

Arduino Microcontroller
Processing for Everyone!
Third Edition

Synthesis Lectures on Digital
Circuits and Systems

Editor
Mitchell A. Thornton, Southern Methodist University

The Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page
books targeted for audience members with a wide-ranging background. The Lectures include
topics that are of interest to students, professionals, and researchers in the area of design and
analysis of digital circuits and systems. Each Lecture is self-contained and focuses on the
background information required to understand the subject matter and practical case studies that
illustrate applications. The format of a Lecture is structured such that each will be devoted to a
specific topic in digital circuits and systems rather than a larger overview of several topics such as
that found in a comprehensive handbook. The Lectures cover both well-established areas as well as
newly developed or emerging material in digital circuits and systems design and analysis.

Arduino Microcontroller Processing for Everyone! Third Edition
Steven F. Barrett
2013

Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2013

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Smerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

iv

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012

Advanced Circuit Simulation Using Multisim Workbench
David Báez-López, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagómez
2012

Circuit Analysis with Multisim
David Báez-López and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part II
Steven F. Barrett and Daniel J. Pack
2011

Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment
David J. Russell
2010

Arduino Microcontroller: Processing for Everyone! Part II
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part I
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. Thornton
2010

v

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part II
Steven F. Barrett
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller II:
Digital and Analog Hardware Interfacing
Douglas H. Summerville
2009

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller I:
Assembly Language Programming
Douglas H.Summerville
2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development of
the Design and Analysis of Clock-Independent State Machines and Systems
Richard F. Tinder
2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

vi

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. Thornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007

Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

PSpice for Filters and Transmission Lines
Paul Tobin
2007

PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

PSpice for Circuit Theory and Electronic Devices
Paul Tobin
2007

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

vii

High-Speed Digital System Design
Justin Davis
2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A.Thornton
2006

Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006

Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Arduino Microcontroller Processing for Everyone! Third Edition

Steven F. Barrett

www.morganclaypool.com

ISBN: 9781627052535 paperback
ISBN: 9781627052542 ebook

DOI 10.2200/S00522ED1V01Y201307DCS043

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #43
Series Editor: Mitchell A. Thornton, Southern Methodist University

Series ISSN
Synthesis Lectures on Digital Circuits and Systems
Print 1932-3166 Electronic 1932-3174

www.morganclaypool.com

Arduino Microcontroller
Processing for Everyone!
Third Edition

Steven F. Barrett
University of Wyoming, Laramie, WY

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #43

CM& cLaypoolMorgan publishers&

ABSTRACT
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino
team of Massimo Banzi, David Cuartielles,Tom Igoe, Gianluca Martino, and David Mellis launched
a new innovation in microcontroller hardware in 2005, the concept of open source hardware. Their
approach was to openly share details of microcontroller-based hardware design platforms to stimulate
the sharing of ideas and promote innovation. This concept has been popular in the software world
for many years. This book is intended for a wide variety of audiences including students of the fine
arts, middle and senior high school students, engineering design students, and practicing scientists
and engineers. To meet this wide audience, the book has been divided into sections to satisfy the
need of each reader. The book contains many software and hardware examples to assist the reader in
developing a wide variety of systems. The book covers two different Arduino products: the Arduino
UNO R3 equipped with the Atmel ATmega328 and the Arduino Mega 2560 equipped with the
Atmel ATmega2560. The third edition has been updated with the latest on these two processing
boards, changes to the Arduino Development Environment and multiple extended examples.

KEYWORDS
Arduino microcontroller, Arduino UNO R3, Atmel microcontroller, Atmel AVR, AT-
mega328, Arduino Mega 2560, microcontroller interfacing, ATmega2560, embedded
systems design

xi

Contents

Preface . xix

1 Getting Started .1

1.1 Overview . 1

1.2 Getting Started . 2

1.3 Arduino UNO R3 processing board . 3
1.3.1 Arduino UNO R3 host processor–the ATmega328 . 4
1.3.2 Arduino UNO R3/ATmega328 hardware features . 6
1.3.3 ATmega328 Memory . 6
1.3.4 ATmega328 Port System . 8
1.3.5 ATmega328 Internal Systems . 9
1.3.6 Arduino UNO R3 open source schematic . 12

1.4 Arduino Mega 2560 processing board . 12
1.4.1 Arduino Mega 2560 host processor–the ATmega2560 14
1.4.2 Arduino Mega 2560 /ATmega2560 hardware features 14
1.4.3 ATmega2560 Memory . 16
1.4.4 ATmega2560 Port System . 18
1.4.5 ATmega2560 Internal Systems . 20

1.5 Arduino Mega 2560 open source schematic . 22

1.6 Example: Autonomous Maze Navigating Robot . 23
1.6.1 Structure chart . 23
1.6.2 UML activity diagrams . 23
1.6.3 Arduino UNO R3 Systems . 23

1.7 Other Arduino–based platforms . 24

1.8 Extending the hardware features of the Arduino platforms 25

1.9 Application: Arduino Hardware Studio . 25

1.10 Summary . 26

1.11 References . 26

1.12 Chapter Problems . 29

xii

2 Programming . 33

2.1 Overview . 33
2.2 The Big Picture . 34
2.3 Arduino Development Environment . 34

2.3.1 Background . 36
2.3.2 Quick start Guide . 36
2.3.3 Arduino Development Environment overview . 37
2.3.4 Sketchbook concept . 38
2.3.5 Arduino software, libraries, and language references 38
2.3.6 Writing an Arduino Sketch . 38

2.4 Anatomy of a Program . 46
2.4.1 Comments . 47
2.4.2 Include files . 47
2.4.3 Functions . 48
2.4.4 Program constants . 51
2.4.5 Interrupt handler definitions . 51
2.4.6 Variables . 51
2.4.7 Main program . 52

2.5 Fundamental programming concepts . 52
2.5.1 Operators . 52
2.5.2 Programming constructs . 56
2.5.3 Decision processing . 58

2.6 Application 1: Robot IR sensor . 61
2.7 Application 2: Art piece illumination system . 65
2.8 Application 3: Friend or Foe Signal . 65
2.9 Summary . 67
2.10 References . 67
2.11 Chapter Problems . 68

3 Embedded Systems Design . 69

3.1 What is an embedded system? . 69
3.2 Embedded system design process . 70

3.2.1 Project Description . 70
3.2.2 Background Research . 70
3.2.3 Pre–Design . 72
3.2.4 Design . 72

xiii

3.2.5 Implement Prototype . 74
3.2.6 Preliminary Testing . 74
3.2.7 Complete and Accurate Documentation . 75

3.3 Example: Blinky 602A autonomous maze navigating robot system design 75
3.4 Application: Control algorithm for the Blinky 602A Robot 78
3.5 Summary . 89
3.6 References . 89
3.7 Chapter Problems . 90

4 Atmel AVR Operating Parameters and Interfacing . 91

4.1 Overview . 91
4.2 Operating Parameters . 92
4.3 Battery Operation . 95

4.3.1 Embedded system voltage and current drain specifications 95
4.3.2 Battery characteristics . 95

4.4 Input Devices . 95
4.4.1 Switches . 96
4.4.2 Pullup resistors in switch interface circuitry . 97
4.4.3 Switch Debouncing . 97
4.4.4 Keypads . 99
4.4.5 Sensors . 104

4.5 Output Devices . 109
4.5.1 Light Emitting Diodes (LEDs) . 109
4.5.2 Seven Segment LED Displays . 109
4.5.3 Code Example . 110
4.5.4 Tri–state LED Indicator . 113
4.5.5 Dot Matrix Display . 113
4.5.6 Liquid Crystal Character Display (LCD) in C . 116
4.5.7 Programming a serial configured LCD . 124
4.5.8 Liquid Crystal Character Display (LCD) using the Arduino

Development Environment . 125
4.5.9 High Power DC Devices . 125

4.6 DC Solenoid Control . 126
4.7 DC Motor Speed and Direction Control . 126

4.7.1 DC Motor Operating Parameters . 127
4.7.2 H–bridge direction control . 128
4.7.3 Servo motor interface . 130

xiv

4.7.4 Stepper motor control . 130
4.7.5 AC Devices . 139

4.8 Interfacing to Miscellaneous Devices . 139
4.8.1 Sonalerts, Beepers, Buzzers . 139
4.8.2 Vibrating Motor . 141

4.9 Application: Special Effects LED Cube . 141
4.9.1 Construction Hints . 142
4.9.2 LED Cube Arduino Sketch Code . 144

4.10 Summary . 159
4.11 References . 159
4.12 Chapter Problems . 160

5 Analog to Digital Conversion (ADC) . 163

5.1 Overview . 163
5.2 Sampling, Quantization and Encoding . 164

5.2.1 Resolution and Data Rate . 166
5.3 Analog–to–Digital Conversion (ADC) Process . 167

5.3.1 Transducer Interface Design (TID) Circuit . 168
5.3.2 Operational Amplifiers . 169

5.4 ADC Conversion Technologies . 172
5.4.1 Successive–Approximation . 172

5.5 The Atmel ATmega328 and ATmega2560 ADC System 173
5.5.1 Block Diagram . 175
5.5.2 ATmega328 ADC Registers . 175
5.5.3 ATmega2560 ADC Registers . 178

5.6 Programming the ADC using the Arduino Development Environment 180
5.7 ATmega328: Programming the ADC in C . 181
5.8 ATmega2560: Programming the ADC in C . 182
5.9 Example: ADC Rain Gage Indicator with the Arduino UNO R3 184

5.9.1 ADC Rain Gage Indicator using the Arduino Development
Environment . 185

5.9.2 ADC Rain Gage Indicator in C . 189
5.9.3 ADC Rain Gage using the Arduino Development

Environment–Revisited . 196
5.10 One–bit ADC – Threshold Detector . 198
5.11 Digital–to–Analog Conversion (DAC) . 198

xv

5.11.1 DAC with the Arduino Development Environment 199
5.11.2 DAC with external converters . 200
5.11.3 Octal Channel, 8–bit DAC via the SPI . 201

5.12 Application: Art piece illumination system – Revisited . 201
5.13 Arduino Mega 2560 example: Kinesiology and Health Laboratory

Instrumentation . 205
5.14 Summary . 212
5.15 References . 213
5.16 Chapter Problems . 214

6 Interrupt Subsystem . 217

6.1 Overview . 217
6.1.1 ATmega328 Interrupt System . 218
6.1.2 ATmega2560 Interrupt System . 218
6.1.3 General interrupt response . 221

6.2 Interrupt programming overview . 221
6.3 Programming ATmega328 Interrupts in C and the Arduino Development

Environment . 222
6.3.1 External interrupt programming–Atmega328 . 222
6.3.2 ATmega328 Internal Interrupt Programming . 226

6.4 Programming ATmega2560 Interrupts in C and the Arduino Development
Environment . 231
6.4.1 External interrupt programming–Atmega2560 . 231
6.4.2 ATmega2560 Internal Interrupt Programming . 235

6.5 Foreground and Background Processing . 240
6.6 Interrupt Examples . 243

6.6.1 Application 1: Real Time Clock in C . 243
6.6.2 Application 2: Real Time Clock using the Arduino Development

Environment . 246
6.6.3 Application 3: Interrupt Driven USART in C . 248

6.7 Summary . 259
6.8 References . 259
6.9 Chapter Problems . 260

7 Timing Subsystem . 261

7.1 Overview . 261
7.2 Timing related terminology . 262

xvi

7.2.1 Frequency . 262
7.2.2 Period . 262
7.2.3 Duty Cycle . 262

7.3 Timing System Overview . 263
7.4 Timer System Applications . 265

7.4.1 Input Capture – Measuring External Timing Event 265
7.4.2 Counting Events . 267
7.4.3 Output Compare – Generating Timing Signals to Interface External

Devices . 267
7.4.4 Industrial Implementation Case Study (PWM) . 268

7.5 Overview of the Atmel ATmega328 and ATmega2560 Timer Systems 269
7.6 Timer 0 System . 270

7.6.1 Modes of Operation . 272
7.6.2 Timer 0 Registers . 274

7.7 Timer 1 . 275
7.7.1 Timer 1 Registers . 275

7.8 Timer 2 . 281
7.9 Programming the Arduino UNO R3 and Mega 2560 using the built–in

Arduino Development Environment Timing Features . 281
7.10 Programming the Timer System in C . 285

7.10.1 Precision Delay in C . 285
7.10.2 Pulse Width Modulation in C . 287
7.10.3 Input Capture Mode in C . 288

7.11 Apprlication 1: Servo Motor Control with the PWM System in C 290
7.12 Application 2: Inexpensive Laser Light Show . 295
7.13 Summary . 297
7.14 References . 297
7.15 Chapter Problems . 298

8 Serial Communication Subsystem . 301

8.1 Overview . 301
8.2 Serial Communications . 302
8.3 Serial Communication Terminology . 302
8.4 Serial USART . 303

8.4.1 System Overview . 305
8.5 System Operation and Programming using Arduino Development

Environment features . 307

xvii

8.6 System Operation and Programming in C . 313
8.6.1 Serial Peripheral Interface–SPI . 315

8.7 SPI Programming in the Arduino Development Environment 317
8.8 SPI Programming in C . 318
8.9 Two–wire Serial Interface–TWI . 319

8.9.1 Arduino Development Environment . 319
8.10 Application 1: USART communication with LCD . 320
8.11 Application 2: SD/MMC card module extension via the USART 321
8.12 Application 3: Equipping an Arduino Processor with a Voice Chip 324
8.13 Application 4: Programming the Arduino UNO R3 ATmega328 via the ISP . . 326

8.13.1 Programming Procedure . 326
8.14 Application 5: TMS1803 3–bit LED Drive Controller . 328
8.15 Summary . 330
8.16 References . 330
8.17 Chapter Problems . 330

9 Extended Examples . 333

9.1 Overview . 333
9.2 Extended Example 1: Automated Fan Cooling System . 333
9.3 Extended Example 2: Fine Art Lighting System . 342
9.4 Extended Example 3: Flight Simulator Panel . 346
9.5 Extended Example 4: Submersible Robot . 372

9.5.1 Requirements . 373
9.5.2 Structure chart . 374
9.5.3 Circuit Diagram . 374
9.5.4 UML Activity Diagram . 375
9.5.5 Microcontroller Code . 375
9.5.6 Project Extensions . 379

9.6 Extended example 5: Weather Station . 380
9.6.1 Requirements . 380
9.6.2 Structure chart . 380
9.6.3 Circuit diagram . 381
9.6.4 UML activity diagrams . 381
9.6.5 Microcontroller code . 381

9.7 Autonomous Maze Navigating Robots . 393
9.8 Extended Example 6: Blinky 602A robot–revisited . 394

xviii

9.8.1 Requirements . 394
9.8.2 Circuit diagram . 394
9.8.3 Structure chart . 397
9.8.4 UML activity diagrams . 397
9.8.5 Microcontroller code . 399

9.9 Extended Example 7: Mountain Maze Navigating Robot 407
9.9.1 Description . 407
9.9.2 Requirements . 407
9.9.3 Circuit diagram . 407
9.9.4 Structure chart . 407
9.9.5 UML activity diagrams . 411
9.9.6 Microcontroller code . 411
9.9.7 Mountain Maze . 415
9.9.8 Project extensions . 415

9.10 Extended Example 8: Robot Wheel Odometry . 415
9.11 Summary . 419
9.12 References . 419
9.13 Chapter Problems . 420

A ATmega328 Register Set . 425

B ATmega328 Header File . 431

C ATmega2560 Register Set . 451

D ATmega2560 Header File . 457

Author’s Biography . 493

xix

Preface
This book is about the Arduino microcontroller and the Arduino concept. The visionary Arduino
team of Massimo Banzi, David Cuartielles,Tom Igoe, Gianluca Martino, and David Mellis launched
a new innovation in microcontroller hardware in 2005, the concept of open source hardware. There
approach was to openly share details of microcontroller–based hardware design platforms to stimulate
the sharing of ideas and innovation. This concept has been popular in the software world for many
years.

This book is written for a number of audiences. First, in keeping with the Arduino concept,
the book is written for practitioners of the arts (design students, artists, photographers, etc.) who may
need processing power in a project but do not have an in depth engineering background. Second,
the book is written for middle school and senior high school students who may need processing
power for a school or science fair project. Third, we write for engineering students who require
processing power for their senior design project but do not have the background in microcontroller-
–based applications commonly taught in electrical and computer engineering curricula. Finally,
the book provides practicing scientists and engineers an advanced treatment of the Atmel AVR
microcontroller. The third edition has been updated with the latest on the Arduino UNO R3 and
the Arduino Mega 2560 processors, changes to the Arduino Development Environment and multiple
extended examples.

APPROACH OF THE BOOK
To encompass such a wide range of readers, we have divided the book into several portions to
address the different readership. Chapters 1 through 2 are intended for novice microcontroller users.
Chapter 1 provides a review of the Arduino concept, a description of the Arduino UNO R3 and
the Arduino Mega 2560 development boards, and a brief review of the features of the UNO R3’s
host processor, the Atmel ATmega 328 microcontroller. We also provide a similar treatment of the
Arduino Mega 2560 processor board. Chapter 2 provides an introduction to programming for the
novice programmer. Chapter 2 also introduces the Arduino Development Environment and how to
program sketches. It also serves as a good review for the seasoned developer.

Chapter 3 provides an introduction to embedded system design processes. It provides a sys-
tematic, step–by–step approach on how to design complex systems in a stress free manner.

Chapter 4 introduces the extremely important concept of the operating envelope for a mi-
crocontroller. The voltage and current electrical parameters for the HC CMOS based Atmel AVR
line of microcontrollers is reviewed and applied to properly interface input and output devices to
the Arduino UNO R3, the Arduino Mega 2560, the ATmega328 microcontroller, and the ATmega
2560 microcontroller.

xx PREFACE

Chapters 5 through 8 provide detailed engineering information on the ATmega328 and the
AT mega 2560 microcontroller systems including analog-to-digital conversion, interrupts, timing
features, and serial communications. These chapters are intended for engineering students and
practicing engineers. However, novice microcontroller users will find the information readable and
well supported with numerous examples using the Arduino Development Environment and C.

The final chapter, Chapter 9, provides example applications for a wide variety of skill levels.

ACKNOWLEDGMENTS
A number of people have made this book possible. I would like to thank Massimo Banzi of the
Arduino design team for his support and encouragement in writing the book. I would also like to
thank Joel Claypool of Morgan & Claypool Publishers who has supported a number of writing
projects over the last several years. He also provided permission to include portions of background
information on the Atmel line of AVR microcontrollers in this book from several of our previous
projects. I would also like to thank Sparkfun Electronics of Boulder, Colorado; Atmel Incorporated;
the Arduino team; and ImageCraft of Palo Alto, California for use of pictures and figures used
within the book.

I would like to dedicate this book to my close friend Dr. Daniel Pack, Ph.D., P.E. Much of the
writing is his from earlier Morgan & Claypool projects. In 2000, Daniel suggested that we might
write a book together on microcontrollers. I had always wanted to write a book but I thought that’s
what other people did. With Daniel’s encouragement we wrote that first book (and several more
since then). Daniel is a good father, good son, good husband, brilliant engineer, a work ethic second
to none, and a good friend. To you good friend I dedicate this book. I know that we will do many
more together. Finally, I would like to thank my wife and best friend of many years, Cindy.

Laramie, Wyoming, August 2013

Steve Barrett

1

C H A P T E R 1

Getting Started
Objectives: After reading this chapter, the reader should be able to the following:

• Describe the Arduino concept of open source hardware.

• Diagram the layout of the Arduino UNO R3 processor board.

• Name and describe the different features aboard the Arduino UNO R3 processor board.

• Discuss the features and functions of the ATmega328.

• Diagram the layout of the Arduino Mega 2560 processor board.

• Name and describe the different features aboard the Arduino Mega 2560 processor board.

• Discuss the features and functions of the ATmega2560.

• List alternate Arduino processing boards.

• Describe how to extend the hardware features of the Arduino processor.

• Download, configure, and successfully execute a test program using the Arduino Development
Environment.

1.1 OVERVIEW
Welcome to the world of Arduino! The Arduino concept of open source hardware was developed by
the visionary Arduino team of Massimo Banzi, David Cuartilles, Tom Igoe, Gianluca Martino, and
David Mellis in Ivrea, Italy. The team’s goal was to develop a line of easy–to–use microcontroller
hardware and software such that processing power would be readily available to everyone.

In keeping with the Arduino concept, this book is intended for a wide variety of readers. For
those wanting a quick exposure to an Arduino microcontroller board and its easy–to–use software,
Chapters 1 and 2 are for you. If you need to tap into some of the other features of the processing
power of the ATmega328 or the ATmega2560 host microcontrollers, Chapters 3 through 8 are for
you. Chapter 9 contains a series of extended examples at a variety of skill levels.

In keeping with the Arduino open source spirit, you will find a plethora of hardware and
software examples throughout the book. I hope you enjoy reading the book, and I also hope you will
find it a useful resource in developing Arduino–based projects.

2 1. GETTING STARTED

1.2 GETTING STARTED
This chapter is devoted to getting you quickly up and operating with an Arduino–based hardware
platform. To get started using an Arduino–based processor, you will need the following hardware
and software.

• an Arduino–based hardware processing platform,

• an Arduino compatible power supply, and

• the Arduno software.

Arduino hardware. Throughout the book, we will be using two different Arduino processing
boards: the Arduino UNO R3 board and the Arduino Mega 2560 board. A starter kit for the Arduino
UNO R3 is available from SparkFun Electronics of Boulder, CO. The starter kit is illustrated in
Figure 1.1. The kit is equipped with the processing board, a USB cable to program the board from
a host PC, a small breadboard to prototype external hardware, jumper wires, a flex sensor and many
external components.

Figure 1.1: Arduino UNO R3 starter kit. (Used with permission from SparkFun Electronics (CC BY–
NC–SA).)

Costs for the starter kit and processor boards are:

• Arduino UNO R3–approximately US$30

• Starter Kit for Arduino Flex (includes Arduino UNO R3) –approximately US$60

• Arduino Mega 2560–approximately US$60

1.3. ARDUINO UNO R3 PROCESSING BOARD 3

Power supply. The Arduino processing boards may be powered from the USB port during
project development. However, it is highly recommended that an external power supply be employed.
This will allow developing projects beyond the limited current capability of the USB port. Arduino
www.arduino.cc recommends a power supply from 7–12 VDC with a 2.1 mm center positive plug.
A power supply of this type is readily available from a number of electronic parts supply companies.
For example, the Jameco #133891 power supply is a 9 VDC model rated at 300 mA and equipped
with a 2.1 mm center positive plug. It is available for under US$10.

Arduino software. You will also need the Arduino software called the Arduino Development
Environment. It is available as a free download from the Arduino homepage (www.arduino.cc). In
the next chapter, we will discuss how to program the Arduino processing boards using the Arduino
Development Environment. It is essential that you download and get the software operating correctly
before proceeding to the next chapter.

The Arduino homepage (www.arduino.cc)contains detailed instructions on how to down-
load the software, load the USB drivers, and get a sample program operating on the Arduino
processing boards. Due to limited space, these instructions will not be duplicated here. The reader is
encouraged to visit the Arduino webpage and get the software up and operating at this time. Follow-
ing the user–friendly instructions provided at the Arduino home page under the “Getting Started”
tab, you will have the software downloaded and communicating with your Arduino processing board
within minutes.

This completes a brief overview of the Arduino hardware and software. In the next section,
we provide a more detailed overview of the hardware features of the Arduino UNO R3 processor
board and the Atmel ATmega328 microcontroller.

1.3 ARDUINO UNO R3 PROCESSING BOARD

The Arduino UNO R3 processing board is illustrated in Figure 1.2. Working clockwise from the
left, the board is equipped with a USB connector to allow programming the processor from a host
PC. The board may also be programmed using In System Programming (ISP) techniques discussed
later in the book. A 6–pin ISP programming connector is on the opposite side of the board from
the USB connector.

The board is equipped with a USB–to–serial converter to allow compatibility between the
host PC and the serial communications systems aboard the ATmega328 processor. The UNO R3
is also equipped with several small surface mount LEDs to indicate serial transmission (TX) and
reception (RX) and an extra LED for project use. The header strip at the top of the board provides
access for an analog reference signal, pulse width modulation (PWM) signals,digital input/output
(I/O), and serial communications.The header strip at the bottom of the board provides analog inputs
for the analog–to–digital (ADC) system and power supply terminals. Finally, the external power
supply connector is provided at the bottom left corner of the board. The top and bottom header
strips conveniently mate with an Arduino shield (to be discussed shortly) to extend the features of
the host processor.

www.arduino.cc
www.arduino.cc
www.arduino.cc

4 1. GETTING STARTED

USB

connector

(to PC)

power supply

connector

(7-12 VDC)

power supply

terminals
analog inputs

ISP programming

connector

se
ria

l c
om

m

digital I/O

PW
M

an
al

og
 re

fe
re

nc
e

USB-to-serial

converter

switch

timebase

LED power

indicator

LED

TX LED

RX LED

Figure 1.2: Arduino UNO R3 layout. (Figure adapted and used with permission of Arduino Team (CC
BY–NC–SA)(www.arduino.cc).)

1.3.1 ARDUINO UNO R3 HOST PROCESSOR–THE ATMEGA328
The host processor for the Arduino UNO R3 is the Atmel Atmega328. The “328” is a 28 pin,
8–bit microcontroller. The architecture is based on the Reduced Instruction Set Computer (RISC)
concept which allows the processor to complete 20 million instructions per second (MIPS) when
operating at 20 MHz! The “328” is equipped with a wide variety of features as shown in Figure 1.3.
The features may be conveniently categorized into the following systems:

• Memory system,

• Port system,

• Timer system,

• Analog–to–digital converter (ADC),

• Interrupt system,

• and Serial communications.

www.arduino.cc

1.3. ARDUINO UNO R3 PROCESSING BOARD 5

A
rd

uin
o

 U
N

O
 R

3

ho
ste

d
 o

n
 the

A
T

m
e

ga
328

M
em

ory System
- 32K

 byte, IS
P

program
m

able flash
- 1K

 byte, byte
addressable E

E
PR

O
M

- 2K
 byte R

A
M

T
im

er S
ystem

- Tw
o 8-bit tim

er/counter
- O

ne 16-bit tim
er/counter

- Six PW
M

 channels

A
nalog-to-digital converter

- 6 channel 10-bit A
D

C
 (PD

IP)

Serial C
om

m
unications

- S
erial U

S
A

R
T

- S
erial peripheral interface

- Tw
o w

ire interface (T
W

I)

P
ort S

ystem
- 14 digital I/O

 pins
 -- 6 provide PW

M
- 6 analog input pins

Interrupt System
- 26 total interrupts
- 2 external pin interrupts

F
igure

1.3:
A

rduino
U

N
O

R
3

system
s.

6 1. GETTING STARTED

1.3.2 ARDUINO UNO R3/ATMEGA328 HARDWARE FEATURES
The Arduino UNO R3’s processing power is provided by the ATmega328. The pin out diagram
and block diagram for this processor are provided in Figures 1.4 and 1.5. In this section, we provide
additional detail on the systems aboard the processor.

(PCINT14/RESET) PC6
(PCINT16/RXD) PD0
(PCINT17/TXD) PD1
(PCINT18/INT0) PD2

(PCINT19/OC2B/INT1) PD3
(PCINT20/XCK/T0) PD4

VCC
GND

(PCINT6/XTAL1/TOSC1) PB6
(PCINT7/XTAL2/TOSC2) PB7

(PCINT21/OC0B/T1) PD5
(PCINT22/OC0A/AIN0) PD6

(PCINT23/AIN1) PD7
(PCINT0/CLKO/1CP1) PB0

PC5 (ADC5/SCL/PCINT13)
PC4 (ADC4/SDA/PCINT12)
PC3 (ADC3/PCINT11)
PC2 (ADC2/PCINT10)
PC1 (ADC1/PCINT9)
PC0 (ADC0/PCINT8)
GND
AREF
AVCC
PB5 (SCK/PCINT5)
PB4 (MISO/PCINT4)
PB3 (MOSI/OC2A/PCINT3)
PB2 (SS/OC 1B/PCINT2)
PB1 (OC1A/PCINT1)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

Figure 1.4: ATmega328 pin out. (Figure used with permission of Atmel, Incorporated.)

1.3.3 ATMEGA328 MEMORY
The ATmega328 is equipped with three main memory sections: flash electrically erasable pro-
grammable read only memory (EEPROM), static random access memory (SRAM), and byte–
addressable EEPROM for data storage. We discuss each memory component in turn.

1.3.3.1 ATmega328 In–System Programmable Flash EEPROM
Bulk programmable flash EEPROM is used to store programs. It can be erased and programmed
as a single unit. Also, should a program require a large table of constants, it may be included as a
global variable within a program and programmed into flash EEPROM with the rest of the program.
Flash EEPROM is nonvolatile meaning memory contents are retained when microcontroller power
is lost.The ATmega328 is equipped with 32K bytes of onboard reprogrammable flash memory.This
memory component is organized into 16K locations with 16 bits at each location.

1.3. ARDUINO UNO R3 PROCESSING BOARD 7

Watchdog
Timer

debugWIRE

PROGRAM
LOGIC

SRAMFlash

CPU

Power
Supervision
POR/BOD &

RESET
Watchdog
Oscillator

Oscillator
Circuits/
Clock

Generation

EEPROM

8bit T/C 0 16bit T/C 1

8bit T/C 2
Analog
Comp.

Internal
Bandgap

A/D Conv.

USART 0

PORT D (8)

PD[0..7]

SPI TWI

PORT B (8)

PB[0..7]

PORT C (7)

PB[0..6] ADC[6..7]

RESET

AVCC

AREF

GND

D
AT

A
B

U
S

G
N

D

V
C

C

2

6

XTAL[1..2]

©

Figure 1.5: ATmega328 block diagram. (Figure used with permission of Atmel, Incorporated.)

8 1. GETTING STARTED

1.3.3.2 ATmega328 Byte–Addressable EEPROM
Byte–addressable memory is used to permanently store and recall variables during program execution.
It too is nonvolatile. It is especially useful for logging system malfunctions and fault data during
program execution. It is also useful for storing data that must be retained during a power failure but
might need to be changed periodically. Examples where this type of memory is used are found in
applications to store system parameters, electronic lock combinations, and automatic garage door
electronic unlock sequences. The ATmega328 is equipped with 1024 bytes of EEPROM.

1.3.3.3 ATmega328 Static Random Access Memory (SRAM)
Static RAM memory is volatile. That is, if the microcontroller loses power, the contents of SRAM
memory are lost. It can be written to and read from during program execution. The ATmega328 is
equipped with 2K bytes of SRAM. A small portion of the SRAM is set aside for the general purpose
registers used by the processor and also for the input/output and peripheral subsystems aboard the
microcontroller. A complete ATmega328 register listing and accompanying header file is provided in
Appendices A and B, respectively. The header file is included with permission of ImageCraft (www.
imagecraft.com.)During program execution, RAM is used to store global variables, support
dynamic memory allocation of variables, and to provide a location for the stack (to be discussed
later).

1.3.4 ATMEGA328 PORT SYSTEM
The Atmel ATmega328 is equipped with four, 8–bit general purpose, digital input/output (I/O)
ports designated PORTB (8 bits, PORTB[7:0]), PORTC (7 bits, PORTC[6:0]), and PORTD (8
bits, PORTD[7:0]). All of these ports also have alternate functions which will be described later. In
this section, we concentrate on the basic digital I/O port features.

As shown in Figure 1.6, each port has three registers associated with it

• Data Register PORTx –used to write output data to the port.

• Data Direction Register DDRx – used to set a specific port pin to either output (1) or input
(0).

• Input Pin Address PINx – used to read input data from the port.

Figure 1.6(b) describes the settings required to configure a specific port pin to either input or
output. If selected for input, the pin may be selected for either an input pin or to operate in the high
impedance (Hi–Z) mode. In Hi–Z mode, the input appears as high impedance to a particular pin.
If selected for output, the pin may be further configured for either logic low or logic high.

Port pins are usually configured at the beginning of a program for either input or output and
their initial values are then set. Usually all eight pins for a given port are configured simultaneously.
We discuss how to configure specific port pins and how to read/write to them in the next chapter.

www.imagecraft.com.
www.imagecraft.com.

1.3. ARDUINO UNO R3 PROCESSING BOARD 9

Port x Data Register - PORTx

7 0

Port x Data Direction Register - DDRx

7 0

Port x Input Pins Address - PINx

7 0

DDxn PORTxn I/O Comment

0

0

1

1

0

1

0

1

input

input

output

output

Tri-state (Hi-Z)

source current if externally pulled low

Output Low (Sink)

Output High (Source)

a) port associated registers

b) port pin configuration

x: port designa tor (B, C, D)

n: pin designa tor (0 - 7)

Pullup

No

Yes

No

No

Figure 1.6: ATmega328 port configuration registers.

1.3.5 ATMEGA328 INTERNAL SYSTEMS
In this section, we provide a brief overview of the internal features of the ATmega328. It should be
emphasized that these features are the internal systems contained within the confines of the micro-
controller chip. These built–in features allow complex and sophisticated tasks to be accomplished
by the microcontroller.

1.3.5.1 ATmega328 Time Base
The microcontroller is a complex synchronous state machine. It responds to program steps in a
sequential manner as dictated by a user–written program. The microcontroller sequences through
a predictable fetch–decode–execute sequence. Each unique assembly language program instruction

10 1. GETTING STARTED

issues a series of signals to control the microcontroller hardware to accomplish instruction related
operations.

The speed at which a microcontroller sequences through these actions is controlled by a precise
time base called the clock. The clock source is routed throughout the microcontroller to provide a
time base for all peripheral subsystems. The ATmega328 may be clocked internally using a user–
selectable resistor capacitor (RC) time base or it may be clocked externally. The RC internal time
base is selected using programmable fuse bits. You may choose an internal fixed clock operating
frequency of 1, 2, 4 or 8 MHz.

To provide for a wider range of frequency selections an external time source may be used. The
external time sources, in order of increasing accuracy and stability, are an external RC network, a
ceramic resonator, or a crystal oscillator. The system designer chooses the time base frequency and
clock source device appropriate for the application at hand.

1.3.5.2 ATmega328 Timing Subsystem
The ATmega328 is equipped with a complement of timers which allows the user to generate a
precision output signal, measure the characteristics (period, duty cycle, frequency) of an incoming
digital signal, or count external events. Specifically, the ATmega328 is equipped with two 8–bit
timer/counters and one 16–bit counter. We discuss the operation, programming, and application of
the timing system later in the book.

1.3.5.3 Pulse Width Modulation Channels
A pulse width modulated or PWM signal is characterized by a fixed frequency and a varying duty
cycle. Duty cycle is the percentage of time a repetitive signal is logic high during the signal period.
It may be formally expressed as:

duty cycle[%] = (on time/period) × (100%)

The ATmega328 is equipped with four pulse width modulation (PWM) channels.The PWM
channels coupled with the flexibility of dividing the time base down to different PWM subsystem
clock source frequencies allows the user to generate a wide variety of PWM signals: from relatively
high frequency low duty cycle signals to relatively low frequency high duty cycle signals.

PWM signals are used in a wide variety of applications including controlling the position of
a servo motor and controlling the speed of a DC motor. We discuss the operation, programming,
and application of the PWM system later in the book.

1.3.5.4 ATmega328 Serial Communications
The ATmega328 is equipped with a host of different serial communication subsystems including
the Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART), the serial
peripheral interface (SPI), and the Two–wire Serial Interface. What all of these systems have in

1.3. ARDUINO UNO R3 PROCESSING BOARD 11

common is the serial transmission of data. In a serial communications transmission, serial data is
sent a single bit at a time from transmitter to receiver.

ATmega328 Serial USART The serial USART may be used for full duplex (two way) commu-
nication between a receiver and transmitter. This is accomplished by equipping the ATmega328
with independent hardware for the transmitter and receiver. The USART is typically used for asyn-
chronous communication.That is, there is not a common clock between the transmitter and receiver
to keep them synchronized with one another. To maintain synchronization between the transmitter
and receiver, framing start and stop bits are used at the beginning and end of each data byte in a
transmission sequence.

The ATmega328 USART is quite flexible. It has the capability to be set to a variety of data
transmission rates known as the Baud (bits per second) rate. The USART may also be set for data
bit widths of 5 to 9 bits with one or two stop bits. Furthermore, the ATmega328 is equipped with
a hardware generated parity bit (even or odd) and parity check hardware at the receiver. A single
parity bit allows for the detection of a single bit error within a byte of data. The USART may
also be configured to operate in a synchronous mode. We discuss the operation, programming, and
application of the USART later in the book.

ATmega328 Serial Peripheral Interface–SPI The ATmega328 Serial Peripheral Interface (SPI)
can also be used for two–way serial communication between a transmitter and a receiver. In the SPI
system, the transmitter and receiver share a common clock source. This requires an additional clock
line between the transmitter and receiver but allows for higher data transmission rates as compared
to the USART.

The SPI may be viewed as a synchronous 16–bit shift register with an 8–bit half residing in
the transmitter and the other 8–bit half residing in the receiver. The transmitter is designated the
master since it is providing the synchronizing clock source between the transmitter and the receiver.
The receiver is designated as the slave. We discuss the operation, programming, and application of
the SPI later in the book.

ATmega328 Two–wire Serial Interface–TWI The TWI subsystem allows the system designer to
network a number of related devices (microcontrollers, transducers, displays, memory storage, etc.)
together into a system using a two wire interconnecting scheme. The TWI allows a maximum of
128 devices to be connected together. Each device has its own unique address and may both transmit
and receive over the two wire bus at frequencies up to 400 kHz. This allows the device to freely
exchange information with other devices in the network within a small area. We discuss the TWI
system later in the book.

1.3.5.5 ATmega328 Analog to Digital Converter–ADC
The ATmega328 is equipped with an eight channel analog to digital converter (ADC) subsystem.
The ADC converts an analog signal from the outside world into a binary representation suitable for
use by the microcontroller. The ATmega328 ADC has 10 bit resolution. This means that an analog

12 1. GETTING STARTED

voltage between 0 and 5 V will be encoded into one of 1024 binary representations between (000)16

and (3FF)16. This provides the ATmega328 with a voltage resolution of approximately 4.88 mV.
We discuss the operation, programming, and application of the ADC later in the book.

1.3.5.6 ATmega328 Interrupts
The normal execution of a program follows a designated sequence of instructions. However, some-
times this normal sequence of events must be interrupted to respond to high priority faults and
status both inside and outside the microcontroller. When these higher priority events occur, the mi-
crocontroller must temporarily suspend normal operation and execute event specific actions called
an interrupt service routine. Once the higher priority event has been serviced, the microcontroller
returns and continues processing the normal program.

The ATmega328 is equipped with a complement of 26 interrupt sources.Two of the interrupts
are provided for external interrupt sources while the remaining interrupts support the efficient oper-
ation of peripheral subsystems aboard the microcontroller. We discuss the operation, programming,
and application of the interrupt system later in the book.

1.3.6 ARDUINO UNO R3 OPEN SOURCE SCHEMATIC
The entire line of Arduino products is based on the visionary concept of open source hardware and
software. That is, hardware and software developments are openly shared among users to stimulate
new ideas and advance the Arduino concept. In keeping with the Arduino concept, the Arduino
team openly shares the schematic of the Arduino UNO R3 processing board. Reference Figure 1.7.

1.4 ARDUINO MEGA 2560 PROCESSING BOARD

The Arduino Mega 2560 processing board is illustrated in Figure 1.8. Working clockwise from the
left, the board is equipped with a USB connector to allow programming the processor from a host
PC. The board may also be programmed using In System Programming (ISP) techniques discussed
later in the book. A 6–pin ISP programming connector is on the opposite side of the board from
the USB connector.

The board is equipped with a USB–to–serial converter to allow compatibility between the
host PC and the serial communications systems aboard the ATmega2560 processor.The Mega 2560
is also equipped with several small surface mount LEDs to indicate serial transmission (TX) and
reception (RX) and an extra LED for project use. The header strip at the top of the board provides
access for pulse width modulation (PWM) signals and serial communications. The header strip at
the right side of the board provides access to multiple digital input/output pins. The bottom of the
board provides analog inputs for the analog–to–digital (ADC) system and power supply terminals.
Finally, the external power supply connector is provided at the bottom left corner of the board.
The header strips conveniently mate with an Arduino shield (to be discussed shortly) to extend the
features of the host processor.

1.4. ARDUINO MEGA 2560 PROCESSING BOARD 13

Figure 1.7: Arduino UNO R3 open source schematic. (Figure adapted and used with permission of the
Arduino Team (CC BY–NC–SA) (www.arduino.cc).)

www.arduino.cc

14 1. GETTING STARTED

USB
connector
(to PC)

timebase

power supply
connector
(7-12 VDC)

power supply
terminals

analog inputs

digital
input/output

serial
communicationspulse width modulation (PWM)

ISP programming
connector

USB-to-serial
converter

Figure 1.8: Arduino Mega2560 layout. (Figure adapted and used with permission of Arduino Team
(CC BY–NC–SA) (www.arduino.cc).)

1.4.1 ARDUINO MEGA 2560 HOST PROCESSOR–THE ATMEGA2560
The host processor for the Arduino Mega 2560 is the Atmel Atmega2560. The “2560” is a 100
pin, surface mount 8–bit microcontroller. The architecture is based on the Reduced Instruction
Set Computer (RISC) concept which allows the processor to complete 16 million instructions per
second (MIPS) when operating at 16 MHz. The “2560” is equipped with a wide variety of features
as shown in Figure 1.9. The features may be conveniently categorized into the following systems:

• Memory system,

• Port system,

• Timer system,

• Analog–to–digital converter (ADC),

• Interrupt system,

• and serial communications.

1.4.2 ARDUINO MEGA 2560 /ATMEGA2560 HARDWARE FEATURES
The Arduino Mega 2560’s processing power is provided by the ATmega2560. The pin out diagram
and block diagram for this processor are provided in Figures 1.10 and 1.11. In this section, we provide
additional detail on the systems aboard the processor.

www.arduino.cc

1.4. ARDUINO MEGA 2560 PROCESSING BOARD 15
A

rduino M
ega 2560

hosted on the
A

T
m

ega2560

M
em

ory System
- 256K

 byte, IS
P

program
m

able flash
- 4K

 byte, byte
addressable E

E
PR

O
M

- 8K
 byte R

A
M

T
im

er S
ystem

- Tw
o 8-bit tim

er/counter
- Four 16-bit tim

er/counter
- Tw

elve P
W

M
 channels

A
nalog-to-digital converter

- 16 channel 10-bit A
D

C
Serial C

om
m

unications
- 4 channel Serial U

SA
R

T
- S

erial peripheral interface
- Tw

o w
ire interface (T

W
I)

P
ort S

ystem
- 11 each 8-bit digital I/O
 ports on A

T
m

ega2560
- O

n A
rduino M

ega 2560
 -- 54 digital I/O

 pins
 -- 14 can be used as PW

M

Interrupt System
- 57 total interrupts
- 8 external pin interrupts
- 3 pin change interrupts

F
igure

1.9:
A

rduino
M

ega
2560

system
s.

16 1. GETTING STARTED

®

AV
CC

G
ND

AR
EF

PF
0

 (A
DC

0)

PF
1

 (A
DC

1)

PF
2

 (A
DC

2)

PF
3

 (A
DC

3)

PF
4

 (A
DC

4/
TC

K)

PF
5

 (A
DC

5/
TM

S)

PF
6

 (A
DC

6/
TD

O
)

PF
7

 (A
DC

7/
TD

I)

PK
0

 (A
DC

8/
PC

IN
T1

6)

PK
1

 (A
DC

9/
PC

IN
T1

7)

PK
2

 (A
DC

10
/P

CI
NT

18
)

PK
3

 (A
DC

11
/P

CI
NT

19
)

PK
4

 (A
DC

12
/P

CI
NT

20
)

PK
5

 (A
DC

13
/P

CI
NT

21
)

PK
6

 (A
DC

14
/P

CI
NT

22
)

PK
7

 (A
DC

15
/P

CI
NT

23
)

G
ND

VC
C

PJ
7

PA
0

(A
D0

)

PA
1

(A
D1

)

PA
2

(A
D2

)

PA3 (AD3)

PA4 (AD4)

PA5 (AD5)

PA6 (AD6)

PA7 (AD7)

PG2 (ALE)

PJ6 (PCINT15)

PJ5 (PCINT14)

PJ4 (PCINT13)

PJ3 (PCINT12)

PJ2 (XCK3/PCINT11)

PJ1 (TXD3/PCINT10)

PJ0 (RXD3/PCINT9)

GND

VCC

VCC

(CLKO/ICP3/INT7) PE7

(T3/INT6) PE6

(OC3C/INT5) PE5

(OC3B/INT4) PE4

(OC3A/AIN1) PE3

(XCK0/AIN0) PE2

(TXD0) PE1

(RXD0/PCINT8) PE0
INDEX CORNER

(OC0B) PG5

GND

(RXG2) PH0

(TXD2) PH1

(XCK2) PH2

(OC4A) PH3

(OC4B) PH4

(OC4C) PH5

(OC2B) PH6

(SS/PCINT0) PB0

(SCK/PCINT1) PB1

(MOSI/PCINT2) PB2

(MISO/PCINT3) PB3

(OC2A/PCINT4) PB4

(OC1A/PCINT5) PB5

(OC1B/PCINT6) PB6

(O
C0

A/
O

C1
C/

PC
IN

T7
) P

B7

(T
4)

 P
H7

(T
O

SC
2)

 P
G

3

(T
O

SC
1)

 P
G

4

RE
SE

T

VC
D

G
ND

XT
AL

2

XT
AL

1

(IC
P4

) P
L0

(IC
P5

) P
L1

(T
5)

 P
L2

(O
C5

A)
 P

L3

(O
C5

B)
 P

L4

(O
C5

C)
 P

L5 PL
6

PL
7

(S
CL

/IN
T0

) P
D0

(S
DA

/IN
T1

) P
D1

(R
XD

1/
IN

T2
) P

D1

(T
XD

1/
IN

T3
) P

D3

(IC
P1

) P
D4

(X
CK

1)
 P

D5

(T
1)

 P
D6

(T
0)

 P
D7

PC7 (A15)

PC6 (A14)

PC5 (A13)

PC4 (A12)

PC3 (A11)

PC2 (A10)

PC1 (A9)

PC0 (A8)

PG1 (RD)

PG0 (WR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

66

65

64

63

62

61

72

73

74

75

71

70

69

69

67

60

59

58

57

56

55

54

53

52

51

50494847464544434241403938373635343332313029282726

767778798081828384858687888990919293949596979899100

Figure 1.10: ATmega2560 pin out. (Figure used with permission of Atmel, Incorporated.)

1.4.3 ATMEGA2560 MEMORY
The ATmega2560 is equipped with three main memory sections: flash electrically erasable pro-
grammable read only memory (EEPROM), static random access memory (SRAM), and byte–
addressable EEPROM for data storage. We discuss each memory component in turn.

1.4. ARDUINO MEGA 2560 PROCESSING BOARD 17

Figure 1.11: ATmega2560 block diagram. (Figure used with permission of Atmel, Incorporated.)

1.4.3.1 ATmega2560 In–System Programmable Flash EEPROM
Bulk programmable flash EEPROM is used to store programs. It can be erased and programmed as
a single unit. Also, should a program require a large table of constants, it may be included as a global
variable within a program and programmed into flash EEPROM with the rest of the program. Flash
EEPROM is nonvolatile meaning memory contents are retained when microcontroller power is lost.
The ATmega2560 is equipped with 256K bytes of onboard reprogrammable flash memory.

1.4.3.2 ATmega2560 Byte–Addressable EEPROM
Byte–addressable memory is used to permanently store and recall variables during program execution.
It too is nonvolatile. It is especially useful for logging system malfunctions and fault data during

18 1. GETTING STARTED

program execution. It is also useful for storing data that must be retained during a power failure but
might need to be changed periodically. Examples where this type of memory is used are found in
applications to store system parameters, electronic lock combinations, and automatic garage door
electronic unlock sequences. The ATmega2560 is equipped with 4096 bytes of byte–addressable
EEPROM.

1.4.3.3 ATmega2560 Static Random Access Memory (SRAM)
Static RAM memory is volatile. That is, if the microcontroller loses power, the contents of SRAM
memory are lost. It can be written to and read from during program execution. The ATmega2560
is equipped with 8K bytes of SRAM. A small portion of the SRAM is set aside for the general
purpose registers used by the processor and also for the input/output and peripheral subsystems
aboard the microcontroller. A complete ATmega2560 register listing and accompanying header file
is provided in Appendices C and D, respectively. During program execution, RAM is used to store
global variables, support dynamic memory allocation of variables, and to provide a location for the
stack (to be discussed later).

1.4.4 ATMEGA2560 PORT SYSTEM
The Atmel ATmega2560 is equipped with eleven, 8–bit general purpose, digital input/output (I/O)
ports designated:

• PORTA (8 bits, PORTA[7:0])

• PORTB (8 bits, PORTB[7:0])

• PORTC (7 bits, PORTC[7:0])

• PORTD (8 bits, PORTD[7:0])

• PORTE (8 bits, PORTE[7:0])

• PORTF (8 bits, PORTF[7:0])

• PORTG (7 bits, PORTG[7:0])

• PORTH (8 bits, PORTH[7:0])

• PORTJ (8 bits, PORTJ[7:0])

• PORTK (8 bits, PORTK[7:0])

• PORTL (7 bits, PORTL[7:0])

All of these ports also have alternate functions which will be described later. In this section, we
concentrate on the basic digital I/O port features.

As shown in Figure 1.6, each port has three registers associated with it

1.4. ARDUINO MEGA 2560 PROCESSING BOARD 19

• Data Register PORTx –used to write output data to the port.

• Data Direction Register DDRx –used to set a specific port pin to either output (1) or input
(0).

• Input Pin Address PINx –used to read input data from the port.

Port x Data Register - PORTx

7 0

Port x Data Direction Register - DDRx

7 0

Port x Input Pins Address - PINx

7 0

DDxn PORTxn I/O Comment

0

0

1

1

0

1

0

1

input

input

output

output

Tri-state (Hi-Z)

source current if externally pulled low

Output Low (Sink)

Output High (Source)

a) port associated registers

b) port pin configuration

x: port designa tor (B, C, D)

n: pin designa tor (0 - 7)

Pullup

No

Yes

No

No

Figure 1.12: ATmega2560 port configuration registers.

Figure 1.6(b) describes the settings required to configure a specific port pin to either input or
output. If selected for input, the pin may be selected for either an input pin or to operate in the high
impedance (Hi–Z) mode. In Hi–Z mode, the input appears as high impedance to a particular pin.
If selected for output, the pin may be further configured for either logic low or logic high.

20 1. GETTING STARTED

Port pins are usually configured at the beginning of a program for either input or output and
their initial values are then set. Usually all eight pins for a given port are configured simultaneously.
We discuss how to configure port pins and how to read/write to them in the next chapter.

1.4.5 ATMEGA2560 INTERNAL SYSTEMS
In this section, we provide a brief overview of the internal features of the ATmega2560. It should be
emphasized that these features are the internal systems contained within the confines of the micro-
controller chip. These built–in features allow complex and sophisticated tasks to be accomplished
by the microcontroller.

1.4.5.1 ATmega2560 Time Base
The microcontroller is a complex synchronous state machine. It responds to program steps in a
sequential manner as dictated by a user–written program. The microcontroller sequences through
a predictable fetch–decode–execute sequence. Each unique assembly language program instruction
issues a series of signals to control the microcontroller hardware to accomplish instruction related
operations.

The speed at which a microcontroller sequences through these actions is controlled by a precise
time base called the clock. The clock source is routed throughout the microcontroller to provide a
time base for all peripheral subsystems. The ATmega2560 may be clocked internally using a user-
–selectable resistor capacitor (RC) time base or it may be clocked externally. The RC internal time
base is selected using programmable fuse bits. You may choose an internal fixed clock operating
frequency of 128 kHz or 8 MHz. The clock frequency may be prescaled by a number of different
clock division factors (1, 2, 4, etc.).

To provide for a wider range of frequency selections an external time source may be used. The
external time sources, in order of increasing accuracy and stability, are an external RC network, a
ceramic resonator, or a crystal oscillator. The system designer chooses the time base frequency and
clock source device appropriate for the application at hand.

1.4.5.2 ATmega2560 Timing Subsystem
The ATmega2560 is equipped with a complement of timers which allows the user to generate a
precision output signal, measure the characteristics (period, duty cycle, frequency) of an incoming
digital signal, or count external events. Specifically, the ATmega2560 is equipped with two 8–
bit timer/counters and four 16–bit timer/counters. We discuss the operation, programming, and
application of the timing system later in the book.

1.4.5.3 Pulse Width Modulation Channels
A pulse width modulated or PWM signal is characterized by a fixed frequency and a varying duty
cycle. Duty cycle is the percentage of time a repetitive signal is logic high during the signal period.
It may be formally expressed as:

1.4. ARDUINO MEGA 2560 PROCESSING BOARD 21

duty cycle[%] = (on time/period) × (100%)

The ATmega2560 is equipped with four 8–bit pulse width modulation (PWM) channels and
12 PWM channels with programmable resolution. The PWM channels coupled with the flexibility
of dividing the time base down to different PWM subsystem clock source frequencies allows the
user to generate a wide variety of PWM signals: from relatively high frequency low duty cycle signals
to relatively low frequency high duty cycle signals.

PWM signals are used in a wide variety of applications including controlling the position of
a servo motor and controlling the speed of a DC motor. We discuss the operation, programming,
and application of the PWM system later in the book.

1.4.5.4 ATmega2560 Serial Communications
The ATmega2560 is equipped with a host of different serial communication subsystems including
the Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART), the serial
peripheral interface (SPI), and the Two–wire Serial Interface. What all of these systems have in
common is the serial transmission of data. In a serial communications transmission, serial data is
sent a single bit at a time from transmitter to receiver.

ATmega2560 Serial USART The serial USART may be used for full duplex (two way) commu-
nication between a receiver and transmitter. This is accomplished by equipping the ATmega2560
with independent hardware for the transmitter and receiver. The USART is typically used for asyn-
chronous communication.That is, there is not a common clock between the transmitter and receiver
to keep them synchronized with one another. To maintain synchronization between the transmitter
and receiver, framing start and stop bits are used at the beginning and end of each data byte in a
transmission sequence.

The ATmega2560 USART is quite flexible. It has the capability to be set to a variety of data
transmission rates known as the Baud (bits per second) rate. The USART may also be set for data
bit widths of 5 to 9 bits with one or two stop bits. Furthermore, the ATmega2560 is equipped with
a hardware generated parity bit (even or odd) and parity check hardware at the receiver. A single
parity bit allows for the detection of a single bit error within a byte of data. The USART may
also be configured to operate in a synchronous mode. We discuss the operation, programming, and
application of the USART later in the book.

ATmega2560 Serial Peripheral Interface–SPI The ATmega2560 Serial Peripheral Interface (SPI)
can also be used for two–way serial communication between a transmitter and a receiver. In the SPI
system, the transmitter and receiver share a common clock source. This requires an additional clock
line between the transmitter and receiver but allows for higher data transmission rates as compared
to the USART.

The SPI may be viewed as a synchronous 16–bit shift register with an 8–bit half residing in
the transmitter and the other 8–bit half residing in the receiver. The transmitter is designated the

22 1. GETTING STARTED

master since it is providing the synchronizing clock source between the transmitter and the receiver.
The receiver is designated as the slave. We discuss the operation, programming, and application of
the SPI later in the book.

ATmega2560 Two–wire Serial Interface–TWI The TWI subsystem allows the system designer to
network a number of related devices (microcontrollers, transducers, displays, memory storage, etc.)
together into a system using a two wire interconnecting scheme. The TWI allows a maximum of
128 devices to be connected together. Each device has its own unique address and may both transmit
and receive over the two wire bus at frequencies up to 400 kHz. This allows the device to freely
exchange information with other devices in the network within a small area. We discuss the TWI
system later in the book.

1.4.5.5 ATmega2560 Analog to Digital Converter–ADC
The ATmega2560 is equipped with a 16 channel analog to digital converter (ADC) subsystem. The
ADC converts an analog signal from the outside world into a binary representation suitable for use
by the microcontroller. The ATmega2560 ADC has 10 bit resolution. This means that an analog
voltage between 0 and 5 V will be encoded into one of 1024 binary representations between (000)16

and (3FF)16. This provides the ATmega2560 with a voltage resolution of approximately 4.88 mV.
We discuss the operation, programming, and application of the ADC later in the book.

1.4.5.6 ATmega2560 Interrupts
The normal execution of a program follows a designated sequence of instructions. However, some-
times this normal sequence of events must be interrupted to respond to high priority faults and
status both inside and outside the microcontroller. When these higher priority events occur, the mi-
crocontroller must temporarily suspend normal operation and execute event specific actions called
an interrupt service routine. Once the higher priority event has been serviced, the microcontroller
returns and continues processing the normal program.

The ATmega2560 is equipped with a complement of 57 interrupt sources. Eight interrupts
are provided for external interrupt sources. Also, the ATmega2560 is equipped with three pin change
interrupts.The remaining interrupts support the efficient operation of peripheral subsystems aboard
the microcontroller. We discuss the operation, programming, and application of the interrupt system
later in the book.

1.5 ARDUINO MEGA 2560 OPEN SOURCE SCHEMATIC

The entire line of Arduino products is based on the visionary concept of open source hardware and
software. That is, hardware and software developments are openly shared among users to stimulate
new ideas and advance the Arduino concept. In keeping with the Arduino concept, the Arduino
team openly shares the schematic of the Arduino Mega 2560 processing board. It is available for
download at www.arduino.cc.

www.arduino.cc

1.6. EXAMPLE: AUTONOMOUS MAZE NAVIGATING ROBOT 23

1.6 EXAMPLE: AUTONOMOUS MAZE NAVIGATING ROBOT

Let’s see how the different Arduino processing boards would be used in an application. Graymark
(www.graymarkint.com) manufacturers many low–cost, excellent robot platforms. In this example,
we will modify the Blinky 602A robot to be controlled by the Arduino UNO R3.

The Blinky 602A kit contains the hardware and mechanical parts to construct a line following
robot. The processing electronics for the robot consists of analog circuitry. The robot is controlled
by two 3 VDC motors which independently drive a left and right wheel. A third non–powered drag
wheel provides tripod stability for the robot.

In this example, we will equip the Blinky 602A robot platform with three Sharp GP12D IR
sensors as shown in Figure 1.13. The robot will be placed in a maze with white reflective walls. The
goal is for the robot to detect wall placement and navigate through the maze. (Figure 1.14.) The
robot will not be provided any information about the maze. The control algorithm for the robot will
be hosted on the Arduino UNO R3. The Arduino mega 2560 can also be used for this application.

1.6.1 STRUCTURE CHART
A structure chart is a visual tool used to partition a large project into “doable” smaller parts. It
also helps to visualize what systems will be used to control different features of the robot. The
arrows within the structure chart indicate the data flow between different portions of the program
controlling the robot. The structure chart for the robot project is provided in Figure 1.15. As you
can see, the robot has three main systems: the motor control system, the sensor system, and the
digital input/output system. These three systems interact with the main control algorithm to allow
the robot to autonomously (by itself) navigate through the maze by sensing and avoiding walls.

1.6.2 UML ACTIVITY DIAGRAMS
A Unified Modeling Language (UML) activity diagram, or flow chart, is a tool to help visualize the
different steps required for a control algorithm. The UML activity diagram for the robot is provided
in Figure 1.16. As you can see, after robot systems are initialized, the robot control system enters a
continuous loop to gather data and issue outputs to steer the robot through the maze.

1.6.3 ARDUINO UNO R3 SYSTEMS
The three IR sensors (left, middle, and right) are mounted on the leading edge of the robot to detect
maze walls. The output from the sensors is fed to three ADC channels. The robot motors will each
be driven by a pulse width modulation (PWM) channel. The Arduino UNO R3 is interfaced to the
motors via a transistor with enough drive capability to handle the maximum current requirements of
the motor. The robot will be powered by a 9 VDC battery or a power supply (rated at approximately
2A) which is fed to a 5 VDC voltage regulator. We discuss the details of the interface electronics in a
later chapter. From this example, you can see how different systems aboard the Arduino processing
boards may be used to control different features aboard the Blinky robot.

www.graymarkint.com
www.graymarkint.com

24 1. GETTING STARTED

����
���	�
	��

�
���
���	�
	��

������������
���	�
	��

����

�
������

���������
����

���
�	
�
� 	

��!����
!���

��!����
!���

��
���������!���
����	��"

��

#�
���
���	�
	��

Figure 1.13: Blinky robot layout.

1.7 OTHER ARDUINO–BASED PLATFORMS

There is a wide variety of Arduino–based platforms.The platforms may be purchased from SparkFun
Electronics (www.sparkfun.com). Figure 1.17 provides a representative sample. Shown on the left
is the Arduino Lily Pad equipped with ATmega328 processor. (The same processor aboard the UNO
R3). This processing board can actually be worn and is washable. It was designed to be sewn onto
fabric.

In the bottom center figure is the Arduino Mega equipped with ATmega2560 processor. We
have already discussed this board in some detail. In the upper right is the Arduino Mini Stamp.This
small, but powerful processing board and is equipped with ATmega168 processor.

www.sparkfun.com

1.8. EXTENDING THE HARDWARE FEATURES OF THE ARDUINO PLATFORMS 25

Figure 1.14: Blinky robot navigating maze.

1.8 EXTENDING THE HARDWARE FEATURES OF THE
ARDUINO PLATFORMS

Additional features and external hardware may be added to selected Arduino platforms by using a
daughter card concept. The daughter card is called an Arduino Shield as shown in Figure 1.18. The
shield mates with the header pins on the Arduino board. The shield provides a small fabrication
area, a processor reset button, and a general use pushbutton and two light emitting diodes (LEDs).

1.9 APPLICATION: ARDUINO HARDWARE STUDIO

Much like an artist uses a sketch box, we will use an Arduino Hardware Studio throughout the
book to develop projects. In keeping with the do–it–yourself (DIY) spirit of Arduino, we have
constructed the Studio using readily available off–the–shelf products as shown in Figure 1.19. The
Studio includes the following:

• A yellow Pelican Micro Case #1040,

• An Arduino UNO R3 evaluation board,

• Two Jameco JE21 3.3 x 2.1 inch solderless breadboards and

• One piece of black plexiglass.

We purposely have not provided any construction details. Instead, we encourage you to use
your own imagination to develop and construct your own Arduino Hardware Studio.

26 1. GETTING STARTED

ADC

ADC
Initialize ReadADC

ch for
conv

conv
data

left
IR sensor

right
IR sensor

middle
IR sensor

determine_robot
_action

sensor
data

robot
action

PWM_left

left
motor

PWM_right

right
motor

desired
motor
action

motor_control
digital

input/output

left
turn

signal

right
turn

signal

running

lights

Figure 1.15: Blinky robot structure diagram.

1.10 SUMMARY

In this chapter, we have provided an overview of the Arduino concept of open source hardware.This
was followed by a description of the Arduino UNO R3 processor board powered by the ATmega328.
An overview of ATmega328 systems followed. This was followed by a description of the Arduino
Mega 2560 processor board powered by the ATmega2560. An overview of ATmega2560 systems
followed. We then investigated various processing boards in the Arduino line and concluded with
brief guidelines on how to download and run the Arduino software environment.

1.11 REFERENCES

• SparkFun Electronics, 6175 Longbow Drive, Suite 200, Boulder, CO 80301
(www.sparkfun.com)

• Arduino homepage (www.arduino.cc)

www.sparkfun.com
www.arduino.cc

1.11. REFERENCES 27

include files

global variables

function prototypes

initialize ports

initialize ADC

initialize PWM

while(1)

read sensor outputs

(left, middle, right)

determine robot

action

issue motor

control signals

Figure 1.16: Robot UML activity diagram.

• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-
mega48PA, 88PA, 168PA, 328P data sheet: 8171D–AVR–05/11, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8-bit AVR Microcontroller with 64/128/256K Bytes In-System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P-AVR-10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

28 1. GETTING STARTED

Figure 1.17: Arduino variants. (Used with permission from SparkFun Electronics (CC BY–NC–SA).)

1.12. CHAPTER PROBLEMS 29

Figure 1.18: Arduino shield. (Used with permission from SparkFun Electronics (CC BY–NC–SA).)

1.12 CHAPTER PROBLEMS

1. Describe in your own words the Arduino open source concept.

2. Sketch a block diagram of the ATmega328 or the ATmega2560 and its associated systems.
Describe the function of each system.

30 1. GETTING STARTED

Figure 1.19: Arduino Hardware Studio.

1.12. CHAPTER PROBLEMS 31

3. What is the purpose of a structure chart?

4. What is the purpose of a UML activity diagram?

5. Describe the different types of memory components within the ATmega328 or the AT-
mega2560. Describe applications for each memory type.

6. Describe the three different register types associated with each port.

7. How may the features of the Arduino UNO R3 be extended? The Mega 2560?

8. Prepare a table of features for different Arduino products.

9. Discuss different options for the ATmega328 or the ATmega2560 time base. What are the
advantages and disadvantages of each type?

10. Summarize the differences between the Arduino UNO R3 and Mega 2560. How would you
choose between the two in a given application.

11. Design and fabricate your own Arduino hardware studio.

33

C H A P T E R 2

Programming
Objectives: After reading this chapter, the reader should be able to do the following:

• Successfully download and execute a simple program using the Arduino Development Envi-
ronment.

• Describe the key features of the Arduino Development Environment.

• Describe what features of the Arduino Development Environment ease the program devel-
opment process.

• List the programming support information available at the Arduino home page.

• Describe the key components of a program.

• Specify the size of different variables within the C programming language.

• Define the purpose of the main program.

• Explain the importance of using functions within a program.

• Write functions that pass parameters and return variables.

• Describe the function of a header file.

• Discuss different programming constructs used for program control and decision processing.

• Write programs for use on the Arduino UNO R3 and Mega 2560 processing boards.

2.1 OVERVIEW
To the novice, programming a microcontroller may appear mysterious, complicated, overwhelming,
and difficult. When faced with a new task, one often does not know where to start. The goal of
this chapter is to provide a tutorial on how to begin programming. We will use a top–down design
approach. We begin with the “big picture” of the chapter. We then discuss the Ardunio Development
Environment and how it may be used to quickly develop a program for the Arduino UNO R3 and
the Arduino Mega 2560 processor boards. We then take a closer look at program fundamentals
beginning with an overview of the major pieces of a program. We then discuss the basics of the
C programming language. Only the most fundamental concepts will be covered. Throughout the
chapter, we provide examples and also provide pointers to a number of excellent references.

34 2. PROGRAMMING

2.2 THE BIG PICTURE

We begin with the big picture of how to program the Arduino UNO R3 as shown in Figure 2.1.
This will help provide an overview of how chapter concepts fit together. It also introduces terms
used in writing, editing, compiling, loading and executing a program.

Most microcontrollers are programmed with some variant of the C programming language.
The C programming language provides a nice balance between the programmer’s control of the
microcontroller hardware and time efficiency in program writing.

As you can see in Figure 2.1, the compiler software is hosted on a computer separate from the
Arduino UNO R3. The job of the compiler is to transform the program provided by the program
writer (filename.c and filename.h) into machine code (filename.hex) suitable for loading into the
processor.

Once the source files (filename.c and filename.h) are provided to the compiler, the compiler
executes two steps to render the machine code. The first step is the compilation process. Here the
program source files are transformed into assembly code (filename.asm). If the program source files
contains syntax errors, the compiler reports these to the user. Syntax errors are reported for incorrect
use of the C programming language. An assembly language program is not generated until the syntax
errors have been corrected.

The assembly language source file (filename.asm) is then passed to the assembler. The assem-
bler transforms the assembly language source file (filename.asm) to machine code (filename.hex)
suitable for loading to the Arduino processor.

The Arduino Development Environment provides a user friendly interface to aid in program
development, transformation to machine code, and loading into the Arduino processor.The Arduino
processor may also be programmed using the In System Programming (ISP) features of the Atmel
AVR STK500 (or STK 600) Starter Kit and Development System. We discuss these procedures in
a later chapter.

In the next section, we provide an overview of the Arduino Development Environment. You
will see how this development tool provides a user–friendly method of quickly developing code
applications for the Arduino processing boards.

2.3 ARDUINO DEVELOPMENT ENVIRONMENT

In this section, we provide an overview of the Arduino Development Environment (ADE). We
begin with some background information about the ADE and then review its user friendly features.
We then introduce the sketchbook concept and provide a brief overview of the built–in software
features within the ADE. Our goal is to provide a brief introduction to the features. All Arduino
related features are well–documented on the Arduino homepage (www.arduino.cc). We will not
duplicate this excellent source of material but merely provide pointers to it. In later chapters, we
review the different systems aboard the Arduino processing boards and show how that system may
be controlled using the ADE built–in features.

www.arduino.cc

2.3. ARDUINO DEVELOPMENT ENVIRONMENT 35

computer

Arduino Development
Environment

or

C compiler

compiler

assembler

filename.c
filename.h

filename.asm

filename.hex
filename.eep

C compiler

filename.hex
filename.eep

Arduino Development Environment

Arduino UNO R3
(or other Arduino processor board)

Atmel AVR STK500
Starter Kit and

Development System

ISP

ISP
USB

The microcontroller
can be programmed
via the USB or ISP.

Figure 2.1: Programming the Arduino processor board. (Used with permission from SparkFun Elec-
tronics (CC BY–NC–SA), and Atmel, Incorporated.)

36 2. PROGRAMMING

2.3.1 BACKGROUND
The first version of the Arduino Development Environment was released in August 2005. It was
developed at the Interaction Design Institute in Ivrea, Italy to allow students the ability to quickly put
processing power to use in a wide variety of projects. Since that time, updated versions incorporating
new features, have been released on a regular basis [www.arduino.cc].

At its most fundamental level, the Arduino Development Environment is a user friendly
interface to allow one to quickly write, load, and execute code on a microcontroller. A barebones
program need only consist of a setup() and loop() function.The Arduino Development Environment
adds the other required pieces such as header files and the main program construct. The ADE is
written in Java and has its origins in the Processor programming language and the Wiring Project
[www.arduino.cc].

In the next several sections, we introduce the user interface and its large collection of user
friendly tools. We also provide an overview of the host of built–in C and C++ software functions
that allows the project developer to quickly put the features of the Arduino processing boards to
work for them.

2.3.2 QUICK START GUIDE
The Arduino Development Environment may be downloaded from the Arduino website’s front page
at www.arduino.cc. Versions are available for Windows, Mac OS X, and Linux. Provided below
is a Quick start step–by–step approach to blink an onboard LED.

• Download the Arduino Development Environment from www.arduino.cc.

• Connect the Arduino processing board to the host computer via a USB cable (A male to B
male).

• Start the Arduino Development Environment.

• Type the following program.

//***

#define LED_PIN 13

void setup()
{
pinMode(LED_PIN, OUTPUT);
}

void loop()
{

www.arduino.cc
www.arduino.cc
www.arduino.cc
www.arduino.cc

2.3. ARDUINO DEVELOPMENT ENVIRONMENT 37

digitalWrite(LED_PIN, HIGH);
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW);
delay(500);
}

//***

• Upload and execute the program by asserting the “Upload” button.

• The onboard LED should blink at one second intervals.

With the Arduino ADE downloaded, let’s take a closer look at its features.

2.3.3 ARDUINO DEVELOPMENT ENVIRONMENT OVERVIEW
The Arduino Development Environment is illustrated in Figure 2.2.The ADE contains a text editor,
a message area for displaying status, a text console, a tool bar of common functions, and an extensive
menuing system. The ADE also provides a user friendly interface to the Arduino processor board
which allows for a quick upload of code. This is possible because the Arduino processing boards are
equipped with a bootloader program.

sketch_may15a | Arduino 1.0
File Edit Sketch Tools Help

sketch_maay15a

+ - +

Figure 2.2: Arduino Development Environment [www.arduino.cc].

www.arduino.cc

38 2. PROGRAMMING

A close up of the Arduino toolbar is provided in Figure 2.3. The toolbar provides single
button access to the more commonly used menu features. Most of the features are self explanatory.
As described in the previous section, the “Upload” button compiles your code and uploads it to the
Arduino processing board. The “Serial Monitor” button opens the serial monitor feature. The serial
monitor feature allows text data to be sent to and received from the Arduino processing board.

Open

Save

+ Opens serial monitor

Upload

Verify - checks for errors

Creates new sketch

Figure 2.3: Arduino Development Environment buttons.

2.3.4 SKETCHBOOK CONCEPT
In keeping with a hardware and software platform for students of the arts, the Arduino environment
employs the concept of a sketchbook. An artist maintains their works in progress in a sketchbook.
Similarly, we maintain our programs within a sketchbook in the Arduino environment. Furthermore,
we refer to individual programs as sketches. An individual sketch within the sketchbook may be
accessed via the Sketchbook entry under the file tab.

2.3.5 ARDUINO SOFTWARE, LIBRARIES, AND LANGUAGE REFERENCES
The Arduino Development Environment has a number of built–in features. Some of the features
may be directly accessed via the Arduino Development Environment drop down toolbar illustrated
in Figure 2.2. Provided in Figure 2.4 is a handy reference to show all of the available features. The
toolbar provides a wide variety of features to compose, compile, load and execute a sketch.

2.3.6 WRITING AN ARDUINO SKETCH
The basic format of the Arduino sketch consists of a “setup” and a “loop” function.The setup function
is executed once at the beginning of the program. It is used to configure pins, declare variables and
constants, etc. The loop function will execute sequentially step–by–step. When the end of the loop
function is reached it will automatically return to the first step of the loop function and execute
again. This goes on continuously until the program is stopped.

2.3. ARDUINO DEVELOPMENT ENVIRONMENT 39

Menu

File
- New
- Open
- Sketchbook
- Examples
- Close
- Save
- Save As
- Upload
- Upload Using
 Programmer
- Page Setup
- Print
- Preferences
- Quit

Edit
- Undo
- Redo
- Cut
- Copy
- Copy for Forum
- Copy as HTML
- Paste
- Select All
- Comment/
 Uncomment
- Increase Indent
- Decrease Indent
- Find
- Find Next
- Find Previous
- Use Selection for
 Find

Sketch
- Verify/Compile
- Show Sketch Folder
- Import Library
- Add File

Tools
- Auto Format
- Archive Sketch
- Fix Encoding &
 Reload
- Serial Monitor
- Board
- Serial Port
- Programmer
- Burn Bootloader

Help
- Getting Started
- Environment
- Troubleshooting
- Reference
- Find in Reference
- Frequently Asked
 Questions
- Visit Arduino.cc
- About Arduino

Figure 2.4: Arduino Development Environment menu [www.arduino.cc].

//**

void setup()
{
//place setup code here
}

void loop()
{
//main code steps are provided here
:
:

}

//**

Example 1: Let’s revisit the sketch provided earlier in the chapter.
//**

#define LED_PIN 13

www.arduino.cc
www.arduino.cc

40 2. PROGRAMMING

void setup()
{
pinMode(LED_PIN, OUTPUT);
}

void loop()
{
digitalWrite(LED_PIN, HIGH);
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW);
delay(500);
}

//**

In the first line the #define statement links the designator “LED_PIN” to pin 13 on the
Arduino processor board. In the setup function, LED_PIN is designated as an output pin. Recall
the setup function is only executed once.The program then enters the loop function that is executed
sequentially step–by–step and continuously repeated. In this example, the LED_PIN is first set to
logic high to illuminate the LED onboard the Arduino processing board. A 500 ms delay then
occurs. The LED_PIN is then set low. A 500 ms delay then occurs. The sequence then repeats.

Even the most complicated sketches follow the basic format of the setup function followed
by the loop function. To aid in the development of more complicated sketches, the Arduino De-
velopment Environment has a number of built–in features that may be divided into the areas of
structure, variables and functions. The structure and variable features follow rules similar to the C
programming language which is discussed in the next section. The built–in functions consists of a
set of pre–defined activities useful to the programmer. These built–in functions are summarized in
Figure 2.5.

There are also a number of program examples available to allow the user to quickly construct a
sketch.These programs are summarized in Figure 2.6. Complete documentation for these programs
are available at the Arduino homepage [www.arduino.cc]. This documentation is easily accessible
via the Help tab on the Arduino Development Environment toolbar. This documentation will not
be repeated here. Instead, we refer to these features at appropriate places throughout the remainder
of the book as we discuss related hardware systems.

Keep in mind the Arduino open source concept. Users throughout the world are constantly
adding new built–in features. As new features are added, they will be released in future Arduino
Development Environment versions. As an Arduino user, you too may add to this collection of useful
tools. It is also important to keep in mind the Arduino boards have an onboard microcontroller

www.arduino.cc

2.3. ARDUINO DEVELOPMENT ENVIRONMENT 41

Digital I/O
pinMode()
digitalWrite()
digitalRead()

�������	
�

��������	�
�����
�
�����������
�
�������
����
�
�����

Advanced I/O
tone()
notone()
shiftOut()
shiftIn()
pulseIn()

�
��

�������
�
���
���
�
������
�
��������
���������
�

����

����
�
����
�
����
�
�����
����
�
����
�
����
�
��
��
�

��
���������

����
�
����
�
����
�

��������������

����������
�

������
�

�
������������

��������
�
���������
�
��������
�
����
����
�
�������
�
��� ���
�
�
����
�

��������

	���������

������!���

"���
�
������!���

"���
�

	���������

����

"����
�
��!���

"����
�

Arduino Functions

������
 ��
��

��
����
�
��
����
�

Figure 2.5: Arduino Development Environment functions [www.arduino.cc].

that can be programmed using the C programming language In the next section, we discuss the
fundamental components of a C program.

Example 2: In this example we connect an external LED to Arduino UNO R3 pin 12. The
onboard LED will blink alternately with the external LED. The external LED is connected to the
Arduino UNO R3 as shown in Figure 2.7.
//**

#define int_LED 13
#define ext_LED 12

void setup()
{
pinMode(int_LED, OUTPUT);
pinMode(ext_LED, OUTPUT);
}

void loop()
{
digitalWrite(int_LED, HIGH);
digitalWrite(ext_LED, LOW);

www.arduino.cc

42 2. PROGRAMMING

delay(500); //delay specified in ms
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, HIGH);
delay(500);
}

//**

EEPROM Library
- EEPROM clear
- EEPROM read
- EEPROM write

Liquid Crystal Display
Library
- Hello World
- Blink
- Cursor
- Display
- Text Direction
- Scroll
- Serial Input
- SetCursor
- Autoscroll

Display
- LED bar graph
- Row column scanning

Servo Library
- Knob
- Sweep

Ethernet Support

Firmaton SPI - Serial
Peripheral
Interface Support

Software Serial
 Support

Stepper Library
- Motor knob

SD Card

Arduino Environment
Built-in Programs

Digital Input/Output
- Blink
- Blink without delay
- Button
- Button state change
- Debounce
- Tone
- Pitch followere
- Simple keyboard
- Tone 4

�������	����
������
#
$�����
!�%"�
��
���
#
$�����
!��"�
#
 ����
�����
#
&�����
#
���������
#
����
$�����
'������

Control Structures
- If statement
- For loop
- Array
- While loop
- Switch case
- Switch case 2

Sensors
- ADX3xx accelerometer
- Knock detector
- Memsic2125 two-axis
 accelerometer
- Ping ultrasonic range
 finder

Communication
- ASCII Table
- Dimmer
- Graph
- Physical pixel
- Virtual color mixer
- Serial call response
- Serial call response
 ASCII
- Read ASCII s tring
- Serial input
- MIDI

String Support Keyboard Support Mouse Support

Global System
for Mobile (GSM)
Support

Robot Support TFT LCD
Support

Figure 2.6: Arduino Development Environment built–in features [www.arduino.cc].

Example 3: In this example we connect an external LED to Arduino UNO R3 pin 12 and an
external switch attached to pin 11. The onboard LED will blink alternately with the external LED

www.arduino.cc

2.3. ARDUINO DEVELOPMENT ENVIRONMENT 43

when the switch is depressed. The external LED and switch is connected to the Arduino UNO R3
as shown in Figure 2.8.

//**

#define int_LED 13
#define ext_LED 12
#define ext_sw 11

int switch_value;

void setup()
{
pinMode(int_LED, OUTPUT);
pinMode(ext_LED, OUTPUT);
pinMode(ext_sw, INPUT);
}

void loop()
{
switch_value = digitalRead(ext_sw);
if(switch_value == LOW)
{
digitalWrite(int_LED, HIGH);
digitalWrite(ext_LED, LOW);
delay(50);
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, HIGH);
delay(50);
}

else
{
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, LOW);
}

}
//**

44 2. PROGRAMMING

220

a) schematic

2
2
0

b) circuit layout

Figure 2.7: Arduino UNO R3 with an external LED. (UNO R3 illustration used with permission of
the Arduino Team (CC BY–NC–SA) www.arduino.cc).

www.arduino.cc

2.3. ARDUINO DEVELOPMENT ENVIRONMENT 45

2
2
0

220

a) schematic

b) circuit layout

4.7K

5 VDC

4.7K

Figure 2.8: Arduino UNO R3 with an external LED. (UNO R3 illustration used with permission of
the Arduino Team (CC BY–NC–SA) www.arduino.cc).

www.arduino.cc
www.arduino.cc

46 2. PROGRAMMING

2.4 ANATOMY OF A PROGRAM

Programs written for a microcontroller have a fairly repeatable format. Slight variations exist but
many follow the format provided.

//Comments containing program information
// - file name:
// - author:
// - revision history:
// - compiler setting information:
// - hardware connection description to microcontroller pins
// - program description

//include files
#include<file_name.h>

//function prototypes
A list of functions and their format used within the program

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0

//interrupt handler definitions
Used to link the software to hardware interrupt features

//global variables
Listing of variables used throughout the program

//main program

void main(void)
{

body of the main program

}

//function definitions

2.4. ANATOMY OF A PROGRAM 47

A detailed function body and definition
for each function used within the program

Let’s take a closer look at each piece.

2.4.1 COMMENTS
Comments are used throughout the program to document what and how things were accomplished
within a program. The comments help you reconstruct your work at a later time. Imagine that you
wrote a program a year ago for a project. You now want to modify that program for a new project.
The comments will help you remember the key details of the program.

Comments are not compiled into machine code for loading into the microcontroller.Therefore,
the comments will not fill up the memory of your microcontroller. Comments are indicated using
double slashes (//). Anything from the double slashes to the end of a line is then considered a
comment. A multi–line comment can be constructed using a /∗ at the beginning of the comment and
a ∗/ at the end of the comment.These are handy to block out portions of code during troubleshooting
or providing multi–line comments.

At the beginning of the program, comments may be extensive. Comments may include some
of the following information:

• file name

• program author

• revision history or a listing of the key changes made to the program

• compiler setting information

• hardware connection description to microcontroller pins

• program description

2.4.2 INCLUDE FILES
Often you need to add extra files to your project besides the main program. For example, most
compilers require a “personality file” on the specific microcontroller that you are using. This file is
provided with the compiler and provides the name of each register used within the microcontroller.
It also provides the link between a specific register’s name within software and the actual register
location within hardware.These files are typically called header files and their name ends with a “.h”.
Within the C compiler there will also be other header files to include in your program such as the
“math.h” file when programming with advanced math functions.

To include header files within a program, the following syntax is used:

//include files

48 2. PROGRAMMING

void main(void)
{

:

function1();

:

}

void function1(void)
{

:

function2();

:

}

void function2(void)
{

:

}

Figure 2.9: Function calling.

#include<file_name1.h>
#include<file_name2.h>

In an upcoming section, we see how the Arduino Development Environment makes it quite
easy to include a header file within a program.

2.4.3 FUNCTIONS
In the next chapter, we discuss in detail the top down design, bottom up implementation approach to
designing microcontroller based systems. In this approach, a microcontroller based project including
both hardware and software is partitioned into systems, subsystems, etc.The idea is to take a complex
project and break it into doable pieces with a defined action.

We use the same approach when writing computer programs. At the highest level is the main
program which calls functions that have a defined action. When a function is called, program control
is released from the main program to the function. Once the function is complete, program control
reverts back to the main program.

Functions may in turn call other functions as shown in Figure 2.9. This approach results in a
collection of functions that may be reused over and over again in various projects. Most importantly,
the program is now subdivided into doable pieces, each with a defined action. This makes writing
the program easier but also makes it much easier to modify the program since every action is in a
known location.

There are three different pieces of code required to properly configure and call the function:

2.4. ANATOMY OF A PROGRAM 49

• the function prototype,

• the function call, and

• the function body.

Function prototypes are provided early in the program as previously shown in the program
template. The function prototype provides the name of the function and any variables required by
the function and any variable returned by the function.

The function prototype follows this format:
return_variable function_name(required_variable1, required_variable2);

If the function does not require variables or sends back a variable the word “void” is placed in
the variable’s position.

The function call is the code statement used within a program to execute the function. The
function call consists of the function name and the actual arguments required by the function. If the
function does not require arguments to be delivered to it for processing, the parenthesis containing
the variable list is left empty.

The function call follows this format:
function_name(required_variable1, required_variable2);

A function that requires no variables follows this format:
function_name();

When the function call is executed by the program, program control is transferred to the
function, the function is executed, and program control is then returned to the portion of the
program that called it.

The function body is a self–contained “mini–program.” The first line of the function body
contains the same information as the function prototype: the name of the function, any variables
required by the function, and any variable returned by the function. The last line of the function
contains a “return” statement. Here a variable may be sent back to the portion of the program that
called the function. The processing action of the function is contained within the open ({) and
close brackets (}). If the function requires any variables within the confines of the function, they are
declared next. These variable are referred to as local variables. A local variable is known only within
the confines of a specific function. The actions required by the function follow.

The function prototype follows this format:
return_variable function_name(required_variable1, required_variable2)
{
//local variables required by the function
unsigned int variable1;
unsigned char variable2;

//program statements required by the function

50 2. PROGRAMMING

//return variable
return return_variable;
}

Example: In this example, we describe how to configure the ports of the microcontroller to act
as input or output ports.Briefly, associated with each port is a register called the data direction register
(DDR). Each bit in the DDR corresponds to a bit in the associated PORT. For example, PORTB
has an associated data direction register DDRB. If DDRB[7] is set to a logic 1, the corresponding
port pin PORTB[7] is configured as an output pin. Similarly, if DDRB[7] is set to logic 0, the
corresponding port pin is configured as an input pin.

During some of the early steps of a program, a function is called to initialize the ports as input,
output, or some combination of both. This is illustrated in Figure 2.10.

//function prototypes
void initialize_ports(void);

//main function
void main(void)
{

:

initialize_ports();

:

}

//function body
void initialize_ports(void)
{
DDRB = 0x00; //initialize PORTB as input
PORTB = 0x00;

DDRC = 0xFF; //initialize PORTC as output
PORTC = 0x00; //set pins to logic 0

DDRD = 0xFF; //initialize PORTD as output
PORTD = 0x00; //set pins to logic 0
}

Figure 2.10: Configuring ports.

2.4. ANATOMY OF A PROGRAM 51

2.4.4 PROGRAM CONSTANTS
The #define statement is used to associate a constant name with a numerical value in a program. It
can be used to define common constants such as pi. It may also be used to give terms used within a
program a numerical value. This makes the code easier to read. For example, the following constants
may be defined within a program:

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0

2.4.5 INTERRUPT HANDLER DEFINITIONS
Interrupts are functions that are written by the programmer but usually called by a specific hardware
event during system operation. We discuss interrupts and how to properly configure them in an
upcoming chapter.

2.4.6 VARIABLES
There are two types of variables used within a program: global variables and local variables. A global
variable is available and accessible to all portions of the program. Whereas, a local variable is only
known and accessible within the function where it is declared.

When declaring a variable in C, the number of bits used to store the operator is also specified.
In Figure 2.11, we provide a list of common C variable sizes used with the ImageCraft ICC AVR
compiler.The size of other variables such as pointers, shorts, longs, etc. are contained in the compiler
documentation [ImageCraft].

When programming microcontrollers, it is important to know the number of bits used to
store the variable and also where the variable will be assigned. For example, assigning the contents of
an unsigned char variable, which is stored in 8–bits, to an 8–bit output port will have a predictable
result. However, assigning an unsigned int variable, which is stored in 16–bits, to an 8–bit output
port does not provide predictable results. It is wise to insure your assignment statements are balanced
for accurate and predictable results. The modifier “unsigned” indicates all bits will be used to specify
the magnitude of the argument. Signed variables will use the left most bit to indicate the polarity
(±) of the argument.

A global variable is declared using the following format provided below. The type of the
variable is specified, followed by its name, and an initial value if desired.

//global variables
unsigned int loop_iterations = 6;

52 2. PROGRAMMING

Size RangeType

unsigned char

signed char

unsigned int

signed int

float

double

1

1

2

2

4

4

0..255

-128..127

0..65535

-32768..32767

 +/-1.175e-38.. +/-3.40e+38

 +/-1.175e-38.. +/-3.40e+38

Figure 2.11: C variable sizes used with the ImageCraft ICC AVR compiler [ImageCraft].

2.4.7 MAIN PROGRAM
The main program is the hub of activity for the entire program.The main program typically consists
of program steps and function calls to initialize the processor followed by program steps to collect
data from the environment external to the microcontroller, process the data and make decisions, and
provide external control signals back to the environment based on the data collected.

2.5 FUNDAMENTAL PROGRAMMING CONCEPTS

In the previous section, we covered many fundamental concepts. In this section we discuss operators,
programming constructs, and decision processing constructs to complete our fundamental overview
of programming concepts.

2.5.1 OPERATORS
There are a wide variety of operators provided in the C language. An abbreviated list of common
operators are provided in Figures 2.12 and 2.13.The operators have been grouped by general category.
The symbol, precedence, and brief description of each operator are provided.The precedence column
indicates the priority of the operator in a program statement containing multiple operators. Only
the fundamental operators are provided. For more information on this topic, see Barrett and Pack
in the Reference section at the end of the chapter.

2.5. FUNDAMENTAL PROGRAMMING CONCEPTS 53

<

{ }

()

=

*
/

+
-

Description

Logical Operations

Arithmetic Operations

General

Description
Multiplication

Division

Addition

Brackets, used to group program statements

Parenthesis, used to establish precedence

Assignment

Substraction

Precedence
6

6

6
6

Precedence
3

3

4

DescriptionDescriptionPrecedence
1

1

12

4

7
7

9
10

Symbol

Symbol

Symbol

Less than

Less than or equal to

Greater
Greater than or equal to
Equal to
Not equal to

Logical AND
Logical OR

<=

>
>=
==
!=

& &
||

Figure 2.12: C operators. (Adapted from [Barrett and Pack]).

54 2. PROGRAMMING

Description

Bit Manipulation Operations

Precedence
5

5

8
8
8

Symbol

Description

Unary Operations

Precedence
2!

2

2
2
2type(argument)

Symbol

~

++
--

<<

>>

>
&

|

Unary negative

One’s complement (bit-by-bit inversion)

Increment
Decrement
Casting operator (data type conversion)

Shift left

Shift right

Bitwise AND
Bitwise exclusive OR
Bitwise OR

Figure 2.13: C operators (continued). (Adapted from [Barrett and Pack]).

2.5.1.1 General operations
Within the general operations category are brackets, parenthesis, and the assignment operator. We
have seen in an earlier example how bracket pairs are used to indicate the beginning and end of the
main program or a function. They are also used to group statements in programming constructs and
decision processing constructs. This is discussed in the next several sections.

The parenthesis is used to boost the priority of an operator. For example, in the mathematical
expression 7 x 3 + 10, the multiplication operation is performed before the addition since it has
a higher precedence. Parenthesis may be used to boost the precedence of the addition operation. If
we contain the addition operation within parenthesis 7 x (3 + 10), the addition will be performed
before the multiplication operation and yield a different result from the earlier expression.

The assignment operator (=) is used to assign the argument(s) on the right–hand side of an
equation to the left–hand side variable. It is important to insure that the left and the right–hand
side of the equation have the same type of arguments. If not, unpredictable results may occur.

2.5. FUNDAMENTAL PROGRAMMING CONCEPTS 55

2.5.1.2 Arithmetic operations
The arithmetic operations provide for basic math operations using the various variables described
in the previous section. As described in the previous section, the assignment operator (=) is used to
assign the argument(s) on the right–hand side of an equation to the left–hand side variable.

Example: In this example, a function returns the sum of two unsigned int variables passed to
the function.
unsigned int sum_two(unsigned int variable1, unsigned int variable2)
{
unsigned int sum;

sum = variable1 + variable2;

return sum;
}

2.5.1.3 Logical operations
The logical operators provide Boolean logic operations.They can be viewed as comparison operators.
One argument is compared against another using the logical operator provided.The result is returned
as a logic value of one (1, true, high) or zero (0 false, low). The logical operators are used extensively
in program constructs and decision processing operations to be discussed in the next several sections.

2.5.1.4 Bit manipulation operations
There are two general types of operations in the bit manipulation category: shifting operations and
bitwise operations. Let’s examine several examples:

Example: Given the following code segment, what will the value of variable2 be after execu-
tion?
unsigned char variable1 = 0x73;
unsigned char variable2;

variable2 = variable1 << 2;

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the hex-
adecimal value of (73)16. In binary this is (0111_0011)2. The << 2 operator provides a left shift of
the argument by two places. After two left shifts of (73)16, the result is (cc)16 and will be assigned
to the variable “variable2.”

Note that the left and right shift operation is equivalent to multiplying and dividing the
variable by a power of two.

The bitwise operators perform the desired operation on a bit–by–bit basis. That is, the least
significant bit of the first argument is bit–wise operated with the least significant bit of the second
argument and so on.

56 2. PROGRAMMING

Example: Given the following code segment, what will the value of variable3 be after execu-
tion?
unsigned char variable1 = 0x73;
unsigned char variable2 = 0xfa;
unsigned char variable3;

variable3 = variable1 & variable2;

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the hex-
adecimal value of (73)16. In binary, this is (0111_0011)2. Variable “variable2” is declared as an eight
bit unsigned char and assigned the hexadecimal value of (f a)16. In binary, this is (1111_1010)2.
The bitwise AND operator is specified. After execution variable “variable3,” declared as an eight bit
unsigned char, contains the hexadecimal value of (72)16.

2.5.1.5 Unary operations
The unary operators, as their name implies, require only a single argument.

For example, in the following code segment, the value of the variable “i” is incremented. This
is a shorthand method of executing the operation “i = i + 1; ”
unsigned int i;

i++;

Example: It is not uncommon in embedded system design projects to have every pin on a
microcontroller employed. Furthermore, it is not uncommon to have multiple inputs and outputs
assigned to the same port but on different port input/output pins. Some compilers support specific
pin reference. Another technique that is not compiler specific is bit twiddling. Figure 2.14 provides
bit twiddling examples on how individual bits may be manipulated without affecting other bits using
bitwise and unary operators.The information provided here was extracted from the ImageCraft ICC
AVR compiler documentation [ImageCraft].

2.5.2 PROGRAMMING CONSTRUCTS
In this section, we discuss several methods of looping through a piece of code. We will examine the
“for” and the “while” looping constructs.

The for loop provides a mechanism for looping through the same portion of code a fixed
number of times. The for loop consists of three main parts:

• loop initiation,

• loop termination testing, and

• the loop increment.

In the following code fragment the for loop is executed ten times.

2.5. FUNDAMENTAL PROGRAMMING CONCEPTS 57

Description

bitwise or

bitwise and

bitwise exclusive or

bitwise complement

Syntax Example

a | b

a & b

a ̂ b

~a

PORTA |= 0x80; // turn on bit 7 (msb)

if ((PINA & 0x81)==0) // check bit 7 and bit 0

PORTA ^=0x80; // flip bit 7

PORTA &=~0x80; // turn off bit 7

Figure 2.14: Bit twiddling [ImageCraft].

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr++)
{

//loop body

}

The for loop begins with the variable “loop_ctr” equal to 0. During the first pass through the
loop, the variable retains this value. During the next pass through the loop, the variable “loop_ctr”
is incremented by one. This action continues until the “loop_ctr” variable reaches the value of ten.
Since the argument to continue the loop is no longer true, program execution continues after the
close bracket for the for loop.

In the previous example, the for loop counter was incremented at the beginning of each loop
pass. The “loop_ctr” variable can be updated by any amount. For example, in the following code
fragment the “loop_ctr” variable is increased by three for every pass of the loop.
unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr=loop_ctr+3)
{

//loop body

}

The “loop_ctr” variable may also be initialized at a high value and then decremented at the
beginning of each pass of the loop.

58 2. PROGRAMMING

unsigned int loop_ctr;

for(loop_ctr = 10; loop_ctr > 0; loop_ctr-)
{

//loop body

}

As before, the “loop_ctr” variable may be decreased by any numerical value as appropriate for
the application at hand.

The while loop is another programming construct that allows multiple passes through a
portion of code. The while loop will continue to execute the statements within the open and close
brackets while the condition at the beginning of the loop remains logically true. The code snapshot
below will implement a ten iteration loop. Note how the “loop_ctr” variable is initialized outside of
the loop and incremented within the body of the loop. As before, the variable may be initialized to
a greater value and then decremented within the loop body.
unsigned int loop_ctr;

loop_ctr = 0;
while(loop_ctr < 10)
{

//loop body
loop_ctr++;
}

Frequently,within a microcontroller application, the program begins with system initialization
actions. Once initialization activities are complete, the processor enters a continuous loop. This may
be accomplished using the following code fragment.
while(1)
{

}

2.5.3 DECISION PROCESSING
There are a variety of constructs that allow decision making. These include the following:

• the if statement,

• the if–else construct,

• the if–else if–else construct, and the

2.5. FUNDAMENTAL PROGRAMMING CONCEPTS 59

• switch statement.

The if statement will execute the code between an open and close bracket set should the
condition within the if statement be logically true.

Example: To help develop the algorithm for steering the Blinky 602A robot through a maze,
a light emitting diode (LED) is connected to PORTB pin 1 on the ATmega328. The robot’s center
IR sensor is connected to an analog–to–digital converter at PORTC, pin 1. The IR sensor provides
a voltage output that is inversely proportional to distance of the sensor from the maze wall. It is
desired to illuminate the LED if the robot is within 10 cm of the maze wall. The sensor provides an
output voltage of 2.5 VDC at the 10 cm range. The following if statement construct will implement
this LED indicator. We provide the actual code to do this later in the chapter.

if (PORTC[1] > 2.5) //Center
IR sensor voltage greater than 2.5 VDC

{
PORTB = 0x02; //illuminate LED on PORTB[1]
}

In the example provided, there is no method to turn off the LED once it is turned on. This
will require the else portion of the construct as shown in the next code fragment.

if (PORTC[1] > 2.5) //Center
IR sensor voltage greater than 2.5 VDC

{
PORTB = 0x02; //illuminate LED on PORTB[1]
}

else
{
PORTB = 0x00; //extinguish the LED on PORTB[1]
}

The if–else if–else construct may be used to implement a three LED system. In this example,
the left, center, and right IR sensors are connected to analog–to–digital converter channels on
PORTC pins 2, 1, and 0, respectively. The LED indicators are connected to PORTB pins 2, 1, and
0. The following code fragment implements this LED system.

if (PORTC[2] > 2.5) //Left IR
sensor voltage greater than 2.5 VDC

{
PORTB = 0x04; //illuminate LED on PORTB[2]
}

else if (PORTC[1] > 2.5) //Center
IR sensor voltage greater than 2.5 VDC

{

60 2. PROGRAMMING

PORTB = 0x02; //illuminate the LED on PORTB[1]
}

else if (PORTC[0] > 2.5) //Right
IR sensor voltage greater than 2.5 VDC

{
PORTB = 0x01; //illuminate the LED on PORTB[0]
}

else //no walls sensed within 10 cm
{
PORTB = 0x00; //extinguish LEDs
}

The switch statement is used when multiple if–else conditions exist. Each possible condition is
specified by a case statement. When a match is found between the switch variable and a specific case
entry, the statements associated with the case are executed until a break statement is encountered.

Example: Suppose eight pushbutton switches are connected to PORTD. Each switch will
implement a different action. A switch statement may be used to process the multiple possible
decisions as shown in the following code fragment.

void read_new_input(void)
{
new_PORTD = PIND;

if(new_PORTD != old_PORTD) //check for status change PORTD

switch(new_PORTD)
{ //process change in PORTD input
case 0x01: //PD0

//PD0 related actions
break;

case 0x02: //PD1
//PD1 related actions

break;

case 0x04: //PD2
//PD2 related actions

break;

case 0x08: //PD3
//PD3 related actions

2.6. APPLICATION 1: ROBOT IR SENSOR 61

break;

case 0x10: //PD4
//PD4 related actions

break;

case 0x20: //PD5
//PD5 related actions

break;

case 0x40: //PD6
//PD6 related actions

break;

case 0x80: //PD7
//PD7 related actions

break;

default:; //all other cases
} //end switch(new_PORTD)

} //end if new_PORTD
old_PORTD=new_PORTD; //update PORTD
}

That completes our brief overview of the C programming language. In the next section, we illustrate
how to use the Arduino processing board in several applications. We use the Arduino UNO R3.
The examples can be adapted for use with other boards in the Arduino family.

2.6 APPLICATION 1: ROBOT IR SENSOR

To demonstrate how to construct a sketch in the Arduino Development Environment, we revisit
the robot IR sensor application provided earlier in the chapter. We also investigate the sketches’s
interaction with the Arduino UNO R3 processing board and external sensors and indicators. We
will use the robot project as an ongoing example throughout the remainder of the book.

Recall from Chapter 1, the Blinky 602A kit contains the hardware and mechanical parts to
construct a line following robot. In this example, we modify the robot platform by equipping it with
three Sharp GP12D IR sensors as shown in Figure 2.15. The sensors are available from SparkFun
Electronics (www.sparkfun.com). The sensors are mounted to a bracket constructed from thin
aluminum. Dimensions for the bracket are provided in the figure. Alternatively, the IR sensors may
be mounted to the robot platform using “L” brackets available from a local hardware store. In later

www.sparkfun.com

62 2. PROGRAMMING

Application sections, we equip the robot with all three IR sensors. In this example, we equip the
robot with a single sensor and test its function as a proof of concept.

The IR sensor provides a voltage output that is inversely proportional to the sensor distance
from the maze wall. It is desired to illuminate the LED if the robot is within 10 cm of the maze
wall. The sensor provides an output voltage of 2.5 VDC at the 10 cm range. The interface between
the IR sensor and the Arduino UNO R3 board is provided in Figure 2.16.

The IR sensor’s power (red wire) and ground (black wire) connections are connected to the
5V and Gnd pins on the Arduino UNO R3 board, respectively. The IR sensor’s output connection
(yellow wire) is connected to the ANALOG IN 5 pin on the Arduino UNO R3 board. The LED
circuit shown in the top right corner of the diagram is connected to the DIGITAL 0 pin on the
Arduino UNO R3 board. We discuss the operation of this circuit in the Interfacing chapter later in
the book.

Earlier in the chapter, we provided a framework for writing the if–else statement to turn the
LED on and off. Here is the actual sketch to accomplish this.
//***
#define LED_PIN 0 //digital pin - LED connection
#define IR_sensor_pin 5 //analog pin - IR sensor

int IR_sensor_value; //declare variable for IR sensor value

void setup()
{
pinMode(LED_PIN, OUTPUT); //configure pin 0 for digital output
}

void loop()
{

//read analog output from IR sensor
IR_sensor_value = analogRead(IR_sensor_pin);

if(IR_sensor_value > 512) //0 to 1023 maps to 0 to 5 VDC
{
digitalWrite(LED_PIN, HIGH); //turn LED on
}

else
{
digitalWrite(LED_PIN, LOW); //turn LED off
}

}
//**

2.6. APPLICATION 1: ROBOT IR SENSOR 63

�$�%

�$�%

�$�%

&%

�'($�&%

� ��� �	��$)%

�%

Figure 2.15: Blinky robot platform modified with three IR sensors.

64 2. PROGRAMMING

*+�
�
���������
, � � � - *

�
�

�
�

�
�

,
�

.) (& * - � � � ,
����/��

����

�
������

*�+�#

��,

�,0
������

� 1 2

���	�
	��

����
�

Figure 2.16: IR sensor interface.

The sketch begins by providing names for the two Arduino UNO R3 board pins that will
be used in the sketch. This is not required but it makes the code easier to read. We define the pin
for the LED as “LED_PIN.” Any descriptive name may be used here. Whenever the name is used
within the sketch, the number “0” will be substituted for the name by the compiler.

After providing the names for pins, the next step is to declare any variables required by the
sketch. In this example, the output from the IR sensor will be converted from an analog to a digital
value using the built–in Arduino “analogRead” function. A detailed description of the function may
be accessed via the Help menu. It is essential to carefully review the support documentation for a
built–in Arduino function the first time it is used. The documentation provides details on variables
required by the function,variables returned by the function,and an explanation on function operation.

2.7. APPLICATION 2: ART PIECE ILLUMINATION SYSTEM 65

The “analogRead” function requires the pin for analog conversion variable passed to it and
returns the analog signal read as an integer value (int) from 0 to 1023. So, for this example, we
need to declare an integer value to receive the returned value. We have called this integer variable
“IR_sensor_value.”

Following the declaration of required variables are the two required functions for an Arduino
UNO R3 program: setup and loop.The setup function calls an Arduino built–in function, pinMode,
to set the “LED_PIN” as an output pin. The loop function calls several functions to read the current
analog value on pin 5 (the IR sensor output) and then determine if the reading is above 512 (2.5
VDC). If the reading is above 2.5 VDC, the LED on DIGITAL pin 0 is illuminated, else it is turned
off.

After completing writing the sketch with the Arduino Development Environment, it must be
compiled and then uploaded to the Arduino UNO R3 board.These two steps are accomplished using
the “Sketch – Verify/Compile” and the “File – Upload to I/O Board” pull down menu selections.

In the next example, we adapt the IR sensor project to provide custom lighting for an art
piece.

2.7 APPLICATION 2: ART PIECE ILLUMINATION SYSTEM

My oldest son Jonathan Barrett is a gifted artist (www.closertothesuninternational.com).
Although I own several of his pieces, my favorite one is a painting he did during his early student
days. The assignment was to paint your favorite place. Jonny painted Lac Laronge, Saskatchewan
as viewed through the window of a pontoon plane. Jonny, his younger brother Graham, and I have
gone on several fishing trips with friends to this very special location. An image of the painting is
provided in Figure 2.17.

The circuit and sketch provided in the earlier example may be slightly modified to provide
custom lighting for an art piece. The IR sensor could be used to detect the presence and position of
those viewing the piece. Custom lighting could then be activated by the Arduino UNO R3 board via
the DIGITAL output pins. In the Lac Laronge piece, lighting could be provided from behind the
painting using high intensity white LEDs.The intensity of the LEDs could be adjusted by changing
the value of the resistor is series with the LED. The lighting intensity could also be varied based on
the distance the viewer is from the painting. We cover the specifics in an upcoming chapter.

2.8 APPLICATION 3: FRIEND OR FOE SIGNAL

In aerial combat a “friend or foe” signal is used to identify aircraft on the same side. The signal is
a distinctive pattern only known by aircraft on the same side. In this example, we generate a friend
signal on the internal LED on pin 13 that consists of 10 pulses of 40 ms each followed by a 500 ms
pulse and then 1000 ms when the LED is off.

www.closertothesuninternational.com

66 2. PROGRAMMING

Figure 2.17: Lac Laronge, Saskatchewan. Image used with permission, Jonny Barrett, Closer to the Sun
Fine Art and Design, Steamboat Springs, CO [www.closertothesuninternational.com].

//***

#define LED_PIN 13

void setup()
{
pinMode(LED_PIN, OUTPUT);
}

void loop()
{
int i;

www.closertothesuninternational.com

2.9. SUMMARY 67

for(i=0; i<=9; i++)
{
digitalWrite(LED_PIN, HIGH);
delay(20); //delay specified in ms
digitalWrite(LED_PIN, LOW);
delay(20);
}

digitalWrite(LED_PIN, HIGH);
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW);
delay(1000);
}

//***

2.9 SUMMARY
The goal of this chapter was to provide a tutorial on how to begin programming. We used a top-
–down design approach. We began with the “big picture” of the chapter followed by an overview
of the Arduino Development Environment. We then discussed the basics of the C programming
language. Only the most fundamental concepts were covered. We concluded with several extended
examples. Throughout the chapter, we provided examples and also provided references to a number
of excellent references.

2.10 REFERENCES
• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-

mega48PA, 88PA, 168PA, 328P data sheet: 8171D–AVR–05/11, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8-bit AVR Microcontroller with 64/128/256K Bytes In-System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P-AVR-10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• ImageCraft Embedded Systems C Development Tools, 706 Colorado Avenue, #10–88, Palo
Alto, CA, 94303, www.imagecraft.com

• S. F. Barrett and D.J. Pack, Embedded Systems Design and Applications with the 68HC12
and HCS12, Pearson Prentice Hall, 2005.

• Arduino homepage, www.arduino.cc

www.imagecraft.com
www.arduino.cc

68 2. PROGRAMMING

• Jonathan Barrett, Closer to the Sun International.
www.closertothesuninternational.com

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

2.11 CHAPTER PROBLEMS
1. Describe the steps in writing a sketch and executing it on an Arduino UNO R3 processing

board.

2. Describe the key portions of a C program.

3. Describe two different methods to program an Arduino processing board.

4. What is an include file?

5. What are the three pieces of code required for a program function?

6. Describe how to define a program constant.

7. Provide the C program statement to set PORTB pins 1 and 7 to logic one. Use bit–twiddling
techniques.

8. Provide the C program statement to reset PORTB pins 1 and 7 to logic zero. Use bit–twiddling
techniques.

9. What is the difference between a for and while loop?

10. When should a switch statement be used versus the if–then statement construct?

11. What is the serial monitor feature used for in the Arduino Development Environment?

12. Describe what variables are required and returned and the basic function of the following
built–in Arduino functions: Blink, Analog Input.

13. Adapt Application 1: Robot IR sensor for the Arduino Mega 2560 processor board.

14. Adapt Application 2: Art Piece Illumination System for the Arduino Mega 2560 processor
board.

www.closertothesuninternational.com
http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

69

C H A P T E R 3

Embedded Systems Design
Objectives: After reading this chapter, the reader should be able to do the following:

• Define an embedded system.

• List all aspects related to the design of an embedded system.

• Provide a step–by–step approach to embedded system design.

• Discuss design tools and practices related to embedded systems design.

• Apply embedded system design practices in the design of an Arduino–based microcontroller
system employing several interacting subsystems.

• Provide a detailed design for an autonomous maze navigating robot controlled by the Ar-
duino processing board including hardware layout and interface, structure and UML activity
diagrams, and coded algorithm.

In Chapters 1 and 2, we provided an overview of the Arduino hardware and the Arduino De-
velopment Environment to get you quickly up and operating with this user friendly processor. In the
remainder of the book, we will take a second and detailed pass through this information.This chapter
provides a step–by–step methodical approach to designing advanced embedded system. Chapters 4
through 7 take an advanced look at the serial communications systems, the analog–to–digital con-
verter system, the interrupt system, and the timing system. Chapter 8 provides detailed information
on how to interface a wide variety of peripheral devices to Arduino processors. Throughout these
chapters, we show how the built–in features of the Arduino Development Environment may be
employed in different applications.

In this chapter, we begin with a definition of just what is an embedded system.We then explore
the process of how to successfully (and with low stress) develop an embedded system prototype that
meets established requirements. We conclude the chapter with an extended example. The example
illustrates the embedded system design process in the development and prototype of the autonomous
maze navigating robot based on the Blinky 602A (www.graymarkint.com) controlled by the Arduino
UNO R3 processing board.

3.1 WHAT IS AN EMBEDDED SYSTEM?
An embedded system contains a microcontroller to accomplish its job of processing system inputs
and generating system outputs. The link between system inputs and outputs is provided by a coded

70 3. EMBEDDED SYSTEMS DESIGN

algorithm stored within the processor’s resident memory. What makes embedded systems design so
interesting and challenging is the design must also take into account the proper electrical interface
for the input and output devices, limited on–chip resources, human interface concepts, the operating
environment of the system, cost analysis, related standards, and manufacturing aspects [Anderson].
Through careful application of this material you will be able to design and prototype embedded
systems based on the Arduino microcontroller.

3.2 EMBEDDED SYSTEM DESIGN PROCESS
In this section, we provide a step–by–step approach to develop the first prototype of an embedded
system that will meet established requirements. There are many formal design processes that we
could study. We concentrate on the steps that are common to most. We purposefully avoid formal
terminology of a specific approach and instead concentrate on the activities that are accomplished as
a system prototype is developed. The design process we describe is illustrated in Figure 3.1 using a
Unified Modeling Language (UML) activity diagram. We discuss the UML activity diagrams later
in the chapter.

3.2.1 PROJECT DESCRIPTION
The goal of the project description step is to determine what the system is ultimately supposed to do.
To achieve this step you must thoroughly investigate what the system is supposed to do. Questions
to raise and answer during this step include but are not limited to the following:

• What is the system supposed to do?

• Where will it be operating and under what conditions?

• Are there any restrictions placed on the system design?

To answer these questions, the designer interacts with the client to ensure clear agreement
on what is to be done. If you are completing this project for yourself, you must still carefully and
thoughtfully complete this step. The establishment of clear, definable system requirements may
require considerable interaction between the designer and the client. It is essential that both parties
agree on system requirements before proceeding further in the design process. The final result of
this step is a detailed listing of system requirements and related specifications.

3.2.2 BACKGROUND RESEARCH
Once a detailed list of requirements has been established, the next step is to perform background
research related to the design. In this step, the designer will ensure they understand all requirements
and features required by the project.This will again involve interaction between the designer and the
client.The designer will also investigate applicable codes, guidelines, protocols, and standards related
to the project.This is also a good time to start thinking about the interface between different portions

3.2. EMBEDDED SYSTEM DESIGN PROCESS 71

Project Description
- What is the system supposed to do?
- Operating conditions and environment
- Formal requirements

Background Research
- Thoroughly understand desired requirements and features
- Determine applicable codes, guidelines, and protocols
- Determine interface requirements

Pre-Design
- Brainstorm possible solutions
- Thoroughly investigate alternatives
- Choose best possible solution
- Identify specific target microcontroller
- Choose a design approach

Employ Design Tools
- Structure chart
- UML activity diagram
- Circuit diagram
- Supplemental information

Implement Prototype
- Top down versus bottom up
- Develop low risk hardware test platform
- Software implementation

Preliminary Testing
- Develop test plan to insure requirements
 have been met
- Test under anticipated conditions
- Test under abusive conditions
- Redo testing if errors found
- Test in low cost, low risk environment
- Full up test

Deliver Prototype

System design
need correction?

no

yes

Complete and Accurate Documentation
- System description
- Requirements
- Structure chart
- UML activity diagram
- Circuit diagram
- Well-documented code
- Test plan

Figure 3.1: Embedded system design process.

72 3. EMBEDDED SYSTEMS DESIGN

of the project particularly the input and output devices peripherally connected to the microcontroller.
The ultimate objective of this step is to have a thorough understanding of the project requirements,
related project aspects, and any interface challenges within the project.

3.2.3 PRE–DESIGN
The goal of the pre–design step is to convert a thorough understanding of the project into possible
design alternatives. Brainstorming is an effective tool in this step. Here, a list of alternatives is devel-
oped. Since an embedded system typically involves both hardware and/or software, the designer can
investigate whether requirements could be met with a hardware only solution or some combination
of hardware and software. Generally, speaking a hardware only solution executes faster; however, the
design is fixed once fielded. On the other hand, a software implementation provides flexibility and
a typically slower execution speed. Most embedded design solutions will use a combination of both
hardware and software to capitalize on the inherent advantages of each.

Once a design alternative has been selected, the general partition between hardware and
software can be determined. It is also an appropriate time to select a specific hardware device to
implement the prototype design. If a microcontroller technology has been chosen, it is now time to
select a specific controller. This is accomplished by answering the following questions:

• What microcontroller systems or features i.e., ADC, PWM, timer, etc.) are required by the
design?

• How many input and output pins are required by the design?

• What is the maximum anticipated operating speed of the microcontroller expected to be?

Recall from Chapter 1 there are a wide variety of Arduino–based microcontrollers available
to the designer.

3.2.4 DESIGN
With a clear view of system requirements and features, a general partition determined between
hardware and software, and a specific microcontroller chosen, it is now time to tackle the actual
design. It is important to follow a systematic and disciplined approach to design. This will allow
for low stress development of a documented design solution that meets requirements. In the design
step, several tools are employed to ease the design process. They include the following:

• Employing a top–down design, bottom up implementation approach,

• Using a structure chart to assist in partitioning the system,

• Using a Unified Modeling Language (UML) activity diagram to work out program flow, and

• Developing a detailed circuit diagram of the entire system.

3.2. EMBEDDED SYSTEM DESIGN PROCESS 73

Let’s take a closer look at each of these. The information provided here is an abbreviated
version of the one provided in “Microcontrollers Fundamentals for Engineers and Scientists.” The
interested reader is referred there for additional details and an in
—depth example [Barrett and Pack].

Top down design, bottom up implementation. An effective tool to start partitioning the
design is based on the techniques of top–down design, bottom–up implementation. In this approach,
you start with the overall system and begin to partition it into subsystems. At this point of the design,
you are not concerned with how the design will be accomplished but how the different pieces of
the project will fit together. A handy tool to use at this design stage is the structure chart. The
structure chart shows the hierarchy of how system hardware and software components will interact
and interface with one another.You should continue partitioning system activity until each subsystem
in the structure chart has a single definable function.

UML Activity Diagram. Once the system has been partitioned into pieces, the next step
in the design process is to start working out the details of the operation of each subsystem we
previously identified. Rather than beginning to code each subsystem as a function, we will work out
the information and control flow of each subsystem using another design tool: the Unified Modeling
Language (UML) activity diagram. The activity diagram is simply a UML compliant flow chart.
UML is a standardized method of documenting systems. The activity diagram is one of the many
tools available from UML to document system design and operation. The basic symbols used in a
UML activity diagram for a microcontroller based system are provided in Figure 3.2[Fowler].

Starting

Activity

Transfer

of Control
Final State

Action StateBranch

Figure 3.2: UML activity diagram symbols. Adapted from [source].

74 3. EMBEDDED SYSTEMS DESIGN

To develop the UML activity diagram for the system, we can use a top–down, bottom–up, or a
hybrid approach. In the top–down approach, we begin by modeling the overall flow of the algorithm
from a high level. If we choose to use the bottom–up approach, we would begin at the bottom of
the structure chart and choose a subsystem for flow modeling. The specific course of action chosen
depends on project specifics. Often, a combination of both techniques, a hybrid approach, is used.
You should work out all algorithm details at the UML activity diagram level prior to coding any
software. If you can not explain system operation at this higher level, first, you have no business
being down in the detail of developing the code. Therefore, the UML activity diagram should be of
sufficient detail so you can code the algorithm directly from it [Dale].

In the design step, a detailed circuit diagram of the entire system is developed. It will serve
as a roadmap to implement the system. It is also a good idea at this point to investigate available
design information relative to the project. This would include hardware design examples, software
code examples, and application notes available from manufacturers.

At the completion of this step, the prototype design is ready for implementation and testing.

3.2.5 IMPLEMENT PROTOTYPE
To successfully implement a prototype, an incremental approach should be followed. Again, the top-
–down design, bottom–up implementation provides a solid guide for system implementation. In an
embedded system design involving both hardware and software, the hardware system including the
microcontroller should be assembled first. This provides the software the required signals to interact
with. As the hardware prototype is assembled on a prototype board, each component is tested for
proper operation as it is brought online. This allows the designer to pinpoint malfunctions as they
occur.

Once the hardware prototype is assembled, coding may commence. As before, software should
be incrementally brought online. You may use a top down, bottom up, or hybrid approach depending
on the nature of the software. The important point is to bring the software online incrementally
such that issues can be identified and corrected early on.

It is highly recommended that low cost stand–in components be used when testing the software
with the hardware components.For example,push buttons,potentiometers, and LEDs may be used as
low cost stand–in component simulators for expensive input instrumentation devices and expensive
output devices such as motors. This allows you to insure the software is properly operating before
using it to control the actual components.

3.2.6 PRELIMINARY TESTING
To test the system, a detailed test plan must be developed. Tests should be developed to verify that
the system meets all of its requirements and also intended system performance in an operational
environment.The test plan should also include scenarios in which the system is used in an unintended
manner. As before a top–down, bottom–up, or hybrid approach can be used to test the system.

3.3. EXAMPLE: BLINKY 602A AUTONOMOUS MAZE NAVIGATING ROBOT SYSTEM DESIGN 75

Once the test plan is completed, actual testing may commence.The results of each test should
be carefully documented. As you go through the test plan, you will probably uncover a number of
run time errors in your algorithm. After you correct a run time error, the entire test plan must be
performed again. This ensures that the new fix does not have an unintended affect on another part
of the system. Also, as you process through the test plan, you will probably think of other tests that
were not included in the original test document. These tests should be added to the test plan. As
you go through testing, realize your final system is only as good as the test plan that supports it!

Once testing is complete, you might try another level of testing where you intentionally try
to “jam up” the system. In another words, try to get your system to fail by trying combinations of
inputs that were not part of the original design. A robust system should continue to operate correctly
in this type of an abusive environment. It is imperative that you design robustness into your system.
When testing on a low cost simulator is complete, the entire test plan should be performed again
with the actual system hardware. Once this is completed you should have a system that meets its
requirements!

3.2.7 COMPLETE AND ACCURATE DOCUMENTATION
With testing complete, the system design should be thoroughly documented. Much of the docu-
mentation will have already been accomplished during system development. Documentation will
include the system description, system requirements, the structure chart, the UML activity diagrams
documenting program flow, the test plan, results of the test plan, system schematics, and properly
documented code. To properly document code, you should carefully comment all functions describ-
ing their operation, inputs, and outputs. Also, comments should be included within the body of
the function describing key portions of the code. Enough detail should be provided such that code
operation is obvious. It is also extremely helpful to provide variables and functions within your code
names that describe their intended use.

You might think that a comprehensive system documentation is not worth the time or effort
to complete it. Complete documentation pays rich dividends when it is time to modify, repair, or
update an existing system. Also, well–documented code may be often reused in other projects: a
method for efficient and timely development of new systems.

3.3 EXAMPLE: BLINKY 602A AUTONOMOUS MAZE
NAVIGATING ROBOT SYSTEM DESIGN

To illustrate the design process, we provide an in depth example using the Blinky 602A robot
manufactured by Graymark (www.graymarkint.com). In the upcoming paragraphs, we progress
through the design process a step at a time.

Problem description and background research. Graymark manufacturers many low–cost,
excellent robot platforms. In this project, we will modify the Blinky 602A robot to be controlled by
an Arduino UNO R3 processing board.The Blinky 602A kit contains the hardware and mechanical

76 3. EMBEDDED SYSTEMS DESIGN

parts to construct a line following robot. The processing electronics for the robot consists of analog
circuitry. The robot is controlled by two 3 VDC motors, which independently drive a left and right
wheel. A third non–powered drag wheel provides tripod stability for the robot.

In this project, we replace the analog control circuitry with the Arduino UNO R3 as the
processing element. We also modify the robot’s mission from being a line follower to autonomous
maze navigator. To detect maze walls, we equip the Blinky 602A robot platform with three Sharp
GP12D IR sensors as shown in Figure 3.3. The robot will be placed in a maze with reflective white
walls. The goal of the project is for the robot to detect maze walls and navigate through the maze
without touching the walls. The robot will not be provided any information about the maze. It must
gather maze information on its own as it progresses through the maze. The control algorithm for
the robot will be hosted on the Arduino UNO R3 processing board.

Requirements: The requirements for this project are straight forward; the robot will au-
tonomously (on its own) navigate through the maze without touching maze walls. It is important
to note that a map of the maze will not be programmed into the robot. The robot will sense the
presence of the maze walls using the Sharp IR sensors and then make decisions to avoid the walls
and process through the maze. From this description, the following requirements result. The robot
will be:

• Equipped with three Sharp IR sensors to sense maze walls.

• Propelled through the maze using the two powered wheels provided in the Blinky 602A kit
and a third drag wheel for stability.

• Controlled by the Arduino UNO R3 processing board.

• Equipped with turn signals (LEDs) to indicate a turn.

• Equipped with LEDs, one for each IR sensor, to indicate a wall has been detected by a specific
sensor.

Pre–design. With requirements clearly understood, the next step is normally to brainstorm
possible solutions. In this example, we have already decided to use the Arduino UNO R3 processing
board. Other alternatives include using analog or digital hardware to determine robot action or
another microcontroller.

Circuit diagram. The circuit diagram for the robot is provided in Figure 3.4. The three IR
sensors (left, middle, and right) will be mounted on the leading edge of the robot to detect maze walls.
The output from the sensors is fed to three Arduino UNO R3 ADC channels (ANALOG IN 0–2).
The robot motors will be driven by PWM channels (PWM: DIGITAL 11 and PWM: DIGITAL
10). The Arduino UNO R3 is interfaced to the motors via a Darlington NPN transistor (TIP120)
with enough drive capability to handle the maximum current requirements of the motor. Since the
microcontroller is powered at 5 VDC and the motors are rated at 3 VDC, two 1N4001 diodes are
placed in series with the motor. This reduces the supply voltage to the motor to be approximately 3

3.3. EXAMPLE: BLINKY 602A AUTONOMOUS MAZE NAVIGATING ROBOT SYSTEM DESIGN 77

������������
���	�
	��

���
�	
�
� 	

���������
����

*
+

�

�
�

�
�

�
�

�
��

�
,

�
�

�
-

*

� �
� �

� �
, �

.
)

(
&

*
-

�
�

�
,

�
��

�/
�

�

�
��

�

�
�

�
�

��
�

!� �����3�����4�	

Figure 3.3: Robot layout with the Arduino UNO R3 processing board.

78 3. EMBEDDED SYSTEMS DESIGN

VDC. The robot will be powered by a 9 VDC battery which is fed to a 5 VDC voltage regulator.
The details of the interface electronics are provided in a later chapter. To save on battery expense, it
is recommended to use a 9 VDC, 2A rated inexpensive, wall–mount power supply to provide power
to the 5 VDC voltage regulator. A power umbilical of braided wire may be used to provide power
to the robot while navigating about the maze.

Structure chart: The structure chart for the robot project is provided in Figure 3.5.
UML activity diagrams: The UML activity diagram for the robot is provided in Figure 3.6.
Arduino UNO R3 Program: We will develop the entire control algorithm for the Arduino

UNO R3 board in the Application sections in the remainder of the book. We get started on the
control algorithm in the next section.

3.4 APPLICATION: CONTROL ALGORITHM FOR THE
BLINKY 602A ROBOT

, we provide the basic framework for the robot control algorithm. The control algorithm will read
the IR sensors attached to the Arduino UNO R3 ANALOG IN (pins 0–2). In response to the wall
placement detected, it will render signals to turn the robot to avoid the maze walls. Provided in Figure
3.7 is a truth table that shows all possibilities of maze placement that the robot might encounter.
A detected wall is represented with a logic one. An asserted motor action is also represented with a
logic one.

The robot motors may only be moved in the forward direction. We review techniques to
provide bi–directional motor control in an upcoming chapter. To render a left turn, the left motor is
stopped and the right motor is asserted until the robot completes the turn. To render a right turn,
the opposite action is required.

The task in writing the control algorithm is to take the UML activity diagram provided in
Figure 3.6 and the actions specified in the robot action truth table (Figure 3.7 and transform both
into an Arduino sketch.This may seem formidable but we take it a step at a time.The sketch written
in the Applications section of the previous chapter will serve as our starting point.

The control algorithm begins with Arduino UNO R3 pin definitions. Variables are then
declared for the readings from the three IR sensors. The two required Arduino functions follow:
setup() and loop(). In the setup() function, Arduino UNO R3 pins are declared as output.The loop()
begins by reading the current value of the three IR sensors. Recall from the Application section in
the previous chapter, the 512 value corresponds to a particular IR sensor range. This value may
be adjusted to change the range at which the maze wall is detected. The read of the IR sensors is
followed by an eight part if–else if statement.The statement contains a part for each row of the truth
table provided in Figure 3.7. For a given configuration of sensed walls, the appropriate wall detection
LEDs are illuminated followed by commands to activate the motors (analogWrite) and illuminate
the appropriate turn signals.The analogWrite command issues a signal from 0 to 5 VDC by sending
a constant from 0 to 255 using pulse width modulation (PWM) techniques. PWM techniques will
be discussed in an upcoming chapter. The turn signal commands provide to actions: the appropriate

3.4. APPLICATION: CONTROL ALGORITHM FOR THE BLINKY 602A ROBOT 79

��
��
�
�
�
�
	

�
��

��
��
�
�
�
�
	

��
�

�

��
��
�
�
�
�
	

	�
�
�
�

�

�

�
�
�
�
�
	

�
��
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�
	�
�
�
�
�
�
�
��
�
�
�

��
�
�
�
��
�
��
�
�

��
�
�

�
�
��
�
��
�
�

�
�
�
��
�
�

��
�

�
�

��
!
	�
�
�
�
�

M+ -

2
4
0

1
N

4
0
0
1

1
N

4
0
0
1

�
��
�

�
��
	"
�
�
�
�

��
��
	�
�
�
�

#
�$
%
&
'

(
$
(

�
�
	

��
�
��
�

3
 V

D
C

at
 1

0
0

 m
A

�
��
�
�

&
&
'

%
'
)

&
(
&
&
&
&

�
��
�
�

&
&
'

%
'
)

&
(
&
&
&
&

�
��
�
�

&
&
'

%
'
)

&
(
&
&
&
&

�
��
�
�

&
&
'

%
'
)

&
(
&
&
&
&

�
��
�
�

&
&
'

%
'
)

&
(
&
&
&
&

*
'

*
%

*
&

�
%
%

�
%
'

�
&

�
+

�
,

�
�

�
-

�
��
��
�
	�

�
��
�
�

�
�

�
��

�
�

�
�
�
��
	

�
�

	�
�
�
�

	�
�
�
��
��
	�

�
��
�
�

M

3
 V

D
C

at
 1

0
0

 m
A

+ -

5
 V

D
C

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

	�
�
�
��

�
��
	"
�
�
�
�

��
��
	�
�
�
�

2
4
0

.
�

�
�
�
�

�
	�
�
�
��
�

�
��
�
�
�

�
	�
��
�
��
�
�

�
��
�
�

�
��
	

�
�
		
�
�
�

1
N

4
0
0
1

5
 V

D
C

#
�$
%
&
'

(
$
(

�
�
	

��
�
��
�

Figure 3.4: Robot circuit diagram. (UNO R3 illustration used with permission of the Arduino Team
(CC BY–NC–SA) www.arduino.cc).

www.arduino.cc

80 3. EMBEDDED SYSTEMS DESIGN

ADC

ADC
Initialize ReadADC

ch for
conv

conv
data

left
IR sensor

right
IR sensor

middle
IR sensor

determine_robot
_action

sensor
data

robot
action

PWM_left

left
motor

PWM_right

right
motor

desired
motor
action

motor_control
digital

input/output

left
turn

signal

right
turn

signal

wall
detect
LEDS

Figure 3.5: Robot structure diagram.

turns signals are flashed and a 1.5 s total delay is provided. This provides the robot 1.5 s to render a
turn. This delay may need to be adjusted during the testing phase.

//***
//analog input pins

#define left_IR_sensor A0 //analog pin - left IR sensor

#define center_IR_sensor A1 //analog pin - center IR sensor
#define right_IR_sensor A2 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 3 //digital pin - wall_left
#define wall_center 4 //digital pin - wall_center
#define wall_right 5 //digital pin - wall_right

//LED indicators - turn signals
#define left_turn_signal 2 //digital pin - left_turn_signal
#define right_turn_signal 6 //digital pin - right_turn_signal

3.4. APPLICATION: CONTROL ALGORITHM FOR THE BLINKY 602A ROBOT 81

include files
global variables

function prototypes

initialize ports
initialize ADC
initialize PWM

while(1)

illuminate LEDs
- wall detected

issue motor
control signals

read sensor outputs
(left, middle, right)

determine robot
action

illuminate LEDs
- turn signals

delay

a) UML for C programming

loop()

illuminate LEDs
- wall detected

issue motor
control signals

read sensor outputs
(left, middle, right)

determine robot
action

illuminate LEDs
- turn signals
- delay

setup()

- configure pins for output

define global variables

b) UML for Arduino programming

Figure 3.6: Robot UML activity diagram.

82 3. EMBEDDED SYSTEMS DESIGN

Figure 3.7: Truth table for robot action.

//motor outputs
#define left_motor 11 //digital pin - left_motor
#define right_motor 10 //digital pin - right_motor

int left_IR_sensor_value; //declare
variable for left IR sensor
int center_IR_sensor_value; //declare
variable for center IR sensor
int right_IR_sensor_value; //declare
variable for right IR sensor

void setup()
{

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin 1 for digital output
pinMode(wall_center, OUTPUT); //configure pin 2 for digital output
pinMode(wall_right, OUTPUT); //configure pin 3 for digital output

//LED indicators - turn signals
pinMode(left_turn_signal,OUTPUT); //configure pin 0 for digital output
pinMode(right_turn_signal,OUTPUT); //configure pin 4 for digital output

//motor outputs - PWM
pinMode(left_motor, OUTPUT); //configure pin 11 for digital output
pinMode(right_motor, OUTPUT); //configure pin 10 for digital output

3.4. APPLICATION: CONTROL ALGORITHM FOR THE BLINKY 602A ROBOT 83

}

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//robot action table row 0
if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 128);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 1

84 3. EMBEDDED SYSTEMS DESIGN

else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&
(right_IR_sensor_value > 512))

{
//wall detection LEDs

digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 128);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 2
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

3.4. APPLICATION: CONTROL ALGORITHM FOR THE BLINKY 602A ROBOT 85

analogWrite(right_motor, 0);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 3
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 0);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 128);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, HIGH); //turn LED on

86 3. EMBEDDED SYSTEMS DESIGN

digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 4
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 128);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 5
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

3.4. APPLICATION: CONTROL ALGORITHM FOR THE BLINKY 602A ROBOT 87

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 128);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 6
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 0);

88 3. EMBEDDED SYSTEMS DESIGN

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED OFF
digitalWrite(right_turn_signal, LOW); //turn LED OFF
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 7
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 0);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on

3.5. SUMMARY 89

delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

}
//***

Testing the control algorithm: It is recommended that the algorithm be first tested without
the entire robot platform. This may be accomplished by connecting the three IR sensors and LEDS
to the appropriate pins on the Arduino UNO R3 as specified in Figure 3.4. In place of the two
motors and their interface circuits, two LEDs with the required interface circuitry may be used.
The LEDs will illuminate to indicate the motors would be on during different test scenarios. Once
this algorithm is fully tested in this fashion, the Arduino UNO R3 may be mounted to the robot
platform and connected to the motors. Full up testing in the maze may commence. Enjoy!

3.5 SUMMARY
In this chapter, we discussed the design process, related tools, and applied the process to a real world
design. As previously mentioned, this design example will be periodically revisited throughout the
text. It is essential to follow a systematic, disciplined approach to embedded systems design to
successfully develop a prototype that meets established requirements.

3.6 REFERENCES
• M. Anderson, Help Wanted: Embedded Engineers Why the United States is losing its edge

in embedded systems, IEEE–USA Today’s Engineer, Feb 2008.

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

• M. Fowler with K. Scott “UML Distilled – A Brief Guide to the Standradr Object Modeling
Language,” 2nd edition. Boston:Addison–Wesley, 2000.

• N. Dale and S.C. Lilly “Pascal Plus Data Structures,” 4th edition. Englewood Cliffs, NJ: Jones
and Bartlett, 1995.

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

90 3. EMBEDDED SYSTEMS DESIGN

• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-
mega48PA, 88PA, 168PA, 328P data sheet: 8171D–AVR–05/11, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8-bit AVR Microcontroller with 64/128/256K Bytes In-System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P-AVR-10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

3.7 CHAPTER PROBLEMS
1. What is an embedded system?

2. What aspects must be considered in the design of an embedded system?

3. What is the purpose of the structure chart, UML activity diagram, and circuit diagram?

4. Why is a system design only as good as the test plan that supports it?

5. During the testing process, when an error is found and corrected, what should now be accom-
plished?

6. Discuss the top–down design, bottom–up implementation concept.

7. Describe the value of accurate documentation.

8. What is required to fully document an embedded systems design?

9. Update the robot action truth table if the robot was equipped with four IR sensors.

10. Adapt the Blinky 602 control algorithm for the Arduino Mega 2560 processor board.

91

C H A P T E R 4

Atmel AVR Operating
Parameters and Interfacing

Objectives: After reading this chapter, the reader should be able to

• Describe the voltage and current parameters for the Arduino UNO R3, the Arduino Mega
2560, and the Atmel AVR HC CMOS type microcontroller.

• Specify a battery system to power an Arduino processor board and the Atmel AVR based
system.

• Apply the voltage and current parameters toward properly interfacing input and output devices
to an Arduino processing board and the Atmel AVR microcontroller.

• Interface a wide variety of input and output devices to an Arduino processing board and the
Atmel AVR microcontroller.

• Describe the special concerns that must be followed when an Arduino processing board and
the Atmel AVR microcontroller is used to interface to a high power DC or AC device.

• Discuss the requirement for an optical based interface.

• Describe how to control the speed and direction of a DC motor.

• Describe how to control several types of AC loads.

4.1 OVERVIEW
The textbook from Morgan & Claypool Publishers (M&C) titled, “Microcontrollers Fundamentals
for Engineers and Scientists,” contains a chapter entitled “Operating Parameters and Interfacing.”
With M&C permission, portions of the chapter have been repeated here for your convenience.
However, we have customized the information provided to the Arduino UNO R3, the Arduino
Mega 2560 and the Atmel AVR line of microcontrollers and have also expanded the coverage of the
chapter to include interface techniques for a number of additional input and output devices.

In this chapter,we introduce you to the extremely important concepts of the operating envelope
for a microcontroller.We begin by reviewing the voltage and current electrical parameters for the HC
CMOS based Atmel AVR line of microcontrollers. We then show how to apply this information to

92 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

properly interface input and output devices to the Arduino UNO R3, the Arduino Mega 2560, and
the ATmega328 microcontroller. We then discuss the special considerations for controlling a high
power DC or AC load such as a motor and introduce the concept of an optical interface.Throughout
the chapter, we provide a number of detailed examples.

The importance of this chapter can not be emphasized enough. Any time an input or an output
device is connected to a microcontroller, the interface between the device and the microcontroller
must be carefully analyzed and designed.This will ensure the microcontroller will continue to operate
within specified parameters. Should the microcontroller be operated outside its operational envelope,
erratic, unpredictable, and an unreliable system may result.

4.2 OPERATING PARAMETERS

Any time a device is connected to a microcontroller, careful interface analysis must be performed.
Most microcontrollers are members of the “HC,” or high–speed CMOS, family of chips. As long
as all components in a system are also of the “HC” family, as is the case for the Arduino UNO R3,
the Arduino Mega 2560, and the Atmel AVR line of microcontrollers, electrical interface issues are
minimal. If the microcontroller is connected to some component not in the “HC” family, electrical
interface analysis must be completed. Manufacturers readily provide the electrical characteristic data
necessary to complete this analysis in their support documentation.

To perform the interface analysis, there are eight different electrical specifications required
for electrical interface analysis. The electrical parameters are:

• VOH : the lowest guaranteed output voltage for a logic high,

• VOL: the highest guaranteed output voltage for a logic low,

• IOH : the output current for a VOH logic high,

• IOL: the output current for a VOL logic low,

• VIH : the lowest input voltage guaranteed to be recognized as a logic high,

• VIL: the highest input voltage guaranteed to be recognized as a logic low,

• IIH : the input current for a VIH logic high, and

• IIL: the input current for a VIL logic low.

These electrical characteristics are required for both the microcontroller and the external
components. Typical values for a microcontroller in the HC CMOS family assuming VDD = 5.0
volts and VSS = 0 volts are provided below. The minus sign on several of the currents indicates a
current flow out of the device. A positive current indicates current flow into the device.

4.2. OPERATING PARAMETERS 93

• VOH = 4.2 volts,

• VOL = 0.4 volts,

• IOH = –0.8 milliamps,

• IOL = 1.6 milliamps,

• VIH = 3.5 volts,

• VIL = 1.0 volt,

• IIH = 10 microamps, and

• IIL = –10 microamps.

It is important to realize that these are static values taken under very specific operating condi-
tions. If external circuitry is connected such that the microcontroller acts as a current source (current
leaving the microcontroller) or current sink (current entering the microcontroller), the voltage pa-
rameters listed above will also be affected.

In the current source case, an output voltage VOH is provided at the output pin of the micro-
controller when the load connected to this pin draws a current of IOH . If a load draws more current
from the output pin than the IOH specification, the value of VOH is reduced. If the load current
becomes too high, the value of VOH falls below the value of VIH for the subsequent logic circuit
stage and not be recognized as an acceptable logic high signal. When this situation occurs, erratic
and unpredictable circuit behavior results.

In the sink case, an output voltage VOL is provided at the output pin of the microcontroller
when the load connected to this pin delivers a current of IOL to this logic pin. If a load delivers
more current to the output pin of the microcontroller than the IOL specification, the value of VOL

increases. If the load current becomes too high, the value of VOL rises above the value of VIL for
the subsequent logic circuit stage and not be recognized as an acceptable logic low signal. As before,
when this situation occurs, erratic and unpredictable circuit behavior results.

For convenience this information is illustrated in Figure 4.1. In (a), we provided an illustration
of the direction of current flow from the HC device and also a comparison of voltage levels. As a
reminder current flowing out of a device is considered a negative current (source case) while current
flowing into the device is considered positive current(sink case). The magnitude of the voltage and
current for HC CMOS devices are shown in (b). As more current is sinked or sourced from a
microcontroller pin, the voltage will be pulled up or pulled down, respectively, as shown in (c). If
input and output devices are improperly interfaced to the microcontroller, these loading conditions
may become excessive, and voltages will not be properly interpreted as the correct logic levels.

You must also ensure that total current limits for an entire microcontroller port and the overall
bulk port specifications are met. For planning purposes the sum of current sourced or sinked from

94 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

����/������

�01

�02

����/�'����

0������!���
$�	�
���	�

����/������

��1

��2

����/�'����

������!���
$�	�
���	�

�01

�02

��1

��2

�3���
�����������		�����
���	���
���	�
���	�

0������$�	�
���	� ������$�	�
���	�

�01�/�,4&��

�02�/�'4,��

�01�/���'45�
*

�02�/�%4-�
*�

��1�/�+4���

��2�/�%4'��

��1�/�%'�μ*

��2�/���%'�μ*

63�1���70��.�
�����������		������	�
���	�

' ��

��		�������

�����8�9

&�

'

��
�
��
8

*
9

'��

��		�������	��

�����8�9

�&�

'

��
�
��
8

*
9

�3��70��
���������	.��

Figure 4.1: Electrical voltage and current parameters.

4.3. BATTERY OPERATION 95

a port should not exceed 100 mA. Furthermore, the sum of currents for all ports should not exceed
200 mA. As before, if these guidelines are not followed, erratic microcontroller behavior may result.

The procedures presented in the following sections, when followed carefully, will ensure the
microcontroller will operate within its designed envelope.The remainder of the chapter is divided into
input device interface analysis followed by output device interface analysis. Since many embedded
systems operate from a DC battery source, we begin by examining several basic battery supply
circuits.

4.3 BATTERY OPERATION

Many embedded systems are remote, portable systems operating from a battery supply. To properly
design a battery source for an embedded system, the operating characteristics of the embedded
system must be matched to the characteristics of the battery supply.

4.3.1 EMBEDDED SYSTEM VOLTAGE AND CURRENT DRAIN
SPECIFICATIONS

An embedded system has a required supply voltage and an overall current requirement. For the
purposes of illustration, we will assume our microcontroller based embedded system operates from
5 VDC. The overall current requirements of the system are determined by the worst case current
requirements when all embedded system components are operational.

4.3.2 BATTERY CHARACTERISTICS
To properly match a battery to an embedded system, the battery voltage and capacity must be
specified. Battery capacity is typically specified as a mAH rating. For example, a typical 9 VDC non-
–rechargeable alkaline battery has a capacity of 550 mAH. If the embedded system has a maximum
operating current of 50 mA, it will operate for approximately eleven hours before battery replacement
is required.

A battery is typically used with a voltage regulator to maintain the voltage at a prescribed
level. Figure 4.2 provides sample circuits to provide a +5 VDC and a ±5 VDC portable battery
source. Additional information on battery capacity and characteristics may be found in Barrett and
Pack [Prentice–Hall, 2005].

4.4 INPUT DEVICES

In this section, we discuss how to properly interface input devices to a microcontroller. We will start
with the most basic input component, a simple on/off switch.

96 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

7805

9 VDC

+5 VDC

0.33 uF 0.1 uF

I

C

O

9 VDC

7805 +5 VDC

9 VDC 0.33 uF 0.1 uF

I

C

O

a) +5 VDC battery supply.

0.33 uF 0.1 uF

C

I
-5 VDCO7905

b) +/-5 VDC battery supply.

Figure 4.2: Battery supply circuits employing a 9 VDC battery with a 5 VDC regulators.

4.4.1 SWITCHES
Switches come in a variety of types. As a system designer it is up to you to choose the appropriate
switch for a specific application. Switch varieties commonly used in microcontroller applications are
illustrated in Figure 4.3(a). Here is a brief summary of the different types:

• Slide switch: A slide switch has two different positions: on and off. The switch is manually
moved to one position or the other.For microcontroller applications, slide switches are available
that fit in the profile of a common integrated circuit size dual inline package (DIP). A bank
of four or eight DIP switches in a single package is commonly available.

• Momentary contact pushbutton switch: A momentary contact pushbutton switch comes
in two varieties: normally closed (NC) and normally open (NO). A normally open switch,

4.4. INPUT DEVICES 97

as its name implies, does not normally provide an electrical connection between its contacts.
When the pushbutton portion of the switch is depressed, the connection between the two
switch contacts is made. The connection is held as long as the switch is depressed. When the
switch is released the connection is opened. The converse is true for a normally closed switch.
For microcontroller applications, pushbutton switches are available in a small tact type switch
configuration.

• Push on/push off switches: These type of switches are also available in a normally open or
normally closed configuration. For the normally open configuration, the switch is depressed to
make connection between the two switch contacts. The pushbutton must be depressed again
to release the connection.

• Hexadecimal rotary switches: Small profile rotary switches are available for microcontroller
applications. These switches commonly have sixteen rotary switch positions. As the switch is
rotated to each position, a unique four bit binary code is provided at the switch contacts.

A common switch interface is shown in Figure 4.3(b).This interface allows a logic one or zero
to be properly introduced to a microcontroller input port pin.The basic interface consists of the switch
in series with a current limiting resistor. The node between the switch and the resistor is provided
to the microcontroller input pin. In the configuration shown, the resistor pulls the microcontroller
input up to the supply voltage VDD . When the switch is closed, the node is grounded and a logic
zero is provided to the microcontroller input pin. To reverse the logic of the switch configuration,
the position of the resistor and the switch is simply reversed.

4.4.2 PULLUP RESISTORS IN SWITCH INTERFACE CIRCUITRY
Many microcontrollers are equipped with pullup resistors at the input pins. The pullup resistors are
asserted with the appropriate register setting. The pullup resistor replaces the external resistor in the
switch configuration as shown in Figure 4.3b) right.

4.4.3 SWITCH DEBOUNCING
Mechanical switches do not make a clean transition from one position (on) to another (off). When
a switch is moved from one position to another, it makes and breaks contact multiple times. This
activity may go on for tens of milliseconds. A microcontroller is relatively fast as compared to the
action of the switch. Therefore, the microcontroller is able to recognize each switch bounce as a
separate and erroneous transition.

To correct the switch bounce phenomena additional external hardware components may be
used or software techniques may be employed. A hardware debounce circuit is illustrated in Figure
4.3(c). The node between the switch and the limiting resistor of the basic switch circuit is fed to a
low pass filter (LPF) formed by the 470 k ohm resistor and the capacitor. The LPF prevents abrupt
changes (bounces) in the input signal from the microcontroller. The LPF is followed by a 74HC14

98 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

���

,4:� ��

#��
��	�����	�

�	������
��2�������������������������
��2�����;�	������������������
����

63������������	����

���

,4:� ���

'4%�μ<

:,1�%,

,:'� ���

��������	��
���
����������������	������
��
�����������

��$������� #���������� $��������

�3��������.�	������

'

1�=�����
�

	���	>�������

���

��	�����	�

�	
��

���	������	
����.����

Figure 4.3: Switch interface.

Schmitt Trigger, which is simply an inverter equipped with hysteresis. This further limits the switch
bouncing.

Switches may also be debounced using software techniques.This is accomplished by inserting
a 30 to 50 ms lockout delay in the function responding to port pin changes. The delay prevents the
microcontroller from responding to the multiple switch transitions related to bouncing.

You must carefully analyze a given design to determine if hardware or software switch de-
bouncing techniques will be used. It is important to remember that all switches exhibit bounce
phenomena and, therefore, must be debounced.

4.4. INPUT DEVICES 99

4.4.4 KEYPADS
A keypad is simply an extension of the simple switch configuration. A typical keypad configuration
and interface are shown in Figure 4.4. As you can see the keypad is simply multiple switches in the
same package. A hexadecimal keypad is provided in the figure. A single row of keypad switches are
asserted by the microcontroller and then the host keypad port is immediately read. If a switch has
been depressed, the keypad pin corresponding to the column the switch is in will also be asserted.
The combination of a row and a column assertion can be decoded to determine which key has
been pressed as illustrated in the table. Keypad rows are continually asserted one after the other in
sequence. Since the keypad is a collection of switches, debounce techniques must also be employed.

The keypad may be used to introduce user requests to a microcontroller. A standard keypad
with alphanumeric characters may be used to provide alphanumeric values to the microcontroller
such as providing your personal identification number (PIN) for a financial transaction. However,
some keypads are equipped with removable switch covers such that any activity can be associated
with a key press.

In Figure 4.5, we have connected the ATmega328 to a hexadecimal keypad via PORTB.
PORTB[3:0] is configured as output to selectively assert each row. PORTB[7:4] is configured as
input. Each row is sequentially asserted low. Each column is then read via PORTB[7:4] to see if
any switch in that row has been depressed. If no switches have been depressed in the row, an “F”
will be read from PORTB[7:4]. If a switch has been depressed, some other value than “F” will be
read. The read value is then passed into a switch statement to determine the ASCII equivalent of
the depressed switch. The function is not exited until the switch is released. This prevents a switch
“double hit.”

//***

unsigned char get_keypad_value(void)
{
unsigned char PORTB_value, PORTB_value_masked;
unsigned char ascii_value;

DDRC = 0x0F;
//set PORTB[7:4] to input,

//PORTB[3:0] to output

//switch depressed in row 0?
PORTB = 0xFE; //assert row 0 via PORTB[0]
PORTB_value = PINB; //read PORTB
PORTB_value_masked = (PORTB_value & 0xf0); //mask PORTB[3:0]

100 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

0 1 2 3

4 5 6 7

C D E F

8 9 A B

0

1

2

3

4 5 6 7
10K

Vcc

10K

Vcc

10K

Vcc

10K

Vcc

PORTx[0]

PORTx[1]

PORTx[2]

PORTx[3]

PORTx[4]

PORTx[5]

PORTx[6]

PORTx[7]

assert

keypad row 0

read keypad column 0

assert

keypad row 1

assert

keypad row 2

assert

keypad row 3

read keypad column 1

read keypad column 2

read keypad column 3

Key pressed

by user

Row asserted

by

microcontroller

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

X

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

X

2

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

X

3

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

X

4

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

1

5

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

6

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

7

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

none

Column response

from

keypad switch

Row/Column

combination

read at micro

port

0xEE

0xDE

0xBE

0x7E

0xED

0xDD

0xBD

0x7D

0xEB

0xDB

0xBB

0x7B

0xE7

0xD7

0xB7

0x77

0xXF

M
ic

ro
co

n
tr

o
ll

er
 P

O
R

T
x

Figure 4.4: Keypad interface.

4.4. INPUT DEVICES 101

0 1 2 3

4 5 6 7

C D E F

8 9 A B

4 5 6 7

0

1

2

3

10K

Vcc

10K

Vcc

10K

Vcc

10K

Vcc

VDD

1M

1.0 uF
VDD sys reset

1 PUR - PC6

2 RXD1 - PD0

3 TXD1 - PD1

4 PD2

5 PD3

6 PD4

7 Vcc

8 GND

9 PB6

10 PB7

11 PD5

12 PD6

13 PD7

14 PB0

PC5 28

PC4 27

PC3 26

PC2 25

PC1 24

PCO 23

GND 22

AREF 21

AVCC 20

PB5 19

PB4 18

PB3 17

PB2 16

PB1 15

Atmega328

PB4 PB5 PB6 PB7

PB0

PB1

PB2

PB3

Figure 4.5: Hexadecimal keypad interface to microcontroller.

//switch depressed in row 1?
if(PORTB_value_masked == 0xf0)

//no switches depressed in row 0
{
PORTB = 0xFD; //assert Row 1 via PORTB[1]
PORTB_value = PINB; //read PORTB
PORTB_value_masked = (PORTB_value & 0xf0);//mask PORTB[3:0]

102 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

}

//switch depressed in row 2?
if(PORTB_value_masked == 0xf0)

//no switches depressed in row 0
{
PORTB = 0xFB; //assert Row 2 via PORTC[2]
PORTB_value = PINB; //read PORTB
PORTB_value_masked = (PORTB_value & 0xf0);//mask PORTB[3:0]
}

//switch depressed in row 3?
if(PORTB_value_masked == 0xf0)

//no switches depressed in row 0
{
PORTB = 0xF7; //assert Row 3 via PORTB[3]
PORTB_value = PINB; //read PORTB
PORTB_value_masked = (PORTB_value & 0xf0);//mask PORTB[3:0]
}

if(PORTB_value_masked != 0xf0)
{
switch(PORTB_value_masked)
{
case 0xEE: ascii_value = ’0’;

break;

case 0xDE: ascii_value = ’1’;
break;

case 0xBE: ascii_value = ’2’;
break;

case 0x7E: ascii_value = ’3’;
break;

case 0xED: ascii_value = ’4’;
break;

4.4. INPUT DEVICES 103

case 0xDD: ascii_value = ’5’;
break;

case 0xBD: ascii_value = ’6’;
break;

case 0x7D: ascii_value = ’7’;
break;

case 0xEB: ascii_value = ’8’;
break;

case 0xDB: ascii_value = ’9’;
break;

case 0xBB: ascii_value = ’a’;
break;

case 0x&B: ascii_value = ’b’;
break;

case 0xE7: ascii_value = ’c’;
break;

case 0xD7: ascii_value = ’d’;
break;

case 0xB7: ascii_value = ’e’;
break;

case 0x77: ascii_value = ’f’;
break;

default:;
}

while(PORTB_value_masked != 0xf0);
//wait for key to be released

104 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

return ascii_value;
}

//***

4.4.5 SENSORS
A microcontroller is typically used in control applications where data is collected, the data is as-
similated and processed by the host algorithm, and a control decision and accompanying signals are
provided by the microcontroller. Input data for the microcontroller is collected by a complement of
input sensors. These sensors may be digital or analog in nature.

4.4.5.1 Digital Sensors
Digital sensors provide a series of digital logic pulses with sensor data encoded. The sensor data
may be encoded in any of the parameters associated with the digital pulse train such as duty cycle,
frequency, period, or pulse rate.The input portion of the timing system may be configured to measure
these parameters.

An example of a digital sensor is the optical encoder. An optical encoder consists of a small
plastic transparent disk with opaque lines etched into the disk surface. A stationary optical emitter
and detector pair is placed on either side of the disk. As the disk rotates, the opaque lines break the
continuity between the optical source and detector.The signal from the optical detector is monitored
to determine disk rotation as shown in Figure 4.6.

Optical encoders are available in a variety of types depending on the information desired.
There are two major types of optical encoders: incremental encoders and absolute encoders. An
absolute encoder is used when it is required to retain position information when power is lost. For
example, if you were using an optical encoder in a security gate control system, an absolute encoder
would be used to monitor the gate position. An incremental encoder is used in applications where
a velocity or a velocity and direction information is required.

The incremental encoder types may be further subdivided into tachometers and quadrature
encoders. An incremental tachometer encoder consists of a single track of etched opaque lines as
shown in Figure 4.6(a). It is used when the velocity of a rotating device is required. To calculate
velocity, the number of detector pulses are counted in a fixed amount of time. Since the number of
pulses per encoder revolution is known, velocity may be calculated.

The quadrature encoder contains two tracks shifted in relationship to one another by 90
degrees. This allows the calculation of both velocity and direction. To determine direction, one
would monitor the phase relationship between Channel A and Channel B as shown in Figure
4.6(b). The absolute encoder is equipped with multiple data tracks to determine the precise location
of the encoder disk [Sick Stegmann].

4.4. INPUT DEVICES 105

S

D
rotating

 disk

stationary optical

source and detector

pair

a) Incremental tachometer encoder

Detector output

b) Incremental quadrature encoder

Ch B

Ch A

Figure 4.6: Optical encoder.

4.4.5.2 Analog Sensors
Analog sensors provide a DC voltage that is proportional to the physical parameter being measured.
As discussed in the analog to digital conversion chapter, the analog signal may be first preprocessed by
external analog hardware such that it falls within the voltage references of the conversion subsystem.
The analog voltage is then converted to a corresponding binary representation.

Example 1: Flex Sensor An example of an analog sensor is the flex sensor shown in Fig-
ure 4.7(a).The flex sensor provides a change in resistance for a change in sensor flexure. At 0 degrees
flex, the sensor provides 10k Ohms of resistance. For 90 degrees flex, the sensor provides 30–40k
Ohms of resistance. Since the processor can not measure resistance directly, the change in flex sensor
resistance must be converted to a change in a DC voltage. This is accomplished using the voltage
divider network shown in Figure 4.7(c). For increased flex, the DC voltage will increase.The voltage
can be measured using the analog–to–digital converter subsystem.

The flex sensor may be used in applications such as virtual reality data gloves, robotic sensors,
biometric sensors, and in science and engineering experiments [Images Company].The author used

106 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

4.5 in (11.43 cm)

0.25 in (0.635 cm)

a) flex sensor physical dimensions

b) flex action

VDD = 5 VDC

10K fixed

resistor

flex sensor:

-- 0 degree flex, 10K

-- 90 degree flex, 30-40K

c) equivalent circuit

Figure 4.7: Flex sensor.

the circuit provided in Figure 4.7 to help a colleague in Zoology monitor the movement of a newt
salamander during a scientific experiment.

Example 2: Ultrasonic sensor The ultrasonic sensor pictured in Figure 4.8 is an example of
an analog based sensor. The sensor is based on the concept of ultrasound or sound waves that are at
a frequency above the human range of hearing (20 Hz to 20 kHz). The ultrasonic sensor pictured in
Figure 4.8c) emits a sound wave at 42 kHz. The sound wave reflects from a solid surface and returns
back to the sensor. The amount of time for the sound wave to transit from the surface and back to
the sensor may be used to determine the range from the sensor to the wall. Pictured in Figure 4.8(c)
and (d) is an ultrasonic sensor manufactured by Maxbotix (LV–EZ3).The sensor provides an output
that is linearly related to range in three different formats: a) a serial RS–232 compatible output at
9600 bits per second, b) a pulse width modulated (PWM) output at a 147 us/inch duty cycle, and
c) an analog output at a resolution of 10 mV/inch. The sensor is powered from a 2.5 to 5.5 VDC
source [www.sparkfun.com].

Example 3: Inertial Measurement Unit Pictured in Figure 4.9 is an inertial measurement
unit (IMU) combination which consists of an IDG5000 dual–axis gyroscope and an ADXL335
triple axis accelerometer. This sensor may be used in unmanned aerial vehicles (UAVs), autonomous

4.4. INPUT DEVICES 107

�������	
��
���	�����
������	����
��������
���	�������� �!"#!$�

$%���	&������
'%�()
�%�	�	����������
*%�+,
#%�-,
.%��/���0����#0!���
1%����

����
����

���2����3�45���67'!�56 '!��56 *'��56

�	

 8
��	��� ������ ����	
��
�

	��
�����
������8

�������	
��
���	�����
��
��

����	
��
�
��	�
�����

Figure 4.8: Ultrasonic sensor. (Sensor image used courtesy of SparkFun, Electronics (CC BY–NC–SA)).

108 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

9�:
9;<#!!=>;,���#

�	?
����

����
3���

VDD

���9;<#!!=>;,���#��
����

��	��
3�	��
&���

6���

�

�*0#���
3*0#���
��	�

	6

	����	������9�:�>�	����@�8���A�	��
#�;�����
����������8�9;<#!!=>;,���#��� �

9+�
��
��
	��	3

��
&�
8����

��
&�
8����

�	����3
��8�	��8���

9+�
��
��
	��	3

��?
����

����������������������&
�?�	�����
�B���

���&
�?

�	���	�� ����

9+�

�
�

��

	��
	3

��

&�

8�
���

��

&�

8�
���

�	
���
	��

��
��

�	����3
��8�	��8���

9+�
��
��	��	3
��?

����

��!���������
��B

���������������	�����
�B����
��B

��!�������

����

#

Figure 4.9: Inertial measurement unit. (IMU image used courtesy of SparkFun, Electronics (CC BY–
NC–SA)).

helicopters and robots. For robotic applications the robot tilt may be measured in the X and Y
directions as shown in Figure 4.9(c) and (d) [www.sparkfun.com].

Example 4: LM34 Temperature Sensor Example Temperature may be sensed using an
LM34 (Fahrenheit) or LM35 (Centigrade) temperature transducer. The LM34 provides an output
voltage that is linearly related to temperature. For example, the LM34D operates from 32 degrees
F to 212 degrees F providing +10mV/degree Fahrenheit resolution with a typical accuracy of ±0.5
degrees Fahrenheit [National]. This sensor is used in the automated cooling fan example at the

4.5. OUTPUT DEVICES 109

end of the chapter. The output from the sensor is typically connected to the ADC input of the
microcontroller.

4.5 OUTPUT DEVICES

As previously mentioned, an external device should not be connected to a microcontroller without
first performing careful interface analysis to ensure the voltage, current, and timing requirements of
the microcontroller and the external device. In this section, we describe interface considerations for
a wide variety of external devices. We begin with the interface for a single light emitting diode.

4.5.1 LIGHT EMITTING DIODES (LEDS)
An LED is typically used as a logic indicator to inform the presence of a logic one or a logic zero at a
specific pin of a microcontroller. An LED has two leads: the anode or positive lead and the cathode
or negative lead. To properly bias an LED, the anode lead must be biased at a level approximately
1.7 to 2.2 volts higher than the cathode lead.This specification is known as the forward voltage (Vf)
of the LED. The LED current must also be limited to a safe level known as the forward current
(If). The diode voltage and current specifications are usually provided by the manufacturer.

An example of an LED biasing circuit is provided in Figure 4.10. A logic one is provided by
the microcontroller to the input of the inverter.The inverter provides a logic zero at its output which
provides a virtual ground at the cathode of the LED. Therefore, the proper voltage biasing for the
LED is provided. The resistor (R) limits the current through the LED. A proper resistor value can
be calculated using R = (VDD − VDIODE)/IDIODE . It is important to note that a 7404 inverter
must be used due to its capability to safely sink 16 mA of current. Alternately, an NPN transistor
such as a 2N2222 (PN2222 or MPQ2222) may be used in place of the inverter as shown in the
figure. In Chapter 1, we used large (10 mm) red LEDs in the KNH instrumentation project. These
LEDs have Vf of 6 to 12 VDC and If of 20 mA at 1.85 VDC. This requires the interface circuit
shown in Figure 4.10c) right.

4.5.2 SEVEN SEGMENT LED DISPLAYS
To display numeric data, seven segment LED displays are available as shown in Figure 4.11(a).
Different numerals can be displayed by asserting the proper LED segments. For example, to display
the number five, segments a, c, d, f, and g would be illuminated. Seven segment displays are available
in common cathode (CC) and common anode (CA) configurations. As the CC designation implies,
all seven individual LED cathodes on the display are tied together.

The microcontroller is not capable of driving the LED segments directly. As shown in Figure
4.11(a), an interface circuit is required. We use a 74LS244 octal buffer/driver circuit to boost the
current available for the LED. The LS244 is capable of providing 15 mA per segment (IOH) at 2.0
VDC (VOH). A limiting resistor is required for each segment to limit the current to a safe value for
the LED. Conveniently, resistors are available in DIP packages of eight for this type of application.

110 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

Vcc = 5 VDC

R

+

7404

from

micro

I R2

+

Ifrom

micro

R1

Vcc = 5 VDC

220

+

I

from

micro

4.7K

Vcc = 9 VDC

Figure 4.10: LED display devices.

Seven segment displays are available in multi–character panels. In this case, separate micro-
controller ports are not used to provide data to each seven segment character. Instead, a single port
is used to provide character data. A portion of another port is used to sequence through each of the
characters as shown in Figure 4.11(b). An NPN (for a CC display) transistor is connected to the
common cathode connection of each individual character. As the base contact of each transistor is
sequentially asserted, the specific character is illuminated. If the microcontroller sequences through
the display characters at a rate greater than 30 Hz, the display will have steady illumination.

4.5.3 CODE EXAMPLE
Provided below is a function used to illuminate the correct segments on a multi–numeral seven
display. The numeral is passed in as an argument to the function along with the numerals position
on the display and also an argument specifying whether or not the decimal point (dp) should be
displayed at that position. The information to illuminate specific segments are provided in Figure
4.11c).
//***
void LED_character_display(unsigned int numeral, unsigned int position,

unsigned int decimal_point)
{
unsigned char output_value;

//illuminate numerical segments
switch(numeral)
{
case 0: output_value = 0x7E;
break;

4.5. OUTPUT DEVICES 111

a

b

c

d

e

f

g

a

b

c

d

e

f

g

74LS244

octal buffer/

line driver

common cathode

7-segment display

(Vf 1.85 VDC @ If 12mA)
DIP

resistor

VOH: 2.0 VDC

IOH : 15 mA

R = (VOH - Vf) / If

R = (2.0 - 1.85)/ 12 mA

R = 12.5 ohms

a) seven segment display interface

m
ic

ro
co

n
tr

o
ll

er
 p

o
rt

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

74LS244

octal buffer/

line driver

numeral select

dp

a

b

c

d

e

f

g

(a)11

(b) 7

(c) 4

(d) 2

(e) 1

(f) 10

(g) 5

quad common cathode

7-segment display

MPQ2222

b) quad seven segment display interface

(6) (8) (9) (12)

(dp)3(18)

(16)

(14)

(12)

(9)

(7)

(5)

(3)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(16)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

10K

10K

10K

10K

(1)

(2)

(3) (5)

(6)

(7) (8) (14)

(13)

(12)(10)

(9)

PORTC[7]

PORTC[0]

PORTD[0]

PORTD[3]

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

12 7

1 6
d) quad seven segment display pinout

UN(M)5624-11 EWRS

0

1

2

3

4

5

6

7

8

9

d
p

 P
O

R
T

C
[7

]

a
 P

O
R

T
C

[6
]

b
 P

O
R

T
C

[5
]

c
P

O
R

T
C

[4
]

d
 P

O
R

T
C

[3
]

e
P

O
R

T
C

[2
]

f
P

O
R

T
C

[1
]

g
 P

O
R

T
C

[0
]

h
ex

 r
ep

1

0

1

1

0

1

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

1

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

n
u
m

er
al

0x7E

0x30

0x6D

0x79

0x33

0x5D

0x1F

0x70

0x7F

0x73

c) numeral to segment converion

5 VDC
(20)

(10) (1)

/1G

(19)

/2G

Figure 4.11: Seven segment LED display devices.

112 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

case 1: output_value = 0x30;
break;

case 2: output_value = 0x6D;
break;

case 3: output_value = 0x79;
break;

case 4: output_value = 0x33;
break;

case 5: output_value = 0x5D;
break;

case 6: output_value = 0x1F;
break;

case 7: output_value = 0x70;
break;

case 8: output_value = 0x7F;
break;

case 9: output_value = 0x73;
break;

default:;
}

if(decimal_point != 0)
PORTB = output_value | 0x80; //illuminate decimal point

switch(position) //assert position
{
case 0: PORTD = 0x01; //least significant bit

break;

case 1: PORTD = 0x02; //least significant bit + 1

4.5. OUTPUT DEVICES 113

break;

case 2: PORTD = 0x04; //least significant bit + 2
break;

case 3: PORTD = 0x08; //most significant bit
break;

default:;
}

}
//***

4.5.4 TRI–STATE LED INDICATOR
The tri–state LED indicator is shown in Figure 4.12. It is used to provide the status of an entire
microcontroller port. The indicator bank consists of eight green and eight red LEDs. When an
individual port pin is logic high, the green LED is illuminated. When logic low, the red LED is
illuminated. If the port pin is at a tri–state high impedance state, no LED is illuminated.

The NPN/PNP transistor pair at the bottom of the figure provides a 2.5 VDC voltage reference
for the LEDs. When a specific port pin is logic high (5.0 VDC), the green LED will be forward
biased since its anode will be at a higher potential than its cathode. The 47 ohm resistor limits
current to a safe value for the LED. Conversely, when a specific port pin is at a logic low (0 VDC)
the red LED will be forward biased and illuminate. For clarity, the red and green LEDs are shown
as being separate devices. LEDs are available that have both LEDs in the same device.

4.5.5 DOT MATRIX DISPLAY
The dot matrix display consists of a large number of LEDs configured in a single package. A typical
5 x 7 LED arrangement is a matrix of five columns of LEDs with seven LEDs per row as shown
in Figure 4.13. Display data for a single matrix column [R6–R0] is provided by the microcontroller.
That specific row is then asserted by the microcontroller using the column select lines [C2–C0].The
entire display is sequentially built up a column at a time. If the microcontroller sequences through
each column fast enough (greater than 30 Hz), the matrix display appears to be stationary to a human
viewer.

In Figure 4.13(a), we have provided the basic configuration for the dot matrix display for
a single display device. However, this basic idea can be expanded in both dimensions to provide
a multi–character, multi–line display. A larger display does not require a significant number of
microcontroller pins for the interface. The dot matrix display may be used to display alphanumeric
data as well as graphics data. In Figure 4.13(b), we have provided additional detail of the interface
circuit.

114 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

47 G

R

VDD

3.0 K

3.0 K

VDD

-

+
LM324 2N2907

2N2222

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

m
ic

ro
co

n
tr

o
ll

er
 p

o
rt

Figure 4.12: Tri-state LED display.

4.5. OUTPUT DEVICES 115

R6

R5

R4

R3

R2

R1

R0

in
te

rf
ac

e

ci
rc

u
it

ry

ro
w

 s
el

ec
t

5 x 7 dot

matrix display

C2

C1

C0co
lu

m
n

se
le

ct interface

circuitry

m
ic

ro
co

n
tr

o
ll

er

a) dot matrix display layout

5 VDC

5 VDC

5 x 7 dot matrix display

R0

R6

ro
w

 s
el

ec
t

74HC137

1:8 decoder

C2:C1:C0

3

co
lu

m
n

se
le

ct

b) dot matrix interface details

Figure 4.13: Dot matrix display.

116 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

4.5.6 LIQUID CRYSTAL CHARACTER DISPLAY (LCD) IN C
An LCD is an output device to display text information as shown in Figure 4.14. LCDs come in a
wide variety of configurations, including multi–character, multi–line format. A 16 x 2 LCD format
is common.That is, it has the capability of displaying two lines of 16 characters each.The characters
are sent to the LCD via American Standard Code for Information Interchange (ASCII) format a
single character at a time. For a parallel configured LCD, an eight bit data path and two lines are
required between the microcontroller and the LCD. A small microcontroller mounted to the back
panel of the LCD translates the ASCII data characters and control signals to properly display the
characters. LCDs are configured for either parallel or serial data transmission format. In the example
provided, we use a parallel configured display.

G
N

D
-1

V
D

D
-2

V
o-

3
R

S
-4

R
/W

-5
E

-6
D

B
0-

7
D

B
1-

8
D

B
2-

9
D

B
3-

10
D

B
4-

11
D

B
5-

12
D

B
6-

13
D

B
7-

14

Vcc

10K

AND671GST

line1 line2

dataenable
command/data

Figure 4.14: LCD display.

4.5.6.1 Programming a parallel configured LCD in C
Some sample C code is provided below to send data and control signals to an LCD. In this specific
example, an AND671GST 1 x 16 character LCD was connected to the Atmel ATmega328 micro-
controller. One 8–bit port and two extra control lines are required to connect the microcontroller
to the LCD. Note: The initialization sequence for the LCD is specified within the manufacturer’s
technical data.
//***
//Internal Oscillator: 1 MHz
//ATMEL AVR ATmega328
//Chip Port Function I/O Source/Dest Asserted Notes
//***

4.5. OUTPUT DEVICES 117

//Pin 1: /Reset
//Pin 2: PD0 to DB0 LCD
//Pin 3: PD1 to DB1 LCD
//Pin 4: PD2 to DB2 LCD
//Pin 5: PD3 to DB3 LCD
//Pin 6: PD4 to DB4 LCD
//Pin 7: Vcc
//Pin 8: Gnd
//Pin 11: PD5 to DB6 LCD
//Pin 12: PD6 to DB6 LCD
//Pin 13: PD7 to DB7 LCD
//Pin 20: AVCC to Vcc
//Pin 21: AREF to Vcc
//Pin 22 Gnd
//Pin 27 PC4 to LCD Enable (E)
//Pin 28 PC5 to LCD RS

//include files**

//ATMEL register definitions for ATmega328
#include<iom328v.h>

//function prototypes**
void delay(unsigned int number_of_65_5ms_interrupts);
void init_timer0_ovf_interrupt(void);
void initialize_ports(void); //initializes ports
void power_on_reset(void); //returns system to startup state
void clear_LCD(void); //clears LCD display
void LCD_Init(void); //initialize AND671GST LCD
void putchar(unsigned char c); //send character to LCD
void putcommand(unsigned char c); //send command to LCD
void timer0_interrupt_isr(void);
void perform_countdown(void);
void clear_LCD(void);
void systems_A_OK(void);
void print_mission_complete(void);
void convert_int_to_string_display_LCD(unsigned int total_integer_value);

118 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

//program constants
#define TRUE 1
#define FALSE 0
#define OPEN 1
#define CLOSE 0
#define YES 1
#define NO 0
#define SAFE 1
#define UNSAFE 0
#define ON 1
#define OFF 0

//interrupt handler definition
#pragma interrupt_handler timer0_interrupt_isr:17

//main program***

//global variables

void main(void)
{
init_timer0_ovf_interrupt();
//initialize Timer0 to serve as elapsed
initialize_ports(); //initialize ports

perform_countdown();
delay(46);
:
:
:
systems_A_OK();

}//end main

//function definitions***

//***
//initialize_ports: provides initial configuration for I/O ports
//***

4.5. OUTPUT DEVICES 119

void initialize_ports(void)
{
DDRB = 0xff; //PORTB[7:0] as output
PORTB= 0x00; //initialize low
DDRC = 0xff; //PORTC[7:0] as output
PORTC= 0x00; //initialize low

DDRD = 0xff; //PORTB[7:0] as output
PORTD= 0x00; //initialize low
}

//***
//delay(unsigned int num_of_65_5ms_interrupts): this generic delay function
//provides the specified delay as the number of 65.5 ms "clock ticks" from
//the Timer0 interrupt.
//Note: this function is only valid when using a 1 MHz crystal or ceramic
// resonator
//***

void delay(unsigned int number_of_65_5ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
delay_timer = 0;
while(delay_timer <= number_of_65_5ms_interrupts)
{
;
}

}

//***
//int_timer0_ovf_interrupt(): The Timer0 overflow interrupt is being
//employed as a time base for a master timer for this project.
//The internal time base is set to operate at 1 MHz and then
//is divided by 256. The 8-bit Timer0
//register (TCNT0) overflows every 256 counts or every 65.5 ms.
//***

void init_timer0_ovf_interrupt(void)

120 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

{
TCCR0 = 0x04; //divide timer0 timebase by 256, overflow occurs every 65.5ms
TIMSK = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//LCD_Init: initialization for an LCD connected in the following manner:
//LCD: AND671GST 1x16 character display
//LCD configured as two 8 character lines in a 1x16 array
//LCD data bus (pin 14-pin7) ATMEL 8: PORTD
//LCD RS (pin 28) ATMEL 8: PORTC[5]
//LCD E (pin 27) ATMEL 8: PORTC[4]
//***

void LCD_Init(void)
{
delay(1);
delay(1);
delay(1);

// output command string to initialize LCD
putcommand(0x38); //function set 8-bit
delay(1);
putcommand(0x38); //function set 8-bit
putcommand(0x38); //function set 8-bit
putcommand(0x38); //one line, 5x7 char
putcommand(0x0C); //display on
putcommand(0x01); //display clear-1.64 ms
putcommand(0x06); //entry mode set
putcommand(0x00); //clear display, cursor at home
putcommand(0x00); //clear display, cursor at home
}

//***
//putchar:prints specified ASCII character to LCD
//***

void putchar(unsigned char c)
{

4.5. OUTPUT DEVICES 121

DDRD = 0xff; //set PORTD as output
DDRC = DDRC|0x30; //make PORTC[5:4] output
PORTD = c;
PORTC = (PORTC|0x20)|PORTC_pullup_mask; //RS=1
PORTC = (PORTC|0x10)|PORTC_pullup_mask;; //E=1
PORTC = (PORTC&0xef)|PORTC_pullup_mask;; //E=0
delay(1);
}

//***
//putcommand: performs specified LCD related command
//***

void putcommand(unsigned char d)
{
DDRD = 0xff; //set PORTD as output
DDRC = DDRC|0xC0; //make PORTA[5:4] output
PORTC = (PORTC&0xdf)|PORTC_pullup_mask; //RS=0
PORTD = d;
PORTC = (PORTC|0x10)|PORTC_pullup_mask; //E=1
PORTC = (PORTC&0xef)|PORTC_pullup_mask; //E=0
delay(1);
}

//***
//clear_LCD: clears LCD
//***

void clear_LCD(void)
{
putcommand(0x01);
}

//***
//void timer0_interrupt_isr(void)
//***

void timer0_interrupt_isr(void)
{

122 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

delay_timer++;
}
//***
//void perform_countdown(void)
//***

void perform_countdown(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’1’); putchar (’0’); //print 10
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’9’); //print 9
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’8’); //print 8
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’7’); //print 7
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’6’); //print 6
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’5’); //print 5
delay(15); //delay 1s

4.5. OUTPUT DEVICES 123

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’4’); //print 4
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’3’); //print 3
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’2’); //print 2
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’1’); //print 1
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’0’); //print 0
delay(15); //delay 1s

//BLASTOFF!
putcommand(0x01); //cursor home

putcommand(0x80); //DD RAM location 1 - line 1
putchar(’B’); putchar(’L’); putchar(’A’); putchar(’S’); putchar(’T’);
putchar(’O’); putchar(’F’); putchar(’F’); putchar(’!’);

}

//***
//void systems_A_OK(void)
//***

124 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

void systems_A_OK(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’S’); putchar(’Y’); putchar(’S’); putchar(’T’); putchar(’E’);
putchar(’M’); putchar(’S’); putchar(’ ’); putchar(’A’); putchar(’-’);
putchar(’O’); putchar(’K’); putchar(’!’); putchar(’!’); putchar(’!’);
}

//***
//void print_mission_complete(void)
//***

void print_mission_complete(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’M’); putchar(’I’); putchar(’S’); putchar(’S’); putchar(’I’);
putchar(’O’); putchar(’N’);

putcommand(0xC0);//DD RAM location 1 - line 2
putchar(’C’); putchar(’O’); putchar(’M’); putchar(’P’); putchar(’L’);
putchar(’E’); putchar(’T’); putchar(’E’); putchar(’!’);
}

//***
//end of file

//***

4.5.7 PROGRAMMING A SERIAL CONFIGURED LCD
We demonstrate how to connect a serial configured LCD in Section 8.10.

4.5. OUTPUT DEVICES 125

4.5.8 LIQUID CRYSTAL CHARACTER DISPLAY (LCD) USING THE
ARDUINO DEVELOPMENT ENVIRONMENT

The Arduino Development Environment provides full support to interface an Arduino UNO R3
to either a 4–bit or 8–bit configured LCD. In the 4–bit mode precious output pins are preserved for
other uses over the 8–bit configuration [www.arduino.cc].

The Arduino Development Environment hosts the following LCD related functions:

• Hello World: This function displays the greeting “hello world” and also displays elapsed time
since the last reset.

• Blink: The Blink function provides cursor control.

• Cursor: This function provides control over the underscore style cursor.

• Display: This function blanks the display without the loss of displayed information.

• Text Direction: This function controls which direction text flows from the cursor.

• Autoscroll: This function provides automatic scrolling to the new text.

• Serial Input: This function accepts serial input and displays it on the LCD.

• SetCursor: This function sets the cursor position on the LCD.

• Scroll: This function scrolls text left and right.

Rather than include the excellent Arduino resource here, the interested reader is referred to
the Arduino website for sample code and full documentation [www.arduino.cc].

4.5.9 HIGH POWER DC DEVICES
A number of direct current devices may be controlled with an electronic switching device such as
a MOSFET. Specifically, an N–channel enhancement MOSFET (metal oxide semiconductor field
effect transistor) may be used to switch a high current load on and off (such as a motor) using
a low current control signal from a microcontroller as shown in Figure 4.15(a). The low current
control signal from the microcontroller is connected to the gate of the MOSFET. The MOSFET
switches the high current load on and off consistent with the control signal. The high current load
is connected between the load supply and the MOSFET drain. It is important to note that the load
supply voltage and the microcontroller supply voltage do not have to be at the same value. When
the control signal on the MOSFET gate is logic high, the load current flows from drain to source.
When the control signal applied to the gate is logic low, no load current flows. Thus, the high power
load is turned on and off by the low power control signal from the microcontroller.

Often the MOSFET is used to control a high power motor load. A motor is a notorious source
of noise. To isolate the microcontroller from the motor noise an optical isolator may be used as an

www.arduino.cc
www.arduino.cc

126 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

b) solid state relay with optical interface

Gate

Drain

Source

a) N-channel enhance MOSFET

from

micro

load

VDD

Iload

Figure 4.15: MOSFET circuits.

interface as shown in Figure 4.15(b). The link between the control signal from the microcontroller
to the high power load is via an optical link contained within a Solid State Relay (SSR). The SSR
is properly biased using techniques previously discussed.

4.6 DC SOLENOID CONTROL
The interface circuit for a DC solenoid is provided in Figure 4.16. A solenoid provides a mechanical
insertion (or extraction) when asserted. In the interface, an optical isolator is used between the
microcontroller and the MOSFET used to activate the solenoid. A reverse biased diode is placed
across the solenoid. Both the solenoid power supply and the MOSFET must have the appropriate
voltage and current rating to support the solenoid requirements.

4.7 DC MOTOR SPEED AND DIRECTION CONTROL
Often, a microcontroller is used to control a high power motor load.To properly interface the motor
to the microcontroller, we must be familiar with the different types of motor technologies. Motor
types are illustrated in Figure 4.17.

• DC motor: A DC motor has a positive and negative terminal. When a DC power supply
of suitable current rating is applied to the motor it will rotate. If the polarity of the supply is
switched with reference to the motor terminals, the motor will rotate in the opposite direction.
The speed of the motor is roughly proportional to the applied voltage up to the rated voltage
of the motor.

• Servo motor: A servo motor provides a precision angular rotation for an applied pulse width
modulation duty cycle.As the duty cycle of the applied signal is varied, the angular displacement

4.7. DC MOTOR SPEED AND DIRECTION CONTROL 127

DC solenoid

supply voltage

Solid State Relay

MOSFET

protection

diode

�

�

VDD

RI

7404

from

micro

G

D

S

ILOAD

RG

Figure 4.16: Solenoid interface circuit.

of the motor also varies. This type of motor is used to change mechanical positions such as
the steering angle of a wheel.

• Stepper motor: A stepper motor as its name implies provides an incremental step change in
rotation (typically 2.5 degree per step) for a step change in control signal sequence. The motor
is typically controlled by a two or four wire interface. For the four wire stepper motor, the
microcontroller provides a four bit control sequence to rotate the motor clockwise.To turn the
motor counterclockwise, the control sequence is reversed. The low power control signals are
interfaced to the motor via MOSFETs or power transistors to provide for the proper voltage
and current requirements of the pulse sequence.

4.7.1 DC MOTOR OPERATING PARAMETERS
Space does not allow a full discussion of all motor types. We will concentrate on the DC motor.
As previously mentioned, the motor speed may be varied by changing the applied voltage. This
is difficult to do with a digital control signal. However, PWM control signal techniques discussed
earlier may be combined with a MOSFET interface to precisely control the motor speed. The duty
cycle of the PWM signal will also be the percentage of the motor supply voltage applied to the
motor, and hence the percentage of rated full speed at which the motor will rotate. The interface
circuit to accomplish this type of control is shown in Figure 4.18. Various portions of this interface
circuit have been previously discussed. The resistor RG, typically 10 k ohm, is used to discharge

128 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

�

�

������

�	

�	

����������
����������	����

�����������

�

�

����	���������
����	�

 ���!����
��"#!���

��$	�
#���!�

"!�	�
��	
�"���"���

�����	��	��������

Figure 4.17: Motor types.

the MOSFET gate when no voltage is applied to the gate. For an inductive load, a reversed biased
protection diode must be across the load. The interface circuit shown allows the motor to rotate in
a given direction. As previously mentioned, to rotate the motor in the opposite direction, the motor
polarity must be reversed.This may be accomplished with a high power switching network called an
H–bridge specifically designed for this purpose. Reference Pack and Barrett for more information
on this topic.

4.7.2 H–BRIDGE DIRECTION CONTROL
For a DC motor to operate in both the clockwise and counter clockwise direction, the polarity of the
DC motor supplied must be changed. To operate the motor in the forward direction, the positive
battery terminal must be connected to the positive motor terminal while the negative battery terminal
must be provided to the negative motor terminal. To reverse the motor direction the motor supply
polarity must be reversed. An H–bridge is a circuit employed to perform this polarity switch. The

4.7. DC MOTOR SPEED AND DIRECTION CONTROL 129

M

DC motor

supply voltage

Solid State Relay

MOSFET

protection

diode

�

�

VDD

RI

7404
from

micro

G

D

S

ILOAD

RG

Figure 4.18: DC motor interface.

H–bridge circuit consists of four electronic switches as shown In Figure 4.19. For forward motor
direction switches 1 and 4 are closed; whereas, for reverse direction switches 2 and 3 are closed.

Low power H–bridges (500 mA) come in a convenient dual in line package (e.g., 754110).
For higher power motors, a H–bridge may be constructed from discrete components as shown in
Figure 4.19. The ZTX451 and ZTX551 are NPN and PNP transistors with similar characteristics.
The 11DQ06 are Schottky diodes. For driving higher power loads, the switching devices are sized
appropriately.

If PWM signals are used to drive the base of the transistors (from microcontroller pins PD4
and PD5), both motor speed and direction may be controlled by the circuit. The transistors used
in the circuit must have a current rating sufficient to handle the current requirements of the motor
during start and stall conditions.

Example: A linear actuator is a specially designed motor that converts rotary to linear motion.
The linear actuator is equipped with a mechanical rod that is extended when asserted in one direction
and retracted when the polarity of assertion is reversed. An H–bridge may be used to control a linear
actuator as shown in Figure 4.20. In this circuit an enable signal is used to assert the H–bridge while
the two pulse width modulation channels are used to extend or retract the H–bridge.

130 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

M+

-
12 VDC

200
ZTX451

470

200

ZTX451

ZTX551 470

to PD4 to PD5
ZTX551

11DQ06

1000uF

11DQ06

motor

supply

+ -

sw1 sw2

sw3 sw4

M

motor

supply

+ -

sw1 sw2

sw3 sw4

M

Figure 4.19: H-bridge control circuit.

4.7.3 SERVO MOTOR INTERFACE
The servo motor is used for a precise angular displacement. The displacement is related to the duty
cycle of the applied control signal. A servo control circuit and supporting software was provided in
Chapter 7.

4.7.4 STEPPER MOTOR CONTROL
Stepper motors are used to provide a discrete angular displacement in response to a control signal
step. There are a wide variety of stepper motors including bipolar and unipolar types with different
configurations of motor coil wiring. Due to space limitations, we only discuss the unipolar, 5 wire
stepper motor. The internal coil configuration for this motor is provided in Figure 4.21(b).

Often, a wiring diagram is not available for the stepper motor. Based on the wiring config-
uration (Reference Figure 4.21b), one can find out the common line for both coils. It will have a
resistance that is one–half of all of the other coils. Once the common connection is found, one can
connect the stepper motor into the interface circuit. By changing the other connections, one can
determine the correct connections for the step sequence.

4.7. DC MOTOR SPEED AND DIRECTION CONTROL 131

�������	

���
��

����

����� ���������� �����

����	

������

������

�
�������

G

D

S

G

D

S

������
�����
��� �
���	!"

�#��
$!��
� ��
%!��

�����&

�'����

(��)��*

��

��

��+��

G

D

S

G

D

S
��

��

�,-
��
��������

������
�����
��� �
���	!"

�#��
$!��
� ��
%!��

�����&

�'����

�
�
�.

/ 0

��+��

-�
�

���1 ���1

�'�����23#�0��
�'�����23#�0��

�����	4��5

6��(0
�,*�

*�,�
�

6��(0
�,*�

*�,�
�

-
�

�

(�
�)
��
*

�

�

�.

�,-
����������

7����

7��-�,-�

���8
�

Figure 4.20: Linear actuator control circuit [O’Berto]. (UNO R3 illustration used with permission of
the Arduino Team (CC BY–NC–SA) www.arduino.cc).

www.arduino.cc
www.arduino.cc

132 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

a) a stepper motor rotates a fixed angle per step

step

1

2

3

4

b) coil configuration and step sequence

12 VDC

TIP130

TIP130

TIP130

TIP130

PORTD[7]

PORTD[6]

PORTD[5]

PORTD[4]

c) stepper motor interface circuit

10K

10K

10K

10K

Figure 4.21: Unipolar stepper motor control circuit.

4.7. DC MOTOR SPEED AND DIRECTION CONTROL 133

To rotate the motor either clockwise or counter clockwise, a specific step sequence must be
sent to the motor control wires as shown in Figure 4.21(c). As shown in Figure 4.21(c), the control
sequence is transmitted by four pins on the microcontroller. In this example, we use PORTD[7:5].

The microcontroller does not have sufficient capability to drive the motor directly. Therefore,
an interface circuit is required as shown in Figure 4.21c). For a unipolar stepper motor, we employ
a TIP130 power Darlington transistor to drive each coil of the stepper motor. The speed of motor
rotation is determined by how fast the control sequence is completed. The TIP 30 must be powered
by a supply that has sufficient capability for the stepper motor coils.

Example: An ATmega324 has been connected to a JRP 42BYG016 unipolar, 1.8 degree per
step, 12 VDC at 160 mA stepper motor. The interface circuit is shown in Figure 4.22. PORTD
pins 7 to 4 are used to provide the step sequence. A one second delay is used between the steps
to control motor speed. Pushbutton switches are used on PORTB[1:0] to assert CW and CCW
stepper motion. An interface circuit consisting of four TIP130 transistors are used between the
microcontroller and the stepper motor to boost the voltage and current of the control signals. Code
to provide the step sequence is shown below.

Provided below is a basic function to rotate the stepper motor in the forward or reverse
direction.
//***
//target controller: ATMEL ATmega328
//
//ATMEL AVR ATmega328PV Controller Pin Assignments
//Pin 1 Reset - 1M resistor to Vdd, tact switch to ground, 1.0 uF to ground
//Pin 6 PD4 - to stepper motor coil
//Pin 7 Vdd - 1.0 uF to ground
//Pin 8 Gnd
//Pin 11 PD5 - to stepper motor coil
//Pin 12 PD6 - to stepper motor coil
//Pin 13 PD7 - to stepper motor coil
//Pin 14 PB0 to active high RC debounced switch - CW
//Pin 20 AVcc to Vdd
//Pin 21 ARef to Vcc
//Pin 22 Gnd to Ground
//***

//include files**

//ATMEL register definitions for ATmega328
#include<iom328pv.h>
#include<macros.h>

//interrupt handler definition

134 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

74HC14

CCW

Vcc = 5.0 volts

4.7 K

470K

0.1uF

74HC14

(3) (4)

PB1 100K

3K

Vcc = 5.0 volts

4.7 K

470K

0.1uF

(1) (2)

PB0 100K

3K
CW

12 VDC

TIP130

TIP130

TIP130

TIP130

c) stepper motor interface circuit

B C E
TIP130

(top view)

VDD

1M

1.0 uF
VDD sys reset

1 PUR - PC6

2 RXD1 - PD0

3 TXD1 - PD1

4 PD2

5 PD3

6 PD4

7 Vcc

8 GND

9 PB6

10 PB7

11 PD5

12 PD6

13 PD7

14 PB0

PC5 28

PC4 27

PC3 26

PC2 25

PC1 24

PCO 23

GND 22

AREF 21

AVCC 20

PB5 19

PB4 18

PB3 17

PB2 16

PB1 15

Atmega328

10K

10K

10K

10K

Figure 4.22: Unipolar stepper motor control circuit.

4.7. DC MOTOR SPEED AND DIRECTION CONTROL 135

#pragma interrupt_handler timer0_interrupt_isr:17

//function prototypes**
void initialize_ports(void); //initializes ports
void read_new_input(void); //used to read input change on PORTB
void init_timer0_ovf_interrupt(void); //used to initialize timer0 overflow
void timer0_interrupt_isr(void);
void delay(unsigned int);

//main program***
//The main program checks PORTB for user input activity. If new activity
//is found, the program responds.

//global variables
unsigned char old_PORTB = 0x08; //present value of PORTB
unsigned char new_PORTB; //new values of PORTB
unsigned int input_delay; //delay counter - increment via Timer0

//overflow interrupt

void main(void)
{
initialize_ports(); //return LED configuration to default
init_timer0_ovf_interrupt(); //used to initialize timer0 overflow

while(1)
{
_StackCheck(); //check for stack overflow
read_new_input(); //read input status changes on PORTB
}

}//end main

//Function definitions
//***
//initialize_ports: provides initial configuration for I/O ports
//***

void initialize_ports(void)

136 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

{
//PORTB
DDRB=0xfc; //PORTB[7-2] output, PORTB[1:0] input
PORTB=0x00; //disable PORTB pull-up resistors

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //init low

//PORTD
DDRD=0xff; //set PORTD[7-0] as output
PORTD=0x00; //initialize low
}

//***
//read_new_input: functions polls PORTB for a change in status. If status
//change has occurred, appropriate function for status change is called
//Pin 1 PB0 to active high RC debounced switch - CW
//Pin 2 PB1 to active high RC debounced switch - CCW
//***

void read_new_input(void)
{
new_PORTB = (PINB & 0x03);
if(new_PORTB != old_PORTB){
switch(new_PORTB){ //process change in PORTB input

case 0x01: //CW
while((PINB & 0x03)==0x01)
{
PORTD = 0x80;
delay(15); //delay 1s
PORTD = 0x00;
delay(1); //delay 65 ms

PORTD = 0x40;
delay(15);
PORTD = 0x00;
delay(1);

4.7. DC MOTOR SPEED AND DIRECTION CONTROL 137

PORTD = 0x20;
delay(15);
PORTD = 0x00;
delay(1);

PORTD = 0x10;
delay(15);
PORTD = 0x00;
delay(1);
}

break;

case 0x02: //CCW
while((PINB & 0x03)==0x02)
{
PORTD = 0x10;
delay(15);
PORTD = 0x00;
delay(1);

PORTD = 0x20;
delay(15);
PORTD = 0x00;
delay(1);

PORTD = 0x40;
delay(15);
PORTD = 0x00;
delay(1);

PORTD = 0x80;
delay(15);
PORTD = 0x00;
delay(1);

}
break;

138 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

default:; //all other cases
} //end switch(new_PORTB)

} //end if new_PORTB
old_PORTB=new_PORTB; //update PORTB

}

//***
//int_timer0_ovf_interrupt(): The Timer0 overflow interrupt is being
//employed as a time base for a master timer for this project. The internal
//oscillator of 8 MHz is divided internally by 8 to provide a 1 MHz time
//base and is divided by 256. The 8-bit Timer0 register (TCNT0) overflows
//every 256 counts or every 65.5 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overfl. occurs every 65.5ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//***

void timer0_interrupt_isr(void)
{
input_delay++; //input delay processing
}

//***
//void delay(unsigned int number_of_65_5ms_interrupts)
//this generic delay function provides the specified delay as the number
//of 65.5 ms "clock ticks" from the Timer0 interrupt.
//Note: this function is only valid when using a 1 MHz crystal or ceramic
// resonator
//***

4.8. INTERFACING TO MISCELLANEOUS DEVICES 139

void delay(unsigned int number_of_65_5ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0;
while(input_delay <= number_of_65_5ms_interrupts)
{
;
}

}

//***

4.7.5 AC DEVICES
In a similar manner, a high power alternating current (AC) load may be switched on and off using
a low power control signal from the microcontroller. In this case, a Solid State Relay is used as the
switching device. Solid state relays are available to switch a high power DC or AC load [Crydom].
For example, the Crydom 558–CX240D5R is a printed circuit board mounted, air cooled, single
pole single throw (SPST), normally open (NO) solid state relay. It requires a DC control voltage of
3–15 VDC at 15 mA. However, this small microcontroller compatible DC control signal is used to
switch 12–280 VAC loads rated from 0.06 to 5 amps [Crydom] as shown in Figure 4.23.

To vary the direction of an AC motor you must use a bi–directional AC motor.A bi–directional
motor is equipped with three terminals: common,clockwise,and counterclockwise.To turn the motor
clockwise, an AC source is applied to the common and clockwise connections. In like manner, to
turn the motor counterclockwise, an AC source is applied to the common and counterclockwise
connections. This may be accomplished using two of the Crydom SSRs.

4.8 INTERFACING TO MISCELLANEOUS DEVICES
In this section, we provide a pot pourri of interface circuits to connect a microcontroller to a wide
variety of peripheral devices.

4.8.1 SONALERTS, BEEPERS, BUZZERS
In Figure 4.24, we provide several circuits used to interface a microcontroller to a buzzer, beeper
or other types of annunciator indexannunciator devices such as a sonalert. It is important that the
interface transistor and the supply voltage are matched to the requirements of the sound producing
device.

140 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

C
R

Y
D

O
M

4
:D

C
-

3
:D

C
+

1
1

5
 V

A
C

fu
se

A
C

 f
an

1 2
V

D
D

1
M

1
.0

 u
F

V
D

D
sy

s
re

se
t

1
 P

U
R

 -
 P

C
6

2
 R

X
D

1
 -

 P
D

0

3
 T

X
D

1
 -

 P
D

1

4

P

D
2

5

P

D
3

6

P

D
4

7
 V

cc

8
 G

N
D

9

P

B
6

1
0

 P
B

7

1
1
 P

D
5

1
2

 P
D

6

1
3

 P
D

7

1
4

 P
B

0

P
C

5
 2

8

P
C

4
 2

7

P
C

3
 2

6

P
C

2
 2

5

P
C

1
 2

4

P
C

O
 2

3

G
N

D
 2

2

A
R

E
F

 2
1

A
V

C
C

 2
0

P
B

5
 1

9

P
B

4
 1

8

P
B

3
 1

7

P
B

2
 1

6

P
B

1
 1

5

A
tm

eg
a3

2
8

F
ig

ur
e

4.
23

:
A

C
m

ot
or

co
nt

ro
lc

irc
ui

t.

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 141

buzzer, 3850 Hz

5 VDC, 3-14 mA

Vcc = 5 VDC

220

2N2222
from

micro

a) 5 VDC buzzer interface

10K

annunciator

12 VDC, 8 mA

Vcc = 12 VDC

220

2N2222
from

micro

a) 12 VDC annunciator

10K

Figure 4.24: Sonalert, beepers, buzzers.

4.8.2 VIBRATING MOTOR
A vibrating motor is often used to gain one’s attention as in a cell phone. These motors are typically
rated at 3 VDC and a high current. The interface circuit shown in Figure 4.25 is used to drive the
low voltage motor. Note that the control signal provided to the transistor base is 5 VDC. To step the
motor supply voltage down to the motor voltage of 3 VDC, two 1N4001 silicon rectifier diodes are
used in series. These diodes provide approximately 1.4 to 1.6 VDC voltage drop. Another 1N4001
diode is reversed biased across the motor and the series diode string. The motor may be turned on
and off with a 5 VDC control signal from the microcontroller or a PWM signal may be used to
control motor speed. It is recommended that a Darlington NPN transistor (TIP 120) be employed
in this application.

4.9 APPLICATION: SPECIAL EFFECTS LED CUBE

To illustrate some of the fundamentals of microcontroller interfacing, we construct a three–
dimensional LED cube. This design was inspired by an LED cube kit available from Jameco (www.
jameco.com).The LED cube consists of four layers of LEDs with 16 layers per LED. Only a single
LED is illuminated at a specific time.

Only a single LED is illuminated at a given time. However, different effects may be achieved
by how long a specific LED is left illuminated. A specific LED layer is asserted using the layer
select pins on the microcontroller using a one–hot–code (a single line asserted while the others
are de–asserted). The asserted line is fed through a 74HC244 (three state, octal buffer, line driver)

www.jameco.com
www.jameco.com

142 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

M 3 VDC

+

-

240

5 VDC

1N4001

1N4001

1N4001

TIP 130

Darlington

transistor

Figure 4.25: Controlling a low voltage motor.

which provides an IOH/IOL current of ± 35 mA as shown in Figure 4.26. A given output from the
74HC244 is fed to a common anode connections for all 16 LEDs in a layer. All four LEDs in a
specific LED position share a common cathode connection. That is, an LED in a specific location
within a layer shares a common cathode connection with three other LEDs that share the same
position in the other three layers. The common cathode connection from each LED location is fed
to a specific output of the 74HC154 4–to–16 decoder. The decoder has a one–cold–code output.
To illuminate a specific LED, the appropriate layer select and LED select lines are asserted using
the layer_sel[3:0] and led_sel[3:0] lines respectively. This basic design may be easily expanded to a
larger LED cube.

4.9.1 CONSTRUCTION HINTS
To limit project costs, low–cost red LEDs (Jameco #333973) were used. The project requires a total
of 64 LEDs (4 layers of 16 LEDs each). A LED template pattern was constructed from a 5” by 5”
piece of pine wood. A 4–by–4 pattern of holes were drilled into the wood. Holes were spaced 3/4”
apart. The hole diameter was slightly smaller than the diameter of the LEDs to allow for a snug
LED fit.

The LED array was constructed a layer at a time using the wood template. Each LED was
tested before inclusion in the array. A 5 VDC power supply with a series 220 ohm resistor was used

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 143

+-

+-

+-

+-

0 1 2

4 5 6

8 9 10 11

12 13 14

+
_

+
_

+
_

+
_ +

LED horizontal layer 0
top view

Notes:
1. LED cube consists of 4 layers of 16 LEDs each.
2. Each LED is individually addressed by asserting the appropriate cathode signal (0 to 15)
 and asserting a specific LED layer.
3. All LEDs in a given layer share a common anode connection.
4. All LEDs in a given position (0 to 15) share a common cathode connection.

74HC154
4-to-16 decoder

74ALS244

1 2 3 4 5 6 7 8 9 10 1113141516 17

/E0-18
/E1-19

Idiode =

IOL = +/- 25 mA

D C B A
20 21 22 23

24

12

Vcc = 5 VDC

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

15

220

LED
LED0

side
view

Idiode

20

10

Vcc = 5 VDC

/OEa-1
/OEb-19

2 4 6 8

18 16 14 12

11 13 15 17

3579

LED horizontal layer 1
LED horizontal layer 2
LED horizontal layer 3

Idiode

A
rd

ui
no

 P
ro

ce
ss

or

L
E

D
 s

el
ec

t
la

ye
r

se
le

ct

led_sel0
led_sel1
led_sel2
led_sel3

layer_sel0
layer_sel1
layer_sel2
layer_sel3

5(22)
6(23)
7(24)
8(25)

9(26)
10(27)
11(28)
12(29)

cocktail
straw
spacer

Figure 4.26: LED special effects cube.

144 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

to insure each LED was fully operational. The LED anodes in a given LED row were then soldered
together. A fine tip soldering iron and a small bit of solder were used for each interconnect as shown
in Figure 4.27. Cross wires were then used to connect the cathodes of adjacent rows. A 22 gage bare
wire was used. Again, a small bit of solder was used for the interconnect points. Four separate LED
layers (4 by 4 array of LEDs) were completed.

To assemble the individual layers into a cube, cocktail straw segments were used as spacers be-
tween the layers.The straw segments provided spacing between the layers and also offered improved
structural stability. The anodes for a given LED position were soldered together. For example, all
LEDs in position 0 for all four layers shared a common anode connection.

The completed LED cube was mounted on a perforated printed circuit board (perfboard)
to provide a stable base. LED sockets for the 74LS244 and the 74HC154 were also mounted to
the perfboard. Connections were routed to a 16 pin ribbon cable connector. The other end of the
ribbon cable was interfaced to the appropriate pins of the Arduino processor. The entire LED cube
was mounted within a 4” plexiglass cube. The cube is available from the Container Store (www.
containerstore.com). A construction diagram is provided in Figure 4.27.

4.9.2 LED CUBE ARDUINO SKETCH CODE
Provided below is the basic code template to illuminate a single LED (LED 0, layer 0). This basic
template may be used to generate a number of special effects (e.g. tornado, black hole, etc.). Pin
numbers are provided for the Arduino UNO R3. Pin numbers for the Arduino Mega 2560 are
provided in the comments.

//***
//led select pins

#define led_sel0 5 //Mega2560: pin 22
#define led_sel1 6 //Mega2560: pin 23
#define led_sel2 7 //Mega2560: pin 24
#define led_sel3 8 //Mega2560: pin 25

//layer select pins
#define layer_sel0 9 //Mega2560: pin 26
#define layer_sel1 10 //Mega2560: pin 27
#define layer_sel2 11 //Mega2560: pin 28
#define layer_sel3 12 //Mega2560: pin 29

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);

www.containerstore.com
www.containerstore.com

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 145

0 1 2

4 5 6

8 9 10

12 13 14

+
_

+
_

+
_

+
_

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

LED

11

15

solder connection

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

connect LED anodes together
in an LED row

anode crossbar between LED rows

a) LED soldering diagram

b) 3D LED array mounted within plexiglass cube

Figure 4.27: LED cube construction.

146 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{

//illuminate LED 0, layer 0
//led select

digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);

//layer select
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);

delay(500); //delay specified in ms
}

//***

In the next example, a function “illuminate_LED” has been added. To illuminate a specific
LED, the LED position (0 through 15), the LED layer (0 through 3), and the length of time
to illuminate the LED in milliseconds is specified. In this short example, LED 0 is sequentially
illuminated in each layer. An LED grid map is provided in Figure 4.28. It is useful for planning
special effects.

//***
//led select pins

#define led_sel0 5 //Mega2560: pin 22
#define led_sel1 6 //Mega2560: pin 23
#define led_sel2 7 //Mega2560: pin 24
#define led_sel3 8 //Mega2560: pin 25

//layer select pins

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 147

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

layer 0

layer 1

layer 2

layer 3

Figure 4.28: LED grid map.

148 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

#define layer_sel0 9 //Mega2560: pin 26
#define layer_sel1 10 //Mega2560: pin 27
#define layer_sel2 11 //Mega2560: pin 28
#define layer_sel3 12 //Mega2560: pin 29

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{
illuminate_LED(0, 0, 500);
illuminate_LED(0, 1, 500);
illuminate_LED(0, 2, 500);
illuminate_LED(0, 3, 500);
}

//***

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==1)
{

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 149

digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);

150 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

}
else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

if(led==8)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==12)
{
digitalWrite(led_sel0, LOW);

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 151

digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);

152 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

}
else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);
}

else if(layer==3)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//***

In the next example, a “fireworks” special effect is produced. The firework goes up, splits into
four pieces, and then falls back down as shown in Figure 4.29. It is useful for planning special effects.

//***
//led select pins

#define led_sel0 5 //Mega2560: pin 22
#define led_sel1 6 //Mega2560: pin 23
#define led_sel2 7 //Mega2560: pin 24
#define led_sel3 8 //Mega2560: pin 25

//layer select pins
#define layer_sel0 9 //Mega2560: pin 26
#define layer_sel1 10 //Mega2560: pin 27
#define layer_sel2 11 //Mega2560: pin 28
#define layer_sel3 12 //Mega2560: pin 29

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 153

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

layer 0

layer 1

layer 2

layer 3

Figure 4.29: LED grid map for a fire work.

154 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{
int i;

//firework going up
illuminate_LED(5, 0, 100);
illuminate_LED(5, 1, 100);
illuminate_LED(5, 2, 100);
illuminate_LED(5, 3, 100);

//firework exploding into four pieces
//at each cube corner
for(i=0;i<=10;i++)
{
illuminate_LED(0, 3, 10);
illuminate_LED(3, 3, 10);
illuminate_LED(12, 3, 10);
illuminate_LED(15, 3, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 2
for(i=0;i<=10;i++)
{
illuminate_LED(0, 2, 10);
illuminate_LED(3, 2, 10);
illuminate_LED(12, 2, 10);
illuminate_LED(15, 2, 10);

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 155

delay(10);
}

delay(200);

//firework pieces falling to layer 1
for(i=0;i<=10;i++)
{
illuminate_LED(0, 1, 10);
illuminate_LED(3, 1, 10);
illuminate_LED(12, 1, 10);
illuminate_LED(15, 1, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 0
for(i=0;i<=10;i++)
{
illuminate_LED(0, 0, 10);
illuminate_LED(3, 0, 10);
illuminate_LED(12, 0, 10);
illuminate_LED(15, 0, 10);
delay(10);
}

delay(10);
}

//***

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);

156 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

digitalWrite(led_sel3, LOW);
}

else if(led==1)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{

4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 157

digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

if(led==8)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);

158 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

}
else if(led==12)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{

4.10. SUMMARY 159

digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);
}

else if(layer==3)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//***

4.10 SUMMARY

In this chapter, we discussed the voltage and current operating parameters for the Arduino UNO
R3 and Mega 2560 processing board and the Atmel ATmega328 microcontroller. We discussed
how this information may be applied to properly design an interface for common input and output
circuits. It must be emphasized a properly designed interface allows the microcontroller to operate
properly within its parameter envelope. If due to a poor interface design, a microcontroller is used
outside its prescribed operating parameter values, spurious and incorrect logic values will result. We
provided interface information for a wide range of input and output devices. We also discussed the
concept of interfacing a motor to a microcontroller using PWM techniques coupled with high power
MOSFET or SSR switching devices.

160 4. ATMEL AVR OPERATING PARAMETERS AND INTERFACING

4.11 REFERENCES
• Pack D, Barrett S (2002) 68HC12 Microcontroller: Theory and Applications. Prentice–Hall

Incorporated, Upper Saddle River, NJ.

• Barrett S, Pack D (2004) Embedded Systems Design with the 68HC12 and HCS12. Prentice-
–Hall Incorporated, Upper Saddle River, NJ.

• Crydom Corporation, 2320 Paseo de las Americas, Suite 201, San Diego, CA (www.crydom.
com).

• Sick/Stegmann Incorporated, Dayton, OH, (www.stegmann.com).

• Images Company, 39 Seneca Loop, Staten Island, NY 10314.

• Atmel 8–bit AVR Microcontroller with 64/128/256K Bytes In–System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P–AVR–10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 16/32/64K Bytes In–System Programmable Flash, AT-
mega328P/V, ATmega324P/V, 644P/V data sheet: 8011I–AVR–05/08, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

• National Semiconductor, LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit
Temperature Sensor, 1995.

• Bohm H and Jensen V (1997) Build Your Own Underwater Robot and Other Wet Projects.
Westcoast Words.

• seaperch, www.seaperch.org

• SparkFun, www.sparkfun.com

• Pack D and Barrett S (2011) Microcontroller Programming and InterfacingTexas Instruments
MSP430. Morgan and Claypool Publishers.

www.crydom.com
www.crydom.com
www.stegmann.com
http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

4.12. CHAPTER PROBLEMS 161

4.12 CHAPTER PROBLEMS
1. What will happen if a microcontroller is used outside of its prescribed operating envelope?

2. Discuss the difference between the terms “sink” and “source” as related to current loading of
a microcontroller.

3. Can an LED with a series limiting resistor be directly driven by the Atmel microcontroller?
Explain.

4. In your own words, provide a brief description of each of the microcontroller electrical param-
eters.

5. What is switch bounce? Describe two techniques to minimize switch bounce.

6. Describe a method of debouncing a keypad.

7. What is the difference between an incremental encoder and an absolute encoder? Describe
applications for each type.

8. What must be the current rating of the 2N2222 and 2N2907 transistors used in the tri–state
LED circuit? Support your answer.

9. Draw the circuit for a six character seven segment display. Fully specify all components. Write
a program to display “ATmega328.”

10. Repeat the question above for a dot matrix display.

11. Repeat the question above for a LCD display.

12. What is the difference between a unipolar and bipolar stepper motor?

13. What controls the speed of rotation of a stepper motor?

14. A stepper motor provides and angular displacement of 1.8 degrees per step. How can this
resolution be improved?

15. Write a function to convert an ASCII numeral representation (0 to 9) to a seven segment
display.

16. Why is an interface required between a microcontroller and a stepper motor?

17. How must the LED cube design be modified to incorporate eight layers of LEDs with 16
LEDs per layer?

18. In the LED cube design, what is the maximum amount of forward current that can be safely
delivered to a given LED?

163

C H A P T E R 5

Analog to Digital Conversion
(ADC)

Objectives: After reading this chapter, the reader should be able to

• Illustrate the analog–to–digital conversion process.

• Assess the quality of analog–to–digital conversion using the metrics of sampling rate, quanti-
zation levels, number of bits used for encoding and dynamic range.

• Design signal conditioning circuits to interface sensors to analog–to–digital converters.

• Implement signal conditioning circuits with operational amplifiers.

• Describe the key registers used during an ATmega328 ADC.

• Describe the steps to perform an ADC with the ATmega328.

• Describe the key registers used during an ATmega2560 ADC.

• Describe the steps to perform an ADC with the ATmega2560.

• Program the Arduino UNO R3 and the Arduino Mega 2560 processing boards to perform
an ADC using the built–in features of the Arduino Development Environment.

• Program the ATmega328 to perform an ADC in C.

• Program the ATmega2560 to perform an ADC in C.

• Describe the operation of a digital–to–analog converter (DAC).

5.1 OVERVIEW
A microcontroller is used to process information from the natural world, decide on a course of action
based on the information collected, and then issue control signals to implement the decision. Since
the information from the natural world, is analog or continuous in nature, and the microcontroller
is a digital or discrete based processor, a method to convert an analog signal to a digital form is
required. An ADC system performs this task while a digital to analog converter (DAC) performs
the conversion in the opposite direction. We will discuss both types of converters in this chapter.

164 5. ANALOG TO DIGITAL CONVERSION (ADC)

Most microcontrollers are equipped with an ADC subsystem; whereas, DACs must be added as an
external peripheral device to the controller.

In this chapter, we discuss the ADC process in some detail. In the first section, we discuss
the conversion process itself, followed by a presentation of the successive–approximation hardware
implementation of the process. We then review the basic features of the ATmega328 and the AT-
mega2560 ADC systems followed by a system description and a discussion of key ADC registers.
We conclude our discussion of the analog–to–digital converter with several illustrative code exam-
ples. We show how to program the ADC using the built–in features of the Arduino Development
Environment and C. We conclude the chapter with a discussion of the DAC process and interface a
multi–channel DAC to the ATmega328. We also discuss the Arduino Development Environment
built–in features that allow generation of an output analog signal via pulse width modulation (PWM)
techniques. Throughout the chapter, we provide detailed examples.

5.2 SAMPLING, QUANTIZATION AND ENCODING

In this subsection, we provide an abbreviated discussion of the ADC process. This discussion was
condensed from “Atmel AVR Microcontroller Primer Programming and Interfacing.”The interested
reader is referred to this text for additional details and examples [Barrett and Pack]. We present three
important processes associated with the ADC: sampling, quantization, and encoding.

Sampling. We first start with the subject of sampling. Sampling is the process of taking ‘snap
shots’ of a signal over time. When we sample a signal, we want to sample it in an optimal fashion such
that we can capture the essence of the signal while minimizing the use of resources. In essence, we
want to minimize the number of samples while retaining the capability to faithfully reconstruct the
original signal from the samples. Intuitively, the rate of change in a signal determines the number of
samples required to faithfully reconstruct the signal, provided that all adjacent samples are captured
with the same sample timing intervals.

Sampling is important since when we want to represent an analog signal in a digital system,
such as a computer, we must use the appropriate sampling rate to capture the analog signal for a
faithful representation in digital systems. Harry Nyquist from Bell Laboratory studied the sampling
process and derived a criterion that determines the minimum sampling rate for any continuous
analog signals. His, now famous, minimum sampling rate is known as the Nyquist sampling rate,
which states that one must sample a signal at least twice as fast as the highest frequency content
of the signal of interest. For example, if we are dealing with the human voice signal that contains
frequency components that span from about 20 Hz to 4 kHz, the Nyquist sample theorem requires
that we must sample the signal at least at 8 kHz, 8000 ‘snap shots’ every second. Engineers who work
for telephone companies must deal with such issues. For further study on the Nyquist sampling rate,
refer to Pack and Barrett listed in the References section.

When a signal is sampled a low pass anti–aliasing filter must be employed to insure the Nyquist
sampling rate is not violated. In the example above, a low pass filter with a cutoff frequency of 4
KHz would be used before the sampling circuitry for this purpose.

5.2. SAMPLING, QUANTIZATION AND ENCODING 165

Quantization. Now that we understand the sampling process, let’s move on to the second
process of the analog–to–digital conversion, quantization. Each digital system has a number of bits it
uses as the basic unit to represent data. A bit is the most basic unit where single binary information,
one or zero, is represented. A nibble is made up of four bits put together. A byte is eight bits.

We have tacitly avoided the discussion of the form of captured signal samples. When a signal
is sampled, digital systems need some means to represent the captured samples. The quantization
of a sampled signal is how the signal is represented as one of the quantization levels. Suppose you
have a single bit to represent an incoming signal. You only have two different numbers, 0 and 1. You
may say that you can distinguish only low from high. Suppose you have two bits. You can represent
four different levels, 00, 01, 10, and 11. What if you have three bits? You now can represent eight
different levels: 000, 001, 010, 011, 100, 101, 110, and 111. Think of it as follows. When you had
two bits, you were able to represent four different levels. If we add one more bit, that bit can be one
or zero, making the total possibilities eight. Similar discussion can lead us to conclude that given n
bits, we have 2n unique numbers or levels one can represent.

Figure 5.1 shows how n bits are used to quantize a range of values. In many digital systems,
the incoming signals are voltage signals. The voltage signals are first obtained from physical signals
(pressure, temperature, etc.) with the help of transducers, such as microphones, angle sensors, and
infrared sensors.The voltage signals are then conditioned to map their range with the input range of
a digital system, typically 0 to 5 volts. In Figure 5.1, n bits allow you to divide the input signal range
of a digital system into 2n different quantization levels. As can be seen from the figure, the more
quantization levels means the better mapping of an incoming signal to its true value. If we only had
a single bit, we can only represent level 0 and level 1. Any analog signal value in between the range
had to be mapped either as level 0 or level 1, not many choices. Now imagine what happens as we
increase the number of bits available for the quantization levels. What happens when the available
number of bits is 8? How many different quantization levels are available now? Yes, 256. How about
10, 12, or 14? Notice also that as the number of bits used for the quantization levels increases for a
given input range the ‘distance’ between two adjacent levels decreases accordingly.

Finally, the encoding process involves converting a quantized signal into a digital binary num-
ber. Suppose again we are using eight bits to quantize a sampled analog signal. The quantization
levels are determined by the eight bits and each sampled signal is quantized as one of 256 quanti-
zation levels. Consider the two sampled signals shown in Figure 5.1. The first sample is mapped to
quantization level 2 and the second one is mapped to quantization level 198. Note the amount of
quantization error introduced for both samples. The quantization error is inversely proportional to
the number of bits used to quantize the signal.

Encoding. Once a sampled signal is quantized, the encoding process involves representing
the quantization level with the available bits. Thus, for the first sample, the encoded sampled value
is 0000_0001, while the encoded sampled value for the second sample is 1100_0110. As a result of
the encoding process, sampled analog signals are now represented as a set of binary numbers. Thus,

166 5. ANALOG TO DIGITAL CONVERSION (ADC)

�������	
���
��
�	���

�������	
���
��
�	����

�������	�����	�

�������	�����	�
�����	���

������
������

�����	�	�	��
����	�����
����	����

�����	���	�	��
����	�����
����	����

��� !�	"	�#��
������	����

Figure 5.1: Sampling, quantization, and encoding.

the encoding is the last necessary step to represent a sampled analog signal into its corresponding
digital form, shown in Figure 5.1.

5.2.1 RESOLUTION AND DATA RATE
Resolution. Resolution is a measure used to quantize an analog signal. In fact, resolution is noth-
ing more than the voltage ‘distance’ between two adjacent quantization levels we discussed earlier.
Suppose again we have a range of 5 volts and one bit to represent an analog signal. The resolution
in this case is 2.5 volts, a very poor resolution. You can imagine how your TV screen will look if you
only had only two levels to represent each pixel, black and white. The maximum error, called the
resolution error, is 2.5 volts for the current case, 50 % of the total range of the input signal. Suppose
you now have four bits to represent quantization levels.The resolution now becomes 1.25 volts or 25
% of the input range. Suppose you have 20 bits for quantization levels. The resolution now becomes
4.77 × 10−6 volts, 9.54 × 10−5% of the total range. The discussion we presented simply illustrates
that as we increase the available number of quantization levels within a fixed voltage range, the
distance between adjacent levels decreases, reducing the quantization error of a sampled signal. As
the number grows, the error decreases, making the representation of a sampled analog signal more
accurate in the corresponding digital form. The number of bits used for the quantization is directly
proportional to the resolution of a system. You now should understand the technical background
when you watch high definition television broadcasting. In general, resolution may be defined as:

resolution = (voltage span)/2b = (Vref high − Vref low)/2b

5.3. ANALOG–TO–DIGITAL CONVERSION (ADC) PROCESS 167

for the ATmega328, the resolution is:

resolution = (5 − 0)/210 = 4.88 mV

Data rate.The definition of the data rate is the amount of data generated by a system per some
time unit. Typically, the number of bits or the number of bytes per second is used as the data rate of
a system. We just saw that the more bits we use for the quantization levels, the more accurate we can
represent a sampled analog signal.Why not use the maximum number of bits current technologies can
offer for all digital systems, when we convert analog signals to digital counterparts? It has to do with
the cost involved. In particular, suppose you are working for a telephone company and your switching
system must accommodate 100,000 customers. For each individual phone conversation, suppose the
company uses an 8KHz sampling rate (fs) and you are using 10 bits for the quantization levels for
each sampled signal.1 This means the voice conversation will be sampled every 125 microseconds
(Ts) due to the reciprocal relationship between (fs) and (Ts). If all customers are making out of
town calls, what is the number of bits your switching system must process to accommodate all calls?
The answer will be 100,000 x 8000 x 10 or eight billion bits per every second! You will need some
major computing power to meet the requirement for processing and storage of the data. For such
reasons, when designers make decisions on the number of bits used for the quantization levels and
the sampling rate, they must consider the computational burden the selection will produce on the
computational capabilities of a digital system versus the required system resolution.

Dynamic range. You will also encounter the term “dynamic range” when you consider finding
appropriate analog–to–digital converters.The dynamic range is a measure used to describe the signal
to noise ratio. The unit used for the measurement is Decibel (dB), which is the strength of a signal
with respect to a reference signal. The greater the dB number, the stronger the signal is compared to
a noise signal. The definition of the dynamic range is 20 log 2b where b is the number of bits used
to convert analog signals to digital signals. Typically, you will find 8 to 12 bits used in commercial
analog–to–digital converters, translating the dynamic range from 20 log 28 dB to 20 log 212 dB.

5.3 ANALOG–TO–DIGITAL CONVERSION (ADC) PROCESS
The goal of the ADC process is to accurately represent analog signals as digital signals. Toward
this end, three signal processing procedures, sampling, quantization, and encoding, described in the
previous section must be combined together. Before the ADC process takes place, we first need
to convert a physical signal into an electrical signal with the help of a transducer. A transducer
is an electrical and/or mechanical system that converts physical signals into electrical signals or
electrical signals to physical signals. Depending on the purpose, we categorize a transducer as an
input transducer or an output transducer. If the conversion is from physical to electrical, we call it an
input transducer. The mouse, the keyboard, and the microphone for your personal computer all fall
under this category. A camera, an infrared sensor, and a temperature sensor are also input transducers.
1For the sake of our discussion, we ignore other overheads involved in processing a phone call such as multiplexing, de–multiplexing,
and serial–to–parallel conversion.

168 5. ANALOG TO DIGITAL CONVERSION (ADC)

The output transducer converts electrical signals to physical signals. The computer screen and the
printer for your computer are output transducers. Speakers and electrical motors are also output
transducers.Therefore, transducers play the central part for digital systems to operate in our physical
world by transforming physical signals to and from electrical signals. It is important to carefully
design the interface between transducers and the microcontroller to insure proper operation. A
poorly designed interface could result in improper embedded system operation or failure. Interface
techniques are discussed in detail in Chapter 8.

5.3.1 TRANSDUCER INTERFACE DESIGN (TID) CIRCUIT
In addition to transducers, we also need a signal conditioning circuitry before we apply the ADC.
The signal conditioning circuitry is called the transducer interface. The objective of the transducer
interface circuit is to scale and shift the electrical signal range to map the output of the input
transducer to the input range of the analog–to–digital converter which is typically 0 to 5 VDC.
Figure 5.2 shows the transducer interface circuit using an input transducer.

$����	!
�����
�

%

�&'	$����

(

�
���

)��������

�(���

*��+

*���

����+

�����

����+

�����

Figure 5.2: A block diagram of the signal conditioning for an analog–to–digital converter. The range of
the sensor voltage output is mapped to the analog–to–digital converter input voltage range. The scalar
multiplier maps the magnitudes of the two ranges and the bias voltage is used to align two limits.

The output of the input transducer is first scaled by constant K. In the figure, we use a
microphone as the input transducer whose output ranges from -5 VDC to + 5 VDC. The input
to the analog–to–digital converter ranges from 0 VDC to 5 VDC. The box with constant K maps
the output range of the input transducer to the input range of the converter. Naturally, we need to
multiply all input signals by 1/2 to accommodate the mapping. Once the range has been mapped,
the signal now needs to be shifted. Note that the scale factor maps the output range of the input
transducer as -2.5 VDC to +2.5 VDC instead of 0 VDC to 5 VDC.The second portion of the circuit
shifts the range by 2.5 VDC, thereby completing the correct mapping. Actual implementation of
the TID circuit components is accomplished using operational amplifiers.

In general, the scaling and bias process may be described by two equations:

V2max = (V1max × K) + B

5.3. ANALOG–TO–DIGITAL CONVERSION (ADC) PROCESS 169

V2min = (V1min × K) + B

The variable V1max represents the maximum output voltage from the input transducer. This
voltage occurs when the maximum physical variable (Xmax) is presented to the input transducer.
This voltage must be scaled by the scalar multiplier (K) and then have a DC offset bias voltage (B)
added to provide the voltage V2max to the input of the ADC converter [USAFA].

Similarly, The variable V1min represents the minimum output voltage from the input trans-
ducer. This voltage occurs when the minimum physical variable (Xmin) is presented to the input
transducer. This voltage must be scaled by the scalar multiplier (K) and then have a DC offset bias
voltage (B) added to produce voltage V2min to the input of the ADC converter.

Usually, the values of V1max and V1min are provided with the documentation for the transducer.
Also, the values of V2max and V2min are known. They are the high and low reference voltages for
the ADC system (usually 5 VDC and 0 VDC for a microcontroller). We thus have two equations
and two unknowns to solve for K and B. The circuits to scale by K and add the offset B are usually
implemented with operational amplifiers.

Example: A photodiode is a semiconductor device that provides an output current corre-
sponding to the light impinging on its active surface.The photodiode is used with a transimpedance
amplifier to convert the output current to an output voltage. A photodiode/transimpedance ampli-
fier provides an output voltage of 0 volts for maximum rated light intensity and -2.50 VDC output
voltage for the minimum rated light intensity. Calculate the required values of K and B for this light
transducer so it may be interfaced to a microcontroller’s ADC system.

V2max = (V1max × K) + B

V2min = (V1min × K) + B

5.0 V = (0 V × K) + B

0 V = (−2.50 V × K) + B

The values of K and B may then be determined to be 2 and 5 VDC, respectively.

5.3.2 OPERATIONAL AMPLIFIERS
In the previous section, we discussed the transducer interface design (TID) process. Going through
this design process yields a required value of gain (K) and DC bias (B). Operational amplifiers
(op amps) are typically used to implement a TID interface. In this section, we briefly introduce
operational amplifiers including ideal op amp characteristics, classic op amp circuit configurations,
and an example to illustrate how to implement a TID with op amps. Op amps are also used in a

170 5. ANALOG TO DIGITAL CONVERSION (ADC)

wide variety of other applications including analog computing, analog filter design, and a myriad
of other applications. We do not have the space to investigate all of these related applications. The
interested reader is referred to the References section at the end of the chapter for pointers to some
excellent texts on this topic.

5.3.2.1 The ideal operational amplifier
A generic ideal operational amplifier is illustrated in Figure 5.3. An ideal operational does not exist
in the real world. However, it is a good first approximation for use in developing op amp application
circuits.

-

+

Vcc

-Vcc

Vn

Vp

Vo = Avol (Vp - Vn)

In

Ip

Ideal conditions:

-- In = Ip = 0

-- Vp = Vn

-- Avol >> 50,000

-- Vo = Avol (Vp - Vn)

Vo

Vi = Vp - Vn

Vcc

-Vcc

saturation

saturation

linear region

Figure 5.3: Ideal operational amplifier characteristics.

The op amp is an active device (requires power supplies) equipped with two inputs, a single
output, and several voltage source inputs.The two inputs are labeled Vp, or the non–inverting input,
and Vn, the inverting input. The output of the op amp is determined by taking the difference
between Vp and Vn and multiplying the difference by the open loop gain (Avol) of the op amp
which is typically a large value much greater than 50,000. Due to the large value of Avol , it does not
take much of a difference between Vp and Vn before the op amp will saturate. When an op amp
saturates, it does not damage the op amp, but the output is limited to the supply voltages ±Vcc.
This will clip the output, and hence distort the signal, at levels slightly less than ±Vcc. Op amps
are typically used in a closed loop, negative feedback configuration. A sample of classic operational
amplifier configurations with negative feedback are provided in Figure 5.4 [Faulkenberry].

It should be emphasized that the equations provided with each operational amplifier circuit
are only valid if the circuit configurations are identical to those shown. Even a slight variation in the
circuit configuration may have a dramatic effect on circuit operation. It is important to analyze each
operational amplifier circuit using the following steps:

5.3. ANALOG–TO–DIGITAL CONVERSION (ADC) PROCESS 171

+Vcc

-Vcc

-

+
Vout = - (Rf / Ri)(Vin)Vin

Rf

Ri

a) Inverting amplifier

+Vcc

-Vcc

-

+
Vout = ((Rf + Ri)/Ri)(Vin)

Rf

Ri

Vin

c) Non-inverting amplifier

+Vcc

-Vcc

-

+
Vout = Vin

Vin

b) Voltage follower

+Vcc

-Vcc

-

+
Vout = (Rf/Ri)(V2 -V1)

RfRi

d) Differential input amplifier
Ri Rf

V2

V1

+Vcc

-Vcc

-

+
Vout = - (Rf / R1)(V1)

- (Rf / R2)(V2)

- (Rf / R3)(V3)

RfR1

e) Scaling adder amplifier

R2

R3

V1

V2

V3

+Vcc

-Vcc

-

+
Vout = - (I Rf)

Rf

f) Transimpedance amplifier

(current-to-voltage converter)

I

+Vcc

-Vcc

-

+
Vout = - Rf C (dVin/dt)Vin

Rf

g) Differentiator

C +Vcc

-Vcc

-

+
Vout = - 1/(Rf C) (Vindt)Vin

Rf

h) Integrator

C

Figure 5.4: Classic operational amplifier configurations. Adapted from [Faulkenberry].

172 5. ANALOG TO DIGITAL CONVERSION (ADC)

• Write the node equation at Vn for the circuit.

• Apply ideal op amp characteristics to the node equation.

• Solve the node equation for Vo.

As an example, we provide the analysis of the non–inverting amplifier circuit in Figure 5.5.
This same analysis technique may be applied to all of the circuits in Figure 5.4 to arrive at the
equations for Vout provided.

-

+

+Vcc

-Vcc

Vin

Rf

Ri

Vout

In

Ip

Vn

Vp

Node equation at Vn:

(Vn - Vin)/ Ri + (Vn - Vout)/Rf + In = 0

Apply ideal conditions:

In = Ip = 0

Vn = Vp = 0 (since Vp is grounded)

Solve node equation for Vout:

Vout = - (Rf / Ri)(Vin)

Figure 5.5: Operational amplifier analysis for the non–inverting amplifier.Adapted from [Faulkenberry].

Example: In the previous section, it was determined that the values of K and B were 2 and 5
VDC, respectively. The two–stage op amp circuitry provided in Figure 5.6 implements these values
of K and B. The first stage provides an amplification of -2 due to the use of the non–inverting
amplifier configuration. In the second stage, a summing amplifier is used to add the output of the
first stage with a bias of − 5 VDC. Since this stage also introduces a minus sign to the result, the
overall result of a gain of 2 and a bias of +5 VDC is achieved.

5.4 ADC CONVERSION TECHNOLOGIES
The ATmega328 and the ATmega2560 use a successive–approximation converter technique to con-
vert an analog sample into a 10–bit digital representation. In this section, we will discuss this type
of conversion process. For a review of other converter techniques, the interested reader is referred to
“Atmel AVR Microcontroller Primer: Programming and Interfacing.” In certain applications, you
are required to use converter technologies external to the microcontroller.

5.4.1 SUCCESSIVE–APPROXIMATION
The ATmega328 and the ATmega2560 microcontrollers are equipped with a successive–
approximation ADC type converter. The successive–approximation technique uses a digital–to–

5.5. THE ATMEL ATMEGA328 AND ATMEGA2560 ADC SYSTEM 173

-

+

+Vcc

-Vcc

Vin

Rf = 20K

Ri = 10K

-

+

+Vcc

-Vcc

Rf = 10K

Ri = 10K

Vout

Ri = 10K

bias = 5 VDC

-Vcc

10K

Figure 5.6: Operational amplifier implementation of the transducer interface design (TID) example
circuit.

analog converter, a controller, and a comparator to perform the ADC process. Starting from the
most significant bit down to the least significant bit, the controller turns on each bit at a time and
generates an analog signal, with the help of the digital–to–analog converter, to be compared with the
original input analog signal. Based on the result of the comparison, the controller changes or leaves
the current bit and turns on the next most significant bit. The process continues until decisions are
made for all available bits. Figure 5.7 shows the architecture of this type of converter. The advantage
of this technique is that the conversion time is uniform for any input, but the disadvantage of the
technology is the use of complex hardware for implementation.

5.5 THE ATMEL ATMEGA328 AND ATMEGA2560 ADC
SYSTEM

The Atmel ATmega328 and the ATmega2560 microcontrollers are equipped with a flexible and
powerful ADC system. It has the following features [Atmel]:

• 10–bit resolution

• ±2 least significant bit (LSB) absolute accuracy

• 13 ADC clock cycle conversion time

• ATmega328: 6 multiplexed single ended input channels

• ATmega2560: 16 multiplexed single ended input channels

• Selectable right or left result justification

174 5. ANALOG TO DIGITAL CONVERSION (ADC)

������

���
��
�
������

������
�����	������

'����
���

'���
����

&����������������

����
��

��
���	�������	������

���
�
'����
����

��

����������
�+�������	
����
��

Figure 5.7: Successive-approximation ADC.

• 0 to Vcc ADC input voltage range

Let’s discuss each feature in turn. The first feature of discussion is “10–bit resolution.” Reso-
lution is defined as:

Resolution = (VRH − VRL)/2b

VRH and VRL are the ADC high and low reference voltages. Whereas, “b” is the number of
bits available for conversion. For the ATmega processor with reference voltages of 5 VDC, 0 VDC,
and 10–bits available for conversion, resolution is 4.88 mV. Absolute accuracy specified as ±2 LSB
is then ±9.76 mV at this resolution [Atmel].

It requires 13 analog–to–digital clock cycles to perform an ADC conversion. The ADC
system may be run at a slower clock frequency than the main microcontroller clock source. The
main microcontroller clock is divided down using the ADC Prescaler Select (ADPS[2:0]) bits in
the ADC Control and Status Register A (ADCSRA). A slower ADC clock results in improved
ADC accuracy at higher controller clock speeds.

The ADC is equipped with a single successive–approximation converter. Only a single ADC
channel may be converted at a given time. The input of the ADC is equipped with a multiple input
(ATmega328:6/Atemega2560:16) analog multiplexer. The analog input for conversion is selected
using the MUX[3:0] bits in the ADC Multiplexer Selection Register (ADMUX).

The 10–bit result from the conversion process is placed in the ADC Data Registers, ADCH
and ADCL. These two registers provide 16 bits for the 10–bit result. The result may be left justified
by setting the ADLAR (ADC Left Adjust Result) bit of the ADMUX register. Right justification
is provided by clearing this bit.

5.5. THE ATMEL ATMEGA328 AND ATMEGA2560 ADC SYSTEM 175

The analog input voltage for conversion must be between 0 and Vcc volts. If this is not the
case, external circuitry must be used to insure the analog input voltage is within these prescribed
bounds as discussed earlier in the chapter.

5.5.1 BLOCK DIAGRAM
The block diagram for the ATmega328 and ATmega2560 ADC conversion system is provided in
Figure 5.8. The left edge of the diagram provides the external microcontroller pins to gain access
to the ADC. For the ATmega328, the six analog input channels are provided at pins ADC[5:0];
whereas, for the ATmega2560 the sixteen analog input channels are provided at pins ADC[15:0].
The ADC reference voltage pins are provided at AREF and AVCC. The key features and registers
of the ADC system previously discussed are included in the diagram.

5.5.2 ATMEGA328 ADC REGISTERS
The key registers for the ATmega328 ADC system are shown in Figure 5.9. It must be emphasized
that the ADC system has many advanced capabilities that we do not discuss here. Our goal is to
review the basic ADC conversion features of this powerful system. We have already discussed many
of the register setting already. We will discuss each register in turn [Atmel].

5.5.2.1 ATmega328 ADC Multiplexer Selection Register (ADMUX)
As previously discussed, the ADMUX register contains the ADLAR bit to select left or right
justification and the MUX[3:0] bits to determine which analog input will be provided to the analog-
–to–digital converter for conversion. To select a specific input for conversion is accomplished when
a binary equivalent value is loaded into the MUX[3:0] bits. For example, to convert channel ADC7,
“0111” is loaded into the ADMUX register. This may be accomplished using the following C
instruction:
ADMUX = 0x07;

The REFS[1:0] bits of the ADMUX register are also used to determine the reference voltage
source for the ADC system. These bits may be set to the following values:

• REFS[0:0] = 00: AREF used for ADC voltage reference

• REFS[0:1] = 01: AVCC with external capacitor at the AREF pin

• REFS[1:0] = 10: Reserved

• REFS[1:1] = 11: Internal 1.1 VDC voltage reference with an external capacitor at the AREF
pin

5.5.2.2 ATmega328 ADC Control and Status Register A (ADCSRA)
The ADCSRA register contains the ADC Enable (ADEN) bit. This bit is the “on/off ” switch
for the ADC system. The ADC is turned on by setting this bit to a logic one. The ADC Start

176 5. ANALOG TO DIGITAL CONVERSION (ADC)

8-BIT DATA BUS

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL & STATUS
REGISTER (ADCSRA)

ADC DATA REGISTER
(ADCH/ADCL)

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS

ADTS[2:0]

15

START

0

MUX DECODER
PRESCALER

CONVERSION LOGIC

10-BIT DAG

SAMPLE & HOLD
COMPARATOR

-

-

+

+

TRIGGER
SELECT

INERNAL 2.56V
REFERENCE

BANDGAP
REFERENCE

POS.
INPUT
MUX

GAIN
AMPLIFIER

ADC MULTIPLEXER
OUTPUT

SINGLE ENDED / DIFFERENTIAL SELECTION

NEG.
INPUT
MUX

AVCC

AREF

GND

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
E

FS
1

A
E

FS
0

A
D

LA
R

A
D

IE

A
D

IF
A

D
IF

C
H

A
N

N
E

L
S

E
LE

C
TI

O
N

G
A

IN
 S

E
LE

C
TI

O
N

M
U

X
4

M
U

X
3

M
U

X
2

M
U

X
1

M
U

X
0

A
D

E
N

A
D

P
S

2

A
D

P
C

[E
:0

]

A
D

P
S

1

A
D

P
S

0

A
D

S
C

A
D

AT
E

Figure 5.8: Atmel AVR ATmega328 ADC block diagram. (Figure used with permission of Atmel,
Incorporated.)

5.5. THE ATMEL ATMEGA328 AND ATMEGA2560 ADC SYSTEM 177

ADC Multiplexer Selection Register - ADMUX

7 0

7 0

7 0

ADC Data Register - ADCH and ADCL (ADLAR = 0)

15 8

ADCH

ADCLADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

ADC9 ADC8--- --- --- --- --- ---

REFS1 REFS0 ADLAR MUX3 MUX2 MUX1 MUX0

ADC Control and Status Register A - ADCSRA

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

7 0

ADC Data Register - ADCH and ADCL (ADLAR = 1)

15 8

ADCH

ADCL

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

ADC1 ADC0

ADC9 ADC8

--- --- --- --- --- ---

Figure 5.9: ATmega328 ADC Registers. Adapted from Atmel.

Conversion (ADSC) bit is also contained in the ADCSRA register. Setting this bit to logic one
initiates an ADC. The ADCSRA register also contains the ADC Interrupt flag (ADIF) bit. This
bit sets to logic one when the ADC is complete. The ADIF bit is reset by writing a logic one to this
bit.

The ADC Prescaler Select (ADPS[2:0]) bits are used to set the ADC clock frequency. The
ADC clock is derived from dividing down the main microcontroller clock. The ADPS[2:0] may be
set to the following values:

• ADPS[2:0] = 000: division factor 2

• ADPS[2:0] = 001: division factor 2

• ADPS[2:0] = 010: division factor 4

• ADPS[2:0] = 011: division factor 8

• ADPS[2:0] = 100: division factor 16

• ADPS[2:0] = 101: division factor 32

178 5. ANALOG TO DIGITAL CONVERSION (ADC)

• ADPS[2:0] = 110: division factor 64

• ADPS[2:0] = 111: division factor 128

5.5.2.3 ATmega328 ADC Data Registers (ADCH, ADCL)
As previously discussed, the ADC Data Register contains the result of the ADC. The results may
be left (ADLAR=1) or right (ADLAR=0) justified.

5.5.3 ATMEGA2560 ADC REGISTERS
The key registers for the ATmega2560 ADC system are shown in Figure 5.10. It must be emphasized
that the ADC system has many advanced capabilities that we do not discuss here. Our goal is to
review the basic ADC conversion features of this powerful system. We have already discussed many
of the register setting already. We will discuss each register in turn [Atmel].

5.5.3.1 ATmega2560 ADC Multiplexer Selection Register (ADMUX)
As previously discussed, the ADMUX register contains the ADLAR bit to select left or right
justification and the MUX[4:0] bits to determine which analog input will be provided to the analog-
–to–digital converter for conversion. There is another MUX bit (MUX5) contained in the ADC
Control and Status Register B (ADCSRB).

There is a wide variety of single–ended, differential input, and gain combinations that may be
selected for ADC conversion. Complete details are provided in the ATmega2560 data sheet (www.
atmel.com). For example, to select a specific single–ended input (0 through 7) for conversion, the
binary equivalent value of the channel number is loaded into the MUX[5:0] bits. For example, to
convert channel ADC7, “00_0111” is loaded into the ADMUX register and the MUX5 bit of the
ADCSRB register. This may be accomplished using the following C instructions:
ADMUX = 0x07;
ADCSRB = 0x00;

For a single–ended conversion on ADC channels 8 through 15, the following bits must be
loaded to ADMUX bits 5 to 0:

• ADC 8: 10_0000

• ADC 9: 10_0001

• ADC 10: 10_0010

• ADC 11: 10_0011

• ADC 12: 10_0100

• ADC 13: 10_0101

• ADC 14: 10_0110

www.atmel.com
www.atmel.com

5.5. THE ATMEL ATMEGA328 AND ATMEGA2560 ADC SYSTEM 179

ADC Multiplexer Selection Register - ADMUX

7 0

7 0

ADC Control and Status Register A - ADCSRA

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

REFS1 REFS0 ADLAR MUX3 MUX2 MUX1 MUX0MUX4

7 0

ADC Data Register - ADCH and ADCL (ADLAR = 0)

15 8

ADCH

ADCLADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

ADC9 ADC8--- --- --- --- --- ---

7 0

ADC Data Register - ADCH and ADCL (ADLAR = 1)

15 8

ADCH

ADCL

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

ADC1 ADC0

ADC9 ADC8

--- --- --- --- --- ---

7 0

ADC Control and Sta tus Registe r B - ADCSRB

--- ACME --- --- MUX5 ADTS2 ADTS1 ADTS0

Figure 5.10: ATmega2560 ADC Registers. Adapted from Atmel.

• ADC 15: 10_0111

For example, to convert channel ADC8, “10_0000” is loaded into the ADMUX register
and the MUX5 bit of the ADCSRB register. This may be accomplished using the following C
instructions:
ADMUX = 0x00;
ADCSRB = 0x08;

The REFS[1:0] bits of the ADMUX register are also used to determine the reference voltage
source for the ADC system. These bits may be set to the following values:

• REFS[0:0] = 00: AREF used for ADC voltage reference

• REFS[0:1] = 01: AVCC with external capacitor at the AREF pin

180 5. ANALOG TO DIGITAL CONVERSION (ADC)

• REFS[1:0] = 10: Reserved

• REFS[1:1] = 11: Internal 1.1 VDC voltage reference with an external capacitor at the AREF
pin

5.5.3.2 ATmega2560 ADC Control and Status Register A (ADCSRA)
The ADCSRA register contains the ADC Enable (ADEN) bit. This bit is the “on/off ” switch
for the ADC system. The ADC is turned on by setting this bit to a logic one. The ADC Start
Conversion (ADSC) bit is also contained in the ADCSRA register. Setting this bit to logic one
initiates an ADC. The ADCSRA register also contains the ADC Interrupt flag (ADIF) bit. This
bit sets to logic one when the ADC is complete. The ADIF bit is reset by writing a logic one to this
bit.

The ADC Prescaler Select (ADPS[2:0]) bits are used to set the ADC clock frequency. The
ADC clock is derived from dividing down the main microcontroller clock. The ADPS[2:0] may be
set to the following values:

• ADPS[2:0] = 000: division factor 2

• ADPS[2:0] = 001: division factor 2

• ADPS[2:0] = 010: division factor 4

• ADPS[2:0] = 011: division factor 8

• ADPS[2:0] = 100: division factor 16

• ADPS[2:0] = 101: division factor 32

• ADPS[2:0] = 110: division factor 64

• ADPS[2:0] = 111: division factor 128

5.5.3.3 ATmega2560 ADC Data Registers (ADCH, ADCL)
As previously discussed, the ADC Data Register contains the result of the ADC. The results may
be left (ADLAR=1) or right (ADLAR=0) justified.

5.6 PROGRAMMING THE ADC USING THE ARDUINO
DEVELOPMENT ENVIRONMENT

The Arduino Development Environment has the built–in function analogRead to perform an ADC
conversion. The format for the analogRead function is:
unsigned int return_value;

return_value = analogRead(analog_pin_read);

5.7. ATMEGA328: PROGRAMMING THE ADC IN C 181

The function returns an unsigned integer value from 0 to 1023, corresponding to the voltage
span from 0 to 5 VDC.

Recall that we introduced the use of this function in the Application section at the end of
Chapter 3. The analogRead function was used to read the analog output values from the three IR
sensors on the Blinky 602A robot.

5.7 ATMEGA328: PROGRAMMING THE ADC IN C
Provided below are two functions to operate the ATmega328 ADC system. The first function
“InitADC()” initializes the ADC by first performing a dummy conversion on channel 0. In this
particular example, the ADC prescalar is set to 8 (the main microcontroller clock was operating at
10 MHz).

The function then enters a while loop waiting for the ADIF bit to set indicating the conversion
is complete. After conversion the ADIF bit is reset by writing a logic one to it.

The second function, “ReadADC(unsigned char),” is used to read the analog voltage from the
specified ADC channel. The desired channel for conversion is passed in as an unsigned character
variable. The result is returned as a left justified, 10 bit binary result. The ADC prescalar must be set
to 8 to slow down the ADC clock at higher external clock frequencies (10 MHz) to obtain accurate
results. After the ADC is complete, the results in the eight bit ADCL and ADCH result registers
are concatenated into a 16–bit unsigned integer variable and returned to the function call.
//***
//InitADC: initialize analog-to-digital converter
//***

void InitADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st dummy

//conversion

//Set ADC module prescalar to 8

//critical for accurate ADC results
while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
}

//***
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned

182 5. ANALOG TO DIGITAL CONVERSION (ADC)

//character variable.
//The result is returned as a right justified, 10 bit binary result.
//The ADC prescalar must be set to 8 to slow down the ADC clock at higher
//external clock frequencies (10 MHz) to obtain accurate results.
//***

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;

//weighted binary voltage
unsigned int binary_weighted_voltage_high;

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set the bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits first (important)

//Read 2 high bits, multiply by 256
binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//***

5.8 ATMEGA2560: PROGRAMMING THE ADC IN C
Provided below are two functions to operate the ATmega2560 ADC system. The first function
“InitADC()” initializes the ADC by first performing a dummy conversion on channel 0. In this
particular example, the ADC prescalar is set to 8 (the main microcontroller clock was operating at
10 MHz).

The function then enters a while loop waiting for the ADIF bit to set indicating the conversion
is complete. After conversion the ADIF bit is reset by writing a logic one to it.

The second function, “ReadADC(unsigned char),” is used to read the analog voltage from the
specified ADC channel. The desired channel for conversion is passed in as an unsigned character

5.8. ATMEGA2560: PROGRAMMING THE ADC IN C 183

variable. The result is returned as a left justified, 10 bit binary result. The ADC prescalar must be set
to 8 to slow down the ADC clock at higher external clock frequencies (10 MHz) to obtain accurate
results. After the ADC is complete, the results in the eight bit ADCL and ADCH result registers
are concatenated into a 16–bit unsigned integer variable and returned to the function call.
//***
//InitADC: initialize analog-to-digital converter
//***

void InitADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st dummy

//conversion

//Set ADC module prescalar to 8

//critical for accurate ADC results
while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
}

//***
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned
//character variable.
//The result is returned as a right justified, 10 bit binary result.
//The ADC prescalar must be set to 8 to slow down the ADC clock at higher
//external clock frequencies (10 MHz) to obtain accurate results.
//***

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;

//weighted binary voltage
unsigned int binary_weighted_voltage_high;

if(channel <= 7)
{

184 5. ANALOG TO DIGITAL CONVERSION (ADC)

ADMUX = channel; //Select channel
ADCSRB = 0x00; //Configure ADMUX[5]
}

else
{
channel = (unsigned char)(channel - 8);
ADMUX = channel;
ADCSRB = 0x08; //Configure ADMUX[5]
}

ADCSRA |= 0x43; //Start conversion
//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set the bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits first (important)

//Read 2 high bits, multiply by 256
binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//***

5.9 EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE
ARDUINO UNO R3

In this example, we construct a rain gage type level display using small light emitting diodes. The
rain gage indicator consists of a panel of eight light emitting diodes. The gage may be constructed
from individual diodes or from an LED bar containing eight elements. Whichever style is chosen,
the interface requirements between the processor and the LEDs are the same.

The requirement for this project is to use the analog–to–digital converter to illuminate up to
eight LEDs based on the input voltage. A 10k trimmer potentiometer is connected to the ADC
channel to vary the input voltage. We first provide a solution using the Arduino Development Envi-
ronment with the Arduino UNO R3 processing board. Then a solution employing the ATmega328
programmed in C is provided.

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 185

5.9.1 ADC RAIN GAGE INDICATOR USING THE ARDUINO
DEVELOPMENT ENVIRONMENT

The circuit configuration employing the Arduino UNO R3 processing board is provided in Figure
5.11. The DIGITAL pins of the microcontroller are used to communicate with the LED interface
circuit. We describe the operation of the LED interface circuit in Chapter 8.

The sketch to implement the project requirements is provided below. As in previous examples,
we define the Arduino UNO R3 pins, set them for output via the setup() function, and write the
loop() function. In this example, the loop() function senses the voltage from the 10K trimmer
potentiometer and illuminates a series of LEDs corresponding to the sensed voltage levels.

//***
#define trim_pot A0 //analog input pin

//digital output pins
//LED indicators 0 - 7

#define LED0 0 //digital pin
#define LED1 1 //digital pin
#define LED2 2 //digital pin
#define LED3 3 //digital pin
#define LED4 4 //digital pin
#define LED5 5 //digital pin
#define LED6 6 //digital pin
#define LED7 7 //digital pin

int trim_pot_reading; //declare variable for trim pot

void setup()
{

//LED indicators - wall detectors
pinMode(LED0, OUTPUT); //configure pin 0 for digital output
pinMode(LED1, OUTPUT); //configure pin 1 for digital output
pinMode(LED2, OUTPUT); //configure pin 2 for digital output
pinMode(LED3, OUTPUT); //configure pin 3 for digital output
pinMode(LED4, OUTPUT); //configure pin 4 for digital output
pinMode(LED5, OUTPUT); //configure pin 5 for digital output
pinMode(LED6, OUTPUT); //configure pin 6 for digital output
pinMode(LED7, OUTPUT); //configure pin 7 for digital output
}

186 5. ANALOG TO DIGITAL CONVERSION (ADC)

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

Vcc = 5 V

10K

�����
���	
����

 � � � � �

�
�
�
�
�
�

�
� � � � � � � � �

������	

�������
��
���

Figure 5.11: ADC with rain gage level indicator.

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 187

void loop()
{

//read analog output from trim pot
trim_pot_reading = analogRead(trim_pot);

if(trim_pot_reading < 128)
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, LOW);
digitalWrite(LED2, LOW);
digitalWrite(LED3, LOW);
digitalWrite(LED4, LOW);
digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW);
digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 256)
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, LOW);
digitalWrite(LED3, LOW);
digitalWrite(LED4, LOW);
digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW);
digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 384)
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
digitalWrite(LED3, LOW);
digitalWrite(LED4, LOW);
digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW);
digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 512)

188 5. ANALOG TO DIGITAL CONVERSION (ADC)

{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
digitalWrite(LED3, HIGH);
digitalWrite(LED4, LOW);
digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW);
digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 640)
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH);
digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW);
digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 768)
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH);
digitalWrite(LED5, HIGH);
digitalWrite(LED6, LOW);
digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 896)
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH);

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 189

digitalWrite(LED5, HIGH);
digitalWrite(LED6, HIGH);
digitalWrite(LED7, LOW);

}
else
{
digitalWrite(LED0, HIGH);
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH);
digitalWrite(LED5, HIGH);
digitalWrite(LED6, HIGH);
digitalWrite(LED7, HIGH);

}
delay(500); //delay 500 ms
}

//***

5.9.2 ADC RAIN GAGE INDICATOR IN C
We now implement the rain gage indicator with the control algorithm (sketch) programmed in
C for the ATmega328. The circuit configuration employing the ATmega328 is provided in Figure
5.12. PORT D of the microcontroller is used to communicate with the LED interface circuit. In
this example, we extend the requirements of the project:

• Write a function to display an incrementing binary count from 0 to 255 on the LEDs.

• Write a function to display a decrementing binary count from 255 to 0 on the LEDs.

• Use the analog–to–digital converter to illuminate up to eight LEDs based on the input voltage.
A 10k trimmer potentiometer is connected to the ADC channel to vary the input voltage.

The algorithm for the project was written by Anthony (Tony) Kunkel, MSEE and Geoff
Luke, MSEE, at the University of Wyoming for an Industrial Controls class assignment. A 30 ms
delay is provided between PORTD LED display updates. This prevents the display from looking as
a series of LEDs that are always illuminated.

Note: The delay function provided in this example is not very accurate. It is based on counting
the number of assembly language no operation (NOPs). If a single NOP requires a single clock cycle

190 5. ANALOG TO DIGITAL CONVERSION (ADC)

VDD

1M

1.0 uF
VDD sys reset

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

220

Vcc = 5 V

10K
2N2222

Vcc = 5 V

10K

1 PUR - PC6

2 RXD1 - PD0

3 TXD1 - PD1

4 PD2

5 PD3

6 PD4

7 Vcc

8 GND

9 PB6

10 PB7

11 PD5

12 PD6

13 PD7

14 PB0

PC5 28

PC4 27

PC3 26

PC2 25

PC1 24

PCO 23

GND 22

AREF 21

AVCC 20

PB5 19

PB4 18

PB3 17

PB2 16

PB1 15

Atmega328

Figure 5.12: ADC with rain gage level indicator.

to execute. A rough (and inaccurate) estimation of expended time may be calculated. The actual
delay depends on the specific resolution of clock source used with the microcontroller, the clock
frequency of the clock source and the specific compiler used to implement the code. In this specific
example an accurate delay is not required since we are simply trying to slow down the code execution
time so the LED changes may be observed. In the next chapter we provide a more accurate method
of providing a time delay based on counting interrupts.

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 191

//***
//Tony Kunkel and Geoff Luke
//University of Wyoming
//***
//This program calls four functions:
//First: Display an incrementing binary count on PORTD from 0-255
//Second: Display a decrementing count on PORTD from 255-0
//Third: Display rain gauge info on PORTD
//Fourth: Delay when ever PORTD is updated
//***

//ATMEL register definitions for ATmega328
#include<iom328pv.h>

//function prototypes
void display_increment(void); //Function
to display increment to PORTD
void display_decrement(void); //Function
to display decrement to PORTD
void rain_gage(void)
void InitADC(void); //Initialize ADC converter
unsigned int ReadADC(); //Read specified ADC channel
void delay(void); //Function to delay

//***

int main(void)
{
display_increment(); //Display incrementing binary on

//PORTD from 0-255
delay(); //Delay

display_decrement(); //Display decrementing binary on

//PORTD from 255-0
delay(); //Delay

InitADC();

192 5. ANALOG TO DIGITAL CONVERSION (ADC)

while(1)
{
rain_gage(); //Display gage info on PORTD
delay(); //Delay
}

return 0;
}

//***
//function definitions
//***

//***
//delay
//Note: The delay function provided in this example is not very accurate.
//It is based on counting the number of assembly language no operation
//(NOPs). If a single NOP requires a single clock cycle to execute. A
//rough (and inaccurate) estimation of expended time may be calculated.
//The actual delay depends on the specific resolution of clock source
//used with the microcontroller, the clock frequency of the clock source
//and the specific compiler used to implement the code. In this specific
//example an accurate delay is not required since we are simply trying to
//slow down the code execution time so the LED changes may be observed.
//***

void delay(void)
{
int i, k;

for(i=0; i<400; i++)
{
for(k=0; k<300; k++)

{
asm("nop"); //assembly language nop, requires 2 cycles
}

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 193

}
}

//***
//Displays incrementing binary count from 0 to 255
//***

void display_increment(void)
{
int i;
unsigned char j = 0x00;

DDRD = 0xFF; //set PORTD to output

for(i=0; i<255; i++)
{
j++; //increment j
PORTD = j; //assign j to data port
delay(); //wait
}

}

//***
//Displays decrementing binary count from 255 to 0
//***

void display_decrement(void)
{
int i;
unsigned char j = 0xFF;

DDRD = 0xFF; //set PORTD to output

for(i=0; i<256; i++)
{
j=(j-0x01); //decrement j by one
PORTD = j; //assign char j to data port
delay(); //wait
}

194 5. ANALOG TO DIGITAL CONVERSION (ADC)

}

//***
//Initializes ADC
//***

void InitADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start dummy conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
}

//***
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned
//character variable. The result is returned as a right justified,
//10 bit binary result.
//The ADC prescalar must be set to 8 to slow down the ADC clock at
//higher external clock frequencies (10 MHz) to obtain accurate results.
//***

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
unsigned int binary_weighted_voltage_high; //weighted binary voltage

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set the bit

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 195

binary_weighted_voltage_low = ADCL; //Read 8 low bits first-(important)
//Read 2 high bits, multiply by 256

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//***
//Displays voltage magnitude as LED level on PORTB
//***

void rain_gage(void)
{
unsigned int ADCValue;

ADCValue = readADC(0x00);

DDRD = 0xFF; //set PORTD to output

if(ADCValue < 128)
{
PORTD = 0x01;
}

else if(ADCValue < 256)
{
PORTD = 0x03;
}

else if(ADCValue < 384)
{
PORTD = 0x07;
}

else if(ADCValue < 512)
{
PORTD = 0x0F;
}

else if(ADCValue < 640)
{
PORTD = 0x1F;

196 5. ANALOG TO DIGITAL CONVERSION (ADC)

}
else if(ADCValue < 768)
{
PORTD = 0x3F;
}

else if(ADCValue < 896)
{
PORTD = 0x7F;
}

else
{
PORTD = 0xAA;
}

}
//***
//***

5.9.3 ADC RAIN GAGE USING THE ARDUINO DEVELOPMENT
ENVIRONMENT–REVISITED

If you carefully compare the two implementations of the rain gage indicator provided in the two pre-
vious examples, you will note that some activities are easier to perform in the Arduino Development
Environment while others are easier to accomplish in C. Is it possible to mix the two techniques for
a more efficient sketch? The answer is “yes!”

In this example, we revise the earlier Arduino Development Environment sketch using por-
tions of the original sketch with the ATmega328 control algorithm code to significantly shorten
the program. In particular, we will address PORTD directly in the sketch to shorten up the code
when the LEDs are illuminated. Recall in Chapter 1, we provided the open source schematic of
the Arduino UNO R3 processing board (Figure 1.7). Careful study of the schematic reveals that
DIGITAL pins 7 to 0 are connected to PORTD of the Arduino UNO R3 processing board. This
allows direct configuration of PORTD using C language constructs.

//***
#define trim_pot 0 //analog input pin

int trim_pot_reading; //declare variable for trim pot

void setup()
{
DDRD = 0xFF; //Set PORTD (DIGITAL pins 7 to 0)
} //as output

5.9. EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE ARDUINO UNO R3 197

void loop()
{

//read analog output from trim pot
trim_pot_reading = analogRead(trim_pot);

if(trim_pot_reading < 128)
{
PORTD = 0x01; //illuminate LED 0
}

else if(trim_pot_reading < 256)
{
PORTD = 0x03; //illuminate LED 0-1
}

else if(trim_pot_reading < 384)
{
PORTD = 0x07; //illuminate LED 0-2
}

else if(trim_pot_reading < 512)
{
PORTD = 0x0F; //illuminate LED 0-3
}

else if(trim_pot_reading < 640)
{
PORTD = 0x1F; //illuminate LED 0-4
}

else if(trim_pot_reading < 768)
{
PORTD = 0x3F; //illuminate LED 0-5
}

else if(trim_pot_reading < 896)
{
PORTD = 0x7F; //illuminate LED 0-6
}

else
{
PORTD = 0xFF; //illuminate LED 0-7
}

delay(500); //delay 500 ms

198 5. ANALOG TO DIGITAL CONVERSION (ADC)

}

//***

5.10 ONE–BIT ADC – THRESHOLD DETECTOR
A threshold detector circuit or comparator configuration contains an operational amplifier employed
in the open loop configuration. That is, no feedback is provided from the output back to the input
to limit gain. A threshold level is applied to one input of the op amp. This serves as a comparison
reference for the signal applied to the other input. The two inputs are constantly compared to one
another. When the input signal is greater than the set threshold value, the op amp will saturate
to a value slightly less than +Vcc as shown in Figure 5.13a). When the input signal falls below
the threshold the op amp will saturate at a voltage slightly greater than −Vcc. If a single–sided op
amp is used in the circuit (e.g., LM324), the −Vcc supply pin may be connected to ground. In this
configuration, the op map provides for a one–bit ADC circuit.

A bank of threshold detectors may be used to construct a multi–channel threshold detector
as shown in Figure 5.13c). This provides a flash converter type ADC. It is a hardware version
of a rain gage indicator. In Chapter 1, we provided a 14–channel version for use in a laboratory
instrumentation project.

5.11 DIGITAL–TO–ANALOG CONVERSION (DAC)
Once a signal is acquired to a digital system with the help of the analog–to digital conversion process
and has been processed, frequently the processed signal is converted back to another analog signal.
A simple example of such a conversion occurs in digital audio processing. Human voice is converted
to a digital signal, modified, processed, and converted back to an analog signal for people to hear.
The process to convert digital signals to analog signals is completed by a digital–to–analog converter.
The most commonly used technique to convert digital signals to analog signals is the summation
method shown in Figure 5.14.

With the summation method of digital–to–analog conversion, a digital signal, represented by
a set of ones and zeros, enters the digital–to–analog converter from the most significant bit to the
least significant bit. For each bit, a comparator checks its logic state, high or low, to produce a clean
digital bit, represented by a voltage level. Typically, in a microcontroller context, the voltage level is
+5 or 0 volts to represent logic one or logic zero, respectively. The voltage is then multiplied by a
scalar value based on its significant position of the digital signal as shown in Figure 5.14. Once all
bits for the signal have been processed, the resulting voltage levels are summed together to produce
the final analog voltage value. Notice that the production of a desired analog signal may involve
further signal conditioning such as a low pass filter to ‘smooth’ the quantized analog signal and a
transducer interface circuit to match the output of the digital–to–analog converter to the input of
an output transducer.

5.11. DIGITAL–TO–ANALOG CONVERSION (DAC) 199

Vo

Vi

Vcc saturation

saturation
-

+
+Vcc

+Vcc= 5 V

Vout

Vp

Vth

Vi

Vn

Vi > Vth

Vth

a) Threshold detector b) Transfer characteristic for threshold detector

c) 4-channel threshold detector

+5 VDC

+5 VDC(4)

(11)

(1)
(2)

(3)

(5)

(6)
(7)

(8)
(9)

(10)

(12)

(13)
(14)

+5 VDC

10K

10K

10K

10K

10K

220

220

220

220

voltage level

for comparison

1/5 supply

2/5 supply

3/5 supply

4/5 supply

threshold

detectors

small LED

small LED

small LED

small LED

Figure 5.13: One–bit ADC threshold detector.

5.11.1 DAC WITH THE ARDUINO DEVELOPMENT ENVIRONMENT
The analogWrite command within the Arduino Development Environment issues a signal from 0
to 5 VDC by sending a constant from 0 to 255 using pulse width modulation (PWM) techniques.
This signal, when properly filtered, serves as a DC signal. The Blinky 602A control sketch provided
in Chapter 3 used the analogWrite command to issue drive signals to the robot motors to navigate
the robot through the maze.

The form of the analogWrite command is the following:

200 5. ANALOG TO DIGITAL CONVERSION (ADC)

��

	�

!�"#$�$%��&

�'��(

�)�

�)�

�)�

�)��

$��*�

+�$�%�,*�
$�$-�.
&�.�$-

&!$-$�
"�-%�#-�*�&

Figure 5.14: A summation method to convert a digital signal into a quantized analog signal.Comparators
are used to clean up incoming signals and the resulting values are multiplied by a scalar multiplier and the
results are added to generate the output signal. For the final analog signal, the quantized analog signal
should be connected to a low pass filter followed by a transducer interface circuit.

analogWrite(output pin, value);

5.11.2 DAC WITH EXTERNAL CONVERTERS
A microcontroller can be equipped with a wide variety of DAC configurations including:

• Single channel, 8–bit DAC connected via a parallel port (e.g., Motorola MC1408P8)

• Quad channel, 8–bit DAC connected via a parallel port (e.g., Analog Devices AD7305)

• Quad channel, 8–bit DAC connected via the SPI (e.g., Analog Devices AD7304)

• Octal channel, 8–bit DAC connected via the SPI (e.g., Texas Instrument TLC5628)

Space does not allow an in depth look at each configuration, but we will examine theTLC5628
in more detail.

5.12. APPLICATION: ART PIECE ILLUMINATION SYSTEM – REVISITED 201

5.11.3 OCTAL CHANNEL, 8–BIT DAC VIA THE SPI
The Texas Instruments (TI) TLC5628 is an eight channel, 8–bit DAC connected to the microcon-
troller via the SPI. Reference Figure 5.15a). It has a wide range of features packed into a 16–pin
chip including [Texas Instrument]:

• Eight individual, 8–bit DAC channels,

• Operation from a single 5 VDC supply,

• Data load via the SPI interface,

• Programmable gain (1X or 2X), and

• A 12–bit command word to program each DAC.

Figure 5.15b) provides the interconnection between the ATmega328 and the TLC5628. The
ATmega328 SPI’s SCK line is connected to the TLC5628: the MOSI to the serial data line and
PORTB[2] to the Load line. As can be seen in the timing diagram, two sequential bytes are sent
from the ATmega328 to select the appropriate DAC channel and to provide updated data to the
DAC. The Load line is pulsed low to update the DAC. In this configuration, the LDAC line is tied
low. The function to transmit data to the DAC is left as an assignment for the reader at the end of
the chapter.

5.12 APPLICATION: ART PIECE ILLUMINATION SYSTEM –
REVISITED

In Chapter 2, we investigated an illumination system for a painting. The painting was to be illumi-
nated via high intensity white LEDs.The LEDs could be mounted in front of or behind the painting
as the artist desired. We equipped the lighting system with an IR sensor to detect the presence of
someone viewing the piece. We also wanted to adjust the intensity of the lighting based on how the
close viewer was to the art piece. A circuit diagram of the system is provided in Figure 5.16.

The Arduino Development Environment sketch to sense how away the viewer is and issue
a proportional intensity control signal to illuminate the LED is provided below. The analogRead
function is used to obtain the signal from the IR sensor. The analogWrite function is used to issue
a proportional signal.
//***

//analog input pins
#define viewer_sensor A5 //analog pin - left IR sensor

//digital output pins
#define illumination_output 0 //illumination output pin

202 5. ANALOG TO DIGITAL CONVERSION (ADC)

latch latch
DAC gain

buffer
RNG

buffer

latch latch
DAC gain

bufferRNG

buffer

DACA

DACE

REF1

REF2

serial interface

CLK

DATA
LOAD

D[7:0] RNGA[2:0]

LDAC

a) TLC5628 octal 8-bit DACs

A[2:0]

000

001

010

011

100

101

110

111

DAC Updated

DACA

DACB

DACC

DACD

DACE

DACF

DACG

DACH

D[7:0]

0000_0000

0000_0001

:

:

:

:

:

1111_1111

Output Voltage

GND

(1/256) x REF(1+RNG)

:

:

:

:

:

(255/256) x REF (1+RNG)

c) TLC5628 bit assignments.

A2 A1 A0 RNG D7 D6 D5 D4 D3 D2 D1 D0

SCK/CLK

MOSI/DATA

CLK

LOW

ATmega164/TLC5628

PORTB[2]/Load

CLK

LOW

b) TLC5628 timing diagram

Figure 5.15: Eight channel DAC. Adapted from [Texas Instrument].

5.12. APPLICATION: ART PIECE ILLUMINATION SYSTEM – REVISITED 203

�����
���	
����

 � � � � �

�
�
�
�
�
�

�
� � � � � � � � �

������	

�������
��
���

�����

��

�
�
������

� !

���"#�"��

������

Figure 5.16: IR sensor interface.

unsigned int viewer_sensor_reading; //current value of sensor output

void setup()
{
pinMode(illumination_output, OUTPUT); //config. pin 0 for dig. output
}

void loop()
{ //read analog output from

//IR sensors

204 5. ANALOG TO DIGITAL CONVERSION (ADC)

viewer_sensor_reading = analogRead(viewer_sensor);

if(viewer_sensor_reading < 128)
{
analogWrite(illumination_output,31); //0 (off) to 255 (full speed)
}

else if(viewer_sensor_reading < 256)
{
analogWrite(illumination_output,63); //0 (off) to 255 (full speed)
}

else if(viewer_sensor_reading < 384)
{
analogWrite(illumination_output,95); //0 (off) to 255 (full speed)
}

else if(viewer_sensor_reading < 512)
{
analogWrite(illumination_output,127); //0 (off) to 255 (full speed)
}

else if(viewer_sensor_reading < 640)
{
analogWrite(illumination_output,159); //0 (off) to 255 (full speed)
}

else if(viewer_sensor_reading < 768)
{
analogWrite(illumination_output,191); //0 (off) to 255 (full speed)
}

else if(viewer_sensor_reading < 896)
{
analogWrite(illumination_output,223); //0 (off) to 255 (full speed)
}

else
{
analogWrite(illumination_output,255); //0 (off) to 255 (full speed)
}

delay(500); //delay 500 ms
}

//***

5.13. ARDUINO MEGA 2560 EXAMPLE: KINESIOLOGY AND HEALTH LABORATORY 205

5.13 ARDUINO MEGA 2560 EXAMPLE: KINESIOLOGY AND
HEALTH LABORATORY INSTRUMENTATION

In this example an Arduino Mega 2560 is used to control a piece of laboratory equipment. The
Kinesiology and Health (KNH) Department required assistance in developing a piece of laboratory
research equipment. An overview of the equipment is provided in Figure 5.17. This example was
originally presented in “ Embedded Systems Design with the Atmel AVR Microcontroller [Barrett].”

The KNH researchers needed a display panel containing two columns of large (10 mm di-
ameter) red LEDs. The LEDs needed to be viewable at a distance of approximately 5 meters. The
right column of LEDs would indicate the desired level of exertion for the subject under test. This
LED array would be driven by an external signal generator using a low frequency ramp signal. The
left column of LEDs would indicate actual subject exertion level. This array would be driven by a
powered string potentiometer.

As its name implies, a string potentiometer is equipped with a string pull. The resistance
provided by the potentiometer is linearly related to the string displacement. Once powered, the
string pot provides an output voltage proportional to the string pull length. The end of the string
would be connected to a displacing arm on a piece of exercise equipment (e.g. a leg lift apparatus).

The following features were required:

• The ability to independently drive a total of 28 large (10 mm diameter) LEDs.

• An interface circuit to drive each LED.

• Two analog–to–digital channels to convert the respective string potentiometer and signal
generator inputs into digital signals.

• Input buffering circuitry to isolate and protect the panel from the string pot and signal generator
and to guard against accidental setting overload.

• An algorithm to link the analog input signals to the appropriate LED activation signals.

Due to the high number of output pins required to drive the LEDs, the Arduino Mega 2560
microcontroller is a good choice for this project. The overall project may be partitioned using the
structure chart illustrated in Figure 5.18.

The full up, two array, 14–bit output driving a total of 28 large LEDs circuit diagram is
provided in Figure 5.19. The LED circuit was described in detail in Chapter 4.

As shown in Figure 5.20, any rest period and exercise period may be selected by careful choice
of the signal parameters applied to the desired exertion array. In the example shown, a rest period of
2s and an exercise period of 1s are shown. To obtain this parameter setting, the signal generator is
set for a ramp signal with the parameters shown. The input protection circuitry limits the excursion
of the input signal to approximately 0 to 4 volts.

Provided below is the template for the KNH control software. The “analogRead” function
returns a value from 0 to 1023 as determined by the analog value read from 0 to 5 VDC.The 5 VDC

206 5. ANALOG TO DIGITAL CONVERSION (ADC)

desired exertion

actual
exertion

signal generator

string
potentiometerstring

movement

5 VDC

Figure 5.17: KNH project overview.

5.13. ARDUINO MEGA 2560 EXAMPLE: KINESIOLOGY AND HEALTH LABORATORY 207

KNH Array Panel

Left Panel
Actual Exertion

LED
interface ADC

buffer
amplifier

string
pot

Right Panel
Desired Exertion

LED
interface ADC

buffer
amplifier

input
protection

signal
generator

ADC

Determines LEDs

to illuminate

Illuminate

appropriate LEDs

Figure 5.18: UML activity diagram and structure chart for KNH arrays.

range has been divided into thirteen equal spans of 78 ADC levels each (1024/13 = 78). In the
code template, an LED is illuminated in each array corresponding to the analog value sensed from
the string potentiometer and the signal generator.

//***
//analog input pins

#define string_pot A0 //analog in - string potentiometer
#define signal_gen A1 //analog in - signal generator

//digital output pins
//LED array indicators
//string potentiometer array

#define string_pot_1 21 //digital pin - string pot 1
:
:

#define string_pot_14 34 //digital pin - string pot 14

208 5. ANALOG TO DIGITAL CONVERSION (ADC)

signal
generator

input

Schottky diode

4.7 VDC zener diode

input
protection

circuit

buffer
amplifer
with input
limit
circuitry

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

5 VDC
string

potentiometer

buffer
amplifier

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

220

9 VDC

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

4.7K

A0 A1

34

33

32

31

30

29

28

27

26

25

24

23

22

21

47

46

45

44

43

42

41

40

39

38

37

36

35

string
potentiometer

array

signal
generator

array

14

13

12

11

10

9

8

7

6

5

4

3

2

1

14

13

12

11

10

9

8

7

6

5

4

3

2

1

48

Figure 5.19: Circuit diagram for the KNH arrays. (left) Actual exertion array and (right) desired exer-
tion array. (UNO R3 illustration used with permission of the Arduino Team (CC BY–NC–SA) www.
arduino.cc).

www.arduino.cc
www.arduino.cc

5.13. ARDUINO MEGA 2560 EXAMPLE: KINESIOLOGY AND HEALTH LABORATORY 209

4 V

- 8 V

0V

VDC

t (s)

2s

rest period

1s

exercise
period

total period = 3s
waveform frequency = 1/total period = 0.33 cycles per second [Hz]

LED light array on

Figure 5.20: KNH array settings. LEDs will illuminate for input voltages between 0 and 4.7 VDC. More
LEDs incrementally illuminate as input voltage increases in response to signal generator input signal.
The input to the array is protected by a 4.7 VDC zener diode and a Schottky diode to limit voltage input
to levels between approximately 0 and 4.7 VDC.

210 5. ANALOG TO DIGITAL CONVERSION (ADC)

//digital output pins
//LED array indicators
//signal generator array

#define sig_gen_1 35 //digital pin - sig gen 1
:
:

#define sig_gen_14 48 //digital pin - sig gen 14

int string_pot_value; //declare variable string pot
int signal_gen_value; //declare signal generator

void setup()
{

//LED indicators - string pot array
pinMode(string_pot_1, OUTPUT); //string pot 1 output
:
:

pinMode(string_pot_14, OUTPUT); //string pot 14 output

//LED indicators - signal gen array
pinMode(sig_gen_1, OUTPUT); //signal gen 1 output
:
:

pinMode(sig_gen_14, OUTPUT); //signal gen 14 output

}

void loop()
{

//read analog inputs
// - string potentiometer
// - signal generator

string_pot_value = analogRead(string_pot);

5.13. ARDUINO MEGA 2560 EXAMPLE: KINESIOLOGY AND HEALTH LABORATORY 211

signal_gen_value = analogRead(signal_gen);

//illuminate appropriate LED in string pot array
if(string_pot_value > 0)&&(string_pot_value <= 78)
{
digitalWrite(string_pot_1,HIGH); //turn LED on
digitalWrite(string_pot_2, LOW); //turn LED off
:
:

digitalWrite(string_pot_14, LOW); //turn LED off
}

elseif(string_pot_value > 78)&&(string_pot_value <= 156)
{
digitalWrite(string_pot_1, LOW); //turn LED off
digitalWrite(string_pot_2,HIGH); //turn LED on
:
:

digitalWrite(string_pot_14, LOW); //turn LED off
}

:
:

elseif(string_pot_value > 936)&&(string_pot_value <= 1023)
{
digitalWrite(string_pot_1, LOW); //turn LED off
digitalWrite(string_pot_2, LOW); //turn LED off
:
:

digitalWrite(string_pot_14,HIGH); //turn LED on
}

//illuminate appropriate LED in string pot array
if(signal_gen_value > 0)&&(signal_gen_value <= 78)
{
digitalWrite(sig_gen_1,HIGH); //turn LED on

212 5. ANALOG TO DIGITAL CONVERSION (ADC)

digitalWrite(sig_gen_2, LOW); //turn LED off
:
:

digitalWrite(ig_gen_14, LOW); //turn LED off
}

elseif(signal_gen_value > 78)&&(signal_gen_value <= 156)
{
digitalWrite(sig_gen_1, LOW); //turn LED off
digitalWrite(sig_gen_2,HIGH); //turn LED on
:
:

digitalWrite(sig_gen_14,LOW); //turn LED off
}

:
:

elseif(signal_gen_value > 936)&&(signal_gen_value <= 1023)
{
digitalWrite(sig_gen_1, LOW); //turn LED off
digitalWrite(sig_gen_2, LOW); //turn LED off
:
:

digitalWrite(sig_gen_14,HIGH); //turn LED on
}

}
//**

5.14 SUMMARY
In this chapter, we presented the differences between analog and digital signals and used this knowl-
edge to discuss three sub–processing steps involved in analog to digital converters: sampling, quan-
tization, and encoding. We also presented the quantization errors and the data rate associated with
the ADC process. The dynamic range of an analog–to–digital converter, one of the measures to
describe a conversion process, was also presented. We then presented the successive–approximation
converter.Transducer interface design concepts were then discussed along with supporting informa-
tion on operational amplifier configurations. We then reviewed the operation, registers, and actions

5.15. REFERENCES 213

required to program the ADC system aboard the ATmega328 and the ATmega2560. We concluded
the chapter with a discussion of the ADC process and an implementation using a multi–channel
DAC connected to the ATmega328 SPI system and an instrumentation example using the Arduino
Mega 2560.

5.15 REFERENCES
• Atmel 8–bit AVR Microcontroller with 16K Bytes In–System Programmable Flash, ATmega328,

ATmega328L, data sheet: 2466L–AVR–06/05, Atmel Corporation, 2325 Orchard Parkway,
San Jose, CA 95131.

• Atmel 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash, AT-
mega48PA, 88PA, 168PA, 328P data sheet: 8171D-AVR-05/11, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8-bit AVR Microcontroller with 64/128/256K Bytes In-System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P-AVR-10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

• Roland Thomas and Albert Rosa, The Analysis and Design of Linear Circuits, Fourth Edition,
Wiley & Sons, Inc., New York, 2003.

• M.A. Hollander, editor, Electrical Signals and Systems, Fourth Edition, McGraw-Hill Compa-
nies, Inc, 1999.

• Daniel Pack and Steven Barrett, Microcontroller Theory and Applications: HC12 and S12, Pren-
tice Hall, 2ed, Upper Saddle River, New Jersey 07458, 2008.

• Alan Oppenheim and Ronald Schafer, Discrete-time Signal Processing, Second Edition, Prentice
Hall, Upper Saddle River, New Jersey, 1999.

• John Enderle, Susan Blanchard, and Joseph Bronzino, Introduction to Biomedical Engineering,
Academic Press, 2000.

• L. Faulkenberry, An Introduction to Operational Amplifiers, John Wiley & Sons, New York,
1977.

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

214 5. ANALOG TO DIGITAL CONVERSION (ADC)

• P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 1989.

• L. Faulkenberry, Introduction to Operational Amplifiers with Linear Integrated Circuit Applica-
tions, 1982.

• D. Stout and M. Kaufman, Handbook of Operational Amplifier Circuit Design McGraw-Hill
Book Company, 1976.

• S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, third edition,
McGraw-Hill Book Company, 2002.

• TLC5628C, TLC5628I Octal 8-bit Digital-to-Analog Converters, Texas Instruments, Dallas,
TX, 1997.

5.16 CHAPTER PROBLEMS
1. Given a sinusoid with 500 Hz frequency, what should be the minimum sampling frequency

for an analog-to-digital converter, if we want to faithfully reconstruct the analog signal after
the conversion?

2. If 12 bits are used to quantize a sampled signal, what is the number of available quantized
levels? What will be the resolution of such a system if the input range of the analog-to-digital
converter is 10V?

3. Given the 12 V input range of an analog-to-digital converter and the desired resolution of
0.125 V, what should be the minimum number of bits used for the conversion?

4. Investigate the analog-to-digital converters in your audio system. Find the sampling rate, the
quantization bits, and the technique used for the conversion.

5. A flex sensor provides 10K ohm of resistance for 0 degrees flexure and 40K ohm of resistance
for 90 degrees of flexure. Design a circuit to convert the resistance change to a voltage change
(Hint: consider a voltage divider). Then design a transducer interface circuit to convert the
output from the flex sensor circuit to voltages suitable for the ATmega328 and the ATmega2560
ADC systems.

6. If an analog signal is converted by an analog-to-digital converter to a binary representation
and then back to an analog voltage using a DAC, will the original analog input voltage be the
same as the resulting analog output voltage? Explain.

7. Derive each of the characteristic equations for the classic operation amplifier configurations
provided in Figure 5.4.

8. If a resistor was connected between the non-inverting terminal and ground in the inverting
amplifier configuration of Figure 5.4a), how would the characteristic equation change?

5.16. CHAPTER PROBLEMS 215

9. A photodiode provides a current proportional to the light impinging on its active area. What
classic operational amplifier configuration should be used to current the diode output to a
voltage?

10. Does the time to convert an analog input signal to a digital representation vary in a successive-
approximation converter relative to the magnitude of the input signal?

11. Calculate the signal parameters required to drive the KNH array with a 1s rest time and a 2s
exercise time?

12. What is the purpose of the input protection circuitry for the desired exertion array in the KNH
panel?

217

C H A P T E R 6

Interrupt Subsystem
Objectives: After reading this chapter, the reader should be able to

• Understand the need of a microcontroller for interrupt capability.

• Describe the general microcontroller interrupt response procedure.

• Describe the ATmega328 and the ATmega2560 interrupt features.

• Properly configure and program an interrupt event for the ATmega328 and the ATmega2560
in C.

• Properly configure and program an interrupt event for the Arduino UNO R3 and the Arduino
Mega 2560 using built–in features of the Arduino Development Environment.

• Use the interrupt system to implement a real time clock.

• Employ the interrupt system as a component in an embedded system.

6.1 OVERVIEW
A microcontroller normally executes instructions in an orderly fetch–decode–execute sequence as
dictated by a user–written program as shown in Figure 6.1. However, the microcontroller must be
equipped to handle unscheduled (although planned), higher priority events that might occur inside
or outside the microcontroller.To process such events, a microcontroller requires an interrupt system.

The interrupt system onboard a microcontroller allows it to respond to higher priority events.
Appropriate responses to these events may be planned, but we do not know when these events will
occur. When an interrupt event occurs, the microcontroller will normally complete the instruction
it is currently executing and then transition program control to interrupt event specific tasks. These
tasks, which resolve the interrupt event, are organized into a function called an interrupt service
routine (ISR). Each interrupt will normally have its own interrupt specific ISR. Once the ISR is
complete, the microcontroller will resume processing where it left off before the interrupt event
occurred.

In this chapter, we discuss the ATmega328 and the ATmega2560 interrupt system in detail.
We provide several examples on how to program an interrupt in C and also using the built–in features
of the Arduino Development Environment.

218 6. INTERRUPT SUBSYSTEM

Fetch

Decode

Execute

Interrupt

Service

Routine

Figure 6.1: Microcontroller Interrupt Response.

6.1.1 ATMEGA328 INTERRUPT SYSTEM
The ATmega328 is equipped with a powerful and flexible complement of 26 interrupt sources.Two of
the interrupts originate from external interrupt sources while the remaining 24 interrupts support the
efficient operation of peripheral subsystems aboard the microcontroller. The ATmega328 interrupt
sources are shown in Figure 6.2. The interrupts are listed in descending order of priority. As you can
see, the RESET has the highest priority, followed by the external interrupt request pins INT0 (pin
4) and INT1 (pin 5). The remaining interrupt sources are internal to the ATmega328.

6.1.2 ATMEGA2560 INTERRUPT SYSTEM
The ATmega2560 is equipped with a powerful and flexible complement of 57 interrupt sources.Eight
of the interrupts originate from external interrupt sources including three pin change interrupts.
The remaining 46 interrupts support the efficient operation of peripheral subsystems aboard the
microcontroller. The ATmega2560 interrupt sources are shown in Figure 6.3. The interrupts are
listed in descending order of priority. As you can see, the RESET has the highest priority, followed
by the external interrupt request pins INT0 through INT7.

6.1. OVERVIEW 219

V
e

c
to

r
1234567891
011

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

A
d

d
ress

0
x

0
0
0
0

0
x

0
0
0
2

0
x

0
0
0
4

0
x

0
0
0
6

0
x

0
0
0
8

0
x

0
0
0
A

0
x

0
0
0
C

0
x

0
0
0
E

0
x

0
0
1
0

0
x

0
0
1
2

0
x

0
0
1
4

0
x

0
0
1
6

0
x

0
0
1
8

0
x

0
0
1
A

0
x

0
0
1
C

0
x

0
0
1
E

0
x

0
0
2
0

0
x

0
0
2
2

0
x

0
0
2
4

0
x

0
0
2
6

0
x

0
0
2
8

0
x

0
0
2
A

0
x

0
0
2
C

0
x

0
0
2
E

0
x

0
0
3
0

0
x

0
0
3
2

S
o

u
rc

e
R

E
S

E
T

IN
T

0

IN
T

1

P
C

IN
T

0

P
C

IN
T

1

P
C

IN
T

2

W
D

T

T
IM

E
R

2 C
O

M
P

A

T
IM

E
R

2 C
O

M
P

B

T
IM

E
R

2 O
V

F

T
IM

E
R

1 C
A

PT

T
IM

E
R

1 C
O

M
P

A

T
IM

E
R

1 C
O

M
P

B

T
IM

E
R

1 O
V

F

T
IM

E
R

0 C
O

M
P

A

T
IM

E
R

0 C
O

M
P

B

T
IM

E
R

0 O
V

F

S
P
I, S

T
C

U
S
A

R
T

, R
X

U
S
A

R
T

, U
D

R
E

U
S
A

R
T

, T
X

A
D

C

E
E
 R

E
A

D
Y

A
N

A
L
O

G
 C

O
M

P

T
W

I

S
P
M

 R
E
A

D
Y

D
efin

ition

E
xte

rn
al p

in
, po

w
er-on

 reset, brow
n-out reset, w

atch
do

g sy
stem

 reset

E
xte

rn
al inte

rru
pt request 0

E
xte

rn
al inte

rru
pt request 1

P
in ch

an
ge

 interru
pt request 0

P
in ch

an
ge

 interru
pt request 1

P
in ch

an
ge

 interru
pt request 2

W
atchdog

 tim
e-out in

te
rru

pt

T
im

e
r/C

ounter2
 C

om
pa

re M
atch

 A

T
im

e
r/C

ounter2
 C

om
pa

re M
atch

 B

T
im

e
r/C

ounter2
 O

v
erflo

w

T
im

e
r/C

ounter1
 C

ap
tu

re E
v

ent

T
im

e
r/C

ounter1
 C

om
pa

re M
atch

 A

T
im

e
r/C

ounter1
 C

om
pa

re M
atch

 B

T
im

e
r/C

ounter1
 O

v
erflo

w

T
im

e
r/C

ounter0
 C

om
pa

re M
atch

 A

T
im

e
r/C

ounter0
 C

om
pa

re M
atch

 B

T
im

e
r/C

ounter0
 O

v
erflo

w

S
P
I S

erial T
ransfer C

om
p

lete

U
S
A

R
T

 R
x C

om
plete

U
S
A

R
T

, D
ata

 R
eg

iste
r E

m
p
ty

U
S
A

R
T

, T
x C

om
plete

A
D

C
C

onversiono C
om

plete

E
E

P
R

O
M

 R
e

a
d

y

A
n

a
lo

g
 C

o
m

p
a

ra
to

r

2
-w

ire S
erial Inte

rfac
e

S
tore P

rog
ram

 M
em

ory R
eady

A
V

R
-G

C
C

 IS
R

 n
am

e

IN
T

0_
v

ec
t

IN
T

1_
v

ec
t

P
C

IN
T

0_
v
ec

t

P
C

IN
T

1_
v
ec

t

P
C

IN
T

2_
v
ec

t

W
D

T
_v

ect

T
IM

E
R

2_
C

O
M

P
A

_
v

ec
t

T
IM

E
R

2_
C

O
M

P
B

_
v

ec
t

T
IM

E
R

2_
O

V
F_

v
ec

t

T
IM

E
R

1_
C

A
PT

_v
ect

T
IM

E
R

1_
C

O
M

P
A

_
v

ec
t

T
IM

E
R

1_
C

O
M

P
B

_
v

ec
t

T
IM

E
R

1_
O

V
F_

v
ec

t

T
IM

E
R

0_
C

O
M

P
A

_
v

ec
t

T
IM

E
R

0_
C

O
M

P
B

_
v

ec
t

T
IM

E
R

0_
O

V
F_

v
ec

t

S
P
I_S

T
C

_v
ect

U
S
A

R
T

_R
X

_
v

ec
t

U
S
A

R
T

_U
D

R
E
_

v
ec

t

U
S
A

R
T

_T
X

_
v

ec
t

A
D

C
_v

ect

E
E

_R
E
A

D
Y

_
v

ec
t

A
N

A
L
O

G
_

C
O

M
P

_
v

ect

T
W

I_v
ect

S
P
M

_read
y
_
v

ect

F
igure

6.2:
A

tm
elA

V
R

A
T

m
ega328

Interrupts.(A
dapted

from
figure

used
w

ith
perm

ission
ofA

tm
el,Incorporated.)

220 6. INTERRUPT SUBSYSTEM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Address SourceVector
0x0000

0x0002

0x0004

0x0006

0x0008

0x000A

0x000C

0x000E

0x0010

0x0012

0x0014

0x0016

0x0018

0x001A

0x001C

0x001E

0x0020

0x0022

0x0024

0x0026

0x0028

0x002A

0x002C

0x002E

0x0030

0x0032

0x0034

0x0036

0x0038

0X003A

0x003C

0x003E

0x0040

0x0042

0x0044

0x0046

0x0048

0x004A

0x004C

0x004E

R ESET

INT0

INT1

INT2

INT3

INT4

INT5

INT6

INT7

PCINT0

PCINT1

PCINT2

WDT

TIMER 2 COMPA

TIMER 2 COMPB

TIMER 2 OV F

TIMER 1 CAPT

TIMER 1 COMPA

TIMER 1 COMPB

TIMER 1 COMPC

TIMER 1 OV F

TIMER 0 COMPA

TIMER 0 COMPB

TIMER 0 OV F

SPI, STC

USART0, R X

USART0, UDR E

USART0, TX

ANALOG COMP

ADC

EE R EADY

TIMER 3 CAPT

TIMER 3 COMPA

TIMER 3 COMPB

TIMER 3 COMPC

TIMER 3 OV F

USART1, R X

USART1, UDR E

USART1, TX

TWI

Definition

External pin, power-on reset, brown-out reset, watchdog system reset

External interrupt reque st 0

External interrupt reque st 1

External interrupt reque st 2

External interrupt reque st 3

External interrupt reque st 4

External interrupt reque st 5

External interrupt reque st 6

External interrupt reque st 7

Pin change inte rrupt reque st 0

Pin change inte rrupt reque st 1

Pin change inte rrupt reque st 2

Watchdog time-out interrupt

Timer/Counte r2 Compa re Match A

Timer/Counte r2 Compa re Match B

Timer/Counte r2 Overflow

Timer/Counte r1 Capture Event

Timer/Counte r1 Compa re Match A

Timer/Counte r1 Compa re Match B

Timer/Counte r1 Compa re Match C

Timer/Counte r1 Overflow

Timer/Counte r0 Compa re Match A

Timer/Counte r0 Compa re Match B

Timer/Counte r0 Overflow

SPI Serial Transfer Complete

USART0, R x Complete

USART0, Data Register Empty

USART0, Tx Complete

Analog Compa ra tor

ADC Conversion Complete

EEPR OM R eady

Timer/Counte r3 Capture Event

Timer/Counte r3 Compa re Match A

Timer/Counte r3 Compa re Match B

Timer/Counte r3 Compa re Match C

Timer/Counte r3 Overflow

USART1, R x Complete

USART1, Data Register Empty

USART1, Tx Complete

2-wire Serial Interface

INT0_vect

INT1_vect

INT2_vect

INT3_vect

INT4_vect

INT5_vect

INT6_vect

INT7_vect

PCINT0_vect

PCINT1_vect

PCINT2_vect

WDT_vect

TIMER 2_COMPA_vect

TIMER 2_COMPB_vect

TIMER 2_OV F_vect

TIMER 1_CAPT_vect

TIMER 1_COMPA_vect

TIMER 1_COMPB_vect

TIMER 1_COMPC_vect

TIMER 1_OV F_vect

TIMER 0_COMPA_vect

TIMER 0_COMPB_vect

TIMER 0_OV F_vect

SPI_STC_vect

USART0_RX _vect

USART0_UDRE_vect

USART0_TX _vect

ANALOG_COMP_vect

ADC_vect

EE_R EADY _vect

TIMER 3_CAPT_vect

TIMER 3_COMPA_vect

TIMER 3_COMPB_vect

TIMER 3_COMPC_vect

TIMER 3_OV F_vect

USART1_RX _vect

USART1_UDRE_vect

USART1_TX _vect

TWI_vect

AVR-GCC ISR name

Figure 6.3: Atmel AVR ATmega2560 Interrupts. (Adapted from figure used with permission of Atmel,
Incorporated.) (Continues.)

6.2. INTERRUPT PROGRAMMING OVERVIEW 221

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

0x0050

0x0052

0x0054

0x0056

0x0058

0x005A

0x005C

0x005E

0x0060

0x0062

0x0064

0x0066

0x0068

0x006A

0x006C

0x006E

0x0070

SPM R EADY

TIMER 4 CAPT

TIMER 4 COMPA

TIMER 4 COMPB

TIMER 4 COMPC

TIMER 4 OV F

TIMER 5 CAPT

TIMER 5 COMPA

TIMER 5 COMPB

TIMER 5 COMPC

TIMER 5 OV F

USART2, R X

USART2, UDR E

USART2, TX

USART3, R X

USART3, UDR E

USART3, TX

Store Program Memory Rea dy

Timer/Counte r4 Capture Event

Timer/Counte r4 Compa re Match A

Timer/Counte r4 Compa re Match B

Timer/Counte r4 Compa re Match C

Timer/Counte r4 Overflow

Timer/Counte r5 Capture Event

Timer/Counte r5 Compa re Match A

Timer/Counte r5 Compa re Match B

Timer/Counte r5 Compa re Match C

Timer/Counte r5 Overflow

USART2, R x Complete

USART2, Data Register Empty

USART2, Tx Complete

USART3, R x Complete

USART3, Data Register Empty

USART3, Tx Complete

SPM_ready_vect

TIMER 4_CAPT_vect

TIMER 4_COMPA_vect

TIMER 4_COMPB_vect

TIMER 4_COMPC_vect

TIMER 4_OV F_vect

TIMER 5_CAPT_vect

TIMER 5_COMPA_vect

TIMER 5_COMPB_vect

TIMER 5_COMPC_vect

TIMER 5_OV F_vect

USART2_RX _vect

USART2_UDRE_vect

USART2_TX _vect

USART3_RX _vect

USART3_UDRE_vect

USART3_TX _vect

Figure 6.3: (Continued.) Atmel AVR ATmega2560 Interrupts. (Adapted from figure used with permis-
sion of Atmel, Incorporated.)

6.1.3 GENERAL INTERRUPT RESPONSE
When an interrupt occurs, the microcontroller completes the current instruction, stores the address
of the next instruction on the stack, and starts executing instructions in the designated interrupt
service routine (ISR) corresponding to the particular interrupt source. It also turns off the interrupt
system to prevent further interrupts while one is in progress. The execution of the ISR is performed
by loading the beginning address of the interrupt service routine specific for that interrupt into the
program counter.The interrupt service routine will then commence. Execution of the ISR continues
until the return from interrupt instruction (reti) is encountered. Program control then reverts back
to the main program.

6.2 INTERRUPT PROGRAMMING OVERVIEW

To program an interrupt the user is responsible for the following actions:

• Ensure the interrupt service routine for a specific interrupt is tied to the correct interrupt vector
address, which points to the starting address of the interrupt service routine.

• Ensure the interrupt system has been globally enabled.This is accomplished with the assembly
language instruction SEI.

• Ensure the specific interrupt subsystem has been locally enabled.

• Ensure the registers associated with the specific interrupt have been configured correctly.

222 6. INTERRUPT SUBSYSTEM

In the next two examples that follow, we illustrate how to accomplish these steps. We use the
ImageCraft ICC AVR compiler which contains excellent support for interrupts. Other compilers
have similar features.

6.3 PROGRAMMING ATMEGA328 INTERRUPTS IN C AND
THE ARDUINO DEVELOPMENT ENVIRONMENT

In this section, we provide two representative examples of writing interrupts. We provide both an
externally generated interrupt event and also one generated from within the microcontroller. For
each type of interrupt, we illustrate how to program it in C and also with the Arduino Development
Environment built–in features. For the C examples, we use the ImageCraft ICC AVR compiler.

The ImageCraft ICC AVR compiler uses the following syntax to link an interrupt service
routine to the correct interrupt vector address:

#pragma interrupt_handler timer_handler:4

void timer_handler(void)
{
:
:
}

As you can see, the #pragma with the reserved word interrupt_handler is used to communicate
to the compiler that the routine name that follows is an interrupt service routine. The number that
follows the ISR name corresponds to the interrupt vector number in Figure 6.2. The ISR is then
written like any other function. It is important that the ISR name used in the #pragma instruction
identically matches the name of the ISR in the function body. Since the compiler knows the function
is an ISR, it will automatically place the assembly language RETI instruction at the end of the ISR.

6.3.1 EXTERNAL INTERRUPT PROGRAMMING–ATMEGA328
The external interrupts INT0 (pin 4) and INT1 (pin 5) trigger an interrupt within the ATmega328
when an user–specified external event occurs at the pin associated with the specific interrupt. In-
terrupts INT0 and INT1 may be triggered with a falling or rising edge or a low level signal. The
specific settings for each interrupt is provided in Figure 6.4.

6.3.1.1 Programming external interrupts in C
Provided below is the code snapshot to configure an interrupt for INT0. In this specific example,
an interrupt will occur when a positive edge transition occurs on the ATmega328 INT0 external
interrupt pin.

6.3. PROGRAMMING ATMEGA328 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 223

External Interrupt Control Register - EICRA

7 0

7 0

External Interrupt Mask Register - EIMSK

7 0

INT1 INT0

0: interrupt disabled

1: interrupt enabled

ISC11 ISC10 ISC01 ISC00

 INT1

00: low level

01: logic change

10: falling edge

11: rising edge

 INT0

00: low level

01: logic change

10: falling edge

11: rising edge

INTF1 INTF0

Notes:

- INTFx flag sets when corresponding interrupt occurs.

- INTFx flag reset by executing ISR or writing logic one to flag.

External Interrupt Flag Register - EIFR

Figure 6.4: ATmega328 Interrupt INT0 and INT1 Registers.

//interrupt handler definition
#pragma interrupt_handler int0_ISR:2

//function prototypes
void int0_ISR(void);
void initialize_interrupt0(void);

//***

//The following function call should be inserted in the main program to
//initialize the INT0 interrupt to respond to a positive edge trigger.
//This function should only be called once.

:

224 6. INTERRUPT SUBSYSTEM

initialize_interrupt_int0();
:

//***

//function definitions

//***
//initialize_interrupt_int0: initializes interrupt INT0.
//Note: stack is automatically initialized by the compiler
//***

void initialize_interrupt_int0(void) //initialize interrupt INT0
{
DDRD = 0xFB; //set PD2 (int0) as input
PORTD &= ˜0x04; //disable pullup resistor PD2
EIMSK = 0x01; //enable INT0
EICRA = 0x03; //set for positive edge trigger
asm("SEI"); //global interrupt enable
}

//***
//int0_ISR: interrupt service routine for INT0
//***

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}

The INT0 interrupt is reset by executing the associated interrupt service routine or writing a
logic one to the INTF0 bit in the External Interrupt Flag Register (EIFR).

6.3. PROGRAMMING ATMEGA328 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 225

6.3.1.2 Programming external interrupts using the Arduino Development Environment built–in
features–Atmega328

The Arduino Development Environment has four built–in functions to support external the INT0
and INT1 external interrupts [www.arduino.cc].

These are the four functions:

• interrupts(). This function enables interrupts.

• noInterrupts(). This function disables interrupts.

• attachInterrupt(interrupt, function, mode). This function links the interrupt to the appro-
priate interrupt service routine.

• detachInterrupt(interrupt). This function turns off the specified interrupt.

The Arduino UNO R3 processing board is equipped with two external interrupts: INT0 on
DIGITAL pin 2 and INT1 on DIGITAL pin 3. The attachInterrupt(interrupt, function, mode)
function is used to link the hardware pin to the appropriate interrupt service pin.The three arguments
of the function are configured as follows:

• interrupt. Interrupt specifies the INT interrupt number: either 0 or 1.

• function. Function specifies the name of the interrupt service routine.

• mode. Mode specifies what activity on the interrupt pin will initiate the interrupt: LOW level
on pin, CHANGE in pin level, RISING edge, or FALLING edge.

To illustrate the use of these built–in Arduino Development Environment features, we revisit
the previous example.
//***

void setup()
{
attachInterrupt(0, int0_ISR, RISING);
}

void loop()
{

//wait for interrupts

}

//***

www.arduino.cc
www.arduino.cc

226 6. INTERRUPT SUBSYSTEM

//int0_ISR: interrupt service routine for INT0
//***

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}
//***

6.3.2 ATMEGA328 INTERNAL INTERRUPT PROGRAMMING
In this example, we use Timer/Counter0 as a representative example on how to program internal
interrupts. In the example that follows, we use Timer/Counter0 to provide prescribed delays within
our program.

We discuss the ATmega328 timer system in detail in the next chapter. Briefly, the
Timer/Counter0 is an eight bit timer. It rolls over every time it receives 256 timer clock “ticks.”
There is an interrupt associated with the Timer/Counter0 overflow. If activated, the interrupt will
occur every time the contents of the Timer/Counter0 transitions from 255 back to 0 count. We
can use this overflow interrupt as a method of keeping track of real clock time (hours, minutes,
and seconds) within a program. In this specific example, we use the overflow to provide precision
program delays.

6.3.2.1 Programming an internal interrupt in C–Atmega328
In this example, the ATmega328 is being externally clocked by a 10 MHz ceramic resonator. The
resonator frequency is further divided by 256 using the clock select bits CS[2:1:0] in Timer/Counter
Control Register B (TCCR0B). When CS[2:1:0] are set for [1:0:0], the incoming clock source is
divided by 256.This provides a clock “tick” to Timer/Counter0 every 25.6 microseconds.Therefore,
the eight bit Timer/Counter0 will rollover every 256 clock “ticks” or every 6.55 ms.

To create a precision delay, we write a function called delay.The function requires an unsigned
integer parameter value indicating how many 6.55 ms interrupts the function should delay. The
function stays within a while loop until the desired number of interrupts has occurred. For example,
to delay one second the function would be called with the parameter value “153.” That is, it requires
153 interrupts occurring at 6.55 ms intervals to generate a one second delay.

The code snapshots to configure the Time/Counter0 Overflow interrupt is provided below
along with the associated interrupt service routine and the delay function.

//function prototypes**
//delay specified number 6.55ms

void delay(unsigned int number_of_6_55ms_interrupts);

6.3. PROGRAMMING ATMEGA328 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 227

void init_timer0_ovf_interrupt(void); //initialize timer0 overf.interrupt

//interrupt handler definition***
//interrupt handler definition

#pragma interrupt_handler timer0_interrupt_isr:17

//global variables***
unsigned int input_delay; //counts number of Timer/Counter0

//Overflow interrupts

//main program***

void main(void)
{
init_timer0_ovf_interrupt(); //initialize Timer/Counter0 Overflow

//interrupt - call once at beginning
//of program

:
:
delay(153); //1 second delay

}

//***
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overfl. interrupt is being
//employed as a time base for a master timer for this project. The ceramic
//resonator operating at 10 MHz is divided by 256.
//The 8-bit Timer0 register
//(TCNT0) overflows every 256 counts or every 6.55 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256,

//overflow occurs every 6.55ms

228 6. INTERRUPT SUBSYSTEM

TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared automatically
//when executing the corresponding interrupt handling vector.
//***

void timer0_interrupt_isr(void)
{
input_delay++; //increment overflow counter
}

//***
//delay(unsigned int num_of_6_55ms_interrupts): this generic delay function
//provides the specified delay as the number of 6.55 ms "clock ticks"
//from the Timer/Counter0 Overflow interrupt.
//
//Note: this function is only valid when using a 10 MHz crystal or ceramic
//resonator. If a different source frequency is used, the clock
//tick delay value must be recalculated.
//***

void delay(unsigned int number_of_6_55ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter

while(input_delay <= number_of_6_55ms_interrupts)
{
; //wait for spec. number of interpts.
}

}

//***

6.3. PROGRAMMING ATMEGA328 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 229

6.3.2.2 Programming an internal interrupt using the Arduino Development
Environment–Arduino UNO R3

The Arduino Development Environment uses the GNU tool chain and the AVR Libc to compile
programs. Internal interrupt configuration uses AVR–GCC conventions. To tie the interrupt event
to the correct interrupt service routine, the AVR–GCC interrupt name must be used. These vector
names are provided in the right column of Figure 6.2.

In the following sketch, the previous example is configured for use with the Arduino De-
velopment Environment using AVR–GCC conventions. Also, the timing functions in the previous
example assumed a time base of 10 MHz. The Arduino UNO R3 is clocked with a 16 MHz crystal.
Therefore, some of the parameters in the sketch were adjusted to account for this difference in time
base.
//***
#include <avr/interrupt.h>

unsigned int input_delay; //counts number of Timer/Counter0
//Overflow interrupts

void setup()
{
init_timer0_ovf_interrupt(); //initialize Timer/Counter0 Overfl.
}

void loop()
{

:

delay(244); //1 second delay

:

}

//***
// ISR(TIMER0_OVF_vect) - increments counter on every interrupt.
//***

ISR(TIMER0_OVF_vect)
{
input_delay++; //increment overflow counter

230 6. INTERRUPT SUBSYSTEM

}

//***
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt is
//being employed as a time base for a master timer for this project.
//The crystal //resonator operating at 16 MHz is divided by 256.
//The 8-bit Timer0 register (TCNT0) overflows every 256 counts or every
//4.1 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overflow occurs every 4.1 ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//delay(unsigned int num_of_4_1ms_interrupts): this generic delay function
//provides the specified delay as the number of 4.1 ms "clock ticks" from
//the Timer/Counter0 Overflow interrupt.
//
//Note: this function is only valid when using a 16 MHz crystal or ceramic
//resonator. If a different source frequency is used, the clock
//tick delay value must be recalculated.
//***

void delay(unsigned int number_of_4_1ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter

while(input_delay <= number_of_4_1ms_interrupts)
{
; //wait for spec. number of intrpts.
}

}

//***

6.4. PROGRAMMING ATMEGA2560 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 231

6.4 PROGRAMMING ATMEGA2560 INTERRUPTS IN C AND
THE ARDUINO DEVELOPMENT ENVIRONMENT

In this section, we provide two representative examples of writing interrupts. We provide both an
externally generated interrupt event and also one generated from within the microcontroller. For
each type of interrupt, we illustrate how to program it in C and also with the Arduino Development
Environment built–in features. For the C examples, we use the ImageCraft ICC AVR compiler.

The ImageCraft ICC AVR compiler uses the following syntax to link an interrupt service
routine to the correct interrupt vector address:

#pragma interrupt_handler timer_handler:4

void timer_handler(void)
{
:
:
}

As you can see, the #pragma with the reserved word interrupt_handler is used to communicate
to the compiler that the routine name that follows is an interrupt service routine.

The number that follows the ISR name corresponds to the interrupt vector number in Figure
6.3. The ISR is then written like any other function. It is important that the ISR name used in
the #pragma instruction identically matches the name of the ISR in the function body. Since the
compiler knows the function is an ISR, it will automatically place the assembly language RETI
instruction at the end of the ISR.

6.4.1 EXTERNAL INTERRUPT PROGRAMMING–ATMEGA2560
The external interrupts INT0 through INT7 trigger an interrupt within the ATmega2560 when
an user–specified external event occurs at the pin associated with the specific interrupt. Interrupts
INT0 through INT7 may be triggered with a falling or rising edge or a low level signal. The specific
settings for each interrupt is provided in Figure 6.5.

6.4.1.1 Programming external interrupts in C
Provided below is the code snapshot to configure an interrupt for INT0. In this specific example,
an interrupt will occur when a positive edge transition occurs on the ATmega2560 INT0 external
interrupt pin.

//interrupt handler definition
#pragma interrupt_handler int0_ISR:2

//function prototypes
void int0_ISR(void);

232 6. INTERRUPT SUBSYSTEM

External Interrupt Control Register - EICRB

7 0

ISC51 ISC50 ISC41 ISC40ISC71 ISC70 ISC61 ISC60

 INT5

00: low level

01: logic change

10: falling edge

11: rising edge

 INT4

00: low level

01: logic change

10: falling edge

11: rising edge

 INT7

00: low level

01: logic change

10: falling edge

11: rising edge

 INT6

00: low level

01: logic change

10: falling edge

11: rising edge

7 0

External Interrupt Mask Register - EIMSK

INT1 INT0INT7 INT6 INT5 INT4 INT3 INT2

0: interrupt disabled

1: interrupt enabled

7 0
Notes:

- INTFx flag sets when corresponding interrupt occurs.

- INTFx flag reset by executing ISR or writing logic one to flag.

External Interrupt Flag Register - EIFR

External Interrupt Control Register - EICRA

7 0

ISC11 ISC10 ISC01 ISC00ISC31 ISC30 ISC21 ISC20

 INT1

00: low level

01: logic change

10: falling edge

11: rising edge

 INT0

00: low level

01: logic change

10: falling edge

11: rising edge

 INT3

00: low level

01: logic change

10: falling edge

11: rising edge

 INT2

00: low level

01: logic change

10: falling edge

11: rising edge

INTF1 INTF0INTF7 INTF6 INTF5 INTF4 INTF3 INTF2

Figure 6.5: ATmega2560 Interrupt Registers.

void initialize_interrupt0(void);

//***

//The following function call should be inserted in the main program to

6.4. PROGRAMMING ATMEGA2560 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 233

//initialize the INT0 interrupt to respond to a positive edge trigger.
//This function should only be called once.

:
initialize_interrupt_int0();
:

//***

//function definitions

//***
//initialize_interrupt_int0: initializes interrupt INT0.
//Note: stack is automatically initialized by the compiler
//***

void initialize_interrupt_int0(void) //initialize interrupt INT0
{
DDRD = 0xFB; //set PD2 (int0) as input
PORTD &= ˜0x04; //disable pullup resistor PD2
EIMSK = 0x01; //enable INT0
EICRA = 0x03; //set for positive edge trigger
asm("SEI"); //global interrupt enable
}

//***
//int0_ISR: interrupt service routine for INT0
//***

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}

234 6. INTERRUPT SUBSYSTEM

The INT0 interrupt is reset by executing the associated interrupt service routine or writing a
logic one to the INTF0 bit in the External Interrupt Flag Register (EIFR).

6.4.1.2 Programming external interrupts using the Arduino Development Environment built–in
features–Atmega2560

The Arduino Development Environment has four built–in functions to support some of the external
interrupts (INT0 through INT7) [www.arduino.cc].

These are the four functions:

• interrupts(). This function enables interrupts.

• noInterrupts(). This function disables interrupts.

• attachInterrupt(interrupt, function, mode). This function links the interrupt to the appro-
priate interrupt service routine.

• detachInterrupt(interrupt). This function turns off the specified interrupt.

The Arduino Mega 2560 processing board is equipped with six external interrupts:

• INT0, pin 2

• INT1, pin 3

• INT2, pin 21

• INT3, pin 1

• INT4, pin 19

• INT5, pin 18

The attachInterrupt(interrupt, function, mode) function is used to link the hardware pin to
the appropriate interrupt service pin. The three arguments of the function are configured as follows:

• interrupt. Interrupt specifies the INT interrupt number: either 0 or 1.

• function. Function specifies the name of the interrupt service routine.

• mode. Mode specifies what activity on the interrupt pin will initiate the interrupt: LOW level
on pin, CHANGE in pin level, RISING edge, or FALLING edge.

To illustrate the use of these built–in Arduino Development Environment features, we revisit
the previous example.

www.arduino.cc

6.4. PROGRAMMING ATMEGA2560 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 235

//***

void setup()
{
attachInterrupt(0, int0_ISR, RISING);
}

void loop()
{

//wait for interrupts

}

//***
//int0_ISR: interrupt service routine for INT0
//***

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}
//***

6.4.2 ATMEGA2560 INTERNAL INTERRUPT PROGRAMMING
In this example, we use Timer/Counter0 as a representative example on how to program internal
interrupts. In the example that follows, we use Timer/Counter0 to provide prescribed delays within
our program.

We discuss the ATmega2560 timer system in detail in the next chapter. Briefly, the
Timer/Counter0 is an eight bit timer. It rolls over every time it receives 256 timer clock “ticks.”
There is an interrupt associated with the Timer/Counter0 overflow. If activated, the interrupt will
occur every time the contents of the Timer/Counter0 transitions from 255 back to 0 count. We
can use this overflow interrupt as a method of keeping track of real clock time (hours, minutes,
and seconds) within a program. In this specific example, we use the overflow to provide precision
program delays.

236 6. INTERRUPT SUBSYSTEM

6.4.2.1 Programming an internal interrupt in C–Atmega2560
In this example, the ATmega2560 is being externally clocked by a 10 MHz ceramic resonator. The
resonator frequency is further divided by 256 using the clock select bits CS[2:1:0] in Timer/Counter
Control Register B (TCCR0B). When CS[2:1:0] are set for [1:0:0], the incoming clock source is
divided by 256.This provides a clock “tick” to Timer/Counter0 every 25.6 microseconds.Therefore,
the eight bit Timer/Counter0 will rollover every 256 clock “ticks” or every 6.55 ms.

To create a precision delay, we write a function called delay.The function requires an unsigned
integer parameter value indicating how many 6.55 ms interrupts the function should delay. The
function stays within a while loop until the desired number of interrupts has occurred. For example,
to delay one second the function would be called with the parameter value “153.” That is, it requires
153 interrupts occurring at 6.55 ms intervals to generate a one second delay.

The code snapshots to configure the Time/Counter0 Overflow interrupt is provided below
along with the associated interrupt service routine and the delay function.

//function prototypes**
//delay specified number 6.55ms

void delay(unsigned int number_of_6_55ms_interrupts);
void init_timer0_ovf_interrupt(void); //initialize timer0 overf.interrupt

//interrupt handler definition***
//interrupt handler definition

#pragma interrupt_handler timer0_interrupt_isr:24

//global variables***
unsigned int input_delay; //counts number of Timer/Counter0

//Overflow interrupts

//main program***

void main(void)
{
init_timer0_ovf_interrupt(); //initialize Timer/Counter0 Overflow

//interrupt - call once at beginning
//of program

:
:

6.4. PROGRAMMING ATMEGA2560 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 237

delay(153); //1 second delay

}

//***
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt is being
//employed as a time base for a master timer for this project. The ceramic
//resonator operating at 10 MHz is divided by 256.
//The 8-bit Timer0 register
//(TCNT0) overflows every 256 counts or every 6.55 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256,

//overflow occurs every 6.55ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared automatically
//when executing the corresponding interrupt handling vector.
//***

void timer0_interrupt_isr(void)
{
input_delay++; //increment overflow counter
}

//***
//delay(unsigned int num_of_6_55ms_interrupts): this generic delay function
//provides the specified delay as the number of 6.55 ms "clock ticks"
//from the Timer/Counter0 Overflow interrupt.
//
//Note: this function is only valid when using a 10 MHz crystal or ceramic
//resonator. If a different source frequency is used, the clock
//tick delay value must be recalculated.

238 6. INTERRUPT SUBSYSTEM

//***

void delay(unsigned int number_of_6_55ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter

while(input_delay <= number_of_6_55ms_interrupts)
{
; //wait for spec. number of interpts.
}

}

//***

6.4.2.2 Programming an internal interrupt using the Arduino Development
Environment–Arduino Mega 2560

The Arduino Development Environment uses the GNU tool chain and the AVR Libc to compile
programs. Internal interrupt configuration uses AVR–GCC conventions. To tie the interrupt event
to the correct interrupt service routine, the AVR–GCC interrupt name must be used. These vector
names are provided in the right column of Figure 6.3.

In the following sketch, the previous example is configured for use with the Arduino De-
velopment Environment using AVR–GCC conventions. Also, the timing functions in the previous
example assumed a time base of 10 MHz. The Arduino Mega 2560 is clocked with a 16 MHz
crystal. Therefore, some of the parameters in the sketch were adjusted to account for this difference
in time base.
//***
#include <avr/interrupt.h>

unsigned int input_delay; //counts number of Timer/Counter0
//Overflow interrupts

void setup()
{
init_timer0_ovf_interrupt(); //initialize Timer/Counter0 Overfl.
}

void loop()
{

6.4. PROGRAMMING ATMEGA2560 INTERRUPTS IN C ANDTHE ARDUINO ENVIRONMENT 239

:

delay(244); //1 second delay

:

}

//***
// ISR(TIMER0_OVF_vect) - increments counter on every interrupt.
//***

ISR(TIMER0_OVF_vect)
{
input_delay++; //increment overflow counter
}

//***
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt is
//being employed as a time base for a master timer for this project.
//The crystal //resonator operating at 16 MHz is divided by 256.
//The 8-bit Timer0 register (TCNT0) overflows every 256 counts or every
//4.1 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overflow occurs every 4.1 ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//delay(unsigned int num_of_4_1ms_interrupts): this generic delay function
//provides the specified delay as the number of 4.1 ms "clock ticks" from
//the Timer/Counter0 Overflow interrupt.
//
//Note: this function is only valid when using a 16 MHz crystal or ceramic
//resonator. If a different source frequency is used, the clock

240 6. INTERRUPT SUBSYSTEM

//tick delay value must be recalculated.
//***

void delay(unsigned int number_of_4_1ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter

while(input_delay <= number_of_4_1ms_interrupts)
{
; //wait for spec. number of intrpts.
}

}

//***

6.5 FOREGROUND AND BACKGROUND PROCESSING

A microcontroller can only process a single instruction at a time. It processes instructions in a fetch-
–decode–execute sequence as determined by the program and its response to external events. In
many cases, a microcontroller has to process multiple events seemingly simultaneously. How is this
possible with a single processor?

Normal processing accomplished by the microcontroller is called foreground processing. An
interrupt may be used to periodically break into foreground processing, ‘steal’ some clock cycles to
accomplish another event called background processing, and then return processor control back to
the foreground process.

As an example, a microcontroller controlling access for an electronic door must monitor input
commands from a user and generate the appropriate pulse width modulation (PWM) signals to open
and close the door. Once the door is in motion, the controller must monitor door motor operation
for obstructions, malfunctions, and other safety related parameters.This may be accomplished using
interrupts. In this example, the microcontroller is responding to user input status in the foreground
while monitoring safety related status in the background using interrupts as illustrated in Figure 6.6.

Example: This example illustrates foreground and background processing. We use a green
LED to indicate when the microcontroller is processing in the foreground and a flashing red LED
indicates background processing. A switch is connected to an external interrupt pin (INT0, pin 2).
When the switch is depressed, the microcontroller executes the associated interrupt service routine
to flash the red LED. The circuit configuration is provided in Figure 6.7.

6.5. FOREGROUND AND BACKGROUND PROCESSING 241

Interrupt

- check for obstruction

- check for malfunctions

- check safety parameters

Interrupt

- check for obstruction

- check for malfunctions

- check safety parameters

Interrupt

- check for obstruction

- check for malfunctions

- check safety parameters

time

Background Processing

Foreground Processing

Monitor to user input, generate motor control signals, etc.

periodic

interrupt
periodic

interrupt

Figure 6.6: Interrupt used for background processing. The microcontroller responds to user input status
in the foreground while monitoring safety related status in the background using interrupts.

220

4.7K

5 VDC

220

green

red

Figure 6.7: Foreground background processing. (UNO R3 illustration used with permission of the
Arduino Team (CC BY–NC–SA) www.arduino.cc).

www.arduino.cc
www.arduino.cc

242 6. INTERRUPT SUBSYSTEM

//**

#define green_LED 12
#define red_LED 11
#define ext_sw 2

int switch_value;

void setup()
{
pinMode(green_LED, OUTPUT);
pinMode(red_LED, OUTPUT);
pinMode(ext_sw, INPUT);

//trigger interrupt on INT0 for falling edge
attachInterrupt(0, background, FALLING);
}

void loop()
{
digitalWrite(green_LED, HIGH); //foreground processing
digitalWrite(red_LED, LOW);
}

void background() //background processing
{
unsigned int i;

digitalWrite(green_LED, LOW);
digitalWrite(red_LED, HIGH);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, LOW);

for (i=0; i<=64000; i++) //delay
{

6.6. INTERRUPT EXAMPLES 243

asm("nop");
}

digitalWrite(red_LED, HIGH);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, LOW);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, HIGH);
}
//**

6.6 INTERRUPT EXAMPLES
In this section, we provide several varied examples on using interrupts internal and external to the
microcontroller.

6.6.1 APPLICATION 1: REAL TIME CLOCK IN C
A microcontroller only ‘understands’ elapsed time in reference to its timebase clock ticks. To keep
track of clock time in seconds, minutes, hours etc., a periodic interrupt may be generated for use
as a ‘clock tick’ for a real time clock. In this example, we use the Timer 0 overflow to generate a
periodic clock tick very 6.55 ms. The ticks are counted in reference to clock time variables and may
be displayed on a liquid crystal display.This is also a useful technique for generating very long delays
in a microcontroller.
//function prototypes**

//delay specified number 6.55ms

void delay(unsigned int number_of_6_55ms_interrupts);
void init_timer0_ovf_interrupt(void);//initialize timer0 overflow interrupt

244 6. INTERRUPT SUBSYSTEM

//interrupt handler definition***
//interrupt handler definition

#pragma interrupt_handler timer0_interrupt_isr:17

//global variables***
unsigned int days_ctr, hrs_ctr, mins_ctr, sec_ctr, ms_ctr;

//main program***

void main(void)
{
day_ctr = 0; hr_ctr = 0; min_ctr = 0; sec_ctr = 0; ms_ctr = 0;

init_timer0_ovf_interrupt(); //initialize Timer/Counter0 Overflow

//interrupt - call once at beginning
//of program

while(1)
{
; //wait for interrupts
}

}

//***
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt is
//being employed as a time base for a master timer for this project.
//The ceramic resonator operating at 10 MHz is divided by 256.
//The 8-bit Timer0 register (TCNT0) overflows every 256 counts or
//every 6.55 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overfl. occurs every 6.55ms

TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt

6.6. INTERRUPT EXAMPLES 245

}

//***
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//***

void timer0_interrupt_isr(void)
{

//Update millisecond counter
ms_ctr = ms_ctr + 1; //increment ms counter

//Update second counter
if(ms_ctr == 154) //counter equates to 1000 ms at 154
{
ms_ctr = 0; //reset ms counter
sec_ctr = sec_ctr + 1; //increment second counter
}

//Update minute counter
if(sec_ctr == 60)
{
sec_ctr = 0; //reset sec counter
min_ctr = min_ctr + 1; //increment min counter
}

//Update hour counter
if(min_ctr == 60)
{
min_ctr = 0; //reset min counter
hr_ctr = hr_ctr + 1; //increment hr counter
}

//Update day counter
if(hr_ctr == 24)
{
hr_ctr = 0; //reset hr counter

246 6. INTERRUPT SUBSYSTEM

day_ctr = day_ctr + 1; //increment day counter
}

}

//***

6.6.2 APPLICATION 2: REAL TIME CLOCK USING THE ARDUINO
DEVELOPMENT ENVIRONMENT

In this example, we reconfigure the previous example using the Arduino Development Environment.
The timing functions in the previous example assumed a time base of 10 MHz. The Arduino UNO
R3 is clocked with a 16 MHz crystal. Therefore, some of the parameters in the sketch are adjusted
to account for this difference in time base.

//***
#include <avr/interrupt.h>

//global variables***
unsigned int days_ctr, hrs_ctr, mins_ctr, sec_ctr, ms_ctr;

void setup()
{
day_ctr = 0; hr_ctr = 0; min_ctr = 0; sec_ctr = 0; ms_ctr = 0;
init_timer0_ovf_interrupt(); //init. Timer/Counter0 Overflow
}

void loop()
{
:
: //wait for interrupts
:
}

//***
// ISR(TIMER0_OVF_vect) Timer0 interrupt service routine.
//
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//***

ISR(TIMER0_OVF_vect)

6.6. INTERRUPT EXAMPLES 247

{
//Update millisecond counter
ms_ctr = ms_ctr + 1; //increment ms counter

//Update second counter
//counter equates to 1000 ms at 244

if(ms_ctr == 244) //each clock tick is 4.1 ms
{
ms_ctr = 0; //reset ms counter
sec_ctr = sec_ctr + 1; //increment second counter
}

//Update minute counter
if(sec_ctr == 60)
{
sec_ctr = 0; //reset sec counter
min_ctr = min_ctr + 1; //increment min counter
}

//Update hour counter
if(min_ctr == 60)
{
min_ctr = 0; //reset min counter
hr_ctr = hr_ctr + 1; //increment hr counter
}

//Update day counter
if(hr_ctr == 24)
{
hr_ctr = 0; //reset hr counter
day_ctr = day_ctr + 1; //increment day counter
}

}

//***
//int_timer0_ovf_interrupt(): The Timer/Counter0
//Overflow interrupt is being employed as a time base for a master timer
//for this project. The ceramic resonator operating at 16 MHz is

248 6. INTERRUPT SUBSYSTEM

//divided by 256.
//The 8-bit Timer0 register (TCNT0) overflows every 256 counts or
//every 4.1 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overfl. occurs every 4.1 ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}
//***

6.6.3 APPLICATION 3: INTERRUPT DRIVEN USART IN C
In Chapter 4, we discussed the serial communication capability of the USART in some detail. In
the following example, we revisit the USART and use it in an interrupt driven mode.

Example. You have been asked to evaluate a new positional encoder technology. The encoder
provides 12–bit resolution. The position data is sent serially at 9600 Baud as two sequential bytes as
shown in Figure 6.8. The actual encoder is new technology and production models are not available
for evaluation.

start b
it (b

y
te 1

)

b
y
te ID

 =
 0

b
0

b
1

b
2

b
3

b
4

b
5

b
6

p
arity

 (if u
sed

)

start b
it (b

y
te 2

)

b
y
te ID

 =
 1

b
7

b
8

b
9

b
1
0

b
1
1

statu
s b

it 1

statu
s b

it 2

p
arity

 (if u
sed

)

Figure 6.8: Encoder data format. The position data is sent serially at 9600 Baud as two sequential bytes.

Since the actual encoder is not available for evaluation, another Atmel ATmega328 will be used
to send signals in identical format and Baud rate as the encoder. The test configuration is illustrated
in Figure 6.9. The ATmega328 on the bottom serves as the positional encoder. The microcontroller
is equipped with two pushbuttons at PD2 and PD3. The pushbutton at PD2 provides a debounced
input to open a simulated door and increment the positional encoder. The pushbutton at PD3
provides a debounced input to close a simulated door and decrement the positional encoder. The
current count of the encoder (eight most significant bits) is fed to a digital–to–analog converter
(DAC0808) to provide an analog representation.

6.6. INTERRUPT EXAMPLES 249

The positional data from the encoder is sent out via the USART in the format described
in Figure 6.8. The top ATmega328 receives the positional data using interrupt driven USART
techniques. The current position is converted to an analog signal via the DAC. The transmitted and
received signals may be compared at the respective DAC outputs.

Provided below is the code for the ATmega328 that serves as the encoder simulator followed
by the code for receiving the data.
//***
//author: Steven Barrett, Ph.D., P.E.
//last revised: April 15, 2010
//file: encode.c
//target controller: ATMEL ATmega328
//
//ATmega328 clock source: internal 8 MHz clock
//
//ATMEL AVR ATmega328PV Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//
//Pin 1 to system reset circuitry
//Pin 2 PD0: USART receive pin (RXD)
//Pin 3 PD1: USART transmit pin (TXD)
//Pin 4 PD2 to active high RC debounced switch - Open
//Pin 5 PD3 to active high RC debounced switch - Close
//Pin 7 Vcc - 1.0 uF to ground
//Pin 8 Gnd
//Pin 9 PB6 to pin A7(11) on DAC0808
//Pin 10 PB7 to pin A8(12) on DAC0808
//Pin 14 PB0 to pin A1(5) on DAC0808
//Pin 15 PB1 to pin A2(6) on DAC0808
//Pin 16 PB2 to pin A3(7) on DAC0808
//Pin 17 PB3 to pin A4(8) on DAC0808
//Pin 18 PB4 to pin A5(9) on DAC0808
//Pin 19 PB5 to pin A6(10) on DAC0808
//Pin 20 AVCC to 5 VDC
//Pin 21 AREF to 5 VDC
//Pin 22 Ground
//***

//include files**
#include<iom328v.h>
#include<macros.h>

250 6. INTERRUPT SUBSYSTEM

7
4

H
C

1
4

V
c
c
 =

 5
.0

 v
o
lt

s

4
.7

 K

4
7
0
K

0
.1

u
F7

4
H

C
1

4

(3
)

(4
)P

D
3

1
0

0
K

3
K

V
c
c
 =

 5
.0

 v
o
lt

s

4
.7

 K

4
7
0
K

0
.1

u
F

(1
)

(2
)P
D

2

O
P

 O
p
en

 (
ac

ti
v
e

h
ig

h
)

C
L

 C
lo

se
 (

ac
ti

v
e

h
ig

h
)

1
0

0
K

3
K

V
E

E
 =

 -
 5

 V
D

C

A
1
(5

)

A
2
(6

)

A
3
(7

)

A
4
(8

)

A
5
(9

)

A
6
(1

0
)

A
7
(1

1
)

A
8
(1

2
)

(1
3
)

(1
6
)

(3
)

(1
4
)

(1
5
)

(1
)

(2
)

(4
)

V
re

f
=

 5
 V

D
C

1
K 1
K

4
0

0

2
K

T
L

0
7
1

(2
)

(3
)

(6
)

(7
)

(4
)

+
5
V

D
C

-5
V

D
C

D
A

C
0
8
0
8

+
5
 V

D
C

V
D

D

V
D

D

sy
s

re
se

t

1
 P

U
R

 -
 P

C
6

2
 R

X
D

 -
 P

D
0

3
 T

X
D

 -
 P

D
1

4

P

D
2

5

P

D
3

6

P

D
4

7
 V

cc

8
 G

N
D

9

P

B
6

1
0

 P
B

7

1
1
 P

D
5

1
2

 P
D

6

1
3

 P
D

7

1
4

 P
B

0

P
C

5
 2

8

P
C

4
 2

7

P
C

3
 2

6

P
C

2
 2

5

P
C

1
 2

4

P
C

O
 2

3

G
N

D
 2

2

A
R

E
F

 2
1

A
V

C
C

 2
0

P
B

5
 1

9

P
B

4
 1

8

P
B

3
 1

7

P
B

2
 1

6

P
B

1
 1

5

A
tm

eg
a3

2
8

1
M

1
u
f

V
E

E
 =

 -
 5

 V
D

C

A
1
(5

)

A
2
(6

)

A
3
(7

)

A
4
(8

)

A
5
(9

)

A
6
(1

0
)

A
7
(1

1
)

A
8
(1

2
)

(1
3
)

(1
6
)

(3
)

(1
4
)

(1
5
)

(1
)

(2
)

(4
)

V
re

f
=

 5
 V

D
C

1
K 1
K

4
0

0

2
K

T
L

0
7
1

(2
)

(3
)

(6
)

(7
)

(4
)

+
5
V

D
C

-5
V

D
C

D
A

C
0
8
0
8

+
5
 V

D
C

V
D

D

V
D

D

sy
s

re
se

t

1
 P

U
R

 -
 P

C
6

2
 R

X
D

 -
 P

D
0

3
 T

X
D

 -
 P

D
1

4

P

D
2

5

P

D
3

6

P

D
4

7
 V

cc

8
 G

N
D

9

P

B
6

1
0

 P
B

7

1
1
 P

D
5

1
2

 P
D

6

1
3

 P
D

7

1
4

 P
B

0

P
C

5
 2

8

P
C

4
 2

7

P
C

3
 2

6

P
C

2
 2

5

P
C

1
 2

4

P
C

O
 2

3

G
N

D
 2

2

A
R

E
F

 2
1

A
V

C
C

 2
0

P
B

5
 1

9

P
B

4
 1

8

P
B

3
 1

7

P
B

2
 1

6

P
B

1
 1

5

A
tm

eg
a3

2
8

1
M

1
u
f

U
S

A
R

T
 R

ec
ei

v
er

P
o

si
ti

o
n

 E
n

co
d

er

S
im

u
la

to
r

Figure 6.9: Encoder test configuration.

6.6. INTERRUPT EXAMPLES 251

//function prototypes**

//delay specified number 6.55ms int
void initialize_ports(void); //initializes ports
void USART_init(void);
void USART_TX(unsigned char data);

//main program***
//global variables
unsigned char old_PORTD = 0x08; //present value of PORTD
unsigned char new_PORTD; //new values of PORTD
unsigned int door_position = 0;

void main(void)
{
initialize_ports(); //return LED configuration to default
USART_init();

//main activity loop - checks PORTD to see if either PD2 (open)
//or PD3 (close) was depressed.
//If either was depressed the program responds.

while(1)
{
_StackCheck(); //check for stack overflow
read_new_input();
//read input status changes on PORTB
}

}//end main

//Function definitions
//***
//initialize_ports: provides initial configuration for I/O ports
//***

void initialize_ports(void)
{

252 6. INTERRUPT SUBSYSTEM

//PORTB
DDRB=0xff; //PORTB[7-0] output
PORTB=0x00; //initialize low

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //initialize low

//PORTD
DDRD=0xf2; //set PORTD[7-4, 0] as output
PORTD=0x00; //initialize low
}

//***
//***
//read_new_input: functions polls PORTD for a change in status. If status
//change has occurred, appropriate function for status change is called
//Pin 4 PD2 to active high RC debounced switch - Open
//Pin 5 PD3 to active high RC debounced switch - Close
//***

void read_new_input(void)
{
unsigned int gate_position; //measure instantaneous position of gate
unsigned int i;
unsigned char ms_door_position, ls_door_position, DAC_data;

new_PORTD = (PIND & 0x0c);
//mask all pins but PORTD[3:2]
if(new_PORTD != old_PORTD){
switch(new_PORTD){ //process change in PORTD input

case 0x01: //Open
while(PIND == 0x04)
{
//split into two bytes
ms_door_position=(unsigned char)(((door_position >> 6)

&(0x00FF))|0x01);
ls_door_position=(unsigned char)(((door_position << 1)

6.6. INTERRUPT EXAMPLES 253

&(0x00FF))&0xFE);
//TX data to USART
USART_TX(ms_door_position);
USART_TX(ls_door_position);

//format data for DAC and send to DAC on PORTB
DAC_data=(unsigned char)((door_position >> 4)&(0x00FF));
PORTB = DAC_data;

//increment position counter
if(door_position >= 4095)

door_position = 4095;
else
door_position++;

}
break;

case 0x02: //Close
while(PIND == 0x02)
{
//split into two bytes
ms_door_position=(unsigned char)(((door_position >>6)

&(0x00FF))|0x01);
ls_door_position=(unsigned char)(((door_position <<1)

&(0x00FF))&0xFE);
//TX data to USART
USART_TX(ms_door_position);
USART_TX(ls_door_position);

//format data for DAC and send to DAC on PORTB
DAC_data=(unsigned char)((door_position >> 4)&(0x00FF));

PORTB = DAC_data;

//decrement position counter
if(door_position <= 0)
door_position = 0;

else
door_position-;

254 6. INTERRUPT SUBSYSTEM

}
break;

default:; //all other cases
} //end switch(new_PORTD)

} //end if new_PORTD
old_PORTD = new_PORTD; //update PORTD

}

//***
//USART_init: initializes the USART system
//
//Note: ATmega328 clocked by internal 8 MHz clock
//***

void USART_init(void)
{
UCSRA = 0x00; //control
register initialization
UCSRB = 0x08; //enable transmitter
UCSRC = 0x86; //async, no parity, 1 stop bit, 8 data bits

//Baud Rate initialization
//8 MHz clock requires UBRR value of 51
// or 0x0033 to achieve 9600 Baud rate

UBRRH = 0x00;
UBRRL = 0x33;
}

//***
//USART_transmit: transmits single byte of data
//***

void USART_transmit(unsigned char data)
{
while((UCSRA & 0x20)==0x00) //wait for UDRE flag
{
;
}

UDR = data; //load data to UDR for transmission

6.6. INTERRUPT EXAMPLES 255

}

//***

Receive ATmega328 code follows.

//***
//author: Steven Barrett, Ph.D., P.E.
//last revised: April 15, 2010
//file: receive.c
//target controller: ATMEL ATmega328
//
//ATmega328 clock source: internal 8 MHz clock
//
//ATMEL AVR ATmega328PV Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//
//Pin 1 to system reset circuitry
//Pin 2 PD0: USART receive pin (RXD)
//Pin 3 PD1: USART transmit pin (TXD)
//Pin 4 PD2 to active high RC debounced switch - Open
//Pin 5 PD3 to active high RC debounced switch - Close
//Pin 7 Vcc - 1.0 uF to ground
//Pin 8 Gnd
//Pin 9 PB6 to pin A7(11) on DAC0808
//Pin 10 PB7 to pin A8(12) on DAC0808
//Pin 14 PB0 to pin A1(5) on DAC0808
//Pin 15 PB1 to pin A2(6) on DAC0808
//Pin 16 PB2 to pin A3(7) on DAC0808
//Pin 17 PB3 to pin A4(8) on DAC0808
//Pin 18 PB4 to pin A5(9) on DAC0808
//Pin 19 PB5 to pin A6(10) on DAC0808
//Pin 20 AVCC to 5 VDC
//Pin 21 AREF to 5 VDC
//Pin 22 Ground
//***

//include files**
#include<iom328v.h>
#include<macros.h>
#include<eeprom.h> //EEPROM support functions

256 6. INTERRUPT SUBSYSTEM

#pragma data: eeprom
unsigned int door_position_EEPROM
#pragma data:data

//function prototypes**
void initialize_ports(void); //initializes ports
void InitUSART(void);
unsigned char USART_RX(void);

//interrupt handler definition
#pragma interrupt_handler USART_RX_interrupt_isr: 19

//main program***
unsigned int door_position = 0;
unsigned char data_rx;
unsigned int dummy1 = 0x1234;
unsigned int keep_going =1;
unsigned int loop_counter = 0;
unsigned int ms_position, ls_position;

void main(void)
{
initialize_ports(); //return LED configuration to deflt.
USART_init();

//limited startup features
//main activity loop - processor will
//continually cycle through loop
//waiting for USART data

while(1)
{

//continuous loop waiting for
//interrupts

_StackCheck(); //check for stack overflow
}

}//end main

6.6. INTERRUPT EXAMPLES 257

//Function definitions
//***
//initialize_ports: provides initial configuration for I/O ports
//***

void initialize_ports(void)
{
//PORTB
DDRB=0xff; //PORTB[7-0] output
PORTB=0x00; //initialize low

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //initialize low

//PORTD
DDRD=0xff; //set PORTD[7-0] as output
PORTD=0x00; //initialize low
}

//***
//USART_init: initializes the USART system
//
//Note: ATmega328 clocked by internal 8 MHz clock
//***

void USART_init(void)
{
UCSRA = 0x00; //control
register initialization
UCSRB = 0x08; //enable transmitter
UCSRC = 0x86; //async, no parity, 1 stop bit, 8 data bits

//Baud Rate initialization
//8 MHz clock requires UBRR value of 51
// or 0x0033 to achieve 9600 Baud rate

UBRRH = 0x00;
UBRRL = 0x33;
}

258 6. INTERRUPT SUBSYSTEM

//***
//USART_RX_interrupt_isr
//***

void USART_RX_interrupt_isr(void)
{
unsigned char data_rx, DAC_data;
unsigned int ls_position, ms_position;

//Receive USART data
data_rx = UDR;

//Retrieve door position data from EEPROM
EEPROM_READ((int) &door_position_EEPROM, door_position);

//Determine which byte to update
if((data_rx & 0x01)==0x01) //Byte ID = 1
{
ms_position = data_rx;

//Update bit 7
if((ms_position & 0x0020)==0x0020) //Test for logic 1
door_position = door_position | 0x0080; //Set bit 7 to 1

else
door_position = door_position & 0xff7f; //Reset bit 7 to 0

//Update remaining bits
ms_position = ((ms_position<<6) & 0x0f00);
//shift left 6-blank other bits
door_position = door_position & 0x00ff; //Blank ms byte
door_position = door_position | ms_position; //Update ms byte
}

else //Byte ID = 0
{
ls_position = data_rx; //Update ls_position

//Shift right 1-blank
ls_position = ((ls_position >> 1) & 0x007f); //other bits

6.7. SUMMARY 259

if((door_position & 0x0080)==0x0080)
//Test bit 7 of curr position

ls_position = ls_position | 0x0080; //Set bit 7 to logic 1
else
ls_position = ls_position & 0xff7f; //Reset bit 7 to 0

door_position = door_position & 0xff00; //Blank ls byte
door_position = door_position | ls_position; //Update ls byte
}

//Store door position data to EEPROM
EEPROM_WRITE((int) &door_position_EEPROM, door_position);

//format data for DAC and send to DAC on PORT C
DAC_data=(unsigned char)((door_position >> 4)&(0x00FF));

PORTB= DAC_data;
}

//***
//end of file
//***

6.7 SUMMARY
In this chapter, we provided an introduction to the interrupt features available aboard the AT-
mega328, the Arduino UNO R3 processing board, the ATmega250, and the Arduino Mega 2560.
We also discussed how to program an interrupt for proper operation and provided representative
samples for an external interrupt and an internal interrupt.

6.8 REFERENCES
• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-

mega48PA, 88PA, 168PA, 328P data sheet: 8161D–AVR–10/09, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 64/128/256K Bytes In–System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P–AVR–10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001

260 6. INTERRUPT SUBSYSTEM

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

6.9 CHAPTER PROBLEMS
1. What is the purpose of an interrupt?

2. Describe the flow of events when an interrupt occurs.

3. Describe the interrupt features available with the ATmega328.

4. Describe the built–in interrupt features available with the Arduino Development Environ-
ment.

5. What is the interrupt priority? How is it determined?

6. What steps are required by the system designer to properly configure an interrupt?

7. How is the interrupt system turned “ON” and “OFF”?

8. A 10 MHz ceramic resonator is not available. Redo the example of the Timer/Counter0
Overflow interrupt provided with a timebase of 1 MHz and 8 MHz.

9. What is the maximum delay that may be generated with the delay function provided in the
text without modification? How could the function be modified for longer delays?

10. In the text, we provided a 24 hour timer (hh:mm:ss:ms) using the Timer/Counter0 Overflow
interrupt. What is the accuracy of the timer? How can it be improved?

11. Adapt the 24 hour timer example to generate an active high logic pulse on a microcontroller
pin of your choice for three seconds. The pin should go logic high three weeks from now.

12. What are the concerns when using multiple interrupts in a given application?

13. How much time can background processing relative to foreground processing be implemented?

14. What is the advantage of using interrupts over polling techniques?

15. Can the USART transmit and interrupt receive system provided in the chapter be adapted to
operate in the Arduino Development Environment? Explain in detail.

http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

261

C H A P T E R 7

Timing Subsystem
Objectives: After reading this chapter, the reader should be able to

• Explain key timing system related terminology.

• Compute the frequency and the period of a periodic signal using a microcontroller.

• Describe functional components of a microcontroller timer system.

• Describe the procedure to capture incoming signal events.

• Describe the procedure to generate time critical output signals.

• Describe the timing related features of the Atmel ATmega328 and ATmega2560.

• Describe the four operating modes of the Atmel ATmega328 and ATmega2560 timing system.

• Describe the register configurations for the ATmega328’s Timer 0, Timer 1, and Timer 2.

• Describe the register configurations for the ATmega2560’s Timer 0, Timer 1, Timer 2, Timer
3, Timer 4, and Timer 5.

• Program the Arduino UNO R3 and the Arduino Mega 2560 using the built–in timer features
of the Arduino Development Environment.

• Program the ATmega328 and the Arduino Mega 2560 timer system for a variety of applications
using C.

7.1 OVERVIEW
One of the most important reasons for using microcontrollers is their capability to perform time
related tasks. In a simple application, one can program a microcontroller to turn on or turn off an
external device at a specific time. In a more involved application, we can use a microcontroller to
generate complex digital waveforms with varying pulse widths to control the speed of a DC motor. In
this chapter, we review the capabilities of the Atmel ATmega328 and ATmega2560 microcontrollers
to perform time related functions. We begin with a review of timing related terminology. We then
provide an overview of the general operation of a timing system followed by the timing system
features aboard the ATmega328 and the ATmega2560. Next, we present a detailed discussion of

262 7. TIMING SUBSYSTEM

each of its timing channels and their different modes of operation. We then review the built–
in timing functions of the Arduino Development Environment and conclude the chapter with a
variety of examples.

7.2 TIMING RELATED TERMINOLOGY

In this section, we review timing related terminology including frequency, period, and duty cycle.

7.2.1 FREQUENCY
Consider signal x(t) that repeats itself. We call this signal periodic with period T, if it satisfies the
following equation:

x(t) = x(t + T).

To measure the frequency of a periodic signal, we count the number of times a particular
event repeats within a one second period. The unit of frequency is the Hertz or cycles per second.
For example, a sinusoidal signal with a 60 Hz frequency means that a full cycle of a sinusoid signal
repeats itself 60 times each second or every 16.67 ms.

7.2.2 PERIOD
The reciprocal of frequency is the period of a waveform. If an event occurs with a rate of 1 Hz, the
period of that event is 1 second. To find the signal period (T), given the signal’s frequency (f), we
simply need to apply their inverse relationship f = 1

T
. Both the period and frequency of a signal

are often used to specify timing constraints of microcontroller–based systems. For example, when
your car is on a wintery road and slipping, the engineers who designed your car configured the
anti–slippage unit to react within some millisecond period, say 20 milliseconds. The constraint then
requires the monitoring system to check slippage at a rate of 50 Hz.

7.2.3 DUTY CYCLE
In many applications, periodic pulses are used as control signals. A good example is the use of a
periodic pulse to control a servo motor.To control the direction and sometimes the speed of a motor,
a periodic pulse signal with a changing duty cycle over time is used. The periodic pulse signal shown
in Figure 7.1(a) is on for 50 percent of the signal period and off for the rest of the period. The pulse
shown in (b) is on for only 25 percent of the same period as the signal in (a) and off for 75 percent
of the period. The duty cycle is defined as the percentage of the period a signal is on or logic high.
Therefore, we refer to the signal in Figure 7.1(a) as a periodic pulse signal with a 50 percent duty
cycle and the corresponding signal in (b), a periodic pulse signal with a 25 percent duty cycle.

7.3. TIMING SYSTEM OVERVIEW 263

100 %

50 %

(a)25 %

(b)
100 %

Figure 7.1: Two signals with the same period but different duty cycles.The top figure (a) shows a periodic
signal with a 50% duty cycle and the lower figure (b) displays a periodic signal with a 25% duty cycle.

7.3 TIMING SYSTEM OVERVIEW

The heart of the timing system is the time base. The time base’s frequency is used to generate a
baseline clock signal. For a timer system, the system clock is used to update the contents of a register
called the free running counter. The job of the free running counter is to count up (increment) for
each rising edge (or a falling edge) of a clock signal. For example, if a clock is operating at a rate of 2
MHz, the free running counter will count up or increment each 0.5 microseconds. All other timer
related events reference the contents of the free running counter to perform input and output time
related activities: measurement of time periods, capture of timing events, and generation of time
related signals.

The ATmega328 and the ATmega2560 may be clocked internally using a user–selectable
resistor capacitor (RC) time base or they may be clocked externally. The RC internal time base is
selected using programmable fuse bits. You may choose an internal fixed clock operating frequency
of 1, 2, 4 or 8 MHz.

To provide for a wider range of frequency selections an external time source may be used.
The external time sources, in order of increasing accuracy and stability, are an external RC network,

264 7. TIMING SUBSYSTEM

a ceramic resonator, and a crystal oscillator. The system designer chooses the time base frequency
and clock source device appropriate for the application at hand. The maximum operating frequency
of the ATmega328P with a 5 VDC supply voltage is 20 MHz. The Arduino UNO R3 processing
board is equipped with a 16 MHz crystal oscillator time base. The maximum operating frequency
of the ATmega2560 with a 5 VDC supply voltage is 16 MHz. The Arduino Mega 2560 processing
board is equipped with a 16 MHz crystal oscillator time base.

The timing system may be used to capture the characteristics of an incoming input signal or
generate a digital output signal. We provide a brief overview of these capabilities followed by a more
detailed treatment in the next section.

For input time related activities, all microcontrollers typically have timer hardware compo-
nents that detect signal logic changes on one or more input pins. Such components rely on the free
running counter to capture external event times. We can use these features to measure the period of
an incoming signal or the width of an incoming pulse. You can also use the timer input system to
measure the pulse width of an aperiodic signal. For example, suppose that the times for the rising
edge and the falling edge of an incoming signal are 1.5 sec and 1.6 sec, respectively. We can use these
values to easily compute the pulse width of 0.1 second.

For output timer functions, a microcontroller uses a comparator, a free running counter, logic
switches, and special purpose registers to generate time related signals on one or more output pins.
A comparator checks the value of the free running counter for a match with the contents of another
special purpose register where a programmer stores a specified time in terms of the free running
counter value. The checking process is executed at each clock cycle and when a match occurs, the
corresponding hardware system induces a programmed logic change on a programmed output port
pin. Using such capability, one can generate a simple logic change at a designated time incident, a
pulse with a desired time width, or a pulse width modulated signal to control servo or Direct Current
(DC) motors.

From the examples we discussed above, you may have wondered how a microcontroller can
be used to compute absolute times from the relative free running counter values, say 1.5 second and
1.6 second. The simple answer is that we can not do so directly. A programmer must use the system
clock values and derive the absolute time values. Suppose your microcontroller is clocked by a 2
MHz signal and the system clock uses a 16–bit free running counter. For such a system, each clock
period represents 0.5 microsecond and it takes approximately 32.78 milliseconds to count from 0
to 216 (65,536). The timer input system then uses the clock values to compute frequencies, periods,
and pulse widths. For example, suppose you want to measure a pulse width of an incoming aperiodic
signal. If the rising edge and the falling edge occurred at count values $0010 and $0114, 1 can you
find the pulse width when the free running counter is counting at 2 MHz? Let’s first convert the
two values into their corresponding decimal values, 276 and 16. The pulse width of the signal in the
number of counter value is 260. Since we already know how long it takes for the system to increment
by one, we can readily compute the pulse width as 260 × 0.5 microseconds = 130 microseconds.

1The $ symbol represents that the following value is in a hexadecimal form.

7.4. TIMER SYSTEM APPLICATIONS 265

Our calculations do not take into account time increments lasting longer than the rollover
time of the counter. When a counter rolls over from its maximum value back to zero, a status flag is
set to notify the processor of this event. The rollover events may be counted to correctly determine
the overall elapsed time of an event.

To calculate the total elapsed time of an event; the event start time, stop time, and the number
of timer overflows (n) that occurred between the start time and stop time must be known. Elapsed
time may be calculated using:

elapsed clock ticks = (n × 2b) + (stop count − start count) [clock ticks]

elapsed time = (elapsed clock ticks) × (FRC clock period) [seconds]
In this first equation, “n” is the number of Timer Overflow Flag (TOF) events that occur

between the start and stop events and “b” is the number of bits in the timer counter. The equation
yields the elapsed time in clock ticks. To convert to seconds the number of clock ticks are multiplied
by the period of the clock source of the free running counter.

7.4 TIMER SYSTEM APPLICATIONS
In this section, we take a closer look at some important uses of the timer system of a microcontroller
to (1) measure an input signal timing event, termed input capture, (2) to count the number of
external signal occurrences, (3) to generate timed signals – termed output compare, and, finally, (4)
to generate pulse width modulated signals. We first start with a case of measuring the time duration
of an incoming signal.

7.4.1 INPUT CAPTURE – MEASURING EXTERNAL TIMING EVENT
In many applications, we are interested in measuring the elapsed time or the frequency of an external
event using a microcontroller. Using the hardware and functional units discussed in the previous
sections, we now present a procedure to accomplish the task of computing the frequency of an
incoming periodic signal. Figure 7.2 shows an incoming periodic signal to our microcontroller.

The first step for input capture is to turn on the timer system.To reduce power consumption a
microcontroller usually does not turn on all of its functional systems after reset until they are needed.
In addition to a separate timer module, many microcontroller manufacturers allow a programmer to
choose the rate of a separate timer clock that governs the overall functions of a timer module.

Once the timer is turned on and the clock rate is selected, a programmer must configure the
physical port to which the incoming signal arrives. This step is done using a special input timer port
configuration register.The next step is to program the input event to capture. In our current example,
we should capture two consecutive rising edges or falling edges of the incoming signal. Again, the
programming portion is done by storing an appropriate setup value to a special register.

266 7. TIMING SUBSYSTEM

Timer Input Port

Timer Output Port
External

Device

Microcontroller

Figure 7.2: Use of the timer input and output systems of a microcontroller. The signal on top is fed into
a timer input port. The captured signal is subsequently used to compute the input signal frequency. The
signal on the bottom is generated using the timer output system. The signal is used to control an external
device.

Now that the input timer system is configured appropriately, you now have two options to
accomplish the task. The first one is the use of a polling technique; the microcontroller continuously
polls a flag, which holds a logic high signal when a programmed event occurs on the physical pin.
Once the microcontroller detects the flag, it needs to clear the flag and record the time when the flag
was set using another special register that captures the time of the associated free running counter
value. The program needs to continue to wait for the next flag, which indicates the end of one
period of the incoming signal. A programmer then needs to record the newly acquired captured
time represented in the form of a free running counter value again. The period of the signal can now
be computed by computing the time difference between the two captured event times, and, based
on the clock speed of the microcontroller’s timer system, the programmer can compute the actual
time changes and consequently the frequency of the signal.

In many cases, a microcontroller can’t afford the time to poll for one event. Such situation
introduces the second method: interrupt systems. Most microcontrollers are equipped with built-
–in interrupt systems with their timer input modules. Instead of continuously polling for a flag, a
microcontroller performs other tasks and relies on its interrupt system to detect the programmed
event. The task of computing the period and the frequency is the same as the first method, except
that the microcontroller will not be tied down to constantly checking the flag, increasing the efficient
use of the microcontroller resources. To use interrupt systems, of course, we must pay the price by
appropriately configuring the interrupt systems to be triggered when a desired event is detected.
Typically, additional registers must be configured, and a special program called an interrupt service
routine must be written.

Suppose that for an input capture scenario the two captured times for the two rising edges
are $1000 and $5000, respectively. Note that these values are not absolute times but the time hacks

7.4. TIMER SYSTEM APPLICATIONS 267

captured from the free running counter. The period of the signal is $4000 or 16384 in a decimal
form. If we assume that the timer clock runs at 10 MHz, the period of the signal is 1.6384 msec,
and the corresponding frequency of the signal is approximately 610.35 Hz.

7.4.2 COUNTING EVENTS
The same capability of measuring the period of a signal can also be used to simply count external
events. Suppose we want to count the number of logic state changes of an incoming signal for a given
period of time. Again, we can use the polling technique or the interrupt technique to accomplish the
task. For both techniques, the initial steps of turning on the timer and configuring a physical input
port pin are the same. In this application, however, the programmed event should be any logic state
changes instead of looking for a rising or a falling edge as we have done in the previous section.

If the polling technique is used, at each event detection, the corresponding flag must be cleared
and a counter must be updated. If the interrupt technique is used, one must write an interrupt service
routine within which the flag is cleared and a counter is updated.

7.4.3 OUTPUT COMPARE – GENERATING TIMING SIGNALS TO
INTERFACE EXTERNAL DEVICES

In the previous two sections, we considered two applications of capturing external incoming signals.
In this subsection and the next one, we consider how a microcontroller can generate time critical
signals for external devices. Suppose in this application, we want to send a signal shown in Figure
7.2 to turn on an external device. The timing signal is arbitrary but the application will show that a
timer output system can generate any desired time related signals permitted under the timer clock
speed limit of the microcontroller.

Similar to the use of the timer input system, one must first turn on the timer system and
configure a physical pin as a timer output pin using special registers. In addition, one also needs to
program the desired external event using another special register associated with the timer output
system.To generate the signal shown in Figure 7.2, one must compute the time required between the
rising and the falling edges. Suppose that the external device requires a pulse which is 2 milliseconds
wide to be activated. To generate the desired pulse, one must first program the logic state for the
particular pin to be low and set the time value using a special register with respect to the contents of
the free running counter. As was mentioned in Section 7.2, at each clock cycle, the special register
contents are compared with the contents of the free running counter and when a match occurs, the
programmed logic state appears on the designated hardware pin. Once the rising edge is generated,
the program then must reconfigure the event to be a falling edge (logic state low) and change the
contents of the special register to be compared with the free running counter. For the particular
example in Figure 7.2, let’s assume that the main clock runs at 2 MHz, the free running counter is
a 16 bit counter, and the name of the special register (16 bit register) where we can put appropriate
values is output timer register. To generate the desired pulse, we can put $0000 first to the output
timer register, and after the rising edge has been generated, we need to change the program event to

268 7. TIMING SUBSYSTEM

Pulse Width Modulated (PWM) signal

time

m
o

to
r

v
el

o
ci

ty
acceleration

portion

constant speed

portion
deceleration

portion

��������

Figure 7.3: The figure shows the speed profile of a DC motor over time when a pulse–width–modulated
signal is applied to the motor.

a falling edge and put $0FA0 or 4000 in decimal to the output timer register. As was the case with
the input timer system module, we can use output timer system interrupts to generate the desired
signals as well.

7.4.4 INDUSTRIAL IMPLEMENTATION CASE STUDY (PWM)
In this section, we discuss a well–known method to control the speed of a DC motor using a pulse
width modulated (PWM) signal. The underlying concept is as follows. If we turn on a DC motor
and provide the required voltage, the motor will run at its maximum speed. Suppose we turn the
motor on and off rapidly, by applying a periodic signal. The motor at some point can not react fast
enough to the changes of the voltage values and will run at the speed proportional to the average
time the motor was turned on. By changing the duty cycle, we can control the speed of a DC motor
as we desire. Suppose again we want to generate a speed profile shown in Figure 7.3. As shown in
the figure, we want to accelerate the speed, maintain the speed, and decelerate the speed for a fixed
amount of time.

As an example, an elevator control system does not immediately operate the elevator motor
at full speed. The elevator motor speed will ramp up gradually from stop to desired speed. As the
elevator approaches, the desired floor it will gradually ramp back down to stop.

The first task necessary is again to turn on the timer system, configure a physical port, and
program the event to be a rising edge. As a part of the initialization process, we need to put $0000 to
the output timer register we discussed in the previous subsection. Once the rising edge is generated,
the program then needs to modify the event to a falling edge and change the contents of the output

7.5. OVERVIEW OF THE ATMEL ATMEGA328 AND ATMEGA2560 TIMER SYSTEMS 269

timer register to a value proportional to a desired duty cycle. For example, if we want to start off
with 25% duty cycle, we need to input $4000 to the register, provided that we are using a 16 bit free
running counter. Once the falling edge is generated, we now need to go back and change the event
to be a rising edge and the contents of the output timer counter value back to $0000. If we want
to continue to generate a 25% duty cycle signal, then we must repeat the process indefinitely. Note
that we are using the time for a free running counter to count from $0000 to $FFFF as one period.

Now suppose we want to increase the duty cycle to 50% over 1 sec and that the clock is
running at 2 MHz. This means that the free running counter counts from $0000 to $FFFF every
32.768 milliseconds, and the free running counter will count from $0000 to $FFFF approximately
30.51 times over the period of one second. That is we need to increase the pulse width from $4000
to $8000 in approximately 30 turns, or approximately 546 clock counts every turn. This technique
may be used to generate any desired duty cycle.

7.5 OVERVIEW OF THE ATMEL ATMEGA328 AND
ATMEGA2560 TIMER SYSTEMS

The Atmel ATmega328 and the ATmega2560 are equipped with a flexible and powerful multiple
channel timing system. For the ATmega328, the timer channels are designated Timer 0, Timer 1,
and Timer 2. For the ATmega2560, the timer channels are designated Timer 0 through Timer 5.
In this section, we review the operation of the timing system in detail. We begin with an overview
of the timing system features followed by a detailed discussion of timer channel 0. Space does not
permit a complete discussion of the other two types of timing channels; we review their complement
of registers and highlight their features not contained in our discussion of timer channel 0. The
information provided on timer channel 0 is readily adapted to the other channels.

The features of the timing system are summarized in Figure 7.4. Timer 0 and 2 are 8–bit
timers; whereas, Timer 1 for the ATmega 328 and Timers 1, 3–5 for the ATmega2560 are 16–bit
timers. Each timing channel is equipped with a prescaler.The prescaler is used to subdivide the main
microcontroller clock source (designated fclk_I/O in upcoming diagrams) down to the clock source
for the timing system (clkT n).

Each timing channel has the capability to generate pulse width modulated signals, generate a
periodic signal with a specific frequency, count events, and generate a precision signal using the output
compare channels. Additionally, Timer 1 on the ATmega328 and Timer 1, 3–5 on the ATmega2560
are equipped with the Input Capture feature.

All of the timing channels may be configured to operate in one of four operational modes
designated : Normal, Clear Timer on Compare Match (CTC), Fast PWM, and Phase Correct
PWM. We provide more information on these modes shortly.

270 7. TIMING SUBSYSTEM

ATmega328: Timer 1

ATmega2560: Timer 1, 3, 4, 5

Features:

- 16-bit timer/counter

- 10-bit clock prescaler

- Functions:

 -- Pulse width modulation

 -- Frequency generation

 -- Event counter

 -- Output compare -- 2 ch

 -- Input capture

- Modes of operation:

 -- Normal

 -- Clear timer on

 compare match (CTC)

 -- Fast PWM

 -- Phase correct PWM

ATmega328:Timer 0

ATmega2560: Timer 0

Features:

- 8-bit timer/counter

- 10-bit clock prescaler

- Functions:

 -- Pulse width modulation

 -- Frequency generation

 -- Event counter

 -- Output compare -- 2 ch

- Modes of operation:

 -- Normal

 -- Clear timer on

 compare match (CTC)

 -- Fast PWM

 -- Phase correct PWM

ATmega328: Timer 2

ATmega2560: Timer 2

Features:

- 8-bit timer/counter

- 10-bit clock prescaler

- Functions:

 -- Pulse width modulation

 -- Frequency generation

 -- Event counter

 -- Output compare -- 2 ch

- Modes of operation:

 -- Normal

 -- Clear timer on

 compare match (CTC)

 -- Fast PWM

 -- Phase correct PWM

Figure 7.4: Atmel timer system overview.

7.6 TIMER 0 SYSTEM

In this section, we discuss the features, overall architecture, modes of operation, registers, and pro-
gramming of Timer 0. This information may be readily adapted to Timers 1, 3, 4, 5 and Timer
2.

A Timer 0 block diagram is shown in Figure 7.5. The clock source for Timer 0 is provided via
an external clock source at the T0 pin of the microcontroller. Timer 0 may also be clocked internally
via the microcontroller’s main clock (fclk_I/O). This clock frequency may be too rapid for many
applications. Therefore, the timing system is equipped with a prescaler to subdivide the main clock
frequency down to timer system frequency (clkT n). The clock source for Timer 0 is selected using
the CS0[2:0] bits contained in the Timer/Counter Control Register B (TCCR0B). The TCCR0A
register contains the WGM0[1:0] bits and the COM0A[1:0] (and B) bits. Whereas, the TCCR0B
register contains the WGM0[2] bit. These bits are used to select the mode of operation for Timer
0 as well as tailor waveform generation for a specific application.

The timer clock source (clkT n) is fed to the 8–bit Timer/Counter Register (TCNT0). This
register is incremented (or decremented) on each clkT n clock pulse. Timer 0 is also equipped with
two 8–bit comparators that constantly compares the numerical content of TCNT0 to the Output

7.6. TIMER 0 SYSTEM 271

TCNTn

D
AT

A
B

U
S

OCnA

OCnB

TOP

=

=

=

=

BOTTOM

0

Control Logic
clk Tn

Edge
Detector

Fixed
TOP
Value

Waveform
Generation

Waveform
Generation

Clock Select

(From Prescaler)

Tn

TOVR
(Int_Req_)

OCRnA

OCRnB

OCnB

OCnA

TCCRnA TCCRnB

Count

Clear

Direction

Timer/Counter

(Int_Req_)

(Int_Req_)

Figure 7.5: Timer 0 block diagram. (Figure used with permission Atmel, Inc.)

Compare Register A (OCR0A) and Output Compare Register B (OCR0B). The compare signal
from the 8–bit comparator is fed to the waveform generators. The waveform generators have a
number of inputs to perform different operations with the timer system.

The BOTTOM signal for the waveform generation and the control logic, shown in Figure
7.5, is asserted when the timer counter TCNT0 reaches all zeroes (0x00). The MAX signal for
the control logic unit is asserted when the counter reaches all ones (0xFF). The TOP signal for
the waveform generation is asserted by either reaching the maximum count values of 0xFF on the
TCNT0 register or reaching the value set in the Output Compare Register 0 A (OCR0A) or B.
The setting for the TOP signal will be determined by the Timer’s mode of operation.

272 7. TIMING SUBSYSTEM

Timer 0 also uses certain bits within theTimer/Counter Interrupt Mask Register 0 (TIMSK0)
and the Timer/Counter Interrupt Flag Register 0 (TIFR0) to signal interrupt related events.

7.6.1 MODES OF OPERATION
Each of the timer channels may be set for a specific mode of operation: normal, clear timer on
compare match (CTC), fast PWM, and phase correct PWM. The system designer chooses the
correct mode for the application at hand. The timer modes of operation are summarized in Figure
7.6. A specific mode of operation is selected using the Waveform Generation Mode bits located in
Timer/Control Register A (TCCR0A) and Timer/Control Register B (TCCR0B).

7.6.1.1 Normal Mode
In the normal mode, the timer will continually count up from 0x00 (BOTTOM) to 0xFF (TOP).
When the TCNT0 returns to zero on each cycle of the counter the Timer/Counter Overflow Flag
(TOV0) will be set. The normal mode is useful for generating a periodic “clock tick” that may be
used to calculate elapsed real time or provide delays within a system. We provide an example of this
application in Section 5.9.

7.6.1.2 Clear Timer on Compare Match (CTC)
In the CTC mode, the TCNT0 timer is reset to zero every time the TCNT0 counter reaches the
value set in Output Compare Register A (OCR0A) or B. The Output Compare Flag A (OCF0A)
or B is set when this event occurs. The OCF0A or B flag is enabled by asserting the Timer/Counter
0 Output Compare Math Interrupt Enable (OCIE0A) or B flag in the Timer/Counter Interrupt
Mask Register 0 (TIMSK0) and when the I–bit in the Status Register is set to one.

The CTC mode is used to generate a precision digital waveform such as a periodic signal or
a single pulse. The user must describe the parameters and key features of the waveform in terms
of Timer 0 “clock ticks.” When a specific key feature is reached within the waveform the next key
feature may be set into the OCR0A or B register.

7.6.1.3 Phase Correct PWM Mode
In the Phase Correct PWM Mode, the TCNT0 register counts from 0x00 to 0xFF and back down
to 0x00 continually. Every time the TCNT0 value matches the value set in the OCR0A or B register
the OCF0A or B flag is set and a change in the PWM signal occurs.

7.6.1.4 Fast PWM
The Fast PWM mode is used to generate a precision PWM signal of a desired frequency and duty
cycle. It is called the Fast PWM because its maximum frequency is twice that of the Phase Correct
PWM mode. When the TCNT0 register value reaches the value set in the OCR0A or B register it
will cause a change in the PWM output as prescribed by the system designer. It continues to count
up to the TOP value at which time the Timer/Counter 0 Overflow Flag is set.

7.6. TIMER 0 SYSTEM 273

N
orm

al M
ode

C
lear T

im
er on C

om
pare M

atch (C
T

C
)

Fast PW
M

 M
ode

P
hase C

orrect P
W

M
 M

ode

T
C

N
T

0

T
O

P

B
O

T
T

O
M

T
O

V
0

T
O

V
0

T
O

V
0

T
C

N
T

0

O
C

R
0

O
C

R
0

O
C

R
0

O
C

0

O
C

0
O

C
0

O
C

0
O

C
0

fO
C

0 =
 (fclk_I/O

)/ (2 x N
 x (1 +

 O
C

R
0))

O
C

0
inter
flag

T
C

N
T

0

T
O

P

B
O

T
T

O
M

T
O

V
0

T
O

V
0

T
O

V
0

O
C

R
0

O
C

R
0

O
C

R
0

O
C

0
O

C
0

O
C

0

O
C

0

fO
C

0P
W

M
 =

 fclk_I/O
/ (N

 x 256)
fO

C
0P

W
M

 =
 fclk_I/O

/ (N
 x 510)

T
C

N
T

0

T
O

P

B
O

T
T

O
M

T
O

V
0

T
O

V
0

T
O

V
0

O
C

R
0

O
C

R
0

O
C

0
O

C
0

O
C

0

O
C

0

F
igure

7.6:
T

im
er0

m
odes

ofoperation.

274 7. TIMING SUBSYSTEM

7.6.2 TIMER 0 REGISTERS
A summary of the Timer 0 registers are shown in Figure 7.7.

Timer/Counter Control Register A (TCCR0A)
COM0A1

7 0

7 0

7 0

7 0

7 0

7 0

7 0

COM0A0

FOC0A FOC0B

COM0B1 COM0B0 WGM01

WGM02 CS02

OCIE20 OCIE20 TOIE0

OCF0B OCF20 TOV0

CS01 CS00

WGM00--- ---

--- --- --- --- ---

--- --- --- --- ---

Timer/Counter Control Register B (TCCR0B)

Timer/Counter Control Register (TCNT0)

Output Compare Register A (OCR0A)

Output Compare Register B (OCR0B)

Timer/Counter Interrupt Mask Register (TIMSK0)

Timer/Counter 2 Interrupt Flag Register (TIFR0)

Figure 7.7: Timer 0 registers.

7.6.2.1 Timer/Counter Control Registers A and B (TCCR0A and TCCR0B)
The TCCR0 register bits are used to:

• Select the operational mode of Timer 0 using the Waveform Mode Generation (WGM0[2:0])
bits,

• Determine the operation of the timer within a specific mode with the Compare Match Output
Mode (COM0A[1:0] or COM0B[1:0] or) bits, and

• Select the source of the Timer 0 clock using Clock Select (CS0[2:0]) bits.

7.7. TIMER 1 275

The bit settings for the TCCR0 register are summarized in Figure 7.8.

7.6.2.2 Timer/Counter Register(TCNT0)
The TCNT0 is the 8–bit counter for Timer 0.

7.6.2.3 Output Compare Registers A and B (OCR0A and OCR0B)
The OCR0A and B registers holds a user–defined 8–bit value that is continuously compared to the
TCNT0 register.

7.6.2.4 Timer/Counter Interrupt Mask Register (TIMSK0)
Timer 0 uses the Timer/Counter 0 Output Compare Match Interrupt Enable A and B (OCIE0A
and B) bits and the Timer/Counter 0 Overflow Interrupt Enable (TOIE0) bit. When the OCIE0A
or B bit and the I–bit in the Status Register are both set to one, the Timer/Counter 0 Compare
Match interrupt is enabled. When the TOIE0 bit and the I–bit in the Status Register are both set
to one, the Timer/Counter 0 Overflow interrupt is enabled.

7.6.2.5 Timer/Counter Interrupt Flag Register 0 (TIFR0)
Timer 0 uses the Output Compare Flag A or B (OCF0A and OCF0B) which sets for an output
compare match. Timer 0 also uses the Timer/Counter 0 Overflow Flag (TOV0) which sets when
Timer/Counter 0 overflows.

7.7 TIMER 1
Timer 1 on the ATmega328 and also Timers 1 and 3–5 on the ATmega2560 are 16–bit
timer/counters. These timers share many of the same features of the Timer 0 channel. Due to
limited space the shared information will not be repeated. Instead, we concentrate on the enhance-
ments of Timer 1 which include an additional output compare channel and also the capability for
input capture. The block diagram for Timer 1 is shown in Figure 7.9.

As discussed earlier in the chapter, the input capture feature is used to capture the character-
istics of an input signal including period, frequency, duty cycle, or pulse length.This is accomplished
by monitoring for a user–specified edge on the ICP1 microcontroller pin. When the desired edge
occurs, the value of the Timer/Counter 1 (TCNT1) register is captured and stored in the Input
Capture Register 1 (ICR1).

7.7.1 TIMER 1 REGISTERS
The complement of registers supporting Timer 1 are shown in Figure 7.10. Each register will be
discussed in turn.

7.7.1.1 TCCR1A and TCCR1B registers
The TCCR1 register bits are used to:

276 7. TIMING SUBSYSTEM

Mode
0
1
2
3
4
5
6
7

WGM[02:00]
000
001
010
011
100
101
110
111

Mode
Normal
PWM, Phase Correct
CTC
Fast PWM
Reserved
PWM, Phase Correct
Reserved
Fast PWM

Waveform Generation

Mode

Clock Select

CS0[2:0] Clock Source
 000 None
 001 clkI/0
 010 clkI/0/8
 011 clkI/0/64
 100 clkI/0/8clkI/0/256
 101 clkI/0/8clkI/0/1024
 110 External clock on T0 (falling edge trigger)
 111 External clock on T1 (rising edge trigger)

Timer/Counter Control Register B (TCCR0B)

7 0
FOC0A WGM02 CS02 CS01 CS00FOC0B --- ---

Timer/Counter Control Register A (TCCR0A)
WGM00COM0A1 COM0A0 WGM01--- ---COM0B1 COM0B0

COM0A[1:0]
00
01

10

11

Description
Normal, OC0A disconnected
WGM02 = 0: normal operation,
 OC0A disconnected
WGM02 = 1: Toggle OC0A on
 compare match
Clear OC0A on compare match,
set OC0A at Bottom
(non-inverting mode)
Set OC0A on compare match,
clear OC0A at Bottom
(inverting mode)

COM0A[1:0]
00
01
10
11

Description
Normal, OC0A disconnected
Toggle OC0A on compare match
Clear OC0A on compare match
Set OC0A on compare match

COM0A[1:0]
00
01

10

11

Description
Normal, OC0A disconnected
WGM02 = 0: normal operation,
 OC0A disconnected
WGM02 = 1: Toggle OC0A on
 compare match
Clear OC0A on compare match,
when upcounting. Set OC0A on
compare match when down counting
Set OC0A on compare match,
when upcounting. Set OC0A on
compare match when down counting

Compare Output Mode, Phase Correct PWM

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode
COM0B[1:0]

00
01

10

11

Description
Normal, OC0B disconnected
Reserved

Clear OC0B on compare match,
set OC0B at Bottom
(non-inverting mode)
Set OC0B on compare match,
clear OC0B at Bottom
(inverting mode)

COM0B[1:0]
00
01
10
11

Description
Normal, OC0B disconnected
Toggle OC0B on compare match
Clear OC0B on compare match
Set OC0B on compare match

COM0B[1:0]
00
01

10

11

Description
Normal, OC0B disconnected
Reserved

Clear OC0B on compare match,
when upcounting. Set OC0B on
compare match when down counting
Set OC0B on compare match,
when upcounting. Set OC0B on
compare match when down counting

Compare Output Mode, Phase Correct PWM

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode

Figure 7.8: Timer/Counter Control Registers A and B (TCCR0A and TCCR0B) bit settings.

7.7. TIMER 1 277

TCNTn

D
AT

A
B

U
S

OCnA

OCnB

TOP

=

=

=

=

BOTTOM

0

Control Logic
clk Tn

Edge
Detector

Fixed
TOP
Value

Waveform
Generation

Waveform
Generation

(From Analog
Comparator Output)

ICFN (Int.Req.)

Clock Select

(From Prescaler)

Tn

TOVn
(Int_Req_)

OCRnA

OCRnB

OCnB

OCnA

TCCRnA TCCRnB

Count

Clear

Direction

Timer/Counter

(Int_Req_)

(Int_Req_)

OCRnB
Noise

Canceler
Edge

Detector

ICPn

Figure 7.9: Timer 1 block diagram. (Figure used with Permission, Atmel,Inc.)

278 7. TIMING SUBSYSTEM

Timer/Counter n Control Register A (TCCRnA)
COMnA1 COMnA0 COMnB1 COMnB0 WGMn1 WGMn0

Timer/Counter n Control Register B (TCCRnB)

7 0

Timer/Counter Interrupt Mask Register n (TIMSKn)

ICIE1 OCIE1AOCIE1B TOIE1

7 0

Timer/Counter 1 Interrupt Flag REgister (TIFRn)
ICF1 OCF1AOCF1B TOV1--- --- ------

7 0

Input Capture Register n (ICRnH/ICRnL)

15 8

--- --- --- ---

Timer Counter n (TCNTnH/TCNTnL)

15 8

7 0

Output Compare Register n A (OCRnAH/OCRnAL)

15 8

7 0

Output Compare Register n B (OCRnBH/OCRnBL)

15 8

Timer/Counter n Control Register C (TCCRnC)
--- --- --- ------FOC1A FOC1B

ATmega328: n=1
ATmega2560: n= 1, 3, 4, 5

FOC1C

COMnC1 COMnC0

7 0

7 0

ICNCn ICESn --- WGMn3 WGMn2 CS12 CS11 CS10

7 0

7 0
FOCnA FOCnCFOCnB --- --- --- --- ---

Figure 7.10: Timer 1, 3 through 5 registers.

7.7. TIMER 1 279

• Select the operational mode of Timer 1 using the Waveform Mode Generation (WGM1[3:0])
bits,

• Determine the operation of the timer within a specific mode with the Compare Match Output
Mode (Channel A: COM1A[1:0] and Channel B: COM1B[1:0]) bits, and

• Select the source of the Timer 1 clock using Clock Select (CS1[2:0]) bits.

The bit settings for the TCCR1A and TCCR1B registers are summarized in Figure 7.11.

7.7.1.2 Timer/Counter Register 1 (TCNT1H/TCNT1L)
The TCNT1 is the 16–bit counter for Timer 1.

7.7.1.3 Output Compare Register 1 (OCR1AH/OCR1AL)
The OCR1A register holds a user–defined 16–bit value that is continuously compared to theTCNT1
register when Channel A is used.

7.7.1.4 OCR1BH/OCR1BL
The OCR1B register holds a user–defined 16–bit value that is continuously compared to theTCNT1
register when Channel B is used.

7.7.1.5 Input Capture Register 1 (ICR1H/ICR1L)
ICR1 is a 16–bit register used to capture the value of the TCNT1 register when a desired edge on
ICP1 pin has occurred.

7.7.1.6 Timer/Counter Interrupt Mask Register 1 (TIMSK1)
Timer 1 uses the Timer/Counter 1 Output Compare Match Interrupt Enable (OCIE1A/1B) bits,
the Timer/Counter 1 Overflow Interrupt Enable (TOIE1) bit, and the Timer/Counter 1 Input
Capture Interrupt Enable (IC1E1) bit. When the OCIE1A/B bit and the I–bit in the Status
Register are both set to one, the Timer/Counter 1 Compare Match interrupt is enabled. When the
OIE1 bit and the I–bit in the Status Register are both set to one, the Timer/Counter 1 Overflow
interrupt is enabled. When the IC1E1 bit and the I–bit in the Status Register are both set to one,
the Timer/Counter 1 Input Capture interrupt is enabled.

7.7.1.7 Timer/Counter Interrupt Flag Register (TIFR1)
Timer 1 uses the Output Compare Flag 1 A/B (OCF1A/B) which sets for an output compare
A/B match. Timer 1 also uses the Timer/Counter 1 Overflow Flag (TOV1) which sets when
Timer/Counter 1 overflows. Timer Channel 1 also uses the Timer/Counter 1 Input Capture Flag
(ICF1) which sets for an input capture event.

280 7. TIMING SUBSYSTEM

Waveform Generation Mode
Mode

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

WGM[13:12:11:10]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Mode
Normal
PWM, Phase Correct, 8-bit
PWM, Phase Correct, 9-bit
PWM, Phase Correct, 10-bit
CTC
Fast PWM, 8-bit
Fast PWM, 9-bit
Fast PWM, 10-bit
PWM, Phase & Freq Correct
PWM, Phase & Freq Correct
PWM, Phase Correct
PWM, Phase Correct
CTC
Reserved
Fast PWM
Fast PWM

Clock Select

CS0[2:0] Clock Source
 000 None
 001 clkI/0
 010 clkI/0/8
 011 clkI/0/64
 100 clkI/0/8clkI/0/256
 101 clkI/0/8clkI/0/1024
 110 External clock on T0 (falling edge trigger)
 111 External clock on T1 (rising edge trigger)

COMx[1:0]
00
01

10

11

Description
Normal, OC0 disconnected
WGM1[3:0] = 9 or 14: toggle OCnA
on compare match, OCnB discon-
nected
WGM1[3:0]= other settings,
OC1A/1B disconnected
Clear OC0 on compare match
when up-counting. Set OC0
on compare match when
down counting
Set OC0 on compare match
when up-counting. Clear OC0
on compare match when
down counting.

PWM, Phase Correct, Phase & Freq Correct

COMx[1:0]
00
01
10
11

Normal, CTC
Description
Normal, OC1A/1B disconnected
Toggle OC1A/1B on compare match
Clear OC1A/1B on compare match
Set OC1A/1B on compare match

COMx[1:0]
00
01

10

11

Fast PWM
Description
Normal, OC1A/1B disconnected
WGM1[3:0] = 9 or 11, toggle OC1A on
compare match OC1B disconnected
WGM1[3:0] = other settings,
OC1A/1B disconnected
Clear OC1A/1B on compare match,
set OC1A/1B on Compare Match when
down counting
Set OC1A/1B on compare match when
upcounting. Clear OC1A/1B on Compare
Match when upcounting

Timer/Counter 1 Control Register A (TCCR1A)

7 0
COM1A1 COM1A0 COM1B1 COM1B0 WGM11 WGM10

7 0

Timer/Counter 1 Control Register B (TCCR1B)
ICNC1 ICES1 --- WGM13 WGM12 CS12 CS11 CS10

--- ---

Figure 7.11: TCCR1A and TCCR1B registers.

7.8. TIMER 2 281

7.8 TIMER 2
Timer 2 is another 8–bit timer channel similar to Timer 0. The Timer 2 channel block diagram is
provided in Figure 7.12. Its registers are summarized in Figure 7.13.

7.8.0.8 Timer/Counter Control Register A and B (TCCR2A and B)
The TCCR2A and B register bits are used to:

• Select the operational mode of Timer 2 using the Waveform Mode Generation (WGM2[2:0])
bits,

• Determine the operation of the timer within a specific mode with the Compare Match Output
Mode (COM2A[1:0] and B) bits, and

• Select the source of the Timer 2 clock using Clock Select (CS2[2:0]) bits.

The bit settings for the TCCR2A and B registers are summarized in Figure 7.14.

7.8.0.9 Timer/Counter Register(TCNT2)
The TCNT2 is the 8–bit counter for Timer 2.

7.8.0.10 Output Compare Register A and B (OCR2A and B)
The OCR2A and B registers hold a user–defined 8–bit value that is continuously compared to the
TCNT2 register.

7.8.0.11 Timer/Counter Interrupt Mask Register 2 (TIMSK2)
Timer 2 uses the Timer/Counter 2 Output Compare Match Interrupt Enable A and B (OCIE2A
and B) bits and theTimer/Counter 2 Overflow Interrupt Enable A and B (OIE2A and B) bits.When
the OCIE2A or B bit and the I–bit in the Status Register are both set to one, the Timer/Counter
2 Compare Match interrupt is enabled. When the TOIE2 bit and the I–bit in the Status Register
are both set to one, the Timer/Counter 2 Overflow interrupt is enabled.

7.8.0.12 Timer/Counter Interrupt Flag Register 2 (TIFR2)
Timer 2 uses the Output Compare Flags 2 A and B (OCF2A and B) which sets for an output
compare match. Timer 2 also uses the Timer/Counter 2 Overflow Flag (TOV2) which sets when
Timer/Counter 2 overflows.

7.9 PROGRAMMING THE ARDUINO UNO R3 AND MEGA
2560 USING THE BUILT–IN ARDUINO DEVELOPMENT
ENVIRONMENT TIMING FEATURES

The Arduino Development Environment has several built–in timing features. These include:

282 7. TIMING SUBSYSTEM

TCNTn

D
AT

A
B

U
S

OCnA

OCnB

TOP

=

=

=

=

BOTTOM

0

Control Logic
clk Tn

Edge
Detector

Fixed
TOP
Value

Waveform
Generation

Waveform
Generation

Clock Select

(From Prescaler)

Tn

TOVR
(Int_Req_)

OCRnA

OCRnB

OCnB

OCnA

TCCRnA TCCRnB

Count

Clear

Direction

Timer/Counter

(Int_Req_)

(Int_Req_)

Figure 7.12: Timer 2 block diagram. (Figure used with Permission, Atmel,Inc.)

7.9. PROGRAMMING THE ARDUINO TIMER FEATURES 283

Timer/Counter Control Register A (TCCR2A)
COM2A1

7 0

7 0

7 0

7 0

7 0

7 0

7 0

COM2A0

FOC2A FOC2B

COM2B1 COM2B0 WGM21

WGM22 CS22

OCIE2B OCIE2A TOIE2

OCF2B OCF2A TOV2

CS21 CS20

WGM20--- ---

--- --- --- --- ---

--- --- --- --- ---

Timer/Counter Control Register B (TCCR2B)

Timer/Counter Control Register (TCNT2)

Output Compare Register A (OCR2A)

Output Compare Register B (OCR2B)

Timer/Counter 2 Interrupt Mask Register (TIMSK2)

Timer/Counter 2 Interrupt Flag Register (TIFR2)

Figure 7.13: Timer 2 registers.

284 7. TIMING SUBSYSTEM

Clock Select

CS2[2:0] Clock Source
 000 None
 001 clkI/0
 010 clkI/0/8
 011 clkI/0/32
 100 clkI/0/64
 101 clkI/0/128
 110 clkI/0/256
 111 clkI/0/1024

Timer/Counter Control Register B (TCCR2B)

7 0
FOC2A CS22 CS21 CS20------ WGM22FOC2B

Timer/Counter Control Register A (TCCR2A)
WGM20COM2B1 COM2B0 WGM21COM2A1 COM2A0 --- ---

Mode
0
1
2
3
4
5
6
7

WGM[02:00]
000
001
010
011
100
101
110
111

Mode
Normal
PWM, Phase Correct
CTC
Fast PWM
Reserved
PWM, Phase Correct
Reserved
Fast PWM

Waveform Generation

Mode

COM2A[1:0]
00
01

10

11

Description
Normal, OC2A disconnected
WGM22 = 0: normal operation,
 OC2A disconnected
WGM22 = 1: Toggle OC2A on
 compare match
Clear OC2A on compare match,
set OC2A at Bottom
(non-inverting mode)
Set OC2A on compare match,
clear OC2A at Bottom
(inverting mode)

COM2A[1:0]
00
01
10
11

Description
Normal, OC2A disconnected
Toggle OC2A on compare match
Clear OC2A on compare match
Set OC2A on compare match

COM2A[1:0]
00
01

10

11

Description
Normal, OC2A disconnected
WGM22 = 0: normal operation,
 OC2A disconnected
WGM22 = 1: Toggle OC2A on
 compare match
Clear OC2A on compare match,
when upcounting. Set OC2A on
compare match when down counting
Set OC2A on compare match,
when upcounting. Set OC2A on
compare match when down counting

Compare Output Mode, Phase Correct PWM

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode
COM2B[1:0]

00
01

10

11

Description
Normal, OC2B disconnected
Reserved

Clear OC2B on compare match,
set OC2B at Bottom
(non-inverting mode)
Set OC2B on compare match,
clear OC2B at Bottom
(inverting mode)

COM2B[1:0]
00
01
10
11

Description
Normal, OC2B disconnected
Toggle OC2B on compare match
Clear OC2B on compare match
Set OC2B on compare match

COM2B[1:0]
00
01

10

11

Description
Normal, OC2B disconnected
Reserved

Clear OC2B on compare match,
when upcounting. Set OC2B on
compare match when down counting
Set OC2B on compare match,
when upcounting. Set OC2B on
compare match when down counting

Compare Output Mode, Phase Correct PWM

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode

Figure 7.14: Timer/Counter Control Register A and B (TCCR2A and B) bit settings.

7.10. PROGRAMMING THE TIMER SYSTEM IN C 285

• delay(unsigned long): The delay function pauses a sketch for the amount of time specified in
milliseconds.

• delayMicroseconds(unsigned int): The delayMicroseconds function pauses a sketch for the
amount of time specified in microseconds.

• pulseIn(pin, value): The pulseIn function measures the length of an incoming digital pulse. If
value is specified as HIGH, the function waits for the specified pin to go high and then times
until the pin goes low.The pulseIn function returns the length of elapsed time in microseconds
as an unsigned long.

• analogWrite(pin, value): The analog write function provides a pulse width modulated
(PWM) output signal on the specified pin. The PWM frequency is approximately 490 Hz.
The duty cycle is specified from 0 (value of 0) to 100 (value of 255) percent.

We have already used the analogWrite function in an earlier chapter to control the motor
speed of the Blinky 602A robot.

7.10 PROGRAMMING THE TIMER SYSTEM IN C
In this section, we provide several representative examples of using the timer system for various
applications. We will provide examples of using the timer system to generate a prescribed delay, to
generate a PWM signal, and to capture an input event.

7.10.1 PRECISION DELAY IN C
In this example,we program the ATmega328 to provide a delay of some number of 6.55 ms interrupts.
The Timer 0 overflow is configured to occur every 6.55 ms. The overflow flag is used as a “clock
tick” to generate a precision delay. To create the delay the microcontroller is placed in a while loop
waiting for the prescribed number of Timer 0 overflows to occur.

//Function prototypes
void delay(unsigned int number_of_6_55ms_interrupts);
void init_timer0_ovf_interrupt(void);
void timer0_interrupt_isr(void);

//interrupt handler definition
#pragma interrupt_handler timer0_interrupt_isr:17

//door profile data

286 7. TIMING SUBSYSTEM

//***
//int_timer0_ovf_interrupt(): The Timer0 overflow interrupt is being
//employed as a time base for a master timer for this project.
//The ceramic resonator operating at 10 MHz is divided by 256.
//The 8-bit Timer0 register (TCNT0) overflows every 256 counts
//or every 6.55 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overfl. occurs every 6.55ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//***
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//***

void timer0_interrupt_isr(void)
{
input_delay++; //input delay processing
}

//***
//***
//delay(unsigned int num_of_6_55ms_interrupts): this generic delay function
//provides the specified delay as the number of 6.55 ms "clock ticks" from
//the Timer0 interrupt.
//Note: this function is only valid when using a 10 MHz crystal or ceramic
// resonator
//***

7.10. PROGRAMMING THE TIMER SYSTEM IN C 287

void delay(unsigned int number_of_6_55ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0;
while(input_delay <= number_of_6_55ms_interrupts)
{
;
}

}

//***

7.10.2 PULSE WIDTH MODULATION IN C
The function provided below is used to configure output compare channel B to generate a pulse
width modulated signal. An analog voltage provided to ADC Channel 3 is used to set the desired
duty cycle from 50 to 100 percent. Note how the PWM ramps up from 0 to the desired speed.

//Function Prototypes
void PWM(unsigned int PWM_incr)
{
unsigned int Open_Speed_int;
float Open_Speed_float;
int gate_position_int;

PWM_duty_cycle = 0;
InitADC(); //Initialize ADC

//Read "Open Speed" volt
Open_Speed_int = ReadADC(0x03); //setting PA3

//Open Speed Setting unsigned int

//Convert to max duty cycle
//setting

//0 VDC = 50% = 127,
//5 VDC = 100% =255

Open_Speed_float = ((float)(Open_Speed_int)/(float)(0x0400));

288 7. TIMING SUBSYSTEM

//Convert volt to PWM constant
//127-255

Open_Speed_int = (unsigned int)((Open_Speed_float * 127) + 128.0);
//Configure PWM clock

TCCR1A = 0xA1; //freq = resonator/510 = 10MHz/510

//freq = 19.607 kHz
TCCR1B = 0x01; //no clock source division

PWM_duty_cycle = 0; //Initiate PWM duty cycle
//variables

OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);//Set PWM duty cycle CH B to 0%

//Ramp up to Open Speed in 1.6s
OCR1BL = (unsigned char)(PWM_duty_cycle);//Set PWM duty cycle CH B

while (PWM_duty_cycle < Open_Speed_int)
{
if(PWM_duty_cycle < Open_Speed_int) //Increment duty cycle
PWM_duty_cycle=PWM_duty_cycle + PWM_open_incr;

//Set PWM duty cycle CH B
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

//Gate continues to open at specified upper speed (PA3)
:
:
:

//***

7.10.3 INPUT CAPTURE MODE IN C
This example was developed by Julie Sandberg, BSEE and Kari Fuller, BSEE at the University of
Wyoming as part of their senior design project. In this example, the input capture channel is being
used to monitor the heart rate (typically 50–120 beats per minute) of a patient. The microcontroller
is set to operate at an internal clock frequency of 1 MHz. Timer/Counter channel 1 is used in this
example.

7.10. PROGRAMMING THE TIMER SYSTEM IN C 289

//***
//initialize_ICP_interrupt: Initialize Timer/Counter 1 for input capture
//***

void initialize_ICP_interrupt(void)
{
TIMSK=0x20; //Allows input capture interrupts
SFIOR=0x04; //Internal pull-ups disabled
TCCR1A=0x00; //No output comp or waveform

//generation mode
TCCR1B=0x45; //Capture on rising edge,

//clock prescalar=1024
TCNT1H=0x00; //Initially clear timer/counter 1
TCNT1L=0x00;
asm("SEI"); //Enable global interrupts
}

//***

void Input_Capture_ISR(void)
{
if(first_edge==0)
{
ICR1L=0x00; //Clear ICR1 and TCNT1 on first edge
ICR1H=0x00;
TCNT1L=0x00;
TCNT1H=0x00;
first_edge=1;
}

else
{
ICR1L=TCNT1L; //Capture time from TCNT1
ICR1H=TCNT1H;
TCNT1L=0x00;
TCNT1H=0x00;
first_edge=0;
}

290 7. TIMING SUBSYSTEM

heart_rate(); //Calculate the heart rate
TIFR=0x20; //Clear the input capture flag
asm("RETI"); //Resets the I flag to allow

//global interrupts
}

//***

void heart_rate(void)
{
if(first_edge==0)
{
time_pulses_low = ICR1L; //Read 8 low bits first
time_pulses_high = ((unsigned int)(ICR1H << 8));
time_pulses = time_pulses_low | time_pulses_high;
if(time_pulses!=0) //1 counter increment = 1.024 ms
{ //Divide by 977 to get seconds/pulse
HR=60/(time_pulses/977); //(secs/min)/(secs/beat) =bpm
}

else
{
HR=0;
}

}
else
{
HR=0;
}

}

//***

7.11 APPRLICATION 1: SERVO MOTOR CONTROL WITH
THE PWM SYSTEM IN C

A servo motor provides an angular displacement from 0 to 180 degrees. Most servo motors provide
the angular displacement relative to the pulse length of repetitive pulses sent to the motor as shown
in Figure 7.15. A 1 ms pulse provides an angular displacement of 0 degrees while a 2 ms pulse
provides a displacement of 180 degrees. Pulse lengths in between these two extremes provide angular

7.11. APPRLICATION 1: SERVO MOTOR CONTROL WITH THE PWM SYSTEM IN C 291

Vcc = 5 VDC
(4)

(11)

(1)
(2)

(3)

LM324

Vcc = 5 VDC
Red BlackWhite

CCW

CW

74HC14

CCW

Vcc = 5.0 volts

4.7 K

470K
0.1uF

74HC14

(3) (4)
PB1 100K

3K

Vcc = 5.0 volts

4.7 K

470K
0.1uF
(1) (2)

PB0 100K

3K
CW

VDD

VDD
sys reset

1 PUR - PC6
2 RXD - PD0
3 TXD - PD1
4 PD2
5 PD3
6 PD4
7 Vcc
8 GND
9 PB6
10 PB7
11 PD5
12 PD6
13 PD7
14 PB0

PC5 28
PC4 27
PC3 26
PC2 25
PC1 24
PCO 23
GND 22

AREF 21
AVCC 20

PB5 19
PB4 18
PB3 17
PB2 16
PB1 15

Atmega328
1M

1uf

2 ms = 180o = 6.25% = 16

1 ms = 0
o = 3.25% = 8

2 ms 30 ms

T = 32 ms, f = 31.25 Hz

128 kHz
ceramic resonator

Figure 7.15: Test and interface circuit for a servo motor.

292 7. TIMING SUBSYSTEM

displacements between 0 and 180 degrees. Usually, a 20 to 30 ms low signal is provided between the
active pulses.

A test and interface circuit for a servo motor is provided in Figure 7.15. The PB0 and PB1
inputs of the ATmega328 provide for clockwise (CW) and counter–clockwise (CCW) rotation of
the servo motor, respectively. The time base for the ATmega328 is provided by a 128 KHz external
RC oscillator. Also, the external time base divide–by–eight circuit is active via a fuse setting. Pulse
width modulated signals to rotate the servo motor is provided by the ATmega328.A voltage–follower
op amp circuit is used as a buffer between the ATmega328 and the servo motor.

The software to support the test and interface circuit is provided below.
//***
//target controller: ATMEL ATmega328
//
//ATMEL AVR ATmega328PV Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//Pin 1 PUR Reset - 1M resistor to Vdd, tact switch to ground,
// 1.0 uF to ground
//Pin 7 Vdd - 1.0 uF to ground
//Pin 8 Gnd
//Pin 9 PB6 ceramic resonator connection
//Pin 10 PB7 ceramic resonator connection
//PORTB:
//Pin 14 PB0 to active high RC debounced switch - CW
//Pin 15 PB1 to active high RC debounced switch - CCW
//Pin 16 PB2 - to servo control input
//Pin 20 AVcc to Vdd
//Pin 21 ARef to Vdd
//Pin 22 AGnd to Ground

//***

//include files**
//ATMEL register definitions for ATmega328
#include<iom328pv.h>
#include<macros.h>

//function prototypes**
void initialize_ports(void); //initializes ports
void read_new_input(void); //used to read input change on PORTB
void init_timer0_ovf_interrupt(void); //used to initialize timer0 overflow

7.11. APPRLICATION 1: SERVO MOTOR CONTROL WITH THE PWM SYSTEM IN C 293

//main program***
//The main program checks PORTB for user input activity.
//If new activity is found, the program responds.

//global variables
unsigned char old_PORTB = 0x08; //present value of PORTB
unsigned char new_PORTB; //new values of PORTB
unsigned int PWM_duty_cycle;

void main(void)
{
initialize_ports();
//return LED configuration to default

//external ceramic resonator: 128 KHZ
//fuse set for divide by 8
//configure PWM clock

TCCR1A = 0xA1;
//freq = oscillator/510 = 128KHz/8/510

//freq = 31.4 Hz
TCCR1B = 0x01; //no clock source division

//duty cycle will vary from 3.1% =
//1 ms = 0 degrees = 8 counts to

//6.2% = 2 ms = 180 degrees = 16 counts

//initiate PWM duty cycle variables
PWM_duty_cycle = 12;
OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);

//main activity loop - processor will continually cycle through
//loop for new activity.
//Activity initialized by external signals presented to PORTB[1:0]

while(1)
{

294 7. TIMING SUBSYSTEM

_StackCheck(); //check for stack overflow
read_new_input(); //read input status changes on PORTB
}

}//end main

//Function definitions
//***
//initialize_ports: provides initial configuration for I/O ports
//***

void initialize_ports(void)
{
//PORTB
DDRB=0xfc; //PORTB[7-2] output, PORTB[1:0] input
PORTB=0x00; //disable PORTB pull-up resistors

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //init low

//PORTD
DDRD=0xff; //set PORTD[7-0] as output
PORTD=0x00; //initialize low
}

//***
//***

//read_new_input: functions polls PORTB for a change in status. If status
//change has occurred, appropriate function for status change is called
//Pin 1 PB0 to active high RC debounced switch - CW
//Pin 2 PB1 to active high RC debounced switch - CCW
//***

void read_new_input(void)
{
new_PORTB = (PINB);
if(new_PORTB != old_PORTB){
switch(new_PORTB){ //process change in PORTB input

7.12. APPLICATION 2: INEXPENSIVE LASER LIGHT SHOW 295

case 0x01: //CW
while(PINB == 0x01)
{
PWM_duty_cycle = PWM_duty_cycle + 1;
if(PWM_duty_cycle > 16) PWM_duty_cycle = 16;
OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

break;

case 0x02: //CCW
while(PINB == 0x02)
{
PWM_duty_cycle = PWM_duty_cycle - 1;
if(PWM_duty_cycle < 8) PWM_duty_cycle = 8;
OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

break;

default:; //all other cases
} //end switch(new_PORTB)

} //end if new_PORTB
old_PORTB=new_PORTB; //update PORTB

}

//***

7.12 APPLICATION 2: INEXPENSIVE LASER LIGHT SHOW

An inexpensive laser light show may be constructed from two servos. In this example we use two
Futaba 180 degree range servos (Parallax 900–00005, available from Jameco #283021) mounted as
shown in Figure 7.16. The X and Y control signals are provided by an Arduino processing board.
The X and Y control signals are interfaced to the servos via LM324 operational amplifiers.The laser
source is provided by an inexpensive laser pointer.

Sample code to drive the servos from an Arduino are provided on the Jameco website (www.
jameco.com). Reference Jameco #283021.

www.jameco.com
www.jameco.com

296 7. TIMING SUBSYSTEM

Vcc = 5 VDC
(4)

(11)

(1)
(2)

(3)

LM324

White

RedVcc = 5 VDC Black

mirror

mirrorservo

servo

Vcc = 5 VDC
(4)

(11)

(7)
(6)

(5)

LM324
White

x

y

Red

Vcc = 5 VDC
Black

y control
Arduino (10)

x control
Arduino (9)

lase r source

Figure 7.16: Inexpensive laser light show.

//***
//X-Y ramp
//***

#include <Servo.h> // Use Servo library, included with IDE

Servo myServo_x; // Create Servo object to control the servo
Servo myServo_y;

void setup() {
myServo_x.attach(9); // Servo is connected to digital pin 9
myServo_y.attach(10); // Servo is connected to digital pin 10

7.13. SUMMARY 297

}

void loop() {
int i = 0;
for(i=0; i<=180; i++)
{
myServo_x.write(i); // Rotate servo counter clockwise
myServo_y.write(i); // Rotate servo counter clockwise
delay(20); // Wait 2 seconds
if(i==180)
delay(5000);

}
}
//***

7.13 SUMMARY
In this chapter,we considered a microcontroller timer system,associated terminology for timer related
topics, discussed typical functions of a timer subsystem, studied timer hardware operations, and
considered some applications where the timer subsystem of a microcontroller can be used. We then
took a detailed look at the timer subsystem aboard the ATmega328 and ATmega2560 and reviewed
the features, operation, registers, and programming of the three different types of timer channels.
We then investigated the built–in timing features of the Arduino Development Environment. We
concluded with an example employing a servo motor controlled by the ATmega328 PWM system
and an inexpensive laser light show.

7.14 REFERENCES
• Kenneth Short, Embedded Microprocessor Systems Design: An Introduction Using the INTEL

80C188EB, Prentice Hall, Upper Saddle River, 1998.

• Frederick Driscoll, Robert Coughlin, and Robert Villanucci, Data Acquisition and Process Con-
trol with the M68HC11 Microcontroller, Second Edition, Prentice Hall, Upper Saddle River,
2000.

• Todd Morton, Embedded Microcontrollers, Prentice Hall, Upper Saddle River, Prentice Hall,
2001.

• Atmel 8–bit AVR Microcontroller with 16K Bytes In–System Programmable Flash, ATmega328,
ATmega328L, data sheet: 2466L–AVR–06/05, Atmel Corporation, 2325 Orchard Parkway,
San Jose, CA 95131.

298 7. TIMING SUBSYSTEM

• Atmel 8–bit AVR Microcontroller with 16/32/64K Bytes In–System Programmable Flash, AT-
mega328P/V, ATmega324P/V, 644P/V data sheet: 8011I–AVR–05/08, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 64/128/256K Bytes In–System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P–AVR–10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

7.15 CHAPTER PROBLEMS
1. Given an 8 bit free running counter and the system clock rate of 24 MHz, find the time

required for the counter to count from zero to its maximum value.

2. If we desire to generate periodic signals with periods ranging from 125 nanoseconds to 500
microseconds, what is the minimum frequency of the system clock?

3. Describe how you can compute the period of an incoming signal with varying duty cycles.

4. Describe how one can generate an aperiodic pulse with a pulse width of 2 minutes?

5. Program the output compare system of the ATmega328 to generate a 1 kHz signal with a 10
percent duty cycle.

6. Design a microcontroller system to control a sprinkler controller that performs the following
tasks. We assume that your microcontroller runs with 10 MHz clock and it has a 16 bit
free running counter. The sprinkler controller system controls two different zones by turning
sprinklers within each zone on and off.To turn on the sprinklers of a zone, the controller needs
to receive a 152.589 Hz PWM signal from your microcontroller. To turn off the sprinklers of
the same zone, the controller needs to receive the PWM signal with a different duty cycle.

(a) Your microcontroller needs to provide the PWM signal with 10% duty cycle for 10
millisecond to turn on the sprinklers in zone one.

(b) After 15 minutes, your microcontroller must send the PWM signal with 15% duty cycle
for 10 millisecond to turn off the sprinklers in zone one.

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

7.15. CHAPTER PROBLEMS 299

(c) After 15 minutes, your microcontroller must send the PWM signal with 20% duty cycle
for 10 millisecond to turn on the sprinklers in zone two.

(d) After 15 minutes, your microcontroller must send the PWM signal with 25% duty cycle
for 10 millisecond to turn off the sprinklers in zone two.

7. Modify the servo motor example to include a potentiometer connected to PORTA[0]. The
servo will deflect 0 degrees for 0 VDC applied to PORTA[0] and 180 degrees for 5 VDC.

8. For the automated cooling fan example, what would be the effect of changing the PWM
frequency applied to the fan?

9. Modify the code of the automated cooling fan example to also display the set threshold
temperature.

10. Write functions to draw a circle, diamond, and a sine wave with the X–Y laser control system.

301

C H A P T E R 8

Serial Communication
Subsystem

Objectives: After reading this chapter, the reader should be able to

• Describe the differences between serial and parallel communication.

• Provide definitions for key serial communications terminology.

• Describe the operation of the Universal Synchronous and Asynchronous Serial Receiver and
Transmitter (USART).

• Program the USART for basic transmission and reception using the built–in features of the
Arduino Development Environment.

• Program the USART for basic transmission and reception using C.

• Describe the operation of the Serial Peripheral Interface (SPI).

• Program the SPI system using the built–in features of the Arduino Development Environment.

• Program the SPI system using C.

• Describe the purpose of the Two Wire Interface (TWI).

• Program the Arduino UNO R3 and the Arduino Mega 2560 processing board using ISP
programming techniques.

8.1 OVERVIEW
Serial communication techniques provide a vital link between an Arduino processing board an
certain input devices, output devices, and other microcontrollers. In this chapter, we investigate
the serial communication features beginning with a review of serial communication concepts and
terminology. We then investigate in turn the following serial communication systems available on
the Arduino processing boards: the Universal Synchronous and Asynchronous Serial Receiver and
Transmitter (USART), the Serial Peripheral Interface (SPI) and the Two Wire Interface (TWI).
We provide guidance on how to program the USART and SPI using built–in Arduino Development
Environment features and the C programming language. We conclude the chapter with examples on

302 8. SERIAL COMMUNICATION SUBSYSTEM

how to connect an SD card to an Arduino processor, interface a voice chip, and also how to program
using In System Programming (ISP) techniques.

8.2 SERIAL COMMUNICATIONS

Microcontrollers must often exchange data with other microcontrollers or peripheral devices. Data
may be exchanged by using parallel or serial techniques. With parallel techniques, an entire byte of
data is typically sent simultaneously from the transmitting device to the receiver device. While this
is efficient from a time point of view, it requires eight separate lines for the data transfer.

In serial transmission, a byte of data is sent a single bit at a time. Once eight bits have been
received at the receiver, the data byte is reconstructed. While this is inefficient from a time point of
view, it only requires a line (or two) to transmit the data.

The ATmega328 (UNO R3) and the ATmega2560 (Mega 2560) are equipped with a host of
different serial communication subsystems including the serial USART,the serial peripheral interface
or SPI, and the Two–wire Serial Interface (TWI). What all of these systems have in common is
the serial transmission of data. Before discussing the different serial communication features aboard
these processors, we review serial communication terminology.

8.3 SERIAL COMMUNICATION TERMINOLOGY

In this section, we review common terminology associated with serial communication.
Asynchronous versus Synchronous Serial Transmission: In serial communications, the

transmitting and receiving device must be synchronized to one another and use a common data
rate and protocol. Synchronization allows both the transmitter and receiver to be expecting data
transmission/reception at the same time.There are two basic methods of maintaining “sync” between
the transmitter and receiver: asynchronous and synchronous.

In an asynchronous serial communication system, such as the USART aboard the ATmega328
and the ATmega2560, framing bits are used at the beginning and end of a data byte. These framing
bits alert the receiver that an incoming data byte has arrived and also signals the completion of the
data byte reception. The data rate for an asynchronous serial system is typically much slower than
the synchronous system, but it only requires a single wire between the transmitter and receiver.

A synchronous serial communication system maintains “sync” between the transmitter and
receiver by employing a common clock between the two devices. Data bits are sent and received on
the edge of the clock. This allows data transfer rates higher than with asynchronous techniques but
requires two lines, data and clock, to connect the receiver and transmitter.

Baud rate: Data transmission rates are typically specified as a Baud or bits per second rate.
For example, 9600 Baud indicates the data is being transferred at 9600 bits per second.

Full Duplex: Often serial communication systems must both transmit and receive data. To
do both transmission and reception, simultaneously, requires separate hardware for transmission and
reception. A single duplex system has a single complement of hardware that must be switched from

8.4. SERIAL USART 303

transmission to reception configuration. A full duplex serial communication system has separate
hardware for transmission and reception.

Non–return to Zero (NRZ) Coding Format: There are many different coding standards
used within serial communications. The important point is the transmitter and receiver must use
a common coding standard so data may be interpreted correctly at the receiving end. The Atmel
ATmega328 and ATmega2560 use a non–return to zero (NRZ) coding standard. In NRZ coding a
logic one is signaled by a logic high during the entire time slot allocated for a single bit; whereas, a
logic zero is signaled by a logic low during the entire time slot allocated for a single bit.

The RS–232 Communication Protocol: When serial transmission occurs over a long distance
additional techniques may be used to insure data integrity. Over long distances logic levels degrade
and may be corrupted by noise. At the receiving end, it is difficult to discern a logic high from a logic
low. The RS–232 standard has been around for some time. With the RS–232 standard (EIA–232),
a logic one is represented with a –12 VDC level while a logic zero is represented by a +12 VDC
level. Chips are commonly available (e.g., MAX232) that convert the 5 and 0 V output levels from a
transmitter to RS–232 compatible levels and convert back to 5V and 0 V levels at the receiver. The
RS–232 standard also specifies other features for this communication protocol.

Parity: To further enhance data integrity during transmission, parity techniques may be used.
Parity is an additional bit (or bits) that may be transmitted with the data byte. The ATmega328 and
ATmega2560 employ a single parity bit. With a single parity bit, a single bit error may be detected.
Parity may be even or odd. In even parity, the parity bit is set to one or zero such that the number
of ones in the data byte including the parity bit is even. In odd parity, the parity bit is set to one or
zero such that the number of ones in the data byte including the parity bit is odd. At the receiver,
the number of bits within a data byte including the parity bit are counted to insure that parity has
not changed, indicating an error, during transmission.

ASCII: The American Standard Code for Information Interchange or ASCII is a standard-
ized, seven bit method of encoding alphanumeric data. It has been in use for many decades, so
some of the characters and actions listed in the ASCII table are not in common use today. How-
ever, ASCII is still the most common method of encoding alphanumeric data. The ASCII code is
provided in Figure 8.1. For example, the capital letter “G” is encoded in ASCII as 0x47. The “0x”
symbol indicates the hexadecimal number representation. Unicode is the international counterpart
of ASCII. It provides standardized 16–bit encoding format for the written languages of the world.
ASCII is a subset of Unicode. The interested reader is referred to the Unicode home page website,
www.unicode.org, for additional information on this standardized encoding format.

8.4 SERIAL USART

The serial USART (or Universal Synchronous and Asynchronous Serial Receiver and Transmitter)
provide for full duplex (two way) communication between a receiver and transmitter. This is accom-
plished by equipping the ATmega328 and ATmega2560 with independent hardware for the trans-
mitter and receiver. The ATmega328 is equipped with a USART channel while the ATmega2560

 www.unicode.org

304 8. SERIAL COMMUNICATION SUBSYSTEM

0x_0
0x_1
0x_2
0x_3
0x_4
0x_5
0x_6
0x_7
0x_8
0x_9
0x_A
0x_B
0x_C
0x_D
0x_E
0x_F

0x0_

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
V T
FF
CR
SO
SI

0x1_

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
R S
US

0x2_

SP
!
“
#
$
%
&
‘
(
)
*
+
‘
-
.
/

0x3_

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0x4_

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

0x5_

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0x6_

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

0x7_

p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

Most significant digit

Le
as

t s
ig

ni
fic

an
t d

ig
it

Figure 8.1: ASCII Code.The ASCII code is used to encode alphanumeric characters.The “0x” indicates
hexadecimal notation in the C programming language.

is equipped with four USART channels. The USART is typically used for asynchronous commu-
nication. That is, there is not a common clock between the transmitter and receiver to keep them
synchronized with one another. To maintain synchronization between the transmitter and receiver,
framing start and stop bits are used at the beginning and end of each data byte in a transmission
sequence. The Atmel USART also has synchronous features. Space does not permit a discussion of
these USART enhancements.

The ATmega USART is quite flexible. It has the capability to be set to a variety of data
transmission or Baud (bits per second) rates. The USART may also be set for data bit widths of 5
to 9 bits with one or two stop bits. Furthermore, the ATmega USART is equipped with a hardware
generated parity bit (even or odd) and parity check hardware at the receiver. A single parity bit allows
for the detection of a single bit error within a byte of data. The USART may also be configured to
operate in a synchronous mode. We now discuss the operation, programming, and application of
the USART. Due to space limitations, we cover only the most basic capability of this flexible and
powerful serial communication system.

8.4. SERIAL USART 305

8.4.1 SYSTEM OVERVIEW
The block diagram for the USART is provided in Figure 8.2. The block diagram may appear a
bit overwhelming but realize there are four basic pieces to the diagram: the clock generator, the
transmission hardware, the receiver hardware, and three control registers (UCSRA, UCSBR, and
UCSRC). We discuss each in turn.

8.4.1.1 USART Clock Generator
The USART Clock Generator provides the clock source for the USART system and sets the
Baud rate for the USART. The Baud Rate is derived from the overall microcontroller clock source.
The overall system clock is divided by the USART Baud rate Registers UBRR[H:L] and several
additional dividers to set the Baud rate. For the asynchronous normal mode (U2X bit = 0), the Baud
Rate is determined using the following expression:

Baud rate = (system clock f requency)/(16(UBRR + 1))

where UBRR is the contents of the UBRRH and UBRRL registers (0 to 4095). Solving for
UBRR yields:

UBRR = ((system clock generator)/(16 × Baud rate)) − 1

8.4.1.2 USART Transmitter
The USART transmitter consists of a Transmit Shift Register. The data to be transmitted is loaded
into the Transmit Shift Register via the USART I/O Data Register (UDR). The start and stop
framing bits are automatically appended to the data within the Transmit Shift Register. The parity
is automatically calculated and appended to the Transmit Shift Register. Data is then shifted out of
the Transmit Shift Register via the TxD pin a single bit at a time at the established Baud rate. The
USART transmitter is equipped with two status flags: the UDRE and the TXC. The USART Data
Register Empty (UDRE) flag sets when the transmit buffer is empty indicating it is ready to receive
new data.This bit should be written to a zero when writing the USART Control and Status Register
A (UCSRA). The UDRE bit is cleared by writing to the USART I/O Data Register (UDR). The
Transmit Complete (TXC) Flag bit is set to logic one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer. The
TXC bit may be reset by writing a logic one to it.

8.4.1.3 USART Receiver
The USART Receiver is virtually identical to the USART Transmitter except for the direction of
the data flow is reversed. Data is received a single bit at a time via the RxD pin at the established
Baud Rate. The USART Receiver is equipped with the Receive Complete (RXC) Flag. The RXC
flag is logic one when unread data exists in the receive buffer.

306 8. SERIAL COMMUNICATION SUBSYSTEM

D
AT

A
B

U
S

UCSRA

RECEIVE SHIFT REGISTER

TRANSMIT SHIFT REGISTER

BAUD RATE GENERATOR

UBRR(H:L)

Clock Generator

PARITY
GENERATOR

SYNC LOGIC

OSC

UDR (Transmit)

CLOCK
RECOVERY

DATA
RECOVERY

PIN
CONTROL

PIN
CONTROL

RX
CONTROL

PIN
CONTROL

TX
CONTROL

Transmitter

Receiver

RxD

TxD

XCK

PARITY
CHECKER

UDR (Receive)

UCSRB UCSRC

Figure 8.2: Atmel AVR ATmega USART block diagram. (Figure used with permission of Atmel,
Incorporated.)

8.5. SYSTEM OPERATION AND PROGRAMMING 307

8.4.1.4 USART Registers
In this section, we discuss the register settings for controlling the USART system. We have already
discussed the function of the USART I/O Data Register (UDR) and the USART Baud Rate
Registers (UBRRH and UBRRL). Note: The USART Control and Status Register C (UCSRC)
and the USART Baud Rate Register High (UBRRH) are assigned to the same I/O location in the
memory map. The URSEL bit (bit 7 of both registers) determine which register is being accessed.
The URSEL bit must be one when writing to the UCSRC register and zero when writing to the
UBRRH register.

Note: As previously mentioned, the ATmega328 is equipped with a USART channel while
the ATmega2560 is equipped with four USART channels.The registers to configure the ATmega328
is provided in Figure 8.3.The same register configuration is used to individually configure each of the
USART channels aboard the ATmega2560. The registers to configure the ATmega2560 is provided
in Figure 8.4. Note that each register name has an “n” designator where “n” is the specific USART
channel (0, 1, 2, or 3) being configured.

USART Control and Status Register A (UCSRA) The UCSRA register contains the RXC, TXC,
and the UDRE bits. The function of these bits have already been discussed.

USART Control and Status Register B (UCSRB) The UCSRB register contains the Receiver
Enable (RXEN) bit and the Transmitter Enable (TXEN) bit. These bits are the “on/off ” switch
for the receiver and transmitter, respectively. The UCSRB register also contains the UCSZ2 bit.
The UCSZ2 bit in the UCSRB register and the UCSZ[1:0] bits contained in the UCSRC register
together set the data character size.

USART Control and Status Register C (UCSRC) The UCSRC register allows the user to customize
the data features to the application at hand. It should be emphasized that both the transmitter and
receiver be configured with the same data features for proper data transmission.The UCSRC contains
the following bits:

• USART Mode Select (UMSEL) – 0: asynchronous operation, 1: synchronous operation

• USART Parity Mode (UPM[1:0])– 00: no parity, 10: even parity, 11: odd parity

• USART Stop Bit Select (USBS) – 0: 1 stop bit, 1: 2 stop bits

• USART Character Size (data width) (UCSZ[2:0]) – 000: 5–bit, 001: 6–bit, 010: 7–bit, 011:
8–bit, 111: 9–bit

8.5 SYSTEM OPERATION AND PROGRAMMING USING
ARDUINO DEVELOPMENT ENVIRONMENT FEATURES

The Arduino Development Environment is equipped with built–in USART communications fea-
tures.

308 8. SERIAL COMMUNICATION SUBSYSTEM

USART Control and Status Register A (UCSRA)
RXC

7 0

7 0

7 0

7 0

7 0

TXC

RXCIE TXCIE

UDRE FE U2X

TXEN UCSZ2

UBRR10 UBRR9 UBRR8

UBRR2 UBRR1 UBRR0

RXB8 TXB8

MPCMDOR PE

RXB7 RXB6 RXB5 RXB4 RXB1 RXB0RXB3 RXB2

TXB7 TXB6 TXB5 TXB4 TXB1 TXB0TXB3 TXB2

RXEN

URSEL=0 --- --- --- UBRR11

UBRR7 UBRR6 UBRR5 UBRR4 UBRR3

UDRIE

URSEL=1 UMSEL USBS UCSZ1 UCSZ0 UCPOLUPM0UPM1

USART Control and Status Register B (UCSRA)

USART Control and Status Register C (UCSRC)

USART Data Register - UDR
UDR(Read)

UDR(Write)

USART Baud Rate Registers - UBRRH and UBRRL
UBRRH

UBRRL

Figure 8.3: ATmega328 USART Registers.

Arduino UNO R3: The Arduino UNO R3 provides access to the USART transmission (TX)
and reception (RX) pins via DIGITAL pins 1 (TX) and 0 (RX). The USART may be connected
to a an external USART compatible input device, output device, or microcontroller. The Arduino
UNO R3 may also communicate with the host personal computer (PC) via the USB cable.

Arduino Mega 2560: The Arduino Mega 2560 provides access to the following USART
channels:

• Channel 1: transmission (TX) on pin 18 and reception (RX) on pin 19.

• Channel 2: transmission (TX) on pin 16 and reception (RX) on pin 17.

• Channel 3: transmission (TX) on pin 14 and reception (RX) on pin 15.

8.5. SYSTEM OPERATION AND PROGRAMMING 309

7 0

7 0

USART Control and Sta tus Registe r B (UCSRnB)

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n

7 0

UDRn(Write)
TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1 TXB0

USART Data Register - UDRn
UDRn(Read)

RXB7 RXB6 RXB5 RXB4 RXB3 RXB2 RXB1 RXB0

USART Control and Sta tus Registe r A (UCSRnA)

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn

7 0

USART Control and Sta tus Registe r C (UCSRnC)
UMSELn1 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn

7 0

UBRRnL

USART Baud Rate Registers - UBRRnH and UBRRnL
UBRRnH
URSEL=0 --- --- --- UBRR11 UBRR10 UBRR9 UBRR8

UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0

UMSELn0

Figure 8.4: ATmega2560 USART Registers.

The Arduino processor pins are configured for TTL compatible inputs and outputs. That is,
logic highs and lows are represented with 5 VDC and 0 VDC signals, respectively. The TX and
RX pins are not compatible with RS–232 signals. A level shifter such as the MAX232 is required
between the Arduino processor and the RS–232 device for communications of this type. When
connected to a PC via the USB cable, appropriate level shifting is accomplished via the USB support
chip onboard the Arduino processing board.

The Arduino Development Environment commands to provide USART communications
is provided in Figure 8.5. A brief description of each command is provided. As before, we will
not duplicate the excellent source material and examples provided at the Arduino homepage
(www.Arduino.cc).

310 8. SERIAL COMMUNICATION SUBSYSTEM

Arduino Development Environment built-in USART commands [www.Arduino.cc]

Description

Serialn.begin()

Serialn.end()

Serialn.available()

Serialn.read()

Serialn.flush()

Serialn.print()

Serialn.println()

Serialn.write()

Sets Baud rate

Disables serial communication. Allows Digital 1(TX) and Digital (0) RX
to be used for digital input and output.

Determines how many bytes have already been received and stored in the
128 byte buffer.

Reads incoming serial data.

Flushes the serial receive buffer of data.

Prints data to the serial port as ASCII text. An optional second parameter
specifies the format for printing (BYTE, BIN, OCT, DEC, HEX).

Prints data to the serial port as ASCII text followed by a carriage return.

Writes binary data to the serial port. A single byte, a series of bytes, or an
array of bytes may be sent.

Command

Notes:
- Arduino UNO R3: omit the “n” from the command
- Arduino Mega 2560: insert the USART channel in use (1, 2, or 3) for “n”

Figure 8.5: Arduino Development Environment USART commands.

Example: To illustrate the use of the Arduino Development Environment built–in serial
functions using the USART, we will add code to the robot sketch to provide status updates to
the host PC. These status updates are a helpful aid during algorithm development. Due to limited
space, we will not provide the entire algorithm here (it is five pages long). Instead, we provide a code
snapshot that may be used to modify the remaining code.

In the code snapshot, we have included the “Serial.begin(9600)” command in the setup func-
tion to set the USART Baud rate at 9600. We have also inserted a “ Serial.println” command in the
algorithm to provide a status update. These status updates are handy during sketch development.
These status updates would not be available while the robot is progressing through the maze since
the robot would no longer be connected to the host PC via the USB cable.

//***
//analog input pins

#define left_IR_sensor A0 //analog pin - left IR sensor

8.5. SYSTEM OPERATION AND PROGRAMMING 311

#define center_IR_sensor A1 //analog pin - center IR sensor
#define right_IR_sensor A2 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 3 //digital pin - wall_left
#define wall_center 4 //digital pin - wall_center
#define wall_right 5 //digital pin - wall_right

//LED indicators - turn signals
#define left_turn_signal 2 //digital pin - left_turn_signal
#define right_turn_signal 6 //digital pin - right_turn_signal

//motor outputs
#define left_motor 11 //digital pin - left_motor
#define right_motor 10 //digital pin - right_motor

int left_IR_sensor_value; //declare var. for left IR sensor
int center_IR_sensor_value; //declare var. for center IR sensor
int right_IR_sensor_value; //declare var. for right IR sensor

void setup()
{
Serial.begin(9600); //set USART Baud rate to 9600

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin 1 for digital output
pinMode(wall_center, OUTPUT); //configure pin 2 for digital output
pinMode(wall_right, OUTPUT); //configure pin 3 for digital output

//LED indicators - turn signals
pinMode(left_turn_signal,OUTPUT); //configure pin 0 for digital output
pinMode(right_turn_signal,OUTPUT); //configure pin 4 for digital output

//motor outputs - PWM
pinMode(left_motor, OUTPUT); //configure pin 11 for digital output
pinMode(right_motor, OUTPUT); //configure pin 10 for digital output
}

312 8. SERIAL COMMUNICATION SUBSYSTEM

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//robot action table row 0
if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{
Serial.println(‘‘No walls detected’’); //print status

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 128);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

:

8.6. SYSTEM OPERATION AND PROGRAMMING IN C 313

8.6 SYSTEM OPERATION AND PROGRAMMING IN C
The basic activities of the USART system consist of initialization, transmission, and reception.These
activities are summarized in Figure 8.6. Both the transmitter and receiver must be initialized with
the same communication parameters for proper data transmission. The transmission and reception
activities are similar except for the direction of data flow. In transmission, we monitor for the UDRE
flag to set indicating the data register is empty. We then load the data for transmission into the
UDR register. For reception, we monitor for the RXC bit to set indicating there is unread data in
the UDR register. We then retrieve the data from the UDR register.

Note: As previously mentioned, the ATmega328 is equipped with a USART channel while
the ATmega2560 is equipped with four USART channels.The registers to configure the ATmega328
is provided in Figure 8.3.The same register configuration is used to individually configure each of the
USART channels aboard the ATmega2560. The registers to configure the ATmega2560 is provided
in Figure 8.4. Note that each register name has an “n” designator where “n” is the specific USART
channel (0, 1, 2, or 3) being configured.

Set USART

communication parameters

(data bits, stop bit, parity)

Turn on transmitter

and/or receiver

Set USART for

asynchronous mode

Set Baud Rate

b) USART initialization

yes

no Has UDRE

flag set?

Load UDR register with

data byte for transmission

a) USART transmission

yes

no Has RXC

flag set?

Retrieve received data

from UDR register

c) USART reception

Figure 8.6: USART Activities.

To program the USART, we implement the flow diagrams provided in Figure 8.6. In the
sample code provided, we assume the ATmega328 is operating at 10 MHz, and we desire a Baud
Rate of 9600, asynchronous operation, no parity, one stop bit, and eight data bits.

To achieve 9600 Baud with an operating frequency of 10 MHz requires that we set the UBRR
registers to 64 which is 0x40.
//***
//USART_init: initializes the USART system

314 8. SERIAL COMMUNICATION SUBSYSTEM

//***

void USART_init(void)
{
UCSRA = 0x00; //control register initialization
UCSRB = 0x08; //enable transmitter
UCSRC = 0x86; //async, no parity, 1 stop bit, 8 data bits

//Baud Rate initialization
UBRRH = 0x00;
UBRRL = 0x40;
}

//***
//USART_transmit: transmits single byte of data
//***

void USART_transmit(unsigned char data)
{
while((UCSRA & 0x20)==0x00) //wait for UDRE flag
{
;
}

UDR = data; //load data to UDR for transmission
}

//***
//USART_receive: receives single byte of data
//***

unsigned char USART_receive(void)
{
while((UCSRA & 0x80)==0x00) //wait for RXC flag
{
;
}

data = UDR; //retrieve data from UDR
return data;
}

8.6. SYSTEM OPERATION AND PROGRAMMING IN C 315

//***

8.6.1 SERIAL PERIPHERAL INTERFACE–SPI
The ATmega Serial Peripheral Interface or SPI also provides for two–way serial communication
between a transmitter and a receiver. In the SPI system, the transmitter and receiver share a common
clock source. This requires an additional clock line between the transmitter and receiver but allows
for higher data transmission rates as compared to the USART. The SPI system allows for fast
and efficient data exchange between microcontrollers or peripheral devices. There are many SPI
compatible external systems available to extend the features of the microcontroller. For example, a
liquid crystal display or a digital–to–analog converter could be added to the microcontroller using
the SPI system.

8.6.1.1 SPI Operation
The SPI may be viewed as a synchronous 16–bit shift register with an 8–bit half residing in the
transmitter and the other 8–bit half residing in the receiver as shown in Figure 8.7. The transmitter
is designated the master since it is providing the synchronizing clock source between the transmitter
and the receiver. The receiver is designated as the slave. A slave is chosen for reception by taking its
Slave Select (SS) line low. When the SS line is taken low, the slave’s shifting capability is enabled.

SPI transmission is initiated by loading a data byte into the master configured SPI Data
Register (SPDR). At that time, the SPI clock generator provides clock pulses to the master and also
to the slave via the SCK pin. A single bit is shifted out of the master designated shift register on
the Master Out Slave In (MOSI) microcontroller pin on every SCK pulse. The data is received at
the MOSI pin of the slave designated device. At the same time, a single bit is shifted out of the
Master In Slave Out (MISO) pin of the slave device and into the MISO pin of the master device.
After eight master SCK clock pulses, a byte of data has been exchanged between the master and
slave designated SPI devices. Completion of data transmission in the master and data reception in
the slave is signaled by the SPI Interrupt Flag (SPIF) in both devices. The SPIF flag is located in
the SPI Status Register (SPSR) of each device. At that time, another data byte may be transmitted.

8.6.1.2 Registers
The registers for the SPI system are provided in Figure 8.8. We will discuss each one in turn.

SPI Control Register (SPCR) The SPI Control Register (SPCR) contains the “on/off ” switch for
the SPI system. It also provides the flexibility for the SPI to be connected to a wide variety of devices
with different data formats. It is important that both the SPI master and slave devices be configured
for compatible data formats for proper data transmission. The SPCR contains the following bits:

• SPI Enable (SPE) is the “on/off ” switch for the SPI system. A logic one turns the system on
and logic zero turns it off.

316 8. SERIAL COMMUNICATION SUBSYSTEM

SPI Data Register (SDR)
MSB LSB

SCK

Master Device Slave Device

MOSI

(PB5)
MOSI

(PB5)

MISO

(PB6)

MISO

(PB6)

SPI Clock Generator

system

clock

SPI Data Register (SDR)
MSB LSB

SCK

SCK

(PB7)

SCK

(PB7)

SS

(PB4)

SS

(PB4)

shift

enable

SPI Status Register (SPSR)

SPI Control Register (SPCR)

Figure 8.7: SPI Overview.

7 0

7 0

SPI Status Register - SPSR

SPIF WCOL SPI2X--- --- --- --- ---

SPI Control Register - SPCR

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

7 0

SPI Data Register - SPDR

MSB LSB

Figure 8.8: SPI Registers

• Data Order (DORD) allows the direction of shift from master to slave to be controlled. When
the DORD bit is set to one, the least significant bit (LSB) of the SPI Data Register (SPDR)
is transmitted first. When the DORD bit is set to zero the Most Significant Bit (MSB) of the
SPDR is transmitted first.

• The Master/Slave Select (MSTR) bit determines if the SPI system will serve as a master (logic
one) or slave (logic zero).

8.7. SPI PROGRAMMING IN THE ARDUINO DEVELOPMENT ENVIRONMENT 317

• The Clock Polarity (CPOL) bit allows determines the idle condition of the SCK pin. When
CPOL is one, SCK will idle logic high; whereas, when CPOL is zero, SCK will idle logic
zero.

• The Clock Phase (CPHA) determines if the data bit will be sampled on the leading (0) or
trailing (1) edge of the SCK.

• The SPI SCK is derived from the microcontroller’s system clock source. The system clock
is divided down to form the SPI SCK. The SPI Clock Rate Select bits SPR[1:0] and the
Double SPI Speed Bit (SPI2X) are used to set the division factor.The following divisions may
be selected using SPI2X, SPR1, SPR0:

– 000: SCK = system clock/4

– 001: SCK = system clock/16

– 010: SCK = system clock/64

– 011: SCK = system clock/1284

– 100: SCK = system clock/2

– 101: SCK = system clock/8

– 110: SCK = system clock/32

– 111: SCK = system clock/64

SPI Status Register (SPSR) The SPSR contains the SPI Interrupt Flag (SPIF).The flag sets when
eight data bits have been transferred from the master to the slave. The SPIF bit is cleared by first
reading the SPSR after the SPIF flag has been set and then reading the SPI Data Register (SPDR).
The SPSR also contains the SPI2X bit used to set the SCK frequency.

SPI Data Register (SPDR) As previously mentioned, writing a data byte to the SPDR initiates
SPI transmission.

8.7 SPI PROGRAMMING IN THE ARDUINO
DEVELOPMENT ENVIRONMENT

The Arduino Development Environment provides the “shiftOut” command to provide ISP style
serial communications [www.Arduino.cc]. The shiftOut command requires four parameters when
called:

• dataPin: the Arduino UNO R3 DIGITAL pin to be used for serial output.

• clockPin: the Arduino UNO R3 DIGITAL pin to be used for the clock.

• bitOrder: indicates whether the data byte will be sent most significant bit first (MSBFIRST)
or least significant bit first (LSBFIRST).

318 8. SERIAL COMMUNICATION SUBSYSTEM

• value: the data byte that will be shifted out.

To use the shiftOut command, the appropriate pins are declared as output using the pinMode
command in the setup() function. The shiftOut command is then called at the appropriate place
within the loop() function using the following syntax:
shiftOut(dataPin, clockPin, LSBFIRST, value);

As a result of the this command, the value specified will be serially shifted out of the data pin
specified, least significant bit first, at the clock rate provided at the clock pin.

8.8 SPI PROGRAMMING IN C
To program the SPI system in C, the system must first be initialized with the desired data format.
Data transmission may then commence. Functions for initialization, transmission and reception are
provided below. In this specific example, we divide the clock oscillator frequency by 128 to set the
SCK clock frequency.

//***
//spi_init: initializes spi system
//***

void spi_init(unsigned char control)
{
DDRB = 0xA0; //Set SCK (PB7), MOSI (PB5) for output,

//others to input
SPCR = 0x53; //Configure SPI Control Register (SPCR)
//SPIE:0,SPE:1,DORD:0,MSTR:1,CPOL:0,CPHA:0,SPR:1,SPR0:1
}

//***
//spi_write: Used by SPI master to transmit a data byte
//***

void spi_write(unsigned char byte)
{
SPDR = byte;
while (!(SPSR & 0x80));
}

//***
//spi_read: Used by SPI slave to receive data byte

8.9. TWO–WIRE SERIAL INTERFACE–TWI 319

//***

unsigned char spi_read(void)
{
while (!(SPSR & 0x80));

return SPDR;
}

//***

8.9 TWO–WIRE SERIAL INTERFACE–TWI
The TWI subsystem 1 allows the system designer to network a number of related devices (mi-
crocontrollers, transducers, displays, memory storage, etc.) together into a system using a two wire
interconnecting scheme. The TWI allows a maximum of 128 devices to be connected together that
reside in a small, circuit board size area. Each device has its own unique address and may both
transmit and receive over the two wire bus at frequencies up to 400 kHz. This allows the device to
freely exchange information with other devices in the network within a small area.

The TWI system consists of a two wire 100k bps (bit per second) bus.The 100k bps bus speed
is termed the standard mode but the bus may also operate at higher data rates. There are multiple
TWI compatible peripheral components (e.g. LCD displays, sensors, etc.) [I2C].

A large number of devices (termed nodes) may be connected to the TWI bus. The TWI
system uses a standard protocol to allow the nodes to send and receive data from the other devices.
All nodes on the bus are assigned a unique 7–bit address. The eighth bit of the address register is
used to specify the operation to be performed (read or write). Additional devices may be added to
the TWI based system as it evolves [I2C].

The basic TWI bus architecture is shown in Figure 8.9.The two wire bus consists of the serial
clock line (SCL) and the serial data line (SDA). These lines are pulled up to logic high by the SCL
and the SDA pull up resistors. Nodes connected to the bus can drive either of the bus lines to ground
(logic 0). Devices within an TWI bus configuration must share a common ground [I2C].

8.9.1 ARDUINO DEVELOPMENT ENVIRONMENT
The Arduino Development Environment is equipped with the Wire Library. The Wire Library
provides support for the TWI system. It allows communication between the Arduino processing
board and TWI/I2C compatible devices.

The TWI may be accessed on the following Arduino pins:

• Arduino UNO R3: TWI SDA–pin A4, TWI SCL–Pin A5
1The TWI system is also referred to as I2C or IIC.

320 8. SERIAL COMMUNICATION SUBSYSTEM

I2C Node
Interrupt

bus clock

SCL

SDA

Serial Data (SDA)

SCL

SDA

SCL
pull up
resistor

SDA
pull up
resistor

System
Supply
Voltage

Serial Clock (SCL) Serial Clock (SCL)

Serial Data (SDA)

I2C Node
Interrupt

bus clock

Figure 8.9: TWI configuration.

• Arduino Mega 2560: TWI SDA–pin 20, TWI SCL–Pin 21

Full documentation for this library is provided at the Arduino website (www.arduino.cc).

8.10 APPLICATION 1: USART COMMUNICATION WITH LCD
In Chapter 4 we discussed interfacing a parallel configured Liquid Crystal Display (LCD) to a
processor. Typically a parallel connected LCD requires ten lines (8 data, 2 control). If processor pins
are limited, a serial configured LCD may be employed. A serial configured LCD requires a single
line for communication between the processor and LCD and a common ground. A serial connected
LCD typically costs three times as much as a similarly featured parallel LCD.

In this application, we connect a Scott Edwards Electronics (www.seetron.com) ILM–216L
integrated serial LCD module (2 by 16 character) to the Arduino UNO R3. The interface between
the LCD and the Arduino board is illustrated in Figure 8.10. Note: The ILM–216L requires an
inverted ASCII input. The ASCII character value may be inverted in software or hardware. In this
example we use a 74HC04 hex inverter to invert the serial ASCII stream for the Arduino UNO R3.

A simple sketch to repeatedly print the letter to the LCD is provided below:
//***
void setup()
{
Serial.begin(2400);
delay(1000);
}

www.arduino.cc
www.seetron.com

8.11. APPLICATION 2: SD/MMC CARD MODULE EXTENSION VIA THE USART 321

G
N

D
-1

V
D

D
-2

se
ri

al
 in

-3
se

ri
al

 o
ut

-4
be

ll
ou

t-
5

G
N

D
-6

co
nf

ig
 te

st
-7

fo
rc

e
96

00
-8

sw
 in

pu
t 1

-9
G

N
D

-1
0

sw
 in

pu
t 2

-1
1

G
N

D
-1

2
sw

 in
pu

t 3
-1

3
G

N
D

-1
4

sw
 in

pu
t 4

-1
5

G
N

D
-1

6
 ILM-216

 5
 V

D
C

ASCII serial
transmission

power
supply

Function
Null
Cursor home
Hide cursor
Show underline cursor
Show blinking-block cursor
Bell (buzzer output)
Backspace
Smart linefeed
Formfeed (clear screen)
Carriage return
Backlight on
Backlight off

ASCII
0
1
4
5
6
7
8

10
12
13
14
15

[www.seetron.com]

74HC04
inverted

ASCII serial
transmission

Figure 8.10: Serial LCD display. The ILM–216L requires an inverted ASCII input. The ASCII char-
acter value may be inverted in software or hardware. In this example we use a 74HC04 hex inverter to
invert the serial ASCII stream for the Arduino UNO R3. (UNO R3 illustration used with permission of
the Arduino Team (CC BY–NC–SA) www.arduino.cc).

void loop()
{
Serial.print("G");
delay(500);
}
//***

8.11 APPLICATION 2: SD/MMC CARD MODULE EXTENSION
VIA THE USART

The Secure Digital/Multi Media Card (SD/MMC) provides a “hard drive” capability to the Arduino
UNO R3. That is, it provides a large capacity storage media to log and retrieve data. SD/MMC

www.arduino.cc

322 8. SERIAL COMMUNICATION SUBSYSTEM

cards have become a common method of storing data in commercial industry. The card is formatted
using the File Allocation Table (FAT) 16 standard. This standard has been around for some time.

In this example, we show how to connect a Comfile Technology SD/MMC SD–COM5 card
to the Arduino Microcontroller and the associated Arduino Development Environment commands
required to interact with the card [www.comfiletech.com]. The commands will be passed to the
SD/MMC card via the serial USART functions of the Arduino Development Environment. We
also provide the commands for communicating with the SD/MMC via the C programming language.

The interface circuit between the Arduino UNO R3 and the SD/MMC card is provided in
Figure 8.11. The TX and RX pins (DIGITAL 1 and 0) of the Arduino UNO R3 are connected to
the RXD and TXD pins (19 and 20) of the SD/MMC card breakout board. Power and ground are
also provided to the SD/MMC card as shown in the figure. Also, the reset pin of the SD/MMC
breakout board (pin 15) is pulled up to the 5 VDC supply via a 10K resistor.

�����
���	
����

 � � � � �

�
�
�
�
�
�

�
� � � � � � � � �

������	

�������
��
���

�

�
 ��

�

�
� �	!�"�#�
���"�$����%&���'���()

"
��
"��
��� ���
��	�

�"�
���
"���

�*�
�*�

�
+

�����

�
*

�
*

"���&��

Figure 8.11: Arduino UNO R3 and SD/MMC card interface circuit [Comfile Technology].

Figure 8.12 provides a summary of commands to communicate with the SD/MMC card.The
command format is shown at the top of the figure. The commands are issued from the Arduino

8.11. APPLICATION 2: SD/MMC CARD MODULE EXTENSION VIA THE USART 323

Figure 8.12: SD/MMC commands [COMFILE Technology].

324 8. SERIAL COMMUNICATION SUBSYSTEM

UNO R3 using the built–in “serial.print” command of the Arduino Development Environment.
For example, to send the phrase “Hello World” to the SD/MMC the fputs command is used. The
format of the command includes the file onboard the SD/MMC where the command should be
stored and the file option. In this example we have used the “w” option to indicate a write to the file.
The phrase for storage is then provided followed by a carriage return (\r) and a line feed (\n).

Before data can be written to the file, some preparatory steps are required:

• Set the Baud rate for communication.

• Set the SD/MMC for MCU (microcontroller) mode.This mode provides simplified responses
back to the Arduino UNO R3.

• Initialize the SD/MMC card.

• Create a file.

Commands are provided for each of these actions in Figure 8.12. We will provide a complete
sketch to communicate with the SD/MMC in the Applications section of the next chapter.

Once data has been written to an SD/MMC card, it may be removed from the card socket
in the breakout board and read via a PC using a universal card reader. Universal card readers are
readily available for under $20. This would make the SD/MMC useful for a remote data logging
application. Once the data has been collected, the card may be accessed via the PC, the data pulled
into a spreadsheet application such as MS Office Excel and analyzed.

8.12 APPLICATION 3: EQUIPPING AN ARDUINO
PROCESSOR WITH A VOICE CHIP

A fun addition to an Arduino–based project is voice capability via a speech synthesis chip. For speech
synthesis we use the SP0–512 text to speech chip (www.speechchips.com). The SP0–512 accepts
an USART compatible serial text stream. The text stream is converted to phoneme codes used to
generate an audio output. The chip requires a 9600 Baud bit stream with no parity, 8 data bits and
a stop bit. Full documentation on commands, tones and features on the chip are available at www.
speechchips.com.

The support circuit for the SP0–512 is provided in Figure 8.13. The Arduino UNO R3 issues
ASCII text strings to the SP0–512 speech synthesizer. When the “Serial.println” command is used,
a carriage return (CR) character is appended to the ASCII string. The SPO–512 uses the CR to
begin processing the string. The UNO R3 provides TTL compatible logic levels (0 and 5 VDC);
whereas, the SPO–512 operates a 3.3 VDC logic levels. Therefore, a 5 VDC–to–3.3 VDC level
shifter is required between the UNO R3 and the SP0–512. The DAC output from the SP0–512 is
fed to an audio amplifier. The audio amplifier employs an LM386N–3 (www.speechchips.com).

www.speechchips.com
www.speechchips.com
www.speechchips.com

8.12. APPLICATION 3: EQUIPPING AN ARDUINO PROCESSOR WITH A VOICE CHIP 325

1- / TICLR
2- N2
3- N3
4- TX
5- N5
6- RX
7- N7
8- VSS1
9- N9
10- N10
11- N11
12- N12
13- VDD
14- N14

SP0- 512
s peech s ynthes is chip

AVDD- 28
AVSS- 27
DAC+- 26
DAC- - 25

N24- 24
N23- 23
N22- 22
N21- 21

VCAP- 20
VSS2- 19

N18- 18
SPEAKING- 17

N16- 16
N15- 15

10K

Vcc = 3. 3 VDC Vcc = 3. 3 VDC

10 uF

LED
s pea king

+

330

LED
power

5. 0 VDC

4. 7 uF

+10K

-2

3

10 uF

7

LM386N- 3

6

5 VDC

4

100 uF

10K

0. 1 uF
8 ohm
s pea ker

5
TX:(9600 N81)

Vcc = 3. 3 VDC

+

MPS2222
10K

5. 0 VDC

33010K

3. 3V

1N4001

5 VDC to
3. 3 VDC

leve l s hifte r

LM1084
- 3. 3

(3. 3 VDC
regula tor)

G O I

LM1084
- 3. 3

(3. 3 VDC
regula tor)5 VDC 3. 3 VDC

10uF 10uF

Arduino UNO R3

a udio a m plifie r

5 VDC to 3. 3 VDC power s upply

Figure 8.13: Speech synthesis support circuit [www.speechchips.com]. (UNO R3 illustration used with
permission of the Arduino Team (CC BY–NC–SA) www.arduino.cc).

//**
void setup()
{
Serial.begin(9600); //set Baud rate 9600 bps
delay(1000); //delay 1s
}

void loop()
{
Serial.println("[v14][S4][E2] My name is HAL?");
delay(3000); //delay 3s

www.arduino.cc

326 8. SERIAL COMMUNICATION SUBSYSTEM

}
//**

8.13 APPLICATION 4: PROGRAMMING THE ARDUINO UNO
R3 ATMEGA328 VIA THE ISP

An alternate method of programming the Arduino UNO R3 processing board is via In–System
Programming (ISP) techniques. We highly recommend that you use the Arduino Development
Environment for programming the Arduino UNO R3. The ISP programming techniques are used
to program features of the ATmega328P hosted onboard the Arduino UNO R3 that are not currently
supported within the Arduino Development Environment.

Programming the ATmega328 requires several hardware and software tools. We briefly men-
tion required components here. Please refer to the manufacturer’s documentation for additional
details at www.atmel.com.

Software Tools: Throughout the text, we use the ImageCraft ICC AVR compiler. This is a
broadly used, user–friendly compiler. There are other excellent compilers available. The compiler is
used to translate the source file (filename.c) into machine language for loading into the ATmega328
hosted onboard the Arduino UNO R3. We use Atmel’s AVR Studio to load the machine code into
the ATmega328.

Hardware Tools: We use Atmel’s STK500 AVR Flash MCU Starter Kit (STK500) for
programming the ATmega328. The STK500 provides the interface hardware between the host PC
and the ATmega328 for machine code loading. The STK500 is equipped with a complement of
DIP sockets which allows for programming all of the microcontrollers in the Atmel AVR line. The
STK500 also allows for In–System Programming (ISP) [Atmel]. In this example, we use the ISP
programming features of the STK500.

8.13.1 PROGRAMMING PROCEDURE
In this section, we provide a step–by–step procedure to program the ATmega328 hosted onboard
the Arduino UNO R3 using the STK500 AVR Flash MCU Starter Kit. Please refer to Figure 8.14.

1. Load AVR Studio (free download from www.atmel.com).

2. Ensure that the STK500 is powered down.

3. Connect the STK500 as shown in Figure 8.14. Note: For ISP programming, the 6–wire ribbon
cable is connected from the ISP6PIN header pin on the STK500 to the 6–pin header pin on
the Arduino UNO R3. Note the position of the red guide wire in the diagram.

4. Power up the STK500.

5. Start up AVR Studio on your PC.

8.13. APPLICATION 4: PROGRAMMING THE ARDUINO UNO R3 ATMEGA328 VIA ISP 327

���!	
���

�"���
",��!

�"���
���	

�"���
%&-()

.��/�0.�,�

.��1�2)�
0�11(3

�",�
,��

",�
��

�0)�./�0��)��0�%4).,
���

,
��5

,
���

,
���

,
��!

"6���7!"

	!�"

��--��
%&-()0

�)�
2��)

�)�
2��) �����!�

��!

�!"!�

*��	�

"�"!	

5"!	�

,8��,

����%&.)0�9�'1)��-(�%4���0.&(()��&.�./�0�(�%&.���

�
�
�
�
�
�

�
� � � � � � � � �

�",�,��

��.):��)��2��)

��--���%&-()
%���)%.��;
"�+�

��",�,��
.������������)'�(&��<)
�#1���/)&�)�

��.):��)��2��)

Figure 8.14: Programming the ATmega328 onboard the Arduino UNO R3 with the STK500.

328 8. SERIAL COMMUNICATION SUBSYSTEM

6. Pop up window “Welcome to AVR Studio” should appear. Close this window by clicking on
the “Cancel button.”

7. Click on the “AVR icon.” It looks like the silhouette of an integrated circuit. It is on the second
line of the toolbar about half way across the screen.

8. This should bring up a STK500 pop up window with eight tabs (Main, Program, Fuses, Lock-
bits, Advanced, HW Settings, HW Info). At the bottom of the Main tab window, verify that
the STK500 was autodetected.Troubleshoot as necessary to ensure STK500 was autodetected
by AVR Studio.

9. Set all tab settings:

• Main:

– Device and Signature Bytes: ATmega328P
– Programming Mode and Target Setting: ISP Mode
– Depress “Read Signature” to insure the STK500 is communicating with the Arduino

UNO R3

• Program:

– Flash: Input HEX file, Browse and find machine code file: <yourfilename.hex>
– EEPROM: Input HEX file, Browse and find machine code file:

<yourfilename.EEP>

10. Programming step:

• Program Tab: click program

11. Power down the STK500. Disconnect the STK500 from the Arduino UNO R3 processing
board.

8.14 APPLICATION 5: TMS1803 3–BIT LED DRIVE
CONTROLLER

Titan Micro Electronics manufactures the TMS1803 3–bit LED drive controller. The TMS1803
is illustrated in Figure 8.15a). It is used to control three separate LEDs (red, green, and blue). The
TMS1803 has a serial data input, a serial data output, and three PWM outputs to independently set
the illumination of each LED. Each LEDs’ intensity is individually set with a value from 0 (low) to
256 (high). A 24-bit data stream is shifted into the TMS1803. When a new 24–bit data stream is
shifted in the current 24–bit control value is shifted out. A series of TMS1803s may be connected
as shown in Figure 8.15b)[Titan Micro].

RadioShack(www.RadioShack.com) distributes a 1m tricolor LED strip (#2760249). The
strip is easily interfaced to the Arduino UNO R3:

www.RadioShack.com

8.14. APPLICATION 5: TMS1803 3–BIT LED DRIVE CONTROLLER 329

TM1803

RED-PWM OUT 1

2

3

4 5

6

7

8

GREEN-PWM OUT

BLUE-PWM OUT

GROUND

VDD: 5 VDC

no connection (NC)

DATA IN (DIN)

DATA OUT (DOUT)

a) Titan Micro Electronics TM1803 3-bit LED drive controller

TM1803
#1

DOUTDIN

TM1803
#2

DOUTDIN

TM1803
#32

DOUTDINfrom
Arduino

R G B R G B R G B

b) serially connected string of 32 TM1803 3-bit LED drive controllers

Figure 8.15: TMS1803 3–bit LED drive controller [Titan Micro Electronics].

• Tricolor +12V (red wire) to Arduino UNO R3 Vin

• Tricolor DIN (green wire) to Arduino UNO R3 A0

• Tricolor GND (black wire) to Arduino UNO R3 GND

The tricolor LED strip can be programmed for a number of special effects. They may also be
connected together to form longer LED strings. A sample program, titled “strip_1m.pde,” may be
downloaded from the RadioShack website (www.RadioShack.com).

www.RadioShack.com

330 8. SERIAL COMMUNICATION SUBSYSTEM

8.15 SUMMARY
In this chapter, we have discussed the differences between parallel and serial communications and
key serial communication related terminology. We then in turn discussed the operation of USART,
SPI and TWI serial communication systems. We also provided basic code examples to communicate
with the USART and SPI systems.

8.16 REFERENCES
• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-

mega48PA/88PA/168PA/328P data sheet: 8161D–AVR–10/09, Atmel Corporation, 2325 Or-
chard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-
mega48PA, 88PA, 168PA, 328P data sheet: 8171D–AVR–05/11, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 64/128/256K Bytes In–System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P–AVR–10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

• Serial SD/MMC Card Module User Manual, Comfile Technology, Inc.,
www.comfiletech.com.

• The I2C–Bus Specification. Version 2.1, Philips Semiconductor, January 2000.

8.17 CHAPTER PROBLEMS
1. Summarize the differences between parallel and serial conversion.

2. Summarize the differences between the USART, SPI, and TWI methods of serial communi-
cation.

3. Draw a block diagram of the USART system, label all key registers, and all keys USART flags.

4. Draw a block diagram of the SPI system, label all key registers, and all keys USART flags.

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

8.17. CHAPTER PROBLEMS 331

5. If an ATmega328 microcontroller is operating at 12 MHz what is the maximum transmission
rate for the USART and the SPI?

6. What is the ASCII encoded value for “Arduino”?

7. Draw the schematic of a system consisting of two ATmega328s that will exchange data via
the SPI system.

8. Write the code to implement the system described in the question above.

9. In Chapter 5,Analog to Digital Conversion,a design was provided for a KNH Instrumentation
Array using two large LED arrays. Re-accomplish the design employing two 1m Tricolor LED
Strips (RadioShack #2760249). What advantage does this design have over the one provided
in Chapter 5?

333

C H A P T E R 9

Extended Examples
Objectives: After reading this chapter, the reader should be able to

• Construct an Arduino based system using concepts provided throughout the book.

9.1 OVERVIEW
This chapter provides a series of extended examples to illustrate concepts provided throughout the
book.

9.2 EXTENDED EXAMPLE 1: AUTOMATED FAN COOLING
SYSTEM

In this section, we describe an embedded system application to control the temperature of a room
or some device. The system is illustrated in Figure 9.1. An LM34 temperature sensor (PORTC[0])
is used to monitor the instantaneous temperature of the room or device of interest. The current
temperature is displayed on the Liquid Crystal Display (LCD).

We send a 1 KHz PWM signal to a cooling fan (M) whose duty cycle is set from 50% to
90% using the potentiometer connected to PORTC[2]. The PWM signal should last until the
temperature of the LM34 cools to a value as set by another potentiometer (PORTC[1]). When the
temperature of the LM34 falls below the set level, the cooling fan is shut off. If the temperature falls
while the fan is active, the PWM signal should gently return to zero, and wait for further temperature
changes.

Provided below is the embedded code for the system. This solution was developed by Geoff
Luke, UW MSEE, as a laboratory assignment for an Industrial Control class.
//***
//Geoff Luke
//EE 5880 - Industrial Controls
//PWM Fan Control
//Last Updated: April 10, 2010
//***
//Description: This program reads the voltage from an LM34 temperature
//sensor then sends the corresponding temperature to an LCD.
//If the sensed temperature is greater than the temperature designated
//by a potentiometer, then a PWM signal is turned on to trigger a fan

334 9. EXTENDED EXAMPLES

Vcc = 5 V

10K

cooling fan speed

Vcc = 5 V

10K
threshold temperature setting

LM34

Vcc = 5 V

temperature sensor
75

1uF

G
N

D
-1

V
D

D
-2

V
o
-3

R
S

-4

R
/W

-5

E
-6

D
B

0
-7

D
B

1
-8

D
B

2
-9

D
B

3
-1

0

D
B

4
-1

1

D
B

5
-1

2

D
B

6
-1

3

D
B

7
-1

4

Vcc

10K

AND671GST

data

M

DC motor

supply voltage

Solid State Relay

MOSFET

protection

diode

�

�

VDD

RI

7404

from

micro

G

D

S

ILOAD

RG

VDD

1M

1.0 uF
VDD sys reset

1 PUR - PC6

2 RXD1 - PD0

3 TXD1 - PD1

4 PD2

5 PD3

6 PD4

7 Vcc

8 GND

9 PB6

10 PB7

11 PD5

12 PD6

13 PD7

14 PB0

PC5 28

PC4 27

PC3 26

PC2 25

PC1 24

PCO 23

GND 22

AREF 21

AVCC 20

PB5 19

PB4 18

PB3 17

PB2 16

PB1 15

Atmega328

to PORTB[7:0]

Figure 9.1: Automated fan cooling system.

9.2. EXTENDED EXAMPLE 1: AUTOMATED FAN COOLING SYSTEM 335

//with duty cycle designated by another potentiometer.
//
//Ports:
// PORTB[7:0]: data output to LCD
// PORTD[7:6]: LCD control pins
// PORTC[2:0]:
// PORTC[0]: LM34 temperature sensor
// PORTC[1]: threshold temperature
// PORTC[2]: fan speed
// PORTD[4] : PWM channel B output
//
//***

//include files**
#include<iom328pv.h>

//function prototypes**
void initializePorts();
void initializeADC();
unsigned int readADC(unsigned char);
void LCD_init();
void putChar(unsigned char);
void putcommand(unsigned char);
void voltageToLCD(unsigned int);
void temperatureToLCD(unsigned int);
void PWM(unsigned int);
void delay_5ms();

int main(void)
{
unsigned int tempVoltage, tempThreshold;

initializePorts();
initializeADC();
LCD_init();

while(1)
{
tempVoltage = readADC(0);

336 9. EXTENDED EXAMPLES

temperatureToLCD(tempVoltage);
tempThreshold = readADC(1);
if(tempVoltage > tempThreshold)
{
PWM(1);
while(tempVoltage > tempThreshold)
{
tempVoltage = readADC(0);
temperatureToLCD(tempVoltage);
tempThreshold = readADC(1);
}

OCR1BL = 0x00;
}
}

return 0;
}

//***

void initializePorts()
{
DDRD = 0xFF;
DDRC = 0xFF;
DDRB = 0xFF;
}

//***

void initializeADC()
{
//select channel 0
ADMUX = 0;

//enable ADC and set module enable ADC and
//set module prescalar to 8
ADCSRA = 0xC3;

//Wait until conversion is ready
while(!(ADCSRA & 0x10));

9.2. EXTENDED EXAMPLE 1: AUTOMATED FAN COOLING SYSTEM 337

//Clear conversion ready flag

ADCSRA |= 0x10;
}

//***

unsigned int readADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
unsigned int binary_weighted_voltage_high; //weighted binary

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar to 8
//critical accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit

binary_weighted_voltage_low = ADCL;
//Read 8 low bits first (important)
//Read 2 high bits, multiply by 256

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low +

binary_weighted_voltage_high;

return binary_weighted_voltage; //ADCH:ADCL
}

//***
//LCD_Init: initialization for an LCD connected in the following manner:
//LCD: AND671GST 1x16 character display
//LCD configured as two 8 character lines in a 1x16 array
//LCD data bus (pin 14-pin7) ATMEL ATmega16: PORTB
//LCD RS (pin 4) ATMEL ATmega16: PORTD[7]
//LCD E (pin 6) ATMEL ATmega16: PORTD[6]
//***

338 9. EXTENDED EXAMPLES

void LCD_init(void)
{
delay_5ms();
delay_5ms();
delay_5ms();

// output command string to
//initialize LCD

putcommand(0x38); //function set 8-bit
delay_5ms();
putcommand(0x38); //function set 8-bit
delay_5ms();
putcommand(0x38); //function set 8-bit
putcommand(0x38); //one line, 5x7 char
putcommand(0x0E); //display on
putcommand(0x01); //display clear-1.64 ms
putcommand(0x06); //entry mode set
putcommand(0x00); //clear display, cursor at home
putcommand(0x00); //clear display, cursor at home
}

//***
//putchar:prints specified ASCII character to LCD
//***

void putChar(unsigned char c)
{
DDRB = 0xff; //set PORTB as output
DDRD = DDRD|0xC0; //make PORTD[7:6] output
PORTB = c;
PORTD = PORTD|0x80; //RS=1
PORTD = PORTD|0x40; //E=1
PORTD = PORTD&0xbf; //E=0
delay_5ms();
}

//***

9.2. EXTENDED EXAMPLE 1: AUTOMATED FAN COOLING SYSTEM 339

//performs specified LCD related command
//***

void putcommand(unsigned char d)
{
DDRB = 0xff; //set PORTB as output
DDRD = DDRD|0xC0; //make PORTD[7:6] output
PORTD = PORTD&0x7f; //RS=0
PORTB = d;
PORTD = PORTD|0x40; //E=1
PORTD = PORTD&0xbf; //E=0
delay();
}

//***
//delay
//***

void delay(void)
{
unsigned int i;

for(i=0; i<2500; i++)
{
asm("nop");
}

}

//***
void voltageToLCD(unsigned int ADCValue)

{
float voltage;
unsigned int ones, tenths, hundredths;

voltage = (float)ADCValue*5.0/1024.0;

ones = (unsigned int)voltage;

340 9. EXTENDED EXAMPLES

tenths = (unsigned int)((voltage-(float)ones)*10);
hundredths = (unsigned int)(((voltage-(float)ones)*10-(float)tenths)*10);

putcommand(0x80);

putChar((unsigned char)(ones)+48);
putChar(’.’);
putChar((unsigned char)(tenths)+48);
putChar((unsigned char)(hundredths)+48);
putChar(’V’);
putcommand(0xC0);
}

//***

void temperatureToLCD(unsigned int ADCValue)

{
float voltage,temperature;
unsigned int tens, ones, tenths;

voltage = (float)ADCValue*5.0/1024.0;
temperature = voltage*100;

tens = (unsigned int)(temperature/10);
ones = (unsigned int)(temperature-(float)tens*10);
tenths = (unsigned int)(((temperature-(float)tens*10)-(float)ones)*10);

putcommand(0x80);
putChar((unsigned char)(tens)+48);
putChar((unsigned char)(ones)+48);
putChar(’.’);
putChar((unsigned char)(tenths)+48);
putChar(’F’);
}

//***

void PWM(unsigned int PWM_incr)

9.2. EXTENDED EXAMPLE 1: AUTOMATED FAN COOLING SYSTEM 341

{

unsigned int fan_Speed_int;
float fan_Speed_float;
int PWM_duty_cycle;

fan_Speed_int = readADC(0x02); //fan Speed Setting

//unsigned int convert to max duty cycle setting:
// 0 VDC = 50% = 127,
// 5 VDC = 100% = 255

fan_Speed_float = ((float)(fan_Speed_int)/(float)(0x0400));

//convert volt to PWM constant 127-255
fan_Speed_int = (unsigned int)((fan_Speed_float * 127) + 128.0);

//Configure PWM clock

TCCR1A = 0xA1; //freq = resonator/510 = 4 MHz/510
//freq = 19.607 kHz

TCCR1B = 0x02; //clock source
//division of 8: 980 Hz

//Initiate PWM duty cycle variables
PWM_duty_cycle = 0;
OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);//set PWM duty cycle Ch B to 0%

//Ramp up to fan Speed in 1.6s
OCR1BL = (unsigned char)(PWM_duty_cycle);//set PWM duty cycle Ch B

while (PWM_duty_cycle < fan_Speed_int)
{
if(PWM_duty_cycle < fan_Speed_int) //increment duty cycle
PWM_duty_cycle=PWM_duty_cycle + PWM_incr;

//set PWM duty cycle Ch B
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

}

342 9. EXTENDED EXAMPLES

//***

9.3 EXTENDED EXAMPLE 2: FINE ART LIGHTING SYSTEM
In Chapter 2 and 5, we investigated an illumination system for a painting. The painting was to be
illuminated via high intensity white LEDs. The LEDs could be mounted in front of or behind the
painting as the artist desired. In Chapter 5, we equipped the lighting system with an IR sensor to
detect the presence of someone viewing the piece. We also wanted to adjust the intensity of the
lighting based on how the close viewer was to the art piece. In this example, we enhance the lighting
system with three IR sensors. The sensors will determine the location of viewers and illuminate
portions of the painting accordingly. The analogWrite function is used to set the intensity of the
LEDs using PWM techniques.

The Arduino Development Environment sketch to sense how away the viewer is and issue
a proportional intensity control signal to illuminate the LED is provided below. The analogRead
function is used to obtain the signal from the IR sensor. The analogWrite function is used to issue
a proportional signal.
//***

//analog input pins
#define left_IR_sensor A0 //analog pin - left IR sensor
#define center_IR_sensor A1 //analog pin - center IR sensor
#define right_IR_sensor A2 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define col_0_control 0 //digital pin - column 0 control
#define col_1_control 1 //digital pin - column 1 control
#define col_2_control 2 //digital pin - column 2 control

int left_IR_sensor_value; //declare var. for left IR sensor
int center_IR_sensor_value; //declare var. for center IR sensor

int right_IR_sensor_value; //declare var. for right IR sensor

void setup()
{

//LED indicators - wall detectors
pinMode(col_0_control, OUTPUT); //configure pin 0 for digital output
pinMode(col_1_control, OUTPUT); //configure pin 1 for digital output
pinMode(col_2_control, OUTPUT); //configure pin 2 for digital output

9.3. EXTENDED EXAMPLE 2: FINE ART LIGHTING SYSTEM 343

��
��
�
	
�

�

��

�

��
��
�
	
�

�

�
��
�
��

��
��
�
	
�

�

��
�
�
�

�
�
��

�
�
�
�
�
�

�
�	
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
	
�

��
�

	
	
�
�
��

	
�

��
�
�
�
��
�
��
�
�

��
�
�
��

�
��
�
��
	
�
��

�
��
�
�

��

��
�
!
��
"
�

�
	
�
�

#
$

#
%

#
&

�
�
"
	
�

#
'
#
(
)
"
��
'

$
%
&
*
+
�

�
�"
�,
#
(

#
��
�
�	

-
'
)
��
*

* %
& %
% %
$ %
.
/
0
1
�
+
*
&
%
$

.
��
�
�
�

%
$
2

&
'
&
&
&
&

� .
��
�
�
�

%
$
2

&
'
&
&
&
&

� .
��
�
�
�

%
$
2

&
'
&
&
&
&

�

.
��
�
�
�

%
$
2

&
'
&
&
&
&

� .
��
�
�
�

%
$
2

&
'
&
&
&
&

� .
��
�
�
�

%
$
2

&
'
&
&
&
&

�

.
��
�
�
�

%
$
2

&
'
&
&
&
&

� .
��
�
�
�

%
$
2

&
'
&
&
&
&

� .
��
�
�
�

%
$
2

&
'
&
&
&
&

�

�

��
�
	
�$

�

	
��

�

�

��
�
	
�%

�

	
��

�

�

��
�
	
�&

�

	
��

�

�
���	�&��
	��
�
�
���	�%��
	��
�
�
���	�$��
	��
�

Figure 9.2: IR sensor interface.

344 9. EXTENDED EXAMPLES

}

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

if(left_IR_sensor_value < 128)
{
analogWrite(col_0_control, 31); //0 (off) to 255 (full speed)
}

else if(left_IR_sensor_value < 256)
{
analogWrite(col_0_control, 63); //0 (off) to 255 (full speed)
}

else if(left_IR_sensor_value < 384)
{
analogWrite(col_0_control, 95); //0 (off) to 255 (full speed)
}

else if(left_IR_sensor_value < 512)
{
analogWrite(col_0_control, 127); //0 (off) to 255 (full speed)
}

else if(left_IR_sensor_value < 640)
{
analogWrite(col_0_control, 159); //0 (off) to 255 (full speed)
}

else if(left_IR_sensor_value < 768)
{
analogWrite(col_0_control, 191); //0 (off) to 255 (full speed)
}

else if(left_IR_sensor_value < 896)
{
analogWrite(col_0_control, 223); //0 (off) to 255 (full speed)
}

else

9.3. EXTENDED EXAMPLE 2: FINE ART LIGHTING SYSTEM 345

{
analogWrite(col_0_control, 255); //0 (off) to 255 (full speed)
}

if(center_IR_sensor_value < 128)
{
analogWrite(col_1_control, 31); //0 (off) to 255 (full speed)
}

else if(center_IR_sensor_value < 256)
{
analogWrite(col_1_control, 63); //0 (off) to 255 (full speed)
}

else if(center_IR_sensor_value < 384)
{
analogWrite(col_1_control, 95); //0 (off) to 255 (full speed)
}

else if(center_IR_sensor_value < 512)
{
analogWrite(col_1_control, 127); //0 (off) to 255 (full speed)
}

else if(center_IR_sensor_value < 640)
{
analogWrite(col_1_control, 159); //0 (off) to 255 (full speed)
}

else if(center_IR_sensor_value < 768)
{
analogWrite(col_1_control, 191); //0 (off) to 255 (full speed)
}

else if(center_IR_sensor_value < 896)
{
analogWrite(col_1_control, 223); //0 (off) to 255 (full speed)
}

else
{
analogWrite(col_1_control, 255); //0 (off) to 255 (full speed)
}

if(right_IR_sensor_value < 128)
{

346 9. EXTENDED EXAMPLES

analogWrite(col_2_control, 31); //0 (off) to 255 (full speed)
}

else if(right_IR_sensor_value < 256)
{
analogWrite(col_2_control, 63); //0 (off) to 255 (full speed)
}

else if(right_IR_sensor_value < 384)
{
analogWrite(col_2_control, 95); //0 (off) to 255 (full speed)
}

else if(right_IR_sensor_value < 512)
{
analogWrite(col_2_control, 127); //0 (off) to 255 (full speed)
}

else if(right_IR_sensor_value < 640)
{
analogWrite(col_2_control, 159); //0 (off) to 255 (full speed)
}

else if(right_IR_sensor_value < 768)
{
analogWrite(col_2_control, 191); //0 (off) to 255 (full speed)
}

else if(right_IR_sensor_value < 896)
{
analogWrite(col_2_control, 223); //0 (off) to 255 (full speed)
}

else
{
analogWrite(col_2_control, 255); //0 (off) to 255 (full speed)
}

delay(500); //delay 500 ms
}

//***

9.4 EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL
We close the chapter with an extended example of developing a flight simulator panel.This panel was
actually designed and fabricated for a middle school to allow students to react to space mission like

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 347

status while using a program that allowed them to travel about the planets. An Atmel ATmega328
microcontroller is used because its capabilities best fit the requirements for the project.

The panel face is shown in Figure 9.3. It consists of a joystick that is connected to a host
computer for the flight simulator software. Below the joystick is a two line liquid crystal display
equipped with a backlight LED (Hantronix HDM16216L–7, Jameco# 658988). Below the LCD is
a buzzer to alert students to changing status. There are also a complement of other status indicators.
From left–to–right is the Trip Duration potentiometer. At the beginning of the flight episode
students are prompted to set this from 0 to 60 minutes to communicate to the microcontroller the
length of the flight episode.This data is used to calculate different flight increments.There are also a
series of simulated circuit breakers: system reset (SYS Reset), oxygen (O2 CB), auxiliary fuel (AUX
FUEL CB), and the main power circuit breakers (MAIN PWR CB). These are not actual circuit
breakers but normally open (NO) single pole single throw (SPST) momentary pushbutton switches
that allow the students to interact with the microcontroller. There are also a series of LEDs that
form a Y pattern on the panel face. They are also used to indicate status changes.

To interface the flight simulator panel to the microcontroller a number of different techniques
previously discussed in the book were employed. The interface diagram is shown in Figure 9.4. Pin
1 is a reset for the microcontroller. When the switch is depressed, pin 1 is taken low and resets the
microcontroller. Port D of the microcontroller (pins 2–6, 11–13) forms the data connection for the
LCD. Pin 9 is used to turn the buzzer on and off. This pin is routed through a transistor interface
described earlier in the text. Port B[5:0] (pins 14–19) is used to control the LEDs on the front panel.
Each individual LED is also supported with a transistor interface circuit. Conveniently, these small
NPN signal transistors come in four to a 14 pin DIP package (MPQ2222). Port C [0] (pin 23) is
used as an analog input pin. It is connected to the trip duration potentiometer. Port C pins [3:1]
(pins 24 to 26) are used to connect the NO SPST tact switches to the microcontroller. Port C pins
[4:5] (pins 27, 28) are used for the LCD control signals.

The software flowchart is shown in Figure 9.5. After startup the students are prompted
via the LCD display to set the trip duration and then press the main power circuit breaker. This
potentiometer setting is then used to calculate four different trip increments.Countdown followed by
blastoff then commences. At four different trip time increments, students are presented with status
that they must respond to. Real clock time is kept using the TCNT0 timer overflow configured as
a 65.5 ms “clock tick.” The overall time base for the microcontroller was its internal 1 MHz clock
that may be selected during programming with the STK500.

Provided below is the code listing for the flight simulator panel.
//***
//file name: flight_sim.c
//author: Steve Barrett, Ph.D., P.E.
//last revised: April 10, 2010
//function: Controls Flight Simulator Control Panel for Larimer County
// School District #1
//

348 9. EXTENDED EXAMPLES

Trip
Duration

Status Panel

Joystick

SYS
Reset

O2
CB

AUX
FUEL CB

MAIN
PWR CB(PB0)

(PB1)

(PB2)
(PB3) (PB4)

(PB5) (PB6)

 buzzer

TRIP TIME: 0-60m
SET MAIN PWR CB

Figure 9.3: Flight Simulator Panel.

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 349

1-
(/

R
es

et
)

P
C

6

2-
PD

0

3-
PD

1

4-
PD

2

5-
PD

3

6-
PD

4

7-
V

C
C

8-
G

N
D

9-
PB

6

10
-P

B
7

11
-P

D
5

12
-P

D
6

13
-P

D
7

14
-P

B
0

A
T

m
eg

a3
28

PC
5-

28

PC
4-

27

PC
3-

26

PC
2-

25

PC
1-

24

P
C

0
(A

D
C

0)
-2

3

G
N

D
-2

2

A
R

E
F-

21

A
V

C
C

-2
0

PB
5-

19

PB
4-

18

PB
3-

17

PB
2-

16

PB
1-

15

E
ng

in
e

P
ow

er

A
U

X
 F

ue
l

O
2

C
ir

cu
it

 B
re

ak
er

V
cc

 =
 5

 V
D

C

tr
ip

du
ra

tio
n

po
t

bu
zz

er

38
50

 H
z

5
V

D
C

,

3-
14

 m
A

V
cc +

+
+

+
+

+
+

V
cc

V
cc

V
cc

V
cc

V
cc

V
cc

P
B

0
P

B
1

P
B

2
P

B
3

P
B

4
P

B
5

P
B

6

10
K

 D
IP

re
si

st
or22

0
D

IP

re
si

st
or

1
2

3
5

6
7

8
9

10
12

13
14

L
E

D
0

L
E

D
1

L
E

D
2

L
E

D
3

L
E

D
4

L
E

D
5

L
E

D
6

1
2

3
5

6
7

8
9

10
12

13
14

P
B

7

V
cc

V
cc

V
cc

V
cc

D
B

0

D
B

1

D
B

2

D
B

3

D
B

4

D
B

5
D

B
6

D
B

7

L
E

D
6

L
E

D
0

L
E

D
1

L
E

D
5

L
E

D
4

L
E

D
3

L
E

D
2

R
S

E

5
V

D
C

1M

sy
st

em
 r

es
et

1
uF

li
ne

1

li
ne

 2

 LED K-16
LED A-15

GND-1
VDD-2

Vo-3
RS-4

R/W-5
E-6

DB0-7
DB1-8
DB2-9

DB3-10
DB4-11
DB5-12
DB6-13
DB7-14

da
ta

E

RS

5
V

contrast

LED

pi
ez

o
bu

zz
er

Figure 9.4: Interface diagram for the flight simulator panel.

350 9. EXTENDED EXAMPLES

in
it

ia
li

ze
_p

or
ts

in
it

ia
li

ze
_t

im
er

in
it

ia
li

ze
_A

D
C

in
it

ia
li

ze
_L

C
D

T
R

IP
 T

IM
E

 0
-6

0m

S
E

T
 M

A
IN

 P
W

R
 C

B

ye
s

no

pe
rf

or
m

_c
ou

nt
do

w
n

L
E

D
_b

la
st

of
f_

se
q

w
hi

le
(1

)

25
%

 tr
ip

 ti
m

e?

50
%

 tr
ip

 ti
m

e?

75
%

 tr
ip

 ti
m

e?

10
0%

 tr
ip

 ti
m

e?

no no

so
un

d_
al

ar
m

**
*L

O
W

 O
2*

**

R
E

SE
T

 O
2

C
B

fl
as

h_
L

E
D

_p
an

el
ac

tio
ns

_c
om

pl
et

e?
ye

s
re

se
t_

al
ar

m
re

st
or

e_
pa

ne
l

S
Y

S
 A

-O
K

no

**
*L

O
W

 F
U

E
L

**
*

A
S

S
E

R
T

 A
U

X
 F

U
E

L
fl

as
h_

L
E

D
_p

an
el

ac
tio

ns
_c

om
pl

et
e?

ye
s

E
N

G
IN

E
 O

V
E

R
H

E
A

T

P
O

W
E

R
 D

O
W

N
 3

0S
fl

as
h_

L
E

D
_p

an
el

ac
tio

ns
_c

om
pl

et
e?

ye
s

fl
as

h_
L

E
D

_p
an

el
FU

E
L

E
X

PE
N

D
E

D

M
IS

S
IO

N
 A

B
O

R
T

L
E

D
_p

ow
er

_d
ow

n_
se

q

fl
t2

5_
ac

tio
ns

fl
t5

0_
ac

tio
ns

fl
t7

5_
ac

tio
ns

fl
t1

00
_a

ct
io

ns

so
un

d_
al

ar
m

so
un

d_
al

ar
m

so
un

d_
al

ar
m

re
se

t_
al

ar
m

re
st

or
e_

pa
ne

l
S

Y
S

 A
-O

K

re
se

t_
al

ar
m

re
st

or
e_

pa
ne

l
S

Y
S

 A
-O

K

re
ad

_A
D

C

ca
lc

ul
at

e_
tr

ip
_i

nc
 (

25
...

)

no

no

m
ai

n
pw

r

se
t?

S
Y

S
T

E
M

S
 A

-O
K

de
la

y(
3s

)

Figure 9.5: Software flow for the flight simulator panel.

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 351

//ATMEL AVR ATmega328
//Chip Port Function I/O Source/Dest Asserted Notes
//***
//Pin 1: /Reset
//Pin 2: PD0 to DB0 LCD
//Pin 3: PD1 to DB1 LCD
//Pin 4: PD2 to DB2 LCD
//Pin 5: PD3 to DB3 LCD
//Pin 6: PD4 to DB4 LCD
//Pin 7: Vcc
//Pin 8: Gnd
//Pin 9: PB6 to LED6
//Pin 10: PB7 to piezo buzzer
//Pin 11: PD5 to DB6 LCD
//Pin 12: PD6 to DB6 LCD
//Pin 13: PD7 to DB7 LCD
//Pin 14: PB0 to LED0
//Pin 15: PB1 to LED1
//Pin 16: PB2 to LED2
//Pin 17: PB3 to LED3
//Pin 18: PB4 to LED4
//Pin 19: PB5 to LED5
//Pin 20: AVCC to Vcc
//Pin 21: AREF to Vcc
//Pin 22 Gnd
//Pin 23 ADC0 to trip duration potentiometer
//Pin 24 PC1 Engine Power Switch
//Pin 25 PC2 AUX Fuel circuit breaker
//Pin 26 PC3 O2 circuit breaker
//Pin 27 PC4 to LCD Enable (E)
//Pin 28 PC5 to LCD RS
//

//include files**

//ATMEL register definitions for ATmega8
#include<iom328v.h>

352 9. EXTENDED EXAMPLES

//function prototypes**
void delay(unsigned int number_of_65_5ms_interrupts);
void init_timer0_ovf_interrupt(void);
void InitADC(void); //initialize ADC
void initialize_ports(void); //initializes ports
void power_on_reset(void);

//returns system to startup state
unsigned int ReadADC(unsigned char chan);//read value from ADC results
void clear_LCD(void); //clears LCD display
void LCD_Init(void); //initialize AND671GST LCD
void putchar(unsigned char c); //send character to LCD
void putcommand(unsigned char c); //send command to LCD
unsigned int ReadADC(unsigned char chan);//read value from ADC results
void timer0_interrupt_isr(void);
void flt25_actions(void);
void flt50_actions(void);
void flt75_actions(void);
void flt100_actions(void);
void sound_alarm(void);
void turn_off_LEDs(void);
void reset_alarm(void);
void restore_panel(void);
void LED_blastoff_sequence(void);
void LED_power_down_sequence(void);
void monitor_main_power_CB(void);
void monitor_O2_CB_reset(void);
void monitor_aux_fuel_CB(void);
void perform_countdown(void);
void print_LOWO2(void);
void print_LOW_FUEL(void);
void print_fuel_expended(void);
void print_OVERHEAT(void);
void print_trip_dur(void);
void flash_LED_panel(void);
void clear_LCD(void);
void calculate_trip_int(void);
void systems_A_OK(void);

//program constants

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 353

#define TRUE 1
#define FALSE 0
#define OPEN 1
#define CLOSE 0
#define YES 1
#define NO 0
#define SAFE 1
#define UNSAFE 0
#define ON 1
#define OFF 0

//interrupt handler definition
#pragma interrupt_handler timer0_interrupt_isr:17

//main program***

//global variables
unsigned int flt_25, flt_50, flt_75, flt_100;
unsigned int action25_done=NO, action50_done=NO;
unsigned int action75_done=NO, action100_done=NO;
unsigned int achieved25=NO, achieved50=NO;
unsigned int achieved75=NO, achieved100=NO;
unsigned int flt_timer=0;
unsigned int trip_duration_volt;
unsigned char PORTC_pullup_mask = 0x0e;
unsigned int flash_timer;
unsigned int PORTB_LEDs;
unsigned int flash_panel=NO;
unsigned int delay_timer;
unsigned int troubleshooting = 1;
void convert_display_voltage_LCD(int trip_duration_volt);
void convert_int_to_string_display_LCD(unsigned int total_integer_value);

void main(void)
{
init_timer0_ovf_interrupt();
//initialize Timer0 to serve as elapsed
initialize_ports(); //initialize ports
InitADC(); //initialize ADC

354 9. EXTENDED EXAMPLES

LCD_Init(); //initialize LCD
print_trip_dur();
//prompt user to enter trip duration
monitor_main_power_CB();
clear_LCD();

trip_duration_volt = ReadADC(0x00); //Read trip duration ADC0
if(troubleshooting)
{ //display voltage LCD
convert_display_voltage_LCD(trip_duration_volt);
delay(46);
}

calculate_trip_int();
if(troubleshooting)
{
convert_int_to_string_display_LCD(flt_25);
delay(46);
}

perform_countdown();
LED_blastoff_sequence();
sound_alarm();
delay(46);
reset_alarm();
systems_A_OK();

while(1)
{
if(flt_timer > flt_25) achieved25 = YES;
if(flt_timer > flt_50) achieved50 = YES;
if(flt_timer > flt_75) achieved75 = YES;
if(flt_timer > flt_100) achieved100 = YES;

if((achieved25==YES)&&(action25_done==NO))
//25% flight complete

{
flt25_actions();
action25_done=YES;

systems_A_OK();
}

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 355

if((achieved50==YES)&&(action50_done==NO))
//50% flight complete

{
flt50_actions();
action50_done=YES;

systems_A_OK();
}

if((achieved75==YES)&&(action75_done==NO))
//75% flight complete

{
flt75_actions();
action75_done=YES;

systems_A_OK();
}

if((achieved100==YES)&&(action100_done==NO))
//100% flight complete
{
flt100_actions();
action100_done=YES;
}

}//end while
}//end main

//function definitions***

//***
//initialize_ports: provides initial configuration for I/O ports
//
//Note: when the RSTDISBL fuse is unprogrammed, the RESET circuitry is
// connected to the pin, and the pin can not be used as an I/O pin.
//***

void initialize_ports(void)
{
DDRB = 0xff; //PORTB[7:0] as output
PORTB= 0x00; //initialize low

356 9. EXTENDED EXAMPLES

DDRC = 0xb0; //set PORTC as output OROO_IIII 1011_0000
PORTC= PORTC_pullup_mask; //initialize pullups PORTC[3:1]
DDRD = 0xff; //set PORTD as output
PORTD =0x00; //initialize low
}

//***
//delay(unsigned int num_of_65_5ms_interrupts): this generic delay function
//provides the specified delay as the number of 65.5 ms "clock ticks"
//from the Timer0 interrupt.
//Note: this function is only valid when using a 1 MHz crystal or ceramic
// resonator
//***

void delay(unsigned int number_of_65_5ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
delay_timer = 0;
while(delay_timer <= number_of_65_5ms_interrupts)
{
;
}

}

//***
//InitADC: initialize ADC converter
//***

void InitADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st dummy conversion

//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
}

//***

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 357

//ReadADC: read analog voltage from ADC-the desired channel for conversion
//is passed in as an unsigned character variable. The result is returned
//as a left justified, 10 bit binary result.
//The ADC prescalar must be set to 8 to slow down the ADC clock at higher
//external clock frequencies (10 MHz) to obtain accurate results.
//***

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;

//weighted binary voltage
unsigned int binary_weighted_voltage_high;

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set the bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits first (important)

//Read 2 high bits, multiply by 256
binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage=binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//***
//int_timer0_ovf_interrupt(): The Timer0 overflow interrupt is being
//employed as a time base for a master timer for this project.
//The internal time base is set to operate at 1 MHz and then
//is divided by 256. The 8-bit Timer0 register (TCNT0) overflows
//every 256 counts or every 65.5 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0 = 0x04; //divide timer0 timebase by 256, overfl. occurs every 65.5ms
TIMSK = 0x01; //enable timer0 overflow interrupt

358 9. EXTENDED EXAMPLES

asm("SEI"); //enable global interrupt
}

//***
//LCD_Init: initialization for an LCD connected in the following manner:
//LCD: AND671GST 1x16 character display
//LCD configured as two 8 character lines in a 1x16 array
//LCD data bus (pin 14-pin7) ATMEL 8: PORTD
//LCD RS (pin 28) ATMEL 8: PORTC[5]
//LCD E (pin 27) ATMEL 8: PORTC[4]
//***

void LCD_Init(void)
{
delay(1);
delay(1);
delay(1);

// output command string to initialize LCD
putcommand(0x38); //function set 8-bit
delay(1);
putcommand(0x38); //function set 8-bit
putcommand(0x38); //function set 8-bit
putcommand(0x38); //one line, 5x7 char
putcommand(0x0C); //display on
putcommand(0x01); //display clear-1.64 ms
putcommand(0x06); //entry mode set
putcommand(0x00); //clear display, cursor at home
putcommand(0x00); //clear display, cursor at home
}

//***
//putchar:prints specified ASCII character to LCD
//***

void putchar(unsigned char c)
{
DDRD = 0xff; //set PORTD as output
DDRC = DDRC|0x30; //make PORTC[5:4] output
PORTD = c;

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 359

PORTC = (PORTC|0x20)|PORTC_pullup_mask; //RS=1
PORTC = (PORTC|0x10)|PORTC_pullup_mask;; //E=1
PORTC = (PORTC&0xef)|PORTC_pullup_mask;; //E=0
delay(1);
}

//***
//putcommand: performs specified LCD related command
//***

void putcommand(unsigned char d)
{
DDRD = 0xff; //set PORTD as output
DDRC = DDRC|0xC0; //make PORTA[5:4] output
PORTC = (PORTC&0xdf)|PORTC_pullup_mask; //RS=0
PORTD = d;
PORTC = (PORTC|0x10)|PORTC_pullup_mask; //E=1
PORTC = (PORTC&0xef)|PORTC_pullup_mask; //E=0
delay(1);
}

//***
//clear_LCD: clears LCD
//***

void clear_LCD(void)
{
putcommand(0x01);
}

//***
//*void calculate_trip_int(void)
//***

void calculate_trip_int(void)
{
unsigned int trip_duration_sec;
unsigned int trip_duration_int;

360 9. EXTENDED EXAMPLES

trip_duration_sec=(unsigned int)(((double)(trip_duration_volt)/1024.0)*
60.0*60.0);

trip_duration_int = (unsigned int)((double)(trip_duration_sec)/0.0655);
flt_25 = (unsigned int)((double)(trip_duration_int) * 0.25);
flt_50 = (unsigned int)((double)(trip_duration_int) * 0.50);
flt_75 = (unsigned int)((double)(trip_duration_int) * 0.75);
flt_100 = trip_duration_int;
}

//***
//void timer0_interrupt_isr(void)
//***

void timer0_interrupt_isr(void)
{
delay_timer++;
flt_timer++; //increment flight timer

if(flash_panel==YES)
{
if(flash_timer <= 8)
{
flash_timer++;

}
else
{

flash_timer = 0;
if(PORTB_LEDs == OFF)
{
PORTB = 0xff;
PORTB_LEDs = ON;
}

else
{
PORTB = 0x00;
PORTB_LEDs = OFF;
}
}
}

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 361

else
{
flash_timer = 0;
}

}

//***
//void flt25_actions(void)
//***

void flt25_actions(void)
{
sound_alarm();
flash_LED_panel();
print_LOWO2();
monitor_O2_CB_reset();
reset_alarm();
restore_panel();
action25_done = YES;
}

//***
//void flt50_actions(void)
//***

void flt50_actions(void)
{
sound_alarm();
flash_LED_panel();
print_LOW_FUEL();
monitor_aux_fuel_CB();
reset_alarm();
restore_panel();
action50_done = YES;
}

//***
//void flt75_actions(void)
//***

362 9. EXTENDED EXAMPLES

void flt75_actions(void)
{
sound_alarm();
flash_LED_panel();
print_OVERHEAT();
delay(458); //delay 30s
monitor_main_power_CB();
reset_alarm();
restore_panel();
action75_done = YES;
}

//***
//void flt100_actions(void)
//***

void flt100_actions(void)
{
sound_alarm();
flash_LED_panel();
print_fuel_expended();
turn_off_LEDs();
action100_done = YES;
}

//***
//void sound_alarm(void)
//***

void sound_alarm(void)
{
PORTB = PORTB | 0x80;
}

//***
//void turn_off_LEDs(void)
//***

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 363

void turn_off_LEDs(void)
{
PORTB = PORTB & 0x80;
}

//***
//void reset_alarm(void)
//***

void reset_alarm(void)
{
PORTB = PORTB & 0x7F;
}

//***
//void restore_panel(void)
//***

void restore_panel(void)
{
flash_panel = NO;
PORTB = PORTB | 0x7F;
}

//***
//void LED_blastoff_sequence(void)
//***

void LED_blastoff_sequence(void)
{
PORTB = 0x00; //0000_0000
delay(15); //delay 1s
PORTB = 0x01; //0000_0001
delay(15); //delay 1s
PORTB = 0x03; //0000_0011
delay(15); //delay 1s
PORTB = 0x07; //0000_0111

364 9. EXTENDED EXAMPLES

delay(15); //delay 1s
PORTB = 0x1F; //0001_1111
delay(15); //delay 1s
PORTB = 0x7F; //0111_1111
delay(15); //delay 1s
}

//***
//void LED_power_down_sequence(void)
//***

void LED_power_down_sequence(void)
{
PORTB = 0x7F; //0111_1111
delay(15); //delay 1s
PORTB = 0x1F; //0001_1111
delay(15); //delay 1s
PORTB = 0x07; //0000_0111
delay(15); //delay 1s
PORTB = 0x03; //0000_0011
delay(15); //delay 1s
PORTB = 0x01; //0000_0001
delay(15); //delay 1s
PORTB = 0x00; //0000_0000
delay(15); //delay 1s
}

//***
//void monitor_main_power_CB(void)
//***

void monitor_main_power_CB(void)
{
while((PINC & 0x02) == 0x02)
{
; //wait for PC1 to be exerted low
}

}

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 365

//***
//void monitor_O2_CB_reset(void)
//***

void monitor_O2_CB_reset(void)
{
while((PINC & 0x08) == 0x08)
{
; //wait for PC3 to be exerted low
}

}

//***
//void monitor_aux_fuel_CB(void)
//***

void monitor_aux_fuel_CB(void)
{
while((PINC & 0x04) == 0x04)
{
; //wait for PC2 to be exerted low
}

}

//***
//void perform_countdown(void)
//***

void perform_countdown(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’1’); putchar (’0’); //print 10
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’9’); //print 9

366 9. EXTENDED EXAMPLES

delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’8’); //print 8
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’7’); //print 7
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’6’); //print 6
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’5’); //print 5
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’4’); //print 4
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’3’); //print 3
delay(15); //delay 1s

putcommand(0x01); //cursor home

putcommand(0x80); //DD RAM location 1 - line 1
putchar(’2’); //print 2
delay(15); //delay 1s

putcommand(0x01); //cursor home

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 367

putcommand(0x80); //DD RAM location 1 - line 1
putchar(’1’); //print 1
delay(15); //delay 1s

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’0’); //print 0
delay(15); //delay 1s

//BLASTOFF!
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’B’); putchar(’L’); putchar(’A’); putchar(’S’); putchar(’T’);
putchar(’O’); putchar(’F’); putchar(’F’); putchar(’!’);

}

//***
//void print_LOWO2(void)
//***

void print_LOWO2(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’L’); putchar(’O’); putchar(’W’); putchar(’ ’); putchar(’O’);
putchar(’2’);

putcommand(0xC0);//DD RAM location 1 - line 2
putchar(’R’); putchar(’E’); putchar(’S’); putchar(’E’); putchar(’T’);
putchar(’ ’); putchar(’O’); putchar(’2’); putchar(’ ’); putchar(’C’);
putchar(’B’);
}

//***
//void print_LOW_FUEL(void)
//***

368 9. EXTENDED EXAMPLES

void print_LOW_FUEL(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’L’); putchar(’O’); putchar(’W’); putchar(’ ’); putchar(’F’);
putchar(’U’); putchar(’E’); putchar(’L’);

putcommand(0xC0);//DD RAM location 1 - line 2
putchar(’A’); putchar(’S’); putchar(’S’); putchar(’E’); putchar(’R’);
putchar(’T’); putchar(’ ’); putchar(’A’); putchar(’U’); putchar(’X’);
putchar(’F’); putchar(’U’); putchar(’E’); putchar(’L’); putchar(’C’);
putchar(’B’);
}

//***
//void print_fuel_expended(void)
//***

void print_fuel_expended(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’F’); putchar(’U’); putchar(’E’); putchar(’L’); putchar(’ ’);
putchar(’E’); putchar(’X’); putchar(’P’); putchar(’E’); putchar(’N’);
putchar(’D’); putchar(’E’); putchar(’D’);

putcommand(0xC0);//DD RAM location 1 - line 2
putchar(’S’); putchar(’H’); putchar(’U’); putchar(’T’); putchar(’T’);
putchar(’I’); putchar(’N’); putchar(’G’); putchar(’ ’); putchar(’D’);
putchar(’O’); putchar(’W’); putchar(’N’); putchar(’.’); putchar(’.’);
putchar(’.’);
}

//***
//void print_trip_dur(void);
//***

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 369

void print_trip_dur(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’T’); putchar(’R’); putchar(’I’); putchar(’P’);
putchar(’T’); putchar(’I’); putchar(’M’); putchar(’E’); putchar(’:’);
putchar(’0’); putchar(’-’); putchar(’6’); putchar(’0’);

putcommand(0xC0);//DD RAM location 1 - line 2
putchar(’S’); putchar(’E’); putchar(’T’); putchar(’ ’); putchar(’M’);
putchar(’A’); putchar(’I’); putchar(’N’); putchar(’ ’); putchar(’P’);
putchar(’W’); putchar(’R’); putchar(’ ’); putchar(’C’); putchar(’B’);
}

//***
//void print_OVERHEAT(void)
//***

void print_OVERHEAT(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’E’); putchar(’N’); putchar(’G’); putchar(’I’); putchar(’N’);
putchar(’E’); putchar(’ ’); putchar(’O’); putchar(’V’); putchar(’E’);
putchar(’R’); putchar(’H’); putchar(’E’); putchar(’A’); putchar(’T’);

putcommand(0xC0);//DD RAM location 1 - line 2
putchar(’R’); putchar(’E’); putchar(’S’); putchar(’E’); putchar(’T’);
putchar(’ ’); putchar(’E’); putchar(’N’); putchar(’G’); putchar(’ ’);
putchar(’C’); putchar(’B’); putchar(’ ’); putchar(’3’); putchar(’0’);
putchar(’S’);
}

//***
//void systems_A_OK(void)

370 9. EXTENDED EXAMPLES

//***

void systems_A_OK(void)
{
clear_LCD();
putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1 - line 1
putchar(’S’); putchar(’Y’); putchar(’S’); putchar(’T’); putchar(’E’);
putchar(’M’); putchar(’S’); putchar(’ ’); putchar(’A’); putchar(’-’);
putchar(’O’); putchar(’K’); putchar(’!’); putchar(’!’); putchar(’!’);
}

//***
//void flash_LED_panel(void)
//***

void flash_LED_panel(void)
{
flash_panel = YES;
flash_timer = 0;
PORTB = 0x00;
PORTB_LEDs = OFF;
}

//***
//convert_display_voltage_LCD: converts binary weighted voltage to ASCII
//representation and prints result to LCD screen
//***

void convert_display_voltage_LCD(int binary_voltage)
{
float actual_voltage; //voltage between 0 and 5 volts
int all_integer_voltage;
//integer representation of voltage

//int representation of voltage
int hundreths_place, tens_place, ones_place;

//char representation of voltage
char hundreths_place_char, tens_place_char, ones_place_char;

9.4. EXTENDED EXAMPLE 3: FLIGHT SIMULATOR PANEL 371

// display analog voltage on LCD
putcommand(0xC0); //LCD cursor to line 2

//scale float voltage 0..5V
actual_voltage = ((float)(binary_voltage)/(float)(0x3FF))*5.0;

//voltage represented 0 to 500
all_integer_voltage=actual_voltage * 100;//represent as all integer
hundreths_place = all_integer_voltage/100;//isolate first digit
hundreths_place_char = (char)(hundreths_place + 48); //convert to ascii
putchar(hundreths_place_char); //display first digit
putchar(’.’); //print decimal point to LCD

//isolate tens place
tens_place = (int)((all_integer_voltage - (hundreths_place*100))/10);
tens_place_char=(char)(tens_place+48); //convert to ASCII
putchar(tens_place_char); //print to LCD

//isolate ones place
ones_place = (int)((all_integer_voltage - (hundreths_place*100))%10);
ones_place_char=(char)(ones_place+48); //convert to ASCII
putchar(ones_place_char); //print to LCD
putchar(’V’); //print unit V
}

//***
//convert_int_to_string_display_LCD: converts 16 bit to unsigned integer
//values range from 0 to 65,535
//prints result to LCD screen
//***

void convert_int_to_string_display_LCD(unsigned int total_integer_value)
{
int ten_thousandths_place, thousandths_place;
int hundreths_place, tens_place, ones_place;
char ten_thousandths_place_char, thousandths_place_char;
char hundreths_place_char, tens_place_char, ones_place_char;

putcommand(0xC0); //LCD cursor to line 2
//10,000th place

ten_thousandths_place = total_integer_value/10000;
ten_thousandths_place_char = (char)(ten_thousandths_place+48);
putchar(ten_thousandths_place_char);

372 9. EXTENDED EXAMPLES

//1,000th place
thousandths_place = (int)((total_integer_value -

(ten_thousandths_place*10000))/1000);
thousandths_place_char = (char)(thousandths_place+48);
putchar(thousandths_place_char);

//100th place
hundreths_place = (int)((total_integer_value -

(ten_thousandths_place*10000)-
(thousandths_place*1000))/100);
hundreths_place_char = (char)(hundreths_place + 48);
putchar(hundreths_place_char);

//10th place
tens_place = (int)((total_integer_value -(ten_thousandths_place*10000)-

(thousandths_place*1000)-(hundreths_place*100))/10);
tens_place_char=(char)(tens_place+48); //convert to ASCII
putchar(tens_place_char); //print to LCD

//isolate ones place
ones_place = (int)((total_integer_value -(ten_thousandths_place*10000)-

(thousandths_place*1000)-(hundreths_place*100))%10);
ones_place_char=(char)(ones_place+48); //convert to ASCII
putchar(ones_place_char); //print to LCD
}

//***
//end of file: flight_sim.c
//***

9.5 EXTENDED EXAMPLE 4: SUBMERSIBLE ROBOT
The area of submersible robots is fascinating and challenging. To design a robot is quite complex.
To add the additional requirement of waterproofing key components adds an additional level of
challenge. (Water and electricity do not mix!) In this section we develop a control system for a
remotely operated vehicle, an ROV. By definition an ROV is equipped with a tether umbilical
cable that provides power and control signals from a surface support platform. An Autonomous
Underwater Vehicle (AUV) carries its own power and control equipment and does not require
surface support.

We limit our discussion to the development of an Arduino based control system. Details on
the construction and waterproofing of an ROV are provided in the excellent and fascinating “Build
Your Own Underwater Robot and Other Wet Projects” by Harry Bohm and Vickie Jensen. We

9.5. EXTENDED EXAMPLE 4: SUBMERSIBLE ROBOT 373

����
����	���

�
���
����	���

����

��
����	���

����������
������
���
�

��

����
�����

�
���
�����

Figure 9.6: SeaPerch ROV. (Adapted and used with permission of Bohm and Jensen, West Coast Words
Publishing.)

develop a control system for the SeaPerch style of ROV as shown in Figure 9.6. There is a national
competition for students based on the SeaPerch ROV. The goal of the program is to stimulate
interest in the next generation of marine related engineering specialties [seaperch].

9.5.1 REQUIREMENTS
The requirements for this system include:

• Develop a control system to allow a three motor ROV to move forward, left (port) and right
(starboard).

• The ROV will be pushed down to a shallow depth via a vertical thruster and return to surface
based on its own, slightly positive buoyancy.

• ROV movement will be under joystick control.

374 9. EXTENDED EXAMPLES

������
�
����������	���

�
�����	
�
��
���	�

�

�
��
�
��

�����

������

���
�
��
�
��

�����
�		���
��

�����

������
�

����
����	���

����

��
����	���

�
���
����	���

�
������
��
��
�
���	�� !"	#

������
�

 !"
�		���
��

����
 !"

����

��
 !"

�
���
 !"

Figure 9.7: SeaPerch ROV structure chart.

• All power and control circuitry will be maintained in a surface support platform.

9.5.2 STRUCTURE CHART
The Sea Perch structure chart is provided in Figure 9.7. As can be seen in the figure, the SeaPerch
control system will accept input from the five position joystick (left, right, select, up and down). We
will use the joystick shield available from SparkFun Electronics and illustrated in Figure 9.8. The
joystick schematic and connections to the Arduino UNO R3 are provided in Figure 9.9.

In response to user joystick input, the SeaPerch control algorithm will issue a control command
indicating desired ROV direction. In response to this desired direction command, the motor control
algorithm will issue control signals to assert the appropriate motors and LEDs.

9.5.3 CIRCUIT DIAGRAM
The circuit diagram for the SeaPerch control system is provided in Figure 9.9. The Arduino com-
patible joystick shield is used to select desired ROV direction.There are three LED interface circuits

9.5. EXTENDED EXAMPLE 4: SUBMERSIBLE ROBOT 375

connected to digital pins D7, D8 and D9. The prime mover for the ROV will be two waterproofed
motors or two bilge pumps. Details on motor waterproofing may be found in “Build Your Own
Underwater Robot and Other Wet Projects.” The motors are driven by the pulse width modulation
channels (d10 and D11) via power FETs as shown in Figure9.9. Both the LED and the motor
interfaces were discussed earlier in the chapter.

$%

�%

&
'
(
)
*
+

)

(
'
&

,

-

.
�
�
��
�
�/
�

�/0
10"
10"
2)�

2'3'�
��	��

4
5
,-
,,
,&
,'
10"

.��� 6��
7�����
��������.,#

����

��
��������.-#

�8,�"'#

�8&�"(# �8(�")#

�8'�"*#

9��8,�"'#
9��8&�"(#
9��8(�")#

9��8'�"*#

�8)����	��#
����
�
�"&#
���	�#

9�����
���"&#

����

����.-#�9
6��
7�������.,#�9

Figure 9.8: Joystick shield. (Used with permission of SparkFun Electronics.)(CC BY–NC–SA)

9.5.4 UML ACTIVITY DIAGRAM
The SeaPerch control system UML activity diagram is provided in Figure 9.10. After initializing
ports the control algorithm is placed in a continuous loop awaiting user input. In response to user
input, the algorithm determines desired direction of ROV travel and asserts appropriate control
signals for the LED and motors.

9.5.5 MICROCONTROLLER CODE
In this example we use switch 2 (SW2–D4) to control the left thruster (motor or bilge pump) and
switch 4 (SW4-D5) to control the right thruster motor. This is a simple on/off control. That is,
when a specific switch is asserted the motor will be on and the corresponding LED will illuminate.

376 9. EXTENDED EXAMPLES

+

5.0 VDC

+

5.0 VDC

+

5.0 VDC

left vertical right

220Ω 220Ω 220Ω

10ΚΩ 10ΚΩ 10ΚΩ
&0&&&&"+ "4 "5

M

2

9

,-Ω

right
thruster

,'3*��"�
�������

/�)-�:,--
,--�;�).
�
��������
���

/�<'&-)=>?<90"

",-

$%

�%

&
'
(
)
*
+

)

(
'
&

,

-

.
�
�
��
�
�/
�

�/0
10"
10"
2)�

2'3'�
��	��

4
5
,-
,,
,&
,'
10"

.��� 6��
7�����
��������.,#

����

��
��������.-#

�8,�"'#

�8&�"(# �8(�")#

�8'�"*#

9��8,�"'#
9��8&�"(#
9��8(�")#

9��8'�"*#

�8)����	��#
����
�
�"&#
���	�#

9�����
���"&#

����

����.-#�9
6��
7�������.,#�9

�
��������	���

���������	���

����� !"

����

��� !"
�
���� !"

M

2

9

left
thruster

,'3*��"�
�������

,-Ω
/�<'&-)=>?<90"

",,

Figure 9.9: SeaPerch ROV interface control.

//***
//digital input pins

#define left_switch 4 //digital pin left switch
#define right_switch 5 //digital pin right switch

//digital output pins
//LED indicators

#define left_LED 7 //digital pin left LED
#define right_LED 9 //digital pin right LED

//motor outputs
#define left_motor 11 //digital pin left_motor
#define right_motor 10 //digital pin right_motor

int left_sw_value, right_sw_value;

void setup()

9.5. EXTENDED EXAMPLE 4: SUBMERSIBLE ROBOT 377

include files
global variables

function prototypes

initialize ports

while(1)

read joystick position
(bow, stern,

starboard, port, dive)

bow? while bow
asserted?

assert left, right thruster
assert left, right LED

yes

bow

stern

starboard

dive

port

joystick

asserted

no

yes

dive?
while dive
asserted?

assert vertical thruster
assert vertical LED

yes

stern
:

starboard
:

port

no

yes

no

yes

no no

Figure 9.10: SeaPerch ROV UML activity diagram.

378 9. EXTENDED EXAMPLES

{
//switch inputs

pinMode(left_switch, INPUT); //configure pin 4 for digital input
pinMode(right_switch,INPUT); //configure pin 5 for digital input

//LED indicators
pinMode(left_LED, OUTPUT); //configure pin 7 for digital output
pinMode(right_LED, OUTPUT); //configure pin 9 for digital output

//motor outputs PWM
pinMode(left_motor, OUTPUT); //config pin 11 for digital output
pinMode(right_motor, OUTPUT); //config pin 10 for digital output
}

void loop()
{
//read input switches
left_sw_value = digitalRead(left_switch);
right_sw_value = digitalRead(right_switch);

//left switch asserted - turn left by asserting right motor
if((left_sw_value==HIGH)&&(right_sw_value==LOW))

{
digitalWrite(left_LED, LOW); //turn left LED off
digitalWrite(left_motor, LOW); //turn left motor off
digitalWrite(right_LED, HIGH); //turn right LED on
digitalWrite(right_motor, HIGH); //turn right motor on
delay(500); //delay 500 ms
}

//right switch asserted - turn right by asserting left motor
if((left_sw_value==LOW)&&(right_sw_value==HIGH))

{
digitalWrite(left_LED, HIGH); //turn left LED on
digitalWrite(left_motor, HIGH); //turn left motor on
digitalWrite(right_LED, LOW); //turn right LED off
digitalWrite(right_motor, LOW); //turn right motor off
delay(500); //delay 500 ms
}

9.5. EXTENDED EXAMPLE 4: SUBMERSIBLE ROBOT 379

//both switches asserted - move ROV forward
if((left_sw_value==HIGH)&&(right_sw_value==HIGH))

{
digitalWrite(left_LED, HIGH); //turn left LED on
digitalWrite(left_motor, HIGH); //turn left motor on
digitalWrite(right_LED, HIGH); //turn right LED on
digitalWrite(right_motor, HIGH); //turn right motor on
delay(500); //delay 500 ms
}

}
//***

9.5.6 PROJECT EXTENSIONS
The control system provided above has a set of very basic features. Here are some possible extensions
for the system:

• Provide adjustable speed control for each motor. This advanced feature requires several mod-
ifications including a proportional joystick and pulse width modulation signals to the motor.
The joystick features currently in use provides a simple on and off signal. A proportional joy-
stick provides an X (horizontal) and Y (vertical) output DC signal proportional to the joystick
deflection on each axis.These signals may be fed to the analog–to–digital converter aboard the
Arduino UNO R3. The X and Y signals captured from the joystick may be used to provide a
pulse width modulated signal with a duty cycle proportional to deflection.The Arduino shield
joystick illustrated in 9.8 is equipped with an analog joystick. The X and Y channel of the
joystick is also already connected to the Arduino Analog In channels A0 (vertical) and A1
(horizontal) through the shield printed circuit board connections. Equipping the ROV with
this modification is given as an assignment at the end of the chapter.

• Provide a powered dive and surface thruster. To provide for a powered dive and surface capa-
bility, the ROV must be equipped with a vertical thruster equipped with an H–bridge to allow
for motor forward and reversal. This modification is given as an assignment at the end of the
chapter.

• Left and right thruster reverse. Currently the left and right thrusters may only be powered
in one direction. To provide additional maneuverability, the left and right thrusters could be
equipped with an H–bridge to allow bi–directional motor control. This modification is given
as an assignment at the end of the chapter.

• Proportional speed control with bi–directional motor control. Both of these advanced features
may be provided by driving the H–bridge circuit with PWM signals. This modification is
given as an assignment at the end of the chapter.

380 9. EXTENDED EXAMPLES

9.6 EXTENDED EXAMPLE 5: WEATHER STATION
In this project we design a weather station to sense wind direction and ambient temperature. The
sensed values will be displayed on an LCD Fahrenheit. The wind direction will also be displayed on
LEDs arranged in a circular pattern.

9.6.1 REQUIREMENTS
The requirements for this system include:

• Design a weather station to sense wind direction and ambient temperature.

• Sensed wind direction and temperature will be displayed on an LCD.

• Sensed temperature will be displayed in the Fahrenheit temperature scale.

• Wind direction will be displayed on LEDs arranged in a circular pattern.

9.6.2 STRUCTURE CHART
To begin the design process a structure chart is used to partition the system into definable pieces.
We employ a top–down design/bottom–up implementation approach. The structure chart for the
weather station is provided in Figure 9.11. The main microcontroller subsystem needed for this
project is the ADC system to convert the analog voltage from the LM34 temperature sensor and
weather vane into digital signals, and the wind direction display. This display consists of a 74154,
4–to–16 decoder and 16 individual LEDs to display wind direction. The system is partitioned until
the lowest level of the structure chart contains “doable” pieces of hardware components or software
functions. Data flown is shown on the structure chart as directed arrows.

Weather Station

ADC

ADC
Initialize ReadADC weather

vane
LM34

temp sensor
74154

4:16 decoder
LED

interface

Wind Direction
Display

ch for
conv

conv
data

temp
data

wind
direction

wind
direction

Figure 9.11: Weather station structure chart.

9.6. EXTENDED EXAMPLE 5: WEATHER STATION 381

9.6.3 CIRCUIT DIAGRAM
The circuit diagram for the weather station is provided in Figure 9.12.The weather station is equipped
with two input sensors: the LM34 to measure temperature and the weather vane to measure wind
direction. Both of the sensors provide an analog output that is fed to Analog Input 0 (LM34) and
Analog Input 1 (weather vane) of the Arduino UNO R3. The LM34 provides 10 mV output per
degree Fahrenheit. The weather vane provides 0 to 5 VDC for 360 degrees of vane rotation. The
weather vane must be oriented to a known direction with the output voltage at this direction noted.
We assume that 0 VDC corresponds to North and the voltage increases as the vane rotates clockwise
to the East. The vane output voltage continues to increase until North is again reached at 5 VDC
and then rolls over back to - volts. All other directions are derived from this reference point.

An LCD is connected to digital pins [7:0] (PORTD [7:0] of the ATmega328) for data and
digital pins 8 and 9 for the enable and command/data control lines (PORTB[1:0] of the ATmega328).
There are 16 different LEDs to drive for the wind speed indicator.Rather than use 16 microcontroller
pins, the binary value of the LED for illumination is provided to the 74154 4–to–16 decoder. The
decoder provides a “one cold” output as determined by the binary code provided by PORTC[5:2]
of the ATmega328 (Analog In [5:2] on the Arduino UNO R3). For example, when A16 is provided
to the 74154 input, output /Y10 is asserted low, while all other outputs remain at logic high. The
74154 is from the standard TTL family. It has sufficient current sink capability (IOL = 16 mA) to
meet the current requirements of an LED (Vf = 1.5 V DC, If = 15 mA).

9.6.4 UML ACTIVITY DIAGRAMS
The UML activity diagram for the main program is provided in Figure 9.13. After initializing the
subsystems, the program enters a continuous loop where temperature and wind direction is sensed
and displayed on the LCD and the LED display. The system then enters a delay to set how often
the temperature and wind direction parameters are updated. We have you construct the individual
UML activity diagrams for each function as an end of chapter exercise.

9.6.5 MICROCONTROLLER CODE
//include file***
#include <iom328pv.h>

//function prototypes**
void initialize_ports(void);
void initialize_ADC(void);
void temperature_to_LCD(unsigned int ADCValue);
unsigned int readADC(unsigned char);
void LCD_init(void);
void putChar(unsigned char);
void putcommand(unsigned char);

382 9. EXTENDED EXAMPLES

weather vane

Vcc = 5 V

G
N

D
-1

V
D

D
-2

V
o-

3
R

S
-4

R
/W

-5
E

-6
D

B
0-

7
D

B
1-

8
D

B
2-

9
D

B
3-

10
D

B
4-

11
D

B
5-

12
D

B
6-

13
D

B
7-

14

Vcc
10K

AND671GST

data

enable
RS:command/data

8
data

LM34

Vcc = 5 V

75
1uF

temperature sensor

�

!8

 !"-

 !"(

 !"4

 !",&

0

+(,)(
(@,*

��
����

1,

1&

�,#A-
�&#A,
�'#A&

�,+#A,)

 !"-

Vcc = 5 VDC

+

 !",)

 !"-
 !",
 !"&

Vcc = 5 VDC

+
 !",)

A(23)
B(22)
C(21)
D(20)

Vcc = 5 VDC
(24)

(12)

220

220

Figure 9.12: Circuit diagram for weather station. (UNO R3 illustration used with permission of the
Arduino Team (CC BY–NC–SA) www.arduino.cc).

www.arduino.cc

9.6. EXTENDED EXAMPLE 5: WEATHER STATION 383

include files

global variables

function prototypes

initialize ADC

initialize LCD

while(1)

convert temp

convert wind direction

display temp &

wind direction on LCD

display wind direction

on LED

delay(desired_update_time)

Figure 9.13: Weather station UML activity diagram.

384 9. EXTENDED EXAMPLES

void display_data(void);
void convert_wind_direction(unsigned int);
void delay(unsigned int number_of_6_55ms_interrupts);
void init_timer0_ovf_interrupt(void);
void timer0_interrupt_isr(void);

//interrupt handler definition
#pragma interrupt_handler timer0_interrupt_isr:17

//door profile data

//Global variables**
unsigned int temperature, wind_direction;
unsigned int binary_weighted_voltage_low, binary_weighted_voltage_high;
unsigned char dir_tx_data;

void main(void)
{
initialize_ports();
initialize_ADC();
LCD_init();
init_timer0_ovf_interrupt();

while(1)
{
//temperature data: read \---> display \---> transmit
temperature = readADC(0x00); //Read Temp - LM34
temperature_to_LCD (temperature); //Convert and display temp on LCD

//wind direction data: read \---> display \---> transmit
wind_direction = readADC(0x01); //Read wind direction
convert_wind_direction(wind_direction); //Convert wind direction

//delay 15 minutes
delay(13740):
}

}

//***

9.6. EXTENDED EXAMPLE 5: WEATHER STATION 385

void initialize_ports()
{
DDRB = 0x03; //PORTB[1:0] as outputs
DDRC = 0x3c; //PORTC[5:2] as outputs
DDRD = 0xFF; //PORTD[7:0] as outputs
}

//***

void initialize_ADC()
{
ADMUX = 0; //select channel 0

//enable ADC and set module enable ADC
ADCSRA = 0xC3; //set module prescalar to 8
while(!(ADCSRA & 0x10)); //Wait until conversion is ready
ADCSRA |= 0x10; //Clear conversion ready flag
}

//***

unsigned int readADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
unsigned int binary_weighted_voltage_high;//weighted binary voltage

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear conv rdy flag set the bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits first (important)

//Read 2 high bits, multiply by 256
binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage=binary_weighted_voltage_low+binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

386 9. EXTENDED EXAMPLES

//***
//LCD_Init: initialization for an LCD connected in the following manner:
//LCD: AND671GST 1x16 character display
//LCD configured as two 8 character lines in a 1x16 array
//LCD data: bus PORTD[7:0]
//LCD RS: PORTB[1]
//LCD E: PORTB[0]
//***

void LCD_init(void)
{
delay(1);
delay(1);
delay(1);

//output command string to
//initialize LCD

putcommand(0x38); //function set 8-bit
delay(1);
putcommand(0x38); //function set 8-bit
delay(1);
putcommand(0x38); //function set 8-bit
putcommand(0x38); //one line, 5x7 char
putcommand(0x0E); //display on
putcommand(0x01); //display clear-1.64 ms
putcommand(0x06); //entry mode set
putcommand(0x00); //clear display, cursor at home
putcommand(0x00); //clear display, cursor at home
}

//***

void putChar(unsigned char c)
{
DDRD = 0xff; //set PORTD as output
DDRB = DDRB|0x03; //make PORTB[1:0] output
PORTD = c;
PORTB = PORTB|0x02; //RS=1
PORTB = PORTB|0x01; //E=1

9.6. EXTENDED EXAMPLE 5: WEATHER STATION 387

PORTB = PORTB&0xfe; //E=0
delay(1);
}

//***

void putcommand(unsigned char d)
{
DDRD = 0xff; //set PORTD as output
DDRB = DDRB|0x03; //make PORTB[1:0] output
PORTB = PORTB & 0xfd; //RS=0
PORTD = d;
PORTB = PORTB|0x01; //E=1
PORTB = PORTB&0xfe; //E=0
delay(1);
}

//***

void temperature_to_LCD(unsigned int ADCValue)
{
float voltage,temperature;
unsigned int tens, ones, tenths;

voltage = (float)ADCValue*5.0/1024.0;

temperature = voltage*100;

tens = (unsigned int)(temperature/10);
ones = (unsigned int)(temperature-(float)tens*10);
tenths = (unsigned int)(((temperature-(float)tens*10)-(float)ones)*10);

putcommand(0x01); //cursor home
putcommand(0x80); //DD RAM location 1-line 1
putChar((unsigned char)(tens)+48);
putChar((unsigned char)(ones)+48);
putChar(’.’);
putChar((unsigned char)(tenths)+48);

388 9. EXTENDED EXAMPLES

putChar(’F’);
}

//***

void convert_wind_direction(unsigned int wind_dir_int)
{
float wind_dir_float;

//convert wind direction to float
wind_dir_float = ((float)wind_dir_int)/1024.0) * 5;

//N: LED0
if((wind_dir_float <= 0.15625)||(wind_dir_float > 4.84375))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’N’); //LCD displays: N
PORTC = 0x00; //illuminate LED 0

}

//NNE: LED1
if((wind_dir_float > 0.15625)||(wind_dir_float <= 0.46875))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’N’); //LCD displays: NNE
putchar(’N’);
putchar(’E’);
PORTC = 0x04; //illuminate LED 1
}

//NE: LED2
if((wind_dir_float > 0.46875)||(wind_dir_float <= 0.78125))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’N’); //LCD displays: NE
putchar(’E’);

9.6. EXTENDED EXAMPLE 5: WEATHER STATION 389

PORTC = 0x08; //illuminate LED 2
}

//ENE: LED3
if((wind_dir_float > 0.78125)||(wind_dir_float <= 1.09375))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’E’); //LCD displays: NNE
putchar(’N’);
putchar(’E’);
PORTC = 0x0c; //illuminate LED 3

}

//E: LED4
if((wind_dir_float > 1.09375)||(wind_dir_float <= 1.40625))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’E’); //LCD displays: E
PORTC = 0x10; //illuminate LED 4
}

//ESE: LED5
if((wind_dir_float > 1.40625)||(wind_dir_float <= 1.71875))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’E’); //LCD displays: ESE
putchar(’S’);
putchar(’E’);
PORTC = 0x14; //illuminate LED 5

}

//SE: LED6
if((wind_dir_float > 1.71875)||(wind_dir_float <= 2.03125))

{

390 9. EXTENDED EXAMPLES

putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’S’); //LCD displays: SE
putchar(’E’);
PORTC = 0x10; //illuminate LED 6
}

//SSE: LED7
if((wind_dir_float > 2.03125)||(wind_dir_float <= 2.34875))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’S’); //LCD displays: SSE
putchar(’S’);
putchar(’E’);
PORTC = 0x1c; //illuminate LED 7
}

//S: LED8
if((wind_dir_float > 2.34875)||(wind_dir_float <= 2.65625))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’S’); //LCD displays: S

PORTC = 0x20; //illuminate LED 8

}

//SSW: LED9
if((wind_dir_float > 2.65625)||(wind_dir_float <= 2.96875))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’S’); //LCD displays: SSW
putchar(’S’);
putchar(’W’);
PORTC = 0x24; //illuminate LED 9
}

9.6. EXTENDED EXAMPLE 5: WEATHER STATION 391

//SW: LED10 (A)
if((wind_dir_float > 2.96875)||(wind_dir_float <= 3.28125))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’S’); //LCD displays: SW
putchar(’W’);
PORTC = 0x28; //illuminate LED 10 (A)
}

//WSW: LED11 (B)
if((wind_dir_float > 3.28125)||(wind_dir_float <= 3.59375))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’W’); //LCD displays: WSW
putchar(’S’);
putchar(’W’);
PORTC = 0x2c; //illuminate LED 11 (B)
}

//W: LED12 (C)
if((wind_dir_float > 3.59375)||(wind_dir_float <= 3.90625))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’W’); //LCD displays: W
PORTC = 0x30; //illuminate LED 12 (C)
}

//WNW: LED13 (D)
if((wind_dir_float > 3.90625)||(wind_dir_float <= 4.21875))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’W’); //LCD displays: WNW
putchar(’N’);

392 9. EXTENDED EXAMPLES

putchar(’W’);
PORTC = 0x34; //illuminate LED 13 (D)
}

//NW: LED14 (E)
if((wind_dir_float > 4.21875)||(wind_dir_float <= 4.53125))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’N’); //LCD displays: NW
putchar(’W’);
PORTC = 0x38; //illuminate LED 14 (E)
}

//NNW: LED15(F)
if((wind_dir_float > 4.53125)||(wind_dir_float < 4.84375))

{
putcommand(0x01); //cursor to home
putcommand(0xc0); //DD RAM location 1-line 2
putchar(’N’); //LCD displays: NNW
putchar(’N’);
putchar(’W’);
PORTC = 0x3c; //illuminate LED 15 (F)

}
}

//***
//delay(unsigned int num_of_65_5ms_interrupts): this generic delay
//function provides the specified delay as the number of 65.5 ms clock
//ticks from the Timer0 interrupt.
//Note: this function is only valid when using a 1 MHz crystal or ceramic
// resonator. Function time constants need to be adjusted for other
// values of the timebase.
//***

void delay(unsigned int number_of_65_5ms_interrupts)
{
TCNT0 = 0x00; //reset timer0

9.7. AUTONOMOUS MAZE NAVIGATING ROBOTS 393

delay_timer = 0;
while(delay_timer <= number_of_65_5ms_interrupts)
{
;
}

}

//***
//int_timer0_ovf_interrupt(): The Timer0 overflow interrupt is being
//employed as a time base for a master timer for this project.
//The internal time base is set to operate at 1 MHz and then
//is divided by 256. The 8-bit Timer0 register (TCNT0) overflows
//every 256 counts or every 65.5 ms.
//***

void init_timer0_ovf_interrupt(void)
{
TCCR0 = 0x04; //div timer0 timebase by 256, overfl. occurs every 65.5ms
TIMSK = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//***

void timer0_interrupt_isr(void)
{
input_delay++; //input delay processing
}

//***

9.7 AUTONOMOUS MAZE NAVIGATING ROBOTS
In the next two examples we investigate two different autonomous navigating robot designs. Before
delving into these designs, it would be helpful to review the fundamentals of robot steering and motor
control. Figure 9.14 illustrates the fundamental concepts. Robot steering is dependent upon the

394 9. EXTENDED EXAMPLES

number of powered wheels and whether the wheels are equipped with unidirectional or bidirectional
control. Additional robot steering configurations are possible.

Recall from a previous chapter that an H–bridge is typically required for bidirectional control
of a DC motor. An H–bridge configured for controlling a single motor is provided in Figure 9.15
a). The H–bridge has two inputs: one for controlling motor direction and one for controlling motor
speed via a pulse width modulated signal. Provided in Figure 9.15b) is a motor control system for a
two motor robot.

9.8 EXTENDED EXAMPLE 6: BLINKY 602A
ROBOT–REVISITED

Graymark (www.graymarkint.com) manufacturers many low–cost, excellent robot platforms. In this
example we modify the Blinky 602A robot discussed earlier in the book to be controlled by the
ATmega328. In this example we program the control algorithm in C. The Blinky 602A kit contains
the hardware and mechanical parts to construct a line following robot. The processing electronics
for the robot consists of analog circuitry. The robot is controlled by two 3 VDC motors which
independently drive a left and right wheel. A third non–powered drag wheel provides tripod stability
for the robot.

In this project we equip the Blinky 602A robot platform with three Sharp GP12D IR sensors
as shown in Figure 9.16. The robot is placed in a maze with reflective walls. The project goal is for
the robot to detect wall placement and navigate through the maze. It is important to note the robot
is not provided any information about the maze. The control algorithm for the robot is hosted on
the ATmega328 aboard the Arduino UNO R3.

9.8.1 REQUIREMENTS
The requirements for this project are simple, the robot must autonomously navigate through the
maze without touching maze walls.

9.8.2 CIRCUIT DIAGRAM
The circuit diagram for the robot is provided in Figure 9.17. The three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. The output from the
sensor is fed to three ADC channels (PORTC[2:0]). The robot motors will be driven by PWM
channels A and B, OC1A and OC1B (PORTB[2:1]). The microcontroller is interfaced to the
motors via a transistor with enough drive capability to handle the maximum current requirements of
the motor. Since the microcontroller is powered at 5 VDC and the motors are rated at 3 VDC, two
1N4001 diodes are placed in series with the motor. This reduces the supply voltage to the motor to
be approximately 3 VDC. The robot will be powered by a 9 VDC battery which is fed to a 5 VDC
voltage regulator. Alternatively, a 9 VDC power supply rated at several amps may be used in place
of the 9 VDC battery. The supply may be connected to the robot via a flexible umbilical cable.

9.8. EXTENDED EXAMPLE 6: BLINKY 602A ROBOT–REVISITED 395

�
���
��
��

�#����9�����;���������������
������

�
���
��
��

�#����9�����;���
9�
��
�
�����������
������

#����9�����;���������������
������;
���������������
��

�
���
��
��

�#����9�����;���������������
������;
��������������
��

�
���
��
��

�#�����9�����;��
9�
��
�
�����������
������
�

�
���
��
��

Figure 9.14: Robot control configurations.

396 9. EXTENDED EXAMPLES

11
D

Q
0
6

2
0
0

4
7
0

T
IP

3
1

T
IP

3
2

T
IP

3
1

11
D

Q
0
6

7
.5

 V
D

C

M

2
0
0

T
IP

3
1 T

IP
3

1

T
IP

3
2

4
7
0

11
D

Q
0
6

11
D

Q
0
6

1
0
0
0
μ

F

�
�

�
�

�
�

�
�

�
�

�
�

��
�	

�
�

	�

�
�

�

�

�
�

	

�

�
	�

�

�
�

�
�
�

	

�

�
	�

��

�
�

�
�

�
�
�

�
�

��
�	

�
�

	�

�
��

�
�

�
�

��
�	

�
�

	�

��

�

�

�

�

�

�
�

�
�

11
D

Q
0
6

2
0
0

4
7
0

T
IP

3
1

T
IP

3
2

T
IP

3
1

11
D

Q
0
6

7
.5

 V
D

C

M

2
0
0

T
IP

3
1 T

IP
3

1

T
IP

3
2

4
7
0

11
D

Q
0
6

11
D

Q
0
6

1
0
0
0
μ

F

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

	

�

�
	�

�

��

�
�

�
�

11
D

Q
0
6

2
0
0

4
7
0

T
IP

3
1

T
IP

3
2

T
IP

3
1

11
D

Q
0
6

7
.5

 V
D

C

M

2
0
0

T
IP

3
1 T

IP
3

1

T
IP

3
2

4
7
0

11
D

Q
0
6

11
D

Q
0
6

1
0
0
0
μ

F

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	�

�
�

�

�
�

	�

��

�

�

�

�

�

�
�

�
�

�
�

�
��
�

�

�

�
	�
�

�
�

�

�

�
	�

�
�

�
	

�
�

�
�

	�
�

��
�

�
�

�

�

��
�

�

�

�
	�
�

�
�

�

�

�
	�

�
�

�
	

�
�

Figure 9.15: Robot motor control.

9.8. EXTENDED EXAMPLE 6: BLINKY 602A ROBOT–REVISITED 397

����
���	�
	��

�
���
���	�
	��

������������
���	�
	��

����

�
������

���������
����

���
�	
�
� 	

��!����
!���

��!����
!���

��
���������!���
����	��"

��

#�
���
���	�
	��

Figure 9.16: Robot layout.

9.8.3 STRUCTURE CHART
The structure chart for the robot project is provided in Figure 9.18.

9.8.4 UML ACTIVITY DIAGRAMS
The UML activity diagram for the robot is provided in Figure 9.19.

398 9. EXTENDED EXAMPLES

��
��
�
�
�
�
	

�
��

��
��
�
�
�
�
	

��
�

�

��
��
�
�
�
�
	

	�
�
�
�

�

�

�
�
�
�
�
	

�
��
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�
	�
�
�
�
�
�
�
��
�
�
�

��
�
�
�
��
�
��
�
�

��
�
�

�
�
��
�
��
�
�

�
�
�
��
�
�

��
�

�
�

��
!
	�
�
�
�
�

M
3
 V

D
C

at
 1

0
0

 m
A

+ -

5
 V

D
C

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

	�
�
�
��

�
��
	"
�
�
�
�

��
��
	�
�
�
�

2
4
0

M+ -

2
4
0

1
N

4
0
0
1

5
 V

D
C

1
N

4
0
0
1

1
N

4
0
0
1

�
��
�

�
��
	"
�
�
�
�

��
��
	�
�
�
�

7
8
0
5

9
 V

D
C

b
at

te
ry

+
5
 V

D
C

0
.3

3
 u

F
0

.1
 u

F

I

C

O

#
�

�
�
�
�

�
	�
�
�
��
�

�
��
�
�
�

�
	�
��
�
��
�
�

�
��
�
�

�
��
	

�
�
		
�
�
�

�
��
�
�

	�
�
�

�
��
	

$
�%
&
'
(

�
�
	

��
�
��
�

�	
�
�
�
��
��
	

3
 V

D
C

at
 1

0
0

 m
A

$
�%
&
'
(

�
�
	

��
�
��
�

�	
�
�
�
��
��
	

Figure 9.17: Robot circuit diagram. (UNO R3 illustration used with permission of the Arduino Team
(CC BY–NC–SA) www.arduino.cc).

www.arduino.cc

9.8. EXTENDED EXAMPLE 6: BLINKY 602A ROBOT–REVISITED 399

ADC

ADC
Initialize ReadADC

ch for
conv

conv
data

left
IR sensor

right
IR sensor

middle
IR sensor

determine_robot
_action

sensor
data

robot
action

PWM_left

left
motor

PWM_right

right
motor

desired
motor
action

motor_control
digital

input/output

left
turn

signal

right
turn

signal

running

lights

Figure 9.18: Robot structure diagram.

9.8.5 MICROCONTROLLER CODE
Provided below is the basic framework for the code. As illustrated in the Robot UML activity
diagram, the control algorithm initializes various ATmega328 subsystems (ports, ADC, and PWM),
senses wall locations, and issues motor control signals to avoid walls.

It is helpful to characterize the infrared sensor response to the maze walls. This allows a
threshold to be determined indicating the presence of a wall. In this example we assume that a
threshold of 2.5 VDC has been experimentally determined.

It is important to note that the amount of robot turn is determined by the PWM duty cycle
(motor speed) and the length of time the turn is executed. For motors without optical tachometers,
the appropriate values for duty cycle and motor on time must be experimentally determined. In the
example functions provided the motor PWM and on time are fixed. Functions where the motor duty
cycle and on time are passed to the function as local variables are left as a homework assignment.

400 9. EXTENDED EXAMPLES

include files

global variables

function prototypes

initialize ports

initialize ADC

initialize PWM

while(1)

read sensor outputs

(left, middle, right)

determine robot

action

issue motor

control signals

Figure 9.19: Robot UML activity diagram.

//**
#include<iom328v.h> //ATmega328 include files

//function prototypes
void init_ADC(void);
unsigned int Read_ADC(unsigned char channel);
void PWM(unsigned char Duty_Cycle_Left, unsigned char Duty_Cycle_Right);
void ADC_values(void);
void PWM_forward(void);
void PWM_left(void);

9.8. EXTENDED EXAMPLE 6: BLINKY 602A ROBOT–REVISITED 401

void PWM_right(void);
void delay(unsigned int number_of_8_192ms_interrupts);
void init_timer2_ovf_interrupt(void);
void timer2_interrupt_isr(void);
void initialize_ports(void);

//interrupt handler definition
#pragma interrupt_handler timer2_interrupt_isr:12

//Global variables
float left_IR_voltage = 0.0;
float right_IR_voltage = 0.0;
float center_IR_voltage = 0.0;
unsigned int input_delay;

void main(void)
{
initialize_ports(); //initialize ports
init_timer2_ovf_interrupt(); //initialize interrupts
init_ADC(); //initialize ADC

ADC_values();
determine_robot_action();
}

//**
// void initialize_ports(void)
// 1: output, 0: input
//**

void initialize_ports(void)
{
DDRB = 0xFF;
DDRC = 0xF8; //PORTC[2:0] input
DDRD = 0xFF;
}

//**
//void determine_robot_action(void)

402 9. EXTENDED EXAMPLES

//In this example we assume that a threshold of 2.5 VDC has been
//experimentally determined.
//**
void determine_robot_action(void)
{

//wall on left and front, turn right
if((left_IR_voltage >= 2.5)&&(center_IR_voltage >= 2.5 VDC)
&&(right_IR_voltage < 2.5))
{
PWM_right();
}

else if //provide other cases here

:
:
:

}

//**
//void ATD_values(void)
//
// PORTA[0] - Left IR Sensor
// PORTA[1] - Center IR Sensor
// PORTA[2] - Right IR Sensor
//**

void ATD_values(void)
{
left_IR_Voltage = (Read_ADC(0)*5.0)/1024.0;
center_IR_Voltage = (Read_ADC(1)*5.0)/1024.0;
right_IR_Voltage = (Read_ADC(2)*5.0)/1024.0;
}

//**
//void PWM_forward(void): the PWM is configured to make the motors go
//forward.
//Implementation notes:
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A

9.8. EXTENDED EXAMPLE 6: BLINKY 602A ROBOT–REVISITED 403

// - To go forward the same PWM duty cycle is applied to both the left
// and right motors.
// - The length of the delay controls the amount of time the motors are
// powered.
//**

void PWM_forward(void)
{

TCCR1A = 0xA1; //freq = resonator/510 = 10 MHz/510
//freq = 19.607 kHz

TCCR1B = 0x01; //no clock source division
//Initiate PWM duty cycle variables
//Set PWM for left and right motors
//to 50%

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(122); //delay 1s
OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

//**
//void PWM_left(void) //Implementation notes:
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go left the left motor is stopped and the right motor is
// provided a PWM signal. The robot will pivot about the left motor.
// - The length of the delay controls the amount of time the motors are
// powered.
//**

void PWM_left(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 10 MHz/510

//freq = 19.607 kHz
TCCR1B = 0x01; //no clock source division

404 9. EXTENDED EXAMPLES

//Initiate PWM duty cycle variables
//Set PWM for left motor at 0%
//and the right motor to 50%

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(0);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(122); //delay 1s
OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

//**
// void PWM_right(void)
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go right the right motor is stopped and the left motor is
// provided a PWM signal. The robot will pivot about the right motor.
// - The length of the delay controls the amount of time the motors are
// powered.
//**

void PWM_right(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 10 MHz/510

//freq = 19.607 kHz
TCCR1B = 0x01; //no clock source division

//Initiate PWM duty cycle variables
//Set PWM for left motor to 50%
//and right motor to 0%

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(0);
delay(122); //delay 1s
OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

9.8. EXTENDED EXAMPLE 6: BLINKY 602A ROBOT–REVISITED 405

//***
void Init_ADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st dummy conversion

//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
}

//**
unsigned int Read_ADC(unsigned char channel)
{
unsigned int binary_weighted_voltage = 0x00;
unsigned intbinary_weighted_voltage_low = 0x00;
unsigned int binary_weighted_voltage_high = 0x00;

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set the bit

binary_weighted_voltage_low = ADCL; //Read 8 low bits first
//Read 2 high bits, multiply by 256
//Shift to the left 8 times to get
//the upper "ADC" result
//into the correct position to be
//ORed with the Lower result.

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
//Cast to unsigned int
//OR the two results together
//to form the 10 bit result

binary_weighted_voltage = binary_weighted_voltage_low
| binary_weighted_voltage_high;

406 9. EXTENDED EXAMPLES

return binary_weighted_voltage; //ADCH:ADCL
}

//**
void delay(unsigned int number_of_8_192ms_interrupts)
{
TCNT2 = 0x00; //reset timer2
input_delay = 0; //reset timer2 overflow counter
while(input_delay <= number_of_8_192ms_interrupts)
{
; //wait specified number of interrupts
}

}

//***
void init_timer2_ovf_interrupt(void)
{
TCCR2A = 0x00; //Do nothing with this register, not needed for counting
TCCR2B = 0x06; //divide timer2 timebase by 256, overflow every 8.192ms
TIMSK2 = 0x01; //enable timer2 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***

void timer2_interrupt_isr(void)
{
input_delay++; //increment overflow counter
}

//***

The design provided is very basic. As end of chapter homework assignments, extend the design
to include the following:

• Modify the PWM turning commands such that the PWM duty cycle and the length of time
the motors are on are sent in as variables to the function.

• Equip the motor with another IR sensor that looks down to the maze floor for “land mines.”
A land mine consists of a paper strip placed in the maze floor that obstructs a portion of

9.9. EXTENDED EXAMPLE 7: MOUNTAIN MAZE NAVIGATING ROBOT 407

the maze. If a land mine is detected, the robot must deactivate it by rotating three times and
flashing a large LED while rotating.

• Develop a function for reversing the robot.

9.9 EXTENDED EXAMPLE 7: MOUNTAIN MAZE
NAVIGATING ROBOT

In this project we extend the maze navigating project to a three–dimensional mountain pass. Also, we
use a robot equipped with four motorized wheels. Each of the wheels is equipped with an H–bridge
to allow bidirectional motor control. In this example we will only control two wheels. We leave the
development of a 4WD robot as an end of chapter homework assignment.

9.9.1 DESCRIPTION
For this project a DF Robot 4WD mobile platform kit was used (DFROBOT ROB0003, Jameco
#2124285). The robot kit is equipped with four powered wheels. As in the Blinky 602A project, we
equipped the DF Robot with three Sharp GP12D IR sensors as shown in Figure 9.20. The robot
will be placed in a three dimensional maze with reflective walls modeled after a mountain pass. The
goal of the project is for the robot to detect wall placement and navigate through the maze. The
robot will not be provided any information about the maze. The control algorithm for the robot is
hosted on the ATmega328.

9.9.2 REQUIREMENTS
The requirements for this project are simple, the robot must autonomously navigate through the
maze without touching maze walls.

9.9.3 CIRCUIT DIAGRAM
The circuit diagram for the robot is provided in Figure 9.21. The three IR sensors (left, middle, and
right) will be mounted on the leading edge of the robot to detect maze walls. The output from the
sensor is fed to three ADC channels (PORTC[2:0]). The robot motors will be driven by PWM
channels A and B, OC1A and OC1B, PORTB[2:1] via an H–bridge. The robot is powered by a
7.5 VDC battery pack (5 AA batteries) which is fed to a 5 VDC voltage regulator. Alternatively, the
robot may be powered by a 7.5 VDC power supply rated at several amps. In this case the power is
delivered to the robot by a flexible umbilical cable.

9.9.4 STRUCTURE CHART
The structure chart for the robot project is provided in Figure 9.22.

408 9. EXTENDED EXAMPLES

��������	

		
�

�	�
�
����
	�

���	��
�����

�

�	�
����
	
���

��������	

		
�

�	�
�
����
	�

������������

�	���
��
�	

�	���
��
�	

Figure 9.20: Robot layout.

9.9. EXTENDED EXAMPLE 7: MOUNTAIN MAZE NAVIGATING ROBOT 409

��
��
�
�
�
�
	

�
��

��
��
�
�
�
�
	

��
�

�

��
��
�
�
�
�
	

	�
�
�
�

�

�

�
�
�
�
�
	

�
��
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�
	�
�
�
�
�
�
�
��
�
�
�

��
�
�
�
��
�
��
�
�

��
�
�

�
�
��
�
��
�
�

�
�
�
��
�
�

��
�

�
�

��
!
	�
�
�
�
�

11
D

Q
0
6

2
0

0

4
7

0

T
IP

3
1

T
IP

3
2

T
IP

3
1

11
D

Q
0
6

7
.5

 V
D

C

M

2
0

0

T
IP

3
1 T

IP
3

1

T
IP

3
2

4
7

0

11
D

Q
0
6

11
D

Q
0
6

1
0

0
0

μ
F

"
#
$
%

"
#
$
#

"
#
$
%

11
D

Q
0
6

2
0

0

4
7

0

T
IP

3
1

T
IP

3
2

T
IP

3
1

11
D

Q
0
6

7
.5

 V
D

C

M

2
0

0

T
IP

3
1 T

IP
3

1

T
IP

3
2

4
7

0

11
D

Q
0
6

11
D

Q
0
6

1
0

0
0
μ

F

"
#
$
%

"
#
$
#

"
#
$
%

�
��
�

�
��
	�
��
	�

�
	�
&	
�
'
�
	�
�

�
��
�

�
��
	�
(
)
*

	�
�
�
��

�
��
	�
(
)
*

	�
�
�
��

�
��
	�
��
	�

�
	�
&	
�
'
�
	�
�

�
��
�

�
��
	�
+
�,
	�
�
�
�

	�
�
�
��

�
��
	�
+
�,
	�
�
�
�

Figure 9.21: Robot circuit diagram. (UNO R3 illustration used with permission of the Arduino Team
(CC BY–NC–SA) www.arduino.cc).

www.arduino.cc

410 9. EXTENDED EXAMPLES

A
D

C

A
D

C

In
it

ia
li

ze
R

ea
d
A

D
C

ch
 f

o
r

co
n
v

co
n
v

d
at

a

le
ft

IR
 s

en
so

r
ri

g
h
t

IR
 s

en
so

r

m
id

d
le

IR
 s

en
so

r

P
W

M
_

le
ft

le
ft

m
o

to
r

P
W

M
_

ri
g
h

t

ri
g
h
t

m
o

to
r

d
es

ir
ed

m
o

to
r

ac
ti

o
n

m
o
to

r_
co

n
tr

o
l

d
et

er
m

in
e_

ro
b
o
t

_
ac

ti
o
n

se
n
so

r

d
at

a
ro

b
o
t

ac
ti

o
n

R
ea

d
A

D
C

ch
 f

o
r

co
n
v

co
n
v

d
at

a

IM
U

X
O

U
T

IM
U

Y
O

U
T

L
iq

u
id

C
ry

st
al

 D
is

p
la

y

L
C

D

in
it

ia
li

ze
p
u
tc

h
ar

p
u

tc
o

m
m

Figure 9.22: Robot structure diagram.

9.9. EXTENDED EXAMPLE 7: MOUNTAIN MAZE NAVIGATING ROBOT 411

9.9.5 UML ACTIVITY DIAGRAMS
The UML activity diagram for the robot is provided in Figure 9.23.

9.9.6 MICROCONTROLLER CODE
The code for the robot may be adapted from that for the Blinky602A robot. Since the motors
are equipped with an H–bridge, slight modifications are required to the robot turning code. These
modifications are provided below.

//**
//void PWM_forward(void): the PWM is configured to make the motors go
//forward.
//Implementation notes:
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go forward the same PWM duty cycle is applied to both the left
// and right motors.
// - The length of the delay controls the amount of time the motors are
// powered.
// - Direction control for the right motor is provided on PORTB[0]
// 1: forward, 0: reverse
// - Direction control for the left motor is provided on PORTB[3]
// 1: forward, 0: reverse
/**

void PWM_forward(void)
{

TCCR1A = 0xA1; //freq = resonator/510 = 10 MHz/510
//freq = 19.607 kHz

TCCR1B = 0x01; //no clock source division

PORTB = PORTB | 0x09; //Right and left motor forward
//PORTB[0]=1 and PORTB[3]=1
// 0 0 0 0 _ 1 0 0 1
// 0x09
//Initiate PWM duty cycle variables
//Set PWM for left and right motors
//to 50%

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(128);

412 9. EXTENDED EXAMPLES

include files

global variables

function prototypes

initialize pins

initialize ADC

initialize PWM

initialize LCD

while(1)

determine robot

action

issue motor

control signals

read IR sensor inputs

(left, middle, right)

Read inertial measurement

unit (IMU) - XOUT, YOUT

display parameters

on LCD

Figure 9.23: Robot UML activity diagram.

9.9. EXTENDED EXAMPLE 7: MOUNTAIN MAZE NAVIGATING ROBOT 413

OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(122); //delay 1s
OCR1BL = (unsigned char)(0); //motors off, no PWM duty cycle
OCR1AL = (unsigned char)(0);
}

//**
//void PWM_left(void) //Implementation notes:
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go left the left motor is stopped and the right motor is
// provided a PWM signal. The robot will pivot about the left motor.
// - The length of the delay controls the amount of time the motors are
// powered.
// - Direction control for the right motor is provided on PORTB[0]
// 1: forward, 0: reverse
// - Direction control for the left motor is provided on PORTB[3]
// 1: forward, 0: reverse
//**

void PWM_left(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 10 MHz/510

//freq = 19.607 kHz
TCCR1B = 0x01; //no clock source division

PORTB = PORTB & 0xF7; //Left motor reverse: PORTB[3]=0
PORTB = PORTB | 0x01; //Right motor forward: PORTB[0]=1

//Initiate PWM duty cycle variables
//Set PWM for left motor at 0%
//and the right motor to 50%

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(122); //delay 1s
OCR1BL = (unsigned char)(0); //motors off

414 9. EXTENDED EXAMPLES

OCR1AL = (unsigned char)(0);
}

//**
// void PWM_right(void)
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go right the right motor is stopped and the left motor is
// provided a PWM signal. The robot will pivot about the right motor.
// - The length of the delay controls the amount of time the motors are
// powered.
// - Direction control for the right motor is provided on PORTB[0]
// 1: forward, 0: reverse
// - Direction control for the left motor is provided on PORTB[3]
// 1: forward, 0: reverse
//**

void PWM_right(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 10 MHz/510

//freq = 19.607 kHz
TCCR1B = 0x01; //no clock source division

PORTB = PORTB | 0x08; //Left motor forward: PORTB[3]=1
PORTB = PORTB & 0xfe; //Right motor reverse: PORTB[0]=0

//Initiate PWM duty cycle variables
//Set PWM for left motor to 50%
//and right motor to 0%

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(122); //delay 1s
OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

//***

9.10. EXTENDED EXAMPLE 8: ROBOT WHEEL ODOMETRY 415

9.9.7 MOUNTAIN MAZE
The mountain maze was constructed from plywood, chicken wire, expandable foam, plaster cloth
and Bondo. A rough sketch of the desired maze path was first constructed. Care was taken to insure
the pass was wide enough to accommodate the robot. The maze platform was constructed from 3/8
inch plywood on 2 by 4 inch framing material. Maze walls were also constructed from the plywood
and supported with steel L brackets.

With the basic structure complete, the maze walls were covered with chicken wire. The
chicken wire was secured to the plywood with staples. The chicken wire was then covered with
plaster cloth (Creative Mark Artist Products #15006). To provide additional stability, expandable
foam was sprayed under the chicken wire (Guardian Energy Technologies, Inc. Foam It Green 12).
The mountain scene was then covered with a layer of Bondo for additional structural stability. Bondo
is a two-part putty that hardens into a strong resin. Mountain pass construction steps are illustrated
in 9.24. The robot is shown in the maze in Figure 9.25

9.9.8 PROJECT EXTENSIONS
• Modify the PWM turning commands such that the PWM duty cycle and the length of time

the motors are on are sent in as variables to the function.

• Equip the motor with another IR sensor that looks down toward the maze floor for “land
mines.” A land mine consists of a paper strip placed in the maze floor that obstructs a portion
of the maze. If a land mine is detected, the robot must deactivate the maze by moving slowly
back and forth for three seconds and flashing a large LED.

• Develop a function for reversing the robot.

• The current design is a two wheel, front wheel drive system. Modify the design for a two
wheel, rear wheel drive system.

• The current design is a two wheel, front wheel drive system. Modify the design for a four
wheel drive system.

• Develop a four wheel drive system which includes a tilt sensor. The robot should increase
motor RPM (duty cycle) for positive inclines and reduce motor RPM (duty cycle) for negatives
inclines.

9.10 EXTENDED EXAMPLE 8: ROBOT WHEEL ODOMETRY
A helpful robot feature is wheel odometry or the ability to measure how far the wheel has traversed.
The DF Robotics line of robots may be equipped with wheel encoders for odometry as shown in
Figure 9.26.

The encoder consists of a slotted wheel that is connected to the motor axle. As the axle turns,
so does the slotted wheel. The slotted wheel is mounted between an optical emitter and detector.

416 9. EXTENDED EXAMPLES

Figure 9.24: Mountain maze.

9.10. EXTENDED EXAMPLE 8: ROBOT WHEEL ODOMETRY 417

Figure 9.25: Robot in maze.

418 9. EXTENDED EXAMPLES

motor

gear box

slotted wheel

E

D

ground

5 VDC

signal

a) slotted wheel

b) geared motor equipped with tachometer

c) sample signal

motor speeds up motor slows down motor speeds up

Figure 9.26: Robot wheel encoder (www.DFRobot.com).

www.DFRobot.com

9.11. SUMMARY 419

As the slotted wheel turns, a digital signal is provided by the encoder. The slotted wheel has ten
vanes or 20 edges per rotation. The edges may be counted to determine distance traversed. Each
robot wheel may be equipped with an encoder to monitor turns, distance traveled, slippage, etc. The
signals from the encoders may be fed to the external interrupt pins on the Arduino processor board.
Sample code to count vane edges is provided on the DF Robotics website (www.DFRobot.com).

9.11 SUMMARY
In this chapter, we discussed the voltage and current operating parameters for the Arduino UNO R3
processing board and the Atmel ATmega328 microcontroller. We discussed how this information
may be applied to properly design an interface for common input and output circuits. It must be
emphasized a properly designed interface allows the microcontroller to operate properly within its
parameter envelope. If due to a poor interface design, a microcontroller is used outside its prescribed
operating parameter values, spurious and incorrect logic values will result. We provided interface
information for a wide range of input and output devices.We also discussed the concept of interfacing
a motor to a microcontroller using PWM techniques coupled with high power MOSFET or SSR
switching devices. We closed the chapter with a number of extended examples.

9.12 REFERENCES
• Pack D, Barrett S (2002) 68HC12 Microcontroller: Theory and Applications. Prentice–Hall

Incorporated, Upper Saddle River, NJ.

• Barrett S, Pack D (2004) Embedded Systems Design with the 68HC12 and HCS12. Prentice-
–Hall Incorporated, Upper Saddle River, NJ.

• Crydom Corporation, 2320 Paseo de las Americas, Suite 201, San Diego, CA (www.crydom.
com).

• Sick/Stegmann Incorporated, Dayton, OH, (www.stegmann.com).

• Images Company, 39 Seneca Loop, Staten Island, NY 10314.

• Atmel 8–bit AVR Microcontroller with 16/32/64K Bytes In–System Programmable Flash, AT-
mega328P/V, ATmega324P/V, 644P/V data sheet: 8011I–AVR–05/08, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 4/8/16/32K Bytes In–System Programmable Flash, AT-
mega48PA, 88PA, 168PA, 328P data sheet: 8171D–AVR–05/11, Atmel Corporation, 2325
Orchard Parkway, San Jose, CA 95131.

• Atmel 8–bit AVR Microcontroller with 64/128/256K Bytes In–System Programmable Flash, AT-
mega640/V, ATmega1280/V, 2560/V data sheet: 2549P–AVR–10/2012, Atmel Corporation,
2325 Orchard Parkway, San Jose, CA 95131.

www.DFRobot.com
www.crydom.com
www.crydom.com
www.stegmann.com

420 9. EXTENDED EXAMPLES

• Barrett S,Pack D (2006) Microcontrollers Fundamentals for Engineers and Scientists.Morgan
and Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

• Barrett S and Pack D (2008) Atmel AVR Microcontroller Primer Programming and Inter-
facing. Morgan and Claypool Publishers. DOI: 10.2200/S00100ED1V01Y200712DCS015

• Barrett S (2010) Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
and Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

• National Semiconductor, LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit
Temperature Sensor, 1995.

• Bohm H and Jensen V (1997) Build Your Own Underwater Robot and Other Wet Projects.
Westcoast Words.

• seaperch, www.seaperch.org

• SparkFun, www.sparkfun.com

• Pack D and Barrett S (2011) Microcontroller Programming and InterfacingTexas Instruments
MSP430. Morgan and Claypool Publishers.

9.13 CHAPTER PROBLEMS
1. What will happen if a microcontroller is used outside of its prescribed operating envelope?

2. Discuss the difference between the terms “sink” and “source” as related to current loading of
a microcontroller.

3. Can an LED with a series limiting resistor be directly driven by the Atmel microcontroller?
Explain.

4. In your own words, provide a brief description of each of the microcontroller electrical param-
eters.

5. What is switch bounce? Describe two techniques to minimize switch bounce.

6. Describe a method of debouncing a keypad.

7. What is the difference between an incremental encoder and an absolute encoder? Describe
applications for each type.

8. What must be the current rating of the 2N2222 and 2N2907 transistors used in the tri–state
LED circuit? Support your answer.

9. Draw the circuit for a six character seven segment display. Fully specify all components. Write
a program to display “ATmega328.”

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025

9.13. CHAPTER PROBLEMS 421

10. Repeat the question above for a dot matrix display.

11. Repeat the question above for a LCD display.

12. What is the difference between a unipolar and bipolar stepper motor?

13. What controls the speed of rotation of a stepper motor?

14. A stepper motor provides and angular displacement of 1.8 degrees per step. How can this
resolution be improved?

15. Write a function to convert an ASCII numeral representation (0 to 9) to a seven segment
display.

16. Why is an interface required between a microcontroller and a stepper motor?

17. For the SeaPerch ROV provide adjustable speed control for each motor.This advanced feature
requires several modifications including a proportional joystick and pulse width modulation
signals to the motor. The joystick currently in use provides a simple on and off signal. A
proportional joystick provides an X and Y output DC signal proportional to the joystick
deflection on each axis.These signals may be fed to the analog–to–digital converter aboard the
Arduino UNO R3. The X and Y signals captured from the joystick may be used to provide a
pulse width modulated signal with a duty cycle proportional to deflection.

18. For the SeaPerch ROV provide a powered dive and surface thruster. To provide for a powered
dive and surface capability, the ROV must be equipped with a vertical thruster equipped with
an H–bridge to allow for motor forward and reversal.

19. For the SeaPerch ROV provide left and right thruster reverse. Currently the left and right
thrusters may only be powered in one direction. To provide additional maneuverability, the
left and right thrusters could be equipped with an H–bridge to allow bi–directional motor
control.

20. For the SeaPerch ROV provide proportional speed control with bi–directional motor control.
Both of these advanced features may be provided by driving the H–bridge circuit with PWM
signals.

21. Construct the UML activity diagrams for all functions related to the weather station.

22. It is desired to updated weather parameters every 15 minutes. Write a function to provide a
15 minute delay.

23. Add one of the following sensors to the weather station:

• anemometer

422 9. EXTENDED EXAMPLES

• barometer

• hygrometer

• rain gauge

• thermocouple

You will need to investigate background information on the selected sensor,develop an interface
circuit for the sensor, and modify the weather station code.

24. Modify the weather station software to also employ a 138 x 110 LCD. Display pertinent
weather data on the display.

25. Equip the weather station with an MMC/SD flash memory card.

26. Modify the motor speed control circuit interface to provide for bi–directional motor control.

27. Use optical encoder output channels A and B to determine motor direction and speed.

28. Modify the motor speed control algorithm to display motor direction (CW or CCW) and
speed in RPM on the LCD.

29. The Blinky 602A robot under microcontroller control abruptly starts and stops when PWM
is applied. Modify the algorithm to provide the capability to gradually ramp up (and down)
the motor speed.

30. Modify the Blinky 602A circuit and microcontroller code such that the maximum speed of
the robot is set with an external potentiometer.

31. Modify the Blinky 602A circuit and microcontroller code such that the IR sensors are only
asserted just before a range reading is taken.

32. Apply embedded system design techniques presented throughout the text to a project of your
choosing. Follow the design process and provide the following products:

• system description,

• system requirements,

• a structure chart,

• system circuit diagram,

• UML activity diagrams, and the

• microcontroller code.

33. Add the following features to the Blinky 602A platform:

9.13. CHAPTER PROBLEMS 423

• Line following capability (Hint: Adapt the line following circuitry onboard the Blinky
602A to operate with the Arduino processing board.)

• Two way robot communications (use the IR sensors already aboard)

• LCD display for status and troubleshooting display

• Voice output (Hint: Use SPO–512 chip.)

34. Develop an embedded system controlled submarine (www.seaperch.org).

35. Equip the Arduino UNO R3 with automatic cell phone dialing capability to notify you when
a fire is present in your home.

36. Develop an embedded system controlled dirigible/blimp (www.microflight.com,
www.rctoys.com).

37. Develop a trip odometer for your bicycle (Hint: use a Hall Effect sensor to detect tire rotation).

38. Develop a timing system for a 4 lane pinewood derby track.

39. Develop a playing board and control system for your favorite game (Yahtzee, Connect Four,
Battleship, etc.).

40. You have a very enthusiastic dog that loves to chase balls. Develop a system to launch balls for
the dog.

425

A P P E N D I X A

ATmega328 Register Set

Address
(0xFF) Reserved

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFE) Reserved

(0xFD) Reserved

(0xFC) Reserved

(0xFB) Reserved
(0xFA) Reserved

(0xF9) Reserved

(0xF8) Reserved

(0xF7) Reserved

(0xF6) Reserved

(0xF5) Reserved

(0xF3) Reserved

(0xF2) Reserved

(0xF1) Reserved

(0xF0) Reserved

(0xEF) Reserved

(0xEE) Reserved

(0xED) Reserved

(0xEC) Reserved

(0xEB) Reserved

(0xEA) Reserved

(0xE9) Reserved

(0xE8) Reserved

(0xE7) Reserved

(0xE6) Reserved

(0xE5) Reserved

(0xE4) Reserved

(0xE3) Reserved

(0xE2) Reserved

(0xE1) Reserved

(0xF4) Reserved

Figure A.1: Atmel AVR ATmega328 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

426 A. ATMEGA328 REGISTER SET

(0xE0) Reserved

(0xDF) Reserved

(0xDE) Reserved

(0xDD) Reserved

(0xDC) Reserved

(0xDB) Reserved

(0xDA) Reserved

(0xD9) Reserved

(0xD8) Reserved

(0xD7) Reserved

(0xD6) Reserved

(0xD5) Reserved

(0xD4) Reserved

(0xD3) Reserved

(0xD2) Reserved

(0xD1) Reserved

(0xD0) Reserved

(0xCF) Reserved

(0xCE) Reserved

(0xCD) Reserved

(0xCC) Reserved

(0xCB) Reserved

(0xCA) Reserved

(0xC9) Reserved

(0xC8) Reserved

(0xC7) Reserved

(0xC6) Reserved

(0xC5) Reserved

(0xC4) Reserved

(0xC3) Reserved

(0xC2) Reserved

(0xC1) Reserved

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 195

199

199

195

RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 196

UMSEL01 UMSEL00 UPM01 UPM00 USB00

USART Baud Rate Register Low

USART I/O Data Register

USART Baud Rate Register Low

UCSZ01/UDORD0 UCSZ00/UCPHA0 UCPOL0 197/212

Figure A.2: Atmel AVR ATmega328 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

427

Figure A.3: Atmel AVR ATmega328 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

428 A. ATMEGA328 REGISTER SET

Figure A.4: Atmel AVR ATmega328 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

429

Figure A.5: Atmel AVR ATmega328 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

431

A P P E N D I X B

ATmega328 Header File
During C programming, the contents of a specific register may be referred to by name when an
appropriate header file is included within your program. The header file provides the link between
the register name used within a program and the hardware location of the register.

Provided below is the ATmega328 header file from the ICC AVR compiler. This header file
was provided courtesy of ImageCraft Incorporated.
#ifndef __iom328pv_h
#define __iom328pv_h

/* ATmega328P header file for
* ImageCraft ICCAVR compiler
*/

/* i/o register addresses
* >= 0x60 are memory mapped only
*/

/* 2006/10/01 created
*/

/* Port D */
#define PIND (*(volatile unsigned char *)0x29)
#define DDRD (*(volatile unsigned char *)0x2A)
#define PORTD (*(volatile unsigned char *)0x2B)

/* Port C */
#define PINC (*(volatile unsigned char *)0x26)
#define DDRC (*(volatile unsigned char *)0x27)
#define PORTC (*(volatile unsigned char *)0x28)

/* Port B */
#define PINB (*(volatile unsigned char *)0x23)
#define DDRB (*(volatile unsigned char *)0x24)
#define PORTB (*(volatile unsigned char *)0x25)

432 B. ATMEGA328 HEADER FILE

/* Port A */
#define PINA (*(volatile unsigned char *)0x20)
#define DDRA (*(volatile unsigned char *)0x21)
#define PORTA (*(volatile unsigned char *)0x22)

/* Timer/Counter Interrupts */
#define TIFR0 (*(volatile unsigned char *)0x35)
#define OCF0B 2
#define OCF0A 1
#define TOV0 0
#define TIMSK0 (*(volatile unsigned char *)0x6E)
#define OCIE0B 2
#define OCIE0A 1
#define TOIE0 0
#define TIFR1 (*(volatile unsigned char *)0x36)
#define ICF1 5
#define OCF1B 2
#define OCF1A 1
#define TOV1 0
#define TIMSK1 (*(volatile unsigned char *)0x6F)
#define ICIE1 5
#define OCIE1B 2
#define OCIE1A 1
#define TOIE1 0
#define TIFR2 (*(volatile unsigned char *)0x37)
#define OCF2B 2
#define OCF2A 1
#define TOV2 0
#define TIMSK2 (*(volatile unsigned char *)0x70)
#define OCIE2B 2
#define OCIE2A 1
#define TOIE2 0

/* External Interrupts */
#define EIFR (*(volatile unsigned char *)0x3C)
#define INTF2 2
#define INTF1 1
#define INTF0 0

433

#define EIMSK (*(volatile unsigned char *)0x3D)
#define INT2 2
#define INT1 1
#define INT0 0
#define EICRA (*(volatile unsigned char *)0x69)
#define ISC21 5
#define ISC20 4
#define ISC11 3
#define ISC10 2
#define ISC01 1
#define ISC00 0

/* Pin Change Interrupts */
#define PCIFR (*(volatile unsigned char *)0x3B)
#define PCIF3 3
#define PCIF2 2
#define PCIF1 1
#define PCIF0 0
#define PCICR (*(volatile unsigned char *)0x68)
#define PCIE3 3
#define PCIE2 2
#define PCIE1 1
#define PCIE0 0
#define PCMSK0 (*(volatile unsigned char *)0x6B)
#define PCMSK1 (*(volatile unsigned char *)0x6C)
#define PCMSK2 (*(volatile unsigned char *)0x6D)
#define PCMSK3 (*(volatile unsigned char *)0x73)

/* GPIOR */
#define GPIOR0 (*(volatile unsigned char *)0x3E)
#define GPIOR1 (*(volatile unsigned char *)0x4A)
#define GPIOR2 (*(volatile unsigned char *)0x4B)

/* EEPROM */
#define EECR (*(volatile unsigned char *)0x3F)
#define EEPM1 5
#define EEPM0 4
#define EERIE 3
#define EEMPE 2

434 B. ATMEGA328 HEADER FILE

#define EEMWE 2
#define EEPE 1
#define EEWE 1
#define EERE 0
#define EEDR (*(volatile unsigned char *)0x40)
#define EEAR (*(volatile unsigned int *)0x41)
#define EEARL (*(volatile unsigned char *)0x41)
#define EEARH (*(volatile unsigned char *)0x42)

/* GTCCR */
#define GTCCR (*(volatile unsigned char *)0x43)
#define TSM 7
#define PSRASY 1
#define PSR2 1
#define PSRSYNC 0
#define PSR10 0

/* Timer/Counter 0 */
#define OCR0B (*(volatile unsigned char *)0x48)
#define OCR0A (*(volatile unsigned char *)0x47)
#define TCNT0 (*(volatile unsigned char *)0x46)
#define TCCR0B (*(volatile unsigned char *)0x45)
#define FOC0A 7
#define FOC0B 6
#define WGM02 3
#define CS02 2
#define CS01 1
#define CS00 0
#define TCCR0A (*(volatile unsigned char *)0x44)
#define COM0A1 7
#define COM0A0 6
#define COM0B1 5
#define COM0B0 4
#define WGM01 1
#define WGM00 0

/* SPI */
#define SPCR (*(volatile unsigned char *)0x4C)
#define SPIE 7

435

#define SPE 6
#define DORD 5
#define MSTR 4
#define CPOL 3
#define CPHA 2
#define SPR1 1
#define SPR0 0
#define SPSR (*(volatile unsigned char *)0x4D)
#define SPIF 7
#define WCOL 6
#define SPI2X 0
#define SPDR (*(volatile unsigned char *)0x4E)

/* Analog Comparator Control and Status Register */
#define ACSR (*(volatile unsigned char *)0x50)
#define ACD 7
#define ACBG 6
#define ACO 5
#define ACI 4
#define ACIE 3
#define ACIC 2
#define ACIS1 1
#define ACIS0 0

/* OCDR */
#define OCDR (*(volatile unsigned char *)0x51)
#define IDRD 7

/* MCU */
#define MCUSR (*(volatile unsigned char *)0x54)
#define JTRF 4
#define WDRF 3
#define BORF 2
#define EXTRF 1
#define PORF 0
#define MCUCR (*(volatile unsigned char *)0x55)
#define JTD 7
#define PUD 4
#define IVSEL 1

436 B. ATMEGA328 HEADER FILE

#define IVCE 0

#define SMCR (*(volatile unsigned char *)0x53)
#define SM2 3
#define SM1 2
#define SM0 1
#define SE 0

/* SPM Control and Status Register */
#define SPMCSR (*(volatile unsigned char *)0x57)
#define SPMIE 7
#define RWWSB 6
#define SIGRD 5
#define RWWSRE 4
#define BLBSET 3
#define PGWRT 2
#define PGERS 1
#define SPMEN 0

/* Stack Pointer */
#define SP (*(volatile unsigned int *)0x5D)
#define SPL (*(volatile unsigned char *)0x5D)
#define SPH (*(volatile unsigned char *)0x5E)

/* Status REGister */
#define SREG (*(volatile unsigned char *)0x5F)

/* Watchdog Timer Control Register */
#define WDTCSR (*(volatile unsigned char *)0x60)
#define WDTCR (*(volatile unsigned char *)0x60)
#define WDIF 7
#define WDIE 6
#define WDP3 5
#define WDCE 4
#define WDE 3
#define WDP2 2
#define WDP1 1
#define WDP0 0

437

/* clock prescaler control register */
#define CLKPR (*(volatile unsigned char *)0x61)
#define CLKPCE 7
#define CLKPS3 3
#define CLKPS2 2
#define CLKPS1 1
#define CLKPS0 0

/* PRR */
#define PRR0 (*(volatile unsigned char *)0x64)
#define PRTWI 7
#define PRTIM2 6
#define PRTIM0 5
#define PRUSART1 4
#define PRTIM1 3
#define PRSPI 2
#define PRUSART0 1
#define PRADC 0

/* Oscillator Calibration Register */
#define OSCCAL (*(volatile unsigned char *)0x66)

/* ADC */
#define ADC (*(volatile unsigned int *)0x78)
#define ADCL (*(volatile unsigned char *)0x78)
#define ADCH (*(volatile unsigned char *)0x79)
#define ADCSRA (*(volatile unsigned char *)0x7A)
#define ADEN 7
#define ADSC 6
#define ADATE 5
#define ADIF 4
#define ADIE 3
#define ADPS2 2
#define ADPS1 1
#define ADPS0 0
#define ADCSRB (*(volatile unsigned char *)0x7B)
#define ACME 6
#define ADTS2 2
#define ADTS1 1

438 B. ATMEGA328 HEADER FILE

#define ADTS0 0
#define ADMUX (*(volatile unsigned char *)0x7C)
#define REFS1 7
#define REFS0 6
#define ADLAR 5
#define MUX4 4
#define MUX3 3
#define MUX2 2
#define MUX1 1
#define MUX0 0

/* DIDR */
#define DIDR0 (*(volatile unsigned char *)0x7E)
#define ADC7D 7
#define ADC6D 6
#define ADC5D 5
#define ADC4D 4
#define ADC3D 3
#define ADC2D 2
#define ADC1D 1
#define ADC0D 0
#define DIDR1 (*(volatile unsigned char *)0x7F)
#define AIN1D 1
#define AIN0D 0

/* Timer/Counter1 */
#define ICR1 (*(volatile unsigned int *)0x86)
#define ICR1L (*(volatile unsigned char *)0x86)
#define ICR1H (*(volatile unsigned char *)0x87)
#define OCR1B (*(volatile unsigned int *)0x8A)
#define OCR1BL (*(volatile unsigned char *)0x8A)
#define OCR1BH (*(volatile unsigned char *)0x8B)
#define OCR1A (*(volatile unsigned int *)0x88)
#define OCR1AL (*(volatile unsigned char *)0x88)
#define OCR1AH (*(volatile unsigned char *)0x89)
#define TCNT1 (*(volatile unsigned int *)0x84)
#define TCNT1L (*(volatile unsigned char *)0x84)
#define TCNT1H (*(volatile unsigned char *)0x85)
#define TCCR1C (*(volatile unsigned char *)0x82)

439

#define FOC1A 7
#define FOC1B 6
#define TCCR1B (*(volatile unsigned char *)0x81)
#define ICNC1 7
#define ICES1 6
#define WGM13 4
#define WGM12 3
#define CS12 2
#define CS11 1
#define CS10 0
#define TCCR1A (*(volatile unsigned char *)0x80)
#define COM1A1 7
#define COM1A0 6
#define COM1B1 5
#define COM1B0 4
#define WGM11 1
#define WGM10 0

/* Timer/Counter2 */
#define ASSR (*(volatile unsigned char *)0xB6)
#define EXCLK 6
#define AS2 5
#define TCN2UB 4
#define OCR2AUB 3
#define OCR2BUB 2
#define TCR2AUB 1
#define TCR2BUB 0
#define OCR2B (*(volatile unsigned char *)0xB4)
#define OCR2A (*(volatile unsigned char *)0xB3)
#define TCNT2 (*(volatile unsigned char *)0xB2)
#define TCCR2B (*(volatile unsigned char *)0xB1)
#define FOC2A 7
#define FOC2B 6
#define WGM22 3
#define CS22 2
#define CS21 1
#define CS20 0
#define TCCR2A (*(volatile unsigned char *)0xB0)
#define COM2A1 7

440 B. ATMEGA328 HEADER FILE

#define COM2A0 6
#define COM2B1 5
#define COM2B0 4
#define WGM21 1
#define WGM20 0

/* 2-wire SI */
#define TWBR (*(volatile unsigned char *)0xB8)
#define TWSR (*(volatile unsigned char *)0xB9)
#define TWPS1 1
#define TWPS0 0
#define TWAR (*(volatile unsigned char *)0xBA)
#define TWGCE 0
#define TWDR (*(volatile unsigned char *)0xBB)
#define TWCR (*(volatile unsigned char *)0xBC)
#define TWINT 7
#define TWEA 6
#define TWSTA 5
#define TWSTO 4
#define TWWC 3
#define TWEN 2
#define TWIE 0
#define TWAMR (*(volatile unsigned char *)0xBD)

/* USART0 */
#define UBRR0H (*(volatile unsigned char *)0xC5)
#define UBRR0L (*(volatile unsigned char *)0xC4)
#define UBRR0 (*(volatile unsigned int *)0xC4)
#define UCSR0C (*(volatile unsigned char *)0xC2)
#define UMSEL01 7
#define UMSEL00 6
#define UPM01 5
#define UPM00 4
#define USBS0 3
#define UCSZ01 2
#define UCSZ00 1
#define UCPOL0 0
#define UCSR0B (*(volatile unsigned char *)0xC1)
#define RXCIE0 7

441

#define TXCIE0 6
#define UDRIE0 5
#define RXEN0 4
#define TXEN0 3
#define UCSZ02 2
#define RXB80 1
#define TXB80 0
#define UCSR0A (*(volatile unsigned char *)0xC0)
#define RXC0 7
#define TXC0 6
#define UDRE0 5
#define FE0 4
#define DOR0 3
#define UPE0 2
#define U2X0 1
#define MPCM0 0
#define UDR0 (*(volatile unsigned char *)0xC6)

/* USART1 */
#define UBRR1H (*(volatile unsigned char *)0xCD)
#define UBRR1L (*(volatile unsigned char *)0xCC)
#define UBRR1 (*(volatile unsigned int *)0xCC)
#define UCSR1C (*(volatile unsigned char *)0xCA)
#define UMSEL11 7
#define UMSEL10 6
#define UPM11 5
#define UPM10 4
#define USBS1 3
#define UCSZ11 2
#define UCSZ10 1
#define UCPOL1 0
#define UCSR1B (*(volatile unsigned char *)0xC9)
#define RXCIE1 7
#define TXCIE1 6
#define UDRIE1 5
#define RXEN1 4
#define TXEN1 3
#define UCSZ12 2
#define RXB81 1

442 B. ATMEGA328 HEADER FILE

#define TXB81 0
#define UCSR1A (*(volatile unsigned char *)0xC8)
#define RXC1 7
#define TXC1 6
#define UDRE1 5
#define FE1 4
#define DOR1 3
#define UPE1 2
#define U2X1 1
#define MPCM1 0
#define UDR1 (*(volatile unsigned char *)0xCE)

/* bits */

/* Port A */
#define PORTA7 7
#define PORTA6 6
#define PORTA5 5
#define PORTA4 4
#define PORTA3 3
#define PORTA2 2
#define PORTA1 1
#define PORTA0 0
#define PA7 7
#define PA6 6
#define PA5 5
#define PA4 4
#define PA3 3
#define PA2 2
#define PA1 1
#define PA0 0
#define DDA7 7
#define DDA6 6
#define DDA5 5
#define DDA4 4
#define DDA3 3
#define DDA2 2
#define DDA1 1

443

#define DDA0 0
#define PINA7 7
#define PINA6 6
#define PINA5 5
#define PINA4 4
#define PINA3 3
#define PINA2 2
#define PINA1 1
#define PINA0 0

/* Port B */
#define PORTB7 7
#define PORTB6 6
#define PORTB5 5
#define PORTB4 4
#define PORTB3 3
#define PORTB2 2
#define PORTB1 1
#define PORTB0 0
#define PB7 7
#define PB6 6
#define PB5 5
#define PB4 4
#define PB3 3
#define PB2 2
#define PB1 1
#define PB0 0
#define DDB7 7
#define DDB6 6
#define DDB5 5
#define DDB4 4
#define DDB3 3
#define DDB2 2
#define DDB1 1
#define DDB0 0
#define PINB7 7
#define PINB6 6
#define PINB5 5
#define PINB4 4

444 B. ATMEGA328 HEADER FILE

#define PINB3 3
#define PINB2 2
#define PINB1 1
#define PINB0 0

/* Port C */
#define PORTC7 7
#define PORTC6 6
#define PORTC5 5
#define PORTC4 4
#define PORTC3 3
#define PORTC2 2
#define PORTC1 1
#define PORTC0 0
#define PC7 7
#define PC6 6
#define PC5 5
#define PC4 4
#define PC3 3
#define PC2 2
#define PC1 1
#define PC0 0
#define DDC7 7
#define DDC6 6
#define DDC5 5
#define DDC4 4
#define DDC3 3
#define DDC2 2
#define DDC1 1
#define DDC0 0
#define PINC7 7
#define PINC6 6
#define PINC5 5
#define PINC4 4
#define PINC3 3
#define PINC2 2
#define PINC1 1
#define PINC0 0

445

/* Port D */
#define PORTD7 7
#define PORTD6 6
#define PORTD5 5
#define PORTD4 4
#define PORTD3 3
#define PORTD2 2
#define PORTD1 1
#define PORTD0 0
#define PD7 7
#define PD6 6
#define PD5 5
#define PD4 4
#define PD3 3
#define PD2 2
#define PD1 1
#define PD0 0
#define DDD7 7
#define DDD6 6
#define DDD5 5
#define DDD4 4
#define DDD3 3
#define DDD2 2
#define DDD1 1
#define DDD0 0
#define PIND7 7
#define PIND6 6
#define PIND5 5
#define PIND4 4
#define PIND3 3
#define PIND2 2
#define PIND1 1
#define PIND0 0

/* PCMSK3 */
#define PCINT31 7
#define PCINT30 6
#define PCINT29 5
#define PCINT28 4

446 B. ATMEGA328 HEADER FILE

#define PCINT27 3
#define PCINT26 2
#define PCINT25 1
#define PCINT24 0
/* PCMSK2 */
#define PCINT23 7
#define PCINT22 6
#define PCINT21 5
#define PCINT20 4
#define PCINT19 3
#define PCINT18 2
#define PCINT17 1
#define PCINT16 0
/* PCMSK1 */
#define PCINT15 7
#define PCINT14 6
#define PCINT13 5
#define PCINT12 4
#define PCINT11 3
#define PCINT10 2
#define PCINT9 1
#define PCINT8 0
/* PCMSK0 */
#define PCINT7 7
#define PCINT6 6
#define PCINT5 5
#define PCINT4 4
#define PCINT3 3
#define PCINT2 2
#define PCINT1 1
#define PCINT0 0

/* Lock and Fuse Bits with LPM/SPM instructions */

/* lock bits */
#define BLB12 5
#define BLB11 4
#define BLB02 3

447

#define BLB01 2
#define LB2 1
#define LB1 0

/* fuses low bits */
#define CKDIV8 7
#define CKOUT 6
#define SUT1 5
#define SUT0 4
#define CKSEL3 3
#define CKSEL2 2
#define CKSEL1 1
#define CKSEL0 0

/* fuses high bits */
#define OCDEN 7
#define JTAGEN 6
#define SPIEN 5
#define WDTON 4
#define EESAVE 3
#define BOOTSZ1 2
#define BOOTSZ0 1
#define BOOTRST 0

/* extended fuses */
#define BODLEVEL2 2
#define BODLEVEL1 1
#define BODLEVEL0 0

/* Interrupt Vector Numbers */

#define iv_RESET 1
#define iv_INT0 2
#define iv_EXT_INT0 2
#define iv_INT1 3
#define iv_EXT_INT1 3
#define iv_INT2 4
#define iv_EXT_INT2 4

448 B. ATMEGA328 HEADER FILE

#define iv_PCINT0 5
#define iv_PCINT1 6
#define iv_PCINT2 7
#define iv_PCINT3 8
#define iv_WDT 9
#define iv_TIMER2_COMPA 10
#define iv_TIMER2_COMPB 11
#define iv_TIMER2_OVF 12
#define iv_TIM2_COMPA 10
#define iv_TIM2_COMPB 11
#define iv_TIM2_OVF 12
#define iv_TIMER1_CAPT 13
#define iv_TIMER1_COMPA 14
#define iv_TIMER1_COMPB 15
#define iv_TIMER1_OVF 16
#define iv_TIM1_CAPT 13
#define iv_TIM1_COMPA 14
#define iv_TIM1_COMPB 15
#define iv_TIM1_OVF 16
#define iv_TIMER0_COMPA 17
#define iv_TIMER0_COMPB 18
#define iv_TIMER0_OVF 19
#define iv_TIM0_COMPA 17
#define iv_TIM0_COMPB 18
#define iv_TIM0_OVF 19
#define iv_SPI_STC 20
#define iv_USART0_RX 21
#define iv_USART0_RXC 21
#define iv_USART0_DRE 22
#define iv_USART0_UDRE 22
#define iv_USART0_TX 23
#define iv_USART0_TXC 23
#define iv_ANA_COMP 24
#define iv_ANALOG_COMP 24
#define iv_ADC 25
#define iv_EE_RDY 26
#define iv_EE_READY 26
#define iv_TWI 27
#define iv_TWSI 27

449

#define iv_SPM_RDY 28
#define iv_SPM_READY 28
#define iv_USART1_RX 29
#define iv_USART1_RXC 29
#define iv_USART1_DRE 30
#define iv_USART1_UDRE 30
#define iv_USART1_TX 31
#define iv_USART1_TXC 31

/* */

#endif

451

A P P E N D I X C

ATmega2560 Register Set

(0xBE)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(OXBD)

(0x13F)
(0x13E)
(0x13D)
(0x13C)
(0x13B)
(0x13A)
(0x139)
(0x138)
(0x137)

(0x135)
(0x134)
(0x133)
(0x132)
(0x131)
(0x130)
(0x12F)
(0x12E)

(0x12D)
(0x12C)
(0x12B)
(0x12A)

(0x129)
(0x128)
(0x127)

(0x126)

(0x125)
(0x124)

(0x136)

Reserved
TWAMR
TWCR
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

UBRR3H
UBRR3L
Reserved
UCSR3C
UCSR3B
UCSR3A
Reserved
Reserved

OCR5CH
OCR5CL
OCR5BH
OCR5BL

OCR5AH
OCR5AL

ICR5H

ICR5L

TCNT5H
TCNT5L

UDR3

TWAM6

-

-

-
-

-

-

-
-

-

-

-
-

-

-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

-
TWAM5

-
TWAM4

-
TWAM3

-
TWAM2

-
TWAM1

TWINT TWEA TWSTA TWST0 TWWC TWEN TWIE

-
TWAM0

-

-
-
-

UMSEL31
RXCIE3
RXC3

UMSEL30
TXCIE3
TXC3

UPM31
UDRIE3
UDRE3

UPM30
RXEN3

FE3

USBS3
TXEN3
DOR3

UCSZ31
UCSZ32

UPE3

UCSZ30
RXB83
U2X3

UCPOL3
TXB83

MPCM3

Timer/Counter5- Output Compare Register C High Byte

USART3 I/O Data Register
USART3 Baud Rate Register High Byte

USART3 Baud Rate Register Low Byte

Timer/Counter5- Output Compare Register C Low Byte
Timer/Counter5- Output Compare Register B High Byte
Timer/Counter5- Output Compare Register B Low Byte

Timer/Counter5- Output Compare Register A High Byte
Timer/Counter5- Output Compare Register A Low Byte

Timer/Counter5- Input Capture Register High Byte

Timer/Counter5- Input Capture Register Low Byte

Timer/Counter5- Counter Register High Byte
Timer/Counter5- Counter Register Low Byte

239

222
227
227

238
238

165
165
165
165

165
165
163
163

164
164

Figure C.1: Atmel AVR ATmega2560 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

452 C. ATMEGA2560 REGISTER SET

(0x123)
(0x122)
(0x121)

(0x120)
(0x11F)
(0x11E)
(0x11D)
(0x11C)
(0x11B)
(0x11A)
(0x119)
(0x118)

(0x117)
(0x116)
(0x115)
(0x114)
(0x113)
(0x112)
(0x111)
(0x110)

(0x10F)
(0x10E)
(0x10D)
(0x10C)
(0x10B)

(0x10A)

(0x109)
(0x108)
(0x107)
(0x106)
(0x105)

(0x104)
(0x103)
(0x102)
(0x101)

Reserved
TCCR5C
TCCR5B
TCCR5A

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Reserved
PORTL

DDRL

PINL
PORTK
DDRK
PINK

PORTJ

DDRJ
PINJ

PORTH
DDRH

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - - - - - - -
- - - - -FOC5A

ICNC5
COM5A1

FOC5B
ICES5

COM5A0

FOC5C
-

COM5B1
WGM53
COM5BO

CS52
COM5CO

WGM52
COM5C1

CS51
WGM51

CS50
WGM50

PORTL7

DDL7

PINL7
PORTK7

DDK7
PINK7

PORTJ7

DDJ7
PINJ7

PORTH7
DDH7

PORTL6

DDL6

PINL6
PORTK6
DDK6
PINK6

PORTJ6

DDJ6
PINJ6

PORTH6
DDH6

PORTL5

DDL5

PINL5
PORTK5

DDK5
PINK5

PORTJ5

DDJ5
PINJ5

PORTH5
DDH5

PORTL4

DDL4

PINL4
PORTK4

DDK4
PINK4

PORTJ4

DDJ4
PINJ4

PORTH4
DDH4

PORTL3

DDL3

PINL3
PORTK3

DDK3
PINK3

PORTJ3

DDJ3
PINJ3

PORTH3
DDH3

PORTL2

DDL2

PINL2
PORTK2

DDK2
PINK2

PORTJ2

DDJ2
PINJ2

PORTH2
DDH2

PORTL1

DDL1

PINL1
PORTK1
DDK1
PINK1

PORTJ1

DDJ1
PINJ1

PORTH1
DDH1

PORTL0

DDL0

PINL0
PORTK0

DDR0
PINK0

PORTJ0

DDRJ0
PINJ0

PORTH0
DDH0

104
104
104

162
160
158

103
103
103
103
103
103
102
103

Figure C.2: Atmel AVR ATmega2560 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

453

(0x100)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF)

(0xFE)
(0xFD)
(0xFC)
(0xFB)
(0xFA)
(0xF9)
(0xF8)
(0xF7)
(0xF6)

(0xF4)
(0xF3)
(0xF2)
(0xF1)
(0xF0)
(0xEF)
(0xEE)
(0xED)

(0xEC)
(0xEB)
(0xEA)
(0xE9)

(0xE8)
(0xE7)
(0xE6)

(0xE5)

(0xE4)
(0xE3)
(0xE2)
(0xE1)
(0xE0)

(0xDF)
(0xDE)
(0xDD)
(0xDC)
(0xDB)
(0xDA)
(0xD9)
(0xD8)
(0xD7)

(0xD6)
(0xD5)
(0xD4)
(0xD3)
(0xD2)
(0xD1)
(0xD0)
(0xCF)

(0xCE)
(0xCD)
(0xCC)
(0xCB)
(0xCA)

(0xC9)
(0xC8)
(0xC7)
(0xC6)
(0xC5)
(0xC4)

(0xC3)
(0xC2)
(0xC1)
(0xC0)

(0xF5)

PINH
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved

Reserved

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

UDR2
UBRR2H
UBRR2L
Reserved
UCSR2C
UCSR2B
UCSR2A
Reserved

UDR1
UBRR1H
UBRR1L
Reserved
UCSR1C

UCSR1B
UCSR1A
Reserved

UDR0
UBRR0H
UBRR0L

Reserved
UCSR0C
UCSR0B
UCSR0A

(0xBF) Reserved

Reserved

-

-

-

-
-

-

-

-
-

-

-

-
-

-

-

-
-

-

-
-

-

-
-

-

-
-

-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - - -

- - - - - - - -

- - - - - - - -

UMSEL21
RXCIE2

UMSEL20
TXCIE2

UPM21
UDRIE2

UPM20
RXEN2

USBS2
TXEN2

RXC2
-

TXC2
-

UDRIE2
-

FE2
-

DOR2
- - - -

- - - - - - - -

- - - -

- - - -

- - - -

- - - - - - - -

- - - -

- - -

- -
- -

-

- - - - -
- -
- -

- - -
- - -

PINH7
-

PINH6
-

PINH5
-

PINH4
-

PINH3
-

PINH2
-

PINH1
-

- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -
- - - - - - - -

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - - - - - - -

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - - - - - - -

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - - - - - - -

- - - - - - - -

- - - - - - - -

PINH0

USART2 I/O Data Register

USART1 I/O Data Register

USART0 I/O Data Register

USART2 Baud Rate Register Low Byte

USART2 Baud Rate Register Low Byte

USART0 Baud Rate Register Low Byte

USART2 Baud Rate Register High Byte

USART1 Baud Rate Register High Byte

USART0 Baud Rate Register High Byte

-

UMSEL11

RXCIE1
RXC1

UMSEL01
RXCIE0
RXC0

UMSEL10

TXCIE1
TXC1

UMSEL00
TXCIE0
TXC0

UPM11

UDRIE1
UDRE1

UPM01
UDRIE0
UDRE0

UPM10

RXEN1
FE1

UPM00
RXEN0

FE0

USBS1

TXEN1
DOR1

USBS0
TXEN0
DOR0

UCSZ11

UCSZ12
UPE1

UCSZ01
UCSZ02

UPE0

UCSZ10

RXB81
U2X1

UCSZ00
RXB80
U2X0

UCPOL1

TXB81
MPCM1

UCSZ21

UCSZ22
UPE2

UCSZ20

RXB82
U2X2

UCPOL2

TXB82
MPCM2

UCPOL0
TXB80
MPCM0

239
238
238

239
238
238

222
227
227

222
227
227

103

222
227
227

239
238
238

- - - - - - - -

Figure C.3: Atmel AVR ATmega2560 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

454 C. ATMEGA2560 REGISTER SET

(0xBE)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(OxBD)

(0xBC)
(0xBB)
(0xBA)
(0xB9)
(0xB8)
(0xB7)
(0xB6)
(0xB5)
(0xB4)

(0xB2)
(0xB1)
(0xB0)
(0xAF)
(0xAE)
(0xAD)
(0xAC)
(0xAB)

(0xAA)
(0xA9)
(0xA8)
(0xA7)

(0xA6)
(0xA5)
(0xA4)

(0xA3)

(0xA2)
(0xA1)
(0xA0)
(0x9F)
(0x9E)

(0x9D)
(0x9C)
(0x9B)
(0x9A)
(0x99)
(0x98)
(0x97)
(0x96)
(0x95)

(0x94)
(0x93)
(0x92)
(0x91)
(0x90)
(0x8F)
(0x8E)
(0x8D)

(0x8C)
(0x8B)
(0x8A)
(0x89)
(0x88)

(0x87)
(0x86)
(0x85)
(0x84)
(0x83)
(0x82)

(0x81)
(0x80)
(0x7F)
(0x7E)
(0x7D)

(0xB3)

Reserved
TWAMR
TWCR
TWDR
TWAR
TWSR
TWBR

Reserved
ASSR

Reserved
OCR2B

TCNT2
TCCR2B
TCCR2A
Reserved
Reserved
OCR4CH
OCR4CL
OCR4BH

OCR4BL
OCR4AH
OCR4AL
ICR4H

ICR4L
TCNT4H
TCNT4L

Reserved

TCCR4C
TCCR4B
TCCR4A
Reserved
Reserved
OCR3CH

OCR3CL
OCR3BH
OCR3BL
OCR3AH
OCR3AL
ICR3H
ICR3L

TCNT3H

TCNT3L

OCR1CH

OCR3CL
OCR1BH

TCCR3C

TCCR3B
TCCR3A

FOC3A

ICNC3
COM3A1

FOC3B FOC3C

ICES3
COM3A0 COM3B1 COM3B0 COM3C1 COM3B1 WGM31 WGM30

WGM33 WGM32 CS32 CS31 CS30

OCR1BL
OCR1AH
OCR1AL
ICR1H
ICR1L

TCNT1H

TCNT1L

Reserved

Reserved

Reserved

Reserved
TCCR1C

TCCR1B
TCCR1A

DIDR1
DIDR0

OCR2A

TWAM6

-
-

-
-

-

-
-

-

-
-

-
-
-

-
-
-

WGM21
-
-

WGM20

-

-

- - - - - - -

- - - - - - - -

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- - -

-

- - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -
- - - - -

- - - - -

-
TWAM5

-
TWAM4

-
TWAM3

-
TWAM2

-
TWAM1

TWINT TWEA TWSTA TWST0 TWWC TWEN TWIE

-
TWAM0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1
TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS0

TWGCETWA0
TWPS1

EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2BUBTCR2AUB

-

-
-
-

FOC2A FOC2B
COM2A1 COM2A0 COM2B1 COM2B0

WGM22 CS22 CS21 CS20

Timer/Counter4- Output Compare Register C High Byte

Timer/Counter2 Output Compare Register A
Timer/Counter2 (8Bit)

Timer/Counter2 Output Compare Register B

2-wire Serial Interface Data Register

2-wire Serial Interface Bit Rate Register

Timer/Counter4- Output Compare Register C Low Byte
Timer/Counter4- Output Compare Register B High Byte
Timer/Counter4- Output Compare Register B Low Byte
Timer/Counter4- Output Compare Register A High Byte
Timer/Counter4- Output Compare Register A Low Byte

Timer/Counter4- Input Capture Register High Byte

Timer/Counter4- Input Capture Register Low Byte

Timer/Counter4- Counter Register High Byte
Timer/Counter4- Counter Register Low Byte

Timer/Counter3- Output Compare Register C High Byte
Timer/Counter3- Output Compare Register C Low Byte
Timer/Counter3- Output Compare Register B High Byte
Timer/Counter3- Output Compare Register B Low Byte
Timer/Counter3- Output Compare Register A High Byte
Timer/Counter3- Output Compare Register A Low Byte

Timer/Counter3- Input Capture Register High Byte

Timer/Counter3- Input Capture Register Low Byte

Timer/Counter3- Counter Register High Byte
Timer/Counter3- Counter Register Low Byte

Timer/Counter1- Output Compare Register C High Byte
Timer/Counter1- Output Compare Register C Low Byte
Timer/Counter1- Output Compare Register B High Byte
Timer/Counter1- Output Compare Register B Low Byte
Timer/Counter1- Output Compare Register A High Byte
Timer/Counter1- Output Compare Register A Low Byte

Timer/Counter1- Input Capture Register High Byte

Timer/Counter1- Input Capture Register Low Byte

Timer/Counter1- Counter Register High Byte
Timer/Counter1- Counter Register Low Byte

FOC4A
ICNC4

COM4A1

FOC4B
ICES4

COM4A0

FOC4C
-

COM4B1
WGM43
COM4BO

CS42
COM4CO

WGM42
COM4C1

CS41
WGM41

CS40
WGM40

FOC1A FOC1B
ICNC1 ICES1 WGM13 WGM12 CS12 CS11 CS10

FOC1C

COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10
-

ADC7D
-

ADC6D

-

-
ADC5D

-

-
ADC4D

-

-
ADC3D

-

-
ADC2D

-

AIN1D
ADC1D

DIDR2 ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D

-

AIN0D
ADC0D

163
163
163

163
163
163

165
165

162
160
158

162

162

160
158

191
191

191

191
190

269

269
266
268

268
266

184

164
164
164
164

165
165
163
163

164
164

162
162

163
163
163

163
163
163

165
165
162

161
160
158
274
295
295

Figure C.4: Atmel AVR ATmega2560 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

455

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
ADLAR

ADATE

SRL1
ICIE5
ICIE4
ICIE3

ICIE1

PCINT21
PCINT13
PCINT5

PRTIM0
PRTIM5

WDP3
H

SP13
SP5

SIGRD

OCDR5
ACO

DORD

COM0B1

EEPM1

INT5
INTF5

ISC61
ISC21

MUX4

ADIF

SRL0

PCINT20
PCINT12
PCINT4
ISC60
ISC20

PRTIM4

WDCE

RWWSRE

PUD
JTRF

OCDR4
ACI

MSTR

COM0B0

INT4

EEPM0

INTF4

S
SP12
SP4

MUX2
ADTS2
ADPS2

XMM2
SRW10
OCIE5B
OCIE4B
OCIE3B
OCIE2B
OCIE1B
OCIE0B

PCINT18

PCINT2
PCINT10

ISC50

ISC10
PCIE2

PRUSART3
PRSPI

CLKPS2

PGWRT

BORF
SM1

OCDR2
ACIC

CPHA

CS02

EEMPE

INT2
INTF2
PCIF2

WDP2

SP10
SP2

N

MUX1
ADTS1
ADPS1

XMM1
SRW01
OCIE5A
OCIE4A
OCIE3A
OCIE2A
OCIE1A
OCIE0A
PCINT17
PCINT9

ISC41

PCIE1

PRUSART2
PRUSART0

ISC01

PCINT1

OCDR1
ACIS1

SPR1

CS01
WGM01

PSRASY

EEPE

INT1
INTF1
PCIF1

CLKPS1

RAMPZ1

PGERS

IVSEL
EXTRF
SM0

WDP1

SP9
SP1

Z

MUX0
ADTS0
ADPS0

XMM0
SRW00
TOIE5
TOIE4
TOIE3
TOIE2
TOIE1
TOIE0

PCINT16
PCINT8
PCINT0

ISC40
ISC00
PCIE0

PRUSART1
PRADC

CS00
WGM00

PSRSYNC

EERE

INT0
INTF0
PCIF0

RAMPZ0

SPMEN

IVCE
PORF

SE

OCDR0
ACIS0

SPR0
SPI2X

CLKPS0
WDP0

SP8
SP0

EIND0

C

MUX3

SRW11

OCIE4C
OCIE5C

OCIE3C

OCIE1C

PCINT19
PCINT11
PCINT3

ISC51

ISC11

PRTIM3
PRTIM1

WDE

SP11
SP3

BLBSET

WDRF

OCDR3

CPOL

WGM02

EERIE

INT3
INTF3

ACIE

SM2

V

CLKPS3

MUX5
ADIE

REFS0

ACME
ADSC

SRL2

PCINT22
PCINT14
PCINT16
ISC70
ISC30

PRTIM2

WDIE

RWWSB

OCDR6
ACBG

WCOL
SPE

FOC0B
COM0A0

INT6
INTF6

T
SP14
SP6

REFS1

ADEN

XMBK
SRE

PCINT 23
PCINT 15
PCINT 7
ISC71
ISC31

ISC31

CLKPCE

WDIF
I

SP15
SP7

SPMIE

JTD

OCDR7
ACD

SPIF
SPIE

FOC0A
COM0A1
TSM

INT7
INTF7

ADMUX

ADCSR
ADCSR
ADCH
ADCL
Reserved
Reserved

XMCRB
XMCRA

TIMSK5
TIMSK4
TIMSK3
TIMSK2
TIMSK1
TIMSK0
PCMSK2
PCMSK1
PCMSK0
EICRB
EICRA
PCICR

OSCCAL
PRR1
PRR0

CLKPR

WDTCSR
SREG
SPH
SPL
EIND
RAMPZ

SPMCSR

MCUCR
MCUSR
SMCR

OCDR
ACSR

SPDR
SPSR
SPCR
GPIOR2
GPIOR1

OCR0B
OCR0A
TCNT0
TCCR0B
TCCR0A
GTCCR

EEARH
EEARL
EEDT
EECR

GPIOR0
EIMSK
EIFR
PCIFR

Reserved
Reserved
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
Reserved

(0x7C)

(0x7B)
(0x7A)
(0x79)

(0x78)
(0x77)
(0x76)

(0x75)
(0x74)

(0x73)
(0x72)
(0x71)
(0x70)
(0x6F)
(0x6E)
(0x6D)
(0x6C)
(0x6B)
(0x6A)
(0x69)
(0x68)
(0x67)
(0x66)
(0x65)
(0x64)
(0x63)
(0x62)
(0x61)

(0x60)
0x3F (0x5F)
0x3E (0x5E)
0x3D (0x5D)
0x3C (0x5C)
0x3B (0x5B)
0x3A (0x5A)
0x39 (0x59)
0x38 (0x58)
0x37 (0x57)
0x36 (0x56)
0x35 (0x55)
0x34 (0x54)
0x33 (0x53)
0x32 (0x52)
0x31 (0x51)
0x30 (0x50)
0x2F (0x4F)
0x2E (0x4E)
0x2D (0x4D)
0x2C (0x4C)
0x2B (0x4B)
0x2A (0x4A)

0x29 (0x49)
0x28 (0x48)
0x27 (0x47)
0x26 (0x46)
0x25 (0x45)
0x24 (0x44)
0x23 (0x43)

0x22 (0x42)
0x21 (0x41)
0x20 (0x40)
0x1F (0x3F)

0x1E (0x3E)
0x1D (0x3D)
0x1C (0x3C)
0x1B (0x3B)

289
272, 290, 294

292
294
294

38
37

166
166
166
193
166
134
116
116
117
114
113
115

50
57
56

50
67
14
16
16
17
17

332

308

301

204
203
202

133
133
133

129

35
35

35
35

37
115
115
116

170, 194

132

37
37

272

52

67, 110, 100, 308

ADC Data Register High byte
ADC Data Register Low byte

Oscillator Calibration Register

General Purpose I/O Register 2

Timer/Counter0 Output Compare Register B
Timer/Counter0 Output Compare Register A

Timer/Counter0 (8 Bit)

SPI Data Register

EEPROM Address Register High Byte
EEPROM Address Register Low Byte

EEPROM Data Register

General Purpose I/O Register 0

General Purpose I/O Register 1

Figure C.5: Atmel AVR ATmega2560 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

456 C. ATMEGA2560 REGISTER SET

0x1A (0x3A)
0x19 (0x39)

0x18 (0x38)
0x17 (0x37)
0x16 (0x36)
0x15 (0x35)

0x14 (0x34)
0x13 (0x33)
0x12 (0x32)

0x11 (0x31)
0x10 (0x30)

0x0F (0x2F)
0x0E (0x2E)
0x0D (0x2D)
0x0C (0x2C)

0x0B (0x2B)
0x0A (0x2A)
0x09 (0x29)
0x08(0x28)
0x07 (0x27)
0x06 (0x26)

0x05 (0x25)
0x04 (0x24)
0x03 (0x23)
0x02 (0x22)
0x01 (0x21)
0x00 (0x20)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
TIFR5
TIFR4
TIFR3
TIFR2
TIFR1
TIFR0

PORTG
DDRG
PING

PORTF
DDRF

PORTE
DDRE
PINE

PORTD
DDRD
PIND

PORTC
DDRC

PINC
PORTB
DDRB
PINB

PORTA
DDRA
PINA

PORTE7
DDRE7
PINE7

PORTD7
DDRD7
PIND7

PORTC7
DDRC7

PINC7
PORTB7
DDRB7
PINB7

PORTA7
DDRA7
PINA7

PORTE6
DDRE6
PINE6

PORTD6
DDRD6
PIND6

PORTC6
DDRC6

PINC6
PORTB6
DDRB6
PINB6

PORTA6
DDRA6
PINA6

PORTE5
DDRE5
PINE5

PORTD5
DDRD5
PIND5

PORTC5
DDRC5

PINC5
PORTB5
DDRB5
PINB5

PORTA5
DDRA5
PINA5

PORTE4
DDRE4
PINE4

PORTD4
DDRD4
PIND4

PORTC4
DDRC4

PINC4
PORTB4
DDRB4
PINB4

PORTA4
DDRA4
PINA4

PORTE3
DDRE3
PINE3

PORTD3
DDRD3
PIND3

PORTC3
DDRC3

PINC3
PORTB3
DDRB3
PINB3

PORTA3
DDRA3
PINA3

PORTE2
DDRE2
PINE2

PORTD2
DDRD2
PIND2

PORTC2
DDRC2

PINC2
PORTB2
DDRB2
PINB2

PORTA2
DDRA2
PINA2

PORTE1
DDRE1
PINE1

PORTD1
DDRD1
PIND1

PORTC1
DDRC1

PINC1
PORTB1
DDRB1
PINB1

PORTA1
DDRA1
PINA1

PORTE0
DDRE0
PINE0

PORTD0
DDRD0
PIND0

PORTC0
DDRC0

PINC0
PORTB0
DDRB0
PINB0

PORTA0
DDRA0
PINA0

PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0

-

-

- DDG1DDG2DDG3DDG4DDG5 DDG0
PORTG0PORTG1PORTG2PORTG3PORTG4PORTG5

PORTF7 PORTF5PORTF6 PORTF4 PORTF2PORTF3 PORTF0PORTF1

DDF7 DDF5DDF6 DDF4 DDF2DDF3 DDF0DDF1

-

-
-

-

- -
-

-
-

-

- -
-

- -
ICF4
ICF5 -

-
-
--

-
-
- -

-
ICF3

ICF1
OCF0B

OCF1BOCF1C

OCF3C

TOV0
TOV1
TOV2
TOV3
TOV4

TOV5

OCF1A
OCF2B OCF2A

OCF3B OCF3A
OCF4C OCF4B OCF4A
OCF5C OCF5B OCF5A

OCF0A

PING4PING5 PING3 PING2 PING0PING1

102
102

101

101

102
101

167

167
166

167
193

134
102
102
102

101
101

101
101

101
101

100
100
100
100

100
100

Figure C.6: Atmel AVR ATmega2560 Register Set. (Figure used with permission of Atmel, Incorpo-
rated.)

457

A P P E N D I X D

ATmega2560 Header File
During C programming, the contents of a specific register may be referred to by name when an
appropriate header file is included within your program. The header file provides the link between
the register name used within a program and the hardware location of the register.

Provided below is the ATmega2560 header file from the ICC AVR compiler. This header file
was provided courtesy of ImageCraft Incorporated.
//**
#ifndef __iom2560v_h
#define __iom2560v_h

/* ATmega2560 header file for
* ImageCraft ICCAVR compiler
*/

/* 2008/04/22 created
*/

#include <_iom640to2561v.h>

/* */
//**

#ifndef ___iom640to2561v_h
#define ___iom640to2561v_h

/* ATmega640..2561 io header file for
* ImageCraft ICCAVR compiler
*/

/* 2004/12/19 created as iom2560v.h
2005/03/10 fixed SPI bits
2005/05/12 fixed EECR "P" bits
2005/05/16 added GPIOR0..2
2006/02/11 fixed device #define and CKOUT

458 D. ATMEGA2560 HEADER FILE

2008/04/21 added USART bits for SPI mode
*/

/* Port L */
#define PINL (*(volatile unsigned char *)0x109) /* m/m */
#define DDRL (*(volatile unsigned char *)0x10A) /* m/m */
#define PORTL (*(volatile unsigned char *)0x10B) /* m/m */

/* Port K */
#define PINK (*(volatile unsigned char *)0x106) /* m/m */
#define DDRK (*(volatile unsigned char *)0x107) /* m/m */
#define PORTK (*(volatile unsigned char *)0x108) /* m/m */

/* Port J */
#define PINJ (*(volatile unsigned char *)0x103) /* m/m */
#define DDRJ (*(volatile unsigned char *)0x104) /* m/m */
#define PORTJ (*(volatile unsigned char *)0x105) /* m/m */

/* Port H */
#define PINH (*(volatile unsigned char *)0x100) /* m/m */
#define DDRH (*(volatile unsigned char *)0x101) /* m/m */
#define PORTH (*(volatile unsigned char *)0x102) /* m/m */

/* Port G */
#define PING (*(volatile unsigned char *)0x32)
#define DDRG (*(volatile unsigned char *)0x33)
#define PORTG (*(volatile unsigned char *)0x34)

/* Port F */
#define PINF (*(volatile unsigned char *)0x2F)
#define DDRF (*(volatile unsigned char *)0x30)
#define PORTF (*(volatile unsigned char *)0x31)

/* Port E */
#define PINE (*(volatile unsigned char *)0x2C)
#define DDRE (*(volatile unsigned char *)0x2D)
#define PORTE (*(volatile unsigned char *)0x2E)

/* Port D */

459

#define PIND (*(volatile unsigned char *)0x29)
#define DDRD (*(volatile unsigned char *)0x2A)
#define PORTD (*(volatile unsigned char *)0x2B)

/* Port C */
#define PINC (*(volatile unsigned char *)0x26)
#define DDRC (*(volatile unsigned char *)0x27)
#define PORTC (*(volatile unsigned char *)0x28)

/* Port B */
#define PINB (*(volatile unsigned char *)0x23)
#define DDRB (*(volatile unsigned char *)0x24)
#define PORTB (*(volatile unsigned char *)0x25)

/* Port A */
#define PINA (*(volatile unsigned char *)0x20)
#define DDRA (*(volatile unsigned char *)0x21)
#define PORTA (*(volatile unsigned char *)0x22)

/* ADC */
#define ADC (*(volatile unsigned int *)0x78)
#define ADCL (*(volatile unsigned char *)0x78)
#define ADCH (*(volatile unsigned char *)0x79)
#define ADCSRA (*(volatile unsigned char *)0x7A)
#define ADEN 7
#define ADSC 6
#define ADATE 5
#define ADIF 4
#define ADIE 3
#define ADPS2 2
#define ADPS1 1
#define ADPS0 0
#define ADCSRB (*(volatile unsigned char *)0x7B)
#define ACME 6
#define MUX5 3
#define ADTS2 2
#define ADTS1 1
#define ADTS0 0
#define ADMUX (*(volatile unsigned char *)0x7C)

460 D. ATMEGA2560 HEADER FILE

#define REFS1 7
#define REFS0 6
#define ADLAR 5
#define MUX4 4
#define MUX3 3
#define MUX2 2
#define MUX1 1
#define MUX0 0

/* Analog Comparator Control and Status Register */
#define ACSR (*(volatile unsigned char *)0x50)
#define ACD 7
#define ACBG 6
#define ACO 5
#define ACI 4
#define ACIE 3
#define ACIC 2
#define ACIS1 1
#define ACIS0 0

/* DIDR */
#define DIDR2 (*(volatile unsigned char *)0x7D) /* m/m */
#define ADC15D 7
#define ADC14D 6
#define ADC13D 5
#define ADC12D 4
#define ADC11D 3
#define ADC10D 2
#define ADC9D 1
#define ADC8D 0
#define DIDR0 (*(volatile unsigned char *)0x7E) /* m/m */
#define ADC7D 7
#define ADC6D 6
#define ADC5D 5
#define ADC4D 4
#define ADC3D 3
#define ADC2D 2
#define ADC1D 1
#define ADC0D 0

461

#define DIDR1 (*(volatile unsigned char *)0x7F) /* m/m */
#define AIN1D 1
#define AIN0D 0

/* USART0 */
#define UBRR0H (*(volatile unsigned char *)0xC5) /* m/m */
#define UBRR0L (*(volatile unsigned char *)0xC4) /* m/m */
#define UBRR0 (*(volatile unsigned int *)0xC4) /* m/m */
#define UCSR0C (*(volatile unsigned char *)0xC2) /* m/m */
#define UMSEL01 7
#define UMSEL00 6
#define UPM01 5
#define UPM00 4
#define USBS0 3
#define UCSZ01 2
#define UCSZ00 1
#define UCPOL0 0
/* in SPI mode */
#define UDORD0 2
#define UCPHA0 1
#define UCSR0B (*(volatile unsigned char *)0xC1) /* m/m */
#define RXCIE0 7
#define TXCIE0 6
#define UDRIE0 5
#define RXEN0 4
#define TXEN0 3
#define UCSZ02 2
#define RXB80 1
#define TXB80 0
#define UCSR0A (*(volatile unsigned char *)0xC0) /* m/m */
#define RXC0 7
#define TXC0 6
#define UDRE0 5
#define FE0 4
#define DOR0 3
#define UPE0 2
#define U2X0 1
#define MPCM0 0
#define UDR0 (*(volatile unsigned char *)0xC6) /* m/m */

462 D. ATMEGA2560 HEADER FILE

/* USART1 */
#define UBRR1H (*(volatile unsigned char *)0xCD) /* m/m */
#define UBRR1L (*(volatile unsigned char *)0xCC) /* m/m */
#define UBRR1 (*(volatile unsigned int *)0xCC) /* m/m */
#define UCSR1C (*(volatile unsigned char *)0xCA) /* m/m */
#define UMSEL11 7
#define UMSEL10 6
#define UPM11 5
#define UPM10 4
#define USBS1 3
#define UCSZ11 2
#define UCSZ10 1
#define UCPOL1 0
/* in SPI mode */
#define UDORD1 2
#define UCPHA1 1
#define UCSR1B (*(volatile unsigned char *)0xC9) /* m/m */
#define RXCIE1 7
#define TXCIE1 6
#define UDRIE1 5
#define RXEN1 4
#define TXEN1 3
#define UCSZ12 2
#define RXB81 1
#define TXB81 0
#define UCSR1A (*(volatile unsigned char *)0xC8) /* m/m */
#define RXC1 7
#define TXC1 6
#define UDRE1 5
#define FE1 4
#define DOR1 3
#define UPE1 2
#define U2X1 1
#define MPCM1 0
#define UDR1 (*(volatile unsigned char *)0xCE) /* m/m */

/* USART2 */
#define UBRR2H (*(volatile unsigned char *)0xD5) /* m/m */

463

#define UBRR2L (*(volatile unsigned char *)0xD4) /* m/m */
#define UBRR2 (*(volatile unsigned int *)0xD4) /* m/m */
#define UCSR2C (*(volatile unsigned char *)0xD2) /* m/m */
#define UMSEL21 7
#define UMSEL20 6
#define UPM21 5
#define UPM20 4
#define USBS2 3
#define UCSZ21 2
#define UCSZ20 1
#define UCPOL2 0
/* in SPI mode */
#define UDORD2 2
#define UCPHA2 1
#define UCSR2B (*(volatile unsigned char *)0xD1) /* m/m */
#define RXCIE2 7
#define TXCIE2 6
#define UDRIE2 5
#define RXEN2 4
#define TXEN2 3
#define UCSZ22 2
#define RXB82 1
#define TXB82 0
#define UCSR2A (*(volatile unsigned char *)0xD0) /* m/m */
#define RXC2 7
#define TXC2 6
#define UDRE2 5
#define FE2 4
#define DOR2 3
#define UPE2 2
#define U2X2 1
#define MPCM2 0
#define UDR2 (*(volatile unsigned char *)0xD6) /* m/m */

/* USART3 */
#define UBRR3H (*(volatile unsigned char *)0x135) /* m/m */
#define UBRR3L (*(volatile unsigned char *)0x134) /* m/m */
#define UBRR3 (*(volatile unsigned int *)0x134) /* m/m */
#define UCSR3C (*(volatile unsigned char *)0x132) /* m/m */

464 D. ATMEGA2560 HEADER FILE

#define UMSEL31 7
#define UMSEL30 6
#define UPM31 5
#define UPM30 4
#define USBS3 3
#define UCSZ31 2
#define UCSZ30 1
#define UCPOL3 0
/* in SPI mode */
#define UDORD3 2
#define UCPHA3 1
#define UCSR3B (*(volatile unsigned char *)0x131) /* m/m */
#define RXCIE3 7
#define TXCIE3 6
#define UDRIE3 5
#define RXEN3 4
#define TXEN3 3
#define UCSZ32 2
#define RXB83 1
#define TXB83 0
#define UCSR3A (*(volatile unsigned char *)0x130) /* m/m */
#define RXC3 7
#define TXC3 6
#define UDRE3 5
#define FE3 4
#define DOR3 3
#define UPE3 2
#define U2X3 1
#define MPCM3 0
#define UDR3 (*(volatile unsigned char *)0x136) /* m/m */

/* 2-wire SI */
#define TWBR (*(volatile unsigned char *)0xB8) /* m/m */
#define TWSR (*(volatile unsigned char *)0xB9) /* m/m */
#define TWPS1 1
#define TWPS0 0
#define TWAR (*(volatile unsigned char *)0xBA) /* m/m */
#define TWGCE 0
#define TWDR (*(volatile unsigned char *)0xBB) /* m/m */

465

#define TWCR (*(volatile unsigned char *)0xBC) /* m/m */
#define TWINT 7
#define TWEA 6
#define TWSTA 5
#define TWSTO 4
#define TWWC 3
#define TWEN 2
#define TWIE 0
#define TWAMR (*(volatile unsigned char *)0xBD) /* m/m */

/* SPI */
#define SPCR (*(volatile unsigned char *)0x4C)
#define SPIE 7
#define SPE 6
#define DORD 5
#define MSTR 4
#define CPOL 3
#define CPHA 2
#define SPR1 1
#define SPR0 0
#define SPSR (*(volatile unsigned char *)0x4D)
#define SPIF 7
#define WCOL 6
#define SPI2X 0
#define SPDR (*(volatile unsigned char *)0x4E)

/* EEPROM */
#define EECR (*(volatile unsigned char *)0x3F)
#define EEPM1 5
#define EEPM0 4
#define EERIE 3
#define EEMPE 2
#define EEMWE 2
#define EEPE 1
#define EEWE 1
#define EERE 0
#define EEDR (*(volatile unsigned char *)0x40)
#define EEAR (*(volatile unsigned int *)0x41)
#define EEARL (*(volatile unsigned char *)0x41)

466 D. ATMEGA2560 HEADER FILE

#define EEARH (*(volatile unsigned char *)0x42)

/* GTCCR */
#define GTCCR (*(volatile unsigned char *)0x43)
#define TSM 7
#define PSRASY 1
#define PSRSYNC 0

/* Watchdog Timer Control Register */
#define WDTCSR (*(volatile unsigned char *)0x60) /* m/m */
#define WDTCR (*(volatile unsigned char *)0x60) /* m/m */
#define WDIF 7
#define WDIE 6
#define WDP3 5
#define WDCE 4
#define WDE 3
#define WDP2 2
#define WDP1 1
#define WDP0 0

/* OCDR */
#define OCDR (*(volatile unsigned char *)0x51)
#define MONDR (*(volatile unsigned char *)0x51)

/* Timer/Counter 0 */
#define OCR0B (*(volatile unsigned char *)0x48)
#define OCR0A (*(volatile unsigned char *)0x47)
#define TCNT0 (*(volatile unsigned char *)0x46)
#define TCCR0B (*(volatile unsigned char *)0x45)
#define FOC0 7
#define FOC0A 7
#define FOC0B 6
#define WGM02 3
#define CS02 2
#define CS01 1
#define CS00 0
#define TCCR0A (*(volatile unsigned char *)0x44)
#define COM0A1 7
#define COM0A0 6

467

#define COM0B1 5
#define COM0B0 4
#define WGM01 1
#define WGM00 0

/* Timer/Counter1 */
#define ICR1 (*(volatile unsigned int *)0x86) /* m/m */
#define ICR1L (*(volatile unsigned char *)0x86) /* m/m */
#define ICR1H (*(volatile unsigned char *)0x87) /* m/m */
#define OCR1C (*(volatile unsigned int *)0x8C) /* m/m */
#define OCR1CL (*(volatile unsigned char *)0x8C) /* m/m */
#define OCR1CH (*(volatile unsigned char *)0x8D) /* m/m */
#define OCR1B (*(volatile unsigned int *)0x8A) /* m/m */
#define OCR1BL (*(volatile unsigned char *)0x8A) /* m/m */
#define OCR1BH (*(volatile unsigned char *)0x8B) /* m/m */
#define OCR1A (*(volatile unsigned int *)0x88) /* m/m */
#define OCR1AL (*(volatile unsigned char *)0x88) /* m/m */
#define OCR1AH (*(volatile unsigned char *)0x89) /* m/m */
#define TCNT1 (*(volatile unsigned int *)0x84) /* m/m */
#define TCNT1L (*(volatile unsigned char *)0x84) /* m/m */
#define TCNT1H (*(volatile unsigned char *)0x85) /* m/m */
#define TCCR1C (*(volatile unsigned char *)0x82) /* m/m */
#define FOC1A 7
#define FOC1B 6
#define FOC1C 5
#define TCCR1B (*(volatile unsigned char *)0x81) /* m/m */
#define ICNC1 7
#define ICES1 6
#define WGM13 4
#define WGM12 3
#define CS12 2
#define CS11 1
#define CS10 0
#define TCCR1A (*(volatile unsigned char *)0x80) /* m/m */
#define COM1A1 7
#define COM1A0 6
#define COM1B1 5
#define COM1B0 4
#define COM1C1 3

468 D. ATMEGA2560 HEADER FILE

#define COM1C0 2
#define WGM11 1
#define WGM10 0

/* Timer/Counter2 */
#define ASSR (*(volatile unsigned char *)0xB6) /* m/m */
#define EXCLK 6
#define AS2 5
#define TCN2UB 4
#define OCR2AUB 3
#define OCR2BUB 2
#define TCR2AUB 1
#define TCR2BUB 0
#define OCR2B (*(volatile unsigned char *)0xB4) /* m/m */
#define OCR2A (*(volatile unsigned char *)0xB3) /* m/m */
#define TCNT2 (*(volatile unsigned char *)0xB2) /* m/m */
#define TCCR2B (*(volatile unsigned char *)0xB1) /* m/m */
#define FOC2A 7
#define FOC2B 6
#define WGM22 3
#define CS22 2
#define CS21 1
#define CS20 0
#define TCCR2A (*(volatile unsigned char *)0xB0) /* m/m */
#define COM2A1 7
#define COM2A0 6
#define COM2B1 5
#define COM2B0 4
#define WGM21 1
#define WGM20 0

/* Timer/Counter3 */
#define OCR3CH (*(volatile unsigned char *)0x9D) /* m/m */
#define OCR3CL (*(volatile unsigned char *)0x9C) /* m/m */
#define OCR3C (*(volatile unsigned int *)0x9C) /* m/m */
#define OCR3BH (*(volatile unsigned char *)0x9B) /* m/m */
#define OCR3BL (*(volatile unsigned char *)0x9A) /* m/m */
#define OCR3B (*(volatile unsigned int *)0x9A) /* m/m */
#define OCR3AH (*(volatile unsigned char *)0x99) /* m/m */

469

#define OCR3AL (*(volatile unsigned char *)0x98) /* m/m */
#define OCR3A (*(volatile unsigned int *)0x98) /* m/m */
#define ICR3H (*(volatile unsigned char *)0x97) /* m/m */
#define ICR3L (*(volatile unsigned char *)0x96) /* m/m */
#define ICR3 (*(volatile unsigned int *)0x96) /* m/m */
#define TCNT3H (*(volatile unsigned char *)0x95) /* m/m */
#define TCNT3L (*(volatile unsigned char *)0x94) /* m/m */
#define TCNT3 (*(volatile unsigned int *)0x94) /* m/m */
#define TCCR3C (*(volatile unsigned char *)0x92) /* m/m */
#define FOC3A 7
#define FOC3B 6
#define FOC3C 5
#define TCCR3B (*(volatile unsigned char *)0x91) /* m/m */
#define ICNC3 7
#define ICES3 6
#define WGM33 4
#define WGM32 3
#define CS32 2
#define CS31 1
#define CS30 0
#define TCCR3A (*(volatile unsigned char *)0x90) /* m/m */
#define COM3A1 7
#define COM3A0 6
#define COM3B1 5
#define COM3B0 4
#define COM3C1 3
#define COM3C0 2
#define WGM31 1
#define WGM30 0

/* Timer/Counter4 */
#define OCR4CH (*(volatile unsigned char *)0xAD) /* m/m */
#define OCR4CL (*(volatile unsigned char *)0xAC) /* m/m */
#define OCR4C (*(volatile unsigned int *)0xAC) /* m/m */
#define OCR4BH (*(volatile unsigned char *)0xAB) /* m/m */
#define OCR4BL (*(volatile unsigned char *)0xAA) /* m/m */
#define OCR4B (*(volatile unsigned int *)0xAA) /* m/m */
#define OCR4AH (*(volatile unsigned char *)0xA9) /* m/m */
#define OCR4AL (*(volatile unsigned char *)0xA8) /* m/m */

470 D. ATMEGA2560 HEADER FILE

#define OCR4A (*(volatile unsigned int *)0xA8) /* m/m */
#define ICR4H (*(volatile unsigned char *)0xA7) /* m/m */
#define ICR4L (*(volatile unsigned char *)0xA6) /* m/m */
#define ICR4 (*(volatile unsigned int *)0xA6) /* m/m */
#define TCNT4H (*(volatile unsigned char *)0xA5) /* m/m */
#define TCNT4L (*(volatile unsigned char *)0xA4) /* m/m */
#define TCNT4 (*(volatile unsigned int *)0xA4) /* m/m */
#define TCCR4C (*(volatile unsigned char *)0xA2) /* m/m */
#define FOC4A 7
#define FOC4B 6
#define FOC4C 5
#define TCCR4B (*(volatile unsigned char *)0xA1) /* m/m */
#define ICNC4 7
#define ICES4 6
#define WGM43 4
#define WGM42 3
#define CS42 2
#define CS41 1
#define CS40 0
#define TCCR4A (*(volatile unsigned char *)0xA0) /* m/m */
#define COM4A1 7
#define COM4A0 6
#define COM4B1 5
#define COM4B0 4
#define COM4C1 3
#define COM4C0 2
#define WGM41 1
#define WGM40 0

/* Timer/Counter5 */
#define OCR5CH (*(volatile unsigned char *)0x12D) /* m/m */
#define OCR5CL (*(volatile unsigned char *)0x12C) /* m/m */
#define OCR5C (*(volatile unsigned int *)0x12C) /* m/m */
#define OCR5BH (*(volatile unsigned char *)0x12B) /* m/m */
#define OCR5BL (*(volatile unsigned char *)0x12A) /* m/m */
#define OCR5B (*(volatile unsigned int *)0x12A) /* m/m */
#define OCR5AH (*(volatile unsigned char *)0x129) /* m/m */
#define OCR5AL (*(volatile unsigned char *)0x128) /* m/m */
#define OCR5A (*(volatile unsigned int *)0x128) /* m/m */

471

#define ICR5H (*(volatile unsigned char *)0x127) /* m/m */
#define ICR5L (*(volatile unsigned char *)0x126) /* m/m */
#define ICR5 (*(volatile unsigned int *)0x126) /* m/m */
#define TCNT5H (*(volatile unsigned char *)0x125) /* m/m */
#define TCNT5L (*(volatile unsigned char *)0x124) /* m/m */
#define TCNT5 (*(volatile unsigned int *)0x124) /* m/m */
#define TCCR5C (*(volatile unsigned char *)0x122) /* m/m */
#define FOC5A 7
#define FOC5B 6
#define FOC5C 5
#define TCCR5B (*(volatile unsigned char *)0x121) /* m/m */
#define ICNC5 7
#define ICES5 6
#define WGM53 4
#define WGM52 3
#define CS52 2
#define CS51 1
#define CS50 0
#define TCCR5A (*(volatile unsigned char *)0x120) /* m/m */
#define COM5A1 7
#define COM5A0 6
#define COM5B1 5
#define COM5B0 4
#define COM5C1 3
#define COM5C0 2
#define WGM51 1
#define WGM50 0

/* Oscillator Calibration Register */
#define OSCCAL (*(volatile unsigned char *)0x66) /* m/m */

/* clock prescaler control register */
#define CLKPR (*(volatile unsigned char *)0x61) /* m/m */
#define CLKPCE 7
#define CLKPS3 3
#define CLKPS2 2
#define CLKPS1 1
#define CLKPS0 0

472 D. ATMEGA2560 HEADER FILE

/* PRR */
#define PRR0 (*(volatile unsigned char *)0x64) /* m/m */
#define PRTWI 7
#define PRTIM2 6
#define PRTIM0 5
#define PRTIM1 3
#define PRSPI 2
#define PRUSART0 1
#define PRADC 0
#define PRR1 (*(volatile unsigned char *)0x65) /* m/m */
#define PRTIM5 5
#define PRTIM4 4
#define PRTIM3 3
#define PRUSART3 2
#define PRUSART2 1
#define PRUSART1 0

/* MCU */
#define MCUSR (*(volatile unsigned char *)0x54)
#define JTRF 4
#define WDRF 3
#define BORF 2
#define EXTRF 1
#define PORF 0
#define MCUCR (*(volatile unsigned char *)0x55)
#define JTD 7
#define PUD 4
#define IVSEL 1
#define IVCE 0

#define SMCR (*(volatile unsigned char *)0x53)
#define SM2 3
#define SM1 2
#define SM0 1
#define SE 0

/* SPM Control and Status Register */
#define SPMCSR (*(volatile unsigned char *)0x57)
#define SPMIE 7

473

#define RWWSB 6
#define RWWSRE 4
#define BLBSET 3
#define PGWRT 2
#define PGERS 1
#define SPMEN 0

/* Timer/Counter Interrupts */
#define TIFR0 (*(volatile unsigned char *)0x35)
#define OCF0B 2
#define OCF0A 1
#define TOV0 0
#define TIMSK0 (*(volatile unsigned char *)0x6E) /* m/m */
#define OCIE0B 2
#define OCIE0A 1
#define TOIE0 0
#define TIFR1 (*(volatile unsigned char *)0x36)
#define ICF1 5
#define OCF1C 3
#define OCF1B 2
#define OCF1A 1
#define TOV1 0
#define TIMSK1 (*(volatile unsigned char *)0x6F) /* m/m */
#define ICIE1 5
#define OCIE1C 3
#define OCIE1B 2
#define OCIE1A 1
#define TOIE1 0
#define TIFR2 (*(volatile unsigned char *)0x37)
#define OCF2B 2
#define OCF2A 1
#define TOV2 0
#define TIMSK2 (*(volatile unsigned char *)0x70) /* m/m */
#define OCIE2B 2
#define OCIE2A 1
#define TOIE2 0
#define TIFR3 (*(volatile unsigned char *)0x38)
#define ICF3 5
#define OCF3C 3

474 D. ATMEGA2560 HEADER FILE

#define OCF3B 2
#define OCF3A 1
#define TOV3 0
#define TIMSK3 (*(volatile unsigned char *)0x71) /* m/m */
#define ICIE3 5
#define OCIE3C 3
#define OCIE3B 2
#define OCIE3A 1
#define TOIE3 0
#define TIFR4 (*(volatile unsigned char *)0x39)
#define ICF4 5
#define OCF4C 3
#define OCF4B 2
#define OCF4A 1
#define TOV4 0
#define TIMSK4 (*(volatile unsigned char *)0x72) /* m/m */
#define ICIE4 5
#define OCIE4C 3
#define OCIE4B 2
#define OCIE4A 1
#define TOIE4 0
#define TIFR5 (*(volatile unsigned char *)0x3A)
#define ICF5 5
#define OCF5C 3
#define OCF5B 2
#define OCF5A 1
#define TOV5 0
#define TIMSK5 (*(volatile unsigned char *)0x73) /* m/m */
#define ICIE5 5
#define OCIE5C 3
#define OCIE5B 2
#define OCIE5A 1
#define TOIE5 0

/* External Interrupts */
#define EIFR (*(volatile unsigned char *)0x3C)
#define INTF7 7
#define INTF6 6
#define INTF5 5

475

#define INTF4 4
#define INTF3 3
#define INTF2 2
#define INTF1 1
#define INTF0 0
#define EIMSK (*(volatile unsigned char *)0x3D)
#define INT7 7
#define INT6 6
#define INT5 5
#define INT4 4
#define INT3 3
#define INT2 2
#define INT1 1
#define INT0 0
#define EICRB (*(volatile unsigned char *)0x6A) /* m/m */
#define ISC71 7
#define ISC70 6
#define ISC61 5
#define ISC60 4
#define ISC51 3
#define ISC50 2
#define ISC41 1
#define ISC40 0
#define EICRA (*(volatile unsigned char *)0x69) /* m/m */
#define ISC31 7
#define ISC30 6
#define ISC21 5
#define ISC20 4
#define ISC11 3
#define ISC10 2
#define ISC01 1
#define ISC00 0

/* Pin Change Interrupts */
#define PCIFR (*(volatile unsigned char *)0x3B)
#define PCIF2 2
#define PCIF1 1
#define PCIF0 0
#define PCICR (*(volatile unsigned char *)0x68) /* m/m */

476 D. ATMEGA2560 HEADER FILE

#define PCIE2 2
#define PCIE1 1
#define PCIE0 0
#define PCMSK0 (*(volatile unsigned char *)0x6B) /* m/m */
#define PCMSK1 (*(volatile unsigned char *)0x6C) /* m/m */
#define PCMSK2 (*(volatile unsigned char *)0x6D) /* m/m */

/* eXternal Memory Control Register */
#define XMCRB (*(volatile unsigned char *)0x75) /* m/m */
#define XMBK 7
#define XMM2 2
#define XMM1 1
#define XMM0 0
#define XMCRA (*(volatile unsigned char *)0x74) /* m/m */
#define SRE 7
#define SRL2 6
#define SRL1 5
#define SRL0 4
#define SRW11 3
#define SRW10 2
#define SRW01 1
#define SRW00 0

/* GPIO */
#define GPIOR0 (*(volatile unsigned char *)0x3E)
#define GPIOR1 (*(volatile unsigned char *)0x4A)
#define GPIOR2 (*(volatile unsigned char *)0x4B)

/* RAM page Z-pointer */
#define RAMPZ (*(volatile unsigned char *)0x5B)

/* EIND */
#define EIND (*(volatile unsigned char *)0x5C)

/* Stack Pointer */
#define SP (*(volatile unsigned int *)0x5D)
#define SPL (*(volatile unsigned char *)0x5D)
#define SPH (*(volatile unsigned char *)0x5E)

477

/* Status REGister */
#define SREG (*(volatile unsigned char *)0x5F)

/* bits */

/* Port A */
#define PORTA7 7
#define PORTA6 6
#define PORTA5 5
#define PORTA4 4
#define PORTA3 3
#define PORTA2 2
#define PORTA1 1
#define PORTA0 0
#define PA7 7
#define PA6 6
#define PA5 5
#define PA4 4
#define PA3 3
#define PA2 2
#define PA1 1
#define PA0 0
#define DDA7 7
#define DDA6 6
#define DDA5 5
#define DDA4 4
#define DDA3 3
#define DDA2 2
#define DDA1 1
#define DDA0 0
#define PINA7 7
#define PINA6 6
#define PINA5 5
#define PINA4 4
#define PINA3 3
#define PINA2 2
#define PINA1 1
#define PINA0 0

478 D. ATMEGA2560 HEADER FILE

/* Port B */
#define PORTB7 7
#define PORTB6 6
#define PORTB5 5
#define PORTB4 4
#define PORTB3 3
#define PORTB2 2
#define PORTB1 1
#define PORTB0 0
#define PB7 7
#define PB6 6
#define PB5 5
#define PB4 4
#define PB3 3
#define PB2 2
#define PB1 1
#define PB0 0
#define DDB7 7
#define DDB6 6
#define DDB5 5
#define DDB4 4
#define DDB3 3
#define DDB2 2
#define DDB1 1
#define DDB0 0
#define PINB7 7
#define PINB6 6
#define PINB5 5
#define PINB4 4
#define PINB3 3
#define PINB2 2
#define PINB1 1
#define PINB0 0

/* Port C */
#define PORTC7 7
#define PORTC6 6
#define PORTC5 5

479

#define PORTC4 4
#define PORTC3 3
#define PORTC2 2
#define PORTC1 1
#define PORTC0 0
#define PC7 7
#define PC6 6
#define PC5 5
#define PC4 4
#define PC3 3
#define PC2 2
#define PC1 1
#define PC0 0
#define DDC7 7
#define DDC6 6
#define DDC5 5
#define DDC4 4
#define DDC3 3
#define DDC2 2
#define DDC1 1
#define DDC0 0
#define PINC7 7
#define PINC6 6
#define PINC5 5
#define PINC4 4
#define PINC3 3
#define PINC2 2
#define PINC1 1
#define PINC0 0

/* Port D */
#define PORTD7 7
#define PORTD6 6
#define PORTD5 5
#define PORTD4 4
#define PORTD3 3
#define PORTD2 2
#define PORTD1 1
#define PORTD0 0

480 D. ATMEGA2560 HEADER FILE

#define PD7 7
#define PD6 6
#define PD5 5
#define PD4 4
#define PD3 3
#define PD2 2
#define PD1 1
#define PD0 0
#define DDD7 7
#define DDD6 6
#define DDD5 5
#define DDD4 4
#define DDD3 3
#define DDD2 2
#define DDD1 1
#define DDD0 0
#define PIND7 7
#define PIND6 6
#define PIND5 5
#define PIND4 4
#define PIND3 3
#define PIND2 2
#define PIND1 1
#define PIND0 0

/* Port E */
#define PORTE7 7
#define PORTE6 6
#define PORTE5 5
#define PORTE4 4
#define PORTE3 3
#define PORTE2 2
#define PORTE1 1
#define PORTE0 0
#define PE7 7
#define PE6 6
#define PE5 5
#define PE4 4
#define PE3 3

481

#define PE2 2
#define PE1 1
#define PE0 0
#define DDE7 7
#define DDE6 6
#define DDE5 5
#define DDE4 4
#define DDE3 3
#define DDE2 2
#define DDE1 1
#define DDE0 0
#define PINE7 7
#define PINE6 6
#define PINE5 5
#define PINE4 4
#define PINE3 3
#define PINE2 2
#define PINE1 1
#define PINE0 0

/* Port F */
#define PORTF7 7
#define PORTF6 6
#define PORTF5 5
#define PORTF4 4
#define PORTF3 3
#define PORTF2 2
#define PORTF1 1
#define PORTF0 0
#define PF7 7
#define PF6 6
#define PF5 5
#define PF4 4
#define PF3 3
#define PF2 2
#define PF1 1
#define PF0 0
#define DDF7 7
#define DDF6 6

482 D. ATMEGA2560 HEADER FILE

#define DDF5 5
#define DDF4 4
#define DDF3 3
#define DDF2 2
#define DDF1 1
#define DDF0 0
#define PINF7 7
#define PINF6 6
#define PINF5 5
#define PINF4 4
#define PINF3 3
#define PINF2 2
#define PINF1 1
#define PINF0 0

/* Port G */
#define PORTG5 5
#define PORTG4 4
#define PORTG3 3
#define PORTG2 2
#define PORTG1 1
#define PORTG0 0
#define PG5 5
#define PG4 4
#define PG3 3
#define PG2 2
#define PG1 1
#define PG0 0
#define DDG5 5
#define DDG4 4
#define DDG3 3
#define DDG2 2
#define DDG1 1
#define DDG0 0
#define PING5 5
#define PING4 4
#define PING3 3
#define PING2 2
#define PING1 1

483

#define PING0 0

/* Port H */
#define PORTH7 7
#define PORTH6 6
#define PORTH5 5
#define PORTH4 4
#define PORTH3 3
#define PORTH2 2
#define PORTH1 1
#define PORTH0 0
#define PH7 7
#define PH6 6
#define PH5 5
#define PH4 4
#define PH3 3
#define PH2 2
#define PH1 1
#define PH0 0
#define DDH7 7
#define DDH6 6
#define DDH5 5
#define DDH4 4
#define DDH3 3
#define DDH2 2
#define DDH1 1
#define DDH0 0
#define PINH7 7
#define PINH6 6
#define PINH5 5
#define PINH4 4
#define PINH3 3
#define PINH2 2
#define PINH1 1
#define PINH0 0

/* Port J */
#define PORTJ7 7
#define PORTJ6 6

484 D. ATMEGA2560 HEADER FILE

#define PORTJ5 5
#define PORTJ4 4
#define PORTJ3 3
#define PORTJ2 2
#define PORTJ1 1
#define PORTJ0 0
#define PJ7 7
#define PJ6 6
#define PJ5 5
#define PJ4 4
#define PJ3 3
#define PJ2 2
#define PJ1 1
#define PJ0 0
#define DDJ7 7
#define DDJ6 6
#define DDJ5 5
#define DDJ4 4
#define DDJ3 3
#define DDJ2 2
#define DDJ1 1
#define DDJ0 0
#define PINJ7 7
#define PINJ6 6
#define PINJ5 5
#define PINJ4 4
#define PINJ3 3
#define PINJ2 2
#define PINJ1 1
#define PINJ0 0

/* Port K */
#define PORTK7 7
#define PORTK6 6
#define PORTK5 5
#define PORTK4 4
#define PORTK3 3
#define PORTK2 2
#define PORTK1 1

485

#define PORTK0 0
#define PK7 7
#define PK6 6
#define PK5 5
#define PK4 4
#define PK3 3
#define PK2 2
#define PK1 1
#define PK0 0
#define DDK7 7
#define DDK6 6
#define DDK5 5
#define DDK4 4
#define DDK3 3
#define DDK2 2
#define DDK1 1
#define DDK0 0
#define PINK7 7
#define PINK6 6
#define PINK5 5
#define PINK4 4
#define PINK3 3
#define PINK2 2
#define PINK1 1
#define PINK0 0

/* Port L */
#define PORTL7 7
#define PORTL6 6
#define PORTL5 5
#define PORTL4 4
#define PORTL3 3
#define PORTL2 2
#define PORTL1 1
#define PORTL0 0
#define PL7 7
#define PL6 6
#define PL5 5
#define PL4 4

486 D. ATMEGA2560 HEADER FILE

#define PL3 3
#define PL2 2
#define PL1 1
#define PL0 0
#define DDL7 7
#define DDL6 6
#define DDL5 5
#define DDL4 4
#define DDL3 3
#define DDL2 2
#define DDL1 1
#define DDL0 0
#define PINL7 7
#define PINL6 6
#define PINL5 5
#define PINL4 4
#define PINL3 3
#define PINL2 2
#define PINL1 1
#define PINL0 0

/* PCMSK2 */
#define PCINT23 7
#define PCINT22 6
#define PCINT21 5
#define PCINT20 4
#define PCINT19 3
#define PCINT18 2
#define PCINT17 1
#define PCINT16 0
/* PCMSK1 */
#define PCINT15 7
#define PCINT14 6
#define PCINT13 5
#define PCINT12 4
#define PCINT11 3
#define PCINT10 2
#define PCINT9 1
#define PCINT8 0

487

/* PCMSK0 */
#define PCINT7 7
#define PCINT6 6
#define PCINT5 5
#define PCINT4 4
#define PCINT3 3
#define PCINT2 2
#define PCINT1 1
#define PCINT0 0

/* Lock and Fuse Bits with LPM/SPM instructions */

/* lock bits */
#define BLB12 5
#define BLB11 4
#define BLB02 3
#define BLB01 2
#define LB2 1
#define LB1 0

/* fuses low bits */
#define CKDIV8 7
#define CKOUT 6
#define SUT1 5
#define SUT0 4
#define CKSEL3 3
#define CKSEL2 2
#define CKSEL1 1
#define CKSEL0 0

/* fuses high bits */
#define OCDEN 7
#define JTAGEN 6
#define SPIEN 5
#define WDTON 4
#define EESAVE 3
#define BOOTSZ1 2
#define BOOTSZ0 1

488 D. ATMEGA2560 HEADER FILE

#define BOOTRST 0

/* extended fuses */
#define BODLEVEL2 2
#define BODLEVEL1 1
#define BODLEVEL0 0

/* Interrupt Vector Numbers */

#define iv_RESET 1
#define iv_INT0 2
#define iv_EXT_INT0 2
#define iv_INT1 3
#define iv_EXT_INT1 3
#define iv_INT2 4
#define iv_EXT_INT2 4
#define iv_INT3 5
#define iv_EXT_INT3 5
#define iv_INT4 6
#define iv_EXT_INT4 6
#define iv_INT5 7
#define iv_EXT_INT5 7
#define iv_INT6 8
#define iv_EXT_INT6 8
#define iv_INT7 9
#define iv_EXT_INT7 9
#define iv_PCINT0 10
#define iv_PCINT1 11
#define iv_PCINT2 12
#define iv_WDT 13
#define iv_TIMER2_COMPA 14
#define iv_TIMER2_COMPB 15
#define iv_TIMER2_OVF 16
#define iv_TIM2_COMPA 14
#define iv_TIM2_COMPB 15
#define iv_TIM2_OVF 16
#define iv_TIMER1_CAPT 17
#define iv_TIMER1_COMPA 18

489

#define iv_TIMER1_COMPB 19
#define iv_TIMER1_COMPC 20
#define iv_TIMER1_OVF 21
#define iv_TIM1_CAPT 17
#define iv_TIM1_COMPA 18
#define iv_TIM1_COMPB 19
#define iv_TIM1_COMPC 20
#define iv_TIM1_OVF 21
#define iv_TIMER0_COMPA 22
#define iv_TIMER0_COMPB 23
#define iv_TIMER0_OVF 24
#define iv_TIM0_COMPA 22
#define iv_TIM0_COMPB 23
#define iv_TIM0_OVF 24
#define iv_SPI_STC 25
#define iv_USART0_RX 26
#define iv_USART0_RXC 26
#define iv_USART0_DRE 27
#define iv_USART0_UDRE 27
#define iv_USART0_TX 28
#define iv_USART0_TXC 28
#define iv_ANA_COMP 29
#define iv_ANALOG_COMP 29
#define iv_ADC 30
#define iv_EE_RDY 31
#define iv_EE_READY 31
#define iv_TIMER3_CAPT 32
#define iv_TIMER3_COMPA 33
#define iv_TIMER3_COMPB 34
#define iv_TIMER3_COMPC 35
#define iv_TIMER3_OVF 36
#define iv_TIM3_CAPT 32
#define iv_TIM3_COMPA 33
#define iv_TIM3_COMPB 34
#define iv_TIM3_COMPC 35
#define iv_TIM3_OVF 36
#define iv_USART1_RX 37
#define iv_USART1_RXC 37
#define iv_USART1_DRE 38

490 D. ATMEGA2560 HEADER FILE

#define iv_USART1_UDRE 38
#define iv_USART1_TX 39
#define iv_USART1_TXC 39
#define iv_TWI 40
#define iv_TWSI 40
#define iv_SPM_RDY 41
#define iv_SPM_READY 41
#define iv_TIMER4_CAPT 42
#define iv_TIMER4_COMPA 43
#define iv_TIMER4_COMPB 44
#define iv_TIMER4_COMPC 45
#define iv_TIMER4_OVF 46
#define iv_TIM4_CAPT 42
#define iv_TIM4_COMPA 43
#define iv_TIM4_COMPB 44
#define iv_TIM4_COMPC 45
#define iv_TIM4_OVF 46
#define iv_TIMER5_CAPT 47
#define iv_TIMER5_COMPA 48
#define iv_TIMER5_COMPB 49
#define iv_TIMER5_COMPC 50
#define iv_TIMER5_OVF 51
#define iv_TIM5_CAPT 47
#define iv_TIM5_COMPA 48
#define iv_TIM5_COMPB 49
#define iv_TIM5_COMPC 50
#define iv_TIM5_OVF 51
#define iv_USART2_RX 52
#define iv_USART2_RXC 52
#define iv_USART2_DRE 53
#define iv_USART2_UDRE 53
#define iv_USART2_TX 54
#define iv_USART2_TXC 54
#define iv_USART3_RX 55
#define iv_USART3_RXC 55
#define iv_USART3_DRE 56
#define iv_USART3_UDRE 56
#define iv_USART3_TX 57
#define iv_USART3_TXC 57

491

/*ja*/

#endif

#endif

//**

493

Author’s Biography

STEVEN F. BARRETT
Steven F. Barrett, Ph.D., P.E., received the BS Electronic Engineering Technology from the
University of Nebraska at Omaha in 1979, the M.E.E.E. from the University of Idaho at Moscow
in 1986, and the Ph.D. from The University of Texas at Austin in 1993. He was formally an active
duty faculty member at the United States Air Force Academy, Colorado and is now the Associate
Dean of Academic Programs at the University of Wyoming. He is a member of IEEE (senior) and
Tau Beta Pi (chief faculty advisor). His research interests include digital and analog image processing,
computer-assisted laser surgery, and embedded controller systems. He is a registered Professional
Engineer in Wyoming and Colorado. He Co–wrote with Dr. Daniel Pack several textbooks on
microcontrollers and embedded systems. In 2004, Barrett was named “Wyoming Professor of the
Year” by the Carnegie Foundation for the Advancement of Teaching and in 2008 was the recipient of
the National Society of Professional Engineers (NSPE) Professional Engineers in Higher Education,
Engineering Education Excellence Award.

	Preface
	Getting Started
	Overview
	Getting Started
	Arduino UNO R3 processing board
	Arduino UNO R3 host processor–the ATmega328
	Arduino UNO R3/ATmega328 hardware features
	ATmega328 Memory
	ATmega328 Port System
	ATmega328 Internal Systems
	Arduino UNO R3 open source schematic

	Arduino Mega 2560 processing board
	Arduino Mega 2560 host processor–the ATmega2560
	Arduino Mega 2560 /ATmega2560 hardware features
	ATmega2560 Memory
	ATmega2560 Port System
	ATmega2560 Internal Systems

	Arduino Mega 2560 open source schematic
	Example: Autonomous Maze Navigating Robot
	Structure chart
	UML activity diagrams
	Arduino UNO R3 Systems

	Other Arduino–based platforms
	Extending the hardware features of the Arduino platforms
	Application: Arduino Hardware Studio
	Summary
	References
	Chapter Problems

	Programming
	Overview
	The Big Picture
	Arduino Development Environment
	Background
	Quick start Guide
	Arduino Development Environment overview
	Sketchbook concept
	Arduino software, libraries, and language references
	Writing an Arduino Sketch

	Anatomy of a Program
	Comments
	Include files
	Functions
	Program constants
	Interrupt handler definitions
	Variables
	Main program

	Fundamental programming concepts
	Operators
	Programming constructs
	Decision processing

	Application 1: Robot IR sensor
	Application 2: Art piece illumination system
	Application 3: Friend or Foe Signal
	Summary
	References
	Chapter Problems

	Embedded Systems Design
	What is an embedded system?
	Embedded system design process
	Project Description
	Background Research
	Pre–Design
	Design
	Implement Prototype
	Preliminary Testing
	Complete and Accurate Documentation

	Example: Blinky 602A autonomous maze navigating robot system design
	Application: Control algorithm for the Blinky 602A Robot
	Summary
	References
	Chapter Problems

	Atmel AVR Operating Parameters and Interfacing
	Overview
	Operating Parameters
	Battery Operation
	Embedded system voltage and current drain specifications
	Battery characteristics

	Input Devices
	Switches
	Pullup resistors in switch interface circuitry
	Switch Debouncing
	Keypads
	Sensors

	Output Devices
	Light Emitting Diodes (LEDs)
	Seven Segment LED Displays
	Code Example
	Tri–state LED Indicator
	Dot Matrix Display
	Liquid Crystal Character Display (LCD) in C
	Programming a serial configured LCD
	Liquid Crystal Character Display (LCD) using the Arduino Development Environment
	High Power DC Devices

	DC Solenoid Control
	DC Motor Speed and Direction Control
	DC Motor Operating Parameters
	H–bridge direction control
	Servo motor interface
	Stepper motor control
	AC Devices

	Interfacing to Miscellaneous Devices
	Sonalerts, Beepers, Buzzers
	Vibrating Motor

	Application: Special Effects LED Cube
	Construction Hints
	LED Cube Arduino Sketch Code

	Summary
	References
	Chapter Problems

	Analog to Digital Conversion (ADC)
	Overview
	Sampling, Quantization and Encoding
	Resolution and Data Rate

	Analog–to–Digital Conversion (ADC) Process
	Transducer Interface Design (TID) Circuit
	Operational Amplifiers

	ADC Conversion Technologies
	Successive–Approximation

	The Atmel ATmega328 and ATmega2560 ADC System
	Block Diagram
	ATmega328 ADC Registers
	ATmega2560 ADC Registers

	Programming the ADC using the Arduino Development Environment
	ATmega328: Programming the ADC in C
	ATmega2560: Programming the ADC in C
	Example: ADC Rain Gage Indicator with the Arduino UNO R3
	ADC Rain Gage Indicator using the Arduino Development Environment
	ADC Rain Gage Indicator in C
	ADC Rain Gage using the Arduino Development Environment–Revisited

	One–bit ADC – Threshold Detector
	Digital–to–Analog Conversion (DAC)
	DAC with the Arduino Development Environment
	DAC with external converters
	Octal Channel, 8–bit DAC via the SPI

	Application: Art piece illumination system – Revisited
	Arduino Mega 2560 example: Kinesiology and Health Laboratory Instrumentation
	Summary
	References
	Chapter Problems

	Interrupt Subsystem
	Overview
	ATmega328 Interrupt System
	ATmega2560 Interrupt System
	General interrupt response

	Interrupt programming overview
	Programming ATmega328 Interrupts in C and the Arduino Development Environment
	External interrupt programming–Atmega328
	ATmega328 Internal Interrupt Programming

	Programming ATmega2560 Interrupts in C and the Arduino Development Environment
	External interrupt programming–Atmega2560
	ATmega2560 Internal Interrupt Programming

	Foreground and Background Processing
	Interrupt Examples
	Application 1: Real Time Clock in C
	Application 2: Real Time Clock using the Arduino Development Environment
	Application 3: Interrupt Driven USART in C

	Summary
	References
	Chapter Problems

	Timing Subsystem
	Overview
	Timing related terminology
	Frequency
	Period
	Duty Cycle

	Timing System Overview
	Timer System Applications
	Input Capture – Measuring External Timing Event
	Counting Events
	Output Compare – Generating Timing Signals to Interface External Devices
	Industrial Implementation Case Study (PWM)

	Overview of the Atmel ATmega328 and ATmega2560 Timer Systems
	Timer 0 System
	Modes of Operation
	Timer 0 Registers

	Timer 1
	Timer 1 Registers

	Timer 2
	Programming the Arduino UNO R3 and Mega 2560 using the built–in Arduino Development Environment Timing Features
	Programming the Timer System in C
	Precision Delay in C
	Pulse Width Modulation in C
	Input Capture Mode in C

	Apprlication 1: Servo Motor Control with the PWM System in C
	Application 2: Inexpensive Laser Light Show
	Summary
	References
	Chapter Problems

	Serial Communication Subsystem
	Overview
	Serial Communications
	Serial Communication Terminology
	Serial USART
	System Overview

	System Operation and Programming using Arduino Development Environment features
	System Operation and Programming in C
	Serial Peripheral Interface–SPI

	SPI Programming in the Arduino Development Environment
	SPI Programming in C
	Two–wire Serial Interface–TWI
	Arduino Development Environment

	Application 1: USART communication with LCD
	Application 2: SD/MMC card module extension via the USART
	Application 3: Equipping an Arduino Processor with a Voice Chip
	Application 4: Programming the Arduino UNO R3 ATmega328 via the ISP
	Programming Procedure

	Application 5: TMS1803 3–bit LED Drive Controller
	Summary
	References
	Chapter Problems

	Extended Examples
	Overview
	Extended Example 1: Automated Fan Cooling System
	Extended Example 2: Fine Art Lighting System
	Extended Example 3: Flight Simulator Panel
	Extended Example 4: Submersible Robot
	Requirements
	Structure chart
	Circuit Diagram
	UML Activity Diagram
	Microcontroller Code
	Project Extensions

	Extended example 5: Weather Station
	Requirements
	Structure chart
	Circuit diagram
	UML activity diagrams
	Microcontroller code

	Autonomous Maze Navigating Robots
	Extended Example 6: Blinky 602A robot–revisited
	Requirements
	Circuit diagram
	Structure chart
	UML activity diagrams
	Microcontroller code

	Extended Example 7: Mountain Maze Navigating Robot
	Description
	Requirements
	Circuit diagram
	Structure chart
	UML activity diagrams
	Microcontroller code
	Mountain Maze
	Project extensions

	Extended Example 8: Robot Wheel Odometry
	Summary
	References
	Chapter Problems

	ATmega328 Register Set
	ATmega328 Header File
	ATmega2560 Register Set
	ATmega2560 Header File
	Author's Biography

