

M
O

R
G

A
N

&
C

L
A

Y
P

O
O

L

BeagleBone Black is a low-cost, open hardware computer uniquely suited to in-
teract with sensors and actuators directly and over the Web. Introduced in April
2013 by BeagleBoard.org, a community of developers first established in early
2008, BeagleBone Black is used frequently to build vision-enabled robots, home
automation systems, artistic lighting systems, and countless other do-it-yourself
and professional projects. BeagleBone Black, hosting a powerful 32-bit, super-
scalar ARM Cortex A8 processor is capable of running numerous mobile and
desktop-capable operating systems, typically variants of Linux including Debian,
Android, and Ubuntu. Yet, BeagleBone Black is small enough to fit in a small
mint tin box. The “Bone” may be used in a wide variety of projects from mid-
dle school science fair projects to senior design projects to first prototypes of
very complex systems. Novice users may access the power of the Bone through
the user-friendly BoneScript software, experienced through a Web browser in
most major operating systems, including Microsoft Windows, Apple Mac OS
X, or the Linux operating systems. Seasoned users may take full advantage of
the Bone’s power using the underlying Linux-based operating system, a host of
feature extension boards (Capes) and a wide variety of Linux community open
source libraries. This book provides an introduction to this powerful computer
and has been designed for a wide variety of users including the first time novice
through the seasoned embedded system design professional. The book contains
background theory on system operation coupled with many well-documented,
illustrative examples. Examples for novice users are centered on motivational, fun
robot projects while advanced projects follow the theme of assistive technology
and image-processing applications.

ISBN: 978-1-62705-511-6

9 781627 0551 16

90000

ABOUT SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis Digital Library of
Engineering and Computer Science. Synthesis Lectures provide concise, original presentations
of important research and development topics, published quickly, in digital and print formats.
For more information visit www.morganclaypool.com

s t o r e . m o r g a n c l a y p o o l . c o m
MORGAN&CLAYPOOL PUBLISHERS

Series ISSN: 1932-3166

SyntheSiS LectureS on DigitaL circuitS anD SyStemS

Mitchell A. Thornton, Series Editor

MORGAN&CLAYPOOL PUBLISHERS

Steven F. Barrett
Jason Kridner

Bad to the Bone

Barrett
Kridner

Bad to the Bone
Crafting Electronic
 Systems with
 BeagleBone Black

Crafting Electronic Systems
with BeagleBone Black

SyntheSiS LectureS on DigitaL circuitS anD SyStemS
Series Editor: Mitchell A. Thornton, Southern Methodist University

SECOND EDITION Steven F. Barrett, University of Wyoming • Jason Kridner, Texas Instruments

Bad to the Bone

SECOND EDITION

SECOND
EDITION

Bad to the Bone
Crafting Electronic Systems with BeagleBone Black
Second Edition

Synthesis Lectures on Digital
Circuits and Systems

Editor
Mitchell A. ornton, SouthernMethodist University

e Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page books
targeted for audience members with a wide-ranging background. e Lectures include topics that are
of interest to students, professionals, and researchers in the area of design and analysis of digital
circuits and systems. Each Lecture is self-contained and focuses on the background information
required to understand the subject matter and practical case studies that illustrate applications. e
format of a Lecture is structured such that each will be devoted to a specific topic in digital circuits
and systems rather than a larger overview of several topics such as that found in a comprehensive
handbook. e Lectures cover both well-established areas as well as newly developed or emerging
material in digital circuits and systems design and analysis.

Bad to the Bone: Crafting Electronic Systems with BeagleBone Black, Second Edition
Steven Barrett and Jason Kridner
2016

Fundamentals of Electronics: Book 1 Electronic Devices and Circuit Applications
omas F. Schubert and Ernest M. Kim
2015

Applications of Zero-Suppressed Decision Diagrams
Tsutomu Sasao and Jon T. Butler
2014

Modeling Digital Switching Circuits with Linear Algebra
Mitchell A. ornton
2014

Arduino Microcontroller Processing for Everyone! ird Edition
Steven F. Barrett
2013

Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

iv

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2016

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Shmerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012

Advanced Circuit Simulation Using Multisim Workbench
David Báez-López, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagómez
2012

Circuit Analysis with Multisim
David Báez-López and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part II
Steven F. Barrett and Daniel J. Pack
2011

Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment
David J. Russell
2010

v

Arduino Microcontroller: Processing for Everyone! Part II
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part I
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. ornton
2010

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part II
Steven F. Barrett
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
II: Digital and Analog Hardware Interfacing
Douglas H. Summerville
2009

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
I: Assembly Language Programming
Douglas H.Summerville
2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

vi

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development
of the Design and Analysis of Clock-Independent State Machines and Systems
Richard F. Tinder
2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. ornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007

Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

PSpice for Filters and Transmission Lines
Paul Tobin
2007

PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

PSpice for Circuit eory and Electronic Devices
Paul Tobin
2007

vii

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

High-Speed Digital System Design
Justin Davis
2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A.ornton
2006

Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006

Copyright © 2016 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Bad to the Bone: Crafting Electronic Systems with BeagleBone Black, Second Edition

Steven Barrett and Jason Kridner

www.morganclaypool.com

ISBN: 9781627055116 paperback
ISBN: 9781627055123 ebook
ISBN: 9781627058308 ePub

DOI 10.2200/S00675ED1V01Y201509DCS046

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #47
Series Editor: Mitchell A. ornton, Southern Methodist University
Series ISSN
Synthesis Lectures on Digital Circuits and Systems
Print 1932-3166 Electronic 1932-3174

www.morganclaypool.com

Bad to the Bone
Crafting Electronic Systems with BeagleBone Black
Second Edition

Steven Barrett
University of Wyoming

Jason Kridner
Texas Instruments

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #47

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
BeagleBone Black is a low-cost, open hardware computer uniquely suited to interact with sensors
and actuators directly and over the Web. Introduced in April 2013 by BeagleBoard.org, a com-
munity of developers first established in early 2008, BeagleBone Black is used frequently to build
vision-enabled robots, home automation systems, artistic lighting systems, and countless other
do-it-yourself and professional projects. BeagleBone variants include the original BeagleBone
and the newer BeagleBone Black, both hosting a powerful 32-bit, super-scalar ARM Cortex A8
processor capable of running numerous mobile and desktop-capable operating systems, typically
variants of Linux including Debian, Android, and Ubuntu. Yet, BeagleBone is small enough to
fit in a small mint tin box. e “Bone” may be used in a wide variety of projects from middle
school science fair projects to senior design projects to first prototypes of very complex systems.
Novice users may access the power of the Bone through the user-friendly BoneScript software,
experienced through a Web browser in most major operating systems, including Microsoft Win-
dows, Apple Mac OS X, or the Linux operating systems. Seasoned users may take full advantage
of the Bone’s power using the underlying Linux-based operating system, a host of feature ex-
tension boards (Capes) and a wide variety of Linux community open source libraries. is book
provides an introduction to this powerful computer and has been designed for a wide variety of
users including the first time novice through the seasoned embedded system design professional.
e book contains background theory on system operation coupled with many well-documented,
illustrative examples. Examples for novice users are centered on motivational, fun robot projects
while advanced projects follow the theme of assistive technology and image-processing applica-
tions.

KEYWORDS
BeagleBone, Linux, microcontroller interfacing, embedded systems design, Bone-
script, ARM, open source computing

xi

For the students!

xiii

Contents
Preface . xxi

Acknowledgments . xxv

1 Getting Started . 1
1.1 Welcome! . 1
1.2 Overview . 2
1.3 A Brief Beagle History . 3
1.4 BeagleBoard.org Community . 4
1.5 BeagleBone Hardware . 4

1.5.1 Open-Source Hardware . 6
1.6 Developing with Bonescript . 6
1.7 BeagleBone Capes . 6
1.8 Power Requirements and Capabilities . 8
1.9 Getting Started—Success Out of the Box . 8

1.9.1 Exercise 1: Accessing Bonescript through your Browser 8
1.9.2 Exercise 2: Blinking an LED with Bonescript . 9
1.9.3 Executing the blinkled.js Program . 12
1.9.4 Exercise 3: Developing your Own Boneyard—AROO! 12

1.10 Summary . 13
1.11 References . 14
1.12 Chapter Exercises . 15

2 Bonescript . 17
2.1 Overview . 17
2.2 Application 1: Bonescript Tour . 21
2.3 Application 2: Robot IR Sensor . 28
2.4 Application 3: Art Piece Illumination System . 33
2.5 Summary . 35
2.6 References . 35
2.7 Chapter Exercises . 35

xiv

3 Programming . 37
3.1 An Overview of the Design Process . 37
3.2 Overview . 37
3.3 Anatomy of a Program . 38

3.3.1 Comments . 40
3.3.2 Include Files . 41
3.3.3 Functions . 42
3.3.4 Interrupt Handler Definitions . 45
3.3.5 Program Constants . 45
3.3.6 Variables . 45
3.3.7 Main Function . 46

3.4 Fundamental Programming Concepts . 47
3.4.1 Operators . 47
3.4.2 Programming Constructs . 51
3.4.3 Decision Processing . 54

3.5 Programming in JavaScript Using Node.js . 59
3.5.1 JavaScript . 60
3.5.2 Event-driven Programming . 60
3.5.3 Node.js . 62

3.6 Application: Dagu Magician Autonomous Maze Navigating Robot 66
3.6.1 Dagu Magician Robot . 66
3.6.2 Requirements . 68
3.6.3 Circuit Diagram . 68
3.6.4 Structure Chart . 70
3.6.5 UML Activity Diagrams . 70
3.6.6 Bonescript Code . 70

3.7 Summary . 75
3.8 References . 76
3.9 Chapter Exercises . 76

4 BeagleBone Operating Parameters and Interfacing . 79
4.1 Overview . 79
4.2 Operating Parameters . 80

4.2.1 BeagleBone 3.3 VDC Operation . 80
4.2.2 Compatible 3.3 VDC Logic Families . 81
4.2.3 Input/output Operation at 5.0 VDC . 82

xv

4.2.4 Interfacing 3.3 VDC Logic Families to 5.0 VDC Logic Families 83
4.3 Input Devices . 84

4.3.1 Switches . 84
4.3.2 Switch Debouncing . 86
4.3.3 Keypads . 86
4.3.4 Sensors . 88
4.3.5 Transducer Interface Design (TID) Circuit . 91
4.3.6 Operational Amplifiers . 96

4.4 Output Devices . 98
4.4.1 Light-Emitting Diodes (LEDs) . 98
4.4.2 Seven-Segment LED Displays . 103
4.4.3 Tri-state LED Indicator . 103
4.4.4 Dot Matrix Display . 106
4.4.5 Liquid Crystal Display (LCD) . 106

4.5 High-Power Interfaces . 108
4.5.1 High-Power DC Devices . 108
4.5.2 DC Motor Speed and Direction Control . 109
4.5.3 DC Motor Operating Parameters . 110
4.5.4 H-bridge Direction Control . 110
4.5.5 DC Solenoid Control . 111
4.5.6 Stepper Motor Control . 112
4.5.7 Optical Isolation . 112

4.6 Interfacing to Miscellaneous Devices . 113
4.6.1 Sonalerts, Beepers, Buzzers . 113
4.6.2 Vibrating Motor . 114
4.6.3 DC Fan . 116
4.6.4 Bilge Pump . 116

4.7 AC Devices . 116
4.8 Application 1: Equipping the Dagu Magician Robot with a LCD 117
4.9 Application 2: the Dagu Magician Interface on a Custom Cape 132
4.10 Application 3: Special Effects LED Cube . 137

4.10.1 Construction Hints . 139
4.10.2 LED Cube Bonescript Code . 139

4.11 Summary . 152
4.12 References . 152
4.13 Chapter Exercises . 153

xvi

5 BeagleBone Systems Design . 155
5.1 Overview . 155
5.2 What Is an Embedded System? . 156
5.3 Embedded System Design Process . 156

5.3.1 Project Description . 156
5.3.2 Background Research . 156
5.3.3 Pre-Design . 158
5.3.4 Design . 158
5.3.5 Implement Prototype . 160
5.3.6 Preliminary Testing . 161
5.3.7 Complete and Accurate Documentation . 161

5.4 Submersible Robot . 162
5.4.1 Approach . 162
5.4.2 Requirements . 162
5.4.3 ROV Structure . 164
5.4.4 Structure Chart . 166
5.4.5 Circuit Diagram . 166
5.4.6 UML Activity Diagram . 167
5.4.7 BeagleBone Code . 168
5.4.8 Control Housing Layout . 182
5.4.9 Final Assembly Testing . 182
5.4.10 Final Assembly . 184
5.4.11 Project Extensions . 184

5.5 Mountain Maze Navigating Robot . 184
5.5.1 Description . 184
5.5.2 Requirements . 186
5.5.3 Circuit diagram . 186
5.5.4 Structure Chart . 186
5.5.5 UML Activity Diagrams . 186
5.5.6 Bonescript Code . 186
5.5.7 Mountain Maze . 192
5.5.8 Project Extensions . 192

5.6 Summary . 194
5.7 References . 195
5.8 Chapter Exercises . 195

xvii

6 BeagleBone Features and Subsystems . 199
6.1 Overview . 199
6.2 Beagling in Linux . 200

6.2.1 Communication with BeagleBone Black . 201
6.3 Updating your eMMC . 206

6.3.1 Updating Your eMMC in MS Windows . 207
6.4 A Brief Introduction to Linux . 208
6.5 Programming in C using the Linux Toolchain . 210
6.6 BeagleBone Features and Subsystems . 212

6.6.1 Exposed Function Access . 214
6.6.2 Expansion Interface . 216

6.7 BeagleBone Black Device Tree and Overlays . 216
6.7.1 Overview . 216
6.7.2 Binary Tree . 217
6.7.3 Device Tree Format . 220
6.7.4 Device Tree Related Files . 221
6.7.5 BeagleBone Black Device Tree . 221
6.7.6 Universal Device Tree Overlay . 226

6.8 Programming in C with BeagleBone Black . 229
6.8.1 Linux GPIO Files . 229
6.8.2 Configuring the GPIO Files . 230
6.8.3 Accessing the GPIO Files in C . 232

6.9 Analog-to-Digital Converters (ADC) . 239
6.9.1 ADC Process: Sampling, Quantization, and Encoding 239
6.9.2 Resolution and Data Rate . 241
6.9.3 ADC Conversion Technologies . 241
6.9.4 BeagleBone Black ADC system . 242
6.9.5 ADC conversion . 243
6.9.6 ADC Support Functions in Bonescript . 243
6.9.7 Accessing the ADC System in Linux . 247
6.9.8 ADC Support Functions in C . 248

6.10 Serial Communications . 251
6.10.1 Serial Communication Terminology . 251
6.10.2 Serial UART . 254
6.10.3 Serial Peripheral Interface (SPI) . 259

6.11 Precision Timing . 267

xviii

6.11.1 Timing-Related Terminology . 267
6.11.2 BeagleBone Timing Capability . 269

6.12 Pulse Width Modulation (PWM) . 271
6.12.1 BeagleBone PWM Subsystem (PWMSS) Description 272
6.12.2 Bonescript PWM Support . 273
6.12.3 PWM Device Tree Overlay and C Support Functions 273

6.13 Internet of ings—Networking . 276
6.13.1 Inter-Integrated Circuit (I2C) Bus . 276
6.13.2 Controller Area Network (CAN) Bus . 278
6.13.3 Ethernet . 278
6.13.4 Internet . 280

6.14 Liquid Crystal Display (LCD) Interface . 281
6.14.1 C Support Functions . 281

6.15 Interrupts . 281
6.15.1 Bonescript Interrupt Support . 281

6.16 Programmable Real-Time Units . 285
6.16.1 Architecture Overview . 287
6.16.2 PRU Memory Map . 287
6.16.3 PRU Interrupt System . 288
6.16.4 PRU Pin Mapping to BeagleBone Black . 288
6.16.5 PRU Assembly Program (PASM) . 288
6.16.6 Development Process . 292

6.17 Summary . 304
6.18 References . 304
6.19 Chapter Exercises . 306

7 BeagleBone “Off the Leash” . 309
7.1 Overview . 309
7.2 Boneyard II: a Portable Linux Platform-BeagleBone Unleashed 310
7.3 Boneyard III: a Low-Cost Desktop Linux Platform . 310

7.3.1 Accessing Bonescript . 315
7.3.2 Accessing the Internet . 315

7.4 Application 1: Inexpensive Laser Light Show . 315
7.5 Application 2: Arbitrary Waveform Generator . 320
7.6 Application 3: Robot Arm . 320
7.7 Application 4: Weather Station in Bonescript . 325

xix

7.7.1 Requirements . 325
7.7.2 Structure Chart . 325
7.7.3 Circuit Diagram . 326
7.7.4 UML Activity Diagrams . 326
7.7.5 Bonescript Code . 327

7.8 Application 5: Speak & Spell in C . 336
7.8.1 BeagleBone C Code . 337

7.9 Application 6: Dagu Rover 5 Treaded Robot . 342
7.9.1 Description . 342
7.9.2 Requirements . 342
7.9.3 Circuit Diagram . 342
7.9.4 Structure Chart . 342
7.9.5 UML Activity Diagrams . 342
7.9.6 BeagleBone C Code . 346

7.10 Application 7: Portable Image Processing Engine . 351
7.10.1 Brief Introduction to Image Processing . 351
7.10.2 Image Processing Tasks . 353
7.10.3 OpenCV Computer Vision Library . 353
7.10.4 Stache Cam . 355

7.11 Summary . 360
7.12 References . 360
7.13 Chapter Exercises . 361

8 Where to from Here? . 363
8.1 Overview . 363
8.2 Software Libraries . 363

8.2.1 OpenCV . 363
8.2.2 Qt . 363
8.2.3 Kinect . 364

8.3 Additional Resources . 364
8.3.1 OpenROV . 364
8.3.2 Ninja Blocks . 364
8.3.3 Related Books . 365
8.3.4 BeagleBoard.org Resources . 367
8.3.5 Contributing to Bonescript . 367

8.4 Summary . 367
8.5 References . 367

xx

8.6 Chapter Exercises . 368

A Bonescript functions . 369

B LCD interface for BeagleBone in C . 373
B.1 BeagleBone LCD Interface . 373
B.2 BeagleBone Black LCD C code . 373

C Parts List for Projects . 387

Authors’ Biographies . 391

xxi

Preface
BeagleBone Black is a low-cost, open hardware computer uniquely suited to interact with sensors
and actuators directly and over the Web. Introduced in April 2013 by BeagleBoard.org, a com-
munity of developers first established in early 2008, BeagleBone Black is used frequently to build
vision-enabled robots, home automation systems, artistic lighting systems and countless other
do-it-yourself and professional projects. BeagleBone variants include the original BeagleBone
and the newer BeagleBone Black, both hosting a powerful 32-bit, super-scalar ARM Cortex A8
processor capable of running numerous mobile and desktop-capable operating systems, typically
variants of Linux including Debian, Android, and Ubuntu. Yet, BeagleBone is small enough to
fit in a small mint tin box. e “Bone” may be used in a wide variety of projects from middle
school science fair projects to senior design projects to first prototypes of very complex systems.
Novice users may access the power of the Bone through the user-friendly BoneScript software,
experienced through a Web browser in most major operating systems, including Microsoft Win-
dows, Apple Mac OS X or the Linux operating systems. Seasoned users may take full advantage
of the Bone’s power using the underlying Linux-based operating system, a host of feature ex-
tension boards (Capes) and a wide variety of Linux community open source libraries. is book
provides an introduction to this powerful computer and has been designed for a wide variety of
users including the first time novice through the seasoned embedded system design professional.
e book contains background theory on system operation coupled with many well-documented,
illustrative examples. Examples for novice users are centered on motivational, fun robot projects
while advanced projects follow the theme of assistive technology and image processing applica-
tions.

Texas Instruments has a long history of educating the next generation of STEM (Science,
Technology, Engineering, and Mathematics) professionals. BeagleBone is the latest educational
innovation in a long legacy which includes the Speak & Spell and Texas Instruments handheld
calculators. e goal of the BeagleBone project is to place a powerful, expandable computer in
the hands of young innovators. Novice users can unleash the power of the Bone through the user-
friendly, browser-based Bonescript environment. As the knowledge and skill of the user develops
and matures, BeagleBone provides more sophisticated interfaces including a complement of C-
based functions to access the hardware systems aboard the ARM Cortex A8 processor. ese
features will prove useful for college-level design projects including capstone design projects. e
full power of the processor may be unleashed using the underlying onboard Linux-based operat-
ing system. A wide variety of hardware extension features are also available using daughter card
“Capes” and Linux community open source software libraries. ese features allow for the rapid
prototyping of complex, expandable embedded systems.

xxii PREFACE

A BRIEF BEAGLE HISTORY
e Beagle family of computer products include BeagleBoard, BeagleBoard xM, the original
BeagleBone, and the newest member BeagleBone Black. All have been designed by Gerald Coley,
a long-time expertHardware Applications Engineer, of Texas Instruments. He has been primarily
responsible for all hardware design, manufacturing planning, and scheduling for the product line.
e goal of the entire product line is to provide users a powerful computer at low cost with no
restrictions. As Gerald describes it, his role has been to “get the computers out there and then get
out of the way” to allow users to do whatever they want. e computers are intended for everyone
and the goal is to provide “out of the box success.” He indicated it is also important to provide
users a full suite of open source hardware details and to continually improve the product line by
listening to customers’ desires and keeping the line fresh with new innovations. In addition to
the computers, a full line of Capes to extend processor features is available. ere are more than
40 different Capes currently available with many more on the way.

BeagleBone was first conceptualized in early Fall 2011. e goal was to provide a full-
featured, expandable computer employing the Sitara ARM processor in a small profile case. Jason
Kridner told Gerald the goal was to design a processor board that would fit in a small mint tin
box. After multiple board revisions, Gerald was able to meet the desired form factor. BeagleBone
enjoyed a fast development cycle. From a blank sheet of paper as a starting point, to full production
was accomplished, in 90 days.

New designs at Texas Instruments are given a code name during product development.
During the early development of the Beagle line, the movie “Underdog” was showing in local
theaters. Also,Gerald had a strong affinity to Beagles based on his long-time friend and pet “Jake.”
Gerald dubbed the new project “Beagle” with the intent of changing the name later. However, the
name stuck and the rest is history. Recently, an acronym was developed to highlight the Beagle
features:

• Bring your own peripherals

• Entry-level costs

• ARM Cortex–A8 superscalar processor

• Graphics accelerated

• Linux and open source community

• Environment for innovators

APPROACH OF THE BOOK
Concepts will be introduced throughout the book with the underlying theory of operation, related
concepts andmany illustrative examples. Concepts early in the book will be illustrated usingmoti-
vational robot examples including an autonomous robot navigating about a two-dimensionalmaze

PREFACE xxiii

based on the low-cost Dagu Magician Chassis (#ROB-10825) robot platform, an autonomous
four-wheel drive (4WD) robot (DFROBOT ROBOT0003) in a three-dimensional mountain
maze, and a SeaPerch Remotely Operated Vehicle (ROV).

Advanced examples follow a common theme of assistive technology. Assistive technology
provides those with challenges the ability to meet their potential using assistive devices. One ex-
ample covered in this book is a BeagleBone based Speak & Spell. Speak & Spell is an educational
toy developed by Texas Instruments in the mid-1970’s. It was developed by the engineering team
of Gene Franz, Richard Wiggins, Paul Breedlove, and Larry Branntingham.

is book is organized as follows. Chapter 1 provides an introduction to the BeagleBone
processor. Chapter 2 provides a brief introduction to the Bonescript programming environment.
Chapter 3 provides an introduction to programming and concludes with an extended example
of the Dagu Magician robot project. Chapter 4 provides electrical interfacing fundamentals to
properly connect BeagleBone to peripheral components. Chapter 5 provides an introduction to
system-level design, the tools used to develop a system and two advanced robot system examples.

Chapter 6 begins an advanced treatment of BeagleBone and the ARM Cortex A8 processor
and an in-depth review of exposed functions and how to access them using both Bonescript and
C functions. Chapter 6 provides an introduction to the universal cape and also the programmable
real-time units (PRUs). In Chapter 7 the full power of BeagleBone is unleashed via several system
level examples. Chapter 8 briefly reviews additional resources available to the BeagleBone user.

A LITTLE BEAGLE LORE
e beagle dog has been around for centuries and was quite popular in Europe. ey were known
for their sense of smell and were used to track hare. ey are also known for their musical, bugling
voice. In e Beagle Handbook, Dan Rice, Doctor of Veterinary Medicine (DVM), indicates the
Beagle was probably named for their size or voice. A combination of the French words for “open
wide” and “throat” results in Begueule and might refer to the Beagle’s distinctive and jubilant
bugle while on the hunt. Rice also notes “the word beagling isn’t found in Webster’s dictionary,
but it’s well recognized in canine fancy. Used by the Beagle community for practically all endeavors
that involve their beautiful dogs [Rice, 2000].” We too will use the term “beagling” to describe
the fun sessions of working with BeagleBone that are ahead. It is also worth mentioning that
Ian Dunbar, Member of the Royal College of Veterinary Surgeons (MRCVS) in e Essential
Beagle indicates the “overall temperament of the Beagle is bold and friendly.” is seems like an
appropriate description for the BeagleBone computer running Bonescript software.

THE BEAGLEBOARD.ORG COMMUNITY
e www.BeagleBoard.org community has many members. What we all have in common is the
desire to put processing power in the hands of the next generation of users. BeagleBoard.org, with
Texas Instruments’ support, embraced the open source concept with the development and release
of BeagleBone in late 2011. eir support will insure the BeagleBone project will be sustainable.

www.BeagleBoard.org

xxiv PREFACE

BeagleBoard.org partnered with Circuitco (www.Circuitco.com) to produce BeagleBone and
its associated Capes. e majority of the Capes have been designed and fabricated by Circuitco.
Clint Cooley, President of Circuitco, is most interested in helping users develop and produce
their own ideas for BeagleBone Capes. BeagleBone Black is now manufactured by Circuitco
and Element 14. Texas Instruments has also supported the www.BeagleBoard.org community
by giving Jason Kridner the latitude to serve as the open platform technologist and evangelist
for the BeagleBoard.org community. e most important members of the community are the
BeagleBoard and Bone users. Our ultimate goal is for the entire community to openly share their
successes and to encourage the next generation of STEM practitioners.

Gerald Coley and Jason Kridner of Texas Instruments and Clint Cooley of CircuitCo are
the core team of the BeagleBoard.org Foundation founded in 2008. e Foundation is a US-
based 501(c) non-profit corporation existing to provide education in and promotion of the design
and use of open-source software and hardware in embedded computing.

Steven Barrett and Jason Kridner
September 2015

www.Circuitco.com
www.BeagleBoard.org

xxv

Acknowledgments
e authors would like to thank Cathy Wicks and Larissa Swanland of Texas Instruments who
proposed this collaboration. We also thank Gerald Coley of Texas Instruments who was inter-
viewed for this book. We also thank Clint Cooley, President of Circuitco, for hosting a tour of his
company where BeagleBone and its associated Capes are produced. We would also like to thank
Joel Claypool of Morgan & Claypool Publishers for his support of this project and his permission
to use selected portions from previous M&C projects. We also thank Professor Walter Schilling,
Ph.D. of the Milwaukee School of Engineering who provided a thorough, expert review of the
book. We also thank Sara Kreisman for her careful and thorough copy edit of the final manuscript.
Also, a special thank you to Jonathan Barrett of Closer to the Sun International for photography
support throughout this book (www.closertothesuninternational.com).

Steven Barrett and Jason Kridner
September 2015

www.closertothesuninternational.com

1

C H A P T E R 1

Getting Started
Objectives: After reading this chapter, the reader should be able to do the following.

• Provide a brief history of the Beagle computer line.

• Outline the different members of the BeagleBoard.org community.

• Appreciate the role of the BeagleBoard.org community.

• Describe BeagleBone concept of open source hardware.

• Diagram the layout and features of the BeagleBone Black computer.

• Describe BeagleBone Cape concept and available Capes.

• Define the power requirements for BeagleBone computer.

• Download, configure, and successfully execute a test program using the Cloud9 Integrated
Development Environment (IDE) and the Bonescript software.

• Design and implement a BeagleBone Boneyard prototype area to conduct laboratory exer-
cises.

1.1 WELCOME!
Welcome to the wonderful world of BeagleBone! Whether you are a first-time BeagleBone user
or are seasoned at “Beagling,” this book should prove useful. Chapter 1 is an introduction to
BeagleBone, its environment and the Beagle community. BeagleBone hosts the Linux operat-
ing system; however, the user-friendly Bonescript programming environment may be used in a
wide variety of browser environments including: Microsoft Windows, MAC OS X, and Linux.
We provide instructions on how to rapidly get up-and-operating right out of the box! Also, an
overview of BeagleBone features and subsystems is provided. e chapter concludes with several
examples to get you started.

Note: If you can’t wait to get started, skip to Section 1.9 “Getting Started—Success Out
of the Box.” Happy Beagling!

2 1. GETTING STARTED

Figure 1.1: BeagleBone. (Figures adapted and used with permission of www.adafruit.com.)

1.2 OVERVIEW
BeagleBone is a low-cost, open-hardware, expandable computer first introduced in November
2011 by www.BeagleBoard.org, a community of developers started by Beagle enthusiasts at
Texas Instruments. Various BeagleBone variants host a powerful 32-bit, super-scalar ARM®
CortexTM —A8 processor operating up to 1 GHz. is allows the “Bone” to be used in a wide
variety of applications usually reserved for powerful, desktop systems. e Bone is a full-featured
computer small enough to fit in a small mint tin box. e combination of computing power and
small form factor allows the Bone to be used in a wide variety of projects from middle school
science fair projects to senior design projects to first prototypes of very complex systems.

Novice users may access the power of the Bone through the user-friendly, browser-based
Bonescript environment in MS Windows, Mac OS X, and Linux. Seasoned users may take full
advantage of the Bone’s power using the underlying Linux-based operating system, a host of
feature extension boards (Capes) and a wide variety of open source libraries.

Texas Instruments has supported BeagleBone development and has a long history of ed-
ucating the next generation of STEM (Science, Technology, Engineering, and Mathematics)
professionals. BeagleBone is the latest education innovation in a long legacy which includes the
Speak & Spell and Texas Instruments handheld calculators. e goal of BeagleBone project is

www.adafruit.com
www.BeagleBoard.org

1.3. A BRIEF BEAGLE HISTORY 3

to place a powerful, expandable computer in the hands of young innovators through the user-
friendly, browser-based Bonescript environment. As the knowledge and skill of the user develops
and matures, BeagleBone provides more sophisticated interfaces including a complement of C-
based functions to access the hardware systems aboard the ARM Cortex A8 processor. ese
features will prove useful for college-level design projects including capstone design projects. e
full power of the processormay be unleashed using the underlying onboard Linux-based operating
system.

To assemble a custom system, the Bone may be coupled with a wide variety of daughter
board “Capes” and open source libraries. ese features allow for the rapid prototyping of com-
plex, expandable embedded systems. A full line of Capes to extend processor features is available.
ere are over 80 different Capes currently available with at least as many more on the way. e
Cape system is discussed later in this chapter. Open source libraries are discussed later in the
book.

1.3 A BRIEF BEAGLE HISTORY
e Beagle family of computer products include BeagleBoard, BeagleBoard-xM, the original
BeagleBone, and the newest member BeagleBone Black. All have been designed by Gerald Coley,
a long-time expertHardware Applications Engineer, of Texas Instruments. He has been primarily
responsible for all hardware design, manufacturing planning, and scheduling for the product lines.
e goal of the entire platform line is to provide users a powerful computer at a low cost with no
restrictions. As Gerald describes it, his role has been to “get the computers out there and then get
out of the way” to allow users to do whatever they want. e computers are intended for everyone
and the goal is to provide out-of-box success.” He indicated it is also important to provide users a
full suite of open source hardware details and to continually improve the product line by listening
to customers’ desires and keeping the line fresh with new innovations.

BeagleBone was first conceptualized in early Fall 2011. e goal was to provide a full-
featured, expandable computer employing the SitaraTM AM335x ARM® processor in a small
profile case. Jason Kridner, a longtime expert Software Applications Engineer responsible for all
Beagle software and co-author of this textbook, of Texas Instruments told Gerald the goal was
to design a processor board that would fit in a small mint tin box. After multiple board revisions,
Gerald was able to meet the desired form factor. BeagleBone enjoyed a fast development cycle.
From a blank sheet of paper starting point to full production was accomplished in 90 days.

New designs at Texas Instruments are given a code name during product development.
During the early development of the Beagle line, the movie “Underdog” was showing in local the-
aters. Also, Gerald had a strong affinity to Beagles based on his long-time friend and pet, “Jake.”
Gerald dubbed the new project “Beagle” with the intent of changing the name later. However,
the name stuck and the rest is history.

e “Underdog” movie was adapted from the cartoon series of the same name. e series
debuted in 1964 and featured the hero “Underdog”—who was humble and loveable “Shoeshine

4 1. GETTING STARTED

Boy” until danger called. Shoeshine Boy was then transformed into the invincible flying Under-
dog complete with a cape that allowed him to fly. His famous catch phrase was “Have no fear,
Underdog is here!” is series is readily available on Amazon and is a lot of good fun. BeagleBone
is a bit like Underdog. It can fit into an unassuming, mint tin box, yet is a full-featured, “fire-
breathing,” computer equipped with the Linux operating system whose features are extended with
Capes.

1.4 BEAGLEBOARD.ORG COMMUNITY
e BeagleBoard.org community has thousands of members. What we all have in common is
the desire to put processing power in the hands of the next generation of users. BeagleBoard.org
with Texas Instruments support embraced the open-source concept with the development and re-
lease of BeagleBone in late 2011. eir support will ensure BeagleBone project remains sustained.
BeagleBoard.org partnered with Circuitco (a contract manufacturer) to produce BeagleBone and
many of its associated Capes. e majority of the Capes have been designed and fabricated by
Circuitco. Clint Cooley, President of Circuitco, is most interested in helping users develop and
produce their own ideas for BeagleBone Capes. BeagleBone Black is now manufactured by Cir-
cuitco and Element 14. Texas Instruments has also supported the BeagleBoard.org community
by giving Jason Kridner the latitude to serve as the open platform technologist and evangelist for
the BeagleBoard.org community. e most important members of the community are the Bea-
gleBoard and BeagleBone users (you). Our ultimate goal is for the entire community to openly
share their successes and to encourage the next generation of STEM practitioners.

In the next several sections, an overview of BeagleBone hardware, system configuration,
and software is discussed.

1.5 BEAGLEBONE HARDWARE
ere are two different variants of BeagleBone: e original BeagleBone, released in late 2011,
and BeagleBone Black released in early 2013. is new book edition concentrates on the Bea-
gleBone Black; however, all Bonescript examples provided in the book will execute on both Bea-
gleBone variants. Also, the original BeagleBone may be uploaded with the Debian Linux release
shipped on BeagleBone Black. e features of BeagleBone Black is summarized in Figure 1.2.

e BeagleBone Black fits inside a small mint box. It hosts the SitaraTM AM3358 ARM®
processor which operates at a maximum frequency of 1 GHz. BeagleBone Black is equipped
with a 4 GB eMMC (embedded MultiMedia Card). is provides for non-volatile mass storage
in an integrated circuit package. e eMMC acts as the “hard drive” for BeagleBone Black board
and hosts the Linux operating system, Cloud9 Integrated Development Environment (IDE) and
Bonescript. A micro SD card connector is available for expanding storage capability. e Beagle-
Bone Black may also be booted from the SD card. BeagleBone Black is equipped with an HDMI
(High-Definition Multimedia Interface) framer and micro connector. HDMI is a compact digi-

1.5. BEAGLEBONE HARDWARE 5

Figure 1.2: BeagleBone Black features [Coley, 2014].(Figures adapted and used with permission of
www.beagleboard.org.)

www.beagleboard.org

6 1. GETTING STARTED

tal audio/interface which is commonly used in commercial entertainment products such as DVD
players, video game consoles, and mobile phones. BeagleBone Black costs approximately US $55
[Coley, 2014].

1.5.1 OPEN-SOURCE HARDWARE
To spur the development and sharing of new developments and features among the BeagleBoard
community, all hardware details of BeagleBone boards are readily available as open source. is
includes detailed schematics, bill-of-materials and printed circuit board (PCB) layout. is allows
for custom designs to take full advantage of BeagleBone-based products at the lowest possible
cost. Hardware details are readily available at www.beagleboard.org.

1.6 DEVELOPING WITH BONESCRIPT
Bonescript helps to provide a user-friendly, browser-based programming environment for Beagle-
Bone. Bonescript consists of a JavaScript library of functions to rapidly develop a variety of physi-
cal computing applications. Bonescript is accessed via a built-in web server that is pre-installed on
the BeagleBone board. Because Bonescript programming is accessed over your browser, it may
be developed from any of MS Windows, Mac OS X, and Linux. Exercise 1 provided later in
the chapter provides easy-to-use instructions on how to quickly get Bonescript-based program
up and operating. Although Bonescript is user-friendly, it may also be used to rapidly prototype
complex embedded systems.

1.7 BEAGLEBONE CAPES
A wide variety of peripheral components may be easily connected to BeagleBone. A series of
Capes have been developed to give BeagleBone “super powers” (actually, using these plug-in
boards provide BeagleBone with additional functionality). Currently, there are over 80 different
capes available with many more on the way. See www.beaglebonecapes.com for the latest in-
formation on available capes. BeagleBone may be equipped with up to four Capes at once. Each
Cape is equipped with an onboard EEPROM to store Cape configuration data. For example,
Capes are available to provide BeagleBone:

• a 7-in, 800 x 400 pixel TFT LCD (liquid crystal display) (LCD7 Cape);

• a battery pack (Battery Cape);

• a Controller Area Network (CAN) interface (CANbus Cape);

• separate Capes for interface to a wide variety of devices including DVI-D, Profibus, RS-
232, RS-485 and VGA standards;

• an interface for two stepper motors;

www.beagleboard.org
www.beaglebonecapes.com

1.7. BEAGLEBONE CAPES 7

• a Global Positioning System (GPS) cape;

• a high-definition camera cape;

• an inertial navigation system cape;

• DC motor control cape;

• weather and environmental sensor cape; and

• radio frequency (RF) link cape.

ere is also a Cape equipped with a solderless breadboard area to provide a straightforward
interface to external components. is Cape is illustrated in Figure 1.3 along with a representative
sample of other Capes.

Figure 1.3: BeagleBone Capes: (Top left) prototype Cape; (top right) Liquid Crystal Display LCD7
Cape—Figures used with permission of Circuitco (www.circuitco.com); (bottom left) Controller
Area Network Cape; (bottom right) motor control Cape—Figures used with permission of Circuitco
(www.circuitco.com).

Most of these Capes have been designed by www.BeagleBoard.org and are manufactured
by Circuitco in Richardson, Texas. Both BeagleBoard.org and Circuitco are interested in manu-
facturing Cape designs submitted by the BeagleBoard.org community.

www.circuitco.com
www.circuitco.com
www.BeagleBoard.org

8 1. GETTING STARTED

1.8 POWER REQUIREMENTS AND CAPABILITIES

Figure 1.4: BeagleBone power source. (Photo courtesy of J. Barrett [2015], Closer to the Sun Inter-
national).

BeagleBone may be powered from the USB cable, an external 5 VDC power supply or via
the Battery Cape. An external 5 VDC supply may be connected to the external power supply con-
nector. e 5 VDC supply requires a minimum 1 amp current rating and must be equipped with
a 2.1 mm center positive with a 5.5 mm outer barrel [Coley, 2014]. A BeagleBone-compatible 5
VDC, 2A power supply is available from Adafruit (www.adafruit.com).

1.9 GETTING STARTED—SUCCESS OUT OF THE BOX
It is important to the BeagleBoard designers that a novice user experience out-of-box success on
first time use. In this section we provide a series of exercises to quickly get up and operating with
BeagleBone and Bonescript.

1.9.1 EXERCISE 1: ACCESSING BONESCRIPT THROUGH YOUR
BROWSER

For the novice user, the quickest way to get up and operating with Bonescript is through your web
browser. Detailed step-by-step, quick-start instructions are provided in the online “BeagleBone

www.adafruit.com

1.9. GETTING STARTED—SUCCESS OUT OF THE BOX 9

Quick-Start Guide” available at www.beagleboard.org. An abbreviated “Quick-Start Guide”
ships with BeagleBone Black. e guide consists of four easy-to-follow the steps summarized
below. ey may be accomplished in less than 10 min to allow rapid out-of-box operation [www.
beagleboard.org].

1. Plug BeagleBone into the host computer via the mini USB cape and open the START.htm
file.

2. Install the proper drivers for your system. MS Windows users need to first determine if the
host computer is running 32- or 64-bit Windows. Instructions to do this are provided at
http://support.microsoft.com/kb/827218.

3. Browse “Information on BeagleBoard” information using Chrome or Firefox by going to
http://192.168.7.2. (Internet Explorer is not recommended for use with BeagleBone
Black.)

4. Explore the Cloud9 IDE develop environment by navigating to http://192.168.7.2:
3000/ using Chrome or Firefox.

1.9.2 EXERCISE 2: BLINKING AN LED WITH BONESCRIPT
In this exercise we blink a light-emitting diode (LED) onboard BeagleBone and also an external
LED. Bonescript will be used along with the blinkled.js program. e LED interface to the
BeagleBone is shown in Figure 1.5 and also Figure 1.6. e interface circuit consists of a 270 ohm
resistor in series with the LED. is limits the current from BeagleBone to a safe value below
8 mA. e LED has two terminals: the anode (C) and cathode (�). e cathode is the lead closest
to the flattened portion of the LED when viewed from above. When connecting the LED circuit,
pay close attention to the orientation of the BeagleBone computer. With the 5 VDC receptacle
in the upper-left portion of the computer, header P9 is on the left and header P8 is on the right.
e pins of each header are numbered 1–46, as shown in Figure 1.5.

e blinkled.js program is provided in the code listing below.e purpose of this program is
to blink two different LEDs: BeagleBone (LEDUSR3) and an external LED connected to header
P8 pin 13. A detailed description of Bonescript is provided in the next chapter. We provide a brief
description here of code operation. In the first line of the code, the Bonescript library must be
included. e library contains function definitions used within the program. e pin designators
are then assigned to variable names. Use of variable names makes to code more readable. e
pins are then configured as general purpose outputs. e initial state of the LEDs are set to logic
LOW turning the LEDs off. A JavaScript timer is then configured that runs the function “toggle”
once every second (1000-ms) via the function “SetInterval.” e SetInterval function executes a
function (in this example the “toggle” function) at intervals specified by the delay in milliseconds.
Within the function “toggle,” the variable “state” is toggled between the LOW and HIGH logic
states and used to set the state of the pins driving the LEDs.

www.beagleboard.org
www.beagleboard.org
www.beagleboard.org
http://support.microsoft.com/kb/827218
http://192.168.7.2
http://192.168.7.2:3000/
http://192.168.7.2:3000/

10 1. GETTING STARTED

+

R
I

+

+

Figure 1.5: Interfacing an LED to BeagleBone. Notes: e current being supplied by the BeagleBone
pin should not exceed 8 mA. (Illustrations used with permission of Texas Instruments (www.TI.com).)

1 / / *
2 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ; / / i n c l u d e B o n e s c r i p t l i b r a r y
3 / / c o n t a i n s f u n c t i o n d e f i n i t i o n s
4
5 v a r l e dP i n = ‘ ‘ P8_13 ’ ’ ; / / S e t v a r i a b l e l e d P i n t o P8 . 13
6 v a r l e dP in2 = ‘ ‘USR3 ’ ’ ; / / S e t v a r i a b l e l e d P i n 2 t o o n b o a r d
7 / /LED USR3
8
9 b . pinMode (l edP in , b .OUTPUT) ; / / C o n f i g u r e p in a s o u t p u t

10 b . pinMode (l edP in2 , b .OUTPUT) ; / / C o n f i g u r e p in a s o u t p u t
11
12 v a r s t a t e = b .LOW;
13 b . d i g i t a lW r i t e (l edP in , s t a t e) ; / / s e t l e d P i n l o g i c LOW
14 b . d i g i t a lW r i t e (l edP in2 , s t a t e) ; / / s e t l e d P i n 2 l o g i c LOW
15
16 s e t I n t e r v a l (t o g g l e , 1000) ; / / c a l l f u n c t i o n t o g g l e a t 1 s
17 / / i n t e r v a l

www.TI.com

1.9. GETTING STARTED—SUCCESS OUT OF THE BOX 11

2
7
0

+

Figure 1.6: Interfacing an LED to BeagleBone using a prototype board. Notes: e current being
supplied by the BeagleBone pin should not exceed 8 mA. (Illustrations used with permission of Texas
Instruments (www.TI.com).)

18
19 / / *
20 / / t o g g l e : t o g g l e s (f l i p s) LED s t a t e
21 / / *
22
23 f u n c t i o n t o g g l e ()
24 {
25 i f (s t a t e == b .LOW)
26 {
27 s t a t e = b .HIGH;
28 }

www.TI.com

12 1. GETTING STARTED

29 e l s e
30 {
31 s t a t e = b .LOW;
32 }
33 b . d i g i t a lW r i t e (l edP in , s t a t e) ; / / u p d a t e LED va l u e
34 b . d i g i t a lW r i t e (l edP in2 , s t a t e) ; / / u p d a t e LED va l u e
35 }
36
37 / *

1.9.3 EXECUTING THE BLINKLED.JS PROGRAM
To execute the program, Cloud9 IDE is started as described earlier in the chapter by navigating
to http://192.168.7.2:3000 via Chrome or Firefox. e blinkled.js program is selected and
the “run” button is depressed. e LEDs will commence blinking!

e program may also be launched from the Linux command line at the bottom of the
Cloud9 screen. Insure you are in the demo directory (where the program resides) using the fol-
lowing command:

>cd /var/lib/cloud9/demo/

Once in the demo directory, the program is launched using:

/var/lib/cloud9/demo> node blinkled.js

e program may be stopped by asserting a [Ctrl]-C at the Linux command line.

1.9.4 EXERCISE 3: DEVELOPING YOUR OWN BONEYARD—AROO!
In this exercise you develop a prototype board to exercise BeagleBone. We have dubbed this
the “Boneyard.” In the spirit of “Do-it-yourself (DIY),” we encourage you to develop your own
Boneyard by using your creativity and sense of adventure.

If your schedule does not permit time to design and build your own Boneyard, “way cool”
prototype boards and cases are available from Adafruit and built-to-spec.com. Adafruit (www.ad
afruit.com) provides a plethora of Beagle-related products including an Adafruit proto plate
and Bone Box pictured in Figure 1.7. Built-to-spec also offers a variety of BeagleBone products
including prototype boards and enclosures. Several are shown in Figure 1.8.

For our version of the Boneyard, we have used available off-the-shelf products as shown in
Figure 1.9. e Boneyard includes the following:

• a black Pelican Micro Case #1040;

• a BeagleBone evaluation board;

• two Jameco JE21 3.3 x 2.1 inch solderless breadboards;

http://192.168.7.2:3000
www.adafruit.com
www.adafruit.com

1.10. SUMMARY 13

Figure 1.7: Sample of Adafruit BeagleBone products [www.adafruit.com].

Figure 1.8: Sample of built-to-spec BeagleBone products [www.built-to-spec.com].

• a Jameco #106551 circuit board hardware mounting kit; and

• one piece of black plexiglass acrylic sheet.

To construct the Boneyard, the shape of the Pelican Micro Case interior lid is traced on to
the protective paper on the black plexiglass acrylic sheet. e plexiglass platform is then cut out
using a scroll saw. Rough edgesmay then be smoothed using small grit sandpaper.eBeagleBone
evaluation board is mounted to the plexiglass using the circuit board hardware mounting kit. e
solderless breadboards are mounted using the peel and stick backing.

We encourage you to use your own imagination to develop and construct your own
BeagleBone Boneyard. Also, a variety of Beagle related stickers are available from Café Press
www.cafepress.com to customize your boneyard.

1.10 SUMMARY
is chapter has provided an introduction to BeagleBone Black, its environment, and Beagle
community. Also, an overview of BeagleBone Black features and subsystems was provided. e
chapter concluded with several examples to get you started. In the next chapter a detailed intro-
duction to programming and programming tools is provided.

www.adafruit.com
www.built-to-spec.com
www.cafepress.com

14 1. GETTING STARTED

Figure 1.9: BeagleBone Boneyard. (Photo courtesy of Barrett, J. [2015] , Closer to the Sun Interna-
tional).

1.11 REFERENCES
• Barret, J. “Closer to the Sun International.” 2015; www.closertothesungallery.com.

• Coley, G. BeagleBone Black Rev C Systems Reference Manual. May 22, 2014; www.beagle
board.org.

• CircuitCo—Printed Circuit Board Solutions, 2015; www.circuitco.com.

• Dulaney, E. Linux All-In-One for Dummies. Hoboken, NJ: Wiley Publishing, Inc., 2010.

• Octavio. “First steps with BeagleBone.” 2015; www.borderhack.com.

• “Adafruit Industries.” 2015; www.adafruit.com.

• “Built-to-Spec.” 2015; www.built-to-spec.com

www.closertothesungallery.com
www.beagleboard.org
www.beagleboard.org
www.circuitco.com
www.borderhack.com
www.adafruit.com
www.built-to-spec.com

1.12. CHAPTER EXERCISES 15

1.12 CHAPTER EXERCISES
1. What processor is hosted aboard the BeagleBone Black? Summarize the features of the

processor.

2. What is the difference between the BeagleBone single board computer and a microcon-
troller based hobbyist board?

3. What is the operating system aboard BeagleBone? What are the advantages of using this
operating system?

4. Describe the Beagle community.

5. Where is the operating system stored on BeagleBone Black?

6. What is the Cloud9 IDE?

7. Summarize the features of Bonescript.

8. Describe the concept of open-source hardware.

9. What is a BeagleBone Cape? How many can be used simultaneously? How are conflicts
prevented between Capes?

10. Modify the blinkled.js program such that one LED blinks at three times the rate of the
other.

11. Modify the blinkled.js program with two external LEDs (red and green). e red LED
should be on while the other is off and vice versa.

17

C H A P T E R 2

Bonescript
Objectives: After reading this chapter, the reader should be able to do the following.

• Describe the key features of the Bonescript library, Node.js interpreter, and Cloud9 Inte-
grated Development Environment (IDE).

• Describe what features of the Bonescript library, Node.js, andCloud9 IDE ease the program
development process.

• Write programs for use on BeagleBone using Bonescript.

2.1 OVERVIEW
is brief chapter provides an introduction to the Bonescript programming environment. Bone-
script is a user-friendly, easy-to-use library and environment to harness the power and features of
BeagleBone. It was designed to allow one to quickly develop electronic systems. Bonescript con-
sists of a library of event driven functions to use different systems aboard BeagleBone and a set of
services running at boot-up to expose many of the functions to a web browser using the socket.io
Node.js library. A list of available functions is provided in Figure 2.1. A detailed description of
each function is provided in Appendix A. We introduce each function on an as-needed basis in
upcoming examples.

e Bonescript functions are easily used within the Cloud9 IDE programming environ-
ment illustrated in Figure 2.2. As can be seen, the Cloud9 IDE environment provides familiar
file handling features.

Programs for BeagleBone are often written within the Cloud9 IDE programming environ-
ment using the Bonescript functions. e program is then executed simply by pushing the “Run.”
Provided below is the basic formats of Bonescript programs. We then illustrate program writing
with a series of examples.

1 / / *
2 / / f o rma t 1
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 / / d e f i n e v a r i a b l e s u s e d in p r og ram
8 v a r
9 :

18 2. BONESCRIPT

B
e

a
g

le
B

o
n

e
B

o
n

e
s

c
ri

p
t

E
n

v
ir

o
n

m
e

n
t

D
ig

it
a

l
In

p
u

t/
O

u
tp

u
t

-
re

a
d
T

e
x
tF

ile
(

)

-
w

ri
te

T
e
x
tF

ile
(

)

-
p
in

M
o
d
e
(

)

-
g
e
tP

in
M

o
d
e
(

)

-
d
ig

it
a
lR

e
a
d
(

)

-
d

ig
it
a

lW
ri

te
(

)

-
s
h
if
tO

u
t(

)

A
n

a
lo

g
 I

n
p

u
t/

O
u

tp
u

t

-
a
n
a
lo

g
R

e
a
d
(

)

-
a
n
a
lo

g
W

ri
te

(
)

(P
W

M
)

B
it

s
 a

n
d

 B
y

te
s

-
lo

w
B

y
te

(
)

-
b
it
R

e
a
d
(

)

-
b

it
W

ri
te

(
)

-
b
it
S

e
t(

)

-
b
it
C

le
a
r(

)

-
b

it
(

)

In
te

rr
u

p
ts

-
a
tt
a
c
h
In

te
rr

u
p
t
(

)

-
d
e
ta

c
h
In

te
rr

u
p
t
(

)

P
la

tf
o

rm
 D

a
ta

-
g
e
tE

e
p
ro

m
s
(

)

-
g
e
tP

la
tf
o
rm

(
)

C
o

n
s

ta
n

ts

-
O

U
T

P
U

T

-
IN

P
U

T

-
L
O

W

-
H

IG
H

-
R

IS
IN

G

-
F
A

L
L
IN

G

-
C

H
A

N
G

E

J
a
v
a
s
c
ri

p
t

F
u

n
c
ti

o
n

s

T
im

e
rs

-
s
e
tI

n
te

rv
a

l(
)

-
c
le

a
rI

n
te

rv
a
l(
)

-
s
e
tT

im
e
o

u
t(

)

-
c
le

a
rT

im
e
o
u
t(

)

Fi
gu

re
2.

1:
Bo

ne
sc

rip
td

ev
elo

pm
en

te
nv

iro
nm

en
t.

2.1. OVERVIEW 19

File
- New File
- New From Template
- New Folder
- Upload Local Files
- Download Project
- Open
- Open Recent
- Revert to Saved
- Revert All to Saved
- Save
- Save As
- Save All
- Line Endings
- Close File
- Close All Files
- Quit Cloud 9

Edit
- Undo
- Redo
- Cut
- Copy
- Paste
- Selection
- Line
- Comment
- Text
- Code Folding
- Comment Case
- Align
- Show Autoconcepts

Figure 2.2: Cloud9 IDE programming environment. A close–up of the File and Edit drop down
menus are provided for reference.

20 2. BONESCRIPT

10 :
11
12 / / s e t i n p u t and o u t p u t p in c o n f i g u r a t i o n s
13 / / i n i t i a l i z e r e q u i r e d s y s t e m s
14 b . pinMode (ou tpu t_p in , b .OUTPUT) ;
15 b . pinMode (i npu t_p in , b . INPUT) ;
16
17 loop () ;
18
19 / / f u n c t i o n l o o p r e p e a t s c o n t i n u o u s l y
20
21 f u n c t i o n loop ()
22 {
23 f u n c t i o n 1 (argument 1 , argument 2) ;
24 s e tT imeou t (loop , 1) ;
25 }
26
27 / / *
28 / / f u n c t i o n 1
29 / / *
30
31 f u n c t i o n f u n c t i o n 1 (v a r i a b l e 1 , v a r i a b l e 2)
32 {
33 / / f u n c t i o n b od y
34 :
35 :
36 }
37
38 / / *

1 / / *
2 / / f o rma t 2
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 / / d e f i n e v a r i a b l e s u s e d in p r og ram
8 v a r
9 :

10 :
11
12 / / s e t i n p u t and o u t p u t p in c o n f i g u r a t i o n s
13 / / i n i t i a l i z e r e q u i r e d s y s t e m s
14 b . pinMode (ou tpu t_p in , b .OUTPUT) ;
15 b . pinMode (i npu t_p in , b . INPUT) ;
16
17 s e t I n t e r v a l (do_something , 1000) ;
18
19 f u n c t i o n do_something ()

2.2. APPLICATION 1: BONESCRIPT TOUR 21

20 {
21
22 }
23
24 / / *

2.2 APPLICATION 1: BONESCRIPT TOUR
In this first application exercise, we investigate some of the onboard Bonescript examples provided
in the Cloud9 IDE. e first example was the “blinkled.js” program completed in Chapter 1,
Exercise 2. If you have not completed this exercise, go back and do so before proceeding.

We now extend this example to include a switch. e switch is connected as shown in
Figure 2.3. When the switch is pressed the LED is illuminated. When the switch is released the
LED goes off.

+

+

Figure 2.3: Interfacing an LED and switch to BeagleBone. Notes: e current being supplied by the
BeagleBone pin should not exceed 8 mA. (Illustrations used with permission of Texas Instruments
(www.TI.com).)

www.TI.com

22 2. BONESCRIPT

//***
//switch_input.js
//***

var b = require('bonescript');

var outputPin = "P9_14";
var inputPin = "P8_13";
var state = b.LOW;

b.pinMode(inputPin, b.INPUT);
b.pinMode(outputPin, b.OUTPUT);
b.digitalWrite(outputPin, b.HIGH);

setInterval(check_switch, 1000); //check switch status every 1s

function check_switch()
{
state = b.digitalRead(inputPin);
if ((state) == b.LOW)

{
b.digitalWrite(outputPin, b.HIGH);
}

else
{
b.digitalWrite(outputPin, b.LOW);
}

}

//***

In the next example, program “analog2.js” is used to measure the voltage from a poten-
tiometer. e wiper arm of the potentiometer is connected to header P9, pin 36. e voltage at
the wiper arm is reported on the console display within the Cloud9 IDE.

A potentiometer is a variable resistor. It has a fixed value between two of its terminals. A
third terminal, called the wiper arm, provides a resistance that is related to the wiper arm position.
For example, if the potentiometer has a fixed resistance value of 10 kOhms and the wiper arm is in
the mid-position, the resistance reading at the wiper arm with respect to ground will be 5 kOhms.

2.2. APPLICATION 1: BONESCRIPT TOUR 23

e) trim potentiometer
c) round potentiometer

10K wiper arm

Ra

Rb

a) potentiometer (variable resistor)

Ra + Rb = 10K

10K wiper arm

Va

Vb

b) potentiometer with power supply

Va + Vb = 1.8 VDC

1.8 VDC

d) slide potentiometer

Figure 2.4: Potentiometer.

If the potentiometer is connected to a voltage source and ground as shown in Figure 2.4b), the
output voltage will be proportional to the wiper arm position. Various styles of potentiometers
are shown in Figure 2.4c–e.

Note: Do not exceed 1.8 VDC on any of the BeagleBone Black’s analog input pins.¹
In this example, a potentiometer is connected between 1.8 VDC supply and ground. e

wiper arm is connected to header P9, pin 36 as shown in Figure 2.5. As the potentiometer position
is changed, the analog value read is reported to the Cloud9 IDE console. Depending on the
position of the potentiometer, a value between 0 (0 VDC) and 1 (1.8 VDC) will be reported on
the Console screen within Bonescript.

1 / / *
2 / / a n a l o g 2 . j s
3 / / *
4

¹is note will be repeated throughout the text every time the ADC system is used. Failure to comply with the note could
potentially damage the BeagleBone Black.

24 2. BONESCRIPT

100K ohm

potentiometer

1.8 VDC

(P9, pin 32)

Ground

(P9, pin 45)

wiper arm

(P9, pin 36)

Figure 2.5: Potentiometer connected to header P9, pin 36. (Illustrations used with permission of
Texas Instruments (www.TI.com).)

www.TI.com

2.2. APPLICATION 1: BONESCRIPT TOUR 25

5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 i npu tP i n = ‘ ‘ P9_36 ’ ’ ;
8
9 loop () ;

10
11 f u n c t i o n loop () {
12 v a r v a l u e = b . ana logRead (i npu tP i n) ;
13 c o n s o l e . l o g (v a l u e) ;
14 s e tT imeou t (loop , 1) ;
15 }
16 / / *

In this next example, an LED is connected to header P8, pin 13 as shown in Figure 2.6.
As the potentiometer value is changed, the corresponding intensity of the LED is changed. is
is accomplished using program “analog.js” by reading in the analog value from the potentiometer
on header P9, pin 36 and reading out the corresponding value on header P8, pin 13 using the
Bonescript “b.analogWrite” function.

1 / / *
2 / / a n a l o g . j s
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 i npu tP i n = ‘ ‘ P9_36 ’ ’ ;
8 ou tpu tP in = ‘ ‘ P8_13 ’ ’ ;
9

10 b . pinMode (ou tpu tP in , b .OUTPUT) ;
11 loop () ;
12
13 f u n c t i o n loop () {
14 v a r v a l u e = b . ana logRead (i npu tP i n) ;
15 b . ana l ogWr i t e (ou tpu tP in , v a l u e) ;
16 s e tT imeou t (loop , 1) ;
17 } ;
18 / / *

In the next example, an LED is connected to header P8, pin 13, as shown in Figure 2.7.
When the “fade.js” program is executed the intensity of the LED gradually becomes brighter, gets
to a maximum value, goes down to a minimum value, and repeats. is is accomplished by setting
an initial value of LED intensity and incrementally increasing the value every 10 ms. When the
maximum value of intensity is reached, the intensity value is incrementally decreased. e UML
activity diagram for fade.js is provided in Figure 2.8.

1 / / *
2 / / f a d e . j s
3 / / *

26 2. BONESCRIPT

2
7
0

100K ohm

potentiometer

1.8 VDC

(P9, pin 32)

Ground

(P9, pin 45)

wiper arm

(P9, pin 36)

P8

100K wiper arm

(P9, pin 36)

1.8 VDC

(P9, pin 32)

Ground

(P9, pin 45)

a) prototype board layout

b) potentiometer schematic

Figure 2.6: Potentiometer connected to header P9, pin 36. As the potentiometer value is changed,
the corresponding intensity of the LED is changed. (Illustrations used with permission of Texas In-
struments (www.TI.com).)

www.TI.com

2.2. APPLICATION 1: BONESCRIPT TOUR 27

+

R
I

+

+

Figure 2.7: Interfacing an LED to BeagleBone. Notes: e current being supplied by the BeagleBone
pin should not exceed 8 mA. (Illustrations used with permission of Texas Instruments (www.TI.com).)

4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 / / s e t u p s t a r t i n g c o n d i t i o n s
8 v a r awValue = 0 . 0 1 ; / /LED i n t e n s i t y i n c r e m e n t v a l u e
9 v a r awDi r e c t i on = 1 ;

10 v a r awPin = ‘ ‘ P8_13 ’ ’ ;
11
12 / / c o n f i g u r e p in
13 b . pinMode (awPin , b .OUTPUT) ;
14
15 / / c a l l f u n c t i o n t o u p d a t e b r i g h t n e s s e v e r y 10ms
16 s e t I n t e r v a l (f ade , 10) ;
17
18 / / f u n c t i o n t o u p d a t e b r i g h t n e s s
19 f u n c t i o n f a d e ()

www.TI.com

28 2. BONESCRIPT

20 {
21 / / Wr i t e a n a l o g v a l u e t o LED
22 b . ana l ogWr i t e (awPin , awValue) ;
23 / / I n c r em e n t LED i n t e n s i t y v a l u e
24 awValue = awValue + (awDi r e c t i on * 0 . 0 1) ;
25
26 i f (awValue > 1 . 0)
27 {
28 awValue = 1 . 0 ;
29 awDi r e c t i on = �1; / / Sw i t c h i n t e n s i t y ramp d i r e c t i o n
30 }
31 e l s e i f (awValue <= 0 . 0 1)
32 {
33 awValue = 0 . 0 1 ;
34 awDi r e c t i on = 1 ; / / Sw i t c h i n t e n s i t y ramp d i r e c t i o n
35 }
36 }
37
38 / / *

2.3 APPLICATION 2: ROBOT IR SENSOR

As mentioned earlier, we use autonomous, maze-navigating robots several times throughout the
book as electronic systems examples. An autonomous, maze-navigating robot is equipped with
sensors to detect the presence of maze walls and navigate about the maze. e robot has no
prior knowledge about the maze configuration. It uses the sensors and an onboard algorithm to
determine the robot’s nextmove.e overall goal is to navigate from the starting point of themaze
to the end point as quickly as possible without bumping into maze walls as shown in Figure 2.9.
Maze walls are usually painted white to provide a good, light reflective surface, whereas the maze
floor is painted matte black to minimize light reflections.

We equip BeagleBone with a single Sharp GP2Y0A21YKOF IR sensor. is is the same
sensor used in the robot. e goal is to become acquainted with the sensor profile and use the
sensor to assert a digital output. In the next exercise we use an IR sensor to control a pulse width
modulated (PWM) output. is is a good stepping stone to the maze navigating robot example
provided in the next chapter.

Next, we link a BeagleBone analog input to a digital output. One of the Sharp IR sensors
will be connected to an analog input. e IR sensor provides a voltage output as shown in Fig-
ure 2.10. e output voltage from the sensor increases and peaks at a specific range and then falls
as the range increases.

A software threshold is adjusted such that a digital output will go to logic high when a
maze wall is at a desired range. In this application we assume the robot will not be closer than
5 cm to a maze wall. erefore, we use the portion of the curve beyond the peak where the sensor

2.3. APPLICATION 2: ROBOT IR SENSOR 29

fade.js
analog write (aw)

asValue = 0.01

awDirection = +1 (increment)

set awPin to P8.13 (output)

10 ms?

analogWrite awValue to

aw Pin (P8.13)

Update aw Value

awValue = awValue + (awDirection * 0.01)

aw Value > 1 aw Value <=0.01

aw Value = 1

Switch awDirection:

awDirection = -1 (decrement)

aw Value = 0.01

Switch awDirection:

awDirection = +1 (increment)

no

no no

1

t

yes

yes yes

Figure 2.8: UML activity diagram for fade.js.

30 2. BONESCRIPT

start

finish

Figure 2.9: Autonomous robot within maze.

3V

5 cm

limit IR sensor response
to 1.5 VDC maximum with
1 Mohm trimmer potentiometer

S
e

n
s
o

r
o

u
tp

u
t

v
o

lt
a

g
e

 [
V

]

Range [cm]

Figure 2.10: Sharp GP2Y0A21YKOF IR sensor profile.

2.3. APPLICATION 2: ROBOT IR SENSOR 31

output is inversely proportional to range. at is, the sensor output voltage decreases as the range
from the sensor to maze wall increases.

Note: Remember, it is important to note the input to BeagleBone’s analog-to-digital
converter may not exceed 1.8 VDC. We use a voltage division circuit between the IR sensor and
BeagleBone to stay beneath 1.8 VDC. e interface between the IR sensor and the BeagleBone
computer is provided in Figure 2.11. e voltage divider network can be formed using two fixed
resistors or a small potentiometer. In the figure a 1M˝ trimmer potentiometer is used to set the
maximum value of the IR sensor at 1.75 VDC. e LED has an improved interface circuit using
a 2N2222 transistor, a 10 Kohm resistor, and a 220 ohm resistor. is interface circuit will be
discussed in Chapter 4.

e IR sensor’s power (red wire) and ground (black wire) connections are connected to the
5 VDC and ground pins on BeagleBone computer, respectively. e IR sensor’s output connec-
tion (yellow wire) is connected to an analog input (P9, pin 39) via the trimmer potentiometer
on BeagleBone. e LED circuit shown in the top-right corner of the diagram is connected to
a digital input/output pin (P8, pin 13) on BeagleBone. We discuss the operation of the LED
interface circuit later in Chapter 4.

It is desired to illuminate the LED if the robot is within 10 cm of the maze wall. Let’s
assume the IR sensor interface circuit provides a voltage of 1.25 VDC when a maze wall is 10 cm
from the sensor. e code to illuminate the LED at a 10 cm range is provided below.

1 / / *
2
3 v a r b= r e q u i r e (’ b o n e s c r i p t ’) ;
4
5 v a r l e dP i n = ‘ ‘ P8_13 ’ ’ ; / / d i g i t a l p in f o r LED i n t e r f a c e
6 v a r a i nP i n = ‘ ‘ P9_39 ’ ’ ; / / a n a l o g i n p u t p in f o r IR s e n s o r
7 v a r IR_ s e n s o r _ v a l u e ;
8
9 b . pinMode (l edP in , b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t

10
11 whi l e (1)
12 {
13 / / r e a d a n a l o g o u t p u t f r om IR s e n s o r
14 / / n o rma l i z e d v a l u e r a n g e s f r om 0 . . 1
15 IR_ s e n s o r _ v a l u e = b . ana logRead (a i nP i n) ;
16 / / a s s um e s d e s i r e d t h r e s h o l d a t
17 / / 1 . 25 VDC with max v a l u e o f 1 .75

VDC
18 i f (IR_ s e n s o r _ v a l u e > 0 . 7 14)
19 {
20 b . d i g i t a lW r i t e (l edP in , b .HIGH) ; / / t u r n LED on
21 }
22 e l s e
23 {
24 b . d i g i t a lW r i t e (l edP in , b .LOW) ; / / t u r n LED o f f

32 2. BONESCRIPT

25 }
26 }
27
28 / / *

to Adafruit 276
5 VDC, 2A power supply

R
Y

B

Ground
(P9, pin 45)

5 VDC
(P9, pin 5)

1M

Sharp
GP2YOA21YF0F

pin 39

P8

Ground

5 VDC
(P9, pin 5)

220

10K
2N2222

P9

P8, pin 13

Figure 2.11: IR sensor interface. A transistor circuit is used to interface the BeagleBone Black to the
LED. (Illustrations used with permission of Texas Instruments (www.TI.com).)

e program begins by providing names for the two BeagleBone board pins that are used in
the program. After providing the names for pins, the next step is to declare the pin the LED circuit
will use as output within the “setup” function. In this example, the output from the IR sensor
will be converted from an analog to a digital value using the built-in Bonescript “analogRead”
function. e “analogRead” function requires the pin for analog conversion variable passed to

www.TI.com

2.4. APPLICATION 3: ART PIECE ILLUMINATION SYSTEM 33

it and returns a normalized value from 0 to 1. e value is normalized to a maximum value of
1.8 VDC.

Within the while loop, the present value of the analog value on P9, pin 39 is read. If the
reading is above 0.714 (1.25 VDC), the LED on P8, pin 13 is illuminated, or else it is turned off.
In the next example, we adapt the IR sensor project to provide custom lighting for an art piece.

2.4 APPLICATION 3: ART PIECE ILLUMINATION SYSTEM

Steven Barrett’s (the first author) oldest son Jonathan Barrett (Jonny) is a gifted artist (www.clos
ertothesuninternational.com). Although he (Steven Barrett) owns several of Jonny’s pieces,
his favorite one is a painting he did during his early student days. e assignment was to paint
your favorite place. Jonny painted Lac Laronge, Saskatchewan as viewed through the window of
a pontoon plane. An image of the painting is provided in Figure 2.12.

Figure 2.12: Lac Laronge, Saskatchewan. Image used with permission, Jonny Barrett, Closer to the
Sun Fine Art and Design. (www.closertothesungallery.com)

www.closertothesuninternational.com
www.closertothesuninternational.com
www.closertothesungallery.com

34 2. BONESCRIPT

e circuit provided in the previous example may be slightly modified to provide custom
lighting for an art piece. e IR sensor is used to detect the presence and position of those viewing
the piece. Custom lighting such as a white LED is then activated by BeagleBone via one of the
pulse width modulated (PWM) pins (e.g., P9, pin 14), as shown in Figure 2.13. In the Lac
Laronge piece, lighting could be provided from behind the painting using high intensity white
LEDs. e intensity of the LEDs could be adjusted by changing the value of PWM duty cycle
based on the distance the viewer is from the painting. e PWM concept will be discussed in
a later chapter. Briefly, the PWM is a digital signal whose duty cycle (percent on time) may be
varied to change the average analog value of the signal. e “analogWrite” function generates a
1 kHz pulse width modulated signal at the specified pin. e duty cycle (the percentage of time
the 1 kHz signal is a logic high within a period) is set using a value from 0–1. We discuss the
PWM concept in greater detail in Chapter 6.

to Adafruit 276
5 VDC, 2A power supply

P9

1M

P8

R
Y

B

Ground
(P9, pin 45)

5 VDC

Sharp
GP2D12

Ground

5 VDC

220

10K
2N2222

white
LED

PWM
(P9, pin 14)

Figure 2.13: IR sensor interface for art illumination. (Illustrations used with permission of Texas
Instruments (www.TI.com).)

www.TI.com

2.5. SUMMARY 35

1
2 / / *
3
4 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
5
6 v a r l e dP i n = ‘ ‘ P9_14 ’ ’ ; / /PWM pin f o r LED i n t e r f a c e
7 v a r a i nP i n = ‘ ‘ P9_39 ’ ’ ; / / a n a l o g i n p u t p in f o r IR s e n s o r
8 v a r IR_ s e n s o r _ v a l u e ;
9

10 b . pinMode (l edP in , b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
11
12 whi l e (1)
13 {
14 / / r e a d a n a l o g o u t p u t f r om IR s e n s o r
15 / / n o rma l i z e d v a l u e r a n g e s f r om 0 . . 1
16 IR_ s e n s o r _ v a l u e = b . ana logRead (a i nP i n) ;
17 b . ana l ogWr i t e (l edP in , IR_ s e n s o r _ v a l u e) ;
18 }
19
20 / / *

2.5 SUMMARY
e chapter provided a tutorial on the Bonescript Development Environment, including the
Bonescript library, Cloud9 IDE, and the Node.js JavaScript interpreter, and how it may be used
to develop a program for BeagleBone.

2.6 REFERENCES
• Barrett, J. “Closer to the Sun International;” www.closertothesungallery.com.

• “SparkFun Electronics;” www.sparkfun.com.

2.7 CHAPTER EXERCISES
1. Describe what variables are required and returned and the basic function of the following

built–in Bonescript functions: Blink, Analog Input.

2. Develop a glossary of Bonescript functions introduced in this chapter.

3. How will you handle the complex profile of the IR sensor?

4. Design a lighting system for an art piece which incorporates three IR sensors and three
white LEDs.

www.closertothesungallery.com
www.sparkfun.com

36 2. BONESCRIPT

5. Develop a rain gage indicator for the BeagleBone using three LEDs and a potentiometer.
When the potentiometer is set for one-third full scale a single LED will illuminate, two-
-thirds full-scale two LEDs will illuminate, and three LEDs for the potentiometer at full
scale.

6. Develop a Bonescript program that will illuminate a green LED when a switch is pushed
and a red LED when the switch is released.

7. Develop a Bonescript program that will sequentially illuminate 5 LEDs for 1 s each when
a switch is depressed.

37

C H A P T E R 3

Programming
Objectives: After reading this chapter, the reader should be able to do the following.

• Provide an overview of the system design process and related programming challenges.

• Describe the key components of a program.

• Specify the size of different variables within the C programming language.

• Define the purpose of the main program.

• Explain the importance of using functions within a program.

• Write functions that pass parameters and return variables.

• Describe the function of a header file.

• Discuss different programming constructs used for program control and decision process-
ing.

• Outline the key features of programming in JavaScript.

• Run BeagleBone “off the leash”— without a host PC connection.

• Apply lessons learned to design and development of an autonomous robot system.

3.1 AN OVERVIEW OF THE DESIGN PROCESS
is chapter provides an introduction to JavaScript and the C languages via comparison and
contrast. We begin with a brief review of programming basics. Readers who are familiar with
JavaScript and C programming may want to skip ahead although a review of the fundamentals
may be helpful.

3.2 OVERVIEW
To the novice, programming a processor may appear mysterious, complicated, overwhelming, and
difficult. When faced with a new task, one often does not know where to start. e goal of this
section is to provide a tutorial on how to begin programming. We will use a top-down design
approach. We begin with the “big picture” of the program followed by an overview of the major

38 3. PROGRAMMING

pieces of a program. We then discuss the basics of the JavaScript and C programming languages.
Only the most fundamental programming concepts are covered.

Portions of the programming overview were adapted with permission from earlier Morgan
and Claypool projects. roughout the chapter, we provide examples and also provide pointers to
a number of excellent references. e chapter concludes with the development of an autonomous
maze navigating robot based on the Dagu Magician platform.

3.3 ANATOMY OF A PROGRAM
Programs have a fairly repeatable format. Slight variations exist but many follow the format pro-
vided. We first provide a template for a C program followed by a Node.js program template.

C program template:
1 / / *
2 / / Comments c o n t a i n i n g p r og ram i n f o r m a t i o n
3 / / � f i l e name :
4 / / � a u t h o r :
5 / / � r e v i s i o n h i s t o r y :
6 / / � c o m p i l e r s e t t i n g i n f o r m a t i o n :
7 / / � ha rdwar e c o n n e c t i o n d e s c r i p t i o n t o p r o c e s s o r p i n s
8 / / � pr og ram d e s c r i p t i o n
9 / / *

10
11 / / i n c l u d e f i l e s
12 # inc lude < f i l e _ n ame . h>
13
14 / / f u n c t i o n p r o t o t y p e s
15 / / Not e : t h e s e migh t b e i n a s e p a r a t e h e a d e r f i l e f o r r e a d a b i l i t y .
16 A l i s t o f f u n c t i o n s and t h e i r f o rma t used w i t h i n the program .
17
18 / / p r og ram c o n s t a n t s
19 # de f i n e TRUE 1
20 # de f i n e FALSE 0
21 # de f i n e ON 1
22 # de f i n e OFF 0
23
24 / / i n t e r r u p t h a n d l e r d e f i n i t i o n s
25 / / Not e : t h e s e migh t b e i n a s e p a r a t e h e a d e r f i l e f o r r e a d a b i l i t y .
26 Used to l i n k the s o f t w a r e to ha rdware i n t e r r u p t f e a t u r e s
27
28 / / g l o b a l v a r i a b l e s
29 L i s t i n g o f v a r i a b l e s used th roughou t the program
30
31 / / main pr og ram
32
33 void main (void)
34 {

3.3. ANATOMY OF A PROGRAM 39

35
36 body o f the main program
37
38 }
39
40 / / f u n c t i o n d e f i n i t i o n s
41 A d e t a i l e d f u n c t i o n body and d e f i n i t i o n f o r each f u n c t i o n
42 used w i t h i n the program .
43 The f u n c t i o n s may a l s o i n c l u d e l o c a l v a r i a b l e s and p a r ame t e r s . / /

* *

Node.js program template:

1 / / *
2 / / Comments c o n t a i n i n g p r og ram i n f o r m a t i o n
3 / / � f i l e name :
4 / / � a u t h o r :
5 / / � r e v i s i o n h i s t o r y :
6 / / � i n t e r p r e t e r and l i b r a r y r e q u i r e m e n t s :
7 / / � ha rdwar e c o n n e c t i o n d e s c r i p t i o n t o p r o c e s s o r p i n s
8 / / � pr og ram d e s c r i p t i o n
9 / / *

10
11 / / i n c l u d e f i l e s
12 v a r x= r e q u i r e (’ x ’) ;
13
14 / / f u n c t i o n p r o t o t y p e s n o t r e q u i r e d f o r J a v a S c r i p t
15 / / b e c a u s e dynami c t y p i n g c o n v e r t s v a r i a b l e s b e tw e en t y p e s
16
17 / / no p r e � p r o c e s s o r means t h a t c o n s t a n t s a r e t h e same a s v a r i a b l e s
18 v a r TRUE = 1 ;
19 v a r FALSE = 0 ;
20 v a r ON = 1 ;
21 v a r OFF = 0 ;
22
23 / / e v e n t h a n d l e r d e f i n i t i o n s
24 Used to l i n k the s o f t w a r e to a s yn ch ronou s e v e n t s
25
26 / / g l o b a l v a r i a b l e s
27 L i s t i n g o f v a r i a b l e s used th roughou t the program
28
29 / / main pr og ram
30
31 Un l ike C, J a v a S c r i p t s t a t em en t s don ’ t need to be i n s i d e o f a
32 f u n c t i o n and w i l l be e x e c u t e d a s t h e y a r e i n t e r p r e t e d
33
34 body o f the main program
35
36 / / f u n c t i o n d e f i n i t i o n s

40 3. PROGRAMMING
//**

//C program template

//Comments containing program information

// - file name:

// - author:

// - revision history:

// - compiler setting information

// - hardware connection description to processor pins

// - program description

//***

//include files

#include<file_name.h>

//function prototypes

A list of functions and their format used within the program

//program constants

#define TRUE 1

#define FALSE 0

#define ON 1

#define OFF 0

//interrupt handler definitions

Used to link the software to hardware interrupt features

//global variables

Listing of variables used throughout the program

//main program

void main (void)

{

body of the main program

}

//function definitions

A detalied function body and definition for each function

used within the program. The functions may also include local variables.

//**

//include files

var x=require(’x’);

//function prototypes not required for JavaScript

//because dynamic typing converts variables between types

//no pre-processor means that constants are the same as variables

var TRUE = 1;

var FALSE = 0;

var ON = 1;

var OFF = 0;

//event handler definitions

Used to link the software to asynchronous events

//global variables

Listing of variables used throughout the program

//main program

Unlike C, JavaScript statements don’t need to be inside of a

function and will be exectuted as they are interpreted

{

body of the main program

//function definitions

A detalied function body and definition for each function

used within the program. The functions may also include local variables.

//**

//**

//Node.js program template

Comments containing program information

// - file name:

// - author:

// - revision history:

// - compiler setting information

// - hardware connection description to processor pins

// - program description

//**

Figure 3.1: C and Node.js program templates.

37 A d e t a i l e d f u n c t i o n body and d e f i n i t i o n f o r each f u n c t i o n
38 used w i t h i n the program .
39 The f u n c t i o n s may a l s o i n c l u d e l o c a l v a r i a b l e s .
40 / / *

For convenience the C and Node.js program templates are shown side-by-side in Figure 3.1. Let’s
take a closer look at each piece.

3.3.1 COMMENTS
Comments are used throughout the program to document what, how, and why things were ac-
complished within a program. e comments help you reconstruct your work at a later time.
Imagine that you wrote a program a year ago for a project. You now want to modify that program
for a new project. e comments help you remember the key details of the program.

Comments are not compiled into machine code for loading into the processor. erefore,
the comments will not fill up thememory of your processor. Comments are indicated using double

3.3. ANATOMY OF A PROGRAM 41

slashes (==). Anything from the double slashes to the end of a line is then considered a comment.
A multi-line comment can be constructed using a =� at the beginning of the comment and a �=

at the end of the comment. ese are handy to block out portions of code during troubleshooting
or providing multi–line comments. Comment syntax is largely the same between JavaScript and
C.

At the beginning of the program, comments may be extensive. Comments may include
some of the following information:

• file name;

• program author;

• revision history or a listing of the key changes made to the program;

• instructions on how to compile the program or specific version of interpreter and libraries
required;

• hardware connection description to processor pins; and

• program description.

3.3.2 INCLUDE FILES
Often you need to add extra files to your project besides the main program. In JavaScript, this
is typically where you actually pull in your library code used to perform advanced tasks, such as
Bonescript. In C, include files provide a “personality file” on the specific processor that you are
using. is file is provided with the compiler and provides the name of each register used within
the processor. It also provides the link between a specific register’s name within software and the
actual register location within hardware. ese files are typically called header files and their name
ends with a “.h.” You may need to include other header files in your program such as the “math.h”
file when programming with advanced math functions.

To include header files within a program, the following syntax is used:
//C programming: include files
#include<file_name1.h> //searches for file in a standard list
#include<file_name2.h>
#include ''file_name3.h''//searches for file in current directory

//Node.js included libraries
var library1 = require('library1');
var library2 = require('library2');

In JavaScript, variables, including functions, declared by a library are typically returned
from the call to “require.” ese variables are typically accessed later using variable member op-
erations.

42 3. PROGRAMMING

//Node.js included libraries
var library1 = require('library1');

//Node.js access library provided variable memberA using one syntax
var memberA = library1.memberA;

//Node.js access library provided variable memberA using another syntax
var alsoMemberA = library1["memberA"];

3.3.3 FUNCTIONS
In Chapter 4, we discuss in detail the top down design, bottom up implementation approach
to designing processor based systems. In this approach, a processor based project including both
hardware and software is partitioned into systems, subsystems, etc. e idea is to take a complex
project and break it into doable pieces with a defined action.

We use the same approach when writing computer programs. At the highest level is the
main programwhich calls functions that have a defined action.When a function is called, program
control is released from themain program to the function.Once the function is complete, program
control reverts back to the main program.

Functions may in turn call other functions as shown in Figure 3.2. is approach results
in a collection of functions that may be reused over and over again in various projects. Most
importantly, the program is now subdivided into doable pieces, each with a defined action. is
makes writing the program easier but also makes it much easier to modify the program since every
action is in a known location.

In C, there are four different pieces of code required to properly configure and call the
function:

• the function prototype;

• the function call;

• the function parameter or argument; and

• the function body.

In JavaScript, all of the same pieces of code are required except for the function prototype.
Function prototypes are provided early in the program as previously shown in the pro-

gram template. e function prototype provides the name of the function and any variables or
parameters required by the function and any variable returned by the function.

e function prototype follows this format:

return_variable function_name(required_variable1, required_variable2);

3.3. ANATOMY OF A PROGRAM 43
void main(void)
{

:

function1();

:

}

void function1(void)
{

:

function2();

:

}

void function2(void)
{

:

}

Figure 3.2: Function calling.

If the function does not require variables or does not send back a variable, the word “void”
is placed in the variable’s position.

e primary purpose of a function prototype is to tell the compiler what types of variables to
expect when making or receiving the function call. JavaScript never declares the type of a variable
ahead of it being assigned or used. Further, if a JavaScript variable is assigned with one type of
variable, say an integer, and then consumed by a function that expects another type of variable,
say a string, then JavaScript attempts to automatically convert the variable between the two types.
is provides a lot of simplicity to programming as you are learning, but be warned it can get you
into trouble as your programs start to get more complex.

e function call is the code statement used within a program to execute the function. e
function call consists of the function name and the actual arguments required by the function.
If the function does not require arguments to be delivered to it for processing, the parenthesis
containing the variable list is left empty.

e function call follows this format:

function_name(required_variable1, required_variable2);

A function that requires no variables follows this format:

function_name();

When the function call is executed by the program, program control is transferred to the
function, the function is executed, and program control is then returned to the portion of the
program that called it.

44 3. PROGRAMMING

e syntax for function calls is largely the same between JavaScript and C.
e function body is a self-contained “mini-program.” In C, the first line of the function

body contains the same information as the function prototype: the name of the function, any
variables required by the function, and any variable returned by the function. In JavaScript, the
return variable type is not provided. Typically, the last line of the function contains a “return”
statement. Here a variable may be sent back to the portion of the program that called the function.
e processing action of the function is contained within the open ({) and close brackets (}). If
the function requires any variables within the confines of the function, they are declared next.
ese variables are referred to as local variables. A local variable is known only within the scope
of a specific function. e local variable is temporarily declared when the function is called and
disappears when then function is exited. e actions required by the function follow.

In JavaScript, it is also allowed to have other functions declared as local variables. ese
functions are special because they utilize the same local “scope” as the other variables declared
locally and are not seen directly by outside functions. Because they have access to local variables,
it is possible to play some interesting tricks we’ll discuss later. It is important to learn about
“variable scope” in your development to avoid creating undesired results.

Because JavaScript uses dynamic typing, it is also possible to provide optional arguments
to your function and test to see if they are provided within your function body.

e function body in C follows this format:
1 r e t u r n _ t y p e func t i on_name (r e q u i r e d _ v a r i a b l e 1 , r e q u i r e d _ v a r i a b l e 2)
2 {
3 / / l o c a l v a r i a b l e s r e q u i r e d by t h e f u n c t i o n
4 unsigned i n t v a r i a b l e 1 ;
5 unsigned char v a r i a b l e 2 ;
6
7 / / p r og ram s t a t e m e n t s r e q u i r e d by t h e f u n c t i o n
8
9

10 / / r e t u r n v a r i a b l e
11 r e t u rn r e t u r n _ v a r i a b l e ;
12 }

In JavaScript, a function body would look like:
1 func t i on_name (r e q u i r e d _ v a r i a b l e 1 , r e q u i r e d _ v a r i a b l e 2 ,

o p t i o n a l _ v a r i a b l e 3)
2 {
3 / / l o c a l v a r i a b l e s r e q u i r e d by t h e f u n c t i o n
4 v a r v a r i a b l e 1 ;
5 v a r v a r i a b l e 2 ;
6
7 / / p r og ram s t a t e m e n t s r e q u i r e d by t h e f u n c t i o n
8
9

10 / / r e t u r n v a r i a b l e

3.3. ANATOMY OF A PROGRAM 45

11 r e t u rn r e t u r n _ v a r i a b l e ;
12 }

3.3.4 INTERRUPT HANDLER DEFINITIONS
Interrupt service routines are functions that are written by the programmer but usually called by
a specific hardware event during system operation. In C, interrupt service routines are handled
specially by the compiler because they run outside of the context of the rest of your program.
It is not possible to declare actual interrupt service routines in JavaScript, but much of the basic
functionality is managedwith event handlers.We discuss interrupts and how to properly configure
them in Chapter 5.

3.3.5 PROGRAM CONSTANTS
In C, the #define statement is used by the compiler pre-processor to associate a constant name
with a numerical value in a program. It can be used to define common constants such as pi. It may
also be used to give terms used within a program a numerical value. is makes the code easier
to read. For example, the following constants may be defined within a program:

1 / / p r og ram c o n s t a n t s
2 # de f i n e TRUE 1
3 # de f i n e FALSE 0
4 # de f i n e ON 1
5 # de f i n e OFF 0

JavaScript does not typically make use of any pre-processor and therefore constants must
be treated the same as other variables.

3.3.6 VARIABLES
ere are two types of variables used within a program: global variables and local variables. A
global variable is available and accessible to all portions of the program, whereas, a local variable
is only known and accessible within the context where it is declared.

When declaring a variable in C, the number of bits used to store the operator is also spec-
ified. In Figure 3.3, we provide a list of common C variable sizes. e size of other variables such
as pointers, shorts, longs, etc. are contained in the compiler documentation.

When programming processors, it is important to know the number of bits used to store
the variable and correctly assign values to variables. For example, assigning the contents of an
unsigned char variable, which is stored in 8-bits, to an 8-bit output port will have a predictable
result. However, assigning an unsigned int variable, which is stored in 16-bits, to an 8-bit output
port does not produce predictable results. It is wise to insure your assignment statements are
balanced for accurate and predictable results. e modifier “unsigned” indicates all bits will be
used to specify the magnitude of the argument. Signed variables will use the left most bit to
indicate the polarity (˙) of the argument.

46 3. PROGRAMMING

Type Size (bytes) Range

unsigned char

signed char

unsigned int

signed int

float

double

1

1

4*

4*

4

8*

0..255

-128..127

232

232 - (232 - 1)

 +/-(1.18e-38 to 3.40e +38)

+/-(2.23e-308 to 1.780e +308)

* compiler dependent

Figure 3.3: Common C variable sizes in bytes.

A variable is declared using the following format. e type of the variable is specified,
followed by its name, and an initial value if desired.

//global variables
unsigned int loop_iterations = 6;

3.3.7 MAIN FUNCTION
e main function is the hub of activity for the entire program. e main function typically
consists of program steps and function calls to initialize the processor followed by program steps to
collect data from the environment external to the processor, process the data and make decisions,
and provide external control signals back to the environment based on the data collected.

In JavaScript, the main function simply lives in the body of the JavaScript file specified
when you invoke the interpreter. For libraries, it is important to avoid having statements outside
of variable and function declarations to avoid having those statements invoked when reading in
your library.

3.4. FUNDAMENTAL PROGRAMMING CONCEPTS 47

3.4 FUNDAMENTAL PROGRAMMING CONCEPTS
In the previous section, we covered many fundamental concepts. In this section we discuss oper-
ators, programming constructs, and decision-processing constructs to complete our fundamental
overview of programming concepts.

3.4.1 OPERATORS
ere is a wide variety of operators provided in the JavaScript and C languages. An abbreviated
list of common operators are provided in Figures 3.4 and 3.5. e operators have been grouped
by general category. e symbol, precedence, and brief description of each operator are provided.
e precedence column indicates the priority of the operator in a program statement contain-
ing multiple operators. Only the fundamental operators are provided. For more information on
this topic, see Barrett and Pack [2005]. JavaScript largely mimics C in terms of operations and
precedence.

General Operations
Within the general operations category are brackets, parentheses, and the assignment operator.
We have seen in an earlier example how bracket pairs are used to indicate the beginning and
end of the main program or a function. ey are also used to group statements in programming
constructs and decision processing constructs. is is discussed in the next several sections.

e parentheses are used to boost the priority of an operator. For example, in the mathe-
matical expression 7 � 3 C 10, the multiplication operation is performed before the addition
since it has a higher precedence. Parenthesis may be used to boost the precedence of the addition
operation. If we contain the addition operation within parentheses 7 � .3 C 10/, the addition
will be performed before the multiplication operation and yield a different result than the earlier
expression.

e assignment operator (D) is used to assign the argument(s) on the right-hand side of an
equation to the left-hand side variable. It is important to insure that the left- and the right-hand
side of the equation have the same type of arguments. If not, unpredictable results may occur.

Arithmetic Operations
e arithmetic operations provide for basic math operations using the variables described in the
previous section. As described in the previous section, the assignment operator (D) is used to
assign the expression on the right-hand side of an equation to the left-hand side variable.

Example: In this example, a function returns the sum of two unsigned int variables which
are passed as arguments to the function “sum_two.”

unsigned int sum_two(unsigned int variable1, unsigned int variable2)
{
unsigned int sum;

48 3. PROGRAMMING

Symbol Precedence Description

General

{ } 1 Brackets, used to group program statements

() 1 Parenthesis, used to establish precedence

= 12 Assignment

Symbol Precedence Description

Arithmetic Operations

* 3 Multiplication

/ 3 Division

+ 4 Addition

- 4 Subtraction

Symbol Precedence Description

Logical Operations

< 6 Less than

<= 6 Less than or equal to

> 6 Greater

>= 6

==

!=

&&

||

7

7

9

10

Greater than or equal to

Equal to

Not equal to

Logical AND

Logical OR

Figure 3.4: C operators. (Adapted from Barrett and Pack [2005]).

3.4. FUNDAMENTAL PROGRAMMING CONCEPTS 49

Symbol Precedence Description

Bit Manipulation Operations

<< 5 Shift left

>> 5 Shift right

& 8 Bitwise AND

^ 8 Bitwise exclusive OR

| 8 Bitwise OR

Symbol Precedence Description

Unary Operations

- 2 Unary negative

~ 2 One’s complement (bit-by-bit inversion)

++ 2 Increment

-- 2

type(argument) 2

Decrement

Casting operator (data type conversion)

Figure 3.5: C operators (continued). (Adapted from Barrett and Pack [2005]).

sum = variable1 + variable2;

return sum;
}

Logical Operations
e logical operators provide Boolean logic operations and are useful in comparing two variables.
One argument is compared against another using the logical operator provided. e result is
returned as a logic value of one (1, true, high) or zero (0 false, low). e logical operators are used
extensively in program constructs and decision processing operations to be discussed later.

Bit Manipulation Operations
ere are two general types of operations in the bit manipulation category: shifting operations
and bitwise operations. Let’s examine several examples:

50 3. PROGRAMMING

Example: Given the following code segment, what will be the value of variable2 after exe-
cution?

unsigned char variable1 = 0x73;
unsigned char variable2;

variable2 = variable1 << 2;

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the
hexadecimal value of .73/16. In binary this is .0111_0011/2. e << 2 operator provides a left
shift of the argument by two places. After two left shifts of .73/16, the result is .cc/16 and will
be assigned to the variable “variable2.”

Note that the left- and right-shift operations are equivalent to multiplying and dividing
the variable by a power of two.

e bitwise operators perform the desired operation on a bit–by–bit basis. at is, the least
significant bit of the first argument is bit–wise operated with the least significant bit of the second
argument and so on.

Example: Given the following code segment, what will be the value of variable3 after exe-
cution?

unsigned char variable1 = 0x73;
unsigned char variable2 = 0xfa;
unsigned char variable3;

variable3 = variable1 & variable2;

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the
hexadecimal value of .73/16. In binary, this is .0111_0011/2. Variable “variable2” is declared
as an eight bit unsigned char and assigned the hexadecimal value of .fa/16. In binary, this is
.1111_1010/2. e bitwise AND operator is specified. After execution variable “variable3,” de-
clared as an eight bit unsigned char, contains the hexadecimal value of .72/16.

Unary Operations
e unary operators, as their name implies, require only a single argument.

For example, in the following code segment, the value of the variable “i” is incremented.
is is a shorthand method of executing the operation “i D i C 1; ”

unsigned int i = 0;

i++;

3.4. FUNDAMENTAL PROGRAMMING CONCEPTS 51

Example: It is not uncommon in embedded system design projects to have every pin on
a processor employed. Furthermore, it is not uncommon to have multiple inputs and outputs
assigned to the same port but on different port input/output pins. Some compilers support specific
pin reference. Another technique that is not compiler specific is bit twiddling. Figure 3.6 provides
bit twiddling examples on how individual bits may be manipulated without affecting other bits
using bitwise and unary operators [ImageCraft]. Examples are provided for an eight bit register
(Reg_A). is concept may be easily extended to registers of other sizes (e.g., 32 bit registers).

Syntax Description

a | b

a & b

a ^ b

~a

bitwise or

bitwise and

bitwise exclusive or

bitwise complement

Example

Reg_A |= 0x80; // turn on bit 7 (msb)

if ((Reg_A & 0x81) == 0) // check if both bit 7 and bit 0 are zero

Reg_A ^= 0x80; // flip bit 7

Reg_A &= ~0x80; // turn off bit 7

Figure 3.6: Bit twiddling [ImageCraft].

3.4.2 PROGRAMMING CONSTRUCTS
In this section, we discuss several methods of looping through a set of statements. We examine
the “for” and the “while” looping constructs.

e for loop provides a mechanism for looping through the same portion of code a fixed
number of times or while a certain condition is present. e for loop consists of three main parts:

• initialize variables such as the loop counter;

• loop termination testing; and

• update the loop counter, e.g., increment the loop counter.

In the following code fragment, the for loop is executed 10 times.

//In C
unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr++)
{

//loop body

52 3. PROGRAMMING

}

//In Javascript
var loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr++)
{

//loop body

}

e for loop begins with the variable “loop_ctr” equal to 0. During the first pass through the
loop, the variable retains this value. During the next pass, the variable “loop_ctr” is incremented
by one. is action continues until the “loop_ctr” variable reaches the value of 10. Since the
argument to continue the loop is no longer true, program execution continues beyond the closing
braces of the for loop.

In the previous example, the for loop counter was incremented at the beginning of each
loop pass. e “loop_ctr” variable can be updated by any amount. For example, in the following
code fragment the “loop_ctr” variable is increased by three for every pass of the loop.

//In C
unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr=loop_ctr+3)
{

//loop body

}

//In Javascript
var loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr=loop_ctr+3)
{

//loop body
}

e “loop_ctr” variable may also be initialized at a high value and then decremented at the
beginning of each pass of the loop.

//In C
unsigned int loop_ctr;

3.4. FUNDAMENTAL PROGRAMMING CONCEPTS 53

for(loop_ctr = 10; loop_ctr > 0; loop_ctr--)
{

//loop body

}

//In Javascript
var loop_ctr;

for(loop_ctr = 10; loop_ctr > 0; loop_ctr--)
{

//loop body

}

As before, the “loop_ctr” variable may be decreased by any numerical value as appropriate
for the application at hand.

In JavaScript, it is also possible to loop over the indexes of an array or keys of an object as
shown in the example below.

//In Javascript
var index;
var myarray = [1, 2, 3];

for(index in myarray)
{

myarray[index]++; //loop body
}

e value in “index” can be used to index into the array or object. Note that it doesn’t
contain the indexed value itself, but the value used to perform the index.

e while loop is another programming construct that allows multiple passes through a
portion of code. e while loop will continue to execute the statements within the open and close
braces as long as the condition accompanying the while statement remains logically true. e code
snapshot below will implement a ten iteration loop. Note how the “loop_ctr” variable is initialized
outside of the loop and incremented within the body of the loop. As before, the variable may be
initialized to a greater value and then decremented within the loop body.

//In C
unsigned int loop_ctr;

loop_ctr = 0;

54 3. PROGRAMMING

while(loop_ctr < 10)
{

//loop body
loop_ctr++;
}

//In Javascript
var loop_ctr;

loop_ctr = 0;
while(loop_ctr < 10)
{

//loop body
loop_ctr++;
}

Frequently, within a processor application, the program begins with system initialization
actions. Once initialization activities are complete, the processor enters a continuous loop. is
may be accomplished using the following code fragment.

while(1)
{

}

In JavaScript, this is sort of synchronous programming is typically avoided and often re-
placed with use of the JavaScript timers. For example, it is possible to use a JavaScript timer to
call a function once every second.

var mytimer = setInterval(myfunction, 1000);

Here “myfunction” is passed to setInterval as the first argument and the second argument
is the number of milliseconds between when the timer goes off to call the function. “myfunction”
will be called without any arguments provided to it. “mytimer” contains a reference to the timer
that can be used to disable the timer using clearInterval. We’ll discuss JavaScript timers in a bit
more detail later in this chapter.

3.4.3 DECISION PROCESSING
ere are a variety of constructs that allow decision making. ese include the following:

• the if statement;

3.4. FUNDAMENTAL PROGRAMMING CONCEPTS 55

• the if–else construct;

• the if–else if–else construct, and the

• switch statement.
e if statement will execute the code between an open and close bracket set should the

condition within the if statement be logically true.

Example: We use autonomous, maze navigating robots several times throughout the book
as electronic systems examples. An autonomous, maze navigating robot is equipped with sensors
to detect the presence of maze walls and navigate about the maze. e robot has no prior knowl-
edge about the maze configuration. It uses the sensors and an onboard algorithm to determine
the robot’s next move. e overall goal is to navigate from the starting point of the maze to the
end point as quickly as possible without bumping into maze walls, as shown in Figure 3.7. Maze
walls are usually painted white to provide a good, light reflective surface, whereas the maze floor
is painted matte black to minimize light reflections.

start

finish

Figure 3.7: Autonomous robot within maze.

In several examples we use the Dagu Magician robot. We refer to it as the “Magician.”
Suppose our goal is to have the Magician find a path through a maze as shown in Figure 2.9. e
Magician is equipped with two wheels driven by DC motors. When moving through the maze,
the Magician must safeguard itself from bumping against the walls. For this purpose, we equip
the Magician with three IR sensors. e IR sensors provide a voltage output which depends on
the distance of the sensor from the reflecting surface.

56 3. PROGRAMMING

Later in the chapter we develop the algorithm to allow the Magician to navigate the maze.
To help develop the algorithm, a light emitting diode (LED) is connected to a digital input/output
pin on BeagleBone. e robot’s center infrared (IR) sensor is connected to an analog-to-digital
converter (ADC) input pin on BeagleBone. e IR sensor provides a voltage output that is in-
versely proportional to distance of the sensor from the maze wall. It is desired to illuminate the
LED if the robot is within 10 cm of the maze wall. e sensor’s output is too large to be directly
applied to BeagleBone. We place a voltage divided network between the sensor and BeagleBone
to remedy this situation. With the voltage divider network, the sensor provides an output voltage
of 1.25 VDC at the 10 cm range.e Bonescript library’s analogRead function provides a normal-
ized analog voltage reading from 0–1. A reading of 1 corresponds to the maximum ADC system
voltage of 1.8 VDC. erefore, the ADC will report a reading of 0.694 (1:25 VDC=1:80 VDC /

when the maze wall is 10 cm from the robot.
e following if statement construct will implement this LED indicator. We use pseu-

docode to illustrate the concept. We provide the actual code to do this later in the chapter.

if (center_sensor_output > 0.694) //Center IR sensor voltage
//greater than 1.25 VDC

{
led_pin = LOGIC_HIGH; //illuminate LED connected

//to led_pin
}

In the example provided, there is no method to turn off the LED once it is turned on. is
will require the else portion of the construct as shown in the next code fragment.

if (center_sensor_output > 0.694) //Center IR sensor voltage
//greater than 1.25 VDC

{
led_pin = LOGIC_HIGH; //illuminate LED connected

//to led_pin
}

else
{
led_pin = LOGIC_LOW; //turn LED off
}

e if-else if-else construct may be used to implement a three LED system. In this ex-
ample, the left, center, and right IR sensors are connected to three different analog-to-digital
converter pins on BeagleBone. Also, three different LEDs are connected to digital output pins
on BeagleBone. e following pseudocode fragment implements this LED system.

3.4. FUNDAMENTAL PROGRAMMING CONCEPTS 57

if (left_sensor_output > 0.694) //Left IR sensor voltage
//greater than 1.25 VDC

{
left_led_pin = LOGIC_HIGH; //illuminate LED connected

//to left_led_pin
}

else if (center_sensor_output > 0.694) //Center IR sensor voltage
//greater than 1.25 VDC

{
center_led_pin = LOGIC_HIGH; //illuminate LED connected

//to center_led_pin
}

else if (right_sensor_output > 0.694) //Right IR sensor voltage
//greater than 1.25 VDC

{
right_led_pin = LOGIC_HIGH; //illuminate LED connected

//to right_led_pin
}

else
{
left_led_pin = LOGIC_LOW; //turn LEDs off
center_led_pin = LOGIC_LOW;
right_led_pin = LOGIC_LOW;
}

e switch statement is used when multiple if-else conditions exist. Each possible condi-
tion is specified by a case statement. When a match is found between the switch variable and a
specific case entry, the statements associated with the case are executed until a break statement is
encountered. In general, the break terminates the execution of the nearest enclosing do, switch or
while statement and program control passes to the next program statement following the break.
In the switch statement, this ensures only a single case of the switch statement is executed.

58 3. PROGRAMMING

Example: Suppose an eight bit variable “robot_status” is periodically updated to reflect the
current status of the robot (e.g., low battery power, maze walls in the robot’s path, etc.). Each
bit in the register represents a different robot status item. In response to a change the status the
robot must complete status related items. A switch statement may be used to process the multiple
possible actions in an orderly manner.

//***
if(new_robot_status != old_robot_status) //check for status change
{
switch(new_robot_status)

{ //process change in status
case 0x01: //new_robot_status bit 0
: //related actions

break;

case 0x02: //new_robot_status bit 1
: //related actions

break;

case 0x04: //new_robot_status bit 2
: //related actions

break;

case 0x08: //new_robot_status bit 3
: //related actions

break;

case 0x10: //new_robot_status bit 4
: //related actions

break;

case 0x20: //new_robot_status bit 5
: //related actions

break;

3.5. PROGRAMMING IN JAVASCRIPT USING NODE.JS 59

case 0x40: //new_robot_status bit 6
: //related actions

break;

case 0x80: //new_robot_status bit 7
: //related actions

break;

default:; //all other cases
} //end switch

} //end if new_robot_status
old_robot_status = new_robot_status; //update old_robot_status
//***

at completes our brief overview of the JavaScript and C programming languages. In the
next section, we provide a bit more detail on the Bonescript library and the environment in which
we will be using it. You will see how this development environment provides a user-friendly
method of quickly developing code applications for BeagleBone. But first, let’s discuss some of
the basics of programming using a JavaScript interpreter.

3.5 PROGRAMMING IN JAVASCRIPT USING NODE.JS

In this section we provide an admittedly brief introduction to Node.js. However, we provide
pointers to several excellent sources on these topics at the end of the chapter. As you will recall,
Bonescript is the user-friendly “website” interface to write application programs for BeagleBone.
Since JavaScript was specifically developed to quickly implement websites, it was a natural choice
to implement Bonescript. JavaScript is an interpreted language. is means the code is not com-
piled. Instead a JavaScript program is a script or listing of pre-built functions to quickly implement
dynamic user interactions within a website.

Node.js is an implementation of a JavaScript interpreter running on the web host, rather
than within your web browser. It was developed to implement event driven programming tech-
niques. In our discussion of Node.js we use a restaurant example to gain a general understanding
of event driven programming. Having a fundamental understanding of JavaScript and Node.js
will allow you to extend the features and capabilities of Bonescript. It is important to emphasize
that Bonescript is an open source library. We are counting on the user community to expand
the features of Bonescript. If there is a feature you need, please develop it and share it with the
BeagleBoard.org community.

60 3. PROGRAMMING

3.5.1 JAVASCRIPT
As previously illustrated, JavaScript is very similar in syntax to the C programming language. It
consists of two basic parts: the syntax and the object model. e syntax can be divided into six
basic areas:

• comments

• conditionals

• loops

• operators

• functions

• variables

e first four items are virtually identical to the C programming language previously dis-
cussed. We discussed function writing and the declaration of variables in the section on Bone-
script. It should be noted that strong typed variables are available in JavaScript 2.0 [Vander Veer,
2005; Pollock, 2010; Kiessling, 2012; Hughes-Crocher and Wilson, 2012].

e object model for JavaScript within web browsers is the document object module
(DOM). e components of a webpage are referred to as self-contained or encapsulated mod-
ules. Module encapsulation includes the object’s data, properties, methods and event handlers.
Predefined modules are available in HTML, web browsers and JavaScript. Also, custom modules
may be implemented using JavaScript [Vander Veer, 2005].

3.5.2 EVENT-DRIVEN PROGRAMMING
Node.js uses the same syntax as other JavaScript interpreters, but provides a different object model
for running outside of a browser environment. It was developed to execute event-driven pro-
gramming. Before discussing event-driven programming, let’s take an aside and discuss breakfast
burritos!

Aside. Steven Barrett is an aficionado of breakfast burritos! e best I’ve had was from a
small family-owned restaurant in Colorado Springs, Colorado, called Rita’s. I left this beloved city
when I retired from military service and moved to Laramie, Wyoming. Laramie is a wonderful
place to live and has a wonderful restaurant named Almanza’s that serves awesome breakfast
burritos. I usually go on Saturdays for this breakfast treat. Provided in Figure 3.8 is a floor plan
of the Almanza’s restaurant.

On Saturday mornings there is a single server working at Alamanza’s. e server is desig-
nated at “S1” in the diagram. e server is very efficient and is able to keep up with the steady
stream of customers (C1, C2, : : :) that come to the front counter to place their orders and those
at the drive-up window (A1, A2, : : :). I really admire those that serve in the restaurant industry.
I attempted this earlier in my life and was horrible at it.

3.5. PROGRAMMING IN JAVASCRIPT USING NODE.JS 61

Take order C1

dining

area

kitchen

front counter

mens’

restroom

womens’

restroom drive up

window
S1

A1

A2

A3

C5 C4 C3
C2

C1

Take order C2

Take order A1

deliver C1

food order

C1 food order

ready

request C1 order

from kitchen

a) Almanzas Restaurant

b) Server activity

callback customer C1

response

Take order C3

Figure 3.8: Alamanza’s restaurant.

62 3. PROGRAMMING

Customers would be lost if the server would take the order from counter customer C1 and
not serve any other customers until C1’s order was complete and delivered. Instead, the server
quickly and efficiently takes customer C1’s order and passes the order back to the kitchen. Cus-
tomer C1 is then asked to step aside and wait for their order to be completed. In the meantime
the server (S1) takes orders from counter customer C2 and drive up window customer A1. e
kitchen then notifies the server S1 that customer C1 order is ready. e server then delivers the
food to customer C1.

3.5.3 NODE.JS
e Node.js object model is specifically focused on event driven programming. In contrast, proce-
dural programming is illustrated in Figure 3.9a. In procedural programming a program executes in
an orderly fashion as prescribed by the program steps. In event driven programming, the program
processes through an event loop as shown in Figure 3.9b. When an asynchronous event occurs,
a function is sent to service the event request. In response to the request, event related tasks are
performed. If some time is required to complete the event related tasks, the system does not wait
for the task to be completed. Instead, the tasks are initiated. When the tasks are complete, the
function sent to the activity, the response function termed the callback, is executed. is allows
for the efficient processing of multiple activities. e literature describes this as “everything runs
in parallel, except your code.” at is, the processor is sequentially executing operations. However,
event level techniques allow efficient execution of multiple events [Vander Veer, 2005; Pollock,
2010; Kiessling, 2012; Hughes-Crocher and Wilson, 2012]. If this sounds familiar, this is be-
cause it is exactly what the server does at Almanza’s restaurant. Provided below is an example to
better illustrate event driven programming using the Almanza’s scenario.

1 / / *
2 / / a lmanza s . j s
3 / / *
4
5 v a r c o un t e r = 1 ;
6 v a r d r i v e u p = 1 ;
7
8 se tT imeou t (counte rOrde r , 1000) ; / / C oun t e r c u s t o m e r a t s e c o n d 1
9 se tT imeou t (counte rOrde r , 2000) ; / / C oun t e r c u s t o m e r a t s e c o n d 2

10 se tT imeou t (d r i v eupOrde r , 3000) ; / / Dr iveup c u s t o m e r a t s e c o n d 3
11 se tT imeou t (counte rOrde r , 4000) ; / / C oun t e r c u s t o m e r a t s e c o n d 4
12 se tT imeou t (counte rOrde r , 5000) ; / / C oun t e r c u s t o m e r a t s e c o n d 5
13 se tT imeou t (d r i v eupOrde r , 6000) ; / / Dr iveup c u s t o m e r a t s e c o n d 6
14 se tT imeou t (d r i v eupOrde r , 7000) ; / / Dr iveup c u s t o m e r a t s e c o n d 7
15 se tT imeou t (counte rOrde r , 8000) ; / / C oun t e r c u s t o m e r a t s e c o n d 8
16
17 / / *
18 / / s e r v e r (t a s k)
19 / /
20 / / The s e r v e r t a k e s t h e o r d e r s f r om t h e c u s t o m e r s and g i v e s them

3.5. PROGRAMMING IN JAVASCRIPT USING NODE.JS 63

Event A
Event A trigger

Event D trigger

b) event driven programming

a) procedural programming

void main (void)

function1 ();

function2 ();

void function1 (void)

void function2 (void)

{

{

{

}

}

}

:

:

:

:

:

Callback A

Callback D

Request

Request

Response

Response

Event B

Event C

Event D

Event X

Figure 3.9: Event-driven programming.

64 3. PROGRAMMING

21 / / t o t h e k i t c h e n , a s w e l l a s d e l i v e r i n g o r d e r s f r om t h e k i t c h e n
22 / / *
23
24 f u n c t i o n s e r v e r (cu s tomer)
25 {
26 c o n s o l e . l o g (” Take o r d e r ” + cu s tomer) ;
27 k i t c h e n (d e l i v e r) ;
28
29 f u n c t i o n d e l i v e r ()
30 {
31 c o n s o l e . l o g (” D e l i v e r ” + cu s tomer + ” food o r d e r ”) ;
32 }
33 }
34
35 / / *
36 / / k i t c h e n (c a l l b a c k)
37 / /
38 / / The k i t c h e n t a k e s t a s k s and c o m p l e t e s them a t a random t im e
39 / / b e tw e e n 1 and 5 s e c o n d s
40 / / *
41
42 f u n c t i o n k i t c h e n (c a l l b a c k)
43 {
44 v a r d e l a y = 1000 + Math . round (Math . random () * 4000) ;
45 s e tT imeou t (c a l l b a c k , d e l a y) ;
46 }
47
48 / / *
49 / / c o u n t e r O r d e r ()
50 / /
51 / / Give o r d e r t o s e r v e r
52 / / *
53
54 f u n c t i o n coun t e rOrde r ()
55 {
56 s e r v e r (”C” + c oun t e r) ;
57 c o un t e r ++ ;
58 }
59
60 / / *
61 / / d r i v e u pO r d e r ()
62 / /
63 / / Give o r d e r t o s e r v e r
64 / / *
65
66 f u n c t i o n d r i v eupOrde r ()
67 {
68 s e r v e r (”A” + d r i v e u p) ;

3.5. PROGRAMMING IN JAVASCRIPT USING NODE.JS 65

69 d r i v e u p ++ ;
70 }
71 / / *

Now that you’ve seen the way JavaScript handles asynchronous tasks, what if you want
to run a series of tasks sequentially that have long delays between them without blocking all of
your event handlers? Unlike many other programming environments, Node.JS highly discourages
using operating system threads that would allow other tasks to run while one thread is blocked.
In Node.JS, if we decided to have a function pause and watch the clock, no other function can
run until that function returns. Performing sequential tasks is made a bit complicated by this, but
here’s a pattern that you can use. e series of tasks provided are executed sequentially with delays
between them and other event handlers are able to run during those delays.

1 / / *
2 / / n e x t . j s � A p a t t e r n f o r c a l l i n g s e q u e n t i a l f u n c t i o n s i n nod e . j s
3 / / *
4
5 mys t ep s (done) ;
6
7 / / *
8 / / d on e
9 / / *

10
11 f u n c t i o n done () {
12 c o n s o l e . l o g (” done ”) ;
13 }
14
15 / / *
16 / / m y s t e p s
17 / / *
18
19 f u n c t i o n mys t ep s (c a l l b a c k)
20 {
21 / / P r o v i d e a l i s t o f f u n c t i o n s t o c a l l
22 v a r s t e p s =
23 [
24 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; s e tT imeou t (nex t , 15) ; } , / / d e l a y

15 ms
25 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; s e tT imeou t (nex t , 5) ; } , / / d e l a y 5

ms
26 f u n c t i o n () { c a l l b a c k () ; }
27] ;
28
29 / / S t a r t a t 0
30 v a r i = 0 ;
31
32 c o n s o l e . l o g (” i = ” + i) ;
33 ne x t () ; / / C a l l t h e f i r s t f u n c t i o n

66 3. PROGRAMMING

34
35 / / N e s t e d h e l p e r f u n c t i o n t o c a l l t h e n e x t f u n c t i o n in ’ s t e p s ’
36 f u n c t i o n ne x t ()
37 {
38 i ++
39 s t e p s [i �1] () ;
40 }
41 }
42
43 / / *

3.6 APPLICATION: DAGU MAGICIAN AUTONOMOUS
MAZE NAVIGATING ROBOT

In the next several chapters we investigate different autonomous navigating robot designs. Before
delving into these designs, it would be helpful to review the fundamentals of robot steering and
motor control. Figure 3.10 illustrates the fundamental concepts. Robot steering is dependent
upon the number of powered wheels and whether the wheels are equipped with unidirectional
or bidirectional control. Additional robot steering configurations are possible. An H-bridge is
typically required for bidirectional control of a DC motor. We discuss the H-bridge in greater
detail in the next chapter.

3.6.1 DAGU MAGICIAN ROBOT
In this application project we equip the Dagu Magician robot for control by BeagleBone as a
maze navigating robot. Reference Figure 3.11. e Magician kit may be purchased from Spark-
Fun Electronics (www.sparkfun.com). e robot is controlled by two 7.2 VDC motors which
independently drive a left and right wheel. A third non-powered drag ball provides tripod stability
for the robot.

We equip the Dagu Magician robot platform with three Sharp GP2Y0A21YKOF IR sen-
sors as shown in Figure 3.12. e sensors are available from SparkFun Electronics (www.spar
kfun.com). We mount the sensors on a bracket constructed from thin aluminum. Dimensions
for the bracket are provided in the figure. Alternatively, the IR sensors may be mounted to the
robot platform using “L” brackets available from a local hardware store. e characteristics of the
sensor were provided earlier in Figure 2.10. e robot is placed in a maze with reflective walls.
e project goal is for the robot to detect wall placement and navigate through the maze. It is im-
portant to note the robot is not provided any information about the maze. e control algorithm
for the robot is hosted on BeagleBone.

www.sparkfun.com
www.sparkfun.com
www.sparkfun.com

3.6. APPLICATION: DAGU MAGICIAN AUTONOMOUS MAZE NAVIGATING ROBOT 67

Figure 3.10: Robot control configurations.

68 3. PROGRAMMING

Figure 3.11: Dagu Magician robot. (Photo courtesy of Barrett [2015].)

3.6.2 REQUIREMENTS
e requirements for this project are simple, the robot must autonomously navigate through the
maze as quickly as possible without touching maze walls. e requirements for this project are
purposely stated flexibly to allow for creativity and competition in developing a final design.

3.6.3 CIRCUIT DIAGRAM
e circuit diagram for the robot is provided in Figure 3.14. e three IR sensors (left, center, and
right) are mounted on the leading edge of the robot to detect maze walls. Recall the maximum
allowable voltage that may be presented to the BeagleBone Black analog-to-digital system is 1.8
VDC. e output from each IR sensor is provided to a 1M Ohm potentiometer set to one-half
full scale. is insures the input voltage to the ADC channels do not exceed the 1.8 VDC limit.
e output from the potentiometers is fed to three separate ADC channels: left - P9, pin 39,
center - P9, pin 40, and right - P9, pin 37.

3.6. APPLICATION: DAGU MAGICIAN AUTONOMOUS MAZE NAVIGATING ROBOT 69

Figure 3.12: Dagu Magician robot platform modified with three IR sensors.

70 3. PROGRAMMING

e robot motors are driven by PWM channels: left motor - P9, pin 14 and right motor
- P9, pin 16. e PWM channels are interfaced to the to the motors via a Darlington transistor
(TIP 130, NPN) with enough drive capability to handle the maximum current requirement of
the motor. e Darlington transistor configuration provides high current gain. e PWM out-
put from BeagleBone Black is fed to the base of the TIP130 via a 330 ohm resistor. e motor is
connected to the collector of the TIP130 transistor. It is connected in series with three 1N4001
diodes to step down the supply voltage of 9 VDC to the motor voltage. A reversed biased diode
is provided across the motor and the diode string to eliminate flyback. When the voltage to an
inductive load (motor, solenoid, etc.) is removed, a flyback spike voltage may occur. e reversed
biased diode allows energy in the inductor to safely dissipate [O’Berto, 2015]. A prototype dia-
gram of the circuit is provided in Figure 3.13.

e robot requires a 9 VDC power supply. is may be provided by an onboard battery
pack (6 AA batteries) or a 9 VDC regulated supply provided by an external power supply. e
9 VDC source is fed to a 5 VDC voltage regulator to power BeagleBone. e 9 VDC power
supply should be rated at several amps (e.g., Adafruit 276 or Jameco #1952847). e supply may
be connected to the robot via a flexible umbilical cable. A 2.1-mm center positive with a 5.5-mm
outer barrel plug may be used to connect the 5 VDC power supply output to the BeagleBone
Black power jack. e center positive connection may be verified with a voltmeter.

3.6.4 STRUCTURE CHART
e structure chart for the robot project is provided in Figure 3.15. e structure chart shows the
hierarchy of how system hardware and software components will interact and interface with one
another. It will be discussed in some detail in Chapter 5.

3.6.5 UML ACTIVITY DIAGRAMS
e UML (Unified Modeling Language) activity diagram for the robot is provided in Figure 3.16.
e activity diagram is simply a UML compliant flow chart. UML is a standardized method of
documenting systems. e activity diagram will be discussed in more detail in Chapter 5.

3.6.6 BONESCRIPT CODE
Provided below is the basic framework for the Bonescript code. As illustrated in the Robot UML
activity diagram, the control algorithm initializes pins, senses wall locations, and issues motor
control signals to avoid walls.

It is helpful to characterize the infrared sensor response to the maze walls. is allows a
threshold to be determined indicating the presence of a wall. In this example we assume that a
threshold of 1.25 VDC has been experimentally determined and the potentiometer has been set
for a maximum possible IR senor reading of 1.75 VDC. is equates to threshold reading from
the “b.analogRead function of 0.714.”

3.6. APPLICATION: DAGU MAGICIAN AUTONOMOUS MAZE NAVIGATING ROBOT 71

+

-

+

-

to BBB

P9, pin 16

to BBB

P9, pin 14

left motor right motor

9 VDC

ground

1N4001

10uF 10uF

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

3
3
0

3
3
0

9 VDC

ground

5 VDC

ground

left IR sensor center IR sensor right IR sensor

5 VDC

ground

to P9, pin 39
TIP120

B C E

TIP120

B C E

10M

7805
I C O 10M 10M

to P9, pin 40

to P9, pin 37

b) Dagu robot interface

a) solderless breadboard layout

Figure 3.13: Dagu Magician robot interface circuit layout.

72 3. PROGRAMMING

7
.2

 V
D

C

at
 3

0
0
 m

A

1
N

4
0
0
1

3
3
0

M+ -

7
.2

 V
D

C

at
 3

0
0
 m

a

3
3
0

1
N

4
0
0
1

9
.0

 V
D

C
9
.0

 V
D

C

7
8
0
5

I

C

O
9
.0

 V
D

C

b
a t

te
ry

 p
ac

k

o
r

p
o
w

er

su
p
p
ly

+
9
 V

D
C

+
5
 V

D
C

M+ -

Figure 3.14: Robot circuit diagram. (Illustrations used with permission of Texas Instruments (www.
TI.com).)

www.TI.com
www.TI.com

3.6. APPLICATION: DAGU MAGICIAN AUTONOMOUS MAZE NAVIGATING ROBOT 73

ADC

ReadADC

ch for

conv

conv

data

left

IR sensor
right

IR sensor

middle

IR sensor

determine_robot

_action

PWM_left

left

motor

PWM_right

right

motor

desired

motor

action

sensor

data

motor_control

robot

action

Figure 3.15: Robot structure diagram.

It is important to note that the amount of robot turn is determined by the PWM duty cycle
(motor speed) and the length of time the turn is executed. Formotors without optical tachometers,
the appropriate values for duty cycle and motor on time must be experimentally determined. In
the example functions provided the motor PWM and on time are fixed.

1 / / *
2 / / r o b o t . j s
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 v a r l e f t _ I R _ s e n s o r = ‘ ‘ P9_39 ’ ’ ; / / a n a l o g i n p u t f o r l e f t IR s e n s o r
8 v a r c e n t e r _ IR_ s e n s o r = ‘ ‘ P9_40 ’ ’ ; / / a n a l o g i n p u t f o r c e n t e r IR

s e n s o r
9 v a r r i g h t _ IR_ s e n s o r = ‘ ‘ P9_37 ’ ’ ; / / a n a l o g i n p u t f o r r i g h t IR s e n s o r

10
11 v a r l e f t _mo t o r _ p i n = ‘ ‘ P9_14 ’ ’ ; / /PWM pin f o r l e f t mo t o r
12 v a r r i g h t _mo t o r _p i n = ‘ ‘ P9_16 ’ ’ ; / /PWM pin f o r r i g h t mo t o r
13
14 v a r l e f t _ s e n s o r _ v a l u e ;

74 3. PROGRAMMING

define pins

define input and output

while(1)

read sensor inputs

(left, middle, right)

determine robot

action

issue motor

control signals

Figure 3.16: Robot UML activity diagram.

15 v a r c e n t e r _ s e n s o r _ v a l u e ;
16 v a r r i g h t _ s e n s o r _ v a l u e ;
17
18 b . pinMode (l e f t _mo t o r _p i n , b .OUTPUT) ; / / l e f t mo t o r p in
19 b . pinMode (r i gh t_mo to r_p in , b .OUTPUT) ; / / r i g h t mo t o r p in
20
21 whi l e (1)
22 {
23 / / r e a d a n a l o g o u t p u t f r om IR s e n s o r s
24 / / n o rma l i z e d v a l u e r a n g e s f r om 0 . . 1
25 l e f t _ s e n s o r _ v a l u e = b . ana logRead (l e f t _ I R _ s e n s o r) ;
26 c e n t e r _ s e n s o r _ v a l u e = b . ana logRead (c e n t e r _ IR_ s e n s o r) ;
27 r i g h t _ s e n s o r _ v a l u e = b . ana logRead (r i g h t _ IR_ s e n s o r) ;

3.7. SUMMARY 75

28
29 / / a s s um e s d e s i r e d t h r e s h o l d a t
30 / / 1 . 25 VDC with max v a l u e o f 1 .75

VDC
31 i f ((l e f t _ s e n s o r _ v a l u e > 0 . 7 14)&&
32 (c e n t e r _ s e n s o r _ v a l u e <= 0 . 7 14)&&
33 (r i g h t _ s e n s o r _ v a l u e > 0 . 7 14))
34 { / / r o b o t c o n t i n u e s s t r a i g h t ah e ad
35 b . ana l ogWr i t e (l e f t _mo t o r _ p i n , 0 . 7) ;
36 b . ana l ogWr i t e (r i gh t_mo to r_p in , 0 . 7) ;
37 }
38 e l s e i f
39 {
40 :
41 :
42 :
43
44 / / i n s e r t o t h e r c a s e s
45
46 }
47 }
48
49 / / *

e robot may be tested in a maze. Once the robot control algorithm is downloaded and
running, BeagleBone may be disconnected from the host computer. e design provided is very
basic. e end of chapter homework assignments extend the design to include the following.

• Modify the PWM turning commands such that the PWM duty cycle and the length of
time the motors are on are sent in as arguments to the function.

• Equip the motor with a fourth IR sensor that looks down to the maze floor for “land mines.”
A land mine consists of a paper strip placed on the maze floor that obstructs a portion of
the maze. If a land mine is detected, the robot must “deactivate” it by rotating three times
and flashing a large LED while rotating.

• Develop a function for reversing the direction of robot movement.

3.7 SUMMARY
e goal of this chapter was to provide a tutorial on how to begin programming. We used a top-
-down design approach. We began with an overview of programming and explained the major
parts of JavaScript and C programs for an embedded application. We examined some of the most
esse ntial constructs of JavaScript and C programs in greater detail. roughout the chapter, we
provided examples and also provided pointers to a number of excellent references.

76 3. PROGRAMMING

3.8 REFERENCES
• “ImageCraft Embedded Systems C Development Tools.” 2015; www.imagecraft.com.

• Barrett, S. and Pack, D. Embedded Systems Design and Applications with the 68HC12 and
HCS12. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

• Barrett, J. “Closer to the Sun International.” 2015; www.closertothesuninternationa
l.com.

• Barrett, S. and Pack, D. Processors Fundamentals for Engineers and Scientists. San Rafael,
CA: Morgan & Claypool Publishers, 2006; www.morganclaypool.com.

• Barrett, S. and Pack, D. Atmel AVR Processor Primer Programming and Interfacing. San
Rafael, CA: Morgan & Claypool Publishers, 2008; www.morganclaypool.com.

• Barrett, S. Embedded Systems Design with the Atmel AVR Processor. San Rafael, CA: Morgan
and Claypool Publishers, 2010; www.morganclaypool.com.

• “SparkFun Electronics.” 2015; www.sparkfun.com.

• Vander Veer, E. JavaScript for Dummies. 4th ed., Hoboken, NJ: Wiley Publishing, Inc.,
2005.

• Pollock, J. JavaScript. 3rd ed., New York: McGraw Hill, 2010.

• Kiessling, M. e Node Beginner Guide: A Comprehensive Node.js Tutorial. 2012.

• Hughes-Croucher, T. and Wilson, M. Node Up and Running. Sebastopol, CA: O’Reilly
Media, Inc., 2012.

• O’Berto, G. Falcon Electronic Technologies, 2015, Colorado Springs, CO.

3.9 CHAPTER EXERCISES
1. Describe the key portions of a C program.

2. What is an include file?

3. What are the three pieces of code required for a program function?

4. Describe how to define a program constant.

5. What is the difference between a “for” and “while” loop?

6. When should a switch statement be used versus the if-then statement construct?

7. Complete the Dagu Magician robot control algorithm.

www.imagecraft.com
www.closertothesuninternational.com
www.closertothesuninternational.com
www.morganclaypool.com
www.morganclaypool.com
www.morganclaypool.com
www.sparkfun.com

3.9. CHAPTER EXERCISES 77

8. Develop a series of functions to turn the Dagu Magician robot right and left. e motor
duty cycle and the motor on time should be passed to the function as a variable.

9. Equip the motor with a fourth IR sensor that looks down to the maze floor for “land mines.”
A land mine consists of a paper strip placed in the maze floor that obstructs a portion of the
maze. If a land mine is detected, the robot must deactivate it by rotating three times and
flashing a large LED while rotating.

10. Develop a function for reversing the robot.

79

C H A P T E R 4

BeagleBone Operating
Parameters and Interfacing

Objectives: After reading this chapter, the reader should be able to do the following.

• Describe the voltage and current parameters for BeagleBone.

• Apply the voltage and current parameters toward properly interfacing input and output
devices to BeagleBone.

• Interface BeagleBone operating at 3.3 VDC with a peripheral device operating at 5.0 VDC.

• Interface a wide variety of input and output devices to BeagleBone.

• Describe the special concerns that must be followed when BeagleBone is used to interface
to a high-power DC or AC device.

• Describe how to control the speed and direction of a DC motor.

• Describe how to control several types of AC loads.

• Summarize the layout of the Prototype Cape for BeagleBone.

• Equip the Dagu Magician robot with a Liquid Crystal Display (LCD).

4.1 OVERVIEW
In this chapter, we introduce the extremely important concept of the operating envelope for a
processor. Basically, if we use a processor within its operating envelope, life is good. However,
if the processor is used outside of its operating envelope, unpredictable behavior or processor
damage may result. It is important to use the processor within its defined operating envelope of
voltage and current parameters.

We begin by reviewing the voltage and current electrical parameters for BeagleBone. We
use this information to properly interface input and output devices to BeagleBone. BeagleBone
operates at 3.3 VDC. ere are many compatible peripheral devices. However, many peripheral
devices operate at 5.0 VDC. We discuss how to interface a 3.3 VDC microcontroller to 5.0 VDC
peripherals. We then discuss the special considerations for controlling a high-power DC or AC

80 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

load such as a motor. e overview of interface techniques was adapted with permission from
other Morgan and Claypool projects [Pack, 2005 and Barrett, 2006]. roughout this chapter,
we provide a number of detailed examples to illustrate concepts. If this is your first exposure to
electronics, please consider reading Getting Started in Electronics by Forrest M. Mims III [2000].
is book provides a well-written, comprehensive introduction to the fascinating world of elec-
tronics.

4.2 OPERATING PARAMETERS
A processor is an electronic device which has precisely defined operating conditions. As long as
the processor is used within its defined operating parameter limits, it should continue to operate
correctly. However, if the allowable conditions are violated, spurious results may arise.

4.2.1 BEAGLEBONE 3.3 VDC OPERATION
Any time a device is connected to a processor, careful interface analysis must be performed. Bea-
gleBone digital input/output signals operate at 3.3 VDC. To perform interface analysis, there are
eight different electrical specifications we must consider. e electrical parameters are defined
below and illustrated in Figure 4.1:

• VOH : the lowest guaranteed output voltage for a logic high;

• VOL: the highest guaranteed output voltage for a logic low;

• IOH : the output current for a VOH logic high;

• IOL: the output current for a VOL logic low;

• VIH : the lowest input voltage guaranteed to be recognized as a logic high;

• VIL: the highest input voltage guaranteed to be recognized as a logic low;

• IIH : the input current for a VIH logic high; and

• IIL: the input current for a VIL logic low.

To properly interface a peripheral device to BeagleBone, the parameters provided in Fig-
ure 4.2 must be used. It is important to realize that these are static values taken under very specific
operating conditions. If external circuitry is connected such that the processor acts as a current
source (current leaving processor) or current sink (current entering processor), the voltage param-
eters listed above will also be affected.

In the current source case, an output voltage VOH is provided at the output pin of the
processor when the load connected to this pin draws a current of IOH . If a load draws more
current from the output pin than the IOH specification, the value of VOH is reduced. If the load
current becomes too high, the value of VOH falls below the value of VIH for the subsequent logic

4.2. OPERATING PARAMETERS 81

Output pin

parameters

supply voltage

VOH IOH

VOL IOL

ground

valid logic

high output

valid logic

low output

indeterminate

region

Input pin

parameters

supply voltage

VIH
IIH

VILIIL

ground

valid logic

high input

valid logic

low input

indeterminate

region

Figure 4.1: Parameters definitions.

circuit stage, and it will not be recognized as an acceptable logic high signal. When this situation
occurs, erratic and unpredictable circuit behavior results.

In the sink case, an output voltage VOL is provided at the output pin of the processor when
the load connected to this pin delivers a current of IOL to this logic pin. If a load delivers more
current to the output pin of the processor than the IOL specification, the value of VOL increases. If
the load current becomes too high, the value of VOL rises above the value of VIL for the subsequent
logic circuit stage, and it will not be recognized as an acceptable logic low signal. As before, when
this situation occurs, erratic and unpredictable circuit behavior results.

4.2.2 COMPATIBLE 3.3 VDC LOGIC FAMILIES
ere are several compatible logic families that operate at 3.3 VDC. ese families include the
LVC, LVA, and the LVT logic families. Key parameters for the low-voltage compatible families
are provided in Figure 4.3.

Prototyping Aids
Many of the 3.3 VDC logic families are only available in surface mount technology. To aid in
developing a first prototype there are a number of products available to convert surface mount
integrated circuits to a dual inline package style [www.jameco.com].

www.jameco.com

82 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

μ

μ

Figure 4.2: BeagleBone interface parameters.

4.2.3 INPUT/OUTPUT OPERATION AT 5.0 VDC
BeagleBone operates at 3.3 VDC. However, many HC CMOS microcontroller families and pe-
ripherals operate at a supply voltage of 5.0 VDC. For completeness, we provide operating param-
eters for these types of devices. is information is essential should BeagleBone be interfaced to
a 5 VDC CMOS device or peripheral.

Typical values for a microcontroller in the HC CMOS family, assuming VDD = 5.0 volts
and VSS = 0 volts, are provided below. e minus sign on several of the currents indicates a current
flow out of the device. A positive current indicates current flow into the device:

• VOH = 4.2 volts;

• VOL = 0.4 volts;

• IOH = -0.8 milliamps;

• IOL = 1.6 milliamps;

4.2. OPERATING PARAMETERS 83

VDD = 3.3 VDC

VSS = 0 VDC

Output Gate
Parameters

VDD = 3.3 VDC

VSS = 0 VDC

Input Gate
Parameters

IOH

IOL

IIH

IIL

a) Voltage and current electrical parameters

VOH = 2.4 V

VOL = 0.4 V

VIH = 2.0 V

VIL = 0.8 V

b) LV parameters

Vcc 1.65-3.6 V 2.0-5.5 V 2.7-3.6V

tpd 5.5 ns 14 ns 3.5 ns

Ioc 10 uA 20 uA 190 uA

LVC LVA LVT

Figure 4.3: Low-voltage compatible logic families.

• VIH = 3.5 volts;

• VIL = 1.0 volt;

• IIH = 10 microamps; and

• IIL = -10 microamps.

4.2.4 INTERFACING 3.3 VDC LOGIC FAMILIES TO 5.0 VDC LOGIC
FAMILIES

Although there are a wide variety of available 3.3 VDC peripheral devices available for Beagle-
Bone, some useful peripheral devices are not available for a 3.3 VDC system. If bidirectional
information exchange is required between the processor and the peripheral device, a bidirectional

84 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

level shifter is required between the processor and the peripheral device. e level shifter trans-
lates the 3.3 VDC signal to 5 VDC for the peripheral device and back down to 3.3 VDC for the
processor. ere are a wide variety of unidirectional and bidirectional level shifting devices avail-
able. For example, Sparkfun Electronics has the BOB-08745 logic level shifter breakout board
(www.sparkfun.com).

4.3 INPUT DEVICES
In this section, we discuss how to properly interface input devices to a processor. We start with
the most basic input component, a simple on/off switch.

4.3.1 SWITCHES
Switches come in many varieties. As a system designer it is up to you to choose the appropriate
switch for a specific application. Switch varieties commonly used in processor applications are
illustrated in Figure 4.4a). Here is a brief summary of the different types.

• Slide switch: A slide switch has two different positions: on and off. e switch is manually
moved to one position or the other. For processor applications, slide switches are available
that fit in the profile of a common integrated circuit size dual inline package (DIP). A bank
of four or eight DIP switches in a single package is commonly available.

• Momentary contact pushbutton switch: A momentary contact pushbutton switch comes
in two varieties: normally closed (NC) and normally open (NO). A normally open switch,
as its name implies, does not normally provide an electrical connection between its contacts.
When the pushbutton portion of the switch is depressed, the connection between the two
switch contacts is made. e connection is held as long as the switch is depressed. When
the switch is released, the connection is opened. e converse is true for a normally closed
switch. For processor applications, pushbutton switches are available in a small tactile (tact)
type switch configuration.

• Push on/push off switches: ese type of switches are also available in a normally open or
normally closed configuration. For the normally open configuration, the switch is depressed
to make connection between the two switch contacts. e pushbutton must be depressed
again to release the connection.

• Hexadecimal rotary switches: Small profile rotary switches are available for processor ap-
plications. ese switches commonly have sixteen rotary switch positions. As the switch is
rotated to each position, a unique four bit binary code is provided at the switch contacts.

Common switch interfaces are shown in Figure 4.4a and b. is interface allows a logic one
or zero to be properly introduced to a processor input port pin. e basic interface consists of the
switch in series with a current limiting resistor. e node between the switch and the resistor is

www.sparkfun.com

4.3. INPUT DEVICES 85

Figure 4.4: Switch interface.

86 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

provided to the processor input pin. In the configuration shown, the resistor pulls the processor
input up to the supply voltage VDD . When the switch is closed, the node is grounded and a logic
zero is detected by the processor input pin. To reverse the logic of the switch configuration, the
position of the resistor and the switch is simply reversed. In Chapter 6, we discuss the built-in
pull up resistor features on BeagleBone Black.

4.3.2 SWITCH DEBOUNCING
Unfortunately, mechanical switches do not make a clean transition from one position (on) to
another (off). When a switch is moved from one position to another, it makes and breaks contact
multiple times. is activity may go on for tens of milliseconds. A processor is relatively fast as
compared to the action of the switch. erefore, the processor is able to recognize each switch
bounce as a separate and erroneous transition.

To correct the switch bounce phenomenon, additional external hardware components may
be used or software techniques may be employed. A hardware debounce circuit is illustrated in
Figure 4.4c. e node between the switch and the limiting resistor of the basic switch circuit
is fed to a low pass filter (LPF), formed by the 470 k ohm resistor and the capacitor. e LPF
prevents abrupt changes (bounces) in the input signal from the processor. e LPF is followed
by a 74LVC14 Schmitt Trigger which is simply an inverter equipped with hysteresis. is further
limits the switch bouncing.

Switches may also be debounced using software techniques. is is accomplished by insert-
ing a 30–50 ms lockout delay in the function responding to port pin changes. e delay prevents
the processor from responding to the multiple switch transitions due to bouncing.

You must carefully analyze a given design to determine if hardware or software switch
debouncing techniques should be used. It is important to remember that all switches exhibit
bounce phenomena and therefore must be debounced.

4.3.3 KEYPADS
A keypad is simply an extension of the simple switch configuration. A typical keypad configura-
tion and interface are shown in Figure 4.5. As you can see, the keypad simply consists of multiple
switches in the same package. A hexadecimal keypad is shown in the figure. A single row of key-
pad switches is asserted by the processor, and then the host keypad port is immediately read. If
a switch in this row has been depressed, the keypad pin corresponding to the column the switch
is in will also be asserted. e combination of a row and a column assertion can be decoded to
determine which key has been pressed as illustrated in the table. Keypad rows are continually
asserted one after the other in sequence. Since the keypad is a collection of switches, debounce
techniques must also be employed.

e keypad may be used to introduce user requests to a processor. A standard keypad with
alphanumeric characters may be used to provide alphanumeric values to the processor such as
providing your personal identification number (PIN) for a financial transaction. However, some

4.3. INPUT DEVICES 87

4

0

0

1

2

3

read keypad column 0

M
ic

ro
c
o
n
tr

o
lle

r
P

O
R

T

Vcc

10K

Vcc

10K

Vcc

10K

Vcc

10K

read keypad column 1

read keypad column 2

read keypad column 3

Key pressed

by user

Row asserted

by

microcontroller

3 2 1 0

1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

0 1 1 1

0 1 1 1

0 1 1 1

0 1 1 1

X X X X

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

none

7 6 5 4

1 1 1 0 0xEE

0xDE

0xBE

0x7E

0xED

0xDD

0xBD

0x7D

0xEB

0xDB

0xBB

0x7B

0xE7

0xD7

0xB7

0x77

0xX7

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

Column response

from

keypad switch

Row/Column

combination

read at micro

port

1 2 3

assert

keypad row 0

assert

keypad row 1

assert

keypad row 2

assert

keypad row 3

4 5 6 7

8 9 A B

C D E F

5 6 7

Figure 4.5: Keypad interface.

88 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

keypads are equipped with removable switch covers such that any activity can be associated with
a key press.

4.3.4 SENSORS
A processor is typically used in control applications where data is collected, the data is assimilated
and processed by the host algorithm, and a control decision and accompanying signals are pro-
vided by the processor. Input data for the processor is collected by a complement of input sensors.
ese sensors may be digital or analog in nature.

Digital Sensors
Digital sensors provide a series of digital logic pulses with sensor data encoded. e sensor data
may be encoded in any of the parameters associated with the digital pulse train such as duty cycle,
frequency, period, or pulse rate. e input portion of the timing system may be configured to
measure these parameters.

An example of a digital sensor is an optical encoder. An optical encoder consists of a small
transparent, plastic disk with opaque lines etched on the disk surface. A stationary optical emitter
and detector source are placed on either side of the disk. As the disk rotates, the opaque lines
break the continuity between the optical source and detector. e signal from the optical detector
is monitored to determine disk rotation, as shown in Figure 4.6. e optical encoder configuration
provides an optical tachometer.

ere are two major types of optical encoders: incremental encoders and absolute encoders.
An absolute encoder is used when it is required to retain position information when power is lost.
For example, if you were using an optical encoder in a security gate control system, an absolute en-
coder would be used to monitor the gate position. An incremental encoder is used in applications
where a velocity or a velocity and direction information is required.

e incremental encoder types may be further subdivided into tachometers and quadrature
encoders. An incremental tachometer encoder consists of a single track of etched opaque lines as
shown in Figure 4.6a. It is used when the velocity of a rotating device is required. To calculate
velocity, the number of detector pulses is counted in a fixed amount of time. Since the number of
pulses per encoder revolution is known, velocity may be calculated.

e quadrature encoder contains two tracks shifted in relationship to one another by 90ı.
is allows the calculation of both velocity and direction. To determine direction, one would
monitor the phase relationship between Channel A and Channel B as shown in Figure 4.6b. e
absolute encoder is equipped with multiple data tracks to determine the precise location of the
encoder disk [Sick Stegmann].

Analog Sensors and Transducers
Analog sensors or transducers provide a DC voltage that is proportional to the physical parameter
beingmeasured.e analog signal may be first preprocessed by external analog hardware such that

4.3. INPUT DEVICES 89

S

D
rotating

 disk

stationary optical

source and detector

pair

a) Incremental tachometer encoder

Detector output

b) Incremental quadrature encoder

Ch B

Ch A

Figure 4.6: Optical encoder.

it falls within the voltage references of the conversion subsystem. In the case of BeagleBone, the
transducer output must fall between 0 and 1.8 VDC. e analog voltage is then converted to a
corresponding binary representation. Note: As previously mentioned, the analog input to the
analog-to-digital converter must not exceed 1.8 VDC.

Example 1: Flex Sensor
An example of an analog sensor is the flex sensor shown in Figure 4.7a. e flex sensor provides
a change in resistance for a change in sensor flexure. At 0ı flex, the sensor provides 10 k Ohms of
resistance. For 90ı flex, the sensor provides 30–40 k Ohms of resistance. Since the processor can
not measure resistance directly, the change in flex sensor resistance must be converted to a change
in a DC voltage. is is accomplished using the voltage divider network shown in Figure 4.7c. For
increased flex, the DC voltage will increase. e voltage can be measured using the BeagleBone’s
analog-to-digital converter subsystem.

90 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

0.25 in (0.635 cm)

4.5 in (11.43 cm)

a) flex sensor physical dimensions

b) flex action

c) equivalent circuit

V
DD

10K fixed

resistor

flex sensor:

-- 0° flex, 10K

-- 90° flex, 30-40K

Figure 4.7: Flex sensor.

Figure 4.8: A block diagram of the signal conditioning for an analog-to-digital converter. e range
of the sensor voltage output is mapped to the analog-to-digital converter input voltage range. e
scalar multiplier maps the magnitudes of the two ranges and the bias voltage is used to align two
limits.

4.3. INPUT DEVICES 91

e flex sensor may be used in applications such as virtual reality data gloves, robotic sen-
sors, biometric sensors, and in science and engineering experiments [Images Company]. One
of the co-authors (Steven Barret) used the circuit provided in Figure 4.7 to help a colleague in
Zoology monitor the movement of a newt salamander during a scientific experiment.

Example 2: Ultrasonic Sensor
e ultrasonic sensor pictured in Figure 4.9 is an example of an analog-based sensor. e sensor
is based on the concept of ultrasound or sound waves that are at a frequency above the human
range of hearing (20 Hz to 20 kHz). e ultrasonic sensor pictured in Figure 4.9c emits a sound
wave at 42 kHz. e sound wave reflects from a solid surface and returns back to the sensor.
e amount of time for the sound wave to transit from the surface and back to the sensor may
be used to determine the range from the sensor to the wall. Pictured in Figure 4.9c and d is
an ultrasonic sensor manufactured by Maxbotix (LV-EZ3). e sensor provides an output that
is linearly related to range in three different formats: (a) a serial RS-232 compatible output at
9600 bits per second, (b) a pulse output which corresponds to 147 us/inch width, and (c) an
analog output at a resolution of 10 mV/inch. e sensor is powered from a 2.5–5.5 VDC source
[www.sparkfun.com].

Example 3: Inertial Measurement Unit
Pictured in Figure 4.10 is an inertial measurement unit (IMU) combination which consists of
an IDG5000 dual-axis gyroscope and an ADXL335 triple axis accelerometer. is sensor may
be used in unmanned aerial vehicles (UAVs), autonomous helicopters, and robots. For robotic
applications the robot tilt may be measured in the X and Y directions, as shown in Figure 4.10c
and d [www.sparkfun.com].

Example 4: Level Sensor
Milone Technologies manufacture a line of continuous fluid level sensors. e sensor resembles
a ruler and provides a near liner response as shown in Figure 4.11. e sensor reports a change in
resistance to indicate the distance from sensor top to the fluid surface. A wide resistance change
occurs from 700 Ohms at a one inch fluid level to 50 Ohms at a 12.5-in fluid level [www.milone
tech.com].

To covert the resistance change to a voltage change measurable by BeagleBone Black, a
voltage divider circuit as shown in Figure 4.11 may be used. With a supply voltage (V DD)of
3.3 VDC, a VTAPE voltage of 0.855 VDC results for a one inch fluid level, whereas a fluid of
12.5-in provides a VTAPE voltage level of 0.080 VDC.

4.3.5 TRANSDUCER INTERFACE DESIGN (TID) CIRCUIT
In addition to transducers, we also need a signal conditioning circuitry before we can apply the
signal for analog-to-digital conversion. e signal conditioning circuitry is called the transducer

www.sparkfun.com
www.sparkfun.com
www.milonetech.com
www.milonetech.com

92 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

Figure 4.9: Ultrasonic sensor. (Sensor image used courtesy of SparkFun, Electronics.)

4.3. INPUT DEVICES 93

VDD

Figure 4.10: Inertial measurement unit. (IMU image used courtesy of SparkFun, Electronics.)

94 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

R
es

is
ta

n
ce

 [
o
h
m

s]

700

600

500

400

300

200

100

0

1 2 3 4 5 6 7 8 9 10 11 120

distance from sensor top to fluid level [inches]

a) characteristics for Milone Technologies eTapeTM fluid level sensor.

Max

eT
a
p
e

12

1

b) eTape sensor

VDD = 3.3 VDC

2Kohm fixed

resistor

 eTape sensor:

-- 700 ohms at 1 inch fluid

-- 50 ohms at 12.5 inch fluid

c) equivalent circuit

sensor lead

connections

connection

area

Figure 4.11: Milone Technologies fluid level sensor. (www.milonetech.com)

www.milonetech.com

4.3. INPUT DEVICES 95

interface. e objective of the transducer interface circuit is to scale and shift the electrical signal
range to map the output of the transducer to the input range of the analog-to-digital converter,
which is typically 0–3.3 VDC. Figure 4.8 shows the transducer interface circuit using an input
transducer.

e transducer interface consists of two steps: scaling and shifting via a DC bias. e scale
step allows the span of the transducer output tomatch the span of the analog-to-digital conversion
(ADC) system input range. e bias step shifts the output of the scale step to align with the input
of the ADC system. In general, the scaling and bias process may be described by two equations:

V2max D .V1max � K/ C B

V2min D .V1min � K/ C B

e variable V1max represents the maximum output voltage from the input transducer. is
voltage occurs when the maximum value of the physical variable (Xmax) is presented to the input
transducer. is voltage must be scaled by the scalar multiplier (K) and then have a DC offset bias
voltage (B) added to provide the voltage V2max to the input of the ADC converter [USAFA].

Similarly, the variable V1min represents the minimum output voltage from the input trans-
ducer. is voltage occurs when the minimum physical variable (Xmin) is presented to the input
transducer. is voltage must be scaled by the scalar multiplier (K) and then have a DC offset
bias voltage (B) added to produce voltage V2min, the input of the ADC converter.

Usually, the values of V1max and V1min, are provided with the documentation for the trans-
ducer. Also, the values of V2max and V2min are known. ey are the high- and low-reference
voltages for the ADC system (1.8 VDC and 0 VDC for BeagleBone). We thus have two equa-
tions and two unknowns to solve for K and B . e circuits to scale by K and add the offset B are
usually implemented with operational amplifiers.

Example: A photodiode is a semiconductor device that provides an output current, cor-
responding to the light impinging on its active surface. e photodiode is used with a tran-
simpedance amplifier to convert the output current to an output voltage. A photodiode/tran-
simpedance amplifier provides an output voltage of 0 volts for maximum rated light intensity and
�2.50 VDC output voltage for the minimum rated light intensity. Calculate the required values
of K and B for this light transducer, so it may be interfaced to BeagleBone’s ADC system.

V2max D .V1max � K/ C B

V2min D .V1min � K/ C B

1:8 V D .0 V � K/ C B

96 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

0 V D .�2:50 V � K/ C B

e values of K and B may then be determined to be 0.72 and 1.8 VDC, respectively.

4.3.6 OPERATIONAL AMPLIFIERS
In the previous section, we discussed the transducer interface design (TID) process. Going
through this design process yields a required value of gain (K) and DC bias (B). Operational
amplifiers (op amps) are typically used to implement a TID interface. In this section, we briefly
introduce operational amplifiers including ideal op amp characteristics, classic op amp circuit con-
figurations, and an example to illustrate how to implement a TID with op amps. Op amps are
also used in a wide variety of other applications, including analog computing, analog filter design,
and a myriad of other applications. Interested readers are referred to Section 4.12 at the end of
this chapter for pointers to some excellent texts on this topic.

e Ideal Operational Amplifier
An ideal operational amplifier is shown in Figure 4.12. An ideal operational amplifier does not
exist in the real world. However, it is a good first approximation for use in developing op amp
application circuits.

-

+

Vcc

-Vcc

Vn

Vp

Vo = Avol (Vp - Vn)

In

Ip

Ideal conditions:

-- In = Ip = 0

-- Vp = Vn

-- Avol >> 50,000

-- Vo = Avol (Vp - Vn)

Vo

Vi = Vp - Vn

Vcc

-Vcc

saturation

saturation

linear region

Figure 4.12: Ideal operational amplifier characteristics.

e op amp is an active device (requires power supplies) equipped with two inputs, a single
output, and several voltage source inputs. e two inputs are labeled Vp, or the non-inverting
input, and Vn, the inverting input. e output of the op amp is determined by taking the dif-
ference between Vp and Vn and multiplying the difference by the open loop gain (Avol) of the
op amp, which is typically 10,000. Due to the large value of Avol , it does not take much of a
difference between Vp and Vn before the op amp will saturate. When an op amp saturates, it

4.3. INPUT DEVICES 97

does not damage the op amp, but the output is limited to ˙Vcc . is will clip the output, and
hence distort the signal, at levels slightly less than ˙Vcc . Op amps are typically used in a closed
loop, negative feedback configuration. A sample of classic operational amplifier configurations
with negative feedback are provided in Figure 4.13 [Faulkenberry, 1977].

+Vcc

-Vcc

-

+
Vout = - (Rf / Ri)(Vin)Vin

Rf

Ri

a) Inverting amplifier

+Vcc

-Vcc

-

+
Vout = ((Rf + Ri)/Ri)(Vin)

Rf

Ri

Vin

c) Non-inverting amplifier

+Vcc

-Vcc

-

+
Vout = Vin

Vin

b) Voltage follower

+Vcc

-Vcc

-

+
Vout = (Rf/Ri)(V2 -V1)

RfRi

d) Differential input amplifier

Ri Rf

V2

V1

+Vcc

-Vcc

-

+
Vout = - (Rf / R1)(V1)

- (Rf / R2)(V2)

- (Rf / R3)(V3)

RfR
1

e) Scaling adder amplifier

R
2

R
3

V1

V2

V3

+Vcc

-Vcc

-

+
Vout = - (I Rf)

Rf

f) Transimpedance amplifier

(current-to-voltage converter)

I

+Vcc

-Vcc

-

+
Vout = - Rf C (dVin/dt)Vin

Rf

g) Differentiator

C +Vcc

-Vcc

-

+
Vout = - 1/(Rf C) (Vindt)Vin

Rf

h) Integrator

C

Figure 4.13: Classic operational amplifier configurations. (Adapted from Faulkenberry, 1977.)

It should be emphasized that the equations provided with each operational amplifier circuit
are only valid if the circuit configurations are identical to those shown. Even a slight variation in
the circuit configuration may have a dramatic effect on circuit operation. To analyze each opera-
tional amplifier circuit, use the following steps.

98 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

• Write the node equation at the inverting input.

• Apply ideal op amp characteristics to the node equation.

• Solve the node equation for Vo.

As an example, we provide the analysis of the non-inverting amplifier circuit in Figure 4.14.
is same analysis technique may be applied to all of the circuits in Figure 4.13 to arrive at the
equations for Vout provided.

Example: In the previous section, it was determined that the values of K and B were 0.72
and 1.8 VDC, respectively.e two-stage op amp circuitry in Figure 4.15 implements these values
of K and B . e first stage provides an amplification of �0:72 due to the use of the inverting
amplifier configuration. In the second stage, a summing amplifier is used to add the output of the
first stage with a bias of 1.8 VDC. Since this stage also introduces a minus sign to the result, the
overall result of a gain of 0.72 and a bias of C1:8 VDC is achieved.

Low-voltage operational amplifiers, operating in the ˙2.7 to ˙5 VDC range, are readily
available from Texas Instruments.

4.4 OUTPUT DEVICES
An external device should not be connected to a processor without first performing careful in-
terface analysis to ensure the voltage, current, and timing requirements of the processor and the
external device are met. In this section, we describe interface considerations for a wide variety of
external devices. We begin with the interface for a single light-emitting diode.

4.4.1 LIGHT-EMITTING DIODES (LEDS)
LEDs may be used to indicate the logic state at a specific pin on a processor. Most LEDs have
two leads: the anode or positive lead and the cathode or negative lead. When taking a “bird’s eye”
view of a round LED from above, one side has a slight flattening. e cathode is the lead nearest
the flat portion. Also, you can hold an LED up to a light source and distinguish the cathode from
the anode by its characteristic shape as shown in Figure 4.16b.

To properly bias an LED, the anode lead must be biased at a level approximately 1.7–
2.2 volts higher than the cathode lead. is specification is known as the forward voltage (Vf)
of the LED. e LED current must also be limited to a safe current level known as the forward
current (If). e forward diode voltage and current specifications are usually provided by the
manufacturer.

A processor normally represents a logic one with a logic high voltage. In the processor
documentation this is referred to as VOH or the voltage when an output pin is at logic high.
When at a logic high, a processor pin delivers (sources) current to the external circuit connected

4.4. OUTPUT DEVICES 99

-

+

+Vcc

-Vcc

Vin

Rf

Ri

Vout

In

Ip

Vn

Vp

Node equation at Vn:

(Vn - Vin)/ Ri + (Vn - Vout)/Rf + In = 0

Apply ideal conditions:

In = Ip = 0

Vn = Vp = 0 (since Vp is grounded)

Solve node equation for Vout:

Vout = - (Rf / Ri)(Vin)

Figure 4.14: Operational amplifier analysis for the non-inverting amplifier. (Adapted from Faulken-
berry, 1977.)

-

+

+Vcc

-Vcc

Vin

Rf = 7.2K

Ri = 10K

-

+

+Vcc

-Vcc

Rf = 10K

Ri = 10K

Vout

Ri = 10K

bias = 1.8 VDC

-Vcc

10K

Figure 4.15: Operational amplifier implementation of the transducer interface design (TID) example
circuit.

to it. e pin acts as a small DC power supply with an output voltage of VOH with a maximum
current rating of IOH .

To properly interface external components to the processor, the VOH and IOH values of a
specific pin must be determined. In this example, we interface a LED to BeagleBone header P8
pin 13. It is important to note BeagleBone documentation uses different pin names than the host

100 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

from

processor

+

R
I

c) LED illuminates

for a logic high

VDD = 3.3 VDC

R

+

I

from

processor

d) LED illuminates

for a logic low

anode (+)

cathode (-)

a) LED schematic

anode (+) cathode (-)

b) distinguishing anode from cathode

anode (+) cathode (-)

VDD = 3.3 VDC

R

+

74LVC04

I

from

BeagleBone

e) LED illuminates

for a logic high

RC

+

If

RB

VDD = 5.0 VDC

f) LED illuminates

for a logic high

Vf

E

B

C

from

BeagleBone

Figure 4.16: Interfacing an LED.

4.4. OUTPUT DEVICES 101

processor aboard. To resolve the names and find the VOH and IOH values for a pin, the following
steps are required.

• In the BeagleBone Black System Reference Manual, Revision A5.2 [Coley, 2014], determine
the processor ball associated with the header pin. is information is provided on Ta-
ble 10. Expansion Header P8 Pinout for pin 13. e signal name associated with pin 13 is
“EHRPWM2B” and the associated processor pin is “T10.”

• Looking at the processor datasheet for the pin will provide us with additional information
useful for interfacing to the pin. Recall BeagleBone uses the AM3358/9 ARM Cortex-
-A8 microprocessor. BeagleBone uses the ZCZ package. e datasheet for this processor
may be downloaded from the Texas Instruments website. Tables 2–7 (Ball Characteristics)
of the AM3358/9 datasheet provides the initial details. e datasheet uses the pin name
“GPMC_AD9” and it is associated with ZCE and ZCZ ball pins W16 and T10, respec-
tively. Notice that each pin has multiple functions as denoted by the mode number. is is
covered in this book.

• As a final step the VOH and IOH values for the pin may be located in Tables 3–11 of the
datasheet. DC Electrical Characteristics. Note the pin names used in the table are for mul-
tiplexer mode 0. Tables 3–11 is then scanned from the beginning looking for a specific pin
name. If it is not found the last page of the table is used to obtain the VOH and IOH values.
In this example, the last page of the table is used to determine the values. For BeagleBone
the VDDSHVx D 3:3 V portion of the table is used. We find the value of VOH is specified
as VDDSHVx � 0:2 V or 3.1 volts. e value of IOH is given as 6 mA.

With the values of VOH and IOH determined, an interface circuit can be designed.
In Figure 4.16c–f we provide several methods of properly interfacing an LED to Beagle-

Bone Black. Several alternatives are provided for flexibility in design. All variations will be used
throughout the textbook.

An LED biasing circuit is provided in Figure 4.16c. In Figure 4.16c a logic one provided by
the processor provides the voltage to forward bias the LED. e processor also acts as the source
for the forward current through the LED. To properly bias the LED the value of the limit resistor
(R) is chosen.

Example: A red (635 nm) LED is rated at 1.8 VDC with a forward operating current of
6 mA. Design a proper bias for the LED using the configuration of Figure 4.16c.

Answer: In the configuration of Figure 4.16c the processor pin can be viewed as an un-
regulated power supply. at is, the pin’s output voltage is determined by the current supplied by
the pin. e current flows out of the processor pin through the LED and resistor combination to

102 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

ground (current source). e value of R may be calculated using Ohm’s Law. e voltage drop
across the resistor is the difference between the 3.1 VDC supplied by the processor pin and the
LED forward voltage of 1.8 VDC. e current flowing through the resistor is the LED’s forward
current (6 mA). is renders a resistance value of approximately 220 Ohms:

.VDD � VLED=ILED D

.3:1 � 1:8/=:006 D 216:7

For the LED interface provided in Figure 4.16d, the LED is illuminated when the processor
provides a logic low. In this case, the current flows from the power supply back into the processor
pin (current sink).

If LEDs with higher forward voltages and currents are used, alternative interface circuits
may be employed. Figures 4.16e and 4.16f provide two more LED interface circuits. In Fig-
ure 4.16e, a logic one is provided by BeagleBone to the input of the inverter. e inverter provides
a logic zero at its output, which provides a virtual ground at the cathode of the LED. erefore,
the proper voltage biasing for the LED is provided. e resistor (R) limits the current through
the LED. A proper resistor value can be calculated using R D .VDD � VDIODE /=IDIODE . It is
important to note that the inverter used must have sufficient current sink capability (IOL) to safely
handle the forward current requirements of the LED. As in previous examples, the characteristic
curves of the inverter must be carefully analyzed.

An NPN transistor such as a 2N2222 (PN2222 or MPQ2222) may be used in place of the
inverter, as shown in Figure 4.16f. In this configuration, the transistor is used as a switch. When
a logic low is provided by the processor, the transistor is in the cutoff region. When a logic one
is provided by the microcontroller, the transistor is driven into the saturation region. To properly
interface the processor to the LED, resistor values RB and RC must be chosen. e resistor RB

is chosen to limit the base current.

Example: Using the interface configuration of Figure 4.16f, design an interface for an LED
with Vf of 2.2 VDC and If of 20 mA.

Answer: In this example, we use a BeagleBone digital output pin with an IOH value of
4 mA and a VOH value 2.4 VDC. A loop equation, which includes these parameters, may be
written as:

VOH D .IB � RB/ C VBE

Also, transistor collector current (Ic) is related to transistor base current (Ib) by the value
of beta (b).

Ic D If D b � Ib

4.4. OUTPUT DEVICES 103

e transistor VBE is typically 0.7 VDC. erefore, all parameters are known except RB .
Solving for RB yields a value of 8500 Ohms. We use a value of 10 k Ohms. In this interface
configuration, resistor RC is chosen as in previous examples to safely limit the forward LED
current to prescribed values. A loop equation may be written that includes RC :

VCC � .If � RC / � Vf � VCE.sat/ D 0

A typical value for VCE.sat/ is 0.2 VDC. All equation values are now known except RC .
e equation may be solved yielding an RC value of 130 Ohms.

4.4.2 SEVEN-SEGMENT LED DISPLAYS
To display numeric data, seven-segment LED displays are available, as shown in Figure 4.17b.
Different numerals can be displayed by asserting the proper LED segments. For example, to
display the number five, segments a, c, d, f, and g would be illuminated; see Figure 4.17a. Seven-
segment displays are available in common cathode (CC) and common anode (CA) configurations.
As the CC designation implies, all seven individual LED cathodes on the display are tied together.

As shown in Figure 4.17b, an interface circuit is required between the processor and
the seven-segment LED. We use a 74LVC4245A octal bus transceiver circuit to translate the
3.3 VDC output from the processor up to 5 VDC and also provide a maximum IOH value of
24 mA. A limiting resistor is required for each segment to limit the current to a safe value for the
LED. Conveniently, resistors are available in DIP packages of eight for this type of application.

Seven-segment displays are available in multi-character panels. In this case, separate pro-
cessor pins are not used to provide data to each seven-segment character. Instead, a single port
equivalent (8 pins) is used to provide character data. Several other pins are used to sequence
through each of the characters, as shown in Figure 4.17b. An NPN (for a CC display) transistor
is connected to the common cathode connection of each individual character. As the base contact
of each transistor is sequentially asserted, the specific character is illuminated. If the processor
sequences through the display characters at a rate greater than 30 Hz, the display will appear to
be steady and will not flicker.

4.4.3 TRI-STATE LED INDICATOR
A tri-state LED indicator is shown in Figure 4.18. It may be used to provide the status of many
processor pins simultaneously. e indicator bank consists of eight green and eight red LEDs.
When an individual processor pin is logic high the green LED is illuminated. When at logic low,
the red LED is illuminated. If the port pin is at a tri-state, high impedance state, no LED is
illuminated. Tri-state logic is used to connect a number of devices to a common bus. When a
digital circuit is placed in the Hi-z (high impedance) state it is electrically isolated from the bus.

e NPN/PNP transistor pair at the bottom of the figure provides a 2.5 VDC voltage
reference for the LEDs. When a specific processor pin is logic high, the green LED will be
forward biased since its anode will be at a higher potential than its cathode. e 47 Ohm resistor

104 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

a

b

c

d

e

f

g

a
b
c
d
e
f
g

74LVC4245A
octal bus

transceiver

DIP
resistor

VOH: 5.0 VDC

IOH : 24 mA

R = (VOH - Vf) / If
R = (5.0 - 1.85)/ 12 mA
R = 262 ohms ~ 270 ohms

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

numeral select

dp
a
b
c
d
e
f
g

(a)11

(b) 7

(c) 4

(d) 2

(e) 1

(f) 10

(g) 5

quad common cathode

seven segment display

MPQ2222

b) quad seven segment display interface

(6) (8) (9) (12)

(dp)3(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(16)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

1.2K

(1)

(2)

(3) (5)

(6)

(7) (8) (14)

(13)

(12)(10)

(9)

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

12 7

1 6
d) quad seven segment display pinout

UN(M)5624-11 EWRS

0

1

2

3

4

5

6

7

8

9

d
p

a b c d e f g h
e

x
 r

e
p

1

0

1

1

0

1

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

1

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

n
u
m

e
ra

l

0x7E

0x30

0x6D

0x79

0x33

0x5D

0x1F

0x70

0x7F

0x73

c) numeral to segment converion

74LVC4245A
octal bus

transceiver

1.2K

1.2K

1.2K

p
ro

c
e
s
s
o
r

p
in

s

p
ro

c
e
s
s
o
r

p
in

s
p
ro

c
e
s
s
o
r

p
in

s

processor pins processor pins

f f

a) seven segment display interface

common cathode

 seven segment display

(V 1.85 VDC @ I 12mA)

Figure 4.17: LED display devices.

4.4. OUTPUT DEVICES 105

47 G

R

5 VDC

3.0 K

3.0 K

-

+
LM324

2N2907

2N2222

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R
74LVC4245A

octal bus

transceiver

VOH: 5.0 VDC

IOH : 24 mA

5 VDC

5 VDC

p
ro

ce
ss

o
r

p
in

Figure 4.18: Tri-state LED display.

106 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

limits current to a safe value for the LED. Conversely, when a specific processor pin is at a logic
low (0 VDC), the red LED will be forward biased and illuminate. For clarity, the red and green
LEDs are shown as being separate devices. LEDs are available that have both LEDs in the same
device. e 74LVC4245A octal bus transceiver translates the output voltage of the processor from
3.3–5.0 VDC.

4.4.4 DOT MATRIX DISPLAY
e dot matrix display consists of a large number of LEDs configured in a single package. A
typical 5 � 7 LED arrangement is a matrix of five columns of LEDs with seven LEDs per row,
as shown in Figure 4.19. Display data for a single matrix column [R6-R0] is provided by the
processor. at specific row is then asserted by the processor using the column select lines [C2-
C0]. e entire display is sequentially illuminated a column at a time. If the processor sequences
through each column fast enough (greater than 30 Hz), the matrix display appears to be stationary
to a viewer.

In Figure 4.19, we have provided the basic configuration for the dot matrix display for a
single display device. However, this basic idea can be expanded in both dimensions to provide
a multi-character, multi-line display. A larger display does not require a significant number of
processor pins for the interface. e dot matrix display may be used to display alphanumeric data
as well as graphics data. Several manufacturers provide 3.3 VDC compatible dot matrix displays
with integrated interface and control circuitry.

4.4.5 LIQUID CRYSTAL DISPLAY (LCD)
An LCD is an output device to display text information, as shown in Figure 4.20. LCDs come
in a wide variety of configurations including multi-character, multi-line format. A 16 � 2 LCD
format is common. at is, it has the capability of displaying two lines of 16 characters each.
e characters are sent to the LCD via American Standard Code for Information Interchange
(ASCII) format a single character at a time. For a parallel-configured LCD, an eight-bit data
path and two lines are required between the processor and the LCD, as shown in Figure 4.20a.
Many parallel configured LCDs may also be configured for a four bit data path this saving several
processor pins. A small microcontroller mounted to the back panel of the LCD translates the
ASCII data characters and control signals to properly display the characters. Several manufactur-
ers provide 3.3 VDC compatible displays.

To conserve processor input/output pins, a serial configured LCD may be used. A serial
LCD reduces the number of required processor pins for interface, from ten down to one, as shown
in Figure 4.20b. Display data and control information is sent to the LCD via an asynchronous
serial communication link (8 bit, 1 stop bit, no parity, 9600 Baud). A serial configured LCD costs
slightly more than a similarly configured parallel LCD.

4.4. OUTPUT DEVICES 107

R6

R5

R4

R3

R2

R1

R0

in
te

rf
ac

e

ci
rc

u
it

ry

ro
w

 s
el

ec
t

5 x 7 dot

matrix display

C2

C1

C0co
lu

m
n

se
le

ct interface

circuitry
m

ic
ro

co
n
tr

o
ll

er

Figure 4.19: Dot matrix display.

G
N

D
-1

V
D

D
-2

V
o
-3

R
S

-4

R
/W

-5

E
-6

D
B

0
-7

D
B

1
-8

D
B

2
-9

D
B

3
-1

0

D
B

4
-1

1

D
B

5
-1

2

D
B

6
-1

3

D
B

7
-1

4

V
cc

10K

line1

line2

data
enable

com
m

and/d
ata

V
cc

line1

line2

se
ria

l d
ata

Figure 4.20: LCD display with a) parallel interface and b) serial interface.

108 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

4.5 HIGH-POWER INTERFACES

Processors are frequently used to control a variety of high power AC and DC devices. In this
section, we discuss interface techniques for a wide variety of these devices.

4.5.1 HIGH-POWER DC DEVICES
A number of direct current devices may be controlled with an electronic switching device such
as a MOSFET (metal oxide semiconductor field effect transistor). Specifically, an N-channel
enhancement MOSFET may be used to switch a high current load (such as a motor) on or
off using a low current control signal from a processor, as shown in Figure 4.21. e low current
control signal from the processor is connected to the gate of theMOSFET via aMOSFET driver.
As shown in Figure 4.21, an LTC 1157 MOSFET driver is used to boost the control signal from
the processor to be compatible with an IRLR024 power MOSFET. e IRLR024 is rated at
60 VDC VDS and a continuous drain current ID of 14 amps. e IRLR024 MOSFET switches
the high current load on and off consistent with the control signal. In a low-side connection, the
high current load is connected between the MOSFET source and ground.

IN1

IN2

LTC1157
MOSFET

driver

3.3 VDC
load

3.3 VDC

(8.7 VDC)

3.3 VDC
load

(8.7 VDC) IRLR024
power
MOSFET

IRLR024
power
MOSFET

+ 10 uF

G1

G2

BeagleBone
processor

Figure 4.21: MOSFET drive circuit. (Adapted from Linear Technology.)

4.5. HIGH-POWER INTERFACES 109

4.5.2 DC MOTOR SPEED AND DIRECTION CONTROL
ere are a wide variety of DC motor types that can be controlled by a processor. To properly
interface a motor to the processor, we must be familiar with the different types of motor tech-
nologies. Motor types are illustrated in Figure 4.22.

+

-

Vmotor

Veff

Veff = Vmotor x duty cycle [%]

a) DC motor

+

-

b) Servo motor
1 step

4 control
 signals

power
ground

interface
circuitry

c) Stepper motor

Figure 4.22: Motor types.

General categories of DC motor types include the following.

• DC motor: A DC motor has a positive and negative terminal. When a DC power supply
of suitable current rating is applied to the motor, it will rotate. If the polarity of the supply
is switched with reference to the motor terminals, the motor will rotate in the opposite
direction. e speed of the motor is roughly proportional to the applied voltage up to the
rated voltage of the motor.

110 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

• Servomotor:A servomotor provides a precision angular rotation for an applied pulse width
modulation (PWM) duty cycle. As the duty cycle of the applied signal is varied, the angular
displacement of the motor also varies. is type of motor is used to change mechanical
positions such as the steering angle of a wheel.

• Stepper motor: A stepper motor, as its name implies, provides an incremental step change
in rotation (typically 2.5ı per step) for a step change in control signal sequence. Stepper
motors are available with either a two- or four-wire interface. For the four-wire stepper
motor, the processor provides a four bit control sequence to rotate the motor clockwise. To
turn the motor counterclockwise, the control sequence is reversed. e low-power control
signals are interfaced to the motor via MOSFETs or power transistors to provide for the
proper voltage and current requirements of the pulse sequence. e stepper motor is used
for precise positioning of mechanical components.

4.5.3 DC MOTOR OPERATING PARAMETERS
As previously mentioned, DC motor speed may be varied by changing the applied voltage. is is
difficult to do with a digital control signal. However, pulse width modulation (PWM) techniques
combined with a MOSFET interface circuit may be used to precisely control motor speed. e
duty cycle of the PWM signal governs the percentage of the power supply voltage applied to the
motor and hence the percentage of rated full speed at which the motor will rotate. e interface
circuit to accomplish this type of control is shown in Figure 4.23. It is a slight variation of the
control circuit provided in Figure 4.21. In this configuration, the motor supply voltage may be
different than the processor’s 3.3 VDC supply. For an inductive load, a reverse biased protection
diode is provided across the load. e interface circuit shown allows the motor to rotate in a given
direction.

4.5.4 H-BRIDGE DIRECTION CONTROL
For a DC motor to operate in both the clockwise and counter clockwise directions, the polarity
of the DC motor supplied must be changed. To operate the motor in the forward direction, the
positive battery terminal must be connected to the positive motor terminal while the negative
battery terminal must be attached to the negative motor terminal. To reverse the motor direction,
the motor supply polarity must be reversed. An H-bridge is a circuit employed to perform this
polarity switch.

An H-bridge may be constructed from discrete components, as shown in Figure 4.24. e
transistors Q1, Q2, Q3, and Q4 form an H-bridge. When transistors Q1 and Q4 are on, current
flows from the positive terminal to the negative terminal of the motor winding. When transistors
Q2 and Q3 are on, the polarity of the current is reversed, causing the motor to rotate in the
opposite direction. When transistors Q3 and Q4 are on, the motor does not rotate and is in the
brake state.

4.5. HIGH-POWER INTERFACES 111

M

DC motor

supply voltage

protection

diode

Figure 4.23: DC motor interface.

If PWM signals are used to drive the base of the transistors, both motor speed and direction
may be controlled by the circuit. e transistors used in the circuit must have a current rating
sufficient to handle the current requirements of the motor during start and stall conditions.

Texas Instruments provides a self-contained H-bridge motor controller integrated circuit,
the DRV8829. Within the DRV8829 package is a single H-bridge driver. e driver may control
DC loads with supply voltages from 8–45 VDC with a peak current rating of 5 amps. e single
H-bridge driver may be used to control a DC motor or one winding of a bipolar stepper motor
[DRV8829].

4.5.5 DC SOLENOID CONTROL
e interface circuit for aDC solenoid is shown in Figure 4.25. A solenoid is used to activate ame-
chanical insertion (or extraction). As in previous examples, we employ the LTC1157 MOSFET
driver between the processor and the power MOSFET used to activate the solenoid. A reverse
biased diode is placed across the solenoid. Both the solenoid power supply and the MOSFET
must have the appropriate voltage and current rating to support the solenoid requirements.

112 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

M+
-

12 VDC

200
ZTX451

470

200
ZTX451

ZTX551 470

to microcontroller

pin x

ZTX551

to microcontroller

pin y

1000 uF
+

ZTX451ZTX451

Q1 Q2

Q3 Q4

Figure 4.24: H-bridge control circuit.

4.5.6 STEPPER MOTOR CONTROL
Stepper motors are used to provide a discrete angular displacement in response to a control signal
step. ere is a wide variety of stepper motors including bipolar and unipolar types with different
configurations of motor coil wiring. Due to space limitations we only discuss the unipolar, five
wire stepper motor. e internal coil configuration for this motor is shown in Figure 4.26b.

Often, a wiring diagram is not available for the stepper motor. Based on the wiring con-
figuration (see Figure 4.26b), one can find out the common line for both coils. It has a resistance
that is one-half of all of the other coils. Once the common connection is found, one can con-
nect the stepper motor into the interface circuit. By changing the other connections, one can
determine the correct connections for the step sequence. To rotate the motor either clockwise or
counter clockwise, a specific step sequence must be sent to the motor control wires, as shown in
Figure 4.26b.

e processor does not have sufficient capability to drive the motor directly. erefore, an
interface circuit is required, as shown in Figure 4.27. e speed of motor rotation is determined by
how fast the control sequence is completed. Stepper motor interfaces are available from a number
of sources. An open source hardware line of stepper motor drivers, called “EasyDriver,” is available
from www.schmalzhaus.com/EasyDriver/.

4.5.7 OPTICAL ISOLATION
When designing the interface between a controller and a motor it is a good design practice to
provide optical isolation. An optical isolator (e.g., 4N25) consists of an LED and optical transistor
in a common package. e LED is driven by the controller, whereas the optical transistor provides

www.schmalzhaus.com/EasyDriver/

4.6. INTERFACING TO MISCELLANEOUS DEVICES 113

DC solenoid

supply voltage

protection

diode

Figure 4.25: Solenoid interface circuit.

the control signal to the motor interface circuit. e link between the processor to the motor
interface circuit is now provided by light rather than an electrical link. is provides a high level
of noise isolation between the processor and the motor interface circuit. Many optical isolators
provide a signal inversion.

4.6 INTERFACING TO MISCELLANEOUS DEVICES

In this section, we present a potpourri of interface circuits to connect a processor to a wide variety
of peripheral devices.

4.6.1 SONALERTS, BEEPERS, BUZZERS
In Figure 4.28, we provide several circuits used to interface a processor to a buzzer, beeper or other
types of annunciator devices such as a sonalert. It is important that the interface transistor and
the supply voltage are matched to the requirements of the sound producing device.

114 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

a) a stepper motor rotates a fixed angle per step

step

1

2

3

4

b) coil configuration and step sequence

Figure 4.26: Unipolar stepper motor.

4.6.2 VIBRATING MOTOR
A vibratingmotor is often used to gain one’s attention as in a cell phone.esemotors are typically
rated at 3 VDC and a high current. e interface circuit shown in Figure 4.21 is used to drive the
low-voltage motor.

4.6. INTERFACING TO MISCELLANEOUS DEVICES 115

1
2

 V
D

C

B
ea

g
le

B
o
n
e

p
ro

ce
ss

o
r

Figure 4.27: Unipolar stepper motor interface circuit.

116 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

buzzer, 3850 Hz

5 VDC, 3-14 mA

Vcc = 9 VDC

330

2N2222from

processor

a) 5 VDC buzzer interface

10K

annunciator

12 VDC, 8 mA

Vcc = 12 VDC

220

2N2222

a) 12 VDC annunciator

10K
from

processor

Figure 4.28: Sonalert, beepers, buzzers.

4.6.3 DC FAN
e interface circuit provided in Figure 4.23 may also be used to control a DC fan. As before, a
reverse biased diode is placed across the DC fan motor.

4.6.4 BILGE PUMP
Abilge pump is a pump specifically designed to remove water from the inside of a boat.e pumps
are powered from a 12 VDC source and have typical flow rates from 360 to over 3,500 gallons per
minute. ey range in price from US $20–80 [www.shorelinemarinedevelopment.com]. An
interface circuit to control a bilge pump from BeagleBone Black is provided in Figure 4.29. e
interface circuit consists of a 470 ohm resistor, a power NPN Darlington transistor (TIP 120)
and a 1N4001 diode. e 12 VDC supply should have sufficient current capability to supply the
needs of the bilge pump.

4.7 AC DEVICES
Ahigh-power alternating current (AC) loadmay be switched on and off using a low-power control
signal from the processor. In this case, a Solid State Relay is used as the switching device. Solid
state relays are available to switch a high-powerDC orAC load [Crydom, 2015]. For example, the
Crydom 558-CX240D5R is a printed circuit boardmounted, air-cooled, single-pole single-throw

www.shorelinemarine development.com

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 117

a) Shoreline

Bilge Pump

BP
Shoreline

Bilge Pump

from

BeagleBone

Black

b) BeagleBone Black to bilge pump interface

Figure 4.29: Bilge pump interface.

(SPST), normally open (NO) solid state relay. It requires a DC control voltage of 3–15 VDC
at 15 mA. However, this small processor compatible DC control signal is used to switch 12–
280 VAC loads rated from 0.06–5 amps [Crydom, 2015].

To vary the direction of an AC motor, you must use a bi-directional AC motor. A bi-
-directional motor is equipped with three terminals: common, clockwise, and counterclockwise.
To turn the motor clockwise, an AC source is applied to the common and clockwise connections.
In like manner, to turn the motor counterclockwise, an AC source is applied to the common and
counterclockwise connections. is may be accomplished using two of the Crydom SSRs.

PowerSwitch manufacturers an easy-to-use AC interface the PowerSwitch Tail II. e de-
vice consists of a control module with attached AC connections rated at 120 VAC, 15 A. e
device to be controlled is simply plugged inline with the PowerSwitch Tail II. A digital control
signal from BeagleBone Black (3 VDC at 3 mA) serves as the on/off control signal for the con-
trolled AC device. e controlled signal is connected to the PowerSwitch Tail II via a terminal
block connection. e PowerSwitch II is available as either normally closed (NC) or normally
open (NO) [www.powerswitchtail.com].

4.8 APPLICATION 1: EQUIPPING THE DAGU MAGICIAN
ROBOT WITH A LCD

An LCD is a useful development and diagnostic tool during project development. In this section
we add an LCD to the Dagu Magician robot. A low-cost, 3.3 VDC, 16 character by two line
LCD with a parallel connection (Sparkfun LCD-09025) is interfaced to the robot. e LCD
support functions and hardware interface is provided in Figure 4.30.

www.powerswitchtail.com

118 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

G
N

D
:1

V
D

D
:2

V
o
:3

R
S

:4

R
/W

:5

E
:6

D
B

0
:7

D
B

1
:8

D
B

2
:9

D
B

3
:1

0

D
B

4
:1

1

D
B

5
:1

2

D
B

6
:1

3

D
B

7
:1

4

L
E

D
+

:1
5

L
E

D
-:

1
6

V
cc =

 3
.3

 V
D

C

10K

line1

line2

data
enable

com
m

and/d
ata

V
cc =

 3
.3

 V
D

C

Figure 4.30: LCD forDaguMagician robot. (Illustrations used with permission of Texas Instruments
(www.TI.com).)

www.TI.com

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 119

ere are several functions required to use the LCD including:

• LCD initialization (LCD_init): initializes LCD to startup state as specified by LCD tech-
nical data;

• LCD put character (LCD_putchar): sends a specified ASCII character to the LCD display;

• LCD print string (LCD_print): sends a string of ASCII characters to the LCD display
until the null character is received; and

• LCD put command (LCD_putcommand): sends a command to the LCD display.

e UML activity diagrams (UML compliant flow charts) for these functions are provided in
Figure 4.30a.

e ASCII characters and commands are sent to the LCD via an 8-bit parallel data con-
nection and two control lines (Register Set (RS) and Enable (E)), as shown in Figure 4.30b.

Provided below is the Bonescript code to configure the LCD and the code for the support
functions.

1 / / *
2 / / *
3
4 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
5
6 v a r LCD_RS = ‘ ‘ P8_9 ’ ’ ; / /LCD R e g i s t e r S e t (RS) c o n t r o l
7 v a r LCD_E = ‘ ‘ P8_10 ’ ’ ; / /LCD Enab l e (E) c o n t r o l
8 v a r LCD_DB0 = ‘ ‘ P8_11 ’ ’ ; / /LCD Data l i n e DB0
9 v a r LCD_DB1 = ‘ ‘ P8_12 ’ ’ ; / /LCD Data l i n e DB1

10 v a r LCD_DB2 = ‘ ‘ P8_13 ’ ’ ; / /LCD Data l i n e DB2
11 v a r LCD_DB3 = ‘ ‘ P8_14 ’ ’ ; / /LCD Data l i n e DB3
12 v a r LCD_DB4 = ‘ ‘ P8_15 ’ ’ ; / /LCD Data l i n e DB4
13 v a r LCD_DB5 = ‘ ‘ P8_16 ’ ’ ; / /LCD Data l i n e DB5
14 v a r LCD_DB6 = ‘ ‘ P8_17 ’ ’ ; / /LCD Data l i n e DB6
15 v a r LCD_DB7 = ‘ ‘ P8_18 ’ ’ ; / /LCD Data l i n e DB7
16
17 v a r c o un t e r = 1 ; / / c o u n t e r t o b e d i s p l a y e d
18
19 b . pinMode (LCD_RS, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
20 b . pinMode (LCD_E, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
21 b . pinMode (LCD_DB0, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
22 b . pinMode (LCD_DB1, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
23 b . pinMode (LCD_DB2, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
24 b . pinMode (LCD_DB3, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
25 b . pinMode (LCD_DB4, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
26 b . pinMode (LCD_DB5, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
27 b . pinMode (LCD_DB6, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
28 b . pinMode (LCD_DB7, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
29 LCD_init (LCD_update) ; / / c a l l LCD i n i t i a l i z e

120 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

30
31 / / *
32 / / LCD_update
33 / / *
34
35 f u n c t i o n LCD_update ()
36 {
37 LCD_putchar (coun t e r , n e x t) ; / / w r i t e ’ c o u n t e r ’ v a l u e t o LCD
38
39 / / When LCD_putchar c o m p l e t e s , s c h e d u l e t h e n e x t run o f i t
40 f u n c t i o n ne x t ()
41 {
42 c oun t e r ++ ; / / u p d a t e c o u n t e r
43 i f (c o un t e r > 9) / / Re� i n i t a f t e r 9
44 {
45 c oun t e r = 1 ;
46 LCD_init (LCD_update) ;
47 }
48 e l s e
49 se tT imeou t (LCD_update , 500) ; / / u p d a t e a g a i n in 500 ms
50 }
51 }
52
53 / / *
54 / / LCD_init
55 / / *
56
57 f u n c t i o n LCD_init (c a l l b a c k)
58 {
59 / /LCD Enab l e (E) p in low
60 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
61
62 / / S t a r t a t t h e b e g i n n i n g o f t h e l i s t o f s t e p s t o p e r f o rm
63 v a r i = 0 ;
64
65 / / L i s t o f s t e p s t o p e r f o rm
66 v a r s t e p s =
67 [
68 f u n c t i o n () { s e tT imeou t (nex t , 15) ; } , / / d e l a y 15ms
69 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
70 f u n c t i o n () { s e tT imeou t (nex t , 5) ; } , / / d e l a y 5ms
71 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
72 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 5 x 7

c h a r a c t e r
73 f u n c t i o n () { LCD_putcommand (0 x0E , n e x t) ; } , / / d i s p l a y on
74 f u n c t i o n () { LCD_putcommand (0 x01 , n e x t) ; } , / / d i s p l a y c l e a r

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 121

75 f u n c t i o n () { LCD_putcommand (0 x06 , n e x t) ; } , / / e n t r y mode s e t
76 f u n c t i o n () { LCD_putcommand (0 x00 , n e x t) ; } , / / c l e a r d i s p l a y , c u r s o r

home
77 f u n c t i o n () { LCD_putcommand (0 x00 , c a l l b a c k) ; } / / c l e a r d i s p l a y , c u r s o r

home
78] ;
79
80 ne x t () ; / / E x e c u t e t h e f i r s t s t e p
81
82 / / F un c t i o n f o r e x e c u t i n g t h e n e x t s t e p
83 f u n c t i o n ne x t ()
84 {
85 i ++ ;
86 s t e p s [i �1] () ;
87 }
88 }
89
90 / / *
91 / / LCD_putcommand
92 / / *
93
94 f u n c t i o n LCD_putcommand (cmd , c a l l b a c k)
95 {
96 / / p a r s e command v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
97 / / t o LCD
98 i f ((cmd & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH) ;
99 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW) ;

100 i f ((cmd & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH) ;
101 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW) ;
102 i f ((cmd & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH) ;
103 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW) ;
104 i f ((cmd & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH) ;
105 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW) ;
106 i f ((cmd & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH) ;
107 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW) ;
108 i f ((cmd & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH) ;
109 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW) ;
110 i f ((cmd & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH) ;
111 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW) ;
112 i f ((cmd & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH) ;
113 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW) ;
114
115 / /LCD R e g i s t e r S e t (RS) t o l o g i c z e r o f o r command i n p u t
116 b . d i g i t a lW r i t e (LCD_RS, b .LOW) ;
117 / /LCD Enab l e (E) p in h i g h
118 b . d i g i t a lW r i t e (LCD_E, b .HIGH) ;
119
120 / / End t h e w r i t e a f t e r 1ms

122 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

121 se tT imeou t (endWrite , 1) ;
122
123 f u n c t i o n endWrite ()
124 {
125 / /LCD Enab l e (E) p in low
126 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
127 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
128 se tT imeou t (c a l l b a c k , 1) ;
129 }
130 }
131
132 / / *
133 / / LCD_putchar
134 / / *
135
136 f u n c t i o n LCD_putchar (chr1 , c a l l b a c k)
137 {
138 / / Conv e r t c h r 1 v a r i a b l e t o UNICODE (ASCII)
139 v a r ch r = chr1 . t o S t r i n g () . charCodeAt (0) ;
140
141 / / p a r s e c h a r a c t e r v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
142 / / t o LCD
143 i f ((ch r & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH) ;
144 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW) ;
145 i f ((ch r & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH) ;
146 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW) ;
147 i f ((ch r & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH) ;
148 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW) ;
149 i f ((ch r & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH) ;
150 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW) ;
151 i f ((ch r & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH) ;
152 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW) ;
153 i f ((ch r & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH) ;
154 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW) ;
155 i f ((ch r & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH) ;
156 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW) ;
157 i f ((ch r & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH) ;
158 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW) ;
159
160 / /LCD R e g i s t e r S e t (RS) t o l o g i c on e f o r c h a r a c t e r i n p u t
161 b . d i g i t a lW r i t e (LCD_RS, b .HIGH) ;
162 / /LCD Enab l e (E) p in h i g h
163 b . d i g i t a lW r i t e (LCD_E, b .HIGH) ;
164
165 / / End t h e w r i t e a f t e r 1ms
166 se tT imeou t (endWrite , 1) ;
167
168 f u n c t i o n endWrite ()

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 123

169 {
170 / /LCD Enab l e (E) p in low and c a l l s c h e d u l e C a l l b a c k when don e
171 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
172 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
173 se tT imeou t (c a l l b a c k , 1) ;
174 }
175 }
176
177 / / *

e following function allows a message to be sent to the LCD display. e function is
called by indicating the LCD line to display the message on and the message.

1 / / *
2
3 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
4
5 v a r LCD_RS = ‘ ‘ P8_9 ’ ’ ; / /LCD R e g i s t e r S e t (RS) c o n t r o l
6 v a r LCD_E = ‘ ‘ P8_10 ’ ’ ; / /LCD Enab l e (E) c o n t r o l
7 v a r LCD_DB0 = ‘ ‘ P8_11 ’ ’ ; / /LCD Data l i n e DB0
8 v a r LCD_DB1 = ‘ ‘ P8_12 ’ ’ ; / /LCD Data l i n e DB1
9 v a r LCD_DB2 = ‘ ‘ P8_13 ’ ’ ; / /LCD Data l i n e DB2

10 v a r LCD_DB3 = ‘ ‘ P8_14 ’ ’ ; / /LCD Data l i n e DB3
11 v a r LCD_DB4 = ‘ ‘ P8_15 ’ ’ ; / /LCD Data l i n e DB4
12 v a r LCD_DB5 = ‘ ‘ P8_16 ’ ’ ; / /LCD Data l i n e DB5
13 v a r LCD_DB6 = ‘ ‘ P8_17 ’ ’ ; / /LCD Data l i n e DB6
14 v a r LCD_DB7 = ‘ ‘ P8_18 ’ ’ ; / /LCD Data l i n e DB7
15
16 b . pinMode (LCD_RS, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
17 b . pinMode (LCD_E, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
18 b . pinMode (LCD_DB0, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
19 b . pinMode (LCD_DB1, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
20 b . pinMode (LCD_DB2, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
21 b . pinMode (LCD_DB3, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
22 b . pinMode (LCD_DB4, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
23 b . pinMode (LCD_DB5, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
24 b . pinMode (LCD_DB6, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
25 b . pinMode (LCD_DB7, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
26 LCD_init (f i r s t L i n e) ; / / c a l l LCD i n i t i a l i z e
27 f u n c t i o n f i r s t L i n e ()
28 {
29 LCD_print (1 , ” Beag leBone ” , n e x tL ine) ;
30 }
31 f u n c t i o n nex tL ine ()
32 {
33 LCD_print (2 , ” B on e s c r i p t ”) ;
34 }
35
36 / / *

124 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

37 / / LCD_print
38 / / *
39
40 f u n c t i o n LCD_print (l i n e , message , c a l l b a c k)
41 {
42 v a r i = 0 ;
43
44 i f (l i n e == 1)
45 {
46 LCD_putcommand (0 x80 , w r i t eNe x tCh a r a c t e r) ; / / p r i n t t o LCD l i n e 1
47 }
48 e l s e
49 {
50 LCD_putcommand (0 xc0 , w r i t eNe x tCh a r a c t e r) ; / / p r i n t t o LCD l i n e 2
51 }
52
53 f u n c t i o n w r i t eNe x tCh a r a c t e r ()
54 {
55 / / i f we a l r e a d y p r i n t e d t h e l a s t c h a r a c t e r , s t o p and c a l l b a c k
56 i f (i == message . l e n g t h)
57 {
58 i f (c a l l b a c k) c a l l b a c k () ;
59 r e t u rn ;
60 }
61
62 / / g e t t h e n e x t c h a r a c t e r t o p r i n t
63 v a r ch r = message . s u b s t r i n g (i , i +1) ;
64 i ++ ;
65
66 / / p r i n t i t u s i n g LCD_putchar and c ome b a c k a g a i n when don e
67 LCD_putchar (chr , w r i t eNe x tCh a r a c t e r) ;
68 }
69 }
70
71 / / *
72 / / LCD_init
73 / / *
74
75 f u n c t i o n LCD_init (c a l l b a c k)
76 {
77 / /LCD Enab l e (E) p in low
78 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
79
80 / / S t a r t a t t h e b e g i n n i n g o f t h e l i s t o f s t e p s t o p e r f o rm
81 v a r i = 0 ;
82
83 / / L i s t o f s t e p s t o p e r f o rm
84 v a r s t e p s =

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 125

85 [
86 f u n c t i o n () { s e tT imeou t (nex t , 15) ; } , / / d e l a y 15ms
87 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
88 f u n c t i o n () { s e tT imeou t (nex t , 5) ; } , / / d e l a y 5ms
89 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
90 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 5 x 7

c h a r a c t e r
91 f u n c t i o n () { LCD_putcommand (0 x0E , n e x t) ; } , / / d i s p l a y on
92 f u n c t i o n () { LCD_putcommand (0 x01 , n e x t) ; } , / / d i s p l a y c l e a r
93 f u n c t i o n () { LCD_putcommand (0 x06 , n e x t) ; } , / / e n t r y mode s e t
94 f u n c t i o n () { LCD_putcommand (0 x00 , n e x t) ; } , / / c l e a r d i s p l a y , c u r s o r

home
95 f u n c t i o n () { LCD_putcommand (0 x00 , c a l l b a c k) ; } / / c l e a r d i s p l a y , c u r s o r

home
96] ;
97
98 ne x t () ; / / E x e c u t e t h e f i r s t s t e p
99

100 / / F un c t i o n f o r e x e c u t i n g t h e n e x t s t e p
101 f u n c t i o n ne x t ()
102 {
103 i ++ ;
104 s t e p s [i �1] () ;
105 }
106 }
107
108 / / *
109 / / LCD_putcommand
110 / / *
111
112 f u n c t i o n LCD_putcommand (cmd , c a l l b a c k)
113 {
114 / / p a r s e command v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
115 / / t o LCD
116 i f ((cmd & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH) ;
117 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW) ;
118 i f ((cmd & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH) ;
119 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW) ;
120 i f ((cmd & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH) ;
121 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW) ;
122 i f ((cmd & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH) ;
123 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW) ;
124 i f ((cmd & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH) ;
125 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW) ;
126 i f ((cmd & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH) ;
127 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW) ;

126 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

128 i f ((cmd & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH) ;
129 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW) ;
130 i f ((cmd & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH) ;
131 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW) ;
132
133 / /LCD R e g i s t e r S e t (RS) t o l o g i c z e r o f o r command i n p u t
134 b . d i g i t a lW r i t e (LCD_RS, b .LOW) ;
135 / /LCD Enab l e (E) p in h i g h
136 b . d i g i t a lW r i t e (LCD_E, b .HIGH) ;
137
138 / / End t h e w r i t e a f t e r 1ms
139 se tT imeou t (endWrite , 1) ;
140
141 f u n c t i o n endWrite ()
142 {
143 / /LCD Enab l e (E) p in low
144 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
145 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
146 se tT imeou t (c a l l b a c k , 1) ;
147 }
148 }
149
150 / / *
151 / / LCD_putchar
152 / / *
153
154 f u n c t i o n LCD_putchar (chr1 , c a l l b a c k)
155 {
156 / / Conv e r t c h r 1 v a r i a b l e t o UNICODE (ASCII)
157 v a r ch r = chr1 . t o S t r i n g () . charCodeAt (0) ;
158
159 / / p a r s e c h a r a c t e r v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
160 / / t o LCD
161 i f ((ch r & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH) ;
162 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW) ;
163 i f ((ch r & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH) ;
164 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW) ;
165 i f ((ch r & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH) ;
166 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW) ;
167 i f ((ch r & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH) ;
168 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW) ;
169 i f ((ch r & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH) ;
170 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW) ;
171 i f ((ch r & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH) ;
172 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW) ;
173 i f ((ch r & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH) ;
174 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW) ;
175 i f ((ch r & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH) ;

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 127

176 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW) ;
177
178 / /LCD R e g i s t e r S e t (RS) t o l o g i c on e f o r c h a r a c t e r i n p u t
179 b . d i g i t a lW r i t e (LCD_RS, b .HIGH) ;
180 / /LCD Enab l e (E) p in h i g h
181 b . d i g i t a lW r i t e (LCD_E, b .HIGH) ;
182
183 / / End t h e w r i t e a f t e r 1ms
184 se tT imeou t (endWrite , 1) ;
185
186 f u n c t i o n endWrite ()
187 {
188 / /LCD Enab l e (E) p in low and c a l l s c h e d u l e C a l l b a c k when don e
189 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
190 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
191 se tT imeou t (c a l l b a c k , 1) ;
192 }
193 }
194
195 / / *

is next example provides load average for running processes or waiting on input/output
averaged over 1, 5, and 15 min. e Linux kernel provides these numbers via reading /proc/loa-
davg. We then use the LCD writing routines already discussed to perform the display.

1 / / *
2
3 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
4 v a r f s = r e q u i r e (’ f s ’) ;
5
6 v a r LCD_RS = ‘ ‘ P8_9 ’ ’ ; / /LCD R e g i s t e r S e t (RS) c o n t r o l
7 v a r LCD_E = ‘ ‘ P8_10 ’ ’ ; / /LCD Enab l e (E) c o n t r o l
8 v a r LCD_DB0 = ‘ ‘ P8_11 ’ ’ ; / /LCD Data l i n e DB0
9 v a r LCD_DB1 = ‘ ‘ P8_12 ’ ’ ; / /LCD Data l i n e DB1

10 v a r LCD_DB2 = ‘ ‘ P8_13 ’ ’ ; / /LCD Data l i n e DB2
11 v a r LCD_DB3 = ‘ ‘ P8_14 ’ ’ ; / /LCD Data l i n e DB3
12 v a r LCD_DB4 = ‘ ‘ P8_15 ’ ’ ; / /LCD Data l i n e DB4
13 v a r LCD_DB5 = ‘ ‘ P8_16 ’ ’ ; / /LCD Data l i n e DB5
14 v a r LCD_DB6 = ‘ ‘ P8_17 ’ ’ ; / /LCD Data l i n e DB6
15 v a r LCD_DB7 = ‘ ‘ P8_18 ’ ’ ; / /LCD Data l i n e DB7
16
17 b . pinMode (LCD_RS, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
18 b . pinMode (LCD_E, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
19 b . pinMode (LCD_DB0, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
20 b . pinMode (LCD_DB1, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
21 b . pinMode (LCD_DB2, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
22 b . pinMode (LCD_DB3, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
23 b . pinMode (LCD_DB4, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
24 b . pinMode (LCD_DB5, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t

128 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

25 b . pinMode (LCD_DB6, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
26 b . pinMode (LCD_DB7, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
27 LCD_init (f i r s t L i n e) ; / / c a l l LCD i n i t i a l i z e
28 f u n c t i o n f i r s t L i n e ()
29 {
30 LCD_print (1 , ” Beag leBone Load ” , doUpdate) ;
31 }
32 f u n c t i o n doUpdate ()
33 {
34 f s . r e a d F i l e (” / p roc / l o a d a v g ” , w r i t eUpda t e) ;
35 }
36 f u n c t i o n wr i t eUpda t e (e r r , d a t a)
37 {
38 LCD_print (2 , d a t a . t o S t r i n g () . s u b s t r i n g (0 , 14) , onUpdate) ;
39 }
40 f u n c t i o n onUpdate ()
41 {
42 se tT imeou t (doUpdate , 1000) ;
43 }
44
45 / / *
46 / / LCD_print
47 / / *
48
49 f u n c t i o n LCD_print (l i n e , message , c a l l b a c k)
50 {
51 v a r i = 0 ;
52
53 i f (l i n e == 1)
54 {
55 LCD_putcommand (0 x80 , w r i t eNe x tCh a r a c t e r) ; / / p r i n t t o LCD l i n e 1
56 }
57 e l s e
58 {
59 LCD_putcommand (0 xc0 , w r i t eNe x tCh a r a c t e r) ; / / p r i n t t o LCD l i n e 2
60 }
61
62 f u n c t i o n w r i t eNe x tCh a r a c t e r ()
63 {
64 / / i f we a l r e a d y p r i n t e d t h e l a s t c h a r a c t e r , s t o p and c a l l b a c k
65 i f (i == message . l e n g t h)
66 {
67 i f (c a l l b a c k) c a l l b a c k () ;
68 r e t u rn ;
69 }
70
71 / / g e t t h e n e x t c h a r a c t e r t o p r i n t
72 v a r ch r = message . s u b s t r i n g (i , i +1) ;

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 129

73 i ++ ;
74
75 / / p r i n t i t u s i n g LCD_putchar and c ome b a c k a g a i n when don e
76 LCD_putchar (chr , w r i t eNe x tCh a r a c t e r) ;
77 }
78 }
79
80 / / *
81 / / LCD_init
82 / / *
83
84 f u n c t i o n LCD_init (c a l l b a c k)
85 {
86 / /LCD Enab l e (E) p in low
87 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
88
89 / / S t a r t a t t h e b e g i n n i n g o f t h e l i s t o f s t e p s t o p e r f o rm
90 v a r i = 0 ;
91
92 / / L i s t o f s t e p s t o p e r f o rm
93 v a r s t e p s =
94 [
95 f u n c t i o n () { s e tT imeou t (nex t , 15) ; } , / / d e l a y 15ms
96 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
97 f u n c t i o n () { s e tT imeou t (nex t , 5) ; } , / / d e l a y 5ms
98 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
99 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 5 x 7

c h a r a c t e r
100 f u n c t i o n () { LCD_putcommand (0 x0E , n e x t) ; } , / / d i s p l a y on
101 f u n c t i o n () { LCD_putcommand (0 x01 , n e x t) ; } , / / d i s p l a y c l e a r
102 f u n c t i o n () { LCD_putcommand (0 x06 , n e x t) ; } , / / e n t r y mode s e t
103 f u n c t i o n () { LCD_putcommand (0 x00 , n e x t) ; } , / / c l e a r d i s p l a y , c u r s o r

a t home
104 f u n c t i o n () { LCD_putcommand (0 x00 , c a l l b a c k) ; } / / c l e a r d i s p l a y , c u r s o r

a t home
105] ;
106
107 ne x t () ; / / E x e c u t e t h e f i r s t s t e p
108
109 / / F un c t i o n f o r e x e c u t i n g t h e n e x t s t e p
110 f u n c t i o n ne x t ()
111 {
112 i ++ ;
113 s t e p s [i �1] () ;
114 }
115 }

130 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

116
117 / / *
118 / / LCD_putcommand
119 / / *
120
121 f u n c t i o n LCD_putcommand (cmd , c a l l b a c k)
122 {
123 v a r ch r = cmd ;
124
125 / / S t a r t a t t h e b e g i n n i n g o f t h e l i s t o f s t e p s t o p e r f o rm
126 v a r i = 0 ;
127
128 / / L i s t o f s t e p s t o p e r f o rm
129 v a r s t e p s =
130 [
131 f u n c t i o n () {
132 / / p a r s e c h a r a c t e r v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
133 / / t o LCD
134 i f ((ch r & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH, ne x t) ;
135 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW, nex t) ;
136 } , f u n c t i o n () {
137 i f ((ch r & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH, ne x t) ;
138 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW, nex t) ;
139 } , f u n c t i o n () {
140 i f ((ch r & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH, ne x t) ;
141 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW, nex t) ;
142 } , f u n c t i o n () {
143 i f ((ch r & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH, ne x t) ;
144 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW, nex t) ;
145 } , f u n c t i o n () {
146 i f ((ch r & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH, ne x t) ;
147 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW, nex t) ;
148 } , f u n c t i o n () {
149 i f ((ch r & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH, ne x t) ;
150 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW, nex t) ;
151 } , f u n c t i o n () {
152 i f ((ch r & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH, ne x t) ;
153 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW, nex t) ;
154 } , f u n c t i o n () {
155 i f ((ch r & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH, ne x t) ;
156 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW, nex t) ;
157 } , f u n c t i o n () {
158 / /LCD R e g i s t e r S e t (RS) t o l o g i c z e r o f o r command i n p u t
159 b . d i g i t a lW r i t e (LCD_RS, b .LOW, nex t) ;
160 } , f u n c t i o n () {
161 / /LCD Enab l e (E) p in h i g h
162 b . d i g i t a lW r i t e (LCD_E, b .HIGH, ne x t) ;
163 } , f u n c t i o n () {

4.8. APPLICATION 1: EQUIPPING THE DAGU MAGICIAN ROBOT WITH A LCD 131

164 / / End t h e w r i t e a f t e r 1ms
165 se tT imeou t (nex t , 1) ;
166 } , f u n c t i o n () {
167 / /LCD Enab l e (E) p in low and c a l l s c h e d u l e C a l l b a c k when don e
168 b . d i g i t a lW r i t e (LCD_E, b .LOW, nex t) ;
169 } , f u n c t i o n () {
170 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
171 se tT imeou t (c a l l b a c k , 1) ;
172 }] ;
173
174 ne x t () ; / / E x e c u t e t h e f i r s t s t e p
175
176 / / F un c t i o n f o r e x e c u t i n g t h e n e x t s t e p
177 f u n c t i o n ne x t ()
178 {
179 i ++ ;
180 s t e p s [i �1] () ;
181 }
182 }
183
184 / / *
185 / / LCD_putchar
186 / / *
187
188 f u n c t i o n LCD_putchar (chr1 , c a l l b a c k)
189 {
190 / / Conv e r t c h r 1 v a r i a b l e t o UNICODE (ASCII)
191 v a r ch r = chr1 . t o S t r i n g () . charCodeAt (0) ;
192
193 / / S t a r t a t t h e b e g i n n i n g o f t h e l i s t o f s t e p s t o p e r f o rm
194 v a r i = 0 ;
195
196 / / L i s t o f s t e p s t o p e r f o rm
197 v a r s t e p s =
198 [
199 f u n c t i o n () {
200 / / p a r s e c h a r a c t e r v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
201 / / t o LCD
202 i f ((ch r & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH, ne x t) ;
203 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW, nex t) ;
204 } , f u n c t i o n () {
205 i f ((ch r & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH, ne x t) ;
206 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW, nex t) ;
207 } , f u n c t i o n () {
208 i f ((ch r & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH, ne x t) ;
209 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW, nex t) ;
210 } , f u n c t i o n () {
211 i f ((ch r & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH, ne x t) ;

132 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

212 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW, nex t) ;
213 } , f u n c t i o n () {
214 i f ((ch r & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH, ne x t) ;
215 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW, nex t) ;
216 } , f u n c t i o n () {
217 i f ((ch r & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH, ne x t) ;
218 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW, nex t) ;
219 } , f u n c t i o n () {
220 i f ((ch r & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH, ne x t) ;
221 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW, nex t) ;
222 } , f u n c t i o n () {
223 i f ((ch r & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH, ne x t) ;
224 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW, nex t) ;
225 } , f u n c t i o n () {
226 / /LCD R e g i s t e r S e t (RS) t o l o g i c on e f o r c h a r a c t e r i n p u t
227 b . d i g i t a lW r i t e (LCD_RS, b .HIGH, ne x t) ;
228 } , f u n c t i o n () {
229 / /LCD Enab l e (E) p in h i g h
230 b . d i g i t a lW r i t e (LCD_E, b .HIGH, ne x t) ;
231 } , f u n c t i o n () {
232 / / End t h e w r i t e a f t e r 1ms
233 se tT imeou t (nex t , 1) ;
234 } , f u n c t i o n () {
235 / /LCD Enab l e (E) p in low and c a l l s c h e d u l e C a l l b a c k when don e
236 b . d i g i t a lW r i t e (LCD_E, b .LOW, nex t) ;
237 } , f u n c t i o n () {
238 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
239 se tT imeou t (c a l l b a c k , 1) ;
240 }] ;
241
242 ne x t () ; / / E x e c u t e t h e f i r s t s t e p
243
244 / / F un c t i o n f o r e x e c u t i n g t h e n e x t s t e p
245 f u n c t i o n ne x t ()
246 {
247 i ++ ;
248 s t e p s [i �1] () ;
249 }
250 }
251 / / *

4.9 APPLICATION 2: THE DAGU MAGICIAN INTERFACE
ON A CUSTOM CAPE

As mentioned earlier in the book, BeagleBone designers developed an elegant Cape system to
interface hardware. A variety of BeagleBone Capes are available from Circuitco, Inc. In this sec-
tion, we develop a Dagu Magician Cape to host the IR sensor, motor, and LCD interface. We

4.9. APPLICATION 2: THE DAGU MAGICIAN INTERFACE ON A CUSTOM CAPE 133

employ the Adafruit Proto Cape Kit. We also provide a layout for the Dagu Magician power
regulator board.

Provided in Figure 4.31 is the layout and the connection diagram for the Adafruit Proto
Cape for BeagleBone. e Proto Cape comes as a kit with edge connectors. e Cape may be
equipped with stacking header connectors so several Capes may be stacked together. e layout
provided for the connectors are also connected to corresponding nearby holes to allow for ease of
hardware interface.

ad
afru

it!

5
.0
V

3
.3
V

G
N
D

1 4
8 5
SOIC8

adafruit!

5.0V

3.3V

G
N
D

1 4
8 5
SOIC8

layout

connection

G G

G

3.3

5.0

Figure 4.31: Adafruit BeagleBone prototype Cape.

In Figure 4.33 the Adafruit Cape has been used to interface the Dagu Magician robot IR
sensors and motor interface drivers. e schematic for this circuitry was provided in Chapter 2.

134 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

7
.2

 V
D

C

at
 3

0
0

 m
A

1
N

4
0
0
1

3
3

0

M+ -

7
.2

 V
D

C

at
 3

0
0

 m
a

3
3

0

1
N

4
0
0
1

9
.0

 V
D

C
9
.0

 V
D

C

7
8
0
5

I

C

O
9

.0
 V

D
C

b
at

te
ry

 p
ac

k

o
r

p
o
w

er

su
p

p
ly

+
9
 V

D
C

+
5
 V

D
C

M+ -

GND-1

VDD-2

Vo-3

RS-4

R/W-5

E-6

DB0-7

DB1-8

DB2-9

DB3-10

DB4-11

DB5-12

DB6-13

DB7-14

V
cc 1
0

K

li
n

e1

li
n

e2da
ta

en
ab

le
co

m
m

an
d/

da
ta

Figure 4.32: Dagu Magician interface circuit diagram. (Illustrations used with permission of Texas
Instruments (www.TI.com).)

www.TI.com

4.9. APPLICATION 2: THE DAGU MAGICIAN INTERFACE ON A CUSTOM CAPE 135

ad
afru

it!

5
.0

V

3
.3

V

G
N

D

1 4
8 5

SOIC8

1M

left

IR

sensor

plug

1M

center

IR

sensor

plug

1M

right

IR

sensor

plug

TIP

120

240 240

TIP

120

1
N

4
0

0
1

1
N

4
0

0
1

1
0

0
 u

F
,

3
5

V

+

1
0

0
 u

F
,

3
5

V

+

1
0

0
 u

F
,

3
5

V

+
7805

5 VDC

regulator

LM1084-

3.3

3.3 VDC

regulator

power jack

to 9 VDC, 2A

power supply

ad
afru

it!

5
.0

V

3
.3

V

G
N

D

1 4
8 5

SOIC8

a) Dagu Magician IR sensor

and motor interface custom Cape
b) LCD interface

custom Cape

c) Dagu Magician power regulator

Figure 4.33: Dagu Magician interface. e interface hardware consists of a) the custom cape, b) the
LCD, and c) the onboard voltage regulator board.

136 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

ad
afru

it!

5
.0

V

3
.3

V

G
N

D

1 4
8 5

SOIC8

1M

left

IR

sensor

plug

1M

center

IR

sensor

plug

1M

right

IR

sensor

plug

TIP

120

330 330

TIP

120

1N4001

diodes

ad
afru

it!

5
.0

V

3
.3

V

G
N

D

1 4
8 5

SOIC8

7805

5 VDC

regulator

power jack

Figure 4.34: Interface hardware placement on the Dagu Magician robot.

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 137

For convenience we have provided a complete circuit diagram in Figure 4.32. Also, a Jameco
general purpose prototyping board (#105100) is used for layout of the Dagu Magician power
regulator. In Figure 4.34 the Dagu Magician robot has been equipped with the Capes and the
power regulator board. A description of the software used to control the robot was provided in
Chapter 3.

4.10 APPLICATION 3: SPECIAL EFFECTS LED CUBE
To illustrate some of the fundamentals of BeagleBone interfacing, we construct a three–
dimensional LED cube. is design was inspired by an LED cube kit available from Jameco
(www.jameco.com). is application originally appeared in the third edition of “Arduino Micro-
controller Processing for Everyone!” e LED cube example has been adapted with permission
for compatibility with the BeagleBone [Barrett, 2006].

e BeagleBone Black is a 3.3 VDC system. With this is mind, we take two different
design approaches.

1. Interface the 3.3 VDC BeagleBone Black to an LED cube designed for 5 VDC operation
via a 3.3–5.0 VDC level shifter.

2. Modify the design of the LED cube to operate at 3.3 VDC.

We explore each design approach in turn.
Approach 1: 5VDCLEDcube: e LED cube consists of 4 layers of LEDs with 16 LEDs

per layer. Only a single LED is illuminated at a given time. However, different effects may be
achieved by how long a specific LED is left illuminated and the pattern of LED sequence fol-
lowed. A specific LED layer is asserted using the layer select pins on the microcontroller using
a one-hot-code (a single line asserted while the others are de-asserted). e asserted line is fed
through a 74HC244 (three state, octal buffer, line driver) which provides an IOH =IOL current
of ˙ 35 mA, as shown in Figure 4.35. A given output from the 74HC244 is fed to a common
anode connection for all 16 LEDs in a layer. All four LEDs in a specific LED position, each
in a different layer, share a common cathode connection. at is, an LED in a specific location
within a layer shares a common cathode connection with three other LEDs that share the same
position in the other three layers. e common cathode connection from each LED location is
fed to a specific output of the 74HC154 4–16 decoder. e decoder has a one-cold-code output
(one output at logic low while the others are at logic high). To illuminate a specific LED, the
appropriate layer select and LED select line are asserted using the layer_sel[3:0] and led_sel[3:0]
lines, respectively. is basic design may be easily expanded to a larger LED cube.

To interface the 5 VDC LED cube to the 3.3 VDC BeagleBone Black, a 3.3–5 VDC
level shifter is required for each of the control signals (layer_sel and led_sel). In this example, a
TXB0108 (low-voltage octal bidirectional transceiver) is employed to shift the 3.3 VDC signals
of the BeagleBone to 5 VDC levels. Adafruit provides a breakout board for the level shifter
(#TXB0108) [www.adafruit.com].

www.jameco.com
www.adafruit.com

138 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

+

_

+

_

+

_

+

_
+

Notes:

1. LED cube consists of 4 layers of 16 LEDs each.

2. Each LED is individually addressed by asserting the appropriate cathode signal (0 15)

 and asserting a specific LED layer.

3. All LEDs in a given layer share a common anode connection.

4. All LEDs in a given position (0 15) share a common cathode connection.

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

+

_

Adafruit

TXB0108

level

shifter

B
e
a
g
le

B
o
n
e
 B

la
c
k

la
y
e
r

s
e
le

c
t

L
E

D
 s

e
le

c
t

P9_11

/E0-18
74HC154

4-to-16 decoder

Vcc = 5VDC

Vcc = 5VDC

IOL = +/- 25 mA

Idiode

Idiode

=

- +

- +

- +

- +

side

view

cocktail

straw

spacer

LED horizontal layer 0

top view

LED horizontal layer 3

LED horizontal layer 2

LED horizontal layer 1

LED0

LED

0 1 2 3

4 5 6

8 9 10 11

12 13 14 15

220

74HC244

/OEa-1

/OEb-19

18 16 14 12 9 7 5 3

2 4 6 8 11 13 15
10

20

17

7

/E0-19
20

1 2 3 4 5 6 7 8 9 10 11 1314 1516 17

D C B A
21 22 23 12

24

led_sel0

led_sel1

led_sel2

led_sel3

P9_12

P9_13

P9_14

P9_15 layer_sel0

layer_sel1

layer_sel2

layer_sel3

P9_16

P9_21

P9_22

Figure 4.35: 5 VDC LED special effects cube.

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 139

Approach2: 3.3VDCLEDcube: A 3.3 VDC LED cube design is provided in Figure 4.36.
e 74HC154 1-of-16 decoder has been replaced by two 3.3 VDC 74LVX138 1-of-8 decoders.
e two 74LVX138 decoders form a single 1-of-16 decoder.e led_sel3 is used to select between
the first decoder via enable pin /E2 or the second decoder via enable pin E3. Also, the 74HC244
has been replaced by a 3.3 VDC 74LVX244.

4.10.1 CONSTRUCTION HINTS
To limit project costs, low-cost red LEDs (Jameco #333973) were used. is LED has a forward
voltage drop (Vf) of approximately 1.8 VDC and a nominal forward current (If) of 20 mA. e
project requires a total of 64 LEDs (4 layers of 16 LEDs each). A LED template pattern was
constructed from a 5” by 5” piece of pine wood. A 4-by-4 pattern of holes were drilled into the
wood. Holes were spaced 3/4” apart. e hole diameter was slightly smaller than the diameter of
the LEDs to allow for a snug LED fit.

e LED array was constructed a layer at a time using the wood template. Each LED was
tested before inclusion in the array. A 5VDCpower supply with a series 220 ohm resistor was used
to insure eachLEDwas fully operational.eLEDanodes in a givenLED rowwere then soldered
together. A fine-tip soldering iron and a small bit of solder were used for each interconnect as
shown in Figure 4.37. Cross wires were then used to connect the cathodes of adjacent rows. A
22 gage bare wire was used. Again, a small bit of solder was used for the interconnect points. Four
separate LED layers (4 by 4 array of LEDs) were completed.

To assemble the individual layers into a cube, cocktail straw segments were used as spacers
between the layers. e straw segments provided spacing between the layers and also offered
improved structural stability. e anodes for a given LED position were soldered together. For
example, all LEDs in position 0 for all four layers shared a common anode connection.

e completed LED cube was mounted on a perforated printed circuit board (perfboard)
to provide a stable base. LED sockets for the 74LS244 and the 74HC154 were also mounted to
the perfboard. Connections were routed to a 16 pin ribbon cable connector. e other end of the
ribbon cable was interfaced to the appropriate pins of the BeagleBone via the level shifter. e
entire LED cube was mounted within a 4” plexiglass cube. e cube is available from the Con-
tainer Store (www.containerstore.com). A construction diagram is provided in Figure 4.37. A
picture of the LED cube is provided in Figure 4.38.

4.10.2 LED CUBE BONESCRIPT CODE
Provided below is the basic code template to illuminate a single LED (LED 0, layer 0). is basic
template may be used to generate a number of special effects (e.g., tornado, black hole, etc.). Pin
numbers are provided for the BeagleBone Black.

www.containerstore.com

140 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

+-

+-

+-

+-

Idiode =

IOL = +/- 25 mA

LED0

side

view

Idiode

cocktail

straw

spacer

0 1 2

4 5 6

8 9 10 11

12 13 14

+
_

+
_

+
_

+
_ +

74LVX244

led_sel0

led_sel1

led_sel2

led_sel3

B
ea

g
le

B
o
n
e

B
la

ck

L
E

D
 s

el
ec

t
la

y
er

 s
el

ec
t

P9_11

P9_12

P9_13

P9_14

P9_15

P9_16

P9_21

P9_22

layer_sel0

layer_sel1

layer_sel2

layer_sel3

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

15

220

LED

Idiode

20

10

Vcc = 5 VDC

/OE1-1

/OE2-19

2 4 6 8

18 16 14 12

11 13 15 17

3579

LED horizontal layer 1

LED horizontal layer 2

LED horizontal layer 3

O0 O1 O2 O3 O4 O5 O6 O7

A0 A1 A2

V
cc

 =
 5

 V
D

C

/E1 /E2 E3
(4) (5) (6)

5VDC

(1) (2) (3)
(8)

(16)
(15) (14) (13)(12) (11) (10) (9) (7)

LED
 0

LED
 1

LED
 2

LED
 3

LED
 5

LED
 4

LED
 6

LED
 7

O0 O1 O2 O3 O4 O5 O6 O7

A0 A1 A2

V
cc

 =
 5

 V
D

C

/E1 /E2 E3
(4) (5) (6) (1) (2) (3)

(8)

(16)
(15) (14) (13)(12) (11) (10) (9) (7)

LED
 8

LED
 9

LED
 1

0

LED
 1

1

LED
 1

3

LED
 1

2

LED
 1

4

LED
 1

5

74LVX138 74LVX138

Figure 4.36: LED special effects cube.

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 141

0 1 2

4 5 6

8 9 10

12 13 14

+
_

+
_

+
_

+
_

7

3
+

_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

LED

11

15

solder connection

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

LED anodes are connected together

to form a common anode crossbar

between LED rows and columns

a) LED soldering diagram

b) 3D LED array mounted within plexiglass cube

Figure 4.37: LED cube construction.

142 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

Figure 4.38: LED Cube. (Photo courtesy of Barrett [2015].)

1 / / *
2 / / l e d _ c u b e 1 . j s
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6 / / l e d s e l e c t p i n s
7 v a r l e d _ s e l 0 = ‘ ‘ P9_11 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 11
8 v a r l e d _ s e l 1 = ‘ ‘ P9_12 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 12
9 v a r l e d _ s e l 2 = ‘ ‘ P9_13 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 13

10 v a r l e d _ s e l 3 = ‘ ‘ P9_14 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 14
11
12 / / l a y e r s e l e c t p i n s
13 v a r l a y e r _ s e l 0 = ‘ ‘ P9_15 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 15
14 v a r l a y e r _ s e l 1 = ‘ ‘ P9_16 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 16
15 v a r l a y e r _ s e l 2 = ‘ ‘ P9_21 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 21
16 v a r l a y e r _ s e l 3 = ‘ ‘ P9_22 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 22
17
18 b . pinMode (l e d _ s e l 0 , b .OUTPUT) ;
19 b . pinMode (l e d _ s e l 1 , b .OUTPUT) ;
20 b . pinMode (l e d _ s e l 2 , b .OUTPUT) ;

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 143

21 b . pinMode (l e d _ s e l 3 , b .OUTPUT) ;
22
23 b . pinMode (l a y e r _ s e l 0 , b .OUTPUT) ;
24 b . pinMode (l a y e r _ s e l 1 , b .OUTPUT) ;
25 b . pinMode (l a y e r _ s e l 2 , b .OUTPUT) ;
26 b . pinMode (l a y e r _ s e l 3 , b .OUTPUT) ;
27
28 loop () ;
29
30 f u n c t i o n loop ()
31 {
32 / / i l l u m i n a t e LED 0 , l a y e r 0
33 / / l e d s e l e c t
34 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
35 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
36 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
37 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
38 / / l a y e r s e l e c t
39 b . d i g i t a lW r i t e (l a y e r _ s e l 0 , b .HIGH) ;
40 b . d i g i t a lW r i t e (l a y e r _ s e l 1 , b .LOW) ;
41 b . d i g i t a lW r i t e (l a y e r _ s e l 2 , b .LOW) ;
42 b . d i g i t a lW r i t e (l a y e r _ s e l 3 , b .LOW) ;
43 }
44
45 / / *

In the next example, a function “illuminate_LED” has been added. To illuminate a specific
LED, the LED position (0–15), the LED layer (0–3), and the length of time to illuminate the
LED in milliseconds is specified using the setInterval function. In this short example, LED 0 is
sequentially illuminated in each layer. An LED grid map is provided in Figure 4.39. It is useful
for planning special effects.

1 / / *
2 / / l e d _ c u b e 2 . j s
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 v a r i = 0 ;
8
9 / / l e d s e l e c t p i n s

10 v a r l e d _ s e l 0 = ‘ ‘ P9_11 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 11
11 v a r l e d _ s e l 1 = ‘ ‘ P9_12 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 12
12 v a r l e d _ s e l 2 = ‘ ‘ P9_13 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 13
13 v a r l e d _ s e l 3 = ‘ ‘ P9_14 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 14
14
15 / / l a y e r s e l e c t p i n s
16 v a r l a y e r _ s e l 0 = ‘ ‘ P9_15 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 15

144 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

layer 0

layer 1

layer 2

layer 3

Figure 4.39: LED grid map.

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 145

17 v a r l a y e r _ s e l 1 = ‘ ‘ P9_16 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 16
18 v a r l a y e r _ s e l 2 = ‘ ‘ P9_21 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 21
19 v a r l a y e r _ s e l 3 = ‘ ‘ P9_22 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 22
20
21 b . pinMode (l e d _ s e l 0 , b .OUTPUT) ;
22 b . pinMode (l e d _ s e l 1 , b .OUTPUT) ;
23 b . pinMode (l e d _ s e l 2 , b .OUTPUT) ;
24 b . pinMode (l e d _ s e l 3 , b .OUTPUT) ;
25
26 b . pinMode (l a y e r _ s e l 0 , b .OUTPUT) ;
27 b . pinMode (l a y e r _ s e l 1 , b .OUTPUT) ;
28 b . pinMode (l a y e r _ s e l 2 , b .OUTPUT) ;
29 b . pinMode (l a y e r _ s e l 3 , b .OUTPUT) ;
30
31 s e t I n t e r v a l (loop , 500) ; / / i l l u m i n a t e e a c h LED f o r 500ms
32
33 f u n c t i o n loop ()
34 {
35 i f (i ==0) { i l luminate_LED (0 , 0) ; }
36 i f (i ==1) { i l luminate_LED (0 , 1) ; }
37 i f (i ==2) { i l luminate_LED (0 , 2) ; }
38 i f (i ==3) { i l luminate_LED (0 , 3) ; }
39 i = i +1 ;
40 i f (i ==4) { i = 0 ; }
41 }
42
43 f u n c t i o n i l luminate_LED (led , l a y e r)
44 {
45
46 / / s e l e c t LED
47 i f (l e d ==0)
48 {
49 / / i l l u m i n a t e LED 0
50 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
51 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
52 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
53 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
54 }
55
56 e l s e i f (l e d ==1)
57 {
58 / / i l l u m i n a t e LED 1
59 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
60 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
61 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
62 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
63 }
64

146 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

65 e l s e i f (l e d ==2)
66 {
67 / / i l l u m i n a t e LED 2
68 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
69 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
70 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
71 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
72 }
73
74 e l s e i f (l e d ==3)
75 {
76 / / i l l u m i n a t e LED 0
77 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
78 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
79 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
80 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
81 }
82
83 e l s e i f (l e d ==4)
84 {
85 / / i l l u m i n a t e LED 4
86 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
87 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
88 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
89 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
90 }
91
92 e l s e i f (l e d ==5)
93 {
94 / / i l l u m i n a t e LED 5
95 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
96 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
97 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
98 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
99 }

100
101 e l s e i f (l e d ==6)
102 {
103 / / i l l u m i n a t e LED 6
104 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
105 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
106 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
107 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
108 }
109
110 e l s e i f (l e d ==7)
111 {
112 / / i l l u m i n a t e LED 7

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 147

113 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
114 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
115 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
116 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .LOW) ;
117 }
118
119 e l s e i f (l e d ==8)
120 {
121 / / i l l u m i n a t e LED 8
122 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
123 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
124 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
125 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
126 }
127
128 e l s e i f (l e d ==9)
129 {
130 / / i l l u m i n a t e LED 9
131 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
132 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
133 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
134 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
135 }
136
137 e l s e i f (l e d ==10)
138 {
139 / / i l l u m i n a t e LED 10
140 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
141 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
142 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
143 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
144 }
145
146 e l s e i f (l e d ==11)
147 {
148 / / i l l u m i n a t e LED 11
149 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
150 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
151 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .LOW) ;
152 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
153 }
154
155 e l s e i f (l e d ==12)
156 {
157 / / i l l u m i n a t e LED 12
158 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
159 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
160 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;

148 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

161 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
162 }
163
164 e l s e i f (l e d ==13)
165 {
166 / / i l l u m i n a t e LED 13
167 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
168 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .LOW) ;
169 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
170 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
171 }
172
173 e l s e i f (l e d ==14)
174 {
175 / / i l l u m i n a t e LED 14
176 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .LOW) ;
177 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
178 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
179 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
180 }
181
182 e l s e / / (l e d ==15)
183 {
184 / / i l l u m i n a t e LED 14
185 b . d i g i t a lW r i t e (l e d _ s e l 0 , b .HIGH) ;
186 b . d i g i t a lW r i t e (l e d _ s e l 1 , b .HIGH) ;
187 b . d i g i t a lW r i t e (l e d _ s e l 2 , b .HIGH) ;
188 b . d i g i t a lW r i t e (l e d _ s e l 3 , b .HIGH) ;
189 }
190
191 / / l e d l a y e r s e l e c t
192 i f (l a y e r ==0)
193 {
194 / /LED l a y e r 0
195 b . d i g i t a lW r i t e (l a y e r _ s e l 0 , b .HIGH) ;
196 b . d i g i t a lW r i t e (l a y e r _ s e l 1 , b .LOW) ;
197 b . d i g i t a lW r i t e (l a y e r _ s e l 2 , b .LOW) ;
198 b . d i g i t a lW r i t e (l a y e r _ s e l 3 , b .LOW) ;
199 }
200
201 e l s e i f (l a y e r ==1)
202 {
203 / /LED l a y e r 1
204 b . d i g i t a lW r i t e (l a y e r _ s e l 0 , b .LOW) ;
205 b . d i g i t a lW r i t e (l a y e r _ s e l 1 , b .HIGH) ;
206 b . d i g i t a lW r i t e (l a y e r _ s e l 2 , b .LOW) ;
207 b . d i g i t a lW r i t e (l a y e r _ s e l 3 , b .LOW) ;
208 }

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 149

209
210 e l s e i f (l a y e r ==2)
211 {
212 / /LED l a y e r 2
213 b . d i g i t a lW r i t e (l a y e r _ s e l 0 , b .LOW) ;
214 b . d i g i t a lW r i t e (l a y e r _ s e l 1 , b .LOW) ;
215 b . d i g i t a lW r i t e (l a y e r _ s e l 2 , b .HIGH) ;
216 b . d i g i t a lW r i t e (l a y e r _ s e l 3 , b .LOW) ;
217 }
218
219 e l s e / / (l a y e r ==3)
220 {
221 / /LED l a y e r 3
222 b . d i g i t a lW r i t e (l a y e r _ s e l 0 , b .LOW) ;
223 b . d i g i t a lW r i t e (l a y e r _ s e l 1 , b .LOW) ;
224 b . d i g i t a lW r i t e (l a y e r _ s e l 2 , b .LOW) ;
225 b . d i g i t a lW r i t e (l a y e r _ s e l 3 , b .HIGH) ;
226 }
227
228 }
229 / / *

In the next example, a “tornado” special effect is produced. e effect starts with a small
swirl at the bottom of the array. e swirl grows larger as it proceeds to the top of the array, as
shown in Figure 4.40. It is useful for planning special effects.

1 / / *
2 / / l e d _ c u b e 3 . j s
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 v a r i = 0 ;
8
9 / / l e d s e l e c t p i n s

10 v a r l e d _ s e l 0 = ‘ ‘ P9_11 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 11
11 v a r l e d _ s e l 1 = ‘ ‘ P9_12 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 12
12 v a r l e d _ s e l 2 = ‘ ‘ P9_13 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 13
13 v a r l e d _ s e l 3 = ‘ ‘ P9_14 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 14
14
15 / / l a y e r s e l e c t p i n s
16 v a r l a y e r _ s e l 0 = ‘ ‘ P9_15 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 15
17 v a r l a y e r _ s e l 1 = ‘ ‘ P9_16 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 16
18 v a r l a y e r _ s e l 2 = ‘ ‘ P9_21 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 21
19 v a r l a y e r _ s e l 3 = ‘ ‘ P9_22 ’ ’ ; / / BB B l a c k h e a d e r P9 , p in 22
20
21 b . pinMode (l e d _ s e l 0 , b .OUTPUT) ;
22 b . pinMode (l e d _ s e l 1 , b .OUTPUT) ;
23 b . pinMode (l e d _ s e l 2 , b .OUTPUT) ;

150 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

layer 0

layer 1

layer 2

layer 3

Figure 4.40: LED grid map for a tornado.

4.10. APPLICATION 3: SPECIAL EFFECTS LED CUBE 151

24 b . pinMode (l e d _ s e l 3 , b .OUTPUT) ;
25
26 b . pinMode (l a y e r _ s e l 0 , b .OUTPUT) ;
27 b . pinMode (l a y e r _ s e l 1 , b .OUTPUT) ;
28 b . pinMode (l a y e r _ s e l 2 , b .OUTPUT) ;
29 b . pinMode (l a y e r _ s e l 3 , b .OUTPUT) ;
30
31 s e t I n t e r v a l (loop , 500) ;
32
33 f u n c t i o n loop ()
34 {
35 i f (i ==0) { i l luminate_LED (5 , 0) ; }
36 i f (i ==1) { i l luminate_LED (6 , 0) ; }
37 i f (i ==2) { i l luminate_LED (9 , 0) ; }
38 i f (i ==3) { i l luminate_LED (10 , 0) ; }
39
40 i f (i ==4) { i l luminate_LED (5 , 1) ; }
41 i f (i ==5) { i l luminate_LED (9 , 1) ; }
42 i f (i ==6) { i l luminate_LED (13 , 1) ; }
43 i f (i ==7) { i l luminate_LED (14 , 1) ; }
44 i f (i ==8) { i l luminate_LED (15 , 1) ; }
45 i f (i ==9) { i l luminate_LED (11 , 1) ; }
46 i f (i ==10) { i l luminate_LED (7 , 1) ; }
47 i f (i ==11) { i l luminate_LED (6 , 1) ; }
48
49 i f (i ==12) { i l luminate_LED (1 , 2) ; }
50 i f (i ==13) { i l luminate_LED (5 , 2) ; }
51 i f (i ==14) { i l luminate_LED (9 , 2) ; }
52 i f (i ==15) { i l luminate_LED (10 , 2) ; }
53 i f (i ==16) { i l luminate_LED (11 , 2) ; }
54 i f (i ==17) { i l luminate_LED (7 , 2) ; }
55 i f (i ==18) { i l luminate_LED (3 , 2) ; }
56 i f (i ==19) { i l luminate_LED (2 , 2) ; }
57
58 i f (i ==20) { i l luminate_LED (0 , 3) ; }
59 i f (i ==21) { i l luminate_LED (4 , 3) ; }
60 i f (i ==22) { i l luminate_LED (8 , 3) ; }
61 i f (i ==23) { i l luminate_LED (12 , 3) ; }
62 i f (i ==24) { i l luminate_LED (13 , 3) ; }
63 i f (i ==25) { i l luminate_LED (14 , 3) ; }
64 i f (i ==26) { i l luminate_LED (15 , 3) ; }
65 i f (i ==27) { i l luminate_LED (11 , 3) ; }
66 i f (i ==28) { i l luminate_LED (7 , 3) ; }
67 i f (i ==29) { i l luminate_LED (3 , 3) ; }
68 i f (i ==30) { i l luminate_LED (2 , 3) ; }
69 i f (i ==31) { i l luminate_LED (1 , 3) ; }
70
71 i = i +1 ;

152 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

72 i f (i ==32) { i = 0 ; }
73 }
74
75 f u n c t i o n i l luminate_LED (led , l a y e r)
76 {
77
78 :
79 :
80 :
81
82 }
83 / / *

4.11 SUMMARY
In this chapter, we presented the voltage and current operating parameters for BeagleBone. We
discussed how this information may be applied to properly design an interface for common input
and output circuits. It must be emphasized a carefully and properly designed interface allows the
processor to operate properly within its parameter envelope. If, due to a poor interface design, a
processor is used outside its prescribed operating parameter values, spurious and incorrect logic
values will result. We provided interface information for a wide range of input and output devices.
We also discussed the concept of interfacing a motor to the processor using PWM techniques
coupled with high power MOSFET or SSR switching devices.

4.12 REFERENCES
• Barret, J. “Closer to the Sun International.” www.closertothesungallery.com.

• Barrett, J. 2006. Arduino Processing for Everyone, 3rd. ed.

• Barrett, S. and Pack, D. 2005. Embedded Systems Design and Applications with the 68HC12
and HCS12. Upper Saddle River, NJ: Pearson Prentice Hall.

• Barrett, S. and Pack, D. 2006. Processors Fundamentals for Engineers and Scientists. San
Rafael, CA: Morgan & Claypool Publishers; www.morganclaypool.com.

• Barrett, S. and Pack, D. 2008. Atmel AVR Processor Primer Programming and Interfacing.
Morgan & Claypool Publishers; www.morganclaypool.com.

• Coley, G. 2014. BeagleBone Rev C.1 Systems Reference Manual ; www.beaglebord.org.

• “Crydom Corporation.” 2015. www.crydom.com.

• Electrical Signals and Systems. Primis Custom Publishing,McGraw-Hill Higher Education,
Department of Electrical Engineering, United States Air Force Academy, USAF Academy,
CO.

www.closertothesungallery.com
www.morganclaypool.com
www.morganclaypool.com
www.beaglebord.org
www.crydom.com

4.13. CHAPTER EXERCISES 153

• eTape Continuous Fluid Level Sensor. 2015. Milone Technologies; www.milonetech.com

• Faulkenberry, L. 1977. An Introduction to Operational Amplifiers, New York: John Wiley &
Sons.

• Faulkenberry, L. 1982. Introduction to Operational Amplifiers with Linear Integrated Circuit
Applications, New York: John Wiley & Sons.

• Hughes-Croucher, T. and Wilson, M. 2012. Node Up and Running. Sebastopol, CA:
O’Reilly Media, Inc.

• Images Company. Staten Island, NY.

• Kiessling, M. 2012. e Node Beginner Guide: A Comprehensive Node.js Tutorial.

• Linear Technology, LTC1157 3.3 Dual Micropower High-Side/Low-Side MOSFET Driver.
Linear Technology Corporation, Milpitas, CA, 1993.

• Mims III, F.M. 2000. Getting Started in Electronics. Niles, IL: Master Publishing.

• Pollock, J. 2010. JavaScript. 3rd ed. New York: McGraw Hill.

• “Sick/Stegmann Incorporated.” 2015. www.stegmann.com.

• Texas Instruments H-bridge Motor Controller IC, SLVSA74A, 2010, Texas Instruments In-
corporated.

• Vander Veer, E. 2005. JavaScript for Dummies. 4th ed. Hoboken, NJ: Wiley Publishing,
Inc.

4.13 CHAPTER EXERCISES

1. What will happen if a processor is used outside of its prescribed operating envelope?

2. Discuss the difference between the terms “sink” and “source” as related to current loading
of a processor.

3. Can an LED with a series limiting resistor be directly driven by an output pin on the Bea-
gleBone? Explain.

4. In your own words, provide a brief description of each of the electrical parameters of the
processor.

5. What is switch bounce? Describe two techniques to minimize switch bounce.

6. Describe a method of debouncing a keypad.

www.milonetech.com
www.stegmann.com

154 4. BEAGLEBONE OPERATING PARAMETERS AND INTERFACING

7. What is the difference between an incremental encoder and an absolute encoder? Describe
applications for each type.

8. What must be the current rating of the 2N2222 and 2N2907 transistors used in the tri-state
LED circuit? Support your answer.

9. Draw the circuit for a six-character, seven-segment display. Fully specify all components.

10. Repeat the problem above for a dot matrix display.

11. Repeat the problem above for an LCD display.

12. BeagleBone has been connected to a JRP 42BYG016 unipolar, 1.8ı per step, 12 VDC at
160 mA stepper motor. e interface circuit is shown in Figure 4.27. A 1 s delay is used
between the steps to control motor speed. Pushbutton switches SW1 and SW2 are used to
assert CW and CCW stepper motion. Write the code to support this application.

155

C H A P T E R 5

BeagleBone Systems Design
Objectives: After reading this chapter, the reader should be able to do the following.

• Define an embedded system.

• List all aspects related to the design of an embedded system.

• Provide a step–by–step approach to design an embedded system.

• Discuss design tools and practices related to embedded systems design.

• Discuss the importance of system testing.

• Apply embedded system design practices in the prototype of a BeagleBone-based system
with several subsystems.

• Provide a detailed design for a submersible remotely operated vehicle (ROV) including
hardware layout and interface, structure chart, UML activity diagrams, and an algorithm
coded in Bonescript.

• Provide a detailed design for a four-wheel drive (4WD) mountain maze navigating robot
including hardware layout and interface, structure chart, UML activity diagrams, and an
algorithm coded in BoneScript.

5.1 OVERVIEW
In the first three chapters of the book, we introduced BeagleBone, the Bonescript programming
environment, and hardware interface techniques. We pull these three topics together in this chap-
ter. is chapter provides a step-by-step, methodical approach towards designing advanced em-
bedded systems. In this chapter, we begin with a definition of an embedded system. We then
explore the process of how to successfully (and with low stress) develop an embedded system pro-
totype that meets established requirements. e overview of embedded system design techniques
was adapted with permission from earlier Morgan & Claypool projects. We also emphasize good
testing techniques. We conclude the chapter with several extended examples. e examples il-
lustrate the embedded system design process in the development and prototype of a submersible
remotely operated vehicle (ROV) and a 4WD mountain maze navigating robot.

156 5. BEAGLEBONE SYSTEMS DESIGN

5.2 WHAT IS AN EMBEDDED SYSTEM?
An embedded system is typically designed for a specific task. It contains a processor to collect sys-
tem inputs and generate system outputs. e link between system inputs and outputs is provided
by a coded algorithm stored within the processor’s resident memory. What makes embedded sys-
tems design so challenging and interesting is the design must also account for proper electrical
interface for the input and output devices, potentially limited on-chip resources, human interface
concepts, the operating environment of the system, cost analysis, related standards, and manu-
facturing aspects [Anderson, 2008]. rough careful application of this material you will be able
to design and prototype embedded systems based on BeagleBone.

5.3 EMBEDDED SYSTEM DESIGN PROCESS
In this section, we provide a step-by-step approach to develop the first prototype of an embedded
system that will meet established requirements. ere are many formal design processes that we
could study. We concentrate on the steps that are common to most. We purposefully avoid formal
terminology of a specific approach and instead concentrate on the activities that are accomplished
during the development of a system prototype. e design process we describe is illustrated in
Figure 5.1 using a Unified Modeling Language (UML) activity diagram. We discuss the UML
activity diagrams later in this section.

5.3.1 PROJECT DESCRIPTION
e goal of the project description step is to determine what the system is ultimately supposed to
do. Questions to raise and answer during this step include, but are not limited to, the following.

• What is the system supposed to do?

• Where will it be operating and under what conditions?

• Are there any restrictions placed on the system design?

To answer these questions, the designer interacts with the client to ensure clear agreement
on what is to be done. e establishment of clear, definable system requirements may require
considerable interaction between the designer and the client. It is essential that both parties agree
on system requirements before proceeding further in the design process. e final result of this
step is a detailed listing of system requirements and related specifications. If you are completing
this project for yourself, you must still carefully and thoughtfully complete this step.

5.3.2 BACKGROUND RESEARCH
Once a detailed list of requirements has been established, the next step is to perform background
research related to the design. In this step, the designer will ensure they understand all require-
ments and features required by the project.is will again involve interaction between the designer

5.3. EMBEDDED SYSTEM DESIGN PROCESS 157

Project Description

− What is the system supposed to do?

− Operating conditions and environment

− Formal requirements

Implement Prototype

− Top down vs. bottom up

− Develop low risk hardware test platform

− Software implementation

Background Research

− Thoroughly understand desired requirements and features

− Determine applicable codes, guidelines, and protocols

− Determine interface requirements

Preliminary Testing

− Develop test plan to insure requirements

 have been met

− Test under anticipated conditions

− Test under abusive conditions

− Redo testing if errors found

− Test in low cost, low risk environment

− Full up test

Deliver Prototype

yes

no

System design

need correction?

Employ Design Tools

− Structure chart

− UML activity diagram

− Circuit diagram

− Supplemental information

Complete and Accurate Documentation

− System description

− Requirements

− Structure chart

− UML activity diagram

− Circuit diagram

− Well-documented code

− Test plan

Pre-Design

− Brainstorm possible solutions

− Thoroughly investigate alternatives

− Choose best possible solution

− Identify specific target microcontroller

− Choose a design approach

Figure 5.1: Embedded system design process.

158 5. BEAGLEBONE SYSTEMS DESIGN

and the client. e designer will also investigate applicable codes, guidelines, protocols, and stan-
dards related to the project. is is also a good time to start thinking about the interface between
different portions of the input and output devices peripherally connected to the processor. e
ultimate objective of this step is to have a thorough understanding of the project requirements,
related project aspects, and any interface challenges within the project.

5.3.3 PRE-DESIGN
e goal of the pre-design step is to convert a thorough understanding of the project into possible
design alternatives. Brainstorming is an effective tool in this step. Here, a list of alternatives is
developed. Since an embedded system involves hardware and/or software, the designer can in-
vestigate whether requirements could be met with a hardware only solution or some combination
of hardware and software. Generally speaking, a hardware only solution executes faster; however,
the design is fixed once fielded. On the other hand, a software implementation provides flexibility
but a slower execution speed. Most embedded design solutions will use a combination of both
hardware and software to capitalize on the inherent advantages of each.

Once a design alternative has been selected, the general partition between hardware and
software can be determined. It is also an appropriate time to select a specific hardware device
to implement the prototype design. If a technology has been chosen, it is now time to select a
specific processor. is is accomplished by answering the following questions.

• What processor systems or features (i.e., ADC, PWM, timer, etc.) are required by the de-
sign?

• How many input and output pins are required by the design?

• What type of memory components are required?

• What is the maximum anticipated operating speed of the processor expected to be?

Due to the variety of onboard systems, clock speed, and low cost; BeagleBone may be used
in a wide array of applications typically held by microcontrollers and advanced processors.

5.3.4 DESIGN
With a clear view of system requirements and features, a general partition determined between
hardware and software, and a specific processor chosen, it is now time to tackle the actual design.
It is important to follow a systematic and disciplined approach to design. is will allow for low
stress development of a documented design solution that meets requirements. In the design step,
several tools are employed to ease the design process. ey include the following:

• employing a top-down design, bottom up implementation approach;

• using a structure chart to assist in partitioning the system;

5.3. EMBEDDED SYSTEM DESIGN PROCESS 159

• using a Unified Modeling Language (UML) activity diagram to work out program flow,
and

• developing a detailed circuit diagram of the entire system.

Let’s take a closer look at each of these. e information provided here is an abbreviated
version of the one provided in “Microcontrollers Fundamentals for Engineers and Scientists.”
e interested reader is referred there for additional details and an in-depth example [Barrett and
Pack, 2006].

Top-down design, bottom-up implementation. An effective tool to start partitioning the
design is based on the techniques of top-down design, bottom-up implementation. In this ap-
proach, you start with the overall system and begin to partition it into subsystems. At this point of
the design, you are not concerned with how the design will be accomplished but how the different
pieces of the project will fit together. A handy tool to use at this design stage is the structure chart.
e structure chart shows how the hierarchy of system hardware and software components will
interact and interface with one another. You should continue partitioning system activity until
each subsystem in the structure chart has a single definable function. Directional arrows are used
to indicate data flow in and out of a function.

UML activity diagram. Once the system has been partitioned into pieces, the next step
is to work out the details of the operation of each subsystem previously identified. Rather than
beginning to code each subsystem as a function, work out the information and control flow of each
subsystem using another design tool: the Unified Modeling Language (UML) activity diagram.
e activity diagram is simply a UML compliant flow chart. UML is a standardized method
of documenting systems. e activity diagram is one of the many tools available from UML to
document system design and operation. e basic symbols used in a UML activity diagram for a
processor based system are provided in Figure 5.2 [Fowler and Scott, 2000].

To develop the UML activity diagram for the system, we can use a top-down, bottom-up,
or a hybrid approach. In the top-down approach, we begin by modeling the overall flow of the
algorithm from a high level. If we choose to use the bottom-up approach, we would begin at the
bottom of the structure chart and choose a subsystem for flow modeling. e specific course of
action chosen depends on project specifics. Often, a combination of both techniques, a hybrid
approach, is used. You should work out all algorithm details at the UML activity diagram level
prior to coding any software. If you can not explain system operation at this higher level first, you
have no business being down in the detail of developing the code. erefore, the UML activity
diagram should be of sufficient detail so you can code the algorithm directly from it [Dale and
Lilly, 1995].

In the design step, a detailed circuit diagram of the entire system is developed. It will serve
as a roadmap to implement the system. It is also a good idea at this point to investigate available
design information relative to the project. is would include hardware design examples, software
code examples, and application notes available from manufacturers. As before, use a subsystem

160 5. BEAGLEBONE SYSTEMS DESIGN

Starting

Activity

Transfer

of Control
Final State

Action StateBranch

Figure 5.2: UML activity diagram symbols. Adapted from Fowler and Scott [2000].

approach to assemble the entire circuit. e basic building block interface circuits discussed in the
previous chapter may be used to assemble the complete circuit.

At the completion of this step, the prototype design is ready for implementation and testing.

5.3.5 IMPLEMENT PROTOTYPE
To successfully implement a prototype, an incremental approach should be followed. Again, the
top-down design, bottom-up implementation provides a solid guide for system implementation.
In an embedded system design involving both hardware and software, the hardware system in-
cluding the processor should be assembled first. is provides the software the required signals to
interact with. As the hardware prototype is assembled on a prototype board, each component is
tested for proper operation as it is brought online. is allows the designer to pinpoint malfunc-
tions as they occur.

Once the hardware prototype is assembled, coding may commence. It is important to note
that on larger projects software and hardware may be developed concurrently. As before, software
should be incrementally brought online. You may use a top down, bottom up, or hybrid approach
depending on the nature of the software. e important point is to bring the software online
incrementally such that issues can be identified and corrected early on.

5.3. EMBEDDED SYSTEM DESIGN PROCESS 161

It is highly recommended that low-cost stand-in components be used when testing the soft-
ware with the hardware components. For example, push buttons, potentiometers, and LEDs may
be used as low-cost stand-in component simulators for expensive input instrumentation devices
and expensive output devices such as motors. is allows you to insure the software is properly
operating before using it to control the actual components.

5.3.6 PRELIMINARY TESTING
To test the system, a detailed test plan must be developed. Tests should be developed to verify
that the system meets all of its requirements and also intended system performance in an opera-
tional environment. e test plan should also include scenarios in which the system is used in an
unintended manner. As before, a top-down, bottom-up, or hybrid approach can be used to test
the system. In a bottom-up approach individual units are tested first.

Once the test plan is completed, actual testing may commence. e results of each test
should be carefully documented. As you go through the test plan, you will probably uncover a
number of run-time errors in your algorithm. After you correct a run-time error, the entire test
plan must be repeated. is ensures that the new fix does not have an unintended effect on another
part of the system. Also, as you process through the test plan, you will probably think of other
tests that were not included in the original test document. ese tests should be added to the
test plan. As you go through testing, realize your final system is only as good as the test plan that
supports it!

Once testing is complete, you should accomplish another level of testing where you in-
tentionally try to “jam up” the system. In other words, try to get your system to fail by trying
combinations of inputs that were not part of the original design. A robust system should con-
tinue to operate correctly in this type of an abusive environment. It is imperative that you design
robustness into your system. When testing on a low cost simulator is complete, the entire test plan
should be performed again with the actual system hardware. Once this is completed you should
have a system that meets its requirements!

5.3.7 COMPLETE AND ACCURATE DOCUMENTATION
With testing complete, the system design should be thoroughly documented. Much of the docu-
mentation will have already been accomplished during system development. Documentation will
include the system description, system requirements, the structure chart, the UML activity dia-
grams documenting program flow, the test plan, results of the test plan, system schematics, and
properly documented code. To properly document code, you should carefully comment all func-
tions describing their operation, inputs, and outputs. Also, comments should be included within
the body of the function describing key portions of the code. Enough detail should be provided
such that code operation is obvious. It is also extremely helpful to provide variables and functions
within your code names that describe their intended use.

162 5. BEAGLEBONE SYSTEMS DESIGN

Youmight think that a comprehensive system documentation is not worth the time or effort
to complete it. Complete documentation pays rich dividends when it is time to modify, repair, or
update an existing system. Also, well–documented code may be often reused in other projects: a
method for efficient and timely development of new systems.

In the next two sections we provide detailed examples of the system design process: a sub-
mersible robot and a 4WD robot capable of navigating through a mountainous maze.

5.4 SUBMERSIBLE ROBOT
e area of submersible robots is fascinating and challenging. To design a robot is quite com-
plex (yet fun). To add the additional requirement of waterproofing key components provides an
additional level of challenge. (Water and electricity do not mix!) In this section we provide the
construction details and a control system for a remotely operated vehicle, an ROV. Specifically,
we develop the structure and control system for the SeaPerch style ROV, as shown in Figure 5.3.
By definition, an ROV is equipped with a tether umbilical cable that provides power and control
signals from a surface support platform. An Autonomous Underwater Vehicle (AUV) carries its
own power and control equipment and does not require surface support [seaperch].

Details on the construction and waterproofing of an ROV are provided in the excellent
and fascinating Build Your Own Underwater Robot and Other Wet Projects by Harry Bohm and
Vickie Jensen. For an advanced treatment, please seeeROVManual—AUserGuide for Remotely
Operated Vehicles by Robert Crist and Robert Wernli, Sr. ere is a national-level competition for
students based on the SeaPerch ROV. e goal of the program is to stimulate interest in the next
generation of marine related engineering specialties [seaperch].

5.4.1 APPROACH
is is a challenging project; however, we take a methodical, step–by–step approach to successful
design and construction of the ROV. We complete the design tasks in the following order:

• determine requirements;

• design and construct ROV structure;

• design and fabricate control electronics;

• design and implement control software using Bonescript;

• construct and assemble a prototype; and

• test the prototype.

5.4.2 REQUIREMENTS
e requirements for the ROV system include the following.

5.4. SUBMERSIBLE ROBOT 163

Figure 5.3: SeaPerch ROV. (Adapted and used with permission of Bohm and Jensen, 2012.)

• Develop a control system to allow a three-thruster (motor or bilge pump) ROV to move
forward, left (port) and right (starboard).

• e ROV will be pushed down to a shallow depth via a vertical thruster and return to surface
based on its own, slightly positive buoyancy.

• ROV movement will be under joystick control.

• Light-emitting diodes (LEDs) are used to indicate thruster assertion.

• All power and control circuitry will be maintained in a surface support platform, as shown
in Figure 5.4.

• An umbilical cable connects the support platform to the ROV.

164 5. BEAGLEBONE SYSTEMS DESIGN

Figure 5.4: Power and control are provided remotely to the SeaPerch ROV. (Adapted and used with
permission of Bohm and Jensen, 2012.)

5.4.3 ROV STRUCTURE
e ROV structure is shown in Figure 5.5. e structure is constructed with 0.75 in PVC piping.
e structure is assembled quickly using “T” and corner connectors. e pieces are connected
using PVC glue ormachine screws.e PVCpipe and connectors are readily available in hardware
and home improvement stores.

e fore or bow portion of the structure is equipped with plexiglass panels to serve as
mounting bulkheads for the thrusters. e panels are mounted to the PVC structure using ring
clamps. Either waterproofed electric motors or submersible bilge pumps are used as thrusters. A
bilge pump is a pump specifically designed to remove water from the inside of a boat. e pumps
are powered from a 12 VDC source and have typical flow rates from 360 to over 3,500 gallons per
minute. ey range in price from US $20–US $80 [www.shorelinemarinedevelopment.com].

www.shorelinemarine development.com

5.4. SUBMERSIBLE ROBOT 165

Shoreline

Bilge Pump

Shoreline

Bilge Pump

Side Viewumbilical cable

stern
bow

3/4” diameter PVC

up/down

thruster

Per side:

2 each - 4-1/2”

3 each - 4-1/2”

2 each - 7”

Shoreline

Bilge Pump

Top View

ring

clamp

ring

clamp

ring

clamp

ring

clamp

ring

clamp

ring

clamp

ring

clamp

ring

clamp

S
h

o
re

lin
e

B
ilg

e
 P

u
m

p
S

h
o

re
lin

e

B
ilg

e
 P

u
m

p

w
a

te
rp

ro
o

f

in
te

rfa
c
e

Figure 5.5: SeaPerch ROV structure.

166 5. BEAGLEBONE SYSTEMS DESIGN

Details on waterproofing electric motors are provided in Build Your Own Underwater Robot and
Other Wet Projects, [Bohm and Jensen, 2012]. We use three Shoreline Bilge Pumps rated at 600
gallons per minute (GPM). ey are available online from www.walmart.com.

e aft or stern portion of the structure is designed to hold the flexible umbilical cable. e
cable provides a link between the BeagleBone Black based control system and the thrusters. Each
thruster may require up to 1–2 amps of current. erefore, a four-conductor, 16 AWG, braided
(for flexibility) conductor cable is recommended. e cable is interfaced to the bilge pump leads
using soldered connections or Butt connectors. e interface should be thoroughly waterproofed
using caulk. For this design the interface was placed within a section of PVC pipe equipped with
end caps. e resulting container is filled with waterproof caulk.

Once the ROV structure is complete its buoyancy is tested. is is accomplished by plac-
ing the ROV structure in water. e goal is to achieve a slightly positive buoyancy. With positive
buoyancy the structure floats. With neutral buoyancy the structures hovers beneath the surface.
With negative buoyancy the structure sinks. A more positive buoyancy way be achieved by attach-
ing floats or foam to the structure tubing. A more negative buoyancy may be achieved by adding
weights to the structure [Bohm and Jensen, 2012].

5.4.4 STRUCTURE CHART
e SeaPerch structure chart is provided in Figure 5.6. As can be seen in the figure, the SeaPerch
control system will accept input from the five- position joystick (left, right, select, up, and down).
We use the Sparkfun thumb joystick (Sparkfun COM–09032) mounted to an Adafruit Proto
Cape Kit for BeagleBone (Adafruit 572), as shown in Figure 5.7. e joystick schematic and
connections to BeagleBone are provided in Figures 5.8 and 5.9.

In response to user joystick input, the SeaPerch control algorithm will issue a control com-
mand indicating desired ROV direction. In response to this desired direction command, the mo-
tor control algorithm will issue control signals to assert the appropriate thrusters and LEDs.

5.4.5 CIRCUIT DIAGRAM
e circuit diagram for the SeaPerch control system is provided in Figure 5.8. e thumb joystick
is used to select desired ROV direction. e thumb joystick contains two built-in potentiometers
(horizontal and vertical). A reference voltage of 1.8 VDC is applied to the VCC input of the
joystick. A 1.8 VDC reference is required since this is the maximum allowable voltage to the
BeagleBoneBlack’s analog-to-digital conversion system. e 1.8 VDC reference is provided by
the LM317 positive, adjustable regulator circuit. As the joystick ismoved, the horizontal (HORZ)
and vertical (VERT) analog output voltages will change to indicate the joystick position. e
joystick is also equipped with a digital select (SEL) button. e SEL button is used to activate an
ROV dive. e joystick is interfaced to BeagleBone, as shown in Figure 5.8.

ere are three LED interface circuits connected to BeagleBone header pins P8 pins 7–
9. e LEDs illuminate to indicate the left, vertical, and right thrusters have been asserted. As

www.walmart.com

5.4. SUBMERSIBLE ROBOT 167

five position

joystick

direction

Seaperch

Control System

motor

control

motor

interface

light emitting

diodes (LEDs)

interface

left

thruster
vertical

thruster

right

thruster

left

LED

vertical

LED

right

LED

motor

assertion

LED

assertion

Figure 5.6: SeaPerch ROV structure chart.

previously mentioned, the prime mover for the ROV are three bilge pumps. e left and right
bilge pumps are driven by pulse width modulation channels (BeagleBone P9 pins 13, 14, and 16)
via power NPN Darlington transistors (TIP 120), as shown in Figure 5.8. e vertical thrust is
under digital pin control P8 pin 13 equippedwithNPNDarlington transistor (TIP 120) interface.
Both the LED and the pump interfaces were discussed in the previous chapter.

e interface circuitry between BeagleBone Black and the bilge pumps is mounted on a
printed circuit board (PCB) within the control housing. e interface between BeagleBone Black,
the PCB, and the umbilical cable is provided in Figure 5.9.

5.4.6 UML ACTIVITY DIAGRAM
e SeaPerch control system UML activity diagram is provided in Figure 5.10. After initializing
the BeagleBone Black pins the control algorithm is placed in a continuous loop awaiting user

168 5. BEAGLEBONE SYSTEMS DESIGN

a
d
a
fru
it!

5
.0
V

3
.3
V

G
N
D

1 4

8 5

SOIC8

Figure 5.7: umb joystick mounted on an Adafruit Proto Cape Kit.

input. In response to user input, the algorithm determines desired direction of ROV travel and
asserts appropriate control signals for the LED and motors.

5.4.7 BEAGLEBONE CODE
In this example we use the thumb joystick to control the left and right thruster (motor or bilge
pump). e joystick provides a separate voltage from 0–1.8 VDC for the horizontal (HORZ)
and vertical (VERT) position of the joystick. We use this voltage to set the duty cycle of the
pulse width modulated (PWM) signals sent to the left and right thrusters. e select pushbutton
(SEL) on the joystick is used to assert the vertical thruster. e Bonescript analog read function
(b.analogRead) is used to read the X and Y position of the joystick. A value from 0–1 is reported

5.4. SUBMERSIBLE ROBOT 169

+

5.0 VDC

left

220Ω

10ΚΩ

+

5.0 VDC

+

5.0 VDC

right

220Ω

10ΚΩ

vertical

220Ω

10ΚΩ

Mright

thruster
M

Ω

left

thruster

Mvertical

thruster

Ω

Ω

Figure 5.8: SeaPerch ROV interface control. (Illustrations used with permission of Texas Instruments
(www.TI.com).)

www.TI.com

170 5. BEAGLEBONE SYSTEMS DESIGN

a
d
a
fru

it!

5
.0

V

3
.3

V

G
N

D

1 4
8 5

SOIC8

G G

G

3.3

5.0

Adafruit prototype board

joystick

V
C

C

V
E

R
T

H
O

R
Z

S
E

L

G
N

D

10K

P
9
,
p
in

 3
9
 -

 j
o
y
st

ic
k
 h

o
r

in
p
u
t

P
9
,
p
in

 4
0
 -

 j
o
y
st

ic
k
 v

er
 i

n
p
u
t

P
9
,
p
in

 1
6
 -

 r
ig

h
t

th
ru

st
er

 i
n
p
u
t

P
9
,
p
in

 1
4
 -

 l
ef

t
th

ru
st

er
 i

P
8
,
p
in

 7
 -

 l
ef

t
L

E
D

 o
u
tp

u
t

P
8
,
p
in

 8
 -

 v
er

ti
ca

l
L

E
D

 o
u
tp

u
t

P
8
,
p
in

 9
 -

 r
ig

h
t

L
E

D
 o

u
tp

u
t

P
8
,
p
in

 1
0
 -

 J
o
y
st

ic
k
 s

el
 i

n
p
u
t

1
.8

V

g
ro

u
n
d

b
e

c

2
2
0

1
0
K

1
N

4
0

0
1

1
N

4
0

0
1

1
N

4
0

0
1

to vertical

thruster

to right

thruster

to left

thruster

ground

12V

5V

12V

ground

LM317

ad
j

o
u
t

in
p

7805

I C O

0
.3

3

0
.1

1
0

1
0 1
0

1
0
0

2
7
0

1.0

to ROV

4
 c

o
n
d
u
ct

o
r

Jo
n
es

 c
o
n
n
ec

to
r

1.8V ground

left

thruster

input

right

thruster

input

vertical

thruster

input

left

LED

input

right

LED

input

vertical

LED

input

pcb

mounting

hole for

spacer

hardware

12V

b
e

c

2
2
0

1
0
K

b
e

c

2
2
0

10
K

TIP
120

B C E

TIP
120

B C E

TIP
120

B C E

Figure 5.9: SeaPerch ROV printed circuit board interface.

5.4. SUBMERSIBLE ROBOT 171

include files

global variables

function prototypes

2000 ms?

read joystick position

(e.g. bow, stern,

starboard, port, dive)

assert vertical thruster

and vertical LED

Zone 8?

no

yes

no

yes

no

bow

stern

starboard

dive

port

no

yes

configure pins

Zone 0?

Zone 1

:

Zone 7

Proceed right and forward

Figure 5.10: SeaPerch ROV UML activity diagram.

172 5. BEAGLEBONE SYSTEMS DESIGN

from the analog read function corresponding to 0–1.8 VDC. After the voltage readings are taken
they are scaled to 1.8 VDC for further processing. Joystick activity is divided into multiple zones
(0–8) as shown in Figure 5.11. e joystick signal is further processed consistent with the joystick
zone selected.

X-Horizontal
(analog)
0 VDC

Y-Vertical
(analog)
0 VDC

Select
(push)

Y-Vertical
(analog)
1.8 VDC

X-Horizontal
(analog)
1.8 VDC

forward

(bow)

left

(port)

reverse

(stern)

right

(starboard)

I

II

III

IV

V

VI

VII

VIII

0.80V

0.80V 0.90V

0.90V

Figure 5.11: Joystick position as related to thruster activity.

1 / / *
2 / / r ov . j s
3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 / / d e f i n e i n p u t s and o u t p u t s
8 v a r j o y s t i c k _ h o r = ‘ ‘ P9_39 ’ ’ ; / / j o y s t i c k h o r i z o n t a l i n p u t

5.4. SUBMERSIBLE ROBOT 173

9 v a r j o y s t i c k _ v e r = ‘ ‘ P9_40 ’ ’ ; / / j o y s t i c k v e r t i c a l i n p u t
10 v a r j o y s t i c k _ s e l = ‘ ‘ P8_10 ’ ’ ; / / j o y s t i c k s e l e c t i n p u t
11
12 v a r l e f t _ t h r u s t _ p i n = ‘ ‘ P9_14 ’ ’ ; / /PWM ou t p u t l e f t t h r u s t e r
13 v a r r i g h t _ t h r u s t _ p i n = ‘ ‘ P9_16 ’ ’ ; / /PWM ou t p u t r i g h t t h r u s t e r
14 v a r v e r t _ t h r u s t _ p i n = ‘ ‘ P8_13 ’ ’ ; / / Output o u t p u t v e r t i c a l

t h r u s t e r
15
16 v a r le f t_LED_pin = ‘ ‘ P8_7 ’ ’ ; / / l e f t LED o u t p u t
17 v a r vert_LED_pin = ‘ ‘ P8_8 ’ ’ ; / / v e r t i c a l LED o u t p u t
18 v a r r ight_LED_pin = ‘ ‘ P8_9 ’ ’ ; / / r i g h t LED o u t p u t
19
20 / / c o n f i g u r e i n p u t and o u t p u t p i n s
21 b . pinMode (j o y s t i c k _ s e l , b . INPUT) ;
22 b . pinMode (l e f t _ t h r u s t _ p i n , b .OUTPUT) ;
23 b . pinMode (r i g h t _ t h r u s t _ p i n , b .OUTPUT) ;
24 b . pinMode (v e r t _ t h r u s t _ p i n , b .OUTPUT) ;
25 b . pinMode (lef t_LED_pin , b .OUTPUT) ;
26 b . pinMode (vert_LED_pin , b .OUTPUT) ;
27 b . pinMode (right_LED_pin , b .OUTPUT) ;
28
29 / / d e f i n e v a r i a b l e s
30 v a r j o y s t i c k _ h o r i z o n t a l ;
31 v a r j o y s t i c k _ v e r t i c a l ;
32 v a r j o y s t i c k _ t h r u s t _ o n ;
33 v a r comments_on = 1 ;
34
35
36 / / Read t h e j o y s t i c k and p r o c e s s i n p u t
37 s e t I n t e r v a l (loop , 2000) ;
38
39 f u n c t i o n loop ()
40 { / / r e s e t LEDs f o r new s t a t u s
41 b . d i g i t a lW r i t e (vert_LED_pin , b .LOW) ; / / de� a s s e r t v e r t i c a l LED
42 b . d i g i t a lW r i t e (lef t_LED_pin , b .LOW) ; / / de� a s s e r t l e f t LED
43 b . d i g i t a lW r i t e (right_LED_pin , b .LOW) ; / / de� a s s e r t r i g h t LED
44
45 / / r e a d h o r i z o n t a l j o y s t i c k v a l u e and s c a l e by 1 . 8 VDC
46 j o y s t i c k _ h o r i z o n t a l = b . ana logRead (j o y s t i c k _ h o r) ; / / r e a d j o y s t i c k h o r z

p o s i t i o n
47 j o y s t i c k _ h o r i z o n t a l = j o y s t i c k _ h o r i z o n t a l * 1 . 8 ;
48
49 / / r e a d v e r t i c a l j o y s t i c k v a l u e and s c a l e by 1 . 8 VDC
50 j o y s t i c k _ v e r t i c a l = b . ana logRead (j o y s t i c k _ v e r) ; / / r e a d j o y s t i c k v e r

p o s i t i o n
51 j o y s t i c k _ v e r t i c a l = j o y s t i c k _ v e r t i c a l * 1 . 8 ;
52
53 / / c h e c k f o r a c t i v e low a s s e r t i o n o f v e r t i c a l t h r u s t

174 5. BEAGLEBONE SYSTEMS DESIGN

54 j o y s t i c k _ t h r u s t _ o n = b . d i g i t a l R e a d (j o y s t i c k _ s e l) ; / / v e r t i c a l t h r u s t ?
55
56 i f (comments_on == 1)
57 {
58 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
59 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
60 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
61 }
62
63 / / *
64 / / *
65 / / v e r t i c a l t h r u s t � a c t i v e low p u s h b u t t o n on j o y s t i c k
66 / / *
67 i f (j o y s t i c k _ t h r u s t _ o n == 0)
68 {
69 b . d i g i t a lW r i t e (v e r t _ t h r u s t _ p i n , b .HIGH) ;
70 b . d i g i t a lW r i t e (vert_LED_pin , b .HIGH) ;
71 i f (comments_on ==1) c o n s o l e . l o g (” Thrus t i s on ! ”)
72 }
73 e l s e
74 {
75 b . d i g i t a lW r i t e (v e r t _ t h r u s t _ p i n , b .LOW) ;
76 b . d i g i t a lW r i t e (vert_LED_pin , b .LOW) ;
77 i f (comments_on ==1) c o n s o l e . l o g (” Thrus t i s o f f ! ”)
78 }
79
80 / / *
81 / / *
82 / / p r o c e s s d i f f e r e n t j o y s t i c k z o n e s
83 / / *
84 / / Ca s e 0 : J o y s t i c k i n n u l l p o s i t i o n
85 / / I n p u t s :
86 / / X c h a n n e l b e tw e en 0 .80 t o 0 .90 VDC � n u l l z on e
87 / / Y c h a n n e l b e tw e en 0 .80 t o 0 .90 VDC � n u l l z on e
88 / / Output :
89 / / Shu t o f f t h r u s t e r s
90 / / *
91
92 i f ((j o y s t i c k _ h o r i z o n t a l > 0 . 8 0)&&(j o y s t i c k _ h o r i z o n t a l < 0 . 9 0)&&
93 (j o y s t i c k _ v e r t i c a l > 0 . 8 0)&&(j o y s t i c k _ v e r t i c a l < 0 . 9 0))
94
95 {
96 i f (comments_on == 1) c o n s o l e . l o g (” Zone 0 ”) ;
97
98 i f (comments_on == 1)
99 {

100 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
101 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;

5.4. SUBMERSIBLE ROBOT 175

102 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
103 }
104
105 / / a s s e r t t h r u s t e r s t o move f o rwa r d
106 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , 0) ;
107 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , 0) ;
108
109 / / a s s e r t LEDs
110 b . d i g i t a lW r i t e (lef t_LED_pin , b .LOW) ; / / de� a s s e r t l e f t LED
111 b . d i g i t a lW r i t e (right_LED_pin , b .LOW) ; / / de� a s s e r t r i g h t LED
112 }
113
114 / / *
115 / / *
116 / / p r o c e s s d i f f e r e n t j o y s t i c k z o n e s
117 / / *
118 / / Ca s e 1 :
119 / / I n p u t s :
120 / / X c h a n n e l b e tw e en 0 .80 t o 0 .90 VDC � n u l l z on e
121 / / Y c h a n n e l <= 0 .80 VDC
122 / / Output :
123 / / Move f o rwa r d � p r o v i d e same v o l t a g e t o l e f t and r i g h t t h r u s t e r s
124 / / *
125
126 i f ((j o y s t i c k _ h o r i z o n t a l > 0 . 8 0)&&(j o y s t i c k _ h o r i z o n t a l < 0 . 9 0)&&
127 (j o y s t i c k _ v e r t i c a l <= 0 . 8 0))
128 {
129 i f (comments_on == 1) c o n s o l e . l o g (” Zone 1 ”) ;
130
131 / / s c a l e j o y s t i c k v e r t i c a l t o v a l u e f r om 0 t o 1
132 j o y s t i c k _ v e r t i c a l = 0 . 80 � j o y s t i c k _ v e r t i c a l ;
133
134 i f (comments_on == 1)
135 {
136 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
137 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
138 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
139 }
140
141 / / a s s e r t t h r u s t e r s t o move f o rwa r d
142 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , j o y s t i c k _ v e r t i c a l) ;
143 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , j o y s t i c k _ v e r t i c a l) ;
144
145 / / a s s e r t LEDs
146 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
147 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
148 }
149

176 5. BEAGLEBONE SYSTEMS DESIGN

150 / / *
151 / / *
152 / / Ca s e 2 :
153 / / I n p u t s :
154 / / X c h a n n e l <= 0 .80 VDC
155 / / Y c h a n n e l <= 0 .80 VDC
156 / / Output :
157 / / Move f o rwa r d and b a r e l e f t
158 / / � Which j o y s t i c k d i r e c t i o n i s a s s e r t e d more ?
159 / / � S c a l e PWM v o l t a g e t o l e f t and r i g h t t h r u s t e r a c c o r d i n g l y
160 / / *
161
162 i f ((j o y s t i c k _ h o r i z o n t a l <= 0 . 8 0)&&(j o y s t i c k _ v e r t i c a l <= 0 . 8 0))
163 {
164 i f (comments_on == 1) c o n s o l e . l o g (” Zone 2 ”) ;
165
166 / / s c a l e j o y s t i c k h o r i z o n t a l and v e r t i c a l t o v a l u e f r om 0 t o 1
167 j o y s t i c k _ h o r i z o n t a l = 0 . 80 � j o y s t i c k _ h o r i z o n t a l ;
168 j o y s t i c k _ v e r t i c a l = 0 . 80 � j o y s t i c k _ v e r t i c a l ;
169
170 i f (comments_on == 1)
171 {
172 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
173 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
174 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
175 }
176
177 / / a s s e r t t h r u s t e r s and LEDs
178 i f (j o y s t i c k _ h o r i z o n t a l > j o y s t i c k _ v e r t i c a l)
179 {
180 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , (j o y s t i c k _ h o r i z o n t a l �

j o y s t i c k _ v e r t i c a l)) ;
181 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , j o y s t i c k _ h o r i z o n t a l) ;
182
183 / / a s s e r t LEDs
184 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
185 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
186 }
187 e l s e
188 {
189 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , j o y s t i c k _ v e r t i c a l) ;
190 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , (j o y s t i c k _ v e r t i c a l �

j o y s t i c k _ h o r i z o n t a l)) ;
191
192 / / a s s e r t LEDs
193 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
194 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
195 }

5.4. SUBMERSIBLE ROBOT 177

196 }
197
198 / / *
199 / / *
200 / / Ca s e 3 :
201 / / I n p u t s :
202 / / X c h a n n e l <= 0 .80 VDC
203 / / Y c h a n n e l b e tw e en 0 .80 t o 0 .90 VDC � n u l l z on e
204 / / Output :
205 / / Bar e l e f t
206 / / *
207
208 i f ((j o y s t i c k _ h o r i z o n t a l <= 0 . 8 0)&&(j o y s t i c k _ v e r t i c a l > 0 . 8 0)&&
209 (j o y s t i c k _ v e r t i c a l < 0 . 9 0))
210 {
211 i f (comments_on == 1) c o n s o l e . l o g (” Zone 3 ”) ;
212
213 / / s c a l e j o y s t i c k v e r t i c a l t o v a l u e f r om 0 t o 1
214 j o y s t i c k _ h o r i z o n t a l = 0 . 80 � j o y s t i c k _ h o r i z o n t a l ;
215
216 i f (comments_on == 1)
217 {
218 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
219 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
220 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
221 }
222
223 / / a s s e r t t h r u s t e r s
224 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , 0) ;
225 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , j o y s t i c k _ h o r i z o n t a l) ;
226
227 / / a s s e r t LEDs
228 b . d i g i t a lW r i t e (lef t_LED_pin , b .LOW) ; / / de� a s s e r t l e f t LED
229 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
230 }
231
232 / / *
233 / / *
234 / / Ca s e 4 :
235 / / I n p u t s :
236 / / X c h a n n e l <= 0 .80 VDC
237 / / Y c h a n n e l >= 0 .90 VDC
238 / / Output :
239 / / Bar e l e f t t o t u r n a r ound
240 / / *
241
242 i f ((j o y s t i c k _ h o r i z o n t a l <= 0 . 8 0)&&(j o y s t i c k _ v e r t i c a l >= 0 . 9 0))
243 {

178 5. BEAGLEBONE SYSTEMS DESIGN

244 i f (comments_on == 1) c o n s o l e . l o g (” Zone 4 ”) ;
245
246 / / s c a l e j o y s t i c k h o r i z o n t a l and v e r t i c a l t o v a l u e f r om 0 t o 1
247 j o y s t i c k _ h o r i z o n t a l = 0 . 80 � j o y s t i c k _ h o r i z o n t a l ;
248 j o y s t i c k _ v e r t i c a l = j o y s t i c k _ v e r t i c a l � 0 . 9 0 ;
249
250 i f (comments_on == 1)
251 {
252 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
253 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
254 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
255 }
256
257 / / a s s e r t t h r u s t e r s and LEDs
258 i f (j o y s t i c k _ h o r i z o n t a l > j o y s t i c k _ v e r t i c a l)
259 {
260 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , 0) ;
261 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , (j o y s t i c k _ h o r i z o n t a l �

j o y s t i c k _ v e r t i c a l)) ;
262
263 / / a s s e r t LEDs
264 b . d i g i t a lW r i t e (lef t_LED_pin , b .LOW) ; / / de� a s s e r t l e f t LED
265 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
266 }
267 e l s e
268 {
269 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , 0) ;
270 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , (j o y s t i c k _ v e r t i c a l �

j o y s t i c k _ h o r i z o n t a l)) ;
271
272 / / a s s e r t LEDs
273 b . d i g i t a lW r i t e (lef t_LED_pin , b .LOW) ; / / de� a s s e r t l e f t LED
274 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
275 }
276 }
277
278 / / *
279 / / *
280 / / Ca s e 5 :
281 / / I n p u t s :
282 / / X c h a n n e l b e tw e en 0 .80 t o 0 .90 VDC � n u l l z on e
283 / / Y c h a n n e l >= 0 .90 VDC
284 / / Output :
285 / / Move ba c kward � p r o v i d e same v o l t a g e t o l e f t and r i g h t t h r u s t e r s
286 / / *
287
288 i f ((j o y s t i c k _ h o r i z o n t a l > 0 . 8 0)&&(j o y s t i c k _ h o r i z o n t a l < 0 . 9 0)&&
289 (j o y s t i c k _ v e r t i c a l >= 0 . 9 0))

5.4. SUBMERSIBLE ROBOT 179

290 {
291 i f (comments_on ==1) c o n s o l e . l o g (” Zone 5 ”) ;
292
293 / / s c a l e j o y s t i c k v e r t i c a l t o v a l u e f r om 0 t o 1
294 j o y s t i c k _ v e r t i c a l = j o y s t i c k _ v e r t i c a l � 0 . 9 0 ;
295
296 i f (comments_on == 1)
297 {
298 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
299 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
300 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
301 }
302
303 / / a s s e r t t h r u s t e r s
304 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , 0) ;
305 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , j o y s t i c k _ v e r t i c a l) ;
306
307 / / a s s e r t LEDs
308 b . d i g i t a lW r i t e (lef t_LED_pin , b .LOW) ; / / de� a s s e r t l e f t LED
309 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
310 }
311
312 / / *
313 / / *
314 / / Ca s e 6 :
315 / / I n p u t s :
316 / / X c h a n n e l >= 0 .90 VDC
317 / / Y c h a n n e l >= 0 .90 VDC
318 / / Output :
319 / / Bar e l e f t t o t u r n a r ound
320 / / *
321
322 i f ((j o y s t i c k _ h o r i z o n t a l >= 0 . 9 0)&&(j o y s t i c k _ v e r t i c a l >= 0 . 9 0))
323 {
324 i f (comments_on == 1) c o n s o l e . l o g (” Zone 6 ”) ;
325
326 / / s c a l e j o y s t i c k h o r i z o n t a l and v e r t i c a l t o v a l u e f r om 0 t o 1
327 j o y s t i c k _ h o r i z o n t a l = j o y s t i c k _ h o r i z o n t a l � 0 . 9 0 ;
328 j o y s t i c k _ v e r t i c a l = j o y s t i c k _ v e r t i c a l � 0 . 9 0 ;
329
330 i f (comments_on == 1)
331 {
332 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
333 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
334 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
335 }
336
337 / / a s s e r t t h r u s t e r s and LEDs

180 5. BEAGLEBONE SYSTEMS DESIGN

338 i f (j o y s t i c k _ h o r i z o n t a l > j o y s t i c k _ v e r t i c a l)
339 {
340 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , (j o y s t i c k _ h o r i z o n t a l �

j o y s t i c k _ v e r t i c a l)) ;
341 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , 0) ;
342
343 / / a s s e r t LEDs
344 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
345 b . d i g i t a lW r i t e (right_LED_pin , b .LOW) ; / / de� a s s e r t r i g h t LED
346 }
347 e l s e
348 {
349 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , (j o y s t i c k _ v e r t i c a l �

j o y s t i c k _ h o r i z o n t a l)) ;
350 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , 0) ;
351
352 / / a s s e r t LEDs
353 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
354 b . d i g i t a lW r i t e (right_LED_pin , b .LOW) ; / / de� a s s e r t r i g h t LED
355 }
356 }
357
358 / / *
359 / / *
360 / / Ca s e 7 :
361 / / I n p u t s :
362 / / X c h a n n e l >= 0 .90 VDC
363 / / Y c h a n n e l b e tw e en 0 .80 t o 0 .90 VDC � n u l l z on e
364 / / Output :
365 / / Bar e r i g h t
366 / / *
367
368 i f ((j o y s t i c k _ h o r i z o n t a l >= 0 . 9 0)&&(j o y s t i c k _ v e r t i c a l > 0 . 8 0)&&
369 (j o y s t i c k _ v e r t i c a l < 0 . 9 0))
370 {
371 i f (comments_on == 1) c o n s o l e . l o g (” Zone 7 ”) ;
372
373 / / s c a l e j o y s t i c k v e r t i c a l t o v a l u e f r om 0 t o 1
374 j o y s t i c k _ h o r i z o n t a l = j o y s t i c k _ h o r i z o n t a l � 0 . 9 0 ;
375
376 i f (comments_on == 1)
377 {
378 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
379 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
380 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
381 }
382
383 / / a s s e r t t h r u s t e r s

5.4. SUBMERSIBLE ROBOT 181

384 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , j o y s t i c k _ h o r i z o n t a l) ;
385 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , 0) ;
386
387 / / a s s e r t LEDs
388 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
389 b . d i g i t a lW r i t e (right_LED_pin , b .LOW) ; / / de� a s s e r t r i g h t LED
390 }
391
392 / / *
393 / / *
394 / / Ca s e 8 :
395 / / I n p u t s :
396 / / X c h a n n e l >= 0 .90 VDC
397 / / Y c h a n n e l <= 0 .80 VDC
398 / / Output :
399 / / Move f o rwa r d and b a r e r i g h t
400 / / � Which j o y s t i c k d i r e c t i o n i s a s s e r t e d more ?
401 / / � S c a l e PWM v o l t a g e t o l e f t and r i g h t t h r u s t e r a c c o r d i n g l y
402 / / *
403
404 i f ((j o y s t i c k _ h o r i z o n t a l >= 0 . 9 0)&&(j o y s t i c k _ v e r t i c a l <= 0 . 8 0))
405 {
406 i f (comments_on == 1) c o n s o l e . l o g (” Zone 8 ”) ;
407
408 / / s c a l e j o y s t i c k h o r i z o n t a l and v e r t i c a l t o v a l u e f r om 0 t o 1
409 j o y s t i c k _ h o r i z o n t a l = j o y s t i c k _ h o r i z o n t a l � 0 . 9 0 ;
410 j o y s t i c k _ v e r t i c a l = 0 . 80 � j o y s t i c k _ v e r t i c a l ;
411
412 i f (comments_on == 1)
413 {
414 c o n s o l e . l o g (j o y s t i c k _ h o r i z o n t a l) ;
415 c o n s o l e . l o g (j o y s t i c k _ v e r t i c a l) ;
416 c o n s o l e . l o g (j o y s t i c k _ t h r u s t _ o n) ;
417 }
418
419 / / a s s e r t t h r u s t e r s and LEDs
420 i f (j o y s t i c k _ h o r i z o n t a l > j o y s t i c k _ v e r t i c a l)
421 {
422 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , j o y s t i c k _ h o r i z o n t a l) ;
423 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , (j o y s t i c k _ h o r i z o n t a l �

j o y s t i c k _ v e r t i c a l)) ;
424
425 / / a s s e r t LEDs
426 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
427 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
428 }
429 e l s e
430 {

182 5. BEAGLEBONE SYSTEMS DESIGN

431 b . ana l ogWr i t e (l e f t _ t h r u s t _ p i n , (j o y s t i c k _ v e r t i c a l �

j o y s t i c k _ h o r i z o n t a l)) ;
432 b . ana l ogWr i t e (r i g h t _ t h r u s t _ p i n , j o y s t i c k _ v e r t i c a l) ;
433
434 / / a s s e r t LEDs
435 b . d i g i t a lW r i t e (lef t_LED_pin , b .HIGH) ; / / a s s e r t l e f t LED
436 b . d i g i t a lW r i t e (right_LED_pin , b .HIGH) ; / / a s s e r t r i g h t LED
437 }
438 }
439 }
440
441 / / *
442 / / *

5.4.8 CONTROL HOUSING LAYOUT
A Plano Model 1312-00 water-resistant field box is used to house the control circuitry and
rechargeable battery. e battery is a rechargeable, sealed, lead-acid battery, 12 VDC, with
an 8.5 amp-hour capacity. It is available from McMaster-Carr (#7448K82). A battery charger
(12 VDC, 4–8 amp-hour rating) is also available (#7448K67). e layout for the ROV control
housing is provided in Figure 5.12.

e control circuitry consists of two connected plastic panels as shown in Figure 5.12. e
top panel has the on/off switch, the LED thruster indicators (left, dive, and right), an access hole
for the joystick, and a 1/4 in jack for the battery recharge cable.

e lower panel is connected to the top panel using aluminum spacers, screws, and corre-
sponding washers, lock washers, and nuts. e lower panel contains BeagleBone Black equipped
with the Adafruit Cape configured with the thumb joystick. e BeagleBone Black is connected
to the lower panel using a Jameco stand off kit (#106551). e BeagleBone Black is interfaced to
the thrusters via interface circuitry described in Figures 5.8 and 5.9. e interface printed circuit
board is connected to the four conductor thruster cable via a 4-conductor Jones connector.

5.4.9 FINAL ASSEMBLY TESTING
e final system is tested a subassembly at a time. e following sequence is suggested.

• Recheck all waterproofed connections. Reapply waterproof caulk as necessary.

• With the Adafruit Cape disconnected from BeagleBone Black, test each LED indicator
(left, dive, and right). is is accomplished by applying a 3.3 VDC signal in turn to Adafruit
Cape pins P8, pin 7; P8, pin 8; and P8, pin 9.

• In a similar manner each thruster (left, right, and vertical) may be tested. If available, a signal
generator may be used to generate a pulse width modulated signal to test each thruster.

5.4. SUBMERSIBLE ROBOT 183

joystick

L bracket

L bracket

LEFT

LED

DIVE

LED
RIGHT

LED

on/off

switch

L bracket

12 VDC

for recharger

joystick

le
ft

 t
h
ru

st
er

ri
g
h
t

th
ru

st
er

ce
n
te

r
th

ru
st

er

1
3
.6

 V
D

C

inline fuse
batt

access

hole

BeagleBone Black

with joystick cape

interface printed

circuit board

to ROV

structure

Figure 5.12: ROV control housing layout.

184 5. BEAGLEBONE SYSTEMS DESIGN

• With power applied, the voltage regulators aboard the printed circuit board should be tested
for proper voltages.

• e output voltages from the thumb joystick may be verified at header P9, pin 39 and P9,
pin 40 and also the select pushbutton at header P8, pin 10.

• With the software fully functional, the Adafruit Cape may be connected to BeagleBone
Black for end-to-end testing.

5.4.10 FINAL ASSEMBLY
e fully assembled ROV is shown in Figure 5.13.

5.4.11 PROJECT EXTENSIONS
e control system provided above has a set of very basic features. Here are some possible exten-
sions for the system.

• Provide a powered dive and surface thruster. To provide for a powered dive and surface
capability, the ROV must be equipped with a vertical thruster equipped with an H-bridge
to allow for motor forward and reversal. is modification is given as an assignment at the
end of the chapter.

• Left and right thruster reverse. Currently, the left and right thrusters may only be powered
in one direction. To provide additional maneuverability, the left and right thrusters could
be equipped with an H-bridge to allow bi-directional motor control. is modification is
given as an assignment at the end of the chapter.

• Proportional speed control with bi-directional motor control. Both of these advanced fea-
tures may be provided by driving the H-bridge circuit with PWM signals. is modification
is given as an assignment at the end of the chapter.

5.5 MOUNTAIN MAZE NAVIGATING ROBOT
In this project we extend the Dagu Magician maze navigating project described in Chapter 3 to
a three-dimensional mountain pass. Also, we use a robot equipped with four motorized wheels.
Each of the wheels is equipped with an H-bridge to allow bidirectional motor control. In this
example we will only control two wheels. We leave the development of a 4WD robot as an end
of chapter homework assignment.

5.5.1 DESCRIPTION
For this project, a DFRobot 4WDmobile platform kit was used (DFROBOTROB0003, Jameco
#2124285).e robot kit is equipped with four powered wheels. As in theDagu Magician project,

5.5. MOUNTAIN MAZE NAVIGATING ROBOT 185

Figure 5.13: ROV fully assembled. (Photo courtesy of Barrett [2015].)

186 5. BEAGLEBONE SYSTEMS DESIGN

we equipped the DF Robot with three Sharp GP12D IR sensors, as shown in Figure 5.14. e
robot will be placed in a three-dimensional maze with reflective walls modeled after a mountain
pass. e goal of the project is for the robot to detect wall placement and navigate through the
maze. e robot will not be provided any information about the maze. e control algorithm for
the robot is hosted on BeagleBone.

5.5.2 REQUIREMENTS
e requirements for this project are simple, the robot must autonomously navigate through the
maze without touching maze walls as quickly as possible. Furthermore, the robot must be able to
safely navigate through the rugged maze without becoming “stuck” on maze features.

5.5.3 CIRCUIT DIAGRAM
e circuit diagram for the robot is provided in Figure 5.15. e three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. e sensors’ outputs
are fed to three separate analog-to-digital (ADC) channels. e robot motors will be driven by
PWMchannels via anH-bridge.e robot is powered by a 7.5 VDCbattery pack (5AAbatteries)
which is fed to a 3.3 and 5 VDC voltage regulator. Alternatively, the robot may be powered by a
7.5 VDC power supply rated at several amps. In this case, the power is delivered to the robot by
a flexible umbilical cable. e circuit diagram includes the inertial measurement unit (IMU) to
measure vehicle tilt and a liquid crystal display. Both were discussed in Chapter 3.

5.5.4 STRUCTURE CHART
e structure chart for the robot project is provided in Figure 5.16.

5.5.5 UML ACTIVITY DIAGRAMS
e UML activity diagram for the robot is provided in Figure 5.17.

5.5.6 BONESCRIPT CODE
e code for the robot may be adapted from that for the Blinky602A robot. Since the motors are
equipped with an H-bridge, slight modifications are required to the robot turning code. ese
modifications include an additional signal (forward=reverse) for each H-bridge configuration to
provide forward and reverse capability. For example, when forward is desired a PWM signal
is delivered to one side of the H-bridge and a logic zero to the other side. A level shifter (Texas
Instruments PCA9306) is used to adapt the 3.3 VDC signal output fromBeagleBone to 5.0 VDC
levels.

We only provide the basic framework for the Bonescript code here. roughout Chap-
ters 1–4 we have provided re-useable Bonescript code to meet system requirements.

5.5. MOUNTAIN MAZE NAVIGATING ROBOT 187

Figure 5.14: Robot layout.

188 5. BEAGLEBONE SYSTEMS DESIGN

1
1

D
Q

0
6

2
0
0

4
7
0

T
IP

3
1

T
IP

3
2

T
IP

3
1

1
1
D

Q
0

6

7
.5

 V
D

C

M

2
0
0

T
IP

3
1

T
IP

3
1

T
IP

3
2

4
7
0

1
1

D
Q

0
6

1
1

D
Q

0
6

1
0
0
0

F
1
1
D

Q
0
6

2
0
0

4
7
0

T
IP

3
1

T
IP

3
2

T
IP

3
1

1
1
D

Q
0
6

7
.5

 V
D

C

M

2
0
0

T
IP

3
1

T
IP

3
1

T
IP

3
2

4
7
0

1
1
D

Q
0
6

1
1
D

Q
0
6

1
0
0
0

F

V
D

D

GND-1

VDD-2

Vo-3

RS-4

R/W-5

E-6

DB0-7

DB1-8

DB2-9

DB3-10

DB4-11

DB5-12

DB6-13

DB7-14

V
c
c

1
0
K

li
n

e
1

li
n

e
2d
a
ta

e
n
a
b
le

c
m

d
/d

a
ta

Figure 5.15: Robot circuit diagram. (Illustrations used with permission of Texas Instruments (www.
TI.com).)

www.TI.com
www.TI.com

5.5. MOUNTAIN MAZE NAVIGATING ROBOT 189

A
D

C

A
D

C

I n
it

ia
li

ze
R

ea
d
A

D
C

ch
 f

o
r

co
n
v

co
n
v

d
at

a

le
ft

IR
 s

en
so

r
ri

g
h

t

IR
 s

en
so

r

m
id

d
le

IR
 s

en
so

r

P
W

M
_

le
ft

le
ft

m
o

to
r

P
W

M
_

ri
g
h
t

ri
g
h

t

m
o

to
r

d
es

ir
ed

m
o

to
r

ac
ti

o
n

m
o
to

r_
co

n
tr

o
l

d
et

er
m

in
e_

ro
b
o
t

_
ac

ti
o
n

se
n
so

r

d
at

a
ro

b
o
t

ac
ti

o
n

R
ea

d
A

D
C

ch
 f

o
r

co
n
v

co
n
v

d
at

a

IM
U

X
O

U
T

IM
U

Y
O

U
T

L
iq

u
id

C
ry

st
al

 D
is

p
la

y

L
C

D

in
it

ia
li

ze
p
u
tc

h
ar

p
u
tc

o
m

m

Figure 5.16: Robot structure diagram.

190 5. BEAGLEBONE SYSTEMS DESIGN

include files

global variables

function prototypes

initialize pins

initialize ADC

initialize PWM

initialize LCD

while(1)

determine robot

action

issue motor

control signals

read IR sensor inputs

(left, middle, right)

Read inertial measurement

unit (IMU) - XOUT, YOUT

display parameters

on LCD

Figure 5.17: Abbreviated robot UML activity diagram. e “determine robot action” consists of mul-
tiple decision statements.

5.5. MOUNTAIN MAZE NAVIGATING ROBOT 191

1 / / *
2 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
3
4
5 v a r l e f t _ I R _ s e n s o r = ‘ ‘ P9_39 ’ ’ ; / / a n a l o g i n p u t f o r l e f t IR s e n s o r
6 v a r c e n t e r _ IR_ s e n s o r = ‘ ‘ P9_40 ’ ’ ; / / a n a l o g i n p u t f o r c e n t e r IR

s e n s o r
7 v a r r i g h t _ IR_ s e n s o r = ‘ ‘ P9_37 ’ ’ ; / / a n a l o g i n p u t f o r r i g h t IR s e n s o r
8
9 v a r IMU_xout = ‘ ‘ P9_35 ’ ’ ; / / IMU xou t a n a l o g s i g n a l

10 v a r IMU_yout = ‘ ‘ P9_36 ’ ’ ; / / IMU y o u t a n a l o g s i g n a l
11
12 v a r l e f t _mo t o r _ p i n = ‘ ‘ P9_14 ’ ’ ; / /PWM pin f o r l e f t mo t o r
13 v a r r i g h t _mo t o r _p i n = ‘ ‘ P9_16 ’ ’ ; / /PWM pin f o r r i g h t mo t o r
14 v a r l e f t _m o t o r _ f o r _ r e v = ‘ ‘ P9_13 ’ ’ ; / / l e f t mo t o r f o rwa r d / r e v e r s e
15 v a r r i g h t _mo t o r _ f o r _ r e v = ‘ ‘ P9_15 ’ ’ ; / / r i g h t mo t o r f o rwa r d / r e v e r s e
16
17 v a r l e f t _ s e n s o r _ v a l u e ;
18 v a r c e n t e r _ s e n s o r _ v a l u e ;
19 v a r r i g h t _ s e n s o r _ v a l u e ;
20
21
22 b . pinMode (l e f t _mo t o r _p i n , b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
23 b . pinMode (r i gh t_mo to r_p in , b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
24 b . pinMode (l e f t _mo t o r _ f o r _ r e v , b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
25 b . pinMode (r i g h t _mo t o r _ f o r _ r e v , b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
26
27 whi l e (1)
28 {
29 / / r e a d a n a l o g o u t p u t f r om IR s e n s o r s
30 / / n o rma l i z e d v a l u e r a n g e s f r om 0 . . 1
31 l e f t _ s e n s o r _ v a l u e = b . ana logRead (l e f t _ I R _ s e n s o r) ;
32 c e n t e r _ s e n s o r _ v a l u e = b . ana logRead (c e n t e r _ IR_ s e n s o r) ;
33 r i g h t _ s e n s o r _ v a l u e = b . ana logRead (r i g h t _ IR_ s e n s o r) ;
34
35 / / a s s um e s d e s i r e d t h r e s h o l d a t
36 / / 1 . 25 VDC with max v a l u e o f 1 .75

VDC
37 i f ((l e f t _ s e n s o r _ v a l u e > 0 . 7 14)&&
38 (c e n t e r _ s e n s o r _ v a l u e <= 0 . 7 14)&&
39 (r i g h t _ s e n s o r _ v a l u e > 0 . 7 14))
40 { / / r o b o t s t r a i g h t ah e ad
41 b . d i g i t a lW r i t e (l e f t _mo t o r _ f o r _ r e v , b .HIGH) ; / / l e f t mo t o r f o rwa r d
42 b . ana l ogWr i t e (l e f t _mo t o r _ p i n , 0 . 7) ; / / l e f t mo t o r RPM
43 b . d i g i t a lW r i t e (r i g h t _mo t o r _ f o r _ r e v , b .HIGH) ; / / r i g h t mo t o r f o rwa r d
44 b . ana l ogWr i t e (r i gh t_mo to r_p in , 0 . 7) ; / / r i g h t mo t o r RPM
45 }
46 / *

192 5. BEAGLEBONE SYSTEMS DESIGN

47 e l s e i f (. . .)
48 {
49 :
50 :
51 :
52 }
53 * /
54 }
55
56 / / *

5.5.7 MOUNTAIN MAZE
e mountain maze was constructed from plywood, chicken wire, expandable foam, plaster cloth,
and Bondo. A rough sketch of the desired maze path was first constructed. Care was taken to
insure the pass was wide enough to accommodate the robot. e maze platform was constructed
from 3/8 in plywood on 2 by 4 in framing material. Maze walls were also constructed from the
plywood and supported with steel L brackets.

With the basic structure complete, the maze walls were covered with chicken wire. e
chicken wire was secured to the plywood with staples. e chicken wire was then covered with
plaster cloth (Creative Mark Artist Products #15006). To provide additional stability, expand-
able foam was sprayed under the chicken wire (Guardian Energy Technologies, Inc. Foam It
Green 12). e mountain scene was then covered with a layer of Bondo for additional structural
stability. Bondo is a two-part putty that hardens into a strong resin. Mountain pass construction
steps are illustrated in Figure 5.18. e robot is shown in the maze in Figure 5.19.

5.5.8 PROJECT EXTENSIONS
• Modify the turning commands such that the PWM duty cycle and the length of time the

motors are on are sent in as variables to the function.

• Develop a function for reversing the robot.

• Equip the motor with another IR sensor that looks down toward the maze floor for “land
mines.” A landmine consists of a paper strip placed in themaze floor that obstructs a portion
of the maze. If a land mine is detected, the robot must deactivate the maze by moving slowly
back and forth for 3 s and flashing a large LED.

• e current design is a two-wheel, front-wheel drive system. Modify the design for a two-
wheel, rear-wheel drive system.

• e current design is a two-wheel, front-wheel drive system. Modify the design for a 4WD
system.

5.5. MOUNTAIN MAZE NAVIGATING ROBOT 193

Figure 5.18: Mountain maze.

194 5. BEAGLEBONE SYSTEMS DESIGN

Figure 5.19: Robot in maze. (Photo courtesy of Barrett [2013]).

• Develop a 4WD system which includes a tilt sensor. e robot should increase motor RPM
(duty cycle) for positive inclines and reduce motor RPM (duty cycle) for negatives inclines.

• Equip the robot with an analog inertial measurement unit (IMU) to measure vehicle tilt.
Use the information provided by the IMU to optimize robot speed going up and down steep
grades.

5.6 SUMMARY
In this chapter, we discussed the design process, related tools, and applied the process to a real-
world design. As previously mentioned, this design example will be periodically revisited through-
out the text. It is essential to follow a systematic, disciplined approach to embedded systems design
to successfully develop a prototype that meets established requirements.

5.7. REFERENCES 195

5.7 REFERENCES
• Anderson, M. “Help Wanted: Embedded Engineers Why the United States is losing its

edge in embedded systems.” IEEE–USA Today’s Engineer, Feb 2008.

• Barret, J. 2015. “Closer to the Sun Internationl.” www.closertothesungallery.com.

• Barrett, S. and Pack, D. 2008. Atmel AVR Processor Primer Programming and Interfacing.
Morgan & Claypool Publishers; www.morganclaypool.com.

• Barrett, S. and Pack, P. 2005. Embedded Systems Design and Applications with the 68HC12
and HCS12. Upper Saddle River, NJ: Pearson Prentice Hall.

• Barrett, S. and Pack, D. 2006. Processors Fundamentals for Engineers and Scientists. Morgan
& Claypool Publishers; www.morganclaypool.com.

• Bohm, H. and Jensen, V. 2012. Build Your Own Underwater Robot and Other Wet Projects.
11th ed., Vancouver, B.C. Canada: Westcoast Words.

• Christ, R. and Wernli, Sr., R. 2014. e ROV Manual–A User Guide for Remotely Operated
Vehicle. 2nd ed., Oxford. U.K.: Butterworth-Heinemann imprint of Elsevier.

• Dale, N. and Lilly, S.C. 1995. Pascal Plus Data Structures. 4th ed. Englewood Cliffs, NJ:
Jones and Bartlett.

• Fowler, M. and Scott, K. 2000,UMLDistilled A Brief Guide to the Standard ObjectModeling
Language. 2nd ed. Boston, MA: Addison-Wesley.

• Seaperch. 2015; www.seaperch.com.

5.8 CHAPTER EXERCISES
1. What is an embedded system?

2. What aspects must be considered in the design of an embedded system?

3. What is the purpose of the structure chart, UML activity diagram, and circuit diagram?

4. Why is a system design only as good as the test plan that supports it?

5. During the testing process, when an error is found and corrected, what should now be
accomplished?

6. Discuss the top-down design, bottom-up implementation concept.

7. Describe the value of accurate documentation.

www.closertothesungallery.com
www.morganclaypool.com
www.morganclaypool.com
www.seaperch.com

196 5. BEAGLEBONE SYSTEMS DESIGN

8. What is required to fully document an embedded systems design?

9. For the Dagu Magician robot, modify the PWM turning commands such that the PWM
duty cycle and the length of time the motors are on are sent in as variables to the function.

10. For the Dagu Magician robot, equip the motor with another IR sensor that looks down for
“land mines.” A land mine consists of a paper strip placed in the maze floor that obstructs
a portion of the maze. If a land mine is detected, the robot must deactivate it by rotating
about its center axis three times and flashing a large LED while rotating.

11. For the Dagu Magician robot, develop a function for reversing the robot.

12. Provide a powered dive and surface thruster for the SeaPerchROV.To provide for a powered
dive and surface capability, the ROV must be equipped with a vertical thruster equipped
with an H-bridge to allow for motor forward and reversal. is modification is given as an
assignment at the end of the chapter.

13. Provide a left- and right-thruster reverse for the SeaPerch ROV.Currently, the left and right
thrusters may only be powered in one direction. To provide additional maneuverability, the
left and right thrusters could be equipped with an H-bridge to allow bi-directional motor
control. is modification is given as an assignment at the end of the chapter.

14. Provide proportional speed control with bi-directional motor control for the SeaPerch ROV.
Both of these advanced featuresmay be provided by driving theH-bridge circuit with PWM
signals. is modification is given as an assignment at the end of the chapter.

15. For the 4WD robot, modify the PWM turning commands such that the PWM duty cycle
and the length of time the motors are on are sent in as variables to the function.

16. For the 4WD robot, equip the motor with another IR sensor that looks down for “land
mines.” A land mine consists of a paper strip placed in the maze floor that obstructs a
portion of the maze. If a land mine is detected, the robot must deactivate it by rotating
about its center axis three times and flashing a large LED while rotating.

17. For the 4WD robot, develop a function for reversing the robot.

18. For the 4WD robot, the current design is a two-wheel, front-wheel drive system. Modify
the design for a two-wheel, rear wheel drive system.

19. For the 4WD robot, the current design is a two-wheel, front-wheel drive system. Modify
the design for a 4WD system.

20. For the 4WD robot, develop a 4WD system which includes a tilt sensor. e robot should
increase motor RPM (duty cycle) for positive inclines and reduce motor RPM (duty cycle)
for negatives inclines.

5.8. CHAPTER EXERCISES 197

21. Equip the robot with an inertial measurement unit (IMU) to measure vehicle tilt. Use the
information provided by the IMU to optimize robot speed going up and down steep grades.

22. Develop an embedded system controlled dirigible/blimp (www.microflight.com,www.rc
toys.com).

23. Develop a trip odometer for your bicycle (hint: use a Hall Effect sensor to detect tire rota-
tion).

24. Develop a timing system for a four-lane Pinewood Derby track.

25. Develop a playing board and control system for your favorite game (Yahtzee, Connect Four,
Battleship, etc.).

26. You have a very enthusiastic dog that loves to chase balls. Develop a system to launch balls
for the dog.

www.microflight.com, www.rctoys.com
www.microflight.com, www.rctoys.com

199

C H A P T E R 6

BeagleBone Features and
Subsystems

Objectives: After reading this chapter, the reader should be able to do the following.

• Use the Linux operating system to communicate and interact with BeagleBone.

• Describe how the host Linux personal computer (PC) interacts with BeagleBone.

• Employ the Linux tool chain aboard BeagleBone to write, compile, and execute a C and
CCC program.

• Describe the features and subsystems of the ARM Cortex A8 processor.

• Describe the operation of BeagleBone exposed functions available via the P8 and P9 ex-
pansion headers.

• Interact with BeagleBone exposed functions using device tree overlays and the Linux oper-
ating system.

• Program BeagleBone exposed functions using the Linux tool chain.

• Employ the Programmable Real-Time Unit (PRU) Subsystem for real time applications.

6.1 OVERVIEW
In the first five chapters of this book we employed BeagleBone as a user-friendly computer. We
accessed its features and subsystems via the browser-based Bonescript programming environment.
In the remainder of the book, we shift focus and “unleash” the power of BeagleBone as a Linux-
-based, 32-bit, super-scalar ARM Cortex A8 computer. We begin with an overview of methods
to communicate with BeagleBone Black and a brief review of the C and CCC tool programming
chain. is is followed by examples on how to interact with the digital and analog pins aboard the
processor. We then take a closer look at the features and subsystems available aboard BeagleBone.
We spend a good part of the chapter describing the exposed functions of BeagleBone. ese are
the functions accessible to the user via the P8 and P9 extension headers. We conclude the chapter
with an introduction to the onboard PRUs. roughout the chapter we provide sample programs
on how to interact with and program the exposed functions.

200 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

6.2 BEAGLING IN LINUX

For system development BeagleBone is usually connected to a host desktop PC or laptop via a
USB cable.e cable is provided with BeagleBone. AnEthernet cable may also be used to connect
the host with BeagleBone in certain applications. It is not provided with BeagleBone but may be
purchased at a local retail outlet, electronics supply store, or office supply store. e configuration
forms a “mini-network” between the host computer and BeagleBone via the USB cable. One
may wonder why a configuration like this is used. It must be emphasized that BeagleBone is a
not a microcontroller-based project board. It is instead a fully functional, powerful, Linux-based,
expandable computer. e network configuration allows BeagleBone to share some of the useful
peripheral features of the host computer during project development (e.g., keyboard, display, etc.).
In Chapter 7 we describe how to implement a standalone BeagleBone based expandable computer
with its own peripheral devices.

It is important to note for ease of development the host PC or laptopmust be equipped with
the Linux operating system. Details on how to load Linux are provided in the next section. No
prior use or familiarity of Linux is expected of the reader. Linux is a powerful operating system
originally developed by Linus Torvald of Finland in the early 1990’s. Since its initial release, a
variety of Linux distributions have been developed. A Linux distribution consists of the Linux
operating system kernel, a collection of useful software applications and also installation software.
Linux distributions are given distinct names. As an example, we install Ubuntu Linux on the host
computer [Dulaney, 2010].

As shown in Figure 6.1, the host computer uses Linux release Ubuntu. ere are several
options on running Linux. Linux may be run in a Live mode where it is executed from a com-
panion CD or a USB drive. In this case, the Linux operating system is not loaded on the host
computer’s hard drive. Alternatively, Linux may be installed on the host computer’s hard drive.
Linux may be installed as the only operating system for the computer or Linux may share the
hard drive with another operating system such as Windows or OS X. If Linux will share the hard
drive space, the hard drive must first be partitioned and space set aside for the Linux operating
system. In the next section we discuss how to partition the hard drive and install Ubuntu Linux
alongside Microsoft Windows on the same PC hard drive.

BeagleBone Black originally shipped with the ÅngstrRom Linux Distribution. Starting in
early 2014, BeagleBoneBlack has theDebian Linux operating system pre-installed on the eMMC
Flash drive.is Linux distribution also includes a wide variety of useful applications. BeagleBone
also arrives pre-installed with the Cloud9 IDE and Bonescript. Bonescript is undergoing rapid
development. It is essential that the most recent version of Bonescript is loaded on BeagleBone.
Instructions on updating the onboard Bonescript is provided in an upcoming section. e latest
software is available from www.BeagleBoard.org.

www.BeagleBoard.org

6.2. BEAGLING IN LINUX 201

Host PC/laptop
Linux UBUNTU

Run Live

- No impact on host
- Slower execution

CD
USB
drive

Install on host
hard drive

Linux
only

Shared OS
- Windows
- Linux

Shared OS
- O/S X
- Linux

Partition
HD

Install
Linux new
partition

BeagleBone
Debian
Linux

USB

ethernet

Open source
libraries

Cloud 9 IDE
Bonescript

node.js

�C�
gcc
Code Composer

BeagleBone onboard emc

mini network

www.beagleboard.org

Figure 6.1: BoneScript processing environment in Linux.

6.2.1 COMMUNICATION WITH BEAGLEBONE BLACK
BeagleBone designers provided considerable flexibility in connecting the host computer to Bea-
gleBone. In this section we provide a brief overview of the four methods of connecting Bea-
gleBone to a host computer. Bill Traynor provides an excellent step-by-step instructions at
www.elinux.org/Beagleboard:TerminalShells on various methods to connect BeagleBone
Black to a host PC.

Here is a summary of several methods to connect BeagleBone Black to a host computer
[Traynor, 2005]:

• Access BeagleBone Black via its IP address (192.168.7.2) using the USB cable. is tech-
nique is recommended for Bonescript processing. is technique was discussed in Chap-
ter 1. Once within Bonescript, a Linux operating system prompt is available to access Bea-
gleBone Black. As a friendly reminder, Chrome and Firefox are the preferred web browsers
for use with BeagleBone Black.

• Access BeagleBone Black via a secure shell (SSH) using an Ethernet connection. is is
the preferred method when the BeagleBone is in a remote location and accessible via an
Ethernet connection or via a WiFi dongle. We cover this technique later in the chapter
under networking techniques.

www.elinux.org/Beagleboard: Terminal Shells
192.168.7.2

202 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

• Serial connection via a USB cable. BeagleBone is accessed via PuTTy, Terra Term, or a
Google Chrome add-on secure shell. ese are all terminal emulators which allow the host
computer to interact with the BeagleBone remotely over the USB cable.

• Access BeagleBone Black via UART Channel 0 using a USB to TTL serial cable. We cover
this technique later in the chapter when discussing the UART system aboard BeagleBone
Black.

In the next several examples, we provide step-by-step instructions to connect BeagleBone
Black to the host computer in MS Windows and then in Linux.

Example 1: Accessing Linux via Bonescript through your browser. For the novice user, the
quickest way to get access to Linux is via Bonescript through your web browser. is is accom-
plished using the “Quick-Start Guide” that ships with BeagleBone Black [www.beagleboard.
org].

1. Plug BeagleBone into the host computer via the mini-USB capable and open the
START.htm file.

2. Install the proper drivers for your system. MS Windows users need to first determine if the
host computer is running 32- or 64-bit Windows. Instructions to do this are provided at
http://support.microsoft.com/kb/827218.

3. Browse to “Information on BeagleBoard” information using Chrome or Firefox by going
to http://192.168.7.2.

4. Explore the Cloud9 IDE develop environment by navigating to http://192.168.7.2:
3000/ using Chrome or Firefox.

5. A Linux prompt is provided in the lower window of the Cloud9 IDE.

Example 2: MS Windows connection to BeagleBone Black using Google Chrome add-
on secure shell. In this example, we establish connection between the host computer hosting MS
Windows and BeagleBone Black. ese instructions are adapted from Bill Traynor’s instructions
at www.elinux.org/Beagleboard:TerminalShells.

• If not currently equipped, download and install the Google Chrome web browser. It is
available for free download at www.google.com/chrome.

• Connect the host computer to BeagleBone Black using the USB cable.

• Download the secure shell (SSH) application (Secure Shell 0.8.19) from https://chrome
.google.com/webstore.

• You will need to open an account with the webstore (please note this is a free download).

www.beagleboard.org
www.beagleboard.org
http://support.microsoft.com/kb/827218
http://192.168.7.2
http://192.168.7.2:3000/
http://192.168.7.2:3000/
www.elinux.org/Beagleboard: Terminal Shells
www.google.com/chrome
https://chrome.google.com/webstore
https://chrome.google.com/webstore

6.2. BEAGLING IN LINUX 203

• Once downloaded and installed, access the installed Google Chrome Applications (Apps)
using (Cntl+n). Press the “Secure Shell” button to launch the application.

• In the “username@hostname or free form text” insert the root location for BeagleBone
Black (root@192.168.7.2) and press [Enter].

• e SSH application establishes a connection between the host computer and BeagleBone
Black.

• e BeagleBone prompt will appear in the SSH application window.

• When prompted, answer “yes” to continue and [Enter] when prompted for a password.

Example 3: Linux Ubuntu connection to BeagleBone Black. In this example, Ubuntu
Linux will be loaded on a host computer that already has Microsoft Windows installed. A con-
nection is then established between the host computer and BeagleBone. e steps required to
establish the network connection include the following.

• Partition the hard drive on the host computer using the GParted utility provided within the
Linux Ubuntu Distribution.

• Install Ubuntu Linux on the established partition.

• Configure the network between the host computer and BeagleBone.

• Start the Could9 Integrated Development Environment (IDE) resident on the BeagleBone
eMMC flash drive).

A detailed diagram of the startup steps is provided in Figure 6.2. Additional notes on each
startup step is provided for the novice user. Please refer to Figure 6.2 as you reference the notes
below.

• If you are a novice user, you need to find a source for Ubuntu Linux. It is highly recom-
mended to obtain a supplementary text on Linux to provide additional background infor-
mation on each step. A representative sample of available texts is provided in Section 6.18.
Often a textbook companion CD/DVD will contain the operating system. e operating
system may also be downloaded from www.ubuntu.com or purchased from a number of
sources online.

• To partition the host computer, configure Linux to operate in the Live mode. In this mode
Linux is run from a CD, DVD, or USB drive and the hard drive is not modified.

• e hard drive is then partitioned using the GParted application available on the Ubuntu
desktop.

www.ubuntu.com

204 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Figure 6.2: BeagleBone system startup in Linux.

6.2. BEAGLING IN LINUX 205

• Once suitable space has been partitioned for Ubuntu Linux, Linux may be installed on the
host computer hard drive.

• Every time the host computer is next started, you will be prompted for which operating
system to boot. When working with BeagleBone, you may choose between Ubuntu Linux
or MS Windows.

• Once Ubuntu Linux is successfully loaded on the hard drive and started, open a terminal
window using Applications � > Accessories � > Terminal.

• Insure the host computer is connected to BeagleBone via the USB cable.

• From the host computer Ubuntu terminal prompt, establish a connection with BeagleBone
(ssh root@192.168.7.2).

• Hit [Return] on the host computer.

• e BeagleBone Black prompt should appear.

• If prompted to continue, respond with “yes.”

• When prompted for a password, hit [Return].

• Open the Mozilla Firefox web browser on the host computer and start Cloud9 IDE by
going to 192.168.7.2:3000

A screenshot of the Cloud9 IDE is provided in Figure 6.3.

Example 4: Live Linux fromUSB. Instead of installing Linux to the host computer, Linux
may also be configured to boot from a USB drive during host computer start-up. In this example
we again use Ubuntu for exposure to another Linux release other than Debian. e live USB is
configured using the following steps [www.ubunto.com]:

• Go to www.ubunto.com to download the ISO file for the desired operating system.

• Insert a USB drive to the host computer. e USB drive needs to be 2 Gbyte capacity or
greater.

• Download Pen Drive’s Linux installer software and follow the three configurations steps:
(1) select Ubuntu, (2) browse to the location of the ISO file, and (3) select “Create.”

• With the USB drive installed, Ubuntu will start upon host computer boot. Connection with
BeagleBone Black is accomplished using the steps described above.

www.ubunto.com
www.ubunto.com

206 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Figure 6.3: BeagleBone Cloud9 IDE screenshot.

Example 5: Linux within a virtual machine. e Linux operating system may also be executed
from within a virtual machine on the host computer. ere are several programs available to create
a virtual computer system. is allows a different operating system (e.g., Linux) to be run within
the safety of a virtual machine. For example, Virtual Box may be downloaded and installed from
www.virtualbox.org. Once installed a virtual machine may be created and launched using the
ISO file for the desired operating system.

Example 6: BeagleBone Black computer. In Chapter 7 we provide instructions on developing
several versions of a stand-alone BeagleBone Black computer. Once configured the Linux prompt
may be accessed by choosing “Accessories � > LXTerminal.”

6.3 UPDATING YOUR EMMC

BeagleBone Bonescript and the Cloud9 IDE is a rapidly evolving, browser-based development
environment. It is essential you regularly update the BeagleBone eMMC with the latest revision
of Bonescript. In this section we describe how to update to latest software releases in Windows.

www.virtualbox.org

6.3. UPDATING YOUR EMMC 207

6.3.1 UPDATING YOUR EMMC IN MS WINDOWS
A step-by-step procedure to update to the latest software release is provided at www.beaglebo
ard.org. In general, the latest compressed software image is downloaded, decompressed, and
then written to a micro SD card. e BeagleBone Black is then booted from the micro SD card.
Provided below is a brief summary of the steps [Molloy, 2015; Richardson, 2014]. Prior to up-
dating the eMMC, user-developed programs should be backed up to a safe location. Procedures
for doing this are provided later in the section.

• Download and install the required software tools to accomplish the software update.

– Download and install “7-zip.” is software is used to decompress the software image
file.

– Download and install “Image Writer for Windows.” is software is used to write the
decompressed software image to the micro SD card.

• Download the latest software image from http://beagleboard.org/latest-images.
e file will have an “.img.xz” extension.

• Decompress the “.img.xz” file.

• Write the software image to the micro SD card using “Image Writer for Windows.” Note:
An adaptor may be required to interface the micro SD card to the host computer.

• When complete, eject the micro SD card from the host computer.

• Boot BeagleBone Black from the micro SD card.

– Power down the BeagleBone Black computer.

– Insert micro SD card into the BeagleBone Black micro SD card slot.

– Hold down “USER/BOOT” button.

– Apply power to the BeagleBone Black computer.

– Let go of the “USER/BOOT” button when you see some of the blue LEDs on the
BeagleBone illuminate.

• Happy Beagling!

• When your session is complete, power down the BeagleBone Black by holding the power
button for 8–10 s.

www.beagleboard.org
www.beagleboard.org
http://beagleboard.org/latest-images

208 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Updating the eMMC Flash
To boot from the eMMC rather than the micro SD card, follow the steps above to obtain an
updated image. However, instead download the “eMMC Flasher” version. Boot from the micro
SD card as described above. It will take approximately an hour to update the eMMC. e four
blue LEDs will illuminate to indicate completion of the flashing sequence. In the next section we
provide a brief introduction to Linux.

File Backup and Transfer with WinSCP
Windows Secure CoPy (WinSCP) is a software package that provides for file transfer between
a host Windows-based computer and BeagleBone Black. As mentioned previously, it is a good
idea to back up user-written files before updating the eMMC Flash.

WinSCP may be downloaded from inspire.logicsupply.com. e site also provides
file transfer instructions summarized here.

• Download WinSCP to a Windows-based host computer.

• Connect BeagleBone Black to the host computer with a mini-USB cable and allow Bea-
gleBone to startup.

• Launch WinSCP on the host computer with the WinSCP icon.

• Configure WinSCP for file transfer with the following settings.

– Select file transfer protocol SCP.
– Enter BeagleBone Black IP address 192.168.7.2.
– Provide user–name “root.”
– Save the settings.

• Depress the Login button. e login sequence will commence.

• Files may now be dragged in either direction between the host computer and BeagleBone
Black.

6.4 A BRIEF INTRODUCTION TO LINUX
As mentioned earlier in the chapter, Linux is a powerful operating system originally developed
by Linus Torvald of Finland in the early 1990’s. Since its initial release, a variety of Linux distri-
butions have been developed. BeagleBone Black Rev C shipped with the Debian release starting
in early 2014. In this section we provide a very brief introduction to Linux. Additional Linux
information will be provided throughout the text when needed.

A Linux distribution consists of the Linux operating system kernel, a collection of useful
software applications and also installation software. Linux also includes a command interpreter

inspire.logicsupply.com

6.4. A BRIEF INTRODUCTION TO LINUX 209

called the shell. e Debian release employs the BASH (Bourne-Again Shell). e basic format
for a Linux command is:

command option1 option2 . . . optionX

A Linux command consists of the command name followed by different options. A space
is placed between the command and each option. Provided below is a brief list of common Linux
commands [Dulaney, 2010].

• Help commands

– info: display information on a specific command
– man: display online help on a specific command

• File and Directory management commands

– cd: change directory
– cp: copy files
– ls: display contents of current directory
– mkdir: create a new directory
– rm: remove or delete a file
– rmdir: remove or delete a directory
– pwd: display the current directory

• File processing commands

– cat: display file on standard output
– echo: write arguments to standard output or specified file
– grep: search for an expression in a file
– less: display text file one page at a time
– more: display text file one page at a time
– tail: display the last few lines of a file
– zcat: display a compressed file

• Compression commands

– compress: compress specified file
– uncompress: uncompress specified file

210 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

/root

/first level directory/second level directory/...

root directory separator

/bin /boot /dev /etc /home /lib /lost+

 found
/mnt /media /opt /tmp /sys /usr /var

es
se

nt
al

 c
om

m
an

d
ex

ec
ut

ab
le

s

bo
ot

 lo
ad

er
, k

er
ne

l

de
vi

ce
 fi

le
s

ho
st
 sp

ec
ifi

c
co

nf
ig

ur
at

io
n

fil
es

us
er

 h
om

e

lib
ra

ry
 fi

le
s

re
co

ve
re

d
fil

es

te
m

po
ra

ril
y

m
ou

nt
ed

 fi
le

 sy
st
em

s

m
ou

nt
 p

oi
nt

 fo
r r

em
ov

ab
le

 m
ed

ia

ad
d

on
 so

ftw
ar

e
pa

ck
ag

es

te
m

po
ra

ry
 fi

le
s

fil
e
sy

st
em

 fo
r e

xp
or

tin
g

ke
rn

el
 o

bj
ec

ts

U
N

IX
 sy

st
em

 re
so

ur
ce

s

va
ria

bl
e
da

ta

Figure 6.4: Linux file system [wiki.debian.org].

Shown in Figure 6.4 is a typical Linux file structure. e file structure system in Linux is
standardized via the Filesystem Hierarchy Standard (FHS) [wiki.debian.org; Dulaney, 2010].
e file system is constructed like a tree. e foundation is the root directory. e other directories
may be accessed via the root.

Example: Use the commands provided above to navigate about the Linux file structure
aboard BeagleBoneBlack. Sketch amap of the file structure. As an alternative, using a BeagleBone
Black stand-alone computer (Chapter 7), use the Debian File Manager to map the file structure.
Hint: From the root prompt, use the “ls/” command the display the next level of file structure.

6.5 PROGRAMMING IN C USING THE LINUX TOOLCHAIN
e Linux distribution resident on BeagleBone has built-in C and CCC programming tools. e
tools of interest include the vi text editor and the gcc and gCC compilers. e vi text editor is
resident within the Linux distribution onboard BeagleBone. In this section we learn how to edit,
compile, and execute a small sample program. e Linux distribution also includes a “what-you-
-see-is-what-you-get” (WYSIWYG) text editor called “nano.” An excellent tutorial to nano is
available at www.howtogeek.com.

e vi text editor is accessed from the Linux command line by typing: >vi <filename>

For our programming example, use the following to launch the editor and establish a new file
“test” for editing:

vi test.c

wiki.debian.org
wiki.debian.org
www.howtogeek.com

6.5. PROGRAMMING IN C USING THE LINUX TOOLCHAIN 211

To enter the vi text editor insert mode, type an “a.” e program may now be typed and edited
using commands from table in Figure 6.5. When the program is complete, the program may be
saved using “ŒEsc� W wq.”

Common vi commands are provided in Figure 6.5.

Table 6.1. Common vi commands .

a inse rt text a fte r cursor

A inse rt text a t end of current line

dd de le te current line

D de le te up to the end of current line

h or move char to le ft

j or move down one line

k or move up one line

l or move char to right

yy yank (copy) current line to buffe r

nyy yank n lines to buffe r

P put yanked line above current line

p put yanked line be low current line

x de le te characte r under cursor

/ finds a word going forward

:q quit editor

:q! quit without save

:r file read file and inse rt a fte r current line

:w file write buffe r to file

:wq save changes and exit

Esc end input mode , ente r command mode

Figure 6.5: Common vi commands [Dulaney, 2010].

e next step is to install the gCC and gcc compiler on BeagleBone. is may be accom-
plished using the Linux command:
gcc -v

is command will check to see if the latest version of this compiler is installed. If the most
current version is not present, steps are provided to install it.

Example: Use the Linux toolchain to execute a “Hello World” or in the BeagleBone case a “Aroo
from BeagleBone!” e steps to accomplish this are illustrated in Figure 6.6.

212 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Figure 6.6: BeagleBone “Aroo!”

6.6 BEAGLEBONE FEATURES AND SUBSYSTEMS
In this section we provide a detailed overview of the features accessible via BeagleBone header
pins P8 and P9. e reader is encouraged to thoroughly review the BeagleBone Black Rev C.1
Systems Reference Manual by Gerald Coley, 2014. e features of the “Bone” is summarized in
Figure 6.7.

6.6. BEAGLEBONE FEATURES AND SUBSYSTEMS 213

Figure 6.7: BeagleBone Black features [Coley, 2014]. (Figures adapted and used with permission
from www.beagleboard.org.)

www.beagleboard.org

214 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

BeagleBone Black hosts the ARM AM3359 processor that operates at a frequency of
1 GHz when powered from an external 5 VDC source or USB. (Black may move to the AM3358
in the future as the Ethernet feature isn’t required for the product, but it is initially shipping with
AM3359). e BeagleBone Black Rev C is equipped with a 4 GB eMMC (embedded Multi-
Media Card). is provides for non-volatile mass storage in an integrated circuit package. e
eMMC acts as the “hard drive” for BeagleBone Black and hosts the Linux operating system,
Cloud9 Integrated Development Environment (IDE) and Bonescript. BeagleBone Black is also
equipped with a HDMI (High-Definition Multimedia Interface) framer and micro connector.
HDMI is a compact digital audio/interface which is commonly used in commercial entertain-
ment products such as DVD players, video game consoles and mobile phones. BeagleBone Black
costs approximately US $55 [Coley, 2014].

BeagleBone Black is equipped with a double data rate synchronous dynamic random ac-
cess memory (DDR3) with a capacity of 512 Mbytes configured as a 256 Mbyte by 16-bit mem-
ory. BeagleBone is also equipped with a 3 Kbyte memory EEPROM (electrically erasable pro-
grammable read only memory) which is a non-volatile memory used to store board configuration
information [Coley, 2014].

6.6.1 EXPOSED FUNCTION ACCESS
e ARM AM3358/3359 processor hosted aboard BeagleBone has a wide variety of systems and
features. Many of these features are accessible to the user via BeagleBone’s expansion interface
via the P8 and P9 header connectors. Each pin on the headers supports multiple functions. e
multiple functions of a given pin are controlled by a multiplexer, as shown in Figure 6.8a. e
multiplexer acts as a multi-position switch. In the figure, an 8–1 multiplexer is shown. is mul-
tiplexer has eight inputs (I[0] through I[7]) and one output (O). Only one input may be connected
to the output at any given time. e input is selected via the selected switches (S[2:0]). is has
important implications in BeagleBone based systems. When designing a system, you will not be
able to simultaneously use systems that share the same expansion header pins without careful
precaution.

Tables 12 and 13 for the P9 header and Tables 9 and 10 for the P8 header of the Beagle-
Bone Black Rev C.1 Systems Reference Manual provide all the different modes (Mode 0 through
Mode 7). e modes may be viewed as the multiplexer inputs and the processor pin as the mul-
tiplexer output [Coley, 2014]. ese tables also provide the:

• PIN: pin number on the expansion header (P9 or P8);

• PROC: pin number of the processor; and

• Signal name: the signal name of the pin.

As an example, Figure 6.8b provides a detailed illustration of the GPIO0_7 pin. An extract
of Tables 12 and 13 provide the important information for the pin:

6.6. BEAGLEBONE FEATURES AND SUBSYSTEMS 215

8:1

multiplexer

I0

I1

I2

I3

I4

I5

I6

I7

O

S2 S1 S0

S2 S1 S0 Output (O)

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

I0

I1

I2

I3

I4

I5

I6

I7

a) 8:1 multiplexer

8:1

multiplexer

I0

I1

I2

I3

I4

I5

I6

I7

O

S2 S1 S0

eCAP0_in_PWM0_out

uart3_txd
spi1_cs1

pr1_ecap0_ecap_cap_in_apwm_0
spi1_sclk

mmc0_sdwp

xdma_event_intr2
gpio0_7

gpio0_7

b) Pin: 42, Signal name: GPIO0_7

Notes:

- Default setting in the Angstrom setting is

 generally but not always Mode7.

- MUX filename taken from its Mode 0 use

Se lection bits provided by PAD control registe r

MUXMODE [2:0]

000: Mode 0

001: Mode 1

010: Mode 2

011: Mode 3

100: Mode 4

101: Mode 5

110: Mode 6

111: Mode 7

PULLUDEN [3]

pullup/pulldown

0: disabled

1: enabled

PULLTYPESEL[4]

pad pullup/pulldown

type se lection

0: pulldown

1: pullup

RXACTIVE[5]

input enable va lue

0: rece ive r disabled

1: rece ive r enabled

SLEWCTRL[6]

slew ra te se lection

0: fa st

1: slow

RESERVED [31:7] [2:0][3][4][5][6][31:7]

modes

from Table 12, 13: Connector P9 Signal Pin Mux Options [Coley]

Pin Proc Signal Name MODE0 MODE1 MODE2 MODE3 MODE4 MODE5 MODE6 MODE7

42 C18 GPIO0_7
eCAP0_in_

PWM0_out uart3_txd spi1_cs1
pr1_ecap0_

ecap_... spi1_sclk mmc0_sdwp
xdma_event

_intr2 gpio0_7

Figure 6.8: Processor pin [Coley, 2014].

• PIN: 42

• PROC: C18

• Signal name: GPIO0_7

• MODE[0] toMODE[7]: the modes for this pin are shown as inputs to the multiplexer in
Figure 6.8b.

216 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Each processor pin has a corresponding PAD Control Register that contains the select pins
for the multiplexer to select the pin mode and also other pin attributes. As shown in Figure 6.8b
the PAD control register is a 32-bit register that contains settings for:

• Slew rate selection (SLEWCTRL): 0: fast and 1: slow;

• Receiver input enabled (RXACTIVE): 0: disabled and 1: enabled;

• Pad pullup type selection (PULLTYPESEL): 0: pulldown and 1: pullup;

• Pullup/pulldown selection (PULLEDEN): 0: disabled and 1: enabled; and

• Multiplexer mode selection (MUXMODE): 000 (Mode 0) through 111 (Mode 7).

e PAD control settings are set by configuring appropriate bits as shown in Figure 6.8.
Let’s take a closer look at pullup and pulldown resistors. As mentioned in Chapter 3 (see Fig-
ure 4.4), a pullup or pulldown resistor is required with various switch configurations. As shown
in Figure 6.9, switches may be configured in different ways to provide various logic transitions.
Pullup or pulldown resistors may be activated on the processor pin to aid in switch interfacing.

6.6.2 EXPANSION INTERFACE
e expansion interface is accessible via header pins P8 and P9. Many of BeagleBone Black’s
subsystems and features are accessible via the headers. e expansion interface is illustrated in
Figures 6.10 and 6.11 [www.beagleboard.org].

6.7 BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS
In this section we provide a brief introduction to the device tree overlay concept employed with
BeagleBone Black. We discuss the motivation for the device tree overlay approach, some related
general concepts, the basic format of a device tree overlay, review the overlay for BeagleBone
Black, and conclude with an example. Information for this section was provided by a series of ar-
ticles listed in Section 6.18.e reader is encouraged to review these articles in detail: [Devicetree,
2015; Likely, 2015; Hipster, 2013].

6.7.1 OVERVIEW
edevice tree is a software data structure used to describe the hardware configuration of a specific
processor to Linux. It allows the Linux kernel to remain the same evenwhen used on a wide variety
of processor configurations. Hardware specific details are passed to the Linux operating system
via a device tree written specifically for the hardware device. e device tree is read via Linux
during the boot operation. It may also be modified during run time by an application executing
on the processor [Devicetree, 2015; Likely, 2015; Hipster, 2013].

www.beagleboard.org

6.7. BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS 217

Figure 6.9: Switch interface with pullup and pulldown resistors.

6.7.2 BINARY TREE
e device tree is a software data structure similar to a binary tree. A binary tree consists of a
collection of nodes as shown in Figure 6.12 [Korsch and Garrett, 1988]. Each node may hold a
variety of data and also two links to its successor or child nodes. For example, Node 3 is the child
or successor of Node 1. While Nodes 6 and 7 are child nodes of Node 3. From Node 3’s point of
view, Node 1 is its predecessor or parent node.

218 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Figure 6.10: BeagleBone Black expansion interface header P8 [www.beagleboard.org].

www.beagleboard.org

6.7. BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS 219

Figure 6.11: BeagleBone Black expansion interface header P9 [www.beagleboard.org].

www.beagleboard.org

220 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Access is gained to the binary tree via its root node. e tree may then be traversed to
obtain the information at each node as required. It should be emphasized the binary tree and
the related device tree are both abstract data types. at is, they are a custom collection of more
fundamental data types with associated related operations to more easily accomplish a specific
task. As previously mentioned, the device tree’s task is to provide hardware details to the Linux
operating system at boot or during run time.

root

1

2 3

4 5 6 7

Figure 6.12: Binary tree. (Adapted from Korsch and Garrett, 1988.)

6.7.3 DEVICE TREE FORMAT
In this section we provide a brief introduction to the device tree format. An excellent, detailed
discussion of this topic is provided at www.devicetree.org. e device tree uses a binary tree
format to contain device hardware properties at each node along with connections to its child
nodes. e device tree root is designated with a forward slash (=) symbol. It then has a compati-
bility statement to indicate the hardware processor in use. Following the compatibility statement
is a listing of nodes. Each node contains information about specific hardware devices aboard the
processor. e tree hierarchy also represents how the devices are interconnected within the pro-
cessor.

Each of the individual nodes contains a compatibility statement and device addressing pa-
rameters. e device addressing parameters include the base address for its associated registers
and the number of registers used. Provided in the code snapshot below is the basic format of the
device tree [devicetree, 2015].

1 / / *
2 / {

www.devicetree.org

6.7. BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS 221

3 compa t i b l e = ‘ ‘ < manu f a c t u r e r > , <model > ” ;
4
5
6 <node name >[@< d e v i c e add r e s s >] {
7 c ompa t i b l e = ‘ ‘ < manu f a c t u r e r > , <model > ” ;
8 r e g = < s t a r t a d d r e s s l eng th > ;
9 } ;

10
11 / / A d d i t i o n a l d e v i c e n od e d e s c r i p t i o n s
12
13 :
14 :
15 :
16
17 } ;
18
19 / / *

e device tree is loaded during system boot. However, portions of the device tree may be
modified by using a fragment modifier during the boot process or during program execution.

6.7.4 DEVICE TREE RELATED FILES
When a device tree overlay is created or modified it must be recompiled. Device tree source
files have a <filename>.dts prefix. ese files are compiled by the device tree compiler (dtc). It
is initiated from the command line using “dtc.” When a < f ilename >.dts file is compiled it
becomes a < f ilename >.dtbo object file.

6.7.5 BEAGLEBONE BLACK DEVICE TREE
Pantellis has provided a device tree overlay for BeagleBone users and also introduced a BeagleBone
cape manager (capemgr) to assist with updating BeagleBone device tree information during boot
time or during program run time [Pantellis, 2015]. e following example illustrates how the
device tree may be modified using a fragment statement.

Example 1: We start the example by defining the two key sysfs entries we’ll use to check status.
e sysfs is a virtual file system used by the Linux operating system to pass information to user
space. User space is virtual memory space outside the Linux operating system kernel to execute
programs.

An interface to the capemgr is provided by “slots.” It notifies capemgr to load additional
device tree overlay fragments and also reports on what has already been loaded. It uses the EEP-
ROMs on the cape plug-in boards to identify the board. Note: In the example, the bone_capemgr
may be designated with either an “.8” or “.9.”

Using one of the techniques described earlier in the chapter, access the BeagleBone root
directory. For example, the Cloud 9 IDE may be accessed via a website browser (e.g., Google

222 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Chrome) by navigating to 192.168.7.2:3000. Access to the Linux is provided in the lower
pane of the Cloud 9 IDE. When starting the Cloud 9 IDE, access is usually provided to:

root@beaglebone:/var/lib/cloud9#

You can switch to the root directory using:

root@beaglebone:/var/lib/cloud9# cd

yielding:

root@beaglebone:~#

Navigate to the =sys=devices directory and examine the directory contents with the “ls”
command to determine the cape manager number (8 or 9).

root@beaglebone:~# cd /sys/devices
root@beaglebone:/sys/devices#
root@beaglebone:/sys/devices# ls

Load the “slots” and “pins” environment variables to use the cape manager [Kridner, Mol-
loy]:

export SLOTS=/sys/devices/bone_capemgr.9/slots
export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Note: e root prompt is designated with the shorthand “#” notation.
You can verify loading of “slots” with:

cat $SLOTS

Also, you can verify loading of the “pins” by examining the
=sys=kernel=debug=pinct rl=44e10800:pinmux=pins directory.

Note: It must be emphasized that “slots” and “pins” must be loaded upon startup to interact
with the BeagleBone Black device tree.

Example 2: Provided below is a device tree overlay to update the multiplexer setting of header P9
pin 42 to mode 7.

1 / / *
2 / / d e v i c e t r e e o v e r l a y (pinmux� t e s t �7. d t s) :
3 / /
4 / / C o p y r i g h t (C) 2012 Texa s I n s t r um e n t s I n c o r p o r a t e d � h t t p : / /www. t i . com

/
5 / /
6 / / Th i s p r og ram i s f r e e s o f t w a r e ; y ou c an r e d i s t r i b u t e i t and / o r mo d i f y

192.168.7.2:3000

6.7. BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS 223

7 / / i t und e r t h e t e rm s o f t h e GNU Gen e r a l P u b l i c L i c e n s e v e r s i o n 2 a s
8 / / p u b l i s h e d by t h e F r e e S o f tw a r e Founda t i o n .
9 / / *

10
11 / d t s �v1 / ;
12 / p l u g i n / ;
13
14 / {
15 c ompa t i b l e = ” t i , b e a g l e bone ” , ” t i , b e ag l ebone �b l a c k ” ;
16
17 / * i d e n t i f i c a t i o n * /
18 pa r t �number = ” p i n c t r l � t e s t �7” ;
19
20 fragment@0 {
21 t a r g e t = <&am33xx_pinmux > ;
22 _ _o v e r l a y _ _ {
23 p i n c t r l _ t e s t : p i n c t r l _ t e s t _ 7 _ p i n s {
24 p i n c t r l � s i n g l e , p i n s = <
25 0 x164 0 x07 / * P9_42 muxRegOf f s e t , OUTPUT | MODE7

* /
26 >;
27 } ;
28 } ;
29 } ;
30
31 fragment@1 {
32 t a r g e t = <&ocp > ;
33 _ _o v e r l a y _ _ {
34 t e s t _ h e l p e r : h e l p e r {
35 c ompa t i b l e = ” bone�pinmux�h e l p e r ” ;
36 p i n c t r l �names = ” d e f a u l t ” ;
37 p i n c t r l �0 = <&p i n c t r l _ t e s t > ;
38 s t a t u s = ” okay ” ;
39 } ;
40 } ;
41 } ;
42 } ;
43 / / *

e device tree fragments are now compiled and installed in /lib/firmware. In this example
it is performed natively on the BeagleBone.

1 d t c �O dtb �o p i n c t r l � t e s t �7�00A0 . dtbo �b 0 �@ p i n c t r l � t e s t �7. d t s
2 d t c �O dtb �o p i n c t r l � t e s t �0�00A0 . dtbo �b 0 �@ p i n c t r l � t e s t �0. d t s
3 cp p i n c t r l � t e s t �7�00A0 . dtbo / l i b / f i rmwa r e /
4 cp p i n c t r l � t e s t �0�00A0 . dtbo / l i b / f i rmwa r e /

Before continuing with the example, let’s check out the starting point state.
1 # c a t $SLOTS

224 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

2 0 : 54 :PF���

3 1 : 55 :PF���

4 2 : 56 :PF���

5 3 : 57 :PF���

6 4 : f f : P�O�L Bone�LT�eMMC�2G,00A0 , Texas In s t rument ,BB�BONE�EMMC�2G
7 5 : f f : P�O�L Bone�Black �HDMI,00A0 , Texas In s t rument ,BB�BONELT�HDMI

As can be seen from the report, slots 0–3 get assigned by EEPROMIDs on the capes.ere
are four possible addresses for the EEPROMs (typically determined by switches on the boards)
enabling up to four boards to be stacked, depending on what functions they use. Additional slots
are “virtual,” added incrementally and are triggered in other ways. In the above report you can see
that no capes are currently installed. ere are two “virtual” capes installed, one for the eMMC
and one for the HDMI. It makes sense to manage these as capes because both interfaces consume
pins on the cape bus. ese two “virtual” capes are triggered on BeagleBone Black that includes
the eMMC and HDMI on the board. Disabling these capes would enable other capes to make
use of their pins.

In the next step, let’s tell the capemgr to load our device tree overlay fragment that config-
ures the target pin’s pinmux. Carefully take a look at the messages that are produced by the kernel
and review the capemgr status and the status of the pinmux.

1 # echo p i n c t r l � t e s t �7 > $SLOTS
2 # dmesg | t a i l
3 [65 .323606] bone�capemgr bone_capemgr . 8 :
4 par t_number ’ p i n c t r l � t e s t �7 ’ , v e r s i o n ’N/A ’
5 [65 .323744] bone�capemgr bone_capemgr . 8 :
6 s l o t #6 : g e n e r i c o v e r r i d e
7 [65 .323794] bone�capemgr bone_capemgr . 8 :
8 bone : Using o v e r r i d e eeprom da t a a t s l o t 6
9 [65 .323845] bone�capemgr bone_capemgr . 8 :

10 s l o t #6 : ’ Ove r r i d e Board Name, 00A0 , Ove r r i d e Manuf , p i n c t r l � t e s t �7 ’
11 [65 .324201] bone�capemgr bone_capemgr . 8 :
12 s l o t #6 : Reque s t i ng p a r t number / v e r s i o n ba s ed
13 ’ p i n c t r l � t e s t �7�00A0 . dtbo
14 [65 .325712] bone�capemgr bone_capemgr . 8 :
15 s l o t #6 : Reque s t i ng f i rmwa r e ’ p i n c t r l � t e s t �7�00A0 . dtbo ’
16 f o r board�name ’ Ove r r i d e Board Name ’ , v e r s i o n ’ 00A0 ’
17 [65 .326239] bone�capemgr bone_capemgr . 8 :
18 s l o t #6 : dtbo ’ p i n c t r l � t e s t �7�00A0 . dtbo ’ l o ad ed ;
19 c o n v e r t i n g to l i v e t r e e
20 [65 .327973] bone�capemgr bone_capemgr . 8 : s l o t #6 : #2 o v e r l a y s
21 [65 .338533] bone�capemgr bone_capemgr . 8 : s l o t #6 : App l i ed #2

o v e r l a y s .
22 # c a t $SLOTS
23 0 : 54 :PF���

24 1 : 55 :PF���

25 2 : 56 :PF���

26 3 : 57 :PF���

6.7. BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS 225

27 4 : f f : P�O�L Bone�LT�eMMC�2G,00A0 , Texas In s t rument ,BB�BONE�EMMC�2G
28 5 : f f : P�O�L Bone�Black �HDMI,00A0 , Texas In s t rument ,BB�BONELT�HDMI
29 6 : f f : P�O�L Ove r r i d e Board Name, 00A0 , Ove r r i d e Manuf , p i n c t r l � t e s t �7

e $PINS file is a debug entry for the pinctrl kernel module. It provides the status of the
pinmux. To examine a specific pin state, grep for the lower bits of the address where the pinmux
control register is located. e Linux grep command searches the given file for lines containing a
match. As you can see, the mux mode is now 7.

1 # c a t $PINS | g r ep 964
2 p in 89 (44 e10964) 00000007 p i n c t r l � s i n g l e

Now we”ll have the capemgr unload the overlay so that a different one can be loaded.
1 # A= ‘ p e r l �pe ’ s / ^ . * (\ d +) : . * / $1 / ’ $SLOTS | t a i l �1 ‘
2 # echo ”�$A”
3 �6
4 # echo ”�$A” > $SLOTS
5 # dmesg | t a i l
6 [73 .517002] bone�capemgr bone_capemgr . 8 : Removed s l o t #6
7 [73 .517002] bone�capemgr bone_capemgr . 8 : Removed s l o t #6
8 And then t e l l capemgr to l o ad an a l t e r n a t i v e o v e r l a y .
9 # echo p i n c t r l � t e s t �0 > $SLOTS

10 # dmesg | t a i l
11 [73 .663144] bone�capemgr bone_capemgr . 8 :
12 par t_number ’ p i n c t r l � t e s t �0 ’ , v e r s i o n ’N/A ’
13 [73 .663207] bone�capemgr bone_capemgr . 8 :
14 s l o t #7 : g e n e r i c o v e r r i d e
15 [73 .663226] bone�capemgr bone_capemgr . 8 :
16 bone : Using o v e r r i d e eeprom da t a a t s l o t 7
17 [73 .663244] bone�capemgr bone_capemgr . 8 :
18 s l o t #7 : ’ Ove r r i d e Board Name, 00A0 , Ove r r i d e Manuf , p i n c t r l � t e s t �0 ’
19 [73 .663340] bone�capemgr bone_capemgr . 8 :
20 s l o t #7 : Reque s t i ng p a r t number / v e r s i o n ba s ed
21 ’ p i n c t r l � t e s t �0�00A0 . dtbo
22 [73 .663357] bone�capemgr bone_capemgr . 8 :
23 s l o t #7 : Reque s t i ng f i rmwa r e ’ p i n c t r l � t e s t �0�00A0 . dtbo ’
24 f o r board�name ’ Ove r r i d e Board Name ’ , v e r s i o n ’ 00A0 ’
25 [73 .663602] bone�capemgr bone_capemgr . 8 : s l o t #7 :
26 dtbo ’ p i n c t r l � t e s t �0�00A0 . dtbo ’ l o ad ed ; c o n v e r t i n g to l i v e t r e e
27 [73 .663857] bone�capemgr bone_capemgr . 8 :
28 s l o t #7 : #2 o v e r l a y s
29 [73 .674682] bone�capemgr bone_capemgr . 8 :
30 s l o t #7 : App l i ed #2 o v e r l a y s .

And what does the pinmux look like now?
1 # c a t $PINS | g r ep 964
2 p in 89 (44 e10964) 00000000 p i n c t r l � s i n g l e

226 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Fortunately, there are existing devicetree fragments you can load to avoid creating
these fragments yourself. ere are many fragments available for examination in directory
=lib=f irmware.

6.7.6 UNIVERSAL DEVICE TREE OVERLAY
Charles Steinkuehler developed a series of helpful BeagleBone Black universal device tree overlays
for common application configurations along with a “config-pin” utility. e overlays are available
in common anticipated BeagleBone Black configurations. If an overlay is chosen with a specific
system disabled (e.g.,HDMI, eMMC), pins normally allocated to support the systemmay be used
for other applications. When a specific overlay is chosen and loaded, various selected systems are
loaded and the general purpose input/output (GPIO) pins are provided in a reset configuration.
e “config-pin” utility allows the user to determine the state of a specific BeagleBone Black pin
or change its multiplexer configuration. It is important to note the universal overlays are included
with the March 1, 2015 (and beyond) BeagleBone Black Debian release [Steinkuehler, 2015].

e following universal overlays (with a brief description) are available for loading
[Steinkuehler, 2015]:

• cape-universal: overlay exports pins not used by HDMI and eMMC (with audio support);

• cape-universaln: overlay exports pins not used by HDMI and eMMC (no audio support);

• cape-univ-emmc: overlay exports pins used by the eMMC. is overlay may be used if the
eMMC is disabled;

• cape-univ-hdmi: overlay exports pins used by the HDMI video system. is overlay may
be used if the HDMI is disabled; and

• cape-univ-audio: overlay exports pins used by the HDMI audio system.

e contents of each universal overlay may be examined at https://github.com/cdsteinku
ehler.

A specific overlay may be loaded using the command [Steinkuehler, 2015]:

#echo cape-universaln > /sys/devices/bone_capemgr.*/slots

Once the overlay is loaded, accompanying support files related to the overlay may be ex-
amined at: “/sys/devices/ocp.*” e following command sequence may be used:

#cd /sys/devices/ocp.*
/sys/devices/ocp.3# ls

e “config-pin” utility allows the user to determine the state of a specific BeagleBone Black
pin or change its multiplexer configuration. To obtain a list of pin settings for the loaded universal
cape, the following command may be used [Steinkuehler, 2015]:

https://github.com/cdsteinkuehler
https://github.com/cdsteinkuehler

6.7. BEAGLEBONE BLACK DEVICE TREE AND OVERLAYS 227

#config-pin -l

Additional details are available using:

#config-pin -h

e configuration options for a specific pin may be examined using [Steinkuehler]:

#config-pin -l <pin>

To access pins via the C programming language, it is important to know how to access
them in the Linux file system. Each pin exported during a universal cape load has a corresponding
entry in “/sys/class/gpio/gpioXX.” e “XX” designates the GPIO number for the pin. e pin
numbering system is discussed in the next section.

Provided below is a partial list of device tree overlays available [Steinkuehler]:

• BB–ADC–00A0.dts

• BB–I2C1–00A0.dts

• BB–I2C1A1–00A0.dts

• BB–SPIDEV0–00A0.dts

• BB–SPIDEV1–00A0.dts

• BB–SPIDEV1A1–00A0.dts

• BB–UART1–00A0.dts

• BB–UART2–00A0.dts

• BB–UART4–00A0.dts

• BB–UART5–00A0.dts

• am33xx_pwm–00A0.dts

• bone_pwm_P8_13–00A0.dts

• bone_pwm_P8_19–00A0.dts

• bone_pwm_P8_34–00A0.dts

• bone_pwm_P8_36–00A0.dts

• bone_pwm_P8_45–00A0.dts

• bone_pwm_P8_46–00A0.dts

228 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

• bone_pwm_P9_14–00A0.dts

• bone_pwm_P9_16–00A0.dts

• bone_pwm_P9_21–00A0.dts

• bone_pwm_P9_22–00A0.dts

• bone_pwm_P9_28–00A0.dts

• bone_pwm_P9_29–00A0.dts

• bone_pwm_P9_31–00A0.dts

• bone_pwm_P9_42–00A0.dts

• cape–bone–pinmux–test–00A0.dts

• cape–boneblack–hdmi–00A0.dts

• cape–boneblack–hdmin–00A0.dts

• cape–univ–audio–00A0.dts

• cape–univ–emmc–00A0.dts

• cape–univ–hdmi–00A0.dts

• cape–universal–00A0.dts

• cape–universaln–00A0.dts

e following example illustrates how to use the universal cape features. Additional exam-
ples will be provided throughout the chapter.

Example: In this example the analog-to-digital conversion overlay is loaded. e analog
value is then read from header P9, pin 36 (ADC channel 5).

#config-pin overlay BB-ADC
Loading BB-ADC overlay
#config-pin -q p9.36
Pin is not modifyable: P9_36 AIN5
#cd /sys/bus/iio/devices/iio\:device0
#/sys/bus/iio/devices/iio:device0# cat in_voltage5_raw
1850

6.8. PROGRAMMING IN C WITH BEAGLEBONE BLACK 229

6.8 PROGRAMMING IN C WITH BEAGLEBONE BLACK
General purpose input and output (GPIO) pins may be accessed during run time. In this section
we review how to configure pins and set their logic value from within an executing C program.

6.8.1 LINUX GPIO FILES
e Linux operating system uses a file system to access various pins and set their logic values. at
is, each pin is accessed as though it were a file. e files may be found in the following BeagleBone
Black directory:

/sys/class/gpio

ere are several files associated with each general purpose input/output (GPIO) pin. ey
are:

• the GPIO “direction” file (input (in) or output (out)) and

• the GPIO “value” file (logic high (1) or low (0)).

ese files must be created when access to the pin is required. To create the file the pin’s
number is sent to an export file. is process is illustrated with an example.

Example: To determine the file to access the GPIO1_12 pin (header P8, pin 12), we must trans-
late its name to its corresponding pin number. e general form of the pin name is:

GPIO < bank number > _ < pin number within bank >

e general purpose pins are divided into three banks: 0, 1, 2, and 3. Each bank has a
corresponding offset:

• bank: 0, offset: 0

• bank: 1, offset: 32

• bank: 2, offset: 64

• bank: 3, offset: 96

Also, the pin’s number within the bank must be taken into account. e final pin number
is determined using:

pin number D .bank number � 32/ C pin number within bank

For the GPIO1_12 pin, the overall pin number is:

230 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

pin number D .1 � 32/ C 12 D 44

e two files associated with this pin: “direction” and “value” can now be created. To create
these files, the pin number is sent to the export file:

echo 44 > /sys/class/gpio/export

Note: e root prompt is designated with the shorthand “#” notation.
e two files created are then located in the gpio44 directory:

/sys/class/gpio/gpio44/direction
/sys/class/gpio/gpio44/value

6.8.2 CONFIGURING THE GPIO FILES
Since the processor pins are controlled via a file system, they can be accessed from the Linux
command line using the “cat” and the “echo” commands.

e cat command is used to concatenate and display files. at is, it displays a file’s contents
to the computer screen.

e echo command may be used to write a value to a file. e general format of the com-
mand is:

echo <some value> > file_name

For example, to set the direction of the GPIO1_12 pin, the following commands may be
used:

echo out > /sys/class/gpio/gpio44/direction
echo 1 > /sys/class/gpio/gpio44/value

Example 1: Illuminate an LED connected to the GPIO1_12 pin using Linux commands.
An LED is connected to the GPIO1_12 pin (P8, pin 12) using the circuit illustrated in Fig-
ure 6.13.

Use the following commands to configure the GPIO1_12 pin and turn the LED on and
off.

Establish the GPIO1_12 direction and output files:

echo 44 > /sys/class/gpio/export

Set GPIO1_12 for output:

echo out > /sys/class/gpio/gpio44/direction

Set GPIO1_12 logic high (1):

echo 1 > /sys/class/gpio/gpio44/value

6.8. PROGRAMMING IN C WITH BEAGLEBONE BLACK 231

+

R
I

+

Figure 6.13: Interfacing an LED to BeagleBone. (Illustrations used with permission of Texas Instru-
ments (www.TI.com).)

Set GPIO1_12 logic low (0):

echo 0 > /sys/class/gpio/gpio44/value

Example2: Illuminate an LED connected to theGPIO1_12 pin using the universal overlay
and the “config-pin” utility. An LED is connected to the GPIO1_12 pin (P8, pin 12) using the
circuit illustrated in Figure 6.13.

config-pin overlay cape-universal
config-pin -l P8.12
default gpio gpio_pu gpio_pd pruout qep
config-pin P8.12 gpio
config-pin P8.12 out
config-pin P8.12 hi
config-pin P8.12 low

www.TI.com)

232 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

6.8.3 ACCESSING THE GPIO FILES IN C
To access the general purpose input/output pins and features from C, we use a similar technique
to the Linux command technique. We access the pins and features via the file system described
via C file commands.

e C programming language has several helpful functions to open and establish a C file
handle (fopen) , set the file position indicator (fseek), write to a file (fprintf), read from a file
(fscanf), insure data has been written to a file (fflush), and close a file (fclose) [Kelley and Pohl,
1998]. e provided file function descriptions below are admittedly brief. We only provide the
information necessary to configure and use BeagleBone digital input and output pins. Descrip-
tions were adapted from Kelley and Pohl’s seminal book on the C programming language A Book
on C—Programming in C [Kelley and Pohl, 1998].

• fopen: is function opens a file for use and attaches the file to a pointer. e file may be
opened for reading (“r”) or writing (“w”). If a file is used for reading, an infile pointer (ifp)
should be attached to it. If used for writing an outfile (ofp) should be attached.

• fseek: is function is used with BeagleBone to set the file pointer to the beginning of the
file.

• fprintf: is function writes variables of a specified type to a file. A wide variety of types
may be written to the file: integers(“%d”), characters (“%c”), strings (“%s”), and floating
point (“%f ”).

• fscanf: is function reads variables of a specified type from a file. A wide variety of types
may be read from the file: integers(“%d”), characters (“%c”), strings (“%s”), and floating
point (“%f ”).

• fflush: is function is used following a write operation (fprintf) to insure unwritten data
has been written to a file.

• fclose: is function is used to close the specified file.

Several examples are provided to illustrate how these functions are used to configure Bea-
gleBone’s general purpose input and output (gpio) pins.

In the examples, note how pins are configured by writing to files written within the Linux
structure.

Example 1: In this example we redo the previous example of illuminating an LED from the Linux
command line. An LED and a series connected resistor is connected to expansion header P8,
pin 12 (GPIO1_12 designated as gpio44), as shown in Figure 6.13. e code may be compiled
and executed using:

#gcc led1.c -o led1
#./led1

6.8. PROGRAMMING IN C WITH BEAGLEBONE BLACK 233

1 / / *
2 / / l e d 1 . c : i l l u m i n a t e s an LED c o n n e c t e d t o e x p a n s i o n h e a d e r P8 , p in 12
3 / / (GPIO1_12 d e s i g n a t e d a s g p i o 4 4)
4 / / *
5
6 # in c l ude < s t d i o . h>
7 # in c l ude < s t d d e f . h>
8 # in c l ude < t ime . h>
9

10 # de f i n e OUTPUT ” out ”
11 # de f i n e INPUT ” in ”
12
13 i n t main (void)
14 {
15 / / d e f i n e f i l e h a n d l e s
16 FILE * o f p_ e xpo r t , * o f p_gp i o44_v a l u e , * o f p _ g p i o 4 4 _ d i r e c t i o n ;
17
18 / / d e f i n e p in v a r i a b l e s
19 i n t pin_number = 44 , l o g i c _ s t a t u s = 1 ;
20 char * p i n _ d i r e c t i o n = OUTPUT;
21
22 / / e s t a b l i s h a d i r e c t i o n and v a l u e f i l e w i t h i n e x p o r t f o r g p i o 4 4
23 o f p _ e x p o r t = fopen (” / s y s / c l a s s / gp io / e x p o r t ” , ”w”) ;
24 i f (o f p _ e x p o r t == NULL) { p r i n t f (” Unable to open e x p o r t . \ n ”) ; }
25 f s e e k (o f p_ e xpo r t , 0 , SEEK_SET) ;
26 f p r i n t f (o f p_ e xpo r t , ”%d ” , pin_number) ;
27 f f l u s h (o f p _ e x p o r t) ;
28
29 / / c o n f i g u r e g p i o 4 4 f o r w r i t i n g
30 o f p _ g p i o 4 4 _ d i r e c t i o n = fopen (” / s y s / c l a s s / gp io / gp io44 / d i r e c t i o n ” , ”w”) ;
31 i f (o f p _ g p i o 4 4 _ d i r e c t i o n ==NULL) { p r i n t f (” Unable to open g p i o 4 4 _ d i r e c t i o n

. \ n ”) ; }
32 f s e e k (o f p _ g p i o 4 4 _d i r e c t i o n , 0 , SEEK_SET) ;
33 f p r i n t f (o f p _ g p i o 4 4 _d i r e c t i o n , ”%s ” , p i n _ d i r e c t i o n) ;
34 f f l u s h (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
35
36 / / w r i t e a l o g i c 1 t o g p i o 4 4 t o i l l u m i n a t e t h e LED
37 o f p _ gp i o 44_ v a l u e = fopen (” / s y s / c l a s s / gp io / gp io44 / v a l u e ” , ”w”) ;
38 i f (o f p _ gp i o 44_ v a l u e == NULL) { p r i n t f (” Unable to open gp i o 4 4_ v a l u e . \ n ”)

; }
39 f s e e k (o f p_gp i o44_v a l u e , 0 , SEEK_SET) ;
40 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s) ;
41 f f l u s h (o f p _ gp i o 44_ v a l u e) ;
42
43 / / c l o s e a l l f i l e s
44 f c l o s e (o f p _ e x p o r t) ;
45 f c l o s e (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
46 f c l o s e (o f p _ gp i o 44_ v a l u e) ;

234 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

47 r e t u rn 1 ;
48 }
49 / / *

Example 2: In this example we read the logic value of a pushbutton switch connected to
expansion header P8, pin 7 (GPIO2_2 designated as gpio66). If the switch is logic high (1) an
LED connected to expansion header P8, pin 12 is illuminated. A circuit diagram is provided in
Figure 6.14.

P8 expansion header

1

45 46

+

R = 220 ohms

4.7k ohms

3.3 VDC
(P9, pin 3)

pushbutton
switch

(P8, pin 1)

to Adafruit 276
5 VDC, 2A power supply

P8, pin 7

Figure 6.14: Interfacing an LED and switch to BeagleBone. (Illustrations used with permission of
Texas Instruments (www.TI.com).)

1 / / *
2 / / l e d 2 . c : Th i s p r og ram r e a d s t h e l o g i c v a l u e o f a p u s h b u t t o n sw i t c h
3 / / c o n n e c t e d t o h e a d e r P8 , p in 7(GPIO2_2 d e s i g n a t e d a s g p i o 6 6) .
4 / / I f t h e s w i t c h i s l o g i c h i g h (1) an LED c o n n e c t e d t o e x p a n s i o n h e a d e r
5 / / P8 , p in 12 (GPIO1_12 d e s i g n a t e d a s g p i o 4 4) i s i l l u m i n a t e d .
6 / / *
7
8 # in c l ude < s t d i o . h>
9 # in c l ude < s t d d e f . h>

www.TI.com

6.8. PROGRAMMING IN C WITH BEAGLEBONE BLACK 235

10 # in c l ude < t ime . h>
11
12 # de f i n e OUTPUT ” out ”
13 # de f i n e i n pu t ” i n ”
14
15 i n t main (void)
16 {
17 / / d e f i n e f i l e h a n d l e s f o r g p i o 4 4 (P8 , p in 12 , GPIO1_12)
18 FILE * o fp_expo r t_44 , * o f p_gp i o44_v a l u e , * o f p _ g p i o 4 4 _ d i r e c t i o n ;
19
20 / / d e f i n e f i l e h a n d l e s f o r g p i o 6 6 (P8 , p in 7 , GPIO2_2)
21 FILE * o fp_expo r t_66 , * i f p _ g p i o 6 6 _ v a l u e , * o f p _ g p i o 6 6 _ d i r e c t i o n ;
22
23 / / d e f i n e p in v a r i a b l e s f o r g p i o 4 4
24 i n t pin_number_44 = 44 , l o g i c _ s t a t u s _ 4 4 = 1 ;
25 char * p i n _ d i r e c t i o n _ 4 4 = OUTPUT;
26
27 / / d e f i n e p in v a r i a b l e s f o r g p i o 6 6
28 i n t pin_number_66 = 66 , l o g i c _ s t a t u s _ 6 6 ;
29 char * p i n _ d i r e c t i o n _ 6 6 = INPUT;
30
31 / / c r e a t e d i r e c t i o n and v a l u e f i l e f o r g p i o 4 4
32 o f p_ e xpo r t _44 = fopen (” / s y s / c l a s s / gp io / e x p o r t ” , ”w”) ;
33 i f (o f p_ e xpo r t _44 == NULL) { p r i n t f (” Unable to open e x p o r t . \ n ”) ; }
34 f s e e k (o fp_expo r t_44 , 0 , SEEK_SET) ;
35 f p r i n t f (o fp_expo r t_44 , ”%d ” , pin_number_44) ;
36 f f l u s h (o f p_ e xpo r t _44) ;
37
38 / / c r e a t e d i r e c t i o n and v a l u e f i l e f o r g p i o 6 6
39 o f p_ e xpo r t _66 = fopen (” / s y s / c l a s s / gp io / e x p o r t ” , ”w”) ;
40 i f (o f p_ e xpo r t _66 == NULL) { p r i n t f (” Unable to open e x p o r t . \ n ”) ; }
41 f s e e k (o fp_expo r t_66 , 0 , SEEK_SET) ;
42 f p r i n t f (o fp_expo r t_66 , ”%d ” , pin_number_66) ;
43 f f l u s h (o f p_ e xpo r t _66) ;
44
45 / / c o n f i g u r e g p i o 4 4 d i r e c t i o n
46 o f p _ g p i o 4 4 _ d i r e c t i o n = fopen (” / s y s / c l a s s / gp io / gp io44 / d i r e c t i o n ” , ”w”) ;
47 i f (o f p _ g p i o 4 4 _ d i r e c t i o n == NULL) { p r i n t f (” Unable to open

g p i o 4 4 _ d i r e c t i o n . \ n ”) ; }
48 f s e e k (o f p _ g p i o 4 4 _d i r e c t i o n , 0 , SEEK_SET) ;
49 f p r i n t f (o f p _ g p i o 4 4 _d i r e c t i o n , ”%s ” , p i n _ d i r e c t i o n _ 4 4) ;
50 f f l u s h (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
51
52 / / c o n f i g u r e g p i o 6 6 d i r e c t i o n
53 o f p _ g p i o 6 6 _ d i r e c t i o n = fopen (” / s y s / c l a s s / gp io / gp io66 / d i r e c t i o n ” , ”w”) ;
54 i f (o f p _ g p i o 6 6 _ d i r e c t i o n == NULL) { p r i n t f (” Unable to open

g p i o 6 6 _ d i r e c t i o n . \ n ”) ; }
55 f s e e k (o f p _ g p i o 6 6 _d i r e c t i o n , 0 , SEEK_SET) ;

236 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

56 f p r i n t f (o f p _ g p i o 6 6 _d i r e c t i o n , ”%s ” , p i n _ d i r e c t i o n _ 6 6) ;
57 f f l u s h (o f p _ g p i o 6 6 _ d i r e c t i o n) ;
58
59 / / c o n f i g u r e g p i o 4 4 v a l u e i n i t i a l l y s e t l o g i c h i g h
60 o f p _ gp i o 44_ v a l u e = fopen (” / s y s / c l a s s / gp io / gp io44 / v a l u e ” , ”w”) ;
61 i f (o f p _ gp i o 44_ v a l u e == NULL) { p r i n t f (” Unable to open gp i o 44_ v a l u e . \ n ”)

; }
62 f s e e k (o f p_gp i o44_v a l u e , 0 , SEEK_SET) ;
63 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s _ 4 4) ;
64 f f l u s h (o f p _ gp i o 44_ v a l u e) ;
65
66 whi l e (1)
67 {
68 / / c o n f i g u r e g p i o 6 6 v a l u e and r e a d t h e g p i o 6 6 p in
69 i f p _ g p i o 6 6 _ v a l u e = fopen (” / s y s / c l a s s / gp io / gp io66 / v a l u e ” , ” r ”) ;
70 i f (i f p _ g p i o 6 6 _ v a l u e == NULL) { p r i n t f (” Unable to open gp i o 66_ v a l u e . \ n ”

) ; }
71 f s e e k (i f p _ g p i o 6 6 _ v a l u e , 0 , SEEK_SET) ;
72 f s c a n f (i f p _ g p i o 6 6 _ v a l u e , ”%d ” , &l o g i c _ s t a t u s _ 6 6) ;
73 f c l o s e (i f p _ g p i o 6 6 _ v a l u e) ;
74 p r i n t f (”%d ” , l o g i c _ s t a t u s _ 6 6) ;
75 i f (l o g i c _ s t a t u s _ 6 6 == 1)
76 {
77 / / s e t g p i o 4 4 l o g i c h i g h
78 f s e e k (o f p_gp i o44_v a l u e , 0 , SEEK_SET) ;
79 l o g i c _ s t a t u s _ 4 4 = 1 ;
80 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s _ 4 4) ;
81 f f l u s h (o f p _ gp i o 4 4_ v a l u e) ;
82 p r i n t f (” High \ n ”) ;
83 }
84 e l s e
85 {
86 / / s e t g p i o 4 4 l o g i c low
87 f s e e k (o f p_gp i o44_v a l u e , 0 , SEEK_SET) ;
88 l o g i c _ s t a t u s _ 4 4 = 0 ;
89 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s _ 4 4) ;
90 f f l u s h (o f p _ gp i o 4 4_ v a l u e) ;
91 p r i n t f (” Low\ n ”) ;
92 }
93 }
94
95 / / c l o s e f i l e s
96 f c l o s e (o f p_ e xpo r t _44) ;
97 f c l o s e (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
98 f c l o s e (o f p _ gp i o 44_ v a l u e) ;
99

100 f c l o s e (o f p_ e xpo r t _66) ;
101 f c l o s e (o f p _ g p i o 6 6 _ d i r e c t i o n) ;

6.8. PROGRAMMING IN C WITH BEAGLEBONE BLACK 237

102 f c l o s e (i f p _ g p i o 6 6 _ v a l u e) ;
103
104 r e t u rn 1 ;
105 }
106 / / *

Example 3: In this example we toggle an LED connected to expansion header P8, pin 12
(GPIO1_12 designated as gpio44) at five second intervals.

e program uses the “difftime” function. e definition for this function is included in the
“time.h” header file. e “difftime” function prototype is [Kelley and Pohl, 1998].

double difftime(time_t t0, time_t t1);

e “difftime” function computes the amount of elapsed time (t1-t0) in seconds and returns
it as a double. A time hack may be obtained using:

1 / / d e f i n e t im e v a r i a b l e
2 t ime_ t now ;
3
4 / / g e t a t im e h a c k
5 now = t ime (NULL) ;

1 / / *
2 / / l e d 3 . c : t h i s p r o g r am s t o g g l e s (f l a s h e s) an LED c o n n e c t e d t o
3 / / e x p a n s i o n h e a d e r P8 , p in 12 (GPIO1_12 d e s i g n a t e d a s g p i o 4 4) a t f i v e
4 / / s e c o n d i n t e r v a l s .
5 / / *
6
7 # in c l ude < s t d i o . h>
8 # in c l ude < s t d d e f . h>
9 # in c l ude < t ime . h>

10
11 # de f i n e OUTPUT ” out ”
12 # de f i n e INPUT ” in ”
13
14 i n t main (void)
15 {
16 / / d e f i n e f i l e h a n d l e s
17 FILE * o f p_ e xpo r t , * o f p_gp i o44_v a l u e , * o f p _ g p i o 4 4 _ d i r e c t i o n ;
18
19 / / d e f i n e p in v a r i a b l e s
20 i n t pin_number = 44 , l o g i c _ s t a t u s = 1 ;
21 char * p i n _ d i r e c t i o n = OUTPUT;
22
23 / / t im e p a r am e t e r s
24 t ime_ t now , l a t e r ;
25
26 o f p _ e x p o r t = fopen (” / s y s / c l a s s / gp io / e x p o r t ” , ”w”) ;
27 i f (o f p _ e x p o r t == NULL) { p r i n t f (” Unable to open e x p o r t . \ n ”) ; }

238 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

28 f s e e k (o f p_ e xpo r t , 0 , SEEK_SET) ;
29 f p r i n t f (o f p_ e xpo r t , ”%d ” , pin_number) ;
30 f f l u s h (o f p _ e x p o r t) ;
31
32 o f p _ g p i o 4 4 _ d i r e c t i o n = fopen (” / s y s / c l a s s / gp io / gp io44 / d i r e c t i o n ” , ”w”) ;
33 i f (o f p _ g p i o 4 4 _ d i r e c t i o n == NULL) { p r i n t f (” Unable to open

g p i o 4 4 _ d i r e c t i o n . \ n ”) ; }
34 f s e e k (o f p _ g p i o 4 4 _d i r e c t i o n , 0 , SEEK_SET) ;
35 f p r i n t f (o f p _ g p i o 4 4 _d i r e c t i o n , ”%s ” , p i n _ d i r e c t i o n) ;
36 f f l u s h (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
37
38 o f p _ gp i o 44_ v a l u e = fopen (” / s y s / c l a s s / gp io / gp io44 / v a l u e ” , ”w”) ;
39 i f (o f p _ gp i o 44_ v a l u e == NULL) { p r i n t f (” Unable to open gp i o 44_ v a l u e . \ n ”)

; }
40 f s e e k (o f p_gp i o44_v a l u e , 0 , SEEK_SET) ;
41 l o g i c _ s t a t u s = 1 ;
42 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s) ;
43 f f l u s h (o f p _ gp i o 44_ v a l u e) ;
44
45 now = t ime (NULL) ;
46 l a t e r = t ime (NULL) ;
47
48 whi l e (1)
49 {
50 whi l e (d i f f t i m e (l a t e r , now) < 5 . 0)
51 {
52 l a t e r = t ime (NULL) ; / / k e e p c h e c k i n g t im e
53 }
54 i f (l o g i c _ s t a t u s == 1) l o g i c _ s t a t u s = 0 ;
55 e l s e l o g i c _ s t a t u s = 1 ;
56 / / w r i t e t o g p i o 4 4
57 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s) ;
58 f f l u s h (o f p _ gp i o 44_ v a l u e) ;
59 now= t ime (NULL) ;
60 l a t e r = t ime (NULL) ;
61 }
62 f c l o s e (o f p _ e x p o r t) ;
63 f c l o s e (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
64 f c l o s e (o f p _ gp i o 44_ v a l u e) ;
65 r e t u rn 1 ;
66 }
67
68 / / *

In this section we have learned how to configure and use BeagleBone’s general purpose
input/output (gpio) features. e pins must be systematically configured for proper use.

6.9. ANALOG-TO-DIGITAL CONVERTERS (ADC) 239

For the remainder of the chapter we review exposed functions aboard the BeagleBoneBlack.
For each function we provide a bit of theory and then provide examples for BeagleBone Black
beginning with the analog-to-digital converter system.

6.9 ANALOG-TO-DIGITAL CONVERTERS (ADC)
A processor may be used to capture analog information from the natural world, determine a
course of action based on the information collected and the resident algorithm, and issue control
signals to implement the decision. Information from the natural world, is analog or continuous
in nature; whereas, a processor is digital. A subsystem to convert an analog signal to a digital
form is required. An ADC system performs this task while a digital-to-analog converter (DAC)
performs the conversion in the opposite direction.

In this section we discuss the ADC conversion process followed by a discussion of the
successive-approximation ADC technique used aboard BeagleBone. We then review the basic
features of the BeagleBone ADC system. We conclude our ADC discussion with several illus-
trative code examples.

6.9.1 ADC PROCESS: SAMPLING, QUANTIZATION, AND ENCODING
In this section, we provide an abbreviated discussion of the ADC process. is discussion was
condensed from Atmel AVR Microcontroller Primer Programming and Interfacing. e interested
reader is referred to this text for additional details and examples [Barrett and Pack, 2008]. We
begin with three important stages associated with the ADC: sampling, quantization, and encod-
ing.

Sampling. Sampling is the process of taking “snap shots” of a signal over time. When we
sample a signal, we want to minimize the number of samples taken while retaining the ability
to reconstruct the original signal from the samples. Intuitively, the rate of change of the signal
determines the sample interval required to faithfully reconstruct the signal. We must use the ap-
propriate sampling rate to capture the analog signal for a faithful representation in digital systems.

Harry Nyquist from Bell Laboratory studied the sampling process and derived a criterion
that determines the minimum sampling rate for a continuous analog signal. e minimum sam-
pling rate derived is known as the Nyquist sampling rate. It states a signal must be sampled at least
twice as fast as the highest frequency content of the signal of interest. For example, the human
voice signal contains frequency components that span from approximately 20 Hz to 4 kHz. e
Nyquist sample theorem requires sampling the signal at least at 8 kHz, 8,000 “snap shots” every
second. Also, when a signal is sampled, a low-pass anti-aliasing filter must be used to insure the
Nyquist sampling rate is not violated. In the human voice example, a low-pass filter with a cutoff
frequency of 4 kHz would be used before the sampling circuitry for this purpose.

Quantization. In many digital systems, the incoming signals are voltage signals. e volt-
age signals are obtained from physical variables (pressure, temperature, etc.) via transducers, such
as microphones, angle sensors, and infrared sensors. e voltage signals are then conditioned to

240 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

map their range with the input range of the digital system. In the case of BeagleBone, the analog
signal must be conditioned such that it does not exceed 1.8 VDC.

When an analog signal is sampled, the digital system needs a means to represent the cap-
tured samples. e quantization of a sampled analog signal is represented as one of the digital
quantization levels. For example, if you have three bits available for quantization, you can repre-
sent 8-different levels: 000, 001, 010, 011, 100, 101, 110, and 111. In general, given n bits, we
have 2n unique numbers or quantization levels in our system. Figure 6.15 shows how n bits are
used to quantize a range of values. As the number of bits used for the quantization levels increase
for a given input range, the “distance” between two adjacent levels decreases accordingly. Intu-
itively, the more quantization levels means the better mapping of an incoming signal to its true
value.

Voltage reference low

Voltage reference high

sampled value 1

sampled value 2
level n-1

Analog
Signal

level 1 - encoded level
0000 0001

level 198 - encoded level
1100 0110

t(s)Ts = 1/fs
sample time

Figure 6.15: Sampling, quantization, and encoding [Barrett and Pack, 2006].

Encoding. e encoding process converts a quantized signal into a digital binary number.
Suppose again we are using eight bits to quantize a sampled analog signal. e quantization levels
are determined by the eight bits and each sampled signal is quantized as one of 256 quantization
levels. Consider the two sampled signals shown in Figure 6.15. e first sample is mapped to
quantization level 2 and the second one is mapped to quantization level 198. Note the amount of
quantization error introduced for both samples. e quantization error is inversely proportional
to the number of bits used to quantize the signal.

6.9. ANALOG-TO-DIGITAL CONVERTERS (ADC) 241

6.9.2 RESOLUTION AND DATA RATE
Resolution. Resolution is a measure used to quantize an analog signal. It is the voltage “distance”
between two adjacent quantization levels. As we increase the available number of quantization
levels within a fixed voltage range, the distance between adjacent levels decreases, reducing the
quantization error of a sampled signal. As the number of quantization levels increase, the error de-
creases, making the representation of a sampled analog signal more accurate in the corresponding
digital form. e number of bits used for the quantization is directly proportional to the resolution
of a system. In general, resolution may be defined as:

resolution D .voltage span/=2b
D .Vref high � Vref low/=2b

for BeagleBone, the resolution is:

resolution D .1:8 � 0/=212
D 1:8=4096 D 439:45 �V

Data rate. Data rate is the amount of data generated by a system per unit time. Typically,
the number of bits or the number of bytes per second is used as the data rate of a system. In the
previous section, we observed the more bits we use for the quantization levels, the more accurate
we can represent a sampled analog signal. So why not use the maximum number of bits when
we convert analog signals to digital counterparts? For example, suppose you are working for a
telephone company and your switching system must accommodate 100,000 customers. For each
individual phone conversation, suppose the company uses an 8 kHz sampling rate (fs) and 10 bits
for the quantization levels for each sampled signal.¹ is means the voice conversation will be
sampled every 125 �s (Ts) due to the reciprocal relationship between (fs) and (Ts). If all customers
are making out of town calls, what is the number of bits your switching system must process to
accommodate all calls? e answer will be 100,000 � 8,000 � 10 or eight billion bits every second!
For these reasons, when making decisions on the number of bits used for the quantization levels
and the sampling rate, you must consider the computational burden the selection will produce on
the computational capabilities of a digital system versus the required system resolution.

Dynamic range. Dynamic range describes the signal to noise ratio. e unit used for mea-
surement is the Decibel (dB), which is the strength of a signal with respect to a reference signal.
e greater the dB number, the stronger the signal is compared to a noise signal. e definition
of the dynamic range is 20 log 2b where b is the number of bits used to convert analog signals to
digital signals. Typically, you will find 8–12 bits used in commercial analog-to-digital converters,
translating the dynamic range from 20 log 28 dB to 20 log 212 dB.

6.9.3 ADC CONVERSION TECHNOLOGIES
e ARM processor aboard BeagleBone Black uses a successive approximation converter tech-
nique to convert an analog sample into a 12-bit digital representation. e digital value is typically
¹We ignore overhead involved in processing a phone call such as multiplexing, de-multiplexing, and serial-to-parallel conver-
sion.

242 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

represented as an integer value between 0 and 4095. In this section, we discuss this type of con-
version process. For a review of other converter techniques, the interested reader is referred to
Atmel AVR Microcontroller Primer: Programming and Interfacing[Barret and Peck, 2008].

e successive-approximation technique uses a digital-to-analog converter, a controller,
and a comparator to perform the ADC process. Starting from the most significant bit down to
the least significant bit, the controller turns on each bit one at a time and generates an analog
signal, with the help of the digital-to-analog converter, to be compared with the original input
analog signal. Based on the result of the comparison, the controller changes or leaves the current
bit and turns on the next most significant bit. e process continues until decisions are made for
all available bits. Figure 6.16 shows the architecture of this type of converter. e advantage of
this technique is that the conversion time is uniform for any input, but the disadvantage of the
technology is the use of complex hardware for implementation.

analog

reference

signal

analog

input signal

comparator

controller

digital-to-analog

converter

serial digital output

start

conversion

Figure 6.16: Successive-approximation ADC [Barrett and Pack, 2008].

6.9.4 BEAGLEBONE BLACK ADC SYSTEM
BeagleBone Black is equipped with an eight channel ADC system. emaximum input voltage
for eachof the channels is 1.8VDC.eonboardADC system uses the successive approximation
conversion technique to convert an analog sample into a 12-bit digital value.

Access to the eight analog channels is provided via the following expansion header P9 pins:

• AIN0 pin 39

• AIN1 pin 40

• AIN2 pin 37

6.9. ANALOG-TO-DIGITAL CONVERTERS (ADC) 243

• AIN3 pin 38

• AIN4 pin 33

• AIN5 pin 36

• AIN6 pin 35

• Analog ground, GNDA_ADC, pin 34

6.9.5 ADC CONVERSION
Provided in Figure 6.17 is a series of helpful test configurations for the ADC system. Provided in
Figure 6.17a is an analog input test configuration. A trimmer potentiometer is set for 1.5 VDC.
e trimmer’s wiper connection may be connected to ADC input AIN0 (P9, pin 39).

In Figure 6.17b a test configuration is provided to characterize the response of a Sharp
GP2YOA21YK0F IR sensor used on the Dagu Magician robot. Results of characterizing the
IR sensor are provided in Figure 6.18. e maximum output from the IR sensor may approach
3.0 VDC. Note how a 1 Mohm potentiometer is used to scale the IR sensor output by one-half.
is insures the input to the BeagleBone Black does not exceed 1.8 VDC.

Provided in Figure 6.17c is a test configuration for an LM34 precision Fahrenheit tem-
perature sensor. e LM34 provides an output voltage that is linearly related to Fahrenheit tem-
perature. e LM34 is rated over a �50ı to C300ıF range. e LM34 provides an output of
C10:0 mV/ıF.

6.9.6 ADC SUPPORT FUNCTIONS IN BONESCRIPT
In Section 2.2, we introduced the analogRead and analogWrite functions available within Bone-
script. e analogRead function performs an ADC conversion on the voltage at a specified pin.
e analog voltage must not exceed 1.8 VDC. e analogRead function returns a normalized
value from 0 to 1 corresponding to 0 and 1.8 VDC.

e analogWrite function delivers an analog level to a specified pin via a 1 kHz pulse width
modulated signal. e analog value is specified as an argument between 0 to 1 corresponding to
an analog value between 0 and 1.8 VDC.

Example: An LED is connected to header P8, pin 13, as shown in Figure 6.19. As the po-
tentiometer value is changed, the corresponding intensity of the LED is changed. is is accom-
plished using program “analog.js” by reading in the analog value from the potentiometer on header
P9, pin 36 and reading out the corresponding value on header P8, pin 13 using the Bonescript
“b.analogWrite” function.

1 / / *
2 / / a n a l o g . j s
3 / / *
4

244 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

(P8, pin 1)

3.3 VDC
(P9, pin 3)

1M ohm trimmer
potentiometer

set for 1.5 VDC

AIN0
(P9, pin 39)

a) analog input testing configuration

Sharp GP2D12
IR sensor

red

black

yellow

5 VDC
(P9, pin 7)

(P8, pin 1)

(P8, pin 1)

set for 2.5 VDC
when 5.0 VDC applied

AIN0
(P9, pin 39)

1M ohm trimmer
potentiometer

LM34
temperature sensor

5 VDC
(P9, pin 7)

(P8, pin 1)

AIN0
(P9, pin 39)

output: 10 mV/oF

b) Sharp GP2D12 IR sensor analog input testing configuration

c) LM34 temperature sensor input testing configuration

Figure 6.17: ADC test configurations.

6.9. ANALOG-TO-DIGITAL CONVERTERS (ADC) 245

Sharp GP2YOA21YK0F
IR sensor

red

black

yellow

5 VDC
(P9, pin 7)

(P8, pin 1)

(P8, pin 1)

set for 2.5 VDC
when 5.0 VDC
applied

BeagleBone
AIN0

(P9, pin 39)

1M ohm trimmer
potentiometer

range [cm]
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ADC response [max: 1800]
 358
 365
 584
 730
 921
1017
1339
1296
1239
1688
1077
 989
 912
 882
 830
 788
 739
 674
 636
 646

ADC response [V]
0.358
0.365
0.584
0.730
0.921
1.017
1.339
1.296
1.239
1.688
1.077
0.989
0.912
0.882
0.830
0.788
0.739
0.674
0.636
0.646

response [V]

range [cm]10

1.7

Figure 6.18: IR sensor characterization.

246 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

2
7
0

100K ohm

potentiometer

1.8 VDC

(P9, pin 32)

Ground

(P9, pin 45)

wiper arm

(P9, pin 36)

P8

100K wiper arm

(P9, pin 36)

1.8 VDC

(P9, pin 32)

Ground

(P9, pin 45)

a) prototype board layout

b) potentiometer schematic

Figure 6.19: Potentiometer connected to header P9, pin 36. As the potentiometer value is changed,
the corresponding intensity of the LED is changed. (Illustrations used with permission of Texas In-
struments (www.TI.com).)

www.TI.com

6.9. ANALOG-TO-DIGITAL CONVERTERS (ADC) 247

5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7 i npu tP i n = ” P9_36 ” ;
8 ou tpu tP in = ” P8_13 ” ;
9

10 b . pinMode (ou tpu tP in , b .OUTPUT) ;
11 loop () ;
12
13 f u n c t i o n loop () {
14 v a r v a l u e = b . ana logRead (i npu tP i n) ;
15 b . ana l ogWr i t e (ou tpu tP in , v a l u e) ;
16 s e tT imeou t (loop , 1) ;
17 } ;
18 / / *

6.9.7 ACCESSING THE ADC SYSTEM IN LINUX
In general, to use a system aboard BeagleBone Black the corresponding device tree overlay must
be loaded. e overlay typically enables the system and properly configures the system for use.
Alternatively, one of the universal capes, discussed earlier, may be used. Also, if another system
conflicts (e.g., HDMI) with the desired system, it must be first disabled.

Note: It must be emphasized that “slots” and “pins” must be loaded upon startup to in-
teract with the BeagleBone Black device tree as described earlier in this chapter.

To access the ADC channels, they must first be enabled using the related ADC device tree
overlay (BB-ADC). is may be accomplished by going to the =sys=bus=i io=devices directory
and loading the BB-ADC device tree overlay to SLOTS [Molloy, 2015].

cd /sys/bus/iio/devices
/sys/bus/iio/devices# sudo sh -c ``echo BB-ADC > $SLOTS''

e “sudo” command (super user do) as it’s name implies provides super user access to
the Linux operating system. e “su” command allows switching from user account to another
within Linux. If no argument is specified, Linux root access is provided. e “-c” option pro-
vides for passing a command to the Linux shell. To verify the overlay was properly load, perform
“cat $SLOTS”. ere should be a new entry containing BB-ADC.

e device tree overlay loads the “iiodevice0” directory which provides access points to read
the ADC channels (in_voltage0_raw to in_voltage7_raw). A specific channel value may be read
from the Linux command line using:

cd iio:device0
cat in_voltagen_raw

Where “n” specifies the channel of interest.When the command is executed a value between
0 and 4095 is returned. A reading of 0 corresponds to 0 VDC; whereas, 4095 corresponds to
1.8 VDC. Values in between are linearly mapped to appropriate values.

248 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Example 1: Figure 6.17 provides a configuration for testing the ADC system. In this example
we connect the potentiometer wiper arm to the input for ADC channel AIN0 (P9, pin 39). Set
the potentiometer wiper arm voltage for a value less than 1.8 VDC (e.g., 1.25 VDC). Read the
analog value using:

>cat in_voltage0_raw

Example 2: Another method of accessing the ADC resources from the Linux command
line is to install a universal cape. e procedures for doing this were provided earlier in the chapter.
Once installed, the ADC may be enabled and a channel voltage accessed using [Steinkuehler]:

#config-pin overlay BB-ADC
Loading BB-ADC overlay
#config-pin -q p9.36
Pin is not modifyable: P9_36 AIN5
#cd /sys/bus/iio/devices/iio\:device0
#/sys/bus/iio/devices/iio:device0# cat in_voltage5_raw
1850

6.9.8 ADC SUPPORT FUNCTIONS IN C
In this section we provide two examples using C to access the ADC system of BeagleBone Black.
As a friendly reminder, before executing the sample code insure the appropriate device tree over-
lays have been loaded using one of the techniques described above.

Example 1: In this example we read the analog value on AIN0 (P9, pin 39) provided by
the LM34 temperature sensor. e connection for the LM34 to BeagleBone is provided in Fig-
ure 6.17c. e file used to read AIN0 is first opened (fopen) and then read (fscanf). e value
from the LM34 is printed to the terminal (printf). e temperature may be increased by holding
the LM34 between your fingers or decreased using compressed air. e readings are accomplished
continuously until [Control][C] is used to stop the program.

e LM34 is a precision Fahrenheit temperature sensor. It provides an output voltage that
is linearly related to Fahrenheit temperature. It is rated over a �50ı to C300ıF range. e LM34
provides an output of C10:0 mV/ıF.

e LM34 may be operated from 5–30 VDC. A 5 VDC reference is available from Bea-
gleBone Black at P9, pins 5, 6.

1 / / *
2 / / a d c1 . c : t h e a n a l o g v a l u e on AIN0 (P9 , p in 39) p r o v i d e d by
3 / / a LM34 t em p e r a t u r e s e n s o r i s r e a d c o n t i n u o u s l y u n t i l
4 / / [C o n t r o l] [C] i s u s e d t o s t o p t h e p r og ram .
5 / /
6 / / Not e : b e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e SLOTS , PINS ,
7 / / and t h e a p p r o p r i a t e d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
8 / / *

6.9. ANALOG-TO-DIGITAL CONVERTERS (ADC) 249

9
10 # in c l ude < s t d i o . h>
11 # in c l ude < s t d d e f . h>
12 # in c l ude < t ime . h>
13 # in c l ude <math . h>
14
15 # de f i n e OUTPUT ” out ”
16 # de f i n e INPUT ” in ”
17
18 i n t main (void)
19 {
20 / / d e f i n e f i l e h a n d l e s
21 FILE * i f p _ a i n 0 ;
22 f l o a t a i n 0 _ v a l u e ;
23
24 i f p _ a i n 0 = fopen (” / s y s / bus / i i o / d e v i c e s / i i o : d e v i c e 0 / i n _ v o l t a g e 0 _ r aw ” , ” r

”) ;
25 i f (i f p _ a i n 0 == NULL) { p r i n t f (” Unable to AIN0 . \ n ”) ; }
26
27 whi l e (1)
28 {
29 f s e e k (i f p _ a i n 0 , 0 , SEEK_SET) ;
30 f s c a n f (i f p _ a i n 0 , ”%f ” , &a i n 0 _ v a l u e) ;
31 p r i n t f (”%f \ n ” , a i n 0 _ v a l u e) ;
32 f f l u s h (i f p _ a i n 0) ;
33 }
34
35 f c l o s e (i f p _ a i n 0) ;
36 r e t u rn 1 ;
37 }
38 / / *

Example 2: In this example readings of the LM34 are taken at two second intervals. e
value from AIN0 is read and printed to the terminal. Each reading is converted to a voltage and
also a temperature. A #define statement is used to link the file path for ain1 to a more convenient
(and shorter) name. e #define statements could be moved to a header file.

1 / / *
2 / / a d c2 . c t h e a n a l o g v a l u e on AIN0 (P9 , p in 39) p r o v i d e d by
3 / / a LM34 t em p e r a t u r e s e n s o r i s r e a d a t 2 s e c o n d i n t e r v a l s u n t i l
4 / / [C o n t r o l] [C] i s u s e d t o s t o p t h e p r og ram .
5 / /
6 / / Not e : b e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e SLOTS , PINS ,
7 / / and t h e a p p r o p r i a t e d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
8 / / *
9 / / *

10
11 / / i n c l u d e f i l e s
12 # in c l ude < s t d i o . h>

250 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

13 # in c l ude < s t d d e f . h>
14 # in c l ude < t ime . h>
15 # in c l ude <math . h>
16
17 / / d e f i n e
18 # de f i n e OUTPUT ” out ”
19 # de f i n e INPUT ” in ”
20 # de f i n e a i n 0 _ i n ” / s y s / bus / i i o / d e v i c e s / i i o : d e v i c e 0 / i n _ v o l t a g e 0 _ r aw ”
21
22 / / f u n c t i o n p r o t o t y p e s
23 void d e l a y _ s e c (f l o a t d e l a y _ v a l u e) ;
24
25 i n t main (void)
26 {
27 / / d e f i n e f i l e h a n d l e s
28 FILE * i f p _ a i n 0 ;
29 f l o a t a i n 0 _ v a l u e ;
30 f l o a t a i n 0 _ v o l t a g e ;
31 f l o a t a in0_temp ;
32
33 i f p _ a i n 0 = fopen (a in0_ in , ” r ”) ;
34 i f (i f p _ a i n 0 ==NULL) { p r i n t f (” Unable to a i n0 . \ n ”) ; }
35
36 whi l e (1)
37 {
38 f s e e k (i f p _ a i n 0 , 0 , SEEK_SET) ;
39 f s c a n f (i f p _ a i n 0 , ”%f ” , &a i n 0 _ v a l u e) ;
40 p r i n t f (”AINO r e a d i n g [o f 4095] : %f \ n ” , a i n 0 _ v a l u e) ;
41 a i n 0 _ v o l t a g e = ((a i n 0 _ v a l u e / 4 0 9 5 . 0) * 1 . 8) ;
42 p r i n t f (”AINO v o l t a g e [V] : %f \ n ” , a i n 0 _ v o l t a g e) ;
43 a in0_temp = (a i n 0 _ v o l t a g e / . 0 1 0) ;
44 p r i n t f (”AINO t empe r a t u r e [F] : %f \ n \ n ” , a in0_temp) ;
45 d e l a y _ s e c (2 . 0) ;
46 f f l u s h (i f p _ a i n 0) ;
47 }
48 f c l o s e (i f p _ a i n 0) ;
49 r e t u rn 1 ;
50 }
51
52 / / *
53 / / f u n c t i o n d e f i n i t i o n s
54 / / *
55
56 void d e l a y _ s e c (f l o a t d e l a y _ v a l u e)
57 {
58 t ime_ t now , l a t e r ;
59
60 now = t ime (NULL) ;

6.10. SERIAL COMMUNICATIONS 251

61 l a t e r = t ime (NULL) ;
62
63 whi l e (d i f f t i m e (l a t e r , now) < d e l a y _ v a l u e)
64 {
65 l a t e r = t ime (NULL) ; / / k e e p c h e c k i n g t im e
66 }
67 }
68
69 / / *

Linux has several built-in delay functions including:

• sleep(delay): delay is specified in seconds as an unsigned integer. e file “unistd.h” must
be included;

• usleep(delay): delay is specified in microseconds as an unsigned integer. e file “unistd.h”
must be included; and

• nanosleep(delay): delay is specified in nanoseconds as an unsigned integer. e file
“unistd.h” must be included.

6.10 SERIAL COMMUNICATIONS
Processors must often exchange data with peripheral devices. Data may be exchanged by using
parallel or serial techniques. With parallel techniques, an entire byte or word of data is sent si-
multaneously from the transmitting device to the receiving device. While this is efficient from a
time point of view, it requires multiple, parallel lines for data transfer which impacts system cost.

In serial transmission, a byte of data is sent a single bit at a time. Once eight bits have been
received at the receiver, the data byte is reconstructed. While this is inefficient from a time point
of view, it only requires a line (or two) to transmit the data.

Serial communication techniques provide a vital link between BeagleBone and input de-
vices and output devices. In this section, we investigate the serial communication features be-
ginning with a review of serial communication concepts and terminology. We then investigate
serial communication systems available on BeagleBone: the Universal Asynchronous Receiver
and Transmitter (UART), the Serial Peripheral Interface (SPI), and networking features. Be-
fore discussing the different serial communication features aboard BeagleBone, we review serial
communication terminology.

6.10.1 SERIAL COMMUNICATION TERMINOLOGY
In this section, we review common terminology associated with serial communication.

Asynchronousvs.SynchronousSerialTransmission: In serial communications, the trans-
mitting and receiving device must be synchronized to one another and use a common data rate

252 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

and protocol. Synchronization allows both the transmitter and receiver to be expecting data trans-
mission/reception at the same time. ere are two basic methods of maintaining “sync” between
the transmitter and receiver: asynchronous and synchronous.

In an asynchronous serial communication system, such as the UART, framing bits are used
at the beginning and end of a data byte. ese framing bits alert the receiver that an incoming
data byte has arrived and also signals the completion of the data byte reception. e data rate for
an asynchronous serial system is typically much slower than the synchronous system, but it only
requires a single wire between the transmitter and receiver.

A synchronous serial communication system maintains “sync” between the transmitter and
receiver by employing a common clock between the two devices. Data bits are sent and received
on the edge of the clock. is allows data transfer rates higher than with asynchronous techniques
but requires two lines, data and clock, to connect the receiver and transmitter.

BaudRate: Data transmission rates are typically specified as a Baud rate or bits per second
rate. For example, 9600 Baud indicates the data is being transferred at 9600 bits per second.

FullDuplex: Often serial communication systems must both transmit and receive data. To
perform transmission and reception simultaneously requires separate hardware for transmission
and reception. A single duplex system has a single complement of hardware that must be switched
from transmission to reception configuration. A full duplex serial communication system has
separate hardware for transmission and reception.

Non-return to Zero (NRZ) Coding Format: ere are many different coding standards
used within serial communications. e important point is the transmitter and receiver must use
a common coding standard so data may be interpreted correctly at the receiving end. In NRZ
coding a logic one is signaled by a logic high during the entire time slot allocated for a single bit;
whereas, a logic zero is signaled by a logic low during the entire time slot allocated for a single
bit.

e RS-232 Communication Protocol: When serial transmission occurs over a long dis-
tance, additional techniques may be used to insure data integrity. Over long distances logic levels
degrade and may be corrupted by noise. At the receiving end, it is difficult to discern a logic high
from a logic low. e RS-232 standard has been around for some time. With the RS-232 stan-
dard (EIA-232), a logic one is represented with a �12 VDC level while a logic zero is represented
by a C12 VDC level. Chips are commonly available (e.g., MAX232) that convert the 5 and 0 V
output levels from a transmitter to RS-232 compatible levels and convert back to 5 V and 0 V lev-
els at the receiver. For BeagleBone Black a MAX3232 may be used to convert 3.3 VDC signals to
RS-232 compatible levels and back [MAXIM]. e RS-232 standard also specifies other features
for this communication protocol. e standard specifies several signals including the following
[Horowitz and Hill, 1992].

• TX: transmit

• RX: receive

6.10. SERIAL COMMUNICATIONS 253

• CTS: clear to send

• RTS: request to send

Depending on the specific peripheral device connected, some or all of these pins will be
used in a given application.

e serial communication logic levels from BeagleBone are at 3.3 VDC for logic one and
0 VDC for logic zero. To communicate with an RS-232 device a series of level shifters are re-
quired. As shown in Figure 6.20a, the signals from BeagleBone must be first shifted to TTL
compatible levels (0 and 5 VDC) and then to RS-232 compatible levels.

Vcc = 3.3 VDC

C1+

C1-

C2+

C2-

+3.3 VDC to +10 VDC

voltage doubler

+10 VDC to -10 VDC

voltage inverter

V+

V-

400K

+5VDC

400K

+5VDC

RS-232

output to

RS-232

input

5K

5K

RS-232

output to

RS-232

input

MAX3232

B
ea

g
le

B
o
n
e

3.3 VDC

output

TX

RX

R
S

-2
3

2
 p

er
ip

h
er

al
 d

ev
ic

e

0.1 F

0.1 F

0.1 F 0.1 F

0.1 F

RX

TX

3.3 VDC

input

3.3 VDC

output
3.3 VDC

input

Figure 6.20: Serial communication level shifting.

Parity: To further enhance data integrity during transmission, parity techniques may be
used. Parity is an additional bit (or bits) that may be transmitted with the data byte. With a single
parity bit, a single bit error may be detected. Parity may be even or odd. In even parity, the parity

254 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

bit is set to one or zero such that the number of ones in the data byte including the parity bit
is even. In odd parity, the parity bit is set to one or zero such that the number of ones in the
data byte including the parity bit is odd. At the receiver, the number of bits within a data byte
including the parity bit are counted to insure that parity has not changed, indicating an error,
during transmission.

ASCII: e American Standard Code for Information Interchange or ASCII is a stan-
dardized, 7-bit method of encoding alphanumeric data. It has been in use for many decades,
so some of the characters and actions listed in the ASCII table are not in common use today.
However, ASCII is still the most common method of encoding alphanumeric data. e ASCII
code is provided in Figure 6.21. For example, the capital letter “G” is encoded in ASCII as 0
� 47. e “0x” symbol indicates the hexadecimal number representation. Unicode is the inter-
national counterpart of ASCII. It provides standardized 16-bit encoding format for the written
languages of the world. ASCII is a subset of Unicode. e interested reader is referred to the
Unicode home page website, www.unicode.org, for additional information on this standardized
encoding format.

6.10.2 SERIAL UART
e serial UART (or Universal Asynchronous Receiver and Transmitter) provides for full duplex
(two way) communication between a receiver and transmitter. is is accomplished by equipping
the processor with independent hardware for the transmitter and receiver. e UART is typically
used for asynchronous communication. at is, there is not a common clock between the trans-
mitter and receiver to keep them synchronized with one another. To maintain synchronization
between the transmitter and receiver, framing start and stop bits are used at the beginning and
end of each data byte in a transmission sequence as shown in Figure 6.21b. A parity bit may also
be included.

BeagleBone UART Subsystem Description
BeagleBone is equipped with six UART channels designated UART 0 through UART 5. UART
0 is dedicated to the USB port while UART 1–5 are available to the user via the expansion ports
as summarized in Figure 6.22.

To properly configure the UART system the following parameters must be set:

• baud rate,

• character size,

• parity type, and

• flow control type.

www.unicode.org

6.10. SERIAL COMMUNICATIONS 255

0x_0
0x_1
0x_2
0x_3
0x_4
0x_5
0x_6
0x_7
0x_8
0x_9
0x_A
0x_B
0x_C
0x_D
0x_E
0x_F

0x0_

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

0x1_

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

0x2_

SP
!
“
#
$
%
&
‘
(
)
*
+
‘
-
.
/

0x3_

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0x4_

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

0x5_

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0x6_

`
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o

0x7_

p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

Most significant digit

L
ea

st
 s

ig
n
if

ic
an

t
d
ig

it

t (s)
idle start 1 1 1 0 0 0 1 odd

parity
stop

a) ASCII Table

b) UART waveform for “G” with odd parity

Figure 6.21: ASCII Code. e ASCII code is used to encode alphanumeric characters. e “0x”
indicates hexadecimal notation in the C programming language [Barrett and Pack, 2006].

UART Channel 0 Serial Connection
A connection may be established between the host computer and BeagleBone Black via UART
channel 0. UART channel 0 is accessible via the 6-pin header connector located next to header
pin P9, as shown in Figure 6.23. A USB-to-TTL serial cable (USB console cable, Adafruit #954)
connects the host to BeagleBone Black. Care must be taken to insure connections are made as
shown in Figure 6.23. e red cable (5 VDC) should not be connected to the UART channel 0
header connector.

Embedded within the USB-to-TTL serial cable is a Prolific (Technology for Tomorrow)
PL-2303HX Rev A USB-to-Serial Controller chip. Drivers and installation instructions for the
cable are provided at www.prolific.com.tw. With drivers installed you can access BeagleBone
Black using the PuTTy terminal emulator software.

www.prolific.com.tw

256 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

UART

channel

UART1

Note: UART0 is accessible via the Serial Debug Port, 6 pin header.

/dev/tty01 P9, pin 26

Mux mode: 0

P9, pin 22

Mux mode: 1

P9, pin 11

Mux mode: 6

P8, pin 38

Mux mode: 4

not avail on

header

P9, pin 24

Mux mode: 0

P9, pin 21

Mux mode: 1

P9, pin 13

Mux mode: 6

P8, pin 37

Mux mode: 4

not avail on

header

P9, pin 20

Mux mode: 0

P9, pin 37

Mux mode: 1

P8, pin 35

Mux mode: 6

not avail on

header

P9, pin 19

Mux mode: 0

P9, pin 38

Mux mode: 1

P8, pin 33

Mux mode: 6

not avail on

header

/dev/tty02

/dev/tty03

/dev/tty04

/dev/tty05

UART1

UART1

UART1

UART1

serial

port

RX TX CTS RTS

Figure 6.22: BeagleBone UART summary.

UART Support in Bonescript
Earlier in the book wementioned Bonescript is a rapidly evolving, open-source development plat-
form. Bonescript consists of a JavaScript library of functions to rapidly develop a variety of physi-
cal computing applications. It will grow in capability as other users develop additional features to
enhance Bonescript. In that light, Bonescript functions to support UART serial communications
are available at: https://github.com/voodootikigod/node-serialport. e two primary
functions are:

• serialOpen(port, options, [callback]) and

• serialWrite(port, data, [callback]).

UART Support Via Termios API and dts Files in C
e UART features are usually not accessed directly but instead through a series of support func-
tions via an Applications Programming Interface (API). We use the termios API in the follow-
ing example. e API provides helpful functions for asynchronous communications. To access
termios features, the following files should be included within a program: stdio.h, termios.h, fc-
ntl.h, and unistd.h.

e BeagleBone provides UART support via device tree overlays. A listing of available
overlays is displayed using [Molloy, 2015].

cd /lib/firmware
/lib/firmware# ls *UART*

https://github.com/voodootikigod/node-serialport

6.10. SERIAL COMMUNICATIONS 257

1-gnd

2

3

4-RXD

5-TXD

6
white

Note: Do not connect the red header (5 VDC @ 500 mA)
pin to the 6-pin header. Damage may result!

red

black

green

to USB

host computer

USB to Serial Cable

(USB Console Cable,

Adafruit #954)

Figure 6.23: BeagleBone access via UART channel 0. (Illustrations used with permission of Texas
Instruments (www.TI.com).)

It must be emphasized that “slots” and “pins” must be loaded upon startup to interact with
the BeagleBone Black device tree.

In the following example we use UART1. To load and verify the device tree overlay for UART1
use:

/lib/firmware# sudo su -c ``echo BB-UART1 > $SLOTS''
/lib/firmware# cat $SLOTS

e device directory (/dev) should now have an entry for ttyO1.

www.TI.com

258 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Example 1: In this example UART1 is configured for transmission at 9600 BAUD and continu-
ously communicates the ASCII character “G.”

As a friendly reminder, before executing the sample code insure the SLOTS, PINS, and
the appropriate device tree overlays have been loaded. e SLOTS and PINS are loaded using:

export SLOTS=/sys/devices/bone_capemgr.9/slots
export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

To load the device tree overlay for UART channel 1, use the following commands [Molloy,
2015]:

cd /lib/firmware
/lib/firmware# sudo su -c ``echo BB-UART1 > $SLOTS''

Example 2: As an alternative, the UART1 device tree overlay may be loaded using
[Steinkuehler]:

config-pin overlay cape-universal
config-pin overlay BB-UART1

In this example BeagleBone UART1 is configured for tranmission and 9600 Baud and
repeatedly sends the character G via UART1 TX pin (P9, 24).

1 / / *
2 / / u a r t 1 . c � c o n f i g u r e s B e a g l e B o n e u a r t 1 f o r t r a nm i s s i o n and 9600 Baud
3 / / and r e p e a t e d l y s e n d s t h e c h a r a c t e r G v ia u a r t 1 t x p in (P9 , 24)
4 / /
5 / / Not e : B e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e SLOTS , PINS , and
6 / / t h e a p p r o p r i a t e d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
7 / / *
8
9 # in c l ude < s t d i o . h>

10 # in c l ude < s t d d e f . h>
11 # in c l ude < t ime . h>
12 # in c l ude < t e rm i o s . h>
13 # in c l ude < f c n t l . h>
14 # in c l ude < u n i s t d . h>
15 # in c l ude < s y s / t y p e s . h>
16 # in c l ude < s t r i n g . h>
17
18 i n t main (void)
19 {
20 / / d e f i n e f i l e h a n d l e f o r u a r t 1
21 FILE * o f p _u a r t 1 _ t x , * o f p _ u a r t 1 _ r x ;
22
23 / / u a r t 1 c o n f i g u r a t i o n u s i n g t e r m i o s
24 s t r u c t t e rm i o s u a r t 1 ;
25 i n t fd ;

6.10. SERIAL COMMUNICATIONS 259

26
27 / / o p en u a r t 1 f o r t x / rx , n o t c o n t r o l l i n g d e v i c e
28 i f ((fd = open (” / dev / ttyO1 ” , O_RDWR | O_NOCTTY)) < 0)
29 p r i n t f (” Unable to open u a r t 1 a c c e s s . \ n ”) ;
30
31 / / g e t a t t r i b u t e s o f u a r t 1
32 i f (t c g e t a t t r (fd , &u a r t 1) < 0)
33 p r i n t f (” Could not g e t a t t r i b u t e s o f UART1 a t ttyO1 \ n ”) ;
34
35 / / s e t Baud r a t e
36 i f (c f s e t o s p e e d (&ua r t1 , B9600) < 0)
37 p r i n t f (” Could not s e t baud r a t e \ n ”) ;
38 e l s e
39 p r i n t f (” Baud r a t e : 9600\n ”) ;
40
41 / / s e t a t t r i b u t e s o f u a r t 1
42 u a r t 1 . c _ i f l a g = 0 ;
43 u a r t 1 . c _ o f l a g = 0 ;
44 u a r t 1 . c _ l f l a g = 0 ;
45 t c s e t a t t r (fd , TCSANOW, &ua r t 1) ;
46
47 char b y t e _ ou t [] = {0 x47 } ;
48
49 / / s e t ASCII c h a r a c t e r G r e p e a t e d l y
50 whi l e (1)
51 {
52 w r i t e (fd , b y t e_ou t , s t r l e n (b y t e _ ou t) +1) ;
53 }
54
55 c l o s e (fd) ;
56 }
57
58 / / *

BeagleBone may be equipped with RS-232 compatible features using the BeagleBone
RS232 Cape. Full documentation and software support is available for the Cape [CircuitCo,
2015].

6.10.3 SERIAL PERIPHERAL INTERFACE (SPI)
e Serial Peripheral Interface or SPI also provides for two-way serial communication between
a transmitter and a receiver. In the SPI system, the transmitter and receiver share a common
clock source. is requires an additional clock line between the transmitter and receiver but al-
lows for higher data transmission rates as compared to the USART. e SPI system allows for
fast and efficient data exchange between microcontrollers or peripheral devices. ere are many
SPI compatible external systems available to extend the features of the microcontroller. For ex-

260 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

ample, a liquid crystal display or a multi-channel digital-to-analog converter could be added to
the processor using the SPI system.

SPI Operation
e SPI may be viewed as a synchronous 16-bit shift register with an 8-bit half residing in the
transmitter and the other 8-bit half residing in the receiver, as shown in Figure 6.24. e trans-
mitter is designated the master since it is providing the synchronizing clock source between the
transmitter and the receiver. e receiver is designated as the slave. A slave is chosen for reception
by taking its Slave Select line low. When the line is taken low, the slave’s shifting capability is
enabled.

SPI transmission is initiated by loading a data byte into the master configured SPI Data
Register. At that time, the SPI clock generator provides clock pulses to the master and also to the
slave via the serial clock pin. A single bit is shifted out of the master designated shift register on
the Master Out Slave In (MOSI) processor pin on every serial clock pulse. e data is received at
the MOSI pin of the slave designated device. At the same time, a single bit is shifted out of the
Master In Slave Out (MISO) pin of the slave device and into the MISO pin of the master device.
After eight master serial clock pulses, a byte of data has been exchanged between the master and
slave designated SPI devices. e serial transmission does not have to be bi-directional. In these
applications the return line from the slave to the master device is not connected.

SPI Data Register
MSB LSB

SCK

Master Device

(master: provides SCK)
Slave Device

MOSI MOSI

MISO MISO

SPI Clock Generator

system

clock

SPI Data Register
MSB LSB

SCK

SCK SCK

shift

enable

slave

select slave

select

Figure 6.24: SPI overview.

6.10. SERIAL COMMUNICATIONS 261

Bonescript SPI Support
An SPI signal may be generated onmany different BeagleBone pins using the Bonescript function
shiftOut. e format of the function is:

shiftOut(dataPin, clockPin, bitOrder, value);

e bitOrder may be set for MSBFIRST (most significant bit first) or LSBFIRST (least
significant bit first). In the example below the value 0 � AC is continuously sent out via Bea-
gleBone P8, pin 3. e SPI clock signal is sent via P8, pin 11. e bit rate in this example is
approximately 1,500 bits per second. e SPI data and clock signals may be examined using an
oscilloscope or logic analyzer.

1 / / *
2
3 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
4
5 s e t u p = f u n c t i o n () { } ;
6
7 v a r s p i _ d a t a _ p i n = ‘ ‘ P8_13 ’ ’ ;
8 v a r s p i _ c l k _ p i n = ‘ ‘ P8_11 ’ ’ ;
9

10 b . pinMode (s p i _ d a t a _ p i n , b .OUTPUT) ;
11 b . pinMode (s p i _ c l k _ p i n , b .OUTPUT) ;
12 b . s h i f tOu t (s p i _ d a t a _ p i n , s p i _ c l k _ p i n , b . LSBFIRST , 0xAC) ;
13
14 / / *

BeagleBone SPI Features in C
For additional flexibility and increased data rate, BeagleBone dedicated SPI features may be used.
BeagleBone is equipped with two SPI channels designated SPIO0 and SPI1. e SPI features
may be accessed via the header pins, as shown in Figure 6.25. e HDMI interface must be
disabled to use SPI channel 1 on BeagleBone Black.

As with the other BeagleBone systems, there is considerable support for the SPI system via
the device tree overlays. To enable the SPI system via overlays, the following commands may be
used [Steinkuehler]:

config-pin overlay cape-universal
config-pin P9.17 spi
config-pin P9.18 spi
config-pin P9.21 spi
config-pin P9.22 spi

e SPI related files are then loaded to the “/dev” directory. You can examine the directory
contents using:

262 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

BeagleBone Serial Peripheral Interface (SPI) features

Header pin

SPIO0
P9.17

P9.18

P9.21

P9.22

SPI1
P9.28

P9.29

P9.30

P9.31

Signal name

spi0_cs0

spi0_d1

spi0_d0

spi0_sclk

spi1_cs0

spi1_d0

spi1_d1

spi1_sclk

Mode

0

0

0

0

3

3

3

3

Figure 6.25: BeagleBone SPI features.

cd /dev
/dev# ls sp*

You should see entries for spidev 1.0, 1.1, 2.0, and 2.1.
To test the SPI system, locate a BeagleBone Black compatible copy of “spidev_test.c” on the

Internet. Compile and execute the code using techniques discussed earlier in the chapter. When
executed the program reports spi mode, bits per word, maximum speed, and the data transferred.
When executed the data transmitted will be reported as all “FF.” If SPI pins P9.18 (spi0_d1) is
connected to P9.21 (spio_d0) and the program executed, the data reported will be the same as
provided in the array defined within “spidev_test.c.” To further experiment with the SPI features,
modify the “spidev_test.c” program [Molloy].

ere is considerable information on this topic and C support functions available in the
following examples.

Example 1: e article “BeagleBone Black Enable SPIDEV” posted on www.elinux.org/Bea
gleBone_Black_Enable_SPIDEV provides step-by-step instructions to access SPI features on
BeagleBone Black. It also provides sample programs for testing.

Example 2: Adafruit provides an excellent example employing a device tree overlay for SPI chan-
nel 0 (SPI0). e reader is highly encouraged to work this example. It is entitled “Introduction
to the BeagleBone Black Device Tree” and is available for download from www.adafruit.com.

Example 3: LED strip. LED strips may be used for motivational (fun) optical displays, games,
or for instrumentation-based applications. In this example we control an LPD8806-based LED

www.elinux.org/BeagleBone_Black_Enable_SPIDEV
www.elinux.org/BeagleBone_Black_Enable_SPIDEV
www.adafruit.com

6.10. SERIAL COMMUNICATIONS 263

strip using Energia. We use a one meter, 32 RGB LED strip available from Adafruit (#306) for
approximately $30 USD [www.adafruit.com].

e red, blue, and green component of each RGB LED is independently set using an 8-bit
code. e most significant bit (MSB) is logic one followed by seven bits to set the LED intensity
(0–127). e component values are sequentially shifted out of BeagleBone Black using the Serial
Peripheral Interface (SPI) features. e first component value shifted out corresponds to the LED
nearest the microcontroller. Each shifted component value is latched to the corresponding R, G,
and B component of the LED. As a new component value is received, the previous value is latched
and held constant. An extra byte is required to latch the final parameter value. A zero byte .00/16

is used to complete the data sequence and reset back to the first LED [www.adafruit.com].
Only four connections are required between the BeagleBone Black and the LED strip, as

shown in Figure 6.26. e connections are color coded: red-power, black-ground, yellow-data,
and green-clock. It is important to note the LED strip requires a supply of 5 VDC and a current
rating of 2 amps per meter of LED strip. In this example we use the Adafruit #276 5V 2A
(2000 mA) switching power supply [www.adafruit.com].

In this example each RGB component is sent separately to the strip. e example illustrates
how each variable in the program controls a specific aspect of the LED strip. Here are some
important implementation notes.

• SPI must be configured for most significant bit (MSB) first.

• LED brightness is seven bits. Most significant bit (MSB) must be set to logic one.

• Each LED requires a separate R-G-B intensity component. e order of data is G-R-B.

• After sending data for all LEDs. A byte of (0 � 00) must be sent to return strip to first
LED.

• Data stream for each LED is: 1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-
R0-1-B6-B5-B4-B3-B2-B1-B0.

e SPI communication code was adapted from an example contained within “Exploring
BeagleBone Tools and Techniques for Building with Embedded Linux,” a great book by Derek
Molloy. e code example was used with permission of Derek Molloy.
1 / / *
2 / / s p i _ l e d _ s t r i p . c
3 / /� Demon s t r a t e s B e a g l e B o n e B l a c k SPI c o n f i g u r a t i o n
4 / /� Demon s t r a t e s LED s t r i p i n t e r f a c e and o p e r a t i o n
5 / /
6 / / Adap t e d f r om :
7 / /� s p i d e v _ t e s t . c [www. k e r n e l . o r g]
8 / /� O r i g i n a l s p i d e v _ t e s t . c p r og ram d e v e l o p e d by Anton V o r o n t s o v
9 / /� s p i d e v _ t e s t . c :

10 / / Th i s p r og ram i s f r e e s o f t w a r e ; y ou c an r e d i s t r i b u t e i t and / o r mo d i f y
11 / / i t und e r t h e t e rm s o f t h e GNU Gen e r a l P u b l i c L i c e n s e a s p u b l i s h e d by
12 / / t h e F r e e S o f tw a r e Founda t i o n ; e i t h e r v e r s i o n 2 o f t h e L i c e n s e .
13 / /� The SPI t r a n s m i s s i o n p o r t i o n o f t h e c o d e was w r i t t e n by Der ek Mo l l o y .
14 / /� The LED s t r i p p o r t i o n o f t h e c o d e was w r i t t e n by S t e v e B a r r e t t .
15 / /
16 / / I n s u r e u n i v e r s a l and SPI c a p e s a r e l o a d e d and SPI0 p i n s a r e c o n f i g u r e d
17 / / f o r SPI o p e r a t i o n u s i n g c o n f i g �p in u t i l i t y

www.adafruit.com
www.adafruit.com
www.adafruit.com

264 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

a) LED strip by the meter [www.adafruit.com].

b) BeagleBone Black to LED strip connection [www.adafruit.com].

to 5 VDC
power
supply

Ground

Clk P9.22 (spio_clk)

Serial Data In P9.18 (spio_d1 MOSI)

Figure 6.26: BeagleBone Black controlling LED strip [www.adafruit.com].

www.adafruit.com

6.10. SERIAL COMMUNICATIONS 265

18 / / P9 . 17 s p i 0 _ c s 0
19 / / P9 . 18 s p i 0 _ d1
20 / / P9 . 21 s p i 0 _ d0
21 / / P9 . 22 s p i o _ s c l k
22 / /
23 / /LED s t r i p LDP8806 � a v a i l a b l e f r om www. a d a f r u i t . com (#306)
24 / /
25 / / C o n n e c t i o n s :
26 / / � Ex t e r n a l 5 VDC s u p p l y � A d a f r u i t 5 VDC, 2A (#276) � r e d
27 / / � Ground � b l a c k
28 / / � S e r i a l Data In � B e a g l eB o n e p in P9 . 18 (s p i o _ d 1 MOSI) � y e l l o w
29 / / � CLK � Be a g l eB o n e p in P9 . 22 (s p i o _ c l k) � g r e e n
30 / /
31 / / V a r i a b l e s :
32 / / � LED_b r i g h tn e s s � s e t i n t e n s i t y f r om 0 t o 127
33 / / � s e gm e n t _ d e l a y � d e l a y b e tw e en LED RGB s e gm e n t s
34 / / � s t r i p _ d e l a y � d e l a y b e tw e en LED s t r i p u p d a t e
35 / /
36 / / N o t e s :
37 / / � SPI mus t b e c o n f i g u r e d f o r Most s i g n i f i c a n t b i t (MSB) f i r s t
38 / / � LED b r i g h t n e s s i s s e v e n b i t s . Most s i g n i f i c a n t b i t (MSB)
39 / / mus t b e s e t t o l o g i c on e
40 / / � Each LED r e q u i r e s a s e p a r a t e R�G�B i n t e n s i t y c omp on en t . The o r d e r
41 / / o f d a t a i s G�R�B .
42 / / � A f t e r s e n d i n g d a t a f o r a l l s t r i p LEDs . A b y t e o f (0 x00) mus t
43 / / b e s e n t t o r e t u r n s t r i p t o f i r s t LED.
44 / / � Data s t r e am f o r e a c h LED i s :
45 / /1�G6�G5�G4�G3�G2�G1�G0�1�R6�R5�R4�R3�R2�R1�R0�1�B6�B5�B4�B3�B2�B1�B0
46 / /
47 / / Not e : B e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e a p p r o p r i a t e
48 / / d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
49 / /
50 / / *
51
52 / / i n c l u d e f i l e s
53 # inc lude < s t d i o . h> / / i n p u t and o u t p u t o p e r a t i o n s
54 # inc lude < f c n t l . h> / / f u n c t i o n o p e r a t i o n s
55 # inc lude < u n i s t d . h> / / s y m b o l i c c o n s t a n t s and t y p e s
56 # inc lude < s y s / i o c t l . h> / / i n p u t and o u t p u t c o n t r o l
57 # inc lude < s t d i n t . h> / / d e f i n e s i n t e g r a l t y p e a l i a s e s
58 # inc lude < l i n u x / s p i / s p i d e v . h> / / SPI s u p p o r t
59
60 # de f i n e SPI_PATH ” / dev / s p i d e v 1 . 0 ” / / d e f i n e p a t h t o SPI f i l e s
61 # de f i n e LED_s t r i p_ l a t ch 0 x00
62
63 / / f u n c t i o n p r o t o t y p e s
64 void c l e a r _ s t r i p (void) ;
65 i n t SP I _ t r a n s f e r (unsigned char) ;
66
67 / / SPI f i l e v a r i a b l e s
68 unsigned i n t fd ;
69 unsigned char n u l l = 0 x00 ;
70
71 / /LED s t r i p v a r i a b l e s
72 unsigned char s t r i p _ l e n g t h = 32 ; / / number o f RGB LEDs in s t r i p
73 unsigned char s e gmen t_de l a y = 1 ; / / d e l a y in s e c o n d s
74 unsigned char s t r i p _ d e l a y = 1 ; / / d e l a y in s e c o n d s
75 unsigned char LED_br ightness ; / / 0 t o 127
76 unsigned char p o s i t i o n ; / /LED p o s i t i o n in s t r i p
77
78 / / SPI c o n f i g u r a t i o n
79 / / d e f i n e t r a n s f e r s t r u c t u r e
80 i n t t r a n s f e r (i n t fd , unsigned char send [] , unsigned char r e c e i v e [] , i n t l e n g t h)
81 {
82 s t r u c t s p i _ i o c _ t r a n s f e r t r a n s f e r ; / / t r a n s f e r s t r u c t u r e
83 t r a n s f e r . t x _ bu f = (unsigned long) send ; / / s e n d i n g da t a b u f f e r
84 t r a n s f e r . r x _ bu f = (unsigned long) r e c e i v e ; / / r e c e i v i n g d a t a b u f f e r
85 t r a n s f e r . l e n = l e n g t h ; / / b u f f e r l e n g t h
86 t r a n s f e r . speed_hz = 125000 ; / / s p e e d [Hz]
87 t r a n s f e r . b i t s _ p e r _wo r d = 8 ; / / b i t s p e r word
88 t r a n s f e r . d e l a y _ u s e c s = 0 ; / / d e l a y [u s]
89
90 / / s e n d SPI m e s s a g e (f i e l d s , b u f f e r s)
91 i n t s t a t u s = i o c t l (fd , SPI_IOC_MESSAGE(1) , &t r a n s f e r) ;
92 i f (s t a t u s < 0)
93 {
94 p e r r o r (” SPI : SPI_IOC_MESSAGE Fa i l e d ”) ;
95 r e t u rn �1;
96 }
97 r e t u rn s t a t u s ;
98 }
99

100 / / main f u n c t i o n
101 i n t main ()
102 {
103 unsigned i n t i = 0 ; / / f i l e h and l e , l o o p c o u n t e r
104 unsigned char v a l u e ; / / s e n d i n g o n l y a s i n g l e c h a r
105 u i n t 8 _ t b i t s = 8 , mode = 3 ; / /8� b i t s p e r word , SPI mode 3

266 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

106 u i n t 3 2 _ t speed = 125000 ; / / S p e e d i s 1 MHz
107
108 / / S e t up SPI p r o p e r t i e s
109 i f ((fd = open (SPI_PATH, O_RDWR)) <0)
110 {
111 p e r r o r (” SPI Er ro r : Can ’ t open d e v i c e . ”) ;
112 r e t u rn �1;
113 }
114
115 i f (i o c t l (fd , SPI_IOC_WR_MODE, &mode) ==�1)
116 {
117 p e r r o r (” SPI : Can ’ t s e t SPI mode . ”) ;
118 r e t u rn �1;
119 }
120
121 i f (i o c t l (fd , SPI_IOC_RD_MODE, &mode) ==�1)
122 {
123 p e r r o r (” SPI : Can ’ t g e t SPI mode . ”) ;
124 r e t u rn �1;
125 }
126
127 i f (i o c t l (fd , SPI_IOC_WR_BITS_PER_WORD, &b i t s) ==�1)
128 {
129 p e r r o r (” SPI : Can ’ t s e t b i t s p e r word . ”) ;
130 r e t u rn �1;
131 }
132
133 i f (i o c t l (fd , SPI_IOC_RD_BITS_PER_WORD, &b i t s) ==�1)
134 {
135 p e r r o r (” SPI : Can ’ t g e t b i t s p e r word . ”) ;
136 r e t u rn �1;
137 }
138
139 i f (i o c t l (fd , SPI_IOC_WR_MAX_SPEED_HZ, &speed) ==�1)
140 {
141 p e r r o r (” SPI : Can ’ t s e t max speed HZ”) ;
142 r e t u rn �1;
143 }
144
145 i f (i o c t l (fd , SPI_IOC_RD_MAX_SPEED_HZ, &speed) ==�1)
146 {
147 p e r r o r (” SPI : Can ’ t g e t max speed HZ. ”) ;
148 r e t u rn �1;
149 }
150
151 / / V e r i f y SPI p r o p e r t i e s
152 p r i n t f (” SPI Mode i s : %d \ n ” , mode) ;
153 p r i n t f (” SPI B i t s i s : %d \ n ” , b i t s) ;
154 p r i n t f (” SPI Speed i s : %d \ n ” , speed) ;
155 p r i n t f (” Counting th rough a l l o f the LEDs : \ n ”) ;
156
157
158 SP I _ t r a n s f e r (LED_s t r i p_ l a t ch) ; / / r e s e t LED s t r i p t o f i r s t s e gm e n t
159 c l e a r _ s t r i p () ; / / a l l s t r i p LEDs t o b l a c k
160 s l e e p (1) ;
161
162 / / i n c r e m e n t g r e e n i n t e n s i t y o f s t r i p LEDs
163 f o r (LED_br ightness = 0 ; LED_br ightness <= 60 ; LED_brightness = LED_brightness + 10)
164 {
165 f o r (p o s i t i o n = 0 ; p o s i t i o n < s t r i p _ l e n g t h ; p o s i t i o n = p o s i t i o n +1)
166 {
167 SP I _ t r a n s f e r (0 x80 | LED_br ightness) ; / / Gre en � MSB 1
168 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / Red � none
169 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / B l u e � none
170 s l e e p (s e gmen t_de l a y) ;
171 }
172 SP I _ t r a n s f e r (LED_s t r i p_ l a t ch) ; / / r e s e t t o f i r s t s e gm e n t
173 s l e e p (s t r i p _ d e l a y) ;
174 }
175 c l e a r _ s t r i p () ; / / a l l s t r i p LEDs t o b l a c k
176 s l e e p (1) ;
177
178 / / i n c r em e n t r e d i n t e n s i t y o f s t r i p LEDs
179 f o r (LED_br ightness = 0 ; LED_br ightness <= 60 ; LED_brightness = LED_brightness + 10)
180 {
181 f o r (p o s i t i o n = 0 ; p o s i t i o n < s t r i p _ l e n g t h ; p o s i t i o n = p o s i t i o n +1)
182 {
183 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / Gre en � none
184 SP I _ t r a n s f e r (0 x80 | LED_br ightness) ; / / Red � MSB1
185 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / B l u e � none
186 s l e e p (s e gmen t_de l a y) ;
187 }
188 SP I _ t r a n s f e r (LED_s t r i p_ l a t ch) ; / / r e s e t t o f i r s t s e gm e n t
189 s l e e p (s t r i p _ d e l a y) ;
190 }
191 c l e a r _ s t r i p () ; / / a l l s t r i p LEDs t o b l a c k
192 s l e e p (1) ;
193

6.11. PRECISION TIMING 267

194 / / i n c r em e n t b l u e i n t e n s i t y o f s t r i p LEDs
195 f o r (LED_br ightness = 0 ; LED_br ightness <= 60 ; LED_brightness = LED_brightness + 10)
196 {
197 f o r (p o s i t i o n = 0 ; p o s i t i o n < s t r i p _ l e n g t h ; p o s i t i o n = p o s i t i o n +1)
198 {
199 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / Gre en � none
200 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / Red � none
201 SP I _ t r a n s f e r (0 x80 | LED_br ightness) ; / / B l u e � MSB1
202 s l e e p (s e gmen t_de l a y) ;
203 }
204 SP I _ t r a n s f e r (LED_s t r i p_ l a t ch) ; / / r e s e t t o f i r s t s e gm e n t
205 s l e e p (s t r i p _ d e l a y) ;
206 }
207 c l e a r _ s t r i p () ; / / a l l s t r i p LEDs t o b l a c k
208 s l e e p (1) ;
209 }
210
211 / / *
212
213 void c l e a r _ s t r i p (void)
214 {
215 / / c l e a r s t r i p
216 f o r (p o s i t i o n = 0 ; p o s i t i o n < s t r i p _ l e n g t h ; p o s i t i o n = p o s i t i o n +1)
217 {
218 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / Gre en � none
219 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / Red � none
220 SP I _ t r a n s f e r (0 x80 | 0 x00) ; / / B l u e � none
221 }
222 SP I _ t r a n s f e r (LED_s t r i p_ l a t ch) ; / / La t c h wi th z e r o
223 s l e e p (1) ; / / c l e a r d e l a y
224 }
225
226 / / *
227 / / S P I _ t r a n s f e r : t r a n s m i t s a s i n g l e b y t e o f d a t a
228 / / *
229
230 i n t SP I _ t r a n s f e r (unsigned char SPI_da ta)
231 {
232 i f (t r a n s f e r (fd , (unsigned char *) &SPI_data , &nu l l , 1) ==�1)
233 {
234 p e r r o r (” F a i l e d to upda t e the d i s p l a y ”) ;
235 r e t u rn �1;
236 }
237 }
238 / / *

6.11 PRECISION TIMING
Processors may be used to accomplish time related tasks including generating precision digital
signals, generating pulse widths of a specific duration or measuring the parameters of an incoming
signal. Also, pulse width modulation (PWM) techniques may be used to vary the speed of a motor
or control specialized motors such as a servo motor. In this section we describe some of the timing
features available on BeagleBone. We begin with a review of timing related terminology followed
by a review of some of the BeagleBone timing features. We conclude with several timing related
examples. In the next section we discuss BeagleBone’s PWM features.

6.11.1 TIMING-RELATED TERMINOLOGY
In this section, we review timing related terminology including frequency, period, and duty cycle.

Frequency: Consider a signal x.t/ that repeats itself. We call this signal periodic with
period T, if it satisfies

x.t/ D x.t C T /:

To measure the frequency of a periodic signal, we count the number of times a particular
event repeats within a one second period. e unit of frequency is Hertz or cycles per second. For

268 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

example, a sinusoidal signal with a 60 Hz frequency means that a full cycle of a sinusoid signal
repeats itself 60 times each second or every 16.67 ms. e period of the signal is 16.67 ms.

Period: e reciprocal of frequency is the period of a waveform. If an event occurs with a
rate of 1 Hz, the period of that event is 1 s. To find a period, given the frequency of a signal, or vice
versa, we simply need to remember their inverse relationship f D

1
T

where f and T represent a
frequency and the corresponding period, respectively.

DutyCycle: Inmany applications, periodic pulses are used as control signals. A good exam-
ple is the use of a periodic pulse to control a servo motor. To control the direction and sometimes
the speed of a motor, a periodic pulse signal with a changing duty cycle over time is used. e
periodic pulse signal shown in Figure 6.27a is on for 50% of the signal period and off for the rest
of the period. e pulse shown in Figure 6.27 b is on for only 25% of the same period as the signal
in Figure 6.27a and off for 75% of the period. e duty cycle is defined as the percentage of the
period a signal is on or logic high. erefore, we call the signal in Figure 6.27a as a periodic pulse
signal with a 50% duty cycle and the corresponding signal in Figure 6.27b, a periodic pulse signal
with a 25% duty cycle. ese features are discussed in more detail in the PWM section.

100 %

50 %

(a)

25 %

(b)

100 %

Figure 6.27: Two signals with the same period but different duty cycles. e top figure (a) shows a
periodic signal with a 50% duty cycle (the signal is logic high for 50% of the total period) and the
lower figure (b) displays a periodic signal with a 25% duty cycle [Barrett and Pack, 2006].

6.11. PRECISION TIMING 269

6.11.2 BEAGLEBONE TIMING CAPABILITY
Depending on version and power supply source, BeagleBone is clocked from 500 to 1 GHz. is
allows BeagleBone to measure the characteristics of high-frequency input signals or generate
high-frequency digital signals. We limit our discussion to the timing functions available in C and
also the Linux system.

Earlier in the chapter we provided an example to blink an LED at 5 s intervals (led3.c).
In this example we used the timing features available within the C programming language. e
“time” function in ANSI C returns the current calendar time in seconds that have elapsed since
January 1, 1970. Time hacks may be taken at different times for use in delay functions or to
measure intervals with the resolution of seconds. e ANSI C library also provides a “difftime”
function that provides the difference in time between two time hacks. e difference is in seconds
as a double type variable [Kelley and Pohl, 1998]. e <time.h> header file must be included to
use these features.

To achieve better time resolution the Linux “gettimeofday” functionmay be used.e func-
tion returns the current time in seconds and microseconds in a timeval structure since January 1,
1970.

1 s t r u c t t im e v a l {
2 t ime_ t t v _ s e c ; / / s e c o n d s
3 s u s e c o nd s _ t t v _ u s e c ; / / m i c r o s e c o n d s
4 } ;

To use these features the <sys/time.h> header file must be included.

Example: In the following example, the “gettimeofday” function is used to generate a
100 Hz, 50% duty cycle signal on header P8, pin 12 (GPIO1_12 designated as gpio44). e
signal may be easily changed to 100 kHz signal simply by changing the argument of the “de-
lay_us” from 5000 to 5.

1 / / *
2 / / sq_wave . c : g e n e r a t e s a 100 Hz , 50% du t y c y c l e s i g n a l on h e a d e r
3 / / P8 , p in 12 (GPIO1_12 d e s i g n a t e d a s g p i o 4 4) .
4 / / *
5
6 # in c l ude < s t d i o . h>
7 # in c l ude < s t d d e f . h>
8 # in c l ude < t ime . h>
9 # in c l ude < s y s / t ime . h>

10
11 # de f i n e OUTPUT ” out ”
12 # de f i n e INPUT ” in ”
13
14 void d e l a y _ u s (i n t) ;
15

270 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

16 i n t main (void)
17 {
18 / / d e f i n e f i l e h a n d l e s
19 FILE * o f p_ e xpo r t , * o f p_gp i o44_v a l u e , * o f p _ g p i o 4 4 _ d i r e c t i o n ;
20
21 / / d e f i n e p in v a r i a b l e s
22 i n t pin_number = 44 , l o g i c _ s t a t u s = 1 ;
23 char * p i n _ d i r e c t i o n = OUTPUT;
24
25 o f p _ e x p o r t = fopen (” / s y s / c l a s s / gp io / e x p o r t ” , ”w”) ;
26 i f (o f p _ e x p o r t == NULL) { p r i n t f (” Unable to open e x p o r t . \ n ”) ; }
27 f s e e k (o f p_ e xpo r t , 0 , SEEK_SET) ;
28 f p r i n t f (o f p_ e xpo r t , ”%d ” , pin_number) ;
29 f f l u s h (o f p _ e x p o r t) ;
30
31 o f p _ g p i o 4 4 _ d i r e c t i o n = fopen (” / s y s / c l a s s / gp io / gp io44 / d i r e c t i o n ” , ”w”) ;
32 i f (o f p _ g p i o 4 4 _ d i r e c t i o n == NULL) { p r i n t f (” Unable to open

g p i o 4 4 _ d i r e c t i o n . \ n ”) ; }
33 f s e e k (o f p _ g p i o 4 4 _d i r e c t i o n , 0 , SEEK_SET) ;
34 f p r i n t f (o f p _ g p i o 4 4 _d i r e c t i o n , ”%s ” , p i n _ d i r e c t i o n) ;
35 f f l u s h (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
36
37 o f p _ gp i o 44_ v a l u e = fopen (” / s y s / c l a s s / gp io / gp io44 / v a l u e ” , ”w”) ;
38 i f (o f p _ gp i o 44_ v a l u e == NULL) { p r i n t f (” Unable to open gp i o 44_ v a l u e . \ n ”)

; }
39 f s e e k (o f p_gp i o44_v a l u e , 0 , SEEK_SET) ;
40 l o g i c _ s t a t u s = 1 ;
41 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s) ;
42 f f l u s h (o f p _ gp i o 44_ v a l u e) ;
43
44
45 whi l e (1)
46 {
47 d e l a y _ u s (5000) ;
48 i f (l o g i c _ s t a t u s == 1) l o g i c _ s t a t u s = 0 ;
49 e l s e l o g i c _ s t a t u s = 1 ;
50 / / w r i t e t o g p i o 4 4
51 f p r i n t f (o f p_gp i o44_v a l u e , ”%d ” , l o g i c _ s t a t u s) ;
52 f f l u s h (o f p _ gp i o 44_ v a l u e) ;
53 }
54 f c l o s e (o f p _ e x p o r t) ;
55 f c l o s e (o f p _ g p i o 4 4 _ d i r e c t i o n) ;
56 f c l o s e (o f p _ gp i o 44_ v a l u e) ;
57 r e t u rn 1 ;
58 }
59
60 / / *
61

6.12. PULSE WIDTH MODULATION (PWM) 271

62 void d e l a y _ u s (i n t d e s i r e d _ d e l a y _ u s)
63 {
64 s t r u c t t im e v a l t v _ s t a r t ; / / s t a r t t im e h a c k
65 s t r u c t t im e v a l tv_now ; / / c u r r e n t t im e h a c k
66 i n t e l a p s e d _ t ime _u s ;
67
68 g e t t im e o f d a y (& t v _ s t a r t , NULL) ;
69 e l a p s e d _ t ime _u s = 0 ;
70
71 whi l e (e l a p s e d _ t im e_u s < d e s i r e d _ d e l a y _ u s)
72 {
73 g e t t im e o f d a y (&tv_now , NULL) ;
74 i f (tv_now . t v _ u s e c >= t v _ s t a r t . t v _ u s e c)
75 e l a p s e d _ t ime _u s = tv_now . t v _ u s e c � t v _ s t a r t . t v _ u s e c ;
76 e l s e
77 e l a p s e d _ t ime _u s = (1000000 � t v _ s t a r t . t v _ u s e c) + tv_now . t v _ u s e c ;
78 / / p r i n t f (” s t a r t : %l d \ n ” , t v _ s t a r t . t v _ u s e c) ;
79 / / p r i n t f (” now : %l d \ n ” , tv_now . t v _ u s e c) ;
80 / / p r i n t f (” d e s i r e d : %d \ n ” , d e s i r e d _ d e l a y _m s) ;
81 / / p r i n t f (” e l a p s e d : %d \ n \ n ” , e l a p s e d _ t i m e _m s) ;
82 }
83 }
84
85 / / *

6.12 PULSE WIDTH MODULATION (PWM)
In this section, we discuss a method to control the speed of a DC motor using a pulse width mod-
ulated (PWM) signal. If we turn on a DC motor and provide the required voltage, the motor will
run at its maximum speed. Suppose we turn the motor on and off rapidly, by applying a periodic
signal. e motor at some point can not react fast enough to the changes of the voltage values
and will run at the speed proportional to the average time the motor was turned on. Similarly, by
changing the duty cycle of the periodic signal, we can control the speed of a DC motor. Suppose
again we want to generate a speed profile shown in Figure 6.28. As shown in the figure, we want
to accelerate the speed, maintain the speed, and decelerate the speed for a fixed amount of time.

As an example, for passenger comfort, an elevator control system does not immediately
operate the elevator motor at full speed. e elevator motor speed will ramp up gradually from
stop to desired speed. As the elevator approaches the desired floor, it will gradually ramp back
down to stop.

Earlier in this chapter we discussed the signal parameters of frequency and duty cycle. A
PWM signal maintains a constant baseline frequency. e duty cycle of the signal is varied as
required by the specific application. Also, the polarity of the signal may be active high or active
low.

272 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

pulse width modulated signal

time

m
o

to
r

v
el

o
ci

ty

acceleration

period

constant speed

period deceleration

period

DC motor

speed profile

ground

Figure 6.28: Speed profile of a DC motor over time with a PWM signal applied [Barrett and Pack,
2006].

Pin Number

P9.22, P9.31

P9.21, P9.29

P9.42

P9.14, P8.36

P9.16, P8.34

P8.19, P8.45

P8.13, P8.46

P9.28

Pin Name

EHRPWM0A

EHRPWM0B

ECAPPWM0

EHRPWM1A

EHRPWM1B

EHRPWM2A

EHRPWM2B

ECAPPWM2

Export Number

0

1

2

3

4

5

6

7

Figure 6.29: BeagleBone Black PWM features.

6.12.1 BEAGLEBONE PWM SUBSYSTEM (PWMSS) DESCRIPTION
e description provided here was adapted from the AM335X PWMSS Driver’s Guide. Beagle-
Bone is equipped the PWMSS system. It is subdivided into the:

• enhanced high resolution PWM (eHRPWM) system,

• enhanced Captured (eCAP) system, and

6.12. PULSE WIDTH MODULATION (PWM) 273

• enhanced Quadrature Encoded Pulse (eQEP) system.

Due to space limitations we only discuss the eHRPWM system in detail. However, a sum-
mary of BeagelBone Black features is provided in Figure 6.29.e eHRPWMsystem is supported
by 16-bit timers for period and frequency. e eHRPWM system consists of two instances of
two channels each. e instances and channels are designated as:

ehrpwm.i:j

where i is the instance and j (0 or 1) is the channel.
For example, in BeagleBone, EHRPWM1A (P9, pin 14) is designated ehrpwm.1:0 and

EHRPWM1B (P9, pin 16) is designated ehrpwm.1:1.
To configure and use the PWM system a four-step process is followed.

1. Configure the PWM pin for output.

2. Request the PWM device.

3. Configure the PWM device.

4. Start (and Stop) the PWM device.

e steps are accomplished using the BeagleBone Linux file system. We provide the Linux
commands to accomplish each step in an upcoming section.

6.12.2 BONESCRIPT PWM SUPPORT
A PWM signal may be generated via Bonescript using the analogWrite function. In an earlier
example we used the analogWrite function to modulate the intensity of an LED. e “analog-
Write” function generates a 1 kHz pulse width modulated signal at the specified pin. e duty
cycle (the percentage of time the 1 kHz signal is a logic high within a period) is set using a value
from 0–1. In the next chapter we provide a laser light show example using the PWM features of
Bonescript.

6.12.3 PWM DEVICE TREE OVERLAY AND C SUPPORT FUNCTIONS
is section is based on information provided in “Working with PWM on a BeagleBone Black
[http://briancode.wordpress.com].” As in previous examples, the appropriate device tree
overlay must first be loaded and then related files configured. We follow the same approach here.

Begin by loading the universal cape using the command [Steinkuehler]:

#echo cape-universaln > /sys/devices/bone_capemgr.*/slots

Once the overlay is loaded, accompanying support files related to the overlay may be ex-
amined at: “/sys/devices/ocp.*” e following command sequence may be used [Molloy, 2015]:

http://briancode.wordpress.com

274 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

#cd /sys/devices/ocp.*
/sys/devices/ocp.3# ls

e “config-pin” utility allows the user to determine the state of a specific BeagleBone Black
pin or change its multiplexer configuration. To obtain a list of pin settings for the loaded universal
cape, the following command may be used [Steinkuehler]:

#config-pin -l

e configuration options for a specific pin may be examined using [Steinkuehler]:

#config-pin -l <pin>

For this PWM example, we examine P9.14, EHRPWM1A, export number 3 (from Fig-
ure 6.29).

#config-pin -l P9.14
default gpio gpio_pu gpio_pd pwm

e pin is configured for PWM operation using:

#config-pin P9.14 pwm

By exporting “3” to the pwm export file, the support files for the PWM channel are estab-
lished in directory =sys=class=pwm=pwm3: is is accomplished using:

echo 3 > /sys/class/pwm/export
cd /sys/class/pwm/pwm3
device duty_ns period_ns polarity power run subsystem uevent

PWM parameters (duty cycle and period) may then be loaded to appropriate files in units
of nanoseconds.

Example: To set a 10 kHz frequency and a 20% duty cycle, load the following constants:

#cd /sys/class/pwm/pwm3/
/sys/class/pwm/pwm3/# echo 20000 > duty_ns
/sys/class/pwm/pwm3/# echo 100000 > period_ns
/sys/class/pwm/pwm3/# echo 0 > polarity
/sys/class/pwm/pwm3/# echo 1 > run

e PWM signal may be stopped using:

/sys/class/pwm/pwm3/# echo 0 > run

Example: e following example uses BeagleBone Black PWM features to provide a “fade”
effect on PWM pin P9, pin 14.

As a friendly reminder, before executing the sample code insure the appropriate device tree
overlays have been loaded.

6.12. PULSE WIDTH MODULATION (PWM) 275

1 / / *
2 / / pwm . c
3 / /
4 / / Th i s u s e s PWM t o o u t p u t a ” f a d e ” e f f e c t t o P9_14
5 / /
6 / / Not e : B e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e a p p r o p r i a t e
7 / / d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
8 / / *
9

10 # in c l ude < s t d i o . h>
11 # in c l ude < s t d d e f . h>
12 # in c l ude < t ime . h>
13
14 # de f i n e OUTPUT ” out ”
15 # de f i n e INPUT ” in ”
16
17 i n t main (void)
18 {
19 / / d e f i n e f i l e h a n d l e s
20 FILE * pwm_period , * pwm_duty , * pwm_pola r i t y , * pwm_run ;
21
22 / / d e f i n e p in v a r i a b l e s
23 i n t p e r i o d = 500000 , du ty = 250000 , p o l a r i t y = 1 , run = 1 ;
24 i n t i n c r emen t = 1 ;
25
26 pwm_period = fopen (” / s y s / c l a s s /pwm/pwm3/ p e r i o d_n s ” , ”w”) ;
27 i f (pwm_period == NULL) { p r i n t f (” Unable to open pwm pe r i o d . \ n ”) ; }
28 f s e e k (pwm_period , 0 , SEEK_SET) ;
29 f p r i n t f (pwm_period , ”%d ” , p e r i o d) ;
30 f f l u s h (pwm_period) ;
31
32 pwm_duty = fopen (” / s y s / c l a s s /pwm/pwm3/ du t y_n s ” , ”w”) ;
33 i f (pwm_duty == NULL) { p r i n t f (” Unable to open pwm duty c y c l e . \ n ”) ; }
34 f s e e k (pwm_duty , 0 , SEEK_SET) ;
35 f p r i n t f (pwm_duty , ”%d ” , du ty) ;
36 f f l u s h (pwm_duty) ;
37
38 pwm_po l a r i t y = fopen (” / s y s / c l a s s /pwm/pwm3/ p o l a r i t y ” , ”w”) ;
39 i f (pwm_po l a r i t y == NULL) { p r i n t f (” Unable to open pwm p o l a r i t y . \ n ”) ; }
40 f s e e k (pwm_pola r i t y , 0 , SEEK_SET) ;
41 f p r i n t f (pwm_pola r i t y , ”%d ” , p o l a r i t y) ;
42 f f l u s h (pwm_po l a r i t y) ;
43
44 pwm_run = fopen (” / s y s / c l a s s /pwm/pwm3/ run ” , ”w”) ;
45 i f (pwm_run == NULL) { p r i n t f (” Unable to open pwm run . \ n ”) ; }
46 f s e e k (pwm_run , 0 , SEEK_SET) ;
47 f p r i n t f (pwm_run , ”%d ” , run) ;
48 f f l u s h (pwm_run) ;

276 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

49
50 whi l e (1)
51 {
52 i f (du ty >= p e r i o d)
53 {
54 in c r emen t = �1; / / s e t t o d e c r em e n t when du t y r e a c h e s p e r i o d
55 }
56 e l s e i f (du ty <= 0)
57 {
58 in c r emen t = 1 ; / / s e t t o i n c r em e n t when du t y r e a c h e s 0
59 }
60 du ty += in c r emen t ; / / u p d a t e d u t y c y c l e
61 f s e e k (pwm_duty , 0 , SEEK_SET) ;
62 f p r i n t f (pwm_duty , ”%d ” , du ty) ;
63 f f l u s h (pwm_duty) ;
64 }
65
66 f c l o s e (pwm_period) ;
67 f c l o s e (pwm_duty) ;
68 f c l o s e (pwm_po l a r i t y) ;
69 f c l o s e (pwm_run) ;
70
71 r e t u rn 1 ;
72 }
73 / /

* *

6.13 INTERNET OF THINGS—NETWORKING
A hot new concept in the microcontroller world is the Internet of ings (IoT). IoT describes a
world in which embedded computing devices are part of the Internet structure. is allows for
embedded computer controlled systems to be monitored and controlled via the existing Internet
structure. is section describes the multiple capabilities of BeagleBone to be connected within
small (I2C and CAN), medium (LAN), and large (Internet) capabilities. Specifically, BeagleBone
is equipped with several networking systems the I2C for small area (circuit board) networking,
the Controller Area Network (CAN) for system level networking the Ethernet 10/100 PHY for
local area networks (LAN), and Internet capability. We discuss each system in turn.

6.13.1 INTER-INTEGRATED CIRCUIT (I2C) BUS
e Inter-IC bus (I2C) provides a method to interconnect multiple system components together
residing in a small, circuit board size area. e I2C system is also referred to as the IIC bus or the
two-wire interface (TWI). e I2C system consists of a two wire 100 k bps (bit per second) bus.
e 100 k bps bus speed is termed the standard mode but the bus may also operate at higher data

6.13. INTERNET OF THINGS—NETWORKING 277

rates. ere are multiple I2C compatible peripheral components (e.g., LCD displays, sensors,
etc.) [I2C, 2000].

A large number of devices (termed nodes)may be connected to the I2C bus.e I2C system
uses a standard protocol to allow the nodes to send and receive data from the other devices. All
nodes on the bus are assigned a unique 7-bit address. e eighth bit of the address register is used
to specify the operation to be performed (read or write). Additional devices may be added to the
I2C based system as it evolves [I2C, 2000].

e basic I2C bus architecture is shown in Figure 6.30. e two wire bus consists of the
serial clock line (SCL) and the serial data line (SDA). ese lines are pulled up to logic high by
the SCL and the SDA pull up resistors. Nodes connected to the bus can drive either of the bus
lines to ground (logic 0). Devices within an I2C bus configuration must share a common ground
[I2C, 2000].

I2C Node

Interrupt

bus clock

SCL

SDA

Serial Data (SDA)

SCL

SDA

SCL

pull up

resistor

SDA

pull up

resistor

System

Supply

Voltage

Serial Clock (SCL) Serial Clock (SCL)

Serial Data (SDA)

I2C Node

Interrupt

bus clock

Figure 6.30: I2C configuration.

BeagleBone I2C Subsystem Description
BeagleBone is equipped with two I2C channels designated I2C1 and I2C2. e I2C2 channel
is dedicated for EEPROM use and should not be tampered with. e I2C1 channel is available
at P9 pin 17 for I2C1_SCL (Mode 2) and P9 pin 18 for I2C1_SDA (Mode 2). ere is consid-
erable additional information on this topic and C support functions available through the Linux
Documentation Project [Coley, 2014].

278 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

I2C Bonescript Support
Earlier in the book we mentioned Bonescript is a rapidly evolving, open source development
platform. Bonescript consists of a JavaScript library of functions to rapidly develop a variety of
physical computing applications. It will grow in capability as other users develop additional fea-
tures to enhance Bonescript. In that light, Bonescript functions to support I2C communications
are available at: https://github.com/korevec/node-i2c. Functions supporting I2C com-
munications include:

• i2cOpen(port, address, options, [callback]),

• i2cScan(port, [callback]),

• i2cWriteByte(port, byte, [callback]),

• i2cWriteBytes(port, command, bytes, [callback]),

• i2cReadByte(port, [callback]),

• i2cReadBytes(port, command, length, [callback]), and

• i2cStream(port, command, length, [callback]).

6.13.2 CONTROLLER AREA NETWORK (CAN) BUS
e Controller Area Network or CAN bus was originally developed for the automotive industry
in the 1980’s. ere are two different CAN protocols: A the basic or standard version and B the
extended or full version. e CAN protocol allows a number of processors or nodes to be linked
via a twisted pair cable. e nodes may exchange data serially at up to 1 Mbit/s data rates. Each
node on the CAN bus can serve as the master and can send or receive data messages over the bus
[COMSOL, 2015].

e CAN message format consists of four different types of frames: data, remote, error
and overload. e data frame is shown in Figure 6.31. Each frame consists of a series of fields.
Embedded in the message is an identifier. For an incoming frame, each node will examine the
identifier to determine if the frame is intended for the node. is allows a message to be sent to
a specific node or group of nodes [COMSOL, 2015].

BeagleBone CAN Subsystem Description
BeagleBone may be equipped with CAN features using either the TT3201 CAN Cape or the
BeagleBone CAN Bus Cape. Each Cape is supported with full documentation and software sup-
port [Coley, 2014; CircuitCo, 2015].

6.13.3 ETHERNET
Earlier in this chapter we discussed methods of connecting BeagleBone Black to a host computer
(desktop or laptop) via a mini-USB cable. is is a good method of using the host’s keyboard

https://github.com/korevec/node-i2c

6.13. INTERNET OF THINGS—NETWORKING 279

Data Frame

Intermission

Space
Intermission

Space

Start

Field
Arbitration

Field

Control

Field

Data

Field
CRC

Field
ACK

Field

End of

Frame

Field

Figure 6.31: CAN data frame [COMSOL, 2015].

and monitor. e connection length between the host and the BeagleBone Black is limited to
5 m (16.4 ft). If the BeagleBone Black is going to operate in a remote application (e.g., security
system, greenhouse, weather station, security, and environment of a remote out building, etc.),
the Ethernet may be used. e maximum length of an Ethernet cable is 100 m (328 ft).

BeagleBone is equipped with 10/100 Ethernet capability via the SMSC LAN8710A inte-
grated circuit to provide local area network (LAN) capability. is is the common LAN protocol
used in many commercial and home networks. e 10/100 refers to 10 Mbps and 100 Mbps data
rates.

e LAN8710A chip implements the Media Independent Interface (MII) physical layer
(PHY) of the Open Systems Interconnection (OSI) model. e PHY implements the hardware
send and receive protocol by breaking a serial data stream into frames. e PHY is configured for
auto negotiation which allows two connected devices to choose common transmission parameters
[Coley, 2014; SMSC, 2012].

To establish an Ethernet connection between a host Windows-based computer and Bea-
gleBone the following steps may be used [Richardson, 2014].

• Connect your Internet router to BeagleBone Black via an Ethernet cable as shown in Fig-
ure 6.32.

• Insure BeagleBone Black is being supplied by a 5 VDC, 2 A power supply (Adafruit #276).

• Download PuTTY. It is a free and open-source terminal emulator available for download
at http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

• Once PuTTY is downloaded and launched, enter “beaglebone.local” for the host address
and choose an “SSH” type connection.

• e SSH application establishes a connection between the host computer and BeagleBone
Black.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

280 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

• When prompted, respond with “root” and hit [Enter].

• When prompted for password, hit [Enter].

• e BeagleBone may now be controlled remotely from the host computer.

Figure 6.32: BeagleBone ethernet connection. (Illustrations used with permission of Texas Instru-
ments (www.TI.com).)

A Bonescript application can be launched remotely from the Linux command line. Insure
you are in the demo directory (where the program resides) using the following command:

/var/lib/cloud9/demo/

Once in the demo directory, the program is launched using:

node <filename>.js

6.13.4 INTERNET
InChapter 7 we provide several methods of assembling a stand-alone BeagleBone Black computer
using a keyboard, mouse, HDMI compatible display, and a USB hub. Once the computer is

www.TI.com

6.14. LIQUID CRYSTAL DISPLAY (LCD) INTERFACE 281

assembled, connect your Internet router to BeagleBone Black via an Ethernet cable. e Internet
may now be accessed from the Linux desktop.

6.14 LIQUID CRYSTAL DISPLAY (LCD) INTERFACE
BeagleBone provides full support for both 24- and 16-bit LCD interfaces. A 7-in LCD Cape is
available from Circuitco. e TFT LCD has 800 by 480 pixel resolution and also supports touch
screen features. e Cape provides an easy to use 39-pin interface for the large LCD display. Also,
Linux ÅngstrRom distribution images after 6.18.12 directly support the Cape. Full support data
for the LCD is provided in BeagleBone LCD7 Cape Rev A3 System Reference Manual.

If an application can not support use of the 39-pin Cape interface and other desired sub-
systems, a smaller footprint LCD may be employed. Serial LCDs employing a UART or SPI
interface are readily available. In the following example, we equip BeagleBone with a two line,
16-character display employing a parallel interface.

Example: In this example we equip BeagleBone with the Sparkfun LCD-09052 16 by 2-
character LCD. is is a 3.3 VDC LCD with White on black characters. e interface between
BeagleBone and the LCD is provided in Figure 6.33.

6.14.1 C SUPPORT FUNCTIONS
e C code for the LCD interface and support functions are provided in Appendix B.

6.15 INTERRUPTS
A processor normally executes instructions in an orderly fetch-decode-execute sequence as dic-
tated by a user-written program as shown in Figure 6.34. However, the processor must be
equipped to handle unscheduled (although planned), higher priority events that might occur in-
side or outside the processor. To process such events, a processor requires an interrupt system.

e interrupt system onboard a processor allows it to respond to higher priority events.
Appropriate responses to these events may be planned, but we do not know when these events
will occur. When an interrupt event occurs, the processor will normally complete the instruction
it is currently executing and then transition program control to interrupt event specific tasks.
ese tasks, which resolve the interrupt event, are organized into a function called an interrupt
service routine (ISR). Each interrupt will normally have its own interrupt specific ISR. Once the
ISR is complete, the processor will resume processing where it left off before the interrupt event
occurred.

6.15.1 BONESCRIPT INTERRUPT SUPPORT
Bonescript provides an “attachInterrupt” function to support interrupt processing on Beaglebone.
e function associates an interrupt event with the desired actions to be accomplished when the
event occurs. e function has three arguments: the pin to monitor for the interrupt event, the

282 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

G
N

D
:1

V
D

D
:2

V
o

:3

R
S

:4

R
/W

:5

E
:6

D
B

0
:7

D
B

1
:8

D
B

2
:9

D
B

3
:1

0

D
B

4
:1

1

D
B

5
:1

2

D
B

6
:1

3

D
B

7
:1

4

L
E

D
+

:1
5

L
E

D
-:

1
6

V
cc =

 3
.3

 V
D

C

10K

line1

line2

data
enable

com
m

and/d
ata

V
cc =

 3
.3

 V
D

C

Figure 6.33: BeagleBone LCD interface. (Illustrations used with permission of Texas Instruments
(www.TI.com).)

www.TI.com

6.15. INTERRUPTS 283

Fetch

Decode

Execute

Interrupt

Service

Routine

Figure 6.34: Processor interrupt response.

type of pin activity to initiate the interrupt, and the name of the interrupt service routine (ISR)
to be executed when the interrupt event occurs.

Example: In this example a tactile switch is connected to P8, pin 15. When P8, pin 15
experiences a rising edge the ISR is executed. In the main loop of the program a green LED is
blinking at 100 ms intervals. When the switch is depressed and released, creating a rising edge
on P8, pin 15 the ISR is executed which blinks a red LED at 50 ms intervals. A circuit diagram
for this example is provided in Figure 6.35.

1 / / *
2 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
3
4 s e t u p = f u n c t i o n () { } ;
5
6 v a r greenLED = ‘ ‘ P8_13 ’ ’ ;
7 v a r redLED = ‘ ‘ P9_14 ’ ’ ;
8 v a r inputSW = ‘ ‘ P8_15 ’ ’ ;
9 v a r ma in_de l a y = 100 ;

284 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

+
+

Figure 6.35: Bonescript interrupt example.In the main program loop a green LED is blinking at
100 ms intervals. When the switch is depressed and released, creating a rising edge on P8, pin 15
the ISR is executed which blinks a red LED at 50 ms intervals. (Illustrations used with permission of
Texas Instruments (www.TI.com).)

10 v a r i n t e r _ d e l a y = 50 ;
11 v a r s t a t e = b .LOW;
12
13 b . pinMode (greenLED , b .OUTPUT) ;
14 b . pinMode (redLED , b .OUTPUT) ;
15 b . pinMode (inputSW , b . INPUT) ;
16 b . a t t a c h I n t e r r u p t (inputSW , RISING , b l i n k _ r e d) ;
17
18 f u n c t i o n loop ()
19 {
20 s t a t e = (s t a t e == b .HIGH) ? b .LOW : b .HIGH;
21 b . d i g i t a lW r i t e (greenLED , s t a t e) ;
22 s e tT imeou t (loop , ma in_de l a y) ;
23 }

www.TI.com

6.16. PROGRAMMABLE REAL-TIME UNITS 285

24
25 f u n c t i o n b l i n k _ r e d ()
26 {
27 b . d i g i t a lW r i t e (redLED , b .HIGH) ;
28 se tT imeou t (b l i n k_ r ed2 , i n t e r _ d e l a y) ;
29 }
30
31 f u n c t i o n b l i n k _ r e d 2 ()
32 {
33 b . d i g i t a lW r i t e (redLED , b .LOW) ;
34 se tT imeou t (b l i n k_ r ed3 , i n t e r _ d e l a y) ;
35 }
36
37 f u n c t i o n b l i n k _ r e d 3 ()
38 {
39 b . d i g i t a lW r i t e (redLED , b .HIGH) ;
40 se tT imeou t (b l i n k_ r ed4 , i n t e r _ d e l a y) ;
41 }
42
43 f u n c t i o n b l i n k _ r e d 4 ()
44 {
45 b . d i g i t a lW r i t e (redLED , b .LOW) ;
46 }
47 / / *

6.16 PROGRAMMABLE REAL-TIME UNITS

Imagine purchasing a high-performance truck with an attached trailer. Much to your surprise,
inside the trailer are two high-performance sports cars included with the truck. Sounds exciting,
perhaps far-fetched! We have a similar situation with BeagleBone Black.

BeagleBone Black is equipped with two Programmable Real-Time Units (PRUs). For-
mally, they are within the Programmable Real-Time Unit and Industrial Communication Sub-
system the PRU-ICSS. e PRU-ICSS system is illustrated in Figure 6.36. e PRU-ICSS
consists of two 32-bit Reduced Instruction Set Computing (RISC) PRUs. A RISC processor
uses a collection of simple instructions to accomplish tasks. e PRUs operate at 200 MHz and
are equipped with 8 Kbytes of Random Access Memory (RAM), a shared 12 Kbyte RAM, an
enhanced general purpose input output (GPIO) unit, and an interrupt controller (INTC). e
PRUs can access subsystems within the PRU-ICSS but may also interact with the host Beagle-
Bone Black processor. e PRUs are not under the direct control of the Linux operating system
and are therefore useful for real time tasks. Operating at 200 MHz, the PRUs complete a RISC
instruction every 5 ns. is allows for fast, predictable, precise real-time control.ese features are
important to develop custom peripherals, interfaces, and signals [Texas Instruments, AM335X
PRU–ICSS Reference Guide].

286 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Sitara

AM3359

PRU0 Core

32-bit RISC

PRU0 Core
GPO

GPI

32

30

PRU1 Core
GPO

GPI

32

30

3
2

-b
it in

terco
n
n

ectInterrupt

Controller

(INTC)

Interrupts to

AM3359 INTC

Events from

peripherals

and PRUs

Data RAM0

(8K bytes)

Data RAM1

(8K bytes)

32-bit PISC PRU Subsystem

32-bit RISC PRU0/1 Block Diagram

R0

R1

R2

...

R29

R30

R31 (event)

R31 (status)

Op1 mux

Op2 mux

Op3 mux

32

32

32

32

32

...

d
es

ti
n
at

io
n
 s

el
ec

to
r

32

32

32

32

...
...

...

32

32

32

execution

unit

instruction

RAM/ROM

constants

table

32

events_out[31:0]

32

status_in[31:0]

general purpose input

(pr1_pruX_pru_r31[16:0])

i_addr[31:0]

const_base_sel[4:0]

const_base[31:0]

32

5

32

mem0_xxx

mem1_xxx

regs_xxx

iram_xxx

i_data[31:0]

32

PRU1 Core

32-bit RISC

Shared RAM

(12K bytes)

8KB Program

RAM

8KB Program

RAM

eCAP0

MIIO_RT

IEP

UART0

CFG

general purpose output

pr1_pruX_pru_R30[15:0]

Figure 6.36: Programmable real-time unit and industrial communication subsystem the PRU-ICSS
[PRU-ICSS Reference Guide, 2013].

6.16. PROGRAMMABLE REAL-TIME UNITS 287

In this section we provide the bare essential information needed to get started with the
PRUs. We begin with an architecture overview, a PRU assembly overview, discuss PRU devel-
opment tools, and conclude with an end-to-end programming example. Much of the information
here is condensed from the following Texas Instruments resources. ey are readily available on-
line at [www.ti.com].

• AM335X PRU-ICSS Reference Guide

• AM335X ARM-AX Microprocessors (MPUs) Technical Reference Manual

• PRU Assembly Reference Guide

• Programmable Real-time Unit Subsystem Training Material

• PRU Assembly Language Tools User’s Guide

• AM335X Linux Application Loader User Guide

6.16.1 ARCHITECTURE OVERVIEW
Taking a closer view of Figure 6.36, the BeagleBone Black hosts the Sitara AM3359 processor
which hosts the two 32-bit RISC PRU cores designated PRU0 and PRU1. e PRUs are each
equippedwith 8Kbytes of programRAM.rough the 32-bit interconnect, the PRUs have access
to data RAMs designated Data RAM0 and Data RAM1, 12 Kbytes of shared RAM, an Inter-
rupt Controller, general purpose input and output, and a number of special purpose input/output
systems (eCAP0, MIIO_RT, IEP, UART0, and CFG).

e RISC architecture for each PRU is provided in the lower portion of Figure 6.36.
Each PRU is equipped with a complement of 32, 32-bit registers designated R0 to R31. Regis-
ter R30 provides for general purpose outputs (pr1_pruX_pru_R30[15:0]) and register R31 pro-
vides for status input and events output. Register R31 also provides for general purpose input
(pr1_pruX_pru_R31[16:0]). e placeholder “X” is “0” for pru 0 and “1” for pru 1.

Register contents serve as input to the execution unit. ree separate operands may be fed
to the execution unit simultaneously. e execution unit may also use inputs from the constants
table. e execution unit performs operations on the operands as specified by the assembly lan-
guage program. e operations may be arithmetic, logical, flow control, register operations, or
input/output. e results of the operations may be fed back to a specific register or sent outside
the PRU.

6.16.2 PRU MEMORY MAP
Different components within a specific PRU can be accessed by the PRU, the other PRU, or the
host processor. Figure 6.37 provides the address (provided in hexadecimal (0x)) to these accessi-
ble PRU components. For each component the address is provided when accessed from PRU0,
PRU1, and the BeagleBone Black processor, respectively.

www.ti.com

288 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

PRU-ICSS Subsystem PRU0 point of view PRU1 point of view BBB point of view

Data 8KB RAM0/1

Data 8KB RAM1/0

Data 12 KB RAM2 (shared)

INTC

PRU0 Control Registers

PRU0 Debug

PRU1 Control Registers

PRU1 Debug

CFG

UART0

IEP

eCAP 0

MII_RT_CFG

MII_MDIO

PRU0 8KB IRAM

PRU1 8KB IRAM

System OCP_HPx

RAM0:0x0000_0000

RAM1:0x0000_2000

0x0001_0000

0x0002_0000

0x0002_2000

0x0002_4000

0x0002_6000

0x0002_8000

0x0002_E000

0x0003_0000

0x0003_2000

0x0003_2400

HP0:0x0000_0000

RAM1:0x0000_0000

RAM0:0x0000_2000

0x0001_0000

0x0002_0000

0x0002_2000

0x0002_4000

0x0002_6000

0x0002_8000

0x0002_E000

0x0003_0000

0x0003_2000

0x0003_2400

HP1:0x0000_0000

RAM0:0x0000_0000

RAM1:0x0000_2000

0x0001_0000

0x0002_0000

0x0002_2000

0x0002_2400

0x0002_4000

0x0002_4400

0x0002_6000

0x0002_8000

0x0002_E000

0x0003_0000

0x0003_2000

0x0003_2400

0x0003_4000

0x0003_8000

HP1:0x0000_0000

Figure 6.37: PRU memory map [PRU-ICSS Reference Guide].

6.16.3 PRU INTERRUPT SYSTEM
e PRUs are equipped with a flexible Interrupt Controller (INTC) illustrated in Figure 6.38.
Interrupts mapped to PRU0/1 may be generated from system peripheral components or from
events within the PRU. ese interrupts are collectively referred to as system events. e system
events are mapped to channels 0–9 and then to host 0–9. Interrupt channel 0 has the highest
priority. Host interrupts are then mapped to PRU register R31 bits 30 and 31.

6.16.4 PRU PIN MAPPING TO BEAGLEBONE BLACK
e PRU features may be accessed through the BeagleBone Black external pins. As described
earlier in the book, each BeagleBone Black pin has multiple functions mapped to them. Internal
multiplexers are used to determine which feature will be mapped to the pin in a specific applica-
tion. Provided in Figure 6.39 is an abbreviated table of PRU general purpose input and output
pins accessible from the P8 and P9 headers. Other PRU pins, not contained in the table, are also
mapped to BeagleBone Black P8 and P9 headers. As described earlier in this chapter, default
multiplexer settings may be changed by modifying the BeagleBone Black device tree.

6.16.5 PRU ASSEMBLY PROGRAM (PASM)
e PRUs are programmed in assembly language using the PRU Assembly Program (PASM).
PASM is available for download from theTexas Instruments website. Assembly language provides
a tight interface between software and the PRU hardware. Only the bare essentials of assembly

6.16. PROGRAMMABLE REAL-TIME UNITS 289

peripheral A

system event 1

system event 2
channel 0

channel 1

channel 2

channel 3

channel 4

channel 5

channel 6

channel 7

channel 8

channel 9peripheral X

system event mapping

to channels

system event 30

system event 31

system event 34

highest priority

host 0

host 1

host 2

host 3

host 4

host 5

host 6

host 7

host 8

host 9

channel to host

mapping

PRU0/1

R31 bit 30

PRU0/1

R31 bit 31

Figure 6.38: PRU interrupt controller [PRU-ICSS Reference Guide, 2013].

language programming are provided here. Excellent tutorial information is available from the
Texas Instruments website including:

• the PRU Assembly Reference Guide, and the

• Programmable Real-time Unit Subsystem Training Material.

An overview of the PASM assembler is provided in Figure 6.40. A PASM program consists
of directives, preprocessor commands, labels, and instructions. e PASM program file should
end with the “p” suffix.

A directive is also known as a dot “.” command because the commands are preceded by a
dot. ey are used to control the assembler and define user-defined data types. Details on using
these commands are provided in the PRU Assembly Reference Guide.

e preprocessor commands are also known as hash (#) commands because the commands
are preceded by a hash symbol. ese command types are used to control the assembler preproces-
sor. e commands are used to include additional files (#include) or for text substitution using the
define (#define) command. Additional hash commands are defined in the PRUAssembly Reference
Guide.

Labels are used to give memory addresses a name. is allows for assembly code to be more
readable and also eases the writing of assembly language programs.

e final category of commands is instructions. As can be seen in Figure 6.40, instructions
fall into five different categories:

290 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Pin Name DT Offset Mode 5 Mode 6
P8, pin11

P8, pin 12

P8, pin 15

P8, pin 16

P8, pin 20

P8, pin 21

P8, pin 27

P8, pin 28

P8, pin 29

P8, pin 30

P8, pin 39

P8, pin 40

P8, pin 41

P8, pin 42

P8, pin 43

P8, pin 44

P8, pin 45

P8, pin 46

GPIO1_13

GPIO1_12

GPIO1_15

GPIO1_14

GPIO1_31

GPIO1_30

GPIO2_22

GPIO2_24

GPIO2_23

GPIO2_25

GPIO2_12

GPIO2_13

GPIO2_10

GPIO2_11

GPIO2_8

GPIO2_9

GPIO2_6

GPIO2_7

0x034

0x030

0x03C

0x038

0x084

0x080

0x0E0

0x0E8

0x0E4

0x0EC

0x0B8

0x0BC

0x0B0

0x0B4

0x0A8

0x0AC

0x0A0

0x0A4

pr1_pru0_pru_r30_15 (output)

pr1_pru0_pru_r30_14 (output)

pr1_pru0_pru_r31_15 (input)

pr1_pru0_pru_r31_14 (input)

pr1_pru1_pru_r31_13 (input)

pr1_pru1_pru_r31_12 (input)

pr1_pru1_pru_r31_8 (input)

pr1_pru1_pru_r31_10 (input)

pr1_pru1_pru_r31_9 (input)

pr1_pru1_pru_r31_11 (input)

pr1_pru1_pru_r31_6 (input)

pr1_pru1_pru_r31_7 (input)

pr1_pru1_pru_r31_4 (input)

pr1_pru1_pru_r31_5 (input)

pr1_pru1_pru_r31_2 (input)

pr1_pru1_pru_r31_3 (input)

pr1_pru1_pru_r31_0 (input)

pr1_pru1_pru_r31_1 (input)

pr1_pru1_pru_r30_13 (output)

pr1_pru1_pru_r30_12 (output)

pr1_pru1_pru_r30_8 (output)

pr1_pru1_pru_r30_10 (output)

pr1_pru1_pru_r30_9 (output)

pr1_pru1_pru_r30_11 (output)

pr1_pru1_pru_r30_6 (output)

pr1_pru1_pru_r30_7 (output)

pr1_pru1_pru_r30_4 (output)

pr1_pru1_pru_r30_5 (output)

pr1_pru1_pru_r30_2 (output)

pr1_pru1_pru_r30_3 (output)

pr1_pru1_pru_r30_0 (output)

pr1_pru1_pru_r30_1 (output)

P8 PRU General Purpose input/output

Pin Name DT Offset Mode 5 Mode 6
P9, pin 24

P9, pin 25

P9, pin 26

P9, pin 27

P9, pin 28

P9, pin 29

P9, pin 30

P9, pin 31

P9, pin 41

0x184

0x1AC

0x180

0x1A4

0x19C

0x194

0x198

0x190

0x1B4

pr1_pru0_pru_r31_16 (input)

pr1_pru0_pru_r31_7 (input)

pr1_pru1_pru_r31_16 (input)

pr1_pru0_pru_r31_5 (input)

pr1_pru0_pru_r31_3 (input)

pr1_pru0_pru_r31_1 (input)

pr1_pru0_pru_r31_2 (input)

pr1_pru0_pru_r31_0(input)

pr1_pru0_pru_r30_7 (output)

pr1_pru0_pru_r30_5 (output)

pr1_pru0_pru_r30_3 (output)

pr1_pru0_pru_r30_1(output)

pr1_pru0_pru_r31_2 (output)

pr1_pru0_pru_r30_0 (output)

pr1_pru0_pru_r30_16 (input)

P9 PRU General Purpose input/output

UART1_TXD

GPIO3_21

UART1_RXD

GPIO3_19

SPI1_CS0

SPI1_D0

SPI1_D1

SPI1_SCLK

CLKOUT2

Figure 6.39: PRU general purpose input and output pins [PRU-ICSS Reference Guide, 2013].

• arithmetic,

• logical,

• flow control,

• register load/store, and

• input/output operations.

e general format of the assembly language command is the assembler instruction
mnemonic followed by a comma separated list of parameters. e parameters used in the in-
struction may be registers, labels, numbers (immediate values), or entries from the constant table,
as shown in Figure 6.41.

e next section provides details on obtaining, downloading, and configuring PRU software
development tools.

6.16. PROGRAMMABLE REAL-TIME UNITS 291

PRU Assembly (PASM) Programming

Directives
(“.”)

Preprocessor
Commands

(#)

Labels - denote
program address

Instructions

include
#define

Arithmetic Logical Flow Control
Register

Load/Store
Input/Output
Operations

ADD
ADC
SUB
SUC
RSB
RSC

LSL
LSR
AND
OR
XOR
NOT
MIN

MAX
CLR
SET
SCAN
LMBD
MOV

JAL
JMP
QBGT
QBGE
QBLT
QBLE
QBEQ

QBNE
QBA
QBBS
QBBC
HALT
SLP

ZERO
MVIB
MVIW
MVIO

WBS
WBC
CALL
RET

PSEUDO
OPS

PSEUDO
OPS

LDI
LBBO
SBBO
LBCO
SBCO

.origin

.entrypoint

.setcallreg

.macro, .mparam,
 .endm
.struct, .ends, .u32,
 .u16, .u8
.assign
.enter
.leave
.using

Figure 6.40: PRU assembly language [PRU-ICSS Reference Guide, 2013].

292 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

Parameter Name Meaning Examples

REG, REG1, REG2...

Rn, Rn1, Rn2...

Rn.tx

Cn, Cn1, Cn2,...

bn

LABEL

IM(n)

OP(n)

Register field from 8 to 32 bits

32-bit register field (ro through r31)

Any 1 bit register field

32-bit constant table entry (co through c31)

specifies field that must be b0, b1, b2 or b3...

denoting ro.bo, ro.b1, r0.b2, and r0.b3

Any valid label denoting an

instruction address

any immediate value from 0 to n

Union of of REG and IM(n)

r0, r1.w0, r3.b2

r0, r1

r0.t23, r1.b2.t5

c0, c1

b0, b1

loop1

#23, 0b01101, 2+2,

&r3w2

r0, r1.w0

Register Parameter Types

Suffix Range of n Meaning

PRU Register Accesses

.wn

.bn

.tn

0 to 2

0 to 3

0 to 31

16 bit field with a byte offset of n with the parent field

8 bit field with a byte offset of n with the parent field

1 bit field with a byte offset of n with the parent field

Figure 6.41: PRU register description [PRU-ICSS Reference Guide, 2013].

6.16.6 DEVELOPMENT PROCESS
e Debian release of the BeagleBone Black operating system contains support for both PRUs
including the PRU Assembler (PASM) and the PRU Linux Application loader. A flow chart
describing the process to program the PRUs is provided in Figure 6.42. Each step is described
briefly followed by an illustrative example. is information was compiled, from a number of
excellent, available BeagleBone Black PRU examples [www.element14.com; Coley, 2014].

It must be emphasized there are two different programs that must be written, assembled/-
compiled, and executed for each PRU-based application: (1) the assembly language program for
execution on the PRU (< f ilename:bin >), and (2) the compiled C program for execution on
BeagleBone (< f ilename:o >) with the purpose of uploading the “bin” file to the PRU and
interacting with it. Here is a brief summary of steps.

1. Downloadand installPRUsoftware support.As previously mentioned, theDebian release
has PRU software support included (PRU Assembler and PRU Linux Application Loader).

2. Enable the PRU system onboard BeagleBoneBlack. e universal cape enables the PRU.
e cape is installed using:

#echo cape-universaln > /sys/devices/bone_capemgr.*/slots

Alternatively the cape may be loaded using [Steinkuehler]:

www.element14.com

6.16. PROGRAMMABLE REAL-TIME UNITS 293

Download and install PRU software support

- PRU Assembler

- C programming application programming interface (API)

(included with Debian release)

Enable PRU system on BeagleBone Black

Configure BeagleBone Black Linux

Devicetree to configure

pins for PRU application

Execute the PRU program

Assemble PRU program (filename.p) to

binary file (filename.bin)

Write assembly language program(filename.p) for PRU application

Write BeagleBone Black program in C

to load PRU program (filename.bin)to PRU

Figure 6.42: PRU software development process [PRU-ICSS Reference Guide, 2013].

294 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

config-pin overlay cape-universal

3. Configure specific pins for PRU operation. Figure 6.39 provides a summary of PRU gen-
eral purpose input and output pins. It may be used to select a specific pin (or pins) for a
PRU application. Selected pins may be configured for PRU operation using the “config-
-pin” utility. For example, pin P8.11 (GPIO1_13) may be configured for PRU operation
using [Steinkuehler]:

config-pin -l P8.11
default gpio gpio_pu gpio_pd pruout qep
config-pin P8.11 pruout

4. Write assembly language program (filename.p) for PRU application. To develop your
own PRU application, it is helpful to find a similar example program and modify it to meet
your needs. e program that follows was provided by www.element14.com. It was origi-
nally modified from PRU_memAccess_DDR_PRUsharedRAM available on the Texas In-
struments website [TI, www.TI.com].
Once written, the assembly language program is assembled using [Molloy, 2015]:

pasm -b <filename.p>

is will result in a file named filename.bin.

5. WriteBeagleBoneBlackprogram inC to loadPRUprogram toPRU. As previously men-
tioned it is helpful to modify an existing example. Samples are available from the Texas
Instruments website.
As a friendly reminder, the program is executed on BeagleBone Black and controls inter-
action with the onboard PRUs. It uses pre-existing functions to initialize the PRU, open
and initialize the PRU interrupt, initialize the PRU example (written is assembly language,
execute the example on the PRU, wait for the program to finish, and then provide status
on the program.
Once written, the program is compiled and linked with related libraries using [Molloy,
2015];

#gcc filename.c -o filename -lpthread -libraryname

6. Execute the PRU program. is is accomplished using:

#./filename

www.element14.com
www.TI.com

6.16. PROGRAMMABLE REAL-TIME UNITS 295

Example: In this example an LED connected to BeagleBone Black pin P8.11 (GPIO1_13,
pr1_pr0_pru_r30_15) is placed under PRU control and blinked ten times. e program that fol-
lows was adapted from an example provided by www.element14.com. It was originally modi-
fied from PRU_memAccess_DDR_PRUsharedRAM available on the Texas Instruments web-
site [TI, www.TI.com]. e website contains the *.p, *.c, and the *.hp files. e files have been
renamed pru_ex.c, pru_ex.p, and pru_ex.hp for convenience. We take a step-by-step approach to
develop, assemble/compile, and execute the program.

+

R
I

+

Figure 6.43: LED under PRU control. (Illustrations used with permission of Texas Instruments (ww
w.TI.com).)

1. Enable the PRU system onboard BeagleBoneBlack. e universal cape enables the PRU.
It is installed using [Steinkuehler]:

www.element14.com
www.TI.com
www.TI.com
www.TI.com

296 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

#echo cape-universaln > /sys/devices/bone_capemgr.*/slots

Alternatively the cape may be loaded using [Steinkuehler]:

config-pin overlay cape-universal

2. Configure specific pins for PRUoperation. In this example an LED connected to Beagle-
Bone Black pin P8.11 (GPIO1_13, pr1_pr0_pru_r30_15) is placed under PRU control and
blinked ten times. e circuit diagram is provided in Figure 6.43. Pin P8.11 (GPIO1_13,
pr1_pr0_pru_r30_15) may be configured for PRU operation using [Steinkuehler]:

config-pin -l P8.11
default gpio gpio_pu gpio_pd pruout qep
config-pin P8.11 pruout

3. Write assembly language program for PRU. In this example an LED connected to Bea-
gleBone Black pin P8.11 (GPIO1_13, pr1_pr0_pru_r30_15) is placed under PRU control
and blinked ten times. e program uses the following registers:

• Register R0: is used to store the delay count
• RegisterR1: contains the loop counter. For this specific example, a value of 10 is used.
• Register R30: is used to turn the LED connected to pin P8.11 (GPIO1_13,

pr1_pr0_pru_r30_15) on and off. Recall, PRU register R30 provides for general pur-
pose outputs. Figure 6.39 provides information of available PRU pins. e Mode 6
column indicates the register and bit to control a specific pin. For example, P8.11 is
controlled by register R30, bit 15. In the example, we set and clear this bit to set and
clear BeagleBone Black pin P8.11.

e program uses the following assembly language instructions. Details on each instruction
are provided in the PRU Assembly Reference Guide.

• ST32: is a macro defined in the header file that stores 32 bits from source to destina-
tion.

• LBCO: Load Byte Burst with Constant Table Offset command reads a block of data
from memory to a specified register file. It takes the form:

LCBO Destination, Source, (+ optional offset), Number of bytes
LCBO REG1, Cn2, OP(255, IM(124)
LCBO r0, CONST_PRUCFG, 4, 4

• CLR: Clears specified bit in the source and copies result to destination.

CLR r0, r0, 4

6.16. PROGRAMMABLE REAL-TIME UNITS 297

main

loop counter

=0?

yes

no

Notify BeagleBone Black (host) of program completion

Set pin to logic low (0)

Set logic low loop counter

Decrement logic low loop counter

Logic low

loop counter

=0?

yes

no

decrement main loop counter

Define register values and constants

Allow PRU access to memory resources

via On Chip Peripheral (OCP) master port

Set memory pointers

Set main waveform counter to 10

Set pin to logic high (1)

Set logic high loop counter

Decrement logic high loop counter

Logic high

loop counter

=0?

yes

no

Figure 6.44: PRU example flow. LED USR0 will flash ten times.

• SBCO: Store Byte Burst with Constant Table Offset writes a block of data from the
register file to memory.

SBCO Source, Destination, (+ optional offset), Number of bytes
SBCO r0, CONST_PRUCFG, 4, 4

• MOV: Moves from source to destination

MOV DEST, SOURCE

• SBBO: Store Byte Burst writes a block of data from the register file to memory.

SBBO REG1, Rn2, OP (255), IM (124)
SBBO r2, r1, 5, 8 //copy 8 bytes from r2/r3 to memory address r1+5

• SUB: Unsigned integer subtract

SUB REG1, REG2, OP(255) //REG1 = REG2 minus OP(255)

• QBNE: Quick Branch if Not Equal instruction jumps if the value of OP(255) is not
equal to REG1.

298 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

QBNE LABEL, REG1, OP(255)
1 / / *
2 / / p r u_ e x . p
3 / /
4 / / C o p y r i g h t (C) 2012 Texa s I n s t r um e n t s I n c o r p o r a t e d � h t t p : / /www. t i . com /
5 / /
6 / / R e d i s t r i b u t i o n and u s e i n s o u r c e and b i n a r y f o rm s , wi th o r w i t h o u t
7 / / m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s
8 / / a r e met :
9 / /

10 / / R e d i s t r i b u t i o n s o f s o u r c e c o d e mus t r e t a i n t h e a b ov e c o p y r i g h t
11 / / n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
12 / /
13 / / R e d i s t r i b u t i o n s i n b i n a r y f o rm must r e p r o d u c e t h e a b ov e c o p y r i g h t
14 / / n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r in t h e
15 / / d o c um e n t a t i o n and / o r o t h e r m a t e r i a l s p r o v i d e d wi th t h e
16 / / d i s t r i b u t i o n .
17 / /
18 / / N e i t h e r t h e name o f Texa s I n s t r um e n t s I n c o r p o r a t e d no r t h e names o f
19 / / i t s c o n t r i b u t o r s may b e u s e d t o e n d o r s e o r p r om o t e p r o d u c t s d e r i v e d
20 / / f r om t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
21 / /
22 / / THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 / / ” AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 / / LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 / / A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 / /OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 / / SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 / / LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,
29 / /DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 / /THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
31 / / (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 / /OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 / / ===
34 / / C o p y r i g h t (c) Texa s I n s t r um e n t s I n c 2010�12
35 / /
36 / / Use o f t h i s s o f t w a r e i s c o n t r o l l e d by t h e t e rm s and c o n d i t i o n s f o und in
37 / / t h e l i c e n s e a g r e em e n t und e r whi ch t h i s s o f t w a r e h a s b e e n s u p p l i e d o r
38 / / p r o v i d e d .
39 / / *
40
41 . o r i g i n 0 / / s t a r t n e x t i n s t r u c t i o n a t c o d e o f f s e t 0
42 . e n t r y p o i n t START / / s p e c i f y c o d e e n t r y p o i n t t o d e b u g g e r
43
44 / / h e a d e r f i l e c o n t a i n s d e f i n i t i o n s o f
45 # in c l ude ” p ru_ex . hp ” / / c o n s t a n t s and ma c r o s u s e d w i t h i n p r og ram
46
47 START:
48 / / A l l ow PRU t o a c c e s s s h a r e d memory a s s e t s w i t h i n h o s t p r o c e s s o r
49 / / Enab l e On Chip P e r i p h e r a l (OCP) ma s t e r p o r t
50 / / � a l l o w s c ommun i c a t i o n b e tw e en t h e PRUs and h o s t p r o c e s s o r
51 / / � p r o v i d e s f o r s h a r e d memory a c c e s s
52 / /
53 / /LCBO: Load By t e B u r s t wi th C on s t a n t Tab l e command � u s e d t o r e a d
54 / / a b l o c k o f d a t a f r om memory d a t a i n t o r e g i s t e r r0 f r om t h e memory
55 / / a d d r e s s CONST_PRUCFG + 4 . Th i s r e f e r s t o t h e PRU�ICSS CFG
56 / / c o n f i g u r a t i o n r e g i s t e r s f o r t h e PRU s y s t e m SYSCFG r e g i s t e r
57 / / d e f i n e d in t h e h e a d e r f i l e and t h e SPRUH73K r e f e r e n c e .
58
59 LBCO r0 , CONST_PRUCFG, 4 , 4
60
61 / / C l e a r s STANDBY_INIT b i t i n SYSCFG r e g i s t e r t o e n a b l e OCP ma s t e r
62 / / p o r t . A l l ow s PRU t o w r i t e t o memory l o c a t i o n s o u t s i d e t h e PRU
63 / / memory s p a c e � Be a g l e B o n e p i n s .
64 / / SBCO : S t o r e B y t e B u r s t wi th C on s t a n t Tab l e O f f s e t
65
66 CLR r0 , r0 , 4
67 SBCO r0 , CONST_PRUCFG, 4 , 4
68
69 / / C o n f i g u r e t h e p r o g r ammab l e p o i n t e r r e g i s t e r f o r PRU0 by s e t t i n g
70 / / c 2 8 _ p o i n t e r [1 5 : 0] f i e l d t o 0x0120 .
71 / / Th i s w i l l make C28 p o i n t t o 0x00012000 (PRU s h a r e d RAM) .
72 / / The CTPPR0 r e g i s t e r : C on s t a n t Tab l e Prog rammab l e P o i n t e r R e g i s t e r 0 .
73 / / A l l ow s PRU t o s e t up 256� b y t e p a g e i n d e x f o r e n t r i e s 28 and 29 in
74 / / t h e PRU c o n s t a n t t a b l e .
75
76 MOV r0 , 0 x00000120 / /MOV: c o p y v a l u e
77 MOV r1 , CTPPR_0
78 ST32 r0 , r1
79
80 / / C o n f i g u r e t h e p r o g r ammab l e p o i n t e r r e g i s t e r f o r PRU0 by s e t t i n g
81 / / c 3 1 _ p o i n t e r [1 5 : 0] f i e l d t o 0x0010 .
82 / / Th i s w i l l make C31 p o i n t t o 0x80001000 (DDR memory) .
83
84 MOV r0 , 0 x00100000
85 MOV r1 , CTPPR_1
86 ST32 r0 , r1

6.16. PROGRAMMABLE REAL-TIME UNITS 299

87
88 / / Load v a l u e s f r om e x t e r n a l DDR Memory i n t o R e g i s t e r s R0 /R1 /R2
89
90 LBCO r0 , CONST_DDR, 0 , 12
91
92 / / S t o r e v a l u e s f r om r e a d f r om t h e DDR memory i n t o PRU s h a r e d RAM
93
94 SBCO r0 , CONST_PRUSHAREDRAM, 0 , 12
95
96 / / t e s t GP o u t p u t
97
98 MOV r1 , 10
99

100 / / E x e c u t e main l o o p (LOOP) 10 t i m e s
101 LOOP1:
102 SET r30 . t15 / / s e t GPIO1_13 t o l o g i c on e
103
104 / / R e c a l l o p e r a t i n g f r e q : 200 MHz
105 MOV r0 , 0 x00f00000 / / l o a d h i g h t im e c o u n t e r
106 / / l o o p c o u n t e r 15 ,728 ,640
107 / / a p p r o x ima t e 15 .7 ms h i g h t im e
108
109 DEL1:
110 SUB r0 , r0 , 1 / / SUB : u n s i g n e d i n t e g e r s u b t r a c t
111 / / d e c r em e n t r0
112 QBNE DEL1, r0 , 0 / /QBNE: q u i c k b r a n c h i f n o t e q u a l
113 / / c o u n t e r a t 0?
114 / / I f no t , l o o p b a c k t o DEL1
115
116 CLR r30 . t15 / / s e t GPIO1_13 t o l o g i c z e r o
117
118 / / R e c a l l o p e r a t i n g f r e q : 200 MHz
119 MOV r0 , 0 x00f00000 / / l o a d low t im e c o u n t e r
120 / / l o o p c o u n t e r 15 ,728 ,640
121 / / a p p r o x ima t e 15 .7 ms h i g h t im e
122 DEL2:
123 SUB r0 , r0 , 1 / / SUB : u n s i g n e d i n t e g e r s u b t r a c t
124 / / d e c r em e n t r0
125 QBNE DEL2, r0 , 0 / /QBNE: q u i c k b r a n c h i f n o t e q u a l
126 / / c o u n t e r a t 0?
127 / / I f no t , l o o p b a c k t o DEL2
128
129 SUB r1 , r1 , 1 / / SUB : u n s i g n e d i n t e g e r s u b t r a c t
130 QBNE LOOP1, r1 , 0 / /QBNE: q u i c k b r a n c h i f n o t e q u a l
131 / / c o u n t e r a t 0?
132 / / I f no t , l o o p b a c k t o LOOP
133
134 / / Send n o t i f i c a t i o n t o Ho s t f o r
135 / / p r og ram c o m p l e t i o n
136 MOV r31 . b0 , PRU0_ARM_INTERRUPT+16
137
138 HALT / / Hal t t h e p r o c e s s o r
139 / / *

e program is then assembled with the corresponding header file (.hp). e (.hp) file con-
tains definitions and macros useful for the program.
1 / / *
2 / / p r u_ e x . hp
3 / /
4 / / C o p y r i g h t (C) 2012 Texa s I n s t r um e n t s I n c o r p o r a t e d � h t t p : / /www. t i . com /
5 / /
6 / / R e d i s t r i b u t i o n and u s e i n s o u r c e and b i n a r y f o rm s , wi th o r w i t h o u t
7 / / m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s
8 / / a r e met :
9 / /

10 / / R e d i s t r i b u t i o n s o f s o u r c e c o d e mus t r e t a i n t h e a b ov e c o p y r i g h t
11 / / n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
12 / /
13 / / R e d i s t r i b u t i o n s i n b i n a r y f o rm must r e p r o d u c e t h e a b ov e c o p y r i g h t
14 / / n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r in t h e
15 / / d o c um e n t a t i o n and / o r o t h e r m a t e r i a l s p r o v i d e d wi th t h e
16 / / d i s t r i b u t i o n .
17 / /
18 / / N e i t h e r t h e name o f Texa s I n s t r um e n t s I n c o r p o r a t e d no r t h e names o f
19 / / i t s c o n t r i b u t o r s may b e u s e d t o e n d o r s e o r p r om o t e p r o d u c t s d e r i v e d
20 / / f r om t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
21 / /
22 / / THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 / / ” AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 / / LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 / / A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 / /OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 / / SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 / / LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,

300 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

29 / /DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 / /THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
31 / / (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 / /OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 / /
34 / / ===
35 / / C o p y r i g h t (c) Texa s I n s t r um e n t s I n c 2010�12
36 / /
37 / / Use o f t h i s s o f t w a r e i s c o n t r o l l e d by t h e t e rm s and c o n d i t i o n s f o und in t h e
38 / / l i c e n s e a g r e em e n t und e r whi ch t h i s s o f t w a r e h a s b e e n s u p p l i e d o r p r o v i d e d .
39 / / *
40 / / f i l e : p r u_ e x . hp
41 / / b r i e f : PRU_memAccess_DDR_PRUsharedRAM a s s e m b l y c o n s t a n t s .
42 / / (C) C o p y r i g h t 2012 , Texa s I n s t r um e n t s , I n c
43 / / a u t h o r M. Watk in s
44 / / *
45
46 # i f n d e f _PRU_memAccess_DDR_PRUsharedRAM_HP_
47 # de f i n e _PRU_memAccess_DDR_PRUsharedRAM_HP_
48
49 / / *
50 / / G l o b a l Macro d e f i n i t i o n s
51 / / *
52
53 / / R e f e r t o mapping in t h e f i l e �\ p r u s s d r v \ i n c l u d e \ p r u s s _ i n t c _m a p p i n g . h
54 # de f i n e PRU0_PRU1_INTERRUPT 17
55 # de f i n e PRU1_PRU0_INTERRUPT 18
56 # de f i n e PRU0_ARM_INTERRUPT 19
57 # de f i n e PRU1_ARM_INTERRUPT 20
58 # de f i n e ARM_PRU0_INTERRUPT 21
59 # de f i n e ARM_PRU1_INTERRUPT 22
60
61 # de f i n e CONST_PRUCFG C4
62 # de f i n e CONST_PRUDRAM C24
63 # de f i n e CONST_PRUSHAREDRAM C28
64 # de f i n e CONST_DDR C31
65
66 / / A d d r e s s f o r t h e C on s t a n t t a b l e B l o c k I nd e x R e g i s t e r (CTBIR)
67 # de f i n e CTBIR 0x22020
68
69 / / A d d r e s s f o r t h e C on s t a n t t a b l e Prog rammab l e P o i n t e r R e g i s t e r 0(CTPPR_0)
70 # de f i n e CTPPR_0 0x22028
71
72 / / A d d r e s s f o r t h e C on s t a n t t a b l e Prog rammab l e P o i n t e r R e g i s t e r 1(CTPPR_1)
73 # de f i n e CTPPR_1 0x2202C
74
75
76 . macro LD32
77 . mparam ds t , s r c
78 LBBO dst , s r c , # 0 x00 , 4
79 . endm
80
81 . macro LD16
82 . mparam ds t , s r c
83 LBBO dst , s r c , # 0 x00 , 2
84 . endm
85
86 . macro LD8
87 . mparam ds t , s r c
88 LBBO dst , s r c , # 0 x00 , 1
89 . endm
90
91 . macro ST32
92 . mparam s r c , d s t
93 SBBO s r c , d s t , # 0 x00 , 4
94 . endm
95
96 . macro ST16
97 . mparam s r c , d s t
98 SBBO s r c , d s t , # 0 x00 , 2
99 . endm

100
101 . macro ST8
102 . mparam s r c , d s t
103 SBBO s r c , d s t , # 0 x00 , 1
104 . endm
105
106 / / *
107 / / G l o b a l S t r u c t u r e D e f i n i t i o n s
108 / / *
109
110 . s t r u c t Globa l
111 . u32 r e g P o i n t e r
112 . u32 r e gVa l
113 . ends
114
115 / / *
116 / / G l o b a l R e g i s t e r A s s i g nm e n t s

6.16. PROGRAMMABLE REAL-TIME UNITS 301

117 / / *
118
119 . a s s i g n Global , r2 , * , g l o b a l
120
121 # end i f / / _PRU_memAccess_DDR_PRUsharedRAM_
122
123 / / *

4. Write BeagleBone Black C program to load assembly language program to PRU.
1 / / *
2 / / p r u_ e x . c
3 / /
4 / / C o p y r i g h t (C) 2012 Texa s I n s t r um e n t s I n c o r p o r a t e d � h t t p : / /www. t i . com /
5 / /
6 / / R e d i s t r i b u t i o n and u s e i n s o u r c e and b i n a r y f o rm s , wi th o r w i t h o u t
7 / / m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s
8 / / a r e met :
9 / /

10 / / R e d i s t r i b u t i o n s o f s o u r c e c o d e mus t r e t a i n t h e a b ov e c o p y r i g h t
11 / / n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
12 / /
13 / / R e d i s t r i b u t i o n s i n b i n a r y f o rm must r e p r o d u c e t h e a b ov e c o p y r i g h t
14 / / n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r in t h e
15 / / d o c um e n t a t i o n and / o r o t h e r m a t e r i a l s p r o v i d e d wi th t h e
16 / / d i s t r i b u t i o n .
17 / /
18 / / N e i t h e r t h e name o f Texa s I n s t r um e n t s I n c o r p o r a t e d no r t h e names o f
19 / / i t s c o n t r i b u t o r s may b e u s e d t o e n d o r s e o r p r om o t e p r o d u c t s d e r i v e d
20 / / f r om t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
21 / /
22 / / THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 / / ” AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 / / LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 / / A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 / /OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 / / SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 / / LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,
29 / /DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 / /THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
31 / / (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 / /OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 / / ===
34 / / C o p y r i g h t (c) Texa s I n s t r um e n t s I n c 2010�12
35 / /
36 / / Use o f t h i s s o f t w a r e i s c o n t r o l l e d by t h e t e rm s and c o n d i t i o n s f o und in
37 / / t h e l i c e n s e a g r e em e n t und e r whi ch t h i s s o f t w a r e h a s b e e n s u p p l i e d o r
38 / / p r o v i d e d .
39 / / *
40 / / p r u_ e x . c
41 / /
42 / / The PRU r e a d s t h r e e v a l u e s f r om e x t e r n a l DDR memory and s t o r e s t h e s e
43 / / v a l u e s i n s h a r e d PRU RAM u s i n g t h e p r o g r ammab l e c o n s t a n t t a b l e
44 / / e n t r i e s . The e x amp l e i n i t i a l l y l o a d s 3 v a l u e s i n t o t h e e x t e r n a l DDR
45 / /RAM. The PRU c o n f i g u r e s i t s C on s t a n t Tab l e Pr og rammab l e P o i n t e r
46 / / R e g i s t e r 0 and 1 (CTPPR_0 , 1) t o p o i n t t o a p p r o p r i a t e l o c a t i o n s i n t h e
47 / /DDR memory and t h e PRU s h a r e d RAM. The v a l u e s a r e t h e n r e a d f r om t h e
48 / /DDR memory and s t o r e d i n t o t h e PRU s h a r e d RAM u s i n g t h e v a l u e s i n t h e
49 / / 28 t h and 31 s t e n t r i e s o f t h e c o n s t a n t t a b l e .
50 / / *
51 / / I n c l u d e F i l e s
52 / / *
53
54 / / S t anda r d h e a d e r f i l e s
55 # in c l ude < s t d i o . h>
56 # in c l ude < s y s /mman . h>
57 # in c l ude < f c n t l . h>
58 # in c l ude < e r r n o . h>
59 # in c l ude < u n i s t d . h>
60 # in c l ude < s t r i n g . h>
61
62 / / Dr iv e r h e a d e r f i l e
63 # in c l ude ” p r u s s d r v . h ”
64 # in c l ude < p r u s s _ i n t c _mapp i ng . h>
65
66 / / *
67 / / E x p l i c i t E x t e r n a l D e c l a r a t i o n s
68 / / *
69
70 / / *
71 / / L o c a l Macro D e c l a r a t i o n s
72 / / *
73
74 # de f i n e PRU_NUM 0
75 # de f i n e ADDEND1 0x98765400u
76 # de f i n e ADDEND2 0x12345678u

302 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

77 # de f i n e ADDEND3 0x10210210u
78
79 # de f i n e DDR_BASEADDR 0x80000000
80 # de f i n e OFFSET_DDR 0x00001000
81 # de f i n e OFFSET_SHAREDRAM 2048 / / e q u i v a l e n t wi th 0x00002000
82
83 # de f i n e PRUSS0_SHARED_DATARAM 4
84
85 / / *
86 / / L o c a l T y p e d e f D e c l a r a t i o n s
87 / / *
88
89
90 / / *
91 / / L o c a l F un c t i o n D e c l a r a t i o n s
92 / / *
93
94 s t a t i c i n t LOCAL_exampleInit () ;
95 s t a t i c unsigned sho r t LOCAL_examplePassed (unsigned sho r t pruNum) ;
96
97 / / *
98 / / L o c a l V a r i a b l e D e f i n i t i o n s
99 / / *

100
101 / / *
102 / / I n t e r r u p t S e r v i c e R o u t i n e s
103 / / *
104
105
106 / / *
107 / / G l o b a l V a r i a b l e D e f i n i t i o n s
108 / / *
109
110 s t a t i c i n t mem_fd ;
111 s t a t i c vo id * ddrMem , * sharedMem ;
112 s t a t i c unsigned i n t * sharedMem_int ;
113
114 / / *
115 / / G l o b a l Fun c t i o n D e f i n i t i o n s
116 / / *
117
118 i n t main (void)
119 {
120 unsigned i n t r e t ;
121 t p r u s s _ i n t c _ i n i t d a t a p r u s s _ i n t c _ i n i t d a t a = PRUSS_INTC_INITDATA;
122
123 p r i n t f (” \nINFO : S t a r t i n g %s example . \ r \ n ” , ” PRU_example ”) ;
124
125 / * I n i t i a l i z e t h e PRU * /
126 p r u s s d r v _ i n i t () ;
127
128 / * Open PRU I n t e r r u p t * /
129 r e t = p r u s s d r v _op en (PRU_EVTOUT_0) ;
130 i f (r e t)
131 {
132 p r i n t f (” p r u s s d r v _op en open f a i l e d \ n ”) ;
133 r e t u rn (r e t) ;
134 }
135
136 / * Get t h e i n t e r r u p t i n i t i a l i z e d * /
137 p r u s s d r v _ p r u i n t c _ i n i t (& p r u s s _ i n t c _ i n i t d a t a) ;
138
139 / * I n i t i a l i z e e x amp l e * /
140 p r i n t f (” \ tINFO : I n i t i a l i z i n g example . \ r \ n ”) ;
141 LOCAL_exampleInit (PRU_NUM) ;
142
143 / * E x e c u t e e x amp l e on PRU * /
144 p r i n t f (” \ tINFO : Exe cu t i ng example . \ r \ n ”) ;
145 p r u s s d r v _ e x e c _p r o g r am (PRU_NUM, ” . / p ru_ex . b in ”) ;
146
147 / * Wait u n t i l PRU0 ha s f i n i s h e d e x e c u t i o n * /
148 p r i n t f (” \ tINFO : Wait ing f o r HALT command . \ r \ n ”) ;
149 p r u s s d r v _ p r u _w a i t _ e v e n t (PRU_EVTOUT_0) ;
150 p r i n t f (” \ tINFO : PRU comple t ed t r a n s f e r . \ r \ n ”) ;
151 p r u s s d r v _ p r u _ c l e a r _ e v e n t (PRU_EVTOUT_0, PRU0_ARM_INTERRUPT) ;
152
153 / * Ch e c k i f e x amp l e p a s s e d * /
154 i f (LOCAL_examplePassed (PRU_NUM))
155 {
156 p r i n t f (” Example e x e c u t e d s u c c e s f u l l y . \ r \ n ”) ;
157 }
158 e l s e
159 {
160 p r i n t f (” Example f a i l e d . \ r \ n ”) ;
161 }
162
163 / * D i s a b l e PRU and c l o s e memory mapping * /
164 p r u s s d r v _ p r u _ d i s a b l e (PRU_NUM) ;

6.16. PROGRAMMABLE REAL-TIME UNITS 303

165 p r u s s d r v _ e x i t () ;
166 munmap (ddrMem , 0x0FFFFFFF) ;
167 c l o s e (mem_fd) ;
168
169 r e t u rn (0) ;
170 }
171
172 / / *
173 / / L o c a l F un c t i o n D e f i n i t i o n s
174 / / *
175
176 s t a t i c i n t LOCAL_exampleInit ()
177 {
178 void * DDR_regaddr1 , * DDR_regaddr2 , * DDR_regaddr3 ;
179
180 / * o p en t h e d e v i c e * /
181 mem_fd = open (” / dev /mem” , O_RDWR) ;
182 i f (mem_fd < 0) {
183 p r i n t f (” F a i l e d to open / dev /mem (% s) \ n ” , s t r e r r o r (e r r n o)) ;
184 r e t u rn �1;
185 }
186
187 / * map t h e DDR memory * /
188 ddrMem = mmap(0 , 0x0FFFFFFF , PROT_WRITE | PROT_READ, MAP_SHARED, mem_fd , DDR_BASEADDR) ;
189 i f (ddrMem == NULL) {
190 p r i n t f (” F a i l e d to map the d e v i c e (% s) \ n ” , s t r e r r o r (e r r n o)) ;
191 c l o s e (mem_fd) ;
192 r e t u rn �1;
193 }
194
195 / * S t o r e Addend s in DDR memory l o c a t i o n * /
196 DDR_regaddr1 = ddrMem + OFFSET_DDR;
197 DDR_regaddr2 = ddrMem + OFFSET_DDR + 0x00000004 ;
198 DDR_regaddr3 = ddrMem + OFFSET_DDR + 0x00000008 ;
199
200 * (unsigned long *) DDR_regaddr1 = ADDEND1;
201 * (unsigned long *) DDR_regaddr2 = ADDEND2;
202 * (unsigned long *) DDR_regaddr3 = ADDEND3;
203
204 r e t u rn (0) ;
205 }
206
207 s t a t i c unsigned sho r t LOCAL_examplePassed (unsigned sho r t pruNum)
208 {
209 unsigned i n t r e s u l t _ 0 , r e s u l t _ 1 , r e s u l t _ 2 ;
210
211 / * A l l o c a t e S h a r e d PRU memory . * /
212 prussdrv_map_prumem (PRUSS0_SHARED_DATARAM, &sharedMem) ;
213 sharedMem_int = (unsigned i n t *) sharedMem ;
214
215 r e s u l t _ 0 = sharedMem_int [OFFSET_SHAREDRAM] ;
216 r e s u l t _ 1 = sharedMem_int [OFFSET_SHAREDRAM + 1] ;
217 r e s u l t _ 2 = sharedMem_int [OFFSET_SHAREDRAM + 2] ;
218
219 r e t u rn ((r e s u l t _ 0 == ADDEND1) & (r e s u l t _ 1 == ADDEND2) & (r e s u l t _ 2 == ADDEND3)) ;
220
221 }
222
223
224
225 / / *

Once written, the program is compiled using [Molloy, 2015]:

#gcc pru_ex.c -o pru_ex -lpthread -lprussdrv

5. Execute the PRU program. is is accomplished using:

#./pru_ex

For additional, advanced examples using the PRUs, please see [Molloy, 2015].

304 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

6.17 SUMMARY
In Chapters 1–5 of this book we employed BeagleBone as a user-friendly processor. We accessed
its features and subsystems via the Bonescript programming environment. In this chapter we be-
gan to shift focus and “unleash” the power of BeagleBone as a Linux-based, 32-bit, super-scalar
ARM Cortex A8 processor. We began with a brief review of the C and CCC tool programming
chain followed by examples on how to interact with the digital and analog pins aboard the proces-
sor. We then took a closer look at the features and subsystems available aboard BeagleBone. We
spent a good part of the chapter describing the exposed functions of BeagleBone. ese are the
functions accessible to the user via the P8 and P9 extension headers. We concluded the chapter
with an introduction to the onboard PRUs. roughout this chapter we provided sample pro-
grams on how to interact with and program the exposed functions.

6.18 REFERENCES
• AM335X ARM—AX Microprocessors (MPUs) Technical Reference Manual. Texas Instru-

ments, SPRUH73H, 2013.

• AM335X PRU—ICSS Reference Guide. Texas Instruments, SPRUHF8A, 2013.

• AM335X PWMSS Driver’s Guide. 2015. Texas Instruments; http://processors.wiki.
ti.com/index.php/AM335x_PWM_Driver's_Guide.

• AM335x Sitara Processors Technical Reference Manual. 2014. Texas Instruments,
SPRUH73K.

• AM335X Linux Application Loader User Guide, Texas Instruments. PRU Linux Applica-
tion Loader, http://processors.wiki.ti.com/index.php/PRU_Linux_Applicati
on_Loader, Texas Instruments, 2015.

• Barrett, S. and Pack, D. 2005. Embedded Systems Design and Applications with the 68HC12
and HCS12. Upper Saddle River, NJ: Pearson Prentice Hall.

• Barrett, S. and Pack, D. 2006. Processors Fundamentals for Engineers and Scientists. Morgan
& Claypool Publishers; www.morganclaypool.com

• Barrett, S. and Pack, D. 2008 Atmel AVR Processor Primer Programming and Interfacing.
Morgan & Claypool Publishers; www.morganclaypool.com

• BBB—Working with the PRU-ICSS/PRUSSv2. 2013; www.element14.com.

• CAN Tutorial, http://www.computer-solutions.co.uk/, Computer Solutions Ltd,
2015.

http://processors.wiki.ti.com/index.php/AM335x_PWM_Driver's_Guide
http://processors.wiki.ti.com/index.php/AM335x_PWM_Driver's_Guide
http://processors.wiki.ti.com/index.php/PRU_Linux_Application_Loader
http://processors.wiki.ti.com/index.php/PRU_Linux_Application_Loader
www.morganclaypool.com
www.morganclaypool.com
www.element14.com
http://www.computer-solutions.co.uk/

6.18. REFERENCES 305

• CircuitCo:BeagleBone LCD7, http://elinux.org/CircuitCo:BeagleBone_LCD7,
2015.

• CircuitCo–Printed Circuit Board Solutions, www.circuitco.com, 2015.

• Coley, G. 2014. BeagleBone Black Rev C.1 Systems ReferenceManual. Richardson, TX: Bea-
gleBoard.org Foundation; www.beagleboard.org.

• Device Tree Usage. 2005. http://devicetree.org/Device_Tree_Usage.

• Dulaney, E. 2010. Linux All-In-One for Dummies. Hoboken, NJ: Wiley Publishing, Inc.

• Enable PWMonBeagleBonewithDevice Tree Overlays. 2003. www.hipstercircuits.com.

• Horowitz, P. and Hill, W. 1990. e Art of Electronics. 2nd ed. New York: Cambridge Uni-
versity Press.

• Hughes-Croucher, T. and Wilson, M. 2012. Node Up and Running. Sebastopol, CA:
O’Reilly Media, Inc.

• Kelley, A. and Pohl, I. 1998.ABook onC—Programming inC. 4th ed. Boston,MA:Addison
Wesley.

• Kiessling, M. 2012. e Node Beginner Guide: A Comprehensive Node.js Tutorial.

• Korsch, J. and Garrett, L. 1988. Data Structures, Algorithms, and Program Style Using C.
Boston, MA: PWS-Kent Publishing Company.

• Likely, G. 2015. Linux and the Device Tree; https://www.kernel.org/doc/Documenta
tion/devicetree/usage-model.txt.

• Molloy, D. 2015. Exploring BeagleBone: Tools and Techniques for Building with Embedded
Linux. Indianapolis, IN: John Wiley & Sons.

• Pantelis Antoniou. 2015. “BeagleBone and the 3.8 Kernel;” www.elinux.org/BeagleBon
e_and_the_3.8_Kernel.

• Pollock, J. 2010. JavaScript. 3rd ed. New York: McGraw Hill.

• PRU Linux Application Loader. 2015. Texas Instruments; http://processors.wiki.ti
.com/index.php/PRU_Linux_Application_Loader.

• PRU Assembly Language Tools User’s Guide. 2014. Texas Instruments, SPRUHV6A.

• PRU Assembly Reference Guide. 2015. Texas Instruments. http://processors.wiki.ti
.com/index.php/PRU_Assembly_Reference_Guide.

http://elinux.org/CircuitCo:BeagleBone_LCD7
www.circuitco.com
www.beagleboard.org
http://devicetree.org/Device_Tree_Usage
www.hipstercircuits.com
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
www.elinux.org/BeagleBone_and_the_3.8_Kernel
www.elinux.org/BeagleBone_and_the_3.8_Kernel
http://processors.wiki.ti.com/index.php/PRU_Linux_Application_Loader
http://processors.wiki.ti.com/index.php/PRU_Linux_Application_Loader
http://processors.wiki.ti.com/index.php/PRU_Assembly_Reference_Guide
http://processors.wiki.ti.com/index.php/PRU_Assembly_Reference_Guide

306 6. BEAGLEBONE FEATURES AND SUBSYSTEMS

• Richardson, M. 2014. Getting Started With BeagleBone. Sebasatopol, CA: Maker Media.

• Steinkuehler, C. 2015. BeagleBone Universal IO. https://github.com/cdsteinkuehle
r/beaglebone-universal-io.

• SMSC. LAN8710A/LAN8710Ai Small Footprint MII/RMII 10/100 Etthernet Transceiver
with HP Auto—MDIX and flexPWR Technology. 2012.

• e I2C—Bus Specification. 2000. Version 2.1, Philips Semiconductor.

• Traynor, B. www.elinux.org/Beagleboard:TerminalShells, 2015.

• Vander Veer, E. 2005. JavaScript for Dummies. 4th ed. Hoboken, NJ: Wiley Publishing,
Inc.

• von Hagen, W. 2007. Ubuntu Linux Bible. Indianapolis, IN: Wiley Publishing, Inc.

6.19 CHAPTER EXERCISES
1. How does BeagleBone interact with a host computer?

2. Describe how to properly interface an LED to a processor.

3. Develop a glossary of Linux commands introduced in this chapter.

4. Given a sinusoid with 500 Hz frequency, what should be the minimum sampling frequency
for an analog-to-digital converter, if we want to faithfully reconstruct the analog signal after
the conversion?

5. If 12 bits are used to quantize a sampled signal, what is the number of available quantized
levels? What will be the resolution of such a system if the input range of the analog-to-
digital converter is 1.8 VDC?

6. A flex sensor provides 10 K ohm of resistance for 0ı flexure and 40 K ohm of resistance for
90ı of flexure. Design a circuit to convert the resistance change to a voltage change. (Hint:
consider a voltage divider). en design a transducer interface circuit to convert the output
from the flex sensor circuit to voltages suitable for the BeagleBone ADC system.

7. Does the time to convert an analog input signal to a digital representation vary in a
successive-approximation converter relative to the magnitude of the input signal? Explain.

8. Summarize the differences between the USART, SPI, and I2C methods of serial commu-
nication.

9. What is the primary difference between the UART and SPI serial communication systems?

https://github.com/cdsteinkuehler/beaglebone-universal-io
https://github.com/cdsteinkuehler/beaglebone-universal-io
www.elinux.org/Beagleboard:TerminalShells

6.19. CHAPTER EXERCISES 307

10. What is the ASCII encoded value for “BeagleBone?”

11. What is the purpose of an interrupt?

12. Describe the flow of events when an interrupt occurs.

13. What is the primary advantage of the PRU system?

14. Modify the PRU example to generate a continuous square wave. What is the maximum
frequency possible from the PRU?

309

C H A P T E R 7

BeagleBone “Off the Leash”
Objectives: After reading this chapter, the reader should be able to do the following:

• Enjoy the full power and rapid prototyping features of the Bonescript environment.

• Develop the hardware and Bonescript based control algorithm for an inexpensive laser light
show.

• Develop the hardware and Bonescript based control algorithm for an arbitrary waveform
generator.

• Develop the hardware and Bonescript based control algorithm for a robot arm.

• Develop the hardware and Bonescript based control algorithm for a weather station.

• Develop the hardware and Bonescript based control algorithm for a Speak & Spell like
device.

• Develop the hardware and a C based control algorithm for the Dagu Rover 5 treaded robot.

• Describe multiple Linux compatible open source libraries.

• Explore OpenCV computer vision features as a case study of available open source libraries.

• Program BeagleBone using OpenCV functions to capture and display facial images and
place a moustache on the face.

• Construct Boneyard II—a portable BeagleBone platform.

7.1 OVERVIEW
In the early chapters of this book, we examined the Bonescript environment as a user-friendly
tool to rapidly employ BeagleBone features right out of the box. In this chapter, we revisit Bone-
script and demonstrate its power as a rapid prototyping tool to develop complex, processor-based,
expandable systems employing multiple BeagleBone subsystems. Specifically, we develop a Bone-
script based weather station and Speak & Spell like device. We then illustrate C-based system
development. We construct a control system for a Dagu Rover 5 treaded robot. We use code de-
veloped in the previous chapters as building blocks for this system. We conclude the chapter by
taking a brief look at the rich variety of open source libraries available to the Linux developer.

310 7. BEAGLEBONE “OFF THE LEASH”

As a case study, we review some of the fundamental features of the OpenCV computer vision
library and employ them in a fun image processing task to plant moustaches on face images. As
a Linux-based processor with a clock speed as high as 1 GHz, BeagleBone is equipped to handle
complex image processing tasks not possible with a microcontroller-based board.

We have carefully chosen each of these projects to illustrate how BeagleBone may be used
in a variety of project areas including instrumentation intensive applications (weather station), in
assistive and educational technology applications (Speak & Spell), in motor and industrial control
applications (Dagu robot), and calculation intensive image processing applications (moustache
cam).

7.2 BONEYARD II: A PORTABLE LINUX
PLATFORM-BEAGLEBONE UNLEASHED

In the first five chapters of the book BeagleBone was “leashed” to a host computer. is is a good
way to efficiently use the features of the host computer in application development. However,
BeagleBone can be quickly unleashed and converted into a standalone Linux computer, as shown
in Figures 7.1, 7.2, and 7.3. We dubbed this project Boneyard II. is capability would be espe-
cially useful for developing applications that will be used in a remote, autonomous application.

e Boneyard II is quickly assembled using off-the-shelf components including:

• an original BeagleBone (700 MHz) or black (1 GHz) processor board;

• the Circuitco LCD7 display;

• a Adafruit mini-keyboard;

• a USB hub;

• a mini USB mouse; and

• and a Pelican 1200 case.

All of the components may be purchased for under US $300. A configuration diagram is
provided in Figure 7.4.is is truly a plug-and-play system. Simply by connecting the components
as shown and powering up the system, a standalone, 1 GHz computer may be assembled for under
$300.

7.3 BONEYARD III: A LOW-COST DESKTOP LINUX
PLATFORM

BeagleBone Blackmay be used to assemble a low-cost desktop Linux platform. Asmentioned ear-
lier in the book, BeagleBone Black supports theHigh-DefinitionMultimedia Interface (HDMI).

7.3. BONEYARD III: A LOW-COST DESKTOP LINUX PLATFORM 311

Figure 7.1: Boneyard II–a standalone Linux computer. (Photo courtesy of Barrett, 2013.)

312 7. BEAGLEBONE “OFF THE LEASH”

Figure 7.2: Boneyard II–a standalone Linux computer. (Photo courtesy of Barrett, 2013.)

7.3. BONEYARD III: A LOW-COST DESKTOP LINUX PLATFORM 313

Figure 7.3: Boneyard II—a standalone Linux computer. (Photo courtesy of Barrett, 2013.)

314 7. BEAGLEBONE “OFF THE LEASH”

LCD7

USB hub

mini-keyboard (Adafruit)

USB

stick

mini-mouse

Figure 7.4: Boneyard II connection diagram.

7.4. APPLICATION 1: INEXPENSIVE LASER LIGHT SHOW 315

e HDMI features are accessible via a microHDMI connector. BeagleBone Black can be
equipped with an HDMI display via an HDMI to microHDMI cable as shown in Figure 7.5.

e Boneyard III is quickly assembled using off-the-shelf components including:

• BeagleBone Black processor board;

• HDMI display;

• HDMI to microHDMI cable;

• a Adafruit mini-keyboard;

• a USB hub; and

• a mini USB mouse.

All of the components may be purchased for under US $300. A configuration diagram is
provided in Figure 7.5.is is truly a plug-and-play system. Simply by connecting the components
as shown and powering up the system, a standalone, 1 GHz desktop computer may be assembled
for under $300.

7.3.1 ACCESSING BONESCRIPT
Once configured you can access Bonescript using Boneyard III by starting the Firefox browser
resident within the Debian Linux release and navigating to the Cloud 9 IDE (http://192.168.
7.2:3000).

7.3.2 ACCESSING THE INTERNET
Once configured, Boneyard III may be connected to the Internet via the Ethernet features aboard
BeagleBone Black. Use a standard Ethernet cable to connect from your Ethernet router to the
Ethernet connection on BeagleBone Black. Once connected, the internet may be accessed by
starting the Firefox browser resident within the Debian Linux release.

Once on the Internet, you can upgrade to the latest version of Bonescript by accessing the
BeagleBone terminal prompt (Applications � > System Tools � > Terminal) and entering the
following commands:

>cd /var/lib/cloud9
>git stash
>git pull

7.4 APPLICATION 1: INEXPENSIVE LASER LIGHT SHOW
An inexpensive laser light show may be constructed from two servos. In this example we use
two Futaba 180ı range servos (Parallax 900–00005, available from Jameco #283021) mounted, as

http://192.168.7.2:3000
http://192.168.7.2:3000

316 7. BEAGLEBONE “OFF THE LEASH”

HDMI display

mini-keyboard (Adafruit)

mini-mouse

USB

stick

USB hub

HDMI cable

Figure7.5: Boneyard III connection diagram—a low-cost desktop Linux platform. (Illustrations used
with permission of Texas Instruments (www.TI.com).)

www.TI.com

7.4. APPLICATION 1: INEXPENSIVE LASER LIGHT SHOW 317

shown in Figure 7.6. e servos expect a pulse every 20 ms (50 Hz). e pulse length determines
the degree of rotation from 1000 �s (5% duty cycle, �90ı rotation) to 2000 �s (10% duty cycle,
C90ı rotation). e X and Y control signals are provided by BeagleBone Black. e X and Y
control signals are interfaced to the servos via LM324 operational amplifiers. e laser source is
provided by an inexpensive laser pointer.

Vcc = 5 VDC
(4)

(11)

(1)
(2)

(3)

LM324

White

Red
Vcc = 5 VDC

Black

mirror

mirror
servo

servo

Vcc = 5 VDC
(4)

(11)

(7)
(6)

(5)

LM324
White

x

y

Red

Vcc = 5 VDC

Black

x_ch_pin

(P9.14)

lase r source

y_ch_pin

(P8.13)

Figure 7.6: Inexpensive laser light show.

e laser_light_show.js program sends the same signal to both channel outputs (x_ch_pin,
y_ch_pin) and traces a line with the laser. e analogWrite functions are configured with a 50 Hz
baseline frequency. e duty cycle for each servo is varied from 5% duty cycle (�90ı rotation)
to 10% duty cycle (C90ı rotation). e update_position function is called every 40 ms by the
setInterval function, as shown in Figure 7.7.

318 7. BEAGLEBONE “OFF THE LEASH”

1 / / *
2
3 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
4
5 / / i n i t a l i z e v a r i a b l e s
6 v a r x _ v a l u e = 0 . 0 5 ; / / 5% du t y c y c l e
7 v a r y _ v a l u e = 0 . 0 5 ; / / 5% du t y c y c l e
8 v a r x _ d i r e c t i o n = 1 ;
9 v a r y _ d i r e c t i o n = 1 ;

10 v a r x_ch_p in = ” P9_14 ” ; / /PWM e q u i p p e d c h a n n e l
11 v a r y_ch_p in = ” P8_13 ” ; / /PWM e q u i p p e d c h a n n e l
12
13 / / c o n f i g u r e p in
14 b . pinMode (x_ch_pin , b .OUTPUT) ;
15 b . pinMode (y_ch_pin , b .OUTPUT) ;
16
17 / / c a l l f u n c t i o n t o u p d a t e s e r v o s p o s i t i o n e v e r y 40 ms
18 s e t I n t e r v a l (u p d a t e _ p o s i t i o n , 40) ;
19
20 / / f u n c t i o n t o u p d a t e s e r v o p o s i t i o n
21 / / b a s e l i n e s e r v o f r e q u e n c y : 50 Hz
22 / / s e r v o d u t y c y c l e :
23 / / � x_va lu e , y _ v a l u e
24 / / � v a r i e s f r om 5% t o 10%
25 / / � 5% c o r r e s p o n d s t o �90 d e g r e e s e r v o r o t a t i o n
26 / / � 10% c o r r e s p o n d s t o +90 d e g r e e s e r v o r o t a t i o n
27 / / � i n c r em e n t a t 1% i n t e r v a l s
28
29 f u n c t i o n u p d a t e _ p o s i t i o n () {
30 b . ana l ogWr i t e (x_ch_pin , x _ v a l u e , 50) ; / / 50 Hz b a s e l i n e f r e q u e n c y
31 b . ana l ogWr i t e (y_ch_pin , y _ v a l u e , 50) ; / / 50 Hz b a s e l i n e f r e q u e n c y
32
33 / / u p d a t e x v a l u e s
34 x _ v a l u e = x _ v a l u e + (x _ d i r e c t i o n * 0 . 0 1) ; / / i n c r em e n t / d e c r em e n t by 1%
35 i f (x _ v a l u e > 0 . 1 0) { x _ v a l u e = 0 . 1 0 ; x _ d i r e c t i o n = �1; }
36 e l s e i f (x _ v a l u e <= 0 . 0 5) { x _ v a l u e = 0 . 0 5 ; x _ d i r e c t i o n = 1 ; }
37
38 / / u p d a t e y v a l u e s
39 y _ v a l u e = y _ v a l u e + (y _ d i r e c t i o n * 0 . 0 1) ; / / i n c r em e n t / d e c r em e n t by 1%
40 i f (y _ v a l u e > 0 . 1 0) { y _ v a l u e = 0 . 1 0 ; y _ d i r e c t i o n = �1;}
41 e l s e i f (y _ v a l u e <= 0 . 0 5) { y _ v a l u e = 0 . 0 5 ; y _ d i r e c t i o n = 1 ; }
42 }
43 / / *

e setInterval update rate and the increment/decrement percentage may be adjusted to
vary the rate of high quickly the line is traced. Any arbitrary shape may be traced by the laser
using this technique.

7.4. APPLICATION 1: INEXPENSIVE LASER LIGHT SHOW 319

no

yes

laser_light_show.js
//initialize variables and BBB pins

x_value = 0.01, y_value = 0.01

x_direction = +1, y_direction = +1

(+1: increment)

set x_ch_pin to P9.14 (output)

set y_ch_pin to P8.13 (output)

analogWrite to x_ch_pin (P9.14)

analogWrite to y_ch_pin (P8.13)

yes

x_value = 0.10

Switch x_direction:

x_direction = -1 (decrement)

no
x_value > 0.10 x_value <= 0.05

yes

no

x_value = 0.05

Switch x_direction:

x_direction = +1 (increment)

40 ms?

Update x_value, y_value:

x_value = x_value + (x_direction * 0.10)

y_value = y_value + (y_direction * 0.10)

yes

x_value = 0.10

Switch x_direction:

x_direction = -1 (decrement)

no
x_value > 0.10 x_value <= 0.05

yes

no

x_value = 0.05

Switch x_direction:

x_direction = +1 (increment)

Figure 7.7: Laser light show UML.

320 7. BEAGLEBONE “OFF THE LEASH”

7.5 APPLICATION 2: ARBITRARY WAVEFORM
GENERATOR

eBeagleBonemay be used as an arbitrary waveform generator using the built-inmath functions
of Node.js. Many common math functions are available in Node.js. In this example, we use the
sine function to generate a rectified signal. Note the argument to the analogWrite function must
be limited to values between 0 and 1.

1 / / *
2 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
3
4 / / s e t u p s t a r t i n g c o n d i t i o n s
5 v a r s i g n a l _ v a l u e = 0 . 0 1 ;
6 v a r s i n e _ v a l u e = 0 ;
7 v a r s i g n a l _ p i n = ” P9_14 ” ;
8
9 / / c o n f i g u r e p in

10 b . pinMode (s i g n a l _ p i n , b .OUTPUT) ;
11
12 / / c a l l f u n c t i o n t o u p d a t e s i g n a l e v e r y 1 ms
13 s e t I n t e r v a l (s i g n a l , 1) ;
14
15 / / f u n c t i o n t o u p d a t e s i g n a l
16 f u n c t i o n s i g n a l () {
17 b . ana l ogWr i t e (s i g n a l _ p i n , s i n e _ v a l u e) ;
18 s i g n a l _ v a l u e = s i g n a l _ v a l u e + 0 . 0 1 ;
19 i f (s i g n a l _ v a l u e >= 1 . 0) { s i g n a l _ v a l u e = 0 ; }
20 s i n e _ v a l u e = Math . ab s (Math . s i n (s i g n a l _ v a l u e * 2 * 3 . 1 4)) ;
21 }
22
23 / / *

7.6 APPLICATION 3: ROBOT ARM
Robotics are used in a wide variety of educational and industrial applications. In this section, we
adapt an inexpensive (US $50) off-the-shelf robotic arm for control by BeagleBone Black. e
Robotic Arm-Edge is a kit manufactured by OWI Inc. It is readily available online from a number
of distributors. e arm has five degrees of freedom and may be assembled in several hours. e
robot arm is controlled using five switches housed within the Wired Control Box, as shown in
Figure 7.8.

To adapt the arm for control by BeagleBone Black an interface circuit is required, as shown
in Figure 7.9. A total of ten digital input/output control lines from BeagleBone Black control the
five robot arm motors (M1: gripper, M2: wrist, M3: elbow, M4: base, and M5: base rotation).
Each motor requires a forward and reverse control signal. A logic one to either of the forward

7.6. APPLICATION 3: ROBOT ARM 321

Figure 7.8: OWI Inc. Robotic Arm-Edge kit [http://www.owirobot.com].

http://www.owirobot.com

322 7. BEAGLEBONE “OFF THE LEASH”

or reverse inputs will cause the motor to move in the corresponding direction while the signal is
asserted. e motor does not move when both signals are at logic zero.

Each digital signal from BeagleBone Black (at 3.3 VDC) is fed to an LM324 operational
amplifier configured as a threshold detector. When a logic one (3.3 VDC) is provided to the
threshold detector from BeagleBone Black, the LM324 saturates at the supply voltage less one
volt (8 VDC). e output voltage from the LM324 energizes the coil of the SPST-NO (single
pole, single throw, normally open) reed relay (Radio Shack #275-232). e energized coil closes
the switch contacts which allow the motor to rotate. e motor supply (˙) 3 VDC is provided
by three D batteries which reside in the base of the robot arm. An interface circuit, as shown in
Figure 7.9, is required for each of the five motors (M1-M5) of the robot arm.

Vcoil = 5 VDC

Icoil = 20 mA

Rcoil = 250 ohms

SPST-NO reed relay

(Radio Shack #275-0232)
9 VDC

5 VDC
1K

1K

forward

(from BBB)

LM324
+

-
1N4001

+3V

+-

+3V

+ -

reverse

(from BBB)
9 VDC

5 VDC
1K

1K

LM324
+

-
1N4001

+3 VDC

-3 VDC

3

2

4

11

1

5

6

4

11

7

+ -M1

150

150

Vcoil = 5 VDC

Icoil = 20 mA

Rcoil = 250 ohms

SPST-NO reed relay

(Radio Shack #275-0232)

Figure 7.9: Robot arm interface circuit.

e robot arm may be programmed to complete a variety of tasks. A basic Bonescript
program is provided below to sequentially move each of the motors forward and then reverse for
200 ms. e cycle is repeated every 2.1 s. e variable “steps” consists of an array of functions.
e functions are sequentially called within the function “mysteps.”

1 / / *
2 / / r o b o t _ a rm . j s

7.6. APPLICATION 3: ROBOT ARM 323

3 / / *
4
5 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
6
7
8 v a r M1_forward = ” P9_11 ” ; / /M1: g r i p p e r
9 v a r M1_rever se = ” P9_12 ” ;

10 v a r M2_forward = ” P9_13 ” ; / /M2: w r i s t mo t i on
11 v a r M2_rever se = ” P9_14 ” ;
12 v a r M3_forward = ” P9_15 ” ; / /M3: e l b ow mo t i on
13 v a r M3_rever se = ” P9_16 ” ;
14 v a r M4_forward = ” P9_17 ” ; / /M4: b a s e mo t i on
15 v a r M4_rever se = ” P9_18 ” ;
16 v a r M5_forward = ” P9_21 ” ; / /M5: b a s e r o t a t i o n
17 v a r M5_rever se = ” P9_22 ” ;
18
19 b . pinMode (M1_forward , b .OUTPUT) ;
20 b . pinMode (M1_reverse , b .OUTPUT) ;
21 b . pinMode (M2_forward , b .OUTPUT) ;
22 b . pinMode (M2_reverse , b .OUTPUT) ;
23 b . pinMode (M3_forward , b .OUTPUT) ;
24 b . pinMode (M3_reverse , b .OUTPUT) ;
25 b . pinMode (M4_forward , b .OUTPUT) ;
26 b . pinMode (M4_reverse , b .OUTPUT) ;
27 b . pinMode (M5_forward , b .OUTPUT) ;
28 b . pinMode (M5_reverse , b .OUTPUT) ;
29
30 s e t I n t e r v a l (loop , 2100) ;
31
32 f u n c t i o n loop ()
33 {
34 mys t ep s (done) ;
35 }
36
37 f u n c t i o n done ()
38 {
39 c o n s o l e . l o g (” done ”) ;
40 }
41
42 f u n c t i o n mys t ep s (c a l l b a c k)
43 {
44 / / P r o v i d e a l i s t o f f u n c t i o n s t o c a l l
45
46 v a r s t e p s =
47 [
48 / /M1: g r i p p e r mo t o r f o rwa r d
49 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M5_reverse , b .LOW) ;
50 b . d i g i t a lW r i t e (M1_forward , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;

324 7. BEAGLEBONE “OFF THE LEASH”

51
52 / /M1: g r i p p e r mo t o r r e v e r s e
53 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M1_forward , b .LOW) ;
54 b . d i g i t a lW r i t e (M1_reverse , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
55
56
57 / /M2: w r i s t mo t o r f o rwa r d
58 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M1_reverse , b .LOW) ;
59 b . d i g i t a lW r i t e (M2_forward , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
60
61 / /M2: w r i s t mo t o r r e v e r s e
62 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M2_forward , b .LOW) ;
63 b . d i g i t a lW r i t e (M2_reverse , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
64
65
66 / /M3: e l b ow mo t o r f o rwa r d
67 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M2_reverse , b .LOW) ;
68 b . d i g i t a lW r i t e (M3_forward , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
69
70 / /M3: e l b ow mo t o r r e v e r s e
71 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M3_forward , b .LOW) ;
72 b . d i g i t a lW r i t e (M3_reverse , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
73
74
75 / /M4: b a s e mo t o r f o rwa r d
76 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M3_reverse , b .LOW) ;
77 b . d i g i t a lW r i t e (M4_forward , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
78
79 / /M4: b a s e mo t o r r e v e r s e
80 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M4_forward , b .LOW) ;
81 b . d i g i t a lW r i t e (M4_reverse , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
82
83
84 / /M5: r o t a t i o n mo t o r f o rwa r d
85 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M4_reverse , b .LOW) ;
86 b . d i g i t a lW r i t e (M5_forward , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
87
88 / /M5: r o t a t i o n mo t o r r e v e r s e
89 f u n c t i o n () { c o n s o l e . l o g (” i = ” + i) ; b . d i g i t a lW r i t e (M5_forward , b .LOW) ;
90 b . d i g i t a lW r i t e (M5_reverse , b .HIGH) ; s e tT imeou t (nex t , 200) ; } ;
91
92 f u n c t i o n () { c a l l b a c k () ; }
93] ;
94
95 / / S t a r t a t 0
96 v a r i = 0 ;
97
98 c o n s o l e . l o g (” i = ” + i) ;

7.7. APPLICATION 4: WEATHER STATION IN BONESCRIPT 325

99 ne x t () ; / / C a l l t h e f i r s t f u n c t i o n
100
101 / / N e s t e d h e l p e r f u n c t i o n t o c a l l t h e n e x t f u n c t i o n in ’ s t e p s ’
102 f u n c t i o n ne x t ()
103 {
104 i ++
105 s t e p s [i �1] () ;
106 }
107
108 / / *

7.7 APPLICATION 4: WEATHER STATION IN BONESCRIPT
In the early chapters of this book, we examined the Bonescript environment as a user-friendly
tool to rapidly employ BeagleBone features right out of the box. In this section, we demonstrate
how Bonescript may be used as a rapid prototyping tool to develop complex, processor-based
systems employing multiple BeagleBone subsystems. In this first example we develop a basic
weather station to sense wind direction and ambient temperature. e weather station may be
easily expanded with other sensors (wind speed, humidity, etc.)e sensed values will be displayed
on an LCD in Fahrenheit. e wind direction will also be displayed on a multi-LED array.

7.7.1 REQUIREMENTS
e requirements for this system include the following.

• Design a weather station to sense wind direction and ambient temperature.

• Sensed wind direction and temperature will be displayed on an LCD.

• Sensed temperature will be displayed in the Fahrenheit temperature scale.

• Wind direction will be displayed on a multi-LED array.

7.7.2 STRUCTURE CHART
To begin the design process a structure chart is used to partition the system into definable pieces.
We employ a top-down design/bottom-up implementation approach. e structure chart for the
weather station is provided in Figure 7.10. e system is partitioned until the lowest level of the
structure chart contains “doable” pieces of hardware components or software functions. Data flow
is shown on the structure chart as directed arrows. For example, raw data on wind direction sensed
by the weather vane is processed as an input to the analog-to-digital converter (ADC), whereas
a logic signal to active an LED to indicate wind direction is an output.

e main BeagleBone subsystem needed for this project is the ADC system to convert the
analog voltage from the LM34 temperature sensor and weather vane into digital signals. Also,

326 7. BEAGLEBONE “OFF THE LEASH”

a number of general purpose input/output pins will interface to the wind direction display. e
wind direction display consists of a multi-LED array. Each LED has a 2.1 VDC voltage drop
and a current of 10 mA.

Weather Station

ADC

LM34

temp sensor

weather

vane
ADC

Initialize

wind

direction

temp

data

LED wind

direction

Wind Direction

Display

wind

direction

LED

interface

LCD

putchar

LCD

Display

wind

direction

LCD

initialize

LCD

putcommand
LCD

print

Figure 7.10: Weather station structure chart.

7.7.3 CIRCUIT DIAGRAM
e circuit diagram for the weather station is provided in Figure 7.11. e weather station is
equipped with two input sensors: the LM34 to measure temperature and the weather vane to
measure wind direction. Both of the sensors provide an analog output that is fed to BeagleBone’s
ADC system. e LM34 provides 10 mV output per degree Fahrenheit. e weather vane pro-
vides 0–1.8 VDC for 360ı of vane rotation. e weather vane must be oriented to a known
direction with the output voltage at this direction noted. We assume that 0 VDC corresponds to
North and the voltage increases as the vane rotates clockwise to the East. e vane output voltage
continues to increase until North is again reached at 1.8 VDC and then rolls over back to 0 volts.
All other directions are derived from this reference point, as shown in Figure 7.12. An LCD
is connected to BeagleBone, as shown in Figure 7.11. is is the same LCD interface provided
earlier in this book.

7.7.4 UML ACTIVITY DIAGRAMS
e UML activity diagram for the program is provided in Figure 7.13. After initializing the
subsystems, the program enters a continuous loop where temperature and wind direction are
sensed and displayed on the LCD and the LED display. e system then enters a delay. e delay
value is set to determine how often the temperature and wind direction parameters are updated.

7.7. APPLICATION 4: WEATHER STATION IN BONESCRIPT 327

weather vane

Vcc = 1.8 VDC

LM34

Vcc = 5 V

temperature sensor

G
N

D
-1

V
D

D
-2

V
o
-3

R
S

-4

R
/W

-5

E
-6

D
B

0
-7

D
B

1
-8

D
B

2
-9

D
B

3
-1

0

D
B

4
-1

1

D
B

5
-1

2

D
B

6
-1

3

D
B

7
-1

4

Vcc

10K

line1

line2

dataenable
command/data

3.3 VDC

Ranode = (3.3 VDC - Vdiode)/Idiode

 = (3.3 VDC - 2.1 VDC)/ 10 mA

 = 120 ohms

10K 10K 10K 10K 10K 10K 10K 10K

MPQ2222

from BeagleBone

Figure 7.11: Circuit diagram for weather station. (Illustrations used with permission of Texas Instru-
ments (www.TI.com).)

7.7.5 BONESCRIPT CODE
In this example we use the Bonescript user environment to rapidly code the control algorithm for
the weather station. We use examples provided earlier in the book as building blocks to rapidly
construct the code. We provide the majority of the code. e code to convert the reading from the

www.TI.com

328 7. BEAGLEBONE “OFF THE LEASH”

N

S

W E

NW

SW

NE

SE

0.1125 VDC

(0.0625 FS)

0.3375 VDC

(0.1875 FS)

0.5625 VDC

(0.3125 FS)

0.7875 VDC

(0.4375 FS)

1.0125 VDC

(0.5625 FS)

1.2375 VDC

(0.6875 FS)

1.4625 VDC

(0.8125 FS)

1.6875 VDC

(0.9375 FS)

Figure 7.12: Weather vane output voltage as shown as the actual value and the normalized full-scale
(FS) value.

LM34 temperature sensor and display its value and wind direction are left as an end-of-chapter
exercise.

1 / /
* *

2 v a r b = r e q u i r e (’ b o n e s c r i p t ’) ;
3
4 / / s e n s o r p in c o n f i g u r a t i o n
5 v a r wx_vane = ‘ ‘ P9_39 ’ ’ ; / / w e a t h e r vane
6 v a r temp_sen = ‘ ‘ P9_37 ’ ’ ; / / t e m p e r a t u r e s e n s o r
7 v a r wx_vane_va l u e ;
8 v a r t emp_s en_va l u e ;
9

10 / / wind d i r e c t i o n LED
11 v a r LED_N = ‘ ‘ P9_11 ’ ’ ; / /N: LED s e gm en t J
12 v a r LED_NE = ‘ ‘ P9_12 ’ ’ ; / /NE: LED s e gm en t K
13 v a r LED_E = ‘ ‘ P9_13 ’ ’ ; / /E : LED s e gm en t G2
14 v a r LED_SE = ‘ ‘ P9_14 ’ ’ ; / / SE : LED s e gm en t L
15 v a r LED_S = ‘ ‘ P9_15 ’ ’ ; / / S : LED s e gm en t M
16 v a r LED_SW = ‘ ‘ P9_16 ’ ’ ; / /SW: LED s e gm en t N
17 v a r LED_W = ‘ ‘ P9_17 ’ ’ ; / /W: LED s e gm en t G1
18 v a r LED_NW = ‘ ‘ P9_18 ’ ’ ; / /NW: LED s e gm en t H
19
20 / /LCD p in c o n f i g u r a t i o n
21 v a r LCD_RS = ‘ ‘ P8_9 ’ ’ ; / /LCD R e g i s t e r S e t (RS) c o n t r o l

7.7. APPLICATION 4: WEATHER STATION IN BONESCRIPT 329

initialize LCD

while(1)

convert temp

convert wind direction

display temp &

wind direction on LCD

display wind direction

on LED

delay(desired_update_time)

configure

BeagleBone

pins

read temp ADC

read wind direction ADC

Figure 7.13: Weather station UML activity diagram.

330 7. BEAGLEBONE “OFF THE LEASH”

22 v a r LCD_E = ‘ ‘ P8_10 ’ ’ ; / /LCD Enab l e (E) c o n t r o l
23 v a r LCD_DB0 = ‘ ‘ P8_11 ’ ’ ; / /LCD Data l i n e DB0
24 v a r LCD_DB1 = ‘ ‘ P8_12 ’ ’ ; / /LCD Data l i n e DB1
25 v a r LCD_DB2 = ‘ ‘ P8_13 ’ ’ ; / /LCD Data l i n e DB2
26 v a r LCD_DB3 = ‘ ‘ P8_14 ’ ’ ; / /LCD Data l i n e DB3
27 v a r LCD_DB4 = ‘ ‘ P8_15 ’ ’ ; / /LCD Data l i n e DB4
28 v a r LCD_DB5 = ‘ ‘ P8_16 ’ ’ ; / /LCD Data l i n e DB5
29 v a r LCD_DB6 = ‘ ‘ P8_17 ’ ’ ; / /LCD Data l i n e DB6
30 v a r LCD_DB7 = ‘ ‘ P8_18 ’ ’ ; / /LCD Data l i n e DB7
31
32 / / wind d i r e c t i o n p i n s
33 b . pinMode (LED_N, b .OUTPUT) ;
34 b . pinMode (LED_NE, b .OUTPUT) ;
35 b . pinMode (LED_E, b .OUTPUT) ;
36 b . pinMode (LED_SE, b .OUTPUT) ;
37 b . pinMode (LED_S, b .OUTPUT) ;
38 b . pinMode (LED_SW, b .OUTPUT) ;
39 b . pinMode (LED_W, b .OUTPUT) ;
40 b . pinMode (LED_NW, b .OUTPUT) ;
41
42 / /LCD d i r e c t i o n p i n s
43 b . pinMode (LCD_RS, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
44 b . pinMode (LCD_E, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
45 b . pinMode (LCD_DB0, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
46 b . pinMode (LCD_DB1, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
47 b . pinMode (LCD_DB2, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
48 b . pinMode (LCD_DB3, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
49 b . pinMode (LCD_DB4, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
50 b . pinMode (LCD_DB5, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
51 b . pinMode (LCD_DB6, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
52 b . pinMode (LCD_DB7, b .OUTPUT) ; / / s e t p i n t o d i g i t a l o u t p u t
53 LCD_init () ; / / c a l l LCD i n i t i a l i z e
54
55 s e t I n t e r v a l (updateWeather , 100) ;
56
57 f u n c t i o n updateWeather ()
58 {
59 clear_LEDs () ;
60
61 / / Read we a t h e r vane and t e m p e r a t u r e s e n s o r s
62 wx_vane_va l u e = b . ana logRead (wx_vane) ;
63 t emp_s en_va l u e = b . ana logRead (temp_sen) ;
64
65 / / C a l c u l a t e t e m p e r a t u r e
66
67 / / Nor th
68 i f ((wx_vane_va l u e > 0 . 9375) | | (wx_vane_va l u e <= 0 . 0625))
69 {

7.7. APPLICATION 4: WEATHER STATION IN BONESCRIPT 331

70 / / i l l u m i n a t e N LED
71 b . d i g i t a lW r i t e (LED_N, b .HIGH) ;
72 }
73
74 / / N o r t h e a s t
75 e l s e i f ((wx_vane_va l u e > 0 . 0625)&&(wx_vane_va l u e <= 0 . 1875))
76 {
77 / / i l l u m i n a t e NE LED
78 b . d i g i t a lW r i t e (LED_NE, b .HIGH) ;
79 }
80
81 / / Ea s t
82 e l s e i f ((wx_vane_va l u e > 0 . 1875)&&(wx_vane_va l u e <= 0 . 3125))
83 {
84 / / i l l u m i n a t e E LED
85 b . d i g i t a lW r i t e (LED_E, b .HIGH) ;
86 }
87
88 / / S o u t h e a s t
89 e l s e i f ((wx_vane_va l u e > 0 . 3125)&&(wx_vane_va l u e <= 0 . 4375))
90 {
91 / / i l l u m i n a t e SE LED
92 b . d i g i t a lW r i t e (LED_SE, b .HIGH) ;
93 }
94
95 / / S o u t h
96 e l s e i f ((wx_vane_va l u e > 0 . 4375)&&(wx_vane_va l u e <= 0 . 5625))
97 {
98 / / i l l u m i n a t e S LED
99 b . d i g i t a lW r i t e (LED_S, b .HIGH) ;

100 }
101
102 / / S o u t hw e s t
103 e l s e i f ((wx_vane_va l u e > 0 . 5625)&&(wx_vane_va l u e <= 0 . 6875))
104 {
105 / / i l l u m i n a t e SW LED
106 b . d i g i t a lW r i t e (LED_SW, b .HIGH) ;
107 }
108
109 / / Wes t
110 e l s e i f ((wx_vane_va l u e > 0 . 6875)&&(wx_vane_va l u e <= 0 . 8125))
111 {
112 / / i l l u m i n a t e W LED
113 b . d i g i t a lW r i t e (LED_W, b .HIGH)
114 }
115
116 / /NE
117 e l s e

332 7. BEAGLEBONE “OFF THE LEASH”

118 {
119 / / i l l u m i n a t e NE LED
120 b . d i g i t a lW r i t e (LED_NE, b .HIGH)
121 }
122 }
123
124 / / *
125 / / c l e a r_LEDs
126 / / *
127
128 f u n c t i o n clear_LEDs () {
129 / / r e s e t LEDs
130 b . d i g i t a lW r i t e (LED_N, b .LOW) ;
131 b . d i g i t a lW r i t e (LED_NE, b .LOW) ;
132 b . d i g i t a lW r i t e (LED_E, b .LOW) ;
133 b . d i g i t a lW r i t e (LED_SE, b .LOW) ;
134 b . d i g i t a lW r i t e (LED_S, b .LOW) ;
135 b . d i g i t a lW r i t e (LED_SW, b .LOW) ;
136 b . d i g i t a lW r i t e (LED_W, b .LOW) ;
137 b . d i g i t a lW r i t e (LED_NW, b .LOW) ;
138 }
139
140 / / *
141 / / LCD_print
142 / / *
143
144 f u n c t i o n LCD_print (l i n e , message , c a l l b a c k)
145 {
146 v a r i = 0 ;
147
148 i f (l i n e == 1)
149 {
150 LCD_putcommand (0 x80 , w r i t eNe x tCh a r a c t e r) ; / / p r i n t t o LCD l i n e 1
151 }
152 e l s e
153 {
154 LCD_putcommand (0 xc0 , w r i t eNe x tCh a r a c t e r) ; / / p r i n t t o LCD l i n e 2
155 }
156
157 f u n c t i o n w r i t eNe x tCh a r a c t e r ()
158 {
159 / / i f we a l r e a d y p r i n t e d t h e l a s t c h a r a c t e r , s t o p and c a l l b a c k
160 i f (i == message . l e n g t h)
161 {
162 i f (c a l l b a c k) c a l l b a c k () ;
163 r e t u rn ;
164 }
165

7.7. APPLICATION 4: WEATHER STATION IN BONESCRIPT 333

166 / / g e t t h e n e x t c h a r a c t e r t o p r i n t
167 v a r ch r = message . s u b s t r i n g (i , i +1) ;
168 i ++ ;
169
170 / / p r i n t i t u s i n g LCD_putchar and c ome b a c k a g a i n when don e
171 LCD_putchar (chr , w r i t eNe x tCh a r a c t e r) ;
172 }
173 }
174
175 / / *
176 / / LCD_init
177 / / *
178
179 f u n c t i o n LCD_init (c a l l b a c k)
180 {
181 / /LCD Enab l e (E) p in low
182 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
183
184 / / S t a r t a t t h e b e g i n n i n g o f t h e l i s t o f s t e p s t o p e r f o rm
185 v a r i = 0 ;
186
187 / / L i s t o f s t e p s t o p e r f o rm
188 v a r s t e p s =
189 [
190 f u n c t i o n () { s e tT imeou t (nex t , 15) ; } , / / d e l a y 15ms
191 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
192 f u n c t i o n () { s e tT imeou t (nex t , 5) ; } , / / d e l a y 5ms
193 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 8� b i t

o p e r a t i o n
194 f u n c t i o n () { LCD_putcommand (0 x38 , n e x t) ; } , / / s e t f o r 5 x 7

c h a r a c t e r
195 f u n c t i o n () { LCD_putcommand (0 x0E , n e x t) ; } , / / d i s p l a y on
196 f u n c t i o n () { LCD_putcommand (0 x01 , n e x t) ; } , / / d i s p l a y c l e a r
197 f u n c t i o n () { LCD_putcommand (0 x06 , n e x t) ; } , / / e n t r y mode s e t
198 f u n c t i o n () { LCD_putcommand (0 x00 , n e x t) ; } , / / c l e a r d i s p l a y , c u r s o r

home
199 f u n c t i o n () { LCD_putcommand (0 x00 , c a l l b a c k) ; } / / c l e a r d i s p l a y , c u r s o r

home
200] ;
201
202 ne x t () ; / / E x e c u t e t h e f i r s t s t e p
203
204 / / F un c t i o n f o r e x e c u t i n g t h e n e x t s t e p
205 f u n c t i o n ne x t ()
206 {
207 i ++ ;
208 s t e p s [i �1] () ;

334 7. BEAGLEBONE “OFF THE LEASH”

209 }
210 }
211
212 / / *
213 / / LCD_putcommand
214 / / *
215
216 f u n c t i o n LCD_putcommand (cmd , c a l l b a c k)
217 {
218 / / p a r s e command v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
219 / / t o LCD
220 i f ((cmd & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH) ;
221 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW) ;
222 i f ((cmd & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH) ;
223 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW) ;
224 i f ((cmd & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH) ;
225 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW) ;
226 i f ((cmd & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH) ;
227 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW) ;
228 i f ((cmd & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH) ;
229 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW) ;
230 i f ((cmd & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH) ;
231 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW) ;
232 i f ((cmd & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH) ;
233 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW) ;
234 i f ((cmd & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH) ;
235 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW) ;
236
237 / /LCD R e g i s t e r S e t (RS) t o l o g i c z e r o f o r command i n p u t
238 b . d i g i t a lW r i t e (LCD_RS, b .LOW) ;
239 / /LCD Enab l e (E) p in h i g h
240 b . d i g i t a lW r i t e (LCD_E, b .HIGH) ;
241
242 / / End t h e w r i t e a f t e r 1ms
243 se tT imeou t (endWrite , 1) ;
244
245 f u n c t i o n endWrite ()
246 {
247 / /LCD Enab l e (E) p in low
248 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
249 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
250 se tT imeou t (c a l l b a c k , 1) ;
251 }
252 }
253
254 / / *
255 / / LCD_putchar
256 / / *

7.7. APPLICATION 4: WEATHER STATION IN BONESCRIPT 335

257
258 f u n c t i o n LCD_putchar (chr1 , c a l l b a c k)
259 {
260 / / Conv e r t c h r 1 v a r i a b l e t o UNICODE (ASCII)
261 v a r ch r = chr1 . t o S t r i n g () . charCodeAt (0) ;
262
263 / / p a r s e c h a r a c t e r v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
264 / / t o LCD
265 i f ((ch r & 0x0080) == 0 x0080) b . d i g i t a lW r i t e (LCD_DB7, b .HIGH) ;
266 e l s e b . d i g i t a lW r i t e (LCD_DB7, b .LOW) ;
267 i f ((ch r & 0x0040) == 0 x0040) b . d i g i t a lW r i t e (LCD_DB6, b .HIGH) ;
268 e l s e b . d i g i t a lW r i t e (LCD_DB6, b .LOW) ;
269 i f ((ch r & 0x0020) == 0 x0020) b . d i g i t a lW r i t e (LCD_DB5, b .HIGH) ;
270 e l s e b . d i g i t a lW r i t e (LCD_DB5, b .LOW) ;
271 i f ((ch r & 0x0010) == 0 x0010) b . d i g i t a lW r i t e (LCD_DB4, b .HIGH) ;
272 e l s e b . d i g i t a lW r i t e (LCD_DB4, b .LOW) ;
273 i f ((ch r & 0x0008) == 0 x0008) b . d i g i t a lW r i t e (LCD_DB3, b .HIGH) ;
274 e l s e b . d i g i t a lW r i t e (LCD_DB3, b .LOW) ;
275 i f ((ch r & 0x0004) == 0 x0004) b . d i g i t a lW r i t e (LCD_DB2, b .HIGH) ;
276 e l s e b . d i g i t a lW r i t e (LCD_DB2, b .LOW) ;
277 i f ((ch r & 0x0002) == 0 x0002) b . d i g i t a lW r i t e (LCD_DB1, b .HIGH) ;
278 e l s e b . d i g i t a lW r i t e (LCD_DB1, b .LOW) ;
279 i f ((ch r & 0x0001) == 0 x0001) b . d i g i t a lW r i t e (LCD_DB0, b .HIGH) ;
280 e l s e b . d i g i t a lW r i t e (LCD_DB0, b .LOW) ;
281
282 / /LCD R e g i s t e r S e t (RS) t o l o g i c on e f o r c h a r a c t e r i n p u t
283 b . d i g i t a lW r i t e (LCD_RS, b .HIGH) ;
284 / /LCD Enab l e (E) p in h i g h
285 b . d i g i t a lW r i t e (LCD_E, b .HIGH) ;
286
287 / / End t h e w r i t e a f t e r 1ms
288 se tT imeou t (endWrite , 1) ;
289
290 f u n c t i o n endWrite ()
291 {
292 / /LCD Enab l e (E) p in low and c a l l s c h e d u l e C a l l b a c k when don e
293 b . d i g i t a lW r i t e (LCD_E, b .LOW) ;
294 / / d e l a y 1ms b e f o r e c a l l i n g ’ c a l l b a c k ’
295 se tT imeou t (c a l l b a c k , 1) ;
296 }
297 }
298
299 / / *

336 7. BEAGLEBONE “OFF THE LEASH”

7.8 APPLICATION 5: SPEAK & SPELL IN C
Speak & Spell is an educational toy developed by Texas Instruments in the mid-1970’s. It was
developed by the engineering team of Gene Franz, Richard Wiggins, Paul Breedlove, and Larry
Branntingham, pictured in Figure 7.14. e Speak & Spell consists of a keyboard, display, speech
synthesizer, and a slot to insert game modules. A series of educational games teach spelling skills,
letter recognition skills, and memory aids are available as plug in cartridges [www.TI.com].

Figure 7.14: Speak & Spell design team from left to right: Gene Franz, Richard Wiggins, Paul
Breedlove, and Larry Branntingham [www.TI.com].

In this project we design a BeagleBone based Speak & Spell. We use a small keyboard
(www.adafruit.com) connected to BeagleBone via the USB port. We also use the Circuitco 7
inch LCD display (BeagleBone LCD7). For speech synthesis we use the SP0-512 text to speech
chip (www.speechchips.com). e SP0-512 accepts UART compatible serial text stream. e
text stream is converted to phoneme codes used to generate an audio output. e chip requires a
9600 Baud bit stream with no parity, 8 data bits, and a stop bit. Additional information on the
chip and its features are available at www.speechchips.com. e BeagleBone version of Speak &

www.TI.com
www.TI.com
www.adafruit.com
www.speechchips.com
www.speechchips.com

7.8. APPLICATION 5: SPEAK & SPELL IN C 337

Spell is shown in Figure 7.15 and the support circuit for the SP0-512 is provided in Figure 7.16.
As an alternative, one could employ speech synthesis software coupled to a sound card.

Figure 7.15: BeagleBone-based Speak & Spell. (Photo courtesy of Barrett, 2013.)

7.8.1 BEAGLEBONE C CODE
e structure chart and UML activity diagram for Speak & Spell is provided in Figure 7.17. A
basic algorithm is provided below to accept input from the keyboard, output it on the LCD7
display and pass it to the SP0-512 speech synthesizer chip. is algorithm may form the basis for
a number of Speak & Spell educational games.

As a friendly reminder, before executing the sample code insure the SLOTS, PINS, and
the appropriate device tree overlays have been loaded. e SLOTS and PINS are loaded using:
export SLOTS=/sys/devices/bone_capemgr.9/slots
export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

To load the device tree overlay for UART channel 1, use the following commands:

338 7. BEAGLEBONE “OFF THE LEASH”

1- / TICLR
2- N2
3- N3
4- TX
5- N5
6- RX
7- N7
8- VSS1
9- N9
10- N10
11- N11
12- N12
13- VDD
14- N14

SP0512

AVDD- 28
AVSS- 27
DAC+- 26
DAC- - 25

N24- 24
N23- 23
N22- 22
N21- 21

VCAP- 20
VSS2- 19

N18- 18
SPEAKING- 17

N16- 16
N15- 15

10K

Vcc = 3. 3 VDC Vcc = 3. 3 VDC

10 uF

LED
s pea king

+

330

LED
power

3. 3 VDC

4. 7 uF

+10K

-2

3

10 uF

7

LM386N- 3

6

5 VDC

4

100 uF

10K

0. 1 uF
8 ohm
s pea ker

5
TX:(9600 N81)

Vcc = 3. 3 VDC

P9

P8

UART1
TX (P9, pin 24)

+

MPS2222

10K

3. 3 VDC

330

LM1084
- 3. 3

(3. 3 VDC
regula tor)

G O I

LM1084
- 3. 3

(3. 3 VDC
regula tor)5 VDC 3. 3 VDC

10uF 10uF

1K
+

10 uF

MPS2222

10K
P8, 3

SP0512
rem ote
res e t
c ircuit

Figure 7.16: Speech synthesis support circuit [www.speechchips.com]. (Illustrations used with per-
mission of Texas Instruments (www.TI.com).)

www.speechchips.com
www.TI.com

7.8. APPLICATION 5: SPEAK & SPELL IN C 339

Speak & Spell

control

algorithm

scanf printf UART voice chip
audio

amplifier
speaker

keyboard LCD7
voice

module

Figure 7.17: Speak & Spell structure chart.

cd /lib/firmware
/lib/firmware# sudo su -c ``echo BB-UART1 > $SLOTS''

1 / / *
2 / / u a r t 1 . c � c o n f i g u r e s B e a g l e B o n e u a r t 1 f o r t r a nm i s s i o n and 9600 Baud
3 / / and r e p e a t e d l y s e n d s t h e c h a r a c t e r G v ia u a r t 1 t x p in (P9 , 24)
4 / /
5 / / Not e : B e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e SLOTS , PINS , and
6 / / t h e a p p r o p r i a t e d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
7 / / *
8
9

10 \ beg in { l s t l i s t i n g }
11 / / *
12 / / s n s . c � Sp eak and S p e l l
13 / / � p r omp t s u s e r f o r i n p u t
14 / / � p r i n t s i n p u t t o s c r e e n
15 / / � p r o v i d e s s p o k e n i n p u t v i a s p e e c h s y n t h e s i s c h i p c o n n e c t e d
16 / / t o u a r t 1
17 / / � c o n f i g u r e s B e a g l e B o n e u a r t 1 f o r t r a n s m i s s i o n and 9600 Baud
18 / /
19 / / Not e : B e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e SLOTS , PINS , and
20 / / t h e a p p r o p r i a t e d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .
21 / / *
22
23 # in c l ude < s t d i o . h>
24 # in c l ude < s t d l i b . h>
25 # in c l ude < s t d d e f . h>
26 # in c l ude < t ime . h>
27 # in c l ude < t e rm i o s . h>
28 # in c l ude < f c n t l . h>

340 7. BEAGLEBONE “OFF THE LEASH”

Ente r?
no

yes

Figure 7.18: Speak & Spell UML activity diagram.

7.8. APPLICATION 5: SPEAK & SPELL IN C 341

29 # in c l ude < u n i s t d . h>
30 # in c l ude < s y s / t y p e s . h>
31 # in c l ude < s t r i n g . h>
32
33 i n t main (void)
34 {
35 / / d e f i n e f i l e h a n d l e f o r u a r t 1
36 FILE * o f p _u a r t 1 _ t x , * o f p _ u a r t 1 _ r x ;
37
38 / / u a r t 1 c o n f i g u r a t i o n u s i n g t e r m i o s
39 s t r u c t t e rm i o s u a r t 1 ;
40 i n t fd ;
41
42 / / o p en u a r t 1 f o r t x / rx , n o t c o n t r o l l i n g d e v i c e
43 i f ((fd = open (” / dev / ttyO1 ” , O_RDWR | O_NOCTTY)) < 0)
44 p r i n t f (” Unable to open u a r t 1 a c c e s s . \ n ”) ;
45
46 / / g e t a t t r i b u t e s o f u a r t 1
47 i f (t c g e t a t t r (fd , &u a r t 1) < 0)
48 p r i n t f (” Could not g e t a t t r i b u t e s o f UART1 a t ttyO1 \ n ”) ;
49
50 / / s e t Baud r a t e
51 i f (c f s e t o s p e e d (&ua r t1 , B9600) < 0)
52 p r i n t f (” Could not s e t baud r a t e \ n ”) ;
53 e l s e
54 p r i n t f (” Baud r a t e : 9600\n ”) ;
55
56 / / s e t a t t r i b u t e s o f u a r t 1
57 u a r t 1 . c _ i f l a g = 0 ;
58 u a r t 1 . c _ o f l a g = 0 ;
59 u a r t 1 . c _ l f l a g = 0 ;
60 t c s e t a t t r (fd , TCSANOW, &ua r t 1) ;
61
62 char b y t e _ ou t [2 0] ;
63
64 / / s e t ASCII c h a r a c t e r G r e p e a t e d l y
65 whi l e (1)
66 {
67 p r i n t f (” Ente r l e t t e r , word , s t a t emen t .
68 P r e s s [Ente r] . \ n \ n ”) ;
69 s c a n f (”%s ” , b y t e _ ou t) ;
70 p r i n t f (”%s \ n \ n \ n ” , b y t e _ ou t) ;
71 w r i t e (fd , b y t e_ou t , s t r l e n (b y t e _ ou t) +1) ;
72 }
73
74 c l o s e (fd) ;
75 }
76 / / *

342 7. BEAGLEBONE “OFF THE LEASH”

7.9 APPLICATION 6: DAGU ROVER 5 TREADED ROBOT
In this example we control a Dagu Rover ROV5-1 robot with a C-based control system hosted on
BeagleBone. e goal of the robot system is to navigate through the three-dimensional mountain
maze described earlier in the book.

7.9.1 DESCRIPTION
Dagu manufactures a number of low cost educational robots and robotic arms. In this example
we use the Dagu Rover ROV5-1 robot chassis. is robot is equipped with two motor driven
treads. Dagu offers other robot configurations with additional motors and wheel encoders. We
begin by equipping the ROV 5-1 with a plexi-glass platform, three IR sensors and a motor control
interface. e robot platform is illustrated in Figures 7.19 and 7.20.

7.9.2 REQUIREMENTS
e requirements for this project are simple, the robot must autonomously navigate through the
three-dimensional mountain maze without touching maze walls as quickly as possible. Further-
more, it must be capable of not getting “stuck” on the rugged terrain features.

7.9.3 CIRCUIT DIAGRAM
e circuit diagram for the robot is provided in Figure 3.14. e three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. e interface
for the IR sensors was used earlier in the book on other projects. e sensor outputs are fed to
three ADC channels (AIN0, AIN1, and AIN2). e robot motors are driven by PWM channels
EHRPWM1A (P9, pin 14) and B (P9, pin 16). BeagleBone is interfaced to the motors via a
Darlington transistor (TIP 120) with enough drive capability to handle the maximum current
requirements of the motor. A 330 ohm resistor is used to limit base current to 5.5 mA. e
resulting collector current and hence motor drive current is approximately 300 mA. e robot is
powered via an external 7.2 VDC power supply umbilical to conserve battery use. e 7.2 VDC
supply is routed through the 5 VDC and 3.3 VDC regulator matrix, as shown in Figure 7.21.

7.9.4 STRUCTURE CHART
e structure chart for the robot project is provided in Figure 7.22. e two main systems used in
this project is the PWM system to drive the motorized treads and the ADC system to read the
IR sensors.

7.9.5 UML ACTIVITY DIAGRAMS
e UML activity diagram for the robot is provided in Figure 7.23. e basic algorithm is quite
straight forward. e sensor values are read and PWM command signals are issued to navigate
about the maze.

7.9. APPLICATION 6: DAGU ROVER 5 TREADED ROBOT 343

IR sensor
array

prototype area
BeagleBone

drive
motor

IR sensor
array

a) front view

drive
motor

b) side view

treads

treads

Figure 7.19: Dagu ROV5-1 robot.

344 7. BEAGLEBONE “OFF THE LEASH”

Figure 7.20: Dagu ROV5-1 robot in 3D maze. (Photo courtesy of Barrett, 2013.)

7.9. APPLICATION 6: DAGU ROVER 5 TREADED ROBOT 345

7
.2

 V
D

C

at
 3

0
0
 m

A

1
N

4
0
0
1

3
3
0

M+ -

7
.2

 V
D

C

at
 3

0
0
 m

a

3
3
0

1
N

4
0
0
1

9
.0

 V
D

C
9
.0

 V
D

C

7
8
0
5

I

C

O
9
.0

 V
D

C

b
a t

te
ry

 p
ac

k

o
r

p
o
w

er

su
p
p
ly

+
9
 V

D
C

+
5
 V

D
C

M+ -

Figure 7.21: Dagu robot circuit diagram. (Illustrations used with permission of Texas Instruments.
(www.TI.com).)

www.TI.com

346 7. BEAGLEBONE “OFF THE LEASH”

ADC

ReadADC

ch for

conv

conv

data

left

IR sensor
right

IR sensor

middle

IR sensor

determine_robot

_action

PWM_left

left

motor

PWM_right

right

motor

desired

motor

action

sensor

data

motor_control

robot

action

Figure 7.22: Dagu robot structure diagram.

7.9.6 BEAGLEBONE C CODE
As before we use code developed in the previous chapter as building blocks to rapidly develop the
control algorithm for the Dagu robot. e printf statements are useful for algorithm development
and troubleshooting. ey should be commented out before testing the robot in the maze.

1 / / *
2 / / dagu . c
3 / /
4 / /
5 / / Not e : b e f o r e e x e c u t i n g t h e s amp l e c o d e i n s u r e t h e SLOTS , PINS ,
6 / / and t h e a p p r o p r i a t e d e v i c e t r e e o v e r l a y s have b e e n l o a d e d .

7.9. APPLICATION 6: DAGU ROVER 5 TREADED ROBOT 347

define pins

define input and output

while(1)

read sensor inputs

(left, middle, right)

determine robot

action

issue motor

control signals

delay

Figure 7.23: Dagu robot UML activity diagram.

7 / / *
8
9 # in c l ude < s t d i o . h>

10 # in c l ude < s t d d e f . h>
11 # in c l ude < t ime . h>
12 # in c l ude <math . h>
13
14 # de f i n e ou tpu t ” ou t ”
15 # de f i n e i n pu t ” i n ”

348 7. BEAGLEBONE “OFF THE LEASH”

16
17 i n t main (void)
18 {
19 / / wa l l d e t e c t i o n t h r e s h o l d
20 double t h r e s h o l d = 1 1 00 . 0 ; / / e x p e r i m e n t a l l y d e t e rm i n e d
21
22 / / c o n f i g u r e a d c c h a n n e l s
23 / / d e f i n e f i l e h a n d l e s f o r a d c r e l a t e d f i l e s
24 FILE * i f p _ a i n 0 , * i f p _ a i n 1 , * i f p _ a i n 2 ;
25 f l o a t a i n 0_ v a l u e , a i n 1_ v a l u e , a i n 2 _ v a l u e ;
26
27 / / o p en a d c r e l a t e d f i l e s f o r a c c e s s t o ain0 , 1 and 2
28 i f p _ a i n 0 = fopen (” / s y s / bus / i i o / d e v i c e s / i i o : d e v i c e 0 / i n _ v o l t a g e 0 _ r aw ” , ” r

”) ;
29 i f (i f p _ a i n 0 == NULL) { p r i n t f (” Unable to a i n0 . \ n ”) ; }
30
31 i f p _ a i n 1 = fopen (” / s y s / bus / i i o / d e v i c e s / i i o : d e v i c e 0 / i n _ v o l t a g e 1 _ r aw ” , ” r

”) ;
32 i f (i f p _ a i n 1 == NULL) { p r i n t f (” Unable to a i n1 . \ n ”) ; }
33
34 i f p _ a i n 2 = fopen (” / s y s / bus / i i o / d e v i c e s / i i o : d e v i c e 0 / i n _ v o l t a g e 2 _ r aw ” , ” r

”) ;
35 i f (i f p _ a i n 2 == NULL) { p r i n t f (” Unable to a i n2 . \ n ”) ; }
36
37 / / c o n f i g u r e pwm c h a n n e l s 0 and 1
38 / / d e f i n e f i l e h a n d l e s f o r c h a n n e l 0 � EHRPWM1A (P9 , p in 14)
39 / / d e s i g n a t e d a s ehrpwm . 1 : 0
40 FILE * pwm_period0 , * pwm_duty0 ;
41 FILE * pwm_pola r i t y0 , * pwm_run0 ;
42
43 / / d e f i n e p in v a r i a b l e s f o r c h a n n e l 0
44 i n t pe r i o d0 = 500000 , du ty0 = 250000 ;
45 i n t p o l a r i t y 0 = 1 , run0 = 1 ;
46
47 pwm_period0 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_14 . 1 5 / p e r i o d ” , ”w”)

;
48 i f (pwm_period0 == NULL) { p r i n t f (” Unable to open pwm 0 pe r i o d . \ n ”) ; }
49 f s e e k (pwm_period0 , 0 , SEEK_SET) ;
50 f p r i n t f (pwm_period0 , ”%d ” , p e r i o d0) ;
51 f f l u s h (pwm_period0) ;
52
53 pwm_duty0 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_14 . 1 5 / du ty ” , ”w”) ;
54 i f (pwm_duty0 == NULL) { p r i n t f (” Unable to open pwm 0 duty c y c l e . \ n ”) ; }
55 f s e e k (pwm_duty0 , 0 , SEEK_SET) ;
56 f p r i n t f (pwm_duty0 , ”%d ” , du ty0) ;
57 f f l u s h (pwm_duty0) ;
58

7.9. APPLICATION 6: DAGU ROVER 5 TREADED ROBOT 349

59 pwm_po l a r i t y0 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_14 . 1 5 / p o l a r i t y ” ,
”w”) ;

60 i f (pwm_po l a r i t y0 == NULL) { p r i n t f (” Unable to open pwm 0 p o l a r i t y . \ n ”) ; }
61 f s e e k (pwm_pola r i t y0 , 0 , SEEK_SET) ;
62 f p r i n t f (pwm_pola r i t y0 , ”%d ” , p o l a r i t y 0) ;
63 f f l u s h (pwm_po l a r i t y0) ;
64
65 pwm_run0 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_14 . 1 5 / run ” , ”w”) ;
66 i f (pwm_run0 == NULL) { p r i n t f (” Unable to open pwm 0 run . \ n ”) ; }
67
68 / / d e f i n e f i l e h a n d l e s f o r c h a n n e l 1 � EHRPWM1B (P9 , p in 16)
69 / / d e s i g n a t e d a s ehrpwm . 1 : 1
70 FILE * pwm_period1 , * pwm_duty1 ;
71 FILE * pwm_pola r i t y1 , * pwm_run1 ;
72
73 / / d e f i n e p in v a r i a b l e s f o r c h a n n e l 1
74 i n t pe r i o d1 = 500000 , du ty1 = 250000 ;
75 i n t p o l a r i t y 1 = 1 , run1 = 1 ;
76
77 pwm_period1 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_16 . 1 5 / p e r i o d ” , ”w”)

;
78 i f (pwm_period1 == NULL) { p r i n t f (” Unable to open pwm 1 pe r i o d . \ n ”) ; }
79 f s e e k (pwm_period1 , 0 , SEEK_SET) ;
80 f p r i n t f (pwm_period1 , ”%d ” , p e r i o d1) ;
81 f f l u s h (pwm_period1) ;
82
83 pwm_duty1 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_16 . 1 5 / du ty ” , ”w”) ;
84 i f (pwm_duty1 == NULL) { p r i n t f (” Unable to open pwm 1 duty c y c l e . \ n ”) ; }
85 f s e e k (pwm_duty1 , 0 , SEEK_SET) ;
86 f p r i n t f (pwm_duty1 , ”%d ” , du ty1) ;
87 f f l u s h (pwm_duty1) ;
88
89 pwm_po l a r i t y1 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_16 . 1 5 / p o l a r i t y ” ,

”w”) ;
90 i f (pwm_po l a r i t y1 == NULL) { p r i n t f (” Unable to open pwm 1 p o l a r i t y . \ n ”) ; }
91 f s e e k (pwm_pola r i t y1 , 0 , SEEK_SET) ;
92 f p r i n t f (pwm_pola r i t y1 , ”%d ” , p o l a r i t y 1) ;
93 f f l u s h (pwm_po l a r i t y1) ;
94
95 pwm_run1 = fopen (” / s y s / d e v i c e s / ocp . 3 / pwm_test_P9_16 . 1 5 / run ” , ”w”) ;
96 i f (pwm_run1 == NULL) { p r i n t f (” Unable to open pwm 1 run . \ n ”) ; }
97
98
99 whi l e (1)

100 {
101 / / r e a d a n a l o g s e n s o r s
102 f s e e k (i f p _ a i n 0 , 0 , SEEK_SET) ;
103 f s c a n f (i f p _ a i n 0 , ”%f ” , &a i n 0 _ v a l u e) ;

350 7. BEAGLEBONE “OFF THE LEASH”

104 p r i n t f (”%f \ n ” , a i n 0 _ v a l u e) ;
105
106 f s e e k (i f p _ a i n 1 , 0 , SEEK_SET) ;
107 f s c a n f (i f p _ a i n 1 , ”%f ” , &a i n 1 _ v a l u e) ;
108 p r i n t f (”%f \ n ” , a i n 1 _ v a l u e) ;
109
110 f s e e k (i f p _ a i n 2 , 0 , SEEK_SET) ;
111 f s c a n f (i f p _ a i n 2 , ”%f ” , &a i n 2 _ v a l u e) ;
112 p r i n t f (”%f \ n ” , a i n 2 _ v a l u e) ;
113
114 / / imp l em en t t r u t h t o d e t e rm i n e r o b o t t u r n s
115
116 / / no w a l l s p r e s e n t � c o n t i n u e s t r a i g h t ah e ad
117 i f ((a i n 0 _ v a l u e < t h r e s h o l d)&&(a i n 1 _ v a l u e < t h r e s h o l d)&&
118 (a i n 2 _ v a l u e < t h r e s h o l d))
119 {
120 run0 = 1 ; run1 = 1 ; / / b o t h m o t o r s on
121 f s e e k (pwm_run0 , 0 , SEEK_SET) ;
122 f p r i n t f (pwm_run0 , ”%d ” , run0) ;
123 f f l u s h (pwm_run0) ;
124
125 f s e e k (pwm_run1 , 0 , SEEK_SET) ;
126 f p r i n t f (pwm_run1 , ”%d ” , run1) ;
127 f f l u s h (pwm_run1) ;
128 }
129 / *
130 e l s e i f (. . .)
131 {
132
133 :
134 i n s e r t o t h e r c a s e s
135 :
136 }
137 * /
138 }
139
140 f c l o s e (i f p _ a i n 0) ;
141 f c l o s e (i f p _ a i n 1) ;
142 f c l o s e (i f p _ a i n 2) ;
143
144 f c l o s e (pwm_period0) ;
145 f c l o s e (pwm_duty0) ;
146 f c l o s e (pwm_po l a r i t y0) ;
147 f c l o s e (pwm_run0) ;
148
149 f c l o s e (pwm_period1) ;
150 f c l o s e (pwm_duty1) ;
151 f c l o s e (pwm_po l a r i t y1) ;

7.10. APPLICATION 7: PORTABLE IMAGE PROCESSING ENGINE 351

152 f c l o s e (pwm_run1) ;
153
154 r e t u rn 1 ;
155 }
156 / / *

7.10 APPLICATION 7: PORTABLE IMAGE PROCESSING
ENGINE

Image processing is a fascinating field. It is the process of extracting useful information from
an image. Image processing operations typically requires the application of a series of simple
operations to an image. Each operator is sequentially swept over an image to accomplish a specific
task. BeagleBone, with its 1 GHz clock speed, is ideally suited for image processing applications.
In fact, BeagleBone equipped with a small keyboard and the Circuitco LCD7 liquid crystal or
HDMI compatible display may be viewed as a portable image processing engine. In this section,
we provide a brief introduction to image processing, the layout for a BeagleBone portable image
processing engine, a brief introduction to the OpenCV image processing library and conclude
with an example. e “stache cam” example uses a variety of OpenCV features to perform face
recognition and place a moustache on the face. is appears to be a fun application (it is); however,
it also forms the basis for a variety of assistive technology applications such as pupil tracking.

7.10.1 BRIEF INTRODUCTION TO IMAGE PROCESSING
A basic image processing system is shown in Figure 7.24. It consists of a camera equipped with
a lens system, a frame grabber and a host processor to perform the image processing task. e
camera captures images of objects onto a two-dimensional light sensitive array. Each element in
the array is termed a picture element or pixel, as shown in Figure 7.25. e camera “snaps” an
image of a scene as determined by the frame rate of the camera. Typical frames rates include 30
and 60 frames per second (fps). Other high-speed frame rates are available. Also, slower frame
rates are available in high resolution cameras. Spatial resolution refers to the number of pixels
within the imaging array. Although higher resolution will resolve finer object detail, it comes at
the expense of increased computational cost.

Cameras are available in black and white or color. Usually, a black and white camera will
register the shade or gray scale of each pixel as a single byte. A gray scale value of 0 is assigned
to black while 255 is used to designate white. Shades between black and white are assigned gray
scale values between 0 and 255.

Various color schemes may be used to represent an image including red-green-blue (R-G-
B), hue-saturation-intensity (H-S-I), etc. ey require three bytes to represent a pixel in a specific
color scheme.

352 7. BEAGLEBONE “OFF THE LEASH”

object

lens
camera image capture image processing

processed imagedigitized image

t

Figure 7.24: Image processing system.

x

y

t

s ample
inte rval

frame rate = 1/s ample inte rval

picture e le me nt = pixe l

Figure 7.25: Image processing terminology.

7.10. APPLICATION 7: PORTABLE IMAGE PROCESSING ENGINE 353

7.10.2 IMAGE PROCESSING TASKS
ere is an amazing array of image processing tasks available to extract information from an
image. Figure 7.26 provides a partial overview of some of the tasks and related operations. e
lower order tasks are associated with the formation and acquisition of an image. Once acquired,
an image may be enhanced by a variety of techniques including thresholding, filtering, and edge
enhancement and detection techniques. Higher order processing techniques are usually accom-
plished by applying a series of fundamental image processing operations. ere are a number of
techniques to efficiently store an image.

Image

Formation

Image

Acquisition

Image

Enhancement

Higher Order

Processing

Storage

Techniques

- Filtering

- Edge enhancement

 and detection

- Thresholding

- Color processing

- Segmentation

- Pattern Matching

- Restoration

- Obect Recognition

- Object Tracking

- Frequency domain analysis

- Compression

- Watermarks

Figure 7.26: Image processing tasks.

Image processing operations typically requires the application of a series of simple opera-
tions to an image. Each operator is sequentially swept over an image to accomplish a specific task
a shown in Figure 7.27. For example, the low pass filter kernel may be exhaustively applied to
each pixel in an image to smooth image features. To apply a filter operator, the filter coefficients
are multiplied by the image coefficients and then summed. e resulting value becomes the new
pixel value at that image pixel location. e filter operator is exhaustively applied to every pixel in
the image. Although the operations are quite straightforward, they require a substantial amount
of processor power due to the sheer number of calculations that must be accomplished in a timely
manner [Galbiati, 1990; Gonzalez and Woods, 2008]. As previously mentioned, BeagleBone is
well suited for a portable image processing engine.

7.10.3 OPENCV COMPUTER VISION LIBRARY
e OpenCV Library is an open source computer vision library. e library is written in C and
CCC and runs on a variety of operating systems including Linux, Windows, and Mac OS X.
e library allows a designer to rapidly prototype an image processing application. Bradski and
Kaehler provides an excellent tutorial on this library [Bradski and Kaehler, 2008]. With its Linux-
-based operating system, BeagleBone is ideally suited to host the OpenCV library. We illustrate
the power and application of the OpenCV library with the “Stache Cam” application.

354 7. BEAGLEBONE “OFF THE LEASH”

f(i,j)

f(i- 1 ,j- 1)

f(i- 1 ,j)

f(i- 1 ,j+ 1)

f(i,j- 1)

f(i,j+ 1)

f(i+ 1,j- 1)

f(i+ 1,j)

f(i+ 1,j+ 1)

filte r ke rne l

x

y

i(0,0)

i(0 ,1)

i(0 ,2)

i(0 ,3)

i(0 ,4)

i(1 ,0)

i(1 ,1)

i(1 ,2)

i(1 ,3)

i(1 ,4)

i(2 ,0)

i(2 ,1)

i(2 ,2)

i(2 ,3)

i(2 ,4)

i(3 ,0)

i(3 ,1)

i(3 ,2)

i(3 ,3)

i(3 ,4)

i(4 ,0)

i(4 ,1)

i(4 ,2)

i(4 ,3)

i(4 ,4)

f(i,j)

f(i- 1 ,j- 1)

f(i- 1 ,j)

f(i- 1 ,j+ 1)

f(i,j- 1)

f(i,j+ 1)

f(i+ 1,j- 1)

f(i+ 1,j)

f(i+ 1,j+ 1)

low pas s
filte r ke rne l

high pas s
filte r ke rne l

f(i,j)

f(i- 1 ,j- 1)

f(i- 1 ,j)

f(i- 1 ,j+ 1)

f(i,j- 1)

f(i,j+ 1)

f(i+ 1,j- 1)

f(i+ 1,j)

f(i+ 1,j+ 1)

- 1

- 1

- 1

- 1

+ 8

- 1

- 1

- 1

- 1

Laplacian
filte r ke rne l

f(i,j)

f(i- 1 ,j- 1)

f(i- 1 ,j)

f(i- 1 ,j+ 1)

f(i,j- 1)

f(i,j+ 1)

f(i+ 1,j- 1)

f(i+ 1,j)

f(i+ 1,j+ 1)

0 1 0

0 1 0

1 - 4 1

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

a) filte r ope ration

b) filte r ope rators

Figure 7.27: Image processing filters. To apply a filter operator, the filter coefficients are multiplied
by the image coefficients and then summed. e resulting value becomes the new pixel value at that
image pixel location. e filter operator is exhaustively applied to every pixel in the image.

7.10. APPLICATION 7: PORTABLE IMAGE PROCESSING ENGINE 355

7.10.4 STACHE CAM
In this section we illustrate the power and application of the OpenCV library with the “Stache
Cam” application. e requirements for this system are straightforward. A video camera is used
to capture images of various faces. Functions within the Open CV library are used to capture the
image and automatically place a moustache on the face, as shown in Figure 7.28.

e system hardware consists of a camera (Playstation PS3 Eye), BeagleBone, the LCD3
BeagleBone Cape, and the BeagleBone Battery cape for portability. Linux provides a USB driver
for the PS3 Eye camera. Different system hardware components are shown in Figure 7.29.

Stache Cam UML Activity Diagram
e UML activity diagram is provided in Figure 7.30.

C Code
1 / / *
2 / / Ba s e d on :
3 / / h t t p s : / / c o d e . r o s . o r g / t r a c / o p e n c v / b r ow s e r / t r u n k / o p e n c v
4 / / / s am p l e s / c p p / t u t o r i a l _ c o d e / o b j e c t D e t e c t i o n /
5 / / o b j e c t D e t e c t i o n 2 . c p p ? r e v =6553
6 / / *
7
8 # in c l ude ” opencv2 / o b j d e t e c t / o b j d e t e c t . hpp ”
9 # in c l ude ” opencv2 / h i ghgu i / h i ghgu i . hpp ”

10 # in c l ude ” opencv2 / imgproc / imgproc . hpp ”
11 # in c l ude ” opencv2 / imgproc / imgproc_c . h ”
12
13 # in c l ude < i o s t r e am >
14 # in c l ude < s t d i o . h>
15
16 us ing namespace s t d ;
17 us ing namespace cv ;
18
19 s t r i n g c o p y r i g h t = ” \
20
21 IMPORTANT:READ BEFORE DOWNLOADING, COPYING, INSTALLING
22 OR USING . \ n \ \ n \
23 By downloading , copy ing , i n s t a l l i n g or u s i n g the s o f t w a r e
24 you a g r e e to t h i s l i c e n s e . \ n \
25 I f you do not a g r e e to t h i s l i c e n s e , do not download ,
26 i n s t a l l , copy or u s e the s o f t w a r e . \ n \
27 \ n \
28 \ n \
29 L i c en s e Agreement \ n \
30 For Open Source Computer V i s i on L i b r a r y \ n \
31 \ n \
32 Copy r i gh t (C) 2000�2008 , I n t e l Corpo ra t i on , a l l r i g h t s r e s e r v e d . \ n \
33 Copy r i gh t (C) 2008�2011 , Willow Garage Inc . , a l l r i g h t s r e s e r v e d . \ n \
34 Copy r i gh t (C) 2012 , Texas In s t r umen t s , a l l r i g h t s r e s e r v e d . \ n \
35 Third p a r t y c o p y r i g h t s a r e p r o p e r t y o f t h e i r r e s p e c t i v e owners . \ n \ \ n \
36 R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , wi th or w i thou t \ n \
37 mod i f i c a t i o n , a r e p e rm i t t e d p r o v i d ed t h a t the f o l l ow i n g c o n d i t i o n s \ n \
38 a r e met : \ n \
39 \ n \
40 * R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n the above \ n \
41 c o p y r i g h t no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l ow i n g \ n \
42 d i s c l a i m e r . \ n \
43 \ n \
44 * R e d i s t r i b u t i o n s i n b i n a r y form must r e p r odu c e the above \ n \
45 c o p y r i g h t no t i c e , t h i s l i s t o f c o n d i t i o n s and the f o l l ow i n g \ n \
46 d i s c l a i m e r i n the documenta t i on and / o r o t h e r m a t e r i a l s p r o v i d ed \ n \
47 wi th the d i s t r i b u t i o n . \ n \
48 \ n \
49 * The name o f the c o p y r i g h t h o l d e r s may not be used to endo r s e o r \ n \
50 promote p r o du c t s d e r i v e d from t h i s s o f t w a r e w i thou t s p e c i f i c \ n \
51 p r i o r w r i t t e n p e rm i s s i o n . \ n \
52 \ n \
53 This s o f t w a r e i s p r o v i d ed by the c o p y r i g h t h o l d e r s and c o n t r i b u t o r s \ n \
54 \ ” a s i s \ ” and any e x p r e s s o r imp l i e d w a r r a n t i e s , i n c l u d i n g , but not \ n \
55 l im i t e d to , the imp l i e d w a r r a n t i e s o f m e r c h a n t a b i l i t y and f i t n e s s \ n \
56 f o r a p a r t i c u l a r pu rpo s e a r e d i s c l a im e d . \ n \
57 In no e v en t s h a l l t h e I n t e l Co rpo r a t i on or c o n t r i b u t o r s be l i a b l e \ n \
58 f o r any d i r e c t , i n d i r e c t , i n c i d e n t a l , s p e c i a l , e xempla ry , o r \ n \
59 c o n s e q u e n t i a l damages (i n c l u d i n g , but not l i m i t e d to , p rocu rement \ n \

356 7. BEAGLEBONE “OFF THE LEASH”

Figure 7.28: BeagleBone “stache” cam.

7.10. APPLICATION 7: PORTABLE IMAGE PROCESSING ENGINE 357

Figure 7.29: BeagleBone “stache” cam hardware.

60 o f s u b s t i t u t e goods o r s e r v i c e s ; l o s s o f use , da ta , o r p r o f i t s ; o r \ n \
61 b u s i n e s s i n t e r r u p t i o n) however c au s ed and on any t h e o r y o f l i a b i l i t y , \ n \
62 whether i n c o n t r a c t , s t r i c t l i a b i l i t y , o r t o r t (i n c l u d i n g n e g l i g e n c e \ n \
63 or o t h e rw i s e) a r i s i n g in any way out o f the u s e o f t h i s s o f tw a r e , even \ n \
64 i f a d v i s e d o f the p o s s i b i l i t y o f such damage . \ n \
65 \ n ” ;
66
67 / * * F un c t i o n Head e r s * /
68 void de t e c tAndDi sp l a y (Mat f rame) ;
69
70 / * * G l o b a l v a r i a b l e s * /
71 S t r i n g f a c e_ c a s c ad e_name = ” l b p c a s c a d e _ f r o n t a l f a c e . xml ” ;
72 C a s c a d eC l a s s i f i e r f a c e _ c a s c a d e ;
73 s t r i n g window_name = ” s t a c h e � BeagleBone OpenCV demo ” ;
74 Ip l Image * mask = 0 ;
75
76 / * * Command�l i n e a r g um en t s * /
77 i n t numCamera = �1;
78 cons t char * s t a c h eMa skF i l e = ” s t a c h e�mask . png ” ;
79 i n t s c a l eHe i g h t = 6 ;
80 i n t o f f s e tH e i g h t = 4 ;
81 i n t camWidth = 0 ;
82 i n t camHeight = 0 ;
83 i n t camFPS = 0 ;
84
85 / * * * @ f u n c t i o n main * /
86 i n t main (i n t a rgc , cons t char * * a r g v)

358 7. BEAGLEBONE “OFF THE LEASH”

define function headers

define global variables

define command line arguments

print the copyright

load the cascade and

moustache mask

read the video stream

capture video frame

apply the classifer

to the frame

Figure 7.30: BeagleBone “stache” cam UML activity diagram.

87 {
88 CvCapture * c a p t u r e ;
89 Mat f rame ;
90
91 i f (a r g c > 1) numCamera = a t o i (a r g v [1]) ;
92 i f (a r g c > 2) s t a c h eMa skF i l e = a r g v [2] ;
93 i f (a r g c > 3) s c a l eHe i g h t = a t o i (a r g v [3]) ;
94 i f (a r g c > 4) o f f s e tH e i g h t = a t o i (a r g v [4]) ;
95 i f (a r g c > 5) camWidth = a t o i (a r g v [5]) ;
96 i f (a r g c > 6) camHeight = a t o i (a r g v [6]) ;
97 i f (a r g c > 7) camFPS = a t o i (a r g v [7]) ;
98
99 / /�� 0 . P r i n t t h e c o p y r i g h t

100 cou t << c o p y r i g h t ;
101
102 / /�� 1 . Load t h e c a s c a d e
103 i f (! f a c e _ c a s c a d e . l o ad (f a c e_ c a s c ad e_name)) { p r i n t f (” ��(!) E r r o r

7.10. APPLICATION 7: PORTABLE IMAGE PROCESSING ENGINE 359

104 l o a d i n g \ n ”) ; r e t u rn �1; } ;
105
106 / /�� 1a .
107 Load the mustache mask
108 mask = cvLoadImage (s t a c h eMa skF i l e) ;
109 i f (! mask) { p r i n t f (” Could not l o ad %s \ n ” , s t a c h eMa skF i l e) ; e x i t (�1) ; }
110
111 / /�� 2 . Read t h e v i d e o s t r e am
112 c a p t u r e = cvCaptureFromCAM (numCamera) ;
113 i f (camWidth) c v S e tCap t u r eP r o p e r t y (c a p t u r e , CV_CAP_PROP_FRAME_WIDTH,
114 camWidth) ;
115 i f (camHeight) c v S e tCap t u r eP r o p e r t y (c a p t u r e , CV_CAP_PROP_FRAME_HEIGHT,
116 camHeight) ;
117 i f (camFPS) c v S e tCap t u r eP r o p e r t y (c a p t u r e , CV_CAP_PROP_FPS, camFPS) ;
118 i f (c a p t u r e)
119 {
120 whi l e (t r u e)
121 {
122 f rame = cvQueryFrame (c a p t u r e) ;
123
124 / /�� 3 . App l y t h e c l a s s i f i e r t o t h e f r ame
125 t r y
126 {
127 i f (! f r ame . empty ())
128 {
129 de t e c tAndDi sp l a y (f rame) ;
130 }
131 e l s e
132 {
133 p r i n t f (” ��(!) No c a p t u r e d frame���Break ! \ n ”) ; break ;
134 }
135 i n t c = wa i tKey (1 0) ;
136 i f ((char) c == ’ c ’)
137 {
138 break ;
139 }
140 }
141 ca t ch (cv : : Exc ep t i on e)
142 {
143 }
144 }
145 }
146 r e t u rn 0 ;
147 }
148
149 / / *
150 / / @ f u n c t i o n d e t e c t A n dD i s p l a y � f u n c t i o n d e t e c t s
151 / / f a c e and p l a c e s mu s t a c h e i n an a p p r o p r i a t e l o c a t i o n
152 / / *
153
154 void de t e c tAndDi sp l a y (Mat f rame)
155 {
156 s t d : : v e c t o r <Rect > f a c e s ;
157 Mat f r ame_g r a y ;
158
159 c v tCo l o r (frame , f r ame_gray , CV_BGR2GRAY) ;
160 e q u a l i z eH i s t (f r ame_gray , f r ame_g r a y) ;
161
162 / /�� De t e c t f a c e s
163 f a c e _ c a s c a d e . d e t e c tMu l t i S c a l e (f r ame_gray ,
164 f a c e s , 1 . 1 , 2 , 0 , S i z e (80 , 80)) ;
165
166 f o r (i n t i = 0 ; i < f a c e s . s i z e () ; i ++)
167 {
168 / /�� S c a l e and a p p l y mu s t a c h e mask f o r e a c h f a c e
169 Mat faceROI = f r ame_g r a y (f a c e s [i]) ;
170 Ip l Image ip lF r ame = f rame ;
171 Ip l Image * ip lMask = cvCrea t e Image (c v S i z e (f a c e s [i] . width ,
172 f a c e s [i] . h e i g h t / s c a l eHe i g h t) ,
173 mask�>depth , mask�>nChannels) ;
174 cvSetImageROI(&ip lFrame , c vRec t (f a c e s [i] . x ,
175 f a c e s [i] . y + (f a c e s [i] . h e i g h t / s c a l eHe i g h t) * o f f s e tHe i g h t ,
176 f a c e s [i] . width , f a c e s [i] . h e i g h t / s c a l eHe i g h t)) ;
177
178
179 c vR e s i z e (mask , iplMask , CV_INTER_LINEAR) ;
180 cvSub(&ip lFrame , iplMask , &ip lF r ame) ;
181 cvResetImageROI(& ip lF r ame) ;
182 }
183
184 / /�� Show what y ou g o t
185 f l i p (frame , frame , 1) ;
186 imshow (window_name , f rame) ;
187 }
188 / / *

360 7. BEAGLEBONE “OFF THE LEASH”

7.11 SUMMARY
In the early chapters of this book, we examined the Bonescript environment as a user-friendly
tool to rapidly employ BeagleBone features right out of the box. In this chapter we revisited Bone-
script and demonstrated its power as a rapid prototyping tool to develop complex, processor-based
systems employing multiple BeagleBone subsystems. We carefully chose each of the projects to
illustrate how BeagleBone may be used in a variety of project areas including instrumentation in-
tensive applications (weather station), in assistive and educational technology applications (Speak
& Spell), in motor and industrial control applications (Dagu robot), and calculation intensive im-
age processing applications (moustache cam).

7.12 REFERENCES
• Barret, J. “Closer to the Sun International.” www.closertothesungallery.com

• Barrett, S. and Pack, D. 2008. Atmel AVR Processor Primer Programming and Interfacing.
San Rafael, CA: Morgan & Claypool Publishers.

• Barrett, S. and Pack, D. 2005. Embedded Systems Design and Applications with the 68HC12
and HCS12. Upper Saddle River, NJ: Pearson Prentice Hall.

• Barrett, S. and Pack, D. 2006. Processors Fundamentals for Engineers and Scientists. San
Rafael, CA: Morgan and Claypool Publishers.

• Bradski, D. and Kaehler, A. 2008. Learning OpenCV: Computer Vision with the OpenCV
Library. Sebastopol, CA: O’Reilly.

• Coley, G. BeagleBone Rev A6 Systems Reference Manual. Revision 0.0, May 9, 2012, beagle-
board.org; www.beaglebord.org.

• Galbiati, L. 1990. Machine Vision and Digital Image Processing Fundamentals. Englewood
Cliffs, NJ: Prentice Hall.

• Gonzalez, R.C. and Woods, R.E. 2008. Digital Image Processing. 3rd ed. Upper Saddle
River, NJ: Prentice Hall.

• Hughes-Croucher, T. and Wilson, M. 2012. Node Up and Running. Sebastopol, CA:
O’Reilly Media, Inc.

• Kelley, A. and Pohl, I. 1998. A Book on C—Programming in C. 4th ed., Boston, MA: Ad-
dison Wesley.

• Kiessling, M. 2012. e Node Beginner Guide: A Comprehensive Node.js Tutorial.

• Pollock, J. 2010. JavaScript. 3rd ed., New York, NY: McGraw Hill.

www.closertothesungallery.com
www.beaglebord.org

7.13. CHAPTER EXERCISES 361

• Vander Veer, E. 2005. JavaScript for Dummies. 4th ed. Hoboken, NJ: Wiley Publishing,
Inc.

• von Hagen, W. 2007. Ubuntu Linux Bible. Indianapolis, IN: Wiley Publishing, Inc.

7.13 CHAPTER EXERCISES
1. Construct the UML activity diagrams for all functions related to the weather station.

2. Add one of the following sensors to the weather station:

• anemometer
• barometer
• hygrometer
• rain gauge
• thermocouple

You will need to investigate background information on the selected sensor, develop an
interface circuit for the sensor, and modify the weather station code.

3. Complete the control algorithm for the weather station to convert the reading from the
LM34 temperature sensor and display its value and wind direction.

4. e Dagu Magician robot under microcontroller control abruptly starts and stops when
PWM is applied. Modify the algorithm to provide the capability to gradually ramp up (and
down) the motor speed.

5. Modify the Dagu Magician circuit and microcontroller code such that the maximum speed
of the robot is set with an external potentiometer.

6. Modify the Dagu Magician circuit and microcontroller code such that the IR sensors are
only asserted just before a range reading is taken.

7. Add the following features to the Dagu Magician platform:

• line following capability (Hint: Adapt the line following circuitry onboard the Dagu
Magician to operate with the BeagleBone.);

• two-way robot communications (use the IR sensors already aboard); and
• voice output (Hint: Use the SP0-512 speech synthesis chip.).

363

C H A P T E R 8

Where to from Here?
Objectives: After reading this chapter, the reader should be able to do the following.

• View this book as simply the beginning of the journey in using BeagleBone in a wide variety
of applications.

• Describe the wide variety of software libraries and other resources available to the Beagle-
Bone user.

• Appreciate the advantages in becoming an active member of the BeagleBoard.org commu-
nity.

8.1 OVERVIEW
Reaching the last chapter of the book, you might be breathing a sigh of relief thinking I’ve com-
pleted the book. I’m at the end. Quite the contrary, this book is merely the beginning of your
journey of using BeagleBone in a wide variety of applications.

In this chapter we provide a brief review of a number of software libraries and other re-
sources available to a BeagleBone user. ese resources allow access to a wide array of features
to extend the capabilities of BeagleBone. We conclude with an invitation to become an active
member of the BeagleBoard.org community.

8.2 SOFTWARE LIBRARIES
8.2.1 OPENCV
e OpenCV Library is an open source computer vision library. e library is written in C and
C++ and runs on a variety of operating systems including Linux, Windows and Mac OS X.
e library allows a designer to rapidly prototype an image processing application. Bradski and
Kaehler provides an excellent tutorial on this library [Bradski and Kaehler, 2008]. With a Linux-
based operating system, BeagleBone is ideally suited to host the OpenCV library.

8.2.2 QT
Qt is a C++ library that provides for the rapid development of user-friendly graphical user inter-
faces of GUIs. Qt readily executes on Windows, Unix, MacOS X and Linux-based embedded
systems. e Qt library allows GUIs that employ buttons, scroll bars, etc. e library employs

364 8. WHERE TO FROM HERE?

the concept of signals and slots to link an event to a desired response [Dalheimer, 2002]. Several
excellent sources on the Qt library are listed at the end of the chapter.

8.2.3 KINECT
Kinect is the motion sensing input device developed for the Xbox video game console. e Kinect
allows natural user movements such as gestures or spoken commands to interact with a game. A
Kinect library is available for BeagleBone operating in Linux. A good introduction to Kinect is
provided by the references listed at the end of the chapter.

8.3 ADDITIONAL RESOURCES
In this section we provide pointers to a series of user-groups and other resources available to a
BeagleBone user.

8.3.1 OPENROV
Earlier in the book, we introduced an underwater remote operated vehicle (ROV) project. ere
are a number of groups dedicated to ROV development as a way of reaching the next generation
of engineers and scientists. A brief description of the groups is provided below.

• OpenROV is a do-it-yourself (DIY) group dedicated to underwater robots for exploration
and adventure. e group includes amateur and professional ROV builders and operators
from over 50 countries who have a passion for exploring the deep [www.openrov.com]. e
OpenROV community has a BeagleBone Cape available for controlling an ROV, as shown
in Figure 8.1.

• SeaPerch is an underwater robotics program to equip educators and students with resources
to build an underwater Remotely Operated Vehicle (ROV). ere are a number of excellent
texts on underwater ROV development listed at the end of the chapter [www.seaperch.o
rg].

8.3.2 NINJA BLOCKS
Ninja Blocks is an innovative method to sense the environment and control hardware within
the home. Ninja Blocks is based on an open hardware concept where hardware, software and
application information is openly shared among the Ninja Blocks community. e basic Ninja
Block unit is illustrated in Figure 8.2. e basic unit includes the following components [www.ni
njablocks.com]:

• wireless motion sensor,

• wireless door/window contact sensor,

www.openrov.com
www.seaperch.org
www.seaperch.org
www.ninjablocks.com
www.ninjablocks.com

8.3. ADDITIONAL RESOURCES 365

Figure 8.1: e OpenROV BeagleBone Cape [www.openrov.com].

• wireless button,

• wireless temperature and humidity sensor,

• Ninja Block equipped with a BeagleBone and an Arduino processor,

• USB Wi-Fi module,

• Ethernet Cable, and

• 5 VDC, 3 Amp power supply with connectors.

e basic unit allows ease of interface to a wide variety of devices.

8.3.3 RELATED BOOKS
BeagleBone has become quite popular. ere are a number of books available to enhance the
BeagleBone experience; here is a partial listing.

www.openrov.com

366 8. WHERE TO FROM HERE?

Figure 8.2: Ninja Blocks [www.ninjablocks.com].

• Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux by Derek
Molloy

• BeagleBone Black Interfacing: hardware and software by Yury Magda

• 30 BeagleBone Black Projects for the Evil Genius by Christopher Rush

• BeagleBone Black Programming by Example by Agus Kurniawan

• BeagleBone Cookbook: Software and Hardware Problems and Solutions by Mark Yoder and
Jason Kridner

• Getting Started with BeagleBone:Linux-Powered Electronic Projects with Python and
JavaScript by Matt Richardson

• Programming the BeagleBone Black: Getting Started with JavaScript and Bonescript by Simon
Monk

• BeagleBone for Secret Agents by Josh Datko

• BeagleBone Robotic Projects and Mastering BeagleBone Robotics by Richard Grimmett

www.ninjablocks.com

8.4. SUMMARY 367

• e BeagleBone Black Primer by Brian McLaughlin

• BeagleBone Home Automation by Juha Lumme

• Building a BeagleBone Black Super Cluster by Andreas Josef Reichel

• Learning BeagleBone with Hunyue Yau

• Building a Home Security System with BeagleBone by Bill Pretty

• BeagleBone for Dummies by Rui Santos and Luis Perestrelo

8.3.4 BEAGLEBOARD.ORG RESOURCES
e BeagleBoard.org community has many members. What we all have in common is the desire
to put processing power in the hands of the next generation of users. BeagleBoard.org, with
Texas Instruments’ support, embraced the open source concept with the development and release
of BeagleBone in late 2011. eir support will insure the BeagleBone project will be sustainable.
BeagleBoard.org partnered with Circuitco (www.Circuitco.com) to produce BeagleBone and
its associated Capes. e majority of the Capes have been designed and fabricated by Circuitco.
Clint Cooley, President of Circuitco, is most interested in helping users develop and produce
their own ideas for BeagleBoneCapes. Texas Instruments has also supported the BeagleBoard.org
community by giving Jason Kridner the latitude to serve as the open platform technologist and
evangelist for the BeagleBoard.org community. e most important members of the community
are the BeagleBoard and Bone users. Our ultimate goal is for the entire community to openly
share their successes and to encourage the next generation of STEM practitioners.

8.3.5 CONTRIBUTING TO BONESCRIPT
It is important to emphasize that Bonescript is an open source programming environment. We
are counting on the user community to expand the features of Bonescript. If there is a feature you
need, please develop it and share it with the BeagleBoard.org community. is is easily done by
submitting a pull request to www.github.com/jadonk/bonescript.

8.4 SUMMARY
In this chapter we provided a brief review of a number of software libraries and other resources
available to the BeagleBone user. ese resources allow access to a wide array of features to extend
the capabilities of BeagleBone. We concluded with an invitation to become an active member of
the BeagleBoard.org community.

8.5 REFERENCES
• Bohm, H. and Jensen, V. 2012. Build Your Own Underwater Robot and Other Wet Projects.

Monterey, CA: Marine Advanced Technology Center.

www.Circuitco.com
www.github.com/jadonk/bonescript

368 8. WHERE TO FROM HERE?

• Bradski, D. and Kaehler, A. 2008. Learning OpenCV: Computer Vision with the OpenCV
Library. Sebastopol, CA: O’Reilly, 2008.

• Dalheimer, M. 2002. Programming with Qt. Sebastopol, CA: O’Reilly.

• Kean, S., Hall, J., and Perry, P. 2012. Meet the Kinect: An Introduction to Programming
Natural User Interfaces. Berkeley, CA: Apress.

• Miles, R. 2012. Start Here! Learn the Kinect API. Sebastopol, CA: O’Reilly.

• Moore, S., Bohm, H., and Jensen, V. 2010. Underwater Robotics: Science, Design and Fab-
rication. Marine Advanced Technology Education Center, Monterrey, CA.

• OpenROV: Open-source Underwater Robots for Exploration and Education. 2015; www.open
rov.com

• Seaperch, 2015; www.seaperch.com

• elin, J. 2007. Foundations of Qt Development. Berkerly, CA: Apress.

8.6 CHAPTER EXERCISES
1. Construct a personal plan on how you will improve your BeagleBone and Linux operating

system skills.

2. Develop three new features for the Bonescript environment and submit them to the Bea-
gleBoard.org community.

www.openrov.com
www.openrov.com
www.seaperch.com

369

A P P E N D I X A

Bonescript functions

Analog input/output

function name

Description: Delivers analog level to specified pin via 1 kHz pulse width
 modulated signal. Analog level specified as normalized value

 from 0..1 corresponding to 0 to 1.8 VDC.

arguments: pin_name, logic_level (0 .. 1).

returns: None.

Description

analogWrite(pin_name, analog_value);

var1 = analogRead(pin_name); Description: Performs analog-to-digital conversion on voltage at specified
 pin. Analog voltage may range from 0 to 1.8 VDC.

arguments: pin_name

returns: Normalized value from 0 .. 1 corresponding to 0 .. 1.8 VDC.

Bonescript Environment

Figure A.1: Bonescript analog input and output functions.

370 A. BONESCRIPT FUNCTIONS

Bonescript Environment

Digital input/output

function name

Description: Sets digital output pin logic level (HIGH or LOW).

arguments: pin_name, logic_level (HIGH or LOW)

returns: None.

Description

pinMode(pin_name, direction);

digitalWrite(pin_name, logic_level);

Description: Sets digital pin direction (INPUT or OUTPUT).

arguments: pin_name, direction (INPUT or OUTPUT)

returns: None.

var1 = digitalRead(pin_name); Description: Reads digital input pin logic level (HIGH or LOW).

arguments: pin_name

returns: Logic level of specified pin (HIGH or LOW)

getPinMode(pin_name); Description: Reports status, parameters of selected pin

arguments: pin_name

returns: parameters of selected pin

Description: Provides Serial Peripheral Interface (SPI) data transmission

arguments: pin for SPI data, pin for SPI clock, bit order (LSBFIRST,
 MSBFIRST), data for transmission

returns: None.

shiftOut(spi_dataPin, spi_clockPin,

 bitOrder, value);

Figure A.2: Bonescript digital input and output functions.

371

Bit and Byte Operators

function name Description

Description: Returns the lower (least significant) byte of the value. The value

 may be of any type.

arguments: The value may be of any type.

returns: The low order, least significant byte.

return_byte = lowByte(value);

bit_value = bitRead(number,

 bit_position);
Description: Returns the logic value (1 or 0) of the specified bit position in the
 number.

arguments: The number to be evaluated and the desired bit position.

returns: The logic value (1 or 0).

bitWrite(number,

 bit_position,

 bit_value);

Description: Writes the specified bit position with a bit value (0 or 1) for
 the specified number.

arguments: The number to be written to, the desired bit position and the
 desired value (0 or 1).

returns: None.

bitSet(number,

 bit_position);

Description: Sets the specified bit position to logic high (1) for
 the specified number.

arguments: The number to be written to and the desired bit position.

returns: None.

bitClear(number,

 bit_position);
Description: Clears the specified bit position to logic low (0) for
 the specified number.

arguments: The number to be written to and the desired bit position.

returns: None.

bit_value = bit(n); Description: Returns 2n as the bit value.

arguments: The bit position (n).

returns: The bit value.

Figure A.3: Bonescript bit and byte operators.

372 A. BONESCRIPT FUNCTIONS

Interrupts

function name Description

Description: Specifies input pin, interrupt trigger source, and interrupt
 service routine (ISR) name

arguments: interrupt pin, trigger source RISING, FALLING, CHANGE), and
 interrupt service routine name

returns: None.

Description: Detaches interrupt service from specified pin.

arguments: Interrupt pin

returns: None.

attachInterrupt(input pin,

 ISR_name, trigger);

detachInterrupt(pin);

Constants

OUTPUT

INPUT

LOW

HIGH

RISING

FALLING

CHANGE

Figure A.4: Bonescript interrupt operators and constants.

373

A P P E N D I X B

LCD interface for BeagleBone
in C

B.1 BEAGLEBONE LCD INTERFACE
Provided in Figure B.1 are the structure chart, UML activity diagrams and connection diagram
for a Sparkfun LCD–09052 basic 16 x 2 character liquid crystal display. Note the LCD operates
at 3.3 VDC which is compatible with BeagleBone.

B.2 BEAGLEBONE BLACK LCD C CODE
Provided below is the LCD C code for the BeagleBone Black operating under Linux.

Please note the following pins were used in the interface:

• P8.9–RS

• P8.10–E

• P8.11–DB0

• P8.12–DB1

• P8.13–DB2

• P8.14–DB3

• P8.15–DB4

• P8.16–DB5

• P8.17–DB6

• P8.18–DB7

374 B. LCD INTERFACE FOR BEAGLEBONE IN C

G
N

D
:1

V
D

D
:2

V
o

:3

R
S

:4

R
/W

:5

E
:6

D
B

0
:7

D
B

1
:8

D
B

2
:9

D
B

3
:1

0

D
B

4
:1

1

D
B

5
:1

2

D
B

6
:1

3

D
B

7
:1

4

L
E

D
+

:1
5

L
E

D
-:

1
6

V
cc =

 3
.3

 V
D

C

10K

line1

line2

data
enable

com
m

and/d
ata

V
cc =

 3
.3

 V
D

C

Figure B.1: LCD support data.

B.2. BEAGLEBONE BLACK LCD C CODE 375

1 / / *
2 # in c l ude < s t d i o . h>
3 # in c l ude < s t d l i b . h>
4 # in c l ude < s t d d e f . h>
5 # in c l ude < t ime . h>
6 # in c l ude < s t r i n g . h>
7 # in c l ude < s y s / t ime . h>
8
9 # de f i n e ou tpu t ” ou t ”

10 # de f i n e i n pu t ” i n ”
11
12 / / f u n c t i o n p r o t o t y p e s
13 void c on f i g u r e _LCD_ in t e r f a c e (void) ;
14 void LCD_putcommand (unsigned char) ;
15 void LCD_putchar (unsigned char) ;
16 void LCD_print (unsigned int , char * s t r i n g) ;
17 void d e l a y _ u s (i n t) ;
18 void LCD_init (vo id) ;
19 FILE * s e t u p _ gp i o (unsigned i n t pin_number , char * d i r e c t i o n) ;
20 void s e t _ g p i o _ v a l u e (FILE * v a l u e _ f i l e , unsigned i n t l o g i c _ s t a t u s) ;
21
22 / / LCD_RS : b on e . P8_9 LCD R e g i s t e r S e t (RS) c o n t r o l : GPIO2_5 : pin �69
23 FILE * g p i o _ r s _ v a l u e = NULL;
24 i n t p in_number_r s = 69 , l o g i c _ s t a t u s _ r s = 1 ;
25 char * p i n _ d i r e c t i o n _ r s = ou tpu t ;
26
27 / /LCD_E: b on e . P8_10 : LCD Enab l e En (E) : GPIO2_4 : pin �68
28 FILE * g p i o _ e _ v a l u e = NULL;
29 i n t pin_number_e = 68 , l o g i c _ s t a t u s _ e = 1 ;
30 char * p i n _ d i r e c t i o n _ e = ou tpu t ;
31
32 / /LCD_DB0 : b on e . P8_11 : LCD Data l i n e DB0 : GPIO1_13 : pin �45
33 FILE * gp i o_db0_v a l u e = NULL;
34 i n t pin_number_db0 = 45 , l o g i c _ s t a t u s _ d b 0 = 1 ;
35 char * p i n _ d i r e c t i o n _ d b 0 = ou tpu t ;
36
37 / /LCD_DB1 : b on e . P8_12 : LCD Data l i n e DB1 : GPIO1_12 : pin �44
38 FILE * gp i o_db1_v a l u e = NULL;
39 i n t pin_number_db1 = 44 , l o g i c _ s t a t u s _ d b 1 = 1 ;
40 char * p i n _ d i r e c t i o n _ d b 1 = ou tpu t ;
41
42 / /LCD_DB2 : b on e . P8_13 : LCD Data l i n e DB2 : GPIO0_23 : pin �23
43 FILE * gp i o_db2_v a l u e = NULL;
44 i n t pin_number_db2 = 23 , l o g i c _ s t a t u s _ d b 2 = 1 ;
45 char * p i n _ d i r e c t i o n _ d b 2 = ou tpu t ;
46
47 / /LCD_DB3 : b on e . P8_14 : LCD Data l i n e DB3 : GPIO0_26 : pin �26
48 FILE * gp i o_db3_v a l u e = NULL;

376 B. LCD INTERFACE FOR BEAGLEBONE IN C

49 i n t pin_number_db3 = 26 , l o g i c _ s t a t u s _ d b 3 = 1 ;
50 char * p i n _ d i r e c t i o n _ d b 3 = ou tpu t ;
51
52 / /LCD_DB4 : b on e . P8_15 : LCD Data l i n e DB4 : GPIO1_15 : pin �47
53 FILE * gp i o_db4_v a l u e = NULL;
54 i n t pin_number_db4 = 47 , l o g i c _ s t a t u s _ d b 4 = 1 ;
55 char * p i n _ d i r e c t i o n _ d b 4 = ou tpu t ;
56
57 / /LCD_DB5 : b on e . P8_16 : LCD Data l i n e DB5 : GPIO1_14 : pin �46
58 FILE * gp i o_db5_v a l u e = NULL;
59 i n t pin_number_db5 = 46 , l o g i c _ s t a t u s _ d b 5 = 1 ;
60 char * p i n _ d i r e c t i o n _ d b 5 = ou tpu t ;
61
62 / /LCD_DB6 : b on e . P8_17 : LCD Data l i n e DB6 : GPIO0_27 : pin �27
63 FILE * gp i o_db6_v a l u e = NULL;
64 i n t pin_number_db6 = 27 , l o g i c _ s t a t u s _ d b 6 = 1 ;
65 char * p i n _ d i r e c t i o n _ d b 6 = ou tpu t ;
66
67 / /LCD_DB7 : b on e . P8_18 : LCD Data l i n e DB7 : GPIO2_1 : pin �65
68 FILE * gp i o_db7_v a l u e = NULL;
69 i n t pin_number_db7 = 65 , l o g i c _ s t a t u s _ d b 7 = 1 ;
70 char * p i n _ d i r e c t i o n _ d b 7 = ou tpu t ;
71
72
73 i n t main (void)
74 {
75 con f i g u r e _LCD_ in t e r f a c e () ;
76 p r i n t f (” Con f i gu r e LCD \n ”) ;
77 LCD_init () ; / / c a l l LCD i n i t i a l i z e
78 p r i n t f (”LCD i n i t i a l i z e \ n ”) ;
79
80 whi l e (1)
81 {
82 LCD_print (1 , ” Bad to the ”) ;
83 p r i n t f (” Bad to the \ n ”) ;
84 d e l a y _ u s (100) ;
85 LCD_print (2 , ” Bone ”) ;
86 p r i n t f (” Bone \ n ”) ;
87 d e l a y _ u s (100) ;
88 }
89 r e t u rn 1 ;
90 }
91
92 / / *
93 / / FILE * s e t u p _ g p i o (u n s i g n e d i n t p in_number , c h a r * p i n _ d i r e c t i o n)
94 / / *
95
96 FILE * s e t u p _ gp i o (unsigned i n t pin_number , char * p i n _ d i r e c t i o n)

B.2. BEAGLEBONE BLACK LCD C CODE 377

97 {
98 FILE * exp , * g p i o _ v a l u e , * g p i o _ d i r e c t i o n ;
99 char g p i o _ d i r e c t i o n _ f i l e n am e [4 0] ;

100 char g p i o _ v a l u e _ f i l e n ame [4 0] ;
101
102 / / c r e a t e d i r e c t i o n and v a l u e f i l e f o r p in
103 exp = fopen (” / s y s / c l a s s / gp io / e x p o r t ” , ”w”) ;
104 i f (exp == NULL) { p r i n t f (” Unable to open e x p o r t . \ n ”) ; }
105 f s e e k (exp , 0 , SEEK_SET) ;
106 f p r i n t f (exp , ”%d ” , pin_number) ;
107 f f l u s h (exp) ;
108 f c l o s e (exp) ;
109
110 / / c o n f i g u r e p in d i r e c t i o n
111 s p r i n t f (g p i o _ d i r e c t i o n _ f i l e n am e , ” / s y s / c l a s s / gp io / gp io%d / d i r e c t i o n ” ,
112 pin_number) ;
113 g p i o _ d i r e c t i o n = fopen (g p i o _ d i r e c t i o n _ f i l e n am e , ”w”) ;
114 i f (g p i o _ d i r e c t i o n == NULL) { p r i n t f (” Unable to open %s . \ n ” ,
115 g p i o _ d i r e c t i o n _ f i l e n am e) ; }
116 f s e e k (g p i o _ d i r e c t i o n , 0 , SEEK_SET) ;
117 f p r i n t f (g p i o _ d i r e c t i o n , ”%s ” , p i n _ d i r e c t i o n) ;
118 f f l u s h (g p i o _ d i r e c t i o n) ;
119 f c l o s e (g p i o _ d i r e c t i o n) ;
120
121 / / o p en p in v a l u e f i l e
122 s p r i n t f (g p i o _ v a l u e _ f i l e n ame , ” / s y s / c l a s s / gp io / gp io%d / v a l u e ” , pin_number

) ;
123 g p i o _ v a l u e = fopen (g p i o _ v a l u e _ f i l e n ame , ”w”) ;
124 i f (g p i o _ v a l u e ==NULL) { p r i n t f (” Unable to open %s . \ n ” , g p i o _ v a l u e _ f i l e n ame

) ; }
125
126 p r i n t f (” Opening %d (% s) r e t u r n e d 0x%08x \ n ” , pin_number ,

g p i o _ v a l u e _ f i l e n ame ,
127 (i n t) g p i o _ v a l u e) ;
128 r e t u rn (g p i o _ v a l u e) ;
129 }
130
131 / / *
132 / / v o i d s e t _ g p i o _ v a l u e (FILE * v a l u e _ f i l e , u n s i g n e d i n t l o g i c _ s t a t u s)
133 / / *
134 void s e t _ g p i o _ v a l u e (FILE * v a l u e _ f i l e , unsigned i n t l o g i c _ s t a t u s)
135 {
136
137 p r i n t f (” %d �> 0x%08x \ n ” , l o g i c _ s t a t u s , (i n t) v a l u e _ f i l e) ;
138 f s e e k (v a l u e _ f i l e , 0 , SEEK_SET) ;
139 f p r i n t f (v a l u e _ f i l e , ”%d ” , l o g i c _ s t a t u s) ;
140 f f l u s h (v a l u e _ f i l e) ;
141

378 B. LCD INTERFACE FOR BEAGLEBONE IN C

142 }
143
144 / / *
145 / / v o i d c o n f i g u r e _ LCD_ i n t e r f a c e (v o i d)
146 / / *
147
148 void c on f i g u r e _LCD_ in t e r f a c e (void)
149 {
150
151 / / S e t u p LCD GPIO p i n s
152 g p i o _ r s _ v a l u e = s e t u p _ gp i o (p in_number_rs , p i n _ d i r e c t i o n _ r s) ;
153 g p i o _ e _ v a l u e = s e t u p _ gp i o (pin_number_e , p i n _ d i r e c t i o n _ e) ;
154 gp i o_db0_v a l u e = s e t u p _ gp i o (pin_number_db0 , p i n _ d i r e c t i o n _ d b 0) ;
155 gp i o_db1_v a l u e = s e t u p _ gp i o (pin_number_db1 , p i n _ d i r e c t i o n _ d b 1) ;
156 gp i o_db2_v a l u e = s e t u p _ gp i o (pin_number_db2 , p i n _ d i r e c t i o n _ d b 2) ;
157 gp i o_db3_v a l u e = s e t u p _ gp i o (pin_number_db3 , p i n _ d i r e c t i o n _ d b 3) ;
158 gp i o_db4_v a l u e = s e t u p _ gp i o (pin_number_db4 , p i n _ d i r e c t i o n _ d b 4) ;
159 gp i o_db5_v a l u e = s e t u p _ gp i o (pin_number_db5 , p i n _ d i r e c t i o n _ d b 5) ;
160 gp i o_db6_v a l u e = s e t u p _ gp i o (pin_number_db6 , p i n _ d i r e c t i o n _ d b 6) ;
161 gp i o_db7_v a l u e = s e t u p _ gp i o (pin_number_db7 , p i n _ d i r e c t i o n _ d b 7) ;
162
163 }
164
165 / / *
166 / / LCD_init
167 / / *
168
169 void LCD_init (vo id)
170 {
171 d e l a y _ u s (15000) ; / / wai t 15 ms
172 LCD_putcommand (0 x30) ; / / s e t f o r 8� b i t o p e r a t i o n
173 d e l a y _ u s (5000) ; / / d e l a y 5 ms
174 LCD_putcommand (0 x30) ; / / s e t f o r 8� b i t o p e r a t i o n
175 d e l a y _ u s (100) ; / / d e l a y 100 u s
176 LCD_putcommand (0 x30) ; / / s e t f o r 8� b i t o p e r a t i o n
177 LCD_putcommand (0 x38) ; / / f u n c t i o n s e t
178 LCD_putcommand (0 x80) ; / / d i s p l a y o f f
179 LCD_putcommand (0 x01) ; / / d i s p l a y c l e a r
180 LCD_putcommand (0 x06) ; / / e n t r y mode s e t
181 }
182
183 / / *
184 / / LCD_putcommand
185 / / *
186
187 void LCD_putcommand (unsigned char cmd)
188 {
189 / / p a r s e command v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t

B.2. BEAGLEBONE BLACK LCD C CODE 379

190 / / t o LCD
191
192 / / c o n f i g u r e DB7 v a l u e
193 i f ((cmd & 0x0080) == 0 x0080)
194 {
195 p r i n t f (”CmDB7: 1 ”) ;
196 l o g i c _ s t a t u s _ d b 7 = 1 ;
197 }
198 e l s e
199 {
200 p r i n t f (” CmDB7: 0 ”) ;
201 l o g i c _ s t a t u s _ d b 7 = 0 ;
202 }
203 s e t _ g p i o _ v a l u e (gp io_db7_va l u e , l o g i c _ s t a t u s _ d b 7) ;
204
205
206 / / c o n f i g u r e DB6 v a l u e
207 i f ((cmd & 0x0040) == 0 x0040)
208 {
209 p r i n t f (” CmDB6: 1 ”) ;
210 l o g i c _ s t a t u s _ d b 6 = 1 ;
211 }
212 e l s e
213 {
214 p r i n t f (” CmDB6: 0 ”) ;
215 l o g i c _ s t a t u s _ d b 6 = 0 ;
216 }
217 s e t _ g p i o _ v a l u e (gp io_db6_va l u e , l o g i c _ s t a t u s _ d b 6) ;
218
219
220 / / c o n f i g u r e DB5 v a l u e
221 i f ((cmd & 0x0020) == 0 x0020)
222 {
223 p r i n t f (” CmDB5: 1 ”) ;
224 l o g i c _ s t a t u s _ d b 5 = 1 ;
225 }
226 e l s e
227 {
228 p r i n t f (” CmDB5: 0 ”) ;
229 l o g i c _ s t a t u s _ d b 5 = 0 ;
230 }
231 s e t _ g p i o _ v a l u e (gp io_db5_va l u e , l o g i c _ s t a t u s _ d b 5) ;
232
233
234 / / c o n f i g u r e DB4 v a l u e
235 i f ((cmd & 0x0010) == 0 x0010)
236 {
237 p r i n t f (” CmDB4: 1 ”) ;

380 B. LCD INTERFACE FOR BEAGLEBONE IN C

238 l o g i c _ s t a t u s _ d b 4 = 1 ;
239 }
240 e l s e
241 {
242 p r i n t f (” CmDB4: 0 ”) ;
243 l o g i c _ s t a t u s _ d b 4 = 0 ;
244 }
245 s e t _ g p i o _ v a l u e (gp io_db4_va l u e , l o g i c _ s t a t u s _ d b 4) ;
246
247
248 / / c o n f i g u r e DB3 v a l u e
249 i f ((cmd & 0x0008) == 0 x0008)
250 {
251 p r i n t f (” CmDB3: 1 ”) ;
252 l o g i c _ s t a t u s _ d b 3 = 1 ;
253 }
254 e l s e
255 {
256 p r i n t f (” CmDB3: 0 ”) ;
257 l o g i c _ s t a t u s _ d b 3 = 0 ;
258 }
259 s e t _ g p i o _ v a l u e (gp io_db3_va l u e , l o g i c _ s t a t u s _ d b 3) ;
260
261
262 / / c o n f i g u r e DB2 v a l u e
263 i f ((cmd & 0x0004) == 0 x0004)
264 {
265 p r i n t f (” CmDB2: 1 ”) ;
266 l o g i c _ s t a t u s _ d b 2 = 1 ;
267 }
268 e l s e
269 {
270 p r i n t f (” CmDB2: 0 ”) ;
271 l o g i c _ s t a t u s _ d b 2 = 0 ;
272 }
273 s e t _ g p i o _ v a l u e (gp io_db2_va l u e , l o g i c _ s t a t u s _ d b 2) ;
274
275
276 / / c o n f i g u r e DB1 v a l u e
277 i f ((cmd & 0x0002) == 0 x0002)
278 {
279 p r i n t f (” CmDB1: 1 ”) ;
280 l o g i c _ s t a t u s _ d b 1 = 1 ;
281 }
282 e l s e
283 {
284 p r i n t f (” CmDB1: 0 ”) ;
285 l o g i c _ s t a t u s _ d b 1 = 0 ;

B.2. BEAGLEBONE BLACK LCD C CODE 381

286 }
287 s e t _ g p i o _ v a l u e (gp io_db1_va l u e , l o g i c _ s t a t u s _ d b 1) ;
288
289
290 / / c o n f i g u r e DB0 v a l u e
291 i f ((cmd & 0x0001) == 0 x0001)
292 {
293 p r i n t f (” CmDB0: 1 ”) ;
294 l o g i c _ s t a t u s _ d b 0 = 1 ;
295 }
296 e l s e
297 {
298 p r i n t f (” CmDB0: 0 ”) ;
299 l o g i c _ s t a t u s _ d b 0 = 0 ;
300 }
301 s e t _ g p i o _ v a l u e (gp io_db0_va l u e , l o g i c _ s t a t u s _ d b 0) ;
302
303 p r i n t f (” \ n ”) ;
304
305 / /LCD R e g i s t e r S e t (RS) t o l o g i c z e r o f o r command i n p u t
306 l o g i c _ s t a t u s _ r s = 0 ;
307 s e t _ g p i o _ v a l u e (g p i o _ r s _ v a l u e , l o g i c _ s t a t u s _ r s) ;
308
309 / /LCD Enab l e (E) p in h i g h
310 l o g i c _ s t a t u s _ e = 1 ;
311 s e t _ g p i o _ v a l u e (gp i o_ e_ v a l u e , l o g i c _ s t a t u s _ e) ;
312
313 / / d e l a y
314 d e l a y _ u s (2) ;
315
316 / /LCD Enab l e (E) p in low
317 l o g i c _ s t a t u s _ e = 0 ;
318 s e t _ g p i o _ v a l u e (gp i o_ e_ v a l u e , l o g i c _ s t a t u s _ e) ;
319
320 / / d e l a y
321 d e l a y _ u s (100) ;
322 }
323
324 / / *
325 / / LCD_putchar
326 / / *
327
328 void LCD_putchar (unsigned char ch r)
329 {
330 / / p a r s e c h a r a c t e r v a r i a b l e i n t o i n d i v i d u a l b i t s f o r o u t p u t
331 / / t o LCD
332
333 p r i n t f (” Data : %c :%d ” , chr , ch r) ;

382 B. LCD INTERFACE FOR BEAGLEBONE IN C

334 ch r = (i n t) (ch r) ;
335
336 / / c o n f i g u r e DB7 v a l u e
337 i f ((ch r & 0x0080) == 0 x0080)
338 {
339 p r i n t f (” DB7: 1 ”) ;
340 l o g i c _ s t a t u s _ d b 7 = 1 ;
341 }
342 e l s e
343 {
344 p r i n t f (” DB7: 0 ”) ;
345 l o g i c _ s t a t u s _ d b 7 = 0 ;
346 }
347 s e t _ g p i o _ v a l u e (gp io_db7_va l u e , l o g i c _ s t a t u s _ d b 7) ;
348
349
350 / / c o n f i g u r e DB6 v a l u e
351 i f ((ch r & 0x0040) == 0 x0040)
352 {
353 p r i n t f (” DB6: 1 ”) ;
354 l o g i c _ s t a t u s _ d b 6 = 1 ;
355 }
356 e l s e
357 {
358 p r i n t f (” DB6: 0 ”) ;
359 l o g i c _ s t a t u s _ d b 6 = 0 ;
360 }
361 s e t _ g p i o _ v a l u e (gp io_db6_va l u e , l o g i c _ s t a t u s _ d b 6) ;
362
363
364 / / c o n f i g u r e DB5 v a l u e
365 i f ((ch r & 0x0020) == 0 x0020)
366 {
367 p r i n t f (” DB5: 1 ”) ;
368 l o g i c _ s t a t u s _ d b 5 = 1 ;
369 }
370 e l s e
371 {
372 p r i n t f (” DB5: 0 ”) ;
373 l o g i c _ s t a t u s _ d b 5 = 0 ;
374 }
375 s e t _ g p i o _ v a l u e (gp io_db5_va l u e , l o g i c _ s t a t u s _ d b 5) ;
376
377
378 / / c o n f i g u r e DB4 v a l u e
379 i f ((ch r & 0x0010) == 0 x0010)
380 {
381 p r i n t f (” DB4: 1 ”) ;

B.2. BEAGLEBONE BLACK LCD C CODE 383

382 l o g i c _ s t a t u s _ d b 4 = 1 ;
383 }
384 e l s e
385 {
386 p r i n t f (” DB4: 0 ”) ;
387 l o g i c _ s t a t u s _ d b 4 = 0 ;
388 }
389 s e t _ g p i o _ v a l u e (gp io_db4_va l u e , l o g i c _ s t a t u s _ d b 4) ;
390
391
392 / / c o n f i g u r e DB3 v a l u e
393 i f ((ch r & 0x0008) == 0 x0008)
394 {
395 p r i n t f (” DB3: 1 ”) ;
396 l o g i c _ s t a t u s _ d b 3 = 1 ;
397 }
398 e l s e
399 {
400 p r i n t f (” DB3: 0 ”) ;
401 l o g i c _ s t a t u s _ d b 3 = 0 ;
402 }
403 s e t _ g p i o _ v a l u e (gp io_db3_va l u e , l o g i c _ s t a t u s _ d b 3) ;
404
405
406 / / c o n f i g u r e DB2 v a l u e
407 i f ((ch r & 0x0004) == 0 x0004)
408 {
409 p r i n t f (” DB2: 1 ”) ;
410 l o g i c _ s t a t u s _ d b 2 = 1 ;
411 }
412 e l s e
413 {
414 p r i n t f (” DB2: 0 ”) ;
415 l o g i c _ s t a t u s _ d b 2 = 0 ;
416 }
417 s e t _ g p i o _ v a l u e (gp io_db2_va l u e , l o g i c _ s t a t u s _ d b 2) ;
418
419
420 / / c o n f i g u r e DB1 v a l u e
421 i f ((ch r & 0x0002) == 0 x0002)
422 {
423 p r i n t f (” DB1: 1 ”) ;
424 l o g i c _ s t a t u s _ d b 1 = 1 ;
425 }
426 e l s e
427 {
428 p r i n t f (” DB1: 0 ”) ;
429 l o g i c _ s t a t u s _ d b 1 = 0 ;

384 B. LCD INTERFACE FOR BEAGLEBONE IN C

430 }
431 s e t _ g p i o _ v a l u e (gp io_db1_va l u e , l o g i c _ s t a t u s _ d b 1) ;
432
433 / / c o n f i g u r e DB0 v a l u e
434 i f ((ch r & 0x0001) == 0 x0001)
435 {
436 p r i n t f (” DB0 : 1 \ n ”) ;
437 l o g i c _ s t a t u s _ d b 0 = 1 ;
438 }
439 e l s e
440 {
441 p r i n t f (” DB0 : 0 \ n ”) ;
442 l o g i c _ s t a t u s _ d b 0 = 0 ;
443 }
444 s e t _ g p i o _ v a l u e (gp io_db0_va l u e , l o g i c _ s t a t u s _ d b 0) ;
445
446 / /LCD R e g i s t e r S e t (RS) t o l o g i c on e f o r c h a r a c t e r i n p u t
447 l o g i c _ s t a t u s _ r s = 1 ;
448 s e t _ g p i o _ v a l u e (g p i o _ r s _ v a l u e , l o g i c _ s t a t u s _ r s) ;
449
450 / /LCD Enab l e (E) p in h i g h
451 l o g i c _ s t a t u s _ e = 1 ;
452 s e t _ g p i o _ v a l u e (gp i o_ e_ v a l u e , l o g i c _ s t a t u s _ e) ;
453
454 / / d e l a y
455 d e l a y _ u s (2) ;
456
457 / /LCD Enab l e (E) p in low
458 l o g i c _ s t a t u s _ e = 0 ;
459 s e t _ g p i o _ v a l u e (gp i o_ e_ v a l u e , l o g i c _ s t a t u s _ e) ;
460
461 / / d e l a y
462 d e l a y _ u s (2) ;
463
464 }
465
466 / / *
467 / / *
468 void LCD_print (unsigned i n t l i n e , char * msg)
469 {
470 i n t i = 0 ;
471
472 i f (l i n e == 1)
473 {
474 LCD_putcommand (0 x80) ; / / p r i n t t o LCD l i n e 1
475 }
476 e l s e
477 {

B.2. BEAGLEBONE BLACK LCD C CODE 385

478 LCD_putcommand (0 xc0) ; / / p r i n t t o LCD l i n e 2
479 }
480
481 whi l e (* (msg) ! = ’ \0 ’)
482 {
483 LCD_putchar (* msg) ;
484 / / p r i n t f (” Data : %c \ n \ n ” , * msg) ;
485 msg ++ ;
486 }
487 }
488
489 / / *
490
491 void d e l a y _ u s (i n t d e s i r e d _ d e l a y _ u s)
492 {
493 s t r u c t t im e v a l t v _ s t a r t ; / / s t a r t t im e h a c k
494 s t r u c t t im e v a l tv_now ; / / c u r r e n t t im e h a c k
495 i n t e l a p s e d _ t ime _u s ;
496
497 g e t t im e o f d a y (& t v _ s t a r t , NULL) ;
498 e l a p s e d _ t ime _u s = 0 ;
499
500 whi l e (e l a p s e d _ t im e_u s < d e s i r e d _ d e l a y _ u s)
501 {
502 g e t t im e o f d a y (&tv_now , NULL) ;
503 i f (tv_now . t v _ u s e c >= t v _ s t a r t . t v _ u s e c)
504 e l a p s e d _ t ime _u s = tv_now . t v _ u s e c � t v _ s t a r t . t v _ u s e c ;
505 e l s e
506 e l a p s e d _ t ime _u s = (1000000 � t v _ s t a r t . t v _ u s e c) + tv_now . t v _ u s e c ;
507 / / p r i n t f (” s t a r t : %l d \ n ” , t v _ s t a r t . t v _ u s e c) ;
508 / / p r i n t f (” now : %l d \ n ” , tv_now . t v _ u s e c) ;
509 / / p r i n t f (” d e s i r e d : %d \ n ” , d e s i r e d _ d e l a y _m s) ;
510 / / p r i n t f (” e l a p s e d : %d \ n \ n ” , e l a p s e d _ t i m e _m s) ;
511 }
512 }
513
514 / / *

387

A P P E N D I X C

Parts List for Projects

388 C. PARTS LIST FOR PROJECTS

Chapter 1

Description Qty Source

5 VDC, 2A power supply

LED, red

270 ohm resistor, 1/4W

Adafruit (www.adafruit.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Boneyard I
black pelican micro case

3.3 x 2.1 solderless breadboad

circuit board hardware mounting hardware

1

1

1

1

1

1

Pelican Cases (www.pelican.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Part number

1040

20601

106551

276

333973

690726

Chapter 3

Description Qty Source

Dagu Magician robot

aluminum bracket

bracket HW

 - screws

 - nuts

 - washer

Sharp IR sensor GP2Y0A21YK0F with cable

3.3 x 2.1 solderless breadboad

Sparkfun (www.sparkfun.com)

local manufacture

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Adafruit (www.adafruit.com)

Jameco (www.jameco.com)

1

1

9

9

9

3

1

Part number

40970

40943

106850

164

20601

ROB-10825

n/a

1M ohm trim potentiometer

TIP 120 Darlington NPN transistor

1N4001 diode

330 ohm resistor, 1/4W

7805 5 VDC, 1A voltage regulator

9 VDC, 2A power supply

3

2

10

2

3

1

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

241219

803671

35975

690742

51262

1952847

Chapter 4

Description Qty Source Part number

Chapter 2

Description Qty Source Part number

100K potentiometer

270 ohm resistor, 1/4W

Sharp IR sensor GP2Y0A21YK0F with cable

3.3 x 2.1 solderless breadboad

1M ohm resistor, 1/4W

10K ohm resistor, 1/4W

2N2222 transistor

white LED

62 ohm resistor, 1/4W

1

1

1

1

1

1

1

1

1

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

94731

690726

164

20601

241219

691104

38236

2160067

690574

16 x 2 character LCD, 3.3 VDC

10K potentiometer

red LEDs

220 ohm resistor, 1/4W

74HC244 tristate octal buffer line driver

74HC154 4-to-16 line decoder

TXB0108 level shifter

1

1

64

4

1

1

1

Sparkfun (www.sparkfun.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Adafruit (www.adafruit.com)

LCD-09052

241146

333973

690700

251424

45401

395

Figure C.1: Parts list.

389

Chapter 5

Description Qty Source

LM117T voltage regulator

0.1 uF, 25 VDC capacitor

5K ohm trim potentiometer

240 ohm resistor, 1/4W

1 uf, 25 VDC capacitor

Prototype Cape kit for BeagleBone

thumb joystick

Breakout board for thumb joystick

10 ohm resistor, 1/4W

100 VDC, 5A Schottky diode (IR 50SQ100)

thrusters, Shoreline Bilge Pump

Sharp IR sensor GP2Y0A21YK0F with cable

1M ohm trim pots

LED, red

TXB0108 3.3 VDC to 5 VDC level shifter

7404 hex inverter

7408 quad AND gate

200 ohm resistor, 1/4W

TIP 31 NPN transistor

TIP 32 PNP transistor

100 VDC, 5A Schottky diode (IR 50SQ100)

470 ohm resistor, 1/4W

1000 uF, 25 VDC capacitor

4WD robot platform (DF ROBOT, ROB0003)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Adafruit (www.adafruit.com)

Sparkfun (www.sparkfun.com)

Sparkfun (www.sparkfun.com)

Jameco (www.jameco.com)

Digikey (www.digikey.com)

Walmart (www.walmart.com)

1

1

1

1

1

1

1

1

1

1

3

Part number

3

3

1

1

1

1

4

8

4

8

4

2

1

Adafruit (www.adafruit.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Adafruit (www.adafruit.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Digikey (www.digikey.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

23579

151116

254669

690718

330431

572

COM-09032

BOB-09110

690380

50SQ100CT-ND

user choice

Chapter 6

Description Qty Source

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

1

1

1

1

1

Part number

LED, red

LED, green

220 ohm resistor, 1/4W

4.7K ohm resistor, 1/4W

tact pushbutton switch

333973

34761

690700

691024

199726

164

241219

333973

395

49040

49146

690697

179354

181841

50SQ100CT-ND

690785

158298

2124285

Figure C.2: Parts list (continued).

390 C. PARTS LIST FOR PROJECTS

Chapter 7

Description Qty Source Part number

Boneyard II and III
LCD7

BeagleBone

Mini USB mouse

USB hub

Miniature keyboard

Pelican case

HDMI display

HDMI to microHDMI cable

Weather Station
LM34DZ precision Fahrenheit temp sensor

weather vane

LCD, 3.3 VDC, 16 x 2 char

120 ohm resistor, 1/4W

LED, red

10K ohm resistor, 1/4W

MPQ2222, general purpose NPN
Speak and Spell
text to speech chip

mini-speaker, 8 ohm

10K ohn resistor, 1/4W

10 uF, 25 VDC

4.7 uF, 25 VDC

330 ohm resistor, 1/4W

LED, red

LED, green

10K ohm trim pot

LM380N-3 2.5W audio amplifier

0.1 uF, 25 VDC

100 uF, 25 VDC

Dagu 5 ROV
Dagu Rover 5 tracked chassis

9.0 VDC, 2.0A power supply

1N4001 silicon diode

TIP 120, NPN Darlington

330 ohm resistor

Sharp IR sensor GP2Y0A21YK0F with cable

1M ohm trim pot

7805 5 VDC, 1A voltage regulator

LM1084-3.3, 3.3 VDC voltage regulator

100 uF, 25 VDC

Stache Cam
camera, PS3 Eye

LCD3

BeagleBone

Battery cape

1

1

1

1

1

1

1

1

circuitco (www.circuitco.com)

multiple sources

local purchase

local purchase

Adafruit (www.adafruit.com)

Pelican cases (www.pelican.com)

local retail

local retail

LCD7

857

1200

1

1

1

1

8

8

8

Jameco (www.jameco.com)

multiple sources

Sparkfun (www.sparkfun.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

155192

LCD-09052

690646

333973

691104

26446

1

1

2

2

1

2

1

1

1

1

1

1

SPO-512

273-0092

691104

94212

2143460

690742

333973

34761

254677

24037

151116

93761

www.speechchips.com

Radioshack (www.radioshack.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

2143865

1952847

35975

32993

690742

164

241219

51262

299735

93761

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Adafruit (www.adafruit.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

1

1

2

2

3

3

1

1

3

1

1

1

1

1

multiple sources

circuitco (www.circuitco.com)

multiple sources

circuitco (www.circuitco.com)

PS3 Eye

LCD3

Robot Arm
Robot Arm-Edge Kit (OWI-535)

LM324 operational amplifier

1N4001 diode

150 ohm resistor, 1/4W

1K ohm resistor, 1/4W

SPST-NO reed relay, 5 VDC, 20 mA, 250 ohm

1

10

10

10

20

10

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

Jameco (www.jameco.com)

RadioShack(www.radioshack.com)

2095023

23683

35975

690662

690865

275-0232

Figure C.3: Parts list (continued).

391

Authors’ Biographies

STEVE BARRETT
Steve is a life-long teacher. He has taught at a variety of age levels from middle school science
enhancement programs through graduate-level coursework. He served in the United States Air
Force for 20 years and spent approximately half of that time as a faculty member at the United
States Air Force Academy. Following military “retirement,” he began a second academic career at
the University of Wyoming as an assistant professor. He now serves as a Professor of Electrical
and Computer Engineering and the Associate Dean for Academic Programs. He is planning on
teaching into his 80s and considers himself a student-first teacher. Most importantly, he has two
“grand beagles,” Rory and Romper, fondly referred to as the “girls.”

JASON KRIDNER
Jason got an early start with computing at age 9 programming his mom’s Tandy Radio Shack
TRS-80. He was also a big fan of Forrest Mim’s Getting Started in Electronics. Much of his al-
lowance was spent developing projects. He really enjoyed the adventure of trying new hardware
and software projects. His goal is to bring back this spirit of adventure and discovery to the Bea-
gleBoard.org community. While still in high school, he worked extensively with AutoCAD as
a leak and flow testing company. He joined Texas Instruments in 1992 after a co-op with them
while a student at Texas A&M University. He started using Linux at about the same time. Since
joining T.I. he has worked on a wide variety of projects including audio digital signal processing,
modems, home theater sound, multi–dimensional audio, and MP3 player development.

	Preface
	Acknowledgments
	Getting Started
	Welcome!
	Overview
	A Brief Beagle History
	BeagleBoard.org Community
	BeagleBone Hardware
	Open-Source Hardware

	Developing with Bonescript
	BeagleBone Capes
	Power Requirements and Capabilities
	Getting Started—Success Out of the Box
	Exercise 1: Accessing Bonescript through your Browser
	Exercise 2: Blinking an LED with Bonescript
	Executing the blinkled.js Program
	Exercise 3: Developing your Own Boneyard—AROO!

	Summary
	References
	Chapter Exercises

	Bonescript
	Overview
	Application 1: Bonescript Tour
	Application 2: Robot IR Sensor
	Application 3: Art Piece Illumination System
	Summary
	References
	Chapter Exercises

	Programming
	An Overview of the Design Process
	Overview
	Anatomy of a Program
	Comments
	Include Files
	Functions
	Interrupt Handler Definitions
	Program Constants
	Variables
	Main Function

	Fundamental Programming Concepts
	Operators
	Programming Constructs
	Decision Processing

	Programming in JavaScript Using Node.js
	JavaScript
	Event-driven Programming
	Node.js

	Application: Dagu Magician Autonomous Maze Navigating Robot
	Dagu Magician Robot
	Requirements
	Circuit Diagram
	Structure Chart
	UML Activity Diagrams
	Bonescript Code

	Summary
	References
	Chapter Exercises

	BeagleBone Operating Parameters and Interfacing
	Overview
	Operating Parameters
	BeagleBone 3.3 VDC Operation
	Compatible 3.3 VDC Logic Families
	Input/output Operation at 5.0 VDC
	Interfacing 3.3 VDC Logic Families to 5.0 VDC Logic Families

	Input Devices
	Switches
	Switch Debouncing
	Keypads
	Sensors
	Transducer Interface Design (TID) Circuit
	Operational Amplifiers

	Output Devices
	Light-Emitting Diodes (LEDs)
	Seven-Segment LED Displays
	Tri-state LED Indicator
	Dot Matrix Display
	Liquid Crystal Display (LCD)

	High-Power Interfaces
	High-Power DC Devices
	DC Motor Speed and Direction Control
	DC Motor Operating Parameters
	H-bridge Direction Control
	DC Solenoid Control
	Stepper Motor Control
	Optical Isolation

	Interfacing to Miscellaneous Devices
	Sonalerts, Beepers, Buzzers
	Vibrating Motor
	DC Fan
	Bilge Pump

	AC Devices
	Application 1: Equipping the Dagu Magician Robot with a LCD
	Application 2: the Dagu Magician Interface on a Custom Cape
	Application 3: Special Effects LED Cube
	Construction Hints
	LED Cube Bonescript Code

	Summary
	References
	Chapter Exercises

	BeagleBone Systems Design
	Overview
	What Is an Embedded System?
	Embedded System Design Process
	Project Description
	Background Research
	Pre-Design
	Design
	Implement Prototype
	Preliminary Testing
	Complete and Accurate Documentation

	Submersible Robot
	Approach
	Requirements
	ROV Structure
	Structure Chart
	Circuit Diagram
	UML Activity Diagram
	BeagleBone Code
	Control Housing Layout
	Final Assembly Testing
	Final Assembly
	Project Extensions

	Mountain Maze Navigating Robot
	Description
	Requirements
	Circuit diagram
	Structure Chart
	UML Activity Diagrams
	Bonescript Code
	Mountain Maze
	Project Extensions

	Summary
	References
	Chapter Exercises

	BeagleBone Features and Subsystems
	Overview
	Beagling in Linux
	Communication with BeagleBone Black

	Updating your eMMC
	Updating Your eMMC in MS Windows

	A Brief Introduction to Linux
	Programming in C using the Linux Toolchain
	BeagleBone Features and Subsystems
	Exposed Function Access
	Expansion Interface

	BeagleBone Black Device Tree and Overlays
	Overview
	Binary Tree
	Device Tree Format
	Device Tree Related Files
	BeagleBone Black Device Tree
	Universal Device Tree Overlay

	Programming in C with BeagleBone Black
	Linux GPIO Files
	Configuring the GPIO Files
	Accessing the GPIO Files in C

	Analog-to-Digital Converters (ADC)
	ADC Process: Sampling, Quantization, and Encoding
	Resolution and Data Rate
	ADC Conversion Technologies
	BeagleBone Black ADC system
	ADC conversion
	ADC Support Functions in Bonescript
	Accessing the ADC System in Linux
	ADC Support Functions in C

	Serial Communications
	Serial Communication Terminology
	Serial UART
	Serial Peripheral Interface (SPI)

	Precision Timing
	Timing-Related Terminology
	BeagleBone Timing Capability

	Pulse Width Modulation (PWM)
	BeagleBone PWM Subsystem (PWMSS) Description
	Bonescript PWM Support
	PWM Device Tree Overlay and C Support Functions

	Internet of Things—Networking
	Inter-Integrated Circuit (I2C) Bus
	Controller Area Network (CAN) Bus
	Ethernet
	Internet

	Liquid Crystal Display (LCD) Interface
	C Support Functions

	Interrupts
	Bonescript Interrupt Support

	Programmable Real-Time Units
	Architecture Overview
	PRU Memory Map
	PRU Interrupt System
	PRU Pin Mapping to BeagleBone Black
	PRU Assembly Program (PASM)
	Development Process

	Summary
	References
	Chapter Exercises

	BeagleBone ``Off the Leash''
	Overview
	Boneyard II: a Portable Linux Platform-BeagleBone Unleashed
	Boneyard III: a Low-Cost Desktop Linux Platform
	Accessing Bonescript
	Accessing the Internet

	Application 1: Inexpensive Laser Light Show
	Application 2: Arbitrary Waveform Generator
	Application 3: Robot Arm
	Application 4: Weather Station in Bonescript
	Requirements
	Structure Chart
	Circuit Diagram
	UML Activity Diagrams
	Bonescript Code

	Application 5: Speak & Spell in C
	BeagleBone C Code

	Application 6: Dagu Rover 5 Treaded Robot
	Description
	Requirements
	Circuit Diagram
	Structure Chart
	UML Activity Diagrams
	BeagleBone C Code

	Application 7: Portable Image Processing Engine
	Brief Introduction to Image Processing
	Image Processing Tasks
	OpenCV Computer Vision Library
	Stache Cam

	Summary
	References
	Chapter Exercises

	Where to from Here?
	Overview
	Software Libraries
	OpenCV
	Qt
	Kinect

	Additional Resources
	OpenROV
	Ninja Blocks
	Related Books
	BeagleBoard.org Resources
	Contributing to Bonescript

	Summary
	References
	Chapter Exercises

	Bonescript functions
	LCD interface for BeagleBone in C
	BeagleBone LCD Interface
	BeagleBone Black LCD C code

	Parts List for Projects
	Authors' Biographies
	Blank Page

