3 and 6.4, respectively, below.

6.1.3 AN INTERPRETATION OF DIMENSIONLESS FREQUENCY RATIO
Often Bode plots are presented simply as a function of the dimensionless parameter, �!, which is
sometimes referred to as the dimensionless frequency ratio. Whenever dimensionless parameters
appear in a model, such parameters can often be placed in the form of a ratio of two physical
quantities at play in the model. Let’s examine how one may ascribe a physical interpretation to
this dimensionless frequency ratio.

Consider the dimensionless parameter written as a ratio

�! D
!

1=�
D

input excitation frequency
equivalent system frequency :

e input signal excites the system at an imposed frequency, !. Alternatively, the “outside world”
bombards the system with an imposed effort or flow at a rate of f D !=2� cycles of input per sec-
ond. is excitation is characterized by a characteristic time called its period, T D 1=f D 2�=!.
So we see that the frequency can be interpreted as the reciprocal of the characteristic time. e
larger the input signal frequency, the smaller its characteristic time. A similar interpretation can
be had for the system. Since the system is characterized by its time constant, one can understand
the time constant to be a measure of the system’s response time, the time it takes the system to
respond to external stimuli.

Now the dimensionless parameter, �!, as written above can be physically interpreted as a
dimensionless frequency ratio: the ratio of the input excitation frequency to the frequency with
which the system can respond to any input. When the excitation frequency is large compared
to the frequency to which the system is capable of responding, then the excitation frequency is
termed “high” in this relative sense. When the equivalent system frequency is large compared to
the frequency imposed on it by “the outside world,” then the excitation frequency is considered
“low.” When the ratio is of order unity, the frequency can be termed “moderate.”

Summarizing

�! D
!

1=�
D

8̂<̂
:

� 1 ) high excitation frequency
� 1 ) moderate excitation frequency
� 1 ) low excitation frequency:
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Figure 6.3: Amplification ratio as a function of dimensionless frequency ratio.
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Figure 6.4: Phase shift as a function of dimensionless frequency ratio.
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Similarly, consider the dimensionless parameter written as a ratio

�! D
�

1=!
D

system characteristic time
input excitation characteristic time :

e system time constant is the characteristic response time of the system to external stimuli. e
input signal bombards the system with an imposed effort or flow at a rate of f D !=2� cycles of
input per second or one dose every T seconds, where T is the input period, T D 1=f D 2�=!. If
we consider the input excitation characteristic time to be a scaled quantity, 1=!, we see that the
excitation characteristic time can be interpreted as the reciprocal of the imposed frequency. e
larger the input signal frequency, the smaller its characteristic time.

Now the dimensionless parameter, �!, as written above can be physically interpreted as
a dimensionless characteristic response time ratio: the ratio of the time it takes the system to
respond to an external stimulus to the characteristic time over which that stimulus is delivered by
some external agent. When the system time constant is large compared to this characteristic time
over which an excitation is delivered, the system is considered “slow to respond” or alternatively,
the input is “coming at the system” faster than it can respond!

When the system time constant is small compared to this characteristic time over which an
excitation is delivered, then the system response time is small relative to how often the stimulus
is delivered. In this limit, the system is considered “fast to respond” or alternatively, the input is
“coming at the system” slower than that rate at which the system can respond!

When the ratio is of order unity, the system can respond on time scales commensurate with
those over which the excitation is being delivered.

Summarizing

�! D
�

1=!
D

8̂<̂
:

� 1 ) FAST system relative to the “outside world”
� 1 ) system is of similar relative “speed” as the “outside world”
� 1 ) SLOW system relative to the “outside world”´

:

ese interpretations are summarized in Table 6.1.

6.1.4 FILTERING CHARACTERISTICS OF 1st ORDER SYSTEMS
In the classic sense of a frequency response, Bode plots show an infinite number of potential
steady-state solutions each at a different imposed excitation frequency. e plots, because they
are characterized by the dimensionless parameter, �!, exhibit unique behavior in the relatively
low, moderate, and high frequency regimes.

Low Pass Filters
For the series RC circuit, the Bode plots are illustrated in Figures 6.3 and 6.4. In the low frequency
regime, the amplitude ratio approaches unity and the output is negligibly shifted in time. In other
words, the magnitude of the output voltage across the capacitor is nearly the same value as that
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Table 6.1: Physical interpretations of the dimensionless frequency ratio, �!

Dimensionless 

Frequency 

Ratio 

High Input 

Excitation Frequency 

Low Input Excitation 

Frequency 

1

ω
τω

τ

=  
1ω
τ

>>  1ω
τ

<<  

   

Dimensionless  

Characteristic 

Time Ratio 

Fast System Response Slow System Response 

1

τ
τω

ω

=  
1τ
ω

<<  1τ
ω

>>  

input to the system by the external battery. In this limit, the steady-state output precisely mimics
the input signal as shown in Figure 6.5.

For moderate excitation frequencies, the amplitude ratio approaches and
p
2 the phase shift

approaches 45 degrees as shown in Figure 6.6.
In the high frequency regime, the amplitude ratio approaches zero and the phase shift

approaches 90 degrees making the output a sine wave response to a cosine input. e output has
negligible magnitude and lags the input signal as much as possible as shown in Figure 6.7.

e series RC circuit passes through all of the input excitation to the system at low in-
put frequencies and passes none of the input signal and lags as much as possible at high input
frequencies. For this reason the system is referred to as a low pass filter.

High Pass Filters
at the series RC circuit happened to behave as a low pass filter is entirely a result of its transfer
function. It depends on both the nature of the excitation, the numerator in the transfer function,
and the system itself, the denominator in the transfer the function. Change either the system, its
elements or their structure or the nature of the input excitation and you necessarily change the
transfer function, the representative Bode plots, and the filtering characteristics of the excited
system.

So let’s consider an alternate mechanical system with a mass-less platform sandwiched
between a linear spring and damper as shown in Figure 6.8.
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Figure 6.5: Series RC circuit response to low frequency excitation. is system is characterized by a
time constant of 1 second and a transient of approximately 4 seconds after which time the response is
predominantly steady state.
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Figure 6.6: Series RC circuit response to moderate frequency excitation. Once again, the system
settling time is roughly 4 seconds.
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Figure 6.7: Series RC circuit response to high frequency excitation.
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Figure 6.8: e mechanical spring-damper system with an interposed mass-less platform.
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Operating on the governing differential equation with the Laplace operator

L
�
�

dx.t/
dt

C x.t/ D �
dy.t/

dt

�
D �sX.s/CX.s/ D �sY.s/:

We understand the input to the system is the displacement of the end of the damper, Y.s/, and
the output is the displacement of the mass-less platform, X.s/, giving

.�s C 1/XOUT.s/ D �sYIN.s/

G.s/ D
XOUT.s/

YIN.s/
D

� s

�s C 1
:

Calculating the amplification ratio

A D
kXOUT .j!/k

kYIN .j!/k
D

q
02 C .�!/2q
12 C .�!/2

D
�!q

1C .�!/2

and the phase shift
' D †N .j!/ � †D .j!/ D

�

2
� tan�1 .�!/

the system response is given by

XSS.t/ D AYIN cos.!t C '/ D
�!YINq
1C .�!/2

cos
�
!t �

�

2
C tan�1 .�!/

�
:

Again, all characteristics of the steady solution are only functions of the dimensionless quan-
tity, �!. Plots of the amplification ratio and the phase shift are shown in Figures 6.9 and 6.10,
respectively, below.

e mass-less platform exhibits quite different behavior. Here it is in the high frequency
regime that the amplitude ratio approaches unity and the phase shift approaches zero degrees. In
other words, the steady-state platform displacement precisely mimics the input signal as shown
in Figure 6.11.

It is good to ask what is happening physically in this limit. When the right end of the
damper is displaced at very high frequency, one is essentially applying a large periodic velocity
here. When a large velocity differential is applied across a damper, it locks up and behaves as if
it is rigid. e displacement time histories of both the input excitation and the platform motion
should be identical in this limit.

Alternatively, when the damper’s right end is harmonically displaced at extremely low fre-
quency, it is the same as applying an infinitesimal velocity differential across the damper or negli-
gible force. In this limit, the lion’s share of the displacement across the damper occurs at the right
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Figure 6.9: Amplification ratio as a function of dimensionless frequency ratio.
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Figure 6.10: Phase shift as a function of dimensionless frequency ratio.
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end while the magnitude of displacement of the system platform is negligible. Also the platform
displacement lags the input displacement history by “as much as possible” or 90 degrees resulting
in a platform displacement that is a sine wave response to a cosine input as shown in Figure 6.12.

Because this mechanical system passes all of the input excitation to the system at high
input frequencies and passes none of the input signal and lags as much as possible at low input
frequencies, the system is referred to as a high pass filter.

6.1.5 UNIVERSAL TRUTHS FOR 1st ORDER SYSTEMS SUBJECT TO
HARMONIC INPUT

..

Of Special Note
For all first order systems, certain steady-state behaviors are characteristic of all

systems:

(a) eir steady-state behavior is a function of a single dimensionless parameter, �!

(b) Dimensionless amplification ratios can never exceed a value of unity

(c) Phase shifts can never exceed 90 degrees

(d) Bode plots contain, at most, a single inflection point:

(a) Order 1 equation ) 1 inflection point
(b) One inflection point ) amplification ratio and phase monotonically either

increase or decrease with �!.

(e) Systems may only ever be low-pass or high-pass filters.

6.1.6 ENERGY STORAGE AND DISSIPATION IN 1st ORDER SYSTEMS
SUBJECT TO HARMONIC INPUT EXCITATION

Let’s continue with the example of themass-less spring-damper system discussed in Section 6.1.4.
Because the idealized platform has negligible mass, no kinetic energy can be stored by the system.
We know that energy can only be stored in the form of potential energy in the spring or dissipated
by the damper. Now that we have resolved the resultant motion and velocity of the platform, we
may compute the energy partition that results from an imposed harmonic input to the damper.
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For zero initial conditions, the total platform displacement can be written as

x.t/ D xTRANSIENT.t/C xSTEADY STATE.t/

D .x0 � xSS_0/ e
�t=�

C AYIN cos.!t C '/

D .x0 � xSS_0/ e
�t=�

C
�!YINp
1C .�!/2

cos
�
!t �

�

2
C tan�1.�!/

�
:

e potential energy is simply

VSYSTEM.t/ D
1

2
kx2:

While the energy dissipated in the damper is equal to the friction work performed by the damper

WFRICTION.t/ D

Z t

0

FFRICTION.t/dx

D

Z t

0

b. Py.t/ � Px.t//2dt:

ese quantities are shown graphically in Figures 6.13 and 6.14, respectively.
e energy story tells an interesting tale that is potentially belied by the frequency response

alone. At low input frequency, there is negligible movement of the platform. While the platform
displacement is relatively low compared with the damper stroke displacement, it is not zero. As a
result, the spring potential energy, is relatively speaking, low.e relative velocity over the damper,
however, results in energy dissipation that dominates the energy story. It is nearly two orders of
magnitude larger than the potential energy stored in the system.

At high frequency, the damper appears effectively locked, but there remains a relative ve-
locity over the damper that can be relatively large owing to the high frequency of the damper
stroke displacement. erefore, the energy dissipated in the damper still dominates, only now
it is only half an order of magnitude larger. e relative amount of energy stored has increased
compared with the case at low frequency.

It is important that this result explicitly depends on the values of spring constant and damp-
ing coefficient and not simply their ratio, the time constant. erefore, the energy story of two
systems with the same time constant will not necessarily be the same as is the story for effort and
flow. But the relative amounts of energy stored and spent will potentially be a deciding factor in
system design.

is is an important issue not often discussed in elementary courses in systems dynamics. It
plays a significant role in that while one needs to know the flow variables of velocity and displace-
ment to calculate the kinetic and potential energies stored by the system, it may be the energy
storage versus dissipation that is the deciding factor in the feasibility of the design. An analo-
gous issue arises in finite element analysis where the primary solution variables are a set of nodal
point displacements in a loaded structure. While this is true, it is often the internal stresses that
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Figure 6.13: Energy partition for a mass-less platform response for low input frequency excitation.
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are the determining factor in design. e internal stresses are calculated by using displacements
to compute strains and strains to compute stresses. at is, the displacements or flow variables,
by themselves, are incidental. e corresponding transmitted forces or effort variables internal
to the system and energies stored are primary factors in system design. In engineering system
design, engineers often redesign systems to lower transmitted forces or internally stored energy.
is is accomplished by either altering the geometric structure of the system, i.e., whether system
elements are connected in series or parallel, or by altering the material properties, i.e., the sys-
tem capacitances, inductances, or resistances in any given geometric configuration. It’s not unlike
playing with Lego bricks. ey can be put together in an infinite number of ways and we can
choose different sizes of bricks. When the spring and damper are placed on either side of the
platform and the outside world is stroking the damper, as shown here, the requisite energy losses
are substantial. As we will see, such is not always the case.

6.2 FREQUENCY DOMAIN SOLUTIONS OF 2nd ORDER
SYSTEMS

If you wish to understand the universe, think of energy, frequency, and
vibration.

Nikola Tesla

Second order systems result when the script involves multiple types of storage elements or
characters, i.e., Captains Potential and Kinetic Energy both appear in the movie. Note there may
be many storage elements, but they must collectively store both types of energy. In these cases,
the governing differential equation has the form:

1

!2
N

d2 .t/

d t2
C
2�

!N

d .t/

dt
C  .t/ D 	0.t/ D 	IN.t/ D 	IN cos.!t/

where  represents the pertinent effort or flow variable that characterizes the system and !N

and � are the system natural frequency and damping ratio, respectively. Again, for periodic load-
ing, the input excitation “never goes away.” e steady-state solution is a response specifically to
this omnipresent input excitation. Just as with 1st order systems, the nature of the steady-state
response to periodic input is captured in three characteristics:

(a) the solution to a periodic excitation of frequency, !, is also a periodic function with the
same frequency, !

(b) the magnitude of the steady-state solution is a scale multiple of the input magnitude of the
excitation and

(c) the solution is shifted in time from the input signal
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erefore, the steady-state solution is always of the form:

 SS.t/ D 	OUT cos.!t C '/

and we need only to determine the magnitude, 	OUT D A	IN , and phase shift, ', in order to
completely determine the periodic steady-state response of the system. Because the steady-state
solution has no memory of the system’s initial conditions, we, again, use Laplace transforms to
examine a system’s steady-state response to periodic input.

6.2.1 TRANSFER FUNCTION ANALYSIS FOR HARMONIC INPUT
Consider the case where the magnitude of the excitation, 	IN , is constant, i.e., it is not a function
of the excitation frequency. Again, assuming zero initial conditions and applying the Laplace
operator to the differential equation:

L
�
1

!2
N

d2 

dt2
C
2�

!N

d 

dt
C  D 	0.t/ D 	IN.t/ D 	IN cos.! t/

�
D

1

!2
N

s2	.s/C
2�

!N

s	.s/C 	.s/ D 	IN.s/�
1

!2
N

s2
C
2�

!N

s C 1

�
	OUT.s/ D 	IN.s/

G.s/ D
	OUT.s/

	IN.s/
D

1�
1

!2
N

s2 C
2�
!N
s C 1

� :
For periodic input, s D j!, rendering the second order sinusoidal transfer function:

G.s D j!/ D
	OUT .j!/

	IN .j!/
D

1�
1 �

!2

!2
N

�
C

2�
!N
!j

:

Now

G.s D j!/ D
AC Bj

C CEj

where A D 1; B D 0; C D

�
1 �

!2

!2
N

�
; E D

2�
!N

for a second order system subject to constant

magnitude periodic input.
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e amplification ratio and phase shift follow:

G .j!/ D
	OUT.j!/

	IN.j!/

)

8<: 	OUT

	IN
D

k	OUT .j!/k

k	IN .j!/k
D
N

D
D

p
A2 C B2

p
C 2 CE2

D A

' D †	OUT .j!/ � †	IN .j!/ D †N � †D D ˛ � ˇ

and
 SS.t/ D 	OUT cos.!t C '/ D A	IN cos.!t C '/

where A and ' are functions of !N and �.

6.2.2 STEADY-STATE RESPONSE AND BODE PLOT ANALYSIS
For second order systems, the concept of a frequency ratio is explicit as the system is characterized
by its natural frequency as opposed to a time parameter as in first order systems. Again, the specific
instances of periodic signal inputs are best shown by specific examples.

Periodic Input Signal of Constant Magnitude
Consider the classical mass-spring-damper system from Section 4.4.1 and illustrated in Fig-
ure 4.12. Let’s restrict ourselves to the case where the externally applied input force or effort placed
on the system is periodic with input magnitude, FIN D constant, such that F0.t/ D FIN cos .!t/
where the magnitude FIN ¤ f .!/. en, following the development of Section 6.1.1,�

1

!2
N

s2
C
2�

!N

s C 1

�
X.s/ D

1

k
FIN.s/

G.s/ D
X.s/

FIN.s/=k
D

1�
1

!2
N

s2
C
2�

!N

s C 1

�
which results in a sinusoidal transfer function

G .j!/ D
XOUT.j!/

FIN.j!/=k
D

1�
1 �

!2

!2
N

�
C
2�

!N

!j

:

e resulting amplification ratio is given by:

A D
kXOUT .j!/k

kFIN.j!/=kk
D

p
12 C 02s�

1 �
!2

!2
N

�2

C

�
2�

!

!N

�2
D

1q
.1 � r2/

2
C .2�r/2
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where r D !=!N is known as the dimensionless frequency ratio. e corresponding phase shift
is given by:

' D †N .j!/ � †D .j!/ D 0 � tan�1
�
2�r=.1 � r2/

�
:

So, finally, in steady state

XSS.t/ D AFIN

k
cos.!t C '/ D

FIN=kq
.1 � r2/

2
C .2�r/2

cos
�
!t � tan�1

�
2�r=.1 � r2/

��
:

Note that all characteristics of the steady solution are only functions of the dimensionless quanti-
ties, � and r . Plots of the amplification ratio and the phase shift as functions of the dimensionless
quantities, � and r , are known as the Bode plots or surfaces for second order systems. ese are
shown in Figures 6.15 and 6.16, respectively, for the case of constant magnitude input signal.

We should note several observations for this specific case of a constant force amplitude
periodic signal input to a parallel mass-spring-damper system:

(a) at low frequency ratio, all of the signal input is passed onto the system with an amplification
of zero and zero phase shift.

(b) At frequency ratios near unity, where the input signal frequency equals the system natural
frequency, the amplification ratio can become much larger than one. For an undamped
system, the output system responsemagnitude will grow unbounded at r D 1.is is known
as resonance.

(c) At high frequency ratio, the amplification ratio falls off monotonically and asymptotically
to zero at sufficiently high frequency ratio.

(d) e amplification ratio always decreases with increasing damping for all frequency ratios.

(e) At sufficiently high damping ratio, the system appears first-order-like and behaves like a
low pass filter.

Inmost cases, one cannotmake generalizations about the behavior of any one system from a
different system. To see how any periodically excited system behaves in the steady state, one must
derive the transfer function and examine the behavior in the Bode plots. e transfer function
depends both on the system parameters and features of the forcing function. Whenever either is
altered, the transfer function and steady-state behavior can be altered. Each system under specific
signal inputs must be examined on its own merits. Considering a second example will make this
point unambiguous.

Periodic Input Signal from a Rotating Imbalance
When rotating machinery is submitted to an imbalance about the axis of rotation, such as happens
when wet clothes shift to one side of a spinning basin in a washing machine, the washing machine
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Figure 6.15: Amplification ratio as a function of frequency and damping ratios.
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is excited into motion. Similarly, an automobile exhibiting a wheel imbalance will have observable
and detrimental vibration imparted to the car axle and frame. A simple lumped model of such an
inertial imbalance is illustrated in Figure 6.17.

b

k

x(t)

m

Rω

M

Figure 6.17: A second order system subject to a rotating imbalance.

e system is characterized by some frictional losses that we assume can be modeled ef-
fectively as viscous dissipation with damping coefficient, b, and a system stiffness, k, whereby
the system stores potential energy. e relatively small imbalance .m � M/ is spinning about
a frame rigidly attached to the mass, M , at constant angular velocity, !. e imbalance, m, is
spinning at a prescribed rotational speed, thus imparting an eccentric load on the inertial mass,
M , that is sinusoidal with a magnitude that is dependent on the spinning speed. Because the
spinning speed is prescribed, the system has only a single degree of freedom. is is often called
a classical rotating imbalance. Consider the location of the mass imbalance relative to the center
of the lumped system mass to be given by a vector, R .t/ D R cos!t Oi CR sin!t Oj where R is
the magnitude of the eccentricity of the imbalance. If the block is constrained in the vertical . Oj /

direction, a free body diagram on the inertial block renders the following governing differential
equation for the horizontal motion of the mass,M :

M
d2x.t/

dt2
C b

dx.t/
dt

C kx.t/ D �m RR.t/ D mR!2 cos.!t/:

Normalizing the equation by the system stiffness, k, and assumingM � m,

M

k

d2x.t/

dt2
C
b

k

dx.t/
dt

C x.t/ D
mR!2

k
cos.!t/ D

mR!2

M!2
N

cos.!t/

1

!2
N

d2x.t/

dt2
C
2�

!N

dx.t/
dt

C x.t/ D
mR!2

M!2
N

cos.!t/:

Note here that the magnitude of the forcing function is dependent on the frequency of rotation of
the imbalance. e magnitude of the imbalance increases as the square of the spinning frequency.
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We will see that this is a crucial feature of this excitation. Applying the Laplace operator to the
differential equation:

L
�
M

k

d2x.t/

dt2
C
b

k

dx.t/
dt

C x.t/ D �
m

k
RR.t/

�
�
1
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s2
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s C 1
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�m

k
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m
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N�
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N
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C
2�

!N

s C 1

�
which results in a sinusoidal transfer function

G .j!/ D
XOUT.j!/

RIN.j!/
D

m!2=M!2
N�

1 �
!2

!2
N

�
C
2�

!N

!j

and amplification ratio

A D
kMXOUT .j!/k

kmRIN .j!/k
D

�
!2=!2

N

�s�
1 �

!2

!2
N

�2

C

�
2�

!

!N

�2
D

r2q
.1 � r2 /

2
C .2�r/2

where r D !=!N , and, again, A D A .r; �/.
e corresponding phase shift is given by:

' D †N .j!/ � †D .j!/ D 0 � tan�1
�
2�r=

�
1 � r2

��
:

So, finally

XSS.t/ D AmRIN

M
cos.!t C '/ D

.mRIN=M/ r2q
.1 � r2 /

2
C .2�r/2

cos
�
!t � tan�1

�
2�r=

�
1 � r2

���
:

While the phase shift is identical to that for the constant magnitude forcing function, the presence
of r2 in the numerator changes the amplification ratio in significant ways. e resultant Bode plot
of the amplification ratio is shown in Figure 6.18.

For the specific case of a periodic signal input from a rotating imbalance to a parallel spring-
damper—mass system:

(a) at low frequency ratio, none of the signal input is passed onto the system with an amplifi-
cation of zero and zero phase shift.
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Figure 6.18: Amplification ratio for a rotating imbalance.
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(b) At near resonant frequencies, the amplification ratio can become much larger than one.
For an undamped system, the output system response magnitude will grow unbounded at
r D 1.

(c) At high frequency ratio, the amplification ratio converges to a value of one.

(d) e amplification ratio always decreases with increasing damping for all frequency ratios.

(e) At sufficiently high damping ratio, the system appears first-order-like and behaves like a
high pass filter.

Significant changes are evidenced here at both high and low input frequencies when compared
with the steady-state behavior of the system whose excitation magnitude is independent of fre-
quency. In fact, the limit behavior is opposite for both systems at both low and high frequency.

Periodic Input Signal from a Base Excitation
When a system is subject to forces that are applied through its internal elements, i.e., springs and
dampers by the motion of an external agent, the imposed forces are still applied by virtue of an
external agent. Consider the case of an idealized model of an automobile suspension. Here, the
inertial lumped mass represents the mass of a 1=4 model of an automobile comprised of a 1=4 of
the chassis/frame, a single suspension strut, and one tire. e model stiffness, k, lumps together
the stiffness of the suspension strut and the rubber tire while the damper primarily represents the
viscous dissipation in the suspension strut.

kb

m

x

y

v

Figure 6.19: A second order system subject to excitation of its base.

e vertical motion, y.t/, is provided by a sinusoidal road profile with wavelength, �, traversed
by a vehicle with speed, � :

y.t/ D Y0 cos!t
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and
! D

2��

�
:

A free body diagram on the inertial block renders the following governing differential equation
for the horizontal motion of the mass:X

F D k .y.t/ � x.t//C b . Py.t/ � Px.t// D m Rx.t/

m
d2x.t/

dt2
C b

dx.t/
dt

C kx.t/ D ky.t/C b
dy.t/

dt
:

Where the terms on the right-hand side of the equation are external forces provided by virtue
of the tire motion imposed by the road profile and speed of the vehicle. Again, normalizing the
governing differential equation by the system stiffness, k:

m

k

d2x.t/

dt2
C
b

k

dx.t/
dt

C x.t/ D y.t/C
b

k

dy.t/
dt

or, in terms of the system parameters
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dt2
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:

Applying the Laplace operator to the normalized differential equation:�
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D

q
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.1 � r2/
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C .2�r/2

where r D !=!N , and, again, A D A .r; �/.
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e corresponding phase shift is given by:

' D †N .j!/ � †D .j!/ D tan�1 .2�r/ � tan�1
�
2�r=.1 � r2/

�
:

So, finally

XSS.t/ D AYIN cos.!t C '/

D
YIN

q
1C .2�r/2q

.1 � r2 /
2

C .2�r/2
cos

�
!t C tan�1 .2�r/ � tan�1

�
2�r=.1 � r2/

��
:

e resultant Bode plot of the amplification ratio and phase shifts are shown in Figures 6.20 and
6.21, respectively.

For periodic signal input from a base excitation to a parallel mass-spring-damper system:

(a) at low frequency ratio, all of the signal input is passed onto the system with an amplification
of unity and zero phase shift.

(b) At near resonant frequencies, the amplification ratio can become much larger than one. For
an undamped system, the output response magnitude will grow unbounded at r D 1.

(c) At the peculiar frequency ratio of r D
p
2, the amplification ratio becomes unity irrespective

of damping ratio.

(d) At high frequency ratio, the amplification ratio converges to zero.

(e) e amplification ratio no longer decreases with increasing damping ratio for all frequency ratios!
is is true only for frequency ratios less than r D

p
2. For ratios higher than r D

p
2,

increasing the amount of damping actually increases the amplification ratio. is may seem
counterintuitive, but the mathematics, i.e., our “eyes with which we see physics,” says it is
true, and experiments verify this reality!

(f ) At sufficiently high damping ratio, the system behaves like an all pass filter, i.e., the ampli-
fication ratio converges to unity for all frequency ratios.

Significant changes are evidenced here: increasing friction enhances amplification for r >
p
2 eventually ending up allowing all of the external excitation to be seen in the steady state at all

frequencies when the friction is sufficiently high.
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Figure 6.20: Amplification ratio for base excitation of a 2nd order system.
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Figure 6.21: Phase shift for base excitation of a 2nd order system.
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6.2.3 UNIVERSAL TRUTHS FOR 2nd ORDER SYSTEMS SUBJECT TO
HARMONIC INPUT

..

Of Special Note
For all second order systems:

(a) eir steady-state behavior is a function of a two dimensionless parameters: the
frequency ratio, r D !=!N , and the damping ratio, �.

(b) Amplification ratios can exceed a value of unity, particularly near resonant fre-
quencies.

(c) Phase shifts can exceed 90 degrees.

(d) Bode plots contain, at most, two inflection points allowing for peaks at interme-
diate frequency ratios.

(a) Order 2 equation ) 2 inflection points
(b) 2 inflection points ) amplification ratio and phase can increase and then

decrease (or vice versa) with dimensionless frequency ratio, r .

(e) Systems can be low-pass, high-pass, mid-band pass, or all-pass filters.

6.3 REDESIGNING SYSTEMS FOR STEADY-STATE
BEHAVIORS

One thing to note in second order systems is that resonance can be a particularly interesting case
as amplification can be quite large. So we might want to design systems that are not capable of
meandering into any troublesome regimes. Let’s say, for instance, in the case of a constant force
magnitude periodic input to a second order mass-spring-damper system, one wished to never see
output dynamic position amplitudes greater than half the static deflection. Being interested in this
limit, let’s say we wish to dictate that the dynamic output be precisely half the static deflection.
Recall, the amplification depicted in Figure 6.15 is a function of two parameters, the frequency
ratio, r D !=!N , and the damping ratio, �. If we limit the amplification to be precisely 1=2, then
we have a unique relationship between the frequency and damping ratios shown in Figure 6.22.
is figure is a cut parallel to the r–� plane elevated to a height of A D 1=2.

ere are now several interesting observations one can make regarding possibilities for ob-
taining the design condition A D 1=2. In Figure 6.22, all fr; �g pairs to the left of the cut have
amplification greater than 1=2 while all fr; �g pairs to the right have amplification less than 1=2.
On the curve separating the two regions, the amplification precisely equals 1=2. If we desire
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Figure 6.22: A curve }.r; �/ for which A D 1=2 for constant force magnitude periodic input to a
mass-spring-damper system.

A D 1=2, we can choose any fr; �g pair on this curve. e number of possibilities? Yes, infinity.
Further, as engineers, we don’t swap out parts with natural frequencies and damping ratios. We
specify spring stiffnesses, damping coefficients, and inertial masses. Well, let’s pick one of the
infinity of solutions for a particular fr; �g pair, say f1; 1g. What specific triple fm; k; bg corre-
sponds to fr; �g D f1; 1g? Well, there are, again, an infinite number of such triples that determine
a single dimensionless pair. So, for every one of the infinity of fr; �g pairs, there is yet another
infinity of fm; k; bg triples! On some scale, there are 12 possible solutions. Of course, one will
need to consider cost, weight, availability, and other factors as constraints to fence in a reasonable
solution, but there are still often a large number of potential candidates for a redesigned solution.
ere are a wealth of solutions at our disposal because the second order system is characterized
by two independent dimensionless parameters. In first order systems, only the time constant can
be changed to alter the steady-state behavior. But typically this single parameter is a product or
ratio of system parameters pairs: fR;C g ; fR;Lg ; fk;mg ; fm; bg. ere remain an infinite num-
ber of solutions for these pairs of system elements that will deliver the requisite time constant for
a sufficient redesign of the steady-state amplitude or phase shift.

Note also that within any order system, the possibilities for redesign are dictated by the
transfer function and are, therefore, dependent upon the details of the system and how it is excited
by external agents. Consider that you wanted to limit the amplification ratio to a value of 1=2 for
a system exhibiting a rotating imbalance. In this case, taking the appropriate slice through the
three-dimensional Bode surface results in the section shown in Figure 6.23. ere are still 12



146 6. GOING NOWHERE?

Figure 6.23: A curve =.r; �/ for which A D 1=2 for a frequency dependent magnitude periodic force
input to a second order mass-spring-damper system.

potential solutions. Note that unlike the case of constant magnitude periodic force, however, now
as one increases the damping ratio, the frequency ratio must increase rather than decrease in order
to maintain a level amplification ratio of 1=2. e frequency content in the magnitude of the force
imbalance alters redesign scenarios in a significant way. If one increased the damping ratio along
with the frequency ratio in the case where periodic force magnitude is constant, one would climb
the amplification surface to values in excess of the desired design value of 1=2. One must move,
in some sense, in the opposite direction in one case than the other to achieve the desired results.
erefore, accurately modeling the system and transfer function characteristics is crucial when
redesigning such dynamic systems.

6.4 ENERGY STORAGE AND DISSIPATION IN 2nd ORDER
SYSTEMS SUBJECT TO HARMONIC INPUT
EXCITATION

Again, system flow or effort variables solutions are calculated as primary variables.e transmitted
forces and stored energies tell a part of the story not addressed by flow variables alone. For this
reason, we consider the classic case of the second order mass-spring-damper subject to a constant
amplitude periodic force excitation. And we will examine the energy stored by the system when
the excitation frequency is low, moderate (near resonance), and high as depicted in Figure 6.24.
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Figure 6.24: Low, resonant, and high frequency constant magnitude periodic input forces to second
order system.
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Figure 6.25: Low frequency response for position and energy in an underdamped 2nd order system
subject to periodic force input of constant magnitude.
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Figure 6.26: High frequency response for position and energy in an underdamped 2nd order system
subject to periodic force input of constant magnitude.
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Figure 6.27: Resonant frequency response for position and energy in an underdamped 2nd order
system subject to periodic force input of constant magnitude.
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Because steady-state solutions are sinusoidal functions, speed is proportional to frequency.
At low frequency, this minimizes the kinetic energy, leaving the lion’s share of energy stored as
potential energy (see Figure 6.25). Conversely, for high frequency input, the system amplitude
approaches zero, leavingminimal potential energy storage.High frequency imparts high velocities
and the kinetic energy is the prime storage mechanism at high frequencies (see Figure 6.26). At
near resonant frequencies, both the steady-state amplitude and speed grow to large values. Here
the stored energy cache takes on large values that alternate between potential and kinetic forms
as shown in Figure 6.27.

6.5 CHAPTER ACTIVITIES
Problem 1 Consider the circuit pictured below, in which the bulb acts a resistor. At t D 0, a pe-

riodic voltage, V0, is applied to the circuit by connecting it suddenly across a frequency
modulated battery:

0( ) cos(0.002 )

55

O

O

V t E t

E V

=

=
 

e differential equation governing current response of the circuit is given by:

L

R

diL
dt

C iL D
V0.t/

R
iL.t D 0/ D 0 amps

(a) Derive the amplitude ratio I

E0=R
.

(b) When R D 1000˝, and L D 125mH is the electrical circuit current response fast or
slow given the forcing function? Explain your answer.

(c) Redesign the series LR circuit so that the steady-state circuit current has a magnitude
of 40 milliamps when driven by the periodic circuit voltage V0.t/ D 55 cos.0:002t/V.
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Problem 2 Consider the mass-less spring-damper mechanical system:

b

k

x

F(t)

where b D 250Ns/m; k D 125N/m; F.t/ D F0 cos.0:25t/; F0 D 100N.
e differential equation governing the position of the mass-less platform is given by:

b

k

dx
dt

C x D
F .t/

k
x.t D 0/ D 0m

(a) Derive the transfer function XOUT

F0=k

(b) Redesign the spring-damper system by changing out the spring so that the steady-state
output magnitude is 0.40m when driven by the force F.t/ D 100 cos.0:25t/N.

Problem 3 Consider a bell is modeled as a cone as shown here:

L

T(t)

m

θ

α

In large bells, the clapper is motor controlled at the pivot. Consider the case where the
motor provides a torque given by:

T D 45 cos t Nm
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and there is a torsional spring with negligible damping at the pivot. Assume m D 25Kg;
L D 1m; � D 100Nm/rad; ˛ D 30ı.

(a) Assuming themass of the rod holding the clapper is negligible, determine if the steady-
state motion of the clapper will ring the bell. If yes, why? If no, why not? Assume that
the shape of the bell is a cone.

(b) For what clapper mass would the steady-state motion of the clapper just barely reach
the conical bell to ring it?

Problem 4 Consider the lumped rotational mechanical system consisting of a point mass,m, sus-
pended at the end of a long, thin bar whose mass is lumped entirely with the point mass a
distance L away from a frictionless pivot. A translational spring and dashpot are attached
to the mass a distance L away from the same pivot as shown:

k

m

b

θ

L

Use m D 0:1 kg; k D 40N/m; b D 3N-s/m; L D 1m.

(a) Derive the differential equation governing the angular motion of the system as a func-
tion of time. Assume “small” angles to linearize the system.

(b) What are the system’s natural frequency and damping ratio?

(c) Derive the system transfer function, �OUT

T0=�
, if a driving torque of T0 D 15 cos.5t/Nm

is applied at the pivot point, P .

(d) Identify for what non-zero input frequency,!, the transfer function equals unity .D 1/,
i.e., the dynamic steady amplitude of angular vibration just equals the static angular
deflection or “you get out precisely what you put in.”
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Problem 5 Consider the situation of drug absorption into a human being as mentioned in Prob-
lem 11 in Chapter 5. e human body is your system and a drug is administered by the
outside world at a rate given by f .t/. For such a case, the differential equation governing
the amount of medicine in the bloodstream, M is given by:

dM
dt

C rM D f .t/ t in hours

where r D 0:0833 hr�1.

ere are twomeans of drug delivery: (i) by injection or (ii) a periodic dosage of somany pills
per day, i.e., a periodic input. For the case of an injection of 7 mg of drugs, we have f .t/ D 0

and M.t D 0/ D M0 D 7 mg. e pill dosage can be modeled by a periodic input:

f .t/ D 8r C 3r cos
�

�
4
t
�

mg/hr (t in hours), and M.t D 0/ D M0 D 0mg.

(a) Compute the total solution for the amount of drug in the body over time for the in-
jection and the periodic pill dosage.

(b) Compare the two solutions graphically. What amount of injection may deliver an
equivalent amount of drug dosage as the pill prescription over time?

(c) In this system are you supposedly “in control” of the system variables or the outside
world?

Problem 6 Consider the windshield wiper mechanism illustrated here. e mass-less blade is
rigidly attached to the disk of radius R. Use I � mR2 for the disk and wiper blade as-
sembly for all calculations.

(a) Assuming the angular rotation of the disk remains “small,” derive the differential equa-
tion governing the sweep of the wiper blade.

(b) Based on your differential equation, compute theoretical expressions for the system’s
natural frequency and damping ratio.

(c) Specify the damping coefficient “b” necessary if you desire the steady-state wiper blade
sweep to be �� D ˙45ı.
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M R
θ

b

k

y(t) = y0cos(ωt)

For all calculations, use:
YIN D 0:25 inches; ! D 6 rad/s; R D 0:5 inches; k D 1 lb/ft; m D 0:02 slug.

Problem 7 Consider the parallel RLC electrical circuit shown below:

+

−

V0 C

R

V1

L
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e governing differential equation for the capacitor voltage can be shown to be:

LC RV1 C
L

R
PV1 C V1 D

L

R
PV0:

Consider that the system is excited by a frequency modulated input voltage, V0.t/ D

E0 cos!t .

(a) Derive the transfer function for V1.s/=V0.s/ as a function of the relevant system pa-
rameters and the frequency of excitation, !.

(b) Using the transfer function, derive an expression for the amplitude ratio V1=E0.

(c) Describe the behavior of the magnitude of the voltage across the capacitor at low fre-
quency, resonance and high frequency?

(d) At resonance, for what damping ratio will the amplitude ratio, V1=E0, fall below unity?

(e) When the damping ratio � D 1=2, a plot of amplification ratio vs. frequency ratio is
shown here:
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For this level of damping, determine for what input frequency ranges the output signal
voltage drops below 20% of the input battery voltage if the system has a natural frequency
of 2000 rad/s. What filtering characteristics would you say this system exhibits? Describe
whether a first order system could exhibit such characteristics. If so, why? If not, why not?

Problem 8 Consider a downhill skier skiing down a series of moguls wherein the angle of incli-
nation of the skier varies harmonically such that
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�0.t/ D 0:35 cos 2�t radians:

e ODE governing the skier’s velocity was given by:

m Pv C bv D mg sin �0:

Assuming the angle of inclination remains small, and invoking the small angle approxima-
tion:

m Pv C bv D F.t/ D mg sin �0.t/ � mg�0.t/ D 0:35mg cos 2�t:

(a) Derive the transfer function V.s/

.F.s/=b/
.

(b) What is the steady-state magnitude of the skier’s downhill velocity?

(c) With m D 80 kg, and b D 16Ns/m, classify the mogul gravity loading as low .�! �

1/, intermediate .�! � 1/, or high frequency .�! � 1/.

(d) Show that for a “very heavy” skier, their steady-state velocity magnitude would be:

VSS D
0:35g

2�

i.e., that the steady-state velocity magnitude of the skier is independent of the skier’s
mass. Is the skier described in part (c) “heavy” in steady state, dynamically speaking?

Problem 9 Consider the translational seriesmass-spring-dampermechanical system shown below
forced by excitation of the damper y.t/ D YIN cos.!t/:
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k

m

x

b

y

(a) Show that the governing differential equation is given by:

m Rx C b Px C kx D b Py

(b) Using the transfer function, derive an expression for the amplitude ratio XOUT

YIN
in terms

of the damping ratio and the dimensionless frequency ratio. Describe, in words, the
behavior of the amplification ratio at low .r � 1/, intermediate .r � 1/, and high
.r � 1/ frequencies.

(c) Is this system analogous to any of the electrical circuits you have experienced thus far?
If so, describe the analogous system elements for each.

(d) If the damper is pumped at a frequency
p
2 times the system’s resonant frequency,

i.e., y.t/ D YIN cos
p
2!N t D 4 cos

p
2!N t and the damping ratio for the system is

� D 1=2, determine the output, steady-state motion of the mass, m, as a function of
time.

(e) At resonance, for what damping ratio will the amplitude ratio, XOUT

YIN
, fall below unity?

Problem 10 Consider the regenerative braking lumped model illustrated here. Pumping the brake
pedal effectively acts as a base excitation on a damper linked to the brake disk of diameter,
D, and mass, m D 0:25 slugs.

k D 4 lb/ft; b D 20 lb-s/ft; D D 1 ft; J D
1
2
mR2; y.t/ D 0:5 cos.20t/ ft.
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M
R

θ

k1 k2

b

y(t)

Show that, when the angular motion of the disk remains small, the governing ODE for the
angular motion of the disk is given by:

J R� C bR2 P� C 2kR2� D Rb Py

where J D
1
2
mR2.

(a) Derive the transfer function for �OUT

YIN=D
.

(b) Using k D 4 lb/ft; b D 20 lb-s/ft; D D 1 ft; m D 0:25 slugs; y.t/ D 0:5 cos.20t/ ft.
what is the steady-state angular motion amplitude, �OUT?

(c) Redesign the dashpot to reduce the steady-state amplitude to 0.25 radians.
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C H A P T E R 7

e Fluid and ermal Casts
Finally, we introduce two last casts of characters telling the story of effort and flow in fluid and
thermal systems.

7.1 FLUID SYSTEMS
e flow of fluids fascinates everybody. We watch streams, waterfalls,
whirlpools, and we are fascinated by this substance which seems almost
alive relative to solids.

Richard P. Feynman
e Feynman Lectures on Physics

e hydraulic analogy compares electric current flowing through circuits
to water flowing through pipes. When a pipe is filled with hair, it takes a
larger pressure to achieve the same flow of water. Pushing electric
current through a large resistance is like pushing water through a pipe
clogged with hair: It requires a larger push or voltage drop to drive the
same flow or electric current.

Wikipedia

Have you ever wondered why water is stored in high towers or standpipes? By virtue of
their height, towers storing fluid produce hydrostatic pressure sufficient to drive the fluid out into
distribution systems such as pipes for homes and businesses. Fluid flows out of the tank under the
gravitational force of its own weight. e fluid effort across a volume of contained fluid pushes
the fluid which then responds by flowing. Again, your intuition helps in this telling of the story.

7.1.1 FLUID EFFORT AND FLOW VARIABLES
What pushes fluid is a pressure differential across, say, a length of pipe. is drives a volume flow
rate of fluid, Q, through the pipe. At their essence, fluid systems are special cases of mechanical
systems in general. As with mechanical systems, when the fluid is incompressible, this volume
flow rate directly implies a mass flow rate.

Pm D
dm
dt

D �Q:
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Table 7.1: Effort, flow, and conserved quantities for fluid systems

Conserved Quantity  Units Symbol 

Fluid mass  kg m 

Variable  Units  

Effort 
 

Pressure N/ m
2
 ; lb/ft

2
 p 

Flow Volume flow rate m
3
/s ; ft

3
/s dVQ

dt
=  

7.1.2 STORAGE ELEMENTS
e fluid cast is capable of storing energy in both potential and kinetic forms. e fluid system is
nearly always a circuit of containment vessels that deliver fluid from one location to another.

Potential Energy Storage Character
Potential energy storage in fluid systems takes place when the fluid stores a large effort or pressure
differential in a fluid circuit.e fluid cast member who plays the role of Captain Potential Energy
is a storage tank. By virtue of a height or head of fluid, a large static pressure differential is built
up due to gravitational loading. Let’s now imagine: what factors will determine the amount of
potential energy that a tank can store? It seems intuitive that the volume of fluid may matter.
But fluid volume in, say, a cylindrical tank is a product of its area and height. It is a result from
fluid statics that the pressure at the bottom of a column of fluid is determined solely by the
height of fluid in the column. Often pressure is measured in pressure head or the height of liquid
of a given density that produces a given pressure. Pressure and height are, in this sense, both
equally interchangeable effort variables. Since pressure, and not force, drives the fluid mass, what
properties of a storage tank make for a fluid system having the capacity to drive flow of fluid mass?

First, let’s follow the mathematical relation for storage of potential energy of water kept
in a tank of cross-sectional area, A. As we have already mentioned, the pressure at the bottom
of the tank will be related to the height of water in the tank. So pressure and height are inter-
changeable effort variables. For the moment, let’s focus on pressure itself. Since you have not had
a course in fluid mechanics yet, let’s practice letting the mathematics and our analogy guide us.
e mathematical expression of the storage by virtue of effort is

FLOW D CFLUID
d.EFFORT/

dt
:

In this way, we have

CFLUID D
Q

dp=dt
D

dV=dt
dp=dt

D
dV
dp
:

Here, the fluid capacitance, CFLUID, is a rate of change of fluid volume corresponding to a rate of
change in applied pressure. Fluid dynamicists refer to this quantity as the fluid compliance. en
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Figure 7.1: e fluid potential energy storage character is played by the storage tank. It stores energy
in potential form in accordance with increased height of mass in the tank and storage of a pressure
differential across the height of the tank.

the analogy with mechanical systems comes full circle because in mechanical systems, the inverse
of a substance’s stiffness is its compliance

CMECH D k�1:

So analogously for fluid systems

dp D d

�
mg

ATANK

�
D

g

ATANK
dm D

g

ATANK
d .�V / D

�g

ATANK
dV

CFLUID �
dV
dp

D
ATANK

�g

where the fluid capacitance is measured in

CFLUID
�

D m4s2=kg:

Kinetic Energy Storage Character
When considering energy storage via flow, fluid systems are directly analogous with translational
mechanical flow. e fluid cast member who plays the role of Captain Kinetic Energy is that
device that stores energy by virtue of its volume flow rate. Consider the case of a fluid that is
incompressible. e volume flow rate in a cylindrical pipe is determined directly by the fluid
velocity along the pipe. Kinetic energy is stored by virtue of fluid velocity that is, in the strictest
sense of our analogy, stored by a measure of the fluid inertia. In fluid systems, this is often referred
to as the fluid inertance.

Again, without a physical intuition or feel for inertance, let’s allow the analogy to guide
us mathematically. is may seem abstract, at the moment, but the analogous behavior, in the
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Figure 7.2: e fluid kinetic energy storage character is played by the system’s inertia. Fluid inertance
is embodied in a fluid system’s mass.

end, will hopefully bolster our physical feel once we undertake a course in fluid mechanics and
dynamics. e mathematical expression of the storage by virtue of flow is

EFFORT D Ld.FLOW/
dt

p D LdQ
dt
:

Understanding that fluids are a special case of mechanical systems

F D m
d�

dt
:

Using F D pA, m D �A` andQ D A�

pA D �A`
d�

dt
D �`

dQ
dt

or for fluid, say, flowing in a pipe of length, `PIPE

p D
�`

A

dQ
dt

D LdQ
dt

) LPIPE
FLUID D �FLUID `PIPE=APIPE

where the fluid inertance is measured in

LFLUID
�

D
kg
m4
:
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Many fluid systems are designed for steady flow purposes, e.g., hoses, faucets, pipelines. Transients
occur when such systems are turned on and shut off, but for most of the operating time, the flow is
steady and PQ / d�=dt � 0. In these instances, inertia plays a negligible role in the energy storage
and the inertance is then neglected.

7.1.3 DISSIPATIVE ELEMENTS
Energy dissipation in fluid systems results from any element in the fluid circuit that impedes
fluid flow rate. e role of the Evil Dr. Friction in the fluid flow script is played by the physical
presence of friction acting against the flow of fluid. Two salient examples are pipe friction and
losses exhibited in flow of fluid through valves or constrictions.

Figure 7.3: e friction force is modeled by the net viscous force that is proportional to a pressure
difference in the fluid circuit.

egoverningmathematical expression of the dissipation is algebraic and often bears some-
one’s name! Let’s consider an incompressible, viscous fluid undergoing slow, laminar flow in a
pipe. For such conditions, the Hagen-Poiseuille law relates volume flow rate, Q, of the fluid to
the pressure difference applied across the section of pipe driving the flow

p D RQ ) R D p=Q:

And the Hagen-Poiseuille flow law is given by

Q D p�RD4=128�`

where � is the viscosity of the fluid, and D and ` are the diameter and length of the pipe re-
spectively. e viscocity is a fluid property that quantifies a fluid’s material resistance to flow. It
is measured in poises:

1 poise �
D 0:1Ns=m2:
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Using our analogy for resistance:

EFFORT D R � FLOW

p D RQ

and for Hangen-Poiseuille flow

p D
128�`

�D4
Q

) RPIPE
FLUID D

128�`

�D4
:

e resistance to flow will increase linearly with the pipe length and fluid viscosity. e resistance
will also decrease as the pipe radius is increased, but this dependence is to the fourth power! e
fluid resistance is measured in

RFLUID
�

D
Ns
m2

� m=m4 �
D

kg
m4s

:

Flow resistances from higher velocity flows must account for turbulence. ese resistances are
almost always nonlinear and will not be considered explicitly here.

Table 7.2: Relevant system element relations for fluid systems

Field Effort Variable Flow Variable 

Fluid Pressure Mass flow rate 

   

Relation Form Analogy 

Dissipative 

Material 

Property Law 

Effort = Resistance x  

Flow 

Linear 

( )1 2
p p RQ− =  

Resistance =  

Laminar Pipe Flow 

Linear  Resistance = 

 
4

128 L

D

µ

π
 

Energy 

Storage in 

Effort 

Variable 

Flow = Capacitance 

x   d(Effort)/dt 

A dp
Q

g dtρ
=  

Fluid Capacitance =  

Compliance 

 

FLUID

A
C

gρ
=  

Energy 

Storage in 

Flow 

Variable 

Effort = Inductance 

x   d(Flow)/dt 

dQ
p

dt
=  

Fluid Inductance =  

Inertance 

PIPE FLUID PIPE

FLUID

PIPEA

ρ
= =  
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Figure 7.4: e fluid system cast of characters.
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7.1.4 SINGLE STORAGE ELEMENT SCRIPTS
An idealized case often studied is that of the storage tank draining out of an aperture cut below
the fluid surface or into an exterior pipe. Here, we might be asking how much time it takes to fill
or drain the tank. Or we might be interested in calculating the height of fluid in the tank under
steady flow conditions.

e system is comprised of the standing tank acting as the fluid capacitor, and the draining
pipe which is the fluid resistor. You may ask why the tank’s resistance is not considered. It is, after
all, a sort of “short” pipe with a rather large diameter. But consider the ratio of the tank’s effective
length to its diameter to the fourth power. When this value is negligible compared to that of the
drainpipe, then the resistance of the pipe dominates over that of the tank and it may be reasonable
to neglect the flow resistance of the tank.

We perform a force balance on a representative control volume of fluid in the pipe. Father
Force, pictured on the ladder in Figure 7.5, provides a supply of water from the outside world.
Let’s presume he turns on an input tap that provides a fluid volume flow rate ofQIN . e pressure

Figure 7.5: e classic problem of the draining tank.
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difference across the pipe created by the weight of fluid in the tank drives the outgoing flow in the
drainpipe. e pressure at the free surface in the tank and the outflow of the pipe is atmospheric.
If we use this value as a reference effort value, or alternatively use the so-called gauge pressure,
we can set these reference values of pressure to zero. en the operative pressure difference across
the pipe is illustrated in Figure 7.6.

Figure 7.6: Mass flow rate over a control volume of fluid in the draining pipe.

From the effort flow analogy
QIN �QOUT D CFLUID

dp
dt
:

e input volume flow rate is externally provided by “the outside world,” aka Father Force. e
output volume flow rate depends on the resistance of the pipe while the capacity to maintain
a driving pressure difference is determined by the characteristics of the storage tank. Using the
corresponding system element equations corresponding to Dr. Friction and Captain Potential
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Energy, respectively,

QIN � p=RPIPE
FLUID D CFLUID

d .p/

dt

RPIPE
FLUIDC

TANK
FLUID

dp
dt

C p D RPIPE
FLUIDQIN :

is is a differential equation for the pressure at the bottom of the tank or entry to the pipe, the
system effort variable. is is also linearly related to the height of fluid in the tank, often called
the pressure head .

p D �Ahg=A D �gh:

Performing a change of variable from pressure to pressure head

RPIPE
FLUIDC

TANK
FLUID

d .�gh/

dt
C �gh D RPIPE

FLUIDQIN

RPIPE
FLUIDC

TANK
FLUID

dh
dt

C h D RPIPE
FLUIDQIN=�g:

When there is no source from the outside world, the equation will be homogeneous. e solution
of the homogeneous equation is the sole transient and the steady state is an empty tank with zero
height of fluid and zero gauge pressure. When there is an external flow source, the steady-state
height of fluid in the tank will coincide with the condition that

dh=dt D 0 ) hSS D RPIPE
FLUIDQIN=�g:

e time constant is given by the classical RC expression using the hydraulic analogy to electrical
systems

RPIPE
FLUIDC

TANK
FLUID D

128�`PIPEA
TANK

�g�D4
PIPE

D �:

Note that � turns out to have units of time, as we expect from the analogy:

� � RPIPE
FLUIDC

TANK
FLUID

�
D

� kg
m4s

�
m4s2=kg �

D s:

Recall that the governing equations for electrical systems typically appear in terms of effort and/or
flowwhilemechanical systems aremost often in terms of flow. Steady incompressible fluid systems
are most often written in terms of effort, either the fluid pressure or pressure head.

7.1.5 MULTIPLE STORAGE ELEMENT SCRIPTS
A multiple storage script must involve fluid kinetic energy as well as fluid potential energy. An
illustrative case is that of the U-tube manometer. Fluid in static equilibrium in a vertical U-tube
will contain as much fluid mass or climb as high in the left tube as the right tube as shown in
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Figure 7.7. If an external pressure were applied to the free surface in the left tube, a relative fluid
height would develop as the fluid originally in the left tube is displaced into the right tube. If
the pressure were then released, this displaced fluid would then be driven by a net gravitational
loading until it moved back into the left tube. is motion would resemble that of a pendulum
released from a given initial angle.

Cross-sectional area, A
2h

length, L

Figure 7.7: A classical U-tube manometer fluid pendulum.

If the tube friction is not sufficient to prevent it, the fluid will overshoot the original equi-
librium position by virtue of the kinetic energy of flow. en it will climb up the left tube and
“swing” back and forth as a fluid pendulum. Friction between the fluid and the tube walls will pro-
vide damping and the transfer of potential energy to kinetic energy and back will be accompanied
by losses that cause the fluid pendulum swing to eventually cease (see Figure 7.8).

Writing a momentum balance on a representative fluid control volume, one can show that
the differential equation governing the relative height of fluid in the manometer is given by:

�AL
d2h

dt2
CRFLUIDA

2 dh
dt

C 2�gAh D AP.t/

where P.t/ is an externally imposed gauge pressure at one fluid surface. If we scale the entire
equation to normalize the effort variable term of pressure head, one can show that (see Chapter
Activities Problem 2):

LFLUIDCFLUID RhCRFLUIDCFLUID PhC h D HO.t/

where the system element equation for the capacitance of a U-tube manometer is

CFLUID D A=2�g

and the pressure head forcing function is

H0 .t/ D P.t/=2�g:

You should take note that the coefficient of the head, h, is already unity. As such, we have:

LFLUIDCFLUID
�

D
kg
m4

m4s2

kg
�

D s2
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Free Response Displacement History

Time, t

h(t
1
)

h(t
2
)
h(t

3
)

T

A

D

C

B

A

B

D

C

Figure 7.8: e energy catch with losses in a U-tube manometer fluid pendulum.

which exhibits units of 1=!2
N and

RFLUIDCFLUID
�

D s

which exhibits units of 2�=!N .
In this script, the externally applied pressure drives the fluid mass which is initially opposed

by a gravitational spring and tube friction. As the kinetic energy imparted to the mass by the
pressure is reduced, an equivalent amount of potential energy is stored in the spring or height in
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the remaining tube. e fluid system energy is simply transferred from kinetic to potential and
back with dissipation provided by the tube walls.

Once again, Captain Potential Energy and Captain Kinetic Energy “have a catch” with a
ball of energy while the Evil Dr. Friction takes a bite at each pass.

Figure 7.9: A dynamic second order system energy exchange with dissipation.

7.2 THERMAL SYSTEMS

ere is apparently no thermal element which displays
an energy storage mechanism which is complementary
to the flow store.

Paul E. Wellstead
Introduction to Physical System Modeling

But as sure as you’re born … you’re never gonna see no
unicorn.

Shel Silverstein
“e Unicorn”

Finally, we introduce our last cast of characters telling the thermal story of effort and flow.
e effort-flow analogy holds only in part for thermal systems because Captain Kinetic Energy
does not exist! ere is no storage nor balance of a momentum-like quantity in any thermal
system. ermal kinetic energy is a unicorn. In other words, you won’t find one!
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7.2.1 THERMAL EFFORT AND FLOW VARIABLES
In thermal systems, your intuition will again serve you well. You already know that a temperature
difference across an element will cause heat to flow from hot to cold . erefore, temperature plays
the role of effort while heat flow rate is the flow variable.

Table 7.3: Effort, flow, and conserved quantities for thermal systems

Conserved Quantity  Units Symbol 

Heat energy  Joules J 

Variable  Units  

Effort 
 

Temperature O
C  ; O

F  T 

Flow Heat flow rate Watt = J/s; BTU/hr q  

7.2.2 STORAGE ELEMENTS
e single most interesting characteristic of thermal systems is, arguably, that they can store only
one type of energy, namely potential. is is the main and a crucial difference between thermal
and all other systems. As such, thermal systems can only ever be governed by first order differential
equations in time. Let’s examine the potential energy character in detail.

Potential Energy Storage Character
ermal capacitance is defined as the capacity to store an effort differential across an element.
Here that translates into a temperature difference. e energy stored per unit temperature dif-
ference is a measure of the capacitive strength. e thermal cast member who plays the role of
Captain Potential Energy is the mass which provides material-specific heat capacity.

e mathematical expression of the storage by virtue of effort is

FLOW D CTHERM
d.EFFORT/

dt

which can then be written for thermal systems

q D mcP
d.�T /

dt

q D CTHERM
d.T � TREF/

dt
D mcP

dT

dt
)

CTHERM � mcP :

Here, our thermal capacitor represents the potential for a thermal system to store thermal heat
energy by virtue of a temperature difference contained in the element. A material’s ability to store
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Figure 7.10: e thermal potential energy storage character is played by the heat capacity carried by
the system mass. It embodies the thermal capacitance of the system.

heat energy for every degree of rise in its temperature is referred to as its heat capacity, cP .

q D mcP
d.�T /

dt

q D CTHERM
d.T � TREF/

dt
D mcP

dT
dt

where the quantitymcP .T � TREF/ is referred to as the internal energy of the system. e thermal
capacitance is the total thermal heat capacity

CTHERM � mcP :

e heat capacity is an extensive quantity and is proportional to the system’s thermal mass. It is a
measure of how much energy can be stored in a mass before its temperature will increase a single
degree:

mcP
�

D kg J
kg � ıC

:

Kinetic Energy Storage Character
In Shel Silverstein’s words, “you’re never gonna see no unicorn.”us, is the thermal kinetic energy
storage character. Kinetic energy elements that store energy by virtue of the flow variable simply do
not exist. Ergo, Paul Wellstead’s notion that “apparently, there are none.” Captian Kinetic Energy
is AWOL! is has tremendous implications for thermal system dynamics. Namely, because both
Captain Potential Energy and Captain Kinetic Energymust be present and accounted for in order
to have a second order system, all thermal systems are necessarily governed by first order equations
in time.
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Figure 7.11: e thermal kinetic energy storage character does not exist!!

7.2.3 DISSIPATIVE ELEMENTS
Dissipation in thermal systems is provided by physical agents that impede heat flow. Heat flow
is impeded differently in solid, fluid, and a vacuum. Heat flows through a solid by means of
conduction, through fluids by means of convection, and through a vacuum by radiation. Radiative
heat flow is highly nonlinear and will not be addressed here.

Conductive Resistance to Heat Flow
Heat flows through solids by conduction, a process in which heat thermally agitates the solid
atoms in their lattice. e solid lattice impedes the flow of heat. A temperature difference must
be imposed across a solid to drive heat flow through it. By virtue of their lattice structure, solids
that are conducting heat provide a thermal resistance to heat flow.

Here, Fourier’s law of heat conduction provides a relationship between a temperature dif-
ference across a solid of constant thickness and the resulting heat flow rate by virtue of a material
property known as the thermal conductivity, k. Fourier said that the heat flux through a solid is
proportional to the local temperature gradient through the thermal conductivity

qCOND D �kA
dT
dx
:

Consider once more that in deriving a differential equation for heat flow, we balance heat into
and out of a small representative control volume in the system. If the control volume is sufficiently
small, any temperature distribution will “look linear” and we can model the temperature gradient
as a finite difference

qCOND D �kA
dT
dx

� �kA
�T

�x
D �kA

T2 � T1

x2 � x1

D kA
T1 � T2

L

where L is some representative distance across which conduction is taking place through “a win-
dow” of cross-sectional area, A, and at whose ends the temperatures are T1 and T2, respectively.
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Figure 7.12: Solids provide thermal resistance to heat flow by the energy lost through thermal agita-
tion of strongly bonded solid lattice networks.

We are now able to relate the temperature difference necessary to drive heat flow through a re-
sistive element

T1 � T2 D
L

kA
qCOND D RCOND

THERMqCOND

where we can now apply the system analogy

EFFORT D RCOND
THERM � FLOW

RCOND
THERM � L=kA

where the units of thermal resistance are given by

L=kA
�

D m= W
m � ıC

m2 �
D

ıC
W

and heat flow rate is measured in watts

W � Watt �
D

J
s
:

Convective Resistance to Heat Flow
Alternatively, heat flow is impeded in a different manner when being transferred through a fluid.
Heat flows through a fluid medium by a process known as convection, and the fluid provides a
thermal resistance as heat convects through the fluid under the influence of an imposed temper-
ature difference.
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Figure 7.13: Fluid media provide thermal resistance to heat flow by the energy lost through thermal
agitation of loosely bound fluid molecules.

Convective heat flow is governed by Newton’s Law of Cooling whereby a solid at tempera-
ture, T , surrounded by a large reservoir of fluid at temperature, T1, will result in heat transferred
through the fluid given by

qCONV D hA .T � T1/ D hA�T

where h is referred to as the heat transfer or film coefficient and A is the area through which the
heat is flowing. Inverting this relationship, the resulting temperature difference between the solid
surface and the fluid becomes

�T D
1

hA
qCONV D RCONV

THERMqCONV

and invoking the effort-flow analogy

EFFORT D RCONV
THERM � FLOW

RCONV
THERM � 1=hA

where RCONV
THERM � 1=hA

�
D 1=

W
m2ıC

m2 �
D

ıC
W

.
A list of thermal system element equations is given in Table 7.4. A summary of the thermal

cast and the roles they play is given in Figure 7.14.

7.2.4 SINGLE STORAGE ELEMENT SCRIPTS
An idealized case often studied is that of conduction through a solid, insulated wall. e solid
is characterized by a capacity to retain heat measured by its temperature. Father Force is now
temperature. e heat capacity of the wall allows it to store thermal energy by virtue of its tem-
perature. is is referred to as the solid wall’s internal energy. e heat capacity of the wall is
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Figure 7.14: e thermal system cast of characters.
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Table 7.4: Relevant system element relations for thermal systems

Field Effort Variable Flow Variable 

Thermal Temperature Heat flow rate 

   

Relation Form Analogy 

Dissipative 

Material 

Property Law 

Effort = Resistance x 

Flow 

( )1 2
T T R q− =  

Convective  

Resistance = 
1

hA
 

 

Conductive  

Resistance = 
L

kA
 

 

Energy 

Storage in 

Effort 

Variable 

Flow = Capacitance 

x   d(Effort)/dt 

P

dT
q mc

dt
=  

Capacitance =  

Thermal Heat 

Capacity 

THERM P
C mc=  

Energy 

Storage in 

Flow 

Variable 

Effort = Inductance 

x   d(Flow)/dt 

 

Not Applicable 

 

Inductance =  

 

There is no thermal 

equivalent or analog 

for inductance 

likened to a thermal spring being pushed by Father Force as shown in Figure 7.15. is illustrates
the capacity of the wall to remain at an elevated temperature and store thermal energy in a form
measurable by its effort variable. e solidly bonded molecules of the insulating layer provide
resistance to heat flowing through them to the outside, TOUT < T .

In order to balance heat flow rate through the insulation, we perform a thermal heat energy
balance on a representative control volume in the insulation.

0 � qOUT D CTHERM
dT
dt

D mcP
d .T /

dt

where T is the temperature of the wall. If the dominant temperature difference is that between
the wall and the temperature outside of the insulating layer, TOUT , then we can represent the heat
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Figure 7.15: Heat flow through a control volume across a solid wall.

flowing out through the insulation as

�kA�T=L D � .T � TOUT/ =R
INSULATION
CONDUCTION D mcP

d .T /

dt

) RCOND
THERMCTHERM

dT
dt

C T D TOUT
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resulting in
RCOND

THERMCTHERM
dT
dt

C T D TOUT :

e excitation from the outside world is provided by the external temperature. e solution of
this equation is a temperature changing monotonically from T .0/ to TOUT in roughly four time
constants. e time constant is given by the classical RC expression using the analogy to electrical
systems

RCOND
THERMCTHERM D

mcPL

kA
D �:

Note that the units of the time constant are:

RCOND
THERMCTHERM � � �

mcPL

kA

�
D

J
ıC

ıC
W

�
D s

or units of time. e analogy delivers a parameter known to characterize all first order systems in
time as we’ve described them.

Alternatively, a simple illustration of convective heat transfer occurs during quenching:
when a hot, small solid object is transferred to a large cooling bath (Fig. 7.16). In order to balance

T TOUT

Figure 7.16: Heat flow through a control volume contained in a fluid surrounding an object from
which heat is being transferred.

heat flow rate in the fluid surrounding the quenched sphere, we perform a heat energy balance
on a representative control volume in the fluid reservoir.

qIN � qOUT D qSTORED

0 � hA .T � T1/ D mcP
dT
dt

D CTHERM
dT
dt
:
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Invoking the effort-flow analogy

0 �
1

RCONV
THERM

.T � T1/ D mcP
dT
dt

D CTHERM
dT
dt
:

Rearranging

RCONV
THERMCTHERM

dT
dt

C T D T1:

e excitation from the outside world is provided by the quench tank fluid reservoir temperature.
e solution of this equation is a temperature changingmonotonically from T .0/ to T1 in roughly
four time constants. e time constant is given by the classical RC expression using the analogy
to electrical systems

RCONV
THERMCTHERM D

mcP

hA
D �:

7.3 CHAPTER ACTIVITIES
Problem 1 A U-tube manometer is a relatively simple device used to measure pressure. When the

fluid level is displaced as shown above and released, the following oscillation in relative fluid
height is observed:

Free Response Displacement History

Time, t

h(t
1
)

h(t
2
)
h(t

3
)

T

Cross-sectional area, A
2h

length, L

When a periodic pressure is applied at one end, a force and mass balance on the system
gives the following governing differential equation for the fluid height, h.t/:

�AL
d2h

dt2
CR�A2 dh

dt
C 2�gAh D PA cos 4t

h.t D 0/ D 5 cm
dh
dt
.t D 0/ D 0 cm=s

where � is the fluid density, A D 1 cm2, and L D 5 cm.
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(a) Using representative analogies in Table 7.2, show that the differential equation gov-
erning the height, h, can be written as:

LFLUIDCFLUID RhCRFLUIDCFLUID PhC h D H0.t/

H0.t/ D P.t/=2g�

CFLUID D A=2�g:

(b) Write an algebraic expression for the fluid inertance, i.e., the fluid inertia.
(c) Calculate the natural frequency and the fluid resistance, R, in this pendulum system if

it is critically damped. Assume the acceleration due to gravity is given by g D 10m/s2.
(d) What periodic pressure magnitude, P , needs to be applied to obtain a steady-state

output height of 2 cm (an amount that will just cause liquid to spill out of the U-
tube).

(e) What are the characteristic times for the system in part (d)?
(f ) If the tube resistance is removed, i.e., R D 0 1=m � s. Compute the total solution for

the fluid height, h.t/, as a function of time.

Problem 2 e height of fluid in a tank with two outlet pipes, one at the bottom of the tank and
one 2 meters directly above it, is given by the following governing differential equation:

A

g
PhC

1

R1

hC
1

R2

.h �H/ D
PQIN

g

A D 20m2

H D 2 m
R1 D 2 1=ms
R2 D 2 1=ms
PQIN D 30m3=s
g � 10m=s2

h

H
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(a) What are the conserved quantity, and the effort and flow variables?
(b) Sketch the response for the height of fluid in the tank. Assume the initial height is 5

meters.
(c) Assume the system has already come to steady state. From this new initial state, what

is the new steady-state height of fluid in the tank if the top outlet pipe is suddenly
lowered 1 m, i.e., H D 1m?

(d) How long will it take to attain this new steady-state height?

Problem 3 e differential equation governing heat transfer in the thermocouple probe quenched
suddenly in a fluid bath maintained at T1 is given by

mcP
dT
dt

D hA .T1 � T /

where m is the mass of thermocouple bead, cp is its specific heat per unit mass, h is the
heat transfer coefficient of still air, and AS is the surface area of the thermocouple bead.
Supposed it is known that the time constant for an experiment is 3 minutes from which it
is determined that the heat transfer coefficient of still air is h D 15 W

m2�ıC . If you know the
heat transfer coefficient of still ice water is h D 3600 W

m2�ıC , roughly how long will it take
for the thermocouple bead to reach steady-state when the probe is re-immersed quickly into
the ice water?

Problem 4 For the thermocouple probe quenched in Problem 3, the temperature, T .t/, is gov-
erned by the following 1st order ODE plunged suddenly in boiling water from standing
air:

mcP

hAS

dT
dt

C T D 100

.T D 0/ D 20 ıC

(a) Sketch the dynamic thermal response of this first order system of a room temperature
mass suddenly placed in boiling water.

(b) Consider that at the same time, you have a second mass with double the heat capacity
of the original mass, cP , that is at an initial temperature of 150 degrees C when it is
placed suddenly in a reservoir of liquid with a heat transfer coefficient 40% of that for
water. On the same graph, sketch the response of this second mass.

(c) Write the functional form of the temperature solution for the second mass.

Problem 5 Consider an electrical analogy to a human artery provided by the 4-element Wind-
kessel model. e capacitor represents the elasticity of the arterial wall, i.e., ranges of this
value can model hardening of the arteries. e resistance to blood flow is determined by the



184 7. THE FLUID AND THERMAL CASTS

viscosity of blood, i.e., a dehydrated patient will exhibit more viscous blood and a higher
resistance to flow. An inductor is said to simulate inertia of the blood, i.e., it can model the
density of blood changing as when its iron content becomes depleted.

P.t/ D 25 cos!t V
R1 D 1000˝

R2 D 1000˝

C D :002 f
L D 40H

In this analogy, the current represents the blood flow rate, the applied voltage source rep-
resents the effort variable of blood pressure, and the frequency of the input excitation is the
heart rate or pulse (where it is understood that rad/s correlates with beats-per-minute).
e governing differential equation for the system blood flow rate (current in the model) is
given by:

LC
d2iC

dt2
C

�
R1C C

L

R2

�
diC
dt

C

�
1C

R1

R2

�
iC D

P.t/

R2

C C
dP
dt

where R1 D R2 D R:

Consider that the so-called inertia of the fluid is small, but not zero. Mathematically, this
implies

LC � RC

(a) Make a mathematically convincing argument, i.e., back it up with the necessary equa-
tions/relationships, to show that as the heart rate increases dramatically, a condition
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known as tachycardia, the blood flow rate decreases for a given constant blood pres-
sure. Assume any response to initial conditions has decayed away and the system is in
steady state.

HINT: Consider the transfer function for I=.P=R/ when formulating your answer!

(b) Describe, in words, the behavior of the amplification ratio, I=.P=R/, at low .r << 1/,
intermediate .r � 1/, and high .r >> 1/ normalized frequencies where r D !=!N .

(c) For the given input magnitude blood pressure of 25 V, if a life-viable cutoff blood flow
rate in steady state is 4 milli-amperes, at what heart rate, !, will the patient expire?

Problem 6 Consider an older weightlifter who loves sausage and whose diet has hardened his
arteries. An electrical 4-element Windkessel model identical in structural form to that for
Problem 5 may be used. For such an analogous electrical heart, the governing differential
equation and corresponding transfer function for the weightlifter’s blood flow rate are given
by:
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r

2�
j

.1 � r2/C 2�rj

Assume: L D 40HIC D 100�fIR1 D 9000˝IR2 D 1000˝IP.t/ D 1000 cos.50t/V.

(a) For these conditions, what is the steady-state amplitude of blood flow rate (current)?

(b) If the inductance is increased 5 fold to 200H and the capacitance is further reduced 5
fold to 20�f (i.e., the arteries continue to harden), to what extent will this change the
steady-state blood flow rate amplitude?

(c) Find an expression for the amplification ratio, A, as a function of damping ratio, �, at
resonance (r D 1).

Problem 7 Consider the electrical circuit analog for a quenched solid in an insulating jacket as
shown here:
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e resulting governing differential equation for the solid’s temperature is given by:

�V cP
dT
dt

C

�
1

R1

C
1

R2

�
T D

1

R1

TBATH cos.!t/

(a) When forced by a periodic input at low frequency, the amplitude ratio T

T1

approaches
what value? Give your answer as an algebraic expression in terms of R1 and R2.

(b) What does the amplitude ratio T

T1

approach for high frequency input?

Problem 8 Before insulating materials were readily available, buildings were thermally insulated
by endowing their walls with sufficiently large thermal time constants.

When driven by the daily solar thermal fluctuation, the differential equation governing � ,
the fluctuation in wall temperature above and below its average daily value, is given by:

4 P� C � D 12 cos
� �
12
t
�

ıF

where the time, t , is measured in hours.
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(a) What is the amplitude of the steady-state thermal fluctuation of the wall (in ıF)?
(b) For what value of the thermal time constant will the amplitude of the steady-state

thermal wall fluctuation drop to ˙2ıF, effectively insulating the building?
(c) How would you re-design the wall so that the steady-state response is reached in ap-

proximately 6 hours? You may state your answer in terms of the characteristic time or
times of the system response.

(d) Draw an analogous electrical circuit whose behavior would be equivalent in some sense
to this thermal problem. Label all the analogous electrical system elements correspond-
ing to each of the thermal elements and describe the relevant input forcing function
to the electrical circuit.

Problem 9 Consider omas Jefferson’s home at Monticello, built before insulation was avail-
able. In the 18th century, buildings were thermally insulated by endowing their walls with
sufficiently large thermal time constants.

When driven by the daily solar thermal fluctuation, the differential equation governing � ,
the fluctuation in wall temperature above and below its average daily value, is given by:

mcp P� C
kA

L
� D

40kA

L
cos

� �
12
t
�

ıC

where the time, t , is measured in hours, and:

kA D 100 Jm=hr ıC
L D 0:25m
mcp D 1600 J=ıC

e dimensionless Biot number, Bi D
hL

k
D
RCOND

RCONV
quantifies the relative magnitudes of

conductive and convective resistances in a thermal system. e wall here is designed such
that its Biot number is very large so that convection to the air surrounding the walls can be
neglected.
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(a) What is the amplitude of the steady-state thermal fluctuation of the wall (in ıC)?
(b) For what value of the thermal time constant will the amplitude of the steady-state

thermal wall fluctuation drop to ˙5ıC, effectively insulating the building?
(c) Re-design the wall by altering its thickness only so that the time constant obtained in

part (b) can be obtained?
(d) With the time constant from part (c), how many hours will any transient now last en

route to steady state?
(e) Draw an analogous electrical circuit whose behavior would be equivalent to this ther-

mal problem. NOTE: You must draw the actual circuit and then label all the analogous
electrical system elements corresponding to each of the thermal elements and describe
the relevant input forcing function to the electrical circuit.
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Summary
e rules that describe nature seem to be mathematical. It is not a
characteristic necessity of science that it be mathematical. It just turns
out you can state mathematical laws which work to make powerful
predictions. Why nature is mathematical is, again, a mystery.

Richard Feynman
eMeaning of It All

Fortunately, today’s online world, with its advances in video and
animation, offers several underused opportunities for the informal
dissemination of mathematical ideas. Perhaps the most essential message
to get across is that with math you can reach not just the sky or the stars
or the edges of the universe, but timeless constellations of ideas that lie
beyond.

Manil Suri
How to Fall in Love With Math

A la Suri [15], what we’ve sought to offer here is a digestible version of building govern-
ing differential equations from the cartoon building blocks of characters with whom are associ-
ated fundamental relations from the effort-flow analogy. We’ve presented an animated storyline
wherein Captains Potential Energy and Kinetic Energy store system energy while the Evil Dr.
Friction finds ways to steal it. We motivate these characters as roles in a common movie script
about energy transfer in systems dynamics. We’ve then introduced the mechanical, electrical,
fluid, and thermal casts that play these energy roles in the separate system disciplines.

It has been our intention to simply provide a mnemonic device to remember that separate
physical actors always play the same roles in this movie. We also associate with these roles in the
script equations relating effort and flow. Simple conservation balances then hopefully provide a
more straightforward way to remember how to derive a governing differential equation for the
system. We have also provided the story to show how features of our superheroes characterize
the solutions to these equations. More than half of the students taught with these character rep-
resentations of the effort-flow analogy claim these stories made coming to terms with systems
dynamics more fun and the concepts more memorable. Learning can be fun. Even learning math
can be fun!
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Figure 8.1: e cast of the movie script for systems dynamics: Father Force, Captains Potential and
Kinetic Energy, and the “not always Evil” Dr. Friction!
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Afterword
is book has been written to present multi-disciplinary systems in a common light with an

encompassing story focused on energy storage and dissipation. Based on our experience teaching
the effort-flow analogy with these energy superheroes, we have found that the mnemonic of char-
acters performing a common script played by discipline-specific actors helps students more clearly
identify with the theme common to these dynamic systems. We have chosen a variety of chapter
activities that illustrate this common behavior across engineering disciplines. After reading this
manuscript, if you have comments on the presentation of the storyline or the orchestration of
the chapter activities and examples or wish to suggest additional examples that emphasize system
similitude across disciplines, feel free to contact the authors at COEcomments@gmail.com.ank
you, in advance, for any input you have.

COEcomments@gmail.com
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